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PEEFACE.

ON the author's appointment to lecture on Mechanics in the Royal

Naval College, a course of elementary lessons was commenced, based

on RANKINE'S well-known treatise, with such assistance as could be

obtained from other sources. After some years this course assumed

a tolerably permanent form, and it was thought desirable to print

it, partly from the inconvenience to students of being exclusively

dependent on oral instruction, and partly from an idea that it

might be useful to others besides those who were immediately

addressed. The place which these lectures occupy in the programme
of the College will be found explained in an Appendix.

The preparation of the work for the press has extended over a

considerable period, and has been subject to many interruptions.

There is therefore not always the unity desirable in a scientific

treatise
;

nor is it by any means complete, even when due account

is taken of the stringent limitations explained in the Introduction.

It is, however, hoped that these deficiencies may be partly com-

pensated for by the fact that the book is the product of a great

deal of experience in teaching the subject, and a great deal of con-

sideration as to the matter which ought to find a place in a general

elementary treatise. Nearly the whole has been delivered in the

form of lectures, and some part has actually been printed from

notes taken throughout one session by a member of the junior

class (Mr. H. J. Oram, R.N.) at that time, which were afterwards

transcribed for the press by the author's assistant. Everything,

however, of any importance has been re-written, with alterations

and additions, to make it better fit for publication. Throughout, the
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vi PREFACE.

object has been to give reasons, not rules, and details of application

-are consequently subordinated to the principles on which the theory

is based. Especially has the author endeavoured to distinguish as

clearly as possible between those parts of the subject which are

universally and necessarily true, and those parts which rest on

hypotheses more or less questionable. The book is intended to

give that general knowledge of the mechanics of structures and

machines which should accompany the detailed study either of

naval architecture or of any special branch of engineering to which

a student proposes to devote himself. Much, therefore, is excluded

which might naturally be expected to form part of the work,

simply because, however important, it is required only by a special

class of students.

The introduction of descriptive details is not necessary to the plan

of this work, except in certain parts of the theory of mechanism,

nor, indeed, in a general treatise would it be possible to include

them systematically within any reasonable compass. In the chapters

on mechanism, however, they are required, and elsewhere it has

been thought advisable to introduce them occasionally. Care has

been taken to select working examples almost exclusively, the plates

representing which have mostly been drawn by Mr. T. A. Hearson,

to whom the author is indebted for many suggestions and portions

of the descriptive matter, together with some assistance in revising

proof sheets and transcribing lecture notes for the press. The proofs

have been read by Professor W. C. Unwin, M.I.C.E., to whose

great technical knowledge some corrections are due. In a general

elementary work there is not room for much that is new : in the

references at the end of each chapter and in the Appendix the

various sources of information have been stated fully.

GREENWICH, May, 1884.



PREFACE TO THE FOURTH EDITION.

THE origin and object of the present work are so fully explained in

the original preface that it is unnecessary for the author to do more

than express his gratification that it has been found in some degree,

however imperfectly, to fulfil its purpose. In this, as in the third

edition, a considerable amount of additional matter has been intro-

duced, partly on subjects which have acquired additional importance

since the book was originally written, and partly where further

explanation appeared urgently required. The whole, so far as

circumstances permitted, has been revised and brought up to date.

The method of treatment originally employed has been as far as

possible adhered to. To some readers familiar with modern treatises

on theoretical mechanics it may appear in many respects unduly

conservative, but the author is convinced that it is that which is

best suited to the work on hand. It is too often forgotten/ that the

mechanics of the engineer has a history of its own, and has developed

in its own way. His fundamental idea the idea of work was long

ignored in academic lecture rooms, and has only recently been appro-

priated for the most part without acknowledgment by writers of

elementary text books. Apart, therefore, from the special nature of

the subject-matter, the distinction between "applied" and "theoretical"

mechanics, the mecamque industrielle and the mtcanique rationelle of the

French, though happily fast disappearing, is even at the present day

much more real than many persons are disposed to admit.

It is hardly necessary to say that the units of measurement employed

in the physical laboratory would be entirely out of place here
;

the

system is not used by engineers either at home or abroad, nor is there
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any reason to think that it could be practically introduced without

great modifications. Metric gravitation measure stands on a different

footing ;
it is recognized in all countries, and its universal adoption for

the purposes of ordinary life is clearly only a question of time. In the

present edition it has therefore been explained in due course, though

for some time to come the system in common use must continue to

be that which is principally employed.

The note in the Appendix on the resistance and propulsion of

ships introduced in 1892 has been retained. The subject is one of

great importance, and though only a summary in skeleton of leading

facts relating to this intricate question, it is hoped that the note

may be of service to some readers in directing their attention to

the principles on which any sound treatment of the subject must

be based, and its connection with other branches of mechanics.

As in preceding editions the author has pleasure in acknowledging

the services of his assistant for the time being. In the present case

Mr. R. B. Dixon, R.N., has read the greater part of the proofs, and

to his care many corrections are due.

GREENWICH, July, 1895.

PREFACE TO THE FIFTH EDITION.

THE changes in this edition are few. For reasons already sufficiently

indicated additional matter has been introduced on the effects of the

inertia and obliquity of connecting rods (pp. 229, 285), on the torsion

of tubes (pp. 358, 422), and on the centrifugal whirling of shafts

(p. 396). Some other changes of slight importance have been made

in the text and further notes have been added, especially on the

representation of a curve of crank effort by a Fourier Series (p. 615)

and on certain points in the theory of turbines (p. 629). The author

hopes that the book may still continue to be found useful,

KENSINGTON, October, 1900.
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INTRODUCTION.



WHAT are the conditions of a science? and when may any subject be said to enter

the scientific stage ? When the facts of it begin to resolve themselves into groups ;

when phenomena are no longer isolated experiences, but appear in connection and

order ; when, after certain antecedents, certain consequences are uniformly seen to

follow; when facts enough have been collected to furnish a basis for conjectural

explanation; and when conjectures have so far ceased to be utterly vague that it is

possible in some degree to foresee the future by the help of them. FKOUDE.

A competent view of the world can never be bad as a gift ; we must acquire it by
hard work. MACH.
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THE province of the Engineer and Architect is to control the

forces of nature and apply them to useful purposes, an object
which is effected by means of pieces of material suitably connected

and arranged. The protection of life and property from destructive

forces is accomplished by pieces rigidly connected with one another

which transmit their action to bodies to which they are not

injurious; while the utilization of such forces in moving weights,

changing the form of bodies, and other similar operations, is effected

by a set of moving pieces which transmit their action to the required

place and modify it in some given way. In the first case the

pieces are called, collectively, a STRUCTURE, in the second, a MACHINE.
The object of the present work is to give an outline of the principles

on which structures and machines are designed.
The actual form of such a construction is almost always the final

result of a process of evolution by which it has been gradually per-
fected by adaptation from some previously existing construction.

To meet new wants the engineer selects some arrangement, suggested

by experience of some nearly similar case, which appears likely to

answer the purpose by its simplicity, facility of construction, and

adaptation to the forces which it is proposed to control and utilize.

If the new arrangement is merely a copy of the old, this may be suffi

cient and the construction may be at once proceeded with, but if there

be any important difference it is necessary, before incurring the expense
and risk of actual construction, to ascertain that the design is in

conformity with those general laws governing the action of natural

forces upon matter which reason and experience alike show to be

necessarily true in all cases. To a certain extent this has already
been considered by the designer, whose knowledge and experience
enable him to avoid at once arrangements which are obviously inad-

missible, but complete conformity can only be secured by comparison
with results deduced by reasoning and verified by experiment.
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In any branch of knowledge the explanation of a set of facts by a

general principle, from which new results can be obtained, is properly

described as a Theory of the phenomena to which they relate. When
its principles are well established it enables us to predict the results of

experiment ; when they are not, it is even more necessary, to direct the

course which experiment should take for more perfect knowledge. The

systematic study of structures and machines with a view to discover

the theoretical principles on which their construction is based, and the

deduction from those principles of results which may be useful to the

designer, forms a branch of science which, following RANKINE, we may
describe as Applied Mechanics. In some cases the subject may have

been so exhaustively studied, and may be in its nature so limited, that

all the arrangements which can be employed for a given purpose may
be foreseen and the best determined by a priori considerations. The

process of invention itself then becomes a problem in science. This,

however, is the rare exception ;
in general, the use of theory is limited

to the answering of certain questions relating to an arrangement which

has already been proposed. Among the most important of these are

(1.) What should be the dimensions of the parts of the construction

that they may be strong enough to resist the action of the forces to

which it is exposed?

(2.) Will the construction be sufficiently stable and rigid 1

(3.) Are the natural forces, which it is proposed to utilize, sufficient

for the proposed purpose and are they under proper control
1

?

It is only in the very simplest cases that these and similar questions
can be answered completely, without reference to the direct results of

experience in order to interpret theoretical reasoning and render it

applicable. Even, therefore, after the general plan of a construction is

decided on, the work of the practical designer includes much which

cannot be reduced to a mere process of deduction from given data.

Nevertheless the part of theory in controlling and directing inventive

power is of great and constantly-increasing importance, by furnishing

principles of universal application, in conformity with which every
mechanical construction must be designed, and by which the researches

of the experimentalist must be guided.

The mechanics of structures and machines is based on the properties
of materials, and on those general laws connecting matter and motion,
the study of which is the object of Abstract Mechanics, but the special
nature of the subject-matter occasions a certain difference in the

methods employed. In the elementary branches of purely abstract
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mechanics the number of bodies considered seldom exceeds two
;

if

more are introduced the questions to be considered become impractic-

ably complex considered as abstract mathematical problems. In applied

mechanics a number of pieces are connected with comparatively little

freedom so as to form an organic whole, and the results of experience

or of mathematical investigations too complex for ordinary use are ad-

mitted freely for the purpose of simplification. Hence the calculations

employed are of a coarser type, and, in particular, graphical methods

are everywhere employed when possible, not only to exhibit, but also

to obtain, numerical results. On the other hand, no investigation

is considered as complete until it has been checked by reference to

experience, and unless its errors are approximately known. The

elementary principles of abstract statics, dynamics, and hydrostatics

must be supposed already known, and some practical knowledge of

machines and structures is presupposed.

The classification of mechanical constructions depends in great

measure on the number of pieces connected and on the mode of

connection. We have first the broad distinction between structures, in

which the pieces have no movements except such as may be due to

changes in their form and dimensions consequent on the forces to which

they are exposed, and machines in which the object is attained by
means of such movements. This distinction is so fundamental that

there is no word in common use which includes both.

Structures may be ranged in order of simplicity according to the

degree of constraint with which their parts are connected as follows :

(1.) Structures with pin joints without redundant parts.

(2.) Structures with pin joints which include redundant parts.

(3.) Blockwork and earthwork structures.

(4.) Structures with riveted or other forms of fastened joints.

A pin joint, such as is shown in a simple form in Figs. 1 and 2, Plate

VIII., page 463, is one in which the pieces connected are united by a

single pin fitting into holes in the pieces, and, in consequence, neglect-

ing friction, the mutual action between the pieces connected necessarily

passes through the axis of the pin. A redundant part is one which may
be removed without destroying the structure if the remaining parts be

sufficiently strong. The first class of structures therefore possess a

peculiar characteristic which renders their theory much more simple

than that of any other, namely, that the forces acting on each piece

depend only on the external forces acting on the whole and not on
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the material or the dimensions of the pieces. In the theory of struc-

tures, then, this class is first considered, and the answer to the first of

the general questions propounded above consists in the solution of two

general problems.

(1.) Being given the load on the structure, it is required to find the

forces acting on each part.

(2.) Being given the forces acting on a piece of material, it is

required to find its dimensions that it may be sufficiently strong and

stiff.

The first forms a part of the subject which may be properly described

&s the "
Statics of Structures

"
;
while the second, which depends on

the properties of the materials of construction, is known as the

''Strength and Stiffness of Materials." The results obtained are in

continual requisition in the theory of the more complex structures, but

require to be supplemented by further investigations and by results

derived from direct experience, peculiar to each class. The present

treatise, being simply introductory, refers to the more complex struc-

tures only incidentally.

A Machine is a structure the parts of which are in motion. The
motion introduces new forces, often of great magnitude and importance,
which must be taken into account in its design ;

but we have, in addi-

tion, to consider the third general question mentioned above, namely,
the adaptation of the natural forces available, to the work which the

machine has to do. The simplest machines consist chiefly of a number
of rigid pieces, and their theory is divided into two parts one con-

cerned with the motion of the machine, the other with the work it

does. In many of the most important machines fluids are used, and
their theory forms a distinct branch of the subject not less important
than the rest, some account of which is indispensable. Thus the whole

subject is divided into five parts.

Since the parts of structures as well as machines possess, though to a

very limited extent, freedom to move, and since such movements often

have to be supposed for the purposes of an investigation, the most
natural arrangement perhaps would be to commence with the first part
of the theory of machines, and then pass on to the statics of structures.

In the present treatise it has, however, been found convenient to invert

this order, and we now, therefore, commence with structures.



PART I.-STAT1CS OF STRUCTURES.

CHAPTER I.

FRAMEWORK LOADED AT THE JOINTS.

1. Preliminary Explanations and Definitions. A frame is a structure

composed of bars, united at their extremities by joints, which offer no

resistance to rotation. In the first instance we may suppose the centre

lines of the bars all in one plane, and in that case the joints may consist

simply of smooth pins passing through holes at the ends of the bars,

which are to be imagined forked, if necessary, so as to allow the centre

lines to meet in a point. A large and important class of structures,

known to engineers as "trusses," approach so closely to frames that

calculations respecting them may be conducted by treating them as if

they were frames. The difference between a truss and a frame will

appear as we proceed.

The frame may be acted on by forces applied at points in one or

more of its bars, or at the joints which unite the bars together. An

important simplification, however, is effected by supposing, in the first

instance, that the joints only are loaded, an assumption which will be

made throughout this chapter, except in a few simple examples. It

will be shown hereafter (p. 75) that all other cases may be derived

from this by means of a preliminary reduction.

Assuming, then, that the frame is acted on by forces at the joints,

due either to weights or other external causes, or to the reaction of

supports on which the frame rests, the problem to be solved is to find

the forces called into play on each of the bars of which it is constructed.

These forces are caused by the pressure of the pins on the sides of the

holes through which they pass, and it at once follows, since no other

C.M. A
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forces kct on <tfre &*#, ^bat for each bar these pressures must be equal

and: oppcgftc^thfcir cDntmorr- line of action being the line joining the

>\.i i'o.^i'** ^ti.. **
centres of the holes. There are two

Pigrs.ia,ib.
possible cases shown in Figs, la, Ib;

r^/r\\_> in tne first tlie bar is acted on ky a

i ~\^s pair of equal and opposite forces tend-

ing to lengthen it, and in the second

to shorten it. The pairs of forces are

called a Pull and a Thrust respectively,

while the bars subjected to their action are called Ties and Struts

respectively. Between a pull and a thrust there is no statical difference

but that of sign ;
the constructive difference, however, between a tie

and a strut is great. The first may theoretically be a rope or chain,

and the second may be made up of pieces simply butting against one

another without fastening, while a rigid bar will serve either purpose,,

though its powers of resistance are generally entirely different in the

two cases.

It often happens that it is unknown whether a bar be a strut or a

tie, and the pair of forces are then called a STRESS on the bar. This

word "
stress

"
was introduced by Rankine to denote the mutual action

between any two bodies, or parts of a body, and here means, in the

first instance, the mutual action between the parts of the frame united

by the bar we are considering. If, however, we imagine the bar cut

into two parts, A and B, by any transverse section, as shown in Figs,

la, Ib, those parts are held together in the case of a pull, or thrust

away from each other in the case of a thrust, by internal molecular

forces called into play at each point of the transverse section, and acting
one way on A and the other way on B. As A and B must both be

in equilibrium, it is obvious that these internal forces must be exactly

equal to the original forces, and thus it appears that the stress on the

bar may also be regarded as the internal molecular action between

any two parts into which it may be imagined to be divided. Stress

regarded in this way, will be fully considered in a subsequent division

of this work; it will be here sufficient to say that its intensity is

measured by dividing the total amount by the sectional area of the bar,

and is limited to a certain amount, depending upon the nature of the

material of which the bar is constructed.

It is further manifest from what has been said, that the stress on a

bar may likewise be regarded as a mutual action between the bar and
either of the pins at its ends which are pulled towards the middle of

the bar in the case of a pull, or thrust away from it in the case of a

thrust
;
each pin is therefore acted on, in addition to any load which
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may be suspended from it, by forces, the directions of which are the

lines joining the centres of the pins, from which it follows at once

that every joint may be regarded as a point kept in equilibrium by the load

at that joint and by forces of ichich the bars of the frame are the lines of

application. This principle enables us to find the stress on each bar of

a frame loaded at the joints whenever such stress can be determined

by statical considerations alone, without reference to the material

or mode of construction, that is to say, in all cases which properly

belong to the present division of our work.

Forces are measured in pounds, or, when large, in tons of 2240 Ibs.

They are often distributed over an area or along a line, and are then

reckoned per square foot or per
"
running

"
foot, the last expression

being commonly abbreviated to "foot-run."

The bars need not be connected by simple pin joints as has been

supposed for clearness, provided that their centre lines if prolonged
meet in a point through which passes the line of action of the load on

the joint. This point may be called the centre of the joint, and we

may replace the actual joint by a simple pin, or, if the bars are not in

one plane, by a ball and socket which has the same centre. We shall

return to this hereafter, but now pass on to consider various kinds of

frames, commencing with the simplest.

SECTION I. TRIANGULAR FRAMES.

2. Diagram of Forces for a Simple Triangular Frame. The simplest

kind of frame is a triangle.

In Fig. 2a, AGE is such a triangle; it is supported at AB so that

AB is horizontal, and loaded at C with a weight W. Then evidently

the effect of the weight is to compress AC, BC, and to stretch AB,
which is conveniently indicated by drawing AC, BC in double lines,

and AB in a single line. Also the weight produces certain vertical

pressures on the supports A, B, which will be balanced by corresponding
reactions P and Q.

To find the magnitude of the thrust on AC, BC, the pull on AB, and

the reactions, the diagram of forces Fig. 2b is drawn ;
ab is a vertical

line representing W on any convenient scale, while aO, bO are lines

drawn through a, b respectively, parallel to AC, BC to meet in 0, and

finally On is drawn parallel to AB, or, what is the same thing, perpen-
dicular to ab. Now, applying the fundamental principle laid down

above, we observe that C is a point kept in equilibrium by three forces,

the load at C, namely W, the thrust ofAC which we will call S, and the

thrust of BC which we will call 1L In the second figure the triangle
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Oab has its sides parallel to these forces, and hence it follows that Oa,

Ob represents S, R on the same scale that ab represents W . Again, A is

a point kept in equilibrium by three forces, the thrust of AC, the pull

of the tie AB, which we will call H, and the upward reaction P of the

support A. But referring to the figure 2b, On, an are respectively

parallel to the two last forces, so that, by the triangle of forces, they

represent H, P on the same scale that Oa represents S. The same

reasoning applies to the point B, and therefore bn represents the other

supporting force Q, as is also obvious from the consideration that

P+Q=PP. We thus see that all the forces acting upon and within the

triangular frame ACB are represented by corresponding lines in Fig. 2b,

which is thence called the "diagram of forces" for the triangular frame.

Such a diagram can be drawn for any frame, however complicated, and

its construction to scale is the best method of actually determining the

stresses on the several parts of the frame.

The force H requires special notice : it is called the " thrust" of the

frame. In the present case the thrust is taken by the tension of the

third side of the triangle, but this may be omitted, and the supports A
and B must then be solid and stable abutments capable of resisting a

horizontal force H. In many structures such a horizontal thrust exists;

and its amount and the mode of providing against it are among the

first things to be considered in designing the structure. Besides the

graphical representation just given, which enables us to obtain the

thrust of a triangular frame by constructing a simple diagram, it may
also be calculated by a formula which is often convenient. Let AC be

denoted by b and BC by a, as is usual in works on trigonometry, and

let AN, BN their projections on AB be called b', a', and let the height
of the triangle be h and its span I, then by similar triangles,

P an CN h

H~On~AN~b"

______
H~0n~ BN~a"
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Therefore, by addition,

or H= W-Tr-
ill

In practical questions it often happens that a', b', h are known by the

nature of the question, whence H is readily determined. The case

when the load bisects the span may be specially noticed : then

a' = b' = ^l and
Wl

Th'
H

When the height of the frame is small compared with the span, this

calculation is to be preferred to the diagram, which cannot then be

constructed with sufficient accuracy.

The simple frame here considered may be inverted, in which case the

diagram of forces and the numerical results are unaltered, the only

change being that the two struts have become ties and the tie a strut.

3. Triangular Trusses. Triangular frames are common in practice,

and the rest of this section will be devoted to some of the commonest

forms in which they appear.

Fig. 3a shows a simple triangular truss consisting of a beam, AB,

supported by a strut at the centre, the lower extremity of which is

carried by tie roads, AC, BC, attached to the ends of the beam. If

now a weight, W, be placed at

~~w~| a

athe centre, immediately over
Fig.Sa.

the strut, it does not bend the

beam (sensibly) as it would do

if there were no strut, but is

transmitted by the strut to the

joint (7, so that the truss is

equivalent to the simple tri-

angular frame of the last article.

This, however, supposes that

the strut has exactly the proper
i n i *

length to prevent any bending of the beam
;

if it be too short or too

long the load on the frame will be less or greater than W, a point

which will be further considered presently. It should be noticed that

D is not necessarily at the centre.

Fig. 3b shows the same construction inverted. CD is a tie by which

D is suspended from C
;
we will suppose this rod to pass through AB

and a nut applied below, by means of which D may be raised or lowered.
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Let AB now be uniformly loaded with a given weight, then the bending

of AB is resisted by CD, which supports it and carries a part of the

load, which may be made greater or less by turning the nut. If, how-

ever, we imagine AB, instead of being continuous through D, to be

jointed at D, then the tie CD necessarily carries half the weight of AD
and half the weight of BD, that is to say, half the whole load, whatever

be its exact length. This simple example illustrates very well the

most important difference between a truss and a mathematical frame
;

namely, that in the truss one or more of the bars is very often con-

tinuous through a joint. Such cases can only be dealt with on the

principles of the present division of our work, by making the supposition

that the bar in question, instead of being continuous, is jointed like

the rest. The error of such a supposition will be considered hereafter
;

it is sufficient now to say that in order that it may be exact in the

particular case we are considering, the nut must be somewhat slackened

out so that D may be below the straight line AB, and that being

dependent on accuracy of construction, temperature, and other varying

circumstances, such errors cannot be precisely stated, but must be

allowed for in designing the structure by the use of a factor of safety.

The supposition is one which is usual in practical calculations, and

will be made throughout this division of our work.

The foregoing is one of the simplest cases where, as is very common
in practice, the bars of the frame are loaded and not the joints alone.

When such bars are horizontal and uniformly loaded, the effect is

evidently the same as if half the load on each division of the loaded

bar were carried at each of the joints through which it passes. This

is also true if the loaded bars be not horizontal, but the question then

requires a much more full discussion, which is reserved for a later

chapter (see Ch. IV.).

When one of the joints of the loaded bar is a point of support, like

A in Fig. 3, the supporting force is due partly to the half weight of

one or more divisions of the loaded bar, and partly to the downward

pull or thrust of other bars meeting there : the first of these causes

-does not aifect the stress on the different parts of the truss, and the

calculations are therefore made without any regard to it. The

explanations given in this article should be carefully considered, as

they apply to many of the examples subsequently given.
The triangular truss in both the forms given in this article is

frequently employed in roofs and bridges of small span, as well as

for other purposes.

4. Cranes. The arrangements adopted for raising and moving
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Fig.4a.

weights furnish many interesting examples of triangular frames. Fig. 4a

shows one of the forms of the common crane, a machine the essential

members of which are the jib,

BC, supported by a stay, CE,

attached to the crane-post,

BE, which is vertical. In

cranes proper this third mem-
ber rotates, carrying EC and

CE with it, but in the sailors'

derrick a fixed mast, plays

the part of a crane-post and

the stay, CE, is a lashing of rope frequently capable of being

lengthened and shortened by suitable tackle, so as to raise and lower

the jib, a motion very common in cranes and hence called a derrick

motion. The weight is generally also capable of being raised and

lowered directly by blocks and tackle, but for the present will be

supposed directly suspended from C.

The diagram of forces now assumes the form shown in Fig. 4b, in

which the lettering is the same as in Fig. 2b, page 4, the only difference

in the diagrams being that in the present
case AC, which is now a tie, is divided

into two parts, AE and EC, inclined at

an angle. The stress on AE is therefore

not the same as on EC, but is got by

drawing a third line, Ca, parallel to AE.
The perpendicular On gives us in this

instance not only the stress on AB and

the horizontal thrust of CB at B, but

also the horizontal pull of CE at E we may call this H as before.

There is an upsetting moment on the structure as a whole which is

equal to the product of the weight W by its horizontal distance

from B (often called the radius of the crane) arid also to the force

H, multiplied by the length of the crane-post, BE. One principal

difference between different types of cranes lies in the way in which

this upsetting moment is provided against.

(a.) In portable cranes, such as shown in Fig. 4a, there is a horizontal

platform, AB, supported by a stay. AE, and carrying a counterbalance'

weight, P, sometimes capable of being moved in and out so as to

provide for different loads. The right magnitude of counterbalance

weight and the pull on the stay, AE, are shown by the diagram, P
corresponding to the supporting force at A in the previous case.

(ft.) In the pit crane, the post is prolonged below into a well and the

Fig.4l3.
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Fig.5.

lower end revolves in a footstep, the upper bearing being immediately

below B. In this instance the post has to be made strong enough
to resist a bending action at B, equal to the upsetting moment, and

the bearings have to resist a horizontal force equal to H multiplied

by the ratio of the length of the crane-post, BE, to that of its.

prolongation below the ground.

(y.) The upper end of the crane-post may revolve in a headpiece,,

which is supported by a pair of stays anchored to fixed points in the

ground. The upright mast of a derrick frequently requiring support in

the same way, this arrangement is known as a derrick crane. It is

(C
shown in Fig. 5, ED, ED' being
the stays. To find the stress on

the stays it is necessary to pro-

long the vertical plane through

EC, to intersect the line DD\
joining the feet of the stays in

the point A, and imagine the two

stays, ED, ED replaced by a

single stay, EA : then a diagram
of forces, drawn as in the previous

case, determine S', the pull on this stay. But it is clear that S' must

be the resultant pull on the two original stays, and may be considered

as a force applied at E in the direction of AE to the simple triangular
frame DED'. A second diagram of forces therefore will determine

the pull on each stay, just as in the next following case.

5. Sheer Legs and Tripods. Instead of employing an upright post
to give the necessary lateral stability to the triangle, one of its members

may be separated into two.

Thus in moving very heavy

weights sheer legs are used,

the name being said to be de-

rived from their resemblance

to a gigantic pair of scissors

(shears) partly opened and

standing on their points. In

Fig. 6, CD, CD are spars, or

D tubular struts, often of great

length, resting on the ground at DD' and united at C, so as to be

capable of turning together about DD as an axis. The load is carried

at C and the legs are supported by a stay, CA, which is sometimes

replaced by a rope and tackle, capable of being lengthened or shortened

Fig.6.
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Fig.7a,7b.

so as to raise or lower the sheers. Drawing AB to the middle point
of DD', the pair of legs are to be imagined replaced by a single one,

CB, then the diagram of forces may be constructed just as in Fig. 4b,

and we shall obtain the tension of the rope 8 and the resultant thrust

on the pair of legs R. Now draw the triangle ODD', as in Fig. 7a, and

imagine it loaded at C with a weight, ,

,

R, then drawing the diagram of forces,

Fig. 7b, we get R' the thrust on each

leg. The horizontal force, H', in this

second diagram represents the tend-

ency of the feet of the legs to spread
outwards laterally, while the force

H of the original diagram represents

their tendency to move inwards per-

pendicular to DD'. In some cases the D

guy rope and tackle, CA, are replaced by a third leg called the back

leg, and the sheers are then raised and lowered by moving A by a

large screw
;
the force H is then also the force to be overcome in

turning the screw.

Instead of having only two legs, as in sheers, we may have three

forming a tripod. This arrangement is frequently used to obtain a

fixed point of attachment for the tackle required to raise a weight, and

is sometimes called a "gin," or as military engineers prefer to spell the

word, a "gyn." The thrust on each leg and the tendency of the legs

to move outwards can be obtained by a process so similar to that in

the preceding examples that we need not further consider it.

6. Effect of the Tension of the Chain in Cranes. In most cases the

load is not simply suspended from C as has been hitherto supposed, but

is carried by a chain passing over pulleys and led to a chain barrel,

generally placed somewhere on the crane-post. The tension of the

chain in this case is Wjnt
where n is a number depending on the

nature of the tackle, and this tension is to be considered as an addi-

tional force applied at C to be compounded with the load W, the effect

of which has been previously considered. Fig. 8 shows the form the

diagram of forces assumes in this case. Drawing ba as before to repre-

sent W) and aa' parallel to the direction in which the chain is led off

from the pulley at C and equal to the tension Wjn t
the third side of

the triangle, ba', must be the resultant force at C due to both forces,

whence drawing a'O parallel to the stay and bO parallel to the jib, and

reasoning as before as to the equilibrium of the forces at C, we see that

these lines must be the tension of the stay and the thrust on the jib.
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The effect of the tension of the chain is generally to diminish the pull

on the stay arid increase the thrust on the jib, sometimes very consider-

ably, as for example in certain older types of crane still used for light

loads under the name of "
whip

"
cranes. In these cranes the chain

passes over a single fixed pulley at the end of the jib, and is attached

directly to the weight, so that the tension

of the chain is equal to the weight. The

other end of the chain is led off along a
Fig.8. / I w

horizontal stay to a wheel and axle at

the top of the crane-post, a chain from

the wheel of which passes to a windlass

below. This arrangement, the double

windlass of which facilitates changes in

the lifting power corresponding to the load to be raised, is a develop-

ment of the primitive machine in which the wheel was a tread wheel

worked by men or animal power. In this case the pull on the stay is

diminished by the whole weight lifted, and is thus reduced very much.

Where a crane has to be constructed of timber only, this is a consider-

able advantage, from the difficulty of making a strong tension joint in

this material.

EXAMPLES.
1. The slopes of a simple triangular roof truss are each 30. Find the thrust of the

roof and the stress on each rafter when loaded with 250 Ibs. at the apex.
Thrust of roof =216 '5 Ibs.

Stress on rafters =250 ,,

2. A beam 15 feet long is trussed with iron tension rods, forming a simple triangular
truss 2 feet deep. Find the stress on each part of the frame when loaded with 2 tons in

the middle.

Thrust on strut 2 tons.

Pull on tension rods=3 '88 ,,

Thrust on beam =3 '75 ,,

3. The platform of a foot bridge is 20 feet span, and 6 feet broad, and carries a load of

100 Ibs. per sq. ft. of platform. It is supported by a pair of triangular trusses each 3 feet

deep, one on each side of the bridge. Find the stress on each part of one of the trusses.

The whole load of 12,000 Ibs. rests equally on the two trusses, there is therefore

6000 Ibs. distributed uniformly along the horizontal beam of each truss.

Thrust on strut =3,000 Ibs.

Tension of tie rods =5,220 ,,

Thrust on horizontal beam= 5,000 ,,

4. The slopes of a simple triangular roof truss are 30 and 45 and span 10 ft. The
rafters are spaced 2^ feet apart along the length of the wall, and the weight of the

roofing material is 20 Ibs. per sq. ft. Find by graphical Construction the thrust of the

roof.

Each rafter carries a strip of roof 2 feet wide, the load on rafter=50 Ibs. per foot

length of rafter. Find the lengths by construction or otherwise. The virtual load at

apex=| weight on the two rafters=311 Ibs.

Thrust of roof= 198 Ibs.
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5. The jib AC of a ten-ton crane is inclined at 45 to the vertical, and the tension rod

BC at an angle of 60. Find the thrust of the jib, and the pull of the tie rod when fully

loaded, the tension of the chain being neglected. If a back stay BD be added inclined

at 45, and attached to the end of a horizontal strut AD, find the counterbalance weight

required at D to balance the load on the crane, and find also the tension of the back

stay.

Thrust on jib AC =33 '5 tons.

Tension of tie rod =27'o ,,

Counterbalance weight=23 '5 ,,

Tension of back stay =33 '5 ,,

6. A pair of sheer legs are 40 feet high when standing upright, the lower extremities

rest on the ground 20 feet apart, the legs stand 12 feet out of the perpendicular, and are

supported by a guy rope attactied to a point 60 feet distant from the middle point of the

feet. Find the thrust on each leg, and the tension of the guy rope under a load of 30

tons.

Thrust on each leg =19 '5 tons.

Tension of guy rope= 12 '8 , ,

7. In example 5 the tension of the chain is half the load, and the chain barrel is so

placed that the chain bisects the crane-post AB. Find the stress on the jib and tie rod.

Thrust of jib =36 tons.

Pull of tie rod=25
8. In a derrick crane the projections of the stays on the ground form a right-angled

triangle, each of the equal sides of which is equal to the crane-post. The jib is inclined

at 45 and the stay at 60 to the vertical. Find the stress on all the parts (1) when the

plane of the jib bisects the angle between the stays ; (2) when it is moved through
90 from its first position. Load 3 tons.

Answer. Case 1. Pull on each stay = 7'1 tons.

Case 2. Pull on one= thrust on other=7 '1

9. A load of 7 tons is suspended from a tripod, the legs of which are of equal length

and inclined at 60 to the horizontal. Find the thrust on each leg. If the load be

removed and a horizontal force of 5 tons be applied at the summit of the tripod in such

a way as to produce the greatest possible thrust on one leg, find that thrust and deter-

mine the stress on the other two legs.

Answer. Case 1. Thrust on each leg =2 '7 tons.

Case 2. Thrust on one leg =6'7 ,,

Pull on each of the others=3^

SECTION II. INCOMPLETE FRAMES.

7. Preliminary Remarks. A frame may have just enough bars and no

more to enable it to preserve its shape under all circumstances, or the

number of bars may be insufficient or there may be redundant bars.

The distinction between these three classes of frames is very important :

in the first the structure will support any load consistent with strength,

and the stress on each bar bears a certain definite relation to the load,

so that it can be calculated without any reference to the material or

mode of construction
;
in the second, the frame assumes different forms

according to the distribution of the load, but the stress on each bar can

still be calculated by reference to statical considerations alone
;
in the

third, where the frame has redundant bars, the stress on some or all of

the bars depends on the relative yielding of the several bars of the
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frame. It is to the second class, which may be called
"
incomplete

""

frames, that the present section will be devoted.

In incomplete frames the structure changes its form for every distri-

bution of the load, and, strictly speaking, therefore, such constructions

cannot be employed in practice, because the distribution of the load is

always variable to a greater or less extent. But when the greater part

of the load is distributed in some definite way the principal part of the

structure may consist of an incomplete frame, designed for the parti-

cular distribution in question, and subsequent moderate variations of

distribution may be provided for either by stiffening the joints or by

subsidiary bracing. Such cases are common in practice, and investiga-

tions relating to incomplete frames are therefore of much importance.

8. Simple Trapezoidal or Queen Truss. We will first consider a frame

which is composed of four bars. The most common case is that in

b

c D
Fig.9a.

which of the bars are horizontal and the other two equal to one

another, thus forming a trapezoid. The structure is called a trapezoidal

frame.

It is suitable for carrying weights applied at the joints CD, either

directly or by transmission through vertical suspending rods from the

beam AB. From the symmetry of the figure it is evidently necessary

for stability that the loads at C and D should be equal. This fact will

also appear from the investigation. Consider first the joint C, and draw

the triangle of forces, Oan, for that point ;
an being taken to represent

W, aO will represent the thrust on AC and On that along CD. The

triangle Obn will represent the forces at the joint D, Ob representing the

thrust of BD
;
bn will represent the load at D, and from the symmetry

of the figure must equal an, and hence weight at D must for equilib-

rium equal that at C. Now let us proceed to joint A, where there are

also three forces acting, one along A C is now known and represented

by aO, thus On will represent the tension of AB, and an will be the

necessary supporting force at A equal to W, as might be expected.
The tension of AB is equal to the thrust on CD. We observe that the

diagram of forces is the same as that of a triangular frame, carrying 2ir

at the vertex and of span equal to the difference between AB and CD.

Trapezoidal frames are employed in practice for various purposes.
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(a.) A beam, AB (Fig. lOa), loaded throughout its length may be

strengthened by suspending pieces, CN, DM, transmitting a part of the

weight to the arch of bars, AC, CD, BD, an arrangement common in

small bridges.

(/?.) As a truss for roofs, in which case there will be a direct load at

C and D due to the weight of the roofing material, while vertical mem-

bers serve partly as suspending rods by which part of the weight of tie

beam and ceiling (if any) is transmitted to CD, and partly to enable the

structure to resist distortion under an unequal load. When made of

wood, this is the old form of roof called by carpenters a "
Queen Truss,"

CN, DM, being the "
queen posts

"
(see Section III. of this chapter).

This name is constantly used for all forms of trapezoidal truss erect or

inverted which include the vertical "queens."

(7.) Not less common is the inverted form, Fig. lOb, applied to the

beams carrying a traversing crane, the cross girders which rest on the

main girders of a railway bridge and carry the roadway, and many
other purposes. The bars AC, CD, BD are now iron tie rods. In this

case also if the two halves of the beam are unequally loaded there will

be a tendency to distortion, to resist which completely, diagonal braces,

CM, DN, must be provided, as shown in the figure by dotted lines.

Such diagonal bars occur continually in framework, and their function

will be fully considered in the next chapter. But in the present case

they are quite as often omitted, the heavy half of the beam then bends

downwards and the light half bends upwards (see Ex. 4, p. 87), but the

resistance of the beam to bending is found to give sufficient stiffness.

9. General case of a Funicular Polygon under a Vertical Load. Example

of Mansard Hoof. We next take a general case. In Fig. 1 la, 1 2 3

... 6 is a rope or chain attached to fixed points at its ends and loaded

with weights, W^ W^,.., suspended from the points 1, 2, etc. The figure

shows 5 weights, but there may be any number. The rope hangs in a

polygon, the form of which depends on the proportions between the

weights. It is often called a "funicular polygon" and possesses very

important properties. We shall find it convenient to distinguish the

sides of this polygon by letters a, b, c, etc. We are about to determine

the proportions between the weights when the rope hangs in a given

form, and, conversely, the form of the rope when the weights are given.
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In Fig. lib draw ab vertical to represent W^ the load suspended at the

angle of the polygon where the sides a and b meet, then draw aO, 10

parallel to a, b respectively to meet in 0, thus forming a triangle Oab,

which we distinguish by the number 1, which represents the forces-

w,

W

W4

i\ Fig.iib.

acting on the point 1, so that the tensions of the sides a, b are thus

determined. Now draw Oc parallel to the side c to meet the vertical in

c; we thus obtain a triangle distinguished by the number 2, which

represents the forces acting at that point, and as Ob is already known

to be the tension of b it follows that be must be the weight Wv and Oc

the tension of the side c. Proceeding in this way we get as many

triangles as there are weights, and the sides of these triangles must

represent the weights and the tensions of the parts of the rope to which

they are respectively parallel. Thus, if the form of the rope is known

and one of the weights, all the rest can be determined. Conversely, to

find the form of the funicular polygon when the weights are given in

magnitude and line of action, we have only to set downwards on a

vertical line the weights in succession and join the points a b..., which

will now be known, to any given point 0, then the funicular polygon
must have its angles on the lines of action of the weights and its sides

parallel to the radiating lines Oa, Ob, Oc, etc., so that the sides can be

drawn in succession, starting from any point we please.

In the diagram of forces, Fig. lib, if ON be drawn horizontal to

meet the vertical a, b, c... in N, this line must represent the horizontal

tension of the rope.

The rope may be replaced by a chain of bars which may be inverted,

thus forming an arch resting on fixed points of support, the diagram of

forces will be unaltered, and ON will represent the thrust of the arch.

As an elementary example of an arch of bars we will consider a truss
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used for supporting a roof of double slope called a Mansard roof. We
will take the usual case in which the truss is symmetrical about the

centre. Suppose it is loaded at the joints. There is one proportion of

load which the truss is able to carry without any bracing bars being added.

From symmetry the weights at 2 and 2' (see Fig. 12a) must be equal.

To find the portion between the weights at 1, and at 2 2', together

with the stresses on the bars of the frame, in Fig. 1 2b set down ad to

represent fFat 1, and draw aO and a' parallel to a and a', the thrusts

along these bars will be determined. Then, considering the equilibrium

of either 2 or 2', say 2, one of the three forces acting at the joint,

namely aO, along the bar a being known, the other two forces may be

W2

determined by drawing ab and Ob parallel to them, ba parallel to IV.^

and Ob to the bar b. If ON be drawn horizontally it will give the

amount of the horizontal thrust of the roof or the tension of a tie bar

3 3', if there is such a bar. If the proportion of W.
2
to W

l
is greater

than ab to aa' the structure will give way by collapsing, 2 and 2' coming

together ;
and if the proportion is less, the structure will give way by 2

and 2' moving outwards and 1 falling down between. In practice it is

impossible to secure the necessary proportion of loads, on account of

variation of wind pressure and other forces, and therefore stiffening of

some kind is always needed. If bracing bars be placed as shown by the

dotted lines 2 3', 2' 3, 2 2', the structure will stand whatever be the pro-

portion between the loads. The truss may be partially braced by the

horizontal bar 2 2' only. Then the proportion between the loads W
l

and 7F
2 may be anything we please, but the loads at 2 and 2' must be

equal, at least theoretically, but in practice the stiffness of the joints

will generally be sufficient for stability, especially if vertical pieces be

added connecting these points to the tie beam as in a queen truss.

10. Suspension Chains. Arches. Bowstring Girders. We now go on

to consider another important example, in which the number of bars
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composing the frame is very much increased, as found in the common

suspension bridge.

Let AB (Fig. 13a) be the platform of a bridge of some considerable

span, which has little strength to resist bending. Suppose it divided

into a number of equal parts, an odd number for convenience, say nine,

and each point suspended by a vertical rod from a chain of bars secured

at the end to fixed points, D and E, in a horizontal line. In the

figure only half the structure is shown. Suppose the platform loaded

with a uniformly distributed weight : we require to know the stress on

W W W

each bar and the form on which the chain will hang. Equal weights
on each division of the platform will produce equal tensions in the

vertical suspending rods, and if we neglect the differences of weight of

the rods and bars themselves, the load at each joint of the chain of bars

will be the same. (Cornp. Art. 11.) Let 7f=load at each joint.

Now the centre link KK\ since there is an odd number and the chain

is symmetrical, will be horizontal. Let us consider the equilibrium of

the half chain between C and D. The four weights, /IF, hanging at

A', L, J/, Ar
,
are sustained in equilibrium by the tension of the bars

KK' and NI).

The resultant of the four /Fs will act at the middle of the third

division from the left end, and since this resultant load together with

the tensions of the middle and extreme links maintain the half chain in

equilibrium, the three forces must meet in a point, the point Z shown

in the figure. Thus the direction of the extreme link DN may be

drawn. The direction and position of the other links may be found

also. Considering the portion of the chain XC carrying three weights,
the resultant of which is in the line through ,

the link JO/ must be

in such a direction as to pass through the point where this resultant

cuts KK' produced. Having drawn AW, ML may be drawn in a

similar way, and then LK. Returning to the consideration of the half

chain, the three forces which keep it in equilibrium may be represented

by the three sides of a triangle. Set down an (Fig. 13b) to represent
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4//~. and d: ul n<> parallel to /'/and /(
'

: /(> will be the tension

of /).V and /<(> of A'A". If an be divided into I equal parts, and the

points b, c, (/ joined to ('. these lines will represent the tensions of

links .V.I/, .I/A. and 7.A". It may be easily shown that they will be

parallel to those links. \Vo see that the tension increases as we pass

from link to link, from the centre to the ends.

In many cases in practice, the number of vertical suspending rods

and links in the chain is very great. We may then, in what follows,

without sensible error, regard the chain as forming a continuous curve.

D
i E

In such a case, (7, the Jowest point of the chain (Fig. 14a), is over the

middle of the platform. The tangent at (\ which is horizontal, will

nuet the tangent to the chain at /), in a point Z, a

which will be over the middle of the half platform,

for that will be a point in the line of action of the

resultant load on the half chain. We can now draw

a triangle of forces anO, for the half chain as before
;

On will represent the tension of the chain at the

lowest point, or the horizontal component of the

tension of the chain at any point. We can ea^ily

obtain a convenient expression for this horizontal

tension thus: Let / = span of the bridge, and

tr = load per foot-run. Then Jir/
= weight on the half chain repre-

sented by an. Let H= horizontal tension, then

H = 0n
\ wl

~
an

'

But if we drop a perpendicular from 7) to cut the horizontal tangom
in a point /' (not shown in the figure), DV will be the dip of the

chain </. ami comparing the triangles DVZ, aOn,

H
an

_
DV d

which, since iol = total load on chain, may be written

H = load on chain Jp .

dip
B
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This is the same as the horizontal thrust of a triangular frame of the

same height which carries a uniformly distributed load of the same

intensity.

Having found the magnitude of the horizontal tension of the chain

we can calculate the tension at D, the highest point of the chain. Let

S be this greatest tension, represented in the diagram of forces by aOy

2 2 -2

then since aO =an + nO

The tension at any point P of the chain may be found by drawing from

a line op parallel to the tangent to the chain at P. It will cut an in

a point p such that np-.na:: length of platform below PC : J span.
.2 2 2

Since Op = np + On '

Tension at P = . (P
\ \na 2

The loaded platform, instead of being suspended from the chain of

bars, may rest by means of struts on an arch of bars as in the figure.

In this case all the bars will be in compression instead of tension, as in

the previous case. If the form of the arch is similar to that in which

the chain hung, it will have no tendency to change its form under the

load. There will be simple thrust of varying amount at different parts

of the arch. The horizontal thrust at the top of the arch is given by
the same expression as for the horizontal tension of the chain, and the

thrust of any bar of the arch may be determined in a manner similar to

that for finding the tension of any link of a chain. We shall show

presently that the proper form of the arch and chain under a uniform

load is a parabola. Hence, the structure just described is called a Para-

bolic Arch. In iron bridges the platform is not unfrequently carried

by a number of ribs placed side by side. Each rib is approximately

parabolic in form, usually of I section, of depths from J^th to ^th the

span at the crown, increasing somewhat towards the abutments. The

roadway is supported sometimes by simple vertical struts, as in the ideal

case just considered, sometimes by spandrils of more complex form,

chiefly for the sake of appearance. When uniformly loaded, the stress on

the ribs is nearly as found above : for resistance to variations in the load
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reliance is placed on the resistance to bending of the ribs and plat-

form. The case of a stone or brick arch is far more complex, and

is not considered here.

There is yet another very common structure designed on the same

principles. In this the platform, instead of resting on an arch below

Fig.16.

it, is suspended from an arch above it. In this case the thrust of the

arch is taken by the platform, which serves as a tie, just as the string

ties together the ends of a bow. Hence it is called a Bowstring Girder.

In this case, as in the others, the loading proper to the parabolic form

is uniformly distributed, and any variation of the loading will tend to

distort the bow. The structure may, however, be enabled to sustain a

varying load by the addition of bracing bars as shown by the diagonal
lines. When the bridge is heavily loaded it will almost always happen
that the greater part of the weight is uniformly distributed, and is

sustained by simple thrust of the arch, so that the bracing is only a

subsidiary part of the structure.

11. Suspension Chains (continued). Bowstring Suspension Girder. In

describing the supension bridge we spoke of the chain as being secured

at the ends to fixed points. In practice the securing of the ends is

effected thus. The chain is led to the top of a pier of cast-iron or

masonry, and instead of being simply attached to the top of the pier,

and thus producing an enormous tendency to overturn the pier, the

chain is secured to a saddle which rests on rollers on the top of the

pier, and on the other side the chain is prolonged to the ground, passes

through a tunnel for some little distance, and is finally secured by
means of anchors to a heavy block of masonry. By this arrangement
the only force acting on the pier is a purely vertical one, and a com-

paratively slender pier will be sufficient to sustain it. It is not

necessary that the tension of the chain should be the same on each side

of the pier, or that it should be inclined at the same angle. What is

necessary is that the horizontal component of the tension on each side

should be the same. If an (Fig. 14b, page 17) = half weight on chain

as before, and On = H, the horizontal tension (which may either be

calculated from the formula just obtained, or found by construction),

then aO will be the pull of the chain S at the top of the pier. Then
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considering the equilibrium of the saddle, the pull of the chain Q on

the short side and the upward reaction of the pier may be found by

completing the triangle of forces aOr
;
Or will be the pull on the anchor,

and ar the total vertical pressure on the pier.

In connection with this description of the method of securing the

ends of the suspension chain, we may mention a form of structure in

which the arch and chain are combined, a good example of which

occurs in the railway bridge at Saltash. The horizontal pull of the

chain is here balanced by the thrust of an arch, so that the combined

effect is to produce simply a vertical pressure on the piers. The

suspending rods are secured to the chains and prolonged to the arch

above, so that a portion of the load is carried by the arch, producing a

thrust, and a portion by the chain, causing a pull. To prevent any

tendency to overturn the piers (this is ensured by means of saddles

resting on rollers) the horizontal component of the thrust of the arch

must equal the horizontal component of the pull of the chain. The

proportion between the loads on arch and chain will depend on the

proportion between the rise of the arch and dip of the chain.

If W^ = load on arch, and W^ = load on chain,

6^
= rise of arch, and d

2
=
dip of chain,

WJ Wj, W^ d,

*-&i-5^
- w=^

also W^W^ = total load on bridge :

from which the stresses on the structure may be determined. It is

known as^i Bowstring Suspension Girder (pp. 42, 71).

We shall next show that the form of the curve of a chain carrying a

uniformly loaded platform is a parabola. Referring to Fig. 14a, let P
be any point in the chain, drop a perpendicular PNto meet the tangent
at (7, and bisect CN in K. Then KP must be the direction of the pull
of the chain at P in order that the portion PC may be kept in equi-
librium. The triangle PNK has its sides parallel to the three forces

which act on PC, and the sides are therefore proportional to the forces.

Let CN = x so that the load hanging on PC = w.x, also let PN=y.

TVi
H NK \xI hen _=__ 2_ .

wx PN y
'

2H wP^ --y> or
'
smce H=>

therefore x2
is proportional to y.
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Now the curve whose co-ordinates have this relation one to another

is called a parabola.

If the load, instead of being uniformly distributed on a horizontal

platform, were simply due to the weight of the chain itself, then the

curve in which the chain would hang would deviate somewhat from the

parabola ;
for in that case, since the slope increases as we approach the

piers, the load also, per horizontal foot, would increase as we approach
the piers, causing the chain near the piers to sink and become more

rounded, and at the centre to rise and become more flattened. The
curve in which the chain hangs by its own weight is called the catenary.

In the catenary, as in the parabola, the tension increases as we approach
the piers. This may be taken account of by proportioning the section

of the chain to the tension at the various points ;
this would tend still

more to make the weight of chain, per horizontal foot, increase as we

approach the piers, and cause the chain to deviate still further from the

parabolic form. Such a curve is called a catenary of uniform strength.
In an actual suspension bridge, where there is a uniformly loaded

platform, as well as a heavy chain, the true curve in which it hangs
will lie somewhere between the parabola and the catenary ;

but since

in most cases the deviation from uniformity of the weight of chain is

small compared with the load it carries, the deviation from the parabola
is not great. The error involved in assuming the curve to be parabolic
is generally greatest in bridges of large span; in such cases a prelimi-

nary calculation of approximate weights may be necessary so as to be

able to apply the general process of article 9.

EXAMPLES.

1 . A trapezoidal truss is 16 feet span and 4 feet deep, the length of the upper bar is

6 feet. Find the stress on each part when loaded with 2 tons at each joint.

Stress on sloping bars=3*2 tons.

,, horizontal bars=2 '5 tons.

2. The platform of a bridge, 8 feet broad and 27 feet span, is loaded with 150 pounds

per square foot. It is supported on each side by an inverted queen truss placed below,

the queen posts, each 3 feet deep, dividing the span into three equal portions. Find the

stress on each part.

Load on each truss= half the whole load on platform =16, 200.

g 16,200=5,400 is the load at each of the two joints of one of the queen trusses.

Tension of sloping bars= 17,074 Ibs.

Tension and thrust of horizontal bars= 16, 200.

3. The height of a Mansard roof without bracing is 10 feet and span 14 feet. The

height of the triangular upper portion is 4 feet and span 8 feet. The load being 1 ton at

the ridge, find the necessary load at each intermediate joint and the thrust of the roof.

By the construction described in the text, load at each intermediate joint= ton, and

the thrust of the roof= ton.
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4. If the roof in the last question be partly braced by a bar joining the intermediate

joints, find the stress on the bar when the load at each intermediate joint is 1 ton.

Thrust on bar= i ton.

5. The load on the platform of a suspension bridge, 600 feet span, is \ ton per foot-run,

inclusive of chains and suspending rods. The dip is TVth the span. Find the greatest

and least tensions of one of the chains.

Least tension = horizontal tension=243f tons.

Greatest tension= 255 tons.

6. The load on a simple parabolic arch, 200 feet span and 20 feet rise, is 360 tons,

determine the thrust and greatest stress on the arch.

Thrust=450 tons ; greatest stress= 484 tons.

7. The rise of a bowstring bridge is 15 feet and span 120 feet, find the thrust when the

load on each girder is 2,000 Ibs. per foot-run.

Thrust 240,000 Ibs. =107f tons.

8. In example 5 the ends of the chain are attached to saddles resting on rollers on

the tops of piers 50 feet high, and prolonged to reach the ground at points 50 feet distant

from the bottom of the piers, where they are anchored. Find the load on the piers and

the pull on the anchors.

Load on the pier = 637^ tons ;

Pull on each anchor=344 '6 tons.

9. A light suspension bridge is to be constructed to carry a path 8 feet broad over a

channel 63 feet wide by means of 6 equidistant suspending rods, the dip to be 7 feet.

Find the lengths of the successive links of the chain. Supposing a load of 1 cwt. per

square foot of platform, find the sectional areas of the links of the chain, allowing a

stress of 4 tons per square inch.

f of the whole load is carried by the chains and the remaining portion by the piers

directly. Tension of each suspending rod=36 cwt.

Links.
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examples already described. They are generally dealt with by use of

what we may call the principle of superposition, which may be thus

stated : The stress on any bar due to any total load is the algebraical sum

of the stresses due to the several parts of the load.

We will now consider some examples of compound frames which

are used in bridge trusses. In these structures the object is to carry
a distributed load by means of a comparatively slender beam. A prop
in the centre may still leave the halves too weak to carry the weight
on them, and the beam may be strengthened by supporting it in more

than one point.

(1) Suppose the beam supported by a number of equidistant struts,

the lower ends of which are carried by tension rods attached to the

ends of the beam, we then have a structure called a Bollman truss.

There may be any number of struts 2, 3, 4, or more; the structure

has been used for bridges of comparatively large span. If the actual

load is distributed in some manner over the beam, we must first reduce

the case to that of a structure loaded at the joints only. The loads on

the struts are due to the weights resting on the adjacent divisions of

the beam, and may be determined by supposing the beam broken or

jointed at the points where the struts are applied.

Let us suppose the beam has three divisions, and that the load on

the two struts are W
l
and W^.

These loads will be transmitted Fig.i?.

down the struts to the apices A c*w, w2 D o

(Fig. 17) E and F, and will be
' ^^^

independently supported, each ^X^-^*^^
by its own pair of tension rods.

We may thus separately determine the stress on each part of either of

the elementary triangular frames, AEB or AFB. AB will be in com-

pression on account both of the load at E and also at F. On account

of Wv using the formula previously obtained, the 'horizontal thrust

J1'E W-jj-,
and on account of W

z
at F, HF= ^zjr-

Tension of AE, TAX=HE secEAB, TFB =HFsecFBA ;

EB, TEB = H, sec EBC, TAf=HF sec FAD.

The actual tensions of the sloping rods are simply as written, but

since AB is a part of both triangular frames, the total thrust along it

is found by summing the thrusts due to each : so

This is an example of the principle of superposition stated above.

(2) Suppose the beam which carries the distributed load to be
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supported by a central strut forming a simple triangular truss, and

further let the halves of the beam, not being strong enough to carry

the load on them, each be subdivided and trussed by a simple tri-

angular truss, the tension rods from the bottom of the subdividing

struts proceeding only to the ends of each half beam. If the quarter

spans are still too great, they may each of them be trussed in a similar

way, and so on. Such a structure is called a Finck truss.

Suppose, for example, we have three struts. (Fig. 18.) We must

first determine the load at the joints that is, in this case, the load on

the struts due to the distributed load on the beam. Suppose that on

account of the weights on the adjacent subdivisions those loads are

W^, W^ W^. If the load is uniformly distributed over the beam the

PF's are each of them equal to J total weight on beam.

Fig 13

We may now separately consider the triangular frame, AFC, carrying

the load, Wv On account of it there will be a thrust on AC.

IT _ w^G - w JLW^h~ ^m
The tensions of AF and FC are each =HF sec FAE. We get similar

results from the triangle CHB. Just in the same way we may consider

the principal triangle frame, ADB, but in this case the thrust down

the strut, CD, which is the load at _D, is not simply W^ but greater by
the amount of the downward pull of the two tension rods, CF and CH.

The vertical components of these tensions are \W^ and \W^ so that

the total thrust down the strut = W% + \(W^ + W^. This is the load

which must be taken to act at I) in determining the stresses on the

members of ADB. Hence it appears that

and the tensions of AD and DB are each equal to H
t) sec DAB.

It will be seen that the thrust on the central strut and tensions of

the longer rods are the same as if the secondary trusses had not been

introduced. For example, if the W'& each = J whole load on beam,
then the virtual load at D = \ weight on beam. The mere strengthening
of each half the beam by trussing it can no more relieve the central

strut of the load it has to carry, than the fact of strengthening a

structure of any kind can relieve the two points of support from the
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duty each must have of bearing its own proper share of the weight.

In stating the thrust on the beam we must divide it into two portions,

JC and CB. The portion AG is subjected to the thrust of the

triangles AFC and ADB
;

.'. HAC =HF -\-HD ,
and CB being a portion of

the triangles CHB and ADB, HCB
= Hn + Hn . When W.^ is not equal

to Wv the thrusts on the two portions will be different. This' is quite

possible although the beam AB may be a continuous one.

Both these simple forms of truss have been used for bridges of

considerable span. As an example of the first may be mentioned the

bridge at Harper's Ferty, U.S., destroyed during the war. It was

124 feet span in 7 divisions. The great length of the tension rods

and their inequality appears objectionable. The second in 8 or 16

divisions has been much used in America; but in England other forms

mentioned in a later chapter are much more common.

13. Roof Trusses in Timber. In roofs of small span, 10 or 12 feet

only, the roofing material, slates or tiles, rests on a number of laths

set lengthways to the roof, and these laths rest on sloping rafters

spaced 1 or 2 feet apart, with their feet resting on the walls of the

building ;
the stability of the walls being depended on for taking

the thrust.

When we come to larger and more important roofs we find additional

members added for strength and security. The closely spaced rafters

just mentioned are called common rafters. These being too long and

slender to carry the weight of the roofing material and transmit it to

the walls, are supported, not only at the ends by the walls and ridge

piece, but also at the middle by a longitudinal beam of wood called a

purlin, and the purlin is supported at intervals of its length by principal

rafters. The principal rafters again are supported by struts at their

central points, immediately below the purlins. To carry the lower

ends of the struts, a vertical tension piece is introduced, by which they
are suspended from the apex of the principals, while the thrust is taken

by a, tie beam connecting the feet of the rafters. In such a roof, a

ceiling or floor may frequently be required to be supported by the tie

beam, and to prevent it from sagging under the weight an additional

tension will come on the vertical suspending rod. This rod is then a

very important member of the structure, and is called the king post,

and the whole structure, consisting of the principal rafters, king post,

etc., is called a King post truss. This truss is often constructed entirely

of wood. The sloping struts then for constructive reasons (Ch. XV.)
butt on an enlarged part at the bottom of the king post above the

point where the horizontal tie beam is attached, but for calculation
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purposes may be regarded as meeting at that point as shown in

Fig. 19.

Pig. 19.

By means of the purlins and the ridge piece the weight of the roofing

material will produce loads at the joints EOF'= W^W^^ suppose.

Now treat the structure as made up of three simple triangular frames,

AED, DFB, and ACB. First consider AED with the load W^ at

vertex E. The horizontal thrust of this frame
AD= 'W-

t rT
- where

1
4:fl

h is the height of point E above AD. Also the thrust along AE
and ED due to the load E =HE secEAD. In an exactly similar

manner we may consider the triangle DFB ;
the results for this will

be to those for AED in the proportion of W% to Wv Next as to the

primary triangle AGE. There is at G a direct load of W^ due to

the weight between E and (7, and F and C. But beside this, the

king post pulls the point C downwards, so that the total load at

C= Wz + tension of king post. In addition to a portion of the weight
of the ceiling (if any) the post has to support D against the downward

thrust of the two struts ED and FD. The vertical components of

these thrusts are \W^ and \W^ therefore, neglecting the weight of

ceiling, the virtual load at C=W<
L + \(W^ + W^. Let us call this

total load W, then Hc the horizontal thrust of ACB= ^777 and the

thrusts along AC and CB due to load C=Hc secA.

Now in the complete structure, since AD is a member both of the

triangular frame AED and ACB, the total tension of AD =HE +Hc.

For the same reason tension of DB= HF +HC ,

and thrust of AE = (HE +Hc) sec A,

The other members of the structure are portions of one elementary
frame only, and the stress is due only to the load at the apex of

that frame.

The king post truss serves for roofs of spans under 30 feet, but for

spans greater than this trusses of more complicated construction are

required. If the span is from 30 to 50 feet, then instead of supporting
the common rafters by a purlin at the centre of its length only, as in
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the king post truss, two supporting purlins may be used, dividing

the length of the rafter into three equal portions. These purlins

may be carried by a queen truss, the sloping members of which are

-supported in the middle by struts, as shown in the figure (Fig. 20).

Fig.20.

The vertical queen posts, DN and FK, serve to sustain the downward

thrust of the struts, EN and GK, and also to support the weight of a

ceiling, if there is one. Supposing the weight of the ceiling omitted,

let W be the weight of roofing material on one side for a length of

roof equal to the spacing of the trusses, then \W will, through the

common rafters and purlins, act at E, and \ at D
;
and similarly for

the other side. At the ridge C there will also be \W acting ;
but

this will be distributed equally amongst the common rafters which

are carried by the truss, and will produce compression in those

rafters without directly affecting the truss. The part of the thrust

of the roof arising from this will, however, generally, like the rest,

ultimately come on the principal tie beams.

To find the stresses on the different members of the truss. Consider

first the small triangles AEN and BGK, each carrying JJFat the vertex.

We then consider the trapezoidal truss ADFB. The loads at D
and F will be J^+ tension of queen post. Since the tension of the

queen post DN= the vertical component of the thrust alojig EN it will

equal . \W=\W^ and the total load at each joint of the trapezoidal

truss will be \W+\W=\W^ the same as would have acted if there

had been no purlin at E and no strut EN. After having determined

the respective stresses due to the triangles and trapezoid separately,

we must add the results for any bar which is a part of both. Were it

not for the friction at the joints and the power of resistance of the

continuous rafters AC, CB to bending, this structure would be stable

only under a symmetrical load. In practice, however, it is able to

sustain an unsymmetrical load, such as roofs are frequently subjected to.

14. Queen Truss for large Iron Roofs. As the span of the roof is still

further increased we find other kinds of trusses employed to support
them. A common form in iron roofs is constructed, as shown in
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Fig. 21. It is in reality a further development of the wooden queen

truss, and is known by the same name. AC and CB are divided into

L

a number of equal parts, and sloping struts and vertical suspending
rods are applied as shown. Suppose the load the same at each joint

on one side of the roof, the load on the right, however, riot being

necessarily equal to that on the left. Let the upward supporting force

at A = P. P will be half the total weight if the loading is symmetrical,

but in any other case it may be found by taking moments of the

loads about B. We might solve the problem of finding the stress on

each member of the structure by treating separately each elementary

triangle into which the structure may be divided, and summing the

stresses for any bar which may form a part of two or more triangular

frames. But we will describe another method.

First, to find the tension of the vertical suspending rods consider

^12' as an independent triangle, carrying a load W at its vertex.

The slope of 12' being the same as that of A\, the tension rod 22'

must supply a supporting force to the joint 2'
' = \W. Considering

next the triangle ^23' and its equilibrium about the point A. The

forces along 23 and 3'4' have no moment about A, so that the moment
of the two weights //' at 1 and 2 about A must be balanced by the

upward pull of the tension rod 33'. .*. tension of 33' = W.

In a similar way we can see that the tension of 44' = f JF. However

many divisions of the roof there may be, the tensions of the vertical

suspending rods will increase in arithmetical progression, with the same

difference between each. The road 11', except so far as may be due to

the weight of the rod A '2',
will have no tension on it. Calling this the

1
st tension rod, the tension of the nth =

^
W. We must notice that

the rod 55' is common to both sides of the roof, and we must add the

two tensions to get the total. Now consider any joint, say 4' in the tie

bar AB, and resolve vertically and horizontally. If R = thrust of 34',

(9 its inclination to the horizontal, and T the pull on that division of

AB which is indicated by the numerical suffix placed below it,
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But from figure cot = J cot A
\

Whichever joint we select we should find the same result namely,

that the difference between the tensions of two consecutive portions of

the tie rod is a constant quantity = \W cot A. So that these tensions

are in arithmetical progression diminishing towards the centre.

If we call A'2' the 1
st division of the rod, then for the joint between

the n - 1
th and nih we have

2tcos6 = rM_!
- THJ and cot = cot A

;

If A\ is the 1
st division of the rafter, then the thrust on the nth

Now, the tension of the tie rod in the

1
st division = P cot A,
nd =>-

The thrust on the /i
th division of rafter = (P

--^^
The thrust on any strut may best be found by squaring and adding

the two equations of equilibrium of the lower joint of it. We get

W
Thrust of nih strut = --Jri2

15. Concluding Remarks. General Method of Constructing Diagrams of

Forces. Cases of framework often occur which are much more com-

plicated than those which we have hitherto considered, but if there are

no redundant bars the stress on each part depends on statical principles

only, without reference to the relative yielding of the several parts of

the structure. Such cases may always be treated by use of the general

principle stated in Art. 1, and we shall conclude this chapter by ex-

plaining briefly a graphical method of applying that principle invented

by the late Professor Clerk Maxwell. The forces will be supposed all

in one plane, and each of them will be supposed known, that is to say,

if there be any unknown reactions at points of support they will be

supposed previously found by a graphical or other process, from the

consideration that the whole must form a set of forces in equilibrium.

In Fig. 22a a frame is shown acted on by known forces PQB..., an

ideal example is chosen which is better suited for the purpose of
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explaining the method than any case of common occurrence in practice.

First seek out a joint where only two bars meet : there will usually be

two such joints if there be no redundant bars in the frame, and in the

present instance we will choose the joint where P acts. Distinguish

all the triangles, making up the frame by letters A, B, C, etc., and

place numbers or letters outside the frame, one for each bar. In Fig.

22b draw 18 parallel to the force P and representing it in magnitude,
Sa parallel to 8, la parallel to 1, to intersect in the point a

; then, as in

previous examples, Sa, la represent the stress on the two bars to which

they are parallel. Pass now to the joint where Q acts : this joint is

chosen because only three bars meet there, on one of which we have

just determined the stress; draw 12 parallel to Q and representing it,

then ab parallel to the bar lying between the triangles A and B, and

26 parallel to the bar 2
;
we thus get a polygon 1 2ba, the sides of which

are parallel to the four forces acting at the joint where Q acts, while

two of them represent two forces already known, the other two, there-

8 P

\

W

fore, will represent the remaining two forces. Proceed now to the

joint where W acts and complete in the same way the polygon Sabcl,

then to the joint where R acts, and so on. We at length arrive at the

triangle 4/5, the third side of which, if we have performed the con-

struction accurately, and if the forces be really in equilibrium, must be

parallel to the last force T. On examination of the diagram of forces

(Fig. 22b) it will be seen that to every joint of the frame corresponds a

polygon representing the forces at that joint, while each line, such as

ab or 7c, gives the stress on the bars separating those letters or numbers

in the frame-diagram. The polygon 12... 8 is the polygon of external

forces, each side representing the force to which it is parallel.

The method here described is easy to understand in the general case

we have considered, and with a little practice the transformations the

diagram of forces undergoes will offer no difficulty. Some joints are

usually unloaded, and the corresponding lines in the polygon of external
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forces vanish
;
the forces may be parallel, in which case the polygon

becomes a straight line, while not unfrequently the sides of two of the

polygons representing the forces at the joints coincide. The figure,

however, always possesses the same properties.

In Mr. Bow's excellent work referred to at the end of this chapter

over 200 examples will be found of the application of this method^

including almost all known forms of bridge and roof trusses.

EXAMPLES.

1. A Bollman truss of three divisions is 21 feet span, and is loaded uniformly with

1 tori per foot. The depth of 'the truss is 3 feet. Find the stress on each part.

Load on each strut = 7 tons.

Tension of short rods =10 '4 ,,

longer rods= 9 '6 ,,

Total thrust on beam = 18 ,,

being 9J due to each triangle.

2. A Finck truss of 4 divisions, 20 feet span and 3 feet deep, is loaded with 1 ton per

foot, find the stress on each part.

Thrust on 26 and 48 =5 tons.

37 =10
Tensions of 16, 63, 38, and 85= 4 '86

17 and 75 =17 '4

Thrust on 13 and 35 = 4 + 16=2Q tons.

3. In the last question suppose one half the truss loaded with an additional 1 ton per

foot. Find the stress on each part.

Suppose the additional load on the right-hand side.

Tensions.

On 16 and 63= 4 '86 tons.

38 85= 9'72

17 75= 261

Thrusts.

On 26= 5 tons.

; 37= 15 ,

48=10 ,,

13= 4j+ 25
35= 8J + 25

4. A roof 28 feet span, height 7 feet, rests on king-post trusses spaced 10 ft. apart.

The weight of roof is 20 Ibs. per square foot. Find the stress on each part. Also obtain

results when an additional load of 40 Ibs. per square foot rests on one side.

Load at each joint. 1st case= 1566 '6 Ibs.
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tie bar is 8 feet below the vertex. Find the stresses on each part when loaded with

2 tons at each joint by constructing a diagram of forces or otherwise.

Bars.



CHAPTER II.

STRAINING ACTIONS ON A LOADED STRUCTURE.

16. Preliminary Explanations. In the preceding chapter we have

considered only those structures in which the parts are subject to

compression and tension alone, except by way of anticipation in a

few special cases. But the parts of a structure are generally subject
to much more complex forces, and besides, although the forces acting
on each bar have been determined, we should, if we stopped here,

have a most imperfect idea of the way in which the load affects the

structure as a whole.

If we imagine a structure to be made up of any two parts, A and

B, united by joints, or distinguished by an ideal surface cutting

through the structure in any direction, the whole of the forces acting
on the structure may be separated into two sets, one of which acts on

A, the other on B. Since the structure is in equilibrium as a whole

the two sets of forces must balance one another, and must therefore

produce equal and opposite effects on A and B, effects which are

counteracted by the union existing between the parts. The two sets

of forces taken together constitute a STRAINING ACTION of which

each set is an element, and the object of this and the next two

chapters is to consider the straining actions to which loaded structures

and parts of structures are subject.

Straining actions differ in kind, according to the nature of the effects

which they tend to produce. Four simple cases may be distinguished :

(1) The parts A and B may tend to move towards each other or

away from each other perpendicular to a given plane. This effect is

called Compression or Extension, and the corresponding straining

action is a thrust or a pull.

(2) A and B may tend to slide past each other parallel to a given

plane. This effect is called Shearing.

(3) A and B may tend to rotate relatively to each other about an

axis lying in a given plane. This is called Bending.
C.M. C
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(4) A and B may tend to rotate relatively to each other about an

axis perpendicular to a given plane. This is called Twisting.

In the first two cases the straining action reduces to two equal and

opposite forces, and in the second two to two equal and opposite

couples. In general, straining actions are compound, consisting of

two or more simple straining actions combined. The given plane with

reference to which the straining actions are reckoned may always be

considered as an ideal section separating A and B even when the

actual dividing surface is different. We shall commence by con-

sidering the straining actions on a beam of small transverse section,

SECTION I. BEAMS.

17. Straining Actions on a Beam. The action of a simple thrust or

pull on a bar has already been sufficiently considered in Chapter I.

They are usually considered as separate cases, and the simple straining

actions on a bar are therefore reckoned as five in number. The other

three are (1) shearing, (2) bending, and (3) twisting, of which the last

rarely occurs, except in machines, and will, there-

fore, be considered in a later division of this work,

under that head.

Shearing and bending are due to the action of

forces, the directions of which, are at right angles

to* the bar : in structures, the forces usually lie

in one plane passing through the axis of the bar.

A bar loaded in this way is called a beam.

Simple shearing is due to a pair of equal and

opposite forces, F (Fig. 23), applied to points very

near together, tending to cause the two parts A
and B to slide past one another, as shown in the figure (Figs. 23a, 23b).

Either element is called the shearing force, and is a measure of the

magnitude of the shearing action, but in considering the sign we must

consider both together. In this work, if the right hand portion, A,

tends to move upwards, and B downwards, as in Fig. 23b, the shearing

action will usually be reckoned negative, while in the converse case

(Fig. 23a) it will be reckoned positive.

|
P

Flg.24. *P

Fig.23a.

I
Simple bending is due to a pair of equal and opposite couples applied

to the bar, one acting on A, the other on B, as in Fig. 24, tending to-
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make A arid B rotate in opposite directions. The magnitude of the

bending is measured by the moment of either couple, which is called

the bending moment. In this work bending moments will usually be

reckoned positive when the left-hand half, B, rotates with the hands of

a watch, and the right-hand half in the opposite direction
;
that is to

say, when the beam tends to become convex downwards, as in the

ordinary case of a loaded beam supported at the ends. In loaded beams

shearing and bending generally exist together, and vary from point to

point of the beam. We shall now consider various special cases.

18. Example of a Balanced Level'. General Rules for calculating S.F.

and B.M. First take the case of a beam, AB, supported at C (Fig, 25),

and loaded with weights, PQ, at its ends.

If the weights are such %that P.ACQ.BC the beam will be in

equilibrium, but the two parts, AC, BC, . P+Q Fig.25.

tend to turn about C in opposite direc- B
|o

A

tions
;
there is therefore a bending action ^ K~

at C, of which the equal and opposite Q p

moments P .AC, Q. BC are the elements. Either of these is the

bending moment usually denoted by M, so that we write

MC
= P.AC=Q.BC.

Not only is there a bending action at C, but if we take any point, K,
and consider the forces acting on AK, BK separately, we see that AK
tends to turn about K under the action of the force P, while BK tends

to turn about K under the action of the forces P + Q at C and Q
at B. The first tendency is immediately seen to be simply the moment

P.AK, while the second is Q. BK - (P + Q)CK. The last quantity

reduces to Q.BC-P.CK, or, remembering that Q.BC= P.AC, to

P . AK. The two moments, then, as before, are equal and opposite, and

constitute a bending action at K, measured by the bending moment

MK = P.AK.
This example will sufficiently explain the general rule for calculating

the bending moment at any point, K, of a beam. Divide the forces into

two sets, one acting to the right and the other to the left of K, and estimate

the moment of either set about K, then the result mil be the bending moment

at K. The example shows that the calculation of one of the two

moments will generally be more simple than that of the other, and

cases constantly occur, as where a beam is fixed at one end in a wall,

where nothing is known about one set of forces except that they
balance the other set. In each case the simplest calculation is of

course to be preferred.

Moments are measured numerically by unit weight acting at unit
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leverage, as, for example, 1 ton acting at a leverage of 1 foot, for

which the expression
" foot-ton

"
is commonly employed. This phrase,

however, is used also for a wholly different quantity, namely, the unit

of mechanical work, and for this reason it would be preferable to call

the unit of moment a " ton-foot" for the sake of distinction.

The peculiar action called shearing will be better understood when

we come to consider the action of forces on a framework girder in the

next section
;

it will here be sufficient to say that if the sum of the

forces acting on AK, EK are not separately equal to zero, they must

tend to cause AK, BK to move past each other in the vertical

direction, thus constituting a shearing action measured by the mag-
nitude of the shearing force, which may be thus calculated for any

point K. Divide the forces into two sets, one acting to the right of K,

and the other to the left of K, the algebraical sum of either set is the

shearing force at K. As before, either set may be chosen, whichever

gives the result most simply. In the example just given the shearing

force at any point of AC is P
;
and at any point of BC, Q.

19. Beam Supported at the Ends and Loaded at an Intermediate Point.

We will next consider the case of a beam supported at the ends and

Fig.26.

loaded at some intermediate point. Before we can apply the rules

previously enunciated, to find the shearing force and bending moment

at any point, we must first determine the supporting forces at the

two ends. We find the force P acting at A (Fig. 26), by taking
moments about B, thus,
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Wn
and similarly Q=-^r

a + b

First as to the shearing force. Taking any point K in AC, and

considering the forces acting on AK, of which there is only one,

F -P- Wb
**- P -^Tb'

At any point K' between C and B we have

It will be noticed that at K the tendency is for the left-hand portion to

slide upwards relatively to the right, whereas at K' the tendency is for

the right-hand portion to slide upwards relatively to the left. It is

advantageous to distinguish between these two tendencies, as previously

stated, by calling the one positive and the other negative.

We may draw a diagram to represent the shearing force at any point

thus. Let A'E' be drawn parallel to and below AB to represent the

length of the beam, and let CC'L be the line of action of the weight.

If we set up an ordinate A'F=P, and downwards an ordinate B'M= Q,

and draw FE and ML parallel to A'B to meet the vertical EC'L ;
the

shearing force at any point will be represented by the ordinates of the

shaded figure A'FELMB, measured from the base line A'B. Not only

should the magnitude of the shearing force be represented, but also

the direction of the sliding tendency. This is why the ordinate was

set downwards on the right-hand side of C'.

In this example the supporting forces may be found by construction,

and thus the whole operation of determining and representing the shear-

ing force performed graphically. For, set down B'K=W> join A'K,
and where the vertical through C' cuts A'K, draw LM horizontal, then

BM= Q and MK= P. Then set up A'F= MK, and draw FE horizontal.

Next as to the bending moment at any point. Take any point K in

AC distant x from A, then

and similarly at K' in CB distant x' from B,

so for either side of (7, the bending moment is greater the greater the

distance of the point from the end of the beam. Thus the greatest

bending moment is at C.

If in the value of MK we put x = a,

or M x' = b
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ing moment at C' = , on some convenient scale, on such a scale for

we get the same result, viz., that

Mc
=-7 = greatest bending moment.

The graphical representation of the bending moment at any point is

very useful and instructive. We may construct the diagram thus :

A'E' representing the length of the beam, set up from C", C'N' the bend

,

instance as 1 inch = 20 ft.-lbs. Then joining AN' and B'N'
9
the ordinate

of the figure A'N'B', measured from the base line A'E
',

will express on

the scale chosen the bending moment at any point of the beam. If

a = b = % span, so that the load is applied at the centre of the beam, then

Mc = \W x span = greatest bending moment.

20. Beam Supported at the Ends and Loaded Uniformly. The next

example for consideration is that of a beam supported at the ends and

loaded uniformly throughout its length with w Ibs. per foot (Fig. 27).

Fig.27.

Let the span = 2a. Take any point, K, distant x from the centre

The load on AK is wAK, and therefore the shearing force at K.

reckoning the forces on the left-hand side, must be

FK = wa - wAK= wa - w(a -x) = wx.

That is, the shearing force is proportional to the distance of the point
from the centre of the beam. At the end A where x = a,

FA
= wa,

and at B where x -a,

FB
= -wa.

If from A'B, below AB in the diagram, we set up and down ordinates

at A and B' = wa on some scale, and join LM, the ordinates of the
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sloping line will represent the shearing force at any point. The

shearing force at the centre of the beam is zero.

In finding the bending moment at K, reckoning still from the left-

hand side, we must clearly take account not only of the supporting
force at A, but also of the effect of the load which rests on the portion
of the beam AK. The moment of this load about K is the same as if

it were all collected at its centre of gravity, namely, at the centre of

AK. Thus

M = wa . AK- wAK.

That is to say, the bending moment at any point is proportional to the

product of the segments into which the beam is divided by the point.

Putting AK=a-x and BK=a + x,

MK = $w(a?-x*\
which is greater the less x is. At the centre z = 0, and we have the

maximum bending moment

If we put Iwa = W, the total load on the beam

M = \W* span.

This is only one half the bending moment due to the same load when

concentrated at the centre of the beam.

If ordinates be set up from A'B' = ^w(a?-x
2
),

at all points, the

extremities of the ordinates will lie on a curve which may easily be

seen to be a parabola with its axis vertical and vertex above the

middle point of the beam. For

SZ= SK - KZ = %wa* -\w (a
2 -

x*)
=

%wx*.

So that SZ is proportional to SN'2
, showing that the curve is a parabola.

21. Beam Loaded at the Ends and Supported at Intermediate Points.

Next, suppose a beam (Fig. 28) supported at A, B, and loaded with

weights P, Q, at the ends C, D, which overhang the supports. If AC
9

A B, BD are denoted by a, /,
b respectively, the supporting force S at

A (by taking moments about B) is given by

Similarly B, the supporting force at B, is given by

l=Q(b + l}-Pa.
Take now a point K distant x from A then

where MA ,
MB are the bending moments at A, B.
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Also for the bending moment at K,

or, as we may write it,

[PART i..

These formulae show that the shearing force is constant while the

bending moment varies uniformly. In the diagram this is indicated

by setting up ordinates Aa, b, to represent the bending moments

at A, B, and joining a, b
;
the ordinate Kk of this line corresponding

to an intermediate point K, will represent the bending moment there.

Fig.28.

The moments are in this example reckoned positive for upward
bending if the ordinates are considered as drawn upwards from the

base line CD, and it is therefore better to suppose them drawn

downwards from the broken line C, a, b, D,

An important special case is when MA
=MB ;

then the bending
moment is constant and the shearing force zero. We have then no-

shearing but only bending. Simple bending is unusual in practice,

but an instance occurs in the axle of a carriage.

The ordinates of the straight lines Ca, Db, represent the bending
moment at any point of the overhanging parts of the beam.

22. Application of the Method of Superposition. When a beam is

acted on by several loads, the principle of superposition already stated

in Chapter I. is often very useful in drawing diagrams and writing down
formulae for the straining action at any point. Thus, for example, in

the preceding case, if there be many weights on the overhanging end

of a beam, the bending moment and shearing force at each point must
be the sum of that due to each taken separately ;

and hence it follows

that, whatever be the forces acting on a beam, if there be a part
AB under the action of no load, and the bending moments at the

ends of that part be MA ,
Ms,

the straining actions at any intermediate

point K will always be given by the formulae just written down. And,
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further, if there be a load of any kind on AB, and m be the bending

moment, on the supposition that the beam simply rests on supports

at A, B, then the actual bending moment must always be given by

M=MA .

j-
+MB .

I
+ m,

a general formula of great importance. The result is shown graphically

in the diagram, where the curve represents the bending moment m,

and the straight line ab the effect of the bending moments at the

ends, supposed, as is frequently the case, to be in the opposite direction

to m
;
then the intercept between the curve and the straight line

represents the actual bending moment.

If several weights act on a beam, triangles may readily be constructed

showing the bending moment due to each weight ;
then adding the

ordinates of all the triangles at the points of application of the weights,

and joining the extremities by straight lines, a polygon is obtained

which is the polygon of bending moments for the whole load. This

process may also be applied to shearing forces. It is simple, but some-

what tedious when there are many weights, and other methods of

construction will be explained hereafter. In superposing two loads

the artifice just employed in Fig. 28 is very useful. A propped
beam (Ex. 11, p. 42) is an important example.

EXAMPLES.

1. A beam, AB, 10 feet long, is fixed horizontally at A, and loaded with 10 tons dis-

tributed uniformly, and also with 1 ton at B. Find the bending moment in inch-tons

at A, and also at the middle of the beam.

M=7'20 inch-tons at A.

=210 ,, at the centre.

2. In the last question find the shearing forc.e at the two points mentioned.

F=ll tons at A.
= 6 ,, at the centre.

3. A beam, AB, 10 feet long, is supported at A and B, and loaded with 5 tons at a

point distant 2 feet from A. Find the shearing force in tons, and the bending moment
in inch-tons at the centre of the beam. Find also the greatest bending moment.

F &t the centre= 1 ton.

M at the centre= 60 inch-tons.

Maximum bending moment=96 ,,

4. In the last question suppose an additional load of 5 tons to be uniformly distributed..

Find the shearing force and bending moment at the centre of the beam.

.Fat centre= 1 ton as before.

M at centre= 114 foot-tons=135 inch-tons.

5. A beam, AB, 20 feet long, is supported at C and D, two points distant 5 feet from

A arid 6 feet from B respectively. A load of 5 tons is placed at each extremity. Find

the bending moment at the middle of CD in inch-tons.

Moment=330 inch-tons.

6. In the example just given draw the diagrams of shearing force and bending moment
at each point of the beam.
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7. A foundry crane has a horizontal jib, AC, 21 feet long, attached to the top of a

crane-post 14 feet high, which turns on pivots at A and B. The crane carries 15 tons,

which may be considered as suspended at the extremity of the jib. The jib is supported

by a strut attached to a point in it 7 feet from A, and resting on the crane-post at B.

Find the stress on crane-post and strut, and the shearing force and bending moment at

Any point of the jib.

Tension of crane-post=30 tons.

Thrust on strut=50 ,,

8. A rectangular block of wood, 20 feet long, floats in water ; it is required to draw

the curves of shearing force and bending moment when loaded (1) with 1 cwt. in the

middle, (2) with J cwt. at each end, and (3) ^ cwt. placed at two points equidistant from

the middle and each end.

9. A beam, AB, 20 feet long, is supported at the ends, and loaded at two points distant

6 feet and 11 feet respectively from one end with weights of 8 tons and 12 tons ; employ
the method of superposition to construct the polygons of shearing force and bending
moment. Find the maximum bending moment in inch-tons.

Maximum moment=972 inch-tons.

10. A beam is supported at the ends and loaded uniformly throughout a part of its

length ;
show that the diagram of moments for the part of the beam outside the load is

ihe same as if the load had been concentrated at the centre of the loaded part, and for

the remainder is a parabolic arc. Construct this arc. Also, draw a diagram of shearing

force.

11. Abeam is supported at the ends and uniformly loaded, The beam is also sup-

ported in the middle by a prop which carries a given fraction of the total load ; employ
the method of superposition to draw diagrams of shearing force and bending moment.

Find the fraction when the beam is strongest.

Ans. Fraction= '586.

12. A beam is supported at the ends and uniformly loaded : if the span be divided into

any number of equal parts, and half the weight on each division be concentrated at the

dividing points, show that the corners of the polygon of moments lie on the parabola due

to the uniform load.

SECTION II. FRAMEWORK GIRDERS WITH BOOMS PARALLEL, AND
WEB A SINGLE TRIANGULATION.

23. Preliminary Explanations. Hitherto we have only considered

beams of small transverse section, but the part of a beam may be played

by a framework or other structure under the action of transverse forces.

Such a structure, when employed as a beam, is called a Girder, and

consists essentially of an upper and a lower member called the Booms
of the girder, connected together by a set of diagonally placed bars,

called collectively the Web. The web consists sometimes of several

triangulations of bars crossing each other, and may even be continuous.

In the present section the booms will be supposed straight and parallel,

and the web a single triangulation. The action of a load on such a

girder furnishes the simplest and best illustration of the nature of the

straining actions we have just been considering.

Suppose, in the first place, we have a rectangular beam of considerable

transverse dimensions, which has one end fixed horizontally, and the

other end loaded with a weight W. Now let a part of the length, CD
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(see Fig. 29), be cut away, and replaced by three bars, CD, EF, DE,

jointed at their ends to the two parts of the beam CD, EF, forming a

rectangle of which DE is a diagonal. With this construction the load

If will be sustained, as well as by the original beam, but the three bars

will be subject to stresses which we shall now determine. To do this,

suppose each of the three bars (in succession) removed, and examine

the effect on the structure an artifice which often enables us to see

very clearly the nature of the stress on a given part of the structure.

In the first place, suppose CD removed
; then the portion EB will

turn about the joint E, as shown in the lower part of the diagram, so

that the function of the bar CD must be to

prevent this turning, which is exactly what

we have previously described as bending.
The tendency to turn round E that is, the

bending moment at E is in this case simply
= W+ CB. But if there is a system of

loads, the bending moment at E may be

found by methods previously described.

Now let H= stress on CD. It may
readily be seen to be a tensile stress, be-

cause, on the removal of the bar, the ends

C and D separate from one another. Also,

let h = CE or DF, the depth of the beam.

The power of CD to prevent EB from

turning about E is measured by the moment
about E of the force H which acts along it.

Therefore , ^ T
jtin = J\!E .

And dividing the bending moment at E by the depth of the beam,
Ave obtain the magnitude of the tension of CD.

Next, let the bar EF be removed. The structure will yield by

turning round the joint D, the point F approaching E. Thus the

bar EF is in compression, and by its thrust, =H' say, towards F, it

prevents FB from turning round D.

The tendency to turn round D, due to the action of the external

forces =MIn will be equal to the resisting moment H'h.

Therefore, if we divide the bending moment for the joint D opposite
to the bar, by the depth of the beam h, we obtain the magnitude
of the cornpressive force H'.

Lastly, let us suppose the diagonal bar ED to be removed, the effect

is quite different from the two former cases
;
for instead of the over-
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hanging portion of the beam turning about some point, it now gives

way by sliding downwards (as shown in the centre of the diagram),

remaining horizontal all the time. CD and EF turn about C and E,

remaining parallel to one another. The rectangle CDFE becomes

distorted by the shortening of the diagonal ED and the lengthening

of OF. In the structure then the function of the diagonal bar ED
is to prevent the sliding, by resisting the tendency to shorten. Thus

the bar ED must be in compression, and by its thrust upon the point

D it maintains FB from sliding downwards. Let S = thrust along

ED and 6 = angle it makes with the vertical. The force S may be

resolved into two components, a horizontal one, S sin 0, and a vertical

one, ScosO. It is the vertical component alone which resists the

sliding action, and maintains D in its proper position. Now the

tendency to slide is no other thing than the shearing force on the

structure, which we have previously been investigating. In this

example the shearing force is simply W for all sections between A
and E. But in other cases of loading the shearing force may be

estimated by previously given methods. Since the downward tend-

ency of the shearing force is balanced by the upward thrust of the

vertical component of S, we have in all cases

Instead of the points E and D being joined there might have been a

bar CF, which, by the resistance to lengthening which it would offer,

would have sustained the portion FB from sliding downwards. Such

a bar would be in tension just as the bar ED is in compression, and in

finding the stress on it we should use exactly the same equation. Now,
instead of having three bars only, the whole structure may be built up
of horizontal and diagonal bars. The same principles will apply. On

removing any one of the horizontal bars, we see that the structure

yields by turning round a joint opposite : so we say the function of the

horizontal bars is to resist bending. This is expressed by the equation

Hh = M. On the other hand, the function of the diagonal bars being

to resist the shearing tendency, we have always S cos = F.

24. Warren Girders under various Loads. Fig. 30 shows a Warren

Girder, so called from the name of the inventor, Captain Warren, a

type of girder much used for bridges since its first introduction about

the year 1850. It consists of a pair of straight parallel booms connected

together by a triangulation of bars inclined to each other, generally at

60, so that the triangles formed are equilateral. The booms in the

actual structure are generally continuous through the junctions with the

diagonal bars, but, if well constructed, there is no sensible error in
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regarding the structure as a true frame, in which the several divisions

are all united by perfectly smooth joints. Any three bars forming a

parallelogram and its diagonal may be considered as playing the same

part as regards the rest of the structure as in the case just considered.

Fig.30.

When a Warren girder is used, it is generally supported at the

ends, and the loads are applied at one or more joints in the lower

boom. We will examine some examples.

(1) Suppose there is a single load applied at a joint in the centre

of the span.

First as to the diagonal bars. It was shown above that the duty of

these bars was to prevent the structure yielding under the action

of the shearing force ; the vertical component of the stress on either of

the diagonal bars being equal to the shearing force for the interval

of the length of the girder within which the diagonal bar lies. This

is expressed by the equation

Now, in the example which we are considering with the load in the

centre, the shearing force will be the same at all sections to the

right and left, namely, =-^W. Therefore the stress on all the diagonal
bars is of the same magnitude,

W
= W_

2 cos 30 ^3'
If we consider the effect of removing either of the bars we shall find

that commencing from one end they prevent alternately the shortening
and lengthening of the diagonals which they join, so that, commencing
with one end, the bars are alternately in compression and tension.

The compression bars are shown in double lines.

Next, as to the several portions of the length of the top and bottom

booms. As was shown above, the stress on any division of the

horizontal bars has the effect of preventing a bending round the joint

opposite : so that the moment of the stress about the joint is equal
to the bending moment at the joint, due to the external forces. This

is expressed by the equation
Hh = M.

Let a = length of a division.
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Then, since the supporting force at the joint is \W, the bending
moment at the joints numbered 1, 2, 3, etc., are

W a Wa
^i = Y2 =

-f
W WaM

-2

= ^a =
-p

W3 3WaM*= 2 9^
=

4
'

and so on, the bending moments increasing in arithmetical progression.

Since the depth of the girder h is the same at all parts of the length ._

if we divide the M'a each of them by h, we obtain the magnitude of

the stress on the bars opposite the respective joints. Thus

Wa , Wa . ZWa
H,2

=^,H^^H^ -
u -,and so on.

We see, then, that the stress on the several divisions increases in

arithmetical progression as we proceed from the ends towards the

centre. By observing the effect of removing either of the bars, we
see that all the divisions of the upper boom are in compression.
This is expressed by drawing them with double lines in the figure..

All the divisions of the lower boom are in tension.

(2) Next suppose the load is applied at some other joint not in

the centre the joint 4 for example. We must first calculate the

supporting forces. Suppose they are P at and Q at 12. For the

portion of the girder to the left of 4 the shearing force will be the

same at all sections and be equal to P. So the stress on all the

diagonals between and 4 will be equal to Psec30
c

.

To the right of joint 4 the shearing force = Q, and the stress on

all the diagonal bars from 4 to 12 will be Q sec 30.

Proceeding from either end towards the joint where the load is

applied, we observe that the diagonal bars are alternately in com-

pression and tension so that the bar 56 is now in compression,
whilst the bar 54 is in tension. On these bars the nature of the

stresses is just opposite to that to which they were exposed when
the load was at the centre joint. Thus by varying the position of

the load, we not only vary the magnitude of the stress, but we may
in some cases change the character of the stress, requiring a diagonal
bar to act sometimes as a strut and sometimes as a tie.

For the divisions of the horizontal booms on the left of W the

stresses are

Pa 2Pa 3Pa
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in arithmetical progression up to the bar opposite the joint to which

the load is applied ;
and to the right of W,

Qa 2Qa 3Qa
M W ~2P

in arithmetical progression also up to the bar opposite the load. The

upper bars are all in compression and the lower in tension as before.

When there are a number of loads placed arbitrarily at the different

joints, the simplest way of determining the stresses is often to find

the stress on the bars due to each load taken separately, and then

apply the principle of superposition. In applying the principle due

regard must be paid to the nature of the stress. A compressive stress

must be considered as being of opposite sign to a tens-ile stress, and,

in compounding, the algebraical sum of the stresses for each load

will be the total stress on the bars.

(3) There is one particular case, that in which the girder is

uniformly loaded, which it is advisable to examine separately.

In general, the load on the platform of the bridge is by means

of transverse beams or girders transferred to 'the joints of the lower

boom. The transverse beams may be the same in number as the joints

in the lower boom. In that case the girder will be loaded with equal

weights at all the bottom joints. If the transverse beams are more

numerous their ends will rest on the bottom booms, and tend to

produce a local bending action in each division, in addition to the

tensile stress which, as the bottom member of the girder, it will have

to bear. In some cases, to lessen or get rid of this bending action,

vertical suspending rods are introduced, by which means the middle

points of the lower divisions are supported, and the loads transmitted

to the upper joints of the girder. In such a case we may take all the

joints both in the upper and lower booms to be uniformly loaded.

We will, however, suppose equal weights applied to the joints of

the lower boom only. First as to the shearing forces. Between

the end and the first weight the shearing force = the supporting force

= half the total load = P say. In the next division the shearing
force is less by the amount of the load at the first lower joint

= P- W,
In the third division of the lower boom from the end the shearing
force = P - 2 W, and so on. The stresses on the diagonals can now be

found by multiplying the shearing force in the division within which

any one diagonal lies by the secant of the angle which the diagonal
makes with the vertical. The stresses will diminish in arithmetical

progression as we pass inwards from the ends towards the centre.

It will be observed that on the first and second diagonals from the

end the stress is of the same magnitude. On the third and fourth
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it is alike also, and so on. The stresses are alternately compression
and tension, commencing with compression on the first bar.

To find the stresses on the booms we must determine the bending
moments at all the joints.

Division of the M's by A, the depth of the girder, will give the

several horizontal stresses. They will be found to increase as we

pass from the ends towards the centre.

25. N Trusses. The web of the girder, instead of consisting of bars

sloping both ways, forming a series of equilateral triangles, may be

constructed of bars placed alternately vertical and sloping at an angle,

so forming a series of right-angled triangles, looking like a succession

of capital letters N. (See Fig. 31.) For this reason it is sometimes

called an N girder. The ordinary practice is to divide the girder

into a number of squares by means of the vertical bars, so that the

diagonals slope at an angle of 45. It is advantageous to place the

Flg.31.

diagonals so as to be in tension For a load in the centre, or a

uniformly distributed load, they should slope upwards from the centre

towards the ends. The vertical bars will then be in compression. A
short bar is better able to resist compression than a long one, whereas

a tension bar is of the same strength whether short or long ;
so it is

manifestly economical of material, and a saving of weight, to place

the long bars, that is the sloping bars, so as to be in tension. The

same methods will apply to find the stresses on the bars, since, as

before, the web resists the shearing action, and the booms the bending.
The simple queen truss, considered in Chapter I., Section II, is

another example of a web consisting of alternate vertical and diagonal

bars, but the diagonal is not usually inclined at 45 to the vertical.
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EXAMPLES.

1. A trapezoidal truss is 24 feet span and 3 feet deep. The central part is 8 feet long

and is braced by a diagonal stay so placed as to be in tension. Find the stress on each

part when loaded with 4 tons at one joint and 5 tons at the other.

Stress on diagonal stay= '95 ton.

2. A bridge is constructed of a pair of Warren girders, with the platform resting on

the lower booms, each of which is in 6 divisions. The bridge is loaded with 20 tons in

the middle. Find the stress on each part.

3. In example 2 obtain the result when the load is supported at either of the other

joints.

4. From the results of examples 2 and 3 deduce the stress on each part of the girder

when the bridge is loaded with 60 tons, divided equally between the three pairs of joints

from one end to the centre.

Results for questions 2, 3, 4, the bars being numbered 'as in Fig. 30.
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the diagonals to be simple ties, such as a chain or slender rod, and so

incapable of withstanding compression. Then the bar CF will carry

the whole shearing force. We may have any number of intermediate

cases between these extremes according to the material of the diagonals

and the method of attachment. In all cases one diagonal tends to

lengthen, and the other to shorten, and according to their powers of

resistance to these tendencies they offer resistance to the shearing. If

5
1
and $2

be stresses on the two bars, then in all cases

If the diagonals are exactly similar rigid pieces similarly secured at the

ends, equal changes of length will produce the same stress whether in

compression or tension, so that each will bear an equal share of the

shearing force. We shall then have

S^S^^FsecO.
The foregoing is one of the simplest examples of a frame with

redundant bars, and shows clearly why, in such cases, the stress on

each bar cannot be determined by statical considerations alone, but

depends upon the materials and mode of construction. In structures

such as those considered in Chapter I., Section II., in which the

principal part is an incomplete frame, stiffened by bracing or other

means to provide against variations of the load, the bracing is usually

redundant, and the stress on it cannot be calculated with certainty.

Allowance has to be made for this in designing the structure by the

use of a larger factor of safety. Redundant material is often no

addition at all to the strength of the structure, and may even be a

source of weakness, as will appear hereafter.

When framework girders were first introduced, it was objected by
eminent engineers that failure of a single part would destroy the

structure. Experience appears to have shown that risks of this kind

are not serious, and the tendency of modern engineering design

appears to be rather towards the employment of structures with as

few parts as possible.

Next, as to the horizontal bars. These still sustain the bending
moment, but not precisely in the same way as when there is only one

diagonal. To find the magnitude of the forces we employ a method
similar to that used before, but instead of removing a bar we suppose
the girder cut through one or more bars at any place convenient to

our purpose ;
then the principle which we make use of is, that the

action of each of the two halves on the other must be in equilibrium
with the external forces which are applied to either half. In Fig. 32

let us take a vertical section through the point of intersection of the
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diagonals, four bars are cut by the section, and through the medium of

these four bars the structure to the left will act on the portion of the

structure to the right of the section, and sustain it against the action

of the external loads which rest on it.

First, there is the force H^ pulling at K, and the force H
2 thrusting

at L, and at there are the two forces S
l

and S
2
on the two diagonals. Now, if we Fig.32.

consider the tendency for the external forces

to bend the right hand portion round 0, we
see that the diagonal bars offer no resistance

to this bending action, and must so far be

left out of account. The whole resistance to m E" !L

bending is due to the bars CD and EF along
which the forces H

l
and H

2 act, so that if

M be the bending moment at due to the external forces,

c
H

'!K

This will be true whatever be the proportion between S
1
and S

2 ,
and

H^ and H
2

. Instead, therefore, of taking the bending moment about

a joint, as we did previously, we have in this case to take the moment
about the point where the two diagonals cross.

But besides the balancing of the bending moment, there are other

conditions to which the forces are subject, in order that the right-hand

portion may be in equilibrium. One is, that all the forces which act

on this portion must balance horizontally. There are no external

forces which have any horizontal action, so that it is only the four

internal forces which act along the bars cut, of which we have to take

any account, and these must, on the whole, have no resultant hori-

zontal action. The two thrusts must equal the two pulls ;
that is,

This also is true whatever be the distribution of the shearing force

between the two diagonals.

If, now, we suppose S
2
= tiv then R^ = H^ = H, say. And the above

formula becomes Hh =M
,
the same as we had before

;
but it must be

applied* a little differently, the moment now being taken about the

point of intersection of the diagonals. If S
l

is not equal $
2,
then H

will be the mean of H
l
and H.,.

27. Lattice Girders, Flanged Beams. Constructions with a double set

of diagonals are common in practice. If, for example, in the N girder
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(Fig 31) we place in each division two diagonals instead of one only,

the construction is called a lattice or trellis girder. When employed for

heavy loads, the diagonals are generally inclined at an angle of 45

to the vertical. In light structures, or when used for giving stiffness,

they are often inclined at a much greater angle.

To determine the stresses, it will be necessary to make an assump-

tion for the distribution of the shearing force between the two

diagonals for each division of the girder, and it will generally be

sufficiently correct to suppose each to carry half, and to write

=^sec 0, and Hh =M for the points where the diagonals intersect.

In lattice girders we more frequently find the double set of sloping

bars introduced, but the vertical bars omitted. In this case it will not

be true that the two diagonals in any one division are exposed to the

same stress. We can determine the stresses otherwise. The structure

may be divided into two elementary girders, each with its own system
of diagonal bracing, and each with its own set of loads. Suppose, for

simplicity, the number of divisions in the complete girder even, and

each half girder loaded with equal weights applied to all the lower

joints. Then if we make the simple, and in most cases safe, assumption
that the thrusts on the two end vertical bars are equal, the forces on

Fig.SS.

all the bars of the structure will be determinate. In the example
shown in Fig. 33 the thrusts on the vertical end bars will be 2/J.

After we have calculated the stresses on each bar in each elementary

girder, then, for any bar which is a portion of both, we must compound
to obtain the total stress.

We may further increase the number of diagonal bars and obtain a

girder, the web of which is a network of bars. In this case it will not

be exactly, but will be very nearly, true that the horizontal bars take

the bending, and the sloping bars the shearing action, the shearing
force being regarded as equally distributed between all the cfiagonals

cut by any one vertical section.

We may go on adding diagonal bracing bars until the space between

the booms is practically filled up, and even then assume that the

bending is taken by the horizontal bars and the shearing by the web.

The numerous bracing bars may then be replaced by a vertical plate,
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which will form a continuous web to the girder. Such a construction

is a very common one in practice, the horizontal members are called

the top and bottom flanges of what is still a girder, and often called so,

but more often a flanged or I beam. In the smallest class of these

beams, they are rolled or cast in one piece ;
but for large spans

they are built up of plates and angle irons riveted together. For

figures showing the transverse sections of such beams see Part IV. In

taking the depth of such a girder, to make use of in the equation
Hh = M, we ought to measure the vertical distance between the centres

of gravity of the parts which we consider to be the flanges of the beam

or girder. In the simple rolled or cast beam this will be the distance

from centre to centre of depth of flanges. In the built-up beam

account must be taken of the effect of the angle irons.

It must be remembered that this method of determining the strength

of an I beam is only approximate. Its strength will be determined in

a more exact way hereafter, when it will be found that the web itself

assists in resisting the bending moment, but, area for area, to the extent

only of about one-third that borne by the flange. On the other hand,

the effective depth is less than the distance from centre to centre of the

flanges. In rough preliminary calculations we may often neglect this,

and employ the same formula as for lattice girders.

Girders are often of variable depths, so that the booms are not

parallel ;
when this is the case the booms assist in resisting the

shearing action of the load, as will be seen hereafter.

EXAMPLES.

1. A beam of I section is 24 feet span and 16 inches deep ;
the weight of the beam is

1,380 Ibs. It is loaded in the centre with 5 tons. Assuming the resistance to bending
to be wholly due to the flanges, find the maximum total stress on each flange and the

sectional area of each the resistance to compression being taken to be 3 tons and to

tension 4 tons per square inch.

Maximum total stress =53,505 Ibs. =23*88 tons.

Sectional area of upper flange= 8 square in.

,, ,, bottom ,, =6 ,,

2. A trellis girder, 24 feet span and 3 feet deep, in three divisions, separated by
vertical bars, with two diagonals in each division, is supported at the ends and loaded

(1) with 20 tons symmetrically distributed over the middle division of the top flange, (2)

with 20 tons placed over one of the vertical bars. Find the stress on each part of the

girder, assuming each diagonal to carry half the corresponding shearing force.

Stress on diagonals Case 1. 14 '2 14 '2

Case 2. 18f 9 9

Remark. These results show the unsuitability of this construction for carrying a heavy
load on account of the great inclination of the diagonals to the vertical.

3. A water tank, 20 feet square and 6 feet deep, is wholly supported on four beams,
each carrying an equal share of the load. The beams are ordinary flanged ones, 2 feet
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deep. Find approximately the maximum stress on each flange, assuming that the weight
of the tank is one-fourth the weight of water it contains.

Distributed load on one beam=^^-=46,875 Ibs.

Ibs. =261 tons.

4. The Conway tubular bridge is 412 feet span. Each tube is 25 feet deep outside and

21 inside. The weight of tube is 1,150 tons, and the rolling load is estimated at f ton per

foot-run. Find approximately the sectional areas of the upper and lower parts of the

tube, the stress per square inch being limited to 4 tons.

^max =3,267 tons.

Area =817 square in.

5. In the girder shown in Fig. 33, p. 52, suppose the weights P and Q are each 1 ton.

Find the stress on each member. If the girder be stiffened by the addition of vertical

members at each joint of the beams
;
find the stress on each member, making the usual

assumption.
6. A rectangular tank with vertical sides and flat bottom is filled with water to a depth

of 15 feet. The sides of the tank are constructed of iron plates riveted together and

stiffened by vertical J_ irons spaced 4 feet apart. Assuming these stiffening pieces to

take the whole bending action due to the water pressure : find the maximum bending
moment on one of the stiffening pieces.

REFERENCES.

For details of construction of girders the reader is referred to

Girder Making . . . in Wrought Iron. E. HUTCHINSON. Spon, 1879.



CHAPTER III.

STRAINING ACTIONS DUE TO ANY VERTICAL LOAD.

28. Pelimiruwy Remarks. The preliminary discussion in the pre-

ceding chapter of the straining actions to which loaded beams and

framework girders are subject will have given some idea of the import-

ance of the effect of shearing and bending on structures, and we shall

now go on to consider the question somewhat more generally.

Let us suppose any body or structure possessing, as it usually will, a

longitudinal vertical plane of symmetry, to be acted on by a set of

parallel forces in equilibrium symmetrically disposed with respect to

this plane, as, for example, gravity combined with suitable vertical

supporting forces. Then these forces will be equivalent to a set of

parallel forces in the plane of symmetry in question. Let the structure

now be divided into two parts, A arid B, by an ideal plane section,

parallel to the forces and perpendicular to their plane. Then the forces

acting on A may be reduced to a single force F lying very near the

section considered and a couple M, while the forces acting on B may be

reduced to an equal and opposite force F lying very near the section

and an equal and opposite couple M. The pair of forces are the

elements of the shearing action on the section, and the pair of couples

are the elements of the bending action on the section. As the nature

of the structure is immaterial, we may consider these straining actions

for a given vertical section quite independently of any particular struc-

ture, and describe them as the Shearing Force and Bending Moment
(hie to the given Vertical Load. We shall first consider the connection

which exists between the two kinds of straining action and the method

of determining them for any possible load.

CONNECTION BETWEEN SHEARING AND BENDING.

29. Relation between the Shearing Force and the Bending Moment.

Figure 34 shows the lines of action of weights W^ W.^ etc., placed at

the successive intervals
.,, a.,, etc.
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w. vv

In the first division the shearing force is

in the second F
2
= W^ + W^ = Fl + W^ ,

in the third F^W^ + W^+W^F^+W^,

and so on for all the divisions, so that in the nih division

We express this in words by saying that the difference between the

shearing forces on two consecutive intervals is equal to the load applied at

the point between the two intervals; or it may be written

By setting down ordinates to a horizontal base line we obtain the

stepped figure as the graphical representation of the shearing force at

any point of the beam. It is drawn by first setting downwards at 1 an

ordinate for the shearing force on the first interval, and then passing

along the beam to the other end, on meeting the lines of action of

the successive weights the length of the ordinates is increased by the

amount of the weights. In so doing we make use of the proposition

which has just been proved.

This is called the Polygon of Shearing Force, or more generally, when

the loads are continuous, the Curve of Shearing Foixe.

Next as to the bending moment. At the first point where W
l

is.

applied M
l
=

0,

at the second point M
2
= W^ F^ ;
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at the third point M
3
= W^ + a.

2) + W^ = W^ + ( W^ + W^az

at the fourth point 7If4
- ^(a

i +% + %) + ^2(
a
2 + as) +

and generally, MM
-
!/_! = /'

T

,l _ 1
(Xw_ 1

.

We may express this in words by saying that the difference between the

bending moments at the two ends of an interval is equal to the shearing forcey

multiplied by the length of the interval. Or the result may be written

We will now take a numerical example and see how we may make

use of this property to determine a series of bending moments.

Let AB be a beam fixed at one end, and loaded with weights of

2, 3, 5, 11, 13, 7 tons, placed at intervals of 3, 2, 3, 5, 4, 6 feet,.

w.
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If instead of all the forces acting one way some of them act upwards,
a minus sign should be set opposite, and all the operations performed

algebraically.

The method is equally applicable however the beam is supported.

For example, let a beam 23 feet long be supported at the ends and

loaded with 3, 2, 7, 8, 9 tons, placed at intervals of 2, 2, 3, 4, 5, 7 feet,

reckoning from one end.

First calculate one supporting force, say at the left-hand end by

w.
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Fig.35.

moment of a force about any point or succession of points may be

graphically expressed.

Let W be a force and D any point, and suppose the numerical mag
nitude of the moment of W about D known. Draw a line through D

parallel to the force at a distance a (Fig.

35), and anywhere in this line take a

length BC to represent on some con-

venient scale the moment, MD = Wa, of

W about D. The scale must be so many
inch-tons, foot-lbs., or similar units to the

inch. Then choose any point A in the A

line of action of the force, join AB and

AC, and produce these lines indefinitely.

The moment of W about any point what-

ever is represented by the intercept by \t

the radiating lines AB, AC of a line

drawn through the point parallel to the force. For example, the

moment about KMK Wx^ where x is the perpendicular distance

of K from the line of action of W.
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force and bending moment which have been drawn in all cases of

loading.

The bending moment at the point 2 = W^av Now, referring to the

shearing force diagram, we observe standing underneath the interval

a
1
a rectangle whose area = W^. Next, for the point 3,

'

This is represented on the diagram of bending moment by the ordinate

33". In the shearing force diagram we notice that the area under

the portion of the beam from 1 to 3 consists of two rectangles,

Wi(o>i + #
2 ) + W%a2-

^ that at this Pint also the bending moment

is represented by the area of the polygon of shearing force, reckoned

from the end up to the point 3. And so on for every point. This

important deduction may be stated generally thus : The ordinate of the

curve of bending moment at any paint is proportional to the area of the curve

of shearing force reckoned from one end of the beam up to that point.

30. Application to the case of a Loaded Beam. We will next take

the case of a beam supported at the two ends.

PA i

Fig -36 -

First, calculate the supporting force P, set it up at the end of the

base line as an ordinate, and draw the stepped polygon by continually

subtracting the W'a. At some point in the beam we shall cross the

base line. At that point the shearing force changes sign, and there the

bending moment is a maximum. The shearing force on the last

interval will give the magnitude of the supporting force Q. The

polygon thus drawn will be the polygon of shearing force.
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The polygon of bending moment may be drawn without previously

determining the supporting force at either end thus :

Commencing at (Fig. 36), the point of application of P, draw any

sloping line 012' cutting W^ in 1, and W.2 in 2'. Then set up

2' 2 to represent W^ join 1 2, produce it to cut W
z
in 3'.

3' 3 tf>2 , 23, JF
4
in4'.

4' 4 ^3% ,
3 4, ,,

W
b
in 5', and so on.

7' 7 will represent 9^ .

Now join 7 with the point 0, where 012' cuts the line of action

of P. This is called the Closing Line of the polygon of moments.

Any vertical intercept of this polygon will represent the bending
moment at the corresponding point of the beam. The proof of this

may be stated shortly thus : If we produce 1 to meet the line

of action of Q in L, then LI will, from what has been said before,

represent the sum of the moments of all the weights W about the end

of the beam where Q acts. And from the conditions of equilibrium

this must equal the moment of P about that end. Accordingly, if we

take any point Kt
the vertical intercept MT below it will represent

the moment of P about K. This is an upward moment. The four

weights which lie to the left of K will together have a downward

moment about K represented by MN. Therefore, the difference NT
will represent the actual bending moment at the point K.

It sometimes happens that we want the moment of the forces not

about K, the section which separates the two parts of the structure,

but about some other point, say JT, in the figure. We can obtain

this moment also with equal facility ;
for if we prolong the line 4 5

of the polygon to meet the vertical through X in the point S, we

find, reasoning in the same way, that SZ, the intercept between

the side so prolonged and the closing line, is the moment required.

Polygons of moments and shearing forces may also be constructed

by making use of the fundamental relations shown above to exist

between them and the load, as will be seen presently, while a third

purely graphical method is explained farther on, based on a most

important property which they possess.

31. Application to the case of a Vessel floating in the Water. We some-

times meet with cases in which the beam or structure is loaded not at

intervals, but continuously, the distribution of the load not being

uniform, but varied in some given way. In such a case the diagrams
of shearing force and bending moment become continuous curves. The

most convenient way of expressing how the load is distributed is by
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Fig.36a.

means of a curve, the ordinate of which at any point represents the

intensity of the load at that point. Such a curve is called a curve of

loads. It may be regarded as the

profile of the upper surface of a

mass of earth or other material

resting on the beam.

We will consider, first, the case

of a beam fixed at one end and

loaded continuously throughout, in

a manner expressed by a curve of

loads LL (Fig. 36a). The total area

enclosed by the curve of loads will

represent the total load on the beam,
and between the two ordinates of any two points will be the load on

the beam between the two points. Now, the area of the curve of loads,

reckoned from the end A up to any point, K say, since it represents

the total load to the left of K, will be the shearing force at K. If at

K we erect an ordinate KF, to represent on some convenient scale the

area ALK, and do this for many points of the beam, we shall obtain

a second curve FF, the curve of shearing force. Having done this,

we may repeat the process on the curve FF, and obtain the curve of

bending moment. For we have previously proved that if the load on

the beam is concentrated at given points, then the ordinate of the curve

,
of bending moments is at any point proportional to the area enclosed

by the curve of shearing force for the portion of the beam between the

end and that point. The truth of this is not affected by supposing the

points of application of the load to be indefinitely close to one another,

in which case the load becomes continuous. Accordingly, if we set up
at K an ordinate, KM, to represent on some convenient scale the area

AFK of the shearing force curve, and repeat this for many points,

we obtain the curve of bending moment, MM. Thus the three curves

form a series, each being the graphical integral of the one preceding.

This process has an important application in the determination of the

bending moment to which a ship is subjected on account of the unequal
distribution of her weight and buoyancy along the length of the ship.

On the whole, the upward pressure of the water, called the buoyancy,
must be equal to the downward weight of the ship ;

and the lines of

action of these two equal and opposite forces must be in the same

vertical. But for any portion of the length, the upward pressure and

the downward weight will not, in general, balance one another
; so, on

account of the difference, shearing and bending of the ship will be

induced. In the case of a rectangular block of wood floating in water,
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the upward pressure of the water will, for every portion of its length,,

equal the downward weight, and there will be no shearing and bending
action on it. But in actual ships, the disposition of weight and

buoyancy is not so simple. Taking any small portion of the length
of the ship, the difference between the weight of that portion of the

ship and the weight of the water displaced by that portion of the

ship, will be a force which acts on the vessel sometimes upwards and

sometimes downwards, according to which is the greater, just in the

same way as forces act on a loaded beam producing shearing and

bending. In the construction of the vessel, strength must be provided
to resist these straining actions, and it is a matter of great practical

importance to determine accurately the magnitude of them for all

points of the length of the ship. We will select an example of very

frequent occurrence, that in which at the ends of the ship the weight
exceeds the buoyancy, whilst at the centre the buoyancy exceeds the

weight. If the ship were very bluff ended, and carried a cargo of

very heavy material in the centre hold, the distribution of weight and

buoyancy would probably be the reverse of this.

Fig.37.

w

In the example the ship is supposed to be divided into any number
of equal parts, and the weight of water displaced by each of those
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parts determined
;
ordinates are set up to represent those weights,

-and so, what is called a curve of buoyancy, BBB (Fig. 37), is drawn.

The whole area enclosed by the curve will represent the total

buoyancy or displacement of the vessel, and is the same thing as

the total weight of the vessel. Next we suppose that the weights of

the different portions of the ship are estimated, and ordinates set up
to represent these weights, then what is called a curve of weight,

WWW, is obtained. In the figure it is set up from the same base line.

The total area enclosed by this curve will also be the total weight of

the ship, and must therefore equal the area enclosed by the curve of

buoyancy. Thus the sum of the two areas marked 1 and 2 must equal

the area marked 3. Not only must this be true, but also the centres

of gravity must lie on the same ordinate. The difference at any point

between the ordinates of the two curves will express by how much
at the ends the weight exceeds the buoyancy, and in the middle

portion by how much the buoyancy exceeds the weight, representing,

in the first case, the intensity of the downward force, and, in the

second, the intensity of the upward force. Wfyere the curves cross one

another and the ordinates are the same height, as at K
l ajid K,

2 ,
the

sections are said to be water-borne. If now we set off from the base line

ordinates equal to the difference between the ordinates of the two curves

BBB and WWW^ we obtain the curve of loads LLL
;
some portions

where the weight is in excess will lie below the base line, and the rest,

where the buoyancy exceeds the weight, will lie above the base line.

From what has been said before, the area above the base line must

equal the area below. Having obtained the curve of loads, the curve

of shearing force is to be obtained from it in the manner previously

described, by setting up, at any point, an ordinate to represent the

area of the curve LLL between the end of the ship and that point.

In performing the operation, due regard must be paid to the fact

that the loads on different parts of the ship act in different directions,

and for one direction they must be treated as negative, and the

corresponding area of the curve as a negative area.

Having thus determined the curve of shearing force FFF, the

same operation must be repeated on that curve to determine the

curve of bending moment. In drawing the curve of shearing force

it will be found that at the further end of the ship we return again
to the base line from which we started at first, for the shearing
force at the end must be zero. Also the bending moment at the

end must be zero. This gives us tests of the accuracy of our work.

In this example the bending is wholly in one direction, tending to

make the ends of the ship droop or the ship to "
hog

"
in the technical
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language of the naval architect, but in some examples the direction of

bending changes one or more times. Curves of shearing force and

bending moment were first explained in relation to a vessel floating in

the water by the late Professor Rankine in his work on shipbuilding.

It does not, however, appear that any such curves were ever constructed

in any actual example until 1869, when some were drawn for vessels

of war by Mr. (now Sir E.) Reed, at that time chief constructor of

the Navy. The results obtained by him are described in a paper

read before the Royal Society (Phil. Trans, for 1871, part 2). They
now form part of the ordinary calculations of a vessel.

Since the water exerts on the vessel not only vertical but also

horizontal forces, the straining actions upon her do not consist solely

of shearing and bending, but include also a thrust. The horizontal

pressure also produces bending in a mariner which we shall hereafter

explain.

32. Maximum Straining Actions. The set of forces we are considering

are in equilibrium, and must therefore be partly upwards and partly

downwards. The downward force is the total weight W, and is-

generally more or less distributed, the upward force is of equal magni-

tude, and is usually concentrated near two or more points. In the case

of the vessel, however, the upward force is distributed like the weight,

though not according to the same law. In any case the greatest

shearing force must be some fraction of the weight, and the greatest

bending moment must be some fraction of the weight multiplied by
the length / over which the weight is distributed. We may therefore

express the maximum straining actions by the formulae

I\ = k.W', M^ = m.Wl,
where k, m are numerical quantities depending on the distribution of

the load and the mode of support. Thus for a uniformly loaded beam

supported at the ends & = J, wi = J. The greatest value m can have

in a beam resting on supports without attachment is J ; this occurs

when the beam is supported at the ends and the load concentrated in

the middle or conversely. In vessels where the supporting force is

distributed m is much less
;

its maximum value is estimated by Mr.

(now Sir W. H.) White at -^ in ordinary merchant steamers.

EXAMPLES.

1. The buoyancy of a vessel is at the ends and increases uniformly to the centre,

while the weight is at the centre and increases uniformly to the ends. Draw the

-curves of shearing force and bending moment, and find the maximum values of these

quantities in terms of the displacement and length of the vessel.

Answer k=\; w=iV
C.M. E
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2. A Warren girder with 12 divisions in the lower boom is supported at the ends and

loaded with 250 tons, which may be supposed to be equally distributed among all the

25 joints. Find the stress on each bar by calculating the series of shearing force and

bending moments.

RESULTS FOR LEFT-HAND HALF OF GIRDER.
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beam of span /, supported at the ends, and suppose a single concentrated

load W to travel across it in the direction of the arrow. Let us

consider any point K (Fig. 38) in the beam, distant a and b from the

ends. As the load traverses the beam, each position of the load will

produce a certain shearing force and bending moment at the point K.

To find their greatest value let x = distance of W from A, then the

supporting force at ~B = P = W-v So long as the weight lies between

A and K the shearing force at K will be simply P.

consequently the shearing force will increase as x increases, until the

load reaches the point K. So long as the weight lies to the left of K,

the tendency will be for the portion KB to slide upwards relatively

to the portion AK. This we describe in accordance with our definition

on p. 34 as a negative shearing force. Therefore, putting x = a,

Max. negative shearing force at K= W-,-

Now, supposing the weight to move onward, it will in the next instant

have passed to the other side of K, and the shearing force will have

undergone a sudden change. It will now be equal to the supporting
force at the end A, ~ ^b

But not only is the magnitude of the shearing force suddenly changed,
but the tendency to slide is now in the other direction, and the

shearing force is positive. As the weight moves further to the

right of K the shearing force diminishes, thus

Max. positive shearing force at K=
W-j.

Wherever we take the point K it will always be true that the maximum

positive shearing force will occur when the weight lies immediately
to the right of K, and the maximum negative when the weight lies

immediately to the left. The maximum negative shearing force for

every point in the beam may be represented by the ordinates of a

sloping line AB 1

below the beam, the length BB' being taken to

represent W. And similarly the maximum positive shearing force

at any point by the ordinates of the sloping line A'B about AA' also

being taken to represent W.
Next as to the bending moment. When the weight lies to the left

of K, and is at a distance from A equal to x, the bending moment
at K -is given by Pb=W-x.
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This goes on increasing as x increases until the weight reaches the

point K. After having passed K the bending moment at K must

be differently expressed, being then

which becomes smaller as x increases; so that the greatest bending

moment at K occurs when the load is immediately over K, and then the

Max. bending Moment at K=
p-

If the point K is taken in the centre of the beam,

Max. Moment at centre = \Wl as before.

If ordinates be set up at all points to represent the maximum bending

moments at these points, a parabola (AGE) will be obtained. For

the expression for the maximum bending moment is just twice that

previously obtained for the same weight distributed uniformly.

If there are more weights, W^, W^ etc., on the beam, and W
l
lie to

the right of K, the shearing force at K= P - W
l ,
where P is the right-

hand supporting force. Now, suppose we shift W
l
to the left of K, we

shall diminish the supporting force to P' say, and this will be the new

shearing force at K. The difference between P and P' will be less than

W^, and the shearing force will be increased by passing W1
to the left

of K, If we were to remove W^ altogether the diminution of P will

be less than the whole of JF
lt

and so the shearing force at ^Twill be

increased by so doing. We obtain the greatest positive shearing force

at K when all the weights are to the right of K, but as near to K
as possible. The greatest negative shearing force will occur when

all the weights lie to the left of K, as near to K as possible.

The maximum bending moment at K will occur when the weights

are as near K as possible, whether to the right or left. Any addition

to the load, on whichever side of K it is placed, will cause an addition

to the bending moment.

There is another important case, that in which we have a continuous

load of uniform intensity passing over the beam, as when a long

train passes on to a bridge. We observe that as the train, coming
from A, approaches K, the supporting force at B, and therefore the

shearing force at K, increases. When any portion of the weight lies

to the right of K, the supporting force will be increased by a part of

the weight lying to the right of K
;
but when we have subtracted the

whole of that weight, the difference, which will be the shearing force

at K, will be less than before
;
thus the maximum negative shearing

force at K will occur when the portion AK is fully loaded, and no
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part of the load is on KB. To find its value we have only to determine

the supporting force at B, by taking moments about A
;
then

that is, the magnitude is proportional to the square of the distance of

the point from the end A. .It will be graphically represented by the

ordinates of a parabola which has its vertex at A^ and axis vertical,

cutting the vertical through B in a point B' such that BB' = ^wl, that

is, half the weight on the beam when fully loaded. As the load travels

onward the shearing force diminishes at last to zero, and then changes

sign, becoming positive, the numerical magnitude increasing as the rear

of the load approaches K. The maximum positive shearing force will

occur when the portion KB only is loaded. The ordinates of a para-

bola set below the line of the beam having its vertex at B and axis

vertical, will represent the maximum negative shearing force.

The question of maximum bending moment is more simple. It will

occur at any point when the beam is fully loaded
;
for at any point the

bending moment is the sum of the bending moments due to all the

small portions into which the load may be divided, and the removal of

any one of them will cause a diminution of bending action throughout
the whole length of the beam. A parabola, with its highest ordinate

at the centre = %wl
2

,
will represent it at any point.

34. Counter-bracing of Girders. In the design of a framework girder

it is very important to take account of the maximum positive and

negative shearing forces due to a travelling load.

In such a structure the shearing force is resisted by the diagonal

bars, and in general these bars are so placed as to be in tension, for the

bar may then be made lighter than if subject to a compressive force of

the same amount. Suppose the diagonal bars so arranged as to be all

in tension when the girder is fully loaded, or when there is only the

dead weight of the girder itself to be taken account of. There may be

ample provision made for withstanding the tensile forces, and yet it

will be important to examine if there may not be some disposition of

the travelling load which would cause a thrust on some of the

diagonals. If so, the maximum amount of this must be calculated, and

the structure made capable of withstanding it. If the shearing force

at any section of the girder is what we have called a positive shearing

force, that in which the left-hand portion tends to slide upwards

relatively to the right, then, in order that it may be withstood by
the tension of a diagonal ^bar, the bar must slope upwards to the left.

If the bar so slopes, and by the movement of the travelling load the
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shearing force becomes negative, then the bar will be subjected to com-

pression. Now, it will frequently happen that in the central divisions

of a girder the positive or negative shearing forces due to the dead

load are less than the negative or positive shearing forces due to the

travelling load, so that if those bars are arranged to be in tension

under the dead load, then, on the passage of the travelling load, the

stress will be changed to compression. In some cases the bars are

slender and not suited to sustain compression; the shearing force is

then provided for by the addition of a second diagonal, sloping in the

opposite direction, which, by its tension, will perform the duty the first

bar would otherwise have to perform by compression. Such a bar is

called a counter-brace. We frequently see such additional bars fitted

to the middle divisions of framework girders.

Again, the powers of resistance of a piece of material to a given
maximum load are greater the smaller the fluctuation in the stress to

which it is exposed ;
and therefore, in determining its dimensions, it is

important to know not only the maximum but also the minimum stress

to which it is exposed. This can be done on the principles which have

just been explained.
EXAMPLES.

1. A single load of 50 tons traverses a bridge of 100 feet span. Draw the curves of

maximum shearing force and bending moment, and give the values of these quantities

for the quarter and half span.

2. A train weighing one ton per foot-run, arid more than 100 feet long, traverses a

bridge 100 feet span. Draw the curves of maximum shearing force and bending moment,
and give the values of these quantities at the quarter and half span.

3. In the last question, suppose the permanent load fths ton per foot-run. Find

within what limits counter-bracing will be required. Ans. 21 feet at the centre.

4. In Ex. 5, p. 49, the maximum rolling load is estimated at 1 ton per foot-run.

Determine which of the diagonals will be in compression, and the amount of that com-

pression, assuming a complete number of divisions to be loaded.

The two centre diagonals are the only ones which can be in compression, the maximum
amount of which will be=(3'2-2)V2=I'7. It will occur when the rolling load occupies

four divisions only of the bridge.

5. In the last question, suppose a single load of 20 tons to traverse the bridge. Find

the maximum stress, both tension and compression, on each part of the girder.

Divisions.
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METHOD OF SECTIONS.

35. Method of Sections applied to Incomplete Frames. Culmann's

Theorem. The straining actions due to a vertical load may either be

wholly resisted by internal forces called into play within the structure

itself, or also in part by the horizontal reaction of fixed abutments : the

supporting forces being in the first case vertical, and in the second

having a horizontal component. The distinction is one of the greatest

importance in the theory of structures, which are thus divided into two

classes, Girders and Arches, including under the last head also Chains.

It is the first class alone which we consider in this chapter.

The general consideration of internal forces is outside the limits of

this part of our work, and we shall here merely consider some cases

of framework structures, commencing with that of an incomplete frame.

Incomplete frames are in general, as in Chapter I., structures of the

arch and chain class, but by a slight modification we can readily convert

such a frame into a girder and thus obtain very interesting results.

Fig. 39a shows a funicular polygon such as that in Fig. 11, page 14,

except that the supports are removed and replaced by a strut 06. By
this addition the polygon becomes a closed figure, and 06 is therefore

called its "closing line." The structure is carried by suspending rods

at the joints 06, and loaded as shown. The construction of the

diagram of forces, Fig. 39b, has been sufficiently explained on the

page referred to, and it only remains to observe that the supporting
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forces PQ are immediately derived from the diagram by drawing

parallel to the closing line, which is not necessarily horizontal. The
horizontal thrust of the strut and tension of the rope is found as before

by drawing ON horizontal.

The structure may now be regarded as a girder, the load on which,

together with the vertical supporting forces, produce definite straining

actions M and F on any section. Let the section be KK' in the figure,,

cutting one of the parts of the rope and the strut as shown in the

figure : let the intercept be y. Consider the forces acting at the section

on the left-hand half of the girder, the horizontal components of these

forces are equal and opposite, acting as shown in the figure, each being
H or ON in the diagram of forces. The vertical components are

balanced by the shearing force, and the horizontal components by the

bending moment, which last fact we express by the equation

Hy = M,
that is to say, the funicular polygon corresponding to a given load is

also a polygon of bending moments, the intercept between the poly-

gon and its closing line multiplied by the horizontal force is equal to

the bending moment due to the load. Hence, by a purely graphical

process, we can construct a polygon of moments, for we have only to

construct a funicular polygon corresponding to the load as shown in

the article already cited, and complete it by drawing its closing line.

This is one of the fundamental theorems of graphical statics, a

subject which of late has been extensively studied. The construction

is intimately connected with the process of Art. 29 as the reader

should show for himself. In its complete form it is due to Culmann
and is generally known by his name, having been given in his work
on graphical statics.

Fig.40.

36. Method of Sections in general. Bitter's Method. In frames which

are complete the number of bars cut by the section, instead of being
two only, as in the preceding case, is in general three at least.

In Fig. 40 let KK' be the section cutting the three bars in three
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points, which may be considered as the points of application of three

forces PQR due to the reaction of the bars, which balance the shearing
and bending actions to which the section is subject. Resolving

horizontally and vertically, and taking moments, we should re-

membering that the load being wholly vertical the sum of the

horizontal components must be zero obtain three equations which

would determine P, Q, Pi. It is, however, simpler to employ a method

introduced by Ritter which enables us to obtain the value of each

force at once. Let the lines of action of P, Q intersect in the point l r

Q and R in 2, P and R in 3, and let the perpendicular dropped from

each intersection on to the line of action of the third force be r, pr

q respectively : by measurement on the drawing of the framework

structure we are considering it is always easy to determine these

perpendiculars. Then taking moments about the three points we get

Rr = L
l -, Pp = L.

2 ; Qq = L3 ,

where Lv L
2 ,
L

3
are the moments of the forces acting on the left-hand

half of the structure about the points 1, 2, 3 respectively. On page 5&

it was shown how to get these moments graphically from the polygon
of moments, but they also may be obtained by direct calculation.

We may write down a general formula for this method, thus

Hh = L,

where H is the stress on any bar, h its perpendicular distance from the

intersection of the two others cut by a section, and L is the moment of

the forces about that intersection. The special case in which the

intersection lies on the section considered so that the moment L
becomes the bending moment (M) on the section has already been

considered in Chapter II. When the stress on a single bar is required
as a verification of results obtained by graphical methods, or where the

maximum stress due to a travelling load has to be determined, thi&

method is often serviceable, but as a general method it is inconvenient

from the amount of arithmetical labour involved.

The shearing action on the section is resisted by the components

parallel to the section of the stress on the several bars. In the case

of the incomplete frame of Fig. 39, p. 71, these components are given
at once by the diagram of forces. In general, however, three bars

and only three, must be cut by the section if the frame be neither

incomplete nor redundant
;
when two of these are perpendicular ta

the section the case is that considered in Chap. III. of a framework

girder with booms parallel, in which the diagonal bars alone resist

the shearing. When one bar only is perpendicular to the section, the

other two collectively resist the shearing action : this case is common.
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in bowstring and other girders of variable depth. The upper boom

together with the web here resists the shearing.

When more than three bars are cut by the section, the stress in

each is generally indeterminate on account of the number of bars

being redundant. On this question it will be sufficient for the

present to refer to Chapter II., Section II.

EXAMPLES.

1. In example 3, page 66, construct the polygon of bending moments by Culmann's

method.

2. In example 6, page 32, find the stress on each part of the roof by Hitter's method.

3. In example 7, page 32, find the stress on each by Eitter's method.

4. If a parabolic bowstring girder be subject to a uniform travelling load, represented

fcy the application of equal weights to some or all of the verticals, show that the

horizontal component of the maximum stress on each diagonal is the same for all.

5. In the roof shown in Fig. 21, p. 28, emploj" Bitter's method to find the stress on the

sloping struts and deduce the stress on each division of the tie rod.

6. The curve of shearing force for a vessel consists of two similar parabolas plotted

with vertical axes on a base line representing the length of the vessel. The excess of

weight over buoyancy of each end of the vessel up to the nearest waterbone section is

TVth her displacement ; find the maximum bending moment. Ans. YgWL
7. A uniform raft of rectangular section, which when floating freely is immersed to

^rds of its depth, has one end stranded so that the lower edge of that end is in the

plane of flotation. Draw a diagram of shearing force, giving the value of some ordinates

in terms of the whole weight of the raft, and show that the maximum bending
moment is -^7 Wl.

8. A circular ring cut out of a piece of sheet metal is balanced in a horizontal plane

upon knife edges placed in a central line. Find the shearing force and bending moment
at any radial section.

9. In question 6, p. 54, draw curves of shearing force and bending moment for one

of the stiffening pieces.

10. A flat-bottomed vessel of length L and beam B floats horizontally in the water

The sides are vertical and the water lines curves of sines given by the equation
B . x

where x is measured from one end. The weight is uniformly distributed. Find the

curves of shearing force and bending moment. Deduce their maximum values.

-F =^ W ;
M = WL nearly.
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CHAPTEK IV.

FRAMEWORK IN GENERAL.

37. Straining Actions on the Bars of a Frame. General Method of

Reduction. When the bars of a frame are not straight, or when they

carry loads at some intermediate points, the straining action on them
is not generally a simple thrust or pull, but includes a shearing and

bending action. The present and two following articles will be

devoted to some cases of this kind.

First suppose the bars straight, but let one or more be loaded in any

way, and in the first instance consider any one bar, AB (Fig. 41), apart
from the rest of the frame, and suspended by strings in an inclined

position. Let any weights act on it as shown in the figure, then the

tensions of the vertical strings will be just the same as in a beam, AB,

supported horizontally at the ends and loaded at the same points with

the same weights. Resolve the forces into two sets, one along the bar,

the other transverse to the bar. The second set produce shearing and

.bending just as if applied to a beam in a horizontal position, while

the first set produce a longitudinal stress, which will be different in

each division of the bar. Let 6 be the inclination of the bar to the

vertical, then the pulls on the successive divisions are

P . cos : (P - W^ cos d : (P
- W

z
- W^ cos : ...

,

the last being a thrust equal to Q . cos 0, so that the stress varies from

Q cos to - P . cos 9. Now observe that we can apply to AB at its ends.
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in the direction of its length, a thrust, ZT
,
of any magnitude we please

without altering P and Q, but that we cannot apply a force in any other

direction, whence it follows that when AE forms one of the bars of a

frame, its reaction on the joint A must be a downward force, P, and a

force H , which must have the direction BA, while the reaction on B
in like manner consists of a downward force, Q, and an equal force, H ,

in the direction AE. The downward forces P, Q are described as the

part of the load on AE carried at- the joints A, E, and it is now clear

that if these quantities be estimated for each bar and added to the load

directly suspended there, we must be able to determine the forces H by

exactly the same process as that by which we find the stress on each

bar of a frame loaded at the joints. The actual thrust on AE evidently

varies between H - P . cos 6 at the top, to H
Q + Q . cos at the bottom,

so that H may be described as the mean thrust on the bar, while

the shearing and bending depend solely on the load on the bar itself,

and not on the nature of the framework structure of which it forms

part, or on the load on that structure. In the particular case where

the load on the bar is uniformly distributed, the forces P, Q are

each half the weight of the bar, and the thrust H
Q

is the actual

thrust at the middle point of the bar.

This question may also be treated by the graphical method of Art.

35 with great advantage. Through A and E draw a funicular polygon

corresponding to the load on AB, the line OF in the diagram of forces

will be parallel to AE and may be taken to represent H . This

funicular polygon will be the curve of bending moment for the bar,

and the other straining actions at every point are immediately de-

ducible. It will be seen presently that the bar need not be straight.

For simplicity it has been supposed that the forces acting on the

bar are parallel : if they be not, the reduction is not quite so simple.

It will then be necessary to resolve the forces into components along
the bar and transverse to the bar, the second set can be treated as

above, while the total amount of the first set must be considered as

part of the force supplied to the joints either at A or B. Such

cases, however, do riot often occur, and it is therefore unnecessary
to dwell on them.

The joints have been supposed simple pin joints or their equivalents,

but the method used for frames loaded at the joints will apply even

if the real or ideal centres of rotation of the bars are not coincident,

provided only the centre lines prolonged pass through the point where

the load is applied. The method of reduction just explained then

requires modification. Such cases are of frequent occurrence, and

the next article will be devoted to them.
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38. Hinged Girders. Virtual Joints. The case of a loaded beam,

the ends of which overhang the supports on which it rests, has already

been considered in Art. 21, where it was shown that the straining

actions at any point might be expressed in terms of the bending

moments at the points of support, which of course will be determined

by the load on the overhanging part. If the overhanging parts be

supported, as in the case of a beam continuous over several spans, or

with the ends fixed in a wall, the same formula will serve to express

the straining actions at any point in terms of the bending moments at

the points of support, but those bending moments will not be known

unless the material of the beam and the mode of support are fully

known. Hence the full consideration of such cases forms part of a

later division of our work. Certain general conclusions can be drawn,

however, which are of practical interest.

The graphic construction for the bending moment at any point of a

beam, CD, which is not free at the points of support, is given in Fig. 28,

p. 40. The figure refers to the case where the bending action at

C and D is in the opposite direction to the bending action near the

centre, as it is easily seen must be the case in general. The points of

intersection of the moment line with the curve of moments drawn, as

explained in the article cited, on the supposition of the ends being

free, show where the negative bending at the ends passes into the

positive bending of the centre. Here, there is no bending at all, and

the central part of the beam (EF in figure) is exactly in the position of

a beam supported but otherwise free at its ends. We may therefore

treat the case as if E and F were joints, the position of which will be

known if the bending moments at the ends are known, and conversely.

In some cases there may be actual joints in given positions, while in

others there will be "virtual joints," the position of which may be

supposed known for the purposes of the investigation.

Fig.42.

Fig. 42 shows a beam AB continuous over three spans, the moment

curves for which will be known when the load resting on each span is

known. It is evident from what has been said that the moment line

must be the broken line AcdB, cutting the moment curve of the centre

span in two points, and the moment curves of the end spans each in
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one point, the others being the ends of the beam. Thus there are four

virtual joints, of which two must be supposed known in order to find

the straining actions at any point. Their position will depend (1) on

whether the supports are on the same level or not, (2) on the

material and mode of construction of the beam, (3) on the load. Such

a beam is in a condition analogous to that of a frame with redundant

bars, considered in Chapter II., Section III.
;
the straining actions

are indeterminate by purely statical considerations, for the same

reason as before. We can, however, see that the bending action at

each point is in general less than if the beam were not continuous.

In one particular case the position of the virtual joints can be

foreseen. Suppose a perfectly straight beam, of uniform transverse

section, to be continuous over an indefinite number of equal spans : let

the weight of the beam be negligible, and let equal weights be placed
at the centre of each span. Then since the pressure on each support
must be equal to the weight, the beam is acted on by equal forces

at equal distances alternately upwards and downwards, and there

being perfect symmetry in the action of the upward and downward

forces, the virtual joints must be midway between the centre and

the points of support of each span.

In the special case where the beam is uniformly loaded we can

further see that the load resting on the supports is not one half

the weight of the parts of the beam resting there, as it would be if the

beam were not continuous, but must in general be greater for the

centre supports and less for the end supports. For if the virtual joints

be LNML', as in the figure, it is easily seen that A carries half the

weight of AL, not of AC, while C carries half the weight of AL and

NM, together with the whole weight of CL and CN. This observ-

ation shows that in trussed beams where, as is usually the case, the

loaded beam is continuous through certain joints, the effect of

the continuity is generally to transfer a part of the weight from the

joints where the ends are free to the joints where the beam is con-

tinuous. We shall return to this point hereafter.

The principle of continuity is frequently taken advantage of in

the construction of girders of uniform depth by making them con-

tinuous over several spans. The virtual joints then vary in position

for each position of the travelling load, rendering it a complicated
matter to determine the maximum straining actions, while there

is always an element of uncertainty about the results, for reasons

already referred to and afterwards to be stated more fully.

In some structures, however, the joints have a definite position.

Fig. 43 shows a cantilever bowstring girder, consisting of a central
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bowstring girder NM, the ends of which rest on parts ACN, BDM,
projecting from the piers, technically described as " cantilevers." The

joints here are at N and M. In structures of great span, in which

.A B.

Fig.43.

the weight of the structure is the principal element, so that the

variations in distribution are small, this type of girder is economical

in weight. In the great bridge over the Forth, the central portion

for each of two principal openings consists of a simple girder 350

feet span, while the cantilevers are each no less than 675 feet in

length, making a total span of 1700 feet. These cantilevers are of

great depth near the piers, and to provide against wind pressure,

they are there likewise greatly increased in breadth, and solidly

united to them. Full descriptions of this bridge, a structure which,

from its gigantic dimensions and other unusual features, deserves-

attentive study, appeared in the engineering journals for 1890, and

several have since been re-published in a separate form.

39. Hinged Arches. In the second section of Chapter I. certain

forms of arches were considered which are simply inverted chains,

and require for equilibrium a load of a certain definite intensity at

each point. We shall now take the case of an arch rib capable of

sustaining a load distributed in any way. We shall suppose the load

vertical, and, to take the thrust of the arch, we shall imagine a tie

rod introduced so as to convert it into a bowstring girder. If the

straining actions at each point of the rib are to be determinate without

Fig.44.

reference to the relative flexibility of the several parts of the rib, and

other circumstances, we must have, as in the case of the continuous-

beam, joints in some given position. The necessary joints are in this
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instance three in number, and, we shall suppose, are at the crown

(Fig. 44), and one at each springing A and B.

Taking a vertical section KK' through the rib and tie, let the bending
moment due to the vertical load and supporting forces be M. This

bending moment is resisted, first, by the horizontal forces called into

play ;
that is to say, the pull of the tie rod H at K', and the equal

and opposite horizontal thrust of the rib at K
; secondly, by the resist-

ance to bending of the rib itself, the moment of which we will call
/x.

Hence if y be the ordinate of the point considered, we must have

To determine H we have only to notice that at the crown where y = h

there is a joint, that is, /*
=

0,

.-. M = Hh,
where M is the bending moment due to the load for the central

section. Thus, to determine /x we have the equation

The graphic representation of /x is very simple. Let us imagine the

curve of moments drawn for the given vertical load, and let it be so

drawn as to pass through A, B, and C, which is evidently always

possible. Then, if Y be the ordinate of the curve,

M = H. Y.

Therefore, by substitution,

:So that the bending moment at each point of the rib is represented

graphically by the vertical intercept between the rib and the curve of

moments. In the figure, the curve AZCB is the curve of moments,
and KZ is the intercept in question.

Arched ribs in practice are rarely, if ever, hinged, and the straining

actions on them occasioned by a distribution of the load not corre-

sponding to their form depend, therefore, upon the relative flexibility

of the several parts of the rib, and other complicated circumstances.

If the position of the virtual joints be known, or the bending moments

at any three points, the graphical construction just given can be

applied.

Instead of a rigid arch, from which a flexible platform is suspended,

we may have a stiff platform suspended from a chain. This is the

ase where a suspension bridge is adapted to a variable load by
means of a stiffening girder. For this case it will be sufficient to

refer to Ex. 3, page 87.

40. Structures of Uniform Strength. In any framework structure

without redundant bars, the stress on each bar may be determined as
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in Chapter I., by drawing a diagram of forces for any given load,

W, and expressed by the formula

where k is a co-efficient depending on the distribution of the load.

If A be the sectional area of the bar we find by division the stress

per sq. inch, which must not exceed a certain limit, depending on

the nature of the material as explained in Part IV. of this work.

When the structure is completely adapted to the load which it has

to carry, the stress per square inch is the same for all the bars, and it

is then said to be of Uniform Strength. Uniformity of strength

cannot be reached exactly in practice, but it is a theoretical condition

which is carried out as far as possible in the design of the structure.

Other things being equal, the weight of a structure of uniform strength

is less than that of any other. Such a structure is therefore less

costly, for weight is to a great extent a measure of cost.

Whenever the load is known, the weight of a structure of given

type, and of uniform strength can be calculated thus. Suppose A
the sectional area of a piece, Zf, the stress on it, /, a co-efficient of

strength, then TJfA
Next let w be the weight of a unit of volume, usually a cubic inch,

and assume /.

A =Awa

then A is a certain length, being in fact the length of a bar of the

material which will just carry its own weight. Its value in feet for

various materials is given in Chapter XVIII. Then assuming the

piece prismatic and of length s, its weight is

A HS
w As =

-^,

and therefore the weight of the whole structure must be for the same

value of A,

the summation extending to all the pieces in the structure, and being

performed by integration in a continuous arch or chain. It will be

observed that s is the length of any line in the frame-diagram, and H
that of the corresponding line in the diagram of forces

;
we have only

then to take the sum of the products of these lines and divide by A, the

result will be the weight of the structure. It is, however, generally

necessary to find the weights Wv W^ of the parts in compression and

in tension separately, because the value of A is generally different in

the two cases.

C.M. F
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A remarkable connection was shown by the late Prof. Clerk Maxwell to exist between

Wl and TFo. Let us take a structure of the girder class and suppose the total load upon
it G, and the height of the centre of gravity of that load above the points of support h.

Imagine this structure to become gradually smaller without altering either its pro-

portions or the magnitude and distribution of the load G, then O descends and does

work during the descent in overcoming the resistance (T) of the bars in compression

to diminution of length, while at the same time the bars in tension (P) do work during

contraction. The values of T and P do not alter, for the diagram of forces remains

.the same, and therefore if we conceive the process to continue till the structure has

shrunk to a 'point,
Gh='STs-2Ps=\Wl

- \2W2 .

In particular, if the centre of gravity of the load lies on the line of support, and if the

co-efficients be the same, the weights of the parts in compression and tension will be

equal. A corresponding formula may be obtained for structures of the arch-class by

taking into account the thrust.

The weight of an actual structure is always greater than that found

by this method. First, an addition must be made to allow for joints

and fastenings. Thus, for example, in ordinary pin joints the eye of

the bar weighs more than the corresponding fraction of the length of

the bar, and in addition there is the weight of the pin. Secondly, in

all structures there is more or less redundant material necessary to

provide against accidental strains not comprehended in the useful

load. Thirdly, there are local straining actions in the pieces occasioned

by their own weight and other causes.

41. Stress due to the PFeight of a Structure. The total load on any
structure consists partly of external forces applied to it at various

points and partly of its own weight : the total stress on any member is

therefore the sum of that due to the external load and of that due to

the weight of the structure itself. As that stress cannot exceed a

certain limit, depending on the strength of the material, it necessarily

follows that the stress due to the weight is so much deducted from

the strength. Thus the consideration of the weight of a structure is an

essential part of the subject, even if we disregard the question of cost.

The weight of each member is, of course, distributed over its whole

length, and so also may be a part or the whole of the external load.

Applying the general method of reduction explained in Art. 37, we

suppose an equivalent load applied at each joint, and drawing a

diagram of forces, we determine the mean stress, H, on the member.

If the unsupported length of the bars be not too great, a matter to

be considered presently, this stress will be the principal part of the

straining action on the bar, and the bending may be neglected as in

the preceding article.

Now, consider two structures similar in form and loaded with

the same total weight, distributed in the same way, so that the only
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difference in the structures is in size : then the stress on corresponding

bars must be the same, for the structures have the same diagram of

forces. That is to say, in the formula

H=kW,
the co-efficient k depends on the type of structure and the distribution

of the load upon it, but not on its dimensions. Dividing by the

sectional area, the intensity of the stress is

Next let WQ be the weight of the structure itself, and suppose the

relative sectional areas of the several pieces the same, then

W = w .cAl,

where c is a co-efficient depending on the type of structure, arid / a

length depending on the linear dimensions of the structure. For

example, in roofs and bridges I may conveniently be taken as the

span. Then if & be the value of k, which corresponds to the dis-

tribution of the weight of the structure, which will be the same

whether the structure be large or small,

W

will be the stress due to the weight of the structure. In other words,

the stress due to the weight of similar structures varies as their linear

dimensions.

Since p cannot exceed /, it follows at once that there must be a

limit to the size of each particular type of structure, beyond which it

will not carry its own weight. If L be that limit given by

the stress due to the weight of any similar structure of smaller

dimensions will be simply

is the strength which may be allowed in calculations made irrespect-

ively of weight. If the structure be of uniform strength throughout
under its own weight, the value of p will be the same for each

member, but this is not necessarily the case, and there may be a

different value of /' for each member. The actual limiting dimensions

of the structure will, of course, be the least of the various values

corresponding to the various members.

The conclusion here arrived at is obviously of the greatest import-
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ance, for it immediately follows that in designing a roof, bridge, or

other structure of great size, the weight of the structure is the principal

thing to be considered in estimating the straining actions upon it, while

a certain limiting span can never be exceeded. On the other hand, in

small structures the straining actions due to the weight are unimportant;

it is the magnitude and variations of the external load which have the

greatest influence. This remark also applies to the local straining

actions which produce bending in the pieces, their relative importance

increases with the size of the structure, and it is necessary to provide

against them by additional trussing. A large structure is therefore

generally of more complex construction than a small one, as is illus-

trated by the various types of roof-trusses considered in Chapter I.

The difference of type of large structures and small ones, as well as

the circumstances mentioned at the close of the last article, render

tentative processes generally necessary in calculations respecting

weight. If the type of structure and the distribution of the total load,

py, be supposed known, the value of the co-efficients k and c will be

known for some given member. By assuming the stress on that

member equal to the co-efficient of strength /, we find

W,= W.ck.
1

-,

a formula which gives the weight of the structure in terms of the load,

but the co-efficients will generally vary according to the span. Among
the circumstances on which they depend, the ratio of the vertical to

the horizontal dimensions of the structure is most important. For a

given span k diminishes when the depth is increased, while on the other

hand c generally increases, so that for a certain ratio of depth to span,

the weight of the structure is least. In ideal cases c may remain the

same (Ex. 10, p. 88), but in actual structures the redundant weight of

material necessary to give stiffness and lateral stability increases, so

that the most economical ratio of depth to span is generally much less

than would be found by neglecting such considerations. These points

are illustrated by examples at the end of this Chapter and Chapter

XIL, where the question is again considered briefly ;
but for detailed

applications to actual structures the reader is referred to works on

bridges, in the design of which it is .of the greatest importance.

42. Straining Actions on a Loaded Structure in General. The results

obtained in the last chapter for the case of parallel forces acting on a

structure possessing a plane of symmetry in which the forces lie, may
be readily extended to structures which have an axis of symmetry
acted on by any forces passing through that axis and perpendicular to
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it. This is the case, for example, of a beam acted on by a vertical

load, arid also by some horizontal forces arising say from the thrust of

a roof or from wind pressure. We have then only to consider the

vertical and horizontal forces separately. Each will produce shearing

and bending in its own plane, which may be represented by polygons
as before. The total straining action will be simply shearing and

bending, and will be as before independent of the particular structure

on which the forces operate. The magnitude of the straining action,

whether shearing or bending, will be the square root of the sum of

the squares of its components, and may therefore be readily found

by construction and exhibited graphically by curves. In shafts such

cases are common, and some examples will be given hereafter.

Another entirely different kind of straining action sometimes occurs

in structures proper (roofs, bridges, etc.), and in machines is one of

the principal things to be considered. Imagine a structure of any
kind to be divided by an ideal plane section into parts A and B.

and to be acted on by forces parallel to that plane. Let the forces

acting on A reduce to a couple the axis of which is perpendicular
to the section, the forces on B are equal and opposite, and the two

equal and opposite couples tend to cause A and B to rotate relatively

to each other. As already stated in Art. 16, this effect is called

Twisting, and the magnitude of the twisting action is measured by
the magnitude of either of the couples which form its elements.

Simple twisting sometimes occurs in practice, for example, when
a capstan is rotated by equal forces applied to all the bars, but it is

generally combined with shearing and bending. It is then necessary
to know about what axis the twisting moment should be reckoned,

which will depend on the nature of the structure. In shafts and

other cases to be considered hereafter the geometrical axis is an axis

of symmetry which at once determines this.

When twisting exists the shearing and bending are determined by the

same method as before, for they are independent of the axis of refer-

ence. Should, however, the structure be subject to a thrust or a pull

(Art. 16), the axis about which the bending moment should be reckoned,

must be known, for it will depend on the nature of the structure.

These general observations will be illustrated hereafter, and are

only introduced here to show how far straining actions can be regarded
as depending solely on the external forces operating on the structure

without reference to any other circumstances.

43. -Framework with Redundant Parts. In a complete frame, without

redundant bars (pp. 11, 50), suppose a link applied to any two bars,
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one end attached to each. Let the link be provided with a right and

left-handed screw, or other means of altering its length at pleasure,

then by screwing up the link a pull may be produced in the link of

any magnitude we please, while a corresponding stress will be pro-

duced in each bar of the frame which will bear a given ratio to the

pull. Such a link may be called a straining link, and by its addition

we obtain a frame with one redundant bar. The stress ratio on the

parts of a frame of this kind is completely definite, but the magnitude
of the stress may be anything we please. Instead of one straining

link we may have any number, and if the stress on each of these links

be given, the same thing will be true. Thus it appears that a frame

with redundant parts may be in a state of stress even though no

external forces act upon it. This is of practical importance on account

of the effect of changes of temperature. If all the bars of a frame

with redundant parts are equally heated or cooled, the frame expands
or contracts as a whole, but no other effect is produced ; any inequality,

however, causes a stress which may, under certain circumstances, be

very great. This (at least theoretically) is one of the reasons why
redundant parts are a source of weakness. The necessity of providing

against expansion and contraction is well known in large structures

resting on supports. The ground connecting the supports suffers

little change of temperature, and the structure, therefore, cannot be

attached to the supports, but must be enabled to move horizontally

by the intervention of rollers. The magnitude of the stress produced
when changes of length are forcibly prevented will be considered

hereafter (Chapter X1L).
There is no essential difference between a frame the stress on the

parts of which is due to the action of straining links, and a frame

acted on by external forces; for every force arises from the mutual

action between two bodies, and may therefore be represented by a

straining link connecting the bodies. Even gravity may be regarded
as a number of such links connecting each particle of the heavy body
with the earth. Accordingly, if we include in the structure we are

considering, the supports and solid ground on which it rests, we may
regard it as a frame under no external forces, but including a number

of straining links screwed up to a given stress. If the original frame

be incomplete, its parts will be capable of motion, and it becomes a

machine, as will be explained in Part III. of this work.

44. Concluding Remarks. Various other questions relating to frame-

work remain to be considered, especially with reference to the joints

by which the parts are connected, but these, involving other than
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purely statical considerations, do not come within the present division

of our work, but are referred to at a later period.

EXAMPLES.

1. In Ex. 4, page 10, if the weight be supposed uniformly distributed, find the thrust,

shearing force, and bending moment at each point of each rafter, and exhibit the results

graphically by drawing curves.

Diagrams of shearing force will be sloping lines crossing each rafter at the centre.

Max. shearing for short rafter= 91 Ibs.

long ,, =158-5

Diagrams of bending moment will be parabolas.

Max. moment at centre of short rafter=117 ft. -Ibs.

long =290

2. A triangular frame ABC, supported at A and (7, with AC horizontal, is constructed

of uniform bars weighing 10 Ibs. per foot, the length being AB3 feet, BC=4 feet, and

AC=o feet. Suppose, further, that AB and BC each carry 50 Ibs. in the centre. Draw
curves of thrust, shearing force, and bending moment for each bar.

3. The platform of a suspension bridge is stiffened by girders hinged at the centre arid

at the piers. The chains hang in a parabola, and the weight of the platform, chains, and

suspending rods may be regarded as uniformly distributed. Find the bending moment,
at any point of the stiffening girder, and exhibit it graphically by a curve when a single

load TFis placed (1) at the centre of the bridge, and (2) at quarter span.

First case. On account of W each half of the girder will tend to turn downwards

about the ends, and will be supported by the uniform upward pull of the suspending
rods. .". total upward pull for each \ girder= W, because the centre of action is at \

span. Thus each girder will be in the state of a beam loaded uniformly with W, and

supported at the ends.

Max. moment at middle of each half |TFxhalf span.

Second case. The upward pull of the suspending rods will still be uniform, but for

each half girder will now be only ^W, found by assuming an equal action and reaction

at the centre joint, and taking moments of each half about the ends. For the half

girder which carries the weight the bending moment will be the difference between that

due to W concentrated in the centre and \W distributed uniformly.

.

'

. Max. = T\W x half span.

On the other half it will be due simply to a distributed load of ^ W. Max.=^Wx half

span.

4. A timber beam 24 feet span is trussed by a pair of struts 8' apart, resting on iron

tension rods forming a simple queen truss 3' deep without a diagonal brace. The beam
is loaded with 5 tons placed immediately over one of the vertical struts. Find the

shearing force and bending moment at any point of the beam, supposing it jointed at the

centre, and the centre only.

The thrust on each strut must be 2^ tons; therefore, curves of shearing force and

bending moment for each half of the beam are the same as those for a beam 12 feet long
loaded at a point 4 feet from one end with 2^ tons.

The problem should also be treated by the method of sections. Results should also be

obtained for the case where one half the beam is uniformly loaded.

5. A beam uniformly loaded is fixed horizontally at the two ends, and jointed at two

given points. Draw the diagrams of shearing force and bending moment. Show that

the beam will be strongest when the distance of each point from centre is rather less

than | span.

6. The platform of a bowstring bridge of span 2a is suspended from parabolic arched

ribs hinged at crown and springing. One half the platform only is loaded uniformly
with w Ibs. per foot-run. Show that the greatest bending moment on the ribs is -r^wa2 .
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7. In the last question, if a weight of W tons travel over the bridge, how great will be

the maximum bending moment produced?

Wa
AnS'

^3
8. A girder is continuous over three equal spans, and is hinged at points in the centre

span midway between centre and piers. Find the virtual joints in the end spans when

uniformly loaded throughout.
10

Ans. ^ span from end.

9. The weight of the chains, platform, and suspension rods of a suspension bridge may
be treated as a uniform load per foot-run which at the centre of the bridge is double

the weight of the chain. The dip of the chain is TVth the span. The weight of iron

being 480 Ibs. per cubic foot, and the safe load per square inch of sectional area of chain

being 5 tons, find the limiting span, and deduce the sectional area of chains for a load of

\ ton per foot-run on a similar bridge, 300 feet span.

If A= sectional area of chains at centre in sq. ins., then %--4 = weight of bridge per

foot-run in Ibs.

Horizontal tension=---AL= 5 x 2240 . A,

.'. L= 1034 feet.

If A' -area of one chain of the bridge 300 feet span,

Whole load on chain=(-V-^' + 2
-V-

a
) 300,

Horizontal tension = & (*A' + ^-\
4Q

) 300 x 13= 5 x 224<L1',

.'. ^l'=34'4 square inches for each chain.

Remark. By the use of steel wire ropes and by lightening the platform and other

parts of the structure, as much as possible, the limiting span of suspension bridges is

much increased, there being several examples of a span of 1250 feet and upwards.

10. In a girder with booms parallel and of uniform transverse section the weight of

the web is equal to the weight of the booms. Assuming a co-efficient of strength of

9000 Ibs. per sq. inch, and the weight of a cubic inch ygths of a lb., show that the limiting

span in feet is

L= 54002V,

where N is the ratio of depth to span.

11. The weight of a rib of parabolic form, span I, rise nl, with transverse section

varying for uniform strength under a uniformly distributed load W, is

This is least when n=^5='433, then W = -577W~.
4 A

The formula fails if WQ be nearly equal to W, for the external load would then have to

be partly acting upwards to secure uniform distribution of the total load.
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PART II.-KINEMATICS OF MACHINES.

45. Introductory Remarks. The object of a machine is to enable the

forces of nature to do work of various kinds. In this operation some

given resistance is overcome, which is accompanied by a given motion,

while the driving force is accompanied by some other given motion,

often at a distant place. .
Hence a machine may be regarded as an

instrument for converting and transmitting motion. When considered

under this aspect it is called a Mechanism, or sometimes a Movement,
a Motion, or a Gear, the first being the scientific term, and the others

occurring in practical applications.

Every mechanism consists of a set of pieces possessing one degree
of freedom, that is to say, they are so connected together that when

one changes its position all the rest do so too in a way precisely

defined by the nature of the mechanism. Thus, for example, when

the piston of a steam engine moves through any fraction of a stroke,

the connecting rod, crank shaft, and the parts of any machine which

it may be driving, all shift their position in such a way that the

connection between the various changes is completely determinate,

and can be studied without reference to the work which the engine
is doing, or the speed at which it is running. This branch of study
is called the Kinematics of Machines.

The changes of position may be of any magnitude we please, and

if they are very small are proportional to the velocities of the moving

parts, hence a part of the subject, and generally an important part,

is the consideration of the comparative velocities, or, as they are

usually called, the velocity-ratios, of the moving parts. Further, since

the comparative velocities are fixed by the nature of the machine, the

same must be true of the rates of change of these velocities, that is

to say, the accelerations. Hence the general question is to study

completely the comparative motions of the several parts of a machine,

so that when the position, velocity, and acceleration of any piece are
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given, those quantities may be known for every other piece. It is

the positions and velocities which are chiefly considered.

The converse problem is to discover the mechanisms by which any

required motion may be obtained, and for this purpose the connection

which exists between different mechanisms is considered. The subject

therefore forms an introduction to the science of Descriptive Mechanism

in which existing machines in all their vast variety are classified and

studied systematically.

AUTHORITIES.

The principal treatises on the theory of mechanism are

WILLIS. Principles of Mechanisms. Longman.
RANKINE. Millwork and Machinery. Griffin.

REULEAUX. Kinematics of Machinery. Macmillan.

The modern form of the theory is due to Professor Reuleaux, whose nomenclature

and methods are followed with some modifications in the present work. The treatise

referred to is a translation from the German by Professor A. B. Kennedy.

METRIC MEASURES.

When metric measurement is employed the unit of length is the metre decimally
subdivided into decimetres, centimetres, and millimetres ; the kilometre (1000 metres)

being employed for long distances. The kilometre is 3281 feet, or about five-eighths of

a mile, and for units of velocity we have therefore

One metre per second =3 '281 feet per second

= 197 feet per minute (nearly).

One kilometre per hour =54'68 feet per minute

=f mile per hour (nearly).

The unit of acceleration will be 1 m.s., or 3'281 f.s. per second. Thus the acceleration

due to gravity (g.) which, in British measures is 32 '2 nearly, is in metric units 32 '2/3 '281

or 9 '81 nearly.



CHAPTER V.

LOWER PAIRING.

SECTION I. ELEMENTARY PRINCIPLES.

46. Definition of Lower Pairs. Each piece of a mechanism is in

direct connection with at least one other, and constitutes with it what

is called a PAIR, of which the two pieces are said to be the Elements.

The whole mechanism may be regarded as made up of pairs, and its

nature depends on the nature and mode of connection of the pairs

of which it is constructed.

In the present chapter we consider exclusively mechanism composed
of pairs of rigid elements which are in contact with each other, not

merely at certain points or along certain lines, but throughout the

whole or part of the area of certain surfaces. Such pairs are of

peculiar importance from the simplicity of the relative movement of

their elements, from their resistance to wear when transmitting heavy

pressures, and from their tightness under steam and water pressure.

They are called Lower Pairs, and in many cases this kind of pairing
is alone admissible.

In order that two rigid surfaces may be capable of moving over each

other while continuing to fit, they must either be cylindrical, including
under that head all surfaces generated by the motion of a straight line

parallel to itself, or surfaces of revolution, or screw surfaces. In the

first case the relative motion of the elements is one of translation along
the line, in the second of rotation about the axis of revolution, in the

third the motion of translation and rotation are combined in a fixed

proportion. Hence there are three kinds of lower pairs, known as

Sliding Pairs, Turning Pairs, and Screw Pairs. In each case one of

the surfaces is hollow, and wholly or partly encloses the other which

is solid, and the motion depends on the surfaces only, and not on

the other parts of the elements which assume very various forms,

according to the purpose of the mechanism. Either element may be

fixed and the other move, or both elements may move in any way
whatever, the relative motion is still of the same kind.
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As an example of a sliding pair may be taken a piston arid cylinder,

in which either the cylinder may be fixed and the piston move, or the

piston be fixed and the cylinder move, as in some steam hammers, or

both cylinder and piston move, as in the oscillating engine. The

relative motion is always a simple translation. Velocities of translation

are most conveniently measured in feet per I" or feet per 1', but miles

per hour and knots are also used, as to which it is convenient to

remember that 1 mile per hour is 88 feet per 1', and one knot, that

is, one nautical mile per hour, approximately 101 feet per 1'. For

metric measures of velocity see page 92.

As examples of turning pairs may be taken a cart and its wheel, a

shaft and its bearing or a connecting rod and crank pin. The relative

motion here is one of simple rotation, which may be measured by the

number of revolutions () per unit of time, or by the speed of periphery

(F) of a circle of given radius (r), or by the angle (A) turned through

per unit of time. The first two modes of measurement are common
in practice, the third is used for scientific purposes only. When

employed the angle is always expressed in circular measure, and the

three methods are therefore connected by the equations

V= Ar = '27rnr.

When angular velocity is used as a measure of speed of rotation, the

unit of time is nearly always 1", but the minute and hour are common
in other cases.

A screw pair consists of a screw and its nut, and the relative motion

consists of a motion of translation along the axis of the screw combined

with a rotation about that axis. The motion of translation is often

called the "speed of the screw," and is equal to np, where p is the

pitch, that is to say, the space traversed in one revolution, and n the

revolutions in the unit of time. Strictly speaking, the two first lower

pairs are limiting cases of the screw pair : in the turning pair the

pitch is zero, and in the sliding pair infinite.

In all three cases the motion of either element relatively to the other

is identically the same, and the rate of that motion may properly be

called the Velocity of the Pair, whether the movement considered be

translation or rotation. When the velocity of a sliding pair and a

turning pair are compared, rotation may be measured by the speed
of periphery of a circle of given diameter

;
it is the velocity with

which bearing surfaces of that diameter would rub each other. The
radius of this circle maybe called the "radius of reference." The

velocity of a screw pair .may be measured by the rate either of its

translation or its rotation.

In these three simple pairs the motion of one element relatively
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to the other is completely defined, each point describing a definite

curve. Such a pair is called a "
complete

"
or " closed

"
pair, but we

may have pairs in which the motion is not denned unless further

constraint be applied, and the pair is then said to be "incomplete."
An incomplete pair cannot be used in mechanism without employing
such constraint, and this process is called "

closing
"
the pair. A pair

may be incomplete, because there is nothing to prevent the disunion of

its elements, as, for example, a shaft and its bearing when the cap
is removed, but it also may be incomplete in itself. Lower pairing is

.sometimes, though not very frequently, incomplete in this latter sense
;

there are three possible cases, first, when the surfaces are spherical, as

in a ball and socket joint ; second, where a rod fits into a hole, and is

free to move endways as well as rotate
; third, where a block fits in

between parallel plain surfaces. The methods of producing closure

will be considered hereafter.

It may be here remarked, in anticipation of what will be said

hereafter, that cases of lower pairing may be imagined in which the

elements are not in contact over an area but along a line. For example,
.a rod may fit into a square hole. It is the simplicity of the relative

motion which is the essential characteristic.
*

The motion of the elements of a pair may be prevented by a pin key
or other fastening removable at pleasure ;

the pair is then said to be

"locked." In capstans and windlasses, provided with ratchet wheel

and pawls, we have pairs which are locked in one direction only.

47. Definition of a Kinematic Chain. It has been already said that a

machine consists of a number of parts so connected together as to be

capable of moving relatively to one another in a way completely defined

by the nature of the machine. Each part forms an element of two

consecutive pairs, and serves to connect the pairs so that the whole

mechanism may be described as a chain, of which the parts form the

links. Such a series of connected pieces is called a Kinematic Chain.

The motion of any piece may be considered either relatively to one

of the pieces with which it pairs, or with reference to any other piece

which we may choose to regard as fixed. In the first case the rate of

movement has already been defined as the Velocity of the Pair. In the

second, the fixed piece is usually the frame of the machine, which ulrites

the rest of the pieces, and is commonly attached to the earth or some

structure of large size, such as a vessel. For pieces which pair with the

frame the velocity of the pair is the same as the velocity of the moving
element, and this element alone need be mentioned. In some common

practical cases the speed of an element means the speed of one of the
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pairs of which it forms part. For example, the speed of piston of an

oscillating engine would be understood to mean its velocity relatively

to the cylinder, in other words, the speed of the "
cylinder-piston pair."

In the present chapter we consider exclusively chains of closed lower

pairs, so that the motion of the pairs is a simple translation, rotation,

or screw motion. The motion of some of the pieces relatively to the

frame may be much more complex, but this is a subject for subsequent

investigation : it is the motion of the pairs alone we consider at

present. We shall first direct our attention to the very common and

important piece of mechanism employed in direct-acting steam engines.

An example is shown in Fig. 1, Plate I., p. 108, which represents a

direct-acting engine of the vertical inverted cylinder type which is

common in marine engines and often occurs in other cases.

Let us consider the pairs of which this mechanism is constructed.

We have, first, a cylinder, to which are rigidly attached guides for the

crosshead, and bearings for carrying the crank shaft. The cylinder-

guide bars and crank shaft bearings all form one part rigidly connected

together, and must be considered as being one piece or link of the

kinematic chain. It may conveniently be called the frame. Secondly,

there is a piston, which fits and slides in the cylinder. To the piston a

rod and crosshead are rigidly attached, forming practically one piece.

Not only is the piston guided in the cylinder, but the crosshead also

between the guide bars, and the piston rod in the stuffing box ;
but yet,

since there are practically two pieces only which move relatively to one

another, we must look on the cylinder, stuffing box, and guide bars as

altogether forming the hollow element of a sliding pair, and the piston,

rod, and crosshead as together forming the solid element of the pair.

Thirdly, there is a connecting rod which is attached by a gudgeon or

crosshead pin to the piston-rod head. These two parts will together

compose a turning pair. At the other end the connecting rod embraces

the crank pin, forming a second turning pair with it. The crank pin is

one of the elements contained in the fourth piece of the mechanism.

This piece consists of the crank pin, crank arms, and shaft with its

journals. The journals turn in the bearings of the fixed frame of the

machine, the first link mentioned, and so form a third turning pair.

Thus the chain is complete. It consists of four links forming one

sliding pair and three successive turning pairs.

The same mechanism, in a different form, is shown in Fig. 2 of the

same plate which represents the air-pump of a marine engine worked,
as is not unusual, by a large eccentric keyed on the crank shaft. The

crank pin is here enlarged so as to become an eccentric
;
and to save

room, the piston rod is replaced by a trunk within which the eccentric
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rod vibrates. We have, however, exactly the same pairs arranged in

the same way, and the difference between the mechanisms is therefore

merely constructive, the motions of the parts being identical.

48. Mechanism of Direct-Acting Engine Position of Piston. This is

such an important piece of mechanism that we will examine its motion

somewhat fully.

First, as to the relative positions of the crank in its revolution

and the piston in its stroke. The position of the piston in its stroke

will compare exactly with the position of the crosshead, so instead

Fig.46.

of introducing the length of the piston rod into the diagram, we

may just as well determine the relative positions of the point D
{Fig. 46) in its straight-line path, and P in its circular path.

Suppose the line of stroke to pass through the centre of the crank-

pin circle. Let OP = length of the crank arm, and PD the length of

the connecting rod. When the crank arm is in the line of stroke,

a,way from the piston, the piston will be in one extreme position,

And when the crank is in the line of stroke towards D, the piston

will be in its other extreme position. The points Av A 2 on the crank-

pin circle are called the dead points. If we take distances A
1
D

l

A.
2
D

2
= PD, the length of the connecting-rod, the points Dv Z>

2
re~

present the ends of the stroke of the piston. If now we place the

crank in any position OP we obtain the corresponding position of the

piston by cutting the line of stroke with a circular arc of radius = PD
and with centre P. DD^ DD^ will be the distances of the piston from

the ends of its stroke. Since A
1
A

2
= D

1
D

2 ,
the length of the stroke,

it will be convenient to find the point in A^A^ which corresponds to

the position of the piston in its stroke. This may be readily done by

striking a circular arc PN with centre D. N will be the point, for

A
1
D

l
= PD = ND, therefore A

1
N=D

1D, and the point N is the same

distance from A
l
and A^ as the piston is from the ends of its stroke.

C.M. G
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We may just as easily solve the converse problem of finding the

position of crank corresponding to any given position of the piston

in its stroke. Let D be any position, cut the crank-pin circle by a

circular arc of which D is the centre and DP the radius, then OP or

OP' will be the corresponding position of the crank. Let the direction

Av PA^ be the ahead direction of the crank, and let us call the

motion D^DZ
towards the crank the forward stroke, and D

2
D

1
the

back or return stroke of the piston, then when the piston is at D
in the forward stroke the crank will be at OP, and again when the

piston is at D in the return stroke the crank will be at OP. Drop
a perpendicular PM on to the line of stroke. Then the longer the

connecting rod the smaller NM will be, and the more nearly the

circular arc PN will coincide with the perpendicular PM. Hence in

the limiting case of an indefinitely long connecting rod, M will be

the position of the piston corresponding to the position OP of the

crank. M being the position, neglecting the effect of the obliquity

of the connecting rod, and N the true position, MN is what we may
call the error, or deviation due to obliquity.

In general the slide valve is worked by an eccentric, the radius

of which is set at a particular angle on the shaft, so that the cut-off

takes place when the crank occupies a certain angular position in

its revolution, and it consequently follows that the fraction of stroke

completed before cut-off takes place will be affected by the obliquity

of the connecting rod, so that in the ordinary setting of the slide

valve the rates of cut-off will be different in the two strokes. This

is well illustrated by Ex. 4, page 103.

"We may obtain a convenient approximate expression for MN, the error due to

obliquity. Referring to Fig. 46,

NM=DN-DM=DN(l-cos<f>).
Now the length of the connecting rod may be conveniently expressed as a multiple

of the length of the crank radius a or stroke s.

DN=na suppose =^ns.

..

In the triangle POD, the sides being proportional to the sides of the opposite angles,

OP 1

$in<j)=j^p
sin0= - sin 6.

Now, the angle is in all practical cases a small angle, so we may write approximately

2 sin ~ sin $

.-.,=...^=*.
This is greatest when 0=90. iOfuiax .

= ~.

If the connecting rod is four times the crank, the greatest error due to obliquity

=tV stroke.
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We see that, in the forward stroke, the effect of the obliquity of the

connecting rod is to put the piston in advance of the position due to an

infinitely long connecting rod, and, in the return stroke when the

piston moves from the crank, the piston will be behind that position.

The relative positions of piston and crank may be very conveniently

represented by a curve in this way. Divide the crank-pin circle (see

Fig. 46) into a number of equal parts, and supposing the crank pin at

the points of division P, find the corresponding positions of the piston

N. If then we take along the crank arm a distance ON' equal to ON,
the distance of the piston from the centre of its stroke, and do this for

a number of positions, we shall find the points N' will lie on a double-

looped closed curve, shown in full lines in the figure. This may be

called a curve of position of the piston. If we had supposed the con-

necting rod to be indefinitely long, and had taken a distance OM' along

OP = OM, the curve of position in such a case would have been a pair of

circles, dotted in the figure, on OA
2
and OA

l ,
as diameters. The true

curves of position will deviate from these circles more the shorter the

connecting rod. For the half stroke nearer the crank the curve will lie

outside the dotted circle, and for the further half stroke inside. In

Zeuner's valve diagram the obliquity of the eccentric rod is neglected,

and the circles employed to show the position of the slide valve.

49. Velocity of Piston. We will now pass on to the question of the

relative velocity of the piston and crank pin.

We will suppose the crank to turn uniformly at so many revolutions

in the unit of time. If n = number of revolutions and a = length of

crank arm, s = stroke.

Velocity of crank pin F = 2-n-an = mrs.

Now, as the crank pin moves with uniform velocity, the piston under-

goes continual changes of velocity, from being zero at the ends to a

maximum at about the centre of the stroke. What is commonly

spoken of as the speed of piston is the mean speed. If in the unit of

time a complete number of revolutions are performed at a uniform rate,

the mean speed will be the actual distance traversed by the piston in

the unit of time. In each revolution the piston will complete a double

stroke, so that speed of piston = V 2ns. This may be compared with

the speed of crank pin FQ
.

V
Q _ irns _ TT

T =
2ns

=
2'

Next, as to the actual velocity of the piston at any point of its stroke.

The piston and crank pin are joined together by a connecting rod of

invariable length ; one end of this rod has the velocity of the piston
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and the other that of the crank pin. In Fig. 47b let ab be a rod, the

ends of which move with velocities Fa ,
Vb in given directions. If one

of these velocities be given, the other can be determined. For in Fig.

47a draw Oa parallel and equal to Va ,
and Ob parallel to Vb to meet a

line ab which is perpendicular to the line ab of the first figure ; then, if

Figr.47b

we drop a perpendicular On on ab, this will be parallel to ab of the first

figure, and must represent the resolved part of the velocity Va along

the rod. But the velocities of a and b resolved along the rod must be

equal, because the length ab of the rod is invariable
;
hence On also

represents the resolved part of Vb along the rod, and consequently Ob

must represent that velocity in magnitude as well as in direction. The

figure Oab is called the Diagram of Velocities of the rod, and from it we
can find the velocity of any point we please either in, or rigidly con-

nected with, the rod. We shall return to the properties of this diagram

frequently hereafter : it will be sufficient now to remark that the

triangle Oab determines the velocity-ratio of the two ends. In drawing
the triangle it is generally convenient to turn it through 90, so that

the lines ab in the two figures become parallel, while the sides Oa, Ob

become perpendicular to the velocities they represent.

In Fig. 48, OP is the crank arm, PD the connecting rod
; through

draw OT at right angles to the line of stroke to meet the connecting
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rod produced in T, then P moves perpendicular to OP, and D to OT,

therefore OPT is a triangle of velocities, so that if V be the velocity

of the piston, F" that of the crank pin,

J^^OT

This simple construction enables us very conveniently to draw a curve

of piston velocity. In the first place, set off along OP a length OT' = OT,

and do this for a number of positions of the crank. The points T' will

be found to lie on a pair of closed curves, shown in full lines in the

figure, passing through and also through Q, Q', the upper and lower

ends of the vertical diameter of the crank circle. Had the connecting

rod been indefinitely long, the points T' would have been found to lie

on a pair of circles, of which the diameters are OQ and OQ', shown in

dotted lines. On account of the obliquity of the connecting rod, the

curve of actual velocity lies outside the circle on the cylinder side of the

crank, and inside the circle when the crank lies away from the cylinder.

When the crank is at right angles to the line of dead centres, the

velocity of the piston is the same as that of the crank pin, and neglect-

ing the obliquity of the connecting rod this will be the maximum

velocity of the piston. If the obliquity is taken into account, the

greatest velocity of piston occurs when the crank is inclined a little

towards the cylinder ;
it is very approximately when the crank is at

right angles to the connecting rod, and the maximum velocity will a

little exceed the velocity of the crank pin.

The curve just described is a polar curve, the magnitude of the

velocity being represented by the length of the radii vectores of the

curve. But we may draw a curve of velocity in a different way, thus

from the end of the connecting rod which represents the position of

the piston when the crank is at OP, set up an ordinate DK= OT, and

do the same thing for a number of positions of the piston, the curve of

velocity AKB will be obtained ; the ordinate of which will represent

the velocity of the piston when at any point of stroke AB. The longer

the connecting rod the more nearly does the curve approximate to the

dotted semicircle of which AB is the diameter. The effect of the

obliquity is to make the true curve of velocity lie outside the semi-

circle in the first half of the stroke of the piston towards the crank,

and inside for the second half of the stroke.

The mean velocity of the piston may be conveniently represented

by an addition to the diagram, thus : On the same scale that OP,

the length of the arm, represents the velocity F" of the crank pin,

take a length to represent 2,^^ =
^ o-
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In the polar diagram draw a circle with as centre and radius of this

length. Where the circle cuts the polar curve of velocity the positions

of the crank are given at which the actual speed of the piston is equal

to its mean speed. In the second diagram of velocity, set up an

ordinate to represent F, and draw a line parallel to the line of stroke.

It will cut the curve of piston velocity in two points.

An approximate expression for the velocity of the piston may be determined thus :

sin OPT_ v sin (0 + 0) .

sinOTP~ cos

or expanding the numerator,
F= F

{
sin + cos tan 0}.

Since is in all practical cases a small angle, tan may be Avritten=sin without

sensible error.

.-. V= F {sin + cos sin 0}.

sin0_OP= l

-sin0cos0j.n J

By differentiation with respect to the time t we obtain the acceleration of the piston.

Let a be the length of the crank, then

If the length of the connecting rod be infinite, and the crank turn uniformly, we obtain

a simple harmonic motion, the deviation from which is therefore, approximately,

assuming n large and dV /dt small,

rr 2 (JV
Deviation=-- cos 20 + --7^ sin 6.

na at

A graphical construction for the acceleration when the crank turns uniformly will be

found in the Appendix. See also Ex. 10, 11 next page.

EXAMPLES.

1. The driving wheels of a locomotive are 6 feet in diameter, find the number of revolu-

tions per minute and the angular velocity, when running at 50 miles per hour. If the

stroke is 2 feet, find also the speed of piston.

Revolutions per minute= 233^.

Angular velocity = 24| per second.

Speed of piston = 933'6 feet per minute.

2. The pitch of a screw is 24 feet, and revolutions 70 per minute. Find the speed in

knots. If the stroke is 4 feet, find also the speed of piston in feet per minute.

Speed of screw =16 '58 knots.

,, piston=560 feet per minute.

3. The stroke of a piston is 4 feet, and the connecting rod is 9 feet long. Find the

position of the crank, when the piston has completed the first quarter of the forward and

backward strokes respectively. Also find the position of the piston when the crank is

upright.

Ans. The crank will make, with the line of dead centres, the angles 55 and 66.

When the crank is upright the piston will be 2f inches from the middle of its stroke.
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4. The valve gear is so arranged in the last question as to cut off the steam when the

crank is 45 from the dead points both in the forward and backward strokes. Find the

jK>int at which steam will be cat off in the two strokes. Also when the obliquity of the

connecting rod is neglected.

A us. Fraction of stroke at which steam is cut off is

'175 in forward stroke,

'118 in backward stroke,

'146 neglecting obliquity.

5. Obtain the results of the two last questions for the case of an oscillating engine, 6

feet stroke, the distance from the centre of the trunnions to the centre of the shaft being
feet.

An*. Angles 51 and 68 : Cut-off "2 and '115.

6. In. Ex. 3 construct both curves of piston velocity. If the revolutions be 70 per

minute, find the absolute velocity of the piston in the positions given. Find also the

maximum velocity of the piston.

Ans. stroke forward, velocity 810 feet per 1'.

i back, = 730

Maximum =900

Find also the points in the stroke at which the actual speed of piston is equal to the

mean speed.

Ans. 4f in. from commencement of forward stroke.

6|in. end

7. The travel of a slide valve is 6 in., outside lap 1 in. Find, in feet per second, the

velocity with which the port commences to open when the revolutions are 70 per minute.

Ans. Port commences to open when the valve is 1 in. from the centre of its stroke.

Neglecting the obliquity of the eccentric rod, velocity of valve is then 1'72 feet per second.

8. Show that the maximum velocity of the piston occurs when the crank is nearly at

right angles to the connecting rod, the difference being a small angle, the sine of which

is
2+ 2)

near^' wnere n is the ratio of connecting rod to crank.

9. Referring to Fig. 48, p. 100, show that when the crank rotates uniformly the

angular velocity of the connecting rod is proportional to PT. Draw a curve represent-

ing it. With the notation of Art. 49, p. 102, show that approximately

Angular velocity of rod= . cos 6.

Angular acceleration = ^ sm &

10. At any point K of a linear curve of velocity (such as BKA in Fig. 48, p. 100) draw

an ordinate KD to meet the base line in D and a normal KZ to meet this line in Z.

Show that the acceleration of the piston or other moving piece is proportional to DZ.

Note. This well-known construction is due to Proell. It is perfectly general, but

difficult to apply with accuracy, because the exact direction of the normal is generally

unknown.

11. Referring to Fig. 48, page 100, draw additional lines as follows. (Hoar's con-

struction)

(1.) TG horizontal to meet the crank OP produced in G.

(2.) G8 vertical to meet the connecting rod PD in S
(3. ) SZ at right angles to the rod to meet the line of centres in Z.

Prove that when the crank turns uniformly
Acceleration of Piston _OZ

Acceleration of Crank Pin~ OQ'
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SECTION II. EXAMPLES OF CHAINS OF LOWER PAIRS.

50. Mechanisms Derived from the Slider-Crank Chain. In the investi-

gation just given it has been supposed, for simplicity, that the crank

turns uniformly, but if this be not the case the curve constructed will

show the ratio of the velocities of the piston and crank pin. In all cases

it is the velocity-ratio of two parts, not the velocities themselves, which

are determined by the nature of the mechanism. The velocities are of

course reckoned relatively to the frame, but as both piston and crank

pair with the frame, they are also the velocities of the piston-frame pair

and the crank-frame pair (see p. 95), the crank being the radius of

reference. The velocities of the other pairs will be determined presently,

but in this mechanism are of less importance. We will now direct our

attention to other examples of the simple chain of lower pairs, of which

the direct-acting engine is only a particular case. In Fig. 49, D is a

block capable of sliding in the slot of the piece A. By means of a pin

this block is connected with one end of the link C. B is a crank capable

of rotating about a pin attached to the piece A, and united to C by
another pin. Each of the four pieces of which this mechanism is com-

posed, together with either of the adjacent pieces, constitutes a "pair,"

of which there are four, viz., three turning pairs, AB, BC, CD, and a

sliding pair, DA. This simple combination of pairs is known, in the

modern theory of machines, as a Slider-Crank Chain.

Since the relative motions of the parts depend solely on the form of

the bearing surfaces of the pairs and the position of their centres, not

on the size and shape of the pieces in other respects, we may vary these

at pleasure, and thus adapt the same chain to a variety of purposes.

Especially we may interchange the hollow and solid elements of the

pairs, a process which occurs constantly in kinematic analysis, and is

called " inversion of the pair."

Again, any one of the four pieces may be fixed and the other move,
so that we can obtain four distinct mechanisms from the same chain,

simply by altering the link which we regard as fixed, a process called

" inversion of the chain."

(1.) Let A be fixed, then we obtain the mechanism of the direct-acting
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engine already fully considered. In this, however, the connecting link

C is much longer than the crank B
; by supposing them equal we

obtain a mechanism well known in various

forms. In Fig. 50, C is prolonged beyond
the crank pin a to a point d, such that

ad = ac, a circle struck with centre a then

passes through c, d, and the centre of the

block, thus cd is at right angles to the line
c

of stroke, so that d, when the crank turns,

describes a straight line. This property
renders the mechanism applicable to a parallel motion. It has also

been used in air-compressing machinery. (See page 116.)

The various forms of the well-known toggle joint, some of which

will be referred to hereafter, are examples of the same mechanism

with different proportions of C to B.

(2.) Instead of A, let us suppose C to be the fixed link, so that A
and the other pieces have to take a corresponding motion. With

this, by a change in the shape of the pieces, we are able to derive a

mechanism well known in two forms. C being fixed, and B caused

to rotate, A will have given to it an oscillating motion about the

block D, and, at the same time, will slide to and fro on the block,

the block itself having a vibrating motion about the other end of the

piece C. Now, the relative movement of the parts of this mechanism

is identical with that of the oscillating steam engine, and by a suitable

alteration in the shape of the pieces, that mechanism may be,derived.

Thus, suppose, in the first place, the hollow element of A to become

the solid one, in the shape of a piston rod and piston, whilst the block

D is enlarged into a cylinder to surround the piston, and so becomes

the hollow element of the pair. The cylinder D will oscillate on

trunnions, in bearings in the fixed piece (7, which must be so con-

structed as to be a suitable frame for carrying the engine, and have

bearings in which the crank shaft and crank B can turn.

The oscillating cylinder is in general mounted on bearings, the centre

line of which coincides with the centre of the stroke of the piston, so

that the distance apart of the shaft and trunnion bearings is equal to

the length of the piston rod. An example is shown in Fig. 4, Plate I.

Next let us consider the relative motions of the parts. Returning to

Fig. 49 above, suppose a, b, c to be the centres of the turning pairs, and

draw d, an perpendicular to the line of centres be, to meet C and A in t

and TO, then it was shown above (page 1 00) that the velocity-ratio of the

pairs DA, BA in the direct-acting mechanism was ct/ac-, and as fixing a

link makes no difference in the relative motions, this must also be the
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ratio of the speed of the piston of the oscillator in its cylinder, to the

speed of the turning movement of the crank relatively to the piston rod.

Again when C is fixed, as in the oscillator, the link A (Fig. 49) slides on

the block D with a velocity the direction of which is perpendicular to

an, while the point c in it moves perpendicular to ac. Hence it follows

that the triangle of velocities is acn, and therefore the velocity-ratio of

piston and crank pin is anfac. The curve of piston velocity can be

drawn as before
;

it differs little in form from that of the direct actor,

but the maximum velocity of the piston is equal to that of the crank

pin, instead of being somewhat greater. Once more, remembering that

fixing a link does not alter the relative motions, it appears that, in all

cases, the velocity-ratio of the pairs DA, BC must be an/ac, so that we
have determined the ratio of the speed of piston in the direct actor

to the speed of the turning movement of the crank relatively to the

connecting rod.

Comparing our results, we see that the velocity-ratio of the turning

pairs BC, BA must be d : an, or what is the same thing, bt : ah. Since

the three angles of the triangle abc are always together equal to 180,
it is clear that the sum of the speeds of the three turning pairs must be

zero, due regard being taken of the direction of rotation, and it follows,

therefore, that in any slider-crank chain the speeds of the three turning

pairs are as at : ab : bt. By the introduction of a suitable radius of

reference, we may compare these velocities with that of the sliding pair.

The most convenient radius to take is that of the crank, then assuming,
as before, ab = n. ac, the velocities of the pairs are shown by the annexed

table :

VELOCITY-RATIOS IN A SLIDER-CRANK CHAIN.
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Fig.51.

unequal loops is obtained, which shows the law of vibration of the

cylinder. The motion of. the cylinder is such that, in the swing to the

left, whilst the crank pin moves along

the arc T'ST, the angular velocity is

much greater than in the return swing

to the right, whilst the crank pin moves

along the arc TS'T'. Supposing the

crank to revolve uniformly, the times

occupied by the forward and return

swings are as the arcs T'ST and TS'T',

which are proportional to the angles

subtended by them. By measuring
or otherwise estimating these angles,

the mean angular velocities in the for-

ward and backward oscillation may be

determined. This peculiar vibration,

rapid one way and comparatively slow

the other, has been made use of to

obtain a quick return motion of a

cutting tool in a shaping machine.

The velocity with which a tool will

make a smooth cut in metal is limited,

and since in general the tool is made

to cut in one direction only, time is

saved by causing the return stroke

to be made more quickly. One construction of such a quick return

motion may be thus described. A slotted lever D vibrates on a

fixed centre in the frame-piece C, its motion being derived from the

revolution of a crank B on another fixed centre in the same frame-piece

C. The crank pin of B turns in the block A, which slides in the slotted

lever D. There is in addition a connecting rod, by means of which a

to-and-fro motion of a headstock carrying the cutting tool is communi-

cated from the oscillating lever, the headstock sliding in a guide.

Omitting the connecting rod, we have the same kinematic chain, with

the same fixed link C, as in the oscillating engine. There has been a

change made only in the form of some of the pieces. What was the

oscillating cylinder is now the slotted lever, and instead of a piston and

rod, we have here the simple block A sliding in the slot. The crank

B and frame-link C remain practically unaltered. The slotted lever will

vibrate according to the same law which we have investigated for the

oscillating cylinder, and thus with a uniform rotation of the crank, a

quick return motion of the tool will be obtained. This mechanism
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is shown in Fig. 5, Plate I., in a form employed for giving motion

to the table of small planing machines.

(3.) Let us next take an example in which B is the fixed link,,

and becomes the frame, its form being of course modified to suit

the new conditions.

A crank arm C (Fig. 52) turns on a fixed centre in the frame-piece

E\ so also does another arm A on a second fixed centre, D slides

on A, being connected by a pin to the second end of C. Both A
and C may make complete revolutions. If we suppose C to turn

with uniform angular velocity, A will rotate with a very varying

angular velocity, the movement of A in the upper part of its revolu-

tion being much more rapid than in the lower. This device has been

employed by Whitworth to get a quick return motion of a cutting

tool in a shaping machine. When separated from the rest of the

machine, the construction may be thus described : A spur wheel C
which derives its motion through a smaller wheel from the engine

shafting, revolves on a fixed journal B, of large dimension. Standing

Fig.52. s> from the face of the journal is a fixed

pin placed out of the centre of the

journal. On this fixed pin a slotted

k^y \ lever A rotates, in which a block

D slides, a hole in the block receiving
a pin which stands out from the face

of the spur wheel. A second slot in

A, on the other side of the pin,

contains another block, which, by a

screw, can be adjusted and secured

at any required distance from the

centre of rotation, so as to give any
stroke at pleasure. This mechanism, omitting the adjustment by
which the stroke is varied, is shown in Fig. 6, Plate I. The same

mechanism in a somewhat different form is often employed in sewing
machines to give a varying motion to the rotating hook.

(4.) The fourth possible mechanism which can be derived from the

slider crank chain is obtained by fixing the block D. This case is

not so common as the three preceding, but in Stannah's pendulum

pump, shown in Fig. 3, Plate I., we find an example. In a simple

oscillating engine driving a crank shaft and fly-wheel, suppose the

cylinder D fixed instead of the piece C which carries the cylinder and

crank shaft. The crank and fly-wheel B has become the bob, and

the link C the arm of the pendulum, from which the mechanism

derives its name
;
D is a fixed cylinder, and A is a piston and rod:





Plate.

To face page 109.
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As the crank rotates the crank pin moves up and down, while its

-centre vibrates in the arc of a circle.

(5.) The four mechanisms here described are all which can be obtained

from the simple slider-crank chain, but an additional set may be derived

by supposing that the line of stroke of the slider does not pass through
the centre of the crank. A common example is found in the chain

communicating motion from the piston to the beam in a beam engine.

Although the mechanisms derived by inversion from a given kine-

matic chain may be described as distinct, it must be carefully observed

that there is in reality no kinematic difference between them, the

distinction consisting merely in a different link being chosen to reckon

velocities from. If we consider the velocities of the pairs which consti-

tute the chain, those velocities are always related to each other in the

same way, and the same machine may be regarded sometimes as one

mechanism and sometimes another. For example, suppose a direct-

acting engine working on board ship ; the ship may be imagined to

roll so that the connecting rod of the engine is at rest relatively to the

arth, and the engine becomes an oscillator to an observer outside

the ship. Dynamically and constructively, however, there is a great

difference, for the fixed link is the frame, and is attached to the earth

or other large body, the predominating mass of which controls the

movements of all bodies connected with it. To illustrate and explain

the inversion of a slider-crank chain, Plate I. has been drawn. The

six examples which have just been described are here placed side by
side with the same letters A B C D attached to corresponding links so

that they may readily be recognized. It will be seen that each link

assumes very various forms
; thus, for example, the link A is the

frame and cylinder in Figs. 1 and 2, a piston and rod in Figs. 3 and 4,

a block in Fig. 5, and a rotating arm in Fig. 6. The relative motions

of corresponding parts are, however, always the same.

51. Double Slider-Crank Chains. We now pass on to the consideration

of a kinematic chain consisting of two turning pairs and two sliding

pairs. We will commence by showing how this chain may be derived

from that previously described. Suppose the piece Z), instead of being

simply a block, is a sector shaped as shown in Fig. 1, Plate II., having
a slot curved to the arc of a circle of centre 0, while the piece (7, which

was before the connecting rod, is compressed into a block sliding in the

curved slot. The law of relative motion of the parts of this mechanism

will be precisely the same as in the direct-acting engine, for the block C
will move just as if it were attached by a link, shown by the dotted

line, to a point 0, a fixed point in the piece D. The piece D will slide
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in A, just as if there were a connecting link from C to and no

sector that is, it will slide just as the piston does in the cylinder of a

direct-acting engine. Moreover, there are in reality exactly the same

pairs in this as in the mechanism of a direct-acting engine, for C and

D together make a turning pair, although only portions of the surfaces

of the cylindric elements are employed.
This being so, let us now imagine the radius of the circular slot in

the piece D to be indefinitely increased, so that the slot becomes

straight, and is at right angles to the line of motion D. In such a

case the pair CD would be transformed into a sliding pair, and the

mechanism would consist of two turning pairs, and two sliding pairs,

and is known as a double slider-crank chain.

The most important example of this kinematic chain is that found in

some small steam pumping engines. (Fig. 4, Plate II.) The pressure

of the steam on the piston is transmitted directly to the pump plunger.

The crank B and sliding block C serve only to define the stroke of the

piston and plunger, and, by means of a fly-wheel, the shaft of which

carries an eccentric for working the slide valve, to maintain a continual

motion. The law of motion of piston and crank pin may be readily

seen to be the same as that in a direct-acting engine, in which the con-

necting rod is indefinitely long. P being the position of the crank pin,

M will represent the position of the piston and reciprocating piece, and

PM will represent the velocity of the piston at the* instant, OP being
taken to represent the uniform velocity of crank pin. (See Fig. 46,

p. 97.) In this case the polar curve of velocity would consist of a

pair of circles. This motion, shown in dotted lines in Fig. 48, is called

a simple Harmonic motion^ because the law is the same as that of the

vibration of a musical string.

By a change of the link which is fixed, we may now derive other

well-known mechanisms from this kinematic chain.

Instead of A, which forms part of a sliding and part of a turning

pair, being fixed, let B be the fixed frame-link. B contains the

elements of two turning pairs, so that the frame must contain two

bearings or journals. An example of such a mechanism is that known

as Oldham's coupling, Fig. 5, Plate II., used for connecting parallel

shafts, which are nearly but not quite in the same straight line, and

which are required to turn with uniform angular velocity-ratio. Each

shaft terminates in a disc, in the face of which a straight groove is cut.

The two discs, A and C in the figure, with the grooves, face each other,

and are placed a little distance apart, with the grooves at right angles
to each other. Filling up the space between them is placed a disc D,
on the two faces of which are straight projections at right angles to one





Plate.ll.

FIG.I. FIG. 4.

FIG.2. FIG.5.

FIG. 3. FIG.6.

To face page 111.



CH. v. ART. 5lA.] LOWER PAIRING. Ill

another, which fit into the grooves in the shaft discs. In the revolution

of the shafts each of these projections slides in the groove in which it

lies, and rotates with it. The two grooves are, therefore, maintained

always at right angles to one another, and the two shafts rotate one

exactly with the other.

Next, let the fixed link of the chain contain the elements of two

sliding pairs, which would be obtained if we made D the frame-piece.

An interesting example of this is the instrument sometimes employed
in drawing ellipses. (Fig. 2, Plate II.) Two blocks slide in a pair of

right-angled grooves. By means of clamp-screws a rod unites them at

a constant distance from one another. Pins fitting in holes in the

block allow the rod to rotate relatively to the blocks. Any point in

the rod will describe an ellipse, as indicated in the figure.

If the link C be fixed, the resulting mechanism does not differ from

that derived by fixing A, and the three mechanisms just described are

therefore all which can be obtained by inversion of a double-slider chain.

In Figs. 2, 4, 5 of the plate referred to they are shown side by side

with the same letters attached to corresponding links, as in Plate I.

The directions of motion of the two sliding pairs have been supposed
at right angles, but any other angle may be assumed, and mechanisms

obtained which we need not stop to examine. A more important

change is to suppose that the sliding pairs and turning pairs alternate,

so that each link forms an element of one sliding and one turning pair.

A mechanism known as "
Rapson's Slide," employed as a steering gear

in large ships, will furnish an example. Fig. 3, Plate II., shows one

way in which it is applied. A is an enlarged pin made in two pieces

between which the tiller B slides while turning about an axis fixed in

the ship D. A' is carried by the piece (7, which slides in a groove
fixed transversely to the ship, being drawn to port or starboard by the

tiller chains passing round pulleys mounted on (7, as shown in the

figure. The further the tiller is put over the slower it moves (Ex. 8,

p. 124), and therefore the greater the turning moment (Ch. VIII.),
a property of considerable practical value. Another example occurs

in the motion of the compensating air cylinders employed in the

Worthington direct-acting pumping engine. In this kinematic chain

the same mechanism is obtained whichever link is fixed.

The mechanism shown in Fig. 6 of this Plate is a compound chain,

to be referred to hereafter.

51a. Wedge Chain. A chain also may be found which consists of

sliding pairs alone : the number of pairs being 3, and the directions

of sliding parallel to the same plane.
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This chain consists of two sliding pairs, AB and AC, having a

common element A. A block attached to B slides in an oblique slot

cut in (7, thus forming a third sliding pair, BC. The effect of this

arrangement is that the pairs A, AC are connected with uniform

velocity-ratio. It is employed when it is desired to alter the direction

and magnitude of a sliding motion. An incomplete form occurs in the

strap and cotter employed to tighten the brasses of a bearing as they
wear. The action of a wedge or the raising of a weight by drawing
it up an incline furnishes another example of the same chain, here

reduced by omission of one link which, as in various other instances,

is replaced by force-closure (p. 123). We may describe it as a Wedge
Chain

; only one mechanism can be derived from it.

52. Crank Chains in General Instead of having a chain of sliding

pairs or of turning pairs, connected by one or two sliding pairs, we

may have turning pairs alone. The number will be four, and their

axes must meet in a point or be parallel. Taking the second case, the

chain in its most elementary form consists of four bars united by pin

joints at their extremities, as in Fig. 53. It is called a crank or four-

bar chain, and from it may be derived the slider-crank chain already

Fig.53. considered, in the same way as from

that chain we derived the double-

slider chain. All the mechanisms

hitherto considered may therefore be

regarded as particular cases of it. In

its present form, however, many new
A mechanisms are included, some of

which will be briefly indicated, referring for descriptions and figures
to works specially devoted to mechanism.

Assuming A the fixed link, B and D which pair with it are called

for distinction cranks or levers, according as they are or are not

capable of continuous rotation, while (7, the connecting link, is called

for shortness the coupler.

(1.) Let B be a crank and D a lever, then the mechanism is a

"lever-crank," an example of which occurs in the common beam engine,
D being the beam, B the crank, C the connecting rod, and A the

entablature, foundation, and all other parts connected therewith.

(2.) The links B and D may be equal, and C may be equal to A.

This may be called "
parallel cranks

" when B and D are set parallel, as

in the coupled outside cranks found in locomotives, or "anti-parallel
cranks

" when they are set crosswise, a 'case to be hereafter referred to

(page 163).
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(3.) The links D and B may still both be cranks if C be greater than

A, provided that the difference between B and D be not too great.

The mechanism is called "double cranks," and occurs in the common

draglink coupling, and also in the mechanism of feathering paddles.

(4.) If the coupling link be too short, neither B nor D will be

capable of a complete rotation. The mechanism is then a "double

lever," and an example occurs in the common parallel motion to be

considered hereafter.

(5.) A number of additional mechanisms may be derived by sup-

posing the axes of the four turning pairs to meet in a point, instead of

being parallel; we thus obtain a "conic crank chain." Hooke's joint

is a particular case of this, but in general these mechanisms are of less

importance.

53. Screw Chains. We have hitherto considered only chains of

turning pairs and sliding pairs, but screw pairs also occur in a great

variety of mechanisms which we can only briefly indicate.

(].) In the Differential Screw, there are two screw pairs with the

same axes but of different pitch, combined with a sliding pair, forming
a three-link chain. The connection between the common velocity of

rotation of the screws and the velocity of translation of the sliding

pair is the same as that between the rotation and translation of a

screw, the pitch of which is the difference between the pitches of

the actual screws. The arrangement has often been proposed for

screw presses, a mechanical advantage being obtained, at least theo-

retically, with screws of coarse pitch, which would otherwise require

a thread so fine as to be of insufficient strength. The right and left-

handed screw is an example in common use.

(2.) In the Slide Rests of lathes and other machine tools, the

traversing motion of planing machines, and many other cases, we

find a three-link chain, consisting of a screw pair, a turning pair,

and a ^sliding pair. This may be regarded as a particular case of

the preceding, the pitch of one of the screws being zero.

(3.) In presses, steering gear, and many other kinds of machinery,

we find a simple screw chain employed to work a slider-crank chain.

Some examples will be given hereafter.

54. Parallel Motions Derived from Crank Chains. In beam engines

the connecting rod by which the reciprocating motion of the piston

is communicated to the vibrating beam is necessarily short, in order

to diminish the height of the machine, and therefore, if guides are

employed to retain the end of the piston rod in a straight line, there

C.M. H
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will be considerable lateral pressure which is difficult to provide

against, and which involves a large amount of friction. The guides

may then be replaced with advantage by some linkwork or other

mechanism. Such a mechanism is called a Parallel Motion, and in

the early days of engineering was employed more extensively than

at the present time. In its most simple form it consists of two

levers capable of turning about the fixed centres a and b (Fig. 54).

The ends of the levers are connected by a coupling link pq, then, so

long as the angular movement of the levers is not too great, there

is a point in the link pq which will describe very approximately a

straight line. In the first instance let us suppose the -link so set

that 'when ap and bp are parallel, p qQ is at right angles to them.

Let apqb be the extreme downward movement of the levers, then p
lying to the left and q to the right, there will be some point P in

pq which in this extreme position lies in the straight line p$ . In

the upward extreme position the same point of pq will, approximately,
also lie in this line. If, then, p q be the line of stroke, and the

point P be selected for the point of attachment of the piston-rod head,
then this point will be exactly in the line at the middle and bottom
of the stroke, and at other points will deviate but little from it.

To find the point where pq intersects p qQ ,
we must first obtain

expressions for the amount that the point p deviates to the left of

pQ
and q to the right of qQ ; these amounts being the versines of the

arcs in which the points move, and shown by dp and eqot where pd
and qe are drawn perpendicular to ap and bq . By supposing the
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circle of which a is the centre to be completed, it is easy to see that

d>
Pd

*

If the angle p ap is not greater than 20, we may write

the error not being greater than 1 per cent. Now, neglecting the

small effect due to the obliquity of the connecting link when in the

extreme positions, pd-% stroke : therefore, supposing ap = ra and

if-ni
, (stroke)

2

Now P being the point where pq intersects pQq ,
we have similar

triangles in which

^Jm
and .-.*!*

qP qn ra

Thus the point P, which has most correctly the straight-line motion,

is such that it divides the coupling link into segments which are

inversely proportional to the lengths of the levers. If the levers

be placed into all possible positions, then in the motion the connect-

ing link will be inverted and the point P will trace a closed curve

resembling a figure of 8. There are two limited portions of this

curve which deviate very little from a straight line.

We may approximate still more nearly to a straight line by a

little alteration in the setting of 'the levers. Suppose the centres

of vibration, a, b, are brought a little nearer together so that the

line of stroke bisects the two versines, dpQ
and eq . Then when the

levers are parallel, the link slopes to the left upwards, whereas at

the ends of the stroke the link will slope to the right upwards. At
two intermediate positions about quarter stroke from the ends, the

link will be vertical. If we choose the point P as previously

described, the maximum deviation will be only about one-fifth of

its former amount. In practice, the final adjustment of the centres

of motion is performed by trial.

In steam engines the use of parallel motions is almost exclusively
confined to beam engines. In that case bq will be the half length
of the beam, and in order that the angle through which the beam
vibrates should not exceed 20 above and below the horizontal, the

length of the beam should not be less than three times the stroke.
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The radius rod may be somewhat shorter than the half beam, but

should not be less than the stroke, or the error in the motion of P
will be too great. This mechanism will, therefore, occupy a con-

siderable space. To economize space, and also to provide a second

straight-line path to guide the air-pump rod, a modification of the

mechanism is made use of.

In Fig. 54a, be being the half length of beam, a point q is chosen

so that

bq stroke of air pump
be
~

stroke of piston
'

and a parallelogram of bars qeQp provided, united by pins. The

Fig.54a.

point p is jointed to the end of the radius rod ap vibrating on the

fixed centre a. Consequently there will be some point P in the

back link qp which will describe very nearly a straight line. This

point is such that

Pq ap

Now, if the proportions of the links are such that bPQ is a straight

line, bQ/bP will be constant, and therefore the path described by Q
will be an enlarged copy of the path described by P. That is to

say, if P moves approximately in a straight line, then Q will do so

also. If then the radius rod is of suitable length we provide a

point Q for the attachment of the piston rod, and also a point P for

the attachment of the air-pump rod. To find this length we have

pQ-pP'
whence multiplying by the preceding equation

bf =pQ x ap,

or Length of radius rod
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The parallel motion just described which was introduced by Watt
is that chiefly used in practice, but there is another form which

possesses great theoretical interest because it is exact and yet in

volves only turning pairs. Scott Russell's parallel motion (Fig. 50,

page 105), modified by attaching D to the end of a long vibrating

lever, is known as a "grasshopper"

parallel motion, but then is only ap-

proximate. In its original form it is

exact, but as it involves a sliding pair

its accuracy depends on the exactness

with which the guides of the slides \*

are constructed. Now, a straight

edge or a plane surface can only be

constructed by a process of copying
from some given plain surface or by
trial and error, whereas a circle can be described, by a pair of com-

passes independently of the existence of any other circle. Hence an

exact parallel motion, with turning pairs only, enables us theoretically

to trace a straight line in the same way that a circle is traced with

compasses. It has long been known that this could be done by a

circle rolling within another twice its diameter, but this method

does not satisfy the necessary conditions, and it \*as not till 1872

that Col. Peaucellier invented a linkwork mechanism for the purpose.

This mechanism consists of two equal bars, OA, OB, jointed to each

other at 0, and at A, B to a parallelogram of equal bars, APBQ, so

that OQP are in a straight line (Fig. 55). This being so then, how-

ever the bars are placed, there will always be some fixed relation

existing between OQ and OP. Thus drop a perpendicular AN on

OP, then OQ = ON-QN'&nd OP=ON+NP. Also, since AQ = AP,
QN=NP,

.'. OQ. OP=ON*-QN*.
But ON=OA*-AN2 and QN* = QA*-AN\ therefore OQ.OP =
OA 2 - QA'

2
,
and is a constant quantity for all positions ;

that is to

say, if we cause Q to move over any curve, then P will describe its

reciprocal.

We can now show how this mechanism may be employed to draw a

straight line. Let be a fixed centre and PL be the straight line

which it is required to describe. Draw the perpendicular OL on PL.

Then the mechanism being placed in any position with P at any point
on the line to be drawn, draw QZ at right angles to OQ. Bisect OZ
in C and attach Q to by means of a jointed rod which can turn

on the fixed centre C. The circle which Q describes during the motion



118 KINEMATICS OF MACHINES. [PART n.

of the bars will have OZ as a diameter, for OQZ is a right angle,

and therefore the angle in a semicircle. We observe now that we

have similar triangles OQZ and OLP.

but OZ=2 . OC is a constant quantity and so is the product OP, OQ.

.'. OL is constant.

That is to say, wherever P is, the length of the projection of OP
on the perpendicular OL is a constant quantity. This can be true

only so long as P lies in the perpendicular line PL. Thus, by the

constrained motion of Q in a circle passing through 0, P is caused

to move perfectly in a straight line.

This mechanism has been applied to a small engine used for ven-

tilating the House of Commons.

SECTION III KINEMATICS OF LINKWORK MECHANISMS.

55. Combination of a Sliding Pair and a Turning Pair. The motion

of the connecting rod in the mechanism of the direct-acting engine

Fig 56a.

(Arts. 48, 49) may be considered as a combination of a motion of

rotation due to a turning pair, with a motion of translation due to

a sliding pair, and we now propose to consider the effect of such

a combination more generally.

In Fig. 56a, D is a block sliding in guides attached to the frame-

piece A, C is a wheel turning in bearings attached to D, the whole

forming a chain of two pairs DA, CD. The block slides with velocity
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F", while the wheel turns with angular velocity o> about an axis

perpendicular to the plane of the paper. In consequence of the

rotation, any point P at a distance r from the axis has a velocity

<or perpendicular to the radius, while at the same time it is carried

onwards in the direction of the sliding with velocity V. In a line

perpendicular to the direction of sliding and the axis of rotation take

a point K distant R from the axis, and if outside the wheel, as in

the figure, suppose it rigidly connected with it by an arm. Then

evidently K moves forward with velocity V in consequence of the

sliding, and backwards with velocity iR in consequence of the rota-

tion. Thus K moves forwards with a velocity V wE which may
be reduced to zero by taking R so that

V=uR.
It appears therefore that it is always possible to find a point K
which when rigidly attached to the wheel C will be for the moment
at rest. Join KP and observe that the motion of translation of P
is perpendicular to DK and equal to w . DK, while its motion of

rotation is perpendicular to DP and equal to w . DP, then by a well-

known kinematical principle it follows that the actual velocity of P
consequent on the combination must be perpendicular to KP and

equal to o> . KP. Thus the velocity of P is the same as if C were

rotating with its actual angular velocity oj about an axis through K,
and this will be true for any point in C or rigidly attached to it, the

effect of combining a motion of translation with a motion of rotation

being simply to shift the axis of rotation through the distance R = F/o>.

The point K does not remain fixed, but moves so as to be always
in the perpendicular, and the axis through it is therefore described

as the Instantaneous Axis of the moving piece C. Its position is

completely represented by the point K which is often spoken of as

an "instantaneous centre."

If, as in the figure, the rotation be in the opposite direction to the

hands of a watch and the translation be from right to left, the point
K lies below D, but if either motion be reversed it will lie above,

as in Fig. 56b, p. 120.

Further, there is nothing in the demonstration just given which

renders it necessary that the direction of the sliding motion should

remain unaltered, and the construction will therefore be the same if

the block D slide in a slot which is circular instead of straight, or be

attached to a piece turning in bearings on A. That is, the point K
can be found in the same way for a combination of two turning pairs,

and the effect of the combination of two rotations about parallel axes

is to produce a rotation about an instantaneous axis parallel to the
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former and in the same plane. A particular case is when the rotations

are equal and opposite, the instantaneous axis is then at an infinite

distance, and the effect of the combination is a motion of translation,

the direction of which continually changes. A locomotive coupling

rod (p. 112) is a common example which should be carefully con-

sidered, as a useful illustration of the meaning of this theoretical

proposition.

Fig. 56b.

Fig. 56b shows in skeleton the mechanism of the direct-acting

engine already considered at length. In this case, C is a rotating

piece connected as just described with both the sliding block D and

the rotating crank B. In consequence of the first connection it has.

an instantaneous centre K in the perpendicular through Z>, and in

consequence of the second an instantaneous centre in the prolongation
of the crank OP. Hence K, the intersection of these two lines, must

be that centre, and with the same notation as before

If all points in C lying in a plane perpendicular to the axis be joined

to K, the corresponding instantaneous centre, the set of radiating lines

may be considered as a diagram of velocities, but, as in the case

of stress diagrams, it is generally far preferable to draw a separate

diagram on some suitable scale. This may be done, as previously
described on page 100, by selecting a pole and drawing Oa, Ob

perpendicular and proportional to the velocities of a and b, two

given points in (7. Two figures may thus be drawn, corresponding
to the two positions into which the triangle Oab (Fig. 47a) may be

turned by a rotation through 90. In the first, ab is parallel to the

corresponding line in C, and points in the same direction
;
the diagram
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is now similar and similarly situated to the set of lines radiating

from K. In the second, ab is also parallel to the corresponding line

in C, but it points in the opposite direction, and the diagram may be

described as "reversed." In plotting a point p in a reversed diagram

which corresponds to a given point in C we have only to draw ap,

f>p parallel to the corresponding lines in C. The pole 0, of course,

always corresponds to the instantaneous centre K.

56. Diagram of Velocities in LinkworL A simple construction has

already been given, by means of which the velocity-ratios of the parts

of a slider-crank chain are . determined, and we will now consider this

question for any case of linkwork in which the axes of the pairs are

parallel.

Fig. 57a represents a chain of links, zOabcd ..., united by pins so as

to form a succession of turning pairs. The first link, Oz, is fixed, so

Fig. 57a.

that the second turns about a fixed point, 0, as centre, and therefore a

moves perpendicularly to Oa, with a velocity Va, which we may
suppose known. The other points, b, c, d ..., move in directions which

we suppose given, and with these data it is required to find the

magnitudes of the velocities. In Fig. 56b from a pole draw

radiating lines perpendicular to the given directions, and set off on

the first Oa to represent Va ,
then draw ab, be, cd ... parallel to the

links of the chain to meet the corresponding rays, then the lengths
of those rays represent the velocities,

For drop a perpendicular ON from on to ab, or ab produced, then

ON represents the component of Va in the direction of the second

link, but this must also be the component of Vb in that direction,

since ab is of invariable length ;
that is, Ob must represent Vb .
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Similarly all the other rays must represent the velocities of the

corresponding points.

The figure thus drawn may be called the Diagram of Velocities

of the chain. It may be constructed equally well, if the magnitudes
of the velocities be given, instead of their directions, also any of

the turning pairs may be changed into sliding pairs. If both ends

of the chain be attached to fixed points, the diagram will evidently

be a closed polygon. Its sides, when divided by the lengths of the

corresponding links of the chain, represent their angular velocities,

for each side is the algebraical difference of the velocities of the

ends of the link perpendicular to the link.

In the four-link chain (Fig. 58a), consisting of two links turning about

o

fixed centres, a, d, coupled by a link be, the diagram of velocities is a

simple triangle, Obc (Fig. 58b), the sides of which when divided by
the lengths of the links to which they are parallel, represent the

angular velocities of the links. Through a draw aZ parallel to cd,

and prolong be to meet it in Z, and the line of centres in T
9 then, since

the triangle Zab is similar to the triangle of velocities, the angular

velocities of the levers cd, ab will be proportional to Za/cd and ab/ab.

The last fraction is unity, and therefore we have

.. Za aT
angular velocity-ratio

= y =
-ry,,

showing that the ratio in question is the inverse of the ratio of the

distance of T from the centres.

If, instead of the link ad being fixed, the chain of four bars be

imagined to turn about one joint such as d, the diagram of velocities

would be a quadrilateral Oab'c, with sides parallel to abed.

Returning to the general case, let p be any point rigidly connected



CH. v. ART. 56A.] LOWER PAIRING. 123

with one of the links of the chain, say cd, in the figure ;
then if we

lay down on the diagram of velocities a point p, similarly situated

with respect to the corresponding line cd of that diagram, it follows

at once, by the same reasoning, that the ray, Op, drawn from the

pole 0, must represent the velocity of p in the same way that the

other rays represent the velocities of the point a, b . . . . Thus it appears

that for any linkwork mechanism, consisting of pieces of any size

and shape connected by pin joints, the axes of which are parallel,

a diagram may be constructed which will show the velocities of all

points of the mechanism. By constructing the mechanism and its

diagram of velocities for a number of different positions, curves of

position and velocity may be drawn, such as those described in

preceding articles for special cases.

56A. Closure of Kinematic Chains. Dead Points in Linkwork. A kine-

matic chain, like a pair (p. 95), may be "incomplete," that is, the

relative moments of its links may not be completely defined. It

then cannot be used as a mechanism without employing some addi-

tional constraint, a process called "closing" the chain. In order that

a chain may be closed it must be endless, and the number of links

must not be too great ;
for example, in a simple chain of turning

pairs with parallel axes we cannot have more than four links. If

there be five the motion of any one link relatively to the rest will

not be definite, but may be varied at pleasure.

So also a chain may be "locked" either by locking one of the

pairs of which it is constructed; or by rigidly connecting two links

not forming a pair ;
it then becomes a frame, such as was considered

in a previous part of this book.

As an example of an incomplete chain may be taken the combina-

tion of a sliding pair and a turning pair considered in Art. 55, and

shown in Fig. 56a (p. 118). The relation between the sliding and

the turning is here undefined until the chain is closed by the addition

of another pair as in Fig. 56b, or in some other way.
A chain is often incomplete or locked for special positions of its

links, though closed and free to move in all other positions ; this, for

example, is the case at the dead points which occur in most linkwork

mechanisms. A well-known instance is that of the mechanism of the

steam engine, in which the chain is locked and the direction of motion

of the crank indeterminate when the connecting rod and crank are in

the same straight line. This instance further shows that it is necessary
to distinguish between the two directions in which motion may be

transmitted through the mechanism, for the dead points in question
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would not occur if the crank moved the piston instead of the piston

the crank. A piece, then, which transmits motion is called a "driver,"

in relation to the piece in which motion is transmitted, which is called

a "follower," terms which will be frequently used hereafter in cases

where both pair with the fixed link. (Compare Arts. 47, 86.) The

dead points in a mechanism may be passed either by the union of two

similar mechanisms, with dead points in different positions, as in a

steam engine with a pair of cranks at right angles, or by aid of the

inertia of the moving parts. This last method involves what is called

"force-closure," a term which will be explained presently.

EXAMPLES.

1. The stroke of an oscillating engine is 6 feet, and the distance between the centre

line of the trunnions and the centre of shaft is 9 feet. Find the maximum and mean

angular velocity of the cylinder in each of its two oscillations as compared with that of

the crank. Find also the velocity of the piston at half stroke as compared with the

speed of piston.

Ans. Maximum angular velocity-ratios of cylinder and crank, \ and J.

Mean ,, '277 and *178.

Velocity of piston at \ stroke_1'54
Mean speed of piston 1

2. The travel of the tool of a shaping machine is to be 9 inches, and the maximum

return, three times the maximum cutting, velocity. The connecting link is horizontal in

the extreme positions of the lever and is attached to a point in it which is on a level

with the crank pin when the crank is upright, find the proper proportions of the quick
return motion (Fig. 5, Plate I.). Find also the revolutions per minute for a maximum

cutting velocity of 6 inches per second, and compare the times of cutting and return.

Ans. The length of slotted lever=9 inches.

Distance apart of centres = twice length of crank. Time of cutting_2
Revs, per minute of crank =19'1. Time of return 1

3. In Whitworth's quick return motion find the proportions that the maximum return

may be three times the maximum cutting velocity, and compare the times of cutting

and return.

4. In Example 1, draw curves showing the angular velocity and position of the piston

for any position of the crank.

5. A reciprocating movement is given to the table of a small planing machine by a

uniformly rotating crank below connected by a rod to a projecting arm so that the rod is

horizontal when the crank is upright. Find by graphic construction the ratio of the

times of a forward and a backward movement. Also find the velocity of the table in

any position.

6. In question 1, p. 102, supposing two pairs of driving wheels coupled, the lengths of

cranks 1 foot, find the velocity of the coupling rod in any position. First, relatively to

the locomotive ; second, relatively to the earth.

7. In Ex. 6, p. 103, find in feet per second the maximum and minimum velocity of

rubbing of the crank pin, assuming its diameter 12 in., and the revolutions 30 per 1'.

Draw a curve showing this velocity in any position of the crank.

8. In Rapson's Slide (p. Ill), if the tiller be put over through an angle 6, show that

the velocity-ratio of tiller and slide varies as cos20, and draw a curve of velocity.

9. In a draglink-coupling the shafts are 6 in. apart, the draglink 1 foot long, and the

cranks each 3 feet long. By construction, determine the four positions of the following
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crank when the leading crank is on the line of centres, and at right angles to the line of

centres.

10. The length of the beam of an engine is three times the stroke. Supposing the end

of the beam when horizontal is vertically over the centre of the crank shaft at a height

equal twice the stroke, and the crank also is then horizontal, find the length of connect-

ing rod and the extreme angles through which the beam will sway. Adjust the crank

centre so that the beam may sway through 20 above and below the horizontal.

Length of rod=2 '06 stroke. The beam sways 22$ above the horizontal, and 17 below.

11. The depth of the floats of a feathering paddle wheel is Jth the diameter of the

wheel, and the immersion of the upper edge in the lowest position th the depth of

the float. Assuming the stem levers -fths the depth of the floats, find the position

of the centre of the collar to which the guide rods are attached. Determine the length

of the rods, and draw the float in its highest position.

If O be centre of wheel, K centre of collar, OK= "054 of diameter of wheel, and is

horizontal (very approximately).

Length of guide rods= 1 '01 radius of wheel.

12. In Ex. 9, find the angular velocity-ratio of the shafts when the cranks are in the

positions mentioned.

13. In Oldham's coupling, show that the centre of the coupling disc revolves twice as

fast as the shafts, and hence show how to give two strokes of a sliding piece for one

revolution of a shaft.

14. In a simple parallel motion the length of the levers are 3 feet and 4 feet respect-

ively, and the length of the connecting link is 2^ feet. Find the point in the link which

most nearly moves in a straight line, and trace the complete curve described by this

point as the levers move into all possible positions, the motion being set so that, when
the levers are horizontal, the link is vertical.

Ans. The required point in link is 17f in. from the 3-feet lever.

12fin. 4-feet

15. In a beam engine the stroke of piston is 8 feet, of air-pump 4^ feet, length of beam
24 feet, the front and back links of the parallel motion being 4 feet. Find the proper

length of radius rod, and the point in the back link where the air-pump rod should be

attached.
Ans. Length of radius rod=8 feet 8g inches.

Point of attachment of air-pump rod=2 ,, 3 ,, below beam.

16. Suppose in last question the parallel motion set for least deviation from a straight

line, find the correct positions of the centre lines of air-pump and piston, and the position

of the centre of motion, of the radius rod.

A ns. Horizontal distances from centre of beam
Line of stroke of piston,

- 11 feet 8 inches.

,, air-pump, - 6 ,, 6| ,,

Centre of motion of radius rods, 15 ,, 1^

17. Draw diagrams of velocity (Art. 56) for any position of the mechanism

(1) In the beam engine of Ex. 10
;

(2) In the quick return movement of Ex. 2 ;

(3) In the Peaucellier parallel motion (Fig. 55).

18. In the last question, draw curves showing in case 1 the velocity of the piston for

any position of the crank, and in case 2 the velocity of the tool at any point of the

cutting and return strokes, assuming in each case that the crank rotates uniformly.

REFERENCE.

A good collection of linkwork and other mechanisms, some of which do not occur in

the larger works cited on page 92, will be found in the later editions of Professor

Goodeve's Elements of Mechanism. Much valuable information on the details of machine

design is contained in a treatise on Machine Design by Professor W. C. Unwin, M.I.C.E.

(Longman).



CHAPTER VI.

CONNECTION OF TWO LOWER PAIRS BY HIGHER PAIRING.

SECTION I. TENSION AND PRESSURE ELEMENTS.

57. Preliminary Remarks. Tension Elements. If one of the elements

of a pair be not rigid, or if the contact be not of the simple kind con-

sidered in the preceding chapter, the pairing is said to be "
higher,"

because the relative motion of the elements is more complex. Higher

pairing is seldom employed alone
;

it is generally found in combination

with lower pairs, the elements of which it serves to connect. The most

important case is that where a chain of two lower pairs is completed by
contact between their elements or by means of a link which is flexible

or fluid. Motions may thus be produced in a simple way which are

impossible or difficult to obtain by the use of lower pairing alone. The

present chapter will be devoted to mechanisms derived from chains of

this kind, the fixed link being generally a frame common to the two

lower pairs. The velocities of each of the pairs are thus the same

as those of their moving elements. We commence with the case of

non-rigid elements.

A body which was incapable of resistance to any kind of change of

form and size would of course be incapable of being used as part of a

machine, for it could not furnish any constraining force whereby the

motion of other pieces could be affected, but if it resists any particular

kind of change it will supply a corresponding partial constraint which

may be supplemented by other means. The first case we take is that

of a flexible inextensible body, such as is furnished approximately by a

rope, belt, or chain. This is called a Tension Element, being capable

of resisting tension only, and it is plain that when any two points

are connected by it, their distance apart, measured along the element

itself, must be invariable so long as the rope remains tight. If the

rope be straight, it may be replaced by a link, and we obtain the

mechanisms already considered, but we now suppose it to pass over

a surface of any form.



[CH. vi. ART. 58.] CONNECTION BY HIGHER PAIRING. 127

In Fig. 59a, let A be a fixed body of any shape, round which an

inextensible rope PQ passes, the ends hanging down. If P moves

.2V+v

Fig.59a.

Fig.59c.

P,-v-9v-<

f.lq

downwards with velocity V, Q moves upwards with the same velocity,

the rope slipping over A at all points with velocity V. In practice A
is generally circular, and is mounted on an axis, upon which it re-

volves. We have then a "
pulley block," of which A is the "

pulley
"

or "sheave," and the rope causes it to rotate instead of slipping over

it, but this makes no difference in the motion, and the only object

of the arrangement is to diminish friction and wear.

Next suppose the pulley movable (Fig. 59b), and imagine P attached

to a fixed point, while Q moves upwards with the same velocity V
relatively to A as before. Then A must move upwards with velocity

V, because its motion relatively to the fixed point P is unaltered, and

hence Q moves with velocity "IV. More generally, if P, instead of

being fixed, moves downward with velocity v, Q must move upwards
with a velocity 2V+v, or to express the same thing otherwise the

difference of velocities of the two sides of the rope is twice the velocity of

lifting a principle applicable to all questions relating to pulleys. The

velocity of rotation cf the pulley is V+v, its radius being the "radius

of reference
"
(Art. 46). The motion of rope and pulley may be repre-

sented by a diagram of velocity. Thus, in Fig. 59c, describe a semi circle

with radius equal to V+ v, then the radius of that circle represents the

velocity of rotation or the velocity of any point in the rope relatively

to the centre of the pulley. The actual velocity of any point K in the

rope is found by compounding this with V, the velocity of the centre

of the pulley. The pole of the diagram is therefore a point 0, distant V
from the centre of the circle, so that if k be the point in the diagram

corresponding to the point K of the rope, Ok represents the velocity of K.

58. Simple Pulley Chain. Blocks and Tackle. We have now a simple
means of solving one of the most important problems in mechanism

namely, to connect two sliding pieces with a constant velocity-ratio.
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In Fig. 60a, B, C are pieces sliding in guides attached to a

frame-piece A, thus forming
two sliding pairs with one link

common. In B a number of pins

are fixed, and in A an equal

number placed as in the figure,

so that a rope passing round

them as shown may form a

number of plies parallel to B's

motion.*

The rope is attached at one

end to C, and led to the

nearest fixed pin, over a guide

pin placed so that this part

of the rope may be parallel
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velocity, and may therefore be united into one, an idea carried out in

White's Pulleys.

In all cases the mechanism which we have been considering (Fig. 60a)

is a closed kinematic chain only so long as the rope remains tight.

One method of securing this would be to supply a second rope passing

under another set of pins below B (not shown in the figure) and led to

the other side of C by a suitably placed guiding pulley; we should

then, by tightening up the ropes, have a self-closed chain similar to

those considered in the preceding chapter. In practice, however,

forces are applied to B and C which produce tension in the rope ; thus,

for example, when employed for hoisting purposes, the weight which

is being lifted keeps the rope tight. This is the simplest example of

what is called force-closure, where a kinematic chain, which is not

in all respects closed, is made so by external forces applied during the

action of the mechanism. In practical applications the principle of

force-closure is carried still further, for the guides which compel the

pieces B and C to move in straight lines are usually omitted. In the

case of B the weight and inertia of the load which is being raised or

lowered supply sufficiently the necessary closure, while in the case of C
the end of the rope may be guided by the hand.

59. Wheel and Axle. When mechanical power is employed for

hoisting purposes, the end of a rope is frequently wound round an

axle the rotation of which raises or lowers the weight, and this leads

us at once to a different and equally important method of employing
tension elements, namely, by attaching one end to a fixed point in

the cylindrical surface of an element of a turning pair. The rope in

this case passes over the surface and is guided by it, but does not slip

over it as it does over the pins of the previous arrangement. The

most useful case is that where the transverse section of the surface is

a circle, and the direction of the rope always at right angles to the

axis of rotation
;
then it is clear that the motion of the surface is the

same as the motion of the rope.

The well known Wheel and Axle is a combination of two chains of

this kind. In its complete ideal form it consists of two sliding pairs

AB, AD, with planes parallel and one link A (Fig. 61) common. A
rope is attached to D and, passing partty round a wheel, is attached to

it at a fixed point K in its circumference
;
a second rope is attached to

B, and passing partly round an axle, is attached to a fixed point k in

its circumference, the two ropes lying in parallel planes. The wheel

.and axle are fixed together, and form with A the turning pair AC.
We have thus a second means of connecting two sliding pieces so that

C.M. I
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Fig.61.

their velocity-ratio may be uniform, for the velocities of B and D*

must be inversely as the radii of the wheel and the axle. As before,.

the ropes must be kept tight,

also the guides of the pieces

B and D may be omitted and

replaced by force-closure, and this

will be necessary if the wheel

is to make more than one re-

volution, for then a lateral

movement is required to enable

the rope to coil itself on the

surfaces.

In practical applications the

second rope is generally omitted

and the wheel turned by other

means
;
the lateral movement is

sometimes provided for by permitting the axle to move endways in its

bearings, but more often, in cases where the load is not free to move

laterally, the effect of a moderate inclination of the rope to the axis is

disregarded. We may, however, escape this difficulty by the use of

force-enclosure of a different kind. Instead of attaching the rope to a

fixed point in the surface, let it be stretched over it by a force at each

end, there will then be friction between the rope and the surface,

which will be sufficient to prevent slipping if the

tendency to slip be not too great.

The Differential Pulley is a good example of

the application of these principles. As is shown

in Fig. 62, there are two blocks, of which the

upper, which is fixed, carries a compound sheave,

consisting of two pulleys A and C, of somewhat

different diameters, fixed to one another. The

lower block carries a single sheaf B, the diameter

of which should theoretically be a mean between

those of A and (7, in order that the chain may be

vertical. The chain is endless, and passes round

the pulleys in the manner shown, so that when

the side P is hauled downwards with a given

velocity V, it will raise the lower block B with a

velocity which we will now determine.

In passing around A and C the chain is not capable of slipping.

To ensure its non-slipping the periphery may be recessed to fit the

links of the chain. In passing around B the slipping is immaterial -

Fig.62.
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the raising of B would take place with the same velocity, whether

there were an actual slipping of the chain round the circumference, or

whether B were a rotating pulley.

When the point P is hauled downwards with velocity F", it neces-

sitates the rotation of A, and with it of C. Thus the left-hand portion

of the chain passing round B will be hauled upwards with the same

velocity as the point P downwards, and the right hand will descend

with a velocity which is less in the ratio of the radii, c, a, of the united

pulleys, and thus on the whole there will be an ascending motion given

to B. Now, since the upward velocity of B is half the difference

between the velocities of the two portions of the chain,

Thus, by making the difference between a and c small, the relative

velocity of B to P may be made as small as we please.

This apparatus, in a somewhat modified form, is much employed. It

is called Weston's Differential Pulley Block, and possesses the valuable

property that the weight will not descend when the hauling force is

removed, for reasons which will be explained hereafter (Ch. X.).

60. Pulley Chains with Friction Closure. Belts. A tension element

may also be employed to connect the elements of two turning pairs.

The most important case is that where two shafts are connected by an

endless belt passing over a pair of pulleys and stretched so tightly that

the friction between belt and pulley is sufficient to prevent slipping.

If the belt were absolutely inextensible the speed of centre line of the

belt would be the same at all points, and therefore the angular velocities

of the pulleys would be inversely as their radii each increased by half

the thickness of the belt. This mode of connection is unsuitable where

an exact angular velocity-ratio is required, for even though the belt

may not slip as a whole, yet it will be seen hereafter (Ch. X.) that its

extensibility causes a virtual slipping to a greater or less extent. In

the case of leather belts, the error in the angular velocity-ratio due to

this cause is said to be about 2 per cent.

There are two ways in which the belt may be wrapped around the

pulleys, being either crossed or open. If the belt is crossed, the pulleys
will revolve in opposite directions. The crossed belt embraces a larger

portion of the circumference of the pulleys than the open belt, and

there is thus less liability to slip.

There is a proposition of some importance connected with the length of a crossed belt,.

which it will be useful to give here.
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A C and BD (Fig. 63) being radii, each drawn at right angles to the straight portion of

the belt CD, will each make the same angle 6 with the line of centres. Hence the por-

tion of the belt in contact with the pulley A = (2ir -26) rA and that in contact with the

pulley B=(2ir - 26) ?> The length not in contact=2 . CD=2(rA + rB) tan 0.

Thus whole length of belt = 2(-rr
- 6 + tan 6)(rA + rB).

But cos 6= (rA + rB)lA B,

and consequently, if the distance AB between the centres is a constant quantity, and if,

further, the sum of the radii rA + t*B is constant, then the angle 6 will be constant. That

being so, the total length of the belt will be a constant quantity.

This property is made use of when it is desired to connect two parallel shafts with an

angular velocity-ratio, which may be altered at pleasure. A set of stepped pulleys, such

as are shown in Fig. 1, Plate III., are keyed to each shaft, and the belt being shifted from

one pair to another of the pulleys, the angular velocity-ratio is altered at will. If the

belt is crossed, then the same belt will be tight on any pair of pulleys, if the sum of the

radii is the same for each pair. This does not hold good for open belts. The actual

length o
,

belt required in any given example is best found by construction.

The tightness of the belt necessary to effect closure by friction of this

kinematic chain may be produced simply by stretching the belt over

the pulleys so as to call into play its elasticity, but the axis of rotation

of one pulley is sometimes made movable, so that the belt may be

tightened by increasing the distance apart of the shafts, while in other

cases an additional straining pulley is provided. The belt may then

be tightened and slackened at pleasure, a method frequently used in

starting and stopping machines.

In order that the belt may remain on the pulleys they must be pro-

vided with flanges, or, as is more common in practice, they must be

slightly swelled in the middle, for when the shafts are properly in line,

a belt always tends to shift towards the. greater diameter. Great care,

however, is necessary in lining the shafts that each side of the belt lies

exactly in the plane of the pulley on to which it is advancing. Thus,

for example, if the shafts be in the same plane,, they must be exactly

parallel, otherwise the belt will shift towards the point of intersection.

This remark, however, does not apply to the receding side of the belt,

and the shafts may make a considerable angle with each other, subject

to the above restriction.

Friction-closure is always imperfect, because the magnitude of the
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friction is limited, but this is often a great advantage, since it permits
the chain to open when the machine encounters some unusual resist-

ance, which would otherwise produce fracture. By the use of grooved

pulleys provided with clips the friction may be increased to any

extent, so that great forces may be transmitted, but these devices

are only suitable for low speeds, as in steam-ploughing machinery.

Slipping may be avoided altogether by the employment of gearing

chains, the links of which fit on to projections on the pulleys ;
force-

closure is here replaced by chain-closure, and the action is in other

respects analogous to toothed gearing. The speed is limited, as will

be seen hereafter.

61. Shifting of Belts. Fusee Chain. By the use of drums of

considerable length as pulleys, the belt may be shifted laterally at

pleasure. This principle is much employed in practice, as for

example

(1) To stop and set in motion a machine. The drum on one of the

shafts is divided into two pulleys, one fast and the other loose on the

shaft.

(2) To reverse the direction of motion. The drum is divided into

three pulleys, the centre one fast, the two end ones loose on the shaft.

Two belts, one crossed and the other open, are placed side by side. By
shifting the belt either is made to work on the fast pulley at pleasure.

(3) To produce a varying angular velocity-ratio. The drums are

made conical instead of cylindrical. The fusee employed in watches to

equalize the force of the main spring is a common example.
The kinematic character of these devices will be considered in the

next chapter.

62. Simple Hydraulic Chain. Employment of Springs. Incompres-
sible fluids may be employed to connect

together two or more rigid pieces forming
a class of elements which may be called

"pressure elements," since they are capable
of resisting pressure only. The pressure

must be applied in all directions, and the

fluid must therefore be enclosed in a

chamber which pairs with the different

pieces to be connected. For constructive

reasons lower pairing must generally be

adopted, and almost all cases are included

in the following investigation.

Suppose two cylinders, each fitted with a piston (A and B in
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Fig. 64), to be connected by a pipe, the space intervening between the

pistons being filled with fluid. Then when the piston B moves

downwards with velocity v, the piston A will rise with velocity V,

which is easily found by considering the spaces traversed by the

two pistons in a given time. Let A, B be the areas of the pistons,

a, b the spaces traversed, then, since the volume of the fluid remains

the same, we must have Aa= Bb, and therefore,

7 a 3
~v~b~A'

The chain here considered, in which the elements of two sliding

pairs are connected by a fluid, is kinematically identical with the

arrangement of Fig. 60a, p. 128, the replacement of a tension-element

by a pressure-element constituting merely a constructive difference

between the mechanisms. In the hydraulic press, in pumps, in water-

pressure engines driven from an accumulator, and in other cases this

kinematic chain is of constant occurrence, and will be frequently

referred to hereafter. Combinations of an hydraulic chain with blocks

and tackle are common in hydraulic machinery. Some examples will

be found in Chapter XX.

Springs, compressible fluids, and even living agents, are employed in

mechanism, not only in a manner to be explained hereafter as a source

of energy, by means of which the machine does work, but also in force-

closure, and especially for the purpose of supplying the force necessary

to shift pieces which open and close, or lock and unlock kinematic

chains, and so produce changes in the laws of motion of the mechanism.

The force of gravity, which, as has already been shown, frequently

produces closure, should be regarded as the tension of a link of in-

definite length connecting the frame-link of the mechanism with the

link we are considering. The inertia of moving parts likewise gives

rise to forces which are not unfrequently applied to similar purposes.

Examples will be given in a later section.

EXAMPLES.

1. A shaft making 90 revolutions per minute carries a driving pulley 3 feet in

diameter, communicating motion by means of a belt to a parallel shaft, 6 feet off, carry-

ing a pulley 13 inches diameter. Find the speed of belt and its length 1st, when

crossed, and 2nd, when open. Find also the revolutions of the driven shaft, allowing

a slip of two per cent.

Speed of belt =847 '8 feet per minute.

Length when crossed =19 feet 2 inches.

open =18 8

Revolutions of the follower=244|.

2. Construct a pair of speed pulleys to give two extreme velocity-ratios of 7 to 1 and
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3 to 1, and two intermediate values. The belt is to be crossed and the least admissible

diameter is 5 inches.

Velocity-ratios
- -

|-

ll ^ |,

Diameter of pulleys {J ^| J

3. The diameters of the compound sheave of a differential pulley block are 8 inches

and 7 inches respectively ; compare the velocities of hauling and lifting.

Velocity-ratio= 16 to 1.

4. In a pair of ordinary three-sheaved blocks compare the velocity of each part of the

rope with the velocity of lifting.

5. In a hydraulic press the diameter of the pump plunger is 2 inches and that of the

ram 12 inches, determine the velocity-ratio. Ans. 36.

SECTION II. WHEELS IN GENERAL.

63. Higher Pairing of Rigid Elements. We next consider pairs of

rigid elements in which the relative motion is not consistent with

continuous contact over an area. The elements then touch each other

at a point or along a line which is not fixed in either surface, but

continually shifts its position. The form of the surfaces is not then

limited as in lower pairing, but may be infinitely varied, with a

corresponding variety in the motion produced.

This kind of pairing occurs when a chain of two lower pairs is com-

pleted by simple contact between their elements. In the double slider-

crank chain shown in Fig. 4, Plate II., of the last chapter, let us omit

the block C arid enlarge the crank-pin so as just to fill the slot. By so

doing the relative motions of the remaining parts will be unaltered,

but we shall have three pairs instead of four, the turning pair EG and

sliding pair CD being replaced by a single higher pair ED. This

process is called Reduction of the chain, and when higher pairing is

admissible the reduced chain serves the same purpose as the original,

but with fewer pieces. The crank-pin and slot are in contact along a

line only which during the motion continually shifts its position. In

practice, the elements not being perfectly rigid, the contact extends

over an area, but this area is of very small breadth, and consequently,

if heavy pressures are to be transmitted at high velocities, the wear is

excessive. If we trace the development of pieces of mechanism we

observe that in the earlier stages higher pairing is much employed for

the sake of simplicity of construction, but is gradually replaced by
lower pairing. Nevertheless, where the object of the machine is

mainly to transmit and convert motion rather than to do work, or

where the velocity of rubbing is low, higher pairing may be employed.
In many cases it is necessary, because the required motion cannot be

produced by any simple combination of lower pairs.
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Higher pairing of rigid elements may be divided into two classes

according as the surfaces in contact do or do not slip over one another,

just as in the case of tension elements considered in the last section.

In the first case the contact is spoken of as Sliding Contact and in the

second as Rolling Contact. In rolling contact the difficulty of wear

does not occur, and friction is greatly reduced, so that it is always
used when possible. When a roller rests on a hard plane surface the

points in contact lie on a line which, if there be no slipping, remains

for an instant at rest as the roller moves. On reference to Art. 55,

page 118, it will be seen that the motion of the roller is completely

represented by a turning about this instantaneous axis, the point K
(Fig. 56a) being in this case on the periphery of the wheel of which R
is now the radius. The same is true when one circle B rolls within or

without another fixed circle A, a case to be considered further on : the

motion at B at the instant is a simple rotation about the point of

contact. We first however consider the simple and important case in

which both surfaces move, the line of contact being fixed.

64. Polling Contact. Rolling contact may be employed for the

communication of motion between two shafts, the centre lines of which

are either parallel or intersect, by means of surfaces rigidly attached

to the shafts. In the first case the surfaces are cylindrical and in the

Fig-.64b.

Fig.64a.

b

e

second conical, the apex of the cone being the intersection of the

shafts. By far the most important case, and the only one we shall
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here consider, is that in which the transverse sections of the surfaces,

are circular. Portions of the surfaces are used, as in Figs. 64a, 64b,

and are pressed together by external forces, so that sufficient friction is

produced to prevent the slipping of the surfaces. In other words,

force-closure is necessary, as in the case of connection by a belt. This

being supposed, it will immediately follow that the velocity of the two

surfaces at the points of contact is the same, and hence, as before, the

angular velocity-ratio of the shafts is inversely proportional to the

radii of the wheels. In the case of intersecting shafts, the surfaces are

frustra of cones called "
bevel," or, if the semi-angle of the cone be 45,

"
mitre-wheels," and their radii may be reckoned as the mean of that

at the inner and outer periphery. The shafts revolve in opposite

directions, unless one of the surfaces be hollow so that the other may
be inside it, in which case the corresponding wheel is said to be
" annular." When it is inconvenient to use an annular wheel, the same

result may be obtained by transmitting the motion through an inter-

mediate or "
idle

"
wheel. If the radius of a wheel be infinite, it

becomes a "
rack," and the surface a plane.

In the case of bevel wheels the corresponding cones may be found r

when the centre lines of the shafts and the angular velocity-ratio are

given, by a simple construction. In Fig. 64b, let OA, OB be the centre

lines of the shafts, and let distances Oa, Ob be marked off* upon them

in the ratio of the required angular velocities. Complete the parallelo-

gram Oacb, then OC must be the line of contact of the required cones.

For drop perpendiculars cm, en, on OA, OB, then

cm sin aOc Ob

en sin bOc Oa1

so that the radii of any frustra of the cones employed for wheels will

be inversely as the angular velocities of the shafts.

The particular case may be mentioned in which one of the cones

becomes a plane ;
the corresponding wheel is then a " crown "

or " face
"

wheel. The shaft of a wheel which is to work correctly with a crown

wheel must be inclined to the plane of that wheel at an angle depend-

ing on the angular velocity-ratio required, a restriction not generally

attended to, especially in the earlier stages of machinery in which face

wheels were of common occurrence.

If, as generally happens, it is required to transmit a working force of

a considerable amount, then the friction between the two circumferences

will be found not to be sufficient to prevent slipping taking place,

unless a considerable pressure to force the shafts together is employed,
which involves an excessive friction on the bearings. In what is
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known as " frictional gearing," this is partially avoided by the use of

wheels with triangular grooves fitting each other as the thread of a

screw fits into its nut
; but, in general, to prevent slipping, teeth are

<jut on the two peripheries, and the motion is transmitted by the gear-

ing together of the teeth. Since this is a substitution for the rolling

contact of two surfaces, it is required to so design the number and form

of the teeth that the wheels on which they are cut shall turn one

another with the same constant angular velocity-ratio as that due to

the two original surfaces. If recesses are cut in each wheel, and pro-

jections be added between the recesses so as to fit into the corresponding

recesses of the other wheel, then the two wheels may be placed to gear

together at such a distance that the two original surfaces would have

been in contact and would have rolled together. In the case of a pair

of toothed wheels, such a pair of imaginary surfaces which will roll

together with the same angular velocity-ratio as that obtained from

the toothed wheels, are called pitch surfaces. Considering first the case

-of parallel shafts, the transverse sections of these surfaces are called

pitch circles, and their point of contact is called the pitch point. The

radii of these pitch circles must be to one another in the inverse of the

velocity-ratio. The circumference of each circle is to be divided into a

number of equal parts, which will include a tooth and a recess. The

length of each part measured along the pitch circle is called the pitch.

Let p =pitch, and n = number of teeth, d = diameter, then

-rrd

V = -n'

The thickness of each tooth is made a little less than Jp to allow the

clearance necessary for easy working. The magnitude of the pitch

which governs the thickness of the teeth must be determined from con-

siderations as to their strength. If n' = number of teeth in the second

wheel, and d' = its diameter, then the pitch being the same for each

wheel

Trd trd'

p = r-
n n

The distance apart of the shafts is generally adjusted to allow the

pitch to be some exact number of inches, half, or quarter inches. The

pitch is to be measured along the pitch circle, and is not the chord of

the arc, as is sometimes stated.

In some small wheels used for spinning machinery, another kind of

pitch is referred to. The diameter of the pitch circle is divided by the

number of teeth, and the result is called the diametral pitch. In the

smallest class of wheelwork used in clocks, the dimensions of the teeth
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^re stated as so many to the inch. The proper form of teeth will be

considered further on.

65. Augmentation of a Kinematic Chain. Trains of Wheels. Another

important application of rolling contact is to diminish friction by
the intervention of rollers, hence called Friction Rollers. Thus the

friction between the elements of a sliding pair, subject to heavy

pressure, will be so great as to require a great force to overcome it,

but if rollers be placed between the elements the friction is greatly

reduced, as will be seen hereafter. In this case sliding friction is

wholly replaced by rolling friction
;

in carriage wheels the sliding

velocity which, without the wheel, would be the actual velocity of

the carriage, is reduced to that at the periphery of the axle, that

is to say, in the ratio of the diameters of the axle and the wheel.

The sheaves of an ordinary pulley block are examples of the same

principle. In all these cases where additional pieces are added to

a kinematic chain, in order to reduce friction or to serve some other

non-kinematical purpose, the chain is said to be "
augmented."

Chains are frequently augmented for purely constructive reasons
;

thus, if the velocity-ratio of a pair of shafts is great, the diameters

of a single pair of wheels necessary in order to obtain it will be

inconveniently large or small. A train of wheels is then resorted

to. This is also the case where the shafts to be connected are too

near or too far apart ;
in the latter case bevel wheels and an

intermediate transverse shaft may be employed.

When, however, the shafts to be connected are in the same straight

line, a train of wheels is kinematically necessary, and forms virtually a

new mechanism. This is a common case in practice when a pulley or

wheel is loose on a shaft, and it is required to connect the wheel and

the shaft so as to revolve with F .

different velocities. Such a train

is shown in Fig. 65 in a simple
ideal form. B and D are two wheels

turning on the same centre but dis-

connected. C, C' are two wheels

gearing with B and D and turning
about another centre but united.

The two centres are connected by the frame-link A. When B revolves

it drives C, and C' drives D. If the numbers of teeth in these wheels

be denoted by the letters which distinguish them, and the velocity of B
be unity, the velocity of C or C' will be B/C, and that of D will be

EG'\DC. Let it now be observed that the wheels B and D form a pair,
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the velocity of which will be the difference between the velocities

of these wheels. We have then altogether four turning pairs in

this train of wheels, the relative velocities of which are

Pair,





Plate.lll.

7 o face page 141.
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common in drilling and boring machines, in which the train of wheels

of the last article is used with B and D nearly equal, so that the velocity

of the pair BD is very small. B is attached to the nut and D to the

screw, so that BD is a screw pair. D then traverses through B by a

space each revolution which may be made very small.

To illustrate and explain preceding articles Plate III. has been drawn, giving examples
of trains of wheels, especially of the differential trains of Fig. 65.

Fig. 1 shows the slow motion of a lathe. D is a wheel keyed 011 the mandrel and con-

nected with B, the driving-pulley, when the motion is not in use. B rides loose on the

mandrel, and by means of a pinion gears with C, a wheel on the same shaft with C",

which gears with D. CD being large compared with BC', the speed of the mandrel is

much less than that of the pulley. For lighter work GC' are thrown out of gear by an

endways movement of the shaft.

Fig. 2 represents the train of wheels by which the slow movement of a water-wheel is

multiplied and transmitted to all parts of a factory. B is now an annular wheel attached

to the water-wheel gearing with C, C' with D, and so on. A vertical shaft F with bevel

wheels transmits the motion to the upper floors. The bearings of the secondary shafting

are omitted for clearness, but they all form part of a frame-link A, which is fixed.

In Fig. 3 the kinematic chain is inverted. B is a fixed annular wheel, CC' are of equal

diameter and reduce to one wheel, which, however, is in duplicate, in order to balance

the driving forces. This epicyclic train is applied to many purposes. In the example
shown the frame-link is a long arm, at the end of which a horse is attached, and a rapid

motion thus given to the central pinion D. The motion is further multiplied by the bevel

gear shown below, and applied to drive a thrashing machine or some similar purpose.

The same mechanism is employed as a purchase in capstans and tricycles.

In Fig. 4 the train consists of three bevel wheels BCD, C and C' reducing to one, as

in the preceding case. The simple chain consists of these wheels and the train arm A.

When A is fixed the wheels B and D turn in opposite directions with equal velocities ;

when B is fixed A revolves with half the velocity of D. The mechanism is much

employed, but usually as a compound chain, and as such will be considered in the

next chapter. The example shown is a dynamometer.
Fig. 5 represents the feed motion of a drilling machine. A is the frame of the machine

in which rotates the vertical drill spindle E driven by a pair of mitre wheels D and C'

from a horizontal shaft. A screw thread is cut on the spindle, of which B forms the nut.

If B and D rotate at the same speed the drill moves neither up nor down, but any differ-

ence will result in a motion of the screw pair BE, and will thus give the necessary feed

or raise the drill out of the hole. In the example chosen B is driven by a flat disc gearing

by friction with a wheel C" turning with D (Naish's patent). This wheel, by means of a

lever, can be moved along the shaft so as to gear with B at any radius at pleasure, and
can therefore be set so as to raise or lower the drill at any required speed. The contact

between C, D here is not pure rolling (p. 136) ; but as C is of small breadth the error is

not of practical importance.
In Fig. 6 the same kinematic chain is employed as an epicyclic train to give motion to

the cutters of large boring machines. The cylinder to be bored is fixed, and the boring
bar rotates on the lathe centres. The wheel B is fixed ; D is attached to the end of a

long screw, which on turning causes a nut E (not shown in the figure) to traverse slowly,

carrying with it the cutting tools. The train arm A rotates and carries on it the wheels

C, C', and D.

EXAMPLES.
1. The diameter of pitch circle of a wheel is 4 feet, and the number of teeth 120

Find the pitch.
inches.
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2. Two shafts about 4 feet apart are to be connected by spur wheels, the velocity-ratio

being 4 to 1. Find the diameters of the wheels and also the number of teeth, assuming
the pitch to be 2 inches.

Ans. The number of teeth in wheels are 30 and 120, and the exact distance apart of

the shafts=47| inches.

3. The diameter of the pitch circle of the annular wheel by means of which a water

wheel communicates motion to a mill, is to be as nearly as possible 24 feet. The pitch is

to be 4 inches. Find the diameter and the number of teeth in the wheel. The velocity

of the periphery is to be 5 feet per second and the first motion shaft is to make
30 revolutions per minute. Find the necessary diameter of pinion and the number of

teeth in it.

Ans. The number of teeth in the annular wheel =226, and its exact diameter is ^ inch

less than 24 feet. The number of teeth in the pinion is 32, making the revolutions per
minute somewhat less than 30. The diameter of pinion=40f inches.

4. A pair of shafts, the centre lines of which intersect at an angle of 60, are to be

connected by bevel wheels so as to revolve, the one at 250 and the other at 90 revolutions

per minute. Find the pitch surfaces.

Angles of cones 90 and 30.

5. Two shafts intersecting at an angle of 75 are connected by a crown wheel gearing
with a pinion. What must be the velocity-ratio ?

6. The weight of a revolving turret rests on a ring of friction rollers, the axis of

rotation of which radiate horizontally from the axis of the turret ; find the angle at

which the rolling surfaces must be bevelled. Compare the rates of rotation of the ring

and the turret.

7. The feed motion of a boring machine consists of a nut working on a screw cut on the

spindle of the drill or borer which is raised or lowered whilst the nut turns on it. The
nut carries a wheel of 96 teeth which gears with one of 35. When the drill is at work

the wheel of 35 teeth is secured to one of 36 on the same axis, and this latter gears with

one of 95 teeth secured to the spindle of the drill. The screw has four threads to the

inch. Determine the depth of hole bored per revolution.

/ OK v QX\
Depth of hole bored per revolution = inch

(
1 - f .)

= '0095 inch.
\ 36 x yb /

8. The train of wheels in the preceding question is used as an epicyclic train by fixing

the wheel of 96 teeth. Find the direction and number of revolutions of the train arm
for each revolution of the spindle.

-4ns. For each revolution of 95 wheel forwards, the arm turns backwards through

95x35
96 x 36 - 95 x 35

= 25 '4 revolutions.

SECTION III. TEETH OF WHEELS.

67. Preliminary Explanations. Even though the number of teeth in

a pair of wheels be such as to give the correct mean angular velocity-

ratio due to the rolling together of the pitch circles, yet if they be

of improper form they will jam or work roughly.

Theoretically the form of the teeth of one of a pair of wheels may be

chosen at pleasure if a proper corresponding form be given to the teeth

of the other
;
the problem of rightly determining the form is therefore
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one which admits of many solutions. We commence with some general

explanations applicable to all forms of teeth.

The diagram (Fig. 67) shows a section of a pair of spur wheels in

gear, with three teeth in action, the lower wheel being the driver-

BTB, ATA are the pitch circles in contact at the pitch point T.

ST= TL is the pitch, being the distance of a point in one tooth from

the corresponding point in the next consecutive measured along the

pitch circle. The teeth as shown in the figure partly project beyond
the pitch circle and fit into corresponding recesses in the other wheel,,

so that each tooth is divided into two parts, a part within and a part

without the pitch circle. The corresponding acting surfaces are called

the Flank and the Face of the tooth respectively. In annular wheels-

the flank is outside and the face inside the pitch circle. The teeth

commence action before reaching the line of centres by the flank of a,

tooth of the driver A coming into contact with the face of a tooth of

the follower B, as shown at C in the diagram, and gradually approach
that line till after the wheels have turned through a certain arc, which

measured on the pitch circle is called the Arc of Approach ; they are

then in contact at T the pitch point. After passing the line of centres

they remain in contact till the wheels have turned through a second arc,,

called the Arc of Recess, and then cease contact as shown at D, the

face of a tooth of the driver being always [in contact with the flank of

a tooth of the follower. The sum of these arcs is called the Arc of
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Fig.68.

Action, and must be great enough to permit at least two teeth to be

in contact at once. Their magni-
tudes depend on the projection of

the teeth beyond the pitch circle,

a quantity which is called the

addendum of the corresponding

wheel, the arc of approach de-

pending on the addendum of the

follower, and the arc of recess of

the addendum of the driver.

68. Involute Teeth. The question of the form of the teeth requires

much explanation to render it completely intelligible ;
we shall only

give a brief sketch, referring for full details to the works cited on

page 92. Some points will be further considered at a later period.

We commence with what are known as Involute Teeth.

Imagine a string AKL wound on a cylinder (Fig. 68). If the string

be gradually unwound, the string being kept tight all the time, a point

Q of the string will trace out a curve SQR called the Involute of the

Circle. Instead of causing the string to be unwound around the fixed

circle we may if we please move A in a fixed straight line and cause

the unwinding to take place by the revolution of the circle. If now a

piece of paper be fixed to and revolve

with the circle, the same involute

curve will be traced on it as before.

Now let A and B (Fig. 69) be two

circles not in contact which are each

capable of revolution about its centre.

If we connect them by a crossed belt,

of which one half is shown in the

diagram by the line MTN, each will

be capable of driving the other with

a constant angular velocity-ratio,

namely, the inverse ratio of the radii.

If, therefore, T be the point where

the belt crosses the line of centres,

4AJ'JL =^
A B TA TA

Now, with centres A and B and radii

AT and BT, describe circles which touch one another. These two

circles would turn one another by rolling contact with the same angular

velocity-ratio as that due to the belt. If we were to form teeth on the
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two wheels and cause them to turn one another by the gearing of the

teeth, then the two circles passing through T may be regarded as the

pitch circles of the two wheels.

Now to trace the form of the teeth. Attach a pencil (P) to any

point of the belt, and fix a piece of paper to the wheel A so that it may
turn with it, then the pencil will trace on the paper the curve EPL,

being an involute of the circle A. Similarly, if we imagine a piece of

paper attached to B, an involute DPS of the circle B will be traced on

that. These two curves will be in contact at the tracing point /*, and

will always remain in contact as the circles turn. If, therefore, we

construct teeth of this form with any given pitch, and then remove the

belt, the two toothed wheels will drive one another with the constant

angular velocity required. In this form of tooth the face and flank

are one continuous curve, which is a property practically confined to

involute teeth. From this fact a practical advantage follows. By the

continual action of the teeth together they wear and cause a looseness

of fit, which may be remedied by bringing the centres of the wheels

more nearly together, and this without altering the smooth action of

the teeth or the exact uniformity of the angular velocity-ratio. In no

other form of tooth occurring in practice is this possible.

The line of action of the mutual pressure between the teeth is always

along the tangent line to the two base circles from which the teeth are

generated, thus tending always to force the axles apart. If the angle

between this line and the common tangent to the two pitch circles, or,

as it is called, the "
obliquity," be large, much friction in the bearings

would result. On this account the obliquity is made as small as

possible, not being allowed to exceed 14| or 15. With this a limit is

introduced to the smallness of the number of teeth which may be used.

The action of the teeth must always be along the line MTN, and hence

cannot extend beyond the point N. If it is essential that when two

teeth are in contact at the pitch point another pair of teeth should

just be coming into action whilst a third pair are just ceasing action,

then the length of the arc of the pitch circle which corresponds to

an arc on the base circle equal to TN will be the greatest length

that can be given to the pitch of the teeth, and when the obliquity

is 14| there will be about twenty-five such pitches on the pitch circle,

and hence the number of teeth cannot be less than twenty-five.

Having given the pitch circles we first lay off, through the pitch

point, the line of oblique action which is to be allowed, and then draw

the base circles touching this line. The involutes of the base circles

will give us the form of the teeth. The thickness of the tooth is to be

taken a little less than half the pitch, and the addenda of the teeth

C.M. K
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such as to give a sufficient number of teeth in contact at the same

time. (Art. 71.)

All involute teeth of the same pitch and obliquity will work to-

gether; they have never been much used in practice, although there

appears to be no reason why they should not be in cases where it

is not necessary to have less than twenty-five teeth. Their wear is

said to be greater than that of teeth of other kinds.

69. Path of Contact the Pitch Circle. In involute teeth the tracing

point is attached to a belt stretched over pulleys, and therefore

describes a straight line on paper, which is fixed to the line of centres

so as not to revolve with either wheel. Now, the tracing point is also

the point of contact of the two teeth, and therefore the path of this

point, or, as it is conveniently called, the "path of contact," is a

straight line. Teeth of any shape may be traced by this method if,

instead of simply stretching the

belt over the pulleys, we pass
it over a fixed curve between

the pulleys, so that the tracing

point describes the curve in

question instead of a straight

line, provided the fixed curve

be such that the curves traced

on the rotating circles touch

one another. In other words,

we may assume various "paths
of contact" at pleasure and ob-

tain teeth which will work to-

gether correctly. We shall next

suppose the tracing point at-

tached to the circumference of

a rotating wheel, in which case

the path of contact is a circle.

In the use of toothed wheels

the earliest idea was, for sim-

plicity of construction, to form the smallest wheel of a number of

cylindrical pins projecting from a disc. Supposing one of a pair of

wheels to be so constructed, it is required to determine the proper

form of the teeth for the other wheel.

On the wheel B (Fig. 70) let pins be placed at equal distances,

with their centres on the pitch circle, and in the first place suppose

the pins indefinitely small, being mere points. Now, if at one of
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the points P a pencil be attached, then if B be caused to roll without

slipping over the surface of A kept fixed, the pencil P will trace a

curve on a piece of paper attached to the wheel A. The same curve

will be drawn if we cause one wheel to drive the other without slipping,

the centres A and B being fixed, while the paper is attached to A and

turns with it. If the tracing point started from the pitch point T,

then the curve KP will have been drawn on the paper, which, by
the further rotation of the circles, will be produced to Z. This

curve is called an Epicycloid, and will be the proper form of

teeth for the wheel A to drive the pinion B. For the pin

P will be always in contact with the tooth KZ as the wheels

revolve with uniform angular velocity-ratio. We complete the

form of the teeth by drawing a similar curve ZS for the other

face, SK being the pitch, in order to enable the wheels to be

turned in the opposite direction if necessary. Placing a number

of such teeth on the pitch circle A, we see they all touch one

another at the roots on the pitch circle. The reason is because

we have imagined the pins of B to have no definite dimensions,

but to be mere mathematical points. In practice some definite

dimensions must be given to the pins of B. In such a case the

proper form for the teeth of A is derived from the previous con-

struction by drawing a curve which at all points shall be at a

distance from the epicycloid, when measured along the normal, equal

to the radius of the pin. Below the pitch circle A a semi-circular

recess must be formed, as shown by the full curve in figure.

These teeth possess the peculiar property of having faces but no

flanks. The consequence is that, the toothed wheel A being the

driver, the action of the teeth is wholly after the line of centres ;

there is no arc of approach, but only an arc of recess. On this

account the pin-wheel must always be the follower, for if it be the

driver the action of the teeth would be wholly before the line of centres,

in consequence of which the friction is said to be more injurious.

The angle which PT makes with the common tangent is, as in the

case of involute teeth, called the "obliquity"; it is now no longer con-

stant, but varies from zero, when P passes the line of centres at T, to a

maximum value when P escapes. It is easily seen that this angle is

always one-half the anlge PBT, which PT subtends at the centre of

the pin-wheel, and hence the obliquity increases uniformly as the

wheels turn
;

its mean value may be taken at half the maximum,
and is limited in the same way as in involute teeth to about 15,
so that the greatest value of the angle PBT may be taken at 60.

If the two sides of the teeth are alike, as in the figure, the pin then
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comes to the point of the tooth at Z. This circumstance determines

the smallest number of pins which can be used, for one pin must

not escape before the next comes to the line of centres ; that is to

say, PT cannot be greater than the pitch, the pitch then must not

be greater than one-sixth the circumference of the pin-wheel, whence

it appears that the least number of pins is six.

Pins are now rarely employed except in clock and watch work
;

they have the great practical disadvantage that the toothed wheel

to work with them must be specially designed, as it will work

with only one diameter of pinion.

If we imagine a pin-wheel to work with an annular wheel, the teeth

may be traced in the same manner as shown in Fig. 71 (p. 149), to

which the same letters are attached. The point P now traces out a

curve called a Hypocycloid, the general character of which may be

seen by joining P to F, the other extremity of the diameter TF of the

circle B
;
for since the angle FPT must be a right angle, the angle

APT will be greater than a right angle if, as in the figure, F lies

between A and T, and less than a right angle if F lies beyond A.

Thus the hypocycloid must reduce to the radius AK if F coincides

with A, that is, if the diameter of the pin-wheel be half the diameter

of the annular wheel
; while, for smaller diameters, it forms a curve

always concave towards T. Hence it appears that to work with a

pin-wheel of half its diameter the teeth of the annular wheel should

be constructed simply by drawing radii of the pitch circle With

a larger diameter of pin-wheel the teeth would be undercut, and

therefore weak; the annular wheel must be the driver as before.

In all epicycloids and hypocycloids the normal to the curve at the

tracing point P passes through the point of contact T of the circles

considered for, as already shown (Art. 63, p. 130), the motion of

the rolling circle is for the instant a rotation about T.

70. Path of Contact any Circle. Teeth traced in the way just

described are wholly within the pitch circle, and this circumstance

suggests that by a combination with the preceding case, where they
were wholly without, a form may be found which may be more

suitable for practical use.

In Fig. 71 a third circle C is shown, touching the two others at the

same pitch point T. The three circles ABC turn each about its own
centre without slipping. Imagine paper attached to A and C and

rotating with them, while a pencil P is attached to B as before
;

then P will trace out two curves as in the case of involute teeth,

one outside the circle (7, the other inside the circle A. A's curve
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will be an hypocycloid KPZ, starting from K in the circle A, while

C's curve is an epicycloid K'PZ' starting from K' in the circle C".

Now these curves will, as in involute teeth, touch one another,

having a common normal PT, and hence it follows that, while the

circles turn with uniform annular velocity ratio, the curves will always
be in contact, and may be taken as face and flank of a pair of teeth.

Thus it appears that we can obtain the faces of the teeth of C, and the

flanks of the teeth of A, by causing a third circle B of any diameter

to rotate within the circle A.
'

If the diameter of B be half the diameter

of A, the flanks for A will be simply radial lines, but if it be less

they will be concave towards T, the effect of which is that the teeth

will spread out at the root, which is desirable on the score of strength.
We can now imagine the faces of the teeth of A and the flanks of the

teeth of C to be traced by another circle B' rotating within C instead

of within A. The diameter of this circle need not be the same as that

of B
;

it may, for example, be half the diameter of A, while C's diameter
is half that of B if so, the flanks of the teeth of both wheels will be
radial. Teeth with radial flanks have the disadvantage of weakness,

especially when the number of teeth is small, because the thickness

at the root is less than that at the pitch circle, and they are, besides,

only capable of working correctly with wheels specially designed for
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them. In order that a set of wheels of this kind may be interchangeable,

it is necessary that the circles B' B be of equal diameter and the same

for all the set. This diameter should not be larger than half that of the

smallest wheel of the set, for, if it is, the flanks of the teeth of the small

wheels will be undercut and consequently weak, while, on the other

hand, it should be as large as possible, for otherwise the teeth of

the large wheels will be too thick at the roots and too thin at the

points, a form which is found to be unfavourable to good wearing.
Hence the diameter chosen for B is half that of the smallest wheel of

the set, the flanks of which will be radial. As B is a pin-wheel, its

smallest circumference is six times the pitch (Art. 69), and the smallest

wheel of the set has consequently 12 teeth
;
but if no wheel is required

with so small a number of teeth as this, it will be better, for the reason

stated above, to take a large describing circle.

71. Addendum and Clearance of Teeth. In any form of teeth it is

clear from what has been said that the point of contact travels along
the path of contact DT (Fig. 67, page 143) from the pitch point T
to the end of the tooth at J), where the contact ceases. The length of

the path of contact thus traversed is equal to the arc of recess in all

kinds of cycloidal teeth, and less than that arc in a given ratio in

involute teeth. By stepping off a suitable length on the path of

contact then, we can find the end of the tooth for any given arc of

recess, and the distance of this point from the pitch circle A of the

driver is what we have already defined as the "addendum" of that

wheel. The position of this point on the flank of the tooth of the

follower B gives the working length of flank necessary. Similarly the

length of face in the follower and flank in the driver depend on the arc

of approach. The depth of the recesses between the teeth, however,

must be made greater than is necessary for working length of flank, in

order to allow the ends of the teeth to clear; the amount usual in

practice appears to be about one-fifteenth the pitch.

The allowance necessary in practice for clearance in the thickness of

the teeth depends on the degree of accuracy attainable in construction.

The value formerly employed for teeth shaped by hand was one-eleventh

the pitch, but the best modern teeth are machine cut, and a much

smaller amount is sufficient. Less clearance is required for involute

teeth than in teeth of other kinds. The setting out of bevel teeth is

not theoretically more difficult than in the case of spur gear, but their

accurate execution by a machine is far from easy. If the machine

operate by straight cuts like an ordinary shaping machine, the tool must

be mounted so that the line of cut always passes through the apex of
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the pitch cone. Gear cutting machines generally employ revolving
cutters formed to fit the space between two teeth. Much ingenuity
has been expended on giving the cutter a lateral movement to suit the

bevel, but an exact bevel tooth cannot be formed in this way.

72. Endless Screw and Worm Wheel. When two shafts are to be

connected which are not parallel, and the centre lines of which do not

intersect, it is necessary to resort to skew bevel, or screw teeth. Only
one case of this kind need be mentioned here as being of common

occurrence, namely, the endless screw and worm wheel employed when
the shafts are at right angles, and a slow motion of one of them is

desired. In a common screw let the thread be so formed that the

longitudinal section of the screw thread shows a range of teeth like

those of a rack which would gear with a given spur wheel. Let the

teeth of the wheel be set obliquely at an angle equal to the pitch angle
of the screw

; strictly speaking, they also are screw threads, the pitch

angle of which is the complement of the pitch angle of the screw. Then
the screw and wheel will gear together, and the wheel moves through
one tooth for each revolution of the screw. Like screws in general, this

combination is non-reversible unless the pitch of the screw be coarse

(Ch. X.), and for this reason, and on account of its simplicity, is much

employed in practice. The method of constructing the teeth of a worm
wheel is explained in a work by Prof. Unwin, cited on page 125.

EXAMPLES.
1. A pair of wheels have 25 and 120 involute teeth respectively, and the addendum of

each is f^ths the pitch. Find the arcs of approach and recess in terms of the pitch

assuming the obliquity 14^, the large wheel being the driver. (See Art. 71.)

Ans. Arc of approach = '89 x pitch.

Arc of recess = 1 '12 x pitch.

2. If the arcs of approach and recess in involute teeth are each to be equal to the

pitch, show that the addenda of the wheels should be calculated by the approximate
formula

/I 3\
Addendum

( 4
+ ~

)
x pitch,

where n is the number of teeth.

3. A pair of wheels have 25 and 120 teeth 'respectively, the flanks being in each case

radial. Find the addendum of each wheel that the arcs of approach and recess may
each be equal to the pitch.

Ans. Addendum of driver = '283 x pitch.

Addendum of follower^ '178 x pitch.

SECTION IV. CAMS AND RATCHETS.

73. Reduction of a Crank Chain by Omission of the Coupling Link. A
pair of spur wheels in gear form a particular case of a three-link

kinematic chain consisting of two lower pairs with parallel axes two,



152 KINEMATICS OF MACHINES. [PART 11.

elements of which are united and generally form the frame-link, while

the other two pair by contact.

Such a chain may be derived from the four-link crank chain of

Art. 52, page 112, by omission of the coupling link, a process of

reduction which has already been employed on page 135.

In Fig. 72a, ab, dc are levers turning about fixed centres and con-

nected by a coupling link be, all three links being in one plane as in the

article referred to, Imagine how the crank-pins at b and c enlarged
until they touch one another as shown by the dotted circles and then

remove the coupling link. Suitable forces being applied to close the

chain by keeping the surfaces in contact, the link be may be removed

without in any way altering the motion, and therefore the angular

velocity-ratio will still be as before aT : dT, where T is now the inter-

section of the common normal at the point of contact, with the line of

centres. Now the instantaneous motion of the levers cannot be affected

by the shape of the pins except at the point of contact, and it there-

fore follows that if we replace the pins by any surfaces such as those

indicated by the full lines in the figure, which have the same common
normal at the point of contact, the result will be the same.

We may reach this conclusion directly by constructing a diagram of

velocities for the two pieces in question. For let P, F be points in the

profiles which at the instant considered coincide by becoming the point
of contact. Then P's velocity in the direction of the normal must be

the same as that of F, for otherwise the surfaces would interpenetrate
or move out of contact. If then from a given point (Fig. 72b) we
draw Op, Op' parallel to the lines aP, dP', to meet a parallel to the
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normal in pp, it follows by the same reasoning as in the case of link-

work that Opp' is a triangle of velocities of which the sides Op, Op

represent the velocities of P, P'. Hence drawing aZ parallel to dP' it

appears as before that the angular velocity-ratio of the lines aP, dP is

dT/aT, and these lines are fixed in the rotating pieces so as to have

the same velocity-ratio.

The third side pp' of the triangle of velocities represents in this case

the velocity with which the surfaces rub against one another, for

dropping the perpendicular ON the segments Np, Np' represent the

resolved part of the velocities along the common tangent. Suppose

A, A' to be the angular velocities of the pieces, V, V the actual

velocities of P, P', then by similar triangles

that is, if v be the velocity of rubbing,

^-^-APZ aP

for which we obtain

v = A.PZ=A(TZ-PT).
But it was shown above that

A.aT=A'.dT-,
.-. A.TZ=A' .PT;

hence

v=(A' -A)PT.

This formula supposes the pieces to turn in the same direction, as in

the figure. If they turn in opposite directions, as in a pair of toothed

wheels,

v = (A' + A)PT,

a simple and important result which we shall hereafter verify.

It follows at once that for rolling contact the point of contact must

He on the line of centres, and that for a constant angular velocity-ratio

T must be a fixed point. Thus in all forms of teeth for wheels the

common normal at the points of contact of the teeth must always pass

through a fixed point on the line of centres, as we 'found to be the case

in the examples already considered. The velocity with which the

teeth slide over one another is given by the above formula.

The diagram of velocities may when necessary be completed by

laying down on it the velocities of all points rigidly connected with

either rotating piece as explained before in the case of linkwork.
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74. Cams with Continuous Action. In toothed wheels the revolution

of one wheel is always accompanied by that of the other in the same

or in opposite directions, according as the gearing is inside or outside,

or, in other words, the directional relation is always the same. We
now pass on to cases in which the directional relation varies, the con-

tinuous rotation of one piece being accompanied by an oscillating

motion of the other. The rotating piece is then called a "
Cam," or

sometimes a "Wiper."
Cams are of two kinds. In the first the contact is continuous, and

the oscillating motion produced is completely denned by the form of

the cam
; while, in the second, the contact is only during the forward

vibration of the oscillating piece, while the backward vibration is

produced by other causes. In both kinds force-closure is common, and

sometimes indispensable.

We shall now give some examples of cams of the first kind. Fig. 1,

Plate IV. (p 159), represents a sliding piece C, to which a reciprocating

movement is given by a cam B, which rotates about an axis 0, per-

pendicular to the direction of the sliding motion, the chain being

completed by the frame-link A. Suppose, in the first instance, that

the cam presses against a pin placed in the piece so that a line joining

it to the centre of rotation gives the direction of the sliding motion.

As the cam turns in the direction of the arrow, C moves downwards

to a certain limiting position, after which contact will cease unless

some force be applied to keep it pressed against the surface. With

suitable force-closure, however, supplied by the spring shown in the

figure, C will return upwards to a second limiting position, and so

on, continuously oscillating to and fro.

By properly taking the shape of the cam, any required relation may
be obtained between the motions of the cam and slider

;
we have, in

fact, only to draw a curve of position such as that constructed in Fig. 46,

page 97, showing the position of the sliding piece for each position

of the rotating piece. This curve will be the proper profile for the

cam. In practice the chain is usually augmented by the addition of

a friction roller, and the shape of the cam is modified by cutting away
its surface to a depth equal to the radius of the friction roller, as was

done in the case of the teeth of a wheel which drives a pin-wheel.

Force-closure, though common, is not necessary for the action of a

cam chain of this kind
;

it may be avoided in two ways, both of which

occur frequently in practice, though the mechanism would not always
be described as a cam. First, the pin of the last example may be made

to work in a slot cut in the face of a cam-plate, the centre line of the

slot being formed to the profile of the original cam. Secondly, a slot
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Fig.73.

may be cut in the sliding piece at right angles to the direction of

sliding, and the cam may fit into the slot. Thus, for example, the cam

may be a pin or an eccentric of any size
;
the chain is then merely a

reduced double-slider crank motion, as explained on page 131. With

other forms of cam other kinds of motion may be obtained
;
a common

example is the Triangular Eccentric formed by three circular arcs

(Fig. 73), each struck from one of the corners of an equilateral triangle

abc. Such a curved triangle will fit between

the sides dd, ee of a rectangular slot, and

may therefore be used as an eccentric by

fixing it to an axis passing through any

point in it. In practice a figure would be

used with rounded-off corners, derived by ;

;

striking small circular arcs with centres
\

a, b, c, and uniting them by larger arcs

having the same centres, thus obtaining a

profile shown by dotted lines in the diagram,

possessing the same essential property of

uniform breadth, so that it will fit a rect-

angular slot of somewhat larger size. The

mechanism is shown in Fig. 3, Plate IV. ;
it is sometimes used for a

valve motion, the opening and closing of the valve taking place more

rapidly than with a common eccentric. It has also been used in the

"man engine" employed in mines to enable the miners to reach the

surface without the fatigue of ascending ladders.

In these, as well as all other cam motions, a triangle of velocities

can be constructed by the general method explained in Art 73, and

hence curves can be drawn showing the comparative velocities of the

cam, the slider, and the rubbing between the two.

75. Mechanisms with Intermittent Action. In all cases of higher

pairing by contact between rigid elements, the closure of the chain is

imperfect in the absence of external forces, for an exact fit between the

surfaces, even if it exist originally, is soon destroyed by wear during
the action of the mechanism. Thus, for example, when a pin works in

a groove, as in the last article, the smallest looseness of fit will prevent
the grooved piece from exactly following the movement of the pin
when the contact passes from one side to the other of the groove. The

same effect is produced by the clearance necessary for the safe action

of the teeth of a wheel. In cam mechanisms, where the contact is

continually changing from one side to the other, the chain opens for

a short interval at every change unless force-closure be employed as
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described above. The pair of which the oscillating piece forms an

element is locked by friction during the interval.

Suppose now that the groove is purposely made of much greater

dimensions than the pin, the oscillating piece will remain at rest for a

considerable interval, and will thus have an intermittent motion. The

same thing occurs in wheels which work by the successive action of a

number of teeth when some of the teeth in one of the wheels are

removed. The pair which moves intermittently may be locked during

the interval of rest either by friction or by the special means described

in the next article.

Intermittent motions of both the cam and wheel class occur frequently

in mechanism. Two common examples may be mentioned.

(1) A wheel with one tooth may be employed to turn another

wheel with any number of teeth through a small space at each

revolution.

(2) A wheel with one or more teeth may move a sliding piece

alternately backwards and forwards.

In all cases, during the interval of motion, we have a chain of the

kind already described which closes at the commencement of the

interval. The closure is accompanied by a shock which renders such

mechanisms unfit for the transmission of considerable forces, and limits-

the speed at which they can be run. (See Ch. XL)

76. Ratchets. The oscillating motion of the piece C may be a

turning instead of a sliding motion, as is often the case in shearing

machines, for example, but no new principle is here involved, and we

now proceed to the second class of cam motions in which the forward

vibration alone is subject to the action of the cam, while the backward

vibration is effected by independent causes, generally by means of

springs or of gravity. In such cases the forward vibration follows the

same laws as in cams of the first kind, but during the backward

vibration the oscillating piece forms a distinct machine by itself.,

working by means of energy supplied by the cam during the forward

movement. In tilt hammers and stampers the work of the machine is

done in this way and we need not here further consider them
;
but

the object may be merely to shift the position of the piece and so to

lock or unlock a pair, to open or close a kinematic chain. The piece

is then called in general a Eatchet, though it may receive other names

according to circumstances, and a chain in which it occurs is thus

known as a Ratchet Chain.

(1) The shifting piece may lock a turning or a sliding pair in one

or both directions. A common latch for example rises to permit



H. vi. ART. 76.] CONNECTION BY HIGHER PAIRING. 157

Fig.74

a gate to close and then drops into its place and fastens the gate until

again raised by external means.

The piece C (Fig. 74) forming a turning pair with a fixed piece B
tits in the hollows of the teeth of a wheel A which also pairs with B.

The teeth are formed as in the figure so as to permit A to move in one

direction by raising C till it drops by the action of a spring or by gravity

into the next hollow. In the other

direction the pair AB is locked. C is

then called a pawl, and the arrange

ment is the ordinary one employed in

windlasses, capstans, and lifts to pre-

vent the machine reversing when the

hauling power is removed.

(2) Two shifting pieces may be

employed to lock alternately two pairs

which have a common element. This

is the ratchet mechanism proper from

which the name of the class is de-

rived.

Returning to Fig. 74, A, B, C are the same as in the previous case,

E is an additional piece which pairs with B : in the figure the axis of

the pair has been supposed concentric with A, but this is not necessary :

D is the ratchet pairing with E and at the same time fitting like C into

the teeth of the ratchet wheel. If now an oscillating movement be

communicated to E, the ratchet wheel A will be locked alternately

with B and E according to the direction of motion of E. Accordingly
A has an intermittent movement moving with E in its forward oscilla-

tion and resting in the backward. Instead of a pawl C, friction may
be relied on to lock AB in the backward movement as in the common
ratchet brace, but the nature of the mechanism is the same always. It

sometimes happens that the pairs AB, BE are not concentric
;

the

chain ABED is then an ordinary four-link chain which opens when
moved in one direction and closes when moved in the other, while the

pair CA unlocks and locks as before, so as to permit A to move

intermittently. In both cases the movement is single-acting, but two

such chains may be employed which move in opposite directions and

open and close alternately ;
the movement may then be described as

double-acting. The well-known " Levers of Lagourousse
"

(Fig. 6,

Plate IV.) is a double-acting ratchet mechanism in which the two

chains have all the links common except the ratchets. The ratchet

wheel then moves continuously in one direction, and the locking pawl
C may be omitted. The ratchet wheel employed in the case of a
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turning pair may of course be replaced by a rack when a sliding pair is

required, but no new principle is here involved,

(3) The shifting piece may be connected with a pendulum or balance

wheel which vibrates in equal times. Time may be thus measured by

unlocking a kinematic chain at intervals. In clocks and watches a

tooth of the ratchet wheel escapes from the action of the ratchet at

each vibration or semi-vibration
;
the mechanism is therefore called an

escapement.

(4) In pumps various kinds of ratchet mechanisms are universal.

The common reciprocating pump is a true ratchet mechanism, the

column of water being locked and pairing with the plunger alternately ;

it may be single- or double-acting. It is needless to say that the ratchet

is here called a " valve."

77. Other Forms of Ratchet Mechanism. In all the examples of the

preceding article the shifting piece is not subject to the action of the

rest of the mechanism during its return oscillation, but it may also

be worked by a cam movement of the first kind, or by linkwork

mechanism
;
the slide valves of a steam engine are a familiar instance.

Also it may be worked by external agency instead of by the machine

itself, as in all kinds of starting and reversing gear. The ratchet

chains form a large and interesting class of mechanical combinations,

but their discussion would be out of place here.

78. Screw Cams. -The three-linked chain of Art. 73 may have the

axes of its lower pairs inclined at an angle instead of parallel, and

a number of mechanisms of the cam class may thus be derived which

are analogous to those already considered. Some of these may also be

derived from a screw chain, and may here be briefly mentioned.

Let us take a simple screw chain consisting of a sliding pair, a turn-

ing pair, and a right-handed screw pair. Let the screw be of several

threads, and let a fraction of the pitch be employed. The screw and the

nut may then be alike as shown in Figure 2, Plate IV., each resembling
a crown wheel with ratchet teeth. When the movement has taken

place through the fraction of the pitch in question, the teeth escape and

the nut may be moved back endways by force-closure, or by a second

screw and nut similar, but left-handed. This movement, which is the

only possible cam motion with lower pairing, has been employed to

work the shears in a reaping machine,'
55

'

and is also well known as a

clutch.

In its original form the chain consists of a sliding pair AB, a screw

* Journal of the Franklin Institute for March, 1880.
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pair BC, and a turning pair CA ;
the piece A may however be omitted,

and we obtain a two-link chain consisting of a screw pair BC, the

elements of which are united to those of an incomplete lower pair, B
and C both sliding and turning during the forward motion and simply

sliding during the backward motion. Now imagine one of the screw

surfaces replaced by a simple pin, then the other may be made of

any form we please, and the elements of the incomplete pair will have

a cam motion following any given law. A valve motion common
in stationary engines is an example. B is a revolving crown wheel

on which is a projection which raises the rod C at the proper time

for opening or closing the valve. The "swash" plate usually given
in treatises on mechanism is another example.

Plate IV., the figures in which are not taken from actual examples,

represents some of the cam and ratchet mechanisms referred to in this

section. Fig. 1 is a " heart cam," so called from its shape, in which the

sliding and rotating pieces are connected with uniform velocity-ratio.

Fig. 2 is the screw cam just described. Figs. 3 and 4 are two forms

of the triangular eccentric motion (p. 150). Fig. 5 shows a ratchet

motion (p. 152) in a form common in the feed motions of machine

tools : the direction of movement of the ratchet wheel A is here

reversible by putting over the ratchet D into the dotted position.

Fig. 6 is referred to on page 171.

EXAMPLES.

1. A reciprocating piece moves in guides under the action of a cam attached to a shaft

which rotates uniformh', and the centre of which lies in the line of motion. Trace the

form of the cam that the piece may slide uniformly and make one complete movement
in each revolution. Suppose a friction roller used of diameter equal to J stroke, and

suppose also that the least radius of the cam is the stroke.

2. A stamper is raised by a cam such that the rise takes place uniformly during a part
of the revolution of a shaft which is distant from the stamper half the rise. Trace the

proper form of cam, and find the fraction of the revolution in which the rise takes place.
The best solution is that in which the profile of the cam has the form of the involute

of the dotted circle, whose radius is half the lift of the stamper ; for then the pressure
of th6 cam on the pin is always in the vertical direction. The rise takes place whilst the

cam turns through an angle, the arc of which is equal to twice the radius, or 1/ir of

a revolution.

3. Draw a curve of velocity for a reciprocating piece moved by a uniformly rotating

triangular eccentric.



CHAPTEK VII.

MECHANISM IN GENERAL.

79. Plane Motion in General. Centrodes. In the two preceding

chapters the mechanisms considered have been composed either wholly
of lower pairs or else of two lower pairs connected by higher pairing.

The velocity-ratios of the various lower pairs have been considered

and diagrams of velocity have been drawn for the complete mechanism,
but the comparative motion of pieces which do not pair with each

other, or which form the elements of a higher pair, has only been

considered in a few special cases. It will now be necessary to treat

this question more generally.

First, suppose the two pieces to move in such a way that a plane
attached to one moves parallel to a plane fixed in the other. The

motion is then the same as that of a plane area which slides on a fixed

plane, and may be called for brevity "plane motion." If the position

of any two points in the moving area be given, all the rest can be

found, and the motion is therefore completely defined by the movement

of the straight line joining these points.

Let AB, A'B', A"B" ...(Fig. 75) be successive positions of such a

line. Join AA', BB', and from the middle points of these lines draw

perpendiculars NO, MO to meet in 0, then OA = OA' and OB=OB',
from which it can be proved that AOB = A'OB', so that AB might
be moved to A 'B' by attaching it to a plane area, and rotating that

area about as a centre. Obtain similar centres 0', 0", 0'" ... for the

succeeding changes of position, then it is clear that the motion of AB,
and therefore of the plane area to which it is attached, may be

completely represented by the rotation of the area about the centres

0, 0', 0", ... in succession through certain angles which are given, being
the inclinations to each other of the successive positions of AB.

Next, through draw OS', making it equal to 00' and inclined

to 00' at the first angle of rotation, S'S" equal to O'O" and inclined to

it at an angle equal to the sum of the first and the second angle of

rotation, and so on; we thus obtain a second polygon OS'S" ...
,
the
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sides of which are equal to those of the original polygon 00'0" ....

Imagine this polygon rigidly attached to AB so as to move with it,

Fig.75

B.

M

then during the motion the polygon will rotate about till S' reaches

0', then about 0' till S" reaches 0", and so on in succession; that is

to say, the changes of position of AB may be produced by the rolling

of one polygon upon the other. Thus, by properly determining the

polygons, any given set of changes of position of a plane area may be

produced at pleasure by rolling the movable polygon on the fixed one.

Now imagine the moving area to become fixed in its original position,

and let the originally fixed area move by rolling the polygon 00'0" ...

which is attached to it upon the polygon OS'S" which is now fixed.

Evidently the two area^'take up the same relative positions, and we

obtain the very important proposition that any set of changes of

relative position of two areas may be obtained by the rolling of one

polygon upon another. If the positions are taken at random the poly-

gons may have acute angles as at 0" in the diagrams, but they may also

be such as would occur in a continuous motion, and the polygons will

then reduce to continuous curves when the positions are taken very
near together. Thus every continuous plane motion of two pieces is

represented by the rolling of one curve upon another, the point of con-

tact being a centre about which either piece is for the instant rotating

relatively to the other. These curves are called Centrodes, and the

point is called the Instantaneous Centre. Whenever the directions of

C.M. L
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motion of two points in a moving piece are known, the instantaneous

centre is at once determined by drawing perpendiculars to intersect.

During the motion it traces out two curves, one in the moving piece,

the other in the fixed piece, which curves are the centrodes of the

motion.

80. Axoids. Elementary Examples of Centrodes. Any two bodies

moving in the way described may be divided into slices by planes

parallel to the plane of motion, the centrodes of which will of course

be all similar and equal, so that we may regard them as the transverse

sections of cylindrical surfaces in contact with each other along a

generating line. The surfaces are called Axoids, and the line the

Instantaneous Axis. The relative motion of the bodies is represented

by the rolling of the axoids upon one another, endways motion being

supposed prevented.

Any two parts of a mechanism have a relative motion which is com-

pletely defined by the nature of the mechanism, as has been sufficiently

explained already ;
and it follows, therefore, that they must have given

axoids, the nature of which completely defines the motion of the pieces.

In every kinematic chain there are as many sets of axoids as there

are sets of two pieces, and these surfaces are the same for all the

mechanisms derived from that chain by inversion. These remarks

apply even when the motion is not plane, as will be seen further on.

First. Take the case of a pair of spur wheels AB'vn. gear, F being the

frame-link (Fig. 76), forming the three-link chain considered in the last

chapter. Let the pitch circles touch at the pitch point t, then, as before

explained, those circles roll together without slipping, and therefore

Fi ?6
must themselves be the centrodes,

the pitch surfaces being the axoids.

Hence the point t is the instantaneous

centre of J?'s motion relatively to A,

or A's motion relatively to B. We
shall return to this immediately, but

for the present merely remark that

if the centres of A and B move up to

each other, the pitch circles reduce to points, and the axoids become

coincident straight lines, the point / is fixed in A and B, the two pieces

then become a turning pair. In lower pairing, then, the axoids are

coincident straight lines, which are at infinity if the pair be sliding.

The case of a screw pair in which the motion is not plane will be

referred to further on.

Secondly. Take the case of a double-slider chain
;
there are here four
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pieces which may be taken two and two in six ways ;
there are, there-

fore, six sets of axoids. Four of these, however, are only the four

axes of the four lower pairs, and it remains to determine the other two.

In Fig. 77 the blocks A, C are connected by a link B and slide on a

piece D along lines OX, OY, forming the chain described fully in a

former chapter. The blocks A, C form two turning pairs with the link

B, and the velocities of these pairs are equal because B makes angles

with OX, OY, the difference Fig.??. ^-- --^

of which is constant. The

centrodes for A, C are

therefore equal circles, the

centres of which are the

centres of A, C. Since A
and C rotate in the same

direction these circles must

be of infinite size, and to

represent them in the fig-

ure equal circles of finite

size are employed which give the same motion in opposite directions.

Next, to find the centrodes of B, D, through those centres draw perpen
diculars to OX, OY to meet in Z, then Z is the instantaneous centre for

B when D is fixed, and for D when B is fixed. First, suppose B fixed,

then the angle at Z is the supplement of the angle at 0, and is there-

fore constant, so that Z traces out an arc of a fixed circle, of which OZ
is the diameter. Next, suppose D fixed, then, since OZ is constant, Z
traces out a circle, the centre of which is

0. Thus the centrodes of B, D are two

circles, one half the diameter of the other; .

the large circle is fixed to D, and the small ;

circle to B.

Thirdly. In the four-link chain A, B,

C, D, consisting of four turning pairs with

parallel axes, the sections of which are

represented by the points a, b, c, d (Fig.

78) ; suppose opposite links equal, but

set so as not to be parallel. This is the / ; \\

case referred to already (page 112) as
/

V'

"
anti-parallel

"
cranks.

Joining ac, bd by the dotted lines in the

figure, the quadrilateral abdc has two sides and two diagonals equal,

hence the triangles bac, cda must be equal in every respect, so that bd

is parallel to ac. Hence if k be the intersection of the diagonals, and t

Fig.78.

\! /

At
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the intersection of the sides, ak = ck : bk = dk : bt = dt, from which it

appears that ak + bk = ck + kd = ad = be

and at-dt = ct-bt = ab = cd.

Suppose, now, A to move while C is fixed, then a moves perpendicular

to ad, and b moves perpendicular to be, so that k must be the instan-

taneous centre for the motion of A relatively to C, or for that of C

relatively to A. Now, in the first case, it appears from what has been

said that k traces out an ellipse, of which c and d are foci, while, in the

second, it traces out an equal ellipse, of which a and b are foci. Thus

the centrodes for the motion of A and C are equal ellipses, as shown in

the diagram. In like manner the centrodes for the motion of B and D
are the equal hyperbolae traced out by the point t.

The four other pairs of centrodes are the points a, b, c, d, which are

the centres of motion of the four turning pairs.

81. Profiles for given Centrodes. Any given motion of one piece

relatively to another may be produced in an infinite number of ways.

One way of doing this is by rolling contact, for if the motion is given

the centrodes will be given, and by forming the profiles so as to repre-

sent the centrodes, and applying forces to press the pieces together and

cause them to roll on one another without slipping, the given motion

may be produced. But if slipping be permitted, the same motion may
be produced, at least theoretically, by assuming any form whatever for

one profile and properly determining the other.

(1) Let a given profile be attached to the moving piece, and as it

rolls into different positions let that profile be traced on paper attached

to the fixed piece. If the positions be taken near enough together, a

curve may be drawn through their ultimate intersections which will

envelop them all, and if a profile formed to that envelope be attached

to the fixed piece, the two pieces will fit one another and yet be capable

of relative motion of the prescribed kind.

(2) To apply the foregoing process a model would be necessary, but

by a simple modification, a geo-

metrical construction may be

obtained. In Fig. 79, A and B
are the pieces, which move so

that the centrodes are 0, 1, 2,

3..., 0', V, 2', 3'..., curves

which are shown touching at

the point t. P is a profile of

given form attached to B
;

it is

required to find a profile attached to A, which will always remain in
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contact with f,
and so be capable of moving it in the required way by

simple contact.

Divide the centrode of B into arcs of equal length, starting from 0,

the point where P intersects it, and let 2 be the point of contact at

the instant considered. Divide the centrode of A into equal arcs,

stepping from 2 in both directions, then 0', 1', 3', 4'... are points in

A's centrode, which correspond to 0, 1, 3, 4 ... in B's centrode, being

during the motion points of contact in succession. From 1, 2, 3...

drop normals on to the curve P, and with these normals as radii

trace circular arcs with centres 1', 2', 3' ...
;
the envelope of these arcs

must be the required profile P'.

(3) Instead of assuming one profile and determining the other to

suit it, it is generally more convenient to employ some method of

determining pairs of profiles which satisfy the required conditions.

In Fig. SO A, B are the centrodes as before, C is a third curve, theo-

retically of any form, which rolls on A and B, always touching these

curves at their point of contact /. P is a tracing point which is

attached to C and traces out two curves during the motion, one on

A, the other on B. First, suppose A
fixed, then, since t is the instantaneous f^\ Fir -80

centre of the motion of (7, Pt must be

normal to the curve NP traced out on

A. Similarly, supposing B fixed, Pt

is normal to the curve MP traced out

on B. Thus the two curves touch one

another at the point P, and therefore may be taken as profiles which

will give the required motion. If A, B, C be circles, this construc-

tion becomes that already considered when discussing the form of

teeth for a wheel. This and the preceding method show clearly that

the condition which the two profiles must always satisfy is that the

common normal at the point of contact must always pass through the

pitch point as already proved otherwise for the special case of wheel

teeth.

Not every pair of curves which satisfy the geometrical conditions

could actually be used as profiles, either for centrodes, or, in the cases

just mentioned, to give a required motion, because there is nothing
in the geometrical construction which excludes an interpenetration

which would not be physically possible in the areas of which the

profiles form the boundaries, but an infinite variety of forms can

be found for given centrodes which might be so used.

In all cases in which the centrodes are known for the relative

motion of two pieces, one of which is fixed, the velocity-ratio of
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any two points (a, b) in the moving piece is known for each position

of the pieces. For, joining the two points to the instantaneous centre

0, the ratio of the distances Oa, Ob must be the velocity-ratio in

question, since the moving piece is for the moment turning about 0.

It is easily seen that the triangle Oab is similar to the triangle of

velocities constructed as in Art. 49, p. 100.

82. Centrodes for a Higher Pair Connecting Lower Pairs. Among the

infinite variety of profiles which correspond to given centrodes it is

frequently possible to find some which are closed curves, one completely

surrounding the other. If these curves be used as the external and

internal boundaries of two areas, the two pieces thus formed will fit

one another and be capable of no motion except that of the prescribed

kind without requiring any additional constraint. In Fig. 4, Plate IV.,

a form of the triangular eccentric motion is shown, which has been

occasionally used and which furnishes an example. On reference to

Art. 74 it will be seen that such an eccentric will exactly fit a square
within which it is enclosed, and therefore forms with it a higher pair

which is
"
complete

"
in itself.

Complete higher pairs are very unusual in mechanism, higher pairing

being employed almost exclusively to complete a chain of lower pairs

as in the preceding chapter. It is then generally "incomplete," the

necessary constraint being furnished by the rest of the kinematic chain

to which it belongs, as for example in the triangular eccentric motion

shown in Fig. 3, Plate IV. The general problem in mechanism

is not to connect two pieces in a given way, but to convert

the motion of a given pair into the motion of a different pair

that is to say, to connect two pairs so as to have a prescribed

relative motion. This will be further considered presently, but we
must first return for a moment to a question considered in the last

chapter.

In the three-link chain of Art. 73 we have two lower pairs AC,
EG with axes parallel, connected by simple contact between A and

B at the point P (Fig. 72, p. 152). Draw the common normal PT to

meet ad in T, then when B is fixed the motion of a is perpendicular
to ad, and the motion of P perpendicular to PT, therefore T must

be the instantaneous centre for the motion of A relatively to B.

Let v be the velocity of rubbing at P
; A, A' the angular velocities

of the pairs AC, BC \ further let ad = l and PT= z; then, since B
is fixed and A is rotating round T,

v velocity of a >
,

I

~z

=
aT

=A
'^T'
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Similarly supposing A fixed,

v velocity of d _
~z

=
aT '

from which it appears that

A dT

agree with those obtained in the article cited by a

Fig.81.

results which

different method.

The centrodes in this case, as well as in that of the four-link chain

from which it was derived by reduction, may be traced graphically by

plotting the position of T for a number of positions of the pieces, but

they are known curves only in exceptional cases such as those of

Art. 80, and generally have infinite branches which render their use

inconvenient.

When the point P lies on the line of centres it coincides with T
7

,
and

the velocity of rubbing is zero
;
the centrodes are then no other than

the profiles themselves of A and B. The curves are then said to roll

together : a particular example is that of the equal ellipses of Art. 80

which are not unfrequently used to connect two revolving shafts with

Arariable angular velocity-ratio. In this case the velocity-ratio is the

ratio of the focal distances of the

point of contact, but by properly

determining the profiles it is theo-

retically possible to give any velo-

oity-ratio to the shafts at pleasure.

The question, however, is not one

of much practical interest.

83. Construction of Centres of Cur-

vature of Profiles Willis's Method.

In the four-link chain ABCD shown

in Fig. 81, D is the fixed link and B
the coupling link : a, b, c, d are sec-

tions of the axes of the pairs which

are supposed parallel.

If the coupling link be be pro-

longed to meet the line of centres

ad in the point t, and ab to meet cd

in 0, it appears as in previous cases

that must be the instantaneous centre of B, and that the angular

velocity-ratio of A and C is dt : at. Join Ot, and imagine bt an actual
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prolongation of the bar be, so that t is rigidly connected with it, then

fs motion will be perpendicular to Ot. Suppose now that the propor-
tions of the links are taken so that Ot is perpendicular to bt, then t

moves in the direction of the length of the rod, and the rod therefore

may be imagined to slide through a fixed swivel at t.

This reasoning shows that the levers A and (7, when in this position,

will move for a short interval with uniform angular velocity-ratio,

and the movement of a pair of wheels in gear is thus imitated by a

linkwork mechanism.

Let us now form a reduced chain by omission of the coupling-link,

and we shall be able to solve the important problem of finding a

pair of circular arcs which will serve for the profiles of a pair of teeth

in contact. For this purpose, with centres b and c, strike arcs through

any point p on cbt produced, and let these arcs be rigidly connected

with A and C respectively ;
the coupling-link may now be removed

and A imagined to drive C by direct contact of the arcs. Evidently
wherever p is, the pieces will move for the moment with uniform

angular velocity-ratio and pitch point t. The uniformity, however, is

only momentary, because the position of changes, and to trace the

profiles with accuracy it would be necessary to perform the construction

for a succession of positions of cbt, hence the face and flank of a pair

of teeth in contact cannot be exactly represented by a pair of circular

arcs. When it is sufficiently approximate to do so, the arcs are found

by assuming a mean position for the point p, and the mean value

for the obliquity i, found by experience to give good results. The

method here described was invented by the late Professor Willis, and

the value of i recommended by him was sin" 1
'25, or about 14J, being

about the actual mean value of the obliquity in cycloidal teeth of

good proportions. Also the value of pt was taken by him as half

the pitch, p being then about midway between the pitch point t and

the point of the tooth.

Having made these assumptions, it still remains to fix the position

of the point 0, which may be taken anywhere on a line through t

inclined at 14J to the line of centres. This is done by observing

that must be the same for all wheels D intended to work with a

given wheel A, and that teeth never should be undercut (Art. 70);

that is, c and b must lie on the same side of t. Hence in the smallest

wheel intended to work with A, c is at infinity, so that if d is its

centre, d is parallel to pt, and therefore perpendicular to Ot. The

flank of the tooth in this case becomes a radius d p. The position

of is thus completely determined for all the wheels of a set when the

pitch is given.
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Willis's method is of great theoretical interest, and has consequently

been given here, but the form of teeth obtained is not always suffi-

ciently approximate. It may, therefore, with advantage be replaced

by other methods, as to which the reader is referred to a work by
Professor W. C. Unwin on Machine Design.

84. Sphere Motion. When a body moves about a fixed point it&

motion is completly represented by that of a portion of a spherical

shell of any radius which fits on to a corresponding sphere, and moves

on it just as in the case of plane motion. Everything which has been

said respecting plane motion also applies to sphere motion, but the

axoids are conical instead of cylindrical surfaces, the centrodes

spherical instead of plane curves, and all straight lines are replaced

by great circles of the sphere on which the motion is imagined
to take place. The corresponding crank chains are called " conic

n

crank chains, the axes of the pairs lying on a cone instead of a

cylinder.

85. Screw Motion. In the plane motion of two pieces, endways
motion of the cylindrical axoids is supposed to be prevented by some

suitable means. Let us now remove this restriction and imagine the

axoids to slide endways, while continuing to roll together, the relative

movement will now not be completely defined, but additional constraint

will be required. In the first place take the case of a lower pair in

which the axoids are coincident straight lines
;

if endways sliding be

permitted we obtain an incomplete pair, unless the nature of the

surfaces in contact define the relation between the endways motion

and the rolling motion. In the simple screw pair the two are in

a fixed ratio, in the screw cams of Art. 78 they have a varying ratio.

In every case of non-plane motion with cylindrical axoids, not only
must the axoids be given, but also a connection between the endways

sliding and the motion of rotation.

In the most general case possible the instantaneous axis changes its

direction as in spherical motion, its position as in plane motion, and in

addition there may be an endways sliding. This is expressed by the

rolling and sliding of certain surfaces on one another, which are now
neither cylindrical nor conical. These surfaces are in all cases of the

kind known as "ruled" surfaces, being generated by the motion of a

straight line, along which they touch each other. The surfaces are

still called Axoids, and the line is in the Instantaneous Axis. The

hyperboloidal pitch surfaces for wheels connecting two shafts which

do not intersect are examples of this kind; but for the discussion
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of this question, which is not of very common occurrence, the reader

is referred to the works already cited.

86. Classification of Simple Kinematic Chains. On observing the

action of any mechanism, several of the pieces of which it is con-

structed may be readily distinguished as having functions different

from the rest. These pieces, like the rest, occur in pairs, and may be

described as such, though the pairing is not necessarily kinematic.

First, one or more perform the operations which are the object of the

mechanism
;
these may be called the Working Pairs, as, for example,

the tool and the work in machine tools, the weight raised and the earth

in the hoisting machines. Second, one or more form the source from

which the motion is transmitted, as, for example, the crank handle

and frame of a windlass, the piston and cylinder of a steam engine.

These may be called the Driving Pairs. Thirdly, various sudsidiary

working pairs carry out various operations incidental to the working
of the machine. The object of the mechanism is always to convert

the motion of the driving pairs into that of the working pairs.

The simplest case is that in which the motion has only to be trans-

mitted without alteration; a single pair will then suffice. Thus by
means of a long rod sliding in guides or turning in bearings, a motion

of translation or rotation may be transmitted to a distance only limited

by non-kinematical considerations. By use of flexible elements

among which should be included the flexible shafts recently intro-

duced the direction may be altered at pleasure and any desired

position reached.

If, however, the magnitude of the motion is to be altered, a mechanism

must be employed in which at least one element of the driving and

working pairs is different. The driving pairs are usually kinematic

ower pairs, and the working pairs are so very frequently, and this is why
so many of the simplest and most important mechanisms are examples
of the connection of lower pairs. The peculiar motions of lower pairs

being translation and rotation, a number of mechanisms may be classed

as examples of the conversion of rotation into translation or rotation

and conversely, with uniform or varying directional relation or velocity-

ratio. This is especially the case when, as so frequently happens, the

driving and working pairs have a common link which is fixed.

It has been shown, however, that many apparently different me-

chanisms are in reality closely connected, being derived from the same

kinematic chain. Mechanisms are therefore to be classed according to

the kinematic chains to which they belong. The number of simple
chains actually employed in mechanism is limited by the preceding
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considerations to those already described, which are ranged by
Reuleaux in the following classes, the names of which are derived from

the most important piece in some example of common occurrence :

(1) Crank chains.

(2) Screw chains.

(3) Pulley chains.

(4) Wheel chains.

(5) Cam chains.

(6) Ratchet chains.

In the first two are included all combinations of sliding, turning, and

screw pairs ;
in the third, all cases where tension or pressure elements

are employed ; in the fourth, all cases of connection by contact where

the directional relation remains the same
;
in the fifth, all cases where

it varies
;
while in the last, all combinations are included where, by

action of a shifting piece, the law of motion is periodically varied.

87- Compound Kinematic Chains. In a complete machine, the

motions required are generally too complex to be carried out by a

single kinematic chain of this simple kind
;

it is necessary to combine

together a number of such chains, and we conclude this part of the

subject with some general remarks on such combinations which may all

be regarded as compound chains derived from two or more simple
chains by union of their links.

(1) From any two closed chains a third may be derived by uniting
two links. The links must have the same relative motion, for otherwise

the chains would lock each other, and they generally form a pair.

This is one of the commonest of all combinations. When two

machines are driven from the same shaft, or when the same shaft is

driven by two separate engines, we have examples in which the driving

pairs or the working pairs are common, but the mechanism are other-

wise independent. Further, in every complete machine we find, in

addition to the principal chain which does the work, a number of

auxiliary chains which carry out various operations necessary to the

Avorking of the machine. Thus, in the steam engine, besides the

slider-crank or other mechanism which turns the crank, we have the

valve motion which governs the distribution of steam, the air pump
motion which produces the vacuum in the condenser, and frequently
others as well. Each of these auxiliary mechanisms has a pair in

common with the principal chain which serves as a driving pair, but

the chains are otherwise independent. Again, in trains of mechanism

which, as previously remarked (page 139), are frequently simple
chains augmented for non-kinematical reasons, a number of such
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chains are arranged so that the working pair of one chain is the

driving pair of the next in succession. A train of wheels or the

mechanism of a beam engine are examples already referred to, in

which one link is common to all the separate chains, but cases occur

in which this is not so, as, for example, the well-known Lazy Tongs.
The case here considered is that where the movements of various

driving pairs have to be transmitted to various working pairs, but no

new motion is required in a working pair other than could be produced

by a simple chain. All such combinations may be called Trains, and

may be divided into "converging," "diverging," and "transmitting"
trains.

(2) If two closed chains have only one link common they are

completely independent, like two machines standing on the same floor,

but disconnected. It might, therefore, be supposed that nothing was

obtained that was new. In fact, however, this is a combination which

is as common as the preceding, being employed to give a motion to

a working pair which is too complex to be produced by simpler

means, or which requires to be varied at pleasure. The working pair

consists of two elements, one of which is supplied by one chain, the

other by the other, and the motion of the pair is thus a combination

of the motions of the two independent chains. Completely new motions

are obtained in this way, and they may be varied at pleasure by altera

tion of either or both of the primary motions.

Take, for example, the common planing machine. The working pair

consists of the table upon which the work is mounted, and the tool.

To the first a reciprocating movement is communicated by means of a

suitable kinematic chain connecting it with the driving shaft. The

other is mounted on a slide rest, forming an element of a screw chain

which gives it a horizontal movement. This chain has one link in

common with the principal chain, but is otherwise independent. In

the ordinary working of the machine this chain is locked by friction,

except at the end of each reciprocating movement of the table when it

moves to take the next cut. The tool thus traces out a complete plane

surface.

In this example the common link is fixed, but this need not be the

case, and in fact in the planing machine a third independent chain is

added to adjust the tool vertically, the tool being mounted on a vertical

slide having an independent movement. Also, one element of the

working pair may be fixed, and both movements given to the other,

which is common to both chains. Double and treble chains of this

kind occur whenever it is necessary to move the elements of the

working pair into all possible positions. In cranes of all kinds we
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find a treble movement, one to raise and lower the jib, a second to

swing the jib round, and a third to raise and lower the load. In

traversing cranes the three movements are rectangular, as in the

planing machine. In either case we find the methods employed by
mathematicians to define the position of a point in space by rectangular

or polar co-ordinates exactly imitated by the mechanism.

The elements of the working pair need not be wholly disconnected

as we have hitherto supposed, they may form an incomplete kinematic

pair. Thus if the axoids be cylindrical, endways motion may still

be possible and may be given by an independent chain. A common

-example is a drilling machine, the working pair in which consists of a

table on which the work is mounted, and a spindle carrying the drill

which rotates and at the same time descends as the hole is drilled
;

the two movements may be quite independent, the one proceeding
from a driving shaft, the other operated by the workman.

A similar combination is employed when a train is varied by

shifting one of the links. Fig. 5, Plate III. (p. 141), represents a case

of this kind. The wheel C is mounted on a shaft which can be

shifted endways by an independent mechanism. The shifting of belts

(Art. 61, p. 133) is another example.

Again, the movements of the working pieces may be connected by
a transmitting train connecting the chains which produce them. In

the self acting feeds of planing and shaping machines the connection

is intermittent, but it may also be continuous, and we then have a

fertile means of producing complex movements variable at pleasure.

In a screw-cutting lathe the tool is mounted on a slide rest moved

by a screw, and the work is attached to a rotating mandrel. Con-

necting these independent chains by a train of "
change

"
wheels, the

tool cuts a screw of any pitch.

The principle of all combinations of this kind is the closure of an

incomplete or disconnected pair by independent chains. We may
describe them as Multiple Chains.

(3) If two closed chains have two or more pairs common, they
must be of the same kind, for otherwise the pairs would not have

the same relative motion, and the chains would lock each other.

The differential mechanisms, examples of which have been already

given, are cases of this kind. Thus in the differential pulley (Fig. 62,

p. 130), if A and C be disconnected we have two simple pulley

chains with common movable pulley B and separate axles. Either

of these might be operated independently. In the actual mechanism

A and C are united, and the movement of B is the difference of the

movements due to each separate chain.



174 KINEMATICS OF MACHINES. [PART n.

Complex examples of similar combinations occur in the epicyclic

mechanisms. Fig. 82 (p. 175) shows a combination of two of the

differential trains described on p. 139. (7, 0' are wheels turning
about the same axis in the frame link A and united : E, E' are also

united, but have a different frame-link A'. Both gear with the

wheels B, D, which are disconnected, but turn on an axis common
to A and A. On comparing this with Fig. 65 it will be seen that

two trains have been compounded by uniting the wheels J3, D, which

are common to both. If now one of the frame-links, say A', is fixed,

and EE' be rotated, the other frame-link A will rotate with a velocity

which can be found on the principles of the articles cited. For

simplicity, EE' have been supposed to gear directly with B, D, but

they may also gear with wheels of other diameters fixed to B, D,

or the wheels may be replaced by a different train of mechanism,

all that is necessary being that the motions of the pairs BA', DA'

should be connected.

Many examples of this mechanism may be found especially in. the case where C, Gr

are equal and the train reduces to three bevel wheels (p. 140). In traction engines

and tricycles, for instance, a mechanism of this kind is sometimes employed to facilitate

turning. A' is then the frame of the machine, B and D are equal bevel wheels attached

to the axle, which is divided into halves, each connected with one of the driving wheels.

If now the motive power be applied to A, B and D will rotate, but not necessarily with

the same velocity, and the machine may therefore be guided in a curve by the front

wheel without the slipping which would occur if the driving wheels were fixed to an

undivided axle.

Combinations of this class are not essentially different from multiple

chains in which the elementary chains are connected by a train, as

described above. They may be called Compound Trains
;
all consisting

of simple trains compounded in various ways, either for non kinematical

reasons or to enable the train to be varied at pleasure.

(4) All the preceding combinations are formed of simple closed

chains united together in various ways ;
no new chain is obtained, but

merely an aggregation of forms already known. Certain mechanisms,

however, occur, which, if taken to pieces by separation of united links,

are found to contain one or more chains which are not closed.

Take for simplicity a common slider-crank mechanism, and imagine
the crank pin, instead of being fixed to the crank, to be mounted on a

slide so as to be free to move to and from the centre. The chain

is now augmented by an additional sliding pair, and is no longer

closed, so that it cannot be used as a mechanism. If, however, we

introduce a screw, which moves the slide, we may lock the sliding

pair in any position and thus obtain a closed chain, one link of which

can be varied at pleasure. This mechanism is used in practice to
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obtain a varying stroke in a sliding piece. It is often required to

make the stroke increase or diminish at each revolution of the crank.

A wheel attached to the screw then comes in contact with a pro-

Fig.82. Fig.83.

jecting piece and moves through a small space, the screw chain being

locked by friction during the rest of the revolution. The mechanism

thus varies at intervals its own law of motion.

By a suitable transmitting train, however, a continuous variation

may be produced, and the combination then furnishes us with an

entirely new mechanism. An important example is the wheel crank

chain (Fig. 83), formed by combining a simple wheel chain with an

open crank chain of five links. A number of mechanisms may be

derived from this chain by inversion, but for particulars the reader is

referred to Reuleaux's work already cited.

Another example is shown in Fig. 6, Plate II. (p. Ill), which

represents a mechanism employed in sewing machines to give two

strokes to a sliding piece for one revolution of a shaft. We have

here a closed double slider chain combined with a single slider

rendered incomplete by omission of the crank pin. Combinations of

this class are called by Reuleaux "true" compound chains to dis-

tinguish them from the preceding classes, in which no new mechanism

results from the combination. Perhaps the words "higher" and
" lower " would more clearly express the meaning.
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PART III-DYNAMICS OF MACHINES.

CHAPTER VIIL

PKINCIPLE OF WORK.

SECTION L BALANCED FORCES (STATICS).

88. Preliminary Explanations. Definition of Work. If the principal

object of a piece of mechanism be to do some kind of work it becomes

a machine. Many mechanisms as, for example, clocks and watches

are not, properly speaking, machines
;
for though work is done during

their action, yet the object of the mechanism is not the doing of the

work, but the measurement of time or some similar operation. Even

in these cases, however, the forces in action cannot in general be

excluded from consideration, and therefore in all mechanism a study of

the manner in which forces are transmitted and modified is essential.

This part of the subject is called the Dynamics of Machines.

A body can in general only be moved into a different position or

be changed in form or size by overcoming resistances which oppose
the change. This process is called doing WORK, and the amount of

work is measured by the resistance multiplied by the space through
which it is overcome. If there be many resistances, the total work

done is the sum of that done in overcoming each resistance separately.

Consider the case of a mass of matter raised vertically. Here the

resistance is due to the action of gravity, which is overcome by some

external force, and the work done is simply the product of the resisting

force and the height through which the mass is raised. The resisting

force is commonly described as the "weight" of the mass, and is

measured by comparing it with that of a certain quantity of matter,

the weight of which is taken as a unit for measuring forces. This

mode of measurement has the disadvantage of giving a different unit

for different points on the earth's surface, because the force of gravity
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varies according to the position of the point, and, for scientific

purposes, therefore, force is measured by the velocity which, when

unbalanced, it produces in a given quantity of matter. In practical

applications, however, gravitation measure is preferable, especially as

the variation is very small, and the measure may be made precise

when necessary by specifying the place on the earth's surface at which

our operations are taking place. As already stated (p. 3) the unit

of force employed in Britain is the weight of a piece of matter called

a pound, while the unit of space is generally one foot, so that the unit

of work is one pound raised through one foot, or, as it is generally

called, 1 foot-pound. Other units, however, such as, for example,

"foot-tons," may also be employed for special purposes.

In the United States of America British units are chiefly used,

but in other countries metric measures are universally adopted. In

the metric system the units of space and force employed by engineers

are the metre and the kilogramme, the derived unit of work being the

kilogrammetre. These units are connected with the British system

(see also p. 92) by the relation

One metre = 3*2809 feet.

One kilogramme = 2 -2046 pounds.

One kilogrammetre = 7 -2331 foot-pounds.

The question of measurement will be further considered in a later

chapter (Ch. X.).

89. Oblique Resistance. In the case just considered, the resistance

is directly opposed to the movement which is taking place; if this

be not so, it must be resolved into two components, one along and the

other perpendicular to the direction of motion. The second of these

is balanced by a constraint to which the motion is subject or by the

opposition which the inertia of the body offers to a change in its

direction at any finite rate
;

it is the first alone in overcoming which

work is done. In Fig. 84 let R be a resistance applied at a point

A which moves through a distance AB in a direction inclined at an

angle 6 to the direction of the resistance, then the work done is

E . cos 6 . AB, but if BN be drawn perpendicular to the direction of

R to meet that direction in N
t

AN=AB.cos0,
and therefore the work done is E. AN.
Now AN is the distance through which A has moved in the direction

of the resistance, so we obtain another rule for estimating the work

done against an oblique resistance. It is equal to the product of the

resistance into the distance moved in the direction of the resistance.
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Suppose, for example, that a weight is raised, but that instead of

being lifted vertically, it is moved in any curved path there being no

friction or other resistance than that due to gravity.

Considering any small portion AB of the path (Fig. 85), the resist-

ance being always vertical, the work done is W'.AN. So the total

work of raising the weight is W . ^AN or W. h, which is independent

of the path described by the lifted weight, but depends simply on the

height through which the weight is raised.

Fig.84.

Fig.85.

M ! ^^
III

R.cos pw]

R

If there are a number of weights, each of them raised through
different heights, the total work done in raising all the weights is

the sum of the works done in raising each weight separately ;
and the

direct method of finding the total work is to add the separate results

for each weight. But it may be determined by another method thus

Let Wv Wy W
z

etc. be a number of weights which are at heights

y\i y& y* e^c - above a given datum plane. Now suppose they are raised

so that they are at heights Yv Y2 ,
Y

3
etc. above the same plane. The

total work done in raising the weights will be the sum of the products,

Now suppose the centres of gravity g and G for the initial and final

positions of the weights to be at heights y and Y above the datum

plane.

The centres of gravity g and G are such that if all the weights were

collected at either centre, the moment of the collected weights about

the plane is equal to the sum of the moments of each separate weight,

before being collected, about the same plane. This is mathematically

expressed thus

r. = w\y\ + + w + etc -

/F
1
+A/

, ^ /F^+Jand Y= -i-^-W
\ +

By subtracting we have

Y_ _tri (Y1 -yl) + fr
2 (

^i+
hence

Total work =
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That is to say, the total work of raising a number of weights is

equal to the product of the sum of the weights by the vertical

displacement of the centre of gravity of the weights.

Fig. 86.

90. Variable Resistance. Let us next consider the work required to

be done to overcome a variable resistance. The whole distance through
which the resistance is overcome must then be divided into a number

of parts, each being so small that, for that small space, the magnitude
of the resistance may be treated as sensibly uniform. The work of

overcoming the resistance through
each of the small spaces being thus

found, the total work will be the

sum. The estimation can generally

be most conveniently performed by
a graphical construction. We will,

for simplicity, take the case in which

the direction of action of the resist-

ance is that of the line of motion. Suppose a body moved from A
to B against a resistance the magnitude of which varies from point

to point in such a way that it is represented by the ordinates of the

curve standing above AB (Fig. 86). For the small distance MN the

resistance will vary slightly, but will have a mean value represented

by SM or KN suppose, and the work of overcoming the resistance

through the small space MN is MN x SM or is exactly repre-

sented by the area of the curve standing above MN ;
and so for

any other small portion of the displacement of the body. Thus the

total work of overcoming the resistance through AB is represented

by the whole area ALTB = mea,n resistance JixAB.
The curve LST is called a curve of resistance. Two important

special cases may be mentioned, both of which frequently occur.

Fig.87a.
Fig.87b.

X A N B

(1) Let the resistance vary uniformly. This is the case of a per-

fectly elastic spring which is compressed, as will be further explained
hereafter. The curve of resistance is a straight line AST (Fig. 87a)
where AB is the compression of the spring, BT the corresponding
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compressing force 72r During the compression R is at first zero and

gradually increases to R
l ,

its value at any intermediate point being

graphically represented by the ordinate SN corresponding to the

compression AN. The work done is the area of the triangle, that

is %Rl
. AB, and the mean resistance is consequently ^Rl

.

(2) Let the resistance be inversely proportional to the distance of

the point of application from a given point (Fig. 87b).

This applies to many cases of the compression of air and other

elastic fluids. In the figure NS=R is the resistance and ON.NS is

constant, so that the curve of resistance JST is an hyperbola. Let

the ratio OA : OB be called r, this is called the ratio of compression :

then from the geometry of the hyperbola we know that the area of

the curve is equal to the constant rectangle ON.NS multiplied by

loge r, the logarithm being Napierian, or, as it is often called,

"
hyperbolic

"
from this property of the hyperbola. If ON be denoted

by V this gives a formula in frequent use for the work done in this

kind of compression.

Work done = RFloge r.

91. Resistance to Rotation. Stability of a Vessel. It often happens
that we have to consider the resistance of a body to rotation about

an axis. Let A (Fig. 88) be the Fig.ss.

point of application of a force P
which resists the rotation of a body
about an axis C perpendicular to the

plane of the paper. If the resistance

at A be not in the plane of rotation

P must be supposed to be the com-

ponent in that plane ;
the other

component will be parallel to the

axis of rotation and need not be considered. Let B be the angle it

makes with the direction of A's motion, then R = P.cos@ is the

effective resistance, the other component of P merely producing

pressure on the axis. As the body turns through an angle i the

resistance R will be overcome through the arc AA ', and, assuming in

the first instance R constant, the work done will be

/A

/

But, drooping a perpendicular ON on P's direction,

CN= CA . cos 6,

where M is the moment of the resistance about the axis of rotation.
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Fig.SQa.

If there be many resistances then the same formula will hold if M be

understood to mean the total moment of resistance.

We can readily extend this to the case

of a variable moment by the graphical

process already described for a linear

resistance, the base of the diagram now

representing the angles turned through
and the ordinates the corresponding

moments. As an example take the

case of a heavy pendulum swinging
about an axis (Fig. 89a), let g be the

centre of gravity, Og = l,
and let it be

swung through the angle i from the vertical, then the moment of

resistance is

Fig.89b.

In Fig. 89b draw a curve on the base AB such that the horizontal

ordinate AN at every point represents the angle i on the same scale

that AB represents two right angles,

while the vertical ordinate represents M.
This curve will be the curve of resistance,

and in the present case is a curve of

sines of which the maximum ordinate

LE is Wl. The angles being supposed
A

reckoned in circular measure so that ir, the area of the diagram
from A up to any point S will represent the work done. We can,

however, in this example find this work otherwise, for g rises through
the height NZ, and therefore if U be the work

T= 0^(1 -cost).

By use of the integral calculus it can be verified that this is also

the value of the area ASN.
It is not necessary that the axis of rotation should be fixed in

estimating the work done during rotation, provided that the resistance

be a couple, for then there is no pressure on the axis. An important

example is that of a vessel floating in the water and steadily heeled

over by the action of a couple M produced by external agency, or

more frequently by shifting the weights on board in such a way
that the displacement and trim remain constant. Then for each

angle of heel this couple has a certain definite value which can be

found either by calculation or by observation of the shift of the

weights. The moment of resistance which is equal and opposite to

M is called the Statical Stability of the vessel, and the curve of

resistance drawn as above described is called the Curve of Stability.
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According to the principles of this article the area ANS of the

curve represents the work done in heeling the vessel over. This is

called the Dynamical Stability, and as is shown elsewhere (see the

chapter on Impact in Part IV.) represents the resistance to heeling

over to that angle by a sudden gust.

For small angles of heel not exceeding 10, or at most 15, the

statical stability (S) is given by the equation,

where W is the displacement of the vessel and ra is the " metacentric

height," that is, the height of the "
metacentre," through which the

upward action of the buoyancy of the vessel passes at small angles

of heel, above the centre of gravity. If this equation held good at

large angles of heel the stability would increase to a maximum
value Wm when # = 90, and would not vanish until 0=180. Such

a curve is very exceptional, the maximum stability being in general

much less than Wm, and occurring at a much smaller angle, while

the vessel capsizes at an angle much less than 180, known as the

Angle of Vanishing Stability. An important typical case is when

the actual curve is a reduced copy of a curve of sines given by the

equation

the maximum stability being now PF'm/kj and the angle of vanishing

stability irjk. The stability is then the same as that of a heavy

pendulum of length m/k swinging through k times the actual angle

of heel of the vessel, m being the metacentric height as before.

The dynamic stability is evidently l/k
ttl that of the pendulum, and

consequently is given by

a result which may also be reached by use of the integral calculus.

92. Internal and External Work. In all that precedes, the position

of a body has been changed by overcoming external resistances. All

forces, however, arise from the mutual action between two bodies or

between two parts of the same body, and every change of position

must be with reference to some other body which is regarded as fixed.

Work, then, consists in a change of relative position of two bodies

notwithstanding a mutual action between the two which opposes the

change. In raising weights the second body is the earth, but the pair

of bodies may be such as occur in mechanism, and the mutual action

between the two may be due to springs or an elastic fluid, or to the
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resistance of some body to separation into parts. In scissors, nut-

crackers, bellows, and other similar instruments, the elements of the

pair are exactly alike and their existence is recognized in popular

language.

In reckoning the work done either body may be regarded as fixed,

the result must be the same and will be unaffected by any movement of

the pieces common to both
;
thus when air is compressed in a cylinder

the work done depends on the pressure of the air and the amount of

compression, not on the movements of the cylinder within which the

air is contained. In other words, the motion to be considered is the

motion of the pair as defined in Art. 46, p. 94, and the resistances

consist exclusively of forces opposing this motion.

In every case where we have to do with a number of pieces connected

in any way, we may distinguish between the resistances due to the

mutual action between the pieces themselves and those due to the

mutual action between the pieces and external bodies. The internal

resistances require work to be done in changing the relative position

of the pieces themselves, while the external resistances require work to

be done in changing the position of each piece relatively to external

bodies. These two kinds of work are called Internal Work and

External Work respectively. In two cases we can at once foresee

that the internal work will be zero, first when the pieces as dis-

connected, secondly when they are rigidly connected. Thus, for

example, if a heavy mass of matter be raised, we need only consider

the rise of the centre of gravity (Art. 89) if the mass be rigid ;

but if not, any change of form which occurs ought to be taken into

account. In raising ordinary solid bodies and masses of earth the

internal work may usually be disregarded.

93. Energy. Principle of Work. Hitherto we have been speaking of

the resistance which is being overcome during the process of doing work,

let us now fix our attention on the effort which overcomes the resistance.

The forces arising from the mutual action between a pair of bodies,

when not purely passive like the normal pressure between two surfaces

in contact, are of two kinds. The first always oppose the motion of the

pair ;
in other words, they are always resistances. Friction between two

surfaces is the simplest example of this, and hence such actions are

called Frictional Resistances. The second, on the other hand, promote
or oppose the motion of the pair according to the direction in which

the motion is taking place, so that a resistance becomes an effort when

the direction of motion is reversed. Such actions are conveniently

described as Reversible
;
and systems of bodies, in which they occur,
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possess, when the parts are suitably disposed, the power of doing work.

This power is called ENERGY. As examples of bodies possessing

energy may be taken a raised weight, a compressed spring, or steam

of high pressure. Change of velocity in a moving body likewise gives

rise to efforts and resistances, but this is a matter for subsequent

consideration. For the present we suppose all bodies with which we

have to do to be in a state of uniform motion, or to move so slowly

and steadily that no sensible action of this kind can arise.

Energy is measured by the quantity of work which it is capable of

doing, and the process called doing work may also be described as the

exertion or expenditure of energy, so that we write

Energy exerted = Work done.

If the effort which is being exerted and the resistance which is being

overcome be applied to the elements of the same lower pair, as when a

weight is lifted vertically or a spring wound up, the effort and the resist-

ance are equal, and the equation shows that the energy exerted by an

effort is the product of the effort and the space through which it is

exerted. Thus all the examples given above of the doing of work will

also serve as examples of the exertion of energy simply by supposing
the direction of motion reversed. In short, the exertion of energy and

the doing of work are merely different aspects of the same process.

In this case the effort and the resistance may be regarded as applied

at the same point, but the equation has a much wider application

than this, for it is equally true if the points of application be different,

provided only that they are rigidly connected. Thus, for example, if

we dig in the ground, the energy we exert at the handle of the spade
is if the spade be perfectly rigid exactly equal to the work done at

the blade. This can be shown to be a necessary consequence of the

forces we are considering being balanced, and the equation may be

regarded as a concise statement of the conditions of equilibrium of

forces applied to a rigid body. It is preferable, however, for our

purposes to regard it as the simplest case of a fundamental mechanical

principle continually verified by experience. This principle may be

called the PRINCIPLE OF WORK.
We have now a means of transferring the power of doing work, that

is to say, energy from one place to another; evidently we are not

restricted to one piece, as in the case of the spade. We may make use

of a series of pieces through which energy may be transferred from

piece to piece in succession : and if there were no frictional resistances

to the relative motion of the pieces, there would be no loss of energy
in the process. Thus the principle of work is true when the points of

application of the effort and the resistance are mechanically connected
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in any way. Frictional resistances however absorb a portion of the

energy whenever any relative motion occurs which they tend to prevent,
and therefore a certain loss always accompanies the transmission of

energy. Nevertheless the principle of work still holds good if over-

coming friction be reckoned as part of the work done.

It may here be remarked that though frictional resistances are never

a source of energy, yet friction may, like normal pressure between

surfaces, transmit energy, and hence, in cases where one only of the

bodies between which it is exerted belong to the set of bodies we are

considering, may be an effort by means of which work is done on the

set. Thus, for example, in the case of a shaft driven by a belt, the

whole power of the engine is transmitted by friction-closure between

the belt and the pulleys ;
and if we consider the shaft alone apart from

the rest of the mechanism, the friction may be regarded as the effort

which drives the shaft. We cannot however in such cases properly

speak of the friction as exerting energy ;
the source of energy is

the steam, or other motive power, and the friction merely transmits

it in the same way as the pressure between a connecting rod head and

the crank pin transmits energy to the crank shaft. Nevertheless in

both of these cases the phrase "energy exerted" may be used con-

veniently, though
"
energy transmitted

"
would be more precise.

If a piece of material through which energy is transmitted yield

under stress applied to it, as in fact it always does, the energy exerted

will not be equal to the work done. Either the change of relative

position of the several parts of the piece will require work to be

done in order to overcome the mutual actions between the parts

which resist the change, or, conversely, those mutual actions exert

energy during the change. In the first case the work is done at the

expense of the energy transmitted
;
in the second the piece of material

is a source of energy which increases the energy transmitted. In

perfectly elastic material the mutual actions are reversible, and any

energy exerted in overcoming them is stored up in the piece and

recovered when the piece resumes its original form, as in the case

of a watch spring. (Compare Art. 98.)

94. Machines. A mechanism becomes a machine if we connect

together two of its elements by a link capable of changing its

form or dimensions, and so moving the mechanism, notwithstanding

a resistance applied by a similar link connecting two other elements.

In compound mechanisms some or all of the component simple

mechanisms may be distinct machines, as will be seen farther on.

The elements connected may be called the "driving pair" and the
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"working pair," and these pairs often, though by no means always,

have one element common, namely the frame-link of the mechanism.

The driving-link is the source of energy. As examples, we may take

steam which connects the piston and cylinder which form the driving

pair in a steam engine, or gravity which, as in Art. 62, is to be

conceived replaced by a link exerting the same effort. The working
link is gravity in cranes and other hoisting machines, or a piece of

material the deformation of which is the object of the machine, as

in the case of machine tools.

In addition to the driving and the working links, the force of

gravity acts on all the parts of the machine, and frictional resist-

ances have to be overcome ; but these are matters for subsequent
consideration.

The driving and working pairs are very frequently kinematic pairs

of the lower class. Let us suppose them in the first instance sliding

pairs. Let the driving pair move through a space x, then the working

pair will move through a space y, which is in a certain definite propor-

tion to x depending on the nature of the mechanism. Let P be the

driving effort, which, by taking x small enough, can be made as nearly

uniform as we please ;
and let R be the resistance opposing the motion

of the working pair, then

Energy exerted = Px
;
Work done = Ry,

and these must be equal, therefore

P _ y _ Velocity of Working Pair

R~ x~ Velocity of Driving Pair'

from which it appears that the ratio of the effort to the resistance, or as

we may briefly call it, the
" force ratio," is the reciprocal of the velocity-

ratio of the driving and working pairs. In works on mechanics this is

also known as the Principle of Virtual Velocities.

If the pairs be turning instead of sliding pairs, then the effort and
resistance are moments, and the velocities will be angular ;

and if one

pair be sliding, the other turning, a suitable " radius of reference
"

must be selected (p. 94) to compare the motions and the forces, but

the same principle holds good.

In the simplest machines, known frequently as the "mechanical

powers,
" we have a 2 or 3-linked chain, so that the driving pair and

working pair are identical or very closely connected. But they may
belong to two or more distinct machines connected by a long train

of mechanism and may have no common link. We are not then

restricted to the consideration of the whole process of transmission
;

any intermediate pair upon which an effort or a resistance is being
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Fig.90.

exerted, either directly or by transmission, may be regarded as a

driving or a working pair in applying the principle. In all cases

it must be carefully remembered that the effort and the resistance

arise from the mutual action between the elements, each consisting

of two equal and opposite forces, as will be

further described in a later chapter (Ch. XL).
Either of these as before measures the magni-
tude of the action opposing or promoting the

motion of the pair.

95. Verification of the Principle of Work in

Special Examples. We will now take some

examples to illustrate and verify the principle

of work, neglecting friction.

(1) Take the common wheel and axle.

Suppose P to be just sufficient to lift the

weight W, so that the two forces exactly

balance one another. Now let P descend

through the distance y (Fig. 90), and W rise

through the corresponding distance x.

As P falls it is said to exert energy. Energy exerted = Py. This is

employed in overcoming the resistance to the rise of the weight W.

Work done = Wx. The principle of work asserts that Energy exerted

= Work done, that is, Py = Wx.

Suppose the wheel and axle to turn through the angle 0, then //
= bO

and x = aO. Then, in order that the weights P arid W may statically

balance one another, Pb = Wa from which it follows that Py = Wx,

verifying the principle of work.

Also, we may write,

where v, ^"are the velocities of P, W respectively, thus showing that

the force-ratio is the reciprocal of the velocity-ratio.

In this simple example both the force-ratio and the velocity-ratio

remain constant throughout the movement. In general this will not

happen.

(2) Take the case of the mechanism of the steam engine for an

example. Neglect friction and let the driving pressure on the piston

be P. A thrust which we will call S will be produced along the-

connecting rod and transmitted to the crank pin as shown in Fig. 91.

At the crank pin this force S may be resolved into two components,.
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one acting along the crank arm and the other, R, perpendicularly to it.

The last alone will tend to turn the crank, the other component

producing only a pressure on the shaft immediately balanced by the

pressure of the bearings on the journals of the shaft.

This component R which tends to turn the shaft is called the crank

effort. If the turning effort on the crank is perfectly balanced at all

points of its revolution by some suitable resistance, then the resisting

Fig.91.

force which must be applied at the crank pin at right angles to the

crank arm in order to balance perfectly the pressure of the steam on the

piston must be equal and opposite to the crank effort. The force-ratio

will be P/R. We have, with the notation employed in Chapter V.,.

S cos = Pand S sin (0 + </>)
=&

Thus = __
P~~ cos<

~
smOTB~~OB'

That is, the crank effort is to the steam pressure as the intercept OT is-

to the crank arm OB.

But we have previously shown (see p. 101) that this fraction expresses
the velocity-ratio of piston to crank pin ; hence we have again found in

this case that the force-ratio is the reciprocal of the velocity ratio, and

the curve which we previously drew to represent the varying velocity
of the piston, the crank pin moving uniformly, will represent also the

varying crank effort, the pressure of the steam on the piston being
uniform throughout the stroke. It is therefore described as the

Curve of Crank Effort.

(3) The same thing may be proved to be true for every mechanism,.

the forces acting on which balance one another. In some cases it may
be easier to determine the force-ratio than the velocity-ratio or vice versa*

In any case, either may be inferred by taking the reciprocal of tte other.

As an additional example take the case of two pieces driving one

another by simple contact (Fig. 92). We have already found the

velocity -ratio by a direct process (p. 152), but we may also determine

it in the following way. When A presses on B there is a resistance R
equal and opposite to the pressure, and normal to the portions of

the surfaces in contact, if we suppose no friction to exist. Drop
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perpendiculars pA and pB on the common normal. Then the moment

R
-^^ of the driving pressure R which

A exerts on E or the turning
moment due to A=MA

= Rv..

Similarly the moment of the

resisting force which B exerts

on A or the moment of re-

sistance to turning which B
opposes to A =MB

= RpB . Hence it appears that

Driving moment __MA pA

Resisting moment MB

~~

pB

But we have previously proved that this fraction is the angular

velocity-ratio of the piece B to the piece A, and thus we show that

the moment-ratio is the reciprocal of the angular velocity ratio.

96. Periodic Motion of Machines. One of the most essential char-

acteristics of a machine is the periodic character of its motion. Each

part goes through a cycle of changes of position and velocity and returns

periodically to its original place. When moving steadily the periods
are equal and the velocity of each piece is the same at the beginning
arid end of each period. That this may be the case it is not

necessary that the driving effort should balance the working resist-

ance in every position ; on the contrary, this seldom happens ;
it is

sufficient if the mean effort be equivalent to the mean resistance, or

as we may otherwise express it,

Energy exerted during a period = Work done in the period ;

a condition which always governs the action of a machine in steady
motion. In reckoning the energy and work the action of gravity on any

piece of the machine may be omitted, for, if the piece rise through any

height during one part of the period, it will fall through an equal height

during another part. The work done consists partly of the work which

the machine is designed to do, and partly of frictional resistance to the

relative motion of the parts of the machine, or, in other words, of Useful

Work and Waste Work. The ratio of the useful work to the energy
exertecL is called the Efficiency of the machine and its reciprocal the

Counter-Efficiency. The efficiency of a machine depends partly on

the kind of machine and partly on the speed, as will be explained in the

chapter devoted to frictional resistances (Chap. X.). In estimating the

power required to drive a machine a value is assumed for the efficiency

derived from experience of machines of the same or nearly the same

type. Examples will be given hereafter.
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97. Power. Sources of Energy. The sources of energy are

(1) Living agents;

(2) Gravity acting usually by means of falling water
;

(3) Springs and elastic fluids
;

(4) Gunpowder and other explosive agents.

The energy thus derived may be traced further back to the action of

heat and chemical affinity, and we may add to the list electric and

magnetic forces, but the foregoing is a sufficient statement for our pre-

sent purpose.

In general, the motion and effort which are proper to the source of

energy, and to which the driving pair must be adapted, are entirely

different from the motion and the resistance necessary in the working

pair. Besides which the work will generally be required to be done at

various places more or less distant from the source of energy. To

connect the source and the work mechanism is therefore necessary,

which (1) receives energy from the source and converts into a form

suitable for transmission and distribution ;
and (2) receives the trans-

mitted energy and adapts it to the work to be done. The same

machine may serve both these purposes, especially when a living agent
is the source of energy, as in a crane worked by hand, a sewing machine

or a lathe driven by the foot. But in most cases distinct machines are

employed, one of which receives energy directly from the source, and

is described as [a Prime Mover, or more briefly a Motor, while the

rest receive energy from the motor, either directly or by a train

of connecting mechanism, and adapt it to the work. A machine

then effects something more than mere transmission of energy ;
it

is directly connected with the source or the work, and converts the

energy it receives into a form in which it can be utilized. Thus in a

factory the engine is a machine which adapts the energy of the steam

to the purpose of driving a shaft
;
the loom or the mule are machines

which adapt the energy transmitted to them to the purposes of weaving
or spinning, but the train of belt or wheel gearing distributing the

energy through the factory is not a machine, for it is employed solely

for transmission purposes. Theoretically the connection between the

source of energy and the work might be effected by a single machine ;

the separation into distinct machines connected by a transmitting train

is simply an augmentation (p. 139) adopted for constructive reasons.

The variety of movements of which a living agent is capable renders

the separation less necessary.

The rate at which energy is exerted is called Power; it is this

which measures the value of a source of energy and the expense of

the work which is being done. The ordinary unit of measurement is

C.M. N
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the conventional horse-power of 33,000 foot-pounds per minute, or

550 per second, a quantity greater than the working power of an

ordinary draught horse on the average of a day's work, except under

the most favourable conditions (see Appendix). The unit of power

employed universally on the Continent is somewhat less, being 75

kilogrammetres per second or 32,550 foot-pounds per minute. In

measurements of electrical power the "watt" is often used; 1000

watts, a quantity also known as a "kilowatt," being 1'34 horse-

power. For small powers the watt is a convenient unit.

In prime movers the effort may generally be regarded as applied

at a point which moves with a known mean velocity ;
then the

horse-power is given by the equation

PVTT p _ r y~
33,000'

where P is the mean value of the effort in Ibs. and V the mean

velocity in feet per minute.

In machines driven from a prime mover the effort is generally a

moment M which exerts the energy MSir in every revolution of a

driving shaft. We then have

HP =-
33,000'

where M is the mean moment and n the revolutions per minute.

98. Reversibility. Conservation and Storage of Energy. The resistance

overcome at the working point may be either frictional as in machine

tools or reversible as in machines for raising weights. In the second

case, if the machine were stopped and set in motion in the reverse

direction it would, if friction could be neglected, work equally well,

the driving effort and working resistance would be interchanged, and

constructive modifications might be required, but otherwise the action

is unaltered. This may be described by saying that the machine is

Reversible. Many machines actually occur in both their direct and

their reversed forms
;

thus a pump is a reversed hydraulic motor.

Hence it appears that in reversible machines the power of doing work,

that is to say, energy, is not lost after being exerted, for by reversing

the machine it may be employed a second time. Thus it is that we

describe the action of reversible machines as a transfer of energy, and

are led to conceive of energy as indestructible, and speak of it as if

it were independent of the bodies through which it is manifested. No

machine, indeed, is completely reversible, for in all cases frictional

resistances occur to a greater or less extent, while many machines are
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completely non-reversible
;
but we shall see as we proceed that even

then energy is not lost but only converted into another form, so that

we have in reversible machines the first and most simple example of

the great natural law called the Conservation of Energy. The import-

ance of reversibility as a test of maximum efficiency will be seen more

fully hereafter.

Again, we can store up energy and use it as required when it is

inconvenient to resort to any of the usual sources. For example,

by a few turns of the watch key we store energy in the mainspring
which is supplied at a regular rate to the watch throughout the day.

So the hydraulic accumulator (Part V.) receives energy from the

pumping engines and supplies it at irregular intervals to the hydraulic

machines which lift weights and move gates in a dockyard or work

the guns in a ship of war.

A large part of what follows in the present work is merely a

development of what has been said here : in the succeeding chapters

of the present division we consider machines comprising solid elements

only, while in a future division we shall consider the transmission

and conversion of energy by means of fluids. The simpler machines

are treated in much greatea detail with numerous additional examples
in a smaller treatise by the author of this work and Mr. J. H. Slade.*

EXAMPLES.

1. A waggon weighs 2 tons and its draught is ^th of its weight. Find the work done

iu drawing it up a hill 1 in 20, half a mile long. Find also how long three horses will

take to do it, supposing each horse to work at the rate of 16,000 foot-pounds per minute.

Work done= 370 ft. -tons. Time occupied= 17' 15".

2. A force of 10 Ibs. stretches a spiral spring 2", find the work done in stretching it

successively 1", 2", 3", etc!, up to 6". Ans. 2J, 10, 22, 40, 62J, and 90 inch-lbs.

3. Find the H.P. required to draw a train weighing 200 tons at the speed of 40 miles

an hour on a level, the resistance being estimated at 20 Ibs. per ton. Find also the speed
of the train up a gradient of 1 in 100, the engine exerting the same power.
Ans. H.P. required=426. Speed up the iodine=18*87 miles per hour.

4. The resistance of H.M.S. "Iris
"
at 17 knots is estimated at 40,000 Ibs., what will

be the H.P. required simply to propel the ship? Find also in inch-tons the moment, on

each of the twin screw shafts, equivalent to this power, the revolutions being 80 per
minute.

Ans. H.P. required =2088. Moment on each shaft=367 inch-tons.

5. The curve of stability of a vessel is a common parabola, the angle of vanishing

stability 70, and the maximum moment of stability 4,000 ft. -tons. Find the statical

and dynamical stabilities at 30.

Ans. Statical stability= 3 '918 ft. -tons. Dynamical stability= 1 '283 ft. -tons.

6. Verify the principle of work, neglecting friction, in : (a) The differential pulley

(Art. 59). (6) A pair of 3-sheaved blocks, (c) The hydraulic press (Art. 62).

* Lessons in Applied Mechanics. Macmillan. 1891.
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7- From the results in question 6, p. 103, deduce the crank efforts for the given posi-

tions of the piston and the mean crank effort, supposing the effective steam pressure on

the piston 20 tons and neglecting friction.

Crank effort at (forward stroke=18 '4 tons. Mean= 1274 tons,

quarter stroke in the \ backward ,, =16 '6 tons.

8. Show that the efficiency of a machine is equal to the velocity-ratio multiplied by the

force-ratio.

SECTION II. UNBALANCED FORCES (KINETICS).

99. Kinetic Energy of Translation. Sliding Pair. We now proceed

to consider the cases in which efforts or resistances arise from the

changes of velocity of the parts of a system, which changes thus

become a source of energy or require energy in order to produce them.

The commonest observation is sufficient to show the importance of

such cases : a cannon ball possesses a great power of doing work,
and a railway train requires energy to be exerted by the steam to

obtain the requisite speed, quite irrespectively of that necessary to

maintain the speed when once produced.

First, suppose a weight under the action of gravity only. Unless

it be supported by a vertical force exactly equal to the weight it will

fall with a gradually increasing velocity. Let it be wholly unresisted

by external bodies, let it start from rest and fall through a height h,

then, whatever the material, we know that it will acquire a velocity v

given by the formula
v* = 2gh,

where g is a number measuring the acceleration of the weight which,

for velocities in feet per second, ranges from 32-1 at the equator to

32 '25 at the pole, and having intermediate values at other points on

the earth's surface according to the intensity of gravity at the point.

The average value 32*2 is usually adopted for this important constant,

and the height h is called the "
height due to the velocity."

During the whole fall, the weight W of the body has been exerting

an effort upon it which overcomes an equal resistance occasioned by the

change of velocity which is taking place ;
thus an amount of energy has

been exerted, and an amount of work done equal to Wh. Resistance

of this kind is of the reversible kind, for if we imagine the weight,

after reaching the ground, projected up again with the same velocity,

it will, if not otherwise resisted, attain the height from which it

originally fell. Hence we describe the weight as possessing energy,

and the amount it possesses when moving with velocity v is
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Energy due to motion is called Kinetic Energy, to distinguish it from

that kind of energy considered previously, which is a consequence of

the relative position of the parts of a system, and which is called

Potential Energy. The kinetic energy of a body depends only on the

velocity of each of the particles of which it is made up, not on the

direction of its motion nor on the way in which its motion has been

produced ;
and the energy exerted in changing the motion of a body is

always represented by an exactly equivalent increase of kinetic energy,
whether the effort be uniform or variable, or whether its direction

coincide with the direction of motion or not.

The fall of a weight under the action of gravity is a particular case

of the motion of a sliding piece under the action of a known force P
in the direction of motion, the other element of the sliding pair being
fixed. The piece here has a simple motion of translation, each particle

traversing the same space with the same velocity. Let the velocity

change from V to v as the piece moves through the space x, then

equating the change of kinetic energy to the energy (Px) exerted by
the force P

_ 1)

~^g"W"
an equation which is true whatever be the size, shape, or material of a

sliding piece of weight W. The equation may be written

*-r*-*jpx,

showing that the piece moves with uniform acceleration as in the case

of a falling weight, the magnitude of the acceleration being

If the sliding piece be under the action of a force 8 which is not in the

direction of motion, then we know (p. 180) that the energy exerted by
S is the same as if its resolved part P in the direction of motion

existed alone. The acceleration of the sliding piece therefore is

independent of the component of 8 perpendicular to the direction of

motion. These results are, of course, in direct accordance with the

laws of motion.

If P be a resistance instead of an effort, then work is done at the

expense of the kinetic energy which is now diminished. If P be

variable we must represent it graphically by a curve as in Art. 90, and
it should be especially remarked that the ordinate of the curve of

areas deduced in Art. 31 will, on affixing a suitable scale, and

measuring the ordinates from a suitable base line, represent the height
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due to the velocity, or, as it may otherwise be described, the "height

equivalent to the kinetic energy
"

of the body.

100. Partially Unbalanced Forces. Principle of Work. Again, the

effort which is changing the motion of the body may be partly

balanced by an external resistance to which the body is subject. If

this be the case we can imagine it separated into two parts, a part

which is, and a part which is not, balanced. The energy exerted by
the first is employed in overcoming the external resistance, while that

exerted by the second is employed in increasing the kinetic energy of

the body. Or the resistance may be greater than the effort, then the

excess is overcome at the expense of the kinetic energy of the body,

the velocity of which now diminishes.

In the present treatise we shall use the phrases
"
energy exerted

"

and "work done" only in reference to efforts and resistances other

than those due to inertia, subject to which convention, we may state,

the principle of work as applied to cases where the forces are partially

unbalanced, as follows

Energy exerted = Work done + Change of Kinetic Energy.

In this statement the work done may be greater or less than the

energy exerted. In the first case the change of kinetic energy is a

decrease, in the second an increase.

Not only does this principle apply to a single body, but subject

to the observations of the preceding section to a set of bodies

mechanically connected in any way, provided that one of them be

fixed to the earth
; or, in other words, that a body of great mass like

the earth be one of the set. A single body is in reality one of a set

of two bodies, the other being the earth. When no one of the set

predominates over the rest it is necessary to consider further how

the kinetic energy should be reckoned : for the present, however, we

shall suppose this condition satisfied.

A simple case is that of Atwood's machine. Let the descending

weight P be greater than the rising one Q. Neglecting friction, the

excess sets the two weights in motion. Let P descend through a

distance y, then Q rises through the same distance, and therefore

Energy exerted = Py.

Work done =
Qy.

Let v be the velocity of the two weights ;
then supposing them to

start from rest,

Kinetic energy acquired = (P + Q).
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From principle of work

The law of increase of velocity is, therefore, the same as that of a

body falling freely, but the rate of increase is less. This formula is

the same as that obtained by other methods, and we have therefore

here a verification of the principle of work.

In applying the principle any pair of elements may be a driving or a

working pair, whether or not one of them be the fixed link attached to

the earth. Thus, for example, in a locomotive the steam exerts an

amount of energy measured by its pressure and by the motion of the

cylinder piston pair which it drives. This energy is employed in

drawing the train while overcoming frictional and other resistances

which oppose the motion of the various pairs making up the whole

mechanism. Any excess or defect is represented by a change of

kinetic energy in the whole train, inclusive of the mechanism of the

locomotive estimated relatively to the earth as fixed. A rotating

cylinder engine, in which the steam cylinders, instead of being fixed

to the frame, are attached to a rotating fly-wheel, furnishes another

instructive example.

101. Kinetic Energy of Rotation. Turning Pair. Instead of a single

body, every point of which moves with the same velocity, suppose we
have a system of bodies, and we require to know the total kinetic

energy of the system. The direct method is to find the energy of

each separate particle of the system and add the results. In the

particular case of a rotating rigid body we are able to express the

result of the summation in a convenient and simple form. First

consider a ring of small section rotating about an axis in the centre

perpendicular to its plane. Every portion of the ring will move
with the same velocity, v say, and the kinetic energy of the ring

may, as before, be written WiPfig.
We may express this another way, as follows : If n be the revolu-

tions per second, and a the radius, v = 2

If the ring is not complete, but W is the weight of a portion which

has the same centre of rotation, the expression will still hold.

Now, suppose we have a body consisting of a number of particles

rigidly connected together, rotating about a centre 0, at n revolutions

per second.
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Let the weights of the particles be wv w.
2 ,

w.
B, w^ etc.

rotating about at distances yv y2, ys , ?/4,
etc.

By adding together the results for each particle, we obtain for the

kinetic energy of the system,

w$<? + w$* + etc
-)-

Now suppose a is such a radius that

w
l + wz + ws + etc.

then substituting, we may write

Kinetic energy = (w, + iv + w + etc.) ft
2 = Wa2

.

2# 2#

By this method we are always able to reduce any such system of

rigidly connected particles to a ring sometimes called the Equivalent

Fly-Wheel, and the radius a is called the Radius of Gyration. The

quantity Wa^jg is usually called the Moment of Inertia, and denoted

by the symbol /. The quotient W\g measures the Inertia of the

body, as will be explained hereafter (p. 263), but is commonly called

the Mass.

However numerous the particles are, the expression obtained above

will hold, and so will be true if they are sufficient in number to make

up a solid body. In a continuous body, the separate weights wv w^ iv
3r

etc., must be taken indefinitely small and close together to get accurate

results, and the results of the summation may be most conveniently

arrived at by the use of the calculus. The symbol /, but for the intro-

duction of the mass as a factor would have the same meaning as in

Chapter XII., and hence all the results there given may be used here

for thin plates simply by multiplication by the mass of a unit of area.

In addition, the following simple cases will be sufficient. The fourth

is a particular case of the second.

1. Solid cylinder rotating about its axis.
2

r2

Radius = r. 2

2. Rectangular parallelepiped rotating about
2 _ a"*

an axis. Diagonal of either end = 2d. 3

3. Sphere rotating about a diameter. Radius
2 _ 2r2

= r.

=

~5~

4. Rod rotating about an axis perpendicular 2
/
2

to it through one end. Length = I. "3
In other cases such as occur in practice, the body is generally too

irregular and complex in form to render mathematical formulae useful ;
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we then apply the rule given in Chapter XII. for plane areas, which by
a similar process can readily be extended to solids. That is to say, if

1 be the moment of inertia of a body about any axis, / that about a

parallel axis through the centre of gravity at a distance h,

where m is the mass of the body. In applying this rule the body is

cut up into portions to which the values just given apply exactly or

with sufficient approximation, just as in the chapter cited.

In estimating the kinetic energy of a fly-wheel, which consists of rim,

arms, and boss, since the rim is by far the most important part for

storing energy, it is generally sufficient to consider it alone. If it be

desired to take the remaining parts into account, an addition of about

one third the weight of the arms may be made to the weight of the rim.

The combined effect of arms and boss is said to amount to an addition

of, on the average, about 8 per cent, to the weight of the rim.

In any case of the motion of a rotating piece the other element of the

turning pair being fixed, a change in the kinetic energy of the piece can

only be produced by the action of forces which have a momentM about

the axis of the pair. IfM be constant, the energy exerted as the piece

turns through an angle 6 will be M6. Suppose the angular velocity at

the same time to change from A
Q
to A, then equating the change of

kinetic energy to the energy exerted,
-

*_

a formula exactly corresponding to that already given for a sliding

piece (p. 197), and showing that the angular acceleration is uniform.

If M be variable we have only to represent it by a curve, as on

page 184, and it should be observed that as before the ordinate of

the curve of areas will represent the change of kinetic energy. The
scale and base line of this curve may conveniently be so taken that

the ordinate shall represent the height,

which may be described as the "height equivalent to the kinetic

energy
"

of a rotating body.
Thus the motion of a rotating piece is governed by the same laws

as the motion of a sliding piece, the same diagram applying to both

cases. Examples will be given presently.

It is often convenient to write for brevity

g _2936~
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a quantity having a definite physical meaning, being the height in feet

of a revolving pendulum rotating (Chap. XL) with angular velocity A
or at N revolutions per minute. It may be described as the "

height

due to the revolutions." The formula just given for the height equiva-

lent to the energy of rotation becomes

102. Kinetic Energy of the Moving Parts of a Machine. If the

body have a motion of translation, combined with a motion of rotation

about an axis through its centre of gravity, the two motions (p. 118)

are equivalent to a rotation about a second axis parallel to the first.

Applying the rule just given, it at once follows that the total kinetic

energy is the sum of that due to the translation and the rotation taken

separately, so that the whole can be found by preceding rules. As an

example of the use of this principle, consider the case of a ball rolling

down an inclined plane, the ball and plane being sufficiently rough that

slipping does not take place between them
;
and suppose the resistance

to rolling, called the rolling friction, is insensible. In this case the

whole energy due to the descent of the ball is employed in generating

kinetic energy in the ball, which will be stored in it by virtue of its

two motions of translation and rotation. Let V be the velocity of

translation, A the angular velocity, r the radius of sphere ;
then since

no slipping occurs V=Ar.
Let the ball descend through a vertical height h, then the energy

exerted is Wh, equating which to the kinetic energy stored we obtain

W.V*

2
where the ratio of gyration a is given by a2 =

-^

Thus the velocity of the ball will be less than if it simply slid down the

plane without rotating in the proportion v/5 : ^/7.

In a carriage on wheels, and in many other cases, the total kinetic

energy may, as in the preceding example, be found by adding a suitable

percentage to the energy of translation.

The total kinetic energy of the moving parts of a machine in any

position may be found by drawing a diagram of velocity for that
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position in the manner explained in Chaps. V. and VI. Each part may
be divided into a number of small portions, and the centre of each

portion may be laid down on the diagram, as explained on page 120.

If now the diagram be imagined to represent a set of particles rigidly

connected, of masses equal to those of the particles in question, one-half

the moment of inertia of those particles about the pole of the diagram
must be the total kinetic energy required ;

the radius vector of each

particle representing the velocity of the corresponding portion.

103. Consewation of Energy. The principle of work may also be

stated in another form, which, though not so convenient in practical

applications, is much employed by scientific writers. It has already

been explained that, when there are no frictional resistances, the power
of doing work (energy) exerted in doing a given amount of work is not

lost but merely transferred from one place to another (Art. 98), while

it appears from the present section that any energy exerted in changing
the motion of a body is represented by an exactly equivalent amount

of kinetic energy stored up in the moving body ;
hence it follows that

in any dynamical system, which receives no energy from without and

supplies none to external bodies, the total amount of energy is always
the same if there be no frictional resistances. We express this by the

equation

Kinetic Energy + Potential Energy = Total Energy = Constant,

and call it the principle of the Conservation of Energy. In all actual

motions frictional resistances occur which gradually absorb the energy,
but this process is accompanied by the generation of heat which is

equivalent to the energy absorbed, a fact which leads us to conclude

that heat is a form of energy, and that the principle still holds good.
A good illustration of the principle in this form is furnished by the

motion of a body which oscillates to and fro about a mean position, a

question which occurs in a great variety of forms.

(1) Let a body oscillate in a straight line under the action of a force

P which varies as the distance x from a fixed point about which the

oscillation takes place. For example, a weight suspended by a long
elastic string when disturbed vertically from its position of equilibrium

vibrates under the action of such a force, arising from the difference

between the weight W downwards, and the tension T of the string

upwards. This case will be fully considered in a later chapter (Chap.

XVI.) ;
for our present purpose it is sufficient to take

where p is a coefficient measuring the intensity of the force. The curve
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of effort is now a sloping straight line as shown in Fig. 99, p. 223 of

the next chapter, C being the point about which the weight vibrates

through the distance AA = "la. Considering any position TV, the work

which must be done to move the weight from C through the space

CN=x will be represented by the area of the triangle on the base ON,
and the potential energy reckoned from C is therefore ^

If then the velocity be V we shall have

WV^
Total Energy - -~-

By the principle we are now considering this must be constant through
the whole motion, which consists in a continual interchange between

the kinetic and potential energies. It is of course supposed that the

resistance of the air is neglected : this is a resistance of the frictional

kind and continually absorbs energy from the weight which is thus at

last reduced to rest unless it receives energy from without.

Since V*= when x = a the equation may be written

V*-p0(<p-&).
To represent the velocity graphically, upon AA as diameter describe a

semicircle AQA, draw the ordinate QN=y and join CQ, then y
2 = a2 - x2>

and therefore

that is, the velocity of the weight is proportional to the ordinates of

a semicircle. The curve of areas corresponding to the curve of effort

which, as we have before found in a different problem (Ex. 5, p. 66),

is a parabola, gives the kinetic energy, but it is not shown in the

diagram, not being required for our present purpose. Let V
Q
be the

velocity with which Q moves as N returns with velocity V towards Cy

then since F" when resolved parallel to AA must be equal to F,

from which it appears that CQ rotates with uniform angular velocity,

describing a complete circle in the

Period = -=

which gives the time of a complete oscillation to and fro.

As the formula shows, the period does not depend on the extent

of the oscillation, but only on the intensity of the force as measured

by the magnitude of the coefficient p. If we call c the distance

from the centre at which the force is equal to the weight of the

vibrating mass, then c = I/p and the formula becomes

Period = 2:
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being as will be seen presently the same as that of a pendulum of

length c.

(2) Next take the case of a rotating piece vibrating backwards and

forwards about a mean position under the action of a couple of magni-

tude proportional to the angle turned through. For example, the

balance of a watch vibrating under the action of the balance spring

which exerts a moment M, proportional to the angle turned through
from the position of rest. Here the moment is given by the equation

H as before being a coefficient measuring the intensity of the moment.

Writing now r for the radius of gyration of the wheel and referring to

page 201 the equation of energy will be exactly as in the case just

considered of a sliding piece,

The motion is now represented by the same diagram as before in which

AA is now 20
19
the whole angle through which the wheel oscillates in the

27T7-
Period = :==

In this as in the preceding case the time does not depend on the

extent of the oscillation, and the oscillations are therefore described

as "isochronous." In a wheel, however, the period also depends on

the radius of gyration r : the coefficient /x is here a certain length,

being the leverage at which W must act to balance the moment M
at unit angle in circular measure, and the length of the corresponding

pendulum is r2
//*.

(3) In the two preceding cases the motion is of the kind called

"harmonic," let us next consider a pendulum vibrating to and fro

under the action of gravity. We have now a rotating piece, the

radius of gyration of which is r (suppose), oscillating about a horizontal

axis at a distance L from the centre of gravity g. Referring to

page 184 it will be seen that in any position inclined at an angle to

the vertical, the potential energy reckoned from the lowest position is

Applying once more the principle of the conservation of energy we
have as the equation of energyWV1A1^~- + W. L(l

- cos 0)
= W. L(l

- cos ^),

#! being the extreme angle reached, that is to say, half the total angle
of swing. The equation may be written

W . 2L sin* =W.'2L. sin*.
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When the angle #
x

is

the equation reduces to

f)

When the angle 6
l

is not too great sin - may be replaced by 6/2 and

This is the same equation as in the preceding case, and indicates that the

vibrations are isochronous, an oscillation to and fro taking place in the

*

Period = 2ir . -=.

In a "
simple

"
pendulum consisting of a heavy particle suspended by

a string of length I from a fixed point, and vibrating in a vertical plane
?' = Z =

,
and ,-

Period = 2ir\ -.
M g

The length of such a simple pendulum is often adopted as a measure of

the time of a vibration. In a so-called "
compound

"
pendulum let the

radius of gyration about a horizontal axis through the centre of

gravity be r
,
then (p. 201)

arid consequently the length of the simple equivalent pendulum is

This is least when L = r and the quickest time of vibration of a body
of radius r is consequently that of a pendulum of length 2r

Q ;
but the

period may be made as long as we please by taking the axis near the

centre of gravity, as for example in the beam of a pair of scales which

is balanced on knife edges slightly above the centre of gravity.
f\

Returning to the original equation observe that sin r is always less
n

than 6/2 and that therefore the potential energy is always less than if

the motion were harmonic. The difference is greater the greater the

value of 6, it is therefore greater for 6
}
than for 6, and the kinetic

energy is consequently always less than in harmonic motion. When 6
l

is not small the diminution is perceptible and the vibrations are then

not isochronous, but the period is less the greater the angle of swing.

If T be the time of small oscillations and T the actual time for the

half angle of swing 6V then it is shown in treatises on the kinetics of

a particle that
^ 2 ^

T T
Q
\ 1 +~

[
approximately.

(4) When a vessel rolls in still water a part of her kinetic energy

corresponds to the movement of her centre of gravity : this, however, is

usually a small fraction of the whole and may be neglected. If we also
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neglect the resistance to rolling due to friction and disturbance of the

water the equation of energy will be

where r is the radius of gyration about a horizontal longitudinal axis

through the centre of gravity, U the potential energy at the angle of

heel 6, and U^ the value of U at the extreme angle through which she

rolls. The potential energy is here the same quantity as that already

described as the "
dynamical stability

" and in the typical case con-

sidered on page 185 is given by the equation

hence by substitution ancl multiplication by

9
+ Wm(\ - cos kO) =Wm(l- cos kOJ.

Referring now to the equation of energy of a simple pendulum just

obtained, suppose it to swing through k times the angle of heel of the

vessel it will be seen that the angular velocity of the pendulum will be

kd., and that therefore the motion of the rolling vessel will follow the

motion of such a pendulum if

j.!lm
Hence the period of the small isochronous oscillations of a vessel when
unresisted is

Period = 2^-,

where r is the radius of gyration and m the metacentric height. Being

independent of k the formula applies to any case whatever the stability

curve so long as the oscillations are small, not exceeding 15 probably
on each side of the vertical. For larger oscillations the deviation from

isochronism is much greater than in a simple pendulum swinging through
the same angle, being proportional to k2 in the case just considered.

It should be observed that throughout this article the periods given
refer to a complete oscillation to and fro. By many writers the time of

a single oscillation is described as the period. In the case of a pendu-
lum the "time of vibration" generally means the time of a single
oscillation. The number of vibrations per second is known as the

"frequency."

EXAMPLES.
1. The energy of 1 Ib. of pebble powder is 70 foot-tons. Find the weight of charge

necessary to produce an initial velocity of 1300 feet per second in a projectile weighing
700 Ibs., neglecting the recoil of the gun and the rotation of the shot.

"VVt. of powder required=117 Ibs.



208 DYNAMICS OF MACHINES. [PART m.

2. In Example 1 suppose the gun fired at an elevation of 30, and resistance of the

atmosphere neglected, find the kinetic and potential energies of the shot at its greatest
elevation. Also deduce the greatest elevation.

Horizontal velocity= velocity at highest point= 1300-^--

Kinetic energy at highest point=6150 ft. -tons,

Potential ,, =2050
Potential energy ,

,

"rFZ~""f i, . =oc>60'6 feet= maximum elevation.

3. A train is running at 40 miles an hour, find the resistance in pounds per ton

necessary to stop the train in 1000 yards on a level. Also find the distance in which the

train would be brought up by the same brake power on a gradient of 1 in 100, both when

going up and when going down.

Resistance= 39 '9 Ibs. per ton.

Distance required to bring up the train when ascending
the gradient ............ M. ... = 640 yards.

When descending .................. =2280

4. The reciprocating parts of an engine running at 75 revolutions per minute weigh 25

tons, of which parts weighing 20 tons have a stroke of 4 feet, and parts weighing 5 tons

a stroke of 2 feet. Find the energy stored in the parts, assuming a pair of cranks, OP,

OQ at right angles and neglecting obliquity of connecting rod.

Here if V is the velocity of the crank pin and PN, QM are perpendiculars on the line

of centres,
y

Velocity of parts attached to crankP-PN-

Further assuming weights attached to these cranks each equal W.
WVi -' 1 WV Z

Energy stored in these weights=^-(P^
2

+QM2)^L_=-^-.
In example, total kinetic energy=40 '7 ft. -tons.

5. One weight draws up another by means of a common wheel and axle. The force-

ratio is 1 to 8 and the velocity-ratio is 9 to 1. Find the revolutions per minute after 10

complete revolutions have been performed, neglecting frictional resistances and the

inertia of the wheel and axle. Diameter of axle 6 inches.

Revolutions per second=2'14.

6. In Ex. 1 suppose the gun rifled so that the projectile makes 1 turn in 40 diameters,

find the additional powder charge required to provide for the rotation of the shot, the

diameter of shot being 12 inches and the radius of gyration 4J inches.

Additional powder required ='407 lb.

7. A disc of iron rolls along a horizontal plane with velocity 15 feet per second, and

comes to an incline of 1 in 40 on to which it passes without shock. Find how far it will

ascend the incline, neglecting friction.

Distance along incline it will run =209 '6 feet.

8. In Ex. 5 suppose the weight of wheel= weight of axle, and the two together= sum
of weights, obtain the result, taking account of the inertia of the wheel and axle.

After 10 revs, it will rotate at 1*22 revs, per second.

9. A fly-wheel, the radius of gyration of which may be taken as 8 feet, rotates at 40

revolutions per minute ; find the height due to the revolutions and also the height

equivalent to the energy of rotation. Ans. &=1'835; J?=17'45.

10. The beam of a pair of scales is 2 feet long, radius of gyration 6 inches ;
the scale,

pans, and weights are equivalent to a weight of 3 Ibs. placed at each end of the beam,
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which itself weighs 3 Ibs. If the beam rest on knife edges placed J inch above the centre

of gravity, find the time of vibration. A ns. 3 '3 seconds.

11. The centre of gravity of a connecting rod 5 feet long has been found by the

method of suspension to be 3 feet from the crosshead end. To determine the radius of

gyration it is made to oscillate as a pendulum on knife edges fixed at the crosshead end.

It is then found that 53 vibrations are made in a minute ; find the radius. Ans, 3 feet

6 inches.

12. From a curve of "tons per inch immersion" it is found that a vessel sinks one

inch in the water by the addition to the weight on board of a small fraction e of her

original displacement ; show that the period of small unresisted dipping oscillations is

.

v/386e
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CHAPTER IX.

DYNAMICS OF THE STEAM ENGINE.

104. Construction of Polar Curves of Crank Effort. One of the most

common and important applications of the principles of the preceding

chapter is to the working of steam engines, and we shall investigate

this question, chiefly with reference to fluctuations of stress energy

and speed. Throughout, frictional resistances are neglected.

In Chapter V. a curve was constructed which shows the velocity-

ratio of piston and crank pin, and it has been proved (p. 191) that

this curve must also give the ratio of the effort tending to turn the

crank to the pressure of the steam on the piston, so that it may also

be called a Curve of Crank Effort. If there are two or more cranks,

the crank effort can be obtained by suitably combining the results for

each taken separately, and a curve may then be drawn representing

the combination. There are two kinds of such curves, the Polar and

the Linear. First suppose two cranks at right angles, steam pressure

uniform, and the same on both pistons. Let us commence with the

polar curve.

Suppose OT^By OT
2 (Fig. 93) to represent the polar curve of crank

effort for an engine constructed as in Art. 49, and let the two cranks be

in the positions OQ^ OQ2,
each pointing towards the cylinder. Add

together the corresponding crank efforts OT^ OT%, which are given

by the curve, and set off their sum along OQ^ we thus obtain a radius

OT", which represents the total crank effort for the two engines

taken together. It may also be considered as the leverage at which

the pressure on one piston must act to produce the same turning

moment. Performing this construction for a number of positions of

the cranks, we obtain a polar curve showing the crank effort in every

position.

If the connecting rod is indefinitely long the single curve of crank

effort consists of the pair of circles on OB^ OB^ shown dotted in the

diagram. If we add together radii of these circles, the combined curve

of crank effort will consist of four portions of circles passing the points-
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A^B^AvB^ \
each of the circular arcs if produced would pass through

the point 0. These arcs are also dotted in the diagram. When the

crank is in a quadrant lying towards the engine, the actual crank effort

Fig.93.

is in excess of that due to a long connecting rod. So for the positions

OQV OQ2 , shown, for each the crank effort is in excess, and thus the

curve of combined effort will for the quadrant A
l
B

l
lie outside

the circular arc. When the cranks are in the two upper quadrants the

effort for the leading crank is less than when the connecting rod is

long, whereas for the following crank it is greater ;
and the diminution

of one is very approximately equal to the excess of the other
;
that is,

the sum is the same as that obtained by neglecting the shortness of

the rod. The true combined effort is then for the quadrant B^ 2

represented by the circle. In the next quadrant both are diminished ;

and the true curve will lie inside the circle A^B^ while for the fourth

quadrant it will again coincide with the circular arc.

We may, if we please, lay off the sum of the radii on the following
crank instead of the leading ;

the same series of curves would be

obtained, but would be turned backwards through an angle of 90.
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To add to this the circle of mean crank effort we equate the work

done on the two pistons in the double strokes to the work due to the

mean effort Rm exerted through a complete revolution.

P x 2 x 4a = R x 2ira.

In these curves the steam pressure P is represented by the radius

of the crank-pin circle, so the mean crank effort will be represented

on the diagram by drawing a circle, shown dotted, with centre and

radius = 4 OQ/ir.

If there are three or more cranks inclined at any angles, the com-

bined crank effort diagram can be constructed by adding together

three or more radii vectores of the curve of single crank effort, and

laying the sum off on either of the cranks.

105. Construction of Linear Curves of Crank Effort. The linear curve

of crank effort, which is more useful for most purposes, is constructed

as follows :

Take a base line, A t
A

2
= semi-circumference of the crank-pin circle,

and let the circle and this base line be divided into the same number of

equal parts, and at the points of division of the base line set off ordinates

such as SN, VM both above and below the base equal to lengths of the

common ordinates of the single crank effort diagram such as OT^, OT%,
and so we construct the linear crank effort diagram for a single crank.

Neglecting the obliquity of the connecting rod, the diagram will consist

of two curves of sines shown dotted, one above, the other below (Fig. 94).

To get the combined crank effort diagram we have only to add together

proper ordinates according to the angle between the cranks, just as we

did in drawing the polar diagram. When the cranks are at right angles

it will be seen that when the leading crank is, for example, at Ql
or N

the following crank is at Q% or M ;
and if the ordinate MF is laid off on

the top of ordinate NS we obtain a point W on the curve of combined

<?rank effort. If the same process be followed throughout we obtain the

diagram, shown in Fig. 94, consisting of four curves. If the connecting

rod be taken as indefinitely long, and ordinates of the dotted curve be

added together the combined diagram will consist of four curves, also

curves of sines shown dotted in the diagram, all alike and all of the

same height. But taking proper account of the shortness of the rod,

we observe that for one quadrant of the revolution when both cranks lie

towards the cylinder, each ordinate added is in excess of that, neglecting

obliquity, and then we obtain the highest curve. In the next quadrant

the height of the curve is less and is the same as if we neglected the
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shortness of the rod. In the next quadrant when both cranks are away
from the cylinder the shortness of the rod makes the crank effort for

each engine less, and we get a very low curve for the combination.

This is followed in the last quadrant by a curve like the second.

w

OQ

Fig.94.

OQ

The mean crank effort will be represented by a horizontal line at a

height 40Q/7T, as before. Setting off this Hne we observe that unless

the connecting rod is longer than is usual in ordinary practice, the

actual crank effort will be less than the mean throughout the whole of

one of the quadrants.

At the points where the straight line EL cuts the curves the actual

crank effort is equal to the mean.

106. Ratio of Maximum and Minimum Crank Effort to Mean. One of

the principal objects in the construction of curves of crank effort is the

determination of the ratio which the maximum and the minimum values

of that quantity bear to its mean value as determined from the power
of the engine. It is on these quantities that the strength required for

the shaft depends, besides which, too great an inequality in the turning
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moment on the shaft is frequently injurious to the machine which is

being driven by the engine, or to the work which the machine is doing.

Approximate mathematical formulae, analogous to those given on

page 102 for piston velocity, may be used in simple cases, but in

general it is preferable to construct a diagram. The annexed table

gives some numerical results.

FLUCTUATION OF CRANK EFFORT WITH UNIFORM STEAM PRESSURE.
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greatest of them is called the Fluctuation of Energy. It is most con-

veniently expressed as a fraction of the whole energy exerted during a

complete period of the machine, and this fraction is called the Co-

efficient of Fluctuation of Energy.
All this will apply to any machine taken as a whole, or to any part

of that machine; for every piece of the machine has a driving point

and a working point, and the equation of energy may be applied to it.

Take now the case of the mechanism of a direct-acting engine.

Suppose the pressure P on the piston to be uniform. This through the

connecting rod will produce a crank effort S, the magnitude of which for

each position of the crank may be found as just now shown. To the

crank and shaft S is the driving force and furnishes the energy exerted.

At every point of the revolution of the shaft a certain resistance will be

overcome, which resistance will tend to prevent the shaft from turning ;

it will not depend on the steam pressure, but on the sort of work that

is being done. As the most simple ordinary case we will suppose the

Fig.95.

resistance overcome to be uniform, and we will neglect the inertia of

the reciprocating parts (Art. 110). We may represent this constant

resistance by a constant force E applied to the crank pin Q (Fig. 95), at

right angles to the crank arm, resisting its motion. The magnitude of

R is immediately determined by the application of the principle of

work to a complete period, say one revolution. We have

This constant resisting force is the same as the mean crank effort.
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Then so long as S>E the speed of the crank shaft will increase, and

when S<E it will diminish.

Referring to the linear curve of crank effort (Fig. 94, p. 213) let

A
l
N= ihe arc A^Q (Fig 95), then NS= crank effort S for this position

of the crank. If an ordinate Af be set up to represent the constant

resistance or mean crank effort, and a horizontal line parallel to base

line be drawn, then NH being the representation of R the resistance

overcome, the effort S will be greater for this position of the crank, and

the difference HS will be employed in accelerating the motion of the

machine. From the commencement of the revolution up to this posi-

tion, the energy exerted is represented by the area A-^NS, whereas the

work done is represented by the area A^KHN. As the crank revolves

from the position A l
the crank effort increases until when at U-^ it is

equal to the resistance. Up to this point the speed of rotation will

have been diminishing. After passing the point U^ the effort will be

greater than the resistance and the speed of the engine will increase.

Mi n .

Fig.96

Thus ZTj is a [point of minimum speed at which the kinetic energy is a

minimum. When the crank reaches the position U^ the effort will

again be equal to the resistance
; and, since from U

l
to U

2
the effort

has been greater than the resistance, during the whole of which time

the engine has been increasing its speed, it follows that at the point U.
2

the speed and the kinetic energy will have reached a maximum. The

energy stored during this interval will be equal to the area C-^SC^ and

this will be the fluctuation of energy. During all the movement from

C/2 to U.
6
the speed of the engine will diminish, so that U

z
is another

point of minimum kinetic energy. The kinetic energy stored from Uz
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to U
B

is negative, and represented by C
2
A

2
C
3 ,
which quantity also is the

fluctuation of energy. Again at U the kinetic energy is a maximum.

If the resistance had not been uniform, but its varying magnitude

represented by the ordinates of some curve of resistance, then where

the curve of resistance intersected the curve of crank effort would be

the points where the kinetic energies would be maximum and minimum,
as just explained. By the graphical construction of such a curve of

resistance the fluctation of energy may be estimated by measuring the

area of the crank effort curve cut off above or below the curve of

resistance, which area will lie between consecutive points of maximum
and minimum energies. If the energy be JE, the fluctuation of energy

may properly be denoted by &E. It is convenient to express this as a

fraction of the total energy 4Pa exerted in a revolution. We have then

A W
for the co-efficient of fluctuation of energy = k.

The value of k does not depend on the size of the engine, but only on

the length of the connecting rod and the way in which the steam pres-

sure and resistance vary. If the connecting rod is indefinitely long,

steam pressure and resistance uniform, &='1052. The shorter the

connecting rod the greater will be the value of L

FLUCTUATION OF ENERGY.
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fluctuations in each revolution : four of these are nearly the same as

before, but the other two are much greater, the values of k being '037

and -042, with a connecting rod of four cranks. The table on the

preceding page gives the maximum value of k for various cases,

supposing steam pressure uniform and resistance uniform.

As before, the great influence of length of connecting rod on the

results should be noticed. Frictional resistances, which are here

neglected, generally increase the value of k.

In general the pressure of the steam in the cylinder of an engine varies throughout the

stroke, and the construction of the curve of crank effort previously described must be

modified on account of this. Suppose, instead of the steam being admitted throughout
the stroke, it is cut off at a certain point and expanded so that the expansion curve is

hyperbolic. For simplicity neglect the back pressure. At the pointN in the stroke (Fig.

P OK
97) the pressure will have fallen to P, such that =

7^. If we draw an ordinate Pm

such that the area of the rectangle enclosed is equal to the area of indicator diagram,

then Pm=Pi ^^ where
r=-jr=. Up to the point K the crank effort diagram will

be the same as previously described, but after that point the crank effort will be less than

that due to a uniform steam pressure. At the point N in the stroke, for example,
the crank effort instead of being NS will be NS', found by drawing OS in the lower

figure, to cut a vertical through the point K of cut-off and making NS'= KL, for the

ratio NS'/NS is then equal to PjP^ In the expanded diagram, the base of which is

taken equal to the circumference of the crank-pin circle, ordinates must be taken equal
to NS', and a diagram so constructed, from which the fluctuation of energy may be

-calculated. Assuming the resistance to be uniform, it will have a value R such that
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and drawing a horizontal line above the base at a height to represent R, it will cut off an

area above it which will be the fluctuation of energy. The diagram for the return stroke

is shown below. It is not exactly the same as that for the forward stroke, because the

effect of obliquity is different. A general method of procedure applicable with any given

indicator diagram is explained at the end of this chapter.

108. Fluctuation of Speed. Fly-wheels. Fluctuation of energy in

an engine or any other machine is necessarily always accompanied

by a fluctuation of speed ;
but the heavier the moving parts the less

will be the fluctuation of speed. In most cases it is necessary that

the fluctuation of speed should not exceed certain limits, as it would

be injurious to the working parts of the machine and would sometimes

impair the character of the work done; so it is a question of some

importance to inquire as to what the weight of the moving parts

must be to confine the fluctuation of speed within a given limit.

Consider the steam engine, and, first, take the case of a single crank.

We have already for this case determined the points of the revolu-

tion at which the energy of the moving parts is a maximum and

minimum, and also the fluctuation of energy. The energy of the

moving parts consists of the energy of the rotating crank shaft and

-all its connections, as well as that of the reciprocating parts. If we

imagine a case in which the shaft and all the parts which rotate with

it are comparatively very light, then the points determined will be

the points at which the piston and reciprocating parts move fastest

and slowest, the motion would be. very irregular, and, in fact, the

engine would not get over the dead points. To avoid this the weight
of the rotating parts is made considerable as compared with that of

the reciprocating parts, and the heavier they are the more uniform

the motion of the engine will be. To increase the uniformity, the

weight must generally be artificially increased by the addition of a

heavy fly-wheel to the shaft, and the inertia of this is predominant
over that of the other moving parts of the engine. For the present

we may neglect the inertia of the reciprocating parts and consider

the fly-wheel alone.

On this supposition the energy and speed of the fly-wheel will be

greatest and least at the points previously described, viz., where the

curve of crank effort is cut by the line of uniform resistance. Let

W be the weight, V the velocity of rim of fly-wheel; then

Energy of Rim.



220 DYNAMICS OF MACHINES. [PART m.

The energy of the arms and boss may be estimated by the addition

of a percentage to the weight of the rim, or be considered as furnishing

a margin in favour of uniformity. On account of the danger of

fracture the speed of periphery V should not exceed 80 feet per
second. This is the limit of speed commonly stated, but the liability

to fracture depends very much on the straining action of the arms

of the wheel due to inequality between the crank effort and the

resistance, and not merely on centrifugal forces. (See Ch. XI.) In

large wheels the rim is in segments, and the speed should not be

more than from 40 to 50 feet per second.

Let V^ and F"
2
be the greatest and least speed of periphery due

W
to the fluctuation of speed, then z(P-fP%) is the fluctuation of

energy of the wheel. By the graphical process previously described,

we have been able to determine the fluctuation of energy in terms

of the total energy E
Q expended in one revolution.

Equating these two we have

where k is the co-efficient previously found.

Suppose now that it is required that the fluctuation of speed should

not exceed a certain amount, then we may write

Fi-r2
=

? .r ,

where V
Q

is the mean speed and q is a co-efficient depending on the

degree of uniformity which is considered desirable. In some cases q

must not exceed '02 or even less, whilst in others *05 or even more

may be sufficient. In driving dynamos great steadiness is necessary

and q should not be greater than '007.

We may generally assume with sufficient accuracy that

(see next article), then we find by substitution that, at the mean speed,

Energy of Wheel = =- . E .

'2q

In a single crank non-expansive engine the value of k ranges, as

we have seen, from *1 to '14 when the resistance is uniform. In

expansive engines Jc may be '25 even with a uniform resistance, and

when an engine is doing very irregular work Jc may be unity.

If We have a pair of cranks at right angles, the kinetic energy of

the reciprocating parts is the same, at the same speed, for all positions

of the cranks. (Ex. 4, p. 208.) Consequently these parts may be

considered as so much added to the weight of the fly wheel. Besides
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this the value of k is much less, seldom reaching '1 if the resistance

is approximately uniform. Hence a lighter [fly-wheel may be used.

The difference however is not so great as it might appear, for in

estimating the weight of wheel required, it is important to consider

not merely the change of speed, but also the time in which the change

takes place. A small change taking place rapidly may be as injurious

as a much greater change taking place slowly. The values of the

acceleration and retardation at any instant are proportional to the

difference between the crank effort and resistance at that instant,

which can be found from tables such as that on page 214, and some

regard should be paid to these numbers in considering what value

of q should be employed.
In any case then we may write

Energy of Wheel = K.E
Q ,

where K is a co-efficient, which will vary within narrower limits than

the two co-efficients of speed and energy on which it depends. In

general, in the very cases in which the resistance is most irregular a

greater variation in speed is admissible.

An old rule for fly-wheels, said to date from the time of Watt, was

equivalent to taking the energy of the wheel as 3'75 times the

energy exerted per stroke. This corresponds to ^=1*875, and would

be^satisfied by k=l, q='267, or by &=-125, ?
=

-^r

th
. The first of

these cases would be a very irregular resistance with a great variation

in speed, and the second a moderately uniform resistance with a

uniformity of speed which would be sufficient for most purposes.

Heavier wheels are common in modern practice, and it may be here

remarked that the minimum weight necessary may depend partly on

the rigidity of the shafting.

There is another method of obtaining the fluctuation of energy which, though not

practically so convenient, is for some purposes advantageous. A curve representing the

energy exerted may be constructed in this way : Suppose the steam pressure P constant,

then in the movement of the crank pin from A to Q the piston moves from A to N and

the energy exerted=P xAN, which will be proportional to AN. Now in Fig. 98 take a

base line AA' equal to the semi-circumference, and at the various points such as Q, set

up ordinates QK=AN, A'A" AA' , and so on ; a curve AKLA" will be obtained, which

will represent by its ordinates the energy which has been exerted from the commencement

up to the various points in the stroke. At ..the same time, the resistance being uniform,

the work done will be proportional to the length of the arc AQ, since work done=R x AQ.
If from the base line AA' we set up ordiuates to represent the work done, a straight

sloping line will be obtained. If the work done = energy exerted in the complete

stroke, they will both be represented by the same ordinate A'A", and so the sloping line

will meet the curve at the point A". The intercept between the curve and line AA"
measured on the vertical ordinate will at any point be the difference between the energy
exerted and the work done reckoned from the commencement of the stroke up to that
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point, and what we have called the fluctuation of energy will be the vertical intercept

between two tangents to the curve AKLA" drawn parallel to AA".

From this we can derive a curve which will represent the varying angular velocity of

the crank
; but, in order to simplify the measurement and description, let the vertical

intercepts of the curve just described be laid off from a horizontal base line, as shown

below.

For suppose we know the moment of inertia of the equivalent fly-wheel of the engine

and the angular velocity of the crank in some one position : the ordinate of the curve

ALA" at this point measured from a properly taken base line must represent the energy
of the moving parts. Thus, if the base line be drawn in proper position, all ordinates

measured from it will represent the square of the velocity of revolution of the crank

shaft. If the speed of the machine is great, the base line will be some distance below

the curve. On the other hand, if the speed is small, the base line will be close to the

curve. There is manifestly a minimum speed at which the machine can be kept revolv-

ing ; it is that which corresponds to the case in which the base line touches the curve.

At one instant of the period of the machine the energy will then be zero.

Drawing such a base line all the ordinates measured from it will represent the square
of the angular velocity, and we can from this deduce a curve of angular velocity. It

will be noticed that half the sum of the greatest and least angular velocities is not

exactly, but only approximately, the mean angular velocity. The true mean may be

determined by means of the curve of angular velocity, the construction of which has just
been described.

A curve of fly-wheel velocity has been constructed by M. Dwelvshauser-Dery
* from

data derived from indicator diagrams taken from an experimental engine belonging to

the Mechanical Laboratory of the University of Liege. The mean velocity in this case

"On the Application of Governors and Fly-wheels to Steam Engines." Proceedings

of the Institution of Civil Engineers, vol. civ.
, p. 196.
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wa* found to approximate closely to the arithmetic mean between the maximum and

minimum velocities in accordance with the usual assumption.

An attempt has been made by Mr. H. B. Ransom * to measure the actual velocity of

the fly-wheel at different points of its revolution by means of a tuning fork making a

known number (about 500) of vibrations per 1", a point on one leg of the fork marking a

continuous series of waves on a drum rotating with the wheel. The length of a set of

10 waves gave the angle turned through by the wheel in one-fiftieth of a second.

109. Correction of Indicator Diagram for Inertia of Reciprocating

Parts. All that has been said respecting the fluctuation of energy and

speed of a machine as a whole, applies to each of the several parts of

which it is constructed. The energy supplied by the driving power is

transmitted through each piece in succession from the driving pair to

the working pair. For each piece the energy exerted is equal to the

work done for the whole period ;
but Fig .99

for a part of the period the two are

unequal, so that the kinetic energy of

the piece varies. If the motion of the

piece be known, the variation of its

energy can be used to determine the

difference between the driving force on A
the piece considered and on the piece im-

mediately following it. Of this calcula-

tion an important example is the change
in the crank effort caused by the inertia

of the reciprocating parts of an engine.

In this calculation we neglect, in the first instance, the obliquity of

the connecting rod, and suppose the crank to rotate uniformly.
Let Q (Fig. 99) be the centre of the crank pin describing a circle

AQA with velocity V^ then the position of the piston is represented

by N, and its velocity is y= y Q

from which it follows that the kinetic energy of the reciprocating

parts must be given by

Kinetic Energy =
2g 1g \ d*

where Wis the weight of the piston, piston rod, and other reciprocating

parts, and x is the distance of the piston from the centre of its stroke.

Take now two positions N, Nr

at distances x
lt

x from the centre and

find by this formula the change of kinetic energy as the piston moves

from J\r to N'. Evidently we shall have

N N'

Change of Kinetic Energy =
x-x.

"The Cyclical Velocity Variations of Steam Engines." Proceedings of the Institu-

tion of Civil Engineers, vol. xcviii., p. 357.
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Now this energy must have been obtained from the steam pressure

which drives the piston and accelerates its motion. Let P be the mean

value of that part of the whole steam pressure which is employed in

this way between N and N', then P . NN' is the energy exerted in this

way, so that

or dividing by x-.
-

JL .n_L
r o2

This formula gives the mean value of the pressure in question between

any two points N, N', and therefore, if we take the points near enough,

we shall obtain the actual pressure at any point of the stroke. Putting
x

l
= x

2
= x we get

ga a

It is convenient to express our result as a pressure in Ibs. per square

inch by dividing by the area of the piston in square inches, then

where pQ
is the weight of the reciprocating parts divided by the

area of the piston, or, as we may call it, the "pressure equivalent

to the weight of the reciprocating parts," and h the "height due to

the revolutions," as on page 202.

When x = a we get the pressure at the commencement of the stroke

required to start the piston : here the pressure is greatest, and elsewhere

varies as the distance from the centre. At the centre the pressure is

zero : the piston then for the moment moves with uniform velocity and

requires no force to change its motion. When past the centre the

pressure is so much addition to the steam pressure because the piston

is at every instant being stopped : this is shown by the formula, since

x is then negative. All this is shown graphically by drawing a straight

line LCL through C such that

the ordinate of that straight line represents the pressure due to inertia

for each position of the piston. After subtracting this from the actual

steam pressure the effective pressure is found, which is transmitted to

the crank pin, and furnishes the crank effort.

The value of p$, the pressure equivalent to the weight of the recipro-

cating parts, varies considerably according to the size and type of

engine, but in ordinary cases ranges from 1J to 3 Ibs. per square inch.
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In return connecting rod engines, and in some other types where the

reciprocating parts are exceptionally heavy, pQ may reach 4J or 5 Ibs.

per square inch. This being given, the pressure due to inertia will vary

inversely as the stroke and directly as the square of the speed ;
in the

high-speed engines common in the present day, the correction for inertia

is very considerable. It is hardly necessary to say that it is only the

value of the crank effort at particular points of the stroke which is

affected. The mean value must remain unaltered, for any energy em-

ployed in overcoming inertia at one part of the stroke must be given out

again at another part, so that the total energy exerted by the steam

remains the same. Further, when there are a pair of cranks at right

angles the total crank effort is little altered. The effect is best seen by

correcting an indicator diagram for the inertia of reciprocating parts
in the following way. Consider, for simplicity, a theoretical indicator

diagram (Fig. 100) SQZA, in which BB is the back pressure line, QZ the

expansion curve, then, but for inertia, the ordinates reckoned from BB
of SQZ give the effective pressure of the steam. Set up BL equal to

the pressure necessary to start the piston found above and draw the

straight line LCL, then the actual

effective pressure will be obtained by

measuring the ordinates to the sloping

base LCL instead of the original base

BB. It will be seen that the general

effect is to equalize the steam pressure

throughout the stroke.

In a high-speed engine the effect of

inertia is so great that BL is sometimes

greater than BS as shown by the dotted

line LCL. This case will be considered

in a later chapter.

The question here considered is

evidently the converse of Case I., Art.

103 of the last chapter; the motion

now being given instead of the force.

In the case of a piston it is usually
more complicated (1) because the crank

does not rotate uniformly, (2) from the

effect of obliquity of connecting rod. To take into account the variation

in the velocity of the crank it would be necessary to draw a curve

representing that velocity by an approximate method already described

and to deduce from it a curve representing the real piston velocity in

any position. In general however the inertia of the rotating parts is

C.M. p

Fig.lOO.
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sufficient to reduce the variation in speed within narrow limits and the

error caused by disregarding it may be neglected. The effect of

obliquity is of more importance. In the first place the motion of the

piston is not exactly harmonic, and in the second place the connecting
rod does not simply reciprocate but has, in addition, an angular motion.

These two points will now be considered separately and in order.

To find the effect of the deviation from harmonic motion three

methods may be adopted :

(1) A linear curve of piston velocity being drawn as in Fig. 48,

page 100, we may derive from it, by an easy graphical process, a curve

of kinetic energy. Divide the stroke into a convenient number of equal

parts and draw the corresponding ordinates
;
the differences of these

ordinates show the changes of kinetic energy and consequently the

mean pressures necessary to produce them.

(2) If / be the acceleration of the piston, P the inertia-pressure,

W the weight, then (p. 197)

In Exs. 9 and 10, p. 103, two constructions are given, by either of

which the acceleration of the'piston may be found graphically. A third

(generally preferable) will be found in the Appendix. An acceleration

curve can thus be drawn which will also be the curve of inertia required,
for reciprocating parts of given weight.

(3) An acceleration curve may be constructed by graphical differen-

tiation of the velocity curve, a method which it may be worth while

to illustrate in detail.

Divide the crank-pin circle into a number of equal parts, and supposing the connecting
rods drawn, let them cut the vertical through in the points 1', 2', 3' in Fig. 101. Also

Fig. 102.

find and mark off the corresponding positions of the piston 1", 2", 3", etc. Now, since

the lengths, 01', 02', 03', etc., represent the velocities of the piston and reciprocating parts
when in positions 1", 2", 3", etc., the difference between any two consecutive lengths, for
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example 1', 2', will represent the change of velocity that has taken place in the corre-

sponding movement of the piston I", 2". If we suppose the crank pin to revolve uniformly

and divide the circle into equal parts, equal times will be occupied in the motions from

point to point, and therefore equal times in the motions between consecutive positions

1", 2", 3", 4", etc., of the piston. Accordingly the differences 01', 1'2', 2'3', etc., will

represent the force required to change the velocity of the reciprocating parts ; and if we

set them up as ordinates between the corresponding positions of the piston, we shall

obtain the curve expressing the effect of inertia. The ordinate should be erected from

the position of the piston when the crank pin is at the middle of the intervals 1, 2, 3, etc.

It will be seen that the greater the number of parts into which we divide the crank-pin

circle the less will be the ordinates representing the effect of inertia, though in all the

curves the same character will be preserved. Accordingly it is possible to determine the

number of parts into which the crank circle should be divided, or to determine the angle

between consecutive radii, 01, 02, etc., so that the ordinates of the inertia curve may be

of a length proper to represent the pressure per square inch of piston area required for

inertia on the same scale that the indicator diagram is drawn. The ordinates of the

resulting inertia curve may then be directly employed to correct the indicator diagram.

Let N be the number of revolutions per minute ; Q, Q' consecutive points on the crank-

piri circle ; and let QOQ'= n be the required angle. Further suppose that the crank-pin

circle is drawn on a scale of x inches to the foot. Then the change of velocity of piston

Av, in feet per second, is evidently

7r7V TT'
.'. Av=

'L-r ,
where TT' is to be measured in inches.

Now this change of velocity takes place in the time At occupied by the movement through

?i, that is in n/6 x N seconds.

W Ar W 2 , T9(TT' in inches)
.'. Force due to inertia= -^r= ?r^2

5
'

<j Ai g 10 xn

And if the indicator diagram is drawn on the scale of y Ibs. to the inch it will be found

that

The curve will cross the base line at the point L where the piston has it maximum velocity,

that is approximately when the crank is at right angles to the connectiog rod, hence

OL= \/(con. rod)
2
-(-(crank)

2 -connecting rod.

It can seldom be necessary to apply any of these methods, for the

error (A/) in the acceleration due to obliquity is given by the simple

approximate formula (p. 102)
V 2

na

while the corresponding error in the position of the piston is found by
direct construction or by the formula on page 98. When obliquity is

neglected the curve of inertia is a sloping straight line LCL (Fig. 99,

p. 223), the extreme ordinate AL of which corresponds to the accelera-

tion at the ends of the stroke. The deviation of the actual curve of

inertia from the straight line must therefore be

AL
Deviation = . cos 16.

n

This vanishes when the crank stands at 45 from either dead point and

is equal to AL/n at the ends of the stroke. When the crank is upright
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the deviation is - AL/n, and at 30 from either dead point AL/'2n.

Finally the deviation at 60 from either dead point is - AL/2n, and

thus corrected ordinates are determined for each of nine corresponding

positions of the piston. In addition, if necessary, the point L where

the curve crosses the axis may be found by the simple rule given above

(p. 227), giving altogether ten points on the curve through which it can

be readily traced. If n is not less than 4, the form of the curve is

similar to that shown in Fig. 101, but with a shorter rod the formula

here used for the acceleration

F 2 f 1 1f=\ cos + -cos 20 \a { n j

shows that the negative ordinates reach a maximum value at a point

given by n
cos 0= -.

The curve therefore becomes horizontal, and slopes upwards before

reaching the point S at the end of the stroke.

To ascertain the effect of the angular motion of a connecting rod

of length /, consider a small portion of weight w at a distance z from

the cross-head end : then with the same notation as on page 223 the

vertical velocity of that portion is

Vertical Velocity = F" .

^
. cos 6.

v

The horizontal velocity when the rod is very long is sensibly the same

as that of the piston (F], and therefore if W be the whole weight of

the rod

TT T-i *-j A c\ /\

Kinetic Energy = + - =- cos2
<9.

s U

Now 2wz2 is equal to /3PF1
2
,
where /3 is a fraction, which for a uniform

rod would be one-third, and which in any case can be calculated by
summation, or determined experimentally as in Ex. 1 1, page 209. When
the rod is very long we have also V F" sin 0, and hence by substitution

Kinetic Energy = (1
-

Thus it appears that the investigation already given for the pressure P

necessary to accelerate the piston will apply when the inertia of the

rod is taken into account if we suppose the fraction 1 - /3 of its weight
to be added to the other reciprocating parts.

The formula here given for the kinetic energy of a connecting rod is, however, closely

approximate only for very long rods, unless the crank be at dead points or at 90 with

the line of centres ; it is therefore desirable to study the question more thoroughly in

order that the nature of the inertia-curve may be better understood.
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For brevity let us take

l-z=fji.l=/ji,na;

then ju,
is a fraction which ranges from zero to unity in proportion to the distance of the

point considered from the crank-pin, and with the usual notation (p. 102) the horizontal

distance of the point from the crank centre is (Mia. cos0+ a. cosd. By differentiation

and substitution, remembering the relation between 6 and (compare Ex. 9, p. 103),

Horizontal Velocity= F {sin 6+ /J.
. tan . cos 0}.

This is less than the velocity of the piston by F (l- p) tan 0. cos0, a quantity which is

positive, zero, or negative according as 6 is less, equal, or greater than 90. We also see

that the effect of obliquity on the horizontal velocity of points on the rod is diminished

in proportion to the distance from the cross-head end till at the crank-pin it vanishes.

The exact value of the kinetic energy (U) of a weight w placed at the point in question
is now found to be

U=W
-j^-{{sm0

+ fJL. tan . cos0}
2 + (l -y

2 f , cos2 . ... ,.

-{
1 + u2

. ST -2u. cos (0+0)
\

^'
2g

Next let r be the crank effort which as the crank turns through a small angle A0
would produce the corresponding change of kinetic energy A6f ; then

and if $be the corresponding pressure on the piston, we have, as on p. 191,

r . cos0 _1 C080 dU
sin (0 + 0) ~d0

By differentiation and reduction, always remembering the relation between and 0, we
now find

sin2.
-

.S=-- -{u.cos0 + f-.cos0--. .- .

go, \ cos2 n cos0 ?icos30J
If //,= ! we get for the case where w is at the cross-head end of the rod, that is to say,

virtually attached to the piston,

ga t wcos0 n cos30J
As the quantity in the bracket is easily shown to be the acceleration-ratio of piston and

crank-pin, this agrees with previous results. (See Appendix, note to p. 102.)

The nature of the inertia-curve is best seen by putting cos 0=1, a supposition which

for the present purpose is quite a sufficient approximation, and expressing sin20, cos2

in terms of cos 20, then

The value for the whole rod is now found by summation, to express the result of which

we may conveniently write

where al is the distance of the centre of gravity of the rod from the crunk-pin, and yl
2

the square of the radius of gyration of the rod about the crank-pin end, quantities con-

nected with the fraction ft previously used by the equation

2cr- 7= l-/3.

Thus finally the inertia-curve for a connecting rod is given very approximately by the

formula

For a uniform rod /3=7=, ff^. On comparing this result with that for the piston,
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which may be deduced from it by putting ff= y 1, when the value already used (p. 228)

is obtained, it is clear that the inertia-curve of a connecting rod is the same as that of a

weight (l-j8)W attached to the piston, except that (1) the whole curve is shifted down-

wards from the line of centres through the small space AL(e -y)/2n(l- p), and (2) that

the correction for obliquity is less, the length of the rod being virtually increased in the

ratio 2(l-jS)/((r + 7). In a uniform rod this ratio is 1*6. The curve may evidently be

plotted by the method already explained.

In the present article the effect of the inertia of the reciprocating

parts of an engine on the crank effort at different points of the revolu-

tion has been exclusively considered. The disturbing forces called into

play on the engine as a whole will be described in a later chapter (see

Arts. 144, 144A, Ch. XL), to which the question properly belongs.

110. Construction of Curves of 'Crank Effort for any given Indicator

Diagram. If the varying magnitude of the steam pressure is given by
the actual indicator diagram of the engine we may deduce the true

crank effort as follows : Let Fig. 1, Plate V., be a pair of indicator

diagrams. The examples chosen are from the low pressure cylinder

of H.M.S. "Nelson."* Before proceeding to make use of them they
should be corrected for inertia, and, where the engines are vertical,

for the weight of the reciprocating parts. The curve of pressure due

to inertia is KLS in Fig. 1, which has been drawn, as just described,

to the same scale as the indicator diagram. If we draw a line MN
parallel to the base line of the inertia curve to represent pQ , the

pressure due to the weight of the reciprocating parts, then the inter-

cept between MN and KLS will be the necessary correction for inertia

and weight combined. In applying the correction, the forward pressure

in one of the pair of diagrams should be taken in conjunction with

the back pressure of the other, for it is the difference between these

which gives the true effective pressure on the piston. Let the dotted

lower curves be the result of the correction, so that the virtual pressure

which is transmitted to the crank-pin is to be measured by the vertical

intercept between the upper steam curve and the dotted curve, such

as BC for example. Immediately below the diagram draw a crank-pin

circle with diameter equal to the length of the indicator diagrams.
Divide the crank-pin circle into, say 20, equal parts, and suppose the

crank-pin to be successively at these points of division
;
determine the

corresponding positions of the piston in its stroke. Whilst doing

this, mark the directions in which the connecting rod lies when the

crank-pin is in these several positions. Let the positions of the piston

in the line of stroke be set off along the diameter 0, 10. Through
* The author is indebted to Mr. (now Prof.

) Hearson for the example here given, and
for the method of drawing the curve of inertia described in small type on page 226.
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these points draw verticals to intersect the indicator diagrams. The

intercepts of these verticals will give us the virtual steam pressure

at each of the points of the stroke and corresponding to each position

of the crank in its revolution. Next, having in Fig. 2 drawn a

number of radii through the points 1, 2, 3, etc., lay off from the

centre along each, the respective intercepts of the indicator diagram
which represent the virtual pressures of the steam when the cranks

are in those positions. We thus draw what we may call a polar

curve of virtual steam pressure. We have for example taken OK
equal to BC in the figure, and similarly for all other radii.

Now, referring to page 191, we observe that if the connecting
rod in any position be drawn to cut the vertical through 0, in a point

T, as for example in Fig. 2 when the crank is at 7, then the length T
will represent the crank effort on the same scale that the length of the

crank arm 07 represents the magnitude of the steam pressure. If

now through K we draw KT' parallel to 7T, then by similar triangles

OT' OT- = -, and thus on the same scale that OK represents the steam
OK 01

pressure OT' will represent the crank effort. Now along the crank 01

set off a length OT" = OT', and perform a similar operation for each

of the positions of the crank. If through the points so obtained we
draw a continuous curve it will be the polar curve of crank effort which

we require, for it will represent by its radii in any position the actual

crank effort when the crank is in that position ;
and we see that, in the

construction, account is taken not only of the angular position of the

crank, but also of the steam pressure which is available for turning
the crank. Taking both indicator diagrams we thus draw the curve

for the complete revolution of the engine. By transfer of the radii of

the polar curve to the crank circle unrolled, we can construct a linear

curve (Art. 105), and thus determine the fluctuation of energy.
In Fig. 2 the thick curve has been drawn to show the crank effort

due to the high and low pressure cylinders combined, by adding to the

radii of the original curve the corresponding radii of the high pressure
curve (not shown in the figure) after correction for difference of scale.

In this engine the high pressure crank is 90 in advance of the low :

if it had been 90 behind the low the fluctuation of crank effort

would have been less. This is shown by the large dotted curve in

the figure. The circle of mean crank effort is added to facilitate

comparison.

111. Pumping Engines. We have hitherto supposed the engine

employed to turn a shaft against a resistance represented by an
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approximately uniform force applied at the crank-pin. In cranes and

other hoisting machines, though the resistance to be overcome is linear,

the reciprocating movement of the piston cannot conveniently be con-

verted into a continuous lift without the use of a rotating shaft driven

by the engine, while for transmitting and distributing power to other

machines shafting is generally necessary. In pumping water, however,

a reciprocating movement is required in the pump piston, which is

converted into an intermittent upward movement of the water by the

ratchet action (p. 156) of the valves. The pump piston is therefore

connected with the steam piston either directly, so as to form one

element of the same pair, or by the intervention of a vibrating beam

introduced either for constructive reasons or for the purpose of altering

the stroke and speed of the pump.
The external resistance to the motion of the steam piston is now

approximately constant instead of being indefinitely great at dead points

and least at the beginning of the stroke
;
but in order that the engine

may work economically the steam must be used expansively, that is, its

pressure must be great at the commencement of the stroke and gradually

diminish to the ends. There is therefore, as before, a difference between

effort and resistance which gives rise to a fluctuation of energy of

the moving parts. Referring to Fig. 97 (p. 218) it will be seen that at the

beginning of the stroke the pressure Pl
of the steam is greater than the

mean pressure Pm which represents the approximately uniform resist-

ance to be overcome in lifting the water
;
the excess sets in motion the

reciprocating parts, which, unless regulated in a proper way, will move

with gradually increasing velocity until the point is reached where

the mean pressure line crosses the expansion line. At this point the

pressure of the steam has by expansion fallen to its mean value and

storage of energy ceases. The part of the indicator diagram lying

above the mean pressure line represents in this case the Fluctuation

of Energy, which can be calculated readily in any particular case.

It is stored in the moving parts and completely restored when they

are brought to a standstill at the end of the stroke.

The work of pumping requires a slow and steady movement of the

pump piston, combined with a pause at the ends to allow time for the

opening and closing of the valves, otherwise dangerous shocks will occur

and much loss by hydraulic resistance. Moreover in each stroke the

mean pressure of the steam must exactly correspond to the work done

in raising the water. Hence some method of controlling and regulating

the motion of the reciprocating parts and of the water moving with

them is generally necessary. Three ways of doing this will now be.

briefly noticed.
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(1) A crank and fly wheel may be employed as in the common form

of small steam pump shown in Plate II., or in a modified form in the

Stannah pump (Plate I.) referred to in Chapter V. Many pumping

engines of the largest size are constructed in this way for waterworks,

the drainage of a town, or other similar purpose. They are sometimes

direct acting but more often beam engines, a constructive difference

which need not be here considered
;

in either case the crank and fly,

wheel is simply an appendage provided for the purpose of defining the

stroke and regulating the motion. The greater part of the fluctuation

of energy is in this case accounted for by the kinetic energy of the

reciprocating parts, inclusive of the water being pumped : the weight
of these parts being generally very considerable. The excess to be pro-

vided for by the fly-wheel can be found by methods already explained.

(2) In the Worthington direct acting horizontal engine, a regulator

of a different kind has been recently introduced.

A cylinder containing compressed air enclosed behind a piston is

mounted on trunnions and oscillates to and fro in a vertical plane. The
steam and pump pistons are attached to opposite ends of the same rod,

to the middle of which the piston rod of the air cylinder is connected by
a pin. The air cylinder is placed above the rod so as to be vertical at

mid-stroke of the steam piston, and in- consequence the air piston is

then pushed furthest in and the pressure of the air is greatest. At the

ends of the stroke of the steam piston the air cylinder is inclined to

the vertical, its piston is furthest out and the pressure of the air least.

Hence at the beginning of the stroke the thrust of the air piston acts

against the steam pressure and at the end in favour of it. When the

pressure of the enclosed air is properly adjusted by forcing fresh air in

or allowing it to escape, the compensation for varying steam pressure is

nearly perfect and the engine works with great regularity. The air

plays the part of a fly-wheel, storing energy in the first half of the

stroke and restoring it in the second.

(3) In the Cornish engine, which is usually but not necessarily of the

beam type, a single acting plunger pump at the bottom of a mine is

operated from the surface by long and heavy "spear rods." The work
of raising the water is done on the down stroke of the pump by
the weight of the rods, which has to be properly adjusted for the

purpose. The steam cylinder, also single acting, is employed solely for

the purpose of raising the rods to the top of the stroke of the pump.
In this case no special regulator is necessary, the fluctuation of energy

being wholly stored in the heavy spear rods with pump plunger and
beam (if any). The upward movement continues in the second half of

the stroke until the energy thus stored is exhausted, the whole energy
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exerted by the steam being now represented by the potential energy of

the elevated weights, which is made use of for pumping in the down

stroke. The stroke in this type of engine depends on the exact adjust-

ment of the mean steam pressure to the weight lifted, and is accordingly

subject to variation instead of being precisely defined as when a crank

and fly-wheel is used. The alternate starting and stoppage of the

heavy moving parts represents a large fluctuation of energy, for which

a suitable amount of expansion is necessary, and it is believed that

expansion was first employed for this reason and not from motives of

economy, the type of engine in question being of very early date.

In all pumping engines the valves and valve gear form a most

important subject for consideration, but this is beside the purpose of

the present chapter.

lllA. Periodic Motion of Machines in General. The motion of a steam

engine, which we have been describing in detail in this chapter, may be

taken as a typical example of the transmission of energy by any machine

whatever. Neglecting frictional resistances the energy is transmitted

without alteration from a driving pair to a working pair when the

complete period of the machine is considered
;
but the rate of trans-

mission varies from instant to instant during the period. The alternate

excess and deficiency of energy is provided for by the moving parts of

the machine, which serve as a store of energy or " kinetic accumulator,"

which can be drawn upon at pleasure.

It has been supposed that the mean resistance at the working pair is

exactly equivalent to the mean effort at the driving pair. If this be not

the case the machine will rapidly alter its mean speed till the balance

is restored by alteration of the effort or the resistance or both. The

balance seldom exists for long, and some means of controlling the

machine is therefore generally indispensable. We have also to con-

sider the straining actions due to the motion of the machine,

especially at high speeds. These, however, are matters for subsequent

consideration.

EXAMPLES.

1. In the case of a pair of cranks at right angles, draw the polar diagram of crank

effort when the connecting rod is indefinitely lng, and find the ratio of maximum crank

effort to mean. Find also the position of the cranks when the actual crank effort is

equal to the mean. Ans. Maximum crank effort=l'll mean.

2. Draw the diagram and obtain the results as in the last question, when the length

of connecting rod is equal to 4 cranks.

Maximum crank effort=1 '307 mean.

3. Draw the linear diagram of crank effort, assuming two cranks at right angles and

connecting rod= 4 cranks.
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4. What is the maximum length of connecting rod for which the crank effort is less

than the mean throughout one quadrant ?

Connecting rod=7 1 cranks.

5. From the diagram of crank effort constructed in question 3, determine the co-

efficient of fluctuation of energy, 1st. When the connecting rods are indefinitely long :

2nd. When the length equals 4 cranks.

Connecting rod indefinitely long. Co-efficient of fluctuation of energy= 'Oil.

Connecting rod= 4 cranks. Co-efficients are 'Oil, '042, 'Oil, '009, '038, '009.

6. A pair of engines of 500 H.P., working on cranks at right angles with connecting
rods=4 cranks, are running at 70 revolutions per minute. Find the maximum and

minimum moments of crank effort, and the fluctuation of energy in ft.-lbs. ; assuming
the steam pressure and resistance uniform.

Maximum moment of crank effort= 49,125 ft.-lbs.

Minimum moment of crank effort= 29,465 ft.-lbs.

Mean moment of crank effort =37,500 ft.-lbs.

Fluctuation of energy= 9, 900 ft.-lbs. Co-efficient= '042.

7. In the case of a single crank the steam is cut off at one-fourth of the stroke.

Neglecting back pressure and inertia, find the ratio of maximum to mean crank effort,

and also the ratio of the fluctuation of energy to the energy of one revolution. Con-

necting rod=4 cranks.

Maximum=2 '45 mean crank effort. Fluctuation of energy= energy of one revolution.

8. Construct a diagram of crank effort for three cranks at angles of 120. The lines of

stroke of the three pistons are parallel, the steam pressure constant, and the resistance

uniform. Find the ratio of maximum to mean crank effort, and the co-efficient of

fluctuation of energy for a connecting rod of 4 cranks.

Ans. Maximum= 1 '077 mean crank effort. A;='011o.

9. In engines with a pair of cranks at right angles, connecting rod 4 cranks long, the

reciprocating parts attached to each crank have a stroke of 4 feet and weigh 20 tons.

The steam pressure is uniform, and equal to 50 tons on each piston, and the resistance

moment is uniform. Find the least number of revolutions the engines can make without

the aid of a fly-wheel and draw a curve of angular velocity ratio for this case.

Ans. At the point of maximum speed the least number of revolutions will be 50

per 1'. To obtain the curve and the least number of complete revolutions, see page 222.

10. The pressure equivalent to the weight of the reciprocating parts of an engine is

4 Ibs. per square inch, the stroke is 4 feet. Neglecting obliquity find the pressure

necessary to start the piston, when the engines are making 75 revolutions per minute.

If the steam pressure be initially at 30 Ibs. above the atmosphere, and the cut off at ^th
the stroke, find the effective pressure at each eighth of the stroke, taking account of the

inertia of the piston, and assuming a constant back pressure of 3 Ibs.

Pressure equivalent to inertia at commencement of stroke=15'3 Ibs. per sq. in.

Effective pressure at commencement=26 '4

1st eighth =30'3

2nd =34'0

3rd =23-0

4th ., =19-4

5th =187
6th =19-5

7th =21-2

8th =23-5

11. In the last question, assuming the connecting rod to be 4 times the crank, plot

a curve of inertia and obtain corrected values of the effective pressure.
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12. In question 11 construct a curve showing the kinetic energy of the piston at each

point of the stroke, and deduce a curve showing the pressure due to inertia of the piston.

Take the curve of piston velocity previously constructed, and PN being any ordinate

of it, the kinetic energy of the piston will be proportional to the square of PN, so we
have only to draw a curve whose ordinates vary as (PN)2

.

Having drawn the curve of kinetic energy, take the difference between consecutive

equidistant ordinates of that curve and set them up as ordinates in the same way as on

page 226.

13. In the connecting rod of question 11, page 209, find what fraction of the weight
of the rod should be added to the other reciprocating parts when calculating the effect of

inertia on the crank effort. Ans. '5.

14. If n be the revolutions per minute of a fly-wheel and d its diameter ; show that the

weight of wheel necessary for a given regularity in an engine of given indicated power is

_ IHP

where C is constant.

NOTE. The diameter is generally about 3| times the stroke (S), and according to a

well-known empirical rule for piston speed ( F) employed in calculating nominal horse-

power V3 oc S. If this be assumed n3d2 is constant and the weight of wheel is then

proportional to the indicated horse-power, a rule sometimes employed, 100 Ibs. being

allowed for each horse-power.

15. The fluctuation of energy of an engine of 150 I.H.P. is 13 per cent, of the energy
exerted in one revolution. The revolutions are 35 per minute, find the weight of a fly-

wheel 20 feet in diameter, that the fluctuation in speed may not exceed one-fortieth.

Ans. 8 tons.

16. Find the "inertia pressure" in the case of an oscillating engine.

Here if z be the distance of the centre of the crank pin from the centre of motion

the oscillating cylinder, the angular velocity-ratio of cylinder and crank (p. 106) is readily

shown to be

Angular velocity-ratio=%-
29 being the value of z for the extreme position of the cylinder. Hence the kinel

energy (U) of the cylinder is known in terms of z. But z differs from the space traversec

by the piston only by a constant ;

is the value of the inertia-pressure.

The effect of the inertia of an oscillating cylinder is the reverse of that of the pistoi

and connecting rod of the ordinary type, the crank effort being increased at the beginnii

and reduced at the end of the stroke.

Proceeding as on p. 229, the kinetic energy of the piston and rod may be found ii

terms of z, and the inertia-pressure then deduced as above.



CHAPTER X.

FRICTIONAL EESISTANCES.

112. Preliminary Remarks. The action of a machine consists, as we

have seen, in a transmission of energy from a driving pair to a working

pair, through a number of intermediate pairs, which change in a given

way the motions proper to the source of energy. In the absence of

friction, the energy transmitted from piece to piece in a complete

period would be the same for all the pairs, but, in consequence of

frictional resistances, a certain part of the energy is lost at each

transmission. These frictional resistances are of two kinds, one due to

the relative motion of the elements of the pairs one upon another, the

other to the changes of form which the flexible parts of the machine

undergo, for example to the bending of ropes and belts. It is to the

first kind that the word " friction
"

is specially appropriated, although
it is not essentially different from the second kind, which in some cases

is also called "stiffness."

We commence with the case of linkwork mechanisms in which the

friction is due simply to the sliding of one surface upon another. The

pairing is in this case of the lower class.

SECTION I. EFFICIENCY OF LOWER PAIRING.

113. Ordinary Laws of Sliding Friction. If one body rests on another

(Fig. 102) and is pressed against it with a force X, a mutual action

takes place between the two which resists Fig. 102.

sliding. The magnitude of this mutual
R ^

, I

action or tangential stress (Ch. XII.) is \ I

measured by the force F which is neces-

sary to produce sliding, and the ratio

F/X is called the co-efficient of friction v^icL^w

and will be denoted by /. The value of / depends on the nature and

condition of the surfaces in contact, wheth er rough or smooth, dry or

lubricated. Under certain circumstances and within certain limits it is

independent of the area of the surfaces in contact and of the velocity
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of sliding. These statements may be called the "
ordinary

"
laws of

friction. The evidence on which they rest and the limitations to their

truth will be considered hereafter : for the present we assume them as

applicable to all the cases we consider.

The work done in overcoming friction may be estimated just as in

the case of any other resistance. If the body move through a space
x the work done is Fx or /. Xx ifX be uniform, and if it be not, a curve

is constructed giving X at every point, then the area under that curve

multiplied by the co-efficient / is the work done (See Ex. 2). If R be

the reaction of the surface upon which the body we are considering

rests, < the angle its direction makes with the normal to the plane,

an equation which shows that the total mutual action between two

plane surfaces, which slide over one another, makes an angle with the

normal to the plane, the tangent of which is the co-efficient of friction

The magnitude of this angle then is fixed, but its direction varies

according to the direction of the sliding. It may therefore be called

the "friction angle," but it is also often called the "angle of repose,"

because it is the greatest inclination of a plane on which the body can

rest under the action of gravity without slipping. In the solution of

questions respecting friction, graphically or otherwise, it is often

convenient to suppose it known.

114. Friction of Bearings. Next suppose the surfaces in contact

cylindrical. In Fig. 103 ABA represents a cylinder pressed down

Fig. 103.

into a semi-circular bearing by a force S, the direction of which passes

through the point 0, which is the intersection of the axis of the

cylinder with the plane of the paper. We may take this to represent

the ordinary case of a shaft and its bearings from which the cap^ has

been removed, S being the resultant of all the forces acting on the
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shaft which, for the moment, are supposed to have no tendency to turn

the shaft. The force S is balanced by the reaction of the bearing

which, when the bearing is in good condition, consists of a pressure

distributed over the whole semi-cylindrical surface. Let DE be a

small element of the surface, p the pressure, the angle the radius

of DE makes with the direction of S, then we must have

If now we knew the law according to which p varies from point to

point, we could by use of this equation find the actual value of p and

also find the total amount of the distributed pressure, that is to say,

2/? . DE which we will call X. Evidently then we shall have

X= k.S,

where k is a co-efficient depending on the law of distribution and

therefore to some extent uncertain. When a bearing is well worn and

imperfectly lubricated it is probable that (see Art. 115) if p^ be the

pressure at B
p=pQ .co$6,

that is, that the intensity of the pressure at any point varies as ON the

distance of the point below the centre. This is the same law as that

which the pressure of a heavy fluid follows, supposed occupying the

semi-cylinder ABA, and it is shown in books on hydrostatics that

Total pressure 4 _ ,

Resultant pressure TT

Next suppose the shaft to be turned by the action of a couple M
applied to it, then if a be the radius

M=^f.p.DE.a=f. Xa=fk.Sa,
In this formula we have some doubt as to the value of k, and we are

not sure that the co-efficient / would be the same for a curve as for a

plane surface
;
we therefore replace fk by /', where /' is a special

co-efficient of axle friction determined by experiment. If there is a cap
on the bearing, which is screwed down, the value of S is increased by
an amount about equal to the tension of the bolts.

The loss of energy per revolution in overcoming axle friction is

evidently M.2ir, or, if d be the diameter,

Work lost = irf'Sd.

The reaction of the bearing surface on the shaft is partly normal and

partly tangential. The normal part balances S and the tangential part

balances M, hence the two parts may be combined into a single force

opposite and parallel to S at such a distance z from that

Sz = M, or 2z=fd,
that is to say, the line of action of the mutual action between the shaft
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and its bearing always touches a circle, the diameter of which is /' times

the diameter of the shaft. This circle is called the Friction Circle of

the shaft or pin considered. When the bearing has a cap on, the force

S must be increased by the tension of the bolts in calculating M, but

not for any other purpose, and the diameter of the friction circle is

consequently increased, it may be very considerably. The utility of

this rule will be seen presently.

The real pressure between a shaft and its bearing varies from point
to point, as we have seen. What is conventionally called the "

pressure
on the bearing" is something different. Let I be the length of the

bearing, then Id is the area of the diametral section, and

S
v =

Yd

is the quantity in question. It is a sort of mean value of the actual

pressure, and will bear some definite relation to it depending on the law

of pressure. For the particular law of pressure given above

The work lost by friction per square inch of bearing surface per 1' is

evidently proportional to pv, where v is the rubbing velocity in feet per
minute. An equivalent amount of heat is generated as we shall see

hereafter, and it is upon the rate at which this heat can be abstracted

by the cooling influences to which the bearing is exposed that the

amount of bearing surface required depends. We shall return to this

hereafter (p. 249) ;
for the present, it is sufficient to say that the pres-

sure on a bearing may sometimes be as much as 1000 Ibs. per sq. inch

when the load is alternating, as in the case of a crank-pin, but is

limited to 300 Ibs. or less when the load is always in one direction.

115. Friction of Pivots. In pivots and other examples in which the

revolving shaft is subject to an endways
force the surfaces in contact are fre-

quently conical. In Fig. 104 a conical

surface AB is pressed against a cor-

responding conical seating by a force //,

and revolves at a given rate. If the

surface be divided into rings, one of

which is seen in section at DE, the

pressure on those rings may be resolved vertically upwards and must

then balance H. Hence ifp be the pressure on DE a ring the radius of

which is y,
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where a is the angle a normal to the conical surface makes with tjie

axis.

When the bearing is somewhat worn the conical surface will have

descended through a certain space, and it may be assumed that all

points such as DE will descend through an equal space, so that the

wear of the surface measured normal to itself is proportional to cos a.

But if v be the velocity of rubbing of the ring DE, the wear will be

proportional to pv, that is to py : hence

py oc cos a.

This principle determines the most probable distribution of the pressure

on worn surfaces in any case, and has already been used above for the

case of a journal. In the present case a is constant, and we have

py = constant =p 1yl =p$2 ,

where the suffixes 1 and 2 refer to the upper and lower edge ; hence, by
substitution, if I be the length AB of the conical surface,

py . 2-rrl . COS a = H,
a formula which determines the pressure at every point. The moment
of friction is evidently

COS a

where Ay is written for the projection of DE on the transverse plane.

By use of the integral calculus this is readily seen to be

a formula which shows that the friction is the same as that of a ring of

small breadth, of diameter equal to the mean of the greatest and least

diameters of the portion of a cone considered. In the case of a simple

flat-ended pivot the equivalent ring is half the diameter of the pivot.

If the pressure were uniform throughout, the diameter of the equivalent

ring would be | instead of J the diameter of the pivot, and the actual

diameter in practice will probably vary between these limits.

Pivots are sometimes used in which the surfaces in contact are not

cones, but are curved, so that in wearing the pressure and wear are the

same throughout (Schiele's pivots). That this may be the case we
must have, since p is constant,

y oc cos a,

that is to say, if we draw a tangent DET to meet the axis in T, ET
must be constant. The curve which possesses this geometric property

C.M. Q
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is called the "tractrix." It is traced readily by stepping from point to-

point, keeping the tangent always of the same length. Pivots of this

kind are very suitable for high speeds, as the wear is very smooth.

116. Friction and Efficiency of Screws. In any case of a machine in.

steady motion the principle of work takes the form (Art. 96)

Energy exerted 1
J

Useful work done -f Work wasted

in a period J \in overcoming frictional resistance.

The simplest case is that of a screw which we will suppose to be square-

threaded and applied to a press, or to some similar purpose. The

pressure between the nut and the thread is distributed uniformly along

the thread, if the screw be accurately constructed and slightly worn.

As shown in the last article in the similar case of a pivot, the friction

may be regarded as concentrated on a spiral traced on a cylinder the

diameter of which may be expected to be about the mean of the

external and internal diameter of the screw. Fig. 105 shows one

Fig.io5. convolution of this spiral unrolled. AB
is the thread, BN parallel to the axis of

the screw is the pitch p, and AN is the

circumference nd. H is the thrust of the

screw, being the force which the screw is

overcoming by means of a couple applied.

to turn it about its axis. E is the action

of the screw thread which (Art. 113)

makes an angle < with the normal, where $ is the angle of repose.

The normal itself makes an angle a with the axis of the screw, where a

is the pitch angle given by the formula

P
tan a = 4-y

-n-d

This force R arises from the turning forces applied to the screw, and

must have the same moment M about the axis of the screw; its vertical

component therefore must be H and its transverse component a force

S such that

Hence the equations

M= sin (a + </>),

Also considering a complete revolution of the screw,

Energy exerted =M . '2rr = Rird . sin (a + $),

Useful work done = H. p = Pip . cos (a
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from which it follows that the efficiency of the screw is

tan a

It is not difficult to show that this fraction is greatest when a = 45 -
J< r

and its value is then

(1

- f\ 2

f) approximately.
1 * 27'

For ordinary values of/ then, the best pitch angle is approximately 45

and the efficiency is considerable.

In practice, however, the pitch angle is much smaller, its value in

bolts and the screws used in presses ranging from '035 in large screws-

to -07 in smaller ones
;
the efficiency is then less, often much less,

than one-third, the object aimed at being not efficiency but a great
mechanical advantage.

If the pitch be sufficiently coarse, it will be possible to reverse the

action, the driving force being then H and the resistance a moment

opposing the rotation of the screw. In a well-known kind of hand

drill and a few other cases this occurs in practice ;
the force E is then

inclined on the other side of the normal, and the efficiency is in the

same way as before found to be

_ .

Efficiency = tana

In most cases, however, a is less than
</>,

and the screw is then

incapable of being reversed. Non-reversibility is often a most valuable

property in practical applications, the friction then serving to hold

together parts which require to be united or to lock a machine in

any given position.

In estimating the efficiency of screw mechanisms the friction of the

end of the screw acting like a pivot or of the nut upon its seat must be

included
;
in screw bolts this item is generally as great as the friction

of the threads. The friction due to lateral pressure of the screw on its

nut may usually be neglected, but when necessary it may be estimated

by the same formula as is used for shafts. The above investigation

strictly speaking, applies only to square-threaded screws; it has,

however, been shown that the efficiency is only slightly diminished by
the triangular or other form of thread usually adopted for the sake of

strength.* The formulae here given for screws may be applied to any
case of a sliding pair in which the driving effort is at right angles to

the useful resistance. A simpler case is that in which the driving
effort is parallel to the direction of sliding. This is given in Example l r

* Cours de Mtcanique Appliquee aux Machines, par J. V. Poncelet, p. 386. Paris,.

1874.
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page 260. In all cases observe that the efficiency diminishes rapidly
when the velocity-ratio is increased. This, which is common to most

mechanisms, limits the mechanical advantage practically attainable.

The hydraulic press is an exception, as will be seen hereafter.

117. Efficiency of Mechanism by Exact Method. In the preceding
cases the efficiency is the same for any motion of the mechanism

whether large or small. Generally, however, it will be different in each

position of the mechanism, and by the "
efficiency of the mechanism

"

is then to be understood the ratio of the useful work done in a period
to the energy exerted in the period.

The exact calculation of the loss of work by frictional resistances in

mechanism is generally very complicated, so that it is best to proceed

by approximations the nature of which will be understood on consider-

ing an example with some degree of thoroughness. The case we select

is that of the mechanism of the direct-acting vertical steam engine such

as is represented in Plate I., page 108.

The losses by friction are (1) the loss by piston friction, (2) friction

of guide bars, (3) friction of crosshead pin, (4) friction of crank pin, (5)

friction of crank shaft-bearings. Of these, the first two are considered

separately (Ex. 2, p. 261), and for the present neglected, whilst the last

three are treated by a graphical method as follows.

In Fig. 106 CQA are the friction circles of the three parts in question,

Fig.106.

vW

which for the sake of clearness are drawn on a very exaggerated scale

while the bearings themselves are omitted. We will neglect the weight
of the connecting rod and its inertia; of these the first is generally

relatively inconsiderable, but in high speed engines the last is often

very large and makes the friction very different at high speeds and low

speeds (see Chap. XL). The weight of the crank shaft and all the parts

connected with it is supposed to act through the centre of the shaft
;

for simplicity we will call it W. The pressure on the piston after

correction for piston anpl guide-bar friction is denoted by P. Then, in

the absence of friction, the line of action of the thrust on the connecting

rod is the line joining the centres of the friction circles, and the moment
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of crank effort is P . CT
,
where T is the intersection of that line with

the vertical through C. But the line of action in question must now

touch the friction circles (Art. 114), and the true moment of crank

effort on the same principle must be P . CT, where T is the intersection

of this common tangent with the vertical CT. Thus P . TT is the cor-

rection for friction of the crosshead and crank pins. Next observe that

the forces acting on the crank shaft are W the weight and S the thrust

of the connecting rod ;
these may be compounded into one force R

passing through T as shown in the diagram. The reaction of the

crank-shaft bearing is an equal and opposite force R which must touch

the friction circle and cut CT in a certain point K. Now the horizontal

component of R is the same as that of S, namely P
;
therefore the true

moment of crank effort after allowing for friction is P . TK.

By performing this construction for a number of positions, as in the

last chapter, we obtain a diagram of crank effort corrected for friction.

The area of this curve will give us the useful work done in a revolution,

the ratio of which to the energy exerted is the efficiency of the

mechanism : and its intersections with the line of mean resistance will

give the points of maximum and minimum energy and the fluctuation

of energy as corrected for friction. .When the crank makes a certain

angle with the line of centres TK vanishes. Within this angle no

steam pressure, however great, will move the crank, as is well known
in practice. It may be called the " dead angle," all points within it

being dead points.

118. Efficiency of Mechanism by Approximate Method. The process

just described is not too complicated for actual use in the foregoing

example, but in many cases it would be otherwise, and it may there-

fore be frequently replaced with advantage by a calculation of the

efficiency of each of the several pairs of which the mechanism is made

up taken by itself.

Each pair consists of two elements, one of which transmits energy to

the other, with a certain deduction caused by the friction between the

elements. The ratio of the energy transmitted to the energy received

may be called the efficiency of the pair. If c
lt

c
2>

c
3J

... be the efficiencies

of all the pairs in the mechanism it is evident from the definition that

the efficiency of the whole mechanism must be

c = c
1
.c

2
.c

s
....

In some cases the efficiency of each pair will be independent of the

frictional resistances of all the other pairs, and may be found separately.
In general this is approximately, but not exactly, true, a point which

will be best understood by a consideration of the foregoing diagram.
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For example, the friction of the guide bars is diminished in consequence
of the friction of the crank pin, because the obliquity of the connect-

ing rod is virtually diminished. The supposition is, however, often

sufficiently nearly true to enable a rough estimate to be made of the

efficiency of the mechanism by finding the efficiencies of the several

pairs taken alone, all the others being supposed smooth. In doing this

mean values are taken for variable forces, if the amount of variation be

not considerable. The uncertainty and variability of the co-efficients

on which frictional efficiency depends are such as to render refined

calculations of little practical value.

119. Experiments on Sliding Friction (Morin). The ordinary laws of

friction, which may be comprised in the single statement that the

co-efficient of friction depends on the nature of the surfaces alone, and

not on the intensity of the pressure or on the velocity of rubbing, were

originally given by Coulomb in a memoir published in 1785, although
some facts of a similar kind were previously known. They are there-

fore often called Coulomb's laws. Yet Coulomb's experiments were

scarcely sufficient to establish them, and the subject was reinvestigated

by others, especially by the late General Morin, whose memoirs were

presented to the French Academy in 1831-4. Morin's experiments were

so elaborate and exact that they may be considered as conclusively

proving the truth of Coulomb's laws within certain limits of pressure

and velocity, and under the circumstances in which they were made :

it will therefore be advisable to explain them briefly.

A sledge loaded with a given weight was caused to slide along a

horizontal bed AB more than 12 feet long (Fig. 107), the rubbii

Fig. 107.

TW

surfaces being formed of the materials to be experimented on. Th<

necessary force was supplied by a cord passing over a pulley at B to

descending weight Q. The tension of the cord T was measured by

spring dynamometer, and could likewise be inferred from the magni-
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tude of the weight after correction for the stiffness of the cord and the

friction of the pulley. In one form of experiment the weights were so

arranged that the sledge moved nearly uniformly : the corresponding

friction was measured and found to be constant. In a second form, the

times occupied by the sledge in reaching given points were automatically

measured and compared with the spaces traversed, by setting them up
as ordinates of the curve CZ shown below. The curve proved to be a

parabola, showing that the space varied as the square of the time, from

which it was inferred that the acceleration of the sledge was constant.

From both methods it appeared that the co-efficient of friction was

exactly the same, whatever the pressure and whatever the velocity,

provided the nature and condition of the surfaces were the same. A
few important results are given in the annexed table; they are taken

from Morin's latest memoir,* containing, besides many new experi-

ments, tables of the results of the whole series. The limits to their

application will be considered presently.

NATURE OF
SURFACES.
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now be a matter of doubt that there are cases in which the laws of

friction are widely different. The known cases of exception for plane
surfaces may be grouped as follows :

(1) At low pressures the co-efficient of friction increases when the

pressure diminishes. This has been shown by various experimentalists,

as, for example, by Dr. Ball.* The lowest pressure employed by
Morin was about three-fourths of a Ib. per square inch, and this is

about the pressure at which the deviation noticed by Ball becomes

insensible. This eifect may be ascribed to a slight adhesion between

the surfaces independent of friction proper.

(2) At high pressures, according to certain experiments by Eennie,t

the co-efficient increases greatly with the pressure. The upper limit

of pressure in Morin's experiments was from 114 to 128 Ibs. per square
inch. At 32*5 Ibs. per square inch Rennie found for metallic surfaces

at rest '14 to '17, nearly agreeing with Morin; but on increasing

the pressure the co-efficient became gradually greater, ranging from

35 to *4 at pressures exceeding 500 Ibs. per square inch. The metals

tried were wrought iron on wrought and cast iron, and steel on cast

iron. Tin on cast iron showed only a slight increase in the co-efficient.

This increased friction at high pressures may be ascribed to abrasion:

of the surfaces.

(3) At high velocities the co-efficient of friction, instead of being

independent of the velocity, diminishes greatly as the velocity in-

creases. This was shown by M. Bochet in 1858. Similar results have

been obtained by others, especially by Captain (now Sir Douglas)
Galton in some important experiments on railway brakes. J The limit

of velocity in Morin's experiments was 10 feet per 1", and at some-

what greater velocities than this the diminution becomes perceptible.

Morin's results have been shown to be applicable at the very lowest

velocities by the late Professor F. Jenkin and Mr. (now Professor)

Ewing, the friction increasing at excessively low velocities in those

cases only in which there is a difference between the friction of rest

and the friction of motion.

It appears difficult to explain the diminution at high speeds merely

by a change in the condition of the surfaces
;

is should, probably, be

regarded as part of the law of friction. Professor Franke in the

Civil Ingenieur for May, 1882, has proposed the formula

*
Experimental Mechanics, by R. S. Ball, p. 78. Macmillan, 1871.

t Phil. Trans, for 1829.

Engineering, vol. 25, pages 469-472.

Phil. Trans., vol. 167, part II.
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where / is about *29, and a (for velocities in metres per 1") ranges,

from '02 to -04, according to the nature and state of the surfaces.

121. Axle Friction. It has already been pointed out that the co-

efficient of axle friction is not necessarily the same as that for plane

surfaces sliding on one another, and, besides, the continuous contact

of a shaft and its bearing is very different from the brief contact

occurring in sledge experiments. Morin, however, made special ex-

periments on the friction of axles, and showed that the co-efficients

were constant and nearly the same in the two cases. The diameters

employed, however, were 4 inches and under, while the revolutions

did not exceed 30 per minute, so that the rubbing velocity was not

more than 30 feet per minute. The pressures were not great, the

value of pv not exceeding 5,000.

Much greater values of pv than this are common in modern practice,

and then it is certain that the value of the co-efficient is much less and

diminishes with the pressure. Already in 1855 M. Hirn had made a

long series of experiments on friction, especially of lubricated surfaces.

The following summary of his results is given by M. Kretz, editor

of the third edition of the Mdcanique Industrielle*

(a) That a lubricant may give a regular and minimum value to the

friction it must be " triturated
"

for some time between the rubbing
surfaces.

(b) The friction of lubricated surfaces diminishes when the tempera-
ture is raised, other things being equal.

(c) With abundant lubrication and uniform temperature friction

varies directly as the velocity. When the temperature is not main-

tained uniform, the relation between friction and velocity depends on

the law of cooling of the special machine considered. In ordinary

machinery friction varies as the square root of velocity.

(d) The friction of lubricated surfaces is nearly proportional to the

square root of the area and the pressure.

Experiments made in 1883-4 by Mr. Tower, f and subsequently by
others, have however conclusively shown that, with thoroughly efficient

lubrication, the friction of a bearing under pressures exceeding 100 Ibs.

per sq. inch is independent of the pressure. This is the well-known

law of friction between a fluid and a surface in contact with it, and

indicates that the bearing surfaces are not in actual contact but are

separated by a thin film of lubricant, a fact which has also been proved

* Introduction a la Mecanique Industrielle, par J. V. Poncelet. Troisteme edition,.

Paris, 1870. . Page 516.

"^Proceedings of the Institution of Mechanical Engineers.
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by direct experiment. The co-efficient of friction in such cases varies

inversely as the pressure and under heavy loads may be less than one-

tenth of the value (-05) given by Morin. Thus Hirn's law of pressure,

though verified by other experiments, is only true in special cases
;
in

other respects his conclusions appear on the whole correct. With

thorough lubrication very heavy pressures and high speeds may be

employed, the value ofpv reaching, or even exceeding, 100,000, but any

inaccuracy of fit in consequence of which parts of the bearing surfaces

come into actual contact will at once cause heating. On the causes

which produce heating the reader is referred to a paper by Professor

Denton.*

SECTION II. EFFICIENCY OF HIGHER PAIRING.

122. Rolling Friction. We now proceed to consider higher pairing,

^commencing with the case of rolling contact. The friction is then

described as "
rolling friction."

When a wheel rolls on soft ground the resistance to rolling is due to

the fact that the wheel makes a rut arid depresses the ground as it

.advances over it. Thus the resistance to motion is proportioned to the

product of the weight moved into the depth of the depression. The

depth of the rut depends on the radius as well as the breadth of the

wheel. It is found that the resistance may be expressed by

bJTB=>
where W= weight, r = radius of wheel, and b is approximately a

onstant length. This might have been anticipated, since the depth

of the rut is of the versed sine of the arc of contact, and therefore

for a given small arc is inversely as the radius. If the wheel roll on

hard ground over a succession of obstacles of small height the law of

resistance will be expressed by the same formula.

When the surface rolled over is elastic, and the pressure on it is not

-sufficient to produce a permanent rut, the resistance to rolling is not so

easily explained. If we consider an extreme case, as for instance a

heavy roller rolling on india-rubber, we shall be able to see to what

.action the resistance is due. The wheel will sink into the rubber,

which will close up around it both in advance and behind, as shown in

Fig. 108. At C the rubber will be most compressed. As the wheel

advances and commences to crush the rubber in advance of it the

rubber moves away to avoid the compression, heaping itself up con-

* ' '

Special Experiments on Lubricants,
"
by Prof. J. E. Denton. American Society

of Mechanical Engineers. November, 1890.
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tinually in advance of the wheel. In this movement it rubs itself over

the surface Ca of the wheel, exerting on it a frictional force in the

-direction shown by the arrow F, which opposes the onward motion of

the wheel. Again, the rubber in the rear is continually tending to

recover its normal position and form of flatness, and in doing so rubs

itself over the surface bC of the wheel in the direction shown by the

arrow F', which also tends to oppose the onward motion of the wheel.

The effect of this creeping action of the rubber over the surface of the

wheel is to cause the onward advance of the centre of the wheel to be

different from that due to the circumference rolled out.* Moreover

Fig. 108,

the vertical component of the reaction of the surface no longer passes

through the centre of the wheel as it must do in the absence of

friction, but is in advance by a small quantity b such that Wb is

the moment of resistance to rolling.

Experiments on rolling resistance present considerable discrepancies,

but within the limits of dimension of rollers which have been tried it

appears that b is independent of the radius
;
this leads to a formula of

the same form as before for the force necessary to draw the roller,

namely

where b is a constant which for dimensions in inches is from -02 to -09

according to the nature of the surfaces. With very hard and smooth

surfaces of wood or metal, the lower value '02 may be employed.

Rolling friction is not sensibly diminished by lubricants, but depends

mainly on smoothness and hardness of the surfaces. It is probably
influenced by the speed of rolling, but this does not appear to have

been proved by experiment unless in cases where the resistance of the

atmosphere and other causes make the question more complicated.
In many cases of rolling the surfaces are partly elastic and partly

*See a Paper by Professor Osborne Reynolds, Phil. Trans., vol. 166, to whom the

true explanation of resistance to rolling in perfectly elastic bodies is due.
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soft, so that the resistance to rolling is partly due to surface friction

and partly to permanent deformation. The value of the constant b is

then much increased. For wagon wheels on macadamized roads in

good condition the value of b is about -5", and on soft ground four to

six times greater. The draught of carts is said to be increased by the

absence of springs.

123. Friction of Ropes and Belts. Fractional resistances are also

produced by the changes of form and dimension of the parts of a

machine occasioned either by the stresses necessarily accompanying
transmission of energy or by shock. In the present chapter we con-

sider tension elements only, that is to say, chiefly ropes and belts.

In Fig. 109 AB is a pulley, the centre of which is 0, over which a

rope passes embracing the arc AKB and acted on by forces T
1
T

2
at

its ends. If their be sufficient

difference between 1\ and T
2

the

rope will slip over the pulley not-
Fig '109 -

withstanding the friction which

tends to prevent it. Let the rope
be just on the point of slipping,

then its tension will gradually
diminish from 1\ at A to 7'

2
at

B. Let T, T' be the tensions at

the intermediate points K, L, then

the portion KL of the rope is kept
in equilibrium by the forces T, T'

at its ends, and a third force S

due to the reaction of the pulley, the three forces meeting in a point

E. On OL set off to 01 to represent T, and draw Ik perpendicular

to $ to meet OK in k, then the sides and the triangle Okl will be

proportioned by the three forces, so that Ok represents T' and Ik S.

The angle S makes with the radius will be the same for all arcs of

the same length, and if KL be taken small enough will be the angle

of friction (Art. 113).

This construction can, if we please, be commenced at A and re-

peated for a number of small portions of the rope till we arrive at

E\ we shall obtain a spiral curve alkb, the last radius Ob of which

represents T
2
on the same scale as the first Oa represents Tv It

is convenient, however, to have an algebraical formula to calculate T
2

.

Let the angle KOL be i and the angle S makes the radius <, then

T Ol_sir\0kl_cos(i-<f>)
cos

cos i + sin i tan
<f>.
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If now the angle i be diminished indefinitely we may write cos i 1 and

sin i = i, so that

T-T ,
4 ,

p,
-- =

. tan</>.

Replacing i by A0, T - T by A7 T

,
and proceeding to the limit

\dT

which being integrated gives

where / is the co-efficient of friction, 6 the angle subtended by the part

of the pulleys embraced by the rope, and e the number 2-718 being the

base of the Naperian system of logarithms. The formula is applicable

even if the pulley be not circular. For a circular pulley the spiral

curve, representing graphically the tension at every point, is the

equiangular or logarithmic spiral of which the formula may be regarded
as the equation. In constructing it graphically, the value of <, for a

small yet finite angle i, is found by replacing T/T by efi and expanding
the exponential : we thus get approximately

1 +fi = cos i + sin i . tan
<f>
= 1 - \i

2 + i . tan
</>,

.. tan <f>=f+^i.

With small values of the co-efficient 2f may be a sufficiently small

Fig.110.angular interval, but in general it will

be advisable to take the angular in-

terval equal to the angle of friction,

then the value of
<j>

is 1J times that

angle. The construction being one in

which errors accumulate, the formula

is preferable when great accuracy is

desired.

12-4. Driving Belts. When a belt

is stretched over a pulley by equal

weights, the tension of the belts is

not necessarily the same everywhere fwl

in the first instance
;
but if the pulley move steadily and the stiffness

of the belt be disregarded, it must be so. Assuming this, let one

of the weights be increased by a certain quantity Q*.and the pulley

be held fast, then the tension of that side of the belt will be increased

by an amount equal to Q at A, but diminishing to zero at Lv a point

determined by the intersection of the friction spiral av ^ (Fig. 110)

with the circle alb, the radius of which represents the weight W.
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Similarly if the other weight be diminished by Q', the tension will

be diminished by an amount equal to Q' at B, but diminishing to

zero at L
2

. The portion L^2
will remain at the original tension W.

If QQ' be increased sufficiently, L
lt
L

2
will coincide in one point L,

the position of which will depend on the proportion between Q and

Q'. While these changes take place in tension, corresponding changes
of length must occur in the parts of the belt exposed to them, AL^
increases and BL

2
diminishes in length. Hence both these parts

slip over the pulley and work is lost by friction, while L^L^ remains

fixed. If now, instead of altering the weights W, we imagine these

weights held fast, and the pulley forcibly rotated so as to increase

A's tension by Q, and diminish B's tension by Q', L^L^ will rotate

with the pulley, and the total increase of length of the one side must

be equal to the total diminution on the other, from which con-

sideration it is possible to calculate the ratio Q bears to Q'. In

practical cases, however, the difference between Q and Q' is so small

that it may be neglected without sensible error, and therefore, in all

questions relating to the working of belts, it may be assumed that

the mean tension of the two sides of the belt is independent of

the power which is being transmitted. The difference of tensions,

however, is directly proportional to the power, and may at once be

calculated if the speed be known, while the ratio of tensions may be

determined, so that the belt shall just not slip, by means of the

formula above obtained. The value of the co-efficient of friction of

leather on iron ranges from '15 to '46 according to the degree of

lubrication : under ordinary circumstances '25 may be considered an

average value. This, however, is often greatly exceeded in practice,,

and one reason why large values are admissible is said by some to be

the effect of atmospheric pressure. The sectional area of belts is fixed

by consideration of strengths, and as their thickness varies little, this

is equivalent to saying that a certain breadth of belt is required for

each horse-power transmitted. (See Ex. 11, p. 261.)

125. Slip of Belts. When a belt is stretched over a pair of pulleys r

one of which drives the other, notwithstanding a resistance not so great

as to cause slipping of the belt as a whole, it appears from what has been

said that a certain arc exists on each pulley on which the belt does not

slip. The length of these arcs has already been found, but in the present

cases the movement of the pulleys causes them to place themselves

where the belt winds on to the pulleys, so that the driving pulley has

the speed of the tight side of the belt and the driven pulley that of the

slack side. The two sides have different speeds, because the same
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weight of belt must pass a given point in a unit of time, wherever

that point be situated, and therefore the speed must be greater the

greater the elongation, that is to say, the greater the tension. Hence

the driving pulley moves quicker than the driven pulley by an amount

which can be calculated when the tensions and the elasticity of the

leather are known, and the "
slip

"
measures the loss of work due to the

creeping of the belt over the pulleys described above. In ordinary

belting the slip does not exceed 2 per cent., and is believed to be often

insensible. The length of belts, however, must not be too great, or its

extensibility will be inconvenient, especially if the motion of the

machine be not sufficiently uniform.* Within moderate limits extensi-

bility is favourable to smooth working.

126. Stiffness of Ropes. When a rope is bent it is found that a cer-

tain moment is required to do it depending on the dimensions of the

rope and, besides, on its tension. The reason of this is best understood

by referring to the corresponding case in a chain with flat links united

by pin joints. If d be the diameter of the pin, T the tension of the

chain, there will be a certain moment of friction resisting bending

which, if the pin be any easy fit, will be simply J/7W, but if it be tight

will be

where T is a constant depending on the tightness. If the chain pass-

over a rotating pulley without slipping, this frictional moment has to be

overcome both when bending on and when bending off the pulley. The

effect shows itself by a shaft outwards on the advancing and inwards on

the retiring side of the chain, so as to increase the leverage of the

resistance and diminish that of the effort. In the present case the two

shifts are equal, being each given by the formula

The case of a rope differs from this only in being more complex : in the

act of bending, the fibres move over each other, and the relative motion

is resisted by friction due to pressures which are partly constant and

partly proportional to the tension. The shift of the centre line of the

rope is visible on the side of the resistance, but hardly perceptible on

the side of the hauling force, showing that most of the loss of work is-

due to the bending on the pulley. The magnitude of the shift varies so-

much according to the mode of manufacture and the condition of the

rope that it is useless to attempt more than a very rough estimate.

*See a footnote by M. Kretz, Covrs de Mtcanique Appliquee aux Machines, par

Poncelet, p. 264.
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According to a formula given by Eytelwein, if d be the diameter of

the rope,

where c is a constant, which for dimensions in inches is taken as '47 for

hemp ropes ;
but this value is too large, except for light loads, and

small diameters of pulley. The loss of work per revolution is T. 2-n-x,

and if D be the effective diameter of the pulley,

D

There is a loss of work by the stiffness of belts of a similar kind, but of

uncertain amount. By most authorities it is considered so small as to

be negligible.

The shift of the line of action of the tension of a rope due to its

stiffness has the effect of diminishing its strength.

127. Friction of Toothed Wheels and Cams. The friction of toothed

wheels is partly rolling and partly sliding, but the first is relatively

small and may be neglected. To determine the sliding friction, let

PT=z (see Fig. 71, page 149), then (page 153) the velocity of rubbing
is given by the formula,

which may be written, if V be the speed of periphery of the pitch

circles, R, R the radii,

-44}*
If, therefore, the wheels be supposed to turn through a small space 8x

measured on the pitch circles, the pair of teeth will slide on one another

through the small space &y, given by the formula

1

This enables us to find the work done in overcoming friction, for if P
be the pressure between the pairs of teeth,

Work done=
[/.

Pdy= (4.*Jp) [/
P^x.

The pressure between the teeth will vary as the wheels turn according

to some unknown law, depending on the way the teeth wear and the

co-efficient / probably varies. Assuming fP constant, and further,

supposing that the chord PT (Fig. 71) is equal to the arc PT, and there-

fore to x the arc turned through by the wheels after the teeth pass the

line of centres,
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The same formula applies before the line of centres, and if we assume

the arcs of approach and recess each equal to the pitch p, we shall have

for the whole work lost by the friction of a pair of teeth,

Whole Work lost=/p(4 +4\/i K

The energy transmitted during the action of a pair of teeth is

therefore the counter efficiency is

where n, ri are the numbers of teeth in the wheels. A smaller arc of

action is sometimes employed in practice, and the friction will then be

less. This is also the case in bevel gear. The formula shows that the

friction is diminished by increasing the number of teeth.

A more exact solution of this question* can be obtained on the

assumption that P varies as it would do if there were only one pair of

teeth
;
but as this is uncertain it is not practically useful.

In all cam and wheel mechanisms the efficiency for a small movement

in any position can be determined exactly by a graphical or other pro-

cess. For the velocity-ratio can be found, as shown in Part II., and the

force-ratio is determinate by the principles of statics, therefore the

quotient which gives the efficiency can also be found. In the case

of toothed wheels this method shows at oncef that the friction of

the teeth before the line of centres is greater than the friction after the

line of centres. The difference appears insufficient to account for the

injurious effects generally ascribed to friction before the line of centres,

which however may be due to other causes. In cam mechanisms the

efficiency in one position is little guide to the efficiency in a complete

period, which can only be found by a process too intricate to be useful,

or by making some supposition as the mean value of the pressure

between the rubbing surfaces.

The counter efficiency of a train of m equal pairs of wheels is

= I + m , /I 1 \

ifIT (
- +

)
.

J \n ri /

Assume now that a given velocity-ratio is to be provided by the train,

and that the number of teeth in one wheel is given, then it is possible

to find the value of m that the friction may be least. The solution of

this problem is the same as that of finding the least possible number of

teeth, and it was shown by Young that, for this, we ought to take m,

so that the velocity-ratio for each pair of wheels is, as nearly as possible,

* See Moseley's Mechanical Principles of Engineering.

tlbid., page 286.

C.M. R
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3-59. For example, if the train is to give a total velocity-ratio of 46,

there should be three pairs of wheels. The gain over a single pair in

this case is one-third, but will be much greater for higher velocity-ratios.

The solution (first given by Mr. Gilbert) takes no account of axle

friction, a circumstance which would greatly modify the result.

Some experiments on the friction of toothed and worm gearing have

been made by Mr. W. Lewis, a brief account of which, with a table of

results, will be found in a treatise on the Mechanics of Machinery by
Prof. A. B. W. Kennedy. The table shows that the efficiency of spur

gearing increases from '94 at a speed of periphery of 10 feet per minute

to -986 at a speed of 200 feet per minute, but is nearly independent of

the pressure. In a worm wheel there is a similar increase with the

speed, but the efficiency is much smaller, diminishing with the angle

of the worm. The experiments by Sir Douglas Galton on railway

brakes already referred to (p. 248), show that the friction of a wheel

when "
skidding," that is when sliding on the rail without rotation, is

much less than the friction of the brake blocks on a rotating wheel.

It diminishes rapidly as the speed increases. In cases of higher pairing

by contact we may therefore probably say generally that the co-efficient

of friction is relatively small except at the lowest speeds, the difference

being greater the higher the speed.

SECTION III. FRICTIONAL RESISTANCES IN GENERAL.

128. Efficiency of Mechanism in General. It appears from what has

been said that an exact calculation of the frictional resistances is im-

practicable, partly because the process is too complex to be useful, but

chiefly because the co-efficients to be employed are variable according

to circumstances, and within limits which are not precisely known.

Hence when possible the efficiency of a machine is estimated, not by

considering each particular element, but by direct experiment on the

machine as a whole, and we conclude this chapter with some general

principles which bear on this question.

The effort employed to drive a machine may be greater or less,

according to the resistance which is being overcome, and therefore the

stress between each element will also vary according to this effort. As,

however, these stresses depend also on other forces, such as weight and

elasticity, which have no connection with the effort, but are always the

same, they will not increase so fast, and the frictional resistances will

accordingly be proportionally less the greater the effort. Some resist-

ances are absolutely constant, for example, the friction of bearings, the

load on which is simply the weight of a fly-wheel or other moving part L
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or the friction of a piston rod in its stuffing box. Others are sensibly

proportional to the driving effort or the useful resistance, in which case,

when the ordinary laws of friction apply, the loss of work increases in

direct proportion to these quantities. The greater number depend on

both variable and constant forces, but these may be in great measure

separated into two parts, one of which is approximately constant and

the other approximately proportional either to the driving effort or to

the useful resistance. Hence, if U be the useful work done and E the

energy exerted in a period of the machine,

where k, k' are numerical co-efficients and B the work done in over-

coming the constant resistances. In hydraulic and other machines,

where fluid resistances occur, terms depending on the speed of the

machine must be added, indeed this is so in all machines when driven

at a high speed ; because forces due to inertia increase the friction,

and besides, shocks and the resistance of the atmosphere have to be

considered. Such cases, however, are not considered here.

If we transfer the term k'E to the other side of the equation and

divide by 1 - k', we get

where e, EQ
are two new constants derived from the former ones, of

which E
Q

is the work done in driving the machine when unloaded, and

\+e the counter-efficiency when the load is very great.

The same formula may also be written in a way which is some-

times more convenient. Let P be the mean value of the driving
effort and R that of the useful resistance during a complete period,

r the mean value of the velocity-ratio of the working and driving

pairs, then

P = (l+e)Er+PQ ,

where P is now the effort required to drive the machine when unloaded.

In hoisting machines R is the weight lifted and P the hauling force

usually called the power, RjP is the mechanical advantage or purchase.
In the steam engine, if pm be the actual mean effective pressure, p'm

the part of that pressure employed in overcoming the useful resistance,

pQ
the pressure necessary to drive the engine when unloaded,

pm =(l+e)p'm +p .

The value of e may be taken as '15 or in large engines somewhat less.

The constant^, often called the "friction pressure," is from 1 to 1 J Ibs.

or in marine engines 2 Ibs. or more per square inch. At high speeds
and pressures the ordinary laws of friction fail and e is diminished, the

constant friction is then relatively of more importance.
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Experiments recently made by Professor Thurston on the friction

of a horizontal engine driving a crank shaft and fly-wheel showed that

the loss of work by friction was nearly independent of the power

transmitted, 47J per cent, of the whole being due to friction of the

crank shaft. The question is one on which little is definitely known,
but it seems clear that the "constant" friction must be the most

important element, and that it must be to a great extent uncertain,

varying from time to time even in the same engine.

If the direction of motion of the machine be reversed so that the

original resistance becomes the driving effort and the effort the resistance,

the same general formula is approximately true, but the constants k, k'

are interchanged. Unless under special conditions the efficiency is not

the same in the two cases, and in fact is generally very different. Let

us suppose that in a machine working against a known reversible

resistance, the driving effort is gradually diminished until the machine

reverses, and let E' be the work done when reversing, we have the

equations

from which by subtraction and dividing by U we find

^__2__1^' E_

U~l + k' l+k'' U'

a formula which gives the efficiency when reversing. If the original

efficiency be less than |(1
-

k'),
the machine will not reverse even when

the driving force is entirely removed. In most forms of hoisting

machines k' is small enough to be neglected, and we have the important

principle that a machine will not reverse if its efficiency is less than '5.

It will not reverse under any circumstances if k> 1 . As previously

explained in the case of a screw, non-reversibility is a property so valu-

able in practical applications as to be worth obtaining at the sacrifice of

efficiency. The differential pulley block is a common example.

Frictional resistances, though a source of waste of energy, are usefully

employed in machines for various purposes. In screws and driving

belts we have already found them used for the purpose of locking a

pair or closing a kinematic chain, and many instances of the same

kind might be referred to. Another application of equal importance

will be considered in the next chapter.

EXAMPLES.

1. A weight is moved up a plane inclined at 1 vertical to n horizontal by an effort

parallel to the plane : show that the counter-efficiency is 1 + r?/, where /is the co-efficient

of friction. Find the value of n for a mechanical advantage of 10 : 1 and a co-efficient

-05. Ans. n=2Q.
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2. Show that the pressure on the guide bars of a direct-acting engine is approximately

proportional to the ordinates of an ellipse, and deduce the work lost per stroke.

Referring to Fig. 91 let X be that pressure, then

pX=S . sin 0=P . tan 0= sin 6 approximately.

If the radius of the crank circle represent P, and an ellipse be drawn with the same

major axis, and minor axis=P/n, X will be the ordinate of the ellipse at a point repre-

senting position of piston.

Loss of work per stroke =/x Area of semi-ellipse

P TrfsP=
*f-- an=-^'

where s is the stroke and / the co-efficient of friction.

3. A bearing 16" diameter is acted on by a horizontal force of 50 tons and a vertical

force of 10 tons. Find the work lost by friction per revolution, using a co-efficient of

one-eighteenth. Find also the horse-power lost by friction at 70 revolutions per minute.

Ans. Loss of work=ll'87 foot-tons. H.P. =56 '4.

4. The thrust of a screw propeller is 20 tons, the pitch 28 feet. The thrust block is

18" diameter at the centre of the rings. Find the efficiency with a co-efficient of friction

of "06. A ns. Efficiency ='986.

5. Find the efficiency of a common screw and nut with pitch angle 45 and co-efficient

16. Ans. Efficiency =72.
6. A screw bolt is

"
diameter outside and "393" at the base of the thread. The

effective diameter of the nut is 3", the pitch angle '07, and the co-efficient of friction '16 ;.

supposing it screwed up by a spanner two feet long, find the mechanical advantage.

Tension of bolt =218 x pull on the spanner.

7. Find the efficiency of a pair of wheels, the number of teeth being 10 and 7o, and

the co-efficient of friction '15. Ans. '954.

8. The stroke of a direct-acting engine is 4 feet, piston load 58 tons, load on crank-

shaft bearings 10 tons, connecting rod 4 cranks : trace the curve of crank effort when

friction is taken into account, assuming all bearings 16" diameter and co-efficient one-

eighteenth. Find the "dead angle."

9. In the last question, if the engine drive the screw propeller of question 4, find the

efficiency of the mechanism, including thrust block, by the approximate method. The

connecting rod may be supposed indefinitely long except for the purpose of estimating

the efficiency of the guide bars.

Efficiency= "989 x
( "97)

2 x "986= '92.

10. A rope is wound i/hrice round a post, and one end is held tight by a force not

exceeding 10 Ibs. What pull at the other end would be necessary to make the rope slip,

the co-efficient of friction being supposed '366? Ans. 10,000 Ibs.

11. Find the necessary width of belt three-sixteenths inch thick to transmit 1 H.P., the

belt embracing 40 per cent, of the circumference of the smaller pulley and running at

300 feet per 1'. Co-efficient= "25. Strength 285 Ibs. per sq. inch. Ans. Breadth = 4".
12. In question 10 construct the friction spiral showing the tension of the rope at

every point.

13. The axles of a tramway car are 2^" diameter, and the wheel 2' 6": find the

resistance, being given, that the co-efficient of axle friction is '08 and that for rolling '09.

Ans. Resistance=28 Ibs. per ton.

14. Find the efficiency of a pulley 6" diameter, over which a rope ^" diameter passes,

the axis of the pulley being
"
diameter, and the load on it twice the tension of the

rope. Co-efficient of axle friction '08. Co-efficient for stiffness of rope "47. Ans.

Efficiency =94 per cent.

15. From the result of the preceding question deduce the efficiency of a pair of three-

sheaved blocks. Ans. Efficiency =71 per cent.
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16. A wheel weighing 20 Ibs., radius of gyration 1', is revolving at 1 revolution per

second on axles 1" diameter. It is observed to make 40 revolutions before stopping : find

the co-efficient of axle friction. -4ns. Co-efficient= '059.

17. In a pair of three-sheaved blocks it is found by experiment that a weight of 40 Ibs.

can be raised by a force of 10 Ibs., and a weight of 200 Ibs. by a force of 40 Ibs. Find

the general relation between P and W, and the efficiency when raising 100 Ibs.

P=^s W+$. Efficiency = 784 when raising 100 Ibs. e=i-

18. Find the distance to which power can be transmitted by shafting of uniform

diameter, with a loss bj
r friction due to its weight of n per cent., assuming that the angle

of torsion is immaterial, and co-efficient for strength 9,000 Ibs. per square inch.

If /be co-efficient of friction, then the length of shafting is 13^ ~e in feet.
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CHAPTER XL

MACHINES IN GENERAL.

129. Preliminary Remarks. In the motion of a machine the relative

movements of the several parts are completely denned by the nature

of the machine, and the principal action consists in a transmission and

conversion of energy. Hence it is that the principle of work is of

such importance in all mechanical operations that it is desirable to

consider it as an independent fundamental law verified by daily

experience. Even in applied mechanics, however, we have sometimes

to do with sets of bodies, the relative movements of which are not

completely defined by the constraint to which they are subject, but

partly depend on given mutual actions between them. When this is

the case, the principle of work, though still of great importance, is

not by itself sufficient to determine the motions.

Again, if we wish to study the forces which arise when the direction

of a body's motion is changed, the principle of work does not help us,

for no work is done by such forces. For example, the position of the

arms of a governor, revolving at a given speed, cannot be found, except,

perhaps indirectly, by the methods hereto employed. We then resort

to the ordinary laws connecting matter and motion, which form the base

of the science of mechanics, and of which the principle of work itself is

often considered as simply a consequence.

The present chapter will be devoted in the first place to a brief sum-

mary of elementary dynamical principles, and afterwards to various

questions relating to machines and the forces to which they are subject.

SECTION I. ELEMENTARY PRINCIPLES OF DYNAMICS.*

130. Quantity of Matter. Mass. The effect of an unbalanced force

P, acting during a certain time t, on a piece of matter, is to generate a

velocity v, which is proportional to P and t directly and the quantity of

*'The brief statement here made of principles assumed in subsequent articles of the

treatise is not intended as a substitute for a treatise on elementary dynamics.
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matter inversely. When the force P is equal to the weight fF, as in the

case of a body falling freely, the velocity generated in 1" is known to be

g, where g is a number which varies slightly for different positions on

the earth's surface (Art. 99), but is precisely the same for all sorts of

matter. We may express this by the equation

ft-Hk
9

Since we use gravitation measures exclusively, the symbol W in this

formula must be understood to mean the weight of the piece of matter

as compared with that of a standard piece at some definite place, as, for

example, Greenwich Observatory. The weight PFiheu varies according

to the actual position of the piece of matter upon, above, or below the

earth's surface
;
but these variations are in exact proportion to cor-

responding changes in the value of g, so that the quotient W/g,

commonly known (p. 200) as the Mass, furnishes a definite measure

of the inertia and therefore of the quantity of matter in the piece.

The quotient thus described as the "
mass," however, is not numeri-

cally equal to the quantity of matter because the unit of measurement

is different. The unit of mass is here derived from the unit of force,

being necessarily a quantity of matter such that W/g is unity, that

is, the weight of the unit mass must be g units of force. But the

weight of the standard piece at Greenwich is one unit of force, and

therefore the unit mass is the quantity of matter in the standard

piece multiplied by gQ ,
the value of g at Greenwich. Now quantities

of matter are practically determined by the process of weighing them

against the same standard pieces as are employed in measuring forces ;

the quantity of matter in the standard piece is therefore the unit of

measurement. So much is this the case that in ordinary language
the terms "pound" or "kilogramme" are used indiscriminately for

force, or the matter on which force acts.

The unit of mass then in gravitation measure, as usually defined,

is the unit quantity of matter multiplied by gQ ,
and therefore, if /*

be the quantity of matter, and m the mass,

It is obvious that the value of p is an absolute measure of the

quantity of matter, being independent of time, space, and the place

where the weighing takes place ;
it is numerically the same as W

,

the force with which the quantity of matter
//,

is drawn to the ground
at Greenwich, for which reason the term "weight" in ordinary

language is used in the sense of quantity quite as often as in that of

force. On the other hand, the value of m is a measure which is
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only relative to the numerical value of g . Hence in gravitation

measure, the word " mass
"
means the quantity of matter measured

on a special scale, dependent on the units of time, space, and force

adopted.
Some remarks on the " absolute

"
system of measurement employed

by physicists, in which the mass and the quantity of matter are

identical, will be found in the Appendix, but as this system has

not as yet been introduced into practice, either at home or abroad,

it is unnecessary for the purposes of this work to dwell on the

subject here.

131. Equation of Momentum. Centrifugal Force. Denoting, then, the

mass by m, the equation connecting P, t, and v, becomes

Pt^mv.

The products Pt, mv are called IMPULSE and MOMENTUM respectively,

and the equation may be written

Impulse exerted = Momentum generated.

A unit of impulse is unit force exerted for unit time, usually 1 Ib. for 1",

a quantity for which the expression
"
second-pound

"
may conveniently

be used. If P be variable, then impulse is calculated in the same way
as the energy exerted by a variable force (Art. 90), the abscissa of the

diagram now representing time instead of space.

The body we are considering may have a velocity at the commence-

ment of the time t, and the force may be partially balanced
;

if so, v
must be understood to be the change of velocity, and P the unbalanced,

part of the force.

So far, the equation] of momentum is analogous to the equation of

work, impulse representing the time effect of force as energy represents

its space-effect. There are, however, two important differences, which

we consider in the present and next succeeding article.

Change of kinetic energy arises from a change in the magnitude of

the velocity irrespectively of direction, whereas change of momentum
must be estimated in the direction of the force producing it, and includes

change of direction. Hence the equation is applicable when the direction

of the force is perpendicular to the direction of motion, so that the only
effect produced is change of direction. The rate of change of velocity

taken in the most general sense, is called Acceleration, and the equation
of momentum may also be written

P~mft

where /' is the acceleration estimated in the direction of the force. Bjr

taking the force perpendicular to the direction of motion we get the
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equation which connects the curvature of the path of a moving body
with the force ft, which compels it to deviate from the straight line,

namely,

where v is the velocity and r the radius of the circle in which it is

moving at the instant considered. Since v/r is the angular velocity

of the line in which the body is moving the formula shows that the

deviating force is equal to the product of the momentum and the rate

of deviation.

Like other forces this arises from the mutual action between two

bodies : one of these is the moving body ;
the other, the fixed body

which furnishes the necessary constraint. If we are thinking of the fixed

body instead of the moving bod}'', we call the force R the Centrifugal

Force, being the equal and opposite force with which the moving body
acts on the body which constrains it. The two forces together con-

stitute what we have already called a Stress (Art. 1). To determine

a stress of this kind it is necessary to refer the direction of motion

to some body which we know may be regarded as fixed, and we

are not at liberty to choose any body we please for this purpose, as

in kinematical questions. What constitutes a fixed body is a question

of abstract dynamics, into which we need not enter. For practical

purposes the earth is taken as fixed.

If a body rotate about a fixed axis the centrifugal forces, arising

from the motion of each particle, will not balance one another unless

the axis be one of three lines, passing through the centre of gravity,

which are called the "
principal axes of inertia

"
at that point. In most

cases occurring in practical applications the position of these lines can

be at once foreseen as being axes of symmetry. This is the case, for

example, in homogeneous ellipsoids and parallelepipeds. In the com-

mon case of a homogeneous solid of revolution, the axis of revolution,

and any line at right angles to it through the centre of gravity, are

principal axes. If the axes of rotation be parallel to one of these axes,

hut does not pass through the centre of gravity, the centrifugal forces

reduce to a single force, which is the same as if the whole mass were

concentrated at the centre of gravity. In all other cases there is a

couple depending on the direction of the axis of rotation, as well as

the force just mentioned. (Ex. 15, p. 291.)

132. Principle of Momentum. Again, every force arises from the

mutual action between two bodies, consisting in an action on one accom-

panied by an equal and opposite reaction on the other. Hence, if we
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understand by the total momentum of two bodies in any direction, the

sum or the difference of the momenta of each, according as the bodies

move in the same or in the opposite direction, it appears that the total

momentum will not be affected by the mutual action between the two.

And more generally, if there be any number of bodies we shall have

Total impulse exerted = Change of total momentum,

where, in reckoning the impulse, we are to take into account external

forces alone, and not the internal forces arising from the mutual action

of the parts of the set of bodies we are considering. This equation

expresses one form of what we may call the Principle of Momentum
;

other forms will be explained hereafter in connection with questions

relating to fluid motion (Part V.).

The total momentum of a number of bodies may be reckoned by direct

summation, with due regard to sign, but it may also be expressed in

terms of the velocity of the centre of gravity : for, let m be the mass of

any particle of the system, the ordinate of which, reckoned from a given

origin parallel to a given line, is x
; also, let ^mx denote the sum of all

the separate products mx, for all the particles of the system, and let M
be the total mass, then we know that the ordinate of the centre of

gravity
*

is given by the formula

^mx
x = -=-=-.M

Let the velocity of a particle parallel to the given line be u, then if

jcv x.2 ,
be the ordinates at the beginning and end of 1" we shall have

u = x
2
- xr

Hence if u be the velocity of the centre of gravity parallel to the same

line
'

which equation may be written

Mu = 2m%,

showing that the total momentum of the system is the same as if its

total mass were concentrated in its centre of gravity. We conclude

from this that the motion of the centre of gravity can only be influenced

by external forces and not by any action between the parts of the

system.

133. Internal and External Kinetic Energy. If we multiply the

equation just obtained by 2u and remember that u being constant may
be placed within the sign of summation, we obtain

*
Called more correctly by Young "the centre of inertia" and by modern writers

on mechanics the "centre of mass," or more briefly the "ceutroid."
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which, adding 2wiw-2 to each side and re-arranging the terms, may be

written

M~u? + ?m (u -i*)
2 = SWIM*.

This is true in whatever direction the velocities are estimated, and we

can therefore write down two similar equations for the velocities in two

directions at right angles to the first. Now the resultant of three

velocities at right angles is the square root of the sum of the squares of

the components, also u - u is the velocity parallel to x relatively to the

centre of gravity ;
hence if U be the resultant velocity of the centre of

gravity, v, v the velocities of any particle relatively to the body regarded

as fixed and relatively to the centre of gravity respectively, we have,

adding the three equations together, and dividing by 2,

The first term on the left-hand side of this equation is what the energy
would be, if the whole mass were concentrated at its centre of gravity,

a quantity which may be described as the External Energy, or otherwise

as the Energy of Translation of the system. The second term is the

energy relatively to the centre of gravity considered as fixed, which

may be called the Internal Energy. The right-hand side is the total

energy of motion, and we see therefore that this is the sum of the

internal and external energies. In the case of a single rigid body the

motion relatively to the centre of gravity is always a rotation about

some axis, and therefore

Energy of Motion = Energy of Translation + Energy of Rotation,

a principle already employed in a preceding chapter (p. 202).

In the case of a set of rigid bodies the internal energy is the sum of

the energies of rotation of each together with the internal energy of a

set of particles of the same mass occupying the centres of gravity of the

bodies and moving in the same way.

134. Examples of Incomplete Constraint. In the cases which occur in

applications to machines and structures we usually have to consider two

bodies moving in straight lines without rotation.

CASE I. Recoil of a Gun. When a cannon is fired the shot is pro-

jected and the cannon recoils with velocities dependent on the relative

weights of the shot, the cannon, and the charge of powder.

Here, the motion is due to the pressure of the gases generated by
the combustion of the powder one way on the shot, the other way on

the cannon. If the inertia of these gases could be neglected these

pressures would be exactly equal at each instant and would cease as

soon as the shot left the bore. The impulse exerted on shot and

cannon would then be equal. In fact, the inertia of the powder gases
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causes the pressure to be greater and to last longer on the cannon than

on the shot, so that the impulses on the two are not nearly equal. For

the present we shall neglect this, and shall further suppose that the

material of both shot and gun is sensibly rigid.

In general, recoil is checked by an apparatus called a "
compressor,"

which supplies a gradually increasing resistance to the backward move-

ment of the gun, while friction and the resistance to rotation of the

shot resist the forward movement of the shot. In the first instance

suppose there are no such resistances, let V be the velocity of recoil

and M the mass of the gun, v the velocity and m the mass of the shot
;

then, since the impulse exerted is the same for both,

MF=mv.

Further, if the weight of the charge and the amount of work 1 Ib. of

it is capable of doing be known, the explosion will develop a definite

amount of energy (E) which will be all spent in giving motion to the

shot and the cannon.

Energy of Explosion = \MV- + %mv
2

.

Here E is the sum of two parts

Energy of Shot = ^- E,

Energy of Recoil = -^ E.M + m

The energy of recoil has to be absorbed by the compressor, usually an

hydraulic brake, which will be considered hereafter (see Part V.).

CASE II. Collision of Fessels. When two vessels come into collision

an amount of damage is done depending on the size and velocities of

the vessels.

Here we may suppose the vessels moving in given directions with

given velocities
;

let the velocities parallel to a given line be u^ uv and

the masses mv m , then, as in Art. 133, the velocity of the centre of

gravity parallel to the same line is

m
1

and therefore the velocities of the vessels relatively to their common
centre of gravity must be

. _m l ('u2
-u

l )
. tto II

-
.% + m.

2

Two similar equations may be written down for the velocities in a

-direction at right angles to the first. Square and add corresponding
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equations, multiply by ^mv Jra.,,
and add the pair of products, then

(Art. 133)

Internal Energy = 1
. m

where V is the velocity of either vessel relatively to the other, a

quantity found immediately from the given velocities of the vessels

by means of a triangle of velocities.

The total kinetic energy of the vessels is found by adding the

energy of translation. As, however, this quantity cannot be altered

by the collision, it is clear that the amount of work done must

depend on the internal energy alone : we may properly call it there-

fore the "energy of collision." If the displacements in tons of the

vessels be Wv W^ we shall have, in foot-tons,

W W V'1

Energy of Collision =^ ^ . .

It is not, however, to be supposed that the whole of this is neces-

sarily expended in damage to the vessels
;

if the circumstances of

the collision be such that the vessels, even though completely devoid of

elasticity, would have a motion of rotation or a velocity of separation

of their centres of gravity, then the corresponding internal energy
must be deducted. Also the influence of the water surrounding the

vessels has been left out of account
;

this somewhat augments the

effect by increasing the virtual mass of the vessels.

The same formula may be used for other cases of impact, but

the effects of impact depend so much on the strength and stiffness

of the colliding bodies that the subject cannot be further considered

here (Ch. XVI.).
CASE III. Free Rotation. If the axis of rotation of a solid be free

to move, it will shift its position as already stated unless the axis

be one of the principal axes of inertia : but if it be a principal axis

it will remain fixed in direction unless external forces act upon it.

When the solid rotates rapidly it offers a considerable resistance to

any change of direction of its axis which can only be overcome by
the action of forces which have a moment about an axis inclined

to the axis of rotation. In consequence a body in rapid rotation

may possess considerable stability in circumstances where in the

absence of rotation equilibrium would be impossible. The principle

is important and has many applications, the well-known gyroscope

being a common example. The question, however, requires a con-

siderable amount of explanation to render it intelligible, and the

limits of this work render it impossible to do more than mention

it here. The theory of the gyroscope is given in a clear and simple
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form by Professor Worthington, in a small treatise referred to at

the end of this chapter.

SECTION II. REGULATORS AND METERS.

135. Preliminary Remarks. Revoking Pendulum. Centrifugal forces

may be employed in machines to do work by energy transmitted from

a source, or derived from the kinetic energy of the moving parts.

Sometimes the work thus done is the object of the machine, as in

certain drying machines where the substance to be dried is caused

to rotate with great rapidity so that the fluid is expelled at the outer

circumference : or, partially, in centrifugal pumps. Mor frequently

they serve to move a kinematic chain connected with a shifting piece

which regulates the speed of the machine. Such mechanisms are

called Centrifugal Regulators or, more briefly, Governors.

In Fig. 112 Q is a heavy particle

attached by a string to a fixed point

and revolving in a horizontal circle the

centre of which is ^vertically below 0.

This will be possible if the centrifugal

force due to the motion of the particle

is equal to the horizontal component
of the tension of the string. Let S be

that tension, W the weight of the

particle, and let the string make an

angle 6 with the vertical, then the

horizontal and vertical components of S are

Fig.112

Let A be the angular velocity of the revolving particle, then it is shown
in works on elementary dynamics that the centrifugal force is

X= .A*.QN.

Equating these values of X and eliminating S,

W.texie = .A*.QN.

Since QN= ON. tan 0, this reduces to the simple formula

which shows that the vertical distance of Q below the point of sus-

pension depends on the speed, not on the length of the string or the

magnitude of the weight.
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This distance is called the "
height

"
of the revolving pendulum, and

will be denoted by h. If t be the period, that is the time of a complete

revolution, we find, since At =
'2-!r,

showing that the period is the same as that of a double oscillation of a

simple pendulum of length h (see Art. 103). The height of a simple

revolving pendulum may, as already explained in Art. 101 (p. 201),

often be conveniently adopted as a measure of a speed of revolution.

It is inversely proportional to the square of the speed being given in

inches at n revolutions per minute by the equation

35,232
li =

,

n-

Instead of supposing the string attached to a point in the axis of

revolution, we may suppose it attached to a point K, rigidly connected

by a cross-piece KE, with a revolving spindle ON. The same reasoning

applies, being now an ideal point, found by prolonging the string to

meet the axis. The height of the pendulum is still ON, and is found

!>y the same formula.

136. Speed of a Governor to overcome given Fridional Resistances.

Loaded Governors. In the simplest centrifugal governors two heavy
balls are attached to arms, which are jointed either directly to a

revolving spindle, or to the ends of a cross-piece attached to a

spindle. Motion is communicated by links from the arms to a piece

sliding on the spindle, the movement of which is communicated by
a train of linkwork, either to a throttle valve directly controlling

the supply of steam, or to an expansion valve which regulates the

cut-off. In either case an upward movement of the arms has the

effect of diminishing the mean effective pressure, and a downward

movement of increasing it. Two forms of this mechanism are shown

in the figures of Plate VI.: in one of these (Fig. 1) the weight of the

sliding piece is increased by a large additional weight, the governor
is then said to be loaded ; while in the other (Fig. 2) the arms cross

each other, the spindle being slotted, or the arms bent to permit

this. The object of these arrangements we shall see presently.

If now the speed of revolution be increased or diminished, the arms

move outwards or inwards, arid so adapt the mean effective pressure to

the work which is being done. If there were no frictional resistances

the smallest variation of speed would produce a corresponding motion

in the arms
; but, as the linkwork mechanism necessarily offers a certain

resistance, motion cannot take place until the change of speed has
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reached a certain magnitude, which is smaller the more sensitive the

governor is. These frictional resistances are measured by a certain

addition to, or subtraction from, the weight of the

sliding-piece, which might be determined experiment-

ally, and therefore will be supposed a known quan-

tity F. We first investigate what change of speed

will be necessary to overcome them.

In Fig. 113 AQB is a triangle revolving about AB
which is vertical, a heavy particle is placed at Q, and T

the weights of the bars AQ, BQ are small enough to

be neglected. If the triangle revolve at a speed cor-

responding to the height AN of a simple revolving

pendulum AQ, there will be no stress on BQ, but if it be greater or

less there will be a pull or thrust, the magnitude of which is determined

thus :

Set up NO equal to the height due to the revolutions, and join

QO. Then it appears from what was said in the last article that

if NO be taken to represent the weight W of the particle, NQ will

represent X the centrifugal force, and therefore the resultant force

on Q must be represented by QO. Through draw OZ parallel to

BQ, then QOZ is a triangle of forces for the joint Q of the triangular

frame AQB, so that QZ, OZ must represent the stresses on AQ, BQ
respectively. For our purposes we require the vertical component of

the stress on the link BQ, which is obtained by drawing ZL horizontal :

OL must be the force in question which we call T. In the Figure T
is an upward force, being below A, and the speed of revolution

therefore great. In this construction the links need not be actually

jointed to the spindle AB; they may, as in the simple pendulum,
be attached to the extremities of cross-pieces fixed to AB. A and

B are then ideal points of intersection of the links with the axis

of rotation.

In general AQ and BQ are equal; we may then obtain a simple
formula for T. Let N0 =

h, a quantity given by the same formula

as before for a given speed, and let AN, the actual height of the

governor, be denoted by H, then OA = H-h; but in the case supposed,
OA '20L, therefore

h

formulae which give the pull for any speed, and conversely the speed for

which the pull will have a given value. In practical applications there

are always two balls, so that if W be the weight of one, '2T will be the

pull due to both.

C.M. s
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We can now find within what limits of speed the mechanism can be

in equilibrium. Let w be the weight of the sliding-piece B, inclusive of

any load which may be added to it, h the height due to the speed at

which there is no tendency to move the arms, h
l9
A
2 ,

the heights due to

the speeds at which they are on the point of moving upwards or down-

wards respectively, then

W W W

In general F will be small compared
with W+w, and then we have very

approximately,
F

fVt) ll = IV //'-I
== IV TTrW + w

These results show that loading a

governor gives it a power of over-

coming frictional resistances which

would otherwise require a weight of

ball equal to the sum of the load and

the actual weight. Light balls may
therefore be used as in the figure

(Plate VI.) without sacrificing power,

as the load may be made great with-

out inconvenience. The speed of a

loaded governor is greater than that

of a simple governor of the same

actual height, as appears from the

formula for h. It may be altered at

pleasure by altering the load. This

arrangement is known as Porter's

governor, from the name of the in-

ventor.

137- Variation of Height of a Pendu-

lum Governor by a Change of Position of

the Arms. Next suppose the speed to

alter so much that the arms actually

change their position, then if H re-

mained the same, the tendency to

move would also be the same, and the

movement must therefore continue

until the speed is brought back within

the limits for which rest is possible. In the ordinary pendulum
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governor, however, H alters in a way which depends on the mode

of attachment and arrangement of the arms, as will appear from the

annexed diagram (Fig. 114) which shows three cases.

In the centre figure the arms are jointed to the spindle so that

their centres of rotation are in the axis, in the two others they are

jointed to a cross-piece KK, but differently arranged in the two

cases. In all three, as explained in the preceding article, the height

H is measured to A, the real or ideal intersection of the arms with

the axis of rotation.

Suppose the arms to move from position 1 to position 2 in the

figure ;
H diminishes to H', but the amount of diminution is different

in the three cases : in the right-hand figure it is greatest, and in the

left-hand least. Indeed in the latter case where the arms are crossed

it is possible by making KK long enough, to change the diminution

into an increase. (Ex. 4, p. 289.) If then, by an increase in the

speed, the arms move into a new position, the speed required for

equilibrium does not remain the same but increases, so that, when the

adjustment has been effected between the energy and the work, the

speed is increased, instead of being the same as before. Conversely,
after adjustment to suit a diminished speed, the speed actually attained

is diminished. Thus the effect of the variation in H is to widen the

limits within which the speed can vary.

138. Parabolic Governors. A governor may be constructed in which

H does not vary at all.

In Fig. 115 Q is a ball resting on a curve CC attached to a vertical

spindle. The curve lies in a vertical plane,

and D is the lowest point. When at rest Fig. 115.

the ball can only be in equilibrium at 7),

but, if the spindle revolve, it may rest at

another point, the position of which depends
on the speed of revolution. If the curve be

a circle we have only the pendulum gover-
nor in a different form, for, drawing the

normal QA and the perpendicular QN, A
will be a point to which Q might be attached by a string and the curve

removed. Hence, AN must be equal to h, the height due to the

speed of revolution. But if the curve be not a circle the same thing
must be true, only A is now not a fixed point; hence in every case

the sub-normal AN of the curve at the point of equilibrium must
be equal to h. In general this geometrical condition determines one,

and only one, position for a given speed ; but if the curve be a
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parabola with vertex at Z), AN will be constant, and therefore Q
will rest in any position for one particular speed, but for lower speeds

will roll down to D, and for higher speeds will move upwards inde-

finitely. We have here a governor for which, neglecting frictional

resistances, only one speed is possible. Such a governor is said to

be "isochronous."

The curve arrangement is inconvenient for constructive reasons, but

if it be replaced by a linkwork mechanism the ball still moves in a

parabola. An isochronous governor is therefore often said to be

"parabolic." The term is preferable, for no governor is actually

isochronous on account of frictional resistances. A pendulum governor
is much more nearly parabolic when the arms are crossed, and by

properly taking the length of the cross-piece (Ex. 4, p. 289) it may be

made exactly parabolic for small displacements. This arrangement
is called Farcot's governor from the name of the inventor.

139. Stability of Governors. If the curve CC be not a parabola JET,

which in this case is the sub-normal, will diminish or increase as the

ball Q moves outwards. Take the first case and suppose Q in equi-

librium at a certain point when the speed of revolution has a given

value. Let Q now be moved up or down, then, if released, it will

not remain at rest, but will return towards its original position and

oscillate about it, or in other words the equilibrium of Q is stable.

A governor possessing this property is described as "stable," and its

stability is greater the quicker H diminishes. Similarly when H
increases for an outward movement of the balls the governor is

"
unstable," and a parabolic governor may properly be described as

" neutral."

A certain degree of stability is necessary for the proper working
of a governor, and the amount required is greater the greater the

frictional resistances. For assuming the revolutions at which the

machine is intended to work to be n, the balls commence to work

outward at the speed n + x, where x is a small quantity depending
on the frictional resistance. After starting, the frictional resistances

are not increased, but on the contrary will somewhat diminish
;

and, in a neutral governor, the balls therefore move outwards with

increasing speed until by alteration of the regulating valve the

supply of energy is diminished and the speed of the machine lessened.

This change however requires time, and besides the balls are in

motion and have to be stopped. The consequence is that they move

outwards too far, and the supply of energy being too small the

revolutions diminish to n-x, the speed necessary to move the balls
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inwards, notwithstanding the frictional resistance. Thus the motion

is unsteady, the balls oscillating, and the speed fluctuating, between

limits wider than nx without ever settling down to a permanent

regime, an action known as "hunting."
The oscillation of the balls may be checked by a suitable brake, but

it is preferable to employ a governor possessing a moderate degree

of stability ;
the tendency to move the balls then diminishes as soon

as the balls move, and they stop before moving far. The greater

the frictional resistances the greater is the change required to enable

the balls to return at once if they have moved too far for equilibrium.

An important characteristic therefore of a good centrifugal governor
is that the stability be capable of adjustment to suit the frictional

resistances. Certain forms of compound governors, as for example
that known as the "cosine," fulfil this condition and can, probably,

be made more perfect than the simple pendulum governor. It should

also be remarked that a governor should not be so sensitive as to be

called into action by the changes of speed in the course of a revolution

consequent on the fluctuation of energy of the moving parts. These

changes are regulated by the fly-wheel as already fully described in

Ch. IX.

All such mechanisms are however imperfect in principle, for they
cannot come into operation till a certain change of speed has actually

existed for a perceptible length of time. Where the changes of

resistance are sudden and violent the best governor will scarcely

prevent violent fluctuations in speed. In screw vessels, where this

difficulty is much felt, it has been proposed to employ an auxiliary

engine rotating against a uniform resistance
; any difference of speed

of which and the screw shaft immediately shifts the regulating valve.

140. Brakes. In order that a machine may be under complete
control when the changes of resistance are sudden and violent, and

especially when it is required to stop it, it is not sufficient to cut

off the supply of energy, but it is necessary in addition to have

some means of absorbing the energy stored in the moving parts.

An apparatus for this purpose is called a Brake. The surplus energy

may in some cases be stored by springs or an elastic fluid, and

subsequently applied to useful purposes ;
the brake is then combined

with an accumulator. In general, however, this cannot conveniently
be accomplished arid frictional resistances are then employed to

convert the energy into heat, which is dissipated by radiation and

conduction. When the amount to be disposed of is not too great
the friction of two solids pressing against one another may be used
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for the purpose, but care must be taken to provide sufficient surface

to prevent temperature from rising too high during the process.

A brake of this class is generally applied to a rotatory wheel or

drum, and consists either of a solid block of wood or metal pressed

against the wheel by some suitable mechanism, or else of a strap of

metal often lined with small blocks of wood embracing the drum

and tightened by a lever or otherwise. Three common forms are

shown in Plate VII., two of these are used as dynamometers, and

will be referred to again presently.

The most powerful brakes however are those in which hydraulic

resistances are employed, some examples of which will be found in

a later chapter.

In the "cup governor," invented by Dr. Siemens,'* a regulator

and an hydraulic brake are combined. A cup containing water

rotates within a cylindrical casing; at low speeds the water remains

within the cup, but as soon as the speed exceeds a certain limit

centrifugal action causes it to pour over the edge of the cup into

the space between the cup and the casing. A set of vanes attached

to the cup rotate between fixed vanes attached to the casing, and

break up the descending water, which re-enters the cup by an orifice

in the bottom. There is then a great resistance to the motion of

the cup which absorbs surplus energy. Some other forms of governor
will be considered hereafter.

141. Dynamometers.- Mechanisms employed for the purpose of

measuring physical quantities, such as time, speed, etc., are called

generally Meters. The subject is very extensive, and would require a

complete chapter to deal with even in outline. We can only notice

here very briefly the apparatus used for the measurement of Power, a

class of instruments known as Dynamometers. They are of very
various construction, the most common being those in which the instru-

ment measures the driving effort while the speed is independently

determined and the power thence obtained as in Art. 97, page 193.

(1) In Fig. 4, Plate III., page 141, a common form of " transmission
"

dynamometer is represented. A shaft transmitting power is divided

into parts and bevel wheels ED attached to each. A lever A turning

about an axis concentric with the shaft in a plane perpendicular to it

carries bevel wheels (7, gearing with BD, through which the power is

transmitted. If A be held fast a couple will be required to prevent it

turning, which is just twice the driving couple being transmitted, and

hence if a weight sliding on A, as shown in the figure, be so placed by

*Phil. Trans., 1866.





PLATE VII

Fig- I

Fig. 3

Fig. 4

To face page 279.
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trial that A just remains horizontal the driving couple in question will

be determined. Hence the revolutions of the shaft being known the

power can be found.

(2) Two shafts being connected by a belt some arrangement may be

adopted by which the difference of tensions of the two sides of the belt

is measured, and thus the driving effort being transmitted may be

determined. For example, in the apparatus employed by Froude and

Thorneycroft to measure the power required to drive a model screw

propeller the two sides of the belt pass round pulleys mounted at

opposite ends of a lever turning about a fulcrum at the centre. The

force required to prevent the turning furnishes a measure of the

difference of tension.

(3) In Fig. 1, Plate VII., a "friction dynamometer" is represented in

one of the various forms in which it is applied. A is a lever from which

a weight is suspended, B is a block fixed to A, which rest on a revolving

drum. A strap passes below the drum and is tightened by the nuts

JVTVtill the friction just balances the weight, which in its turn is adjusted

by trial till it just balances the driving couple tending to turn the

shaft. Stops are provided to prevent the lever from moving except

within narrow limits, and when the adjustment is perfect the lever

remains horizontal without resting against either stop. Here the

driving couple and consequently the power are determined as in the pre-

ceding example, from which it only differs in the way in which the

power is employed. Instead of being transmitted to a machine which

is being driven it is all absorbed by a friction brake which replaces the

machine for the time being. A modification is shown in Fig. 2, in which

the strap passes over a wheel and is tightened by a suspended weight,

the difference between which and the tension of a spring balance, to

which the other end of the strap is attached, measures the driving

effort.

In both these forms of friction dynamometer any variation in the

driving effort requires a corresponding adjustment. The more complex
form shown in Fig. 4 is provided with a compensating lever DEC,
which tightens the friction strap embracing the wheel when the driving

effort is great and loosens it when the effort diminishes. A self-

acting adjustment is thus obtained, but the pressure of the fixed pin D
fitting into a slot in the end of the lever renders the indications

inaccurate, and the error may be serious unless special care is taken.

(4) In both the preceding cases the driving effort and the speed of the

driving pair are constant, but in the indicator universally employed to

measure the power of steam and other heat engines we find an example
in which both vary. The driving effort is now measured for each
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position of the piston and a curve drawn which represents it
;
the area

of this curve will be the work done per stroke, and divided by the

length of the stroke will give the mean driving effort. This will be

further explained in Part V.

SECTION III. STRAINING ACTIONS ON THE PARTS OF A MACHINE.

142. Transmission of Stress in Machines. We have seen (Art. 94,

p. 189) that a mechanism becomes a machine if certain links are added

capable of changing their form or size, and so producing forces which

tend to move the mechanism combined with other forces which resist

the motion. Each link so added exerts equal and opposite forces on

the elements it connects, and for a pair of forces the general word

"Stress" may be used, which has already been employed in Article 1

in the case of the bars of a framework structure.

When the machine is at rest the forces, being all in pairs, balance

each other, and have no tendency to move the machine as a whole.

For example, in the direct-acting vertical engines represented in Fig. l r

Plate I., page 109, the driving link is the steam, pressing with equal

force, one way on the cylinder cover, and the other way on the piston ;

the working, link is the resistance to turning of the crank shaft, which

exerts equal and opposite forces, one way on the crank, the other way
on the frame which carries the crank-shaft bearings. The steam pressure
and the working resistance may each be described as a " Stress." The
forces which make up the stress are transmitted from the piston through
the connecting rod to the crank, and, in the opposite direction, from the

cylinder cover through the frame to the crank shaft. The horizontal

pressure of the cross-head on the guide-bars is in like manner balanced

by the equal horizontal thrust of the connecting rod on the crank pin>

combined with the moment of the working resistance.

So in every machine, when at rest, or moving slowly and steadily, the

stress is transmitted from the driving pair to the working pair, not only

through the movable parts of the machine, but in the opposite direc-

tion, through the framing ;
and this is a circumstance which must be

always borne in mind in designing the framing. Thus, in our example,

the steam cylinder and crank-shaft bearing must be rigidly connected

by a frame strong enough to withstand the total steam pressure, and,

in addition, the bending due to the lateral pressure on the guide bars.

We have here one of the simplest examples of the transmission of

stress; whether in a machine or in a structure it always takes place

in a closed circuit.

If the driving pair and the working pair are the same, and acted on
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by the same stress, the whole state of stress is the same for all the

mechanisms which are derived by inversion from the same kinematic

chain. All such mechanisms are therefore statically as well as kine-

matically identical
;
it is only when we consider machines in motion, or

the straining actions due to gravity, that it is necessary to consider

which link (if any) is fixed to the earth. For example, the only differ-

ence between the direct-acting engine of Fig 1, and the oscillating

engine of Fig. 4, Plate I., is that the working pair is BA in the first

and EG in the second. So again, in Plate III., the only difference

between the water wheel of Fig. 2 and the horse gear of Fig. 3 is in

the nature of the driving link, which in the first case is gravity acting

on the falling water, and in the second a living agent.

A striking example, of the balance of forces in a machine occurs in

the hydraulic riveting machines. Here the working pair is a small

hydraulic cylinder and its ram, between which the rivet is compressed.

This cylinder is suspended from a crane by chains, and can be moved

into any position, as it communicates with the accumulator (Part V.)

by a flexible pipe. . Any portable machine, however, is an example of

the same kind : machines which require foundations have no complete
frame apart from the solid ground which connects their parts together.

143. Reversal of Stress. In many machines the direction in which

stress is transmitted through one or more of the moving parts is

reversed in the course of the period. For example, in a double-acting

engine of the ordinary type the piston rod and the connecting rod are

alternately in compression and tension as the crank turns through a

revolution. Such a reversal of stress is a cause of shocks which, though

they may individually be small, yet from the rapidity with which they
recur at high speeds are ultimately destructive, and require in any case

to be carefully considered in the design.

Suppose a crank which is rotating uniformly to be connected by a

rod with a reciprocating piece such as a piston, but in the first instance

let there be no steam admitted to the cylinder. When the piston is at

the end of its stroke it is at rest, and has to be set in motion
;

it con-

sequently drags on the crank with a force which we have already

investigated in Art. 109, p. 224. As the piston moves onwards the

drag diminishes and becomes zero near the middle of the stroke at the

point where the velocity of the piston is greatest. In the second half

of the stroke the piston is being gradually reduced to rest, and conse-

quently presses against the crank pin and drives the crank, thus

reversing the stress on the rods. A small amount of play is necessary
for the purposes of lubrication between the crank pin and the brasses
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into which it fits, and consequently at the instant of reversal a " knock
"

occurs, thus damaging the bearing surfaces and wasting energy. The

intensity of a knock of this kind depends on the acceleration of the

moving piece, and would be small in the case here supposed where

there is no steam admitted to the cylinder, so,that reversal occurs in the

middle of the stroke. Next imagine steam admitted to the cylinder in

the usual way, then, as already described fully in the article cited,

the pressure on the crank pin is due to the difference between the

steam pressure and the force called into play by inertia, and the effect

is that reversal occurs at or near the ends of the stroke. If the speed

Tje moderate and the moving parts light, the knock will occur at the

ends of the stroke, and if the steam be suddenly admitted and there be

no compression, will be of considerable intensity. It may, however, be

much diminished by
"
cushioning," that is, by closing the exhaust port

before the end of the return stroke and thus enclosing in the cylinder

a mass of steam, the compression of which behind the returning piston

furnishes a force which, by its increase, gradually diminishes the stress

and renders the reversal at admission less violent. At very high speeds

or with heavy moving parts reversal occurs after the stroke has

begun ;
as shown by the point K on the dotted line L'CL' shown

in Fig. 100, p. 225, the effect of reversal in the absence of cushioning

is then not so great as if it occurred in the absence of cushioning

at the ends of the stroke. Heavy reciprocating parts may therefore,

under certain circumstances, be advantageous.
When the speed is excessive the forces called into play by inertia

are so great that reversal must be avoided altogether. For driving

a fan or some similar purpose a small engine of three inches stroke

is sometimes run at 1000 or even 2000 revolutions per minute
;
on

making the calculation by the formula of page 224 we find that the

force P necessary to start the piston is now 150 times its weight,

and the shock at reversal necessarily great. If the engine is made

single acting, reversal can be prevented entirely by cushioning. In

the Willans high speed engine the piston rod prolonged moves as a

plunger in an independent cylinder containing air, which serves as

the cushion, an arrangement which admits of any compression being

used in the steam cylinder, which may for other reasons be convenient

or economical.

The speed in the foregoing case is limited by the amount of

cushioning employed, and this is also the case in cam mechanisms

with force closure, such as have already been discussed in Ch. VI.

144. Stability of Machines. Balancing. In a machine with recipro-
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eating parts the balance of forces (Art. 142) is destroyed by their

inertia when the machine is in motion, and, in consequence, the

machine must be attached to the earth or some massive structure by

fastenings of sufficient strength. The straining actions on these fasten-

ings will now be briefly considered.

Taking the case of a direct-acting horizontal steam engine, let P
be the total pressure of the steam on the cylinder cover, then the

pressure (P
r

)
transmitted to the crank pin is not equal to P, but there

is a difference (S), given by the formula (Art. 109, p. 224) : neglecting

obliquity,

S=P-P'=W*
h

This difference will be a force acting on the engine as a whole, and

straining the fastenings. The direction of this force is reversed twice

every revolution, and its maximum value is obtained by putting
x= a in the above formula. In slow-moving engines the value of

S is small, but at high piston speeds it becomes very great, and

must be carefully provided against, especially when, as in locomotives,

the engine cannot be attached to the ground.

Fig.116.

In most cases there are two cranks at right angles, and therefore two

forces S
t
S' given by the equations

S=IT.~.cos6', S' =~ .sintf,
fi h

where 6 is the angle the first crank makes with the line of centres.

These two forces are equivalent to a single force (Fig. 116),

acting midway between them, and a couple

L = (S-S')c= W. ^
. c(cos

- sin 0),

where 2c is the distance apart of the centre lines of the cylinders. The
total effect therefore is the same as that of a single alternating force



284 DYNAMICS OF MACHINES. [PART in.

combined with an alternating couple, which tends to turn the engine
as a whole about a vertical axis. The maximum values are

, a , T Wac

and they are each reversed twice in every revolution.

In locomotives this action produces dangerous oscillations at high
and must therefore be counteracted by the introduction of

Fig.117.
'

?Ft

to the bisector

be the weight,

gravity lies,

being an

suitably placed balance weights, so as to

neutralize both the force and the couple.

Fig. 117 shows a projection on a ver-

tical plane of the two driving wheels

and their cranks. On each wheel a

balance weight is placed, occupying a

segment between two or more spokes.

The centre of gravity of each weight is in

a radius nearly, but not exactly, opposite

the nearer crank, the angle of inclination

angle i somewhat less than 45. If B
the radius of the circle in which its centre of

is its centrifugal force
;
and by rightly taking the values of B and i the

horizontal components of these forces derived from the two balance

weights may be made to counteract both the force and the couple

(Ex. 10, p. 290). In practice the weights are fixed approximately by
a formula derived in this way, and the final adjustment is performed

by trial. The engine is suspended by chains, and its oscillations, when

perfectly adjusted, are very small even at very high speeds.

In high speed marine engines similar forces arise, of great magni-

tude, which must add considerably to the strain upon the fastenings,

and which are now known to be the principal cause of vibration of the

vessel. The question of balancing these forces has therefore become

of great importance, and we shall recur to it hereafter.

When the speed of a machine is excessive, we have already seen

that reversal of stress must be avoided, and besides this the greatest

care is necessary that the axis of rotation of each rotating piece

passes through its centre of gravity, and coincides with one of th<

axes of inertia of the piece (Art. 132). The magnitude of the forces

which arise, in case of any error, may be judged of from the results

of Exs. 13, 16, pages 290, 291. The vibrations due to these forces will,
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however, in some cases be greatest at some particular speed depend-

ing on the natural period of vibration of the frame of the machine

which could only be determined by trial. (Ch. XVI.)
In similar machines the forces due to inertia will be in a fixed

proportion to the weight of the pieces, when the revolutions vary

inversely as the square root of the linear dimensions of the machine.

144A. Stability of Machines (continued). The pressure on a piston

necessary to overcome the inertia of a connecting rod has already been

investigated, but to complete the subject it is now desirable to study

the relation which exists between the pressure thus found and the

horizontal momentum of the reciprocating parts upon the change of

which the disturbing forces considered in the last article depend.

Referring to page 229 the horizontal velocity of a point on the rod

distant
fj-l

from the crank pin is /^{sin + p . tan ^> . cos 0}, which may
be written

Horizontal velocity
=

(1
-
p) V^ . sin + pY.

Taking therefore as before / as the acceleration of the piston, we have

at the poifit in question

F 2

Horizontal acceleration = (1
-

/x)
-

. cos 6 + ft/,

as may be easily proved independently. Hence, by summation, the rate

of change of the total horizontal momentum of the rod is

WV* f

X=( 1 -o-F-^- . cos + vW. 1,
i/ /

where, as before, crl is the distance of the centre of gravity of the

whole rod from the crank pin.

Writing for /its approximate value given on page 228 we find

-. cos 201
n )

X=- Jcoe0+-.coa
ga \

If a- = I we have the case of weights actually or virtually attached

to the piston, when the inertia-pressure P already found is equal to X.

But in the case of the rod P is a smaller quantity, the reason of which

is that the angular swing of the rod requires a force at the crank pin
in order to produce it. As the rod swings outwards it is gradually

stopped, as it swings inwards it is gradually accelerated, by a pull of

the crank arm towards the centre. Now if T be this pull, T cos 6

will be a horizontal force at the crank pin which assists in producing
the horizontal acceleration, so that
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Taking for X the value just given and for P the value already found,

we find after dividing by cos 6,

The force T thus found is a tension of the crank arm which furnishes

an unbalanced force on the crank centre. The total horizontal dis-

turbing force is therefore not P but the larger quantity X given by
the formula above.

In balancing the reciprocating parts of an engine the formula shows

that we have two separate sets of horizontal periodic disturbing forces

to consider. The first are given by the formula

X-i
= . cos 0,

ga

where 2/F is the total weight of all the parts, connecting rod included.

These are independent of the length of the rod, and they go through
their variations in one revolution of the crank shaft. The second ai

given by the formula

X9
= -. -

. cos 20,n ga

where W is the weight of the piston and all parts attached to it, whil<

W is the weight of the connecting rod, and they go through theii

variations in half the time. In the production of vibration the effect

of the two sets is entirely different, as will be fully explained hereafter.

It is the first set alone which are considered in the preceding article

the second set are a consequence of the obliquity of the connecting rod,

and though of much less intensity, for a complete balance requii

consideration as well as the first.

Besides the horizontal forces there are also periodic forces perpendi-

cular to the line of centres which may here be briefly noticed.

The force T found above has a vertical component T sin 0, and ii

addition the pressure of the cross-head on the guide is altered by th(

inertia of the connecting rod. The effect of these two vertical force

taken together is best seen by dividing the weight W of the rod im

two parts <rW at the cross-head and (1 -tr)W at the crank pin. As

the two parts have the same centre of gravity as the original

their motion gives rise to horizontal and vertical reactions of the sam<

total amount. The difference consists in the couple called into

by the rotation about the centre of gravity. The (radius)
2 of gyratioi

of the two weights about the centre of gravity is easily seen to

<r(l-o-)/'
2
,
whereas that of the rod is the much smaller quantity

(y-o-
2
)/

2
. The effect of the rod may be derived from that of the
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weights by subtraction, and the disturbing forces to be considered are

therefore (1) a force

ga

acting at the crank centre perpendicular to the line of centres, and

(2) a couple

L = x Angular Acceleration,

the angular acceleration being given by Ex. 9, p. 103.

The transverse forces here considered are due to the inertia of the

rod alone, and are generally of less importance than the horizontal

forces previously found. The method here used to find them may be

employed to find the value of T, and thence a value of P may be

derived which will be found to agree with that already obtained. It

need hardly be added that the terms " horizontal
" and " vertical

"
are

simply abbreviations for "parallel" and "perpendicular" to the line

of centres. The actual position of that line has no influence on the

questions considered.

As described in the last article in the case of a locomotive, the

original method of balancing the forces due to the inertia of recipro-

cating parts was by the introduction of rotating masses suitably placed.

The forces in question, however, are not annulled by the action of

rotating weights, but simply altered in direction through 90; if

originally horizontal as in the locomotive they become vertical and

conversely. Also the secondary forces which are the effect of the

obliquity of connecting rod are not balanced at all. With short rods

these forces may be of serious importance. If we take the case of a

pair of cranks at right angles already considered (p. 283), then since

cos (180 + 20)= -cos 26, th'e forces arising from each crank are equal

and opposite so that the resultant alternating force is zero. The alter-

nating couple, however, is doubled, becoming

,

acL=2.- -.^-. cos 20.
n h

The maximum value of this is when cos 20= 1, and comparing it with

the maximum value of the primary couple (p. 284), we obtain

_L*
-T

a

Taking, for example, (\v)W as 20 per cent, of the whole weight

W+W'j the ratio is 1*1 3/w, which is not inconsiderable even when
as in a locomotive the value of n exceeds 6. If a shaft be available
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which rotates at exactly double the speed of the crank shaft, the

secondary forces may be balanced by counterweights attached to it,

but this will rarely be the case. For a complete balance, therefore,

other reciprocating weights must be introduced for the special purpose ;

or else, and preferably, in an engine with four or more cylinders,

one-half the reciprocating parts may be made to balance the remainder,

the engine thus becoming self-balanced. The conditions to be satisfied

in such arrangements are essentially the same as when rotating

weights are employed.

145. Straining Actions on the Parts of a Machine due to their. Inertia.

Another important effect of the inertia of a piece is to produce straining

actions upon it. An important example is that of a ring rotating about

its centre : the centrifugal force produces a tension on the ring which

may be thus determined.

Suppose Fig. 121, p. 302, to represent the ring. Let the velocity o

periphery be F, the weight IF, and the radius r, then the centrifugal

force on the small portion BE' of length z is

i

:

.

27rr gr

Resolve this in a given direction and sum the resolved parts, as in

the article to which this figure refers, then the total is

2r F2 W V'2p=w. .! =. -.

2irr gr irr g

The stress to which this gives rise is evidently

W V* V*

where A is the sectional area of the ring and w is the weight of unit

volume. The result here obtained is of great importance ;
it shows

that the "centrifugal tension" of a revolving ring is independent of

the radius for a given speed of periphery. Hence the result also

applies to every point of a flexible element, such as a belt, whatevei

be the form of the surfaces over which it is stretched. In high-speed

belts the tension is considerably increased by this cause, and additional

strength has to be provided (Ex. 12, p. 290).

Another example of the straining actions due to inertia occurs

in the motion of a rod, the ends of which describe given curves.

Shearing and bending are produced, and at high-speeds the magnitude
of the stress thus arising is very great. Two common examples are
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given on p. 291, but the limits of this work do not permit us to

pursue the subject.

In similar machines the intensity of the stress occasioned by the

straining actions we are here considering will be the same if the

revolutions vary inversely as the linear dimensions of the machine.

146. Virtual Machines. It has already been pointed out (Art. 94)

that a machine may be regarded as a mechanism with two additional

links applied as straining links, or, what is the same thing, a frame

with one straining link (Art. 43). Further, as also remarked in the

article cited, the external forces on any structure may be regarded as

a set of straining links. It follows then that if in any framework or

other structure one of its parts suffer a change of form or size of any

kind, the rest remaining rigid, we shall have a machine in which the

driving links exert a known stress and the working link is the bar in

question. The principle of work then enables us to determine the

stress on the bar, for the stress ratio must be the reciprocal of the

velocity ratio. A machine thus formed Fig.us.

may be called a "virtual machine," its

movements being only supposed for the I

purpose of the calculation, not actually

existing. It is especially in applying this method that we find in

treatises on statics the principle of work employed under the title

4t

principle of virtual velocities."

We must content ourselves with a single example of this method.

AB (Fig. 118) is a beam supported at the ends and loaded uniformly.

Imagine the beam broken at K, and the pieces united by a stiff hinge,

the friction of which is exactly equal to the bending moment M, then

if the hinge be supposed gradually to yield under the weight, so that

the joint K descends through the small space -KN( = y\

Energy exerted = \yw(AK+BK),

Work done =
M(i, + i

2 )
=
M(Jg+ ^),

where iv i
2
are the angles AK^ BK make with the horizontal.

Equating the two,

which gives the known value (p. 39),

The advantage of this method is that it leads directly to the required

result, without the introduction of unknown quantities which require
to be afterwards eliminated.

C.M. T
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EXAMPLES.

1. In Ex. 1, p. 207, suppose the gun to weigh 35 tons, what additional powder will

be required to provide for recoil ? Ans. 1 Ib. nearly.

2. Two vessels of displacements 8,000 and 5,000 tons are moving at 6 knots and 4

knots respectively. One is going north and the other south-west ; find the energy of

collision. Ans. 11,700 foot-tons.

3. Find the height of a governor revolving at 75 revolutions per 1'. Ans. 6*24".

4. Find the dimensions of a Farcot governor to revolve at 40 revolutions per 1', with

the arms inclined at 30 to the vertical, and to be parabolic for small displacements.

Ans. Height of governor = 22". Length of arms = 34". Length of cross-piece to which

arms are attached = 8|". More generally, if Q be the inclination, I the length of the

armSj the length of cross-piece is 21 . sin30.

5. In a simple governor revolving at 40 revolutions per V find the rise of the balls in con-

sequence of an increase of speed to 41 revolutions. Also find the weight of ball necessary

to overcome a frictional resistance of \ Ib., the linkwork being arranged so that the slider

rises at the same rate as the balls. Ans. Rise of balls = 1 '!". Weight of each ball = 5 Ibs.

6. The balls of a governor weigh 5 Ibs. each and it is loaded with 50 Ibs. The link-

work is such that the slider rises and falls twice as fast as the balls. Find the height

for a speed of 200 revolutions per 1', and if the speed be altered 2 per cent., find the

tendency to move the regulating apparatus. How much is this tendency increased by
the loading? If the engine is required to work at three-fourths its original speed, by
how much should the load on the governor be diminished? Ans. Height = 9*7". Ten-

dency =2'2 Ibs. (increased 11 times).

7. A uniform rod is hinged to a vertical spindle and revolves at a given number o

revolutions ;
find its position. Deduce the effect of the weight of the arms of a governor

on its height. Ans. Height of rod f .gjA2 . Height of governor is increased in the

ratio 1+^w : 1 + ^n where n is the ratio of the weight of the arm to the weight of the ball.

8. In Ex. 6, p. 124, find the ratio in which the bending moment at each point ia

affected by the inertia of the rod.

Every point of the rod describes relatively to the engine a circle and the centrifugal

force of any portion of the rod = 18 '6 times the weight. In the lowest position the centri-

fugal force acts with gravity, and so in this position the bending action is the same as if

the weight of the material of the rod were 19 '6 times its true weight.

9. In a horizontal marine engine with two cranks at right angles distant 8 feet from

one another, weight of reciprocating parts attached to each crank 10 tons, revolutions 75

per minute, stroke 4 feet. Find the alternating force and couple due to inertia. Ans*

Alternating force = 54 '2 tons. Alternating couple = 216 '8 foot-tons.

10. An inside cylinder locomotive is running at 50 miles per hour, find the alternating

force and couple. Also find the magnitude and position of suitable balance weights, the

diameter of driving wheels being 6 feet, the distance between centre lines of cylinders
2' 6", stroke 2', weight of one piston and rod 300 Ibs. Horizontal distance apart of

balance weights 4' 9". Diameter of weight circle 4' 6". Ans. Alternating force =
7, 871

Ibs. Alternating couple =9, 893 foot-lbs. B = 106 '5 Ibs. i = 27%.
11. A fly-wheel 20 feet diameter revolves at 30 revolutions per 1'. Assuming weight

of iron 450 Ibs. per cubic foot, find the intensity of the stress on the transverse section of

the rim, assuming it unaffected by the arms. Ans. 96 Ibs. per sq. inch.

12. A leather belt runs at 2,400 feet per 1'; find how much its tension is increased

by centrifugal action, the weight of leather being taken as 60 Ibs. per cubic foot.

Ans. 20 '5 Ibs. per square inch.

13. If r be the radius of the circle described by the centre of gravity of a rotating body,
h the height due to the revolutions, show that the centrifugal force is
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Obtain the numerical result (1) for a wheel weighing 100 Ibs. with centre of gravity one-

sixteenth of an inch out of centre, revolving at 1000 revolutions per minute, (2) for a

piece weighing 10 Ibs. revolving at 300 revolutions per minute in a circle 1 foot diameter.

Ans. (1) 178 Ibs. (2) 154 Ibs.

14. In question 8 suppose the connecting rod of uniform transverse section, find how

much the bending moment upon it due to its weight is increased by the effect of

inertia.

Here the bending moment is greatest (very approximately) when the crank is at right

angles to the connecting rod, and the forces due to inertia then consist (also very approxi-

mately) of a set of forces perpendicular to the rod, and varying as the distance from the

cross-head pin. At the crank pin we have simply the centrifugal force due to the revolu-

tions and length of crank. Thus the curve of loads is a straight line (p. 62) whence,

proceeding by the methods of Chap. III., we find for the maximum moment

where I is the length of rod, a the length of crank, h the height due to the revolutions

In the numerical example the effect of inertia is about 9 times that of the weight W.
15. A body rotates about an axis OE, lying in a principal plane through its centre of

gravity <?, and inclined to a principal axis OG at an angle 6. Show that the moment of

the centrifugal forces about O is

Jfl-VIL= W^ . sin B . cos 0,
ft t

where h is the height due to the revolutions, and k', k are the radii of gyration about Of
and a line through 0, perpendicular to OG in the plane GOE, respectively. Deduce the

height of a compound revolving pendulum.
16. A disc rotates about an axis through its centre at 1000 revolutions per minute.

The disc is intended to be perpendicular to the axis, but is out of truth by TsVr ^ *^e

radius: find the centrifugal couple. Ans. If r be the radius in inches the couple in

inch-lbs. is

17. In question 10 find the alternate increase and diminution of the pressure of the

driving wheel on the rail due to the inertia of the balance weight. .4ns. 4,400 Ibs.

NOTE. This force of about 2 tons produces great straining actions on both the wheel

and the rails.

18. The power of a portable engine is tested by passing a strap over the fly-wheel,

which is 4 feet 6 inches diameter, fixing one end and suspending a weight from the other.

The weight is 300 Ibs., and the tension of the fixed end is found by a spring balance

to be 195 Ibs. : what is the power when running at 160 revolutions per minute ?

Ans. 7'2 H. P.

19. In question 10, page 235, find the least number of revolutions for which there can

be a "knock "
after the stroke has commenced. If the steam be cut off at Jth or earlier,

show that a knock will also occur at other points of the stroke. Ans. 124.

20. In the cam movement shown in Fig. 1, Plate IV., page 159, suppose the cam a

circular disc of radius equal to the stroke of the sliding piece. Supposing the force of

the spring twice the weight of the sliding piece ;
find the greatest number of revolutions

per 1' the cam can make when rotating uniformly. Ans. If S be the stroke in inches
,

n the revolutions,
216

"=
^"

21. In the original form of the 3-cylinder Brotherhood engine the cylinders communi-
cated with a central chamber containing steam at full pressure. At the further end the
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steam was alternately admitted and exhausted. Show that to avoid reversal of stress

the weight of piston and rod must not exceed

where P is the total pressure on one piston.

22. Find the alternating force and couple both primary and secondary for a pair of

cranks inclined at an angle ^3.

The simplest way of expressing the results for a pair of cranks is by measuring the

angle 6 which gives the position of the cranks not to one of the cranks but to the line

bisecting the angle ft between them. The results then are

Xl=A l .COB 6. cos %p ;
X2
= A^ . cos 26 . cos

j8 ;

Li=B^ . sin 6 . sin |j3 ; L2=B.2 . sin 20 . sin /3 ;

where A l} B^ : A* B2 are co-efficients found as in the text pages 283, 287 for the primary
and secondary forces respectively. The results show that, when the crank angle /3 can

be chosen at pleasure, the disturbing forces may, to a considerable extent, be regulated.

In some cases the alternating couples may be more injurious than the alternating forces,

and this is probably true in a locomotive. In others the secondary forces may be less

injurious than the primary,
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PART IV.-STIFFNESS AND STRENGTH OF
MATERIALS.

147. Introductory Remarks. The straining actions which tend to

cause a body or a structure to separate into parts A and B in the

manner explained in Part I. are counteracted by the mutual action

between the parts at each point of the real or ideal surface which

divides them. In other words (see Art. 1), a STRESS exists at each

point of the surface, the elements of which are A's action on B and

j5's action on A. If we consider the total amount of the stress,

these elements each form one element of the straining actions on

A and B respectively ;
but for our present purpose it is needful to

consider, not the total amount, but the intensity of the stress. This

in general varies from point to point, and at each point is measured

by the stress per unit of area on any small area enclosing the point.

Either element (say A) may be regarded either as As, action on

B, or as the resistance which A offers to the action of B ;
in other

words, stress may be regarded in two aspects, either as the cause

tending to produce separation into parts, or as the resistance to

such separation. It is under the first aspect that we shall chiefly

regard stress, generally employing the word resistance when we wish

to express the second idea. Stress then may be described as the

straining action on the ultimate particles of a body. Conversely a

straining action as defined in Ch. II. may also be described as the
" resultant stress

"
on the section we are considering.

If the stress exceeds a certain limit, separation into parts occurs,

and this limiting intensity of stress varies for different material and

measures the Strength of the material.

Accompanying the tendency to separation into parts we invariably

find changes of dimension in the body and each of its parts, for no

body in nature is absolutely rigid. Such changes are called STRAINS,

and are of two kinds, changes of volume and changes of figure,, or,

in other words, changes of size and changes of shape. Changes of
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size in any dimension are measured by the ratio of the change to

the original dimension considered
; changes of shape consist in the

alteration of relative angular position or distortion of the parts con-

sidered, and are measured by the absolute magnitude of the alterations

in question. In most cases which concern us, both kinds of change
take place together, and are of exceeding smallness.

The strains produced in solid bodies by the action of forces depend
on the nature of the material and on the kind of stress.

Bodies are either solid or fluid. A fluid may be denned as material

which offers no resistance to change of shape, but only to change of

volume, especially diminution of volume, so that any distorting stress,

however small, will cause indefinite change of shape if sufficient time

be allowed. On the other hand a solid body will resist a distorting

stress for an indefinite time, provided that stress be not too great.

In a fluid body at rest only one kind of stress can exist, namely, a

pressure equal in all directions : hence often called "
fluid

"
stress.

There are two extreme conditions in which a solid body may exist,

the Elastic state and the Plastic state. Elasticity is the power a body

possesses of returning to its original shape and dimensions after the

forces which have been applied to it are removed. All bodies possess

this property to a greater or less extent, and most (perhaps all) possess

it to a great degree of perfection if the strains to which it has been

exposed are not too great. Even so unlikely a material as soft clay is

elastic if the force applied to it is very small. This may be shown by

suspending a long filament, formed by forcing clay through a small

orifice, by one end and twisting the other, to which an index is

attached; on release the index returns to its original position.* In

perfectly elastic material the recovery of size and shape on removal of

the forces is complete, unless the temperature has meanwhile varied
;

and the materials of construction may be regarded as approximately

satisfying this condition, provided a certain limit stress be not over-

passed. This is called the Elastic Strength of the material. It is

also described as the "limit of elasticity."

When, on the other hand, the forces applied to the body are compar-

atively great, the material in many cases approaches the other extreme

condition, the plastic state. In this state any forces causing a distorting

stress beyond a certain limit, and so applied that disruption does not

occur, will produce indefinite distortion, so that the material behaves

like a fluid. Thus soft clay, lead, copper, or even malleable iron may

*See Ilobison's Mechanical Philosophy, vol. I., page 375. The original observation is

said to have been made by Coulomb. Though frequently quoted it does not appear to

have been verified.
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be moulded into different shapes or drawn out into wire. In inter-

mediate cases a body may exhibit the properties of the elastic and the

plastic states combined.

We commence by studying matter in the perfectly elastic state.

There are two different kinds of elasticity, Elasticity of Volume and

Elasticity of Figure. A fluid possesses the first kind only, since by
definition it has no power of resisting change of shape : the second is

characteristic of solids. In general a change of dimensions involves

both a change of size and a change of shape, so that both kinds of

elasticity are called into play together. In perfectly elastic material

the strain produced by a given stress is always proportional to the

stress, being found by dividing the stress by a co-efficient or "modulus"

of elasticity, depending on the kind of stress and the nature of the

material. This property having been discovered by Robert Hooke,
is known as Hooke's Law. Further, if the stress be relaxed in the

slightest degree the strain diminishes, that is, in perfectly elastic

material, the elastic forces are completely "reversible" (p. 186).

The magnitude of the stress produced by the action of given forces

upon a body depends very much on whether they are applied all at

once or are supposed to be at first very small and gradually to increase

to their actual amounts. The next four chapters will be limited to the

action of a gradually applied load on perfectly elastic material, after

which the effect of sudden application and of impact is considered.

The experimental part of the subject is placed in the last chapter

(Ch. XVIIL), but should be referred to constantly as required.



CHAPTER XII.

SIMPLE TENSION, COMPRESSION, AND BENDING OF

PERFECTLY ELASTIC MATERIAL.

SECTION I. TENSION AND COMPRESSION.

148. Simple Tension. The effect of forces acting on a bar has already

been explained in Chapter II. to consist in the production of certain

straining actions which we called Tension, Compression, Bending,

Shearing, and Twisting, and we now go on to consider the changes of

form and size which the bar undergoes and the stress produced at each

AP point on the supposition that the material of the bar

is perfectly elastic.

Let AB (Fig. 119) be a bar subjected to the action

of equal and opposite forces applied at the ends in

the same straight line. At any transverse section

KK there will be a tendency to separate into two

parts A, B, which is counteracted by a mutual

action between the parts at each point of the section

which, in accordance with our previous definitions,

is called the Tensile Stress at the point. The total

amount of the stress will be P
;
but the intensity

will depend on the area of the section (A), so that

P/A is the mean intensity of stress, or the stress per

unit of area. The stress may be the same at all

points of the section. We then say it is uniformly distributed, and the

intensity at all points
= P/A.

Stress is commonly expressed either in pounds or in tons per sq. inch.

The second method is on the whole the most convenient, and will be

chiefly employed in this treatise. In metric measures the unit com-

monly employed is the kilogramme per square centimetre, which is

connected with the British system by the relations :

One kilogramme per sq. cent. = 14-233 pounds per sq. inch.

One ton per sq. inch = 157 '5 kilogrammes per sq. cent.
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In order that the intensity of the stress may be the same at every

point of every transverse section of the bar, it is thewetically necessary

that the load P should be applied in a uniformly distributed manner all

over the end B. Then if the material is perfectly homogeneous each

elementary portion of KB will be strained alike, and the uniformly

distributed load at B will be balanced by a uniformly distributed stress

over any section KK. In such a case the line of action of the resultant

of the applied load P passes through the centre of gravity or centre

of position of the transverse section KK. Unless it does so the

equilibrium of the portion KB is not possible by means of a uniformly

distributed stress over the section. But from experience it appears

that for uniformity of stress it is not absolutely necessary for the load

to be applied in this distributed manner. It may be applied for

instance by pressure on a projecting collar; and yet if the line of

application of the load traverses the centre of gravity of the sectional area,

the material, if homogeneous, will so yield as practically to produce
at a section a little distant from the place of application of the load

a stress of uniform intensity. This is a particular case of a principle

which will be further referred to hereafter.

If the applied load is increased, the stress on the section is propor-

tionately increased, until at last the material yields under it and the

bar breaks. If W = breaking load, the corresponding stress measured

by WjA is a quantity which depends on the nature of the material.

If we call it /, then the breaking or ultimate load = Af.

Accompanying the application of the load producing a tensile stress,

an increase of length and diminution of transverse dimension is observed.

In metallic bodies the alterations are exceedingly small if the limit of

elasticity is not exceeded (see Table II., Ch. XVIII.
),
and therefore in

estimating the stress on the section it is not worth while to take account

of the slight alteration in the area of the transverse section. Under the

same load the change of length is proportional to the length. If z be

the total change of length, and I the original length, then the extension

per unit of length is

x

*-r
On account of the smallness of e it is immaterial, so long as the limit of

elasticity is not exceeded, whether I is taken as the original or altered

length of a metallic bar.

As already stated (Art. 147), it is usual to restrict the word strain to

mean the alteration of the dimension and form which bodies undergo,
and to use the word stress when referring to the elastic forces which

accompany the strain. Thus e is a measure of the tensile strain pro-
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duced in the bar, whilst p is a measure of the accompanying tensile

stress. Since by Hooke's law the extension of the bar is proportional

to the force producing it, it follows that the strain is proportional to the

accompanying stress. Thus p and e may be connected by some constant

the value of which depends on the nature of the material. We may
write

p = Ee,

in which E is called the modulus of elasticity of the material, a quantity

which is of the same kind and expressed in the same units as the stress

p. When the stress p is expressed in pounds per square inch, the value

of E for wrought iron may be taken as about 29,000,000. This is about

13,000 tons per square inch, but in many kinds of iron the value of E
is considerably less than this.

Putting for e its value x/l, we have the general relation,

p x

IT
The transverse strain, that is, the contraction per unit of transverse

dimension, is from one-third to one-fourth the longitudinal strain.

149. Work done in Stretching a Rod. Having found the relation

between the tensile stress and strain, we will now consider how much

work must be done in order to stretch it.

Let the load of gradually increasing amount be applied to the bar, the

bar will stretch equal amounts for equal increments of load :

or the elongation of the bar will for all loads be proportional

to the load. This may be represented graphically. Suppose
the load P' produces the extension shown, greatly exag-

gerated, by B B' (Fig. 1 20), and we set off an ordinate B'N'

to represent P' on some scale, and do that for any number

of loads, taking, for example, BN to represent P, which

produces the extension B B = x
;
then all the points N will

!

lie on the sloping line passing through B . Having done

this, the area of the triangle B^BN will represent the quantity of work

done in stretching the bar by the amount B
Q
B = x. Thus

Work done = \Px.

The energy thus exerted is stored up in the stretched bar, and may be

recovered if the bar is allowed under a gradually diminished load to

contract. In the perfectly elastic bar the contraction will be exactly

the same as the extension, and there will be no loss of energy in

stretching it. In other words the elastic forces are "reversible." But

if the elasticity is imperfect, some of the energy expended in stretching
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the bar is employed in producing molecular changes, as, for example,

change of temperature. On contraction this amount of energy will not

be restored.

The energy stored may be described as the Elastic Energy of

the bar, and we may express it in a different form. For P put its

value =pA, and for x its value =-pl\E. The substitution of these

values of P and x will give

, pi p
2 Al p

2 Volume
Elastic Energy = $pA .^

=? =^ x
^

Otherwise, replacing p by Ee, we find

Elastic Energy = ^Ee
2 x Volume.

Thus the work required to produce a given stress p or strain e is

proportional to the volume, or, what is the same thing, to the weight,

of the bar.

If the stress produced is increased up to the elastic limit, or, as it is

often called, the proof stress, so that p =/, then f
.

- - expresses
j 2i

the greatest amount of work which can be done on, and stored in the

bar without injuring it or impairing its elasticity. This is called the

resilience of the bar. The quantity /
2
/ #, the value of which depends

on the nature of the material, is called the modulus of resilience ;
it is

double the resilience per unit of volume (see Appendix), and, as we shall

see hereafter, furnishes a measure of the resistance of the material to

impact when the limits of elasticity are not exceeded (Chap. XVI.). A
table of co-efficients of strength and elasticity for materials commonly
used in construction will be found at the end of Chapter XVIII.

150. Thin Pipes and Spheres under Internal Fluid Pressure. We
now pass on to consider an important case of simple tension : that

of a thin cylindrical shell subjected to internal fluid pressure. A
cylinder with rigid ends and a sphere are cases of a vessel under

internal fluid pressure which tends to preserve its form. The equili-

brium in these two cases is stable, for if the vessel suffers deformation

the internal pressure tends to make it recover its original true form.

Vessels, the sides of which are flat, tend, by bulging, to assume these

forms, and the tendency must be resisted by staying the surfaces

in some way. If, as generally happens, there is acting also an

external fluid pressure less than the internal, then, in what follows,

the intensity of the internal pressure must be taken to be the

excess of the internal over the external pressure.
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Fisr.121.

Let p be the intensity of the fluid pressure in pounds per square

inch, d the diameter, t the thickness of the shell, and I the length
of the cylinder. Suppose in some way that the ends are maintained

perfectly rigid, and for convenience let them be flat. There are two

principal ways in which the strength of the shell can be estimated.

First, consider the tendency to tear asunder longitudinally, parallel

to the axis of the cylinder. Imagine the cylinder divided into two

parts by a plane passing through the axis of the cylinder. On each

half cylinder there is a pressure P due to the resultant fluid pressure
on that half which tends to produce a separation at the section

imagined. The separation is prevented by the resistance to tearing
which the metal of the shell offers, calling into action a uniform

tensile stress at the two sections made by the imaginary plane through
the axis of the cylinder.

Let q
=

intensity of tensile stress produced ;
then the area over which

the stress acts being 2tl, the total resistance to tearing is q x 2tl, which

must be equal to P the tendency to tear. In a transverse section take two

points B, B' (Fig. 121) near together. The surface of the shell, BB' x I,

is acted upon by a normal pressure

q.tij? per unit of area. The pressure

p . BB . I may be taken to act in a

radius drawn to the middle point of

BB', making an angle 6 with the

direction of the resultant force P.

The resolved part of this pressure in

the direction of P

->q.ti =pl . BB . cos 6 =pl . NN',
NN' being the projection of BB' on

the plane of section. Summing up
the pressures on all the small arcs BB', composing the semicircle, we

obtain the total separating force.

P=pl.?NN'=p.l.d,

pelor ?
=
^;

thus the tensile stress is directly proportional to the diameter, and

inversely proportional to the thickness of the cylindrical shell. For

greatest accuracy d should be taken as the mean of the internal and

external diameters. The formula just obtained is true only when the

thickness is small compared with the diameter. If t is large, the stress

is not uniform over the section
;
the formula will then give the me*

stress if d be understood to mean the internal diameter.
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We next consider the tendency for the cylinder to tear across a

transverse section when there are no longitudinal stays to take the

pressure on the ends. The total pressure on each end of the cylindrical

shell is the separating force, and in the absence of stays the resistance

to separation is due to the tensile stress, q' suppose, called into action

over the annular area ird . t of the transverse section.

.-. irdt . q'
=
^d*p ;

or
?'=^-

This is just half the stress on the longitudinal section. If the vessel

is spherical in form, the stress produced on all sections of the sphere

through the centre is the same as at the transverse section of the

cylinder.

The formula just obtained is used to estimate the strength of a

boiler which is more or less cylindrical ;
but since the boiler is made

up of plates overlapping each other, connected together at the edges

by rivets, and since also a line of rivets in a longitudinal section is

generally found only for a portion of the length of the boiler, the

question of strength is complicated. But a longitudinal section through
the greatest number of rivet holes is the weakest section, and if for

q we write /, where / is a co-efficient of strength to be determined from

experience, the value of it depending, among other things, on the form

of joint, then the formula

2# . pd
P = ~d>

Tt
lf

may be used as a semi-empirical formula to determine the greatest

pressure which can be employed in a given boiler, or the thickness

of metal required to sustain a given pressure. The value of the co-

efficient for iron boilers with single rivetted joints is about 4,000 Ibs.

per square inch, or, when double rivetted, as is usual in large boilers,

5,500. With steel the value is about one-third greater. In large

boilers at high pressure these values, however, have of late been

very greatly exceeded, for reasons which will be considered in a

subsequent chapter.

151. Remarks on Tension. The results obtained in the present sec-

tion are, strictly speaking, only applicable when the piece of material

considered is of uniform transverse section, but they nevertheless may
be used when the transverse section is variable, provided the rate of

variation be not too great and the other conditions mentioned are

strictly fulfilled. The intensity of the stress is then different at

different parts of the bar, varying inversely as the transverse section

and in determining the elongation this must be taken into account.
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In many cases of tension the effect of the weight of the tie and

other circumstances introduces an additional stress, the amount of

which is often imperfectly known. This is allowed for, either by

making a certain addition to the theoretical diameter, or by the use

of a factor of safety adapted to the particular case. On the other

hand it also often happens, as in the case of ropes for example, that

the strength of the material is greater in small sizes than large ones

for reasons connected with the mode of manufacture.

152. Simple Compression. When the forces applied to the ends of

a bar act in a direction towards one another the bar is in a state of

compression. If the bar is long compared with its transverse dimen-

sions, then any slight disturbance from uniformity will cause it to

bend sideways under the compressive force, and we have then, not

simple compression, but compression compounded with bending, an

important case to be considered hereafter. To obtain simple com-

pression the ratio of length to smallest breadth should not exceed

certain limits which depend on the nature of the material, viz., cast

iron 5 to 1, wrought iron 10 to 1, steel 7 to 1. These values, however,

depend to some extent on the type of section. Further, it is necessary

that the material be perfectly homogeneous, and that the line of action

of the load should be in the axis of the bar. Then the results we have

obtained for simple tension apply to this case of simple compression

P
* = A*

and the strength of the column is given by P = Af, where / is the

co-efficient of strength. The compression x which the column under-

goes is connected with the stress by the equation

p = E*.

The modulus of elasticity E would, in a perfectly elastic body, be

the same as for tension. In actual materials it sometimes appears to

be less
;
but within the elastic limit only slightly less.

EXAMPLES.

1. A rod of iron 1 inch in diameter and 6 feet long is found to stretch one-sixteenth

inch under a load of 7^ tons. Find the intensity of stress on the transverse section

and the modulus of elasticity in Ibs. and tons per square inch.

Stress =21, 382 Ibs. =9 '55 tons.

Modulus of elasticity= 24,632,000 Ibs. =11, 000 tons.

2. "What should be the diameter of the stays of a boiler in which the pressure is

30 Ibs. per square inch, allowing one stay to each 1J square feet of flat surface and

stress of 3,500 Ibs. per square inch of section of the iron? Ans. 1^ inch.

3. In Example 1 find the work stored up in the rod in foot-pounds. Ans. 43|.
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4. If in the last question the rod were originally 2" diameter and half its length were

turned down to a diameter of 1", compare the work stored in the rod with the result

of the previous question.
Ans. Ratio= |.

5. In Example 1 assume the given load of 1\ tons to be the proof load ; find the

modulus of resilience. Ans. 18 '56 in inch-lb. units.

6. Find the thickness of plates of a cylindrical boiler 4' 2" diameter to sustain a

pressure of 50 Ibs. per square inch, taking the co-efficient of strength of plate at 4,000 Ibs.

Ans. yV'.

7- A spherical shell 4' diameter
"
thick is under internal fluid pressure of 1,000 Ibs.

per square inch. Find the intensity of stress on a section of the sphere taken through

the centre. Ans. 48,000 Ibs. per square inch.

8. Find the necessary thickness of a copper steam pipe 4" diameter for a steam pressure

of 100 Ibs. above the atmosphere, the safe stress for copper being taken as 1,000 Ibs. per

square inch. Ans. "2".

9. A circular iron tank, diameter 16 feet, with vertical sides 5" thick, is filled with

water to a depth of 12 feet : find the stress on the sides at the bottom. How should the

thickness vary for uniform strength throughout? Ans. 1,024 Ibs. per square inch.

10. What length of iron suspension rod will just carry its own weight, the stress being

limited to 4 tons per square inch, and what will be the extension under this load ?

Ans. 2,700 feet. Extension=5".

11. The end of a beam 10" broad rests on a wall of masonry ;
if it be loaded with 10

tons what length of bearing surface is necessary, the safe crushing stress for stone

being 150 Ibs. per square inch? Ans. 15".

12. Find the diameter of bearing surface at the base for a column carrying 20 tons,

the stress allowed being as in the last question. Ans. 20" nearly.

13. Compare the weight of the shell of a cylindrical boiler with the weight of water it

contains when full. Ans. Ratio=15 "5 p/f.

SECTION II. SIMPLE BENDING.

153. Proof that the Stress at each Point varies as its Distance from
the Neutral Axis. The nature of the straining action producing bend-

ing has been sufficiently explained in the third section of Chapter II.,

and we shall now consider the kind of stress which results on the

ultimate particles of a solid bar of uniform transverse section and of

perfectly elastic material. The bar is supposed symmetrical about

a plane through its geometrical axis, and the bending is supposed to

take place in this plane, which may be called the Plane of Bending.
In the first instance the bending is supposed to be "

simple," that is,

it is not combined with shearing as is most often the case in practice,

but is due to a uniform bending moment (see Art. 21). The curvature

of the beam is then uniform, that is to say, it is bent into a circular

arc. The investigation consists of three parts.

Fig. 122 shows a longitudinal section AE and a transverse section

LL through the centre of the beam
; by symmetry it follows that if

the bending moment be applied to both ends in exactly the same

way, that transverse section, if plane before bending, will be still plane
C.M. u
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after bending, for there is no reason for deviation in one direction

rather than another. It will be seen presently that if the bending
moment be applied to the ends of the beam in a particular way all

transverse sections will be in the same condition, and we may there-

fore assume that not only the central section, but any other sections

KK we please to take, will remain plane notwithstanding the bending
of the beam. All such sections, if produced, will meet in a line the

intersection of which by the plane of bending will be a point 0, which

is the common centre of the circular arcs KL, PP, NN, etc., formed by

the intersection of the same plane with originally plane longitudinal

layers. These layers after bending have a double curvature, one in

the plane of bending, the other in the transverse plane ;
the transverse

bending however need not be considered at present, and the transverse

section of the layers may be treated as straight lines. Before bending,

the layers were all of the same length, being cut off by parallel planes,

but now they will vary in length since they lie between planes

radiating from an axis 0. We shall find presently that some layers

must be lengthened and some shortened, an intermediate layer, NN
in the figure, being unaltered in length. This layer is called the

Neutral Surface, and the transverse section of that layer SS is called
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the Neutral Axis, the last expression being always used in reference

to a transverse section, not a longitudinal section. Let the radius of

the neutral surface be R. The more the beam is bent, that is the

less R is, the greater will be the stress produced by the bending
action

;
and the first step in the investigation is to obtain the relation

between the stress produced at any point of a transverse section and

the radius of curvature R. If we bisect SS in N and draw LNL at

right angles to SNS, it is necessary that the section of the beam

should be symmetrical on each side of LNL
;
with this restriction

the section may be any shape we please.

Now consider any layer PP of the beam between the planes LL and

KK which is at the distance y from the neutral surface NN or neutral

axis SNS. This layer will be curved to a circle whose 1 radius is R + v,

and it must undergo an alteration of length from NN which it had

before bending, to PP which it now has. Thus the alteration of

pp _
length per unit of length, that is, the strain e =-j^= ,

but since
D D JJ

arcs are proportional to radii
-j

= t^,
.A iv 41

PP-NN

If the layer we are considering is taken below the neutral surface,

the strain, which will then be compression, will be given by the same

expression e = y/R, e and y both being negative.

Accompanying the longitudinal strain just estimated there must be

a longitudinal stress proportional to the strain. Let p be the intensity

of that stress, then

p = Ee,

where E is a modulus of elasticity. If we imagine the beam divided

into elementary longitudinal bars, and if we imagine each of those bars

independent of the others, it will follow that E is the same modulus of

elasticity as we have previously employed in Section I. of this chapter.

This, however, implies that the bar can freely contract and expand

laterally when stretched and compressed, and we therefore could not

be sure a priori that the union of the bars into a solid mass would

not cause the value of E to be different from that for simple stretching,

and to vary for different layers of the beam. It will be seen hereafter,

however, that there are good reasons for the assumption.

Accordingly we write

where E is the ordinary (also called Young's) modulus of elasticity.
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If y is taken below the neutral axis then p is negative, signifying that

the stress is now compressive. Inj perfectly elastic material the value

of E is the same for compression as for tension, and so, within the

limits of elasticity, the same equation will apply for all parts of

the transverse section.

Thus the stress at any point of the transverse section of the bar is

proportional to its distance from the neutral axis.

154. Determination of Position of Neutral Axis. The second step in

the investigation is to find the position of the neutral axis, which may
be done by dividing the beam into two portions, A and B, by a section

LL, and considering the horizontal equilibrium of either portion, say B.

The external forces, being vertical, have no horizontal component, and

we have therefore only to take account of the internal molecular forces

which act at the section LL. Above the neutral axis the action of

LA is a tendency to pull B to the left
;
but below the neutral axis,

the tendency is to thrust B to the right. In order that it may remain

in equilibrium, and not move horizontally, it is necessary that the

total pull should equal the total thrust
;
or the total horizontal force

at the section must be zero. To estimate the horizontal force, consider

the force acting on a thin strip of the transverse section, of breadth b,

and thickness t, distant y from the neutral axis. The thrust or pull

on this elementary strip =p .b.t.

Summing the forces on all the strips composing the sectional area,

we must have

but p = EyjR, where E and R are the same for all strips of the section.

That is to say, the sum of the products of each elementary area into

its distance from the neutral axis must be zero.

This can be true only if the axis passes through the centre of

gravity of the section
;
for it is the same thing as saying that the

moment of the area about the neutral axis is to be zero.

155. Determination of the Moment of Resistance. The third and \i

step in the investigation is to obtain the connection between the

bending moment applied, and the stress which is produced by it

Again, considering either portion, AL or BL, of the beam, say A.

the external forces on A produce a . bending moment or couple,

which has to be resisted by the internal stresses called into action

the section K; so that the total moment of these stresses must be eqm
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to M. The moment of the resisting stresses, being a couple, may be

estimated about any axis with the same result. For convenience we

will estimate it about the neutral axis of the section.

Let us again consider the elementary strip of area bt, distant y from

neutral axis, on which the intensity of stress is p, the force, pull, or

thrust, on this strip being pbt. The moment of the force =p.U. y.

Seeing that forces on all elementary strips, whether pull or thrust, all

tend to turn the piece AL the same way, the total moment of the

stresses will be found by summing all terms, p . bty, for the whole area

of the section.

.-. M=2p.bty.

Since p = Ey/JK, substitute, and remember that EjR is the same for

all strips, then

In this formula the area of each strip has to be multiplied by the

square of its distance from the neutral axis and the sum of the pro-

ducts taken. This, or an analogous sum, is of constant occurrence in

mechanics, and has a name assigned to it. 26/y is the simple moment

of an area about an axis, 2bty
2
may be called the moment of the

second degree, but the common name is the Moment of Inertia; be-

cause a similar sum (differing only from this in involving the mass)

occurs in dynamics under that name. To distinguish the two cases

area-moment and mass-moment, the former is sometimes called the

geometrical moment of inertia.

Let / denote the moment of inertia, so that /=2%2
,
the value of

which for any form of section can be obtained by geometry, then

M E T M EM =
rf>

or 7=5*
thus connecting the curvature of the beam with the moment producing
it. Having previously found p/y = E/B, we can now connect the

moment with the stress by writing

p_M
y~ i'

This equation may be employed to determine the strength of a

beam to resist bending. The limit of strength is reached when

either the greatest safe tensile stress on one side of the neutral

axis, or the greatest safe compressive stress on the other side of

the neutral axis is called into action. Thus in the equation

pfy = M!I we must put p=fv the co-efficient of strength under

tension, or pfv the co-efficient of strength under compression; and

for y, either ylt
the distance of the most remote point on the stretched
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side, or y2 ,
the distance of the most remote point on the compressed

side, so that

M=&I, or &I.
vi y*

The strength of the beam, or maximum moment of resistance to

lending, is measured by the least of these quantities.

yl
or y2 is readily determined from geometry, the form of the section

of the beam being given. It may be most conveniently expressed as a

fraction of the depth of the beam. Thus y^ or y2 may be put = qh,

where the co-efficient q has different values. In a rectangular section

q J, in a triangular section q
= ^ or f,

and so on.

Next to express the value of /. It will be found that whatever be

the form of the section, / may always be written = nAh?, A being
the area of the section of the beam, h the depth in the direction

of bending, and n a numerical co-efficient, the value of which depends
on the form of the section.

For a rectangular section,

n = T̂ , so that 7=

For an elliptical or circular section,

?i = TV, so that I=

For a triangular section,

w = TV, so that I=
and so on.

Therefore assuming q and n known, we can write

--.>
qh

J
q

& formula which shows that for sections in which n/q is the same,

the moment of resistance to bending is proportional to the product

of the area and depth of the beam. Sections with the same n and

q are said to be of the same type. They are often, but not correctly,

said to be similar.

In estimating the numerical value of M, care must be taken with

the units. It is generally advisable to use the inch unit throughout.

156. Remarks on Theory of Bending. In the foregoing theory of

simple bending it is supposed

(1) That the bar is homogeneous and of uniform transverse section

and perfectly elastic ;

(2) That sections plane before bending are plane after bending, for

which it is theoretically necessary that the bending moment should be

uniform, and applied at the ends of the bar in a particular way ;
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(3) That longitudinal layers of the beam expand and contract later-

ally in the same way, as if they were disconnected from each other.

These assumptions are not obvious a priori, and require justification,

which at the present stage of the subject we are not in a position to

give ;
for the present it may be stated that if the material be homo-

geneous and perfectly elastic, the equations hold good with certain

qualifications to be considered hereafter (Chap. XVII.), even though
the transverse sections and the curvature vary and however the

bending moment is applied. The strength of the material, however,

is not generally the same, as if the layers were disconnected, and

co-efficients of strength require therefore to be (determined by special

experiment on transverse strength (Chap. XVIII.).

157. Calculation of Moments of Inertia. We have frequently to deal

with beams of complex section, in which case to determine 7 it is

convenient to divide the section up into simple areas, the eye of each

of which is known, and the total moment of inertia of the section will

be the sum of these 7's. In employing this process we require to know
the relation between the moments of inertia of an area about two axes

parallel to one another, one being the neutral axis. We make use of a

general theorem which may be thus proved.
Let A be an area of which we know the moment of inertia about

the neutral axis, SS (Fig. 123), and we require to know the moment of

inertia about any parallel axis, XX, distant y from

SS. Dividing the area into strips of breadth b, and

thickness
t, s

Moment of Inertia required 7= 26 . t .

Now *2bty
2 = moment of inertia about neutral axis, Fig.123.

~bt . y = 0, because the neutral axis passes through
the centre of gravity of the section, and 26/ = Area A

;

The moment of inertia of an area about any axis is, therefore,

determined by adding to the moment of inertia of the area about a

parallel axis through the centre of gravity the product of the area into

the square of the distance between the two axes.

This theorem, together with previously quoted values of /
,

will

enable us to determine the following results, which will be useful in

application to beams

Rectangle of height y about its base, ... I

Triangle ... ... I

Triangle about a parallel to its base through vertex, /=
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Many other forms will divide up into rectangles or triangles, or

both
;

for example, the moment of inertia of a trapezoid about the

neutral axis may be readily determined by taking, for the area above

the neutral axis, the / for a rectangle about one end, and triangles

about the base. For the area below, a rectangle about one end and

triangles about the vertex, and add the results.

158. Seams of I Section with equal Flanges. The case of a beam of

I section is very important.

First, suppose the flanges of equal breadth and thickness, and the

web of uniform thickness b', the depth being

h', b being the breadth of the flange, and h the

whole depth of the beam. The moment of

Fig.124. fy|
-

u, K inertia of the section may be taken as the

difference of the moments of inertia of two

rectangles (see Fig. 124).

This is the accurate value of /, and when the flanges are thick this

expression for / must be used; but if the flanges are thin compared
with the depth, an approximation can be obtained by supposing each

flange to be concentrated in its centre line, and taking for the depth
of the beam the distance h

Q to the centre of flanges.

If A = area of each flange and C= area of web,

then /= + A +

fv\ l^T

Putting p=f and y = -|A ,
in the formula - =

-y,

Since the total area of the flanges is 1A it appears that, area for area,,

the web has only one-third the resistance to bending of the flanges.

The result given by this formula is. too large, the excess being greater

the thicker the flanges, partly because a part of the web is reckonec

twice over, and partly for the reason mentioned below.

We previously deduced an approximate expression for the strerij

of an I beam, viz.,

M=Hh=fhA (see Art. 27),

in which the effect of the web in resisting bending was neglected, th<

whole of the bending action being supposed to be taken by the flanges.

The present formula shows the amount of the error involved in th{

assumption. In using this approximation when h the effective depth it
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reckoned from centre to centre of the flanges, two errors are made, one

in supposing the resistance to bending of the web neglected, and the

other, in supposing the mean stress on the flange equal to the maximum.

When the web is very thin the first of these errors is the least, and the

effective depth is more nearly h^/h', where h' is the outside depth and ^

the depth from centre to centre of flanges. This is little greater than

the inside depth. On the other hand, in beams rolled in one piece the

web 'is thick. The first error is then the greater, and Prof. Philbrick

has pointed out that the approximation gives fairly accurate results

if h be taken as the outside depth.* Such approximate rules are

useful in rough preliminary calculations of dimensions, but always

require verification.

159. Ratio of Depth to Span in I Beams. The formula just obtained

for the moment of resistance of a beam of I section shows that the

greater the depth of the beam and the thinner the web the stronger
will the beam be for the same weight of material, or in other words

that the best distribution of material is as far away from the neutral

axis as possible. The practical limitation to this is that a certain

thickness of web is necessary to hold the flanges together and give
sufficient power of resistance to lateral forces and to the direct action

of any part of the load which may rest on the upper flange. Hence

the weight of web rapidly increases as the depth increases, and a

certain ratio of depth to span is best as regards economy of material

(see Ex. 17, page 319). This is especially important in large girders
in which economy of material is the primary consideration. In smaller

beams the proper ratio of depth to span is generally in great measure

a question of stiffness, a part of the subject to be considered in

Chapter XIII. The moment of resistance of I sections of practical

proportions is generally nearly double that of a rectangular section

of equal area and mean depth. The straining actions on the web
will be considered in Chapter XV.

160. Proportions of I Beams for Equal Strength. Materials in general
are not equally strong under tension and compression, so that a beam
whose section is symmetrical above and below the neutral axis will

yield on one side before the material on the other side of the neutral

axis has reached its limiting stress. Accordingly we might obtain a

more economical distribution of material if we were to take some

from the stronger side and put it on the weaker, so that the limiting

tensile on one side and the limiting compressive stress on the other

* Van Nostrand's Magazine. Nov., 1886.
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may be produced simultaneously. The section of the beam will be

different above and below the neutral axis, which will not now be

at the centre of depth of the beam, but in such a position that the

distance to the top and bottom of the beam are in the proportion

of the greatest allowed stresses to one another. The neutral axis in all

oases must pass through the centre of gravity of the section.

Let /,,' fg be the co-efficients of strength under compression and

tension respectively, yA , yB distances of the most strained layer from

the neutral axis, then the beam will be strongest when

For simplicity of calculation we will consider a beam (Fig. 125) in

which the web is of uniform thickness through-

out the depth, and so of rectangular section,

and each flange also of rectangular section,

H : V and determine the relation which should hold

...-N-^i. between the areas of flanges and web for
YB

I
\ maximum strength of beam, and the moment

of resistance to bending where this condition

is satisfied. We will further suppose each flange to be concentrated

in its centre line.

Let A = area of compressed flange, B = area of stretched flange,

(7= area of web. Since the neutral axis is at the centre of gravity

of the section, we obtain, by taking moments about the axis,

or, substituting the previously given values of yA and

Supposing fA and /B known, A, JB, and C must be such as to satisfy this

relation. We have some liberty of choice between these quantities,

and frequently find one of the flanges omitted, so producing a beam

of T or _L section.

In a cast-iron beam, where the resistance to compression is greater

than for tension, the compressed flange A may be omitted. Putting

A = we get <7=-%^, and supposing = 4
;

<7=
,
or B=\\G.

4/fi JB

In a wrought-iron beam on the other hand, if we take fAjfB to be f ,

the stretched flange B is to be omitted. Putting JB 0, we find

A JB ~JA ri \ri^._-c->a
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Otherwise we may assume the depth and thickness of the web to be

given (Art. 159), then the equation

furnishes a relation between the areas of the flanges. For example, in

cast iron, if we assume fA = 4/fl ,
we find

B = 4A+%C.
Having decided on the proportions between the parts of the section

we can now calculate the moments of inertia and resistance. Still

considering the flanges concentrated in their centre lines,

I=Ay* + By* + C . . yj + JC . . y*

a result which admits of ready calculation. Further

whence we obtain M= (fA +/B)T-

The calculation just now made is one which has been frequently

given in dealing with beams of I section,* but in applying it to

actual examples it should be remembered that the results are obtained

on the supposition that the flanges are concentrated in their centre

lines, and are consequently only approximate when the co-efficients

/!, fB mean the intensities of the stress at those centre lines, not at

the surface of the beam where the stress is greatest. If, for example,
FA be the maximum stress on the flange A,

where tA is the thickness of the flange. The difference is especially

great in the case of the larger flange of cast-iron beams, and the true

ratio of maximum compressive and tensile stress is much less than it

appears in the preceding article. On the other hand, in extreme

cases, such as we are now considering, the stress may not be uniformly
distributed along a line parallel to the neutral axis.

Extensive experiments were made on cast-iron beams by Hodgkinson
with the object of determining the best proportions between the

flanges, with the result that rupture always took place by tearing
asunder of the lower flange, unless it was at least six times the size of

the compressed flange. This proportion is rarely adopted in practice,

from the difficulties of obtaining a sound casting, and the necessity
* See Rankine's Civil Engineering, page 257.
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of having sufficient lateral strength. Nor is it certain that the pro-

portions which are best for resisting the ultimate load are also best

in the case of the working load
;

it is, in fact, probable that a smaller

proportion is better even on the score of strength. If we take fA = 2J/ ,

instead of 4fB we find

Bm-fyA'+ tG,

which agrees moie closely with practice. Ihe ratio of maximum com-

pressive and tensile strength is in this case about 2, which, according

to some authorities, is the ratio of elastic strengths in the two cases.

In wrought-iron beams the areas of the flanges are usually equal, and

this is correct if the elastic strength, and not the ultimate strength, is

regarded as fixing the proper proportions, and if there be sufficient

piovision against the yielding of the top flange by lateral flexure.

Small-sized beams of this kind are rolled in one piece, while large

girders are constructed of iron or steel plates and angle iron?, rivetttd

together. Some of the forms they assume are shown in Plate VIII.,

Chapter XVIII.

In making calculations respecting girders, approximate methods may
be used for preliminary tentative calculations, but should be checked by
a subsequent accurate determination of the neutral axis and moment
of inertia. A previous reduction of the section to an equivalent solid

section is required when, as is often the case, all parts of the section

do not offer the same elastic resistance to the stress applied to them,

either because they are not sufficiently rigidly connected or from the

material being different. This is especially the case in determining
the resistance to the longitudinal bending of a vessel occasioned by the

unequal distribution of weight and buoyancy already considered in

Chapter III. On this important question the reader is referred to a

treatise on Naval Architecture by Mr (now Sir) W. H White. In

many cases of built-up girders the shearing action which generally

exists has considerable influence, a matter for subsequent consideration

(Ch. XV.). The effect of the weight of the girder itself has been con-

sidered in Chapter IV. (See also Ex. 13, p. 319, and Art. 192.)

161. Beams of Uniform Strength. A beam of uniform strength is one

in which the maximum stress is the same on all sections. For beams

of the same transverse section throughout, this can only be the case

when the bending moment is uniform, but, by properly varying the

section, it is possible to satisfy the condition however the bending

moment vary. For this purpose we have only to consider the equation

M-fl.Ak,
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which must now be satisfied at all sections. Suppose

A=Jcbh,

where k is a numerical factor depending on the type of section, then

All sections of the beam being supposed of the same type we have only

to make Ah or bh2
vary as M, that is, as the ordinates of the curve of

bending moments. The principal cases are

(1) Depth uniform. Here the breadth must vary as the bending

moment, whence it is clear that the curve of moments may be taken as

representing the half plan of the beam.

(2) Sectional area uniform. Here the depth must vary as the bend-

ing moment, that is, the curve of moments may be taken to represent

the elevation or half elevation of the beam.

(3) Breadth uniform. Here the elevation or half elevation of the

beam must be a curve, the co-ordinates of which are the square roots of

the co-ordinates of the curve of moments.

(4) TCatio of breadth to depth constant. Here the half plan and half

elevation are each a curve, the ordinates of which are the cube roots

of the ordinates of the curve of moments.

The first, third, and fourth of these cases are common in practice with

some modifications occasioned by the necessity of providing additional

erial at sections of the beam where the bending moment vanishes,

as it usually does at one or both ends.

162. Unsymmetrical Bending. It occasionally happens that the plane

of the bending moment is not a principal plane of the beam, as for

Fig.126.

M

example when a vessel heels over, the plane of longitudinal bending
will not coincide with the plane of symmetry of the vessel which is
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obviously the plane of the masts. The neutral axis does not now
coincide with the axis of the bending couple, though in other respects
the theory of binding still holds good.

In Fig. 126 let MM be the axis of the bending moment M, inclined

at an angle to the principal axes of inertia GX, GY of the plane
section. Then the couple M may be resolved into two componentsM cos 6 and M sin 6, each of which will produce stress at any point P as

if the other did not exist. Let p be the stress, x, y the co-ordinates of

P referred to the axes GX, GY, the moments of inertia about which are

/!, /2 , then M . cos 6 . y M . sin . x
p = - j

--Z+~ --
.

1
l

1
2

The position of the neutral axis NN is found by putting p = 0, then

the angle <f> which it makes with GX is given by

This equation shows that the neutral axis is parallel to a line joining
the centres of the circles into which the beam would be bent by the

component couples supposed each to act alone.

The neutral axis being thus determined and laid down on the diagram
the points can be found which lie at the greatest distance from that

axis. At these points the stress will be greatest, and if X, Y be their

co-ordinates, still referred to the axes GX, GY, the moment of resistance

will be determined by the equation

F.cos0 .X. sin (9)

-/-
-+ 7*! 2

2 J

For a different method of expressing the moment of resistance see

Rankine's Applied Mechanics, p. 314.

EXAMPLES.

1. A bar of iron 2" diameter is bent into the arc of a circle 372' diameter. Find in tons.

per square inch, 1st, the greatest stress at any point of the transverse section ; 2nd, the

stress on a line parallel to the neutral axis half an inch from the centre, E being taken

29,000,000. Ans. Maximum stress=5 '8. Stress at
" from centre= 2'9.

2. Find the diameter of the smallest circle into which the bar of the last question can

be bent ; the stress being limited to 4 tons per square inch. Ans. Diameter=540 feet.

3. Find the position of the neutral axis of a trapezoidal section ; the top side being 3",

bottom 6", and depth 8". Also find the ratio of maximum tensile and compressive
stresses. Ans. Neutral axis 3 '56 inches from bottom. Ratio of stresses 5 to 4.

4. A cast-iron beam is of I section with top flange 3" broad and 1" thick and bottom

flange 8" broad and 2" thick ; the web is trapezoidal in section %" thick at top and V at

bottom ; total outside depth of beam 16". Find the position of the neutral axis and the

ratio of maximum tensile and compressive stresses. Ans. Neutral axis 4 '81 inches from

bottom. Ratio of stresses 3 to 7.

5. A wrought-iron beam of rectangular section is 9" deep, 3" broad, and 10 feet long.
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Find ho\v much it will carry loaded in the centre, allowing a co-efficient of 3 tons per

square inch. Also deduce tlie load the same beam will bear when set flatways. Ans.

When upright load=4 '05 tons. "When set flatways load= 1 '35 tons.

6. A piece of oak of uniform circular section is 16" diameter and 12 feet long. It is

supported at the two ends and loaded at a point 5 feet from one end. How great may
the load be, allowing a stress of \ ton per square inch? Ans. Load may be 5 '74 tons.

7. In Example 5 suppose half the weight of metal formed into a beam of I section, of

the same depth, each flange being equal to the web ; what load will the beam carry ?

Ans. Load may then be 4 tons.

8. Find the moment of resistance to bending of the section given in Example 4, the

co-efficient for tension being 1 ton per square inch. Ans. 1=798 inch units. Moment
of resistance to bending=166'4 inch-tons.

9. Suppose the skin and plate deck of an iron vessel to have the following dimensions

at the midship section, measured at the middle of the thickness of the plates. Find the

position of the neutral axis and moment of resistance to bending. Breadth 48' and total

depth 24', the bilges being quadrants of 12' radius. Thickness of plate
"

all round and

co-efficient of strength 4 tons in compression.
Arts. Neutral axis 13" above centre of depth.

Moment of resistance to hogging =32, 500 ft.-tons, and to sagging 39,000.

10. What should be the sectional area of a T beam of wrought iron to carry 4 ton*

uniformly distributed? Span 20', depth of beam 10". Co-efficient for compression
3 tons, and for tension 5 tons. Ans. Area=13'7 square inches.

11. If, in the last question, the flange is made equal to the web instead of being pro-

portioned for equal strength, show that to carry the same load the beam must be about

one quarter heavier.

12. In Example 8 find the moments of inertia and resistance on the supposition that

the flanges are concentrated at the centre lines, and thus by comparison with previous
results show the amount of the error involved in the assumption. Ans. Moment of

inertia =861 '5 inch units. Moment of resistance= 227 inch-tons.

13. Show that the limiting span (Art. 41) of a beam of uniform transverse section is

Sn
Li \ . -zf=- ,

Nq
where N is the ratio of span to depth, and the rest of the notation is the same as on

pages 81 and 310. Obtain the numerical result for a wrought-iron beam of rectangular

section, taking X from Table I., Ch. XVIII., and supposing aV=12.
Ans. =336 ft.

; in an ordinary I section the result would be doubled. For the case

of large girders see Art. 192.

14. If I be the length of an iron rod in feet, d its diameter in inches, just to carry its

own weight when supported at the ends, show that when the stress allowed is 4 tons per

square inch I=*j224d.
15. If /!, /2 be the moments of inertia of two plane areas, A lt A.2 , about their neutral

axes which are supported parallel at distance apart z, show that the moment of inertia

of their sum or difference about their common neutral axis is I=Il I + z*. . \_
*

AiA z

Apply this formula to the trapezoidal section of Question 3. Ans. 7=185 inch units

nearly.

16. Find the moment of resistance to bending of a beam of I section, each flange con-

sisting of a pair of angle iions 3i"x4" rivetted to a web '37" thick and 16" deep between
them. Assuming it 24 feet span, find the load it would carry in the middle, using a co-

efficient of 3 tons per square inch. Ans. M=288 inch-tons. W=4 tons.

17. If it be assumed that for constructive reasons the thickness of web of an I beam
with equal flanges must be a given fraction of the depth, show that for greatest economy
of material the sectional area of the web should be equal to the joint sectional area of

the flanges. Prove that in this case M=&f. Sh.
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18. In a cast-iron beam of I section of equal strength for which fA=2^/B', if it be

assumed that for constructive reasons the thickness of the web should be a given fraction

of the depth, show that for greatest economy of material the large flange, the web, and

the small flange should be in the proportion 25, 20, 4. Prove also that the moment of

resistance is given by the same formula as in Question 17, supposing 2//= 1//U + I//B.

19. A beam of rectangular section of breaith one-half the depth is bent by a couple
the plane of which is inclined at 45 to the axes of the section. Find the neutral axis,

and compare the moment of resistance to bending with that about either axis. Ans.

Ratio=V2/3 and j2/3.

20. If a beam be originally curved in the form of a circular arc of radius R instead of

being straight, show that the neutral axis does not pass through the centre of gravity of

the section. In a rectangular section of depth h show that the deviation is, approxi-

mately,
h?

21. In the preceding question, if JR is large show that the equations of bending are

* */I.



CHAPTER XIII.

DEFLECTION AND SLOPE OF BEAMS.

163. Deflection due to the Maximum Bending Moment. It is not only

necessary that a beam should be strong enough to support the load to

which it is subjected, it is also necessary that its changes of form should

not be too great, or in other words, that it should be sufficiently stiff,

and we next proceed to deter-

mine under what conditions

this will be the case.

The question is simplest

when the beam is bent into an

arc of a circle; we have then

p M E
- =

-f
=

-^
= constant.

// / R
Two cases may be especially

mentioned

(1) Depth uniform. We
then have p constant, that the

beam is of uniform strength.

(See Case 1 of Art. 161.)

(2) Sectional area uniform.

s

Fig.127.

We then have, since

EM= T>I= n .
-j

.

H A
the depth of the beam varying as the square root of the bending

moment, as in case 3 of the same article. Let I be the length of the

beam, i the angle its two ends make with one another, then since i is

also the angle subtended by the beam at the centre

._ I _Ml~
R~ El'

If the beam be supported at the ends i is twice the angle which the

ends make with the horizontal, an angle called the Slope at the ends.

Let AB be the beam (Fig. 127), the centre of the circle into which it

is bent KL, the diameter of the circle through K the middle point of

C.M. x
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the beam. Then KN is the deflection which is given by a known

proposition of Euclid,

Hence remembering that the diameter of the circle is very large* we

have, if 8 be the deflection,

This formula gives the deflection in any case where the curvature is

uniform.

When the transverse section is uniform the curvature varies. Unless

the bending moment be likewise uniform, the deflection curve is not

then a circle AKB, but for the same maximum bending moment a

flatter curve A'KB'. Thus the deflection is less than that calculated

by the above formula, which may be described as the " deflection due

to the maximum moment." The actual deflection may conveniently be

expressed as a fraction of that due to the maximum moment. It is

possible to construct the deflection curve graphically by observing that

the curvature at every point is proportional to the bending moment.

We] have then only to strike a succession of arcs with radii inversely

proportional to the ordinates of the curve of bending moment. It is

however more convenient to proceed by an analytical method, f The

fraction is least when the beam is least curved, which is evidently the

case when it is loaded in the middle, and we shall show presently that

it is then two-thirds, while, when uniformly loaded, it is five-sixths.

164. General Equation of Deflection Curve. It was shown above that

M
1

l =ET 1'

If the bending moment vary, then we must replace I by an element of

the length ds and i by the corresponding element of the angle ;
we shall

then have an equation

<& Jf
ds~j~r

which by integration will furnish i. It will generally be convenient to

reckon i from a horizontal tangent and it then means the slope of the

beam at the point considered. To perform the integration it is in most

cases necessary to suppose the slope of the beam small, as it actually is

in most important cases in practice, and we may then replace ds the

* For clearness it is made small in the figure.

t Readers who have no knowledge of the Calculus may pass over the next four

articles.
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element of arc by dx, the corresponding element of a horizontal tangent
AN (Fig. 128) taken as axis of z, whence

an equation which can generally be integrated because M is usually a

function of x.

The deviation y of any point Q of the beam from the straight line

AN can now be found since dy/dx = i, from which we further obtain the

fundamental equation

<5r Jf

dx*~ Ef
which applies to all cases where the bending of the beam is occasioned

by a transverse load. We shall first give some elementary examples
of the determination of the deflection and slope of a beam and then

consider the question more generally.

Fig.128.

165. Elementary Cases of Deflection and Slope. Case L Suppose a

beam supported at the ends and loaded in the middle.

In Fig. 128 CD is the beam resting on supports at C, D, and loaded

in the middle with a weight W. Take the centre A as origin and the

horizontal tangent at A as axis of x, then if / be the whole length

Wfl

_
dx2 El" El

' '

dx El
is the slope of the beam at Q, no constant being required since i is zero

when x = 0.

If x = 1/2 we get the slope at the ends of the beam

Integrating a second time

As before no constant is required because y = when x = 0.
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If now we put x = 1/2 we get the elevation of D above AN or, what is

the same thing, the depression Ag of A below the level of the supports.

This is called the Deflection of the beam
;

if we denote it by 8,

El
a result which we may also write

8
2 Mf 2

d-^.-^-g
'

<"

where M
Q

is the maximum moment and 8
Q
the deflection due to it.

Case II. Let the beam be supported at the ends and loaded uniformly
with w pounds per foot-run. It will be sufficient to give the results,

which are obtained in precisely the same way, remembering that the

bending moment is now \w(a
2 -

x-) where a is the half span. We have

was Wl*wa?

The value of 8 may be expressed as in the previous case in terms of

the deflection due to the maximum moment. We have 8 = | . 8 .

166. Beam propped in the middle. When a beam is acted on by
several loads the deflection and slope due to the whole is the sum of

those due to each load taken separately. An important example is

Case HI. Beam supported at the ends and propped in the middle,

uniformly loaded. (Fig. 129.)

Here the deflection of the beam is the difference between the down-

ward deflection due to the uniform load and the upward deflection due

Fig.129.

;g

A Z

Hence we write down at once for the

Wl*

to the thrust Q of the prop,

deflection at the centre,

8 =
384'^T~48E~r

an equation which may be used to determine the load carried by the

prop when its length is given, and conversely.
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First suppose the centre of the beam propped at the same level as the

supports, then 8 = 0, and
5

so that the prop in this case carries five-eighths of the weight of the

beam, the supports C, D only carrying three-eighths. Each supporting

force is ^wl, I being as before the whole length of the beam
;
hence the

bending moment at a point distant x from C is given by the formula

M= -^wlx
-

^ivx
2 = im^(f I - x),

from which it appears that the beam is bent downwards until a point

Z is reached, such that CZ&1 &AC

Here the bending moment is zero, that is Z is a "
point of contrary

flexure" or "virtual joint." (Compare Art. 38.)

Beyond Z the beam is bent upwards, and at the centre A we get, by

putting x = U, -M
Q
= ^wl*.

The case here discussed is also that of a beam, one end of which is

fixed horizontally and the other supported at exactly the same level.

Let us next inquire what will be the effect of supposing the centre

of the beam propped somewhat out of the horizontal line through the

supports at the ends. Let us suppose 8 to be l/n
ih the deflection of

the beam when the prop is removed, then

1 5 #T5___
n

'

384
'

"El
~
384

'

El 48^7 '

that is =

a formula which gives the load on the prop. If, for example, ?i = 5,

Q-^i^ or if n = -
5, Q = fW ;

thus if the centre of the beam be out

of level, by as much as one-fifth the deflection when the prop is wholly

removed, the load on the prop will vary between \W and fWy
a result

which shows the care necessary in adjustment to obtain a definite

result.

167. Beams fix^d at the Ends. Case IV. Uniformly loaded beam,

with ends fixed at a given slope.

Fig.130.

In Fig. 130 AB is a uniformly loaded beam, with the ends A, P>

fixed not horizontally but for greater generality at a slope i. Here
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the central part of the beam will be bent downwards and the end

parts upwards; at Z, Z there will be virtual joints; let OZ=r, then

taking as origin the bending moment at any point between and

Zis

M~W*-&)>
a formula which will also hold for points beyond Z, as can be seen from

Art. 38, or proved independently. We have then

dx
~

El

El

No constant is required, because i is zero at 0. Let a be the half span

OA, or OB, then putting x = a, we get for the slope at the ends

_
1 El

a formula from which r can be determined if
i^

be given. If r = a, we

get the case where the ends are free
;
let the slope then be i

Q ,
we have

Now, assume the actual slope to be l/7i
th of this, we get

El

that is, r'
2 = a?(\+

If the ends are fixed exactly horizontal, then

r2 = Ja
2
,

and by substitution we find for the bending moment at the centre and

the ends

M
Q
= %wa2

;
MA =MB = \wo?.

If the ends were free, the bending moment at the centre would have

been ^wa
2
,
so that the beam will be strengthened in the proportion

3:2. The formula obtained above, however, shows that a small error

in adjustment of the ends will make a great difference in the results.

It is theoretically possible so to adjust the ends that the bending
moments at the centre and the ends shall be equal, in which case the

beam will be strongest. For this we have only to put

wr2 =
^w(a~

- f2
),

that is, r2 = Ja
2

,

whence by substitution we get
>i = 4;

that is, the ends should be fixed at one-fourth the slope which
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they have when free, and the strength of the beam will then be

doubled.

By proceeding to a second integration the deflection of the beam can

be found. In particular when the ends of the beam are horizontal it

can be shown that the deflection is only one-fifth of its value when the

ends are free. On the effect of shearing see page 332.

The graphical representation of the bending moments in Cases III.,

IV., is easily affected, as in Fig. 42, page 77.

168. Stiffness of a Beam. The stiffness of a beam is measured by the

ratio of the deflection to the span. In practice, the deflection is limited

to 1 or 2 inches per 100 feet of span when under the working load;

that is, the ratio in question is ^-^ to T^bV*. It appears from what

has been said that if M
Q
be the maximum moment the deflection is

.MJ?

where k is a fraction, which in beams of uniform section, varies from

two-thirds to unity, depending on the way in which the beam is loaded.*

Hence the greatest moment which the beam will bear consistently with

its being sufficiently stiff is

xu ~
kl 'I'

If we express / as usual in terms of the sectional area and depth,

Mt~9gfji

where s is a co-efficient depending on the material and on the admissible

deflection which may be called the " Co-efficient of Stiffness."

We thus obtain a value for the moment of resistance of a beam which

depends on its stiffness, not on its strength, and if that value be less

than that previously obtained for strength (p. 310), we must evidently

employ the new formula in calculating dimensions. On comparing the

two, we find that they will give the same result if

sh_f m
^

h_fk.

that is to say, for a certain definite ratio of depth to span, and if there

is no other reason for fixing on this ratio, it will be best to choose the

value thus determined. The two formulae then give the same result.

In large girders a greater depth is generally desirable, then the strength
formula must be used

;
while in small beams it may often be convenient

* When the transverse section is not uniform the co-efficient k may be greater

than unity.
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or necessary to have a smaller depth, and then the stiffness formula

must be employed.

169. General Graphical Method. The foregoing simple examples of

the determination of the deflection and slope of a beam are perhaps
those of most practical use, but, by the aid of graphical processes, there

is no difficulty in generalizing the results which are of considerable theo-

retical interest. We can, however, afford space only for a hasty sketch.

The general equations given in Art. 164 show that the angle (i)

between two tangents to the deflection curve of a beam is proportional
to the area of the curve of bending moments intercepted between two

ordinates at the points considered. Starting from the lowest point of

the deflection curve, let us now imagine a curve drawn, the ordinate of

which represents that area reckoned from the starting point, then that

curve will represent the slope of the beam at every point, and may
therefore properly be called the " Curve of Slope." But referring again
to the general equations we see that the ordinate of the deflection curve

reckoned upwards from the horizontal tangent at the lowest point, is

connected with the slope in the same way as the slope with the bending

moment, and is consequently proportional to the area of the curve of

slope. Thus it appears, on reference to Chapter III., that the curves

of Deflection, Slope, and Bending Moment are related to each other in

the same way as the curves of Bending Moment, Shearing Force, and

Load. The five curves, in fact, form a continuous series each derived

from the next succeeding by a process of graphical integration.

We now see that any property connecting together the second three

quantities must also be true for the first three. For example, we

know, from the properties of the funicular polygon, that two tangents
in the curve of moments intersect in a point vertically below the

centre of gravity of the area of the corresponding curve of loads. (See

Arts. 31, 35.) It must therefore be true that two tangents to the

deflection curve intersect vertically below the centre of gravity of the

corresponding area of the curve of moments, a useful property, which

can be proved directly without much difficulty.

The deflection curve of a beam may therefore be constructed in the

same way that the funicular polygon is constructed in Art. 35, the

perpendicular distance (H) of the pole from the load line in the diagram
of forces being made equal to EL To do this we have only to divide

the moment curve into convenient vertical strips and regard each as

representing a weight. Set down these ideal weights as a vertical line

and choose a pole at a distance from the line equal to El, measured (on

account of the largeness of E) on a scale less in a given ratio. Now,
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construct the polygon and draw its closing line, the intercept multiplied

by the scale ratio is the deflection of the beam. A parallel to the

closing line in the diagram of forces gives the slopes at the extremities

of the beam which correspond to the supporting forces of the loaded

beam in the original case.

We have hitherto supposed the beam to be of uniform stiffness

throughout ;
if not, let the quantity El, which is now variable, be E

Q
I

,

at some datum section. Keduce the ordinates of the curve of moments

in the proportion E^I^ to El, then the reduced curve is to be employed
in the way just described for the original curve.

170. Examples of Graphical Method. Theorem of Three Moments.

Let us now take some examples.

Case I. Symmetrically loaded beam, of flexibility also symmetrical
about the centre. Let ACE

Fig 131

(Fig. 131) be the curve of

moments, reduced if neces-

sary, AOB the deflection

curve
;
both curves, of course,

will be symmetrical about

the centre vertical, then from

what has been said, tangents
at A, B to the deflection

curve intersect the tangent at in points T vertically below the centres

of gravity of the two equal areas AGO, SCO. Hence if S be the area

of the whole curve of moments, 1: the horizontal distance of either point

T from the nearer end,
s .- *

must be the slope of the ends of the beam and its deflection.

Case II. Beam continuous over several spans loaded in any way.

(Fig. 132.) Let AGO', EDO' be the moment curves due to the load

on two spans AO', BO' of a beam AOB, continuous over three supports

A, 0, B, of which the centre is somewhat below the level of A, B.

Being continuous, there will be bending moments at A, 0, B, which

are represented in the diagram by AE, O'L, BF. Joining EL, FL,
the actual bending moment at each point of the beam will be repre-

sented by the intercept between the line ELF and the curves of

moments due to the load and corresponding supporting forces. (See

Art. 38.) The curve AOB is the deflection curve, AT, BT are the

tangents at A, B and TOT is the tangent at 0, intersecting AT, BT in

the points T.
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Now, let iA be the angle between the tangents at and A, then, as

before, <-,

^ = ir
where S is the area of a curve representing the actual bending moment
at each point. In the present case S is the difference of two areas,

c
Fig.132.

one the moment curve for the load, the other the trapezoid EO' for

the moments MA9 MQ .

where A is the area of the moment curve AGO' and 1A is the span AO'.

Let the horizontal distance from A of the common centre of gravity of

the two curves be x
; then, as before, x is also the horizontal distance

of T from A and Sx , ,=
*
asbefore -

To find x let ZA be the horizontal distance of the centre of gravity of

ACS from A, then

We have thus found yA the distance of A from the tangent through ;

and yB the corresponding distance of B, is written down by change of

letters.

Assuming now the depression of 0, the centre of the beam, below the

level of the two other supports to be 8, it appears from the geometry
of the diagram that _ g _^+ 3

or

hence dividing the values of yAJ yB , by 1A ,
1B respectively, and adding
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This equation connects the bending moments at three points of

support of a continuous beam, the centre support being below the

end supports by the small quantity 8. It can readily be extended to

the case where the flexibility of the beam is variable by reducing the

moment curves as previously explained, then the moments M, which

are the results of the calculation, will, in the first instance, be reduced,

and can afterwards be increased to their true values.

The above equation is the most general form of the famous Theorem

of Three Moments, originally discovered by Clapeyron, which is much

employed in questions relating to continuous beams a somewhat

large subject, on which we have not space to enter. The general

method of Art. 169 can, however, be applied directly without using
the Theorem of Three Moments. Further information on this point

will be found in Mr. R. H. Graham's work on the Geometry of Posi-

tion. (Macmillan, 1891.)

171. Elastic Energy of a Bent Beam. The work done in bending a

beam by a uniform bending moment M is evidently \Mi, where i is

the angle which the two ends of the beam make with each other, as

in Art. 163; hence by substitution for i we find for the elastic

energy U, M,

=

and if the bending moment vary,

TT f^ 2
,7U

=\2EI'
dx'

An important case is when the beam is of uniform strength, then

we have **.,

where the suffix refers to a datum section. Then

Mf (I y

m>k'f-'
Assuming now the section (A), though varying, to remain of the

same type f

If, therefore, we call V the volume of the beam,

M^ r i
-

With the notation of Art. 155 this gives
2 n
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For the resilience we have only to change p into /, the proof

strength. It thus appears that in beams of uniform strength with

transverse sections of the same type the resilience is proportional to

the volume, and less than that of a stretched or compressed bar, as

might have been foreseen from general considerations. The ratio of

reduction is q
2

: n, being 3 : 1 in rectangular sections, 4 : 1 in elliptic

sections. When the beam is not of uniform strength the ratio of

reduction must be greater for the same type of section. The reduc-

tion is of course least in / sections of uniform strength.

The elastic energy U is a function of great importance in the theory

of continuous beams and other similar structures, the relative yielding

of the several parts of the structure being always such that this func-

tion is less than it would be for any other distribution of stress and

strain. It may also be called the Elastic Potential, and when known

all the equations necessary to determine the distribution of stress may
be found by simple differentiation. (See Appendix.)

In the case of a beam supported at the ends and loaded at a given

point, the elastic energy may also be expressed in the form

where W is the load and 3 the deflection of the loaded point. Taking
the load in the middle and substituting by the formula on page 3^4,

we find

~

results which we shall have occasion to use hereafter.

172. Concluding Remarks. Throughout this chapter it has been

supposed that the deflection and slope of a beam are exclusively due

to the bending action of the load, and this supposition is sufficiently

accurate when the object is solely to estimate the stiffness of a beam

in practical cases. The effect of the shear, which nearly always

accompanies bending, will be briefly noticed in a later chapter (Art.

190, Ch. XV.), and it need only here be added that in some of the

examples discussed in this chapter, where the results depend on a

nice adjustment of the slope of the ends of a beam or the level of

the supports on which it rests, the effect of shearing may be very

considerable. Structures, the straining actions on which depem
on a delicate adjustment should, like frames with redundant part

(Art. 26), be avoided when possible, but when employed the effect of

shearing should be carefully examined.
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EXAMPLES.

1. If I be the length of an iron rod in feet, d its diameter in inches, just to carry its

own weight with a deflection of 1 inch per 100 feet of span, show that

1=

Compare this result with that of Ex. 14, p. 319, and state what formula is to be used

when both stiffness and strength are required.

2. Find the ratio of depth to span in a beam of rectangular section loaded in the

middle, assuming stress=8000, #=28,000,000, deflection= . Ans.
J..ZUU L i O

3. A beam is supported at the ends and loaded at a point distant a, b from the sup-

ports with a weight W. Show that the depression of the weight below the points of

support is

4. In the last question deduce the work done in bending the beam, and verify the

result by direct calculation. (See Art. 20.)

5. A dam is supported by a row of uprights which take the whole horizontal pressure

of the water. The uprights may be regarded as fixed at their base at the bottom of the

water while their upper ends at the water level are retained in the vertical by suitable

struts sloping at 45, the intermediate part remaining unsupported. Find the bending

moment at any point of the upright, and show that the thrust on the struts is about

two-sevenths the horizontal pressure of the water.

6. A timber balk 20 feet long of square section supports 160 square feet of a floor,

find the dimensions that the deflection of the floor, when loaded with 60 Ibs. per square

foot, may not exceed inch. Ans. 12f".

7. A shaft carries a load equal to m times its weight (1) distributed uniformly, (2) con-

centrated in the middle. Considering it as a beam fixed at the ends, find the distance

apart of bearings for a stiffness of T*W-. Ans. If I be the distance apart in feet,

d diameter in inches, then for a wrought-iron or steel shaft

Vd
2

STi'(1) I

8. A beam originally curved, as in Ex. 21, p. 320, is fixed at one end and loaded in

any way. If i be the change of slope at any point and X, Y the displacements parallel

to axes of x, y of the point consequent on any load, prove that

di_M f
dX= .

m dY_.
ds El '

dy
' dx

Apply these formula? to find the straining actions at any point of one of the rings of a

chain of circular links.

9. A weight W is fixed to the centre of a vertical rotating shaft, and, by its centri-

fugal force when the shaft is slightly bent, tends to increase its lateral deflection. Show
that the number of revolutions of the shaft per minute must not approach that given by
the equation

all dimensions being in inches.

Note. This is the simplest case of what is known as "centrifugal whirling," a

question considered in Art. 203A, Ch. XVI.



CHAPTER XIY.

TENSION OR COMPRESSION COMPOUNDED WITH BENDING.
CRUSHING BY BENDING.

173. General Formula for the Stress due to a Thrust or Putt in combina-

tion ivith a Bending Moment. The bars of a frame and the parts of

other structures are often exposed, not only to a pull or thrust alone,

or to a bending action alone, but to the two together ;
and the total

stress at any point of a transverse section is then the sum of that due

to each taken separately. That is to say, ifH be the thrust, reckoned

negative if a pull, M the bending moment, the stress at any point

distant y from the neutral axis of the bending (see Art. 155), reckoned

positive on the compressed side, must be given by

H My H f _ q M
}

P = -j + r = -jl 1 + -"
rff fA I A \ n Hh }

the notation being as in the article cited.

This formula shows how the effect of a thrust or pull is increased

by a bending action : it has many important applications, some of which

we shall now briefly indicate.

174. Strut or Tie under the Action of a Force parallel to its Axis in

cases where Lateral Flexure may be neglected. Case I. Bar under the

action of a force in a principal plane parallel to its axis.

Let z be the distance from the axis of the line of action of the

force, then

For example, let the section be circular, then n = T\, q ^, and we find

from whence it appears that a deviation from the axis of Tyh the diameter

of a rod increases the effect of a thrust or pull 50 per cent. Similarly

it can be shown that if the line of action of the force lie outside the
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middle fourth of the diameter of a circular section, or the middle third

of a rectangular section, the maximum stress will be more than double

the mean, and at certain points the stress will be reversed. In designing
a structure, then, the greatest care must be exercised that the line of

action of a thrust or pull lies in the axis of the piece which is subjected

to it
;
to effect which, the joints, through which such straining actions

are exerted, must be so designed that the resultant stress at the joint is

applied at the centre of gravity of the section of the piece. This is a

condition which cannot always be satisfied, and allowance in any case

must be made for errors in workmanship. In practical construction it

is the joints which require most attention, being most often the cause of

failure. In frames which are incompletely braced the friction of pin

joints causes the line of action of the stress to deviate from the axis.

The effect is increased in the case of a thrust and diminished in

the case of a pull by the curvature of the piece, which increases or

diminishes z. Fig. 133 shows the axis of a column, under

the action of a weight Wy suspended from a short cross

piece of length a. The column bends laterally, as shown

in an exaggerated way in the figure. The inclination of

AB to the horizontal is so small that the difference

between the actual and the projected length of AB may
be disregarded ;

the bending moment at is therefore

W
'(a + 8), where 8 is the lateral deviation AN of the top

of the pillar. This deviation we will in the first instance

suppose small compared with a, and then determine the condition that

this may actually be the case. Neglecting it, the axis of the pillar is

bent by the uniform bending moment Wa into a circular arc of radius

R, and as in Art. 163,
S.2 = Z

2
;

substituting for R its value (Art. 155) we get
'

Jfl* JPofl

1EI~ 2EI '

8 WV
whence we find

a 2E1'

The condition, then, that the lateral deviation should be small is

that W should be much less than 2El'/I
2

,
and if this condition be

satisfied the stress will not be much increased beyond that indicated

by the formula given above. The very important cases in which W is

large will be treated presently.

In the case of a pull this restriction on the use of the formula need

not be attended to, the deviation diminishing the stress.
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Case II. Uniformly loaded beam supported at the ends and subject
to compression.

Let the load be W and the thrust H, then

n' Hh Y

For example, let the section be rectangular, then q
=

\> w= iV, and

we find

Let us further suppose the ratio of depth to span one-sixteenth,

then

which shows how greatly the effect of a thrust is increased by a

moderate bending moment.

If the deflection be supposed 1 inch in 100 feet then H will in con-

sequence produce an additional bending action at the centre equal to

Bl/1200, which will be equivalent to an addition to W of H/150. For

safety H ought not to exceed 3JF, and the stress due to the bending
action of the uniform load on the beam will then be increased about 25

per cent. This calculation shows why it is often necessary to support a

beam at points not too far apart by suitable trussing even when support
is not required to give sufficient stiffness. Theoretically a proper
" camber "

given to the beam will counteract the bending action, and,

conversely, a small accidental deflection will increase it.

175. Remarks on the Application of the General Formula. The formula

given in Art. 173 is much used in questions relating to the stability

of chimneys, piers, and other structures in masonry and brickwork.

The stress on horizontal sections of such structures varies uniformly
or nearly so, and the formula then shows where the stress is greatest

and also where it becomes zero, tension usually not being permissible.

It must be borne in mind however that the bending is frequently

unsymmetrical, so that the axis of the bending moment will not coincide

with the neutral axis of the bending stress on the section (Art. 162).

The stability of blockwork and earthwork structures is a large subject

which will not be considered in this treatise. The use of the term
" neutral axis

"
to denote the line of zero stress, a line which varies

in position according to the proportion between the thrust and the

bending, though common, is better avoided.
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176. Straining Actions due to Forces Normal to the Section. The

reasoning of this section shows that when a structure is acted on by
forces some or all of which have components normal to a given section,

the straining actions due to the normal components will in general

depend on the relative yielding of the several parts of the section

(Art. 42). These normal components however can always be reduced

to a single force, acting through any proposed point in the section, and

a couple, and if the point be properly chosen according to the nature

of the structure at the section that single force will be a simple thrust

or pull ; thus in the cases we have mentioned the point is the centre of

gravity of the section. Having done this the couple will be so much

addition to the bending action. An important example of this is the

ase of a vessel floating in the water in which the horizontal longi-

tudinal component of the fluid pressure generally produces bending,
the arm of the bending couple being the distance of the intersection of

the line of action of the resultant with the section considered, from the

neutral axis of the "
equivalent girder."

177. Maximum Crushing Load of a Pillar. When the compressing
force is sufficiently great it produces a strong tendency to bend the

pillar even though there be no lateral force. We have already seen that

the condition that this shall not be the case is that W shall be small

compared with the quantity 2J///
2

,
and we now proceed to inquire the

effect produced when W has a larger value. All these cases come under

the head of what is called Crushing by Bending, and are very common
and important in practice.

As in the case of the deflection of a beam the question is much more

simple when the pillar bends into an arc of a circle, which it will do in

various cases explained in Art. 163. The case which we select is that

in which the sectional area remains constant and the thickness varies.

Such a pillar is of uniform strength when very slightly bent, and when
more bent the weakest point is at the base. When the load is applied

exactly at the centre the elevation of such a pillar is a semi-ellipse with

vertex at the summit; when not exactly at the centre the ellipse is

truncated. As in other cases of uniform strength the section is ideal,

requiring modification at the summit when applied in practice.

Assuming then the form of the bent pillar to be a circular arc we
liave as before

s =

but we have now, since we cannot neglect

M
C.M.
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Hence by substitution we find

.

1EI
'

where / is the moment of inertia at the base, from which we find

a

This result shows that the pillar bends laterally more and more as W
increases, and breaks with some value of W which we will find presently

by substitution in the formula of Art. 172.

First, however, observe that if a = 0, that is, if the line of action of

the load pass through the centre of the pillar at its summit, then

8 = unless the denominator of the fraction be also zero, that is, unless

W=*>

The interpretation of this is. that if W be less than the value just

given the pillar will not bend at all, but if disturbed laterally will

return to the upright position when the disturbing force is removed.

If W have exactly that value then, when put over into any inclined

position the pillar will remain there in a state of neutral equilibrium,

while the smallest increase of W above this limit will cause the pillar

to bend over indefinitely and so break. Thus the foregoing equation

may be regarded as giving the crushing load of the pillar under certain

conditions to be defined more exactly presently.

If the form of the bent pillar be not a circular arc but some other

given curve, the corresponding type of section can be found by use of

the general equation given on page 323. A formula of the same form

is then obtained, but the co-eificient 2 is replaced by some not very

different number depending on the form assumed.

In Fig. 134 let y be the deviation from the vertical BB of any point

in the pillar BAB at a distance x from the summit, then Wy is the

bending moment M at that point, and the equation may be written

Wy=EL*ydx2

The case of most importance is that in which the curve BAB is a

curve of sines given by the equation
7T 'T*

21 being the height of the pillar and 8 the deviation from the vertical at

the centre. Differentiating, substituting and dividing by y,
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an equation which shows that a pillar of uniform transverse section

when bent into a curve of sines will be in equilibrium for this value of

IV and no other
;
a result the interpretation of which is the same as

in the preceding case, from which it only differs in the number 2 being

replaced by ?r
2
/4 or 2 -47. In Fig. 134 both ends of the pillar are

rounded so as to be free to change their direction while remaining in

the same vertical, the whole height L of the pillar is then 21 and

In Fig. 1346 the pillar is fixed in direction at both ends and con-

sequently there are two points of contrary flexure or " virtual joints
n

BB. The position of these joints is easily foreseen, for the four pieces

CB, BA, ABj BC are all acted on by the same compressing force

applied virtually in the same way and are therefore all of equal length.

The whole height L of the pillar must consequently now be taken as 4

instead of 21 and ?r
2
replaced by 4?r2.

Figf.134.
Fig. 1340.

'

In Fig. 134& we have an intermediate case, the summit being
rounded and the base fixed in direction. The two ends are still

supposed in the same vertical, so that the pillar now bends into the

form BABC, having only one point of contrary flexure near the base

while the upper portion BAB is in the condition of a pillar with

rounded ends. To find the length 21 of this upper portion in terms of
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the whole height L of the pillar, we must observe that the point of

contrary flexure is not in the same vertical as the ends but deviates

from it by a small quantity which we will call y . So that the deviation

of any point distant x from the summit is now

s . TT x x
y= m

2'7
+ 2/0

'

2/'

a formula which applies to points below B as well as above.

To determine the position of B we have only to observe that

when x = L both y and dyjdx must be zero
;
hence differentiating and

eliminating y ,

irL L
tan-^TT.^,

a transcendental equation which when solved by trial gives

from which we find that the upper portion BAB of the pillar is about

70 per cent, of the whole height and that, in the formula for W, ?r
2

should be replaced by 2*04 7w2
. For the purposes to which this formula

is applied 2?r2 is sufficiently accurate; Rankine employed in Gordon's

Formula (p. 344) a coefficient obtained by supposing BB instead of BC
vertical, which corresponds to the value 2J?r

2
.

We thus obtain the three formulae known as Euler's Formulae,

for the three cases in question with a uniform section. If the pillar

be bent into a circle as above, then -rr
2 is to be replaced by 8.

178. Manner in which a Pillar crushes. Formula for Lateral Dematic

The value of W here found is the maximum load, consistent with

stability, which a pillar, free to deflect laterally, can sustain under any \

circumstances
; but, in order that it may actually be sustained, the pillar

must be perfectly straight, the material must be perfectly homogeneous,
and the line of action of the load must be exactly in the axis. These

conditions cannot be accurately satisfied, and consequently a lateral

deflection is produced, which increases indefinitely as the load approaches

the theoretical maximum. This may be expressed by supposing that a

is not zero, but some known quantity depending on the degree of

accuracy with which the conditions are satisfied, and which may
called the "

effective
"
deviation

; since, when the pillar is straight am

homogeneous, it will be the actual deviation of the line of action of the

load from the axis. Let W
Q

be the theoretical maximum load as



CH. xiv. ART. 178.] COMPRESSION AND BENDING. 341

calculated from the preceding formulae, and W the actual load, then

w~
thus we see that a load of J, f , f the theoretical maximum produces
a lateral deflection of la, 2a, 3a, increasing the deviation of the load

from the axis of the column to 2a, 3&, 4a. These numbers are only

exact when the pillar is so formed as to bend into the arc of a circle ;

when this is not the case they follow a more complicated law of the

same general character, depending on the type of pillar and the nature

of the deviation. For our purpose the simple case is sufficient. It is

convenient to express the load in pounds per square inch of the area

(A) of the pillar at its base, then we may write with the notation

of Art. 155 w ,
2W

for the case where the pillar is rounded at both ends, the number ?r
2

being replaced by 2?r2 or 4;r2 in the two other cases of the last article.

Similarly writing p = W\A for the actual load on the pillar, we get by
substitution

o = a .
^

,
or a + 8 = a .

-*
Po-P Po-P

The deviation is accompanied by an increase in the maximum stress (/)

on the transverse section, which is given by the formula

/=?K1) <>*>

'

:

from which we get, replacing H by W and M by W(a + 8),

a result which shows that / increases indefinitely as p approaches pot

so that the pillar must break before the theoretical maximum is

reached, however small the original deviation is. The greatest value

of / must be the elastic strength, for as soon as this is past an

additional lateral deviation at the most compressed part will occur,

sooner or later accompanied by rupture.

The formula may be written in the more convenient form

(/-iYi-lp-1\p A pj nh

in which it is worth while to observe that the right-hand side is unity
for the deviation necessary to produce double stress when the pillar

is BO short that no sensible augmentation of the deviation is produced

by lateral bending. In materials like cast iron which have a low
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tenacity, very long pillars give way by tension on the convex side :

the formula then becomes

;j

where /' is the tensile stress at the elastic limit. The two formulae

give the same result if

For loads greater than this the first formula applies, and for small

loads the second. In pillars flat, but not fixed at the ends, without

capitals /' may be zero.

179. Actual Crushing Load. We thus see that if a pillar were

absolutely straight and homogeneous it would crush, by direct com-

pression if pQ
were greater than /, and by lateral bending if pQ

were

less than /, the crushing load being the least of these two quantities ;

but that the smallest deviation will be augmented by lateral bending,

so that the actual crushing load will be less than the least of these

quantities. Experience confirms this conclusion. When a long pillar

is loaded we do not find that it remains straight till a certain definite

load p is reached, and then suddenly bends laterally. We find, on

the contrary, that a perceptible lateral deflection is produced by a

small load, which gradually increases as the load is increased, till

rupture takes place, showing, as we might anticipate, that some small

deviation existed originally. And as that deviation evidently depends

upon accidental circumstances it is impossible, from imperfection of

data, to find the actual crushing load of a pillar for those proportions

of height to thickness, for which its effect is greatly augmented by a

small deviation. The augmentation is on the whole greatest when

that is, when .

This gives, by taking the values of E and / from Table II.
, Chaptei

XVIIL,

Wrought Iron, L = SGx/A . h= '28h (Circular Section).

Mild Steel, L = 29x/A .h = 23h

Hard Steel, L=23j^n. h=l8h

Cast Iron, L = 20VA .h=l6h

In the case of cast iron there is a difficulty in determining the value

of/, but if we suppose that the elasticity of the material is not greatly
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impaired at half the ultimate crushing load, we get the value given

The case of timber is exceptional, and will be referred to further on.

For pillars fixed or half-fixed at the ends the number ir'
2 is to be

replaced by 4?r2 or 2?r2 as before.

Let us assume this condition satisfied, and let us imagine the pillar

loaded with three-fourths the theoretical maximum crushing load,

then by substitution we find, qa/nh = ., or since n/p = for a

circular section,

from which it will be seen how small a deviation will cause the pillar

to crush under three-fourths the theoretical maximum load, when the

proportion of height to thickness is that just given. With a pillar of

double this height the magnitude of the original deviation (a), always

supposing it small, has little influence, and with a pillar of one-third

this height lateral flexure has little influence, on the resistance to

crushing.

On the whole, then, it would seem that the most rational way of

designing pillars would be to calculate the theoretical maximum load,

and then adopt a factor of safety depending on the value of the devia-

tion found from the above formula ; it is obvious that in some cases a

much larger deviation may be considered likely than in others. For

example the probable deviation from straightness may easily be

imagined to be proportional to the length of the pillar. The Gordon-

Rankine formula given in the next article may be regarded as a

formula for the average factor of safety necessary on account of the

exaggerated influence of errors of workmanship on the strength of

pillars in cases where the deviation is not greatly influenced by the

length. For the case of thin tubes see Chapter XVIII.

180. Gordon's Formula. A considerable part of our experimental

knowledge respecting the strength of pillars is due to Hodgkinson.*
His results show that in cast-iron pillars with flat ends, the length
of which exceeds 100 diameters, the theoretical maximum is closely

approached, while with shorter lengths the strength falls off consider-

ably, as might be expected. In other respects the theoretical laws are

approximately fulfilled, the principal difference being that columns with

one or both ends rounded are somewhat stronger relatively to columns

with flat ends than theory would indicate, an effect which may be partly

due to imperfect fixing of the ends. Various empirical formulae have

* Phil. Trans., 1840, Part II. An abridgment is given in Hodgkinson's work on

Cast Iron. Weale, 1846.
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been given to express the results of experiment on the crushing of

pillars. That which has been most used was originally devised by

Navier, but is commonly known as Gordon's. It is so constructed as

to agree in form with the theoretical formulae in the extreme cases in

which those formulae give correct results. As employed by Rankine,

only replacing r2
,
the square of the radius of gyration, by nh in the

notation of this work the formula is

W f
A

which becomes, when l/h is small,

and when l/h is large,

while for intermediate values it gives smaller results.

If we compare this last with Euler's formula for a column with flat

ends, we get

and this may be called the " theoretical
"
value of the constant c. The

values actually used for c are somewhat different, being deduced from

such experiments as have been made, and the results for different forms

of section are not always consistent. Rankine gives in his Useful Rules

and Tables,

VALUE OF CONSTANTS.

Value of /. Value of c.

Wrought Iron, . . . . 36,000 36,000

Cast Iron, ..... 80,000 6,400

Dry Timber, .... 7,200 3,000

These values refer to struts fixed at the ends and to the crushing
load. If one end be rounded, the value of c must be divided by 2, and

if both ends are rounded, by 4.

Rankine's formula has been very extensively tested for the case of

wrought-iron columns of large size of various transverse sections, con-

structed of rivetted plates, and has been found to give good results.*

In the case of timber Hodgkinson found, from a limited number of

experiments on struts of oak and red pine of small dimensions, a

formula which agrees with the formula for the theoretical maximum
* Minutes of Proceedings of the Institution of Civil Engineers for May, 1878,

vol. liv., page 200.
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crushing load when the value of E in that formula is taken as about

900,000 Ibs. per square inch. It is possible that the low lateral tenacity

of this material increases its flexibility under a heavy crushing load.

The values just given of the constants for timber in Gordon's formula

appear rather low. Recent good authorities give 9400 for / and

6700 for c.

In the case of steel the value of / may be expected to be increased

and the value of c diminished in the ratio of the direct resistance to>

crushing of steel and wrought iron respectively, conclusions on the

whole borne out by experience.*

Calculations made by Gordon's formula may be tested by calculating

the deviation a by the formula on p. 341
;
the magnitude of this will

be to some extent a measure of the safety of the proposed load. In

all cases of struts of large size subject to a heavy load, special care

is necessary in considering all the circumstances if a deflection be-

occasioned by the unsupported weight of the strut itself, or if, as is

often the case, it be constructed of rivetted plates, a large margin of

safety is desirable. So also in pieces forming part of a machine in

which a bending action may be produced by inertia and friction, or

which are subject to shocks, the simple thrust alone is often a very

imperfect measure of the stress to which they are subject.

Returning to the case of a long slender column we observe that the

resistance to crushing depends solely on the stiffness and not on the

strength being proportional to the modulus of elasticity. Hence a

long column is stronger when made of wrought iron than when made

of cast iron, although with short columns the reverse is true. It

appears from Gordon's formula that for a ratio of length to diameter

of about 26J the two materials are equally strong. In very long
columns steel is not stronger than iron, for its modulus of elasticity is

not very different
;
in shorter lengths, however, the greater resistance

to direct crushing of steel gives it an advantage.

180A. Partial Fixture of Ends. The condition of the ends of a pillar

has great influence on its resistance to crushing; thus by EulerV

formula the crushing load of a pillar fixed at the ends is four times

that of a pillar with both ends rounded. The ends of a pillar in

practical cases can hardly ever be regarded as either rounded or fixed

in a mathematical sense, and the influence which different methods of

fixing may have is a matter of much importance.

(1) The most effectual method of obtaining, for experimental pur-

* A Practical Treatise on Bridge Construction, by T. C. FIDLER, page 180. Griffin,

1887.
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poses, a pillar, the ends of which are freely movable in direction

while remaining exactly in the same vertical, is to make its ends

wedge-shaped, or, still better, conical. Experiments on pillars with

conical ends were carried out in 1887 by the late Professor Bausch-

inger, a well-known authority on strength of materials. The test-

pieces were of rolled iron of various sections, among which may
be especially mentioned some pieces of I section of sectional areas

ranging from 10| to 63J square centimetres and of lengths from 1 to

4 metres. The results show irregularities arising partly from causes

already mentioned and probably partly from the difficulty of obtaining

the moments of inertia with sufficient accuracy, but on the whole show

a, crushing load of more than 85 per cent, of that given by Euler's

formula for a pillar with rounded ends. In 1887-88 similar experi-

ments on pillars with conical ends were made by Herr Tetmajer, the

test-pieces being iron bars of circular section about 2 inches diameter

and also pieces of wood. On comparison with Euler's formula similar

results were obtained.

These experiments point to the conclusion that the deviation a in-

stead of increasing slowly with the length, as it would do (Ex. 9, p. 349)

if the Rankine formula were satisfied, increases much more rapidly,

so that the "constant" c in that formula diminishes rapidly with the

length when the ends of the pillar are rounded.

(2) At the same time Bauschinger also made experiments on pillars

with flat ends simply butting against the compressing pieces without

any attachment. The test-pieces were similar to those in the preceding

case, but the results of the experiments now showed a comparatively

constant value of c instead of the rapid diminution previously found.

In this case also, however, c is not constant, but diminishes with the

length.

The same diminution of the constant c as the length increases has

been found in many experiments on columns of larger size, as shown

by the formulae proposed by Mr. Cooper.*

(3) The ends of a pillar are very frequently pin-jointed, the load

being then transmitted by the pressure of the pin upon its circular-

bearing surface. The crushing load now depends on the diameter of

the pin, because the total diviation cannot exceed the radius of

the friction circle (p. 240) of the pins ;
as soon as this is over-

passed, the pillar instantly crushes in consequence of the release of

the ends.

Very instructive experiments were carried out at Watertown

Arsenal, U.S.A., in 1883, by means of the well-known testing machine

*
Engineering Construction, by W. H. Warren, p. 196. Longmans, 1894.
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there stationed.* The test-pieces were bars of iron about 3 inches

square, of lengths ranging from 10 to 60 diameters, some with pin

ends, the diameters of the pins ranging from | inch to 2| inches, and

some with flat ends. The results of these experiments, tabulated on

page 118 of the report cited, show that pins 2J inches diameter are

nearly equivalent to flat ends, but that inch pins give a much

reduced crushing load. The Rankine formula appears to agree fairly

well with these experiments, small pin ends being treated as rounded

and large ones as fixed.

(4) The facts described in this article show clearly the empirical

character of the Rankine formula
;
the approximate truth of which,

under the complicated conditions in which most experiments have

been made, being due to the effects of increasing initial deviation as

the length of the column increases, being partially compensated by
the increasing influence of the partial fixture of the ends. How
far the conditions of the experiment resemble the conditions of

practice must always be carefully considered in each individual

case.

181. Collapse of Flues. There are other cases of crushing by bend-

ing, some of which will be considered in a later chapter ;
but it will

be convenient to mention the
Fi 13g ,,-''

important practical problem
of the yielding of a thin tube

under external fluid pressure.

The strength of a tube under

external fluid pressure is as

different from that of a tube \

under internal pressure as

the strength of a bar under

compression is different to its P^ Fig.136.

strength under tension. ^N
A tube perfectly uniform in thickness made of perfectly homogeneous

hard material, and subject to perfectly uniform normal pressure ex-

ternally would theoretically maintain its form until it yielded by the

direct crushing of the material. But when the pressure exceeds a

certain limit the tube is in a state of unstable equilibrium, and any
deviation from perfect accuracy in the above conditions will cause

the tube to yield by collapsing, the collapsing being accompanied by

bulging. If the tube is very long it will collapse in the manner shown

in Fig. 135, the circumference dividing itself up into four arcs, two

*
Report of Tests on Structural Material made at the Watertown Arsenal. 1883.
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of which are concave outwards and the other two convex. A want
of exactness in the construction will in practice generally prevent the

collapsing from being symmetrical. Each portion of tube between

the points A is under the action of forces applied at the ends towards

one another, which crush it by lateral bending just as a long column

is crushed. Just before collapsing, each segment AA (Fig. 136), of

length s say, will be under the action of a thrust P suppose, applied
at the ends tangentially. Equilibrium is maintained by fluid pressure
of intensity p on the convex side. When the pressure exceeds a

certain limit the equilibrium is unstable, some accidental circumstance

determining the position of the point A of contrary flexure, and the

consequent length 5 of any arc.

As shown on page 302 the thrust per inch length of the tube may be

taken as approximately proportional to pel. Thus if t = thickness of

tube, we may expect that the collapsing pressure would be given by a

formula like that which expresses the crushing load of a long slender

rod of rectangular section, namely, pd = k'fi/s
2 where k' is an elastic

co-efficient. All other things being equal, the diameter alone varying,

the length s of an arc AA would be proportional to the diameter of the

tube d, and, under those circumstances, the collapsing pressure of a thin

tube (see Appendix), would probably vary with t
z
/'d

s
. But the length

of the tube, as well as the diameter, influences the value of s. In all

practical cases, as in all those on which experiments were made, the

ends of the tube are rigidly constructed, and very much support the tube

in the neighbourhood from collapsing ;
thus the proximity of the ends

has an important effect in determining the length of the arcs into

which the circumference divides itself. If the length of the tube is

decreased a limit will be reached below which the tube
lff ' 137

on collapsing divides itself up into six arcs, three concave

and three convex, as shown in Fig. 137. Then the

length of each arc will bear a smaller proportion to the

diameter than in the long tube. A still shorter tube

will, when it collapses, divide it into eight arcs, and so

on. Thus the length s is in some way dependent on the length of the

tube. The correctness of this reasoning is borne out by experiments

made by Fairbairn and others. In Fairbairn's experiments the tubes

were made of rivetted wrought-iron plates. The ends were made rigid

by a strong stay placed within the tube, keeping the ends apart. The

tube thus constructed was placed in a larger cylinder of wrought iron

and external pressure was applied by forcing water in. The pressure

being gradually increased the tube will at last suddenly collapse, making
a noise which indicates the instant of the occurrence. The results of
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the experiments showed that the collapsing pressure may be approxi-

mately expressed by the formula

the dimensions being all in inches, the co-efficient k = 9,672,000. This

formula must not be used for extreme cases nor for tubes of thickness

less than f inch.

Since a short tube is so much stronger than a long one, we have an

explanation of the advantage of rivetting a T-iron ring around a boiler-

furnace tube, which amounts to a virtual shortening of the length of the

tube. Other formulae have been proposed, some of which represent the

results of experiment more closely, but the materials at present avail-

able do not admit of the construction of a satisfactory formula. Some

further remarks on the subject will be found in the Appendix.

EXAMPLES.

1. Find the thickness of metal of a cast-iron column fixed at the ends, 1 foot mean

diameter, 20 feet high, to carry 100 tons. Factor of safety, 8. Ans. Thickness I".

2. Find the crushing load of a wrought-iron pillar 3" diameter, 10 feet high, rounded

at the ends. .4ns. Crushing load=66, 218 Ibs. =30 tons nearly.

3. If in last question the pillar were of rectangular section of breadth double the

thickness, what sectional area would be required for equal strength? Ans. Sectional

area=9 '4 square inches instead of 7 square inches as before.

4. Assuming the crushing resistance of steel to be 1^ times that of wrought iron, and

its modules of elasticity 10 per cent, greater, find the probable values of /and c in the

Gordon-Rankin* formula. Ans. /=54,000, c=26,400.

5. Find the crushing load in tons of a timber pile 12 inches square, 30 feet long, fixed

at one end, rounded at the other. Ans. 56J tons.

6. Find the collapsing pressure, according to Fairburn's formula, of a cylindrical

boiler flue T
7
^" thick, 48" diameter, and 30 feet long. Ans. Collapsing pressure= 107 Ibs.

7. In Ex. 1 calculate the deviation of the line of action of the load from the axis to

produce a maximum stress of 10,000 Ibs. per square inch. Ans. 1'8".

8. In Ex. 2 calculate the deviation to produce a maximum stress of 9,000 Ibs. per

square inch with a load of 11,000 Ibs. or of 22,000 Ibs. Ans. 1'5 or '5.

9. Assuming the crushing load of a pillar to be given by the Gordon-Rankine formula

with the theoretical values of the constants, show that the deviation is given by the

formula



CHAPTER XV.

SHEARING AND TORSION OF ELASTIC MATERIAL.

SECTION I. ELEMENTARY PRINCIPLES.

182. Distinction between Tangential and Normal Stress, Equality of

Tangential Stress on Planes at Pdght Angles. In the cases we have

hitherto considered of simple tension, compression, and bending, the

stress on the section under consideration has been at all points norma
to the section. But we may take our section inclined at any angle to

the stress, and the mutual action is then not normal to the section.

The particles on each side of the section partly act on one another in

the direction of the section itself, and so constitute a stress analogous

Fig.138. to friction, resisting the sliding of one portion

relatively to the other. Such a stress is called

tangential or shearing stress, being the stress called

into action by shearing.

Let us return to the case of the stretched bar

carrying a load P (Fig. 138). On a transverse

section of the bar only a normal stress is produced.
Now suppose we take an oblique section, whose

|p normal makes an angle 6 with the axis of the bar,

and let us resolve the force P into two com-

ponents, one perpendicular and the other parallel to the section. The
normal component P cos tends to produce a direct separation at the

section, producing a tensile stress similar in character to that on a

transverse section, but of less intensity.

If A = area of transverse section of bar, then A sec = area of oblique

section
;
the intensity of the normal stress

^ P. cos 6

Pcos(9 P
pn = . -X = T COS-P = p cos^
1 A sec 6 A where p = ',A
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the other component P sin 6 produces a tangential or shearing stress of

intensity
P sin B

,
= --,

= p sm cos u.*' A sec

Similarly if the bar is subjected to a compressive instead of a tensile

load.

Many materials which offer great resistance to direct compression

yield by sliding across an oblique plane. Now pt
is a maximum when

= 45, this is therefore approximately the angle of separation. The

same maximum stress, the value of which is p/2, occurs on another

plane sloping the other way at an angle of 45. We sometimes find

fracture to occur across two oblique planes ;
sometimes across one only.

If in p t =p sin 6 cos 6 we change 6 into 90 + 6, pt
has the same value

;

so that the intensity of the tangential stresses on two planes at

right angles to one another is the same. This is true generally in all

cases of stress, as will be seen presently.

183. Tangential Stress equivalent to a Pair of Equal and Opposite Normal

Stresses. Distorting Stress. In the example we have just considered we
have both shearing and normal stress

;
but there are cases in which

there is only a shearing stress. Let ABCD
f p Fig.139

(Fig. 139) be a rectangular plate of thickness

t. Over the surfaces BO and A D suppose a

tangential stress to be applied of intensity pt .

Calling b and a the length of the sides of the

plate, the total amount ofthe tangential stress

on each side is

P=pt
.bt.

To prevent the turning of the plate, suppose
the forces P balanced by the application of an - ^ - -*

i
*

uniform stress over the surfaces BA and DC P
*

|
p

of intensity p' t
. The amount of the force on each of these sides

Q=p't
.a.t.

Since equilibrium is produced, the moment of the couple P must be

equal to the moment of the couple Q.

.'. p t
.bt . a=p't . at. b,

or pt =p' t ;

that is, the intensity of the stress is the same on BA as on AD.

Shearing therefore cannot exist along one plane only. It must b&

accompanied by a shearing stress of equal intensity along a plane at

right angles. Such a pair of stresses unaccompanied by normal stress
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constitute a Simple Distorting Stress, so called because it distorts the

elements of the body.

Let us now assume, for simplicity, the plate to be square (Fig. 140).

The effect of the forces is to produce a change of form, which, in

Fig. 140 perfectly elastic bodies, is exactly pro-

portioned to the shearing force which

produces it. The square ABCD becomes

a rhombus AB'C'D, the angle of distortion

<f> being proportional to the stress pt
.

We may write

where the co-efficient C is a kind of
* Modulus of Elasticity, but of a different

nature from that previously employed.
'The volume of the elastic body A is in general practically unaltered.

Under the action of the forces it has simply undergone a change of

form or figure, and the co-efficient C which connects the change of

form with the stress producing it, is a co-efficient of elasticity of figure.

It is sometimes called the modulus of transverse elasticity, but preferably

the co-efficient of rigidity.

The ordinary (Young's) modulus of elasticity E connects the stress

and strain in a bar when it undergoes changes both of volume and

figure. The co-efficient of rigidity C for metallic bodies is generally

less than |^, and for wrought-iron bars may be taken as 10 to 10i

millions, or in torsion somewhat greater.

Let us now take a section of the square plate (Fig. 140) along one

of the diagonals and consider the forces which act on the two sides

of the triangular upper portion. Resolve these forces parallel and

perpendicular to the diagonal. The components of the two P's along

the diagonal balance one another, and there will be no tendency for

this triangular portion to slide relatively to the other
;
that is to say,

there is no shearing stress on the diagonal section. But the other

-components, perpendicular to the diagonal, cause the upper triangular

portion to press on the lower with a force

If we divide this force by the area of the diagonal section over which

it is distributed, we obtain the intensity of this normal stress,

P =^^=pt

On the diagonal section AC which we have been considering, this

stress is compressive, but if we take the section along BD, the other
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diagonal, we find by the same reasoning a stress of the same magni-

tude, but tensile.

Thus it appears that a shearing stress on any plane necessarily

involves tensile and compressive stresses of equal in-

tensity on planes at 45 to this plane, so that a simple

distorting stress, which was defined above as a pair

of shearing stresses on planes at right angles, may P
-

also be defined as a pair of normal stresses of equal

intensity and of opposite sign, as shown in Fig. 141.

SECTION II. TORSION OF SHAFTS. SPRINGS.

184. Torsion of a Tube. Round Shafts. We now proceed with

various examples of this kind of stress, commencing with the case of

torsion. Torsion was mentioned as one of the five simple straining

actions to which the bar as a whole may be exposed. It is produced

by a pair of equal couples applied at the ends of the bar, the axis of

the couples being the axis of the bar.

When we consider the nature of the elastic forces called into

action amongst the particles of the bar, Torsion reduces to a case of

Shearing. To understand this, we will begin with a simple case.

Imagine a thin tube (Fig. 142) with one end fixed, and the other

acted on by an uniform tangential stress of intensity q. Let t be the

thickness and d the mean diameter of the tube, then

Sectional area of tube = irdt approximately ;

Total shearing force =
q-n-dt ;

and since the force on each unit of area of the section acts approxi-

mately at the same distance from the centre of the tube, the total

twisting moment = qirdt x \d = \qndH. This twisting moment is

balanced by the resistance to turning offered at the fixed end. At any
transverse section KK of the tube there will be produced an uniform

stress of intensity q.

Let us now consider a small square traced on the surface of the tube,

with two sides on two transverse sections. If we take the square small

enough we may treat it as a plane square. To balance the shearing
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stress q, which acts on the sides of the square lying in the transverse

planes, a shearing stress of equal intensity is, as explained above, called

into action on the other two sides of the square, in the direction of the

length of the tube, so that, if the tube were cut by longitudinal slits, the

power of resistance to torsion would be as effectually destroyed as if it

were cut by transverse slits. But if we made spiral slits at an angle of

45, as shown at SS in Fig. 142
; supposing the slits indefinitely fine,.

and no material removed, the strength of the tube to resist torsion in

the direction shown would not be impaired. The material of the tube

would then be divided into spirally-bent ribands, which would be in

tension along their length, and in compression laterally, the ribands

being caused to press against one another. Along a second set of spirals-

such as S'S'j longitudinal compression and lateral tension exist
;
the

lateral forces are indicated in both cases by arrows in the figure.

So much for the state of stress induced in the tube by the torsion.

Next as to the change of form which accompanies the stress. The

square will be distorted into a rhombus. A straight line AD, drawn on

the surface parallel to the axis of the tube passing through the centre

of the square, will be twisted into a spiral AD', the angle of the spiral

being the angle of distortion of the square. Let 6 be that angle, then

q = CO, where C is the co-efficient of rigidity.

The effect of this is that, relatively to the end A, the end D is twisted

round through an angle DOD' = i suppose, called the angle of torsion.

arc DD'
In circular measure i = (r

= radius of tube). Also arc DD' = Wy

8 being a small angle. Therefore i = lO/r. Since also =
q/C, we have

the angle of torsion i = ql/Cr, in terms of the stress. From this we may
express the angle of torsion in terms of the twisting moment producing
the torsion.

We now pass on to the consideration of the torsion of a solid or

hollow cylindrical shaft. First, let us imagine the shaft to be made up
of a number of concentric tubes exactly fitting one another, and let us

further imagine that at the end of each tube a suitable twisting moment

is applied, so that each tube is twisted round through exactly the same

angle. This effect will be produced by applying over the section at

the end of each elementary tube a tangential stress, which is propor-

tional to the radius of the tube. If we make q/r
= qjr^ where ql

and i\

refer to the outside tube, then the angle of torsion will be the same for

all the tubes, and they will not tend to turn relatively to one another,

but altogether. We may then suppose them united together again in

a solid mass. If the stress applied be proportional to the distance
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from the centre, the shaft will twist just as if it were a set of tubes,

each being subjected to the same stress and strain as if it were an

independent tube.

Now in the actual case of the twisting of a solid shaft, all portions

from the outside inwards to the centre must turn through the same

angle, and hence the shearing stress at any point of the section of the

shaft must be proportional to its distance from the centre. This is

true except very near the point of application of the twisting moment.

Suppose, for example, the twisting moment is applied by means of a

wheel keyed on the shaft, then in the immediate neighbourhood of the

key-way, the stress will not be as stated, but at a short distance along
the shaft the stress distributes itself in the manner described. This is

another instance of the general principle already employed in the case

of stretching and bending.
The total resistance to torsion of the solid shaft is the sum of the

twisting moments of all the concentric tubes into which it may be

imagined to be divided. Thus

in which = r.&.

that is, the product of the sectional area of each tube multiplied by
the distance squared of the area from the axis of the shaft must be

taken and summed. The result is called the Polar Moment of Inertia

and will be denoted by 7, so that

T-&L
r

i

The same formula applies to hollow shafts, the summation now extend-

ing from the internal radius ?'
2
to the external radius r^ and the value

of / is then

being double the corresponding value in the case of bending.

Since i = ql/Cr we can eliminate q and thus obtain

r-e/.l
i

a formula which gives the twisting moment in terms of the torsion per
unit of length.

Dropping the suffixes, taking r to be the outside radius, we can write

the moment of resistance to torsion of a solid shaft,

T=t*ff*, or TVr/^;
where / is the co-efficient of strength of the material to resist shearing.
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Thus the strength under torsion is proportional to the cube of the

diameter. The formula shows that, assuming / to be the same in each

case, the strength of a shaft to resist a twisting moment is double its

strength to resist a bending moment.

Having determined the diameter of shaft required to take a given

twisting moment we are now able to obtain a solution of the practical

question, What diameter of shaft is required to transmit a given horse-

power at a given number of revolutions per minute 1

Let T
Q
= mean twisting moment transmitted in inch-tons, then

T x 2irN= work transmitted per minute in inch-tons, where N=
revolutions per minute of shaft.

Let H.P. denote the horse-power to be transmitted, then

33000 x 12 TTT x2irN=
224Q

H.P.

33000 x 1 2 H.P.
'* ~ ~

Now the shaft must be strong enough to take not only the mean but

the maximum twisting moment.

We may express the maximum in terms of the mean by writing

T=KT
Q ,

where K is a co-efficient whose value is different in different

cases and T= maximum twisting moment, but

TTftfd*
or ds =

16x33000x12
27r2 x 2240

3 rj7
and d = 5-233^ /*

The value of/ depends in some measure on the fluctuation to which

the twisting moment is subject, but under ordinary circumstances

should not exceed 3J tons per square inch (Art. 221) for wrought

iron, 4J tons for steel, and (see Art. 229) 1J tons for cast iron. The

value of K, the ratio of maximum to mean twisting moment, depem
on the circumstances discussed in Chapter X. We may assume it

equal to 1 J when the number of cranks is 2, allowing a small additior

for the bending due to the weight of the shaft. On substitution w<

obtain for wrought iron

This formula agrees closely with the best practice in screw-propelh

shafting.

When the amount of bending to which the shaft is subject is con
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siderable, as in the case of crank shafts, the diameter determined by
this formula is too small. It will be seen hereafter that when all the

forces acting on the shaft are known, a value of K can be calculated

which gives the effect of bending. If we assume K= 2, the co-efficient 4

in the above formula will be replaced by 4*5, and this agrees closely

with practice in the crank shafts of marine screw engines when made

of iron, the number of cranks being 2.

In the formula for the angle of torsion,

i- ql -

-Or'
if we replace q by its working value for wrought iron (7200 Ibs.),

C by 5000 tons, and i by the circular measure of 1, we find

/=13-6d,

showing that under the working stress the shaft twists through 1

for each 13\ diameters in its length. For many purposes this is

much too small, and the dimensions of a shaft then depend on

stiffness, not on strength, as in the case of beams (Art. 168). The

itest angle of torsion permissible depends in great measure on

the irregularity of the resistance, and no general rule can therefore

be laid down for it. If the angle of torsion be given and the length,

the diameter will depend on the fourth root of the twisting moment
as shown by the formula already given which connects the two. In

this, as in other cases where dimensions depend on stiffness, not on

strength, steel has no advantage over iron, because the co-efficients

of elasticity of the two materials are the same or nearly so.

A hollow shaft is both stronger and stiffer than a solid shaft of

the same length and weight, the central portion of a solid shaft

not being twisted sufficiently to develop its full strength.

The distance apart of the bearings of a shaft depends on the stiff-

ness necessary to resist the bending due to the weight of the shaft

itself, and of any pulleys or wheels upon it, together with the ten-

sion of belts and other similar forces. If the total load be equivalent

to m times the weight of the shaft itself uniformly distributed, the

length between bearings for a wrought-iron or steel shaft d inches

diameter will be given approximately for a stiffness of ^-^^ by
Ex. 7, p. 333.

When, as in screw propeller shafting, the bearings are liable to

get out of line, too great stiffness in a shaft will produce great

straining actions upon it.

185. Elliptic and other Sections. In the cases hitherto considered the

stress called into play at each point of the transverse section is pro-
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portional to the distance of the point from the centre, and its direction

is tangential to a circle drawn through the point, but in non-circular

sections this is no longer the case. In particular the direction of the

stress at points near the circumference is necessarily tangential to the

contour of the section, for by the principle of Art. 183 (p. 351), in

the absence of shearing stress on the outer surface, there can be none

on the transverse section in a direction perpendicular to the contour.

Commencing as before with the case of a tube the thickness (t] of

which is small compared with the radius of curvature, but which now

may vary according to any law; the shear (q) at any point is along the

circumference. Taking As a small element of the circumference, t . As

will be the area of the element, and qt . As will be the whole shear upon

it, while qt will be the shear (S) per unit of length of the circumference.

Next take two cross sections of the tube distant A# apart and con-

sider the rectangular portion of thickness t the sides of which are As

and Aa. Reasoning in the same way as in Art. 183 already cited,

the shear S on the face As of the cross section is necessarily accom-

panied by an equal shear (S') on the longitudinal face Arc. Now if the

cross sections are free from constraint caused by the neighbourhood of

rigid ends, the state of stress of all cross sections may be taken as

the same, and the normal stress (if any) on the two faces forming part

of the two cross sections cannot be different : from which it follows

that S' is constant, since any change in S' can only be balanced by a

corresponding change in the normal stress on the faces at right angles

to it Hence S, that is qt, is also constant, and we infer that the

intensity of the shear at any point varies inversely as the thickness

of the tube at that point. Now take a point inside the tube in the

plane of the section and join to the extremities P, P' of the element

As at the middle of the thickness, thus forming a triangle OPP on

the base A.s. Then if p be the perpendicular dropped from on the

tangent to the circumference drawn through PP'

j?As=2xArea OPP',

and if A be the whole area of the cross section of the tube measured to

the middle of the thickness

But S . 2/<As is the moment of stress about and is therefore equal to

the twisting moment (T) on the tube, from which it follows that

a formula which, subject to the limitation stated, is true for a tube

of any shape, the thickness of which varies continuously in any way.
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\Vo now suppose the internal and external peripheries to be similar

curves with regard to the centre 0, that is, if the radius of the inner

periphery drawn in a given direction be r that of the outer periphery is

(l+e)r where e is constant, er being the thickness measured along

the radius vector, then

= - or t = ep,
er r

and hence it appears that in such a tube the shear q varies inversely as

the perpendicular dropped from on the tangent.

The greatest value of q then will be when p is least, in which case

evidently p = r so that t = er. Imagine now a nest of such tubes fitting

one inside the other, it is easily proved (see Art. 2 1 6A) that if each tube

be twisted through the same angle the shear at corresponding points

must be proportional to the radius, that is, q/r is the same for all.

Hence if T be now the twisting moment for all the tubes taken

together, q/r will be constant in the equations

where r is the least radius and q the greatest shear for any tube.

Suppose qv r
lt A-^ corresponding quantities for the outermost tube, and

write Ar for er, then

r
i
2

Hence, by integration we obtain for a complete set of tubes

This formula determines the moment of torsion in any case in which

the solid shaft can be regarded as split up into a number of similar

tubes. Taking for example a circular section it will be seen that the

formula is equivalent to that already found on page 355, and it may be

modified in the same way for a hollow shaft. But the point must

be taken as the centre of the circle, for otherwise the connection of the

tubes together would alter the distribution of stress. So in any case

the centre of similarity of the ideal tubes must be the geometrical
centre of the section, and the section must be supposed symmetrical
about a centre. For elliptical sections the formula is exact, and it may
be taken as a probable approximation whenever the curvature of the

profile is continuous.

Whenever the necessary conditions for its truth are satisfied, the

investigation shows that the stress at any point near the surface of a

twisted shaft varies invers* ly as the perpendicular distance of the centre

from the tangent at the point, and that the strength is proportional
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to the product of the sectional area and the least diameter. Thus
for a given weight of metal the circle is the strongest form, and

for other forms the strength is diminished in proportion to the least

diameter. If c be that diameter the moment of resistance will be

When the curvature of the profile of the section is not continuous

but contains an angle, as for example the corner of a square, the

stress at the corner is necessarily zero, for by the principle already
several times used, the stress resolved perpendicular to each of the

two edges meeting in the corner is zero. Hence the stress at various-

points along a radius within the thickness of a tube, the mean value

of which has already been found is not sensibly constant, but varies

greatly. If for example a nest of rectangular tubes be considered,

the stress at the outer corner of each tube will be zero, while that of

the inner corner of the next tube in contact with it will be large : the

state of stress in the solid shaft is therefore widely different from that

of the tubes. Our knowledge of the distribution of stress in these

and other cases is entirely derived from the laborious calculations of

the late M. St. Venant, an account of which is given by Professor

Pearson in a treatise, some notice of which will be found in the

Appendix. It will be sufficient here to quote some of the simpler
and more important results.*

(1) In a bar of rectangular section, area A, sides b and c, the

point of maximum stress is at the centre of the longer side b, and

the moment of resistance is

f
W A*,JP fAc

J '

3 + 1-8/2
J '

3 + 1-8)8 3 + 1-8/3'

where j3 is the ratio of the sides c/b. In a square section of side

b this becomes '208 fb
z

, being little more than 6 per cent, greater

than the value previously given for a circular section of the same

diameter. On comparison it will be found that the strength of a

square section is only 73-8 per cent, of that of a circular section

of the same area, the co-efficient being the same in the two cases.

When /3 is very small the moment of resistance is *333 fbc-. The

formula is empirical, being devised by St. Venant to represent

accurately in the two extremes cases just mentioned, and with fair

approximation in intermediate cases, results of calculation from infinite

series. When /3 is not less than '3 a somewhat better approximation

is obtained by writing 3-2 + 1-6/3 in the denominator. When {$ is

about -5 the result is the same as for a nest of tubes.

*
History of Elasticity, vol. ii., Part I., pp. 19-39 ; also p. 195.
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(2) Of less importance in practice, but interesting from its simplicity,

is the formula for an elliptic section which is that already given for a

nest of tubes.

(3) The angle of torsion i for a bar of length I under a twisting

moment T is given by the formula

T_ 1 A* Ci

~4^'T'T
where A is the area and /the polar moment of inertia of the section.

For elliptic sections this formula is exact (see Art. 216A), agreeing with

that given in the preceding article when the ellipse becomes a circle.

For rectangles and sectors of a circle it is shown by St. Venant to be a

tolerable approximation, and it may be taken as such for any section,

the contour of which does not contain re-entering angles. The divisor

4?r2 should, however, be replaced by a slightly different number

according to the type of section, the average being taken by St. Venant

as 40. The exact value for a square section on comparison with St.

Venant's table of results appears to be 42 '6 6 and for rectangles

(/3>'3) may be taken as 42.

Since the elastic energy U is necessarily equal to \Ti the foregoing
formula gives

TT
C A *

.

2 _2ir
2// T2

=
8^-/7- ~-^^'~c'

in which as before 4?r2 should be replaced by 42 in rectangular sections.

(4) The maximum stress qlt
due to a twisting couple T, may be found

from the value of the moment of resistance already given in (1), (2),

whence by substitution for T the elastic energy, or its limiting value

the resilience, per unit of volume may be found.

It is, however, also important to know the stress q2 at a point 2

situated at the middle of the shorter side of a rectangular section.

for when the section is exposed to bending as well as torsion the

combined effect of the two is frequently greatest at this point. On
examination of St. Venant's results, given on page 39 of the work

already cited, it is found that qz
is never less than 74 per cent, of

qv and that it is given with fair approximation by the formula

In an elliptic section the point 2 is at either extremity of the major
axis and the stress there is pqv diminishing to zero as the ratio of axes

is reduced. This shows that the distribution of stress for small values

of /3 is quite different from that in a rectangular section; a point

further illustrated by comparing the strength of the two for the same
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area and ratio of axes
;
when it will be found that for small values of

fi the rectangle is the stronger form.

Further remarks on torsion will be found in the Appendix.

186. Crank Shafts. The twisting of a shaft is due to the action

of transverse forces which have a moment about its axis. The common
crank shaft is a case which may here conveniently be considered as

an example of the way in which such forces strain the shaft.

In Fig. 143 ACB is a shaft turning in bearings A and B and acted

on by twisting moments T
19 T2

at its ends. The sides of the crank

__T

Fig-. 143

are generally at right angles to the shaft, but in the figure are shown

inclined at an angle 0, a case which sometimes occurs. The crank

pin is acted on by the thrust of .a connecting rod not shown in

the figure, which together with other forces (if any) passing through
the axis of the shaft and corresponding reactions of the bearings form

a system of forces the straining actions due to which are now to be

studied : the graphical methods explained in Part I. being employed
as most suitable for the purpose.

The first step is to resolve the forces into two sets, one set in the

plane of the crank, the other perpendicular to that plane. The first

set produce shearing and bending only, which actions may be repre-

sented by polygons in the usual way and need not for the present

be further considered ;
the second set alone produce twisting. As

regards the straight part of the shaft : if S be the force on the crank

pin perpendicular to the plane of the crank and a the crank-radius,

then the difference of the twisting moments T
lt

T
2

is determined,

but the actual magnitudes depend on the twisting transmitted from

the parts of the shaft lying beyond the bearings. If one end B of the

shaft be free the corresponding moment T
2

will of course be zero.

If the turning moment Sa supplied by the connecting rod furnish

energy at both ends of the shaft, as is often the case, T
2

will be

negative.
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Taking any point K (Fig. 143), on the crank arm at a distance z

from the axis, let a polygon of moments be drawn, the force S for

this purpose being taken as passing through the axis. The result

at K is a bending moment m, the axis of which is shown in the figure

by a dotted line perpendicular to the axis. In like manner a polygon
of shearing force may be drawn giving the shear at K which we will

call F. Taking a transverse section of the crank arm at K the shear

on this section will be F while the bending moment M and the

twisting moment T will be determined by the equations

from which we obtain the values of T and M, namely,

T=(Tl -Fz)cos6 + m. sin 6,

M= (Fz
-

7\) sin + m . cos 0.

For the crank pin we have only to put =
0, z = a, and we find

T^Ti-Fa, M=m,
and in the common case where = 90 we have for any point of the

crank arm,
T=m- M=Fz-Tr

These results refer to the side next the bearing A on the other

side T
l
must be changed into T%. It must further be remembered

that they refer exclusively to the set of forces perpendicular to the

plane of the crank; the set of forces in that plane produce a shear

F' and a moment M' perpendicular to those just considered, so that

the resultant bending moment is *JM2 + M'2
.

The crank arm, however, is usually of rectangular section and the

components M, M' must then be considered separately. The method

of compounding a twisting moment with a bending moment will be

explained in Chapter XVII.

187- Spiral Springs may be flat or conical, but the simplest and

most important case is that in which the spring consists of a strip

of metal, usually of rectangular or circular section, coiled into a

cylinder of radius r, the pitch angle (0) of the spiral being uniform.

The length of the spring (a; )
measured along the axis of the cylinder

is given by the formula

X
Q
= I sin 0,

and therefore can only vary sensibly by variation of the pitch angle.

The ends of the strip are bent to meet the axis and are inclined to

each other at an angle </> given by the equation

r<{>
= I . cos 0,
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each complete convolution of the spring increasing the angle by 2?r.

The angle 6 will for the present be supposed small.

Such a spring may be used in two distinct ways.

(1) One end being held fast the other may be attached to a spindle

occupying the axis of the spring, and by a couple (M) applied to it

the spring is turned through an angle <J>
- < . The action here is

one of simple bending, the bending moment being M and the elastic

energy ( U) being given by

equations which give for the angle turned through

2U Ml
*-*F"ir

An example of this kind occurs in the spring of the balance of a,

chronometer.

(2) Much more important, however, is the case so common in

practice in which the spring is altered in length from x to x by
the action of a force P applied along the axis. Each section of the

strip is now subject to the action of a twisting moment T=Pr, while

the corresponding elastic energy is

The value of U is found from the formula given in Art. 185 (3),

and the radius between x-x and P is thus determined.

(3) The action on a spiral spring is not exactly one of pure

bending or pure torsion as just supposed unless the pitch angle

be exceedingly small. In the first case the bending moment is

M.cosO and there is in addition a twisting moment M.sinO;
while in the second case the twisting moment is Pr . cos 6 which

is accompanied by a bending moment Pr sin 6. It will be shown

hereafter that the elastic energy due to the combination of bending
and twisting is the sum of the values of U due to each taken alone.

The total value of U can therefore be readily obtained by sum-

mation : by use of which the preceding formulae for <
-

</>
and

X XQ will still apply. If be less than 15, however, the correc-

tion is of little importance. For values of co-efficients, see Ch. XVIII.

When the spiral is flat as in the main spring or balance spring of

a watch the action is one of simple bending as in (1), and the same

formulae apply with slight modification. The conical springs employed
in the buffers of railway carriages and for other purposes act by
torsion as in (2), but the calculation is somewhat more complex.
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SECTION III. SHEARING IN GIRDERS. JOINTS.

188. Web of a Beam of I Section. Torsion is one of the few cases

in practice where a simple distorting stress occurs alone and not in

combination with other kinds of stress. It generally happens that a

normal stress is combined with it
; such, for example, is the case in the

web of a beam of I section, to which we next proceed to direct our

attention. Taking a transverse section, the normal stress at a point

distant y from the neutral axis is given by the formula

p M
r~r

and is therefore the same for the same values of M and /, whether

the web be thin or thick, while it will be shown presently that the

tangential stress is greater the thinner the web, and becomes the

most important element when the web is thin.

Let us suppose, for simplicity, the flanges equal, and also that the beam
is supported at the ends and loaded in the centre with a weight W.
As we have previously seen, the flanges will sustain the greater

1 !

K *
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W(V -*L\
HI~HZ

= % -.

This force is balanced by the resistance of the web to shearing along
the line of junction with the flange.

Since H
l
-U

2
is proportional to the length of K^K^ the shearing

force per unit of length of web = W/2h. If we suppose t to be the

thickness of the web, the intensity of the shearing stress will be

K
Thus, considering the portion of the web between the sections K^ and

K
2 apart by itself, we see that on the upper and lower horizontal edges

of it, where it joins the flanges, it is subject to a shearing stress of

intensity qt
to balance which there must act on the vertical sides

KK a shearing stress of equal intensity. Now, the shearing force for

the vertical sections KKis \W. Supposing the web to be of rectangular
section and of height h, then, assuming the whole of the shearing force

to be borne by the web, the mean intensity of the shearing stress on

the vertical sections is Wfiht. Therefore the assumption that the

flanges take the whole of the bending moment is equivalent to sup-

posing the web to take all the shearing. Assuming this, we see that

the shearing stress, taken as uniformly distributed over the vertical

section, will be accompanied by an equal shearing stress on any hori-

zontal section. When considered alone, the effect of these shearing
stresses on planes at right angles to one another is to produce tensile

and compressive stresses on the web in directions making an angle of

45 with the horizontal and vertical planes ;
and thus the web may

be superseded by an indefinite number of diagonal bars inclined at an

angle of 45, thus forming a lattice girder.

If the web is designed so as to be strong enough only to withstand

the shearing stress, replacing q by / the co-efficient of strength against

shearing /, we find pp

The influence of the normal stress due to bending will be considered

in a subsequent chapter. Its effect is greatly to increase the strain

on the web (see Art 207), which besides will in most cases exhibit

weakness on account of the compressive stress in one of the diagonal
directions. If the distance between the flanges is great, the web will

be liable to yield by buckling or lateral flexure (see page 340). To

prevent this, the web must be stiffened by angle irons rivetted on it.

But the girder would then be made heavy, and it is therefore more

economical to make large girders with openwork diagonal bracing.

Wr
e have in this investigation supposed the beam loaded in the
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middle, so that the shearing force is uniform throughout the length of

each half, and the problem was thus simplified. But the same prin-

ciples apply if the load be distributed in any manner. The shearing

force will then vary from section to section along the beam.

189. Distribution of Shearing Stress on the Section of a Beam. The

foregoing preliminary investigation will give some idea of the effect of

a shear on the web of a flanged beam ;
let us now consider the question

more generally.

Taking a section of any type, let a line be traced cutting off from the

whole area A any given portion. The line may be curved, but in the

first instance assume it straight and parallel to the Fig.i45
L

neutral axis SS (Fig. 145). Divide the area into

strips of breadth b and thickness Ay, as in Art. 154,

then the normal pressure on the portion cut off is

the second form being obtained by substituting for p from the bending
moment formula and writing

for the moment of the portion cut off about the neutral axis SS, a

quantity which can be directly calculated by summation or deduced

when the position of the centre of gravity of the portion is known.

Assuming the transverse sections K
lt
K

2
as in the preceding article at

a distance x
2
- x

1} which, however, we will now suppose to be the unity,

let AM be the difference of the corresponding bending moment, then

St-.ff,-Air.il

But referring to Art. 29, p. 55, it will be seen that if F be the

shearing force &M=F(x2
-x

1 ), and, as before, Hl
- H

2
is balanced by

a corresponding shearing stress called into play over the horizontal

base of the prismatic portion intercepted between the sections. If

then S be the total shear on the base,

a formula which is equally true if the base be curved, or even if the

portion is wholly enclosed in the solid mass of the beam.

If the mean shearing stress FjA on the transverse section be qQ and
on the base be q, the formula may be written, replacing 7 by nAh'2

,

2-*sr-
where s is the periphery of the base whether straight or curved. By
the principle of Art. 183 the shear at any point of the base is also
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the shear on the transverse section in a direction normal to the base.

Let us now consider various cases.

(1) Returning to the case of the I section, let yl
be the distance

of the base of the flange (Fig. 144) from the neutral axis and y the

ordinate of some other point in the transverse section of the web,

then s = t and

n o

hence by substitution q
=

ql + qQ .
^l

~
^

,

a formula which gives the shear at any point of the transverse section

distant y from the neutral axis in terms of qt
the shear immediately

below the flange. The value of q1
can be found from the formula, /^

being a given quantity. When the web is very thin, qQ is relatively

very small, and the shear on the web is approximately the same at

all points ;
but otherwise, in addition to the shear on the web as a

whole, there is a local shear represented by the ordinates of a parabolic

arc, the chord of which is the depth of the web. The extreme case is

that of a rectangular section when ql
=

0, h = 2yv n = y
1
^ ,

then

-W'-&>
At the neutral axis where y = the stress which is then a maximum
is 1 J times the mean.

(2) Consider a tube of circular section, mean radius a, thickness of

metal
tf,

under the action of a shear F, producing on the section a

shearing stress the mean intensity of which is

F

In Fig. 146 draw the radii OP, OP' inclined at an angle to the

vertical cutting off the arc PP. Then in

the general formula given above

-P,
Jo

= 2<7n . sin 6.

Fig. 146

This gives the resultant shearing stress at

any point P, which, as explained in Art. 185,

is necessarily in the direction of the tangent.

The maximum value occurs at the neutral

axis SS and is double the mean.

(3) Taking a section of any type, consider the portion cut off by th<
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neutral axis SS in Fig. 145, and let SS = b be the breadth of the beam

there, then the mean shearing stress on the transverse section at points

lying on the neutral axis is

where /* is the moment of the area SLS about the neutral axis. For

example, in a rectangular section

-hh -

and consequently q
= fg as already found. Similarly in an elliptic or

circular section q
= |^ ,

This formula is commonly accepted as giving the ratio of maximum
to mean stress on the section

;
but this statement must be understood

with very considerable qualifications, for all that is actually determined

is the mean stress at points along the neutral axis; the maximum is

generally greater, and sometimes very much greater, as will be seen

from our next example.

(4) Take a square bar and imagine it bent and sheared by forces

parallel to a diagonal. Through the centre of the section draw two

straight lines ON, OM perpendicular to the sides, cutting off one-fourth

of the whole area. Then if h be the side

is the mean stress along ON perpendicular to ON, and along OM per-

pendicular to OM. If we suppose the stress at equal to the mean
in each direction it must be the resultant of two forces at right angles,

each equal to q and will therefore be f<? ,
the same as when sheared by

forces parallel to a face. By the method employed in (2) it will be

found that the mean stress at points along the neutral axis is
<? ,

but

the extremities of the neutral axis being the corners of the square the

stress there must be zero as pointed out in Art. 1 85, and this explains

why a larger result is obtained by the present method, which will be

found useful as a check in cases where the breadth of the section at the

neutral axis is much greater than elsewhere. Since the direction of

the stress at points lying on the edges of the square is necessarily

along the edges, as explained in the article cited, there is little reason

to suppose any considerable variation along the lines ON, OM.
In a circular section it will be found that the two methods give

the same result.

C.M. 2 A
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The exact distribution of the stress in these cases, as in torsion,

can only be found by considering the manner in which the section

is warped by the action of the forces. If it be forcibly prevented

from distortion, as in a rivet tightly fitting its hole, the shear is

uniformly distributed, but otherwise it is not so, and in a loose

fitting pin or a key may provisionally be taken as given by the

methods just described. In certain cases more exact results are

given by M. St. Venant's calculations, which will be further noticed

in a later chapter.

190. 'Deflection due to Shearing. A certain part of the deflection of

I Fig.147 a beam is due to the distor-

B tion of its central parts. Re-

turning to the beam of I

section, loaded in the middle,

suppose the flanges hinged
at the centres, and let vertical

stiffening pieces AA, SB, CC, be rigidly connected to the web, but

hinged to the flanges, then distortion of the web takes place, as shown

in a very exaggerated way in the figure (Fig. 147), causing a deflection

8 of the beam such that

8 _._q_ W~~
where C as before is the co-efficient of rigidity, and q the shearing

stress is expressed as before.

20'

9,000 for the working load, andFor wrought iron take

(7=9,000,000, then
I

2,000'

which is above half the working deflection due to bending in ordinary

cases.

This calculation, however, exaggerates the deflection due to shearing

even in a beam of I section, for the web cannot in general be

thin as to give a stress of 9,000 Ibs. per square inch, and the effect

is much less for a uniformly distributed load. Nevertheless in beai

of this class the deflection due to shearing is a considerable part

the whole, the more so as in rivetted girders the union of the part

seldom renders them completely rigid. This is the principal reasoi

why large girders show a considerably smaller modulus of elasticity

when the deflection is calculated in the usual way than solid bars.
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In a section of any type of area A loaded and supported in the

manner described the mean shear on any section will evidently be

w
q
=
2A>

and the deflection due to it

The corresponding deflection (d) due to bending is found by the

formula on page 324, which, on writing as usual nAh2 for /, becomes,

Wl*

~AnEAh*
The ratio of these two is therefore

8
19*

E h*

-d
= Un

'C'F*'

To obtain the actual value of the ratio of the deflection due to

shearing and bending, the result here found requires multiplication

by a factor the value of which can be calculated approximately as

explained in Chapter XVII. This factor for a rectangular section

is 1'2, whence taking E/C equal to 2*5 and % = TV we ^ n(^

8 3A2

a"T'
which agrees with Professor Pearson's estimate of the average value

of this fraction for sections of various types. Thus if the ratio of

depth to span be one-tenth, the correction due to shearing is 3

per cent.

In the case of a tube considered on page 368 the factor is 2 and

71 = i> giving a ratio 2i times as great: the correction when the

depth is one-tenth the span being 1\ per cent.

191. Effects of Insufficient Resistance to Shearing. If the central part
of a beam be cut away as shown at Z in Fig. 144, the strength of the

beam will be diminished and its deflection increased. This will be true

even if there be only a narrow longitudinal slot at the neutral surface,

but the weakening is greater the more material is cut away, the con-

dition of the beam in an extreme case becoming that of an N girder

(Art. 25) without diagonal bracing. Imperfect union of the central

parts will have the same effect in a less degree : thus if two beams be

laid one upon another and bolted together the strength of the com-

pound beam will be less than that of a solid beam of the same depth.
Wooden ships not unfrequently exhibit weakness due to this cause,

and to counteract it diagonal riders of iron are introduced to take

part of the shearing force.
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Theoretical considerations would lead us to conclude that in timber

beams the deflection due to shearing is relatively much increased by
the flexibility of the transverse sections, the modulus of rigidity being

relatively small in most kinds of wood. This conclusion, however,

does not as yet appear to have been experimentally verified.

The ordinary formula for resistance to bending cannot be applied in

such cases without risk of serious error, and the same remark applies

with still greater force to the formula of Art. 189, which gives the

distribution of shearing stress which will be determined mainly by
the relative resistance to shearing of the parts of the section.

192. Economy of Material in Girders. It has been shown already in

Art. 159 that a certain ratio of depth to span must be best as regards

economy of material, and a calculation will now be given which will

illustrate this point.

Let us suppose that in order to give sufficient stiffness and stability

under the action of lateral forces the mean sectional area C of the web

of a flanged girder should be proportional to the shearing force on the

section multiplied by the ?'th power of the depth A, and let A be the

area of each flange, then the total area S is 2A + C and the moment of

resistance to bending approximately,

where c is a co-efficient. Writing this equation

it will be seen that for a given value of M, S is least when

M-I r f w r 3S

'rTT* / - =
2(fTT)-

In a girder with openwork web S= C(r+l), but the value of M is the

same.

Assume now F=f . C, where F is the shear on the section and /'is

a co-efficient much less than the resistance to shearing, on account of

various additional straining actions (Art. 188) which have to be con-

sidered then by substitution,

M^r-.Fh.

On replacing M by pFL, where L is the span and ja a co-efficient

connecting the shear and the bend, the best ratio (N) of span to depth
will be determined. If the load be uniformly distributed

N~sT
It is probable that in most cases r = 2 nearly, but that the value of
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///' will vary according to the type of girder from 3 to 4 for a con-

tinuous web. For an openwork web the formula is slightly modified.

The limiting span of a girder of uniform section is readily found,

proceeding as in Ex. 13, page 319, to be

4r A.

~r+l* N'

The weight of a smaller girder of the same type is found as in Ch. IV.

193. Joints and Fastenings. Among the most important cases of

shearing are those which occur in joints and fastenings of all kinds.

Such questions are generally very complex, considered as purely
theoretical problems, and the direct results of experience are always

required at every step to interpret and confirm theoretical conclusions.

When two pieces butt against each other the pressure is transmitted

by contact only, and fastenings are therefore required not for trans-

mission of stress but merely to retain the pieces in their relative

positions. With tension it is otherwise
;

it is still necessary to have

surfaces which press against one another, and these can only be obtained

by the introduction of fastenings which transmit stress laterally, and

are therefore subject to shearing and bending. The parts of a joint

should be so proportioned as to be of equal strength. One of the

simplest examples is that of a pin joint connecting two bars in tension

as in a suspension chain with bar links. Fig. 1 (Plate VIII.) shows a

pair of bars of rectangular section connected together by links C and D
united as shown by pins passing through eyes at their extremities. In

suspension chains there are generally four or five bars placed side by

side, but the principle is the same in any case. The pull on the chain

is balanced by the resistance to shearing of the pins, which have besides

to resist bending. Let d be the diameter of the pins, b the breadth,

t the thickness of one of the bars, t' the thickness, b' the breadth of the

links which for equality of strength, that is to say, of sectional area,

will be connected by the equation

Let / be the co-efficient of strength for tension, then |/ (Art. 230) will

be the co-efficient for shearing, whence remembering that the maximum

shearing stress exceeds the mean in the ratio 4 : 3 as shown above

According to this estimate the area for shearing should be five-thirds

the area for tension, but the true ratio is probably not so great : the

calculation supposes that the sides of the pin are subject to normal stress

alone, whereas the tangential stress due to friction must be considerable.
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Besides the strength of iron such as is used for pins is greater than that

of plates. As the calculation applies only to stress within the elastic

limit, it is impossible to test it by experiment. In practice the areas

are made nearly equal when nothing else is considered except resistance

to shearing. When, however, such a joint is actually pulled asunder it

frequently gives way in quite a different manner before shearing com-

mences. Imagine a cylinder pressed down into a semicircular hollow

which it very exactly fits, and let the material be elastic and soft

compared with the cylinder, then, reasoning as in Art. 115, page 241,

it appears that the stress between the surfaces will be given by the

equation p=Po .coB6t

and if P be the pressing force, / the length,

4:P= P or pQ
=
^ff

If the pin fits the eye exactly the pressure will follow this law so

long as the tension is small. As the tension increases, however, the

pressure becomes more uniformly distributed over the semi-cylinder,

because the eye-hole tends to contract laterally as the links of a chain

of rings would do under tension. The other extreme supposition

would be to suppose it uniformly distributed, then

p
p .dl = P or

Po^-ji-

The actual pressure will be intermediate between these two values. If

PQ be too great the metal crushes under the pressure. The theoretical

limit to pQ will be considered hereafter; for the present it will be

sufficient to say that the experiments of Sir C. Fox * have shown that

the curved area should be at least equal to the sectional area under

tension, that is to say we ought to have

To satisfy these conditions we must have for the ordinary case where

the thickness of the eye is the same as that of the rest of the bar

d = f6 : t = |6 approximately.

The first of these gives the diameter of pin recommended by Sir C. Fox

and other authorities
;
the second gives the greatest thickness of link

for which this diameter gives sufficient resistance to shearing, but the

thickness in actual examples of suspension links is generally considerably

less. The pin has also to resist bending, but of small amount in the

present example. The sides and end of the eye are subject to tension,

but it is not uniformly distributed, the question being similar to that

of a thick hollow cylinder under internal fluid pressure. The mode in

*
Proceedings of the Royal Society, vol. xiv.

, p. 139.
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which the eye crushes and then fractures transversely by tension, is

shown in Plate VIII.
,
and further described in Chapter XVIII.

In rivetted joints the question is further complicated by the friction

between the plates united by the rivets. On the subject of joints and

fastenings the reader is referred to Prof. W. C. Unwin's Machine

Design.
EXAMPLES.

1. Find the diameter of a shaft for a twisting moment of 1,000 inch-tons ; stress

allowed being 3| tons per square inch. Ans. Diameter=11 '34".

2. From the result of the previous question deduce the diameter of a shaft to transmit

5,000 H.P. at 70 revolutions per minute. Maximum twisting moment= f the mean.

.4ns. 16-37".

3. The angle of torsion of a shaft is not to exceed 1 for each 10 feet of length. What
must be the diameter for a twisting moment of 100 inch-tons modulus of transverse

elasticity, 10,500,000?

Compare the result with the diameter determined from consideration of strength,

taking a co-efficient of 3| tons. Ans. Diameter determined from consideration of stiff-

ness= 6 '2". Diameter from consideration of strength= 5 "2".

4. Show that the resilience of a twisted shaft is proportional to its weight.

. /2 Volume
Ans. Resihence=Ti=- x --------

5. Compare the strengths of a solid wrought-iron shaft and hollow-steel shaft of the

same external diameter assuming the internal diameter of the hollow shaft half the

external, and the co-efficient for steel 1^ times that for iron. Ans. 32/45.

6. The external diameter of a hollow shaft is double the internal. Compare its

resistance to twisting with that of a solid shaft of the same weight and material.

Ans. Strength is greater in the ratio = 1'443.

7. A pillar, whose sectional area is 1^ square feet, is loaded with two tons. Find in

Ibs. per square inch the intensity of the tangential stress on a plane inclined at 15 to

the axis of the pillar. Ans. tangential stress=5 '18 Ibs.

8. In a single rivetted lap joint, the pitch of the rivets being three diameters or six

times the thickness of the plates, find, 1st, the mean stress on the reduced area; 2nd,

the shearing stress on the rivets
; and, 3rd, the mean direct stress between rivet and

plate : the tension of the joint being 4 tons per square inch of the original area, and the

friction between the two surfaces of the plate in contact neglected.

Ans. Mean tension on reduced area - =6 tons.

Shearing stress on rivet - - 7 '6 tons.

4 x pitch x thickness . _
,Mean direct stress -JT-* ... .

-=12 tons per sq. in.
diameter x thickness

9. In a beam of I section with flanges and web which may be considered as rectangles,

the thickness of each flange is one-sixth the outside depth of the beam, and the breadth

twice the thickness. The thickness of the web is half that of the flanges : find the ratio

of maximum to mean shearing stress on the section. Ans. -^-.

10. In the last question find the fraction of the whole shearing force which is taken

by the web. Ans. 80 per cent.

11. Find the moment of resistance and angle of torsion of an iron bar 1 inch square,
5 feet long, assuming /= 3|, (7=5,000 in. tons. Ans. T='G77 inch tons. = 3.

12. Find a formula for the resilience, under torsion, per cubic inch of a bar of rect-

angular section.
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13. Show that the weight in Ibs. of a shaft to transmit a given horse power at a given

number of revolutions is

the value of X being given as in Ch. XVIII., the proper co-efficient of resistance to

shearing being used. The rest of the notation is explained on page 356.

The distance to which power can be transmitted by shafting with a given loss by
friction is given by Ex. 18, p. 262, when the angle of torsion is immaterial, but in

practice is generally limited by the necessity of having sufficient stiffness. The bend-

ing and twisting of shafts is considered in Chapters XVIL, XVIII.

14. If a bar of square section be sheared diagonally show that the mean shearing stress

on the neutral surface is equal to the mean shearing stress on the section. Also find

where the mean shearing stress on a longitudinal section parallel to the neutral surface

is a maximum and the ratio of maximum to mean. Ans. At a distance from the

neutral surface equal to one-eighth the depth. Ratio=1 '125.

Note. If the shear on the transverse section in a direction perpendicular to the

neutral axis be assumed uniform at points lying on a line parallel to the neutral axis,

the maximum shear will be l'125\/2, or about 1*6 times the mean at points lying on the

edges of the section.

15. A crank arm of rectangular section 6 in. x 12 in. is acted on by a twisting moment

of 300 inch-tons, find the stress produced at (1) the middle of the long side and (2) the

middle of the short side in tons per square inch. Ans. g 1=2'78 ; q z
= 2'25.

16. In the last question, suppose the section further to be acted on by bending moments

of 100 inch-tons in the plane of the crank, and 150 inch-tons about the shorter axis, find

the normal stress produced at the points mentioned.



CHAPTER XVI.

IMPACT AND VIBEATION.

194. Preliminary Remarks. General Equation of Impact. Hitherto

the forces applied to the body or structure under consideration have

been imagined to have been originally very small, and to have increased

gradually to their actual amount. This is seldom exactly the case in

practice, while it frequently happens that the load is applied all at once,

or that it has a certain velocity at the instant it first comes in contact

with the body. Such cases may all be included under the head of

IMPACT, and will form the subject of the present chapter.

When a body in motion comes into contact with a second body

against which it strikes, a mutual action takes place between them

which consists of a pair of equal and opposite forces, one acting on the

striking body, the motion of which it changes, the other on the body

struck, which it in general moves against some given resistance.

Certain changes of figure and dimensions, or, in other words, strains

are likewise produced in both bodies, in consequence of the stress

applied to them.

The simplest case is where the impact is direct and the resistance to

motion has some definite value, as, for example, where a pile is driven

by the action of a falling weight. Here let R be the resistance which

the pile offers to be driven, that is to say, the load which, resting

steadily on the pile, would just cause it to commence to sink
;

let W
be the falling weight, h the height from which it falls, x the space

through which the pile sinks in consequence of the blow ; then the

mutual action between the pile and the weight at the instant of impact
consists of a pair of equal and opposite forces R. The whole height

through which the weight falls is h + x, and the space through which

the resistance is overcome is x
; hence, equating energy exerted and

work done, we have

This equation shows that any resistance, however great, can be over-
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come by any weight, however small
;
and also, that the force of the

blow, as measured by the space the pile is driven, is proportional to its

energy. We have however assumed that the whole energy of the blow

is employed in driving the pile, whereas some of it will be expended in

producing vibrations and in damaging the head of the pile and the

bottom of the weight. As the pile is driven deeper, the resistance to

being driven increases, and at length becomes equal to the crushing

stress of the material : the pile then sinks no farther, the whole of the

energy of the blow being wasted in crushing.

This last is also the case of impact of a flying shot against a soft

plastic substance, which exerts during deformation a definite force

uniform or variable which brings the weight to rest in a certain

space. Suppose V the velocity of the shot, x the space, and R the

mean resistance which the substance offers, then the kinetic energy

of the shot is WV^ftg, while the work done is Ex^ equating which

V'2W.-=K*.

Here the whole energy of the blow is spent in producing changes

of figure in the body struck
;
but if the striking body had been soft,

and the body which it struck hard and immovable, the energy of

the blow would have been employed in producing change in the

shape of the striking body. Thus we may write down as the

general equation of impact

Energy of blow = Work done in overcomiug the resistance to

movement of the body struck

+ Work done in the internal changes in the striking body

+ Work done in internal changes in the body struck.

Which of these three terms is the most important will depend on

the relative magnitude of the resistance to movement, and the crushing

stress of the materials of the two bodies. If either body have a

sensible motion after impact, the corresponding kinetic energy must

be taken account of in writing down the equation, as will be seen

farther on.

195. Augmentation of Stress by Impact in Perfectly Elastic Material.

We now proceed to apply the equation to the case which most immedi-

ately concerns us, namely, that of impact on perfectly elastic material,

including in this the effect of a load which is applied all at once.

We will suppose a structure or piece of material of any kind

resting on immovable supports, and struck by a body harder than

itself, so that we may neglect all changes produced in the striking
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body. Generally in both bodies there will also be produced vibra-

tions, of the nature of those constituting sound, which absorb a

certain amount of energy, but this we shall neglect. The whole

energy of the blow then is supposed expended in straining the

structure, or piece of material, struck by the blow.

Now the effect of impact is to produce a mutual action S, which

represents a force applied to the structure at some definite point. In

consequence of this the structure suffers deformation, and the point

of application moves through a space x. The resistance to deforma-

tion is proportional to x, because the limit of elasticity is not

exceeded ;
it therefore commences by being zero, and increases

gradually till the velocity of the striking body is wholly destroyed.

The mean value of the resistance is therefore one-half its maximum
value. During the first part of the period occupied by the impact
the mutual action S is greater than the resistance, and during the

second part less, as will be explained fully presently ; but, when

the maximum strain has been produced, the mean value during the

whole period must be exactly equal to the mean resistance, the

weight and the structure being at rest. The state of rest is only

momentary, for the strained structure will immediately, in virtue of

its elasticity, commence to return to its original form
;

but for the

moment, a strain has been produced, which is a measure of the

effect of the blow, and which must not exceed the powers of

endurance of the material.

Let now R be the maximum resistance, and let the blow consist in

the falling of a weight W^ through a height h above the point where

it first comes in contact with the structure; then h + x is the whole

height fallen through, and it follows from what has been said that

The resistance R may also be described as the "equivalent steady

load," being the load which, if gradually applied at the point of

impact, would produce the same stress and strain which the struc-

ture actually experiences. We most conveniently compare it with W
by supposing that we know the deflection 8 which the structure

would experience if the striking weight W were applied as a steady
load at the point of impact ;

we then have, since the limits of

elasticity are not exceeded,

x_RL
1*MT

Substituting the value of x we get

& 2R "2h
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Let the height h be n times the deflection 8, then solving the

quadratic, the positive root of which alone concerns us,

Fig.i48

an equation which shows how the effect of a load is multiplied by
impact.

196. Sudden Application of a Load. A particular case is when
7^ = 0, then E = ^W. So that if a load W is suddenly applied to a

perfectly elastic body, from rest, not as a blow, it will produce a

pressure just twice the weight. This case is so important that we
will consider a special example in detail.

Let a long elastic string be secured at A. If a gradually increasing

weight be applied the string will stretch,

and the weight descend. Let the load

required to produce any given extension

be represented by the ordinates of the

sloping line B NN
2 (Fig. 148). Next,

instead of applying a gradually increasing

load, let a weight W represented by J5 if

be applied all at once to the unstretched

string. The string will of course stretch,

and the weight descend. When it has
2
reached B (Fig. 146) the tension of the

string pulling upwards, being represented by BN, will be less than

W acting downwards. Moreover, in the descent BQB an amount of

energy has been exerted by the weight represented by the area of

the rectangle B M MB. At the same time the work which has been

done in stretching the string is represented by the area of the

triangle B NB. The excess of energy exerted over work done has

been employed in giving velocity to the descending weight, and is

stored as kinetic energy in the weight.

On reaching B^ the tension of the string is just equal to the

weight, but the stretching does not cease here. The weight has

now its greatest velocity, which corresponds to an amount of kinetic

energy represented by the triangle B^M^M^ Although any further

extension of the string causes the upward pull of the string to be

greater than the weight W, yet the weight will go on descending
until the energy that it has exerted is equal to the work done in

stretching the string; then the kinetic energy will be exhausted and

the weight will be brought to rest. This will occur when the area

of the triangle BQN2
B

2 equals the area of the rectangle

that is when B<>N<, = 2JB9M9 , or
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We thus see that the tension of the string produced by the

sudden application of the load is twice that due to the same load

steadily applied.

The string will not remain extended so much as B^B^ for now
the upward pull of the string, exceeding the weight, will cause it to

rise. On reaching JB
1

it will have the same velocity upwards that it

had on first reaching B
1
downwards. This will carry it to B

,
from

which it will again fall, and so on. Practically the internal friction

due to imperfect elasticity, and the resistance of the air, will soon

absorb the energy and bring the weight to rest at Br

197. Action of a Gust of Wind on a Vessel. Another interesting

example of the way in which the

sudden application of a load aug-

ments its effect is furnished by the

case of a vessel floating upright in

the water and acted on by a sudden

gust of wind, a question which,

though not strictly belonging to this

part of the subject, involves exactly

the same principle.

First, suppose no wind pressure,

but that a gradually increasing couple is applied to heel the vessel.

If along a horizontal line (Fig. 149) angles of heel be marked off,

such as ON, and for those points ordinates such as NL, are set up
to represent on some convenient scale the magnitude of the couple

required to produce that angle of heel, a curve OL will be obtained,

which we have already (p. 184) called the curve of Statical Stability

of the ship.

Now suppose a steady wind pressure to be gradually applied. It

will produce on the masts and sails a definite moment, on account

of which the ship will incline to a certain angle, such that the

ordinate of the curve of stability corresponding to that angle will

represent the moment of the wind pressure. So long as the wind is

constant, she will remain inclined at that angle. Next suppose the

same wind pressure to be suddenly applied all at once, as by a gust
to the ship floating upright at rest. The ship will heel over, and

until she is inclined to some extent the wind moment will be greater
than the righting moment, and the excess will cause the ship to

acquire an angular velocity. Accordingly, when she arrives at the

angle of heel corresponding to the moment of wind pressure on the

stability curve, she does not come to rest, but inclines farther, until
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the energy exerted by the wind pressure is all taken up in over-

coming the righting moment through the angle of inclination. The
work thus done is represented by the area of the curve of stability

standing above the angle of heel reached.

Let OW^ represent the magnitude of the wind moment. The ship
will incline until the area OL

2
N

2
= area OW^KNV or area O^F

1
L

1
= area

L^L^K that is, if the moment of wind pressure remains undiminished

as the ship heels, which will hardly be true in practice. Suppose the

moment of wind pressure OW^ to be such that the area 0/F
OJ
L = the

area L L
2
L'Q . In this case the sudden gust of wind will carry the ship

to such an angle ON'Q that she will not again return
;
and the smallest

additional pressure of wind will capsize the ship, although that same

wind pressure applied gradually would incline the ship to the angle

ON, only.

198. Impact at High Velocities. Effect of Inertia. Returning to the

general case of impact against a perfectly elastic structure (Art. 195),

let us now take the other extreme case in which the height through
which the weight falls is great compared with the deflection 8 due to

the same weight gradually applied ; then, since n is great, our equation
becomes

which may be written in either of the forms

(2).

The first form shows that the stress produced by the impact is pro-

portional to the square root of the energy of the blow, and the second,

that the deflection occasioned by the fall of a given weight is propor-
tional to the square root of the fall, or, what is the same thing, to

the velocity of impact. These results are exact when the impact is

horizontal, and the last has been verified by experiment. It is to be

remembered that the limits of elasticity are supposed not to be

exceeded
;
when a rail or carriage axle is tested by a falling weight,

as is very commonly done, the energy of the blow is generally much
in excess, and the piece of material suffers a great permanent set,

the resistance is then approximately constant instead of increasing

in proportion to the deflection. The effect of the blow is then more

nearly directed proportional to its energy. It will be seen presently
how small a blow matter is capable of sustaining without injury to

its elasticity.

The effect of a blow, on a structure or piece of material as a whole,
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is diminished, on account of its inertia, by an amount which is greater

the greater the velocity of impact, but which varies according to the

relative mass and stiffness of its parts. In the act of yielding the parts

of the body are set in motion, and the force required to do this is

frequently greater than the crushing strength of the materials, so that

a part of the energy of the blow is spent in local damage near the

point of impact.

Figure 150 shows a narrow deep bar AB, the

ends of which rest in recesses in the supports,

which prevent them from moving horizontally, but

do not otherwise fix them. The bar carries a

weight Q in the centre, against which a second

weight W moving horizontally strikes with velo-

city V. The bar being very flexible horizontally,

the weight Q at the first instant of impact moves

as it would do if free
;
that is, the two weights

move onwards together with a common velocity v

fixed by the consideration that the sum of the momenta of the two

weights is the same before and after impact, so that

Fig.150

The energy of the two weights after impact is

showing that the energy of the blow has been diminished in the pro-

portion W-.W+Q. The loss is due to the expenditure of energy in

damage to the weights.

If now, instead of a weight Q attached to the centre of a flexible

bar, we suppose the bar less flexible and of weight Q, the effect of

the blow is diminished by the same general cause, but not to the

same extent : the diminution may be estimated by replacing Q in

the preceding formula by IcQ, where k . is a fraction to be found

approximately by calculation (Ex. 8, p. 399), or determined by ex-

periment. In a series of elaborate experiments made by Hodgkinson
on bars struck horizontally by a pendulum weight, it was found

that k was ^.

We are thus led to separate the energy of a blow into two parts :

w* v* _ k.wq v^
1 fT + kQ' 2g

*~ IF+ kQ' 1g

The first of these strains the structure or piece of material as a whole,
and the second does local damage at the point of impact. Hence the

great difference which exists between the effect of two blows of the
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same energy, one of which is delivered at a low, and the other at a

high velocity. At high velocities most of the energy is expended in

local damage; at low velocities most is expended in straining the

structure as a whole.

If the body which is struck be in motion, instead of resting on

immovable supports, as in Fig. 150, the energy of the blow will be

diminished. This case has been considered in Ch. XL, p. 270, where

it is shown that the energy of the collision is

F

where V is the relative velocity of the bodies. Of this a part

represented, as before, by replacing Q by kQ is spent in local damage
and the rest in straining the structure as a whole.

The exceptional case where, as in the collision of billiard balls, the

limit of elasticity is not exceeded at the point of impact, need not be

here considered. The energy of local damage is, then, not wholly

dissipated in internal changes : a part is recovered during the restitu-

tion of form which occurs in the second part of the process of impact,

and increases the action on the structure as a whole. In ideal cases

the whole may be thus recovered, but, in practice, a portion is always

employed in producing local vibrations, and finally dissipated by
internal friction.

199. Impact when the Limits of Elasticity are not Exceeded. Resilience.

The effect of impact on perfectly elastic material may also be dealt

with by considering the amount of energy stored up in the body in

consequence of the deformation which each of its elementary parts

have suffered. We have already seen that when a piece of material

is subjected to a simple uniform longitudinal stress of intensity p,

the amount of work U done by the stress is

p2

U= v x Volume.
'2ij

Let w be the weight of a unit of volume of the material, and W the

weight of the body considered, then we may write our question

U=W .H
where H is a certain height given by

and the whole elastic energy of the body may be measured by this

height, which is the distance through which the body must fall to

do an equivalent amount of work.
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If for p we write / the elastic strength of the material, then we

obtain what we have already called the Resilience of the body, and

H becomes what we may call the "height due to the resilience,"

which, for each material, has a certain definite value, given in feet

in Table II., Ch. XVIII., for various common materials.

Now in cases of impact where the limit of elasticity is not exceeded,

the whole energy of the blow is spent in straining the material or

structure, and hence that energy must not, in any case, exceed the

resilience. Thus, on reference to the table, it will be seen that in

ordinary wrought iron the height is given as 2 ft. 9 in., from whence

it follows that in the most favourable case a piece of iron will not

stand a blow of energy greater than that of its own weight falling

through about 3 feet, without being strained beyond the elastic limit.

If the parts of the body are subject to torsion, about 50 per cent,

may be added to these numbers, but, on the other hand, they are

subject to large deductions on account of the inequality of distribution

of stress within the body. Only a portion of the body is subjected

to the maximum stress, the rest is strained to a less degree, and

consequently has absorbed a less amount of the energy of the blow.

Thus, for example, a beam of circular section, even though it be

of "uniform strength" (Art. 161), has only one-fourth the resilience

of a stretched bar of the same weight, because it is only the particles

on the upper and lower surfaces which are exposed to maximum stress,

the central parts having their strength only partially developed.

We now draw two very general and important conclusions.

(1) When a body or structure is exposed to a blow exceeding
that represented by its own weight falling through a very moderate

height, a part, or the whole, is strained beyond the elastic limit.

(2) When a body or structure is not of uniform strength through-
out the excess of material is a cause of weakness.

On reference to Table II., Ch. XVIIL, it will be seen that an

exception occurs to the first principle in the case of the hardest

and strongest steel; but, as a rule, the property of ductility or

plasticity is essential to resistance to impact. Bodies which do not

possess it are generally brittle. In good ductile iron and soft steel

the non-elastic part of the resistance to impact will be seen here-

after to be at least 1,000 times the elastic part, assuming both equally

developed through all parts of the material. These remarks apply to

a single blow
;
the effect of repetition will be considered hereafter.

As an example of the application of the second principle we may
mention the bolts for armour plates invented by the late Sir W.
Palliser. In these bolts the shank is turned down to the diameter

C.M. 2 B
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of the base of the thread so as to be of equal strength throughout.

(See Ex. 4, p. 305.)

200. Free Vibrations of an Elastic Structure. If a structure be

loaded within the limit of elasticity and the load be suddenly re-

moved, the elastic forces being unbalanced set the structure in motion

and vibration ensues. The vibrations are described as "free" being
uninfluenced by any external cause and take place in times which

depend only on the inertia of the structure and the intensity of the

elastic forces, while their extent is arbitrary being fixed by the magni-
tude of the original deformation. In the absence of friction the total

energy of the structure must remain constant, a principle expressed

by the equation

Kinetic Energy + Elastic Energy = Constant.

The effect of friction is gradually to dissipate the energy so that

the vibrations speedily die out unless kept up by external forces.

This action, however, is for the present neglected.

The simplest kind of vibration is that in which the deformation

is of such a character that the elastic energy can be expressed in

terms of a single varying quantity which may be either linear as

in the deflection of a beam (page 332), or angular as in torsion

(page 361). In all such cases, as will be seen on reference to the

pages cited, the elastic energy is cz2 where z is the varying quantity

and c a constant co-efficient. Also the different points of the structure

have velocities which are in a fixed proportion to each other, and

also to dz/dt the rate of change of the varying quantity in question.

This rate of change may be described as the velocity of vibration

and denoted by V. The kinetic energy will therefore be bV^ where

b is a second constant co-efficient, and the equation of energy becomes

Wi + csi = Constant.

This kind of motion has already been studied in Art. 103, Chapter

VIII., and on reference to page 204 it will be seen that the period

of vibration (T Q ) is given by

a rule which includes both the simple examples there considered

and applies to all cases.

Whatever kind of vibration is dealt with the process of determining

TQ is very similar, and the first example to be considered is that

of the vibration of a loaded bar.

(1) In Fig. 151 a long flexible elastic bar is shown, to the middle
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and ends of which weights are attached
;

the fraction 1 - /? of the

whole weight W being placed in the middle, and the fraction J/3

at each end. The bar is slightly bent into an elastic curve in a

horizontal plane and then left to itself, being supposed resting on

a smooth table or suspended by vertical strings from two points

NN called " nodes
" which remain at rest during the motion, lying

as they do in a line passing through the centre of gravity of the

weights. The weight of the bar itself is supposed small enough
to be neglected.

The bar at any instant will be bent into a curve which is the

same as the deflection curve of a beam supported at the ends and

loaded in the middle; hence if z be the versed sine of that curve

Elastic Energy - 24 . z^ (p. 332).

The weights /3W, (\
-
ft)W are at distances (I

-
P)s and fa re-

spectively from NN, and their velocities are therefore (1
-
p)V and

/3V respectively, where For dz/dt is the relative velocity. Hence

Kinetic P^nergy
= - F" 2

,

= WPQ-P)?*. (See also p. 270.)

The equation of energy is therefore

jri j-

'2 = Constant,

whence applying the general rule given above,

The period is obviously unaffected by placing additional weight
at the nodes for these points are at rest. Suppose then that of

the total load W the fraction (\-a}W is placed at the nodes and

the remainder aW distributed as before, we shall then have

T -"

It is often more convenient to consider the "frequency," that is,

the number (N ) of vibrations per second. The vibrations considered
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-are complete including both a forward and a backward movement;
thus in a reciprocating piece driven by a crank the frequency is

the number of revolutions per second of the crank. On this under-

standing
1

where K is a numerical coefficient depending on the distribution of

the load. The smallest value K can have is 12-5, which occurs

when a=l, /3
=

J, but if half the load be concentrated at the nodes

the result is increased more than 40 per cent., becoming 17-7.

If the moment of inertia Ix vary with x the distance from one

end of the section considered, then / must be understood to refer

to the middle section and K must be divided by a numerical factor

JT, the square of which is given by the equation {a
=

^l},

derived from the formula for the elastic energy given on page 331,

in terms of the bending moment M which in this case varies as x.

If Ix increases on going from the ends to the middle, this divisor

is greater than unity and the value of K is diminished
; if, for

example, Ix oc x the divisor is -Jl-6 or 1-21.

In Fig. 152 the bar is loaded at the ends and two intermediate

points : the two halves are then bent in opposite directions and the

bar left to itself. There are now three nodes NNN instead of two

W Fig. 152

W

as in the preceding case. The time of vibration may be investigated

as before, when it will be found that the same formula applies but

with a greater value of K. Similarly there may be bending vibrations

with four or more nodes, the vibration being quicker the greater

the number.

If the weight be distributed continuously instead of being concen-

trated in given points, the formula for the frequency is still of the

same form, but the calculation of K is more difficult. The case of

a uniform bar has been thoroughly studied by writers on Acoustics,

and in Lord Rayleigh's Treatise on Sound full details will be found.

With no other load than its own weight the value of K is about
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20'2 for two nodes, instead of 17 '1 as found above in the case of

a concentrated load, and for a greater number of nodes i about

2-225 {2t-l}2.
If the transverse section of the beam be of sensible magnitude a

correction for "rotatory insertia" is necessary since these sections

have a motion of rotation as the beam bends and unbends. The

value of K is evidently diminished by this cause and in the case

of a vessel or other larger girder-like structure the correction would

be considerable.

The case of a vessel has of late attracted considerable attention

and the value of the constant C in the formula,

N=

has been determined experimentally by Herr Otto Schlick* who

gives for

Torpedo Boat Destroyers, (7=157,000.

Large Mail Steamers, (7=143,500.

Merchant Steamers, (7=128,000.

These values are for complete vibrations per minute with two nodes,

hence assuming E= 10,000 tons (see Art. 224) the corresponding values

of K are about 26, 24, and 21 respectively. They increase with the

fineness of lines of the vessel and, as might be expected, differ from

the value (20'2) for a uniform rod, partly from the causes already

pointed out, and partly from the influence of the water in which the

vessel floats which virtually increases her inertia. Some further remarks

on these points will be found in the Appendix.

(2) Let us next consider a weight W resting on an elastic plat-

form or support of any kind, and let 8 be the deflection which may
be calculated by methods explained in previous chapters of this work,

or if convenient may be found by observation. Let the weight and

inertia of the structure itself be neglected for the present, then the

equation of vibration will be as before

+ cz2 = Constant.

Now cz2 is the elastic energy of the structure, and therefore putting

Thus c is determined in terms of 8, and by the general rule already

employed (p. 386),

* Transactions of the Institution of Naval Architects, vol, xxxv., 1894.
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showing that the period is the same as that of a simple pendulum

(p. 204) of length 8 reckoned in feet : a rule of very general application

being true for example for a beam with ends either fixed or free, loaded

with a weight placed at any point ;
or for a weight suspended by

a spiral spring. The formula differs only in form from that previously

obtained on page 387 for the case of a loaded bar, and may be

deduced from it by putting a=l and replacing /3(l
- f$)W by W, to

represent the case where the ends are fixed by concentrating a very

heavy load there.

(3) In similar structures the deflection due to a given load similarly

placed varies inversely as the linear dimensions, and therefore the period
of free vibration varies inversely and the frequency directly as the

square root of the dimensions. An analogous rule applies to vessels,

for in similar vessels El/W varies as the length, and therefore Elf Wlz

varies inversely as the square of the length. Hence in similar vessels

the frequency of free vibration varies inversely as the length.

201. Forced Vibrations. If a structure be subject to a load of in-

variable amount the only vibrations which can occur are of the kind

described in the last article as "free," and the periods are perfectly

definite. But if the magnitude of the load be subject to a periodic

change the deformations of the structure will also change, corresponding
vibrations being set up which may be described as "forced." The

period of such forced vibrations is that of the load, while their extent

depends on the relation which that period bears to the period of free

vibration. When the varying load has acted upon the structure for any
considerable time these forced vibrations alone exist and in any case

admit of being separately studied.

Fig. 153 shows a long flexible bar loosely fixed at the ends carrying

a weight W concentrated in the middle. The weight is vibrating

under the action of a force which goes through a periodic change

being always proportional to the distance z of the vibrating weight
from the central line. The maximum value of z being supposed z

lt

and that of the force Q the actual force in any position will be

Qz/zlf
We proceed to calculate z

l supposing that we know the
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period of free vibration (T )
and the period of the varying load (T).

It will be seen presently that if T<T^ Q must act inwards and

this case is indicated in the figure, whereas if it act outwards T>T .

Taking the first case

/A
Q ~K* T /") "\

0>/
-- h k

v
'

1 J

of which the first term is the elastic energy of the bent bar and the

second represents energy derived from the force Q.

If now V be the velocity of the vibrating weight the equation of

energy will be
TX7J71 1 /A'QJPT

-}z* = Constant.

If Q were zero we should obtain the equation of free vibration

from which it only differs in the co-efficient of z2 . The general rule

{p. 386) already stated therefore gives

ifi

7*- 48AV
T
^'

the quantity Z
Q
in the right hand equation being the deflection due to

a steady load Q. Hence the extent of the vibration is determined by

z-, =

If T>T
Q

z
l
becomes negative, the interpretation of which is that

Q must then be taken as acting outwards instead of inwards. It

then operates as a resistance to vibration, and thus by diminishing
the intensity of the forces restoring equilibrium increases the period.

If T=T the periods are said to be "synchronous." The effect

of synchronism is that a force Q, however small, produces vibrations

of indefinite extent : energy accumulating at each repetition of the

force. This result is limited in practice by the effect of friction

which absorbs the energy as fast as it is supplied.

On reference to Art. 103 it will be seen that the value of z is

z
l
cos 6 where 6 is the angle made with the central line by a uni-

formly rotating radius. Or if t be the time reckoned for convenience

from the instant when = 90,

z = z^. sin 27T^ ;
S = Q . sin 2?r ~,

where S is the force needful to keep up the vibration. The effect

of friction is to diminish the extent of vibration and to cause it to

lag behind the variation of the force.
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The results of this article are applicable directly to any case in

which the inertia of the structure can be regarded as concentrated

in a point to which the varying force is applied. When the inertia

is distributed the value of will be reduced, but the general char-

acter of the results remains the same
;
there is always a certain critical

speed or speeds at which by synchronism with some particular mode
of vibration of the structure, excessive vibration is produced by a

load which, if steady, would have no sensible effect. Any approach
to these speeds must of course so far as possible be avoided.

If the load be originally resting quietly on the structure and then

begin to fluctuate, the resulting vibration will in the first instance

be a combination of the forced vibration of period T with a free

vibration of period T
Q ;

which will be represented by the equation

f t Tn t }Z=2A sin
27r^

-
-^

. sin
27r^-

V,

the extent of the free vibration being determined by the consideration

that dz/dt is zero when t is zero. When the periods are commensurable

this represents vibrations of varying amplitude recurring in regular

phases ;
but as before stated the free vibrations will generally be

speedily extinguished by the effect of friction.

202. Examples of Fluctuating Loads. Let us now consider some

examples.

(1) The reciprocating parts of machines, especially steam engines,

give rise to periodic forces the magnitude of which has already been

investigated in Art. 144, p. 283, the period being a revolution. If

N be the revolutions per second, it appears from the formulte there

given that the maximum value Q of the force arising from a recipro-

cating piece of weight W and stroke 2a is

To fix our ideas imagine the engine to stand upon a horizontal

platform, the time of free vibration of which is T corresponding to

a frequency JV . Then when the engine is working the extent of

the vibration will be

-

in which the quantity z will be the deflection produced by Q when

resting quietly upon the platform if the weight of platform and

engine can be regarded as concentrated below the cylinder. The

vibration becomes excessive when N approaches NQ
.
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In the case of a vessel the revolutions (N) of the engines in similar

vessels at corresponding speeds vary inversely as the square roots of the

lengths, while the frequency of free vibration as already pointed out

varies inversely as the length, hence the ratio N/N varies as the

square root of the length. In small vessels the revolutions are not

generally sufficient to produce vibration of sensible amount, but in

large vessels vibration with two, three, and sometimes with four

nodes occurs. The same is the case in torpedo boats on account of

their excessive speed. According to Herr Schlick the revolutions

must not approach the frequency of free vibration within 10 or 12

per cent.

Vibration due to this cause may in great measure be avoided by
a proper system of balancing as has been explained in the article

already cited. The example there considered is that of a loco-

motive in which the necessity for balancing arose at a very early

stage, and its principles, therefore, have been long understood. For

an approximately perfect balance, as there pointed out, the alternating

couples must be considered as well as the alternating forces. In

vessels the extent to which vibration is due to the reciprocating

parts of the engines has only recently been recognized, and the

subject of balancing has acquired great importance.

(2) When a vessel rolls in still water her period of unresisted

rolling (page 207) is

mg
where m is the metacentric height, and r the radius of gyration..

Suppose now a weight Q, say of a number of men, be moved from

the centre line to one side of a vessel at rest : the corresponding

angle of heel (< )
will be given by the equation

T)

Q = Wm tan
</>
= Wm <

, nearly,
2i

where B is the beam and W the displacement. Let now the men
move backwards and forwards from port to starboard and back

again, the period of the double movement being T. The result will

be forced rolling of period T and extent <

a (suppose) which in the

first instance will be accompanied by free rolling in period T
Q

. The
free rolling, however, may be supposed to have been extinguished by
hydraulic resistance. Assuming this, at any angle of heel

</>
there

will be a couple due to the men given by

"earl.
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If T>T the men will always be moving outward when that side

of the vessel is below the horizontal, and the moment due to them

diminish the righting couple so as to lengthen the natural

period. If T<TQ the converse will hold. The extent of the rolling

will be approximately (p. 391),

1

The motion before free rolling is extinguished will be represented

by the equation already given on the pages cited : and the effect

of hydraulic resistance on the forced rolling will be as already

explained.

The artificial process here described represents closely the rolling

of a vessel in a sea-way when broadside on to a series of uniform

waves : and the same formulae apply, < being now the maximum

slope of the waves : but this subject being outside the limits of

this treatise, the reader is referred for further information to Sir W.
H. White's well-known treatise on Naval Architecture.

(3) As an example of a different character, take the case of the

motion of an indicator piston under the action of the varying

pressure of the steam and the longitudinal force of the spiral spring

by means of which the steam pressure is indicated. If these forces

exactly balanced each other the indication would be perfect, but in

consequence of the inertia of the indicator piston a certain difference

always exists.

In this case the indicator piston has a certain natural period of

free vibration depending on the strength of the spring and the

inertia of the piston. The corresponding frequency (N ),
can be

determined by the method already described in Art. 200, p. 389.

The pressure of the steam varies according to a complicated law,

which for the moment we may suppose replaced by a simple varia-

tion of the kind already considered, the frequency being JV, the

revolutions per 1" of the engine.

Then if p , pl
be the excess of the actual and the indicated maxi-

mum pressures of the steam above their mean values,

TV" 2
o

Thus the error of the indication consequent on the inertia of the

indicator piston will be considerable unless the ratio N/N be small.

The result here obtained requires modifications noticed farther on in

consequence of the complexity of the actual law of variation of the
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pressure of the steam, but the conclusion arrived at must be the

same, and in fact experience shows that the ratio N/NQ
should not

exceed one-tenth : the higher the speed, the stiffer the spring must

be in order to avoid undulations in the curve traced by the pencil.

202A. Augmentation of Stress by Fluctuation. As in the analogous

case of impact the stress produced by a load of varying magnitude
is much greater than if it were applied steadily. If as before Q be the

maximum value and T the period, the equivalent steady load will be

in cases where the inertia of the structure can be considered as

concentrated : Q being replaced by k . Q where k is a co-efficient when

it is distributed.

In either case the equivalent steady load becomes indefinitely great

when T approaches T : a theoretical result limited in practice by
friction as already described. The actual stress produced by a small

vibrating load may, however, be very great.

The formula just given determines the stress produced after a

state of steady vibration has been reached
;
but the temporary aug

mentation before the free vibrations have been extinguished may be

much greater. The ratio cannot be precisely stated but in cases

where the periods T ,
T of free and forced vibration are commensur-

able it must generally be possible to have

in the equation of combined vibration given on page 392, thus in

creasing the equivalent steady load to

On the other hand the effect of fluctuation is reduced by friction as

already stated.

203. Compound Vibrations. If a fluctuating load of given frequency
N does not vary according to the simple harmonic law supposed in

preceding articles, it may always be treated as made up of a series

of periodic forces, each of which does follow that law. The first of

these has the frequency N and the rest have the frequencies 2N,
3N

t etc., in succession. For example, on reference to page 286 it

will be seen that in addition to the primary periodic force due to
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the motion of a piston, which alone is considered in Art. 202 (l)r

there is a secondary periodic force,

arising from the obliquity of the connecting rod. The maximum value

of this secondary force is Q/n and its frequency 2N. The other terms

of the series are in this case very minute but they may be considerable,

and each of the corresponding forces produces a forced vibration of its

own which may be augmented by synchronism with some particular
mode of vibration of the structure on which they act. For an

exact balance each force must be neutralized, or the balance weight
must follow the same law of vibration as the load. But as syn-

chronism occurs at much lower speeds the secondary forces will often

be of little importance.

Where the load increases suddenly to its maximum amount, as

when steam is admitted to the cylinder of an indicator (page 394),

free vibrations are superposed on the forced vibrations and are often

very conspicuous.

203A. Centrifugal Whirling of Shafts. When a shaft rotates, the

centrifugal forces produced do not in general exactly balance one

another : either because the shaft is not exactly straight or because the

centres of gravity of the weights it carries do not precisely lie in the

axis. The shaft therefore bends in a plane rotating along with it, and

at certain speeds the bending may become indefinitely great, a con-

dition of things known as "centrifugal whirling."

The simplest case is that of a shaft rotating on bearings at its ends,

and carrying a weight W in the middle, the centre of gravity G of

which is at a distance a from the axis of rotation C. The weight
moves in a circle round C as a centre, the radius CG in the first

instance being ,
but subsequently increasing at revolutions N to

a + z where z is the deflection CO produced by the centrifugal force

The inertia of the shaft itself being supposed small enough to be

neglected, the deflection z is Q1
3
/4:8EI, and therefore

W

If it were possible to have a = we should obtain a value of N for

which the deflection z might be anything we please. If this be called N
,
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and expressing the preceding equation in terms of N
Q1

formulae which determine CO the deviation of the centre of gravity

and CO the bending of the shaft at any other speed N.

The formulae show that, at speeds less than the critical speed NQ ,
z

is a positive quantity which increases as the speed increases until

N=NQ when it becomes indefinitely great, however small the original

deviation a, so that 7V is a speed at which centrifugal whirling occurs.

At greater speeds finite values are again obtained for both z and a + z,

but they are both negative, z being numerically the greater. The

interpretation of this is that the shaft is bent in the opposite direction,

the centre of gravity G lying between the geometrical axis and C
the axis of rotation. They diminish as the speed increases so that G

continually approaches the axis of rotation and coincides with it when

the speed is infinite.

The conclusions here arrived at for the simple case where the weight
W is concentrated at the centre of a shaft are also true in any other

case, with a proper value of the coefficient in the formula for N . If

we have a uniform shaft not otherwise loaded, the weight being

uniformly distributed, the centrifugal forces are of much less intensity,

and the speed of centrifugal whirling is much greater. If half the

weight were concentrated in the middle and the other half at the ends

where the centrifugal force is zero, the coefficient would obviously be

increased in the ratio \/2 : 1 or 41 '4 per cent. As the deflection curve

is not the same in the two cases this is not exact : the subject was first

investigated by Rankine, whose results* show that the coefficient 6'25

in the formula should be replaced by 9, being an increase of 44 per

cent. For a steel shaft d inches diameter, I inches long, this gives for

revolutions per minute

In a shaft 1 inch diameter 4 ft. long the speed of centrifugal whirling
is therefore about 2100 revolutions per minute. Much greater speeds
are by no means unusual in modern practice, and in a certain type
of steam turbine 35,000 revolutions per minute have been reached.

Where the speed is excessive the important principle that, above the

critical speed, the centre of gravity of the rotating masses tends to

approach the axis of rotation should be borne in mind. A flexible

* Milhoork and Machinery, 1st edition, 1869, p. 549.
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shaft may for this reason be safer at certain speeds than one which in

a state of rest is more rigid.

As in the corresponding case of plane vibration nodes may occur in

a rotating shaft. Thus in the case just considered there may be a node

in the middle of the shaft dividing it into equal parts which bend in

opposite directions : the length of the shaft is then virtually halved,

and a second critical speed four times as great as the first determined,

which it is dangerous to approach. Similarly there may be three or

more nodes and to each number corresponds a certain critical speed.

So also for a different arrangement of bearings and for different weights
attached the coefficient in the formula for the critical speed will be

changed. The question therefore is one of much complexity of detail

in each individual case. Where the weights are distributed exact

results can. only be obtained by the solution of a differential equation :

though approximations can generally be found as indicated above.

The subject has recently been investigated experimentally by Mr.

(now Prof.) Dunkerly
* who points out that the centrifugal righting

couple introduced by a pulley mounted on a shaft anywhere but at the

centre has the effect of increasing the critical speed.

Returning to the case considered in Art. 201, p. 390, of a weight
attached to the centre of an elastic bar, and vibrating in one plane :

the frequency of free vibration is determined by a formula identical

with that found in the present article for the critical' speed Ar
,
the

extent (^) of the vibration being undetermined. Suppose now a

second vibration in a plane at right angles to the first, and let the bar

be of circular section : the frequency will be the same as before, and

the extent (z2 ) being undetermined may be taken at pleasure. If the

two motions co-exist, the result, as is well known, will be that the

centre of the moving weight will describe an ellipse which becomes a

circle if z
l
= z

2
. The geometrical axis of the bar lies in a plane rotating

at revolutions NQ . Evidently then the centrifugal whirling of a shaft

may be considered as a state of free vibration.

At other speeds the centrifugal forces may be resolved into two

components at right angles which produce forced vibrations of frequency
N in planes at right angles, centrifugal whirling being a consequence
of synchronism between the forced and free vibration.

Theoretically, at any speed, free vibration, either plane or elliptic,

with frequency JV
,
due to some external cause, may occur in com-

bination with the centifrugal vibration of frequency N which now takes

place about a vibrating axis, but, as in previous cases, such free

vibrations will speedily be extinguished by the effect of friction. So
* Phil. Trans., vol. 190, 1894.
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also deflections due to the action of gravity or other permanent forces

will not affect a centrifugal vibration about the displaced axis. The

rotation of a bent shaft is not necessarily accompanied by the rotation

along with it of its geometrical axis, as is well seen by the example of

the flexible shafts often used on a small scale for special purposes.

EXAMPLES.
1. A hammer weighing 2 Ibs. strikes a nail with a velocity of 15 feet per second and

drives it g inch, what is the mean pressure overcome by the nail ? Ans. 673 Ibs.

2. If the load on a stretched bar is suddenly reversed so as to produce compression,

show that the stress will be trebled.*

Energy stored in stretched bar will on the release of the load be employed in

compression, and in addition the load will be exerted through a distance= original

extension + compression. The two together must be equal to the work done in com-

pressing the bar.

Note. Such sudden reversal as is here supposed rarely if ever occurs in practice in a

stretched or compressed piece, but it may occur in a bent piece, to which the same

principle applies.

3. A load of 1000 Ibs. falls through 1" before commencing to stretch a suspending rod

by which it is carried. If the sectional area of the rod is 2 sq. in., length 100", and

modulus of elasticity 30,000,000, find the stress produced.

Stress=17,828 Ibs. per sq. in.

4. A load of 5000 Ibs. is carried by the rod of the preceding question, and an additional

load of 2000 Ibs. is suddenly applied ; what is the stress produced ?

Stress=4500 Ibs. per sq. in.

5. A beam will carry safely 1 ton with a deflection of 1 inch
; from what height may

a weight of 100 Ibs. drop without injuring it, neglecting the effect of inertia? Ans.

10'2 inches.

6. The maximum stability of a vessel is 4000 foot-tons. The curve of stability is

represented sufficiently approximately by a triangle, such that the angle of maximum

stability is 1/n the angle of vanishing stability. Find the uniform moment which, applied

suddenly to the ship upright and at rest, would just capsize her.

L 4000yn
Ans. Capsizing moment=^
7. A crane is observed to deflect through 1 inch when a load of 1 ton is suspended from

it. A load of 2 tons is lowered at the rate of 2 f.s. and then suddenly stopped; in what

ratio is the stress on the parts of the crane augmented? Ans. 87 per cent.

8. A. vertical bar is supported as in Fig. 148, and struck horizontally. Assuming
that the deflection curve of the bar is the same as if a horizontal force were steadily

applied, compare the kinetic energy of the vibrating bar with the energy of an equal

weight concentrated in the middle. Ans. ^1.

Note. This result, obtained originally by Homersham Cox, agrees well with Hodgkin-
son's experimental result, showing that the energy of the secondary vibrations of the bar

is relatively small.

9. A thin flat plate is stiffened by beams of uniform section. By an explosion a

uniform pressure is suddenly applied over the whole surface : show that the resistance

of the beams to impact is 60 per cent, greater than if the load were concentrated in the

middle.*

*
Examples 2 and 9 are due to Prof. T. A. Hearson. Some good examples on impact

will be found in Prof. Alexander's treatise on Applied Mechanics, part I.



CHAPTER XVII.

STRESS, STRAIN, AND ELASTICITY.

SECTION L STRESS.

204. Ellipse of Stress. Stress consists, as we have said (Art. 147),

in a mutual action between two parts, into which we imagine a body
divided by an ideal section. If the section be plane, and if the

stress be uniform, the intensity and direction of the stress at each

point of the section are the same at all points of a given section,

and, for a given point, depend only on the position of the plane. In

a fluid the intensity is the same for all planes, and the direction is

normal to the plane. In simple tension and compression the direc-

tion of the stress is the same for all planes, but its intensity

varies, becoming zero for planes parallel to the stress. In a simple

distorting stress (p. 352) the intensity is the same for all planes

perpendicular to a third given plane, but the direction varies : on

one pair of planes it is normal, on another tangential.

We now proceed to consider stress more generally, and we shall

first examine the effect of combining together a pair of simple

longitudinal stresses, the directions of which are at right angles and

the intensities of which are given. Let the plane of the paper be

parallel to the directions of the stresses, and let us consider a piece

of material of thickness unity. If the stress be uniform, the size and

shape of the piece are immaterial. Let us then imagine a rectangular

block ABCD (Fig. 154) with sides perpendicular to the stresses pv p2
.

On the faces A, CD a stress, of intensity plt
and of total amount

pl
. AB will act

;
while on EC and AD there will be a stress of

intensity p2 ,
and of total amount p2

. EG. Divide now the rectangle

by a diagonal plane AC: there will be a stress on that plane, which

it is our object to determine in direction and magnitude. Let 6 be

the angle which the normal to the plane makes with the direction

of pl ; by determining rightly the ratio of the sides of the rectangle
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this angle may be made what we please. Proceeding as in Art. 18*2,

we find for the normal stress

pn =pl
. eos2 + p2

. sin2
#,

and for the tangential stress

pt
= (pl

- >9)
sin . cos 6.

The resultant stress may be found in direction and magnitude by

Fig.154

compounding these results, but it is better to proceed by a graphical

construction. On the perpendicular set off OQ to represent pv and

Oq to represent p.2 ;
also draw the ordinates QM parallel to p2 ,

and

qP parallel to p l
to meet in P. Then

PM=Oq.sine=p 2

7^7

'AC'

Whence it follows that the intensity of the stress on AC due to

p l
is represented by OM, and that due to p2 by PM. If then we

join OP we shall obtain the resultant stress on AC in direction and

magnitude. It is easily seen that P lies on an ellipse of which

pv p2
are the semi-axes. This ellipse is called the Ellipse of Stress.

If the pair of stresses pv p2
have opposite signs, then Oq'=p2

must be set off on the opposite side of 0, and OP' the radius vector

of the ellipse lies on the other side of OM, but in other respects

the construction is unaltered. When pv p2 , are equal the ellipse
C.M. 2c
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becomes a circle
;

if they have the same sign the stress is the same

in all directions in magnitude and direction like fluid pressure ;
if

they have opposite signs, as in the chapter on^Torsion, the intensity

is the same, but the angle of inclination P'OQ, called the "obliquity"
of stress, is variable, being always twice QOM.

205. Principal Stresses. Axes of Stress. We now propose to show

that any state of stress in two dimensions (Art. 208) may always be

reduced to a pair of simple stresses such as we have just considered.

For, drawing the same figure as in the last article, let us inquire
the effect of replacing plt p2 by other stresses of any magnitude
and in any directions. Whatever they be, they evidently must have

given tangential and normal components, of which, reasoning as in

a former chapter, we know that the tangential must be equal and of

opposite tendency.
Let the equal tangential components be pt

and the normal com-

ponents pn and p'n . Consider the

Fig.155 equilibrium of the triangular portion

ABC (Fig. 155), and let us determine

under what conditions it is possible

that the stress on AC should be a

normal stress only, without any tan-

gential component. Resolve parallel to

BC
; then, if p be that normal stress,.

p . AC . cos =pt
. BC+pn . AB

or p-pn =Pf tan #

Similarly, resolving parallel to AB,

whence, subtracting one equation from the other,

pn
-

p'n
= pt . (cot 6 ~ tan 6)

= 2pt
. cot 26

;

or tan 20= .

Pt
, .

This equation always gives two values of 6 at right angles, showing
that two planes at right angles can always be found on which the

stress is wholly normal. The magnitude of the stress on these planes
is found by multiplying the equations together, when we get the

"

the roots of which, pv p2 ,
are the stresses required. Having deter-

mined pv p2,
the ellipse of stress can now be constructed by the

method of the last article.
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Every state of stress in two dimensions then can always be repre-

sented by an ellipse, the semi-axes of which are called Principal

Stresses, and their directions the Axes of Stress.

The particular case in which p'n is zero is one of constant occurrence

in practical applications. If q be the shearing stress, the equations

may then be written

Pn tau20='2q (1); p(p-pn}
= f (2).

Of the roots of the quadratic the greater has the same sign as that of

pn ,
and the other the opposite. Also, we find by dividing the two

equations for p by one another,

from which it appears that of the two values of furnished by (1)

the one less than 45 must correspond to the greater value of p.

Hence the major principal stress is of the same kind as pM and in-

clined to it at an angle less than 45.

206. Varying Stress. Lines of Stress. Bending and Twisting of a

Shaft. In proving the two very important propositions just given
we have assumed (1) that the stress was uniform, throughout the

region including the portion of matter we have been considering ; (2)

that gravity or any other force acting not on the bounding surface,

but on each particle of the interior, may be neglected. It is however

to be observed that by taking the portion of matter small enough,
both these suppositions may be made, in general, as nearly true as

we please : the first, because any change of stress must be continuous,

and therefore becomes smaller the less the distance between the points

we consider; the second, because any internal force is proportional

to the volume, while any force on the boundary of a piece of

material is proportional to the surface of the piece. Now the volume

of a body varies as the cube, and the surface as the square of its

linear dimensions, and it follows that the internal force vanishes in

comparison with the stress on the boundary when the dimensions

diminish indefinitely. Hence these propositions are still true as

respects the state of stress at any given point of a body, even though
the stress be variable, and notwithstanding the action of gravity.

When, however, we consider the variation of stress from point to

point, gravity must be considered. Thus, for example, in the case

of a fluid the action of gravity does not prevent the pressure from

being the same in all directions, but it does cause the pressure to

vary from point to point.

When the stress varies from point to point, both the intensity and
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the direction may vary ; thus, for example, in a twisted shaft the

intensity of the stress at any point varies as the distance from the

axis, and the direction of the stress varies according to the position

of the point, the principal stresses making an angle of 45 with the

axis of the cylinder. The axes of stress in this case always touch

certain lines which give, at each point they pass through, the direc-

tion of the stress at that point. These lines are called Lines of

Stress
;

in a simple distorting stress, or, in other cases where the

principal stresses are of opposite signs, one is a Line of Thrust, the

other a Line of Tension.

In a twisted shaft of elastic material the lines of stress are spirals

traced on a cylinder passing through the point considered, the spirals

being inclined at 45 to the axis. If the shaft be bent as well as

twisted, the maximum normal stress at any point of the transverse

section is given by the equation

pnSS - (Art. 155),

where M is the bending moment and r the radius. The shearing stress

at the external surface due to a twisting moment T is given by

q
=^ s (Art. 184).

Combining these two together we get, by solving the quadratic for the

principal stresses, /-M >/j

which gives the principal stresses at that point of the shaft where the

stress is greatest. The maximum stress is the same as would be given

by a simple twisting moment equal to M + <jM 2 + T2
,
which is some-

times, though improperly, called the simple equivalent twisting moment.

The minor principal stress ought, however, also to be considered in

calculations respecting strength, as will be seen hereafter.

The lines of stress here are spirals of variable pitch angle.

207. Straining Actions on the Web of an I Beam. Let us now return

to the case of an / beam with a thin web, in which the web resists

nearly the whole of the shearing force F
t
and the flanges nearly the

whole of the bending moment M. The intensity of the shearing stress

q is approximately _ F

where h is the depth and t the thickness. The intensity of the normal

stress at a point distant y from the neutral axis is

M
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The principal stresses and axes of stress are given by the equations

20
' '

From this it appears that, even when the web is very thin so that

it carries a very small fraction of the total bending moment, it cannot

be treated as resisting shearing alone, and if it is so treated will be

the most severely strained part of the beam. Let us, for example,

suppose the flanges to be subject to a stress of 4 tons per sq. inch

at a given section, and the web to a shearing stress also of 4 tons

per sq. inch : then at points in the web near the flanges, say, for

example, at a distance from the centre of three-fourths the half depth
of the beam, the normal stress will be 3 tons per sq. inch. Putting
these values in the formula, we get the quadratic equation

>(?-*)-!*;
whence

p = 5-77, or -2-77,

a result which shows that the web is much more severely strained

than the flanges. The lines of stress are found from the equation

for 0. The direct effect of any load resting on the upper flange

must be provided for separately by vertical stiffening pieces.

208. Remarks on Stress in General. We have hitherto been con-

sidering only the stress on planes at right angles to a certain primary

plane, to which we have supposed the stress on every plane to be

parallel. In most practical questions relating to strength of materials

this is sufficient, since, though stress frequently exists on the primary

plane, it is usually normal and of relatively small intensity. Thus,

for example, in a steam boiler there is stress on the internal and

external surface of the boiler due to the pressure of the steam and

the atmosphere ;
but it is of small amount compared to the stress on

planes perpendicular to the surface. We therefore content ourselves

with a statement without demonstration of corresponding propositions

in three dimensions.

(1) Any state of stress at a point within a solid may always be

reduced to three simple stresses on planes at right angles.

(2) The resultant stress on any plane due to the action of three

simple stresses at right angles to each other is always

represented in direction and magnitude by the radius vector

of an ellipsoid.

The first of these propositions may be regarded as the last step in

a process of analysis, by which we reduce all external forces acting
on a structure of any kind : first, into a set of forces acting on each
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piece of the structure; and second, into forces acting on each of the

small elements of which we may imagine that piece composed ;
and

lastly, into three forces at right angles acting upon the element, of

which one in practical cases is usually small. All questions in

Strength of Materials, then, ultimately resolve themselves into a

consideration of the effects of forces so applied.

One method of conceiving the effect of three such forces is to

imagine each separated into two parts, one of which is the same for

all, being the mean value of the three
;
while the other is compressive

for one and tensile for the two others, or vice versa. In isotropic

matter (Art. 210) the first set produces change of volume only, and

may be called the "volume-stress," or, as no other stress can exist

in fluid bodies at rest, a "
fluid

"
stress. The second is a distorting

stress, consisting of three simple distorting stresses tending to pro-

duce distortion in the three principal planes.

EXAMPLES.

1. A tube, 12 inches mean diameter and \ inch thick, is acted on by a thrust of 20 tons

and a twisting moment of 25 foot-tons. Find the principal stresses and lines of stress.

Taking a small rectangular piece with one side in the transverse section, we find one

face acted on by a normal stress of 1'06 tons per square inch due to the thrust, and a

tangential stress of 2 '66 tons due to the twisting. Substituting these values forp,t , pt,

and observing that the stress on the other face is wholly tangential, we find from the

quadratic
Major principal stress= 3 '24 (thrust) ;

Minor principal stress=2 '18 (tension).

Lines of stress are spirals, the lines of tension inclined at 50^ to the axis, and the

lines of thrust at 39|.
2. A rivet is under the action of a shearing stress of 4 tons per square inch, and a

tensile stress, due to the contraction of the rivet in its hole, of 3 tons per square inch.

Find the principal stresses.

Ans. Major principal stress=5'8 tons (tension) ;

Minor principal stress=2'77 tons (thrust).

3. The thrust of a screw is 20 tons
; the shaft is subject to a twisting moment of 100

foot-tons, and, in addition, to a bending moment of 25 foot-tons, due to the weight of

the shaft and its inertia when the vessel pitches. Find the maximum stress and compare
it with what it would have been if the twisting moment had acted alone. Shaft 14

inches diameter.
Ans. Major principal stress=2'9, Ratio=l*32;

Minor principal stress =1*6.

4. A half-inch bolt, of dimensions given in Ex. 6, p. 261, is screwed up to a tension of

1 ton per square inch of the gross sectional area. Assuming a co-efficient of friction of

'16, find the true maximum stress on the bolt while being screwed up. Ans. Principal

stresses= 2 and *35 tons.

5. It has been proposed to construct cylindrical boilers with searns placed diagonally

instead of longitudinally and transversely. What is the object of this arrangement, and

what is the theoretical gain of strength ? Ans. Increase of strength= 26^ per cent.

6. A thick hollow cylinder is under the action of tangential stress applied uniformly
all over its internal surface in directions perpendicular to its axis, the cylinder being
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prevented from turning by a similar stress, applied at the external surface. Find the

principal stresses and lines of stress. Ans. The principal stresses are equal and opposite,

forming a simple distorting stress, of intensity varying inversely as the square of the

distance from the centre. Lines of stress equiangular spirals of angle 45.

7. In Ex. 9, page 375, suppose the beam so loaded that the maximum stress due to

bending is 3 tons per square inch, and the total shearing force divided by the sectional

area of the web 4 tons per square inch : find the principal stresses at points immediately
below the flanges. Ans. Principal stresses 4 and 1*9 tons per square inch.

8. In any state of stress at a point in a body show that the sum of the normal stresses

-on three planes at right angles is the same however the planes be drawn.

SECTION II. STRAIN.

209. Simple Longitudinal Strain. Two Strains at Eight Angles.

We now go on to consider the changes of form and size which are

produced by the action of stress. Such changes, it has already been

said, are called Strains.

In uniform strain every set of particles lying in a straight line must

still lie in a straight line, and two lines originally parallel must still be

Fig.156parallel. The lengths of all

parallel lines are altered in a

given ratio l+e : 1, where e

is a quantity, in practical cases

very small, which measures

the strain in the direction of

the line considered. Two sets

of parallel lines, however, will

not in general remain at the

same inclination to each other,

nor will their length alter in

the same ratio. Thus the sides

of a cube remain plane, and

opposite sides are parallel,

but the parallelepiped is not

generally rectangular, and its

sides are not equal.

The simplest kind of strain is a simple longitudinal strain in which

all lines parallel to a fixed plane in the body are unaltered in length,

while all lines perpendicular to that plane remain so: that is to say

a simple change of length, the breadth and thickness remaining

unaltered.

Fig. 156 shows an extensible band OBCD, in which OB is fixed,

while CD moves to C'D', the breadth being in the first instance un-

altered, and the length altered so that

CC' = e
l
.BC.
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If any line AEF be traced in the band parallel to BC, the points

EF will shift to E'F' positions in the same line, such that

for since the strain is uniform the change of length of all parts of

the band is the same. If, however, we draw a line QL inclined at

an angle to BC, that line will shift to Q'L', a position such that

QL has not increased in so great a ratio, and is not inclined to BC
at the same angle as before. We are about to determine the actual

change of length and angular position of QL by finding that of a

parallel AP drawn through A. It has been already remarked that

parallel lines in uniform strain must suffer the same strain. Now
AP shifts to AP' such that

If now the angle PAP'
(
=

i) be so small that i
z
may be neglected

compared with i, and i compared with unity,

and therefore

AP' - AP = PP'. cos 6 = e
1
.AP.

Thus the strain (e) in the direction of AP is

e = e^. cos2
0.

Also, it is clear that

P7 PP'
i = t^L

= ^ . gin 9 = ^ . sin . cos B.
A

By these formulae the changes of length and angular positions of all line&

in the band are determined.

Next draw a line AQ perpendicular and equal to AP, and let AQ' be

the position into which it moves in consequence of the strain
;
we find

for
<?',

the extension of AQ,
e' = e

l
. sin2 ;

while the angle QAQ' is

i' = e
1

. sin . cos 6 = i.

Imagine now the square AQL completed ;
this square, in consequence

of the strain, will have its sides altered in length by the quantities e, e',

and will have suffered a distortion given by

'2i = 2e
l

. sin 6 . cos 6.

In this way the effect of a simple longitudinal strain is completely

determined, for we can calculate the changes taking place in any

portion of the band we please.

Next suppose the band to suffer a second simple longitudinal strain

e.
2

in the direction of the breadth, and observe that, since the strains
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are very small, the effect of e
lt

e
2
taken together must be the sum of

those due to each taken separately ;
then we find for the change of

length and position of any line AP,

e = e
l

. cos'2 + 2
. sin2

;

i = (e l
-

g.,)sin . cos 6,

results which may be applied as before to show the changes of dimension

and the distortion of a square traced anywhere in the band.

We have here regarded the angle i as a measure of the distortion a

square suffers in consequence of the strain. If, however, we drop Q'M

perpendicular to AF, we have

.

Now AM is the space through which the line L'Q' has shifted parallel

to itself in consequence of the strain, and we see therefore that the

angle i also gives a measure of the magnitude of this shifting. By
some writers this is called "sliding." It is also called "shearing
strain."

If we compare the equations we have just obtained for strain with

those previously obtained in Art. 204 for stress, we find them identi-

cal
;
and hence it appears that, so long at least as the strains are

very small, all propositions respecting stress must also be true, mutatis

mutandis, with respect to strain. Thus, for example, a simple distor

tion must be equivalent to a longitudinal extension accompanied by
an equal longitudinal contraction; and, again, every state of strain

can be reduced to three simple longitudinal strains at right angles to

each other, and represented by an ellipsoid of strain. The simple
strains are called Principal Strains, and their directions Axes of Strain.

Strain, like stress, generally varies from point to point of the body :

but the relations here proved still hold good at each point, and we
have Lines of Strain just as we previously had Lines of Stress.

SECTION IH.-*-CONNECTION BETWEEN STRESS AND STRAIN.

210. Equations connecting Stress and Strain in Isotropic Matter. So

far we have merely been stating certain conditions which stress must

satisfy in order that each element of a body may be in equilibrium,
and certain other conditions which strain must satisfy if the body
is continuous. We now connect the two by considering the way in

which stress produces strain, which differs according to the nature

of the material.

We first consider perfectly elastic material (see Art. 147), and

suppose that material to have the same elastic properties in all
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directions, in which case it is said to be isotropic. Metallic bodies

are often not isotropic. as will be seen hereafter (Ch. XVIII.
).

Suppose a rectangular bar under the action of a simple longitudinal
.stress pv then there results (Art. 148) a longitudinal strain ^ given

where E is the corresponding modulus of elasticity. Accompanying
the longitudinal extension we find a contraction of breadth that is a

lateral strain of opposite sign, of magnitude l/m
tb the longitudinal

strain where m is a co-efficient. The contraction in thickness will be

qual, because the material is supposed isotropic. Hence the effect of

the simple longitudinal stress pl
is to produce three simple longitudinal

strains at right angles,

_ . _. _*
l ~E' mE' 3

~
mE'

Next remove p lt
and in its place suppose a simple stress p2 applied in

the direction of the breadth of the bar
;
we have by similar reasoning

the three strains,

Ps Pz P*
e,
= - -% ;

e9
=*

; e*= - -~.mE ' E ' mE
And similarly removing p2

and replacing it by p3 acting in the direction

of the thickness,

iJSL. e - -A.. e -P*
&l
~

mE' mE'
e*~ E'

These three sets of equations give the strains due to plt p2 , p3 ,
each

acting alone
;
and we now conclude that if all three act together we

must necessarily have

with two other symmetrical equations.

Hence it appears that the effect of three principal stresses, and

consequently of any state of stress whatever on isotropic matter, is

to produce a strain, the axes of which coincide with the axes of

stress, and in which the principal strains are connected with the

principal stresses by the equations just written down.*

The product Ee
l

is the simple tensile stress which would produce

the strain ev a quantity to which special importance is attached when

e^
is the greatest of the three principal strains and in consequence

the maximum elongation in any direction at the point considered.

* The form in which these equations are given is that employed by Grashof. For

practical application it is more convenient than any other.
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The value of Ee
l
in this case is frequently described as the "

equivalent

simple tensile stress."

211. Elasticity of Form and Volume. The value of the constant m
may be found directly by experiment, though with some difficulty, on

account of the smallness of the lateral contraction which it measures
;

but it may also be found indirectly, by connecting it with the co-efficient

employed in a former chapter to measure the elasticity of torsion. For

if we subtract the second of the three equations just obtained from the

first, we get

m-=
Now referring to Art. 204, we find

Pt= (ft
-J 2>pm , cos 0,

2i = 2(el
- e

2 )
sin . cos 0,

where pt
is the tangential stress on a pair of planes inclined at angle 6

to the axes, and 2i is the distortion of a square inclined at that angle to

the axes of strain. Since now the axes of strain coincide with the axes

of stress, we must have

Pl = ^iZA_ = I ^ .E
2t 2( 1

-
2)

2m + l

an equation which, compared with Art. 183, shows that the co-efficient

of rigidity C must be

Experiment shows that in metallic bodies C is generally about f#,
whence it follows that m lies between 3 and 4. In the ordinary materials

of construction the comparison cannot, however, be made with exactness,

because such bodies are rarely exactly isotropic and homogeneous. The

Talue of m for iron is supposed to be about 3 J.

Again, if we add together the three fundamental equations, we find

Now the volume of a cube, the side of which is unity, becomes

when strained (1 + 6-^(1 + e
2)(l +ez ),

and therefore the volume strain is

i
+ e

2 + e
z
wnen tQe strains are very small. Hence, if we separate the

stress into a fluid stress N and a distorting stress (Art. 209), we have

N= =-T n.-Ex Volume Strain,
o(m 2)
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and the co-efficient
m

measures the elasticity of volume. The two constants C and D, which

measure elasticity of distinctly different kinds, may be regarded as the

fundamental elastic constants of an isotropic body. The ordinary

Young's modulus E involves both kinds of elasticity.

212. Modulus of Elasticity under various circumstances. Elasticity of

Flexion. When the sides of a bar are free the ratio of the longitudinal

stress on the longitudinal strain is the ordinary modulus of elasticity E;.

but the equations above given show that, when the sides of the bar are

subject to stress, the modulus will have a different value. For example,
let the bar be forcibly prevented from contracting, either in breadth or

thickness, by the application of a suitable lateral tension, p2 ( =ps ),
then

e, e are both zero, and

m m
whence we obtain for the magnitude of the necessary lateral stress

and for the corresponding extension of the bar

m2 - m - 2
Ee, = --

Pi-
rn2 -m ^ 1

Hence the modulus of elasticity is now

^m(m-l)
'

This constant A is what Rankine called the direct elasticity7 of the-

substance : it is of course always greater than E. For m =
4, A = \E :

form = 3, A=\E.
If the bar be free to contract in thickness, but not in breadth, we

have p3
and e

2 zero, and the equations become

7-r
m'2 - 1

whence we find &e
l =pl

.
-

^
>

so that the value of the modulus of elasticity is

m2
FW- 1
K

In a similar way if p2 , p3
have any given values the modulus can be

found.
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It will now be convenient to examine an important point already

referred to in the theory of simple bending, that is to say the

assumption (Art. 153) that the modulus of elasticity

E was the same as in the case of simple tension, >

notwithstanding the lateral connection of the ele-

mentary bars, into which we imagined the whole

beam split up. If these elementary bars were pre-

vented from contracting freely, as they would do if

separated from each other, the modulus could not

be the same. In fact, however, there is nothing in

their lateral connection which prevents them from

doing so. Figure 157 shows, on a very exaggerated

scale, the form assumed by a transverse section

AGED originally rectangular, cutting a series of

longitudinal sections orignally parallel to the plane

of bending in the straight lines shown. Assuming
the upper side stretched as in Fig. 122, page 306^
these lines all radiate from a centre 0' above the s

beam, which bends transversely, while the originally

straight horizontal layers are cut in arcs of circle

struck from the same centre. The upper side of Fig.is?

the beam contracts and the lower side expands, and reasoning exactly

in the same way as in Art. 153 when we derived the formula for the

longitudinal curvature, we find a corresponding formula for the trans-

verse curvature,

p =m,
whence it follows immediately that

R = mR.

In order that this transverse curvature of the originally horizontal

layers shall not be inconsistent with the reasoning by which the formula

for bending is obtained, all that is necessary is that the deviation

from a straight line shall be small as compared with the distance

of the layer from the neutral axis. Let u be that deviation, then

(see Art. 163) if b be the breadth and h the depth,

_~ ~

Now the stress being within the elastic limit p/E is very small, for

example take the case of wrought iron, for which p/E is not more

than T^Vo
th

>
and suppose wi = 4,

30,400. ft

~~

19,200V
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It is obvious that u must be always very small compared with y,.

except very near the neutral axis, unless b be very large compared
with h, and we conclude therefore that when a beam is bent within

the limit of elasticity, the lateral connection of the parts cannot

have any sensible influence on its resistance to bending, unless its

breadth be great.

Experience shows, however, that a broad thin plate remains straight

in the direction of the breadth when bent longitudinally, and cannot

therefore be supposed free to expand or contract laterally except near

the edges. In this case, then, there must be a normal stress (p')

at every point of a longitudinal section parallel to the plane of bending
and this stress must be proportional to the corresponding stress (p)'

on the transverse section being given by the equation,

P
p =

m

Change of breadth being thus prevented the elasticity of flexion (p. 412)
becomes 2m

being from 7 to 1 2 per cent, greater than Young's modulus.

213. Remarks on Shearing and Bending. When a beam is subject<

to bending without shearing the only assumption made in the usual

theory -given on page 307 is that of complete freedom to expam
and contract laterally ;

but in general there is also a shear on each

section and in consequence tangential as well as normal stress at

each point. Hence if two plane sections be taken before the beam

is bent, those sections not only rotate about their neutral axes as

in Fig. 122 on the page cited, but are also distorted and the con-

sequences of this distortion will now be briefly considered.

_k K (1) Fig. 158 shows a longitudinal sectioi

of a bent beam, the plane of bending bein|

as before a plane of symmetry, and NN th(

geometrical axis as in Fig. 122. The dott

straight lines KPNK as before show th(

positions of two transverse sections when bend-

ing alone exists, and simply rotate about axe

through NN to meet in a centre of curvature

not shown in the present figure. The ful

', I curves kpNk show the intersections of the

1

longitudinal section with the actual sections

after distortion by the action of the shearing stress at each point

Let us now suppose the shearing force to be constant, that is, the same

Pig. 158
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on all sections, as when a beam is fixed horizontally at one end and

loaded at the other with a given weight, then as in other analogous

cases (pp. 299, 306) we may suppose the shearing stress and con-

sequently the distortion the same at corresponding points of the

two sections; that is to say, the two curves will be exactly alike

and the deviation Pp from the straight line will be the same for

both. Hence pp the actual length of a longitudinal layer of the

beam is the same as PP the length which it would have had if the

shearing stress had been absent. The actual form of the distorted

section is very complex, no line in it remaining straight but in

general becoming a curve of double curvature
;

it is clear, however,

that the same reasoning applies to every pair of corresponding points

and not merely to points lying in the central plane. Hence the

changes of length of all the elementary bars into which the beam

is analysed are the same as if there were no shearing, and reasoning

as on page 307, we arrive at the same general equations,

p__M_E
y~ I~K

for the normal stress and the curvature as in simple bending. We
conclude, therefore, that these equations must be true notwith-

standing the distortion produced by shearing, provided only the

shearing force be constant.

The truth of the simple reasoning here given is borne out by a

complete investigation of the bending and shearing of a beam which

like the corresponding investigation for torsion we owe to the late

M. St. Venant.* This investigation, based on the supposition of

complete freedom to expand and contract laterally (see last article),

shows that the usual equations are exact when, and only when, the

shearing force is constant.

In any case of continuous loading the shearing force is zero at

sections of maximum moment, and there is consequently no distortion

there, so that at such sections the equations still apply. Where the

load is concentrated at one or more points, there will always be

shearing and often of great magnitude, but in these cases if not

absolutely constant it varies slowly in consequence of a relatively

small continuous load between the sections at which the load is

concentrated. Hence the equations may be regarded as substantially

exact in most practical cases where it is necessary to determine the

resistance of a beam or girder to bending. Some qualifications of

this statement have already been given in preceding articles of this-

book (Art. 189), and it may be further added that when a section

*
History of Elasticity, vol. ii., Part I., p. 58.
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of maximum moment occurs in the neighbourhood of the ends of

the beam or of a concentrated load additional strength may in some

cases be required. The local stress due to the direct action of a

-concentrated load is frequently very considerable,* though its effect

in weakening a solid beam is probably not in any proportion to

its magnitude. At the ends of a beam additional strength is generally

required for constructive reasons.

(2) The transverse curvature of the originally horizontal layers of a

beam of rectangular section subject to bending and shearing has the

effect of altering the distribution of the shearing stress, which is not

uniform along lines parallel to the neutral axis but is less at the centre

than at the outer surface. The mean along the neutral axis is 1| times

the mean over the whole section, but the actual value is less than this

at the centre and greater at the outer surface.

This inequality of distribution laterally is in the first instance due

to the elevation of the sides of the beam (Fig. 157) above the centre

which is caused by the transverse curvature. So long as there is no

shearing the curvature and therefore the elevation remains the same

for all sections, but when the curvature changes the elevation also

varies and produces a corresponding excess distortion at the sides.

The whole action is very complex and cannot be reduced completely
to calculation in any simple way, but some further remarks will be

found in the Appendix. When the depth is not less than 2J times

the breadth this effect may be disregarded, but in a square section

the difference is 6 per cent., and as the breadth increases becomes

much greater.!

In other types of section as already stated there is often a large

discrepancy between the mean and the true maximum, apart from

the effect of transverse curvature. Complete results have been

obtained for a circle and some other forms. These calculations of

St. Venant, however, only apply to sections of a beam the outer surface

of which is free from stress. The direct action of the pressure on

the sides of a pin which is being sheared most probably tends to

equalize the shear on the section, and the provisional method, already

described, when properly checked, is perhaps the best approximation
attainable.

214. Thick Hollow Cylinder under Internal Pressure. The equations

connecting stress and strain in combination with suitable equations

* The Influence of Surface Loading on the Flexure of Beams. By Prof. C. *A.

Carns-Wilson. Proceedings of the Physical Society of London, December, 1891.

t History of Elasticity, vol. ii., Part I., p. 68.
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expressing the continuity of the body and the equilibrium of each of

its elements are theoretically sufficient to determine the distribution of

stress within an elastic body exposed to given forces, and in particular

to determine the parts of the body exposed to the greatest stress, and

the magnitude of such stress. The most important cases hitherto

worked out, in addition to those considered in preceding chapters, are

the torsion of non-circular prisms and the action of internal fluid

pressure on thick hollow cylinders and spheres. For M. St. Venant's

investigations on torsion we must refer to Art. 185, page 360, and the

authorities there cited. We shall only consider the comparatively

simple case of a homogeneous cylinder.

Fig. 159a shows a longitudinal section of a hollow cylinder open at

the ends, which are flat : the cylinder contains fluid which is acted on

by two plungers forced in by external pressure so as to produce an

internal fluid pressure pr Fig. 159& shows the same cylinder in

. Fig.l59a

transverse section : imagine a cylindrical layer of thickness t, this thin

-cylinder will be acted on within and without by stress which symmetry
shows must be normal

;
let these stresses be p and p' and the internal

and external ;radii of the thin cylinder be ? and r'. Now, if p' the

external pressure had existed alone, a compressive stress q would have
C.M. 2D
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been produced on the material of the cylinder given by the equation

(see Art. 150)

p'r'
=

qt;

and if the internal pressure had existed alone, we should have had a

tensile stress given by
pr = qt;

hence when both exist together, we must have

p'r'-pr = qt,

where q is the stress on the material of the cylinder on a radial plane
in the direction perpendicular to the radius reckoned positive when

compressive. Clearly t = r' - r, and therefore proceeding to the limit

we may write the equation

which is one relation between the principal stresses p, q at any point of

the cylinder. We now require a second equation, to get which it is

necessary to consider the way in which the cylinder yields under the

application of the forces to which it is exposed. The simplest way to

do this is to assume that the cylinder remains still a cylinder after the

pressure has been applied : if so, it at once follows that points in a

transverse section originally, remain so, or, in other words, that the

longitudinal strain is the same at all points. It is not to be supposed
that there is anything arbitrary about this assumption : no other,

apparently, can be made if the ends of the cylinder are free, the

pressure on the internal surface exactly uniform, and the cylinder be

homogeneous and free from initial strain. For when this is the case,.

there is no reason why the cylinder should be in a different condition

in one part of its length than in another. If the ends are not free, or

if the pressure is great in the centre, the middle of the cylinder will

bulge, but not otherwise.

It is also clear that the total pressure on a transverse section must be

zero because the ends are free, and hence it is natural to suppose that

it is also zero at every point of the transverse section, an assumption
which we shall presently verify. For greater generality we in the first

instance suppose it a constant quantity p .

The equations connecting stress and strain therefore become

m

m

m
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where ev 2 ,
e
3
are the compressions in the direction of the radius, the

direction perpendicular to the radius in the transverse section, and

the direction of the length, respectively. Of these the last is constant,

as just stated, and therefore

p + q
= constant = 2^

is the second equation connecting p, q. Substituting for q, we find

or r-r + 2p = 2ci.
dr f

Multiply by r and integrate, then

p = J + Cj,
and consequently q

= c
x |,

where c
t>
is a constant of integration. The two constants, cv c

2,
are now

determined by consideration of the given pressure within and without

the cylinder.

If n be the ratio of the external radius to the internal radius E, we
have at the internal surface

and at the external surface

r = nR)

from which two equations we get

Substituting these values in the equation for q,

the negative sign in this formula indicates that the stress is tensile, as

we might have anticipated. The formula shows that the stress decreases

71^+1 2l>
from

2 _ .pi at the internal surface to Yz
1

!
at *^e external surface.

The mean stress is obtained from the equation (Art. 150)

hence the maximum stress is greater than the mean in the ratio

7i
2 +l :n+I, and it is clear that it can never be less than pY The

minor principal stress at the internal surface is pl
and (omitting pQ)

the so-called simple equivalent tensile stress can be found.
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Verification of Preceding Solution. The radial strain (ej and the hoop strain (e2) are

given by the above equations in terms .of the stress. Now these changes of dimension

are not independent, but are connected by a certain geometrical relation which it is

necessary to examine in order to see whether it is satisfied by the values we have found.

Returning to the diagram, suppose the internal radius of the elementary ring repre-

sented there to increase from r to s, and the external radius from r' to s'
;
then

or, since the thickness of the ring changes from t

d, .

. *=*,.<<*)

This relation must always hold good, in order that the rings after strain may fit one

another, and should therefore be satisfied by our results. On trial it will be found that

it is satisfied, and we conclude that the solution we have obtained satisfies all the condi-

tions of the problem, and is therefore the true and only solution, subject to the conditions

already explained. For further remarks on this question, see Appendix.

214A. Strengthening of Cylinder by Rings. Effect of great Pressures.

The stress within a thick hollow cylinder under internal fluid pressure

may be equalized, and the cylinder thus strengthened by constructing

it in rings, each shrunk on the next preceding in order of diameter.

For a cylinder so constructed will be in tension at the outer surface

and compression at the inner surface before the pressure is applied,

and therefore after the pressure has been applied will be subjected to

less tension at the inner and more tension at the outer surface than

if it had been originally free from strain. It is theoretically possible

to determine the diameters of the successive rings so that the pressure

shall be uniform throughout. The principle is important, and fre-

quently employed in the construction of heavy guns.

When the limit of elasticity is overpassed the formula fails, and the

distribution of stress becomes different. If the pressure be imagined

gradually to increase until the innermost layer of the cylinder begins

to stretch beyond the limit, more of the pressure is transmitted into

the interior of the cylinder, so that the stress becomes partially

equalized. If the pressure increases still further, the tension of the

innermost layer is little altered, and in soft materials longitudinal

flow of the metal commences under the direct action of the fluid

pressure. The internal diameter of the cylinder then increases per-

ceptibly and permanently. This is well known to happen in the

cylinders employed in the manufacture of lead piping, which are

exposed to the severe pressure necessary to produce flow in the lead.

The cylinder is not weakened but strengthened, having adapted itself
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to sustain the pressure. Cast-iron hydraulic press cylinders are often

worked at the great pressure of 3 tons per sq. inch, a fact which

may perhaps be explained by a similar equalization,

215. Elastic Energy of a Solid. If a cube of side unity be under

the action of normal stresses pv p2 , pz
on its faces the elastic energy

will evidently be

ev 2,
e
3 being as before the strains given by the general equations

connecting stress and strain (p. 410). In most cases one of the stresses

Pz will be small enough to be neglected, then substituting for ev #
2 ,

m j

Suppose now these principal stresses^, p2
are due to the action of

normal stresses pn , pn
'

on oblique planes combined with a tangential

stress q as on page 403, then on solving the quadratic given on the

page cited and substituting for plt p2,

m m
which, using the value of C the co-efficient of rigidity given on page
411 becomes

TJ-Pn +K
2

PnPn , f_
2E mE +

2C*

Thus the elastic energy per unit of volume at any point of a solid

is, as might be expected, the sum of that due to the normal stress

and the tangential stress taken separately. This important principle

holds good for each particle, and therefore for the whole, of a beam

subject to bending and shearing, a shaft subject to bending and

twisting, as well as many other cases. As an example of the use

of the formula take the case of the deflection of a beam due to

shearing considered in Art. 190. The beam being supposed sup-

ported at the ends and loaded with a weight W, its deflection will

be SCT/JFand the part due to shearing will therefore be

where dF is an element of volume. Taking for simplicity the case

of a uniform transverse section the formula may be written

q*AlCf dA_ [f dA'~~
where dA is an elementary portion of the transverse section, / the

span, and qQ the mean stress W[A, as on page 368. The integral

taken over the whole transverse section is a numerical factor bv which
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<$ must be multiplied to get the actual deflection due to shearing.

Take for example a tube the shear at each point P of the annular

section of which was found on page 368 (see Fig. 146).

q
=

2</ . sin
;
dA = at . d6

;
A = '2irat

;

rdOsin2
0.,; =2.

ran-
f= 4 1 sin2#

Jo

In this case the determination of the factor is simple but generally

it can only be found approximately. In a rectangle the mean value

of q at points distant y from the neutral axis is given in Art. 189

(1), page 368. The effect of lateral contraction and expansion (p. 416)

being neglected this will be the actual value of q, and proceeding as

before the factor will be found to be 1'2. This method may be

applied without difficulty to an I section.

In sections of other types such as the circle or ellipse, it is first

of all necessary to suppose, as in Ex. 14, page 376, that the stress in

a direction perpendicular to the neutral axis is uniformly distributed,

a supposition which as pointed out on page 369 cannot be considered

legitimate. It is, however, one which is frequently made, and the

consequent error is probably not in general considerable. It is further

needful to find the horizontal component of the shearing stress. This

can be done when necessary, but the calculation is not one of much

practical value.

216. Rigidity of Shafts. In a tube under torsion we have with the

notation of Art. 185, p. 357, for the elastic energy per unit of length,

remembering that qt is constant,

and since the angle of torsion multiplied by the twisting moment on

the tube, that is by 2qAt, is 2U,
. _ qt. I ?ds _ qp.l Cds

'

the right-hand equation applying to the case of similar tubes considered

at length in the article cited
; qp being constant for the same tube.

For different tubes of the same set the integral will have the same

value, and therefore if all tubes are twisted through the same angle

>q
oc A/pt

- that is, at corresponding points q is proportional to the radius

vector as already stated. Replacing as before (p. 359) qp at the outer

surface by q^ or 2T/A we get a general formula for the angle of

torsion of a nest of similar tubes
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In the case of a rectangular tube the integral is easily evaluated, for

evidently if the sides be b and c,

(ds (b
c\ &*+(* /=

4( -4-T )
=4. -

A ^4:0 -7H,

}p \c b) A A 2

where / is the polar moment of inertia showing that the general

formula given on page 361 is applicable if 4n-2 is replaced by the

somewhat larger number 48. Hence, as might be expected, the tubes

are somewhat less rigid than the solid shaft.

For an ellipse of semi-axes b and c it is easily shown that

|

=
7rf- + ^=3T2

.
"t-- = 4T2

.-7o
]p \c bj A A2

thus verifying the formula.

EXAMPLES.

1. When the sides of the bar are forcibly prevented from contracting, show that the

necessary lateral stress is given by

p,= Be,

where B= -^- -. This constant B is what Rankine called the "
lateral

"
elasticitym2 - m - 2

of the substance.

2. With the notation of the preceding question prove that

3. In a certain quality of steel =30,000,000; (7=11,500,000; find the elasticity of

volume and the values of A and B, assuming the material to be isotropic. Ans. m=3^;
D= 25,555, 000.

4. The cylinder of an hydraulic accumulator is 9 inches diameter. What thickness of

metal would be required for a pressure of 700 Ibs. per square inch, the maximum tensile

stress being limited to 2,100 Ibs. per square inch? Also, find the tensile stress on the

metal of the cylinder at the outer surface. Ans. Thickness =1*84"; Stress= 1,000 Ibs.

per square inch.

5. If the cylinder in the last question were of wrought iron, proof resistance to simple
tension 21,000 Ibs. per square inch, at what pressure would the limit of elasticity be

overpassed? m = 3'5. (See Art. 229.) A us. 6,400.

6. Find the law of variation of the stress within a thick hollow sphere under internal

fluid pressure. By a process exactty like that for the case of the cylinder (page 418) it

is found that the equation of equilibrium is

*.

The equation of continuity is the same as that for a cylinder (Art. 214), and the equations

connecting stress and strain are now
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We can now by elimination of q, reduction, and integration obtain

the constants being found as in the cylinder.

7. The cylinder of an hydraulic press is 8 inches internal and 16 inches external

diameter. If the pressure be 3 tons per sq. inch, find the principal stress at the internal
and external circumference.

^TAl inner circumference
{ JJj | ==f

<.
8. In the last'question find the] "equivalent simple tensile stress" (p. 411), assuming

m=3'5. Ans. 5'86 and 2 tons.

9. In examples 15, 16, page 376, find the "equivalent simple tensile stress" at the

points indicated, assuming as before 7/2=3*5.



CHAPTER XVIII.

Fig.lGO

MATERIALS STRAINED BEYOND THE ELASTIC LIMIT.

STRENGTH OF MATERIALS.

217. Plastic Bodies. If the stress and strain to which a piece of

material is exposed exceed certain limits its elasticity becomes imper-

fect, and ultimately separation into parts takes place. We proceed to

consider what these limits are in different materials under different

circumstances : it is to this part of the subject alone that the title

"
Strength of Materials

"
is, strictly speaking, appropriate.

Reference has already been made (Art. 147) to a certain condition in

which matter may exist, called the Plastic state, which may be regarded
as the opposite of the Elastic state, which has been the subject of pre-

ceding chapters. In this condition the changes of

size of a body are very small, as before
;
but if the

stress be not the same in all directions the differ-

ence, if sufficiently great, produces continuous

change of shape of almost any extent. Some
materials are not plastic at all under any known

forces, but many of the most important materials

of construction are so, more or less, under great A'

inequality of pressure.

Fig. 160 shows a block of material which is

being compressed by the action of a load P applied

perfectly uniformly over the area AB. Let the

intensity of the stress be p, then so long as p is

small the compression is small and proportional to the stress
;
but when

it reaches a certain limit the block becomes visibly shorter and thicker.

This limit depends on the hardness of the material, and the value ofp
may be called the "

co-efficient of hardness." In an actual experiment
the friction of the surfaces between which the block is compressed holds

the ends together, so that it bulges in the middle, as in Fig. 166, p. 435,

which represents an experiment on a short cylinder of soft steel. In

c c D'
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the ideal case the cross section remains uniform, changing throughout

inversely as the height, as expressed by the equation

where A is the area and y the height of the block.

In a truly plastic body p the intensity of the stress remains constant,

and therefore the crushing load P varies as A
y
that is inversely as y.

This is the same law as that of the compression of an elastic fluid when

the compression curve is an hyperbola, and we therefore conclude

{Art. 90) that the work done in crushing is

U= Py .loger=pAy\oge r =pP
r

\o^ r,

where r is the ratio of compression and Fthe volume. Certain qualities

of iron and soft steel will endure a compression of one-fourth or even of

one-half the original height, and amounts of energy are thus absorbed

which are enormous compared with the resilience of the metal. To

illustrate this, suppose that plasticity begins as soon as the limit of

elasticity / is overpassed, then for^> we must write/, and by Art. 149

the resilience for a volume V is

/2

Resilience =
^-r,

. V.

The ratio which the work just found bears to the resilience is therefore

o rr

Ratio = r- . log"?'.

In wrought iron for a compression of one-fourth the height (r= 1*333)

this is about 800. The actual ratio must be much greater, because, as

we shall see presently, the hardness of the material increases under

stress.

If lateral pressure of sufficient magnitude be applied to the sides of

the block, the longitudinal force being removed, the effect is elongation

instead of compression, contraction of area instead of expansion. The

magnitude of the lateral pressure is found by imagining a tension

Applied both longitudinally and laterally of equal intensity. Such a

tension has no tendency to alter the form of the block, being analogous

to fluid pressure, but it reduces the lateral pressure to zero, while it

introduces a longitudinal tension of the same amount, which has the

same value as the longitudinal compression of the preceding case. We
see then that in every case a certain definite difference of pressure is

required to produce change of shape in a plastic body, the direction of

the change depending on the direction of the difference. The work

done is found by the same formula as before, r meaning now the ratio

of elongation.

In the process of drawing wire the lateral pressure is applied by



-CH. xvin. ART. 219.] STRENGTH. 427

the sides of the conical hole in the draw-plate, which are lubricated to

reduce friction, and the force producing elongation in the wire is the

sum of the tensile stress applied to draw the wire through the hole and

the compressive stress on the sides. The work done is given by the

-same formula as before, p being now the sum in question.

218. Flow of Solids. When a plastic body changes its form the

process is exactly analogous to the flow of an incompressible fluid,

which indeed may be regarded as a particular case. In the solid the

distorting stress at each point at which the distortion is going on has a

certain definite value which in the fluid is zero. The experimental

proof of this is furnished by the Fig. 161.

experiments of M. Tresca, of

which Fig. 161 shows an ex-

ample. Twelve circular plates

of lead are placed one upon
another in a cylinder, which has

a flat bottom with a small orifice

at its centre. The pile of plates

being forcibly compressed, the lead issues at the orifice in a jet, and

the originally flat plates assume the forms shown in the figure. The

lines of separation, indicating the position of particles of the metal

originally in a transverse section, are quite analogous to the corre-

sponding lines in the case of water issuing from a vessel through an

orifice in the bottom. Tresca's experiments were very extensive, and

showed that all non-rigid material flowed in the same way. Lead

approaches the truly plastic condition
;

the difference of pressure

necessary to make it flow being always about the same. Tresca

ascribes to it the value of 400 kilogrammes per square centimetre,

or about 5,700 Ibs. per square inch;* but it is probably subject to

considerable variations.

The manufacture of lead pipes, the drawing of wire, and all the

processes of forging, rolling, etc., by which metals are manipulated
in the arts, are examples of the Flow of Solids.

219. Preliminary Remarks on Materials. Stretching of Wrought Iron

-and Steel. Materials employed in construction may roughly be divided

into three classes. The first are capable of great changes of form

without rupture, and, when possessing sufficient strength to resist the

* The co-efficient employed by Tresca, and called by him the "co-efficient of

fluidity," is half that used in the text. It is the magnitude of the distorting stress

necessary to produce flow. See also note in Appendix.
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necessary tension, may be drawn into wire. The last property is

called ductility, and this word may be used to describe the class which

we shall therefore call Ductile Materials. The second, being incapable
of enduring any considerable change of this kind, may be described

as Rigid Materials. The third are in many cases not homogeneous,
but may be regarded as consisting of bundles of fibres laid side by
side

; they may therefore be described as Fibrous Materials
; they

are generally of organic origin.

We shall commence with the consideration of ductile materials, and

more especially of

WROUGHT IRON AND STEEL.

Accurate experiments on the stretching of metal are difficult to

make, the extensions being very small and the force required great.

If levers are used to multiply the effect of a load or to magnify the

extensions, errors are easily introduced. If the levers are dispensed

with, a great length of rod is necessary and a heavy load, the

manipulation of which involves difficulties. The experiment we select

first for description was made by Hodgkinson on a rod of wrought
iron '517 inch diameter, 49 feet 2 inches long, loaded by weights

placed in a scale pan* suspended from one end. The load applied

was increased by equal increments of 5 cwts. or 2667 '5 Ibs. per

square inch of the original sectional area of the bar
;
each application

of the load being made gradually, and the whole load removed

between each. At each application and removal the elongation was

measured so as to test the increment of elongation, both temporary
and permanent, occasioned by each load. If the rod were perfectly

elastic the temporary increments should be equal and the permanent

elongations (usually called " sets ") zero.

The annexed table shows part of the results of this experiment, the

first column giving the load, the second the total elongation, the

third the successive increments of the elongation, the fourth the

total permanent set.

On examining the table we see that, after some slight irregularities

at the commencement due to the material not being perfectly homo-

geneous, the increments of elongation are nearly constant till we

reach the eighth load of 21,340 Ibs. per square inch, after which the

increments show an increase at first moderate and subsequently very

rapid. Further, the permanent set, which at the commencement is

*
Being one of the best of its kind of old date this experiment has often been

quoted. For the original description, see the Report of the Commissioners appointed

to enquire into the Application of Iron to Railway Structures.
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very minute and increases very slowly, at the same point shows a

corresponding increase indicating that the observed increase is almost

wholly due to a permanent elongation of the bar, the temporary

STRETCHING OF A WROUGHT-IRON ROD, 49 FEET 2 INCHES LONG.
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may also be constructed which is seen to follow the same general
law.

Accompanying the increase of length of the bar we find a contrac-

tion of area within the elastic limit, however, this is so small as to

escape observation. Outside the limit it be-

comes visible, consisting in the first instance of

a more or less uniform contraction at all or

nearly all points, followed by a much greater
contraction at one or sometimes two points
where there happens to be some local weak-

ness.* Within the elastic limit the density
of the bar diminishes, but by an amount so

small that the fact is rather known by reason-

ing than determined by experiment. Outside

the limit there is a permanent diminution

which is perceptible, though still very small.

Thus beyond the elastic limit the bar draws

out, changing its form like a plastic body with-

out sensible change of volume. The bar finally

tears asunder at the most contracted section,

as shown by the annexed figure (Fig. 163}

representing an experiment by Mr. Kirkaldy
on a bar of iron 1 inch diameter, in which

the contraction of area was 61 per cent., and

the elongation 30 per cent., ultimate strength

58,000 Ibs. per square inch of original area,

146,000 Ibs. per square inch of fractured area.

The contraction of section in good iron and

soft steel is 50 or 60 per cent.

220. Breaking-down Point. The foregoing

experiment may, as far as it goes, be taken

as a type of a multitude of such experiments
which have been made on wrought iron and steel, which show that

a tolerably well-defined limit exists, within which the extension is

proportional to the pull and the sets are very small, but beyond
this limit the process of stretching can only be completely studied

by aid of a machine. A full description of various types of testing

* On . this point see Preliminary Experiments on Steel by a Committee of Civil

Engineers, London, 1863. On account of the uncertainty of the amount of contraction

at various points, the ultimate extension may sometimes be an imperfect measure of

the ductility of the iron, even when the pieces are of the same length and sectional

area.
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164.

machines will be found in Professor Unwin's treatise on Testing,

from which we take such particulars as are necessary for our present

purpose.

Fig. 164 is a diagram showing the

essential parts of one of these machines :

BAK is a lever balanced on knife

edges at A and carrying a weight W,
which can be moved along it by a

screw
;
E is an hydraulic cylinder, the

plunger of which is connected with the

lower end of the test piece FD. The

short end B of the lever is connected

with the upper end of FD, and the

weight W is thus balanced by hydraulic

pressure. When making the experi-

ment water is pumped into the cylinder

and a gradually increasing pull is thus

applied to the test piece. This pull is measured by continuously

moving the weight W by a screw, so as to keep the lever horizontal^

stops C being provided to prevent it from moving far in either direc-

tion. The extensions are measured with great accuracy by a suitable

apparatus, which not unfrequently automatically traces a curve of stress-

and strain.

Fig. 165 shows roughly the form of curve obtained, the straight line

AB representing the elastic part of the process already described. After

passing the point B the curve

~^X bends away from the straight line,

F but the deviation is not large till a

sharply defined point C is reached

at which the curve is nearly hori-

zontal, showing that a considerable

stretch has occurred while the load
'

remains nearly the same. The
Fig - 165- suddenness of this drawing out

which is so characteristic of wrought iron and soft steel, is not dis-

tinctly perceived in the original way of making the experiment, because

the load is not applied continuously. The point at which it occurs is

described as the "yield-point," or "breaking-down point." The term

"limit of stability," though in some respects preferable, is not so often

used. When a bar is stretched in the workshop without recourse to

delicate measurements this point may often be recognized by the

falling-off' scale and the obvious extension accompanied by lateral
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contraction which then occurs. It marks the end of the elastic

stage and the commencement of the plastic stage in the process of

stretching, and in the roughest class of experiments is the apparent
"
limit of elasticity," a term which may conveniently be applied when

a closer specification is not necessary.

After passing C the stress goes on continuously increasing till a second

point E is reached, where the curve is once more horizontal, and now if

the stretching is carried still further it is found that to prevent the

lever from resting on the lower stop, W must be moved gradually back

again, showing a continuously diminishing stress till the bar tears

asunder as already described. This part of the process for obvious

reasons is not perceived when the experiment is made in the absence of

a machine. The interpretation appears to be that as far as the point
E the contraction of area is taking place throughout the whole length
of the test piece, while the part EF of the curve represents the

stretching which takes place after local contraction has begun.

221. Real and Apparent Tensile Strength. The ordinates of a curve

of stress and strain as usually plotted represent the total pull divided

by the original sectional area of the test piece, and the greatest

ordinate at E gives the ultimate strength as usually reckoned. It is

clear that this is not the real tenacity of the material, for the sectional

area has diminished considerably during stretching, and to meet this

difficulty the area at fracture was formerly often employed as a divisor

instead of the original area, the result obtained being called the "real

tensile strength." This, however, gives much too large a value, for

the real stress must, at least approximately, be the actual pull at any

point divided by the actual area at that point. For this reason the

contraction of area is now employed by most authorities exclusively

-as a measure of the ductility of the material without reference to

its tenacity.

Nevertheless the actual stress on the contracted area is much greater

than the apparent, and hence it follows that if the form of the piece be

such as partly or wholly to prevent contraction the apparent strength

will be increased. For example, if two pieces of the same bar be taken

and one turned down to a certain diameter, while in the other narrow

grooves are cut so as to reduce the diameter to the same amount at the

bottom of the grooves, the strength of the grooved piece will be found

to be much greater than that of the piece the diameter of which has

been reduced throughout, and this can only be explained by observing

that the length of the reduced part of the grooved bar is insufficient to

permit contraction to any considerable extent. This is a point to be



CH. xvin. ART. 222.] STRENGTH. 433

noticed in considering experimental results.* The form of the specimen
tested may have much influence. Further, since the limit of elasticity

is the point at which flow commences, and since the flow is due to

difference of stress, it follows that the same causes must raise the

limit of elasticity, and thus we are led to the conclusion that there are

two elements constituting strength in a material, first, tenacity, and,

secondly, rigidity. In some materials, such as these we are now

considering, the tenacity is much greater than the rigidity, and in

them the limit of elasticity will depend on the rigidity and will

have different positions according to the way the stress is applied. It

will lie much higher, and the apparent strength will be much greater

when lateral stress is applied to prevent contraction.

222. Increase of Hardness by Stress beyond the Elastic Limit. In clay

^,nd other completely plastic bodies a certain definite difference of

pressure is sufficient to produce flow : in iron, copper, and probably
other metals, however, as we have just seen, this is not the case, the

metal acquiring increased rigidity in the fact of yielding to the pressure.

Thus the effect of stress exceeding the elastic limit is always to raise

the limit, whether the stress be a simple stensile stress or whether it

be accompanied by lateral pressure. All processes of hammering, cold

rolling, wire drawing, and simple stretching have this effect. If a bar

be stretched by a load exceeding the elastic limit and then removed,

on re-application of a gradually increasing load we do not find a

fresh drawing out to commence at the original elastic limit, but at or

near the load originally applied.! If the load be further increased

drawing out recommences. Hence, whenever iron is mechanically
" treated

"
in any way which exposes it to stress beyond the elastic

limit, contraction is prevented and the apparent strength is increased
;

for example, iron wire is stronger than the rod from which it is drawn
;

when an iron rod is stretched to breaking, the pieces are stronger than

the original rod. It is riot certain that the real strength of materials is

always increased by such treatment
; perhaps in some cases the con-

trary, for we know that the modulus of elasticity and specific gravity
are somewhat diminished. On the other hand there are cases in

which the increase of strength is greater than can be accounted for in

* See Experiments on Wrought Iron and Steel, by Mr. Kirkaldy, p. 74. 1st edition.

Ulasgow, 1862.

t Styffe, On Iron and Steel, p. 68.

t The raising of the limit of elasticity by mechanical treatment of various kinds has

long been known : in the case of simple stretching the effect appears to have been first

noticed by Thalen in a paper, a translation of which will be found in the Philosophical

Magazine for September, 1865.

C.M. 2 E
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this way. On annealing the iron it is found to have resumed its

original properties, a circumstance which indicates that the increased

rigidity is due to a condition of constraint which is removed by heating
the metal till it has assumed a completely plastic condition. This

process of hardening and annealing may be repeated a number of times

without altering the yield-point, and it has recently been suggested that

hardening by application of stress is analogous to the hardening of

steel by heating and sudden cooling, and may be due to a similar

change of molecular arrangement.*
In considering the effect of impact, the diminution of ductility

occasioned by the application of stress beyond the elastic limit is a

most important fact to be taken into account (see Art. 232). Working
iron or steel hot has generally the effect of increasing both its strength,

and its ductility.

223. Compression of Ductile Material. In a perfectly elastic material

compression is simply the reverse of tension, the same changes of

dimension being produced by the same stress, but in the reverse

direction. Also in a plastic body a given difference of stress produces

flow, whether the stress be tensile or compressive; hence in ductile

metals we should expect to find the modulus of elasticity and the limit

of elasticity nearly the same in compression as in tension. These con-

clusions are borne out by experiment. In the case of wrought iron and.

EXPERIMENT BY SIR W. FAIRBAIRN ON A BLOCK '72 INCH DIAMETER
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steel, experiments on the direct compression of a bar are more difficult

to carry out than experiments in tension, the bars are necessarily of

limited length, and must be enclosed in a trough to prevent lateral

bending ;
minute accuracy is therefore hardly attainable. A consider-

able number have, however, been made, from which it appears that the

modulus of elasticity anft the limit of elasticity are nearly the same in

the two cases.*

The metal yields beyond the limit by a process of flow of the same

character as in tension, but expanding laterally instead of contracting.

This is especially seen in experiments made by the late Sir W. Fairbairn

in 1867, and somewhat earlier by Mr. Berkeley, on the compression of

short blocks of steel. In both, the blocks were pieces of round bars, of

height somewhat greater than the diameter, and the results were very
similar.

The annexed table gives the results of one of Sir W. Fairbairn's

experiments. Column 1 gives the actual load laid on
;
column 2 the

corresponding height of the block, both given directly by the experi-

ments
;
column 3 is calculated by dividing the product of load and

height by the original sectional area and height, and represents the

crushing stress per square inch of the mean sec-
Fig. 166

tional area. If the block did not bulge in the

centre (Fig. 166) this would be the actual

crushing stress, which, however, must in fact be

less. The table shows that after a compression
of about one-third, the crushing stress remains

nearly constant at about 50 tons per square inch.

The experiment terminated at a compression of

one-half. This kind of steel then is perfectly elastic up to 22 tons per

square inch, is partially plastic between 22 and 50, and behaves as a

plastic body under a difference of stress of 50 tons per square inch.

The point at which the material becomes perfectly plastic may be

described as the " limit of plasticity," it probably corresponds to the

point where the load is a maximum and local contraction begins

(p. 423) in a stretched bar.

The compression of iron blocks has been less thoroughly studied

than that of steel, but it is known that the results are similar although
the strength and the ultimate ratio of compression are much less. Set

becomes sensible at about 10 tons per square inch, and the ultimate

strength is from 40,000 to 50,000 Ibs. per square inch if lateral flexure

be prevented.

*
Perhaps the best set of experiments are those made by the "Committee of Civil

Engineers." See their Preliminary Report already cited, pp. 7-13.
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The bulging which occurs when a short block of ductile material is

compressed is due to the instability of a cylindrical flow of the metal,

and would probably occur even if there were no friction between the

block and the compressing surfaces. Fracture occurs by lateral tearing

asunder along longitudinal cracks when the height is small. When

of greater height the block crushes by lateral bending. In wrought
iron the ratio of length to diameter at which lateral bending commences

is about 3 and the corresponding crushing stress is 36,000 Ibs. per

sq. inch, remaining independent of the length until the ratio reaches

about one-third of the values given on page 342, after which the

length begins to influence the crushing load as described in the chapter

cited. In tubular struts this limit is about 15.

224. Bending within and beyond the Elastic, Limit. Since wrought

iron and steel are nearly perfectly elastic when the stress applied is

not too great, it follows that the formulae already obtained for the

moment of resistance to bending and deflection of a bar must be true

for these materials so long as the stress does not exceed the elastic

limit determined by tension experiments of the kind just described.

(1) Very careful experiments were made by M. Styffe* on the

deflection of bars of small size, 4 feet long, which fully confirm this

conclusion ; the value of the modulus of elasticity deduced from the

observed deflection by the formula given on page 324 of this work

closely agreeing with the value found by stretching the same bar.

When smaller values are obtained by experiments on bending it is

now recognized that this is due to the effect of shearing discussed on

page 370, which, when neglected, may reduce the apparent value of

the modulus by 20 per cent, or more. Some recent experiments by
Messrs. Read and Stanbury, described in a paper which will be further

referred to presently, give a modulus (apparent) of about 10,000 tons

for beams of channel and Z section. In the case of a broad thin

plate the modulus in bending should be greater than that in tension

or compression (p. 414), but this theoretical conclusion appears as yet

not to have been verified.

In built-up beams the modulus, as might be expected, is still further

reduced : thus Rankine in his Civil Engineering states that the value for

large girders is on the average 17,500,000 Ibs. or about 8000 tons. In

the paper just referred to the authors make a very interesting com-

parison between the observed deflection of a vessel and the result of

a careful determination by graphical integration of the differential

equation of the deflection curve. Two different vessels tested in this

* See Styffe, On Iron and Steel, already cited.
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way gave nearly the same value for the modulus which was found to-

be about 10,000 tons.*

(2) Again, it has been repeatedly explained in the earlier part of

this book that the lateral connection of the several layers into which

we imagine a beam divided has no influence on the stress produced by

bending so long as the limit of elasticity is not exceeded. But when

the limit is passed, the connection between those layers which are most

stretched and compressed with those layers which have not yet lost

their elasticity prevents their contraction jand expansion, and so raises

the limit of elasticity in accordance with the general principle explained

in Art. 221. Thus, the limit of elasticity lies higher, and the apparent

elastic strength is greater in bending than in tension. In Fairbairn's

experiment quoted above the same steel was tested in tension, com-

pression, and bending. The elastic limit in bending was 30 tons, in

tension 22 tons. The magnitude of the difference will depend on the

form of transverse section, and on the ductility of the material. Ac-

cording [to Mr. Barlow it may reach 50 per cent, in a rectangular

section.! The case of cast iron will be referred to further on.

(3) As soon as the elastic limit is passed, the stress, at points near

the surface, no longer varies as the distance from the neutral axis.

It does not increase so fast because the extension or compression is

not accompanied by a proportionate increase of stress. Hence a

partial equalization of stress is produced, and the maximum stress for

a given moment of resistance is reduced. To illustrate this it may
be interesting to make a calculation of the effect of equalization bjr

supposing^ that under a bending moment very slowly and steadily

applied beyond the elastic limit, the metal behaves like a truly plastic

material throughout the transverse section, so that the stress is uniform.

Referring to the formula on page 309, we have

in which we must now, instead of assuming that p varies as y, suppose

p a constant. Then

M=2p.Ay
where A is the area of the part of the section which lies on either side

of the neutral axis and y the distance of its centre of gravity from that

axis. For the same value of the modulus this gives a moment of re-

sistance in a rectangular section 50 per cent, greater than if the

material had been elastic. How far any apparent increase of strength

due to equalization or lateral connection may be regarded in practice is

* On the Relation leticeen Stress and Strain in Vessels, by T. C. Read and G. Stanbury.
Transactions of the Institute of Naval Architects for 1894, Vol. xxxv., p. 372.

\Phil Trans., 1855-57.
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uncertain. A failure of elasticity must have taken place at certain points

in order that there may be any increase at all, arid in cases where the

load is frequently reversed the bar must be weakened. (See Art. 230.)

CAST IRON AND OTHER RIGID MATERIALS.

225. Stretching of Cast Iron. The phenomena attending rupture by
tension of cast iron are essentially different from those described above

for the case of ductile metals. This will

be sufficiently shown by an experiment,

also made by Hodgkinson, on a bar of

this material 50 feet long, T159 inch

diameter. The experiment was made in

the same way as that already described

on the wrought-iron rod,* and the results

are shown in the annexed table. The

first four loads were applied as before,

by increments of 5 cwt., here equivalent

to 531 Ibs. per square inch; the whole

load, after measurement of the elonga-

"^255 tion, being completely removed, and the

permanent set measured. After the fourth load the increment was

10 cwt., and this was carried on till the bar broke at a stress of

Fig. 167,

STRETCHING OF A CAST-IRON BAR, 50 FEET LONG, 1-159 INCH DIAMETER.
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16,000 Ibs. per square inch. The third column as before shows the

increments of elongation, which, after a stress of 5,308 Ibs. per

square inch, or the breaking load, has been reached, show a gradual

increase till actual rupture occurs. The results of the experiments
are graphically exhibited in the annexed diagram (Fig. 167) of stress,

strain, and permanent set. The form of the curve is different from

that of wrought iron, showing no point of maximum curvature,

because in this material the bar does not draw out.

Hodgkinson experimented on a large variety of different kinds of

iron, and expressed his results by a formula, which may be written

p = Ee(l-ke),

where, as before (Art. 148), p is the stress, e the extension per unit

of length, E the ordinary modulus of elasticity, and k a constant.

The term ke here expresses the defect of elasticity of the bar. From
.the results of his experiments we find the average values

=14,000,000; &=209.

Oast iron, however, is a material of variable quality, and the value

of these constants may have a considerable range. Up to one-third

the breaking load it may be regarded as approximately perfectly

clastic, but the limit is by some authorities placed much higher.

226. Crushing of Rigid Materials. In the ductile metals the effects

of compression are nearly the reverse of those of extension, as has been

sufficiently shown in previous articles, but in cast iron this is by no

means the case. Hodgkinson experimented in this question with great

care and accuracy, testing pieces of iron of exactly the same quality

under compression and tension to enable a comparison to be made.

The bars were enclosed in a frame and tested by direct compression.

Hodgkinson expressed his results by a formula, which may be written

p = Ee(l-ke),

the symbols having the same meanings as before, and the values may
be taken as

=13,000,000; & = 40.

The smaller value of k indicates that the elasticity under compression
is much less imperfect under the same stress. Short cylinders of the

metal were also crushed, and the crushing load found to be five times

the tensile strength or more.

It thus appears that in compression cast iron is six times stronger
than in tension, and this is true not merely of the ultimate resistance

but in great measure also of the elastic resistance, for the elasticity of
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the metal is not sensibly impaired until one third the crushing load

is reached.

The manner in which crushing occurs is shown

in the accompanying figure ;
instead of bulging

out like a ductile metal, oblique fracture takes

place on a plane inclined at 45 or rather less to

the axis, being (approximately) the plane on which

the shearing stress is a maximum (Fig. 168).

Great resistance to compression, as compared
with tension, and sudden fracture by shearing

obliquely or by splitting longitudinally are char-

acteristics of all non-ductile materials, of which

cast iron may be taken as a type. They are, in,

fact, materials the tenacity of which is much less

than the rigidity.

In rigid materials crushing takes place not only by oblique shearing
but also by longitudinal cracks. UNWIN (Testing of Materials, p. 419)

finds that the mode of crushing and the resistance to crushing are much
influenced by the material on which the specimen rests. When bedded

on a soft material, the lateral flow of this material supplies by friction

a transverse force on the base of the specimen, in consequence of

which it crushes by longitudinal cracks at a smaller load than if the

bed were hard, in which case oblique shearing occurs. This is a highly

interesting observation, but it would be premature to say that all cases

of crushing by longitudinal cracks can be explained in this way.

227. Breaking of Cast-Iron Beams. When a cast-iron bar is bent till

the tensile stress at the stretched surface exceeds one-third the tensile

strength of the material, the defective elasticity of the metal causes a

partial equalization of stress on the transverse section as in the case of

wrought iron. Besides this, the elasticity being much more perfect

under compression than under tension, the equalization is greater on the

stretched side than on the compressed side, and the neutral axis moves

towards the compressed side of the beam. For both these reasons the

moment of resistance to bending is greater for a given maximum tensile

stress than it would be if the material were perfectly elastic. Thus it

follows that if the co-efficient in the ordinary formula for bending be

assumed equal to the tensile strength of the material, the calculated

moment of resistance will be less than the actual moment of rupture of

the beam by an amount which is greater for a rectangular section than

for an I section. The value of the co-efficient in the formula which

corresponds to the actual breaking weight is known as the "modulus.
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of rupture
"

or the "
bending strength

"
of the material, a quantity^

greater than the simple tensile strength in a ratio which varies accord-

ing to the type of section. A very complete set of experiments on

the breaking of cast-iron bars was made in 1888-9 by Professor Bach,

who shows that the ratio ranges from 1*45 in an I section and 1'75 in

a rectangular section with side vertical to 2'1 in a circular or H
section, and 2'35 in a square section with diagonal vertical

;
these

numbers naturally being slightly different in different qualities of iron.

The experimental result is always greater the more material is concen-

trated in the neighbourhood of the neutral axis, and this circumstance

renders it almost certain that the increased apparent strength of cast

iron in bending is simply due to the causes above mentioned and

not, as has often been supposed, to any influence of curvature on the

strength of the metal. Two examples (10, 11, page 462) which are

given at the end of this chapter will serve to show how great an

effect is produced by equalization combined with a moderate shift

of the neutral axis.

SHEARING AND TORSION. COMPOUND STRENGTH.

228. Shearing and Torsion. We now pass on to cases where the-

ultimate particles of the material are subject not to a simple longi-

tudinal stress, but to stress of a more complex character. The simplest
case is that of a simple distorting stress where the stress consists of a

pair of shearing stresses (Fig. 140) on planes at right angles, or what is

the same thing (Art. 183) of a pair of equal and opposite longitudinal
stresses (Fig. 141) on planes at right angles. Examples of this kind

of stress occur in shearing, punching, and twisting. Experiments on

shearing are subject to many difficulties and are often not conducted

in such a way as to satisfy the conditions necessary for uniformity of

distribution of stress on the section. Moreover they necessarily give
the ultimate resistance only without reference to the limit of elasticity.

The whole process of shearing and punching is very complex, being
at the commencement of the operation usually accompanied by a flow

of the metal similar to that already referred to. Thus, when a hole

is punched in a thick plate the punch sinks deep into the plate before

the actual punching takes place, the metal being displaced by lateral

flow, and the piece ultimately punched out being of less height than

the thickness of the plate.*

Separation takes place in the first instance by the formation of fine-

cracks inclined at 45 to the plane of shearing. In soft materials the

* On this subject see M. Tresca's paper cited above, and two articles in the Journal
of the Franklin Institute.
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surfaces slide past each other and separate, but in harder materials

there is a strong tendency to the formation of an oblique fracture.

In wrought iron and steel the ultimate resistance to shearing, though

varying considerably, may be taken as about three-fourths the ulti-

mate resistance to tension of the same material. The question of a

-theoretical connection between the elastic strengths in the two cases

is considered further on.

Experiments on torsion are not numerous, and many of those which

exist are not experiments on simple twisting, but on a combination of

bending and twisting. Such experiments would be of great value if

accompanied by corresponding experiments on simple twisting and

bending made on similar pieces of material. It is known, however,

that in the ductile metals the elastic resistance to torsion is less than

the resistance to tension. A series of experiments on torsion made by
Prof. Thurston give some interesting results. * Curves are drawn, the

absciss* of which represent angles and the ordinates twisting moments,

and the form of these curves shows that in some cases defective homo-

geneity causes a great deficiency in the elasticity at small angles of

torsion. In general, however, the curves closely resemble the ordinary

curve of stress and strain, already given for a stretched bar, being

nearly straight up to a certain point and then curving towards the axis.

The formula for the angle of torsion of shafts given on page 361 has

been tested by Bauschinger, in the case of square and circular sections

by comparison with experiments made by him in 1878 on 13 pair of

test pieces of iron and steel of various degrees of hardness, the mean

result of the whole agreeing well with the formula. Some pieces of

cast iron of rectangular and elliptic section showed, as might be

expected, a less perfect agreement.
In twisting, as in bending, after passing the elastic limit, the stress

at each point of the section, instead of varying as the distance from

the centre, as it must do in perfectly elastic material, varies much

more slowly so as to become partially equalized. Hence the twisting

moment corresponding to a given maximum stress is greater than it

would be if the elasticity were perfect. In the case where the

equalization is perfect it is easy to show that the twisting moment

is increased in the proportion 4 : 3, a result first given in 1849 by
Prof. J. Thomson. The curves given by Thurston show that in many
cases an approximately constant twisting moment was reached indi-

cating that nearly complete equalization must have existed.

* See Paper on Materials of Machine Construction, read before the American Society

of Civil Engineers, 1874. No diameters are given, except for the woods, so that the

stress corresponding to the limit of elasticity cannot be found.
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Similar conclusions may be drawn from experiments made by Mr.

Appleby
* and by Messrs. Hayward and Platt.f The resistance to

torsion was found to be greater than the resistance to a simple shear,

just as in the corresponding case of bending and tension
;
and it may

be added that in hollow shafts the difference has been shown to be less

than in solid shafts, a case which corresponds to that of an I section

in bending. The remarks already made on bending apply here also,

and the case of cast iron will be further considered presently.

The modulus of elasticity of torsion is connected with Young's
modulus by the equation (p. 411)

r = - -- F= E
2'm+l* 2(1 +/K)

when the material is isotropic, m being a number, the reciprocal p of

which is commonly known as Poisson's Katio. The value of
//.

can

evidently be determined by this equation when the moduli C and E
have been found by torsion and tension experiments. But it is

also possible to determine
//. by observing directly the lateral con-

traction of a stretched piece or the expansion of a compressed piece

and comparing it with the extension or contraction of length. A
long series of experiments of this kind were made by Bauschinger
in 1878,| and their results show that by either method nearly the

same value of ^ is obtained for wrought iron and steel, the average

being about '3. Cast iron is more variable and in some qualities /A

is less than '2 for small stresses, but increasing with the stress, a

phenomenon still more apparent in sandstone.

Similar experiments on a great variety of metals and alloys have

recently been carried out by Mr. C. E. Stromeyer.

229. Connection between Co-efficients of Strength. A simple distorting

stress is included in the more general case of three simple longitudinal

stresses of any magnitudes acting on planes at right angles. To this,

indeed, all cases of stress can be reduced, and if we knew the powers
of resistance of a material to three such stresses simultaneously, all

questions relating to strength of materials could (at least theoretically)

at once be answered. Unfortunately, experiments fitted to decide the

question have not hitherto been made, and in consequence hypotheses
have explicitly or implicitly been resorted to.

First, it is often tacitly supposed that the powers of resistance of a

*
Proceedings of the Institution of Civil Engineers. Vol. 74, p. 258.

\Ibid. Vol. 90, p. 382.

+ Civil Ingenieur for 1879, p. 81.

Proceedings of the Royal Society for April, 1894.
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material to a simple longitudinal stress are unaffected by the existence

of a lateral stress. For example, if a material bears 10 tons per square

inch under a simple stretching force, it is assumed that when formed

into a cylindrical boiler shell and exposed to internal fluid pressure it

would also bear 10 tons on the square inch if the shell were homo-

geneous and free from joints, notwithstanding the fact that the

material is exposed to stress (Art. 150) tending to tear it transversely

as well as longitudinally. It is, however, certain that this cannot be

the case, at any rate as regards the elastic strength. In ductile

materials, the limit of elasticity of which depends to so great an

extent on rigidity, any lateral force must raise or lower the elastic

limit according as it acts in the same direction as the longitudinal

stress or in the opposite direction.

Secondly, it may be supposed that the maximum elongation or

contraction of a material in a given direction must be a certain definite

quantity, irrespective of any elongation or contraction in any other

direction. This hypothesis leads to results which in many cases are

much more probable than the preceding, and is in common use by
Continental writers; we shall therefore give some examples.

Let us take a piece of wrought iron and imagine that when exposed

to a simple stretching force its limit of elasticity corresponds to a stress

of 10 tons per square inch, accompanied by an elongation of y^Vo^h of

its length. The second theory asserts that the maximum admissible

elongation is still T^OO^ even though the sides of the bar be acted

on by any force, the effect of which will be that quite a different

longitudinal stress will be required to produce that elongation.

The relations between stress and strain are expressed by the equa-

tions (Art. 211), of which one is

v Pz+PsEe, =p, -^ ^.
m

The first theory supposes that pl
can never exceed 10 tons, and the

second that e
1
can never exceed T1roo^h (or Ee

1
10 tons), whatever

j92, pB
are. In the case of a thin pipe with closed ends under internal

fluid pressure ^3
=

(nearly), p2
= \p l (Art. 150); thus assuming m = 4

we have on the second or elongation theory

10=^-|i, or, ^ = 11-43,

so that the material will bear under these circumstances a stress of

11-43 tons per square inch as safely as it bears 10 tons under simple

tension," and this value, therefore, may be assumed for the co-efficient in

the formula which gives the corresponding internal pressure. In like

manner in the case of a thin sphere the material will bear a stress-
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of 13J tons per square inch, being an increase of 30 per cent. If, on the

other hand, we imagine the lateral stress compressive, then the maxi-

mum stress is reduced to 8*89 tons in the first case and 8 in the second.

On either theory the resistance to a simple distorting stress may be

found in terms of the resistance to simple tension, for such a stress

consists (p. 349) of a pair of equal and opposite simple stresses of equal

intensity. In the first case the resistances to tension and shearing

ought to be equal, in the second, since, writing p.2
= -pv we find

it follows that the resistance to shearing is m/(m+l) or about four-

fifths the resistance to tension, a result on the whole borne out by

experience. It should be remarked that the theory only professes

to give a connection between the elastic resistances in the two cases,

the equations only holding good for perfectly elastic material, which,

moreover, must be supposed isotropic. The ultimate resistance to

torsion of a cast-iron shaft of square section is 40 per cent, greater than

its resistance to tension, which is no doubt due to the same causes

as in the case of bending, since in a hollow shaft of circular section

it is only 80 per cent, of the tensile strength, and in a solid round shaft

about the same.

Again, rigid materials on this theory are imagined to give way to

longitudinal compression, when the lateral expansion produced by the

compression is the same as would be produced by a simple tensile stress ;

from which it appears that the elastic resistance to compression should

be from three to four times the elastic resistance to tension, as may
easily be supposed to be the case.

Next suppose the three principal stresses to be equal and tensile,

forming a tensile volume-stress p the sole effect of which is to produce
an increase of volume. Evidently we have

or if in = 4, p = 2Ee. If this stress be increased till rupture occurs, the

limiting value ofp is the real tenacity of the material, and, according to

the hypothesis we are considering, should be a definite multiple of

(say double) the simple tensile stress. No experiments on stress of this

kind appear as yet to have been made on solids.

The elongation theory is employed by some writers of great authority
on the subject of elasticity as confidently as if it were a statement of

observed facts, and has been greatly developed in connection with the

elastic properties of matter which is not isotropic. An addition to the

tenacity of a material, consequent on the application of a lateral tension,
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can, however, hardly be considered as intrinsically probable, and such

direct experimental evidence as exists is against the supposition.*

A third theory, more easily conceivable a priori, is to suppose that

each material is capable of enduring, without injury to its elasticity, a

certain definite change of volume and a certain definite change of shape.

We thus have two co-efficients of elastic strength analogous to the two

fundamental constants which express the other elastic properties of

isotropic matter. On this hypothesis, however, if the resistance to a

simple distorting stress in any plane be independent of the existence

of any other kind of stress whether fluid or otherwise, as in fact is the

case before the limit is reached, it would follow that this resistance

must be one-half the resistance to a longitudinal stress.

Until a complete experimental investigation has been made no method

can be completely satisfactory ; but, in the absence of the necessary

experimental data, the elongation theory may be provisionally assumed,

at least in cases where it leads to a smaller result than the supposition

of a given limiting stress. It is applied by first finding the principal

stresses as in Ch. XVII., and then deducing the principal strains as just

now explained. The greatest of these strains multiplied by E may be

described as the "
equivalent simple tensile stress," and should not

exceed the limit prescribed by the strength of the material.

REPETITION AND IMPACT.

230. Woliler's Experiments on Fluctuating Stress. In bodies which

satisfy the definition of perfect elasticity a load within the elastic

limit produces no permanent change, unless perhaps some thermo-

dynamic effect, and it follows from this that after removal the body is

completely uninjured, so that the load may be repeated indefinitely.

Experience confirms this conclusion. The balance spring of a watch

bends and unbends more than a million times a week for years together,

and the parts of a machine if originally sufficiently strong, remain so to all

appearance for an indefinite time. But, if the load be beyond the elastic

limit, permanent changes are produced, and there is every reason to

believe that a slow deterioration of strength is ultimately destructive.

The most definite information on this point is furnished by the

experiments of M. Wohlerf published in 1870. Bars were loaded in

various ways and the load wholly or partially removed
;
the process

was repeated till the bar broke : the number of repetitions necessary
* See a paper by M. Wehage, an abstract of which is given in the Proceedings of the

Institution of Civil Engineers, vol. 95, p. 410. Some experiments by Bach bearing on

the question will be referred to in the Appendix.

\-Die Festkigeits Versuche. Berlin, 1870.
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Fig. 169.

for this purpose being counted was found to depend, first, on the

maximum stress, and secondly on the fluctuation of stress.

First suppose the stress alternately tensile and compressive of equal

intensity. Wohler tried this both in bending and twisting. Fig. 169

represents a round bar DE, with one end enlarged and fitted into a

socket in a revolving shaft S. At

the free end E a load P was applied,

which produced at D, the point

of maximum bending, a stress

of intensity found by the usual

formula. The shaft being set in motion the piece of material was bent

alternately backwards and forwards once in each revolution. A
number of exactly similar pieces being tried successively with gradually

diminishing loads, the revolutions necessary to produce fracture were

found to increase as shown by the annexed table for the case of wrought

iron, which gives the revolutions necessary for fracture at a given stress..

ALTERNATE BENDING OF A BAR OF AXLE IRON FURNISHED BY
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.already been shown by Prof. J. Thomson, in a paper published in 1848,*

that twisting or bending a bar beyond its elastic limit in one direction

must increase its powers of resistance to a second strain in the same

direction, and diminish it to a strain in the opposite direction. Accord-

ingly, we find that when a bar is strained in one direction only its

powers of resistance to unlimited repetition are greatly increased.

Wohler made very extensive experiments on stretching, bending, and

twisting of pieces of iron and steel to a given maximum stress, the

load being wholly or partially removed at each repetition. The num-

ber of repetitions necessary for fracture was found to vary, not only

.according to the magnitude of the maximum stress, but also according

to the fluctuation. It was greater when the load was only partly

removed than when it was wholly removed. Some results are given in

the annexed table, which shows the limits between which the stress

varied when fracture was just not produced by unlimited repetition.

RESISTANCE TO UNLIMITED REPETITION OF BENDING.
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the results of the experiments, of which one will now be given.*

Let p be the ultimate tensile strength of a material and A the

fluctuation, then the actual ultimate strength under unlimited repe-

tition will be

When A = 2p we get the case of alternative stress with which we

commenced, where p = Ip ,
and when A =p we have the case of repeated

stress in one direction with complete removal at each repetition. The

formula gives nearly the same results as the experiments in the

extreme cases, and may be expected to be approximately correct in

intermediate cases.

231. Influence of Repetition on the Elastic Limit The remarkable

results obtained by Wohler, as described in the last article, have since

been verified by further researches, amongst which may be especially

mentioned those made by M. Bauschinger and Sir B. Baker. f In all

such experiments we find the same regular increase in the number of

repetitions necessary to produce fracture with a given maximum stress

and a given fluctuation, and the limiting values below which a piece of

given material does not break, however many the repetitions are, is

much the same. The true interpretation of the experimental results is

still uncertain. The gradual deterioration of strength which takes

place is so far as is known confined to the section where fracture occurs

even in stretching where all sections are exposed to the same stress.

The character of the fracture indicates that minute cracks are produced
which gradually become large flaws as the repetition continues. These

facts show that it is not absolutely necessary to suppose an actual

diminution of strength of the material itself, such as is commonly
described by the term "

fatigue." The crack may conceivably be

initially produced by vibrations in the elastic solid of the nature of

those producing sound, for such vibrations, though representing a small

amount of energy, are capable of considerably augmenting the stress

due to an external load.

Another exemplification of Thomson's principle (p. 448) is furnished

by the not less important conclusion arrived at by M. Bauschinger
that stress in one direction beyond the elastic limit lowers the elastic

limit for stress in the opposite direction. Thus if a bar of wrought
iron be stretched beyond its natural elastic limit of 10 tons per square

* Elements of Machine Design, by Prof. "VV. C. Unwin, p. 25. A modified form of

this eq\iation, replacing the co-efficient - by a quantity k slightly different in different

materials, is given by the same writer in his work on Testing, p. 391.

t Report of the British Association for 1887.

C.M. 2 F
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inch, the elastic limit in compression becomes less than its original

value of 10 tons, and by alternating tension and compression it is

possible thus to lower the limit in both directions, and when thus

lowered by continued alternate stress the limit is found to agree with

the value obtained by Wohler for the resistance to alternate stress.

Evidently the two results must be closely connected, though the

nature of the connection is as yet obscure, and difficult to conceive if

we reject entirely the idea of "fatigue."

Whatever the true explanation, the resistance to alternate tension

and compression is of great importance as fixing for a given material

a minimum value of its elastic strength. If we attempt to define

the elastic limit of a material merely with reference to the degree in

which the material possesses the properties of an ideal elastic solid,

we find that it may change to any extent by repetition. This applies

not only to the "breaking-down point" (p. 431), which does not

always exist even in ductile materials, but also to the lower limit

where stress is more or less approximately proportional to strain. It

would seem that the natural condition of matter is one of imperfect

elasticity, though under small loads the deviations may be very

minute, and that a nearly perfectly elastic state under considerable

loads is generally a constrained condition, due to the mode in which

the material has been treated during manufacture or otherwise.

The resistance to unlimited repetition of alternate tension and com-

pression, either direct or in bending, of various materials is given in

the annexed table.
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without apparent injury, a plate of lead being introduced to prevent

local damage.
In most cases of impact, however, the elastic limit is exceeded,

and the destructive effect of repetition is then much greater than when

the load is gradually applied.

In the ductile metals the resist-

ance to impact is at first very

great, as has already been suffi-

ciently explained ;
but every

time the limit of elasticity is

overpassed the hardness of the

metal is increased, so as to make

it less able to resist the second

blow. This may be illustrated

by a diagram in which OQQ' is a curve of stress and strain, Q the

original elastic-limit, Q'N the stress produced by the first blow, so

that the area OQQ'N represents the energy of that blow. The effect of

the blow is to raise the limit from the stress QM to the stress Q'N

nearly. Hence the curve of stress and strain now becomes OVS, where

V is the new limit, and the material will only bear a blow the energy
of which is the triangle OVK, without the original stress Q'N being
exceeded. Thus by constant repetition of blows, which originally only

produced a stress not much exceeding the elastic limit, a much greater

stress may be produced. It is believed that this is in the main the

explanation of the destructive effect of repeated blows and continuous

severe vibration : pieces of material exposed to which are found to have

a short life. As already remarked, however, vibrations representing a

small amount of energy may considerably augment the maximum
stress on a piece of material.

CO-EFFICIENTS OF STRENGTH AND FACTORS OF SAFETY.

233. Factvrs of Safety and Co-efficients of Working Strength. Before we
can apply theoretical formula? to the determination of the dimensions of

actual structures and machines, it is necessary to know the value of the

co-efficients of strength to be used, and this is always a matter which

requires great care and attention to the circumstances under which

certain dimensions are found to be sufficient by long practical

experience. In the first instance it depends on the ultimate strength
of the material, and may be expressed by dividing that quantity by a

Factor of Safety. But the ultimate strength varies as we have seen,

and the word "factor of safety
"

is used with various meanings.
The primary meaning of the expression is the divisor necessary to
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provide a margin of strength for unknown contingencies such as the

following :

(1) The ultimate strength of a piece of material is uncertain, for two

pieces of material of the same description and manufacture are not

always equally strong. The liability to variation is much greater in

some materials than others, for example, in cast iron than in wrought

iron. The strength of stone varies so much that, in carrying out any

important work, experiments are frequently made on the stone to be

employed in it.

(2) The piece of material may be subject to corrosion or other

influence, which in course of time diminishes its strength.

(3) Errors of workmanship are unavoidable, and in some instances

may greatly increase the stress to which the material is exposed. This,

for example, is the case in pillars, the factor of safety for which must

always be greater than for other parts of a structure.

(4) The magnitude of the load and its mode of application is

generally more or less uncertain. This, however, may be provided for

by assuming a maximum load.

The factor required to provide for contingencies such as these may
be called the " real

"
factor of safety, but by an addition to its value it

may be made to provide against contingencies which can if necessary be

exactly foreseen and calculated. Assuming all the forces acting on a

structure to be known it is possible to find the stress on each part of it,

but the calculation may be too complex to be often used, or its result

may be known approximately under similar circumstances. Hence it

often happens that the dimensions of a piece are determined by a

formula involving only part of the straining forces which act on it, and

the rest are provided for by an increased factor of safety. Thus the

real stress on the metal of a screw bolt, when the effect of screwing up
is taken into account, may be double the total tension per square inch

of the gross sectional area. If that bolt be used for a cylinder cover

exposed to steam pressure the total tension will be much greater than

that due to the pressure of the steam. These two circumstances taken

together may be taken into account by the use of a factor of safety

three or four times greater than the real one. Such cases are common

in practice, but the factor to be used must then be determined by

comparisons with good examples under similar circumstances.

Again, it is necessary that a piece should be stiff enough as well as

strong enough, and when formulae for strength are used in such cases

it is often necessary to employ very large and very arbitrary factors of

safety. Here, however, the difficulty arises from an erroneous method

of calculation.
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234. Values of Co-efficients. In parts of machines subject to alter-

nating straining actions we know by Wohler's experiments that the

ultimate strength is somewhat less than the elastic strength under

simple tension, being for wrought iron and soft steel about one-third the

ultimate tensile strength. The load on such parts will rarely be applied

without shock, the effect of which cannot precisely be determined. In

ordinary cases it will be sufficient to treat this case as if the load were

suddenly applied by using a further divisor of 2. We thus obtain the

working strength by using a total factor of safety of 6. For wrought
iron this gives a co-efficient of 4 tons, or 9,000 Ibs. per square inch,

which is known by experience to give sufficient strength where all the

straining actions are taken into account. For timber the usual factor is

10. The co-efficient for shearing and torsion is to be taken provisionally

as four-fifths that for tension and bending, that is for wrought iron

3J tons per square inch
;
but from the incompleteness of experimental

data it is not certain that this value is not too large.

In structures the fluctuation of the straining actions is in general

much less, and the ultimate strength by Wohler's experiments is much

greater. Yet the working strength employed is not very different. In

the first place it is rarely permissible to approach the elastic limit

from the danger of a permanent deformation. In the second place, the

whole of the straining actions on each piece of the structure, especially

the effect of imperfect joints, are rarely included in calculations. For

example, the friction of pin joints may, under unfavourable circum-

stances, add 60 per cent, to the maximum stress on the links of a

suspension chain (Ex. 4, p. 462). Hence the working strength for

wrought iron rarely exceeds 4^ or 5 tons per square inch. In reckon-

ing the load Rankine recommended that the " dead
"
load should be

divided by 2 and added to the "
live

"
load in order to obtain the

effective live load. More recently the importance of Wohler's experi-

ments has been recognized, and it has been proposed to find the

ultimate strength of each piece under the maximum stress and

fluctuation of stress to which it is subject, and divided by a constant

factor of safety. Some rule based on this principle is now very

generally adopted.

In the case of marine boilers another important step has been taken

by the employment of a fixed margin of safety instead of a factor.

Thus, instead of taking the working pressure as (say) one-fifth the

bursting pressure, whether that pressure be low or high, it is taken as

(say) 200 Ibs. less, giving a much smaller factor at high pressure than

low. It is on this principle that the co efficient in the usual formula

given in Ch. XII. (p. 302) is taken so large, even reaching 20,000 Ibs.
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per square inch. In designing cylindrical boilers for the navy a

margin of 90 Ibs. below proof appears to be allowed. This gives a

co-efficient of 12,500 Ibs. per square inch for the working pressure
of 150 Ibs., the proof strength of steel being taken as 12 tons and

the efficiency of the joints "75.

235. Fibrous Materials, Ropes. Fibrous materials are those which

may be regarded as made up of fibres, usually of organic origin, more

or less closely united by cohesion or interlacing. The relative

movements of the fibres are hindered by forces of the nature of friction,

which are much less than the molecular forces to which the tenacity of

a homogeneous solid body is due. Hence the strength and stiffness

of a piece of material are much less than those of the fibres of which

it is made up.

In most kinds of woods the fibres are arranged longitudinally, and

the material is therefore especially characterized by its low resistance

to divisions into parts longitudinally. Thus the resistance to longi-

tudinal shearing of fir timber is only 600 Ibs. per square inch, whereas

its tenacity is about 20 times this amount, approaching that of cast

iron. So, again, crushing takes place by longitudinal splitting under a

stress little more than half the tenacity. Further, the condition of

the material greatly influences the lateral cohesion of the fibres and

thus affects its strength and elasticity. In timber which has been

artificially dried the elasticity is nearly perfect up to the breaking

point, whereas in the green state the elasticity is imperfect and the

strength greatly reduced. Hence the importance of seasoning timber

so as to be moderately dry.

The ordinary formulae, however, will apply in all cases where the

stress is a simple longitudinal stress, the direction of which is that of

the fibres
;
that is to say, in tension, compression, and ordinary cases

of bending. They will only fail when the bending is accompanied by

crushing and shearing of considerable intensity, as when short pieces

are acted on by transverse forces. (See Appendix.)
In cloth and similar materials two sets of fibres at right angles are

united by interlacing. Resistance to tension is thus obtained with

almost complete flexibility.

In ropes of all kinds the fibres are ranged in spiral curves in the

process of manufacture, and their tension then produces lateral pressure,

the friction arising from which is sufficient for union. The strength of

a rope, though very great compared with its weight, is only one-third

that of the yarn of which it is spun, and on a similar principle the

strength of large cables is less than that of the smaller ropes called
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" hawsers
"

of which they are made up. The strength of a rope is

usually expressed by the formula

where C is the girth of the rope in inches, T the tension in tons, and

k a constant. The old rule in the navy was to take k = 5 to obtain the

breaking weight of a rope, but the table now employed gives & = 3-3,

that is, a strength 50 per cent, greater. In small ropes k may be even

less. The safe working load is not more than one-sixth the breaking

load. In iron wire ropes k=I, or for ropes above 6 inches girth

somewhat more. The strength of wire ropes is more than doubled by
the employment of steel. The safe working load may be taken as

one-fifth their breaking load.

236. Tables of Strength. For a detailed account of the properties of

the materials of construction the reader is referred to Professor Unwin's

excellent treatise.* A convenient summary of the older experimental

results is given in Rankine's Useful Rules and Tables. It will be here

sufficient to give a few examples.

Table I. gives the weight and working strength of various materials.

TABLE I. WEIGHT AND WORKING STRENGTH.
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In estimating the working strength it is supposed that the load is

always in one direction, and allowance is made for a moderate fluctua-

tion. A larger value may sometimes be used when the load is perfectly

steady and gradually applied, while for an alternating load it would

be too large for safety. The first two columns give the safe load per

sq. inch in tension or compression, and the second two the equivalent

length in feet of a bar or column of the material. It is on this last

quantity which is denoted by A. in Arts. 40, 41, p. 81, and elsewhere,

that the limiting dimensions of a structure depend. It will be observed

that weight for weight timber is stronger than wrought iron, but on

the other hand the joints of the timber structure are, with certain

exceptions, much weaker than in the case of iron, so that the com-

parison is not actually so favourable. For springs, see next page.

Table II. gives a few examples of the elastic properties of materials

used in construction.

TABLE II. ELASTICITY.
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when the bar has been stretched before. This would give in bar iron

a limit of 12 or 13 tons per sq. inch. Yet there can be no doubt that

when accurate measurements are made on a bar which has not been

stretched before, there is a perceptible failure at a much smaller stress.

In the long rod of wrought iron, tested by Hodgkinson, the extensions

were sixty times as great as in an ordinary test-piece, and the limit

obtained was about 10 tons, as already described. With a sufficiently

delicate measuring apparatus the same result has been reached with a

test-piece of ordinary length. In the softest kinds of steel the limit

thus defined is little higher, in plates lower, and in the softer metals

generally appears to be about 40 per cent, of the ultimate strength. In

the hardest and strongest kinds of steel the material is elastic nearly up
to the point of rupture. The resilience* under simple tension or com-

pression of steel springs when reckoned in feet of material is probably

nearly 400, which, as previously explained, is reduced in bending to one-

third, or in torsion to about two-thirds of this amount. This cor-

responds to an elastic strength in tension of 125 tons per sq. inch.

The working strength of steel springs bent in one direction only may
be taken as 50,000 to 60,000 Ibs. per sq. inch, values which are

sometimes greatly exceeded.! In torsion the co-efficient to be employed
is smaller as already explained, probably about 40,000. The strongest

steel pianoforte wire has a strength of 150 tons per sq. inch and a

resilience of 570 feet. The specimen of copper chosen is taken from a

diagram given by Professor Unwin as a normal example of rolled

copper : the limit is diminished one-half by annealing, a circumstance

which shows the artificial character of the elastic state in the ductile

metals. It would seem that such metals in their natural condition are

always slightly plastic.

Co-efficients of elasticity are difficult to estimate with exactness,

though the difficulties are not so great as in the case of the limit of

elasticity. The values given in t*he table are only common examples
in round numbers. From these the resilience is calculated as already

fully explained.

The greatest stress which a material will bear without damaging it

in any way is commonly described as the proof stress. Rankine defined

it as the stress which might be applied twice or more times without

producing an increased permanent set. A natural extension of this

definition is furnished by the resistance to alternate stress given in the

table on page 448.

* See a paper by Mr. Lewis, Van Noslrands Magazine, May, 1885.

t Taschenbuch vom Hutte, 1892 ; Abtheilung I., pp. 309, 372.
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Table III. gives examples of the ultimate strength and ductility of

materials.

By the ultimate strength is understood the maximum load divided by
the original sectional area of the test-piece. As previously explained,

in the stretching of a ductile metal to fracture the actual breaking load

is a smaller quantity, and the difference is sometimes considerable : it

is however seldom given in tables of strength. The table gives in the

first three columns the ultimate resistance to stretching (7
1

), compression

{(7),
and shearing (S).

TABLE III. ULTIMATE STRENGTH AND DUCTILITY.
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a diagram of stress and strain, or calculated by a formula given by
Professor Kennedy, based on the supposition that the curve is a para-

bola. If x is the fractional elongation, p the yield-stress, / the ultimate

strength, n + 'lf

Work done = ^. y
-V^.o

The last two columns of the table give the two parts of the work, the

first part being a small fraction the numbers are multiplied by 10~ 3

to avoid fractions. The whole is only a small part of the total resist-

ance to impact of a cubic inch of the material, because only a part of

the test-piece is fully stretched. If we consider the crushing of a small

block, the result is many times greater ;
in the example given in the table

on page 434, the total work done is about 32 inch-tons per cubic inch.

The value given for cast iron is obtained by integration from

Hodgkinson's equation of the curve of stress and strain. In many
kinds of cast iron the work done in fracture would be 2 or 3 times

greater, but in any case is a small fraction.

ADDENDA.

237. Principle of Similitude. When geometrically similar test-pieces

of similar material are stretched till fracture occurs, the percentage of

elongation is the same, the pull is proportional to the sectional area arid

the work done to the volume of the piece. This law, which has been

proved by the experiments of M. Barba, is merely a particular case of a

general principle which applies to all similar and similarly loaded pieces,

whether or not the limit of elasticity has been over-passed. To produce
similar deformations, whether in stretching, bending, crushing, or in

any other way, the load must be proportional to the sectional area and

the work done to the volume of the pieces. It has been verified by

experiments on the crushing of stone by M. Bauschinger, and a number
of other examples will be found in a small treatise by Professor Kick.*

Any deviations from this law should be due to differences of material

and mode of manufacture between small pieces and large ones. In

framing semi-empirical formulae for cases in which exact formulae are

unattainable this law should be borne in mind. Thus in the case of

pillars the formulae proposed by Hodgkinson do not satisfy the law, and

should be rejected in favour of some formula, such as Gordon's, which

does satisfy it.

238. Expansion and Contraction. We conclude this division of our

work by giving some explanation of the effect of changes of tempera-

ture, a subject too important to pass by unnoticed.
* Das Gesetz der Proportionalen Wider&tande, Leipzig, 1885.
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When a homogeneous body, free from initial strain, is uniformly
heated throughout its whole mass, it undergoes a change of linear dimen-

sions which is the same in every direction, being given by the equation

t

e
~K*

where / is the rise of temperature and K a quantity which in a given

material is roughly approximately constant for a moderate rise of

temperature, being for degrees Fahrenheit given by the annexed table.

LINEAR EXPANSION OF METALS.
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Hence the stress produced if curvature be forcibly prevented is for a

given flow proportional to E/crK, a quantity which, multiplied by 100,

is given in the last column of the table.

In designing a structure or machine the possible effects of expansion

or contraction by changes of temperature have always to be carefully

considered.

The importance of the stress produced by unequal heating of boiler

plates was pointed out by Mr. Yarrow in a paper read before the Insti-

tution of Naval Architects in 1891.*

EXAMPLES.

1. Show that the modulus of rupture (p. 441) of a material is 18 times the load which

will break a bar of the material 1 inch square and 1 foot long ;
the bar being supported

at the ends and the load applied at the centre.

2. A balcony, 6 feet long and four feet broad, is supported by a pair of cast-iron beams

fixed in the wall at one end. The beams are of rectangular section, 2 inches broad, and

depth near the wall 4 inches. What load per square foot will the balcony bear, the

stress on the iron being limited to 1 ton per square inch? Also, how should the depth

vary for uniform strength along the length of the beam ?

-4ns. Equating the greatest bending moment to the maximum moment of resistance to

bending we find the load which the balcony will bear

= 41 '5 Ibs. per square foot.

As to the depth of the beam : for uniform strength -j y
must be constant from which we

find that the depth at any point of the beam must be proportional to the distance from

the outer end of the beam
;
so that the lower side of the beam should be a sloping plane.

3. A paddle shaft is worked by a pair of engines with cranks at right angles. Suppos-

ing the steam pressure constant, and the resistance of each wheel equal and uniform, and

obliquity of connecting-rod neglected ; compare the co-efficients of strength to be used in

calculating the diameter of the paddle and intermediate shafts.

Ans. The uniform moment of resistance of the paddle wheel=^ the mean turning
moment of the two engines. The twisting moment of the paddle shaft, when either

crank is on the dead centre, =5 maximum twisting moment of one engine. At the same
instant this is the same twisting moment on the intermediate shaft. When the other

crank is on the dead centre the twisting moment on intermediate shaft is the same
in magnitude, but reversed in direction, and when the two cranks make angles of 45

with the dead centres the twisting of the paddle shaft= J the maximum combined

twisting moment of the two engines, that is \/2 times its amount when either crank is

on the dead centre ; but the twist is in the same direction always. Therefore on the

paddle shafts the stress alternates between x and x\/2, and on the intermediate shaft

between x and - x.

* Transactions of the Institution of Naval Architects, 1891.



462 STIFFNESS AND STRENGTH. [PART iv.

Hence applying the formula

j^iP+VjMJ^-lfi),
we have for paddle shaft,

p = -414ic
; p = l'4Ux ;

. '. p = -292p ;

substituting, we obtain

P= VPQ.

For intermediate shaft, p = 2x
; p - x ; p-2p; and p - ^p .

If the stress on the paddle shaft alternates to zero, by the wheels rolling out of the

water, or by the stopping of the engine, then p - '6po-

4. A suspension chain is constructed with bar links united by pin joints; the diameter

of the pins is two-thirds the breadth of the link (p. 374). If the bridge vibrate show that

the maximum stress on the links may be increased by deviation (p. 240) due to friction of

pins in the ratio 1 + 2/: 1, where /is the co-efficient of friction.

5. Find the work done in crushing the block of steel, particulars of which are given

in the table on page 434. Ans. 31 '7 inch tons per cubic inch.

6. If similar armour plates with similar backing are struck by similar shot with a

given velocity, show that for the same penetration the diameter of the shot must be:

proportional to the thickness of the armour plate.

7. If the breaking load of a beam 4 inches deep, 2 inches broad, and 3 feet span, be

1 ton : find the breaking load of a beam 9 inches deep, 4^ inches broad, 11 feet 3 inches

span.

8. Find the weight of steel springs necessary to provide one-quarter of a horse power
for one hour, assuming that the springs operate by bending, and allowing for safety a

margin of 25 per cent, of the total resilience. (See page 457.) Ans. 2% tons.

9. Heat is flowing thiough a circular plate of wrought iron |
ths of an inch thick at the

rate of a 100 thermal units per sq. foot per minute. The plate when cold is flat
;
find the-

amount of bulging, assuming the curvature to be unresisted.

10. In a cast-iron beam of rectangular section, the "
bending strength

" with side

vertical is found to be If times the simple tensile strength (p. 441). Assuming that the

stress is completely equalized on each side of the neutral axis : find the shift of the

neutral axis. Ans. Shift= depth.

11. In the last question, suppose the diagonal vertical instead of the side and the

bending strength 2 '35 times the simple tensile strength : find the shift of the neutral

axis. Ans. Shift= '044 x depth.
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DESCRIPTION OF PLATE VIII.

To illustrate various questions considered in Chapters XII. and XV., Plate VIII. has

been drawn.

Figs. 1, 2 represent the pin joint connecting two bars in tension, discussed in Art. 193,

p. 374. Figs. 3, 4, 5 show the way in which the joint yields when the pins are too small.

In Fig. 4 the original dimensions of the eye and eyehole are shown by dotted lines, while

the full lines show what they become after yielding. Fig. 3 gives transverse sections

of the eye before and after failure, showing the thinning out due to lateral contraction

during stretching beyond the elastic limit. After this contraction has reached a certain

limit the metal tears asunder, as shown in Fig. 4. The longitudinal section (Fig. 5)

shows the corresponding spreading out at the top of the hole due to compression beyond
the elastic limit. This lateral expansion is partially prevented in riveted joints, and

(p. 432) this may be the reason why direct stress in them is of less importance. The
failure of pin joints in this way furnishes a good example of the "flow of solids."

The remaining figures of this plate are intended to give some idea of the manner in

which iron girders are constructed. Figs. 6, 7, 8, 9 are transverse sections of "H iron,"

"channel iron," "tee iron," and "angle iron"; these are rolled in one piece, and, in

combination with plates form the materials from which large girders are built up. For

small beams such as floor joists H iron or tee iron of the requisite depth and sectional

area may be used. Figs. 10, 12 are sections of two of the commonest forms of built-up

girders. In the first the web is a single plate to which angle irons are riveted, to form

the flanges, further strength being obtained by an additional covering plate. The second

is similar, but the web consists of a pair of plates, a form known as a " box-beam."

Fig. 11 is commonly used in shipbuilding as a deck beam or otherwise: a "bulb iron"

here forms the web and lower flange, while the upper flange is formed b}- a pair of angle
irons as before. Figs. 13, 14 give examples of girders of more complex construction

employed where greater strength is necessary : one flange only is shown in section in

each case.
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PART V.-TRANSMISSION AND
CONVERSION OF ENERGY BY FLUIDS.

239. Introductory Remarks. We now return to the subject of

Machines, with the object of studying those machines in which fluids

are employed as links in a kinematic chain for the purpose of trans-

mitting energy, or as a means by which energy is supplied, stored, or

converted.

A fluid is a body in which change of form is produced by the action

of any distorting stress, however small, if sufficient time is allowed.

In a perfect fluid a sensible change would be produced by a stress of

sensible magnitude in an indefinitely short time, but in all actual fluids

a time is required which is inversely as the stress that is, the stress is

proportional to the rate of change. This property of fluids is called

Viscosity, and is measured by a co-efficient, as will be seen hereafter.

The viscosity of a fluid varies greatly in different fluids, and, in the

same fluid, is dependent on the temperature. At high temperatures
it is much less than at low temperatures. The viscosity of water is

exceedingly small.

Fluids are either liquid or gaseous. In liquids the changes of

volume are in general small, and no diminution of pressure on the

bounding surface will cause their volume to increase beyond a certain

limit. Gases, on the other hand, expand indefinitely as the external

pressure diminishes.

Liquids are employed in machines either as a simple link in a

kinematic chain transmitting energy from some source independent of

the liquid, or as a medium by means of which the force of gravity
exerts energy. Such machines are called Hydraulic Machines, the

fluid employed being in most cases water. On the other hand, gases
in general serve as the means by which that form of energy which we
call Heat is converted into mechanical energy, capable of being utilized

for any required purpose. They may, however, also be employed for

the storage and transmission of energy.
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The motions of fluids may be studied in two different ways. In the

first the Principles of Work and Momentum are applied to the whole

mass of fluid under consideration, or to portions which, though small,

are yet of visible magnitude \
but no attempt is made to conceive, much

less to determine, the movements of the smallest particles of which the

fluid may be imagined to be made up. This method may be described

as the experimental theory, and, as applied to water, forms that part of

the subject which is called
"
Hydraulics." It is based directly on ex-

periment, and requires continual recourse to experiment, just as is the

case in questions relating to the friction of solids. Nevertheless, being

continually verified by the large-scale experiments of the hydraulic

engineer, its results, as far as they go, are as certain as those of any

purely experimental subject. On the other hand, an analytical theory
has been constructed by means of which the motions of fluids are

determined directly from the laws of motion, without reference to

experience. This theory is usually called Hydrodynamics in treatises

on mechanics. In the cases in which it is applicable it completely
determines the motion of all particles of the fluid, and not merely that

of the fluid as a whole.

The first two chapters of this division of our work will be devoted to

Hydraulics and Hydraulic Machines, and the third to a brief discussion

of the various applications of Elastic Fluids. The transmission and

storage of mechanical energy by elastic fluids is often considered as part

of hydraulics, because the method of treatment is in many respects

similar. In this treatise it will be called "Pneumatics." The relations

between heat and mechanical energy form a distinct science called

"
Thermodynamics," the principles of which will only be referred to

when absolutely necessary.



CHAPTER XIX.

ELEMENTARY PRINCIPLES OF HYDRAULICS.

SECTION I. INTRODUCTORY.

240. Velocity due to a Given Head. When the level of the surface of

the water in a reservoir is above surrounding objects, a HEAD of water

is said to exist, the magnitude of which is measured, relatively to any

point, by the depth (h) of the point below the surface. If the water

extend to this point a pressure is produced there which, so long as the

water is at rest, is given in Ibs. per sq. ft. by the formula

p = wh,

where w is the weight of a cubic foot of water, that is to say, about

62^ Ibs. for fresh water, or 64 Ibs. for salt. A ton of water occupies

36 cubic feet when fresh and 35 when salt. These values are of course

only convenient round numbers
;
the exact value of w for pure water

at 39 F. is 62-425, while at 100 F. it is only 62. At temperatures
above 75 62 is more accurate than 62| ; but, on the other hand, water

is seldom entirely free from solid matter, which increases its density.

Since the above formula may be written

*-*,w
it appears that a pressure may be measured in terms of the head which

would produce it. The fluid is usually water, for which h is reckoned

in feet; and 1 Ib. per sq. inch is equivalent to 2'3 feet of fresh, or 2-25

feet of salt water. For some purposes, however, mercury is employed,
in which case the unit is generally 1 inch. One inch of mercury is

equivalent to about *49 Ib. per sq. inch, that is, to a head of I'l feet of

sea water, or T135 of fresh water. If the surface of the water be

exposed to the atmosphere, the pressure p will be in excess of the

atmospheric pressure, which must be added to obtain the absolute

pressure. The mean value of the atmospheric pressure is 14'7 Ibs.

per sq. inch, which corresponds to a head of about 33 feet for salt, or

34 feet for fresh water.

When metric measures are employed, the unit of velocity is generally
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1 metre per second (page 92), heads are reckoned in metres and pres-

sures in kilogrammes per square metre. The value of w is then 1000,

and that of g 9 -81. The atmosphere was originally 76 centimetres

of mercury, or 1-0333 kilogrammes per sq. centimetre, a value closely

agreeing with that just given but of late the " new atmosphere
"
of 1

kilogramme per sq. centimetre, or 14 '2 33 Ibs. per sq. inch, has been

frequently used.

A head of water is a source of energy which may be employed in

doing work of various kinds, or in simply transferring the water from

one place to another. Let us take the second case, and imagine that,

by means of a pipe, channel, or passage of any description, the water is

delivered at B (Fig. 171), while at the same time, by a stream or other-

wise, the surface of the water in the reservoir is kept constantly at the

Fig. 171.

A A

same level AA^ so that the head h remains unchanged. The motion is

then described as Steady, and consists simply in the transfer in each

second of a certain weight of water from the stream to the reservoir,

while an equal weight traverses the passage, and is delivered at
,
the

whole mass of water between AA and B remaining constantly in the

same condition. The delivery at B may be supposed found by actual

measurement; it is usually estimated in gallons per minute or cubic

feet per second, as to which it need only be remarked that the gallon

weighs 10 Ibs., so that a cubic foot per second is about 375 gallons per

minute. For large quantities, however, the cubic metre, which weighs
about 1 ton, is also employed.
On delivery the water is moving with a certain velocity, but the

definition and measurement of this quantity is not so simple. We
must now suppose that the centre of gravity of the water delivered in

some given time is observed and its velocity noted. This velocity will

be the same whatever the time be, and will be. a measure of the velocity

of the mass of water considered as a whole. In some cases all particles

of the water may be moving with this velocity, but in general this is
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not the case : it is then the mean velocity, and may be described as

the "
Velocity of Delivery." If the water be discharged by a channel

which, near the exit, is of uniform transverse section A, a mean

velocity may also be defined by the equation

-Q-K
A wA'

where Q is the discharge in cubic feet per second, and W the weight
of this quantity. The velocity thus defined is not identical with the

velocity of the centre of gravity, a point considered further on (Art. 246).

The energy of motion of the water may now be separated into two

parts, one external and the other internal (Art. 133, page 268), of

which the first is

Energy of Translation = ,

while the second is due to the motions of the particles of water amongst

themselves, and will be further considered as we proceed.

The whole energy of motion has been generated by the exertion of

an amount of energy Wh due to the descent of the water from the

level AA to the level B
;
and in cases where the internal energy may

be neglected, we have, neglecting also friction,

where h the head is measured to the centre of gravity of the issuing

water (page 181).

It has been here supposed that the surface of the water in the reser-

voir, and after delivery at #, is exposed to the atmosphere, but this is

not always the case. Suppose in the figure the reservoir filled to the

level CO only, but that the pressure on the surface has any value p
instead of being simply that of the atmosphere. This pressure^? may
be produced by filling up the reservoir to the level AA where

h=z +P;W
and as the reservoir is supposed large, so that the water is sensibly

at rest, except very near the exit, this can produce no change in the

motion, which as before is given by

In other words, in addition to the actual head z, we have a virtual head

p/w, due to the difference of pressure p, thus giving a total head h.

The jet of water has been supposed to issue into the atmosphere, but

the nature of the medium into which the discharge takes place has

little influence, provided its pressure be duly taken into account. It
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has been proved by experiment that if the pressure of the atmosphere
be artificially increased or diminished, the velocity is given by the

same formula, modified as explained in the next article. This is also

true if the efflux take place into a vessel of water.

241. Hydraulic Resistances in General. The actual velocity v with

which the water is delivered is less than the value v just found, because

a certain part of the available energy is always employed in overcoming
certain resistances of the nature of friction, the origin of which we shall

see gradually as we proceed. They are measured in two ways : (1) by

comparing the actual velocity of delivery with that due to the head;

(2) by considering how much energy is employed in overcoming them.

In the first method we have only to introduce a co-efficient c given by
V' = CD,

which is called the Co-efficient of Velocity. It is of course always less

than unity, and its value is found by experiment in each special case.

In the second we write h - h' = ,

*9

where h' is the "
loss of head

"
due to the resistance. The value of h

r

is most conveniently expressed by connecting it with the actual velocity

v, with which the water issues. For this purpose we replace h by
v2/2g and v by v'/c, and thus obtain

where F is a new co-efficient called the Co-efficient of Resistance

connected with the previous one by the equation

It is found by experience that the values of these co-efficients depend

mainly on the form and nature of the bounding surfaces within which

the water moves, and, subject to proper limitations, not on the pressure

or velocity of the water a fact which may be expressed by the

following law of hydraulic resistance : the energy lost ly resistances is

a fixed multiple of the energy of motion of the water. This multiple is the

co-efficient F which is sometimes fractional, but is often very large, as

we shall see further on. The physical meaning of this law will be seen

hereafter, and the apparent deviations from it which frequently occur

will be accounted for.

242. Discharge from Small Orifices. Fig. 172 shows a vessel of

water discharging through a circular hole in the bottom which is

flat. The whole is small, and its circumference is chamfered below

to a sharp edge at the upper surface.
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On observing the jet of water which issues, we see that it is nearly

cylindrical but of diameter less than the diameter of the hole. The

contraction is complete, so far as can be judged by the eye, at a dis-

172

tance of d/2 from the vessel ;
and by measurement is found to be in

the ratio 4 : 5, that is, the sectional area of the jet is to the sectional

area of the hole in the ratio l8 : 25.

If the hole be made in the vertical side of the vessel a contracted

jet issues in the same way, but under the action of gravity it forms-

a curve which is very approximately parabolic in form, each particle

moving nearly in the same way as a projectile in vacua. This enables

us to find the velocity of the efflux (v) by observing a point through
which the jet passes, and we thus obtain experimentally the value of

the co-efficient c which appears to be about '97. The discharge is now

given by the formula

where A& A are the contracted and actual areas of the orifice, and

k is their ratio, which is a fraction called the Co-efficient of Contraction
;

the discharge therefore depends on the product of the two co-efficients

c and k which may be replaced by
C= ck,

a quantity called the Co-efficient of Discharge.

The value of C can also be determined by direct measurement of

the discharge, an observation which can be made with much greater

accuracy than those of contraction and velocity on which it depends.
In the present case it is usually about '62, agreeing well with the

product '97 x '64 of the values given above.

Some careful experiments have been made by Mr. Mair, from which

it appears that very slight variations in sharpness of the edges of an

orifice will produce a considerable effect on the co-efficient of discharge,

the sharper the edge the lower the co-efficient, and a co-efficient as low
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as '605 was thus obtained.* This is probably due to variations in the

co-efficient of contraction. Until recently the only case in which a

co-efficient of contraction had been found theoretically was that of

a long narrow slit, for which Lord Rayleigh obtained the value of '611
;

but in 1892 M. Boussinesq showed that the true value for a circular

orifice was very approximately '6. With orifices several inches

diameter this is the actual value found by experiment : the larger

values obtained with small orifices being probably due to friction

against the flat side of the vessel before the orifice is reached.

With two forms of orifice the same co-efficients are used, but their

numerical values are quite different. In the figure two cases are

represented : on the right side of the vessel the water issues through a

short pipe the entrance to which from the vessel is square-edged ;
on

the left a similar pipe is employed, but it projects inwards instead of

outwards. When the pipe projects outwards the water is found to

issue in a jet the full diameter of the pipe, that is, k is unity ; while,

on the other hand, the velocity is much diminished, the value of c

being only -815. When it projects inwards the jet contracts greatly,

the value of k being '5 while the velocity is about the same as in a

simple orifice. Thus C instead of being '62 is -815 and -5 in the two

<3ases. The causes of these remarkable differences will be seen here-

after, the results are only given here to illustrate the meaning of the

co-efficients under consideration.

The contraction of the issuing jet depends on the average angle at

which the moving particles converge towards the orifice before reaching

it, and this is the reason why it is so great in the case of a short pipe

projecting inwards. If the cir-

cumstances be such that the

convergence is small the con-
>

traction diminishes. Fig. 173

shows a pipe of some size

through an orifice in the flat

end AB of which water is being forced, issuing into the atmosphere.
The co-efficient k is found to depend on the proportion which the area

of the original orifice A bears to that of-the pipe S, because the smaller

S is, the less is the angle of convergence. This has been expressed by
an empirical formula due to Rankine which may be written

which will be found to give k = '618 when S is infinite, as is nearly the

-case for a simple orifice as explained above, while for smaller values k

^Proceedings of the Institution of Civil Engineers, vol. Ixxxiv.
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increases, becoming unity as it should when S=A. For a long narrow

slit a rational formula has been obtained by Mr. (now Prof.) Michele.*

In a similar way if an orifice be near a corner of the vessel the

-contraction will be diminished. In these cases the contraction is

usually described as "incomplete."

The passages through which the water is moving may be attached to

-a ship, locomotive, or other moving structure, in which case the velocity

must be reckoned relatively to the structure, and the height due to the

velocity must be reckoned as part of the head. If, for example, in the

bow of a vessel moving through the water with velocity Fan orifice

be opened at the surface level, the water will enter through it, and if

unacted on will move within the vessel with velocity V and will possess

relatively to the vessel the energy V*jZg per unit of weight. If it be

acted on during entrance by the head due to any difference of level or

pressure, so that its velocity is changed from V to v, the corresponding

change of energy will measure the work which is done, and therefore

the equation v2 - V2 = 2gh applies as before. The structure is here

supposed to be moving uniformly in a straight line. A rotating casing
will be considered in a later chapter.

243. Steady Flow through Pipes. Conservation of Energy. Fig. 174

represents a vessel of water discharging through a large pipe, the

section of which varies according to any law. If the pipe "runs full,"

that is, if it be always completely filled with water, the discharge is

where u^ u
2

are the velocities through two sections the areas of

Po .

c
i I I I

I

I I I .0 Figr.174.

I I I I I

which are A
lt
A

2
. Hence the velocity is always inversely as the

sectional area, and in an ordinary pipe in which the section is uniform

*Pkil. Trans., 1891.
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must be the same throughout. Let the pressures be plt p2 ,
and the

actual head, that is to say, the depths below the water surface CC>

h
lt

h
2 ,

then it appears from Art. 237 that

V_/;
,Po-Pi. V_/3

,Po-Pz
2g~

l
+ w >

2g~'
2 + ~w

where p is the pressure on the surface CC.

Take now some convenient line DD at a depth Z below the water

surface CC, and z
lt

#
,
be the elevation of the section above this-

datum level so that

then the above equations may be written

o 9

2g w
~

] w 2g w
"
2

'

This result shows that if u, p, z be the velocity, pressure, and

elevation for any section of the pipe,

+ - + z = Constant.
2g w

Each of the terms of this equation represents a particular kind of

energy : the first is energy of motion, the third energy of position,

the second is energy due to pressure, the origin of which will be

further explained in the next chapter. The equation therefore shows

that the total energy of the water remains constant as it traverses

the pipe, and is accordingly the algebraical expression of the Principle

of the Conservation of Energy. It supposes that no energy is lost

by frictional resistances, and that any change in the internal motions-

of the particles amongst themselves may be disregarded. The word

"head," the origin of which we have already seen, is frequently

employed for the energy per unit of weight. (See Appendix.)
An important consequence of this principle is that where the

sectional area of the pipe is least, and consequently the velocity

greatest, there the pressure is least. Hence it follows that the velocity

cannot exceed a certain limiting value u, found by putting p = 0.

At an elevation z above datum level

At a greater velocity a negative pressure would be required to pre-

serve the continuity of the fluid mass, and under these circumstances

the water breaks up with consequences to be hereafter considered.

It further appears that water can flow through a closed passage

against a difference of pressure, provided the area of the passage

vary so as to permit a corresponding reduction of velocity. An.
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example of this occurs in the case of the discharge through a trumpet-

shaped mouthpiece. In Fig. 175 water enters from a vessel at KK,
an orifice provided with a mouthpiece, which first Fig-. 175.

contracts to DD, and then expands to EE where ^
the jet enters the atmosphere. The pressure at

EE is that of the atmosphere, and therefore at

DD is less than that of the atmosphere, that

is, less than it would be if the trumpet were cut off at the neck.

Hence the discharge is increased by the addition of the expanded

portion. If the water issued into a vacuum the jet would not expand
to fill the wide mouth of the trumpet, which would not in that case

have any influence on the discharge. The increased discharge and

partial vacuum at DD have been verified by experiment.*

SECTION II. MOTION OF AN UNDISTURBED STREAM.

244. Distribution of Energy in an Undisturbed Stream. Vortex

Motion. If the reservoir in the last article be imagined to supply a

stream running in a channel of any size either closed or open, that

stream, if undisturbed by any of the causes mentioned hereafter,

may be supposed made up of an indefinite number of elementary

streams, each of which moves as it would do in a closed pipe, as just

described, without in any way intermingling with the rest. The

forms of these ideal pipes depend solely on the form of the channel

in which the stream is confined. The equation

'++**+&
2g w w

applies to the motion in every pipe, and from it we may draw two

important conclusions. In the first place, it may be written in the

form p-Po 7 u"
.= Zl Z -pr- ')w 2g'

and therefore the pressure at any point is less than if the water were at

rest by the height due to the velocity at that point. Again, the equation

interpreted as in the last article shows that the energy of all parts

of the fluid is the same, or, as we may otherwise express it, the energy

of the fluid is uniformly distributed.

From either way of stating the result it appears that the pressure is

greatest where the velocity is least, and conversely. Now, if the water

move in curved lines in a horizontal plane, each particle of water is

at the instant moving in a circle, and to balance its centrifugal force

(Art. 131) the pressure on its outer surface must be greater than

* Readers to whom the subject is new are recommended to pass on at once to

Art. 248, p. 483.
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that on its inner. It follows therefore that, if a channel is curved

so as to alter the direction of the stream, the pressure increases as

we go from the inner side of the channel to the outer
; while, on

the other hand, the velocity is greatest at the inner side and least

at the outer. The change is the greater the sharper the bend, for

the centrifugal force is greater. In open channels the change at the

surface where the pressure is constant is in elevation instead of in

pressure.

The magnitude of the change can be calculated in certain cases

(see Appendix), of which we can only here consider one which is of

special importance. If the particles of water describe circles about

a common vertical axis, the elementary streams will form uniform

rings, the centrifugal force of which can be calculated as in Art. 145,

page "288. The resultant force on the half ring is employing the

notation of the article cited given by

F2
P = w.2A. .

9

This is balanced by an excess pressure on the outer surface of the half

ring, and if that excess be Ap the -corresponding resultant force is

Ap . 2r, as shown on page 302. Equating this to P

4to.!?.4'.>i.
9 r

The ring is supposed of breadth unity, and for A we may write the

thickness of the ring, which may be called Ar. Dividing by this,

and proceeding to the limit

dp_w F2

dr g r

an equation from which the pressure can be found if the law of

velocity be given. If the fluid rotated about the axis like a solid

mass, V would vary as r
; but the case now to be examined is that

in which V varies inversely as r, as expressed by the equation

Vr= Constant = k.

Substitute and integrate, then replacing k by Vr, it will be found that

tjL&;sjw 2g w 2g

where the suffix refers to a given point where the pressure is p^
and the velocity V . This result shows that the energy is uniformly

distributed, and we infer that if the direction of a moving current

is changed so that the particles of water describe concentric circles,

the velocity varies inversely as the distance from the centre.
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A mass of rotating fluid is called a "
vortex," and in the case just

considered the vortex is described as "free," because the motion is

that which is naturally produced (comp. Art. 273, p. 534). A free vortex

is necessarily hollow, for to hold the water together a negative pressure

would be required near the axis of rotation, but the hollow may be

filled up by water moving according to a different law.

245. Viscosity. When the motion of a mass of water is free from

sudden changes of direction, loss of energy takes place only through
the direct action of viscosity, a property of fluids which it will now

be necessary briefly to consider. In Fig. 160, page 425, a block of

plastic material is represented, and it was explained that to produce

change of form a certain difference of pressure was necessary, depend-

ing on the hardness of the material. In a fluid a similar difference

of pressure is necessary to produce a change of form at a given rate,

and the magnitude of the difference is proportionate to the rate.

If u be the rate at which the height of the block is diminishing

and the breadth increasing, each reckoned per unit of dimension,

the thickness remaining constant,

p = 2cu,

where c is a co-efficient called the "co-efficient of viscosity." Or to

express the same thing differently, if w be the rate at which a small

rectangular portion of the fluid is distorting, as in Fig. 140, p. 352,

q the corresponding distorting stress,

q
= c . w.

Hence, when a fluid moves, any change of form requires an amount

of work to be done which is proportionate to the speed at which the

change takes place. In a free vortex the rate of distortion is twice

the angular velocity of the particles round the axis, and varies inversely

as the square of the distance
;

the changes of shape are therefore

very rapid near the centre, and energy is consequently dissipated

much more rapidly than in the stream from which the vortex is

produced.

In the case of water the viscosity is so small that such changes of

form as occur in an undisturbed stream are not rapid enough to absorb

any large amount of energy. For example, in the discharge from

orifices in a thin plate the loss of head is only 5 or 6 per cent. It is

only when the water is disturbed by the neighbourhood of a rough
surface over which it moves or in other ways described further on,

that large quantities of energy are dissipated and fractional resistances

of great magnitude produced.
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246. Discharge from Large Orifices in a Vertical Plane. When the

orifices through which water is being discharged from a reservoir are

not small compared with the head and the dimensions of the reservoir,

the question becomes more complicated.

If the plane of the orifice be vertical the velocities of the several

parts of the stream are not the same as in the case, so far as can be

judged by the eye, when the orifice is small. On the contrary the

velocity of that part of the stream which issues from the lower part

of the orifice is visibly greater than that proceeding from the upper

part. Hence it follows that the centre of gravity of the fluid issuing

in a given time, to which the head is measured, is not on the same

level as the centre of the contracted section, but lies below it. The

corresponding point on the section may be described as the Centre

of Energy. Also the velocity of the centre of gravity of the fluid is

not the same as the velocity of mean flow Q/A, and the internal

motions of the stream, even when undisturbed, are of sensible mag-
nitude and cannot be neglected. To find the discharge therefore we

must consider separately each of the elementary streams of which

the whole stream may be imagined to be made up, and obtain the

result by integration.

To illustrate these points let us consider the comparatively simple

<;ase of a rectangular orifice ABCD (Fig. 176) from which water is being

discharged from a reservoir, the level from

which the head is measured being LL. The

stream contracts on efflux, and the contracted
V ' V

.-'...I.. L-.B section may be supposed rectangular. The

position and dimensions of this section it will

be necessary to suppose known by experiment ;

let its breadth be b, and let its upper and lower

sides be at depths Y
l ,
Y

2
below LL. Divide

the area into horizontal strips, and consider any one at depth y, then

the velocity will be given by the formula

&~2gy.
The quantity discharged per second will be given by

}^2r,

which by integration gives

This determines the discharge, which is the same as with the mean

velocity of flow, 7/ _ Q_ ,- 2 Y% - Y*
-
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The height due to this velocity is

4. /F^_F^\2
;

'=-(T;^)'
which corresponds to a point called by Rankine the Centre of Flow,

which lies somewhat above the centre of the section. When the head

is measured to this point the discharge in the absence of hydraulic
resistances is determined as if the orifice were small.

Again, the kinetic energy of the water discharged per second will be

,U= w\ bv.fT dy = w . b \/2g I

Jr> *9
which by integration gives

By dividing U by wQ we get the depth of the centre of gravity of the

fluid discharged per second below LL, that is to say, the true head h is

5

The velocity of the centre of gravity which is the true velocity of

delivery is

y= \^y__ , 3 Y* - Y^
'''*'l'

arid the energy of translation on delivery is

a quantity less than the whole energy wQh by the energy due to

internal motions.

In attempting to estimate the effect of the internal motions due to

hydraulic resistance this method of analysis appears the most exact

in principle. Practically, however, it is always necessary to obtain

the discharge as above in terms of the dimensions of the orifice

itself, and then allow for contraction and hydraulic resistance by a

suitable co-efficient of discharge. Some additional examples will be

found at the end of the present chapter.

Again, if the dimensions of the orifice be not small compared with

the surface of the water in the vessel from which the discharge takes

place, this surface will sink with a velocity V which is of sensible

magnitude. If the area of the surface be S and that of the contracted

section A Q ,
the discharge will be

Q = A v = SF,
an equation which determines V. The water will now have a velocity
V before descending through the height h, and the equation of energy
is therefore v* -7'2 = 2gh.

C.M. 2 H
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This may be written if we please

,,2 J72

T A+
2?

showing that in addition to the actual head h we must consider the

virtual head V'2l^g due to the initial velocity of the water. In many

hydraulic questions it is inconvenient or impossible to measure the

head from still water. It is then measured from some point where

the water is approaching the orifice with a velocity determined by
observation. The actual head h must then be increased by the height

due to the velocity of approach!

247. Similar Motions,- When an incompressible fluid flows steadily

through a pipe of small transverse section it was shown in Art. 243

that the total head is given by the equation

while the discharge is

Q = Au = A u
,

where the suffix refers to some given point.

Imagine now a precisely similar pipe constructed on an enlarged

scale through which a fluid of different density is flowing, and let it be

similarly placed relatively to the datum level
; then, if large letters

be used to denote the corresponding quantities in the large pipe,

To each point in the small pipe will correspond a point in the large

one
;
then at corresponding points if n be the ratio of enlargement,

Z=nz, the sectional areas are in the ratio n 2
: 1, and the velocities must

be in some fixed ratio depending on the relative discharge. Let us

suppose the velocity-ratio to be Jn : 1, the velocities are then said to

correspond. Since in this case U2 = nu2 we find from the above

equations

.

o_..W 2g w

Thus at corresponding velocities the difference of pressure-head at any
two points of the large pipe is n times the difference at corresponding

points of the small pipe. And if the pressure-ratio be n : 1 at any
one pair of corresponding points it will be the same at any other pair.

In the motion of an undisturbed stream as already explained the

complete stream may be analyzed into distinct elementary streams

in each of which the flow goes on as it would in an isolated pipe : the
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forms of these elementary streams depending on the form of the

surfaces within which the fluid is enclosed and by the uniformity of

pressure on such parts of the surface as are free. Let us now suppose

we have two streams, the boundary surfaces and elementary streams of

which are similar and similarly placed, the ratio of enlargement being
as before n:l. Further let the velocities be in the ratio Jn;}, and

the pressure-heads at some one pair of corresponding points in the

ratio n : 1
;
then the pressure-heads at every other pair of corresponding

points will be in the same ratio, or in other words, the distribution of

pressure will be the same. If then we have any actual motion on a

small scale it must also be possible on a large scale when the velocities

correspond. Such motions are said to be similar. In similar motions

at corresponding speeds the distribution of pressure will be the same

and conversely.

Let us take as an example the discharge of water from an orifice

considered in Art. 246. Imagine two tanks, one large the other small,

with similar orifices similarly placed with corresponding depths of water

so that the heads are in the proportion n : I
;

then the principle of

similar motions enables us to say that in the absence of hydraulic

resistance, the co-efficients of contraction and discharge must be the

same in the two cases, the velocities must be in the ratio Jn : 1, and the

discharge in the proportion n-^Jn : 1. Strictly speaking however we
must suppose the atmospheric pressures in the ratio n: 1, a restriction

which is probably not actually necessary (p. 471).

Further if we consider any small area in the boundary surface of the

small motion and a geometrically similar and similarly situated small

area in the large motion, either the total pressures on those areas or

their resolved parts in any given direction will when divided by the

weight of a cubic foot of fluid be in the proportion n3
: 1

;
and therefore

will be in the proportion of the total weights of fluid in the two cases.

The principal application of this very important principle is in the

theory of the resistance .of ships : it being equivalent to saying that

in similar vessels at corresponding speeds the resistances (if any)
when not influenced by causes of the nature of friction, must be in

the proportion of their displacements. The needful qualifications of

this principle and the mode of making use of it will be briefly noticed

in the Appendix.

SECTION III. HYDRAULIC RESISTANCES.

248. Surface Friction in General. We now proceed to study experi-

mentally some of the more important causes of hydraulic resistance.



484 HYDRAULICS. [PART v.

Fig. 177 shows a thin flat plate AB with sharp edges completely

Fig.i77. immersed in the water. The plate is

moving edge-ways through the water with

velocity V, then a certain resistance R is

experienced which must be overcome by
an external force. This resistance consists

in a tangential action between the plate and the water, and so far is

analogous to the friction between solid surfaces, but it follows quite

different laws, which may be stated as follows :

(1) The friction is independent of the pressure on the plate.

(2) It varies as the area of the surface in contact with the water.

(3) It varies as the square of the velocity.

These laws are expressed by the formula

where / is a co-efficient which, as in the friction of solid surfaces, is

described as the "
co-efficient of friction." The value of this co-efficient

depends on the degree of smoothness of the plate. Thus, for example,
in some experiments, to be described presently, on thin boards moving

through water it was found that the co-efficient was '004 for a clean

varnished surface, and -009 for a surface resembling medium sand-

paper, the units being pounds, feet, and seconds.

The first of these laws, so far as is known at present, is always

strictly fulfilled, but to the second and third there are certain limi-

tations, as in the ordinary laws governing the friction of solid surfaces.

In the first place, if the velocity be below a certain limit the water

adheres to the surface, arid its velocity relatively to the surface is some

continuous function of the distance from the surface so that the stream

does not break up. This will be further referred to hereafter; for

the present it is sufficient to say that the resistance then follows an

entirely different law, varying nearly as the velocity instead of the

(velocity)
2

. The limiting velocity, however, at which this is sensibly

the case is so low that in most practical applications the effect may
be disregarded. In the second place, it is supposed that the water

glides over all parts of the surface with the same velocity ;
but if the

surface be any considerable length the friction of the front portion of

the surface on the water furnishes a force which drags the water

forward along with the surface and so diminishes the velocity with

which it moves over the rear portion. The friction is thus diminished,

and in large surfaces very considerably diminished. Thus Mr. Froude,

experimenting on a surface 4 feet long, moving at 10 feet per second,

found the value of / given above, but when the length was 20 feet

and upwards, those values were diminished to '0025 and *005 respec-
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tively. Increasing the length beyond a certain amount produces very
little change, and within a certain limiting length the effect is insen-

sible. These limits must depend on the speed, but no exact observa-

tions have been made on this point. The power of the speed to

which the friction is proportional has, however, been found to be

diminished on long smooth surfaces, as shown below. The skin friction

of vessels, on which the resistance chiefly depends at low speeds, is

much diminished by the effect of length.

Experiments on surface friction were made by Colonel Beaufoy.

They formed part of an elaborate series of experiments on the resist-

ance of bodies moving through water, carried out during many years
in the Greenland Dock, Deptford. Beaufoy employed the formula

to represent his results, and for the index n obtained the values

l
-

66, 1*71, 1'9 in three series of experiments. The standard experi-
ments on the subject are however due to the late Mr. Froude : they
were made on boards f\ inch thick, 19 inches deep, towed edgeways

through the water. The boards were coated with various substances

so as to form the surface to be experimented on.

The following table gives a general statement of Froude's results.

In all the experiments in this table, the boards had a fine cutwater

and a fine stern end or run, so that the resistance was entirely due

to the surface. The table gives the resistances per square foot in

pounds, at the standard speed of 600 feet per minute, and the power
of the speed to which the friction is proportional, so that the resist-

ance at other speeds is easily calculated.
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To the three laws already mentioned may be added :

(4) In different fluids the friction varies as the density of the fluid.

The grounds for this statement will be seen further on. It amounts

to saying that surface friction is a kind of eddy resistance (p. 504). If

we assume this, the laws of friction between a fluid and a surface are

expressed by the equation

The co-efficient of friction / is now distinguished from the friction

per square foot given in the table above. We have already seen

that it is not constant, and it is now known that in addition to the

circumstances already mentioned, it varies according to the tem-

perature of the fluid, diminishing in water apparently as much as

1 per cent, for each 5 F. rise of temperature.

249. Surface Friction of Pipes. When water moves through a pipe

the friction of the internal surface causes a great resistance to the flow.

Fig. 178 shows a pipe of uniform transverse section (not necessarily

circular) provided with two pistons, AB, A'B', at a distance x enclos.

Fig.178. ing between them a mass of_A_V_ water. The pistons and in-

p
1 eluded water move forward

_____________ together with velocity v

under the action of a force

E, required on account of the friction of the pistons and of the water

on the pipe. Omitting piston friction the force R will be given by

T> r c< rR =fw8- =f. wsx,
2g

'

'2g

where S is the wetted surface and .s- the perimeter.

If we imagine the pipe full of water moving through it with velocity

v, the force R is supplied by the difference of the pressures p, p' on the

pistons, and therefore, if A be the sectional area

The quantity A/s may be replaced by m and is described as the
"
hydraulic mean depth

"
of the pipe, a term derived from the case of

an open channel to be considered hereafter. In the ordinary case of

a cylindrical pipe m = ^d. Further, we may reduce the pressures to

feet of water by dividing by w, and thus obtain for the difference

of pressure h'

-i, f X V2
fi = / . ,m '2g
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the value of the co-efficient / being determined by special experiment
on pipes.

This formula for the head necessary to overcome surface friction is

continually in use. The formula gives directly the head necessary for

a length x of the pipe, when the water, by being enclosed between

pistons, is constrained to move over the surface with a given velocity :

when the pistons are removed and the water flows freely it represents

the facts very imperfectly. The central parts of the stream move

quicker than the parts in immediate contact with the pipe, and

besides, though the circumstances are different, we cannot be sure

that the velocity over the internal surface is not affected in the

same way as in the case of a moving surface. The value of / has

therefore to be obtained by special experiment, and the results of

such experiments show that it varies very greatly according to the

condition of the internal surface, and partly also on the diameter

and velocity, the value being greater in small pipes than large ones,

and at low velocities than high ones a point considered further on.

(See page 495.) For the present we assume -0075 as roughly repre-

senting the facts when there is no special cause for increased resistance.

For a pipe of circular section, length I, we have therefore

where for 4/ we commonly assume the value '03.

250. Discharge of Pipes. The velocity v is the actual velocity

with which the water moves, so that i^/Zg is the energy of motion

of each pound of the water. The loss of energy by friction is the

same as that of raising the water through a height h\ and is therefore

equal to the energy of motion when

H.= 33 nearly,

that is, a length of pipe equal to 33 diameters absorbs an amount

of energy equivalent to the whole energy of motion of the water.

In pipes of any length, therefore, the effect of friction is very great,

so much so that the size of a pipe is principally fixed by the loss of

head which can be permitted. It is easily seen that to deliver water

with a given velocity the loss varies inversely as the diameter, and

that to deliver a given quantity it varies inversely as the fifth power
of the diameter; thus, the smallest permissible diameter is fixed

almost entirely by the value of h', which may be supposed already

known.
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The quantity discharged per second is given us by the formula

Q = Av

and on substitution this becomes

All dimensions are here in feet, and Q is in cubic feet per second.

If we require gallons per minute for a diameter of d inches, the

formula will be
&=G

m
^f

where C is a constant connected with 4/ by the equation

4-736

For 4/=-03, this gives (7=27'3, but for clean iron pipes not less

than 9 inches in diameter the value 30 may be employed.

251. Open Channels. Keturning to Fig. 178, suppose the pipe,

instead of being horizontal, is laid at an angle 6 (see Fig. 179, next

page), so that the difference of level of the two ends in y = I . sin Q
y

then the difference of pressure-head is

p -p - I v2
r -1 = f _ __ nj

w J
'm'2g

yt

and therefore may be made zero if the slope of the pipe be

. 1 tf h'

sm0=/. - x- = T .

in 2g I

But if the pressure be constant we may remove the upper surface

of the pipe and thus obtain the case of an open channel. The

quantity m is now the sectional area of the channel divided by the

wetted perimeter, and is therefore the actual depth in a very board

shallow channel, but in other cases less in a ratio dependent on the

form of section. As before stated it is described as the "hydraulic
mean depth

"
of the channel.

We can now find the velocity and discharge of a stream of given
dimensions and fall, provided that we know the value of /, or

conversely the size of channel for a given discharge and fall. The

value of/, however, varies for the same reasons as in pipes which

indeed apply with still greater force, so that the limits of variation

are wider. The average value does not differ very widely from -0075,

already adopted for pipes; but to obtain results of even moderate

accuracy a special study of the experiments on the subject is necessary,

which will not be attempted in this treatise.
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252. Virtual Slope of a Pipe. If the pipe be laid at any other

angle the pressure will not be constant, and the mode in which it

varies is best seen by a graphical construction.

Suppose small vertical pipes Aa, Bb to be placed at points A, B of the

pipe we are considering (Fig. 179), then (if they enter the water square,

without being bent
pi J7g

towards the direction

of motion) the water

will rise in them to a

level representing the

pressure in feet of

water at these points.

If there were no fric-

tion the level would

be the same in both

and the difference (bk in the figure) therefore represents the loss by
friction. Now draw a horizontal line through b, and take c on it,

so that ac = AI> = l, then the angle caN is given by the equation

h
sin ^ =

y,

and is therefore the slope of a channel of the same length and

hydraulic mean depth which would give the same discharge. This

angle is therefore called the VIRTUAL SLOPE of the pipe. At any

point P in the pipe, the water would rise to the level of the corre-

sponding point p in the virtual channel, found by taking ap = AP.
The construction would of course fail if h' were equal to, or greater

than I, but this case does not occur in practice ;
on the contrary, in

pipes as in channels the angle i is nearly always small. The virtual

slope is frequently one of the data of the question. The line ac is-

variously described as the "pressure line," "line of virtual slope,"

or "hydraulic gradient."

The pipe need not be straight; it may be curved or be laid in

sections at different slopes, there will still be a continuous hydraulic

gradient, provided the diameter be the same throughout ;
but if the

sections be of different diameters each section will have its own slope.

In practice care must be taken that the pipe does not rise above its

hydraulic gradient, for otherwise there will be a partial vacuum : the

pipe then acts as a syphon which is liable to fail on account of

leakage and the presence of air in the water.

253. Loss of Energy by Eddies and by Broken Water. We now

proceed to consider other causes of frictional resistance.

In Fig. 180 two streams of water, moving with different velocities,
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converge towards each other and unite into one. Each stream, so

far as can be judged by the eye, moves originally without disturbance

in the manner described in Art. 244. On union, however, near the

junction indicated by the dotted line SS in the figure, small depres-

sions are observed, which move for some distance along with the

stream, and then disappear. On
examination these depressions are

found to consist of small portions

of the fluid in a state of rotation,

the speed of rotation being greatest

at the centre and gradually dying

away towards the circumference.

A motion of this kind was called a " vortex" in Art. 244, and in

the present case is also described as an "
eddy

"
;

it is independent

of the general motion of the stream, and its energy is therefore of

the internal kind. The disappearance of the eddies thus formed is

due to viscosity, the effect of which is much greater in the eddy
than in the stream as already explained. After the eddies have

disappeared the two streams are found to have become a single one,

moving with a velocity intermediate between those of the streams

which form it, but possessing less energy. Theoretically there is

nothing to prevent two streams of a perfect fluid from moving side

by side with different velocities, but such a motion is always unstable,

and will not long continue without the formation of eddies by a

sudden change of direction (Art. 244) in small portions of the fluid

which separate from the rest. The instability is greater the more

nearly perfect the fluid is. Whenever the water in motion inter-

mingles with water at rest, or moving with a different velocity,

internal motions of a complex kind are produced, representing a

considerable amount of energy of the internal kind which is virtually

lost even before its final dissipation by fluid friction.

Again, in order that a mass of water may form a continuous whole,

sufficient pressure must exist on the bounding surface to prevent the

pressure at any point within the mass from becoming zero, as explained

in Art. 243. If this condition is not satisfied the water breaks up
more or less completely, and the result is a confused mass with

complex internal motions rapidly disappearing as before by fluid

friction. When waves break on a beach, or when paddles strike the

water and drive it upwards in a mass of foam, the process takes place

on a large scale before our eyes ; but the same thing occurs in most

cases where the velocity of a mass of water is suddenly changed,
and of this we will now consider some examples.
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Fig.lSla.

Fig. I8la shows a jet of water filling a tank. Here the water

pouring in possesses the kinetic energy Wv~j'2g due to the original

velocity of the water, and the height from which

it falls into the tank. If it be of some size as

compared with the tank the water will be com-

pletely broken up ;
if it be small it will penetrate

the water in the tank without much apparent

disturbance at the surface : in either case the

result is a mass of water at rest as a whole, so that its energy is all

of the internal kind. If the jet be shut off" the water rapidly settles

down to rest, the whole energy is then dissipated by fluid friction.

Fig. 1816 shows a bucket moving horizontally, bottom foremost, with

velocity V, while a horizontal jet moving with greater velocity strikes

Fig.isit. it centrally : the bucket is

then filled with broken

water which .pours out

under the action of

gravity. In water-wheels

a series of buckets are

filled in succession, and

the broken water carried on with the wheel. Here if the bucket

were at rest the loss of energy would be, as before, Wv2
/2g : but as

it is moving with velocity V, the striking velocity on which the

breaking depends will be v - V, and the loss of energy is

where W is the weight of water acted on in the time considered.

Both these cases may be treated as examples of the collision of two

bodies considered on page 270, one of the bodies being indefinitely

great. The energy of collision is employed in breaking up the water.

It is represented in the first instance by internal motions, and sub-

sequently dissipated by fluid friction.

Fig. 182 represents a pipe which is suddenly enlarged from the

diameter ed to the diameter ab. The water is moving through the
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small part of the pipe with velocity v, and, on passing through ed

spreads out so as to fill the larger part. At some distance from the

enlargement it moves in a continuous mass with velocity V, but in

its immediate neighbourhood we have broken water, as in the case

of the bucket, from which it only differs in the enclosure of the

water in a casing. The loss or energy per unit of weight may be

expected to be the same as before, and is therefore

a formula which gives us the "loss of head." If the sectional areas-

of the two parts of a pipe be A, a the discharge is

so that if m be the ratio of areas,

m
The coefficient of resistance is therefore

(m-lf or (1-1/m)
2

,

according as the velocity to which it is referred is that in the large

pipe or that in the small one.

Instead of the water moving from a small pipe into a large one, we

may have the converse case of a suddenly contracted pipe as in

Fig. 183. The loss here is due to precisely the same cause, namely
a sudden enlargement, which is produced as follows. In the figure the

stream of water moving with velocity u contracts on passing through

Fig. 183.

cd nearly as it would if the small part of the pipe were removed, as

in Fig. 173, p. 474, until it reaches a contracted section KK, and is

then moving with a velocity v which is greater than u in the ratio

of the area of the large pipe to the contracted area KK. The loss of

head in this part of the process is not large. After passing KK,

however, an expansion takes place to the area of the small pipe, and

this is accompanied by breaking up, the space between the contracted

jet and the pipe being filled up with broken water.

In Fig. 1 84 we have the extreme case, in which the large pipe
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is a vessel of any size. We thus obtain the case of a pipe with

square-edged entrance which

has already been referred to .^^W\\llll/l . Fig.i84.

in Art. 242. Another modi-

fication is that of a diaphragm
in a pipe, as in Fig. 1 85. The

small pipe is here larger than

the orifice through which

the water enters, and in the

figure we have simply a single

pipe divided into parts by a

diaphragm with an orifice in

the centre. The stream of water, after passing the contracted section

KK, expands to fill the pipe. In cocks when partially closed, a loss

of head of the same kind occurs, which may be increased to any
extent by closing the cock further.

In all these cases the loss of head may be calculated approximately

by means of the formula for a sudden enlargement, but the ratio of

enlargement is not known exactly, on account of the uncertainty of the

value of the co-efficient

of contraction to be as-

sumed. Losses of head
v of this kind are indeed

always subject to varia-

tion within certain

limits from accidental

-causes; in general and on the average the quantity of water broken

up will bear a certain proportion to the whole quantity passing, and

in consequence we have the general law of hydraulic resistance stated

on page 472, but the ratio may vary from time to time, and cannot be

stated with precise accuracy. The causes of this uncertainty will be

clearly understood on considering somewhat more closely the manner

in which the loss takes place.

In Figs. 183, 185 two plane surfaces at right angles meet at a,

forming an internal angle through which water is flowing. The

particles of water there describe curves which are all convex towards

ffi,
and in conformity with the general principle explained in Art. 245,

the pressure must increase and the velocity diminish on going towards

a. The water then moves slowly and quietly round the angle without

disturbance. But when compelled by the general movement of the

stream to move round an external angle such as kea in Fig. 182, the

case is very different
;

the particles then describe curves which are
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concave round e
;
and consequently the pressure diminishes in going

towards e, while the velocity increases. To hold the particles of water

in contact with the surface, an infinite pressure would be required in

the other parts of the fluid. The particles of water therefore leave

the surface at e, and describe a path ea', regaining the surface farther

on
; ea' is then described as a " surface of separation," as it separates

the moving mass of water from a portion enclosed within it which

is in a state of violent disturbance. Such are the surfaces shown in

Figs. 182-186. It is not, however, to be supposed that these surfaces

are sharply defined, and that they permanently separate different

masses of water. On the contrary, no such equilibrium is possible ;

the surfaces are continually fluctuating, and a constant interchange
takes place between the so-called " dead

"
water and the stream. In

this intermingling eddies are produced nearly as in the comparatively

simple case of two streams given on page 490. The process is always

essentially the same, and consists in sudden changes of direction being

communicated to parts of the stream which become detached from

the rest.

254. Bends in a Pipe. Surface Friction. In some other cases the

process of breaking up by which energy is lost is less obvious, and

the ratio is subject to greater variations.

When a pipe has a bend in it, if the internal surface of the pipe

were perfectly smooth and free from discontinuity of curvature, there

would be no disturbance of the current of water, which would flow as

described in Art. 248. These conditions, however, are not satisfied by
actual bends in pipes, and there is always a loss of head due to them

in addition to the loss by surface friction. This loss can only be

determined by experiment, but it is easy to conjecture that the loss

will be proportional to the angle through which the pipe is bent,

and that it will be greater the quicker the bend, that is, the smaller

the radius of the bend is as compared with the diameter of the pipe.

The extreme case of a bend is a knee, but the loss is not in this case

proportional to the angle of the knee, but follows a complex law.

For details respecting bends and knees the reader is referred to the

treatises cited at the end of this chapter, but some common examples
are given in the table on page 496.

In the case of surface friction the loss of energy is represented in the

first instance by eddies formed at the surface and thrown off. In almost

all practical cases of the motion of water in pipes and channels, even

when to all outward appearance quite undisturbed, the fluid is in fact

in a state of eddy motion throughout, and dissipation of energy at
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every point is going on much more rapidly than would be the case

if the motion were of the simple kind described in Art. 248. The

quantity of water broken up, however, is not generally in a fixed

proportion to the quantity passing, for reasons already partly indicated

in Art. 249. In the first place, as in the case of a board moving

edgewise through water, the friction per sq. ft. is proportional to the

nil1

power of the velocity, where n is an index which, in smooth

surfaces, is somewhat less than 2. Secondly, the disturbance caused

by the friction at a given velocity is less at some distance from the

surface than in its immediate neighbourhood, and hence the central

portion of the water in the pipe is less disturbed than the boundaries,

and that the less the greater the size of the pipe. The loss of head

therefore at a given velocity is less in large pipes than small ones.

The various experiments on the discharge of pipes have been very

thoroughly examined by Professor Unwin,* who has shown that they
are represented very closely by a formula originally given in a slightly

different form by Hagen,
,

I v*~y

where x and y are small fractions measuring the deviation from the .

simple formula already used, and /x is a co-efficient. The values of

fji, x, y stated below are selected from a number of cases given by
Professor Unwin in the paper already cited : the values of ^ being
for diameters in feet.

KIND OF PIPES.
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255. Summation of Losses of Head. The total loss of energy due to

a number of hydraulic resistances of various kinds is found by adding

together the losses of head due to each cause taken separately. The

velocity of the water past each obstacle will not generally be the same

for all, and it is then necessary to select some one velocity from which

all the rest can be found by multiplication by a suitable factor for

each obstacle. If n be this multiplier the loss of head will be

where V is the velocity selected for reference. The value of Fis then

found for motion under a given head H by the formula

The various values ofF already given are collected with some additions

in the annexed table :

CO-EFFICIENTS OF HYDRAULIC RESISTANCE.
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SECTION IV. PRINCIPLE OF MOMENTUM.

256. Direct Impulse and Reaction. The generalized form of the

second and third laws of motion, described as the Principle of

Momentum in Chapter XL of this work, may be employed with

great advantage when the motion of water in large masses is under

consideration, because the total momentum of a fluid mass depends

solely on the motion of the centre

of gravity (p. 267), and not on the

very intricate motions of the parts

of the fluid amongst themselves.

Further, the energy dissipated by
fractional resistances is accounted

for by these internal motions, or

by the mutual actions of the fluid

particles, and the total momentum
is therefore independent of these

resistances. Hence it follows that

results may be obtained which are

true notwithstanding any frictional

resistances, and in some cases the

loss of energy by them may be determined a priori. Also the

pressures on fixed surfaces may be found which do no work, and to

which therefore the principle of work does not directly apply.

Fig. 186 shows a jet of water striking perpendicularly a fixed plane
of infinite extent, and exerting on it a pressure P. The magnitude of

this pressure is found by considering that the plane exerts an equal
and opposite pressure on the water, which changes its velocity. The

water originally moving with velocity v, spreads out laterally, and

any motion which it possesses is parallel to the plane. In time t

the impulse is 7
J

/,
and the change of momentum is Mvt, where M is

the mass of water delivered per second. Equating these we have

where W is the weight of water delivered per second.

If the plane be smooth, and gravity be neglected, the motion of

the water will be continuous ;
but if it be rough to any extent, so

that breaking-up occurs, the result will still be correct, provided only

the roughness be symmetrical about the axis of the jet. And the

action of gravity parallel to the plane does not affect the question.

In Fig. 187 we have the converse case of water issuing from a

vessel with a lateral orifice. Here the water, which originally was
C.M. 2 1
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Fig.187.

at rest, issues with velocity v, and the momentum generated in time

t is Mvt. To produce this momentum
a corresponding impulse is required,

which is derived from the resultant

horizontal pressure P of the sides of

the vessel upon the water. We have

as before

Wv

A pressure equal and opposite to P is

exerted by the water on the vessel

this is described as the " reaction
"

of the water
;
and if the vessel

is to remain at rest, must be balanced by an external force supplied

by the supports on which it rests.

A remarkable connection exists between the change of pressure on the sides of the

vessel consequent on the motion and the co-efficients of contraction and resistance.

First, suppose the water at rest, the orifice being closed, then the value of P is zero,

and the pressure on the area of the orifice is w . A . h, the notation being as in Art. 240.

When the orifice is opened the pressure on that side is diminished, first, by the quantity

w . A . h ; secondly, by an unknown diminution S due to the motion of the water (p. 477}

over the surface near the orifice. Now

. A . h=

the notation still being as in the article cited. Replacing A by kA we obtain

Since S is always positive the least value of k is

If there be no frictional resistance k= -

5, and this is the smallest value k can have under

any circumstances. For a small pipe projecting inwards as in Fig. 172, p. 473, these

conditions are approximately realized, the water being at rest over the whole internal

surface of the vessel.

Fig.188

257. Oblique Action. Curved Surfaces. When a jet impinges

obliquely on an indefinite place

(Fig. 188), the water spreads

out laterally as before, but the

quantity varies according to the

direction. In the absence of

friction the velocity of individual

particles is the same as that of

the jet in whatever direction the

water passes. At the same time

the velocity of the whole mass of water parallel to the plane cannot
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be altered by the action of the plane, and is therefore v . cos 6, where

is the angle the jet makes with the plane. It immediately follows

that any small portion of water diverging from the centre of the jet

at an angle < with the jet must be balanced by another portion

diverging in the direction immediately opposite, and the quantities

so diverging must be in the ratio 1 - cos
<f>

: 1 + cos
</>, being inversely

as the changes of velocity parallel to the plane. But if the circum-

stances be such that breaking-up takes place, the motion of the water

parallel to the plane will be undetermined, and in general there will

be a tangential action on the plane of the nature of friction.

The normal pressure on the plane is in all cases the same, being

given by the formula

WP = Mv .sin 6 = .v. sin 6.

g

If the surface on which the water impinges be curved it is necessary

to know the average direction and magnitude of the velocity with

which the water leaves the surface. In the absence of friction, as

already noticed, the velocity of the individual
Pig-189

particles is unaltered unless the water be enclosed B
r

in a pipe so that the pressure can be varied a

case for subsequent consideration
;

the direction,

however, will depend on the way in which the

water is guided. In cases which occur in practice

it will generally be found either that the whole of

the water is guided in some one direction, or that it leaves the surface

in all directions symmetrically.

Taking the first case, suppose the original velocity (v) of the

water to be represented by OA (Fig. 189), and the final velocity to

be diminished to V by friction, and altered in direction so as to be

represented by OB. Then the change of velocity in the most general
sense of the word (p. 265) is represented by AB. If this be denoted

by v the change of momentum per second is

g

The resultant pressure on the surface is parallel to AB and

numerically equal to P.

In applications to machines the curved surface is frequently a vane

which is not fixed, but moves with a given velocity ;
the pressure

can then be found by a simple addition to the diagram. Through
draw 00', representing the velocity (u) of the moving surface in

direction and magnitude, then 0'A represents the velocity with which
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the water strikes the surface. Considering the vane as fixed, the

velocity is now estimated with which the water would leave it, and

O'B' drawn to represent it : the change is now AB' instead of AB.

If the absolute velocity is required with which the water leaves the

surface, it may be found simply by joining OB', which will completely

represent it
;
the change of velocity being AB', whether the velocities

are absolute or relative to the moving surface.

The cup vane ACA (Fig. 190), against which a small jet of water

impinges centrally, may be

taken as an example where

the water spreads in all

directions symmetrically.

If OA be tangent to the

vane at A
, making an angle

6 with the centre line of

the jet, the water leaves

the vane in the direction

OA with unaltered velocity

(neglecting friction). The

resultant pressure P is in the direction of the jet, and the velocity in

that direction is altered from v to v cos in the opposite direction, so

that the change of velocity is v(l + cos 0). Thus we have

258. Impulse and Reaction of Water in a Closed Passage. When the

water is moving in a closed passage the resultant pressure to be

considered in applying the principle is not merely that on the sides

of the passage, but also that on the ideal surfaces which separate

the mass of water we are considering from the complete current.

In the previous cases the pressure of the atmosphere on the free

surface bounding the fluid was the same throughout, and was balanced

by an equal pressure of the surface against which it impinges, which

is not included in the preceding results. This is now no longer

the case.

An important example is that of the sudden enlargement in a

pipe already referred to in Art. 253. In Fig. 182, page 491, take

ideal sections, KK, kk of the large and small portions of the pipe,

and consider the whole mass of water between them. This mass is

acted on (1) by the pressure (p) on the transverse section kk, (2) by
the pressure (P) on the transverse section KK, and (3) by the pressure

of the sides of the pipe. If we resolve in the direction of the length
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of the pipe, the only part of (3) which we need consider is the pressure

(p) on the annular surface, ae, bd, the area of which is A -
a, and

the whole resultant pressure is therefore PA -pa -p'(A a) in the

direction opposite to the motion of the water. Now let W be the

weight of water delivered in one second, then in that space of time

W passes from the small pipe, where its velocity is v, to the large

pipe, where it has a velocity V, so that if we equate the resultant

pressure to diminution of momentum,

W i

PA-pa-p>(A-a) =^(v-V=t
a formula which may be written

p v V(v-V\ '-

w w g u

m being as in Art. 253 the ratio of enlargement. Let now H be the

total head in the large pipe and h in the small one, then subtracting

(v
2 - F2

)/2g from both sides and re-arranging the terms

Zg W \ 171;

Comparing this result with that obtained in the article cited, it appears

that the value of the loss of head there given is a necessary consequence
of supposing p =p', but cannot otherwise be correct. That the pressure

in the broken water at ae, bd is nearly equal to the pressure in the

small pipe may be considered probable a priori, independently of the

experimental verification which the formula has received.

SECTION V. RESISTANCE OF DEEPLY IMMERSED BODIES.

259. Eddy Resistance. The subject of the resistance of ships is

outside the limits of this treatise, for the ship moves on the surface

of water, exposed to the atmosphere, on which waves are produced ;

whereas in the branch of mechanics now under consideration, the

water is supposed to move within fixed boundaries. A certain part

of the subject, however, may properly be considered as belonging to

Hydraulics. If a body be deeply immersed in a fluid, that part of

the fluid alone which is in its immediate neighbourhood will be

affected by its motion, and the question is not essentially different

from the cases already considered of the movement of water in pipes

and channels.

Fig. 191 shows a parallelepiped abed moving through water in the

direction of its length, the face cd being foremost. To an observer
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Fig. 191.

whose eye travels along with the body the water will appear to

move past the solid in a stream of indefinite extent. At some

distance away the action of the solid is insensible, but it becomes in-

creasingly great as the solid is approached,
and is greatest for that part of the water

which moves in immediate contact with

it. At c and d eddies are formed in

passing round the corners exactly as in

the case at the same points in Figs. 183,

184 the stream in fact is suddenly con-

tracted in the same way as in passing

from a large pipe to a small one, the

diminution of area in this case being the

transverse section of the solid. After

this the water moves in actual contact

with the solid until it reaches the corners

ab, when it describes the curves aS, bS,

meeting in S (see p. 494), after which it

forms a continuous stream as before. The

two curves enclose between them a mass of

eddying water exactly similar to the eddies at a and b in Fig. 182

the stream, in fact, suddenly expands, just as in passing from a small

pipe to a large one, the increase of area being in this case the sectional

area of the solid. The eddies thus formed during the passage of

the solid through the water absorb energy, which must be supplied

by means of an external force, which drags the body through the

water. This kind of resistance to the movement of a body through
water is called Eddy Resistance, and may be almost entirely avoided

by employing
"
fair

"
forms, that is by avoiding all discontinuity of

curvature in the solid itself, and in the junction of its surface with

the direction of motion. The way in which it is created by the

action of the eddies will be discussed further on.

A general formula for eddy resistance is derived thus. As already
stated the water suffers no sensible disturbance at a certain distance

from the solid. If then we imagine a certain plane area A attached

transversely to the solid, and moving with it, all the water affected

by the solid will pass through this plane, and its quantity will be

QAF,
where V is the velocity. In similar solids this area must be pro-

portioned to the sectional area S of the solid, so that we write A =
cS,

where c is a constant depending on the form. Of this water a certain

fraction will be disturbed by eddies, and the velocity of each particle
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of water will be some fraction of the velocity of the solid. Hence

it follows that the energy U generated per second in the production

of eddies must be

where c' is a co-efficient. Now this amount of energy is generated by
means of a force which drags the solid through the water, at the rate of

V feet per second, notwithstanding an equal and opposite resistance E.

We have then

RV=cc'wS.~,

or dividing by V, and replacing cc' by a single constant k,

The co-efficient k is to be determined by experiment for each form of

solid. In the case of the parallelopiped shown in the figure, the

value of k depends little on the length, unless it be so short that

the eddies at the corners cd coalesce with those in the rear of the

solid, and it then becomes the same as that of a plate moved flatwise.

Further it is nearly the same, if the transverse section be circular

instead of square, and does not greatly differ from unity. For the

flat plate it is greater and may be taken as 1 *25. It must be remarked,

however, that resistance of this kind is very irregular, and may vary

considerably even in the course of the same experiment. To reach a

permanent regime it is necessary that the velocity should be perfectly

uniform through a run of considerable length, a condition most nearly

attained in the experiments made by Beaufoy (p. 485), and recently

by Mr. R. E. Frpude at the Admiralty works. Their results are 1'13

and I'l respectively, but by some authorities much larger values are

given. The same remarks apply to the case of a sphere for which

the value may be taken as about '4. For a cylinder moving per-

pendicular to its axis it is probably about '5.

In all cases the value of k is independent of the units employed. It

is also to a great extent independent of the kind of fluid, being

roughly approximately the same for example in air as in water
;
but

this would not hold good for fluids of very different viscosity ;
nor

is it even approximately true for high speeds in air, because the

compressibility of the air affects the question. The same remarks

apply to the co-efficient (F) of hydraulic resistance employed above.

It has been found that co-efficients of surface friction are greater
in salt water than in fresh in the ratio of the densities of these



504 HYDRAULICS. [PART v.

fluids, as we might anticipate, since surface friction is a kind of

eddy resistance.

Let us now consider more particularly the way in which the

resistance is produced.
When a solid rests in any given position in a fluid the resultant

horizontal pressure over the whole surface is zero, or in other words,

if the solid be divided by any vertical plane the resultant pressure on

the rear half is equal and opposite to that on the front. When the

solid is set in motion in a given direction, the current of fluid passing
it is separated by it into parts, which may be regarded as distinct

streams having a single point or a line of points on the front of the

solid at which the division takes place. At these dividing points the

fluid is reduced to rest relatively to the solid, and (p. 477) the pressure
there exceeds the hydrostatic pressure which would exist were the

solid at rest by the quantity wV^fog. As each stream gliding over

the surface moves away from the points of division its velocity in-

creases, and consequently the excess pressure diminishes, till at length
at a certain distance it vanishes. Over a certain area, then, in front

of the solid, the resultant horizontal pressure is in excess of that

which would exist were the solid at rest.

Now, in the absence of eddies, the streams on uniting again behind

the solid would be brought to rest at one or more points of union lying

in corresponding positions on the hinder surface, and in consequence
there would be a corresponding excess pressure behind which would

be found exactly to balance the excess in front, so that there would

be no resistance to movement. Take, for example, a solid, the front

and rear of which are exactly alike
;

if there were no dissipation of

energy of any kind, the motion of the fluid in front and rear would

necessarily be the same, for no alteration is conceivable merely by

reversing the direction of movement. The difference between front

and rear consists in the instability of the motion in the rear, in con-

sequence of which the streams do not fully unite on the surface of the

solid, but leave a space between filled with eddies which lower the

pressure there, reducing it in general below the hydrostatic pressure

which would exist were the solid at rest. Any eddies which are pro-

duced at sharp corners like c, d (Fig. 191) lower the pressure in the

streams, and the reduction is ultimately transmitted to the rear of the

solid, and takes effect in the same way. There is a strictly analogous
difference between the motion in a pipe through a sudden contraction

(Fig. 183) and a sudden enlargement (Fig. 182).

The co-efficient k is frequently regarded as the sum of two parts m
and 11, of which the first represents the plus pressure in front, and the
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second the minus pressure or suction in the rear
;
the terms plus and

minus being used with reference to the hydrostatic pressure which

would exist were the solid at rest. The eddies have little influence

on the co-efficient m, which, when the motion is perfectly steady and

uniform, is necessarily less than unity, and can in many cases be

approximately calculated
; they chiefly affect the co-efficient n, which

(on the same supposition) would otherwise be equal and opposite to

m, but actually has a certain value only capable of being determined

by experiment, or inferred from its value in some similar case (Ex. 8,

p. 510). It has a maximum possible value depending on the depth of

immersion, for the minus pressure evidently can never be greater than

the hydrostatic pressure due to the depth.

260. Oblique Moving Plate. The case of a flat plate moving

obliquely through a fluid may now be briefly mentioned, being of

great technical importance. The plate, in the first instance, is sup-

posed rectangular, of indefinite breadth, and immersed in an infinite

fluid, through which it moves in a line perpendicular to its longer side.

Turning to Fig. 188, p. 498, suppose the jet represented to be of

indefinite breadth, perpendicular to the plane of the paper, then the

difference between this and the present case consists in the isolation

of the jet and the infinite extent of the plane. These circumstances,

however, make no difference in the character of the motion in front

of the plane ;
the current of fluid passing is still divided into two,

as indicated in the figure, the points of division lying on a line per-

pendicular to the plane of the paper, which is parallel to the longer
axis of the rectangle. The streams are of different magnitudes, that

which makes an acute angle (0) with the current being the smaller,

for reasons given in the article cited, which apply also to the present

case. Hence the line of division moves away from the centre when
is diminished, and when becomes very small approaches nearly to

the edge of the rectangle. The line of division, however, always exists,

and along it the excess pressure is wF2
/2g as already described.

The total excess pressure upon the front of the plane is, as before,

P = .F.sine,
9

only in the present case we do not know directly the quantity of water

which is acted on. If we write

W=w.SV
S will be the unknown area of an ideal isolated jet, which would pro-

duce the same effect and
, yiP = w . S . . sin 0,

g
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a formula which may be written

where ^ is the area of the plate and /z a co-efficient depending on the

quantity of water acted upon. The value of the plus portion of the

co-efficient of resistance is now /* . sin 6. Behind the plane, eddies are

formed, the effect of which is represented by the minus portion n of

the co-efficient. The total co- efficient k is now p . sin + n.

To determine k two methods may be adopted : (1) By direct

experiment on planes set at various angles in a stream, various

formulae have been obtained, of which, perhaps, the best is that

devised by Duchemin, and adopted by Poncelet in the second edition

(1839) of the Mfcanique Industrielle, namely,

2.sin6> ,

where & is the value of k when the plate is at right angles to the

stream.

(2) By methods of calculation which cannot be explained here, Lord

Kayleigh has shown that the plus portion of the co-efficient is

2?r . sin

~4-f7r.sin0'

it being pre-supposed that behind the plane there is an indefinite mass

of fluid at rest relatively to the plane, and separated from the moving
current by fixed surfaces of separation. The actual value of m may
probably be nearly the same as in the actual case where eddies are

formed, but the minus part of the total co-efficient, which does not

exist in the ideal case, must still be found by experiment. If

= 90, m becomes '88, and adopting l
-25 as the value of k, n is found

to be '37. When is very small it will be seen that ^ becomes con-

stant, being equal to 7r/2 or T57, a conclusion which might have been

foreseen, for at small angles there appears no reason why the effective

breadth of the current of water acted on by the plate should vary.

The suction at the back of the plate has the same general effect as the

excess pressure in front, namely, of deflecting a current of water, the

breadth of which is approximately constant for small values of 0.

Thus, when is small (not exceeding 10 or 15), the value of k is

a sin where a is constant. The value of a was taken by Froude as

l
-

7 for thin flat plates, but there can be little doubt that it is much

greater when the back of the plate is convex, so that the eddies

extend over the whole area, instead of being localized at the back of
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the leading edge. According to Ducherain's formula, it will be seen

that a = 2&
,
or about 2 '5.

It must be remembered that the resistance considered in the present

article is the force normal to the plate. The resistance in the direction

of motion is obtained by multiplication by sin 0, and to it must be

added the component in the direction of motion of the tangential force

on the plate. If the plate is very thin and perfectly flat on both

sides, the tangential force is due to surface friction only being at

small angles nearly the same as if it moved edgewise ;
but otherwise

it will be much greater, and must be ascertained by experiment. The

ratio which it bears to the normal force is much less variable, and

may be taken as '00-
r
). The value given by Froude is '0047.

From what has been said it is clear that the line of action of the

normal pressure on the plate does not pass through the centre
;

if

therefore it be mounted on an axis parallel to the longer side the

plate cannot be in equilibrium if the axis passes through the centre,

but will always tend to place itself perpendicular to the direction of

motion. This is also true for a square or circular plate, and so far

as is known the value of k in this case is not very different.

261. Pressure of a Current against an Obstacle. When an obstacle is

placed below the surface of a stream a pressure is experienced by the

obstacle which is due to the same causes as when a solid moves through
still water, and, since the relative motion is the same in the two cases,

should be given by the same formula
V'2

P = kwS~-.
-9

In fact, however, the cases are often very different, because a uniform

steady current is seldom to be met with in nature. The motion of the

water is often unsteady and almost always disturbed by eddies due to

the neighbourhood of the boundaries or other solid bodies. Experience
shows that the value of k is generally considerably greater than in the

case of motion through still water. For a flat plate fixed at right

angles to a stream Dubuat found k to be 1 '86, and this estimate being
confirmed by other experimentalists, has been very generally accepted.

The irregularity and uncertainty characteristic of experiments on

fluid resistance, when the solids exposed to its action are of unfair

form, is especially marked in the case of wind pressure for sufficiently

obvious reasons. This question, together with that of the resistance

of the atmosphere to moving bodies, is outside the range of this

work, but a short statement of results will be found in the Appendix,
in which a brief account is also given of the theory of the resistance

and propulsion of ships.
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EXAMPLES.

FIRST SERIES (SECTIONS I. AND III.).

1. The injection orifices of the jet condenser of a marine engine are 5 feet below the

surface of the sea, and the vacuum is 27 inches of mercury : with what velocity will the

water enter the condenser, supposing three-fourths the head lost by frictional resistances ?

Also find the co-efficients of velocity and resistance and the effective area of the orifices ta

deliver 100,000 gallons per hour. Ans. Velocity =23*6' per second; Area=27 sq. inches.

2. Water is discharged under a head of 25' through a short pipe 1" diameter with

square-edged entrance ; find the discharge in gallons per minute. Ans. 66J.

3. Water issues from an orifice the area of which is '01 sq. feet in a horizontal direc-

tion and strikes a point distant 4' horizontally and 3' vertically from the orifices. The

head is 2' and the discharge 25 gallons per min. ; find the co-efficients of velocity, re-

sistance, contraction, and discharge. Ans. c= '816, F='5, k='72, C='59.

4. j The wetted surface of a vessel is 7,500 sq. feet, find her skin resistance at

8 knots and the H.P. required to propel her, taking the resistance to vary as F2 with

a co-efficient of '004. Ans. Resistance= 5, 500 Ibs., H.P.=135.

5. The diameter of a screw propeller is 18', the pitch 18', and the revolutions 91 per
min. Neglecting slip find the H.P. lost by friction per square foot of blade at the tips,

taking a co-efficient '008 to include both faces of the blade. Ans. Friction= 65 Ibs. per

square foot. H. P. = 10 '6.

6. Two pipes of the same length are 3" and 4" diameter respectively : compare the

losses of head by skin friction (1) when they deliver the same quantity of water, (2)

when the velocity is the same. Ans. Ratio=4 '21 and 1 '33.

7. Water is to be raised to a height of 20' by a pipe 30' long 6" diameter : what is

the greatest admissible velocity of the water if not more than 10 per cent, additional

power is to be required in consequence of the friction of the pipe ? Ans. 8|' per sec.

38. Two reservoirs are connected by a pipe 6" diameter and three-fourths of a mile

long. For the first quarter mile the pipe slopes at 1 in 50, for the second at 1 in 100,

while in the third it is level. The head of water over the inlet is 20 feet and that over

the outlet 9 feet. Neglecting all loss except that due to surface friction, find the dis-

charge in 'gallons
r
per min., assuming /='0087. Ans. v. =3'43 f.s. Discharge= 253

gallons per min.

9. A river is 1000' wide at the surface of the water, the sides slope at 45, and the

depth is 20' ; find the discharge in cubic feet per sec. with a fall of 2' to the mile,,

assuming /='0075. Ans. 154,000.

10. A tank of 250 gallons capacity is 50' above the street. It is connected with the

street main, the head in which is 52' by a service pipe 100' long : find the diameter of

the pipe that the tank may be filled in 20 min. What must the head in the main be to-

fill the tank in five min. with this service pipe? Ans. d=l'f>". Head in main= 82'.

11. Water is discharged from a vessel by a long pipe : show that the discharge is the

same for all pipes of the same length and diameter with the discharging extremity in

the same horizontal line. Draw the hydraulic gradient and examine the case of a syphon.

12. In question 2 suppose the pipe instead of being short to be 25" long, find the

discharge, assuming for surface friction /= '01. Ans. 52.

13. A horizontal pipe is'reduced in diameter from 3" to J" in the middle, the reduction

being very gradual. The pressure head in the pipe is 40', what would be the greatest

velocity with which the water could flow through it, all losses of head being neglected ?'

Ans. 1'4' per sec.
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H. A pipe 2" diameter is suddenly enlarged to 3". If it discharge 100 gallons per

min., the water flowing from the small pipe into the large one, find the loss of total

head and the gain of pressure head at the sudden enlargement. State the two values of

the co-efficient of resistance.

Ans. Loss of head =". F=l'56 or '31.

Gain of pressure =1' 2".

15. In the last question suppose the water to move in the reverse direction. Find

the loss of head and the change of pressure consequent on the sudden contraction,

assuming the co-efficient of contraction to be '66.

Ans. Loss of head =7%".
Diminution of pressure =2' 5f".

16. A horizontal pipe 30' long is suddenly enlarged from 2" to 3" and then suddenly
returns to its original diameter. Length of each section =10'. Draw the hydraulic

gradient when the pipe is discharging 100 gallons per min. into the atmosphere,

assuming as co-efficient of surface friction 4 /='03. Find the total loss of head.

Ans. Total loss of head =10' 2^".

17. A pipe contains a diaphragm with an orifice in it the area of which is one-fifth

the sectional area of the pipe. Find the co-efficient of resistance of the diaphragm,

assuming the contraction on passing through the orifice the same as that on efflux from

a vessel through a small orifice in a thin plate. Ans. F=4Q.

18. Find the loss of head in inches due to a bend through 45 of radius 6" in a

pipe 2" diameter, the velocity of the water being 12' per sec. Ans. 2".

19. In question 1 suppose the ship moving at 10 knots and the orifice of entry so

arranged as to cause no additional resistance : find the velocity of delivery. Ans. Addi-

tional head=4 '42' : velocity =25' per sec.

20. Water is supplied by a scoop to a locomotive -tender at a height of T above the

trough. Assuming half the head lost by frictional resistance, what will be the velocity

of delivery when the train is running at 40 miles per hour, and what will be the lowest

speed of train at which the operation is possible ? Ans. 36' per sec.
; 14^ miles per hour.

21. If m be the hydraulic mean depth of a channel of rectangular section, sides in the

ratio n : 1 ; show that the h.m.d. of a circular section of the same area is

1

\TT \n
22. A^pipe is suddenly enlarged to double its diameter (1) all at once, (2) by two

stages ; compare the losses of head, the stages in (2) being arranged so that the loss may
be the least possible. Ans. Ratio=4.
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EXAMPLES.

SECOND SERIES (SECTIONS II., IV., AND V.).

1. A stream of water delivering 500 gallons per min. at a velocity of 15 feet per sec.

strikes an indefinite plane (1) direct, (2) at an angle of 30 : find the pressure on the

plane. Ans. (1) 39 Ibs.
; (2) 19^ Ibs.

2. Employ the principle of momentum to prove the formula on page 478 for the

resultant centrifugal force of one-half a rotating ring of fluid.

3. A plane area moves perpendicularly through water in which it is deeply immersed :

find the resistance per sq. foot at a speed of 10 miles per hour. Deduce the pressure of

a wind of 20 miles per hour using the same co-efficient. Ans. Resistance= 269 Ibs.

Wind pressure= 1'312 Ibs.

4. Compare the resistance of an area moving flatwise through the water with it&

resistance moving edgewise so far as due to surface friction, the co-efficient for which is

004. Ans. Ratio= 312.

5. Water is being discharged from a tank with vertical sides, by a sharp-edged

rectangular notch 8 inches wide, the lower edge of which is 4 inches below the level

of still water. Co-efficient of discharge, '6. Find the discharge in gallons per minute.

Ans. 154.

NOTE. A notch is treated as an orifice the upper edge of which is at the still water

level. Hence in the formula of page 481, 6 is to be taken as 8 inches, Yj zero, and Yz

4 inches. Contraction and hydraulic resistance are then allowed for by multiplication

by the co-efficient which varies to some extent according to the proportions which the

head and the breadth of the tank bear to the width of the notch.

6. Obtain a formula for the discharge from a triangular notch with sides inclined at

an angle 6 to the vertical, the apex being downwards and at a depth h below still water.

Ans.
0s2gc.*/ty,'tU?,A*.

NOTE. The co-efficient of discharge c varies somewhat with the angle being about

'6 when the angle is 45 : but by the principle of similar motions (p. 482) will be nearly

independent of the head in a notch of moderate size, a considerable practical advantage.

7. When a sphere moves in a straight line through a fluid the velocity with which the

fluid glides over the surface, at a point the angular distance of which from the central

line is 0, is f . sin 6. Assuming this, find the plus portion of the co-efficient of resistance.

Ans. f.

8. In the last question assuming the motion in front the same as before notwith-

standing the formation of eddies at the rear : and further, assuming the suction to

extend over the same area as the excess pressure with a co-efficient the same as for

a flat plate, find k. Ans. k= '386.
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CHAPTEE XX.

HYDEAULIC MACHINES.

262. Preliminary Remarks. Hitherto the energy exerted by means

of a head of water has been supposed to be wholly employed in over-

coming frictional resistances, and in generating the velocity with which

the water is delivered at some given point. We now proceed to

consider the cases in which only a fraction of the head is required for

these purposes ;
the remainder then becomes a source of energy at the

point of delivery by means of which useful work may be done. A
machine for utilizing such a source is called an Hydraulic Motor.

Hydraulic energy may exist in three forms, according as it is due

to motion, elevation, or pressure. In the first two cases it is inherent

in the water itself, being a consequence of its motion or its position

as in the case of any other heavy body. In the third it is due to

the action of gravity or some other reversible force, sometimes on

the water itself, but oftener on other bodies, as, for example, the load

on an accumulator ram. The water is then only a transmitter of

energy and not directly the source of it. As, however, the energy
transmitted is proportional to the weight of water delivered, just as

in the two other cases, the water is, as before, described as possessing

energy. The energy per unit of weight is called "head," as sufficiently

explained in the preceding chapter, and the "total head
"

is the sum of

the "velocity head," the "actual head," and the "pressure head."

Hydraulic motors are classed according to the mode in which the

water operates upon them, which may be either by weight, or by

pressure, or by impulse, including in the last term also "reaction."

Most hydraulic motors are capable of being reversed, and then

become machines for raising water, commonly described as Pumps.

SECTION I. WEIGHT AND PRESSURE MACHINES.

263. Weight Machines. To utilize a head of water, consisting of

an actual elevation (h) above a datum level at which the water can

be delivered and disposed of, a machine may be employed in which
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the direct action of the weight of the water, while falling through
the height h, is the principal motive force.

The common overshot water-wheel (Fig. 2, Plate III., p. 141) may
be taken as a type. Here the driving pair is a simple turning pair,

and the driving link is the force of gravity upon the falling water,

which acts directly on buckets open to the atmosphere. If G be the

delivery in gallons per minute, the energy exerted in foot-pounds

per minute is

E=lOGh.

The head h is here measured from the level of still water in a

reservoir which supplies the wheel. If v be the velocity of delivery

to the wheel, the portion v2/2g is converted into energy of motion

before reaching the buckets and operates by impulse. In a wheel

of this class, therefore, the water does not operate wholly by weight.

The speed of the wheel is limited to about 5 feet per second by the

centrifugal force on the water, which, if too great, causes it to spill

from the buckets. It will be seen hereafter that the velocity of the

water should be about double this, so that v is about 10 feet per

second, and the part of the fall operating by impulse is therefore

about 1'5 feet. The remainder operates by gravitation, but a certain

fraction is wasted by spilling from the buckets, and emptying them

before reaching the bottom of the fall. More than one half the

head operating by impulse is always wasted (Art. 270), and this

class of wheels is therefore only suitable for falls exceeding 10 feet.

The great diameter of wheel required for very high falls is incon-

venient, but examples may be found of wheels 60 feet diameter and

more. The efficiency of these wheels under favourable circumstances

is -75, arid is generally about -65.

In "breast wheels" the buckets are replaced by vanes which move

in a channel of masonry partially surrounding the wheel. The water

is admitted by a moveable sluice through a grating of fixed blades

in the upper part of the channel. The channel is thus filled with

water, the weight of which rests on the vanes and furnishes the

motive force on the wheel. There is a certain amount of leakage

between the vanes and the sides of the channel, but this loss is not

so great as that by spilling from the buckets of the overshot wheel.

The efficiency is found by experience to be as much as *75. As the

diameter of the wheel is greater than the fall a breast wheel can

only be employed for moderate falls.

In both these machines the water virtually forms part of the piece

on which it acts. This link of the kinematic chain forms one element

of the driving pair, while that attached to the earth forms the other.
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In the overshot wheel the water is contained in open buckets, in the

breast wheel it is contained in a closed chamber or channel. A
third class of weight machines is referred to farther on under the

head of pumps.

264. Hydraulic Pressure Machines in Steady Motion. A water wheel

of great diameter is a slow-moving cumbrous machine, and for heads

of 100 feet and upwards it is therefore necessary to employ a pressure

or an impulse machine. Such machines are also often more convenient

for low falls.

In pressure machines the driving link is compressed water, which

is forced between the elements of the driving pair by some source ot

the energy which supplies the necessary head. The head is sometimes

an actual elevation either natural or artificial : in the docks at Great

Grimsby the hydraulic machinery is operated from a tank placed on

a tower 200 feet high. It is however difficult to get a considerable

pressure in this way, and an apparatus called an Hydraulic Accumulator

is therefore generally resorted to. Two forms occur, of which one

is shown in Plate IX. In the first a plunger or ram is forced into

-a cylinder by heavy weights placed in a plate-iron cage suspended
from it and stayed by iron rods. The accumulator is supplied by

pumps generally worked by steam, which is the ultimate source of

the energy, the accumulator merely serving the purpose of a store of

energy which can be drawn on at pleasure. For ordinary hydraulic

machinery the pressure is limited to 750 Ibs. per square inch from

the difficulty of obtaining pipes of sufficient strength and of working
slide valves under heavy pressures. In machines for riveting and

other special purposes, however, pressures of 1,500 Ibs. per square

inch and upwards are employed. The accumulator then consists of

a cylinder B (Fig. 1, Plate IX., p. 525), loaded with ring weights

EE, sliding on a fixed spindle F, divided into two lengths of which

the upper portion is of smaller diameter than the lower.

In either form the accumulator provides a store of compressed water

which can be supplied by suitable

pipes to any number of machines,

placed often at considerable dis-

tances. A head of 1,700 feet is

thus readily obtained, and for

special purposes much more : differ-

ences of level may therefore be

disregarded as of small importance, and the water
j
considered as

operating wholly by pressure.
C.M. 2K

192<
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The driving pair of the machine forms a chamber of variable size

which is alternately enlarged by the pressure of the water, and con-

tracted to expel it. In most cases it is a simple cylinder C and piston

B (Fig. 192) : the water is admitted by a port from a pipe L,

transmitting it from the accumulator at pressure p. Let the piston

move through a space x, let A be its area, then

Energy exerted =pAx =p . X,

where X is the volume swept through by the piston. If w be as usual

the weight of a cubic foot, w . X is the weight of water which enters the

cylinder as the piston moves through the distance x, and therefore

Energy exerted per Ib. of water = - =
pressure-head in cylinder.

This might have been anticipated from what was said in the last

chapter as to the meaning of the term "
head," and in fact it is equally

true if the driving pair be not a simple piston and cylinder, but of

any other kind.

The head in the cylinder is less than that in the accumulator, on

account of the friction in the supply pipe and other frictional resist-

ances, and it is on the action of these resistances that the working
of the machine depends. Let V be the velocity of the piston in its

cylinder, pQ pressure in accumulator, F the co-efficient of hydraulic
resistance referred to the velocity of the piston (Art. 255), then, neglecting
differences of level, also the heights due to velocities of working and

accumulator pistons,

If the machine be moving steadily the pressure p will be equal to the

useful resistance which the piston is overcoming, increased by the

friction of the piston in its cylinder. Thus p and p will be known

quantities, a certain definite velocit}'- V
Q

will then be determined,

which may be described as the "speed of steady motion
"

: it is givea

by the equation

Since the hydraulic resistances may be increased to any extent at

pleasure by the turning of a cock, it follows that the speed of an

hydraulic pressure machine can be regulated at pleasure. Further,

if the resistance to the movement of the piston be diminished, the

speed will increase only by a limited amount, and can, under no-

circumstances, be greater than is given by
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which can be regulated as before. The surplus energy is here absorbed

by the frictional resistances, and an hydraulic pressure machine there-

fore possesses the very important, and for many purposes, valuable

characteristic that it contains icithin it brakes which work automatically.

265. Hydraulic Pressure Machines in Unsteady Motion. Although
the speed of a pressure engine cannot exceed a certain limit, which

is easily found, yet it does not follow that the limit will ever be

reached. When the engine starts, the piston and the water in the

pipes have to be set in motion, the force required to do this is so

much subtracted from that available to overcome resistances. A con-

siderable time therefore elapses before a condition approaching steady
motion can be obtained.

In Figs. 178, p. 486, water is supposed flowing through a pipe with

a velocity u. Two pistons at a distance x enclose water between them,

as in Art. 249, then the difference of pressure p1 -p2
in the case of

steady motion is simply balanced by the surface friction, but in un-

steady motion is partially employed in accelerating the flow of the

water. Neglecting friction the acceleration g will be given by the

formula
(ft

-

where A is the sectional area of the pipe and W is the weight of the

water between the pistons. Replacing W by Ax . w, as in the preceding
article

Pi~P* = x t
w

"
g'

which gives a simple formula for the change of pressure-head due to

inertia. Now if nA be the area of the working piston, the velocity of

the water in the pipe is n times the velocity of the piston, and the

accelerations are necessarily in the same ratio
;
and hence it follows

that the difference of pressure-head between cylinder and accumulator

due to an acceleration g' of the piston is for a length of pipe I

w g

In addition to this the piston itself requires a certain pressure to

accelerate it. Let qQ be the "pressure equivalent to that weight,"

being the actual weight divided by the area, as in Art. 109, p. 224, then

the pressure due to inertia is

?=<?.
I';

hence, adding the length (s) of cylinder containing water

*X.i.*<
w/g g
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where A is a certain length. This may be described as the "length
of working cylinder equivalent to the inertia of the moving parts,"

and may always be approximately calculated for any given engine. In

cranes and other hoisting machines the weight raised multiplied by the

square of the velocity ratio between it and the ram must be included

in the weight of the ram. The pressure in feet of water necessary

to overcome inertia will then always be given by the simple formula

Pressure-head due to inertia = A..
9

It will now be seen that the weight of water in the pipes and cylinders

is so much added to the weight of the piston, that in the pipes being

multiplied by the square of the ratio of areas of cylinder and pipe. A
water-pressure engine is therefore a machine with very heavy moving

parts, a circumstance which greatly limits its speed irrespectively of

frictional resistances. The smaller the pipes the heavier the parts

virtually are, and this must be considered as well as friction (p. 487)
in fixing their diameter.

It will be advisable to consider a particular case more in detail.

Suppose, as is sometimes the case in practice, that a water-pressure

engine is employed to turn a crank, and let us suppose that the

crank shaft rotates nearly uniformly as in Ch. IX., then the difference

between the pressure in the accumulator and that transmitted to the

crank pin may be represented graphically thus :

Let Fbe the velocity of the crank pin and let the stroke be 2a or AA
in the diagram (Fig. 193). Set up

F2

CA=\.
t

ga

and draw the sloping line COC. Then, as in Art. 109, already cited,

the ordinate of that line represents the pressure-head necessary to over-

come the inertia of the piston and the water connected with it. Again,

supposing, as usual, Fto be the co-efficient of hydraulic resistance, set up

and on the oblique base COC draw the parabola CZC, then (comp.
Arts. 20, 109) the ordinate of this parabola will represent the pressure

necessary to overcome the hydraulic resistances at every point. If

then the horizontal line DD be drawn at a height representing the

pressure in the accumulator, the intercept between that line and the

parabola will represent the pressure transmitted to the crank pin at

each point of the stroke. The slope of CC and the height of the

parabola increase rapidly with the speed, which must never be great

enough to cause the parabola to touch DD, otherwise a violent shock
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Fig. 193.

will occur. The same effect will be produced by any falling off in the

useful resistance : the angular acceleration of the crank shaft then raises

the central part of the line

CC and with it the line of

frictional resistances. It

should be observed that the

curve of frictional resist-

ances may also be taken kg

to represent the kinetic

energy of the piston, both

these quantities being pro-

portional to the square of

the velocity of the piston. It is therefore the graphical integral of

the curve of acceleration (Ch. IX.).

The simple example here given will serve as an illustration of the

great variations of pressure which occur in water-pressure engines
and their consequent liability to shocks. For which reason escape
valves or air chambers must be provided to relieve the pressure when
it becomes excessive. Unless the resistance be very uniform an

additional accumulator is required as near as possible to the machine.

266. Examples of Hydraulic Pressure Machines. Water-pressure

engines form a large and interesting class of hydraulic motors, of

which a few examples will now be given.

(1) In direct-acting lifts a weight is raised by the direct action of

fluid pressure on a ram the stroke of which is equal to the height
lifted. The weight here rests on a cage or platform fixed to the upper
end of the ram and sliding in guides. The water is frequently supplied

from a tank at a moderate elevation, so that the pressure-head

diminishes as the lift rises. This is a very convenient arrangement
for the purpose, as it supplies an additional pressure at the bottom

of the stroke where it is required to overcome inertia at starting,

and a diminished pressure at the top where the lift requires to be

stopped. The useful resistance is here constant and the pressure head

would be represented by the ordinates of a sloping line. A diagram
of speed and acceleration may be constructed by a process similar

to that given in the last article.

(2) A direct-acting lift necessarily occupies a great space, and th&

stroke of the working cylinder is therefore often multiplied by the

use of blocks and tackle as shown in Fig. 2, Plate IX. The cylinder

may be placed in any convenient position, and the chain passes from

the blocks over fixed pulleys to the cage which is suspended from
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it. The friction of the pulleys is here considerable, and there is a

liability to breakage ;
but for convenience the arrangement is one

which is frequently employed.

(3) In hydraulic cranes the working cylinder is sometimes placed

l)elow and sometimes occupies the crane post which is tubular. The

stroke is multiplied by tackle as in the previous case, the chain passing

through the crane post and over fixed pulleys to the extremity of

the jib. An example is shown in Fig. 2, Plate IX., p. 525.

(4) A water-pressure engine may be employed to turn a crank.

Three working cylinders inclined at 1 20 are frequently used as shown

in Fig. 1, Plate X., p. 525. They are single-acting and drive the same

crank as in the small steam engines of the same type employed where

great speed is required. The water is admitted to the outer ends

of the cylinders, so that the piston rods are always in compression.

(5) The hydraulic mechanism applied to work heavy guns on board

ship consists of a cylinder in which works a piston attached to a rod,

the sectional area of which is one-half that of the cylinder. If water be

admitted at both ends of the cylinder the piston moves outwards, but

if to the inner end only, it moves inwards. The motive force in either

case is the same, being due to the difference of areas. This apparatus
serves also as a brake of the kind described in the next article. For

details and illustrations the reader is referred to the Gunnery Manual.

267. Hydraulic Brakes. It has been sufficiently explained that

hydraulic resistances absorb an amount of energy which varies as the

square of the speed. An hydraulic machine therefore may be em-

ployed as a brake, and it is in this way that large amounts of surplus

energy are most easily disposed of. Moreover, by its use the speed
of "any machine to which it is applied is readily controlled.

An hydraulic brake is constructed by interposing a mass of fluid

between the elements of a pair so that any motion of the pair causes

a breaking-up of the fluid with a corresponding resistance.

Fi 194a ^ common case is tnat of

c
a sliding pair consisting of a

piston and cylinder filled with

water or oil, which passes
O

D from one side of the piston
-

to the other whenever the

piston moves. Two examples
of this apparatus are shown

in skeleton in Figs. 194a, 1946. In the first (Fig. 194a), the piston

rod DD projects through both cylinder covers, and communication is
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-made between the two ends of the cylinder by a pipe LL pro-

vided with a cock C, which can be closed at pleasure. At D the rod

is attached to the piston rod of a steam cylinder employed to obtain

the very considerable force necessary to work the starting and reversing

gear of large marine engines. The resistance of this brake is zero

when the piston begins to move, but increases as the square of the

speed, and thus effectually prevents it from moving too rapidly. The

maximum speed is controlled by turning the cock. For a detailed

description of this gear the reader is referred to a treatise on the

Marine Engine, by Mr. Sennett.

In the second (Fig. 1946) the water passes from one end of the cylin-

der through orifices in Fig. i94b.

the piston itself. This

is the common "com- g_ .................................

pressor" or Service Buf-

fer.* The piston rod

in this case passes out at one end only of the working cylinder, and

is attached to the gun, the recoil of which is to be checked. The

theory of this apparatus is of some interest, and will now be briefly

considered.

Let n be the ratio of the area of the piston to the effective area of the

orifices, then the loss of head consequent on the sudden enlargement
willbe .-* r2

l_B =
(
% _ 1)2^1,w '

2g

where F is the speed of piston and pv p2 are the pressures on the

two sides of the piston. Hence the pull

S=*(*-!??
on the piston rod is necessary to overcome the hydraulic resistance at

this speed. The gun is gradually brought to rest by this resistance,

aided by the friction of the slide.

At the instant of firing, a certain amount of kinetic energy is

generated in the gun given by the formula

Energy of Recoil = -~^ (Art. 133, p. 268),Z9

where F is the maximum velocity of recoil. As the gun recoils its

velocity diminishes, and if P be the friction of the slide the retarding
force will be -

2

Manual of Gunnery for Her Majesty's Fleet, p. 68.
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for F", and mayThe maximum value of S will be found by writing
be denoted by S

Q
.

To represent this graphically, in Fig. 195 draw a curve in which

the ordinate KN at any point N represents the retarding force after

the gun has recoiled through the space ON from the point 0, at

which the action of the powder pressure ceases, and the gun has its

maximum velocity F" . This curve will start from a point A such that

and will reach the horizontal DE at a height PQ above the base line

at a point E, such that OL is the com-

plete recoil. The area OAEL of this

curve represents the energy of recoil

which has all been absorbed by the

frictional resistance of the slide and

the hydraulic resistance of the com-

pressor. Further, the area KNN'K'
between two ordinates will represent

the diminution of energy as the gun
recoils through the space NN' between

them, a circumstance which enables us

to construct the curve, for ifW be the velocities of the recoiling gun
at NN' respectively,

W(F2 - V'^
Area KNN'K'= (

n >.

ty

But if S, S' be the corresponding values of S,

V2 77'2y

2a

and if the ordinates be taken near together the area in question will be-

nearly KN . NN'. We have therefore, by division,

1?
'

*7 A I 1 \9KZ A,. T , wA(n-\Y
KN= Nh --~W '

That is, if a number of equidistant ordinates be drawn near together
the ratio of consecutive ordinates is constant. The curve may be

roughly traced from this property; it is identical with the curve

already drawn in Art. 123, p. 252, except that it is a linear instead of

a polar curve.

The mean resistance to recoil is given by the equation

(S+ P }1
= Energy of Recoil,

where / is the distance traversed. It would, of course, be advantageous
to have a uniform resistance to recoil, because the maximum pressure
in the compressor would be diminished and less strain thrown on
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the gear. This is the object of the various modified forms of the

compressor, in which the orifices are not of constant area, but become

smaller as the recoil proceeds. In order that the resistance may be

constant we must have

so that (n
-
l)/^is constant. Further, since the retardation is uniform

W '

where x is the distance from the end of the recoil. It appears therefore

that the orifices should vary in such a way that (n-l)'
2x should be

constant. Descriptions of two forms of compressor, with varying

orifices, will be found in the Gunnery Manual.

Instead of a sliding pair we may employ a turning pair. This is

the common "fan" or "fly" brake used to control the speed and

absorb the surplus energy of the striking movement of a clock, or

in other similar cases. A friction dynamometer (p. 279) was designed

by the late Mr. Froude for the purpose of measuring the power of

large marine engines, in which the ordinary block or strap surrounding
a shaft or drum is replaced by a casing in which a wheel works.

Vanes attached to the wheel and the fixed casing thoroughly break

up a stream of water passing through the casing. Any amount of

energy may thus be absorbed without occasioning any considerable

rise of temperature. Siemens' combined brake and regulator has

been mentioned already on page 278.

268. Transmission of Energy by Hydraulic Pressure. Energy may be

distributed from a central source, and transmitted to considerable

distances with economy by hydraulic pressure. The delivery in gallons

per minute of a pipe d" diameter is

. (Art. 250).

Assume now that the pipe supplies an hydraulic machine at a distance

of I feet from an accumulator in which h is the head. Further, suppose
that n per cent, is lost by friction of the pipe, then the power trans-

mitted in foot-lbs. per minute is

and the distance to which N horse-power can be transmitted with a loss-

of n per cent, is in feet

1,800,000**
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With the usual pressure in accumulators of 750 Ibs. per square inch, or

1700 feet of water, this gives the simple approximate formula

1-3300$.

'Thus, for example, 100 horse-power may be transmitted by a 5" pipe to

.a distance of 4 miles, or 10 horse-power by a 1" pipe to a distance of

220 yards, with a loss by friction not exceeding 20 per cent. The

diameter of pipe is limited by considerations of strength and cost.

The power of a motor supplied by a given pipe does not increase

indefinitely as its speed increases, but is greatest when one-third of the

head is lost by friction.* The maximum possible power is therefore

given by the formula

H.P. = 220 - (approximately).

This is of course two-thirds the value of N in the preceding formula.

269. Pumps. If the direction of motion of an hydraulic motor be

reversed by the action of sufficient external force applied to drive it,

while, at the same time, the direction of the issuing water is reversed

so as to supply the machine at the point from which it originally

proceeded, we obtain a machine which raises water instead of utilizing

a head of water. Every hydraulic machine therefore may be employed
to raise water as well as to do work, and most of them actually occur

in this form; they are then called PUMPS, though in some cases

this name would not be used in practice. Much of what has been

said about motors applies equally well to pumps : the principal

difference lies in the fact that the useful resistance which the pump
overcomes is always reversible, whereas in the motor this is not

necessarily the case. The principles of action and the classification

of hydraulic machines are, in the main, the same in both cases. Some

points omitted while considering motors as being of most importance

in pumps, and certain differences of action between the two will now

be briefly noticed. Certain machines occurring principally as pumps
will be mentioned.

(1) If the direction of motion of an overshot wheel be reversed a

machine is obtained which is known as a "Chinese Wheel." It picks

up water in its buckets and raises it to a height somewhat less than

the diameter of the wheel. This machine is little used, but a reversed

breast wheel is frequently employed in drainage operations, under

the name of a "scoop," or "flash" wheel. The working pair is here

* This result was pointed out to the writer by Mr. (now Prof. ) Hearson. It appears

to be little known.
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a turning pair, but in the chain pump we find an example in which

one of its elements is a chain passing over pulleys. The chain is

endless and is provided with flat plates fitting into a vertical pipe,

the lower end of which is below the surface of the water, and

through which the water is raised. In the common dredging machine

the closed channel (p. 512) is replaced by buckets. In a third class

of weight machines the water occupies the moveable chamber and forms

with it a kinematic pair with only one solid element, while it forms

with the link attached to the earth, a working pair which has also

but one solid element. The Archimedian screw, and certain varieties

of "
scoop

"
wheel, in which the water enters the scoop at the circum-

ference of the wheel and is delivered at the centre, are examples of

this kind.

(2) The most common forms of pumps are the "lift" or "force"

pumps, which consist of a chamber which expands to admit the water

to be lifted and contracts in the act of lifting; they are therefore

pressure machines like those considered in Arts. 264-5, but reversed.

The name "
pump

"
originally applied to these machines alone.

Fig. 196 shows a common lift pump. A is a cylinder at a certain

height Aj above the water to be raised, C is a piston working in the

cylinder by the action of which the water is lifted. The piston has

orifices in it which permit the water to pass through. p^ 19e
The orifices are closed by a valve, as is also the opening
at the bottom of the cylinder. These valves are simple

"flaps" which open on hinges to permit the water to

pass upwards, but close the passage to motion in the

-opposite direction, thus acting as a ratchet (p. 158).

Assuming the piston at the bottom of its stroke, at rest

olose to the bottom of the cylinder, let it be supposed
to rise; the valve b will rise and allow air to pass

if any. After several strokes the air will be nearly

exhausted, and if h^ be not too great the empty space

will be filled with water raised from the tank by

atmospheric pressure. Thus the water will pass into

the cylinder closely following the piston. At the top
of the stroke the piston commences to descend, b closes

arid a opens, allowing the water to pass above the

piston. This water is now raised by the piston to any

required height. In force pumps the process is the *! %
same, but the water passes out through an orifice in the bottom of the

cylinder instead of through the piston ;
the raising of the water above

the level of the cylinder is done in the down stroke instead of the up.
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The difference between this action and that of a pressure motor lies

mainly in the valves, which here open and close automatically by the

action of the water instead of by external agency. Further, the pump
wholly or partly works by suction, a method by no means peculiar to

pumps, for it also occurs in motors, but nob so frequently. The height
of the water barometer is 34 feet, but the height to which a pump
will work by suction is not so great. When the piston is at the

bottom of its stroke there must, for safety, always be a certain clearance

space below. This space always contains air, the pressure of which

diminishes as the piston rises, but cannot be reduced to zero. Further,

a certain pressure is required to overcome the weight and friction of

the valve before it opens. At least 3 feet of the lift is absorbed in

this way, and generally considerably more. To obtain a high vacuum

for scientific purposes, air pumps are specially designed to meet these

difficulties. Also, leakage must be allowed for and the diminution

on account of friction and inertia, which will be considerable if the

speed be too great or the pipes too small, as will be understood on

reference to Arts. 264-5, all of which applies to pumps as much as

to motors. It is hardly necessary to observe that power is neither

gained nor lost by the use of suction
;

it simply enables the working

cylinder to be placed above the water to be lifted, an arrangement
which is in most cases convenient. The limit in practice is about

25 feet.

Pumps are commonly, but not always, single-acting ; they are worked

by the direct action of a reciprocating piece, or by means of a rotating

crank. In the first case, when independent, a piston acted on by
steam or water pressure is attached to a prolongation of the pump
plunger : a crank and fly-wheel is often added, as in Fig. 4, Plate II.,

p. Ill, to control the motion and define the stroke. When driven

by the crank three working cylinders, placed side by side with a

three-throw crank, are commonly used, in order to equalize the de-

livery, and so to avoid the shocks due to changes of velocity. An

air-chamber, forming a species of accumulator, may also be used with

the same object. An arrangement of pumps, as applied by Messrs.

Donkin & Co. to raise water from a well 200 feet deep and force

it to a height of 143 feet above the engine-house, may be mentioned

as an example. A set of lift pumps at the bottom of the well worked

by "spear" rods from the surface, are combined with a set of force

pumps in the engine-house itself. The speed of these pumps is about

80 feet per minute, and they deliver about 600 gallons per minute.

Pumps almost always have a certain "slip," that is they deliver less

water than corresponds to the piston displacement and number of
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strokes : in this example the slip was 1 2 per cent. The efficiency

of the pumps and mechanism of the engine was found to be 66 per

cent, by careful experiments.*

In raising water from great depths in mines, force pumps at the

bottom of the mine are used, worked by heavy
"
spear

"
rods from

a beam engine at the surface. The weight of the rod supplies the

motive force during the downward stroke of the pump ;
while the

engine, which is single-acting, raises the rods again during the down-

ward stroke of the steam piston.

DESCRIPTION OF PLATES IX. AND X.

In order further to illustrate the action of water-pressure machines Plates IX. and X.

have been drawn.

Fig. 1, Plate IX., shows the differential accumulator described on page 513.

In Fig. 2 is represented an hydraulic crane, designer! by Sir W. Armstrong, for lifting

weights of 2 to 3 tons. In it the hydraulic power is applied to rotate the crane as well

as to lift the weight.

In order to effect the lift the high-pressure water from the accumulator is admitted

to the cylinder A, and forces out the plunger B. There are two pulleys at a and

two at 6. One end of the chain is secured to the cylinder A, it is led round 6,

then round a, again round 6, then under the second pulley at a up through the

hollow crane post on to the weight as shown. The effect of this arrangement is that

any movement of the plunger B is at the hook multiplied four times.

If B is simply a plunger working in a stuffing box, then the expenditure of energy is

always the same whatever weight is being lifted, and the amount must be equal to that

which corresponds to lifting the maximum possible weight.

This is an objection which is common to all such machines. The surplus energy is

expended in overcoming frictional resistances (p. 514). To mitigate this evil, in cranes

of high power the plunger has a piston end, which fits a bored cylinder, and is

provided with a cup leather, as shown in Fig. 3. The sectional area of the plunger
is about one-half that of the cylinder. If a light weight is to be lifted, water is

admitted to both sides of the piston, and the difference of the pressures, equal to what

would be exerted on a simple plunger, is available for effecting the lift. When it is

required to lift a heavy weight water is admitted to the side C only of the piston,

the annular space D being put in communication with the atmosphere. Thus the full

pressure due to the area of the piston is exerted with the corresponding expenditure
of water.

For the purpose of rotating the crane a pair of cylinders, E, are provided, of which

one only is shown in the figure. The thrusting out of the plunger F of one of them

foy the pressure of the water causes the other to be drawn in by means of a chain which

passes around a recessed pulley secured to the crane post.

In Plate X., Figs. 1 and 2 show the construction of Downton's Pump, so much used

-on board ship. In the barrel work three buckets with flap valves, as shown in Fig. 2.

The rods to which the upper and second buckets are attached are necessarily out of

centre The rods to the lower buckets pass through desp stuffing boxes in the buckets

.above, and thus the buckets are maintained from canting seriously. The movement
-of the bujkets is effjcbel by a thrae-throar cnnk, the crank pins, which are not round,

being set at 120 apart. These pins fit and work in a curved slot in the bucket rod

heads. Assuming the admission of no air but water only from below, the discharge

* Minutes of Proceedings of the Institution of Civil Engineers, vol. Ixvi.
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of the pump will at each instant equal the displacement of the fastest upward moving
bucket. Accordingly the rate of discharge may be represented by a curve, as in Fig. 3.

If the slot in the rod head were straight and the pin round, then, the crank moving

uniformly, in direction shown, the velocity of discharge would be represented by the

radii from O to the dotted curve BABABA, which is made up of parts of three circles,

the position of the radius being that of either of the three cranks. The effect of the

curved slot is to diminish the maximum and increase the minimum discharge, as shown

by the full curve B'A'BA'B'A'.

Figs. 4 and 5 of this Plate are sections of the hydraulic engine referred to on page 518,

employed to rotate a capstan. It need only be further added that a single rotating

valve V suffices for admission and exhaust of all three cylinders. The high-pressure
water is supplied by the pipe P to the passage S surrounding the valve and exhausted

from the cylinders through the central passage.

EXAMPLES.

1. In estimating the power of a fall of water it is sometimes assumed that 12 cubic

feet per second will give 1 H.P. for each foot of fall: what efficiency does this suppose
in the motor ? Ans. '72.

2. An accumulator ram is 9 inches diameter, and 21 feet stroke ;
find the store of

energy in foot-lbs. when the ram is at the top of its stroke, and is loaded till the

pressure is 750 Ibs. per square inch. Ans. 1,000,000 foot-lbs.

3. In a differential accumulator the diameters of the spindle are 7 inches and 5 inches ;

the stroke is 10 feet : find the store of energy when full, and loaded to 2,000 Ibs. per

square inch. Ans. 377,000 foot-lbs.

4. A direct-acting lift has a ram 9 inches diameter, and works under a constant head

of 73 feet, of which 13 per cent, is required by ram friction and friction of mechanism.

The supply pipe is 100 feet long and 4 inches diameter. Find the speed of steady motion

when raising a load of 1,350 Ibs., and also the load it would raise at double that speed.

Ans. Speed=2 feet per second.

Load=150 Ibs.

5. In the last question, if a valve in the supply pipe is partially closed so as to increase

the co-efficient of resistance by 5, what would the speed be ? Ans. 1*6 f.s.

6. Eight cwt. of ore is to be raised from a mine at the rate of 900 feet per minute

by a water-pressure engine, which has four single-acting cylinders, 6 inches diameter,

18 inches stroke, making 60 revolutions per minute. Find the diameter of a supply

pipe 230 feet long, for a head of 230 feet, not including friction of mechanism.

Ans. Diameter=4 inches.

7. Water is flowing through a pipe 20 feet long with a velocity of 10 feet per second.

If the flow be stopped in one-tenth of a second, find the intensity of the pressure

produced, assuming the retardation during stoppage uniform. Ans. 62 feet of water.

8. If X be the length equivalent to the inertia of a water-pressure engine, F the

co-efficient of hydraulic resistance, both reduced to the ram, r the speed of steady

motion ; find the velocity of ram, after moving from rest through a space x against a

constant useful resistance. Also find the time occupied.

9. An hydraulic motor is driven from an accumulator, the pressure in which is 750

Ibs. per square inch, by means of a supply pipe 900 feet long, 4 inches diameter ; what

would be the maximum power theoretically attainable, and what would be the velocity

in the pipe at that power ? Find approximately the efficiency of transmission at half

power. Ans. H.P. =240 ; v=22 ; efficiency= '96 nearly.
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10. A gun recoils with a maximum velocity of 10 feet per second. The area of the

orifices in the compressor, after allowing for contraction, may be taken as one-twentieth

the area of the piston : find the maximum pressure in the compressor in feet of liquid.

Ans. 560 to 594.

11. In the last question assume weight of gun 12 tons ; friction of slide 3 tons ;.

diameter of compressor 6 inches ; fluid in compressor water ; find the recoil.

Ans. 4 feet 2^ inches.

12. In the last question find the mean resistance to recoil. Compare the maximum
and mean resistances each exclusive of friction of slide.

Ans. Total mean resistance 4 '4 tons. Ratio=2'2.

SECTION II. IMPULSE AND EEACTION MACHINES.

270. Impulse and Reaction Machines in General. The source of

energy may be a current of water or the head may be too small to

obtain any considerable pressure, and it is then necessary to have

some means of utilizing the energy of water in its kinetic form. A
machine for this purpose operates by changing the motion of the

water and utilizing the force to which the change gives rise. If the

water strikes a moving piece and is reduced to rest relatively to itr

the machine works by "impulse," and if it be discharged from a

moving piece, by "reaction." There is no difference in principle

between these modes of working, and both may occur in the same

machine. In either case, the motive force arises from the mutual

action between the water and the piece which changes their relative

motion. Machines of this class are also employed for high falls when

the low speed of pressure machines renders their use inconvenient or

impossible. The water is then allowed to attain a velocity equivalent

to a considerable portion of the head immediately before entering the

machine, so that its energy is, in the first instance, wholly or partially

converted into the kinetic form.

The simplest machine of this kind is the common undershot wheel r

consisting of a wheel (Fig. 197) pro- Fig. 197.

vided with vanes against which the

water impinges directly. Let the

velocity of periphery of the wheel

be F, then the water after striking

the vanes is carried along with them

at this velocity. If, then, the original

velocity of the water be v, the diminu-

tion of velocity due to the action of

the vanes will be v - V. Let W be

the weight of water acted on per second, then the impulse on the

wheel must be usiv _y\
P = )
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but if A be the sectional area of the stream,

this being the weight of water per second which comes in contact with

-all the vanes taken together,

.-. P =
W
Av(v-V).

9

The power of the wheel is PV foot-lbs. per second, and the energy of

the stream is Wv2
/2gr therefore

Efficiency
=

This is greatest when V=fyo and its value is then -5, showing that

the wheel works to best advantage when the speed of periphery is

one-half that of the stream, but that the efficiency is low, never

exceeding '5.

Such wheels may be seen working a mill floating in a large river,

or in other similar circumstances, but they are cumbrous and, allowing
for various losses not included in the preceding investigation, their

efficiency is not more than 30 per cent. In the early days of hydraulic

machines, they were often used for the sake of simplicity or, as in the

example shown in the figure, from a want of comprehension of their

principle.* In mountain countries, where unlimited power is available,

they are still found. The water is then conducted by an artificial

channel to the wheel, which sometimes revolves in a horizontal plane.

When of small diameter their efficiency is still further diminished.

In overshot wheels and other machines operating chiefly by weight
the head corresponding to the velocity of delivery is partly utilized by

impulse, and the speed of the wheel is determined by this considera-

tion. In all cases of direct impulse, if h is that part of the head

operating by impulse, the speed of maximum efficiency is

or in practice somewhat less, and at that speed at least half that head

is wasted. The great waste of energy in this process is due partly to

the velocity V with which the water moves onward with the wheel,

and partly to breaking-up during impulse. It is in fact easy to

see that one-fourth the head is wasted by each of these causes. To
.avoid it, the water must be received by the moving piece against
which it impinges without any sudden change of direction, and must

be discharged at the lowest possible velocity, effects which may be

produced by a suitably-shaped vane curved so as to deflect the water
* See Fairbairn's Millwork and Machinery, from which this figure is taken, vol. i.

,

p. 149.
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gradually and guide it in a proper direction. The principle on which

such a vane is designed may be explained by the annexed diagram.
In Fig. 1 98 AB is a vane moving with velocity V in a given direction,

against which a jet strikes. Drawing a diagram of velocities, let Oa

represent v, the velocity of the jet, and let 00' represent V. Then

as before (p. 499) O'a represents the velocity of the jet relatively to

the vane, and, in order that the water may impinge without shock,

the tangent to the vane at A must

be parallel to O'a. The vane is

now curved so as gradually to

deflect the water, in doing which

there is a mutual action between

the jet and the vane furnishing

the motive force which drives the

wheel. If the water leave the vane

at B) its velocity relatively to the vane is represented by O'b drawn

parallel to the vane at B, and somewhat less than O'a in magnitude,
to allow for friction, unless the water be enclosed in a passage, when
it will bear some given proportion to O'a. The absolute velocity with

which the water moves at B is now represented by Ob, and this may
be arranged to deliver the water in a convenient direction with a

velocity just sufficient to clear the wheel and no more.

Two examples of the use of such vanes may now be mentioned.

(1) In the Pelton wheel recently introduced in America, the buckets

of an ordinary vertical water wheel, receiving a jet of water tangen-

tially under a considerable head, are divided in the middle, and each

half curved so as to form a cup or pocket facing the jet. The inner

edges of the two halves are now united so as to form a dividing edge,

upon which the jet impinges centrally and by which it is separated

into two parts, each diverging laterally and then turning through an

angle of nearly 180. The double pocket with its dividing edge is

not essential, a simple cup vane (Fig. 1 90, p. 500) would suffice
;
but

it probably renders the jet less liable to breaking up from unsteadiness

or in consequence of the angular motion of the bucket. A wheel of

this kind at the Comstock mines, Nevada, U.S., works under a head

of 2,100 feet with a velocity of periphery of 180 f.s.* Their efficiency

is very considerable, in many cases exceeding 80 per cent.

(2) Of much older date are the vanes applied to
\
vertical water

wheels by Poncelet in order to utilize as far as possible a head of

moderate amount. The water in this case impinging below the wheel

at A, ascends to B, and then while the vane is moving onwards

* The Practical Engineer, June 17, 1892.

C.M. 2 L
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descends again to A under the action of gravity. The velocity of

the water relatively to the wheel is thus reversed : O'b being approxi-

mately equal and opposite to O'a.

In all impulse and reaction machines there is a speed of maximum

efficiency which, as in the simple case first considered, is given by the

formula

r=lcj*jh,

where k is a fraction depending on the type of machine.

271. Angular Impulse and Momentum. The most important of

these machines are those in which the change of motion produced in

the water is a motion of rotation, and it is need-

^. _>v ful to consider that form of the principle of

momentum which is applicable to such cases.

In Fig. 199, W is a weight describing a circle

round with velocity V -,
then the product of its

momentum by the radius r is called the "moment
/ of momentum " of the weight about 0. If

\
s y represent an axis to which W is attached rigidly,

we may imagine it turning under the action of

a force P at a radius R. The moment of P multiplied by the time

during which it acts is called the " moment of impulse."

During the action of P the weight will move quicker and quicker

and the motion is governed by the principle expressed by the equation

Moment of Impulse = Change of Moment of Momentum.

If L be the moment of P, then taking the time as one second,

L Change of Moment of Momentum per second.

This equation is true, not only for a single weight and a single

force, but also for any number of weights and any number of forces.

As in other forms of the principle of momentum it is also true, not-

withstanding any mutual actions or any relative movements of the

weights or particles considered. Further, any radial motions which

the particles possess may be left out of account, for they do not

influence the moment of momentum. A particular case is when L = Oy

then the moment of momentum remains constant, a principle known
as the Conservation of Moment of Momentum. The terms " moment
of momentum" and "moment of impulse" are often replaced by
"
angular momentum," "angular impulse."

A weight rotating about an axis is capable of exerting energy in two

ways. First, it may move away from the axis of rotation, overcoming

by its centrifugal force a radial resistance which it just overbalances.
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Secondly, it may overcome a resistance to rotation in the shaft to

which it is attached. In either case the work done will be represented

by a diminution in the kinetic energy of the weight.

If the shaft be free, the diminution of kinetic energy must be equal

to the work done by the centrifugal force, and it may be proved in this

way, that if V be the velocity of rotation of the weight, r the radius,

Vr = Constant,

an equation equivalent to the conservation of the moment of momentum.

Conversely, energy may be applied to a rotating weight either by

moving it inwards against its centrifugal force, or by a couple applied

to the axis of rotation.

In turbines both modes of action occur together as we shall see

presently ;
and the employment of the principle of momentum, though

not necessary, is on the whole the most convenient way of dealing

with the question.

272. Reaction Wheels. Fig. 200 shows a reaction wheel in its

simplest form. GAG is a horizontal tube communicating with a

vertical tubular axis to which it is fixed, and with which it rotates.

Water descends through the vertical tube, and issues through orifices

at the extremities of the horizontal tube so placed that the direction

of motion of the water* is tangential to the circle described by the

orifices. The efflux is in opposite directions Fi#- 200.

from the two orifices, and a reaction is pro-

duced in each arm which furnishes a motive

force. There are two methods of investigating

the action of this machine which are both

instructive. Frictional resistances are, in the

first instance, neglected.

(1) Let the orifices be closed, and let the

machine revolve so that the speed of the

orifices in their circular path of radius r is V. Centrifugal action

produces a pressure in excess of the head h existing when the arms
are at rest, the magnitude of the excess in feet of water being
This is so much addition to the head, which now becomes

This quantity H may also be considered as the head "relative to the

moving orifices
"
estimated as on p. 475.

When the orifices are opened, the water issues with velocity v

given by
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thus the water issues with a velocity greater than V, and after leaving

the machine has the velocity vV relatively to the earth. The energy

exerted per Ib. of water is A, and this is partly employed in generating

the kinetic energy corresponding to this velocity. The remainder does

useful work by turning the wheel against some useful resistance, so

that we have per Ib. of water
"

and, dividing by h,

-, ffi
. V(v-V) 2F

Efficiency = * _ / =-_
.

gh v+F
(2) A second method is to employ the principle of the equality of

angular impulse and angular momentum already given in Art. 271.

Originally the water descends the vertical tube without possessing any

rotatory motion, but after leaving the machine it has the velocity v -V
its angular momentum is therefore for each Ib. of water,

Angular Momentum = ---- . r.

Now according to the principle the angular momentum generated

per second is also the angular reaction on the wheel which, when

multiplied by F/r, the angular velocity of the wheel, gives us the

useful work done per second. Performing this operation, and dividing

by the weight of water used per second, we get per Ib. of water

Useful Work =
V

(
V ~ V

\
9

This is the result already obtained, and the solution may now be

completed by adding the kinetic energy on exit.

From the result it appears that the proportion which the waste work

bears to the useful work is v - V : 2 F, which diminishes indefinitely

as v approaches F; but in this case the velocities become very great,

since v2 - F2 is always equal to 2gh. The frictional resistances then

become very great, so that in the actual machine there is always a

speed of maximum efficiency which may be investigated as follows:

Let F be the coefficient of hydraulic resistances referred to the

orifices, then
2 >

(l+F)
g=B=h+%-g

.

The useful work remains as before, and therefore

.

.hmciencyJ vz_

a fraction which can readily be shown to be a maximum when
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which value of v, when substituted in the preceding equation, will

give the value of V in terms of h for maximum efficiency. The

existence of a speed of maximum efficiency is well known by

experience with these machines. In general it is found to be about

that due to the head, so that

7* = 2gh,

a value which corresponds to ^='125, and gives an efficiency of '67.

This is about the actual efficiency of these machines under favourable

circumstances
;
of the whole waste of energy two-thirds, that is two-

ninths of the whole head, is spent in overcoming frictional resistances,

and the remaining one-third, or one-ninth the whole head, in the

kinetic energy of delivery.

The reaction wheel in its crudest form is a very old machine known
as " Barker's Mill." It has been employed to some extent in practice

as an hydraulic motor, the water being admitted below and the arms

curved in the form of a spiral. These modifications do not in any

way affect the principle of the machine, but the frictional resistances

may probably be diminished.

273. Turbine Motors. A reaction wheel is defective in principle,

because the water after delivery has a rotatory velocity in consequence
of which we have seen a large part of the head is wasted. To avoid

this, it is necessary to employ a machine in which some rotatory

velocity is given to the water before entrance in order that it may be

possible to discharge it with no velocity except that which is absolutely

required to pass it through the machine. Such a machine is called

in general a TURBINE, and it is described as "outward flow," "inward

flow," or "
parallel flow," according as the water during its passage

through the machine diverges from, converges to, or moves parallel

to, the axis of rotation.

Fig. 20 la shows in plan and section part of an annular casing

forming a wheel revolving about an axis XX through which water is

flowing, entering at the, centre and spreading outwards. The water

leaves the wheel at the outer circumference. Fig. 20 Ib is similar,

but the flow is inward instead of outward.

If we consider a section aa made by a concentric cylinder of length y
and radius ?, the flow will be

Q = u. 27m/,

where u is the radial velocity or, as we may call it, the "
velocity of

flow." The area of the section (27my) may conveniently be called the

"area of flow." The 'value of Q is everywhere the same, and therefore

ury must be constant. It is generally desirable to make u constant or
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nearly so, and then the form of the casing is such that ry is constant.

Whether this be so or not, the value of u can always be calculated at

any radius for a given wheel with a given delivery.

The water which at any given instant is at a given distance r from

the axis may be considered as forming a ring RR, which rotates while

at the same time it expands or contracts according as the flow is

outward or inward. The velocity of the periphery of this ring may
be described as the "velocity of whirl," and if it be called V, the

moment of momentum of a ring, the weight of which is W, is

WM= -. vr.

9

If the wheel has no action on the water, this quantity cannot be

altered, and we must then have

vr = Constant.

The water then forms what we have already called a "free vortex"

(Art. 244), with the addition of a certain radial velocity u, in con-

sequence of which the rings change their diameter. The paths of

the particles of water are then spirals, the inclination of which

depends on the proportion between u and v.

The case now to be considered is that in which the moment of

momentum of the rotating rings is gradually reduced during their

passage through the wheel by the action of suitable vanes attached

to it. An impulse is thus exerted on the wheel which furnishes

the motive force. The moment of this impulse is given by the

equation,

where wQ is the weight of all the rings passing through the machine
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in a second, and the suffixes 1, 2 refer to entrance and exit respec-

tively as indicated in the figures for the two cases of outward flow

and inward flow. In this article the turbine is supposed to work to

best advantage when the water is discharged without any whirl, that

is when #
2
=

0, and putting aside friction the only loss then is that

due to the velocity of flow u, which may be made small by making
the wheel of sufficient breadth at the circumference where the water

is discharged.

In practice there are of course always frictional resistances, but,

for given velocities, the impulse on the wheel is not altered by them,

so that the moment of impulse is always given by the above equation.

Suppose, now, h the effective head found from the actual head by

deducting (1) the height due to the velocity of delivery, (2) the

friction of the supply pipe and passages in the wheel, (3) the loss

(if any) by shock on entering the wheel
;

then

Work done per second = wQh.

But, if Fj be the speed of periphery of the wheel at the radius i\

where the water enters, V-Jr-^ is the angular velocity of the wheel,

and L. V^i\ is the work done per second. We have then for the

oase where there is no whirl at exit

V\vi

~
ffh>

The effective head h in this formula includes (1) a part equivalent

to the useful work, and (2) a part equivalent to the frictional re-

sistances to the rotation of the wheel, such as friction of bearings

and friction of the water surrounding the wheel (if any) on its

external surface. This last item is often described as " disc friction."

If H be the actual fcead, the efficiency, apart from external friction, is

T?C ' ^ ^1V1

Efficiency
=3=7

U.

The whirl before entrance is communicated by fixed blades SB,

curved, as shown in the figures, so as to guide the water in a proper
direction on entrance to the wheel. It is the use of these guide
blades which characterizes the turbine as distinguished from the

reaction wheel.

The whirl at different points, either in the wheel or outside it,

depends on the angle of inclination of the vanes or guide blades to

the periphery. These blades are so numerous that the water moves

between them nearly as it would do in a pipe of the same form. If

6 be the angle such a pipe (Fig. 202) makes with the periphery at

any point at which the water is flowing through it with velocity U, the

radial and tangential components of that velocity will be U . sin 6 and
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U . cos#. The first of these is always the velocity of flow u, whether

the pipe be fixed or whether it be attached to the revolving wheeL

Fig. 202. In the fixed pipe the second is the velocity

?
M

/*
c

of whirl which we may call v\ and for

motion along a fixed guide blade before

entering the wheel,
r
- co* i j. n

V =U. COt 0.

In the moving pipe, however, it is the

velocity of whirl relatively to the revolving

wheel, and this is V-v, therefore

Case I. Suppose the vanes of the wheel are radial at the circum-

ference where the water enters. In order that the water may have no

velocity of whirl relatively to the wheel on entrance, and that the water

may enter without shock, we must then have v'=T
lt

that is, the value

of for the fixed guide blade at entrance should be given by

Further, the water should be discharged without whirl, that is, v should

be zero at the circumference where the water leaves the wheel, hence

tan #
2
= ^.

'2

The inclination of the fixed blades at entrance, and of the vanes at

entrance and exit is thus determined. At intermediate points it would

be desirable that it should so vary that vr should diminish uniformly
from entrance to exit in order that the action of all parts of the vane

upon the water may be the same. This condition would completely

determine the form of the vane, but, in practice, any "fair" form

would be a sufficient approximation.

Supposing the vanes thus designed v
I
=F

l ,
and the speed of periphery

of the wheel, at the circumference where the water enters, is then

given by the simple formula

a value which applies to the outer periphery of an inward-flow and

the inner periphery of an outward-flow turbine.

The flow through the wheel instead of being radial may be

parallel to the axis, and in this case the formula is still applicable

if V^ be taken as the mean of the speeds of the outer and inner

peripheries.

Case II. In drawing Figs. 201a, 2015, it has been supposed that the

vanes are radial at entrance, but this restriction is not necessary ; they
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may be supposed inclined at a given angle to the periphery. The

speed of periphery of the wheel may then be reduced by a proper

choice of the angle (Ex. 11, p. 549).

Many forms of outward-flow turbines exist, of which the best known

was invented by Fourneyron, and is commonly known by his name.

The inward-flow or vortex turbine was invented by Prof. James

Thomson. Parallel flow, often described as Jonval turbines, from

the name of the original inventor, are also a common type (com-

pare p. 544). For descriptions and illustrations of these machines

the reader is referred to the treatises cited at the end of this

chapter.

The efficiency of turbines when working under the best conditions

is as much as 80 per cent. Their action will be further investigated

in the Appendix.

274. Turbine Pumps. Impulse and reaction machines are always

reversible, and every motor may therefore be converted into a pump
by reversing the direction of motion of the machine and of the

water passing through it. If, for example, in the reaction wheel of

Fig. 200 we imagine the wheel to turn in the opposite direction with

velocity V, while by suitable means the water is caused to move in

the opposite direction with velocity v-V, so as to enter the orifices

with velocity v, it will flow through the arms to the centre and be

delivered up the central pipe. The only difference will be that the

lift of the pump will not be so great as the fall in the motor on

account of frictional resistances. So, any turbine motor is at once

converted into a turbine pump by reversing the direction of its

motion and supplying it with water moving with a proper velocity.

An inward-flow motor is thus converted into an outward-flow pump,
and conversely.

No inward-flow pump appears as yet to have been constructed,

though it has occasionally been proposed. The "
centrifugal

"
pump

so common in practice is, of course, always an outward-flow machine.

The earliest idea for a centrifugal pump was to employ an inverted

Barker's Mill, consisting of a central pipe dipping into water connected

with rotating arms placed at the level at which water is to be

delivered. This machine, which must be carefully distinguished from

the true reversed Barker's Mill mentioned above, operates by suction.

Its efficiency, which may be investigated as in Art. 272, is very
considerable (Ex. 4, p. 548), but there are obvious practical incon-

veniences which prevent its use in ordinary cases. The actual

centrifugal pump is a reversed inward-flow turbine.
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All that was said about motors in the last article applies equally

well to pumps, and the same formula

applies, V being the speed of rotation of the wheel, now usually called

the "fan
" and v that of the water, both reckoned at the outer periphery

where the water issues. The quantity h is now the gross lift found by

adding to the actual lift, the head corresponding to the velocity of

delivery, the friction of the ascending main, the friction of the suction

pipe and passages through the wheel into the main, and the losses by
shock at entrance and exit.

A pump, however, works under different conditions from a motor,

and corresponding differences are necessary in its design. The energy

of a fall can, by proper arrangements, be readily converted, wholly or

partially, into the kinetic form without any serious loss by frictional

resistances, and the water can, therefore, be delivered to the wheel with

a great velocity of whirl to be afterwards reduced by the action of the

wheel to zero. When such a motor is reversed, the water enters

without any velocity of whirl, and leaves with a velocity, the moment

of momentum corresponding to which represents the couple by which

the wheel is driven. To carry out the reversal exactly, this velocity

ought to be reduced to as small an amount as possible in the act of

lifting. Now the reduction of a velocity without loss of head is by no

means easy to accomplish, and (see Appendix) always requires some

special arrangement.
In Thomson's inward-flow turbine, when reversed, the water is

discharged with a velocity of whirl which is equal to the speed of

periphery F", and given by the formula

The corresponding kinetic energy represents at least half the power

required to drive the pump, and if it be wasted, as was the case in

some of the earlier centrifugal pumps constructed with radial vanes,

the efficiency is necessarily less than '5, and in practice will be at most

3. One method of avoiding this loss is to cause the wheel to revolve

in a large "vortex chamber," at least double the diameter of the

wheel from the outer circumference of which the ascending main

proceeds. The 'water before entering the main forms a free vortex,

and its velocity is reduced one-half as it spreads radially from the

wheel
;

three-fourths the kinetic energy is thus converted into the

pressure form. The speed of periphery in pumps of this class is that

due to half the gross lift. Assuming their efficiency as -65, the gross

lift is found by an addition of 50 per cent, to the actual lift.
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Many examples of vortex-chamber pumps exist, but they are com-

paratively rare, probably because the machine is more cumbrous ;
in

practice a different method of reducing the velocity of discharge is

generally employed. Instead of the vanes being radial at the outer

periphery, they are curved back so as to cut it at an angle #, given

by the formula (p. 536)
F-v = u.cot 6,

the velocity of whirl is thus reduced from V to kV, where k is a

fraction, and the speed is then

If the efficiency be supposed '65, and the velocity be reduced in this

way to one-half its original value, this gives about 10^/H for the

speed where H is the actual lift. The greater speed is a cause of

increased friction as compared with the vortex-chamber arrangement,
but on the other hand the friction of the vortex is by no means

inconsiderable, and this is so much subtracted from the useful work

done.

The centrifugal pump in this form was introduced by Mr. Appold
in 1851, and is commonly known by his name.

Another important point in which the pump differs from the motor

is in the guidance of the water outside the wheel. In the motor there

are four or more fixed blades which guide the water to the wheel
;
but

in the pump the outer surface of the chamber surrounding the wheel

forms a single spiral guide blade. The whole of the water discharged
from the wheel rotates in the same direction, and in order that the

discharge may be uniform at all points of the circumference the

sectional area of this chamber should increase uniformly from zero at

one side of the ascending main to a maximum value at the other side.

In some of the earlier designs of centrifugal pumps it was supposed
that some of the water would rotate one way, and some the other, but

in fact all the discharged water rotates with the wheel, and the passage

should be so designed as to permit this, the area corresponding to the

proposed velocity of whirl. There are, however, examples in which

the water is discharged in all directions into an annular casing, and

guided by spiral blades parallel to the axis of rotation. (See a paper

by Mr. Thomson, Min. Proc. Inst. C.E., vol. 32.)

Centrifugal pumps work to best advantage only at the particular

lift for which they are designed. When employed for variable lifts,

-as is constantly the case in practice, their efficiency is much reduced

and does not exceed -5. It is often much less.



540 HYDRAULICS. [PART v.

275. Approximate investigation of the Efficiency of a Centrifugal Pump.

(1) Few centrifugal pumps utilize more than a small fraction of the

energy of motion possessed by the water at exit from the wheel, and

an investigation of their efficiency on the supposition that this energy

is wholly wasted is therefore of considerable interest.

Let h be the actual lift, and let all frictional losses except that

specified be neglected ; then, if u be the velocity of flow, and v the

velocity of whirl at exit, the loss of head is (u
2 + v2)/2g, and the gross

lift is

Substituting this value of h in the formula for V, and replacing u by
its value (V- v)tan 6, we obtain

Adding JF2 to each side, and re-arranging the terms,

a formula from which we find

. h, F2 -
Efficiency

==

This result shows that the efficiency is greatest when

v= V . sin 6

and on substitution we find

Maximum efficiency
= sec2

0(1
- sin 6)

=
^

-
r ^.

The speed of maximum efficiency is found from the equation

i^o
2 =

which gives
F 2 =

(l

The proper velocity of flow is

tt F . tan 0(1+ sin 0),

and the area of flow through the periphery of the wheel should be made
to give this velocity with the intended delivery.

At any other speed V the velocity of flow will be given by

and the efficiency may be found by the preceding formula.

(2) In the preceding investigation .it is supposed that the whole of

the energy of motion on exit from the wheel is wasted, and it follows

as a necessary consequence that the efficiency is much greater when the



CH. xx. ART. 275.] MACHINES. 541

vanes are curved backward than when they are radial. This con-

clusion has been verified experimentally, and till recently has been

very generally accepted, yet there can be no doubt that so great a

waste is not a necessity in a pump with radial vanes but is in great

measure a consequence of improper design of the chamber surrounding
the wheel and its connection with the delivery pipe. Let A be the

sectional area of the chamber at a point the angular distance of which

from the point of junction with the delivery pipe is < : then if there be

no whirlpool chamber .

A- A *
AQ '^

the chamber consisting of a simple spiral passage the section of which

increases uniformly from zero to its maximum value A
Q

. The fan

will now discharge uniformly at all points of its periphery with a

radial velocity u connected with v the velocity of entrance to the

delivery pipe by the equation
A v = Suj

where S is the area of flow. The junction with the delivery pipe

must be knife-edged next the wheel and form a continuation of the

spiral passage gradually expanding till the full size of the pipe is

reached.

The area A will generally be such that v is less than the speed of

periphery V at any ordinary speed of working, and the water issuing

from the radial vanes with velocity of flow u and of whirl V will

intermingle with water which has simply the smaller velocity v with

which the water moves through the spiral passage. The consequent
loss of head may be taken as {u

2 + (F- v)
2
}/2g. The other resistances

for the purposes of this calculation are taken as due, (1) to surface

friction of pipes and passages, (2) to losses at entrance to the wheel,

and (3) to the gradual enlargement after entering the delivery pipe.

By suitably curving the vanes at the inner periphery (2) may be

reduced and made to depend only on the velocity of flow u, which is

proportional to v. We have therefore

where /3 is a co-efficient, whence we find

This is greatest when v = p g,
^=^ , iff

*

and the corresponding

Maximum efficiency
= 1 - .

^
Q ,

2i L + p
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By increasing the size of the suction and delivery pipes and the area

of outflow S, the resistance of these pipes and of the passage through
the wheel can be reduced to a small amount, while the part of the

co-efficient /3 which measures the friction of the spiral passage outside

the wheel can hardly exceed -35, or at most -4. Little is known as

to the loss in a gradual enlargement, but in many cases, as for example
in a trumpet-shaped orifice, it is small : in any case it can only be

a fraction of that due to a sudden enlargement. If then the pre-

cautions mentioned above are taken in designing the chamber, the

value of j3 will not exceed 2 and may probably be capable of being
reduced to unity, giving an efficiency ranging from '66 to '75. From
one-third to one-half the energy of motion on exit from the wheel

is now utilized. Of the waste-work from two-thirds to one-half is due

to the sudden change of velocity on entrance to the spiral passage and

the rest to surface friction.

Curving back the vanes has the effect of reducing the velocity of

whirl only when the area S is small enough to increase the velocity

of flow u to an amount which causes a considerable loss of head on

passing through the wheel. The speed of periphery -is also increased,

and for these reasons it is probable that, especially at high lifts, a

properly designed pump with radial vanes is more efficient. If a

whirlpool chamber be added the spiral passage now forms part of

the chamber, and care must still be taken that at the junction with

the delivery pipe no obstruction is offered to the rotation of the

water. The influence of the form of the vanes is further discussed

in the Appendix.
When a centrifugal pump is started the fan is filled with water

which, in the first instance, rotates as a solid mass with the fan. If

the radius of the inner periphery be m times that of the outer where

rn is a fraction, it will not commence to deliver water till the speed
reaches the value

But when once started, the speed may be reduced below this value

without stopping the delivery, provided that some of the energy of

motion on exit from the wheel is utilized. This has been observed

to occur in practice, and it will serve as a test of efficiency.

276. Limitation of Diameter of Wheel. For a given fall in a motor

or lift in a pump the diameter of wheel in a turbine is in many
cases limited, because some of the frictional resistances increase rapidly

*

with the diameter.

Let u as usual be the velocity of flow, d the diameter, b the inside
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effective breadth of the wheel at exit after allowing for the thickness

of the vanes
;
then the delivery in cubic feet per second is

Q = Su = ubrrd.

Now, if the breadth b be too small as compared Vith the diameter,

the surface friction of the passages through the wheel will be too

great, as in the case of a pipe the diameter of which is too small

for the intended delivery. Thus b is proportional to d : also, we

have seen that u in most of these machines is proportional to V
lt

that is to *Jh, and it follows therefore, by substitution for b and u

that

6=CaVE,
where C is a co-efficient.

If the wheel be wholly immersed in the water the surface friction

(Ex. 8, p. 548) is relatively increased by increasing the diameter.

On investigating how great the diameter may be without too great

a loss we arrive at the same formula.

Where it is of importance to have as large a diameter as possible

to reduce the number of revolutions per minute, the diameter of

wheel in a pump or a turbine is therefore found by the 'formula

If G be the delivery in gallons per minute, h the actual fall in feet,

d the external diameter also in feet, the value of c for an outward-

flow turbine is about 200.

This formula is frequently used in the case of a centrifugal pump
with a value of the constant not differing greatly from that just

given : but it must be understood that it is only suitable for a

pump in which the velocity of whirl at exit from the wheel is

reduced by curving back the vanes and increasing the velocity of

flow as already described. When the vanes are radial the velocity

of flow may be reduced at pleasure. If now D be the diameter of

the suction pipe determined for a given delivery Q in the usual way

(pp. 488, 495), UQ the velocity in this pipe,

Q = u . Trbd = U
Q

. -D2
.

If u be proportional to UQ) and, as before, b proportional to d,

this shows that d should be proportional to D. Assuming U = UQ

and b = d the ratio d/D is 2 : but a somewhat larger value is

probably desirable, at least for high lifts. It should be observed

that in this case the diameter of fan does not depend on the lift,

but only on the delivery.
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Centrifugal pumps cannot generally be employed for very high

lifts, partly because it becomes increasingly difficult to utilize the

energy of motion on exit from the wheel, and partly on account of

disc friction. The fan rotates much faster than the wheel of a

turbine, and the disc friction is consequently much greater.

277. Impulse Wheels. The formula

V*r gk>
which gives the speed of a turbine wheel in terms of the effective

head, when the vanes are radial at entry, also gives the velocity of

whirl at entrance, and therefore shows that, of the whole head

employed in driving the wheel and producing the velocity of flow,

one-half operates by impulse. When the vanes are not radial (p. 537),

a [certain fraction, depending on the inclination and sometimes

less than one-half, operates by impulse. The remainder operates

by pressure, and turbines of this class are consequently not simple

impulse, but impulse-pressure machines. It is necessary therefore

that the wheel should revolve in a casing, and that the passages
should be always completely filled with water. The diameter of

wheel is then limited as explained in the last article, and for a

small supply of water and a high fall the number of revolutions

per minute becomes abnormally great. This consideration and the

necessity o adaptation to a variable supply of water render it often

advisable to resort to a machine in which the passages are actually

or virtually open to the atmosphere. The whole of the energy of

the fall is then converted into the kinetic form before reaching the

wheel, and consequently operates wholly by impulse.

A wheel of this kind approaches closely in principle to the Poncelet

water wheel mentioned in Art. 270, but is often still described as a

"turbine," because the water is guided by fixed blades before reaching
the wheel. A common example is a Girard turbine with axial flow.

The flow of the water is here parallel to the axis of the wheel, spiral

guide blades being ranged round the circumference of a cylinder like

the threads of a screw in order to give the necessary whirl to the

water before entrance. The wheel is provided with a similar set of

spiral vanes curved in the opposite direction, which reduce it to rest

as it passes through. In the French roue h, poire the wheel is conical,

the water enters at the circumference, and, guided by spiral vanes,

descends to the apex where it is discharged.

Impulse wheels, which are sometimes described as
" Girard

"
turbines

even when the flow is radial, appear not to be so efficient as a pressure-

turbine working at its best speed. The Pelton wheel (p. 529) may
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be taken as an exception. On the other hand their efficiency is very
little diminished by a considerable falling off in the supply of water,

^-nd this advantage is so great that they are much employed in cases

where the supply of water is subject to variation.

The propulsion of ships is effected by machines, which are virtually

impulse wheels reversed. The subject is outside the limits of this work,

but some information respecting it will be found in the Appendix.

278. Stress due to Rotation. Machines of the class considered in

this section often work under a very considerable head, and the speed
of periphery determined by the formula

becomes very great. Thus in the example of the Pelton wheel given
on p. 529, the head is 2100 feet, and the speed of periphery 180 f.s.

If A be the stress on the rim of the wheel due to centrifugal action,

reckoned in feet of material, as on p. 81 and elsewhere in this treatise,

the formula for the centrifugal stress produced given on p. 288, may be

put in the form
V* = g\

and thus A is simply proportional to the head. In the example just

mentioned, this gives a value of A of about 1000 feet. In fans and other

machines working with elastic fluids, the head is often much greater.

The greatest permissible value of A is given, subject to the qualifications

there stated, in the Table on p. 455.

SECTION I II. MACHINES N GENERAL.

279. Equation of Steady Flow in a Rotating Casing.-^-When water

moves in a pipe or passage of any kind rigidly attached to a wheel or

drum rotating about a fixed axis : a general equation can be found for

steady flow, as in the case of a fixed pipe considered in the last chapter.

Referring to Fig. 202, p. 536, let the pipe there represented be fixed

in any position to a rotating wheel, and consider a point in the pipe,

the velocity of which is

where n is the number of revolutions per second, and r is the distance

from the axis. Let the velocity of flow through the pipe at this point

be 7, and resolve this velocity into U.cosO along the periphery of

the circle described by the point, and U . sin 6 perpendicular to this

periphery. In the question considered on the page cited this second

component was radial, the pipe lying in a plane perpendicular to the

C.M. 2 M
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axis of rotation. We now take the general case in which the pipe is

inclined to this plane, and U . sin 9 is consequently the resultant of a

radial velocity and an axial velocity, each independent of the velocity

of rotation. As before, the component U . cos is the velocity of

whirl relatively to the rotating pipe and

v=F-U.cose
will be the absolute velocity of whirl.

Let Q be the flow per second, and consider two points in the pipe

specified by the suffixes 2 and 1. Then if L be the couple applied to

the part of the pipe between these points

=y (V2-Vl)>

and since V\r is the same at all points, being the angular velocity 27m,

Energy exerted per second = (#2^2
~ y

: ^i)-

This is the amount of energy exerted per second on the water as it

passes from the point 2 to the point 1, arid is employed in increasing

the head.

Now the absolute velocity ( K) is given by the equation

Hence if as usual p/w be the pressure-head and z the elevation,

change of head will be

Multiplying this by wQ and equating it to the energy exerted the

terms containing vV disappear, and omitting the suffixes

7~To T/'y

--+z+ ^
---- = Constant,w 2g

which is the general equation of steady flow. The equation may also

be written

p U 2 n F2

+ z + -7T-
= Constant + ,w 2g 2g'

showing that the total head in the pipe is increased in consequence

of the rotation by the quantity F2
/2<7, which is the so-called "head

due to centrifugal force."

If H^ be the head outside the casing before the water enters, then

from the value of the absolute velocity given above it appears that

PI. !S~ -
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where the suffix 1 refers to the point of entrance. Hence by sub-

stitution

-
l
-.

w 2g g

Similarly if H
2
be the head after leaving the casing,

p U*-F>_ ^V,
w+ 2g 7~ ;f

'

where the suffix 2 refers to the point of exit. When there is no loss

of head by hydraulic resistances within the casing

HI -H.^= V

^,
&

which, as before, gives the head employed in driving the wheel in a

motor; or, when negative, the increased head created by the external

forces driving the wheel in a pump.
The losses of head by hydraulic resistance are determined directly

from the velocity U just as if the casing were at rest.

In questions relating to turbines and centrifugal pumps the general

equation here given is often very useful.

279A. Similar Hydraulic Machines. If two machines, whether motors

or pumps, are imagined differing only in scale, the heads of water or

lifts as the case may be being in the same proportion, the velocities for

a given efficiency in the absence of friction by the general principle of

similar motions (p. 482) will be as the square roots of their linear

dimensions. The same will be true approximately when hydraulic
resistances are taken into account. Taking for example the formula

*'-*4,*d y'

which gives the loss of head in a pipe, we see at once that the losses

of head by pipe friction in the two cases compared will be the same

fraction of the actual head or lift, and therefore the efficiencies will be the

same
;
and the same argument applies to all the hydraulic resistances.

The efficiency on the small scale, however, will be relatively diminished

because the value of 4/ is greater in the small scale motion just as

the skin friction of a model is relatively greater than that of a vessel.

The delivery in similar machines at corresponding speeds varies as

h$ and the power as h?, where h is the linear dimension or head.

In comparing ventilating or blowing fans with centrifugal pumps
this principle must be borne in mind. Unless the fan be of great size

ts action is only comparable with that of a centrifugal pump of great

lift and small delivery.
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EXAMPLES.

1. In a reaction wheel the speed of maximum efficiency is that due to the head.

In what ratio must the resistance be diminished to work at four-thirds this speed, and

what will then be the efficiency ? Obtain similar results when the speed is diminished

to three-fourths its original amount.

Ans. Efficiency ='63 or '64.

Ratio ='84 or 114.

2. Water is delivered to an outward-flow turbine, at a radius of 2 feet, with a

velocity of whirl of 20 feet per second, and issues from it in the reverse direction at

a radius of 4 feet, with a velocity of 10 feet per second. The speed of periphery at

entrance is 20 feet per second, find the head equivalent to the work done in driving

the wheel. Ans. 24 '22 feet.

3. In a Fourneyron turbine the internal diameter of the wheel is 9^ inches, and

the outside diameter 14 inches. The effective head (p. 535) is estimated at 270 feet;

find the number of revolutions per minute. Ans. 2,200.

NOTE. These data are about the same as those of a turbine erected at St. Blasien

in the Black Forest.

4. An inverted Barker's Mill (p. 537) is used as a centrifugal pump. If the co-

efficient of hydraulic resistances referred to the orifices be '125, show that the speed

of maximum efficiency is that due to twice the lift, and find the maximum efficiency.

Ans. Maximum efficiency '75.

5. A centrifugal pump delivers 1,500 gallons per minute. Fan 16 inches diameter.

Lift 25 feet. Inclination of vanes at outer periphery to the tangent 30
U

. Find the

breadth at the outer periphery that the velocity of whirl may be reduced one-half,

and also the revolutions per minute, assuming the gross lift 1 times the actual lift.

Ans. Breadth= inch. Revolutions =700.

6. In the last question find the proper sectional area of the chamber surrounding

the fan (p. 541) for the proposed delivery and lift. Also examine the working of the

pump at a lift of 15 feet. Ans. 24 sq. inches.

7. A jet of water moving with a given velocity, strikes a plane perpendicularly.

Find how much of the energy of the jet is utilized in diiving the plane with given

speed. Determine the speed of the plane for maximum efficiency, and the value of

the maximum efficiency. Ans. peed of maximum efficiency= one-third that of jet.

Maximum efficiency = ^
8
T .

8. Assuming the ordinary laws of friction between a fluid and a surface, and

.supposing that any motion of the fluid due to friction does not affect the question :

find the moment of friction (L}> and the loss of work per second (7), when a disc of

radius a rotates with speed of periphery V.

Ans. L=f. ~ .a3V2
; U=f.

2
. a2 . V 3

.

o o

9. If the rotating disc in question 8 be surrounded by a free vortex of double its

diameter, show that the loss by friction of the vortex on the flat sides of the vortex

chamber is 2| times the loss by friction of the disc.

10. Show that the loss of head by surface friction in the spiral passage (p. 541) of

a centrifugal pump is the same as in a passage of uniform transverse section of the

same area of length about 2^ times the diameter of the fan.

11. The vanes of a turbine wheel are inclined at an angle i to the radius at entrance,

the angle being measured in the direction of motion of the wheel. Find the speed of
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periphery for no shock at entrance and no whirl at exit. Also find the necessary con-

nection between the angles of the vanes at entrance and exit and the angle of the guide

blades. Ans. With the notation of Case I., p. 536, and further supposing ?
>

2/r1 =?>?,

cot 2
=m (cot 6 1

- tan i).
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CHAPTER XXL

ELASTIC FLUIDS.

280. Preliminary Remarks. An elastic fluid under pressure is a

source of energy which, like a head of water in hydraulics (p. 470),

may be employed in doing work of various kinds by a machine, or

simply in transferring the fluid from one place to another. In

hydraulics we commence with the case of simple transfer, but the

density of gases is so low that, unless the differences of pressure

considered are very small, the inertia and frictional resistances of the

fluid employed in a pneumatic machine have little influence : it is

the elastic force which is the principal thing to be considered. In

studying pneumatics, therefore, we commence with machines working
under considerable -differences of pressure and then pass on to con-

sider the flow of gases through pipes and orifices together with those

machines in which the inertia and frictional resistances of the fluid

cannot be neglected.

SECTION I. MACHINES IN GENERAL.

281. Expansive Energy. The special characteristic of an elastic

fluid is its power of indefinite expansion as the external pressure is

diminished. While expanding, it exerts energy of which the fluid

itself is, in the first instance, the source, whereas the energy exerted

by an incompressible fluid is transmitted from some other source.

Expansive energy is utilized by enclosing the fluid in a chamber which

alternately expands and contracts
;
the common case being that of a

cylinder and piston.

Fig. 203 represents in skeleton a cylinder and piston enclosing a

mass of expanding fluid. Taking a base line aa to represent the

stroke, set up ordinates to represent the total pressure S on the piston

in each position ;
a curve 1 Q2 drawn through the extremities of these

ordinates is the Expansion Curve. Reasoning as in Art. 90, p. 182,
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the area of this curve represents the energy exerted as the piston

moves from the position 1, where the expansion commences, to the

position 2, where it terminates. One common case was considered in

the article cited, namely, that in which the expansion curve is a

common hyperbola. This is included in the more general supposition,

where y is the distance of the piston from the end a of its stroke, and

n is an index which, for the particular case of the hyperbola, is unity.

Most cases common in practice may be dealt with by ascribing a

proper value to n; for air it ranges between 1 and 1*4, and for steam

it is roughly approximately unity. The suffixes indicate the points

at which the expansion commences and terminates.

If, now, E be the energy exerted during expansion,

This formula may be written in the simpler form

l-n

71-1

in applying which, the terminal pressure $
2

is supposed to have been

previously found from the equation

It is, for brevity, convenient to write

y2
=

ry\> S
2
= fi.Slt

where r is a number known as the " ratio of expansion," and p. is a
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fraction which may be described as the "pressure fraction" connected

with r by the formula *

The formula for E then takes the simpler form

* n-i n-i
The product pr employed for simplicity in this and other formulae-

which follow is given by the equation

If 7i = 1 the formula fails and is replaced by

The value of E is here, in the first instance, expressed in terms of

the total pressure on the piston, but, reasoning as in Art. 264, p. 513,

we may, if P be the pressure, replace S by PA, and Ay by V, so that

S^ is replaced by P
1
Vr In "rotatory" engines and pumps the

expanding chamber is not a simple cylinder and piston, but is formed

from a turning pair. Or, more generally, the chamber pair may be

formed from any two links of a kinematic chain which it may be

convenient to select for the purpose. In its last form the formula

is applicable in every case. If the expansion curve be not given in

the form supposed, the value of E is determined graphically by

measuring the area of the curve, in doing which, when the chamber is

not a simple cylinder, the base of the diagram must represent the

volume swept out by the chamber pair, and the ordinates the pressures,

per unit of area.

282. Transmitted Energy, -The energy exerted by an elastic fluid

consists not merely of that derived from the expansive power of the

fluid pressing against the piston, but also of that which is transmitted

in the same way as would be the case if it were incompressible. The

fluid is supplied from a reservoir, which may either be an accumulator

in which it is stored by the action of pumps, or a vessel in which,

by the action of heat, it is generated or its elasticity increased. In

any case, so long as the cylinder remains in communication with the

reservoir the fluid enters at nearly constant pressure, and energy is

exerted on the piston just as in the water-pressure engine. During
this period of admission the energy exerted is

* The symbol x was used for the pressure-fraction in former editions
;
the change to u.

has been made. to avoid confusion, x being used for the "
dryness-fraction

"
of steam

later on in this chapter.
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the notation being as in the last article. It is usually convenient to-

express volumes in cubic feet and pressures (p) in Ibs. per square inch.

We must then replace P by 144p.

The whole energy exerted on the piston is now
. n - ILTU=L+E=L.- ,n-l

which for the case of the hyperbola becomes

U=L(l+loge r).

The mean pressure on the piston is conveniently denoted by pm ,
and

is represented in the figure by the ordinate of the line mm so drawn
that the area of the rectangle ma is equal to the area of the diagram.
Its value is given by the formula?

p-. n - ur 1 4- log, r

*-=rT-i ; *=* -- ^
A reservoir filled with an elastic fluid at high pressure is an accumu-

lator, the absolute amount of energy stored in which is the expansive

energy or the total energy according as the pressure is not, or is,

maintained by the addition of fresh fluid in place of that discharged,
the expansion being supposed indefinite in either case. With the

law of expansion already supposed, when n is greater than unity,.

fir vanishes when the expansion curve is prolonged indefinitely. The
total absolute energy is then

where V^ is the whole volume of fluid considered. When n is not

greater than unity, U^ is infinite.

283. Available Energy. Of the whole amount of energy thus cal-

culated only a part is available for useful purposes, because in practice

there is always a " back
"
pressure P on the working piston, or, more

generally, on the sides of the chamber in which the fluid is enclosed.

In overcoming this, the work PtfV^ is done, and nothing is gained by

prolonging the expansion beyond the point at which the terminal

pressure P
2
has fallen to P . The corresponding ratio r is given by

the formula

The available energy is found by writing r = r
, /^

=
/^ in the value

of U, and subtracting P ?' V^ P
l J^/VQ. This result is

.

being the difference of the values of U when the expansion commences.
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-at 1 and at 0. It is always finite, and is graphically represented by
the area LI Ob, shaded in the annexed figure.

In the transmission and storage of energy by elastic fluids this

quantity plays the same part as the "pressure-head" in hydraulics,

o which indeed it reduces if n be supposed very great, r unity, and

/ Fig. 204.

V-^ the volume of a Ib. of water. It is the energy of a* given quantity

of fluid due to a given difference of pressure, for which, as before, the

term "head" may be used when the quantity considered is 1 Ib.

Two cases may now be mentioned which are of special importance.

(1) Let the reservoir contain air at pressure P reckoned in atmospheres

of 14*7 Ibs. per sq. inch, or 2116 Ibs. per sq. ft., and let n= 1'4, then

U,
- Z7 = 3-5 x 2116(P1

F
1
-P

o
r

o ),

from which we find, writing P1
= P, P = 1

,
and substituting for F"

Available energy - 7400 (P - P*) V,

where V is the volume of the weight of air considered.

(2) Let n= 1 instead of 1'4, then

which gives

Available Energy = 2 1 1 6V . P loge P.

In either case by putting V= 1 we get the available energy per cubic

foot of compressed air, which, it should be observed, depends solely

on the pressure.

The available energy is here calculated on the supposition that the

reservoir is kept constantly full. When the reservoir is not kept full

the only available energy is the expansive energy, less the work done

in overcoming P through the volume V
Q
- VY This is graphically

represented by the curvilinear triangle N()l in Figs. 203 or 204, and

is most conveniently given by the formula

Available Energy = Ul
- U

Q
- (Pl

- P )
Vv

284. Cycle of Mechanical Operations in a Pneumatic Motor Mechanical

Efficiency. Motors operating by the pressure of an elastic fluid may
IOQ described generally as Pneumatic Motors. They are either supplied

from an accumulator, as in hydraulic motors of the same class, or they
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may be heat-engines serving as the means by which heat energy is

utilized. In either case the mechanism of the motor is the same, and

consists of a chamber which expands to admit the fluid and contracts

to discharge it, with a proper kinematic chain for utilizing the motion

of the chamber pair.

In water-pressure engines the contraction to expel the water from

the chamber is not considered, because all pressures are reckoned

above the atmosphere, and the pressure in the accumulator is so great

that small differences of pressure may be disregarded. With elastic

fluids it is commonly different : the " exhaust
"

of the chamber must

be taken into account.

Returning to Fig. 203, suppose that the piston has reached the end

of its stroke, the cylinder is then filled with fluid of a certain pressure

p2
which may be supposed known. Let now a valve be opened allow-

ing the cylinder to communicate with the atmosphere, or with a

reservoir containing fluid at a lower pressure pQ
. The fluid in the

cylinder then rushes out into the reservoir, and the pressure in the

cylinder speedily subsides to ^> ;
the fluid expands in this process,

but its expansive energy is wasted in producing useless motions in

the air which afterwards subside by friction. After subsidence let the

piston be moved back by an external force applied to it which supplies

the energy necessary to overcome the " back "
pressure pQ

. The fluid

is discharged from the chamber, and so long as the communication

with the exhaust reservoir is open the pressure remains constantly p .

We represent this on the diagram by drawing a horizontal line 66, the

ordinate of which is p . The work done in overcoming back pressure

is 144/> F2
and is represented on the diagram by the rectangle ba

;

this is so much subtracted from the energy exerted by the motor.

Thus the volume of the chamber goes through a cycle of changes

alternately expanding and contracting. During expansion energy is

exerted, the corresponding mean pressure pm is the "mean forward

pressure." During contraction work is done, and the corresponding
mean pressure is the "mean back pressure." The difference between

the two is the "mean effective pressure" which measures the useful

work done, as shown by the equation

Useful work = (pm -j9 )144F2 ,

and is graphically represented by the area of the closed figure Ll2bb.

In most cases the moveable element of the chamber pair divides

the chamber into two parts, one of which expands while the other

contracts, and conversely : the motor is then described as " double-

acting." The force acting on the moving piece is then the difference

between the forward pressure in one chamber and the back pressure
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in the other, and when the stress on the parts of the machine is to-

be considered this is the effective pressure upon which the stress

depends (p. 230). For all other purposes, however, the back pressure

is to be taken as just explained.

If the pressure pv pQ
in the supply and exhaust reservoirs be given,

and also the form of the expansion curve, the only waste of energy

in this process arises from incomplete expansion. Imagine the ex-

pansion curve prolonged to the point o where it meets the back

pressure line, arid suppose the stroke lengthened so as to reach this

point, then additional work would be done by the fluid which would

be represented graphically by the area of the curvilinear triangle '2ob.

This area represents energy lost by unbalanced expansion, and to-

avoid it the expansion must be "complete," that is, the fluid must

be allowed to expand till its pressure has fallen to ^> ,
the pressure,

in the exhaust reservoir, a condition seldom fulfilled in practice,

because the loss by friction and other causes becomes disproportionately

great. Leaving this out of account, a pneumatic motor is capable

of exerting only a certain maximum amount of energy, quite irrespec-

tively of the nature of its mechanism, but dependent only on the

pressures between which it works and the nature and treatment of

the fluid. A motor which reaches this maximum power may be

described as mechanically perfect, and the ratio of the actual useful

work done to the theoretical maximum may be described as the

MECHANICAL EFFICIENCY of the motor.

In practice the back pressure is greater than pQ
the pressure in

the exhaust reservoir itself, the excess being due to the resistance

of the passages connecting it with the cylinder. It depends on the

speed of piston, the density and nature of the fluid together with

the dimensions and type of the passages. No satisfactory formula

has been found for it, but its value must be supposed known in

each individual case. In Fig. 205 the ordinate of the horizontal line 33

Fig. 20a

represents the actual back pressure pB
while the other lines are

the same as in Fig. 203 : then the shaded area 03320 represents
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W^ the waste work at exhaust due to incomplete expansion and

excess back pressure for a given terminal pressure py It is given

by the formula

(P*
- P

9 ) V,

- 1 n-l
which becomes if n= 1,

The waste at exhaust may also frequently be conveniently expressed

by an equivalent pressure j? upon the piston. Dividing by V2
we find

For a given value of the expansion index n this is independent of

the initial pressure and of the nature of the fluid. Hence for given
values of the pressure-fractions pjp^ pQ/p3 ,

the fractional loss at

exhaust is smaller the higher the initial pressure, a very important

principle which will frequently be referred to further on.

The waste at exhaust here considered is, at least in condensing
steam engines, the principal mechanical loss in pneumatic motors, apart

from leakage, but there are also some minor losses by a portion of the

fluid being retained in the "clearance" space of the chamber after

the exhaust is completed, and by the "wire drawing" due to the

resistance of the passages connecting it with the supply reservoir.

These, however, are details which cannot be considered here. The

theoretical maximum is clearly the same as the store of energy in the

fluid used (already found in previous articles), which for brevity will

be denoted by A. The consumption of fluid (neglecting clearance and

leakage) is oije cylinder full, at the terminal pressure, in each stroke.

285. Pneumatic Pumps. A pneumatic like an hydraulic motor may
be reversed by applying power to drive it in the reverse direction,

and the machine thus obtained is a Pump which takes fluid at a

low pressure and compresses it into a reservoir at high pressure.

The cycle in the pump is the same as the cycle in a motor, but the

operations take place in reverse order. As the chamber expands fluid

is drawn in from the low-pressure reservoir and energy is exerted on

the piston by the original
" back

"
pressure : as the chamber contracts

the fluid is compressed till it reaches the pressure plt
when a valve
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opens and admits it to the high-pressure reservoir. There is, however,

this important difference, namely, that the process of unbalanced

expansion in the motor cannot be reversed
;
and therefore, if the

pump is to operate on the same weight of fluid, the volume of the

working cylinder must be enlarged so that the expansion curve may
start from o. If this be supposed, the compression curve will, for

the same fluid treated in the same way, be identical with the expan-

sion curve of the motor. If there were no unbalanced expansion

the motor would be exactly reversible, and the condition of a

motor being mechanically perfect may therefore be described by saying

that it must be mechanically reversible. The difference of working
of the valves in pumps and motors has already been referred to in

Art. 269.

The work done in pumping air into a reservoir is the same apart

from resistances as the available energy U U
Q
found in a previous

article (p. 554), but, for reasons to be explained hereafter, it is

generally advisable to express it in terms of the volume of air used

at atmospheric pressure, the formula for compression to P atmospheres
absolute then becomes

Work done = 7400 F (P
f
-l) (

=
1'4),

where V
Q

is the volume of atmospheric air consumed, and, as before,

the work done per cubic foot depends solely on the pressure. Air

pumps are still more frequently employed for the purpose of exhausting

a chamber, in which case the atmosphere is the high-pressure reservoir

into which the low-pressure air in the chamber is forced. The formula

for U- U is, with change of sign, directly applicable to this case,

V being the volume of low-pressure air and P the pressure expressed

as a fraction of an atmosphere. In either case if the pressure in the

chamber or reservoir is not maintained constant the formula must

be modified as before explained. Examples are given at the end of

the chapter.

In all pneumatic motors a pump is required to replace the fluid in

the supply reservoir. Unless the motor be a heat engine this pump
must be driven by external agency, and the whole process is one of

storage, transmission, and distribution of energy, a subject briefly

considered further on.

286. Indicate Diagrams. The pressure existing in the chamber of

a pneumatic machine may be graphically exhibited by means of an

instrument called an Indicator. In steam engines especially its use is

indispensable to enable the engineer to study the action of the steam.





PLATE XI.

Fig. I

To face page 559.
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Figs. 1 and 2, Plate XL, show an indicator in elevation and section.

S is a drum revolving on a vertical axis, A is a cylinder communicating
with the steam cylinder, the pressure in which is to be measured. P is.

a pencil connected by linkwork with a small piston H so as to move

with it up or down in a vertical line. The piston is pressed down

by a spring which measures the pressure, while the drum, by means-

of a cord passing over pulleys and connected with the steam piston,,

revolves through arcs exactly proportional to the spaces traversed by
it. A card is folded round the drum, and as the engine moves a

curve is traced by the pencil upon it which shows the pressure at

each point of the stroke. In practice many precautions are necessary

to secure accuracy in the diagram ;
the more so the higher the speed,

because the friction and inertia of the parts of the indicator, together
with unequal stretching of the cord and inaccuracy in the reducing
motion connecting the drum with the steam piston, may give rise

to serious errors. To diminish the effect of inertia the stroke of

the indicator piston is made short and multiplied by linkwork.

In the example shown (Crosby's patent) the spring applied to the

drum to keep the cord tight has a tension which increases as the drum
rotates from rest. This increase compensates for the inertia of the

drum, and is said to give a more nearly uniform tension of the cord.

Fig. 206 shows an indicator diagram taken in this way from the

high pressure cylinder of a compound engine.

BB is the atmospheric line drawn on the card by the indicator

Pig. 206.

j_B

pencil when the cylinder communicates with the atmosphere. AA is.

the vacuum line laid down on the diagram at a distance below BB,
which represents the pressure of the atmosphere, as found by the

barometer, reckoned on the scale of pressures. Then on the same

scale any pressure shown by the indicator is the absolute pressure

when measured from A A.

The figure drawn is a closed curve bearing a general resemblance to

the diagram (Fig. 203), which was drawn to represent the cycle of

operations of a motor. The principal difference is that the corners

of the theoretical diagram are rounded off in the actual diagram, an
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-effect principally due to the valves closing gradually instead of

instantaneously. Also at the end of the return stroke a certain

amount of steam is retained in the cylinder and compressed behind

the piston, causing the very considerable rounding off observable at

the left-hand corner.

In every case the mean effective pressure may be determined

graphically by measuring the area of the diagram and dividing by
the length of the stroke. This, with the number of revolutions per 1'

determines the horse-power for an engine of given dimensions, and

the consumption of steam in cubic feet per 1' for each horse-power

thus "indicated" can be found. The weight of steam used, however,

cannot be found without measurement of the feed water used,

because the steam always contains an unknown amount of water

mixed with it.

287. Brake Efficiency. The indicated horse-power (I.H.P.) deter-

mined as in the preceding article, is subject to a deduction consequent

on the friction of the mechanism of the engine, and the power actually

-delivered is the Brake Horse-Power (B.H.P.), which can, at least

theoretically, be measured by a suitable dynamometer, and which in

-small motors actually is frequently measured by a "friction brake"

{p. 279). The ratio of the two is the frictional or brake efficiency.

The term "mechanical efficiency" is commonly employed with re-

ference to the external (frictional) mechanical waste alone, but the

internal mechanical waste considered in Art. 284 may also properly
be included in the meaning of the word.

The external waste by friction of mechanism, as will be seen on

reference to page 259, may be represented by a pressure / on the

piston given by the formula

/=*+/<
where / is the load on the engine reduced to unit of area of the piston

-and e, / are constants. To the remarks made on the page cited, it

may be added that recent researches * show that these constants,

though nearly independent of the load, increase with the initial

pressure of the steam, that is, they are greater for high ratios of

expansion than for low. They also increase with the speed, but no

definite law of increase with initial pressure and speed has been

discovered. In many types of non-condensing engine the friction is

independent of the load, that is, the co-efficient e is the zero and the

friction pressure / may reach 3 or 4 Ibs. per sq. inch.

* Manual of the Steam Engine, by R. H. Thurston. Part I., second edition, p. 560.

"Wiley & Sons, New York, 1892.
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In any case the pressure / is equivalent to an increase in the back

pressure, and the lowest value which the terminal pressure pt, can have

consistently with economy is

Hence also the external and the internal mechanical wastes are

subject to nearly the same laws. The most important part of the

external waste is approximately constant, and may be included, if we

please, with the corresponding part (W^ of the internal waste calculated

in Art. 284.

SECTION II. THERMODYNAMIC MACHINES.

288. Cycle of Thermal Operations in a Heat Engine. So far all that

lias been said applies equally well to all pneumatic motors, though
its most important application may be to the case where the fluid

serves as the means whereby mechanical energy is obtained through
the agency of Heat. We now go on to consider very briefly the

principles which apply especially to heat engines.

In heat engines the pump necessary to replace the fluid in the

supply reservoir, or discharge it from the exhaust reservoir, is worked

by energy derived from the working cylinder, so that the engine is

self-acting. Now, if the condition of the fluid were the same in the

pump as it is in the working cylinder, as much energy would be

required to drive the pump as is supplied by the motor, or in

practice, more ; a necessary condition therefore that any useful work

should be done is that, by the agency of heat, the condition of the

fluid should be changed so that its mean density, while being forced

into the supply reservoir, shall be greater than when doing its work

in the working cylinder. Hence, the fluid must be heated in the

supply reservoir, and cooled in the exhaust reservoir, and therefore in

every heat engine, in addition to the cycle of mechanical operations,

there is a cycle of thermal operations consisting of an alternate

addition and subtraction of heat
;
the heat in question being supplied

by a body of high temperature and abstracted by a body of low

temperature.
In non-condensing steam engines the pump is the feed pump which

supplies the boiler with the fluid in the state of water; in the

boiler heat is supplied which converts it into steam of density many
hundred times less than that of water. The pump is in this case

very minute, and requires a trifling amount of energy to work it.

In condensing engines we have, in addition, the air pump.
In air engines the compressing pump is generally a conspicuous

part of the apparatus and requires a large fraction of the power of

C.M. 2 N
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the motor to drive it; because the changes of density due to the

alternate heating and cooling are comparatively small.

289. Mechanical Equivalent of Heat. Heat and mechanical energy

are mutually convertible ;
a unit of heat corresponding to a certain

definite amount of mechanical energy which is called the "MECHANICAL

EQUIVALENT
"
of heat.

The statement here made is the First Law of the Science of

Thermodynamics, and it shows that quantities of heat may be

expressed in units of work, and, conversely, quantities of work in

units of heat. In dealing with questions relating to heat and work, a

common unit of measurement must be selected. In most cases the

thermal unit is adopted, and quantities of work reduced to such

units by division by the mechanical equivalent of heat. Until

recently the numerical value of the equivalent was taken as 772 in

British units, but it is now recognized that this is somewhat too-

small. In this work the value 780 will be employed, which is just

one per cent, greater, and quantities of work in foot pounds are

therefore reduced to thermal units by division by 780. Thus the

horse-power of 33,000 ft. Ibs. per minute becomes 42-3 thermal units

per minute or 2538 per hour.

In heat engines the cycle of thermal operations consists of an

alternate addition of heat (Q) and subtraction of heat (B), so that, if

W be the useful work,

W=Q-R,
that is, the work is done at the expense of an equivalent amount of

heat which disappears during the action of the engine. In steam

engines this has been tested experimentally by measuring the heat

supplied in the boiler and the heat discharged from the condenser.

The difference should be, and in fact is found to be, the thermal

equivalent of the work done by the engine. The ratio WjQ is

usually called the "
absolute," or sometimes, for reasons we shall see

presently, the "apparent" efficiency of the engine, but would be

much better described as the Co-efficient of Performance. It is always

a small fraction : in the best steam engines, for example, it seldom

exceeds '18 losses connected with the furnace and boiler not being

included. Supposing as on page 577, A the theoretical maximum for

a pneumatic motor working between the given limits of pressure, the

ratio WjA, which we will call e
t
is the " mechanical

"
efficiency.

290. Mechanical Value of Heat. In stating the first law of

thermodynamics nothing is said about the temperature at which the
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heat is used. In other words, the mechanical equivalent of heat i&

just the same whether the temperature be low or high. Yet common

experience tells us that the value of heat for mechanical purposes

depends very much on this circumstance. The heat discharged from

the condenser of a condensing steam engine, or with the exhaust

steam of a non-condensing engine, is of little value for the purposes
of the engine. So obvious is this fact that the first attempts at

connecting the work done by a heat engine with the heat supplied

to it may be partly described as attempts to show that temperature,

not quantity, was equivalent to energy, heat being supposed as

indestructible as matter.

It is now known, however, that difference of temperature is not in

itself energy, but merely an indispensable condition that heat may
be capable of being converted into work. The power of a heat

engine depends on difference of temperature, being greater, the

greater that difference is
;

but in all cases only a fraction of the

heat supplied is converted into mechanical energy.

In the converse operation of converting mechanical energy into-

heat it is possible, by employing it in overcoming frictional resist-

ances, to obtain an amount of heat equal to the energy employed, but

such processes are always irreversible. The only way of converting

heat into work is by means of a heat engine in which the rejection

of heat at low temperature is as essential as the supply of heat at

high temperature.

Difference of temperature is wasted if heat be allowed to pass from

a hot body to a cold one without the agency of steam, air, or some

other body, the density of which is changed by its action. When
once wasted it cannot be recovered, a fact of common experience

which is expressed in other words by a second thermodynamic

principle.

SECOND LAW. Heat cannot pass from a cold body to a hot one

by a purely self-acting process.

By a "self-acting" process in this statement is meant any process

which is of the nature of a perpetual motion being independent of any
external agency. By the employment of mechanical energy drawn

from external bodies, heat may be made to pass from a cold body
to a hot one, the amount of energy required being greater the greater

the difference of temperature. And the method sometimes employed
of raising steam, without the use of a furnace, by means of heat

derived from the exhaust steam condensed in a solution of caustic

soda, shows that energy derived from chemical affinity may serve the

purpose. But, if no energy is employed, no heat will pass.
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Difference of temperature must therefore be carefully utilized, and

since the smallest difference of temperature is sufficient to cause heat

to pass from a source into the air or steam which exerts energy, it

at once follows that the process of conversion of heat into work will

be most efficient if all the heat be supplied while the fluid has the

temperature of the source of heat, and all the heat rejected while it

has the temperature of the body which subtracts heat. These are the

conditions of maximum efficiency, and if they are satisfied it is

possible to show that a mechanically perfect motor (p. 576) supplied

with heat Q will exert the energy

Jj, T
2 , being the temperatures of addition and subtraction of heat,

reckoned from the "absolute" zero, a point 460 below the ordinary

zero of Fahrenheit's scale. This is true whatever be the nature of

the heat engine employed for the purpose, and no more heat can

be converted into work under any circumstances. An engine which

satisfies these conditions may be described as "thermally perfect."

If two bodies be at the same temperature heat may be made to

flow in either direction from one to another, the actual direction being

determined by a difference which may be made as small as we please :

that is, the process is reversible. Hence the conditions of maximum
thermal efficiency may also be described by saying that the cycle of

thermal operations must be "
thermally reversible." And the condition

that an engine may be both mechanically and thermally perfect may
be completely described by stating that the engine is reversible.

Whichever way we adopt of stating the result it follows at once

that a unit of heat has a certain definite MECHANICAL VALUE given

by the equation

where T
lt
TQ are the temperatures between which it can be used. When

reckoned in thermal units M is also often called the AVAILABLE HEAT.

If, instead of the whole amount of heat Q being supplied at the

same temperature T
19

the fractions q } , q.2 , qs ,
... are supplied at the

several temperatures
r

J\, T
2 ,

T
3 , ..., the temperature of abstraction of

heat remaining the same, the mechanical value of the whole is the

sum of the mechanical values of each of the several parts taken

separately. On expressing this principle algebraically it will be found

that the mechanical value of the whole is now in thermal units

T - T
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where Tm is the average temperature of supply given by the equation

J_-i + 2.f
,

rn rp '7'
' ' ' '

1 m *
1

* 2

In many cases the whole or a part of the heat is supplied at a

uniform rate as the temperature rises or falls, as, for example, when
a mass of hot air is employed as a source of heat by cooling it at

constant pressure. The exact value of the mean temperature of heat

so supplied may be found by integration, but unless the change of

temperature is excessive, the mean in question is very approximately
the arithmetic mean of the highest and lowest temperatures. If then

a quantity of heat Q be supplied at a uniform rate as the temperature
rises from 1\ to .Tlt the part of that heat mechanically available will be

a useful formula which we shall have occasion to use presently.

291. Available Heat of Steam. When steam is formed from water

supplied to a boiler the temperature of the boiler is connected with

the pressure by a perfectly definite law, so that when the pressure is

known the temperature can be found, and conversely. The results

are well known, and given by a table which, being generally accessible,

need not be reproduced here.

The process may be separated into two parts (1) the raising of

the feed water from T
,
the temperature at which it enters, to T

} ,

the temperature of the boiler
;
and (2) the formation of steam at the

constant temperature T
l

. The quantity of heat supplied during the

first stage is approximately 1\
- T

Q ,
and the rate at which it is supplied

is approximately uniform. Its mechanical value is therefore, putting

T
2
= T

G
in the general formula given above,

During the second stage, if the steam formed be saturated and free

from moisture, the quantity of heat supplied is commonly called the

"latent heat of evaporation," and is given for each pound of steam

by the well known formula

1 -966--71(*1
=

2lS*),

where ^ is the temperature Fahrenheit. Since the whole of this is

supplied at the temperature 1\(
= ^ + 460), the corresponding mechanical

value is

The mechanical value of the whole heat supplied is now
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In using this formula the lower temperature T must correspond

to PQ the pressure in the condenser as shown by the vacuum gauge,

or assumed for the purposes of the calculation. In a non-condensing

engine T
Q
must correspond to the pressure of the atmosphere, which

in this case is the exhaust reservoir, that is, it must be supposed
212 + 460 or 673.

In perfect engines the mechanical value of the heat supplied is also

the available energy of the fluid used, which is thus obtained from

the temperatures of supply and rejection of heat without the necessity

of knowing the form of the expansion curve, which always must be

such that its area, as in preceding articles, represents the energy in

question. The available energy is therefore given by the formula

A close approximation, however, to the available energy may be ob-

tained by considering the form of the expansion curve (see Appendix).
This leads to the very simple formula

Po

where P v is the product of the pressure and the volume of dry
saturated steam at the lower limit of pressure pQl a quantity found

in thermal units by a formula given further on or from a table of the

properties of saturated steam.

If the steam be superheated 6, the additional heat supplied will

be \Q thermal units nearly, and the rate of supply will be approxi-

mately uniform. The corresponding mechanical value will therefore

be, putting r2
=
Tj + in the general formula,

The whole available energy is now M
Q +M1 +MZ ,

but the increase is

relatively small, the actual economy due to superheating being not

due to this cause but to a reduction in cylinder condensation, as will

be further explained presently.

292. Thermal Efficiency. If an engine be mechanically perfect the

work done per unit of heat will be simply the mechanical value, if the

conditions of maximum efficiency are satisfied. In general, however,

some of the heat will be supplied at a lower temperature than the

source of heat, and some will be abstracted at a higher temperature
than that of the refrigerator. When this is the case difference of

temperature is wasted, and there is a corresponding loss of thermal
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efficiency. If the temperature is known at which the air or steam is,

while it is being supplied with a certain quantity of heat, or while

a certain quantity of heat is being abstracted, the mechanical value of

that heat can be found corresponding to that temperature. This

quantity represents the work actually done since the engine is

supposed mechanically perfect, and the same calculation being made

for all the heat supplied or abstracted, the total actual work will be

known. Dividing this by the total quantity of heat the actual work

{A) per unit of heat will be known. The ratio

may be described as the " THERMAL EFFICIENCY
"
of the engine.

Thermal losses may be perfectly definite and practically unavoidable

in the type of heat engine under consideration, and may then properly
be taken into account in calculating the mechanical value of the

heat supplied. Such is the case, for example, in steam, the available

energy of which was found in the last article. The heat supplied by
the furnace gases is in the first instance at a much higher temperature
than that of the boiler, but no use is made of the difference, and it is

therefore supposed to be all supplied at the boiler temperature. Again,
the portion Tl

- T
Q
of this heat passes by conduction from temperature

T
l
to a lower temperature, which gradually increases from T to T

l

after the feed-water has entered the boiler. If it had been supplied at

temperature 7\ its mechanical value would have been

T\z- 1
<>>

,

M
and, therefore, would have been increased in the proportion Tl + TQ

:T
1

.

As, however, the supply of heat at rising temperatures cannot practically

be avoided, the available energy is considered to be that which remains

after deduction of the corresponding loss. A part of the loss may be

regained by use of a properly constructed feed-water heater, but the

resulting gain is most conveniently estimated independently.

The standard of comparison in heat engines therefore is not always
an ideally perfect engine, but is fixed with reference to the result which

could be attained in an engine of that type if all its working arrange-

ments were perfect.

In practice the engine will not be either mechanically or thermally

perfect; its efficiency (W/M) will then be the product (ek) of the

mechanical efficiency (WjA) and the thermal efficiency (A/M). The

efficiency thus calculated is estimated relatively to an engine which is

mechanically and thermally perfect, and may be described as the
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"
relative

"
or " true

"
efficiency, as distinguished from the " absolute

"

or "apparent" efficiency defined in a former article.

To estimate the efficiency of a heat engine without any reference

to the temperatures between which the heat can be used is very

misleading. The true efficiency of the best condensing steam engines

is about 65 per cent., instead of 18 per cent, as it appears to be

merely from the quantity of heat used. The standard of comparison

is, however, for reasons which have just been pointed out, generally

to some extent conventional, and consequently varying estimates of

the efficiency may be made.

293. Compound Engines. The working fluid may be discharged

from one contracting chamber into a second which simultaneously

expands. In many cases an intermediate reservoir is employed, which

receives the fluid from the first chamber and supplies it to the second
;

the two chambers are then virtually separate, and form two distinct

motors, the power of which can be separately calculated. The sum

of the two is the power of the compound motor; it is necessarily

the same as if the fluid had been used with the same expansion

curve between the same extreme pressures in a single chamber
; except

that the frictional resistance of the passages between the chambers

and the intermediate reservoir represents a certain loss of energy in

the compound motor which does not occur in the simple one. When
there is no intermediate reservoir there is no distinct period of

admission or expansion in the low-pressure chamber, but the power

may still be determined graphically for each chamber, and the results

added. The process of compounding may be carried further by the

employment of triple and quadruple expansion.
In every case the energy of the fluid is the same, and cannot be

affected by the mechanism employed to utilize it, unless its density

or elasticity be altered by contact with the sides of the chamber in

which it is enclosed. In steam engines, however, the action of the

sides of the cylinders has great influence by condensing steam as it

enters the cylinder. The liquefied steam is re-evaporated towards

the end of the stroke as the temperature of the steam falls, but the

process is nevertheless a very wasteful one. The action is greater

the greater the degree of expansion employed, because the range of

temperature is greater, and the gain by expansion is thus in great

measure neutralized or even converted into a loss. By employing two

cylinders instead of one the expansion is divided into two parts each

of moderate amount, and liquefaction may be diminished. Moreover

for constructive reasons the excessive expansion necessary to obtain
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the full advantage of high-pressure steam cannot be carried out in

a single cylinder. Compound engines are therefore being used more

and more wherever economy of fuel is a consideration, and in marine

practice have almost superseded the simple engine.

The principal losses in steam engines are (1) a mechanical loss due

to incomplete expansion, and (2) a thermal loss due to liquefaction.

One of these cannot be diminished without increasing the other
;
but

considerable economy may be effected by the use of a " steam jacket,"

by the employment of superheated steam, and by compounding.

294. Useful Work of Steam. The relation between the pressure

(P) and the volume (v) of dry saturated steam is expressed by the

equation
pj* = Constant,

from which is readily derived the formula

log (Pv) = 1-7882 + '0607 logp,

which gives in thermal units the value of Pv for 1 Ib. of dry saturated

steam of pressure p Ibs. per sq. inch. The logarithms are here common,
not hyperbolic. In the formula for W given in Art. 285 (p. 557),

the value to be used for P
Z
V

2
can ^e obtained by calculating P

2
v
2
for

the terminal pressure p2 ,
and then multiplying by x9 the dryness

fraction of the steam at release. The index n of the expansion curve

may for this purpose be taken as 10/9, and we thus obtain for the

waste work at exhaust the formula

The remaining losses may conveniently be expressed as a fraction 1 - k

of the available heat (M) of the steam for the given boiler and

vacuum pressures^, pQ
. The useful work of 1 Ib. of steam is then

W=kM-W
Q

.

The value of the co-efficient k depends mainly on thermal losses, of

which the principal is cylinder condensation, but it also includes leakage
and the minor mechanical losses already referred to. Thus, in com-

pound engines, k is diminished by the losses by clearance and leakage
in all the cylinders and by wire drawing between the cylinders. The

quantity (\-k)M may conveniently be described as the "missing

work," representing, as it does, mainly, losses which cannot be detected

by the indicator alone, but only by measurement of the feed-water.

In a given engine W, W^ and M can be derived from data furnished

by experiment, and hence k can be found. Examples of this calculation

for engines of various types will be found in the author's work on the
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steam engine,'*' from which it appears that unless there is some special

cause of waste, the "
missing work "

is from. 20 to 30 per cent, of the

available energy ;
that is, the value of k is from '7 to '8.

By assuming values of k, and x.
2
the dryness fraction of the steam at

release, the consumption of steam in Ibs. per I.H P. per hour can be

determined for given pressures ;
for since one horse-power is 2538

thermal units per hour,
2538

Lbs. per I.H.P. per hour =

The fraction x
2
is less variable than k, and may generally be assumed

at '8, unless there be some special cause of waste; and thus in the

most economical engines commonly occurring in practice, the consump-

tion of steam will be found approximately by writing k = *8, 2
= '8 in

the preceding formulse. But where cylinder condensation is excessive,

as, for example, is the case in small engines running at a low speed,

the consumption may be double the amount thus given. On the other

hand it may be somewhat less when superheated steam is used, mainly

because cylinder condensation may in this way be greatly reduced.

295. Efficiency and Performance of Steam Engines. We have already

described the ratio WfM (p. 567) as the efficiency of the steam
;

it is

given by the formula py -^

M =
*--M-

If expansion be carried to the greatest extent which can in any
case be advantageous (Art. 287), p2

will be a given quantity, and JF

may be taken as constant. The efficiency for a given vacuum is then

greater the higher the boiler pressure ;
that is, an increase in the boiler

pressure has not only the effect of increasing the energy of the steam

theoretically available, but it renders it possible to utilize a greater

fraction of it. On the other hand, an improvement in the vacuum

increases the available energy, but as it also increases W$ in a much

greater proportion, the efficiency is lowered. This is a necessary con-

sequence of the low pressure of the steam requiring large cylinders and

great friction for a given power. The energy theoretically available

from heat employed at temperatures much below 212 can only be

made use of without great waste by means of some fluid which is more

volatile than water.

In non-condensing engines the fraction WQfA may be and generally

is small
;
their efficiency therefore may be as much as '75, or, in special

cases, more.

* The Steam Engine considered as a Thermodynamic Machine, third edition, p. 322,

Spon, 1895.
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The efficiency of an engine is not generally greatest when expansion

is carried to the extreme limit fixed by the back pressure and by

friction, because the value of 1 - k is greater than it would be if a smaller

expansion had been employed; this is specially the case in single-

cylinder engines working at a moderate speed. The expansion which

can be usefully employed in practice is further limited by considera-

tions of cost; interest on capital, as Professor Thurston has pointed

out, being a " waste
"
which ought to be taken into account.

The general question of steam engine economy is far too large and

important to consider in detail in the present work, but the foregoing

observations may be of service in drawing attention to the principal

points to be studied.

296. Reversed Heat Engines. A heat engine like an hydraulic motor

may be reversed, and then becomes a machine for drawing heat out

of cold bodies and supplying it at a higher temperature just as a

pump takes water from a low and discharges it at a high level.

Most heat engines occur in their reversed form, being employed as

"refrigerating" or, to use the phrase employed in Germany, "cold"

machines in the artificial production of ice, or the maintenance of a

low temperature in a chamber for the preservation of articles of food.

If the heat engine be perfect the reversal will be exact, the same

thermodynamic machine, or as for brevity we might perhaps describe

it, the same THEKMO being a heat motor or a heat pump according
to the direction in which it is driven. As in hydraulic machines,

however, the reversal in practice will not be perfect, and certain con-

structive differences between the motor and the pump will generally
be rendered necessary by the different conditions under which they
work. The refrigerating machines most in use are the air machine,

which operates by the compression and subsequent expansion of

atmospheric air, and the ammonia-compression machine. The first

of these, which is a reversed air engine, we shall have occasion to

refer to presently. The second, which is much employed in the

manufacture of ice, will now be discussed in illustration of the fore-

going remarks.

In making ice by this method, the water to be frozen, originally, of

course, at the atmospheric temperature (1\), is contained in chambers

forming divisions of a refrigerating tank filled with brine, at a tempera-
ture below the freezing point, by which it is first cooled to 32 and

finally frozen. The heat thus received by the brine, together with that

which leaks into the tank from surrounding bodies, is then abstracted

by the evaporation of liquid anhydrous ammonia contained in a coil of
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piping immersed in the tank. The liquid in question is highly volatile,

its vapour having a pressure of over four atmospheres at the tempera-
ture 32 F. As fast as it is formed the resulting ammonia gas is drawn

into a double-acting compressing pump, by means of which its pressure

is raised : the temperature at the same time rising above that of the

atmosphere. When the pressure has reached a certain limit, ranging
from 8 to 12 atmospheres, a valve opens, and the gas passes into a

second coil of piping surrounded by circulating water of atmospheric

temperature, by which it is condensed once more into liquid. To carry

out the process perfectly it would now be necessary to admit the liquid

into an expansion cylinder, where its pressure would gradually fall

while driving a piston. A portion of the liquid would then evaporate,

and the temperature would be reduced till it had fallen to T
, the

temperature of the evaporating coil in the brine tank. This part of

the process not being practicable, the high-pressure liquid is actually

allowed to rush through a small connecting pipe into the coil, thus

completing a continuous cycle. The difference this makes will be

considered further on ; for the present we suppose the expansion

cylinder to exist, and to be connected with the crank shaft by which

the compressing pump is driven.

If now R be the heat abstracted from the refrigerating tank at

temperature T
Q
and U the energy exerted in driving the crank shaft,

the heat transferred to the circulating water by the condensing coil

will be

the final result of the process being that a quantity of heat R passes

from the temperature TQ
to the higher temperature Tx by the agency of

a certain amount of mechanical energy U, which is converted into heat

in the process. Further, assuming the temperatures T
l
and 1\ of the

coils to differ very slightly from the temperatures of the atmosphere
and the tank, every step of the process will be exactly reversible,

and when reversed the machine becomes a heat motor, of which U
must be the mechanical value of the heat Q and E the heat rejected.

Hence the relations between U, Q, R must be the same in the two cases,

that is if U be the mechanical energy necessary to abstract the heat R*.

The quantity of heat

may be described as the REFRIGERATING VALUE of the energy U.
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In the actual machine the expansion cylinder is omitted, and the

energy required to drive the crank shaft is correspondingly increased
;

while a portion of the liquid ammonia is none the less evaporated as it

rushes into the evaporating coil without drawing heat from the brine,

so that the heat abstracted is not increased. If then E' be the heat

actually abstracted from the freezing water for a given amount of

energy U, R will be less than R from this cause, as well as from

leakage of heat and other losses. The ratio R'jR is the efficiency of

the machine, which in this case includes the friction of the mechanism,

and in good machines of this class appears to be about 40 per cent.

But, as in motors, the standard of comparison is to some extent

conventional, because it is possible to make various practical estimates

of the "
refrigerating value

"
of the energy employed.

The foregoing sketch, necessarily very brief, of the action of thermo-

dynamic machines is all that can be attempted in the present work.

We now pass on to consider more particularly the transmission of

energy by elastic fluids and the flow of gases through pipes and orifices.

SECTION III. TRANSMISSION OF ENERGY, FLOW OF GASES.

297. Internal Energy. Internal Work. The distinction between

internal work and external work was pointed out in Art. 92, p. 186,

and the corresponding distinction between internal and external energy
of motion in Art. 133, p. 268. These distinctions are principally im-

portant in fluids, because the extreme mobility of their parts renders

internal motions, of great magnitude, of common occurrence. We have

already seen in Chapter XIX. how energy is dissipated by the internal

action of liquids ;
in gases the same dissipation occurs, and is even

more important.

In liquids the absorption of energy is almost completely irreversible,

but in gases it is not so. We may have internal energy as well as

internal work : the greater part of the expansive energy of a gas being

due to internal actions.

The state of an elastic fluid is completely known when its pressure

and volume are known, but these quantities are capable of any
variation we please within wide limits, provided only that we have

unlimited power of adding or subtracting heat. If, however, a third

quantity, the temperature, be considered, it will be found that the

three are always connected together by a certain equation depending
on the nature of the fluid, so that when any two are given the third

is known. For example, in the so-called
"
permanent

"
gases, such as
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dry air, the equation is very approximately

PF=c.T,
where T is the temperature reckoned from the "absolute" zero, as in

Art. 290, and c is a constant which for pressures (P) in Ibs. per square
foot and volumes (V) in cubic feet per Ib. has, for dry air, the value

53'2. The "
state

"
of the fluid is completely known if any two of

these three quantities are known, but not otherwise.

To produce a given change of state a certain definite amount of work
must be done in overcoming molecular resistances

;
this is the internal

work, and is the same under all circumstances. But in gaseous fluids,

the molecular forces being reversible, may tend to give rise to the

change of state, and then we have internal energy instead of internal

work. Taking the first case : if the change be at constant volume,

this internal work will be the total work done
;
but in general the

volume changes, and in consequence external work is done, the amount

of which depends not merely on the change of state, but also on the

way in which that change is carried out. The total amount of work

is the sum of the internal and external work : it is done by the

agency of heat energy supplied from without, so that we write

Heat Expended = Internal Work + External Work,

the three quantities being expressed in common units.

An important application of this equation is to questions relating to-

the formation of steam, but this we must pass over, our present object

being to consider the flow of gases through pipes and orifices, for

which purpose the equation is written

Expansive Energy = Internal Energy + Heat Supply,

or, in other words, of the whole expansive energy of the fluid, a part is

derived from internal molecular forces, and a part from heat supplied

from without.

If no heat is supplied from without the expansive energy is equal

to the internal energy: this case is called "adiabatic" expansion,

obtained by writing 7i=T4 in the formulae of Art. 281. More

generally, it is shown in treatises on thermodynamics that the

internal work done in changing the temperature of a Ib. of air from

T! to T.
2

is 7
2
-

/!,
where

I=Kr .T=2-5Pr,

Kv being the specific heat at constant volume, which is 2'5 c. Hence

when the temperature falls from 1\ to T9 the internal energy supplied

by the fluid is Kv (Tl T ^2) an<^ tne equation becomes for a heat supply Q-
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Fig. 207.

This is the fundamental equation from which all cases may be

derived.

If the heat be supplied to a permanent gas at a uniform rate as the

temperature falls, it may be shown that the law of expansion is

PVn = constant, as supposed in Art. 281, and this is generally per-

missible with sufficient approximation. The expansion index n then

depends upon the proportion which Q bears to E. If Q = E the

expansion is hyperbolic, and the whole of the expansive energy is

derived from heat supplied from without. The manner in which the

expansive energy (E) depends on the heat

supply (Q) is well seen by the annexed

diagram (Fig. 207). Let, as before, the

ordinates of the point 1 represent the

pressure and volume before expansion

and those of the point 2 after expansion,

1, 2 being the expansion curve. Set

downwards N^Z^ N2
Z

2 ,
each equal to 2J

the corresponding pressure ordinates, and

complete the rectangles OZ^ OZ%. Then

complete the rectangle Z^Z^ and draw

the diagonal SL to meet the vertical

through 0. Finally through the inter-

section draw // horizontally ;
then the

rectangle IN
2

will be found to be the Z;

difference of the rectangles OZ
lt OZ.

2 ,
and therefore represents the

internal energy exerted during expansion. Thus the area 12/7

(shaded in the figure) represents the heat supply : which will depend
not only on the points 1, 2, that is, on the change of state of the

air, but also on the form of the expansion curve, that is, on the

way in which the change takes place.

298. Transmission of Energy by Compressed Air. A reservoir of

compressed air furnishes a supply of energy which may be transmitted

by pipes to distant points and distributed at pleasure. The losses

which occur in the pipes by leakage and friction will be discussed

further on; the present article will be devoted to the consideration

of the process of compression and expansion.

The volume of 1 Ib. of air at the atmospheric pressure is

r=-^a=h nearly>

\

where T
Q

is the absolute temperature. The work done in compressing
1 cubic foot to a pressure of P atmospheres without gain or loss of
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heat, and forcing it into a reservoir, is (Art. 285, p. 558)

Work done = 7400 (P
f
-l),

while the temperature will rise to

T T P^1 \~ *- - r

If the temperature could be prevented from rising the work done

would be reduced to 2116 logeP; but this can only be effectively

done by the injection of water in the form of spray into the com-

pressing cylinder. No form of wrater jacket appears to have any
considerable effect in the short space of time occupied by the work-

ing stroke. After the compression is complete the air may be cooled

on its way to the reservoir by passing it through pipes exposing a

large surface to the external application of cold water
;
an operation

which is conducive to economy, for otherwise the hot air in the

reservoir will lose heat by radiation and conduction, and the pressure
will be reduced. Let us suppose the air thus cooled at constant

pressure to temperature T, the work done in forcing it into the

reservoir will not be reduced, the only difference is that a part of

the admission work will be done outside the reservoir in compressing
the cooling air at constant pressure, the total amount remaining the

same. Hence, in the absence of spray-injection, the work done

per cubic foot of air drawn from the atmosphere is always nearly the

same, being given by the above formula, and this conclusion would

be correct if the air were heated instead of cooled before entering
the reservoir.

The compressed air is now conducted by pipes to a corresponding
motor at any distance. The air-motor consists of a working cylinder
and piston with valves attached, as in the case of a steam engine.

Assuming the expansion adiabatic and complete the energy exerted,

per cubic foot of compressed air consumed is, as shown on page 554,

7400(P-P^), whatever the temperature. Now if T be the tempera-

ture, the density of the compressed air is greater than that of the

atmosphere in the ratio PT /T, and therefore we obtain by division

Energy exerted = 7400^ (l
-
(I) \

*o\ \*V /

a general formula giving the available energy of an air motor per cubic

foot of air drawn from the atmosphere by the compressing pump. For

reasons already stated the whole of this will riot be utilized (p. 555).

On the other hand, the expansion has been supposed adiabatic,

although there can be little doubt that the cooling of air below the

atmospheric temperature is greatly hindered by the condensation of

vapour mixed with it, and by drawing heat from external bodies.
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Subject to these remarks the efficiency of transmission will be

T /1\^ T
Efficiency

- -

(1) Let the air after compression be cooled to jP
,
and supplied

without re-heating to the motor, the efficiency is now l/P
f

,
and there-

fore diminishes rapidly as the pressure increases. The loss is due to

change of temperature, and may be greatly diminished by compound-

ing the compressing pump so as to compress the air in two or more

stages ;
the air being thoroughly cooled between each stage. Com-

pression by stages is necessary for constructive reasons when the

pressure is very high, and, when properly carried out, is economical.

It has of late been introduced for economical reasons.

(2) If the air is re-heated after transmission before entering the

motor the efficiency will be increased as the formula shows. It is

true that heat will be spent in raising the temperature of the air,

but the corresponding gain of work in the motor cylinder is propor-

tionally very large. If T>T
l
more energy will be exerted in the

motor cylinder than is necessary to drive the compressing pump, the

whole arrangement operating as a heat-engine. If T< r

l\ the arrange-

ment operates as a reversed heat-engine, being, in fact, a well-known

form of refrigerating machine. The theory of the process considered

in this light is given in the author's work on the Steam Engine already

cited, in which the principles of thermodynamics are explained at

length.

299. Steady Flow through a Pipe. Conservation of Energy. Referring
to Fig. 174, p. 475, suppose that the reservoir is closed, and that it

contains an elastic fluid at high pressure which is flowing through the

pipe. Unless the change of pressure be very small, difference of level

may be disregarded as relatively unimportant (p. 550), and we have

only to consider differences of pressure, while, on the other hand, we
must now remember that, when the pressure changes, energy is exerted

by expansion as well as by transmission. The energy transmitted

from the reservoir to any point where the pressure is P and volume V
is PQ^Q, where the suffix indicates the state of the fluid in the reser-

voir. Of this the amount PV is transmitted through the point, and

the difference P^V^-PV together with the expansive energy E is

employed in generating the kinetic energy which the gas possesses in

consequence of the velocity u with which it is rushing through the

pipe at the point considered. Thus, if the motion be steady,

C.M. 2 O
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where Q is the heat (if any) supplied during the passage from the

reservoir to the point. If no heat be supplied,

^- + 3 -5 PV=. Constant,
J

an equation which may also be written

j

^- +Kp . T= Constant,

where Kp is the specific heat at constant pressure. If we have to do

with any elastic fluid other than a permanent gas, 3-5PF" must be

replaced by I + PV, where / is the internal energy, and if the question

be such that the elevation of the point considered has any sensible

influence, the term z must be added as in the corresponding case of

an incompressible fluid.

The equation for a compressible fluid, however, is much more general

than that for an incompressible fluid, because the internal energy is

taken into account, and consequently any energy exerted in over-

coming frictional resistances is replaced by an equivalent amount of

heat generated. It follows that the equation is true whether there

be frictional resistances or whether there be none, provided that the

internal motions have time to subside and be converted into heat by

friction, and provided that none of the heat thus generated is trans-

mitted to external bodies.

It sometimes happens that we have to consider cases where a

quantity of heat Q is supplied to a permanent gas during its passage

from a point 1 to a point 2, we shall then have the equation

p , l ,

an equation which is true, however great the variations of pressure or

temperature are, and whether or not there are frictional resistances.

300. Velocity of Efflux of a Gas from an Orifice. The most im-

portant applications of the equation for the steady flow of a gas are

to the discharge of air or steam from an orifice and to the flow of air

through long pipes.

In the first case the frictional resistances are small and are con-

sequently neglected. It will be desirable to give a method of treating

the question which is independent of the general equation.

In Fig. 208a ol2k represents the expansion curve for a small portion

of the gas as it rushes out of the reservoir A (Fig. 208b) in which

it is confined through a small orifice into the atmosphere. The jet

contracts at issue to a contracted section kk, nearly as in the case
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where the fluid is incompressible, and then, in general expands again
in some such way as is shown in the figure. The velocity through the

Fig.

Pig. 2O8a.

contracted section may be denoted by u, and the pressure there by P.

The area of the contracted section is connected with the area of the

orifice by the equation
A ^_ 7* A

as on page 473, k being a co-efficient.

Each small portion of the fluid expands from the state represented

by the point o on the diagram to that represented by K; in some

intermediate state it will be represented by a point 1 on the expansion

curve, and immediately after by 2, a point near to 1. Let u
lt

u
2 be

the corresponding velocities, then

r.SP,

where w is the mean density and V the mean specific volume repre-

sented graphically by the mean of 01, sf2. Hence V. 8P is represented

by the area of the strip cut off by these ordinates. Dividing the whole

area into strips, the area of each strip represents the corresponding

change in v?/2g, so that the total area represents the final value of this

quantity. We have then

- = Area NOKM =
p̂

= h.

The quantity h thus found and graphically represented is the "head"

due to difference of pressure, as fully explained in Art 283.

Assuming the expansion curve PVn = Constant, as before,

2g Ti-1 n-
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Now, if the expansion be adiabatic n=l'4, and nc/(n-l) is equal to

Kp ,
so that the result might have been written down at once from

the general equation of the preceding article.

Employing the notation of Art. 281, but replacing the suffix 1 by
the suffix 0, the velocity of efflux is given by the formula

301. Disc/iarge from an Orifice. The weight of gas discharged per

second from an orifice of contracted area A is now found from the

formula AUW=
-y>

where V is the specific volume of the gas at the instant of passing

through the contracted section, and therefore supposing A unity the

weight per unit of area is given by

W* = 9/
n

. ^0^0/1 _ nr\

For Fwe now write

7 n-l F2 x

and finally obtain

n i

In applying this formula /z must be supposed known and r calculated

from it by the equation on p. 552.

It will be found on examination that as /A diminishes from unity W
increases to a maximum value and then diminishes again to zero.

That is, if the pressure in the throat of the jet at the contracted

section be diminished the discharge does not increase indefinitely,

but reaches a maximum and then decreases. On substitution for r

in terms of
//,

it will be seen that for a given pressure (P )
in the

2 n+1

reservoir W is greatest when /*

n
/*

w
is greatest.

This will be found to be the case when

2 Xw3 !

n+ 1

The expansion is adiabatic, and the values of n with the resulting

values of
//.

for maximum discharge are shown in the annexed table.

NATURE OF GAS.
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The discharge is therefore a maximum when the external pressure
is from -5 to '6 the pressure in the reservoir. For dry air it will

be found on substitution that the maximum discharge per second

per unit of contracted area is

M7 3'9P
Q _ PQ

1

and for dry steam

The pressure P was originally supposed expressed in Ibs. per square

foot, but it may now be taken as Ibs. per square inch in the

numerator of these fractions, in which case Wm will be the discharge

per square inch.

The diminution of the discharge on diminution of the external

pressure below the limit just now given, is an anomaly which had

always been considered as requiring explanation, and M. St. Venant

had already suggested that it could not actually occur. In 1866 Mr.

R. D. Napier showed by experiment that the weight of steam of

given pressure discharged from an orifice is really independent of

the pressure of the medium into which the efflux takes place ;
and

in 1872 Mr. Wilson confirmed this result by experiments on the

reaction of steam issuing from an orifice.
*

The explanation lies in the fact that the pressure in the centre of

the contracted jet is not the same as that of the surrounding
medium. The jet after passing the contracted section suddenly

expands, and the sudden change of direction of the fluid particles

gives rise to centrifugal forces which cause the pressure to increase

on passing from the surface of the jet to the interior on the prin-

ciple explained on page 478. This will be better understood by
reference to the annexed figure (Fig. 209) Fig. 209.

which shows a longitudinal section of

the jet at the point where the contrac-

tion of transverse section is greatest. *

The particles describe curves the radius

of curvature of which increases from a

small minimum value at the surface k,

to an infinite value at the centre. The pressure p increases from

that of the medium (TT) at k to a maximum p' at the centre, the

increase being very rapid at first and afterwards more gradual. The

problem is therefore far more complicated than we have supposed,

*
Discharge of Fluids, by R. D. Napier. Spoil, 1866. Annual of the Royal School

of Naval Architecture for 1874.
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each small portion of the jet having its own pressure and (conse-

quently) its own velocity and density.

The results of experiment however suggest that an approximate
solution may be obtained by the assumption of a mean pressure in

the throat of the jet, with a corresponding mean velocity ;
this mean

pressure being that which gives maximum discharge in every case

in which that quantity is greater than TT. At lower pressure it is

to be assumed equal to IT.

Adopting this hypothesis we see that whenever steam is discharged

into the atmosphere from a boiler the pressure in which is greater

than, about, 25 Ibs. per square inch absolute, or 10 Ibs. above the

atmosphere, the formula given above for maximum discharge is to

be used. If we assume the mean value 252 for \AP ^o fckis giyes

Pi/70 for the weight discharged from an orifice per square inch of

effective area per second, the pressure pl being the absolute pressure

in the boiler expressed in Ibs. per square inch. Contraction and

friction must be allowed for by use of a co-efficient of discharge, the

value of which however is more variable than that of the corresponding

co-efficient for an incompressible fluid. Little is certainly known on

this point.

302. Flow of Gases through Pipes. Returning to the general equation,

we have now to examine the case where air or steam flows through a

pipe of considerable length. As in the case of water, the frictional

resistances are then so great that most of the head is taken up in over-

coming them. The velocities of the fluid are therefore not excessive,

and the value of u?/2g varies comparatively little.

Now, in the equation

- +KPT= Constant,
*9

the numerical value of Kp
is about 184, and therefore a variation of

temperature of a single degree will correspond to a great change in

. v u2
/'2g ;

it may therefore be

assumed that the temperature
remains very approximately con-

f

p
stant provided only that the

difference of pressure at the two

ends of the pipe is not too great compared with its length.

In Fig. 210 suppose 1, 2 to be two sections of the pipe at a distance

Ax so small that, in estimating the friction, the velocity may be taken

at its mean value u
;
then the force required to overcome friction is
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where s is the perimeter and / the friction per square foot, as on page
484. Replacing this by a new co-efficient/', as on page 486,

S-f%..*&*.*,z
ff

in which equation w means the weight of unit-volume of the gas.

Now, it was pointed out on page 493 that surface friction was a kind

of eddy resistance, and that in the case of water it was proportional to

the density. This leads us to suppose that in fluids of varying density,

not / but/' is a constant quantity. Replacing w by its equivalent

we obtain, suppressing the accent of/,

2

We now apply the principle of momentum which will be expressed by
the equation

where ^Fis the weight of gas flowing through the pipe per unit of area

per second, and the suffixes refer to the two sections in question, the

area of which is A. Now, the motion through the pipe being steady,

W is the same throughout, so that

= W= Constant.

By substitution for W and writing H for v?/'2g, an equation is obtained

which, when written in the differential form, becomes

-.H,m
m being the hydraulic mean depth.

Next, if T be the temperature, which, as remarked above, is sensibly

constant,

P =
C

=tr.
',

.'. 8P=-IF. C

-^.8u.V u u2

Substitute again for W and u, we then find

On substitution for F.8P, the value of which has just been given, the

differential equation becomes integrable by dividing by H, and we

obtain on performing the integrationin H.I

where I is the length of the pipe, and H
Q ,
H the values of u2

/2g at

entrance and exit respectively. In application of this equation the
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term containing the logarithm is small as compared with the rest, and

may generally be omitted : also

tf-a
2

#0 f
a ratio which is known if the pressures are the data of the question.

In the case of steam cT is to be replaced by the nearly constant product

PV> which is to be taken from a table for its quantity so as to obtain

a mean value according to the pressure considered.

The value of the co-efficient in small pipes not more than 3 inches

diameter is about the same as in the case of water, namely '007, but

it appears to diminish much more rapidly as the diameter of the pipe

increases. In pipes 12 inches diameter and upwards, with velocities

from 10 to 25 f.s., Professor Unwin gives the value -003 as the result

of a reduction of a large number of experiments made on the resistance

of the Paris air mains.*

The equation just found must not be applied to cases in which the

difference of pressure is too great compared with the length of the pipe.

The friction is then not great enough to prevent the velocity from

becoming excessive
;

the temperature then sensibly falls, instead of

remaining constant as supposed in the calculation. An equation can be

found which takes account of the fall of temperature when necessary,

but in such cases as commonly occur in practice, the supposition of

constant temperature is sufficiently approximate. When the difference

of pressure is small, the equation will be found to reduce to the

hydraulic formula for flow in a pipe. This case will be considered

presently.

The head is given by the formula

and the power expended in forcing the air through is Wh or

PAu loge r ft.-lbs. per square foot of sectional area per 1".

The efficiency of the process of compression and expansion has

already been considered when compressed air is used for the trans-

mission of energy, and it need only be added that the question of

leakage is one of great importance. In some cases the method has

proved a failure from this cause. It is probably always more difficult

to render the joints of a pipe tight under air pressure than under

steam pressure ;
but experiments by Professor Riedler on the Paris

mains showed that the loss may be made very small, not exceeding one

per cent, per mile per hour.

*
Proceedings of the Institution of Civil Engineers, vol. cv., p. 192.
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303. Flow of Gases under Small Differences of Pressure. When the

differences of pressure are small and no heat is added or subtracted, a

gas flows in the same way as a liquid of the same mean density. In

the case of air the mean specific volume is found from the equation

cT TV
P ~40'

the units being feet and pounds, the mean pressure that of the

atmosphere, and the temperature measured on Fahrenheit's scale

from the absolute zero. At 59 this gives F=13 cubic feet, but

the actual volume will vary slightly from variations in the mean

pressure.

The small differences of pressure with which we have now to

do are commonly measured by a syphon gauge in inches of

water. One inch of water is equivalent to a pressure of 5-2 Ibs. per

square foot.

If now AP be the difference of pressure in Ibs. per sq. ft., i the

corresponding number of inches of water, the head due to it will be, as

in Art. 300, FAP, and therefore

The velocity due to this head, or, what is the same thing, the volume

discharged per sq. ft. of effective area per second in the absence of

frictional resistances, is in cubic feet

and the weight-discharge in pounds per second

JP-=
166-6^

At 59
e
one inch of water gives a head of 67 '5 feet and a discharge of

65-9 cubic feet, or 5O7 Ibs. per second; but at 539 the head is 130

feet and the discharge 91 '3 cubic feet, or 3-67 Ibs., results which show

that the effect of a given difference of pressure is entirely different

according to the temperature of the flowing air. This is a point which

must always be borne in mind in applying hydraulic formulae to the

flow of gases. Frictional resistances are taken into account by the

employment of a co-efficient as in hydraulics, and, as elsewhere ex-

plained, there is reason to believe that the values of these co-efficients

are the same, except so far as they may be dependent directly or

indirectly on the co-efficient of contraction (p. 473). Co-efficients of

contraction are more variable in air than in water, but their average

value does not differ widely in the two cases, and may provisionally be

assumed the same.
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In particular, it is well established that the formula for the discharge

of a pipe in cubic feet per second (p. 488),

applies to air at the low velocities here considered, with the same value

of the co-efficient k as in water, that is (d in feet) about 40. The head

ti is calculated, as just explained, according to the temperature of the

air, for a given difference of pressure.

It is sometimes necessary to consider the flow of some gas other than

atmospheric air. In approximately permanent gases this is easily done

if we know the density of the gas. For example, the density of

common coal gas is about '43, air being unity. The value of c in the

formula PF= cT is then proportionately increased, but in other respects

the formulae are unaltered, the index of the adiabatic curve and the

constants 2 '5, 3 '5 which depend on it remaining unaltered. The

formula for small differences of pressure may also be employed for

the non-permanent gases, such as steam, with a corresponding modi-

fication.

Pneumatic machines in which the variation of pressure is small are

analogous to hydraulic machines, and most of what was said in the last

chapter is applicable to them. The common fan, for example, is a cen-

trifugal pump, the lift of which is the difference of pressure reckoned in

feet of air, that is, at ordinary temperatures, about 67 feet for each

inch of water. The speed of periphery is ,Jgli
in feet per second,

where h is the lift increased, as explained in the case of the pump,
on account of frictional resistances and the curving-back of the vanes.

Some remarks on the influence of the form of the vanes on the

efficiency of a fan will be found in the appendix (note to p. 542).

Fans are employed to produce a current of air for the purpose of

ventilating a mine, ship, or structure of any kind. In mines they

are often 30 feet in diameter or more. The pressure required is here

small and the speed moderate. They are also used to produce a

forced draught in torpedo boats, or the blast of a smithy fire. The

pressure is then 5 inches of water and more, corresponding to a

lift of 300 feet and upwards. The speed of periphery is consequently

excessive, and for the comparatively great pressures required for a

foundry cupola or a blast furnace, it is necessary to resort to some

other sort of blowing machine.

304. Varying Temperature. Chimney Draught. If the temperature

of the flowing air is varied by the addition or subtraction of heat,

its density will be altered during the flow, and it is then necessary
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to know the mean density, in order that we may be able to calculate

the " head
"

due to a given difference of pressure as measured by
the water gauge.

In Fig. 211 OX, OY are axes of reference parallel to which ordi-

nates are drawn as usual to represent volumes and pressures. A
given difference of pressure AP
is represented by the difference Y
ab of a pair of ordinates. The Pi8>- 211<

original volume of the air is

represented by al. Suppose now
that in flowing through a passage
of any description the air is

heated, as for example in passing

through a furnace, the volume

increases greatly while the pressure falls slightly; this will be re-

presented by the curve 12, terminating at a point 2. The form of

the curve will depend on the law of heating, and will be very
different according to the state of the fire : if the bars of the grate
be blocked by clinker and the surface of the fire be free from special

obstruction, most of the frictional resistance and corresponding fall

of pressure will occur before the air is heated, and the curve will

slope rapidly near 1 and slowly afterwards; while, conversely, if

the fire be covered with fresh fuel and the grate bars clear, the

reverse may be true. After being heated let theair pass through
a, boiler tube, by which heat is abstracted, till it reaches the chimney :

the volume then diminishes greatly while the pressure falls slightly,

as shown by the curve 23, terminating at a point 3, such that b3

represents the volume of the air in the chimney. The form of the

curve 23 will depend on the law according to which the tube abstracts

heat. The area of the whole figure al'23b represents the "head"

due to the whole difference of pressure AP, and it will now be

obvious that this head will vary according to circumstances which

cannot be precisely known. Thus the mean density cannot be found

except by empirical formulae derived by direct experience, and con-

sequently applicable only to the special cases for which they have

been determined. It has hitherto been most usually assumed in

the case of a furnace and boiler that the mean density was that of

the air in the chimney, which amounts to supposing that the forms

of the curves 12 23 are such that the area of the rectangle a3 is

equal to the area of the whole figure. This is the supposition em-

ployed by Rankine, and in many cases it appears to lead to correct

results.
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In every case of the flow of heated air it must be carefully con-

sidered what the mean density will probably be. Its value can

often be foreseen without difficulty. It is only in the case of long

passages, where the air suffers great frictional resistance while being

heated or cooled, that it is uncertain what value to adopt.

The draught which draws air through a fire may be produced

artificially or by the action of a chimney. In the latter case there

is a difference of pressure within and without the chimney at its

base due to the difference of weight of a column of air of the

height of the chimney at the temperature of the chimney and at

that of the atmosphere. Radiation causes the temperature of the

air to be less in the upper part of the chimney and so diminishes

the draught, the frictional resistances have the same effect. If

these be disregarded the draught in inches of water will be

where T
Q
is the temperature of the atmosphere, T that of the chimney,

while I is the height of the chimney in feet. The temperatures are

here reckoned from the absolute zero.

If, for example, the temperature of the chimney be 539 F., and

that of the atmosphere 59 F., the height of the chimney required for

a draught of 1 inch of water will be about 141 feet, or in practice

more on account of friction and radiation.

The effect of this draught in drawing air through a furnace or

through passages of any kind will vary according to the circumstances

which have just been explained.
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EXAMPLES.

FIRST SERIES (SECTION I.).

1. Find the store of energy in the reservoir of a AVhitehead torpedo. Capacity 5 cubic

feet. Pressure 70 atmospheres.

Ans. If n=l 2, 420, 000 ft. -Ibs., or 3, 130 thermal units.

n= l'4 1,092,000 or 1,414

Ratio of results= '45.

2. In the last question the air is supplied to the torpedo engines by a reducing valve

so that the pressure in the supply chamber remains constantly at 13 atmospheres : find

the available energy.
Ans. If n= 1 1, 900, 000 ft. -Ibs.

w=l'4 1,346,000

NOTE. The difference between these results and the preceding is the effect of wire-

drawing (resistance of valve). The supply chamber is supposed small.

3. Air is stored in a reservoir the pressure in which is maintained always nearly at

10 atmospheres : find the store of energy per cubic foot of air supplied from the reservoir.

Ans. If n=l 48,700 ft. -Ibs.

n=l'4 35,700

Ratio=733.

4. A chamber of 100 cubic feet capacity is exhausted to one-tenth of an atmosphere ;

find the work done, assuming n=l.

Here if the chamber be imagined to contract, compressing the air still remaining in

it, the energy exerted will be due to the pressure of the atmosphere, and the difference

between this energy and the work done in compression will be available for other

purposes. In exhausting this is reversed. Ans. 142,000 ft. -Ibs.

5. Find the mechanical efficiency of an engine so far as due to incomplete expansion

(ratio r) : assuming the expansion hyperbolic.

Ans. If R be the ratio of complete expansion,

l + loge r-^
Efficiency= : 5^.

loge R

6. In the last question obtain numerical results for a condensing engine, taking the

back pressure at 2 Ibs. and boiler pressure 60 Ibs.

Ans. Ratio of expansion, - 1 2 5 10,

Efficiency,
- - - '284 '48 '72 '87.

7. Find the comparative mechanical efficiencies in a condensing and a non-condensing

engine. Back pressure in condensing engine 2, in non-condensing 16. Boiler pressure

60 and 100. Ratio of expansion 5 in both cases.

The engines must here be supposed to have the same lower limit of pressure of 2 Ibs. ;

and the result for the non-condensing engine includes the loss by the actual back

pressure being 16 Ibs. Ans. '72, '46.

8. Find the loss by wire-drawing between two cylinders from one constant pressure of

60 Ibs. to another constant pressure of 40 Ibs. Expansion hyperbolic. Ans. '405 PV.

9. One vessel contains A Ibs. of fluid at a given pressure PA, and a second B Ibs. of

the same fluid at a lower pressure PB . A communication is opened between the vessels

And the fluid rushes from A to B ;
find the loss of energy.

The loss here is the difference between the energy exerted by A Ibs. expanding from

VA to V, and the work done in compressing B Ibs. from VB to V: where VA, VB are
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the specific volumes of the fluid in A and B, and V that of the fluid after equilibrium
has been attained, found from the formula

AVA + BVn
A + B

Hence the loss is very approximately

AB (VB-VA}(PA-PB}

10. In a compound engine the receiver is half the volume of the high-pressure cylinder,
and at release the pressure in the cylinder is 25 Ibs. per square inch, while that in the

receiver is 15 Ibs. per square inch : find the loss of work per Ib. of steam. Obtain the

results also when the receiver is double instead of one-half the cylinder.

Am. Case I., 1838 ft. -Ibs.

Case II., 3873 ,,

11. In a condensing engine find the mean effective pressure and the consumption of

steam in cubic feet per I.H.P. per minute at the boiler pressure: being given, back

pressure 3, boiler pressure 60 Ibs. per square inch (absolute), ratio of expansion 5.

Ans. Mean effective pressure 28*33 Ibs. per square inch.

Consumption of steam= 1 '62 cubic feet per minute.

12. If the volume of 1 Ib. of dry steam at the boiler pressure be taken in the preceding

question as 7 cubic feet and the liquefaction during admission 20 per cent. ; find the

weight of steam consumed in Ibs. per I.H.P. per hour. Ans. 175.

13. Find the H.P. necessary to compress 100 cubic feet of air per minute to a pressure
of 7 atmospheres (absolute), the air being drawn from the atmosphere at temperature
60 and forced at constant pressure into a reservoir. Suppose the compression (1)

adiabatic, (2) isothermal.

Ans. Work per Ib. of air=92 '2 thermal units.

= 68-8

H.P. = 16| or 12.

14. In the last question suppose the compression carried out in two stages, the air at
each stage being cooled at constant pressure after adiabatic compression : find the work
done per Ib. of air. Ans. 79 '2 thermal units.
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EXAMPLES.

SECOND SERIES (SECTION II.).

1. Find the mechanical value of a unit of heat, the limits of temperature being 600

and 60 ; 300 and 100 ; 400 and 212.

Ans. 393, 203, 169 ft.-lbs.

2. The limits of temperature in a heat engine are 350 and 60 ; find the thermal

efficiency when two-thirds of the whole heat supplied is used between 300 and 100,
one-sixth between 200 and 100, and one-sixth between 250 and 100. Ans. '658.

3. In question 6, First Series, on account of a gradual increase in the liquefaction

the thermal efficiency at the several ratios of expansion mentioned is assumed as '9, '85,

7, '5
;
find the true efficiency. Ans. "256, '408, '504, '435.

4. In a compound engine the pressure of admission is 100 Ibs. per square inch, the

steam is cut off at one-third in the high-pressure cylinder, the ratio of cylinders is 2J ;

the back pressure is 3 Ibs. per square inch, the large cylinder 40 inches diameter, and

the speed of piston 400 feet per minute. Find the H.P., neglecting wire-drawing and

sudden expansion. Ans. 567.

5. In the last question suppose that the engine has a very large intermediate reservoir,

and that the cut-off in the low-pressure cylinder is 'o
; find the pressure in the reservoir,

neglecting wire-drawing, also the loss per cent, by sudden expansion at exhaust from the

high-pressure cylinder, and the percentage of power developed in the two cylinders.

Obtain the results also for a cut-off of one-third in the low-pressure cylinder.

Ans. Cut off . Cut-off %.

Pressure in reservoir, - 26 '7 40

Loss by sudden expansion per cent. ,
"8 *7

Percentage of power in high-pressure cylinder,
- - 46'5 32*4

,, ,, low-pressure ,,
- - 52 '6 57 '6

6. Compare the efficiencies of the simple and compound engine, assuming the

liquefaction the same at the best ratio of expansion, which is 5 in the simple engine

and 7 in the compound engine, while in the latter 5 per cent, of the work is lost by

wire-drawing between the cylinders. Back pressure and boiler pressure in both cases

3 Ibs. and 84 Ibs. respectively.

Ans. Gain by compounding 2^ per cent.

7. In question 5, instead of supposing the whole expansion represented by a single

hyperbolic curve, assume that at the end of the stroke in the high-pressure cylinder the

steam is dry, while at the end of the stroke in the low-pressure cylinder the steam

contains 10 per cent, water. Obtain the required result for the cut-off *5 and find the

weight of steam used (exclusive of jacket steam) in Ibs. per I.H.P. per hour. Also

obtain the results when the steam at the end of the stroke in the high-pressure cylinder

contains 30 per cent, water, all other data remaining the same.

Ans. Case I. Case II.

Pressure in reservoir,
- - - - - - 22 '5 14 '9

Percentage of power in high-pressure cylinder,
- 55 37 '5

,, low-pressure ,, 55 62 '5

Lbs. of steam per I.H.P. per hour, 13 16 '5

8. The available heat of a pound of coal is 10,000 thermal units ; find the consumption
of coal per I.H.P. per hour in a perfect heat engine working between the limits 600

and 60.
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9. The temperature of the atmosphere is 70 and that of a tank in which ice is being

made 26. Find the H.P. necessary to drive a perfect ice-making machine, per ton of

ice per hour. Latent heat of water=142 ; specific heat of ice= '5. Ans. 14^.

10. Air is heated at constant volume till its temperature is raised from 70 to 300,

then expanded to three times its volume at constant temperature. Find the mean

temperature of supply. Ans. 247 F.

11. In the last question suppose the air subsequently to expand adiabatically till its

temperature has fallen to 70, and then to be compressed at constant temperature till

the original pressure is reached. Deduce the co-efficient of performance, and verify

your calculation. Ans. Co-efficient= '25.

12. Air at a pressure of 1,000 Ibs. per sq. inch and a temperature of 539 expands to

6 times its volume without gain or loss of heat ; find the pressure and temperature at

the end of the expansion. Ans. p=8l, t=27.

13. In the last question suppose the air at the end of the expansion to have a pressure

equal to 1^ times that given by the adiabatic law, and heat to be supplied at a uniform

rate as the temperature falls ; find the index of the expansion curve and the work done

during expansion. Compare the heat supplied with the work done and find the specific

heat. (See page 575. )

Ans. =ri74. Specific heat='223.

Work done= 82,000 ft. -Ibs. Ratio= '575.

14. Find a formula for the useful work done per Ib. of steam in thermal units with a

vacuum of 1'41 inches of mercury absolute, a back pressure of 1J and a terminal pressure

of 4 Ibs. per sq. inch ; assuming x.2='S, k='8 (p. 569).

Ans. W^M-54.

15. By means of the formula of the preceding question deduce the consumption of

steam and the efficiency for the series of pressures stated below.

Boiler Pressure.
.

350 9'77 '662

180 11-3 -642

84 13-7 -619

60 151 -605

20 22-5 -535

16. Find a formula and deduce numerical results as in the last two questions, assuming
a terminal pressure of 8 Ibs. per square inch and k~- '7, all other data remaining the same.

(Compare pages 570, 571.)
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EXAMPLES.

THIRD SERIES (SECTION III.).

1. Air is contained in a vessel at a pressure of 25 Ibs. per sq. inch and temperature 70.

What will be the velocity with which the air issues into the atmosphere (pressure 15 Ibs.

per sq. inch) ? Also find the discharge and the head.

Ans. h =13, 420; u= 930 ft. per second.

JF=34'26 Ibs. per sq. inch of orifice per minute.

2. In the last question find the initial pressure corresponding to maximum discharge

for all external pressures less than that of the atmosphere. Find this discharge.

Ans. Pressure= 28*5 Ibs. per sq. inch.

Discharge =39^ Ibs. per sq. inch per minute.

3. "What weight of steam will be discharged per minute from an orifice 2 inches

diameter, the absolute boiler pressure being 120 Ibs. per square inch? Co-efficient of

discharge 7. Ans. 227 Ibs.

4. Air flows through a pipe 6 inches diameter and 4,000 ft. long ; the initial pressure

is 20 and the final pressure 15 Ibs. per sq. inch ; temperature 70 ; find the velocities and

the discharge. 4/= '03.

Ans, Velocity at entrance=39 feet per second.

,, exit =52 feet

Discharge= 4 Ibs. per sq. ft. = '78.

5. In the last question find the loss of head and the H.P. required, to keep up the

flow. Ans. A'=8,124feet. H.P.=11.

6. Steam at 50 Ibs. rushes through a pipe 3 inches diameter and 100 feet long with a

velocity at entrance of 100 feet per second ; find the loss of pressure. 4/= '03. Ans. 1*6.

REFERENCES.

For descriptive details and illustrations of the mechanism of steam engines the reader
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THURSTOX. History of the Growth of the Steam Engine. International Scientific
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RIGG. Practical Treatise on the Steam Engine. Spon.
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APPENDIX.

A. NOTES AND ADDENDA.

Notes marked [1890] . . . [1900] have been added on reprinting at the dates mentioned.

I.-STATICS OF STRUCTURES.

RANKINE'S treatise on Applied Mechanics appeared in 1858. The sixth edition

is quoted in the following notes by the letters A.M.

PAGE 2.
" The word STRESS has been adopted as a general term to comprehend

various forces which are exerted between contiguous bodies or parts of bodies,

and which are distributed over the surface of contact
"
(A.M., p. 68). It appears

from this that RANKINE'S use of the word is confined to internal forces, but by
some writers it is employed for all forces, whether external or internal. Ties and

struts are, however, defined as in the text (A.M., p. 132).

PAGE 3. The total load on the platform of a timber bridge carrying an

ordinary roadway may be assumed as 250 Ibs. per sq. ft., of which 120 represents
the weight of a closely packed crowd, and the remainder is the weight of the

roadway and platform. The weight of a timber roof (slate {or tile) is from 12 to

24 Ibs. per sq. ft. The travelling load on railway bridges is commonly estimated

at 1 ton per foot-run.

[1900.] On account of the continued increase in the weight of trains, the fore-

going estimate of the travelling load on railway bridges has long ceased to be

adequate. The weight of heavy locomotives now ranges from 70 to 100 tons and

the equivalent uniform load for a span of 70 to 100 feet is estimated by Mr. Farr

(Proc. I.C.E., Vol. CXLL, p. 12) at 1J to 2 tons per foot-run. For short spans
it is still greater, the load being concentrated on a limited number of axles.

PAGE 14. The diagram of forces for a funicular polygon under a vertical load

was (probably) first given by ROBISON in his treatise on Mechanical Philosophy,

Vol. I. Dr. Robison died in 1805, and this work is a collection of his papers

published in 1822.

PAGE 20. In the Saltash bridge the compression member of each girder is a

tube of elliptical section 15 feet in breadth, 8 feet in depth. A pair of chains, one

on each side, carry the platform.

PAGE 20. A. Of the various methods of constructing a parabola the most con-

venient is that in which a curve is drawn through the intersections of a set of

lines radiating from a point, with a set of equidistant lines drawn parallel to a
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fixed line : the radiating lines being drawn so as to cut off equal intercepts on

another fixed line. It can easily be proved that this curve is the funicular poly-

gon proper to a uniform load without introducing any properties of the parabola.

[1892.] The foregoing remark applies to purely graphical methods, but it is

much simpler to plot the products AK, BK (p. 39) for equidistant positions of K.

PAGE 21. Let P be the vertical tension of the chain at the point P, then, since

dyldx= P/H, where H is constant,

d2y_ 1 dP_io
dx~*~H* dx~JT

This equation is equally true if iv vary according to any law, and is therefore the

general differential equation of a cord or linear arch under any vertical load.

Particular cases are :

(1) The Common Catenary. Here if m be the weight of a unit of length of the

cord, ds an element of arc,

the equation then becomes, if H=m . c,

&*,

Divide by the right-hand member, multiply by dy/dx, and integrate, then

7y y
;]
=-

/ c

an equation which, by integration and a proper determination of the constants,

gives for the form of the curve

(2) The Catenary of Uniform Strength. Here, if T be the tension of the chain

atP,
dxT=m\ =w\-

t

"where X is the length equivalent to the stress (p. 80),

<*L]L-T_ . fk = i. (fo\*
dx*~H\ dx~\ \dx )

Integrating by the same process as before we find

x

X

as the equation to the curve.

In ordinary cases there is very little difference between the catenary and the

parabola, and these curves therefore are not of much interest.

If the form of an arch be not such as corresponds to the distribution of the load

on it, a horizontal force will be necessary for equilibrium, and the investigation
of the magnitude of this force is a problem of wider application. Let p be the

intensity of this force per unit of length of a vertical ordinate, then H is no

longer constant, but is given by
dH . dP , dy P
-^ = p, also -^ =w and -r=-m
dy dx dx H

three equations from which p can be found for any distribution of load and form
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of arch. This is the general problem of the linear arch. For examples see A.M.,

p. 199. If p= const., w= const., we obtain the ellipse as the proper form of arch

to sustain the pressure of a great depth of earth.

PAGE 30. On reciprocal diagrams of forces in general the reader is referred to

a memoir by CLERK MAXWELL in the Transactions of the Royal Society of Edin-

burgh for 1870.

The notation used in the text was suggested by HENRICI in the course of a dis-

cussion on a paper by CROFTON read before the Mathematical Society in 1871.

The figure in the text was drawn at the time by the writer to illustrate the

method. The notation was afterwards given by Bow in the treatise referred to.

PAGE 33. It is convenient to have a general term for the tendency to separate
into parts due to the action of external forces on a structure or part of a structure.

The term "straining action" used in the text is taken from Ch. II., Part III., of

a treatise on Shipbuilding (London, 1866), edited and in great part written by
RANKINE. By some writers this tendency to separate would be called "stress,"

and for a simple thrust or pull there is no objection to doing so (A.M., p. 132).

In more complex cases a separate word is preferable, as the conception is very
different. (Comp. p. 295.)

PAGE 44. In some of his engines, before the introduction of cast iron, WATT
employed a timber beam trussed with iron rods, forming a Warren girder in two

divisions with diagonals inclined at about 30 to the horizontal. This is perhaps
the earliest example of such a construction. (ROBISON, Vol. II., p. 14.)

TAGE 53. See Plate VIII., p. 463.

PAGE 56. The method here detailed is given by RANKINE in his work on Civil

Engineering (p. 242), who ascribes it to LATHAM. If M be the bending moment,
F the shearing force, w the load per foot-run, we have the equations

dF

which are the symbolical expression of the method. They may be used to find by

integration the bending moment and shearing force at any section due to a given

load, the constants of integration being found by considering that the bending
moment is zero at two points, which must be known if the problem is determinate.

(See Art. 38, p. 77. )

PAGE 65. See Ch. II., Part III., of the work on Shipbuilding, cited above.

PAGE 66 [1900]. On travelling loads the reader is referred in addition to the

works cited at the end of the chapter, to the paper by Mr. Farr already mentioned

in the note to p. 3.

PAGE 70. The properties of funicular polygons were first thoroughly investi-

gated by CULMANN, who based upon them a complete system of graphical calcula-

tion. In the semi-graphical methods employed in this treatise the integral

calculus, trigonometry, and even, to a great extent, algebra, are replaced by

geometrical constructions, but arithmetic is still used, and certain steps of the

various processes are conducted by numerical calculations. For example, in

Ch. II., the supporting forces of a loaded beam are found by the ordinary process

of taking moments. In the modern purely graphical methods every step is taken

graphically, whatever the calculation be. For example, the displacement of a
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vessel at a given draught, or her stability at a given angle of heel, would be found

without the use of arithmetic.

The pressure of other matter, and the amount of illustration required, have

prevented the writer from making any considerable use of these methods in this

treatise. At present they can hardly be considered suitable for an elementary
work, though, if graphical calculations were introduced into our schools, the case

might be different. A full account of them will be found in the treatises referred

to in the text (p. 74).

PAGE 72. The property of the funicular polygon expressed by the equation

Hy M follows immediately by comparing the equations

d?y_u^ d?M_
~dx~H' ~dy?~

W '

of which one gives the form of the polygon for a given load, and the other the

bending moment due to the same load.

Another fundamental property is that any two sides of the polygon must meet

on the line of action of the load on that part of the polygon which lies between

the two sides. When the load is vertical, and represented by a curve, as in

Fig. 36a, p. 62, this is equivalent to saying that any two tangents to the curve of

moments must intersect on the vertical through the centre of gravity of the area

of the curve of loads between the corresponding ordinates. (See p. 328.)

The funicular polygon, considered as a line of transmission of stress, will be

again referred to in the notes to Ch. XVII.

PAGE 79. The theory of linear arches is merely an introduction to the theory
of arches in general. Arches are of two kinds (1) the stone or brick arch j

(2) the metallic arch. In either case the theorem of the text is of equal import-
ance. In a blockwork arch the linear arch corresponding to the load shows the

direction and position of the resultant of the mutual action between the blocks,
and must therefore (p. 331) fall within the middle third of the arch ring.

(AM., p. 258.)

PAGE 82. See CLERK MAXWELL'S memoir referred to above (p. 599).

PAGE 86. For the effects of changes of temperature, see Ch. XVIII., p. 460.

PAGE 88. One of the most remarkable suspension bridges which have been

constructed is the East River Bridge at New York, opened in May, 1883. The

principal opening of this bridge is 1,600 feet span, the platform 85 feet wide, and
135 feet above the water. Cables, four in number, each of 145 square inches net

area, constructed of 19 steel wire ropes, each containing 278 wires. Estimated

strength of wire, 170,000 Ibs. per square inch.

II. KINEMATICS OF MACHINES.

PAGE 93. Referring to Figs. 1, 2, Plate II., p. Ill, it seems clear that the

sector pair CD, Fig. 1, differs kinematically much more from the turning pair BA
than it does from the sliding pair CD of Fig. 2. The writer, therefore, would
have been disposed to classify.the three lower pairs as the "

oscillating pair," the

"turning pair," and the "screw pair." This, however, would have probably
involved more considerable alterations in REULEAUX'S nomenclature than would
have been justified in a general elementary treatise.
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[1892.] Turning pairs are not unfrequently distinguished into lever pairs and

crank pairs as in the classification of crank chains (p. 112).

[1900.] In a paper read before the Royal Society in 1895, and published in

their Transactions (Vol. 187, p. 15), Professor Hearson proposes a classification of

mechanisms based on the combination of "turning,"
"
swinging," and "sliding"

motions. A new notation is introduced of a very simple and expressive character,

which may probably be found of great service in descriptive mechanism. It is

pointed out that the three-slide or "wedge" chain (p. Ill) may be bent into a

cylinder and then becomes a screw. Other important changes are proposed in

the nomenclature and methods employed by REULEAUX, which are worthy of

careful attention. Had the author been writing a new book advantage would

have been taken of these researches. It may be hoped that Professor Hearson

may pursue a subject which has been far too much neglected, and the study of

which, in the author's judgment, may be expected to lead to important results.

PAGE 95. The three incomplete lower pairs are considered by REULEAUX as

higher pairs. The writer here follows GRASHOF (Theoretische Maschinen-Lehre,
Band II. ).

PAGE 100. Diagrams of velocity are considered generally by CLERK MAXWELL

(Matter and Motion, p. 28). The application to mechanism is, so far as the

writer is aware, new.

The construction of curves of position and velocity of a piston has, for many
years past, formed a regular part of the course of instruction at Greenwich, and

formerly at South Kensington.

PAGE 103 [1895]. In a letter which appeared in Engineering of June 14th,

Mr. Archibald Sharp calls attention to a construction for the acceleration

of a piston due to Professor Klein of Lehigh University, U.S.A. This con-

struction, published in 1891, escaped the author's notice when revising this

book in 1892 ; it is much simpler and more useful than that given in the

text. (Ex. 11.)

Referring to Fig. 48, page 100, imagine a circle described on DP, the con-

necting rod, as diameter and a second circle with centre P the crank pin, and

radius PT. Let EE be the points of intersection of the two circles, then the

chord EE, produced if necessary, will cut the line of centres BDO in a point

Z, such that when the crank rotates uniformly

OZ _ Acceleration of Piston.

OP "Acceleration of Crank Pin.

For if the chord EE cut the rod DP in N, and OM be drawn perpendicular
to PT to meet PT in M,

NM=OZ. cos (p.

Now if OP represent the acceleration of the crank pin P, PM will represent
the resolved part of that acceleration in the direction of the rod DP; and if

/ be the acceleration of the cross head D y f . cos
<f>

will be the resolved part of

that acceleration along DP ; and therefore

/ . cos -PM= Length of rod x (Ang. Vel. )
2
,

in which equation the Ang. Vel. is that of the connecting rod when the angular

velocity of the crank is supposed unity. But the angular velocity-ratio of the
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rod and crank is, as is well known, PT/PD, and considering the circle on PD
as diameter,

PN . PD
whence it is clear that

and /= OZ.

[1900.] Referring again to the figure, and employing the usual notation as on

page 100,

PT_PT PO _cosfl sin0_l cos

PD~PO PZ>~cos0 aia0~n
and PM= PO.cos(d + (f>);

therefore, supposing the acceleration of the crank pin unity so that / is the

acceleration-ratio,

1 sin2 1 cos2
. . f= COS 6 - - --- + - -

rr-

n cos n 003^0

This is the exact formula for piston acceleration which may also be obtained by
differentiation of the exact formula for the velocity. It can be put in several

different forms, of which the present appears the simplest. It is arrived at in

a different way on p. 229. Since

an approximation can be obtained by the binomial theorem in powers of l/n.

The first three terms of the series give as a second approximation

f 1 . cos 26 -cos 40
/= cos 6 + - cos 20 + .

n 4?i3

Since 4?i3 would rarely be less than 100 in any practical case it is clear that for

all ordinary purposes the first approximation obtained by supposing cos unity
is amply sufficient, a point we shall have occasion to mention hereafter. (See

note top. 396.)

PAGE 105. In Owen's air compressor two such mechanisms (Fig. 50) are placed
face to face with the guide A and block D common, a steam piston is connected

with d and the air-pump piston with the corresponding point d of the other

mechanism. The object is to adapt the pressure of the steam to the varying

pressure of the air during compression.

PAGE 108. Stannah's pump has been introduced since the publication of

REULEAUX'S work. The example there given is a mechanism used in the polish-

ing of specula.

PAGE 111. The double-slider mechanism, with sliding pairs and turning pairs

alternating, is common in collections of mechanisms, but is not often found in

practice. It is omitted in REULEAUX'S enumeration. The example given

(Rapson's slide) and Stannah's pump were pointed out to the writer by Mr.

(now Prof.) Hearson.

PAGE 120 [1892]. This article (Art. 56) was numbered 53 in former editions

and placed earlier (p. 112). A new article (55, pages 118-120) has been added,

partly in order to introduce the conception of an instantaneous centre at once
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instead of postponing it to Ch. VII., and partly to explain the connection

between diagrams of velocity such as are here considered, and graphical methods

in common use based directly on the properties of the centre.

PAGE 161. The propositions relating to centrodes have long been known, and

are, perhaps, stated as clearly by BELANGER in his excellent treatise on kine-

matics (Trait^ de Kinematique. Paris, 1864) as by REULEAUX himself. In the

author's opinion it is the conception of a kinematic chain which constitutes

REULEATJX'S great contribution to the theory of mechanism. It is virtually a

complete reconstruction of the whole theory of machines, while the centrodes

are only a method of stating results which was already known. Kinematic

formula such as are employed by REULEAUX to indicate the component elements

of a mechanism, in the same manner as a chemical formula shows the composi-
tion of a substance, may be regarded as indispensable, if it be attempted to

proceed with the study of descriptive mechanism. (See above Note to p. 93.)

[1892.] In the first edition of this work the word centrode was spelt centroid

a term now very generally appropriated to the centre of mass of a body.

PAGE 170. The author has ventured on the introduction of the terms "
driving

pair," "working pair." They are simply the natural adaptation of the well-

known phrases "driving point
" and **

working point
"
to REIJLEAUX'S theory.

PAGE 173. The term "multiple chains" has also been introduced by the

author.

HI.-DYNAMICS OF MACHINES.

The impossibility of a perpetual motion and the practical application of the

principle of work were well understood by SMEATON and others of our great

engineers of the last century. Smeaton's papers, read before the Royal Society
in 1759-82, were long regarded as an engineering text-book by his successors.

The language in which their ideas are expressed, however, were not regarded
as consistent with NEWTON'S teaching, and this circumstance perhaps concealed

the real importance of the ideas themselves. At any rate, although the term

"energy" was proposed by YOUNG, no considerable use was made of them by
students of mechanical science until the publication by PONCELET, in 1829, of

the Introduction a la Me'caniquc Industrielle, a work which has had a great

influence on the study of mechanics. The third edition of this work (Paris,

1870), published after PONCELET'S death, will be quoted by the abbreviation

Mec. Ind. Poncelet's methods were explained, and considerable additions made

to the theory of machines, by MOSELEY in his Mechanical Principles of Engineer-

ing (London, 1843).

PAGE 182. This method was probably employed for the first time by WATT
in his expansion diagram. See ROBISON'S Mechanical Philosophy, Vol. II. It

is given by POXCELET (Mec. Ind., p. 66).

PAGE 184. The terms "statical" stability, "dynamical" stability, in re-

lation to vessels were introduced by MOSELEY (Phil. Trans., 1850). They have

been criticized by OSBORNE REYNOLDS, perhaps not without justice, but are too

firmly rooted to be displaced.

PAGE 185.
" Force is an action between two bodies, either causing or tend-

ing to cause, change in their relative rest or motion" (A.M., p. 15). The
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distinction between internal work and external work is due to PONCELET (Mec.

Ind., p. 30).

PAGE 187. The language in which writers on mechanics have expressed the

distinctive character of frictional resistances has been severely criticized by
REULEAUX in his notes to his work on the Kinematics of Machines (Kennedy's

translation, p. 595). The author by no means supposes that he can escape this

universal censure, for the difficulty of expressing abstract principles in a form

to which no objection can be made is almost insuperable. As, however, CLERK

MAXWELL remarks in reference to a different question, the language in which

a truth may be expressed is less important than the truth itself. Friction

always causes energy to disappear, and is never a source of mechanical energy

except indirectly through the agency of thermal energy. In mechanics this is

a distinction of such fundamental importance that it even justifies, in the

author's opinion, the use of such phrases as ' ' loss of energy.
"

The extension of the term "reversible" from a machine to the resistances

which are overcome by the machine has been ventured on, though with some

hesitation. The old term "active " can hardly be considered suitable.

PAGE 187. "Envisage sous ce point de vue, le principe de la transmission du

travail comprend impliciternent toutes les lois de Faction reciproque des forces,

sous un e"nonce qui en facilite infmitement les applications a la Mecanique

industrielle, qu'on pourrait nommer la Science du travail des forces. Des le

premier pas des jeunes Sieves dans 1'etude, cet e'nonce, en effet, se presente a eux

comme une sorte d'axiome evident par lui-m^me, et done la demonstration leur

semble superflue aussitdt qu'ils ont bien saisi ce qu'on entend par travail

mecanique, et qu'il leur est clairement demontre que ce travail, reduit en unite's

d'une certaine espece est dans les arts, 1'expression vraie de I'activite' des

forces" (Mec. Ind., p. 3). This passage from PONCELET is quoted to show

how clearly it was seen, even before the discovery of the conservation of

energy in its complete form, that the principle of work ought to be regarded

as fundamental, and not merely as a deduction from certain equations.

[1895.] In his interesting work on the development of dynamics, Professor

Mach traces the ideas of PONCELET to HUYGHENS, and expresses his conviction

that the difficulties which the conception of Work encountered were due to

unimportant historical circumstances. The development of dynamical science

might have proceeded on different lines, and the Principle of Work might
have been regarded as fundamental at a much earlier date. There can be on

question that it was a great misfortune to engineering science that such was

not the case. The absence of due recognition of a principle which is actually

forced on all those engaged in mechanical operations was the principal cause of

the difference which for so long a period existed, and still does exist to some

extent between the mechanics of the engineer and the mechanics of the schools.

An American translation of the book here referred to (Die Mechanik in ihrer

Entwickdung, Prague, 1883,) appeared at Chicago in 1893 under the title of The

Science of Mechanics (London : Watts & Co.). See especially pages 178, 248-251,

272.

PAGE 189. The modifications made here in the old statement of the principle

of work, as applied to machines, are necessary consequences of REULEAUX'S

conception of a kinematic chain.
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PAGE 193 [1892]. The author has little faith in the utility of "definitions"

as applied to such a conception as that of a machine, and the remarks here made

which have been somewhat amplified in the present edition must not be

understood as an attempt at constructing one.

PAGE 194 [1895]. A living agent works to best advantage when exerting a

certain effort at a certain speed during a day's work of a certain length. The

best effort and speed depend obviously on the strength and training of the

individual as well as on the kind of work done. Some examples may here be

given for a day's work of 8 hours.

EFFORT. SPEED. POWEK.

(Lbs.) (Feet per 1'.) (Ft.-Lbs. per 1'.)

MAX. Without a Machine, . 33 \ /5280

Working a Crank, . . 22/ \3520

HORSE. Direct Traction, . . 130 250 32,500

Working a Machine, . 100 160 16,000

It will be observed that the power of a horse on this estimate when directly

employed is little less than the conventional horse power of 33,000 ft.-lbs. per

minute introduced by WATT, it is said, as the result of experiments on the work

done by the powerful dray horses employed in London breweries. RANKINE'S

estimate (Steam Engine and other Prime Movers, page 89,) of the power of an

ordinary horse is much less, being 26,000 ft.-lbs. per 1', and he also gives

smaller values for the work of men.

When working at best speed the power during a whole day's work is a

maximum, but all living agents can work at a much greater speed for a short

interval developing from 3 to 5 times as much power as when the work is

continuous. Thus strong men working a fire engine at two-minute intervals

can develop half-a-horse power or even more. Empirical formulas have been

constructed showing the relation between the power exerted at given effort

and speed for a given time with that developed under the most favourable

circumstances, but they can hardly be considered as satisfactory.

PAGE 196. To avoid misapprehension, it may here be stated that in this,

as much as in the preceding section, the object is to explain and to verify the

principle of work : not in any sense to demonstrate it.

PAGE 198. Except in the use of the word "kinetic" instead of "actual," the

statement here is in the form given by RANKINE (A.M., p. 500). The author

is entirely of (the late) Mr. W. R. Browne's opinion that this is the best form

and has always used it himself. The idea of energy being stored in a body
in motion perhaps first appears clearly in MOSELEY'S treatise.

PAGES 203-207 [1892]. Art. 103 on oscillations has been re-written, with

additions. The formula for the length of the simple equivalent pendulum on

page 206 was printed incorrectly in the first edition an error corrected in the

second. Various other changes and additions have been introduced in the

second half of this chapter for the sake of clearness and to make it harmonize

better with the rest of the book. The infinite series, by which the time of

vibration of a pendulum is given, will be found in most treatises on the kinetics

of a particle. See, for example, Price's Infinitesimal Calcidus, Vol. III., p. 549.
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PAGE 212. The construction by means of which curves of crank effort are

obtained was given by PONCELET, but it does not appear chat any such curves

were actually drawn until they were given by ARMENGAUD in his treatise on

the Steam Engine. In Fig 97, to save room, the curves are placed half above

and half below the base, but otherwise the figure is that of ARMENGAUD ; it

is far the most convenient form for applications.

PAGE 220. The stress due to centrifugal action on the rim of a wheel is

given by a formula (p. 288) which may be written in the simple form V2= g\,

where X is the length due to the stress (p. 80). A velocity of 80 feet per
second gives a length of only 200 feet, or about one-fifth of the stress cast iron

would safely bear in tension. The inequality of distribution produced by
inextensible arms tying together opposite points on the rim of the wheel

doubtless increases the maximum stress ; but the principal reason for the low

limit required for safety is the alternate bending backwards and forwards of

the arms as energy is alternately stored and restored by the wheel. The speed
is occasionally increased to 100 feet per second. The author is indebted to

Prof. Unwin for the information that when the wheel is in segments the speed
should be limited to 40 feet per second.

PAGE 222. The method here given occurred to the author many years back
;

but it is believed to have been previously published in Engineering.

PAGE 226 [1900]. As regards the effect of the varying speed of the crank on

the inertia-pressure of a piston, it will be seen on reference to page 102 that the

part of the piston acceleration due to this cause is

while the part considered in this article is

/2
= ( cos 6 + - cos 26 \E

\ n ) a

Evidently the average relative importance of these parts is measured by the ratio

of d Vo/dt, the tangential acceleration of the crank pin to f
r 2

/a the radial accelera-

tion. If now we write q . F for A V where q is a co-efficient as on page 220, and

m . TQ for A where 77
is the period and m a fraction, the mean value ofdVJdt

for the change considered will be

rfFo =l o = 17
dt m '

ro m
'

2ira

and therefore

Ratio of accelerations = pr^-
2?rm

A change of 10 per cent, in the speed taking place in one-tenth of a revolution,

or of 25 per cent, in one quarter of a revolution, would make q/m unity, and it is

evident that when an engine is running steadily this is an extreme case. In

general the value of q/m must be much less. It is true that the maximum value

of dV /dt is greater than the mean, and under certain conditions it may be very
much greater ; but on the whole it may be said that the average error of the

supposition that the crank rotates uniformly is not of much importance. But if

the maximum d V [dt occurs near the middle of the stroke, as it often will, where

/2 is small and j\ greatest, the inertia-curve for that part of the stroke will be

completely altered.
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PAGE 228 [1892]. The investigation here given of the effect of the angular
motion of a connecting rod has been added to the present (1892) edition.

Art. Ill (page 231) on pumping engines has also been added to render the

chapter less incomplete.

PAGE 229 [1900]. The investigation of the exact value of the inertia-pressure
of a connecting rod is given now for the first time. On the representation of a

curve of crank effort by a Fourier series, see Note to p. 395.

PAGE 240. The Friction Circle was defined and its use explained by RANKINE
in his treatise on Milhvork and Machinery, p. 428.

PAGE 265 [1895]. The adoption of metric measures in engineering practice
was recommended by a committee of engineers 40 years ago, and in 1868 a

Bill passed its second reading in the House of Commons by a large majority
for rendering it compulsory within three years. In June of the present year a

committee of the House has reported in favour of its compulsory introduction

in two years. The inconvenience of a change to the present generation of

engineers would be very great, but it is probable, even in the absence of

compulsion, that the pressure of foreign competition may render it inevitable

before very long. From the point of view of abstract science this change,

however, is only part of that which is desirable or even necessary : for the

metric system just as much as our own is a gravitation system of measurement,
that is the unit of force instead of being derived from the unit quantity of

matter with due regard to the units of time and space is taken as the force

with which the unit quantity of matter is drawn to the ground at a given

point on the earth's surface.

As explained in the text this renders it necessary to dissociate the unit of

inertia from the unit quantity of matter, and to use the words "weight,"

"pound," "kilogramme," etc., in a double sense since they are applied indis-

criminately to forces and to quantities of matter. Most modern writers on

mechanics when using gravitation measure seek to avoid ambiguity as regards
the term "weight" by confining the use of the word to the force of gravitation
and employing the term "mass" to signify the quantity of matter determined

by weighing as well as the inertia measured by the quotient W\g. It may
be questioned whether the ambiguity thus introduced is not more misleading
than the original, and the term "weight" has therefore been used in its old

meaning throughout this work. It might be avoided perhaps by calling

the quotient Wfg the "Inertia" of the body, but the author has not felt at

liberty to introduce a new term in this connection.

In the absolute system of measurement the unit of force is dissociated from

the unit quantity of matter, and so taken that the units of inertia and quantity
of matter become identical. To do this it is only necessary to take as a unit

of force the force necessary to generate unit velocity in unit time in the unit

quantity of matter. A special name is then given to the unit of force which

is now entirely independent of gravitation. In the c.G.S. system this unit is

called the Dyne.
The system possesses undoubted advantages on the score of clearness

and precision, but the practical difficulty of dissociating the unit of force

from the unit of quantity of matter would be very great in any case. In the

C.G.S. system the difficulty is greatly aggravated by the smallness of the units

chosen, the force called 1 kilogramme in gravitation metric measure being no
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less than 981,000 dynes. No force commonly occurring in practice therefore

can be expressed in dynes without multiplication by some large power of 10

subject to a great liability to error in the index. It is probable, however, that

some modified form of the C.G.S. system may ultimately be found which is

capable of being practically used. Through the agency of the electrical engineer

some of its nomenclature is becoming well known.

PAGE 268. The distinction between internal and external kinetic energy
is pointed out by RANKINE (A.M., p. 508).

PAGE 271. On Governors in general the reader is referred to a paper by
CLERK MAXWELL in the Proceedings of the Royal Society, No. 100, 1868. A
full account of the principles of construction of centrifugal regulators will be

found in Tkeoretische Maschinen-Lehre, Band III., Leipzig, 1879, von. Dr. F.

Grashof.

PAGE 280 [1900]. The internal balance of forces in machines at rest

considered in Art. 142 is only complete in machines which are actually or

virtually self-contained (compare p. 193). In motors or machines driven from

a motor the balance is rarely perfect because the connection between the

driving pair and the working pair is not sufficient to completely close the

circuit. Thus in the vertical engine taken as an example, suppose the engine

to be employed in driving a screw ; the resistance to the rotation of the screw

arises from water outside the vessel and disconnected from it : the moment of

crank effort is therefore unbalanced and tends to heel the vessel over : while

any variation in that moment in the course of the revolution will furnish a

periodic couple tending to produce vibration.

PAGE 284. The utility of balance weights, sufficiently heavy to neutralize

completely the horizontal forces, is by no means universally admitted. The

vertical forces introduced are very great (Ex. 17, p. 291), and, should they

synchronize with the period of vertical oscillation of the engine on its springs,

most dangerous results might follow.

PAGE 285 [1900]. The investigation given in Art. 144A of the effect of the

inertia of a connecting rod on the primary and secondary inertia-forces has

been added to this edition.

PAGE 288 [1900]. As a simple example of a self-balanced engine may be

taken the case of a 3-cylinder engine : one cylinder A being between the other

two, 5j and B^, but on the opposite side of the crank shaft. The centre lines

of the three cylinders are all in the same plane, but crank A is at 180 to

cranks B^ Bz . For simplicity let the cranks S
lt B.2 be of equal length, but

in any proportion to crank A : the ratio of connecting rod to crank being the

same in all. Evidently in such an arrangement, the rods will always be

parallel and all the reciprocating parts similarly situated. If they be similar

and the weights for A and B1} B2 jointly, be inversely as the cranks; the

centre of gravity of the whole must always lie in the axis of the shaft, and

there can be no alternating forces. And if the weights of B, B% are inversely

as the distances apart of the cranks there can be no alternating couples.

The engine therefore is completely balanced so far as regards the inertia

forces, and would commonly be described as "self-balanced," but the balance

does not include the forces mentioned in the note to p. 280.
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IV.-STIFFNESS AND STRENGTH OF MATERIALS.

PAGE 317 [1892]. The calculation here given (Art. 161) relating to beams of

tmiform strength, presupposes that the transverse section of the beam varies

slowly, a condition which of course is very far from being satisfied near the ends

of the beam. Any attempt to take into account the variation of section, would,

however, only lead to results of much greater complexity without any correspond-

ing increase in their utility. The forms obtained are purely ideal, being incapable
of being practically used without the addition of material necessary to provide

against straining actions other than bending.

PAGE 332. If an elastic solid or, more generally, a set of connected pieces of

perfectly elastic material, be under the action of any number of forces Ply P%, ...,

and any number of couples A/j, M.2 , ... ,
in equilibrium, the value of U must be

where xlt xz , ...
,
are the displacements of the points of application of the forces

and ilt i.2 ,
... , the angular displacements of the arms of the couples. For if the

forces gradually increase from zero, always remaining distributed in the same

way, each part of the load (P) will exert the energy ^Px, since the space moved

through (x) must clearly be proportional to P. The same argument applies

mutatis mutandis to couples. Hence the whole energy exerted must be given by
the above formula, and this is always represented by the energy stored up in the

system when the parts are perfectly elastic.

Now, imagine the solid immoveably fixed at three or more points, and let one

of the forces P-^ be increased by a small quantity 5Pa ,
all the other forces retaining

their original magnitudes. The effect of this is that the points of application of

all the forces move through certain small spaces (dx), and the arms of all the

couples through certain small angles (Si). The total additional work done will be

But, on differentiating the value of U on the supposition that Pj alone varies, we
find

and therefore by substitution

8(T=x1 . 8/V
A similar equation is derived by supposing one of the couples to vary, and we
obtain the general equations

dU_ dU_.
dP~ :

'' dM~*'

that is, the displacements are the partial differential co-efficients of U with

respect to the forces.

The forces to be considered are partly weights or other loads of known mag-

nitude, and partly arise from the stress between the bounding surfaces (real or

ideal) of the solid and external bodies. The boundary forces must be consistent

with statical equilibrium, but subject to this condition are determined by

equations found by differentiating the function U. In particular, when the

bounding surface is fixed, the partial differential co-efficients of U with respect to

the corresponding forces must be zero. The value of U is then, in most cases

(perhaps always), a minimum, as stated in the text.

It appears then that whenever the elastic potential can be found and expressed

in terms of the external and boundary forces acting on the system, the necessary

equations for determining the boundary forces and the deflection produced by the

C.M. 2 Q
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external forces can all be found by differentiation of U and by the conditions of

statical equilibrium. As an example, take the case of a beam loaded in any way
and fixed at the ends. Let the beam be AB (Fig. 28), and let the notation be as

on pages 40, 41, then (page 331)

Substitute for M by the formula on page 41, and integrate between the limits I

and o, we find

2EI . U= J (MA*+MAMB +MB
2
)l

The integrals are most conveniently expressed in terms of, S the area of the

curve of moments (m), z the distance of its centre of gravity from A
,
and y the

height of its centre of gravity above AB. The formula then becomes, dividing

by 2,

El. U=

The potential is thus expressed in terms of the load on the beam and the bending
moments at its ends. The latter may have any values we please consistently

with statical equilibrium, and the partial differential co-efficients of 7 with respect

to MAMB will be the slopes at the ends. In particular, if the ends are fixed

horizontally,

equations which determine MAMB ,
and express that the function U is then a

minimum. In the particular case of a symmetrical load

The value given on page 326 for the particular case of a uniform load will be found

to agree with this result.

The potential for a continuous beam may be immediately deduced, by addition

of the potentials for each span taken separately, in terms of the bending moments
at the points of support. The theorem of three moments (page 330) for the case

of supports on the same level, then follows at once by differentiating with respect
to the moment at the middle point of support.

In all cases, differentiation of U with respect to any portion of the external

load will give the deflection at the point where that load is applied.

In applying this method care must be taken that the supporting forces, in terms

of which the potential is expressed, are independent : if they are not, then the

equations of statical equilibrium will be conditions subject to which U will be a

minimum. To take a simple example, suppose a perfectly rigid four-legged table

standing on four similar elastic supports and loaded in any way, then

where PI} P2 ^*3> ^*4 are tne Par"ts of the whole load resting 011 each leg, and n is

some multiplier. Here the forces P are partly determined by three statical

equations for equilibrium of the table, and only one additional equation is found

by making U a minimum.
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This method was explained and applied to a number of examples in some paper

by the author, which appeared in the Philosophical Magazine for 1865 ; the

demonstrations there given, however, were insufficient. The author at that time

supposed it to be new, but it had already been given in a memoir by M. E. F.

MEXABREA. Comptes Rendus, vol. xlvi. (1858), page 1056.

PAGE 338. The lateral disturbance is here supposed small. With a larger

disturbance the pillar would return even if the value of W were equal to 27/ 2
,

and with a greater value would bend over into a position of equilibrium given by
the formula

w=( *e Y. 2^7
,

where 6 is the angle subtended by the circular arc into which the pillar is bent.

PAGE 340. When the pillar is absolutely straight and homogeneous and of

uniform transverse section, the lateral deflection due to an actual deviation a

is given by the formula

a
, .

cos ml

and the formula for the effect of deviation becomes

,P V 2

In any actual example, however, this formula would not be exact any more

than that given in the text. Each particular example will have its own formula.

The result of all such formulas, however, must be nearly the same for a small

deviation. Further, a great proportional change in the deviation, always suppos-

ing it small, produces little change in the crushing load, and this probably

explains why experiment gives tolerably definite values of the crushing load

although its precise amount must depend on accidental circumstances.

PAGE 339 [1890], The method here adopted of proving EULER'S formulae is to

assume the curve in which the pillar bends to be a curve of sines, and then to

show that the sectional area is constant, a process which is the converse of that

employed in the first edition of this work. Being more simple, the demonstration

has been placed in the text instead of being relegated as before to the Appendix.
It is worth remarking that the co-efficient of elasticity of flexion employed in

them is not, strictly speaking, Young's modulus (E) but E-p where p is the

intensity of the stress on the cross section. This, though theoretically interesting,

is of no importance in practice, because of the extreme smallness of the ratio p/E
in all practical cases. The case where one end of the pillar is fixed and one

rounded was first, it is believed, correctly treated by GRASHOF in 1866.

In a paper published in the Proceedings of the Cambridge Philosophical Society,

Vol. IV., Part II., GREEXHILL has determined the greatest height of a vertical pole

which is consistent with stability, that is the greatest length of pole of given

diameter which will stand upright without bending over laterally at the summit.

Let \ = E/iv be the length due to a stress E for a given material, E being as usual

Young's modulus. This method of measuring a stress is explained on page 80.

Then for a pole of uniform transverse section of radius a the greatest height is

given by the simple formula
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in which all the quantities are given in the same units. For a pole of radius a at

the base diminishing in section uniformly to zero at the summit so that the longi-

tudinal section is triangular the same formula serves, but the co-efficient is v7'63,

or 1
-

97 instead of 1 '26. For a pole of pinewood 6' diameter at the base the greatest

height is about 90 f$et in the first case and 140 in the second. The stress (wh) on

the transverse section at the base must, as appears from what is said in the text,

be much less than the crushing stress (/) of the material, a condition which

would generally be satisfied. These formulae are of considerable theoretical

interest and are applied in the paper cited to questions relating to the growth of

trees : it must be remembered, however, that the effect of wind pressure is

neglected, a circumstance which limits considerably the practical application of

the formulae.

PAGE 347 [1890]. A formula, corresponding to EULER'S formula for pillars, has

been obtained for the collapse of a flue of unlimited length, by LEVY and HALPHEN.

This formula as quoted by GREENHILL in a letter which will be found in the

Enqineer for February 1888 is

Et

where t is the thickness, a the radius, both reckoned in inches, while E as usual is

Young's modulus, and p the collapsing pressure. The corresponding form of

Gordon's formula deduced as on page 340 will be

'-5
p=
~:ct2

where the " theoretical
" value of the constant c is

This formula may be expected, with suitable values of the constants, to give
the collapsing pressure of a flue, the length of which is so great as to have no

sensible influence on its strength. In short lengths the strength is greater as

described in the text.

Thrust and Torsion. When it is a question of strength only this case is dealt

with on the principles explained in Chapter XVII. GREENHILL has, however,

pointed out that, if the unsupported length of the shaft be too great, it is necessary

to consider its stability. Let P be the end thrust on the shaft, T the twisting

moment, then the greatest unsupported length consistent with stability is given

by the formula

Let P be the greatest load which by EULER'S formula this length of shaft would

carry considered as a pillar, and let T be the greatest twisting moment consistent

with strength, /being the co-efficient of resistance to twisting, then the formula

may be written, supposing d the diameter,

or using p , p to represent the stress per square inch of section
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Asf/E is necessarily a very small fraction and T/T is fractional this shows that

there can be very little difference between p and p ,
so that unless these quantities

themselves be small, that is the unsupported length of the shaft very great, the

twisting makes no sensible difference in the stability of the shaft. The formula,

therefore, in ordinary cases, though theoretically interesting, is not of practical

value. It will be found with numerical applications in a paper read by Professor

Greenhill before the Institution of Mechanical Engineers in 1883.

PAGE 358 [1900]. The formula here given for the torsion of a tube of non-

circular section has been inserted in the present edition chiefly in order to give

some idea of the reason why the maximum stress in shafts generally occurs at

points on the circumference nearest the centre, and as leading directly to a

formula for the torsion of shafts which is exact for elliptic sections. It is not

probable that it is exact for any other form of section, and in cases like that of a

rail where the curvature of the profile is partly concave it can hardly be even

approximate.
The corresponding formula for the rigidity of a tube under torsion is given on

page 422, and also appears now for the first time.

PAGE 360. The formulae given in different books for the moment of resistance

of a shaft of rectangular section exhibit considerable discrepancies. COULOMB, to

whom the formula for a circular section is due, supposed that in every case

r=f.-,
r
\

where I is the polar moment of inertia and rx is the outside radius. In a

rectangular section of sides a and b this gives

which for a square section of side h becomes

T= -2357/. hs
.

If these results were correct it would appear that a shaft of given sectional area

was stronger the more unequal the sides were, a result quite contrary to experi-

ence. In a memoir on torsion published in the Memoires de Vlnstitut for 1856,

BARRE DE SAINT VENANT investigated the question thoroughly, and obtained the

results given in the text.

RANKINE (A.M., page 358) gives '281 fh3 as the result of SAINT VENANT'S

calculations without further explanation. This value is greater than that given

by COULOMB'S hypothesis, and is certainly too large.

[1890, 1892.] That the resistance of a- shaft to torsion was not proportional to

the ratio I\r had long been recognized, and prior to the acceptance of ST. VENANT'S

results the formula

originally given by CAUCHY was much employed. This formula agreeswith COULOMB

for a square section, the result being about 11 per cent, greater than that given by

ST. VENANT. The error diminishes as the inequality of the sides increases and

vanishes when the ratio (n) of the sides is very small. The corresponding ratio of

strengths of a rectangular and a circular section of the same area is
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a result given in former editions of this work after modification, by replacing the

constant factor '8353 by '738, so as to make it agree with ST. VKNANT for square
sections. The error is then very small for moderate values of n

;
but in the present

[1892] edition it has been thought advisable to give ST. VENANT'S own formula, the

maximum error of which is estimated by him as 4 per cent.

[1895.] The error of ST. VENANT'S formula in practical cases may be diminished,

as pointed out in the text, by a slight modification of the constants. The formula

in common use by the best German technical writers at the present time appears
to be

which for values of j3 greater than '5 may be considered as a rough approximation,
but for small values of j8 gives values of T which are much too small. The

investigation given by BACH in his treatise referred to further on is unsatisfactory

as the distribution of stress assumed is not shown to be consistent with the

corresponding warping of the section. From a letter in Nature (June 1888) by
Mr. Dewar it appears that RANKINE'S value was obtained by taking the angle of

torsion as a measure of the strain produced.

PAGE 367 [1892]. The formula for the distribution of shearing stress on a section

has in this [1892] edition been put in a more simple and general form, and its true

interpretation pointed out. See also Note to page 416 further on. In an excellent

paper, which will be found in the Transactions of the Institution of Naval Architects

for 1890, the late Professor P. Jenkins has applied this formula to investigate
the effects of longitudinal shearing stress in a vessel. Professor Jenkins was a

former distinguished student of the Royal Naval College, and the author is happy
to have this opportunity of expressing his regret at his premature decease.

PAGE 388 [1895]. The subject of vibration has of late acquired increased im-

portance in consequence of experimental investigations which have been made
on the vibration of vessels and girder bridges. A brief explanation of the most

important points relating to it has therefore been added to the present edition in

the articles which follow in the text.

On reading Herr Schlick's interesting paper of 1894 the author felt some doubt

whether the values of the constants quoted in the text were for complete or single

vibrations. In a letter dated April 13th, 1895, Herr Schlick kindly informed him

that complete vibrations were meant, and at the same time pointed out that the

result would depend very much on the allowances made in calculating the moment
of inertia I. In the method actually adopted the sections of angle irons and

similar pieces were supposed concentrated in their centre lines, no allowance was

made for reduction of area by rivet holes, and no account was taken of bilge

stringers, keelsons, etc.

It will be observed that the constant is 23 per cent, greater for a torpedo-boat

destroyer than for a merchant vessel, showing that the distribution of the weight
is a leading element in the question as might be anticipated from what is said in

the text. Unequal distribution and concentration of the weight in the neighbour-

hood of the nodes increase the frequency and more than compensate for the

influence of the causes pointed out which tend to reduce it.

To the examples given in the text on the effect of synchronism may be added

the case of a locomotive traversing a girder bridge. In order to balance the

reciprocating parts heavy counter-balance weights are necessary attached to the
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driving wheels, and these weights produce periodic vertical forces of great

magnitude (Ex. 17, p. 291), the frequency of which is equal to the number of

revolutions per 1" of the wheels. When the speed reaches a certain limit experi-
ence shows that a bridge over which the locomotive is passing vibrates greatly,

an effect due to synchronism between the period of a revolution and the period of

free vibration of the structure.

The strength of a screw shaft to resist the combination of thrust and torsion to

which it is subject is diminished by centrifugal action, a question which has been

discussed by Professor Greenhill.

PAGE 393 [1892]. In a paper published in the Transactions of the Institution of
Naval Architects for 1892, Mr. Yarrow conclusively showed that the vibration of

torpedo boats is almost entirely due to the reciprocating parts of the engines and

can be got rid of by a proper system of balancing.

PAGE 395 [1900]. The statement made in the text (Art. 203) depends on the

mathematical proposition that any periodic function of may be fully expressed by
a series of sines or cosines of 6, 20, 3d, .... This series is called Fourier's Series,

a full and clear account of which will be found in Professor Byerly's Treatise on

Fourier's Series (Boston, U.S.A., 1895). In its complete form a Fourier's Series

consists (1) of a constant term representing the average value of the function,

(2) of a series of sines, (3) of a series of cosines, but it generally can be simplified

by considering the nature of the function. In the case considered in this article

the function is the acceleration-ratio of a piston that is (p. 602)

1 sin2 1 cos2

/=cos0--.- + -. T-,
n cos

<f>
n cos3

a formula true for all values of 6. This is unchanged when 6 is changed into -
6,

so that the series can contain no sines, and only the first term is changed when
is changed into TT + 0, so that there can be no cosines of odd multiples of 0. Hence

the Fourier Series for / must be

f=cos0 +A . cos 20 + JB . cos40+....

The co-efficients A, B ... of a Fourier Series are found by a process of integration

when the integrations can be performed, or mechanically by an instrument of the

nature of a planimeter, or calculated approximately. In the present case in

the note already cited, the series is given to a second approximation, but the

first approximation used in the text is always sufficient.

If instead of the acceleration-ratio we consider the velocity-ratio, the first

approximation to which is

^ = sin + J- sin 20 (p. 102),
VQ <&n

we find that it is true for all values of and therefore is itself the Fourier Series

to the same approximation. For values of between and TT the ratio of the

crank effort (R) to the piston pressure (P) is given by the same formula (p. 191),

but this is now 110 longer the Fourier Series because it is not true for all values

of 0. For values of between TT and 2?r the steam pressure is transferred to the

other side of the piston and the formula is

--. sin 20.
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This discontinuity in the ordinary formulae for the crank effort is one of the-

principal reasons why graphical methods are almost exclusively used in such

questions. To find the form of the Fourier Series, consider that the crank effort is

always in the same direction and its average value is 2P/TT ;
the series therefore

contains a constant term. Also it is unaltered when 6 is changed into 2ir 6,

so that the series can contain no sines and must consist of two series of cosines.

The first of these representing sin 6 for values of 6 between and IT and sin 6

between TT and 2?r can contain only even multiples of 6. The second representing
sin 26 between the same limits contains only odd multiples of 6. The co-

efficients are found by integration. Hence omitting higher terms

^_4fl cos20 cos40 1/COS0 cos 30 \)

7>~w\2 3~ ~I5~
H

~?A~3 5 jj"

This formula gives 7? when P is constant. When P varies, the series contains

sines as well as cosines ;
the odd multiples of 8 as above representing the effect

of obliquity. We have therefore

R 2
^- =-+A . cos20 + #. sin 20. +...,
L m 7r

where Pm is the mean pressure and A, B, etc., are constants.

The idea of employing a Fourier Series to represent a curve of crank effort is

due to Professor Lorenz, and its advantage is that, being true for all values of 0,

any number of cranks at any angles may be superposed, and a formula found for

the combination. In his paper read before the Institution of Naval Architects,

and published in their Transactions for the present year (1900), Professor Lorenz

finds the general conditions that the co-efficients of cos 20, sin 20, may vanish so

that the series may contain only terms of a higher order. These conditions are

taken as being approximately the conditions for greatest uniformity of crank

effort, and it is pointed out that they are not inconsistent with the con-

ditions necessary for the balance of the inertia forces. Obliquity howrever is

neglected, and, as the formula given above for a constant pressure shows, the

effect of obliquity is often very important. The method being new and capable

of many applications, it has been thought proper to notice it here.

Vibration in a vessel due to inequality in the turning moment on a screw shaft

must not be confounded with the bending vibrations due to inequality in the

action of the water on the blades of a screw. It is torsional, a kind of vibration

which according to Schlick really does occur (Trans. I.N.A., 1895, p. 292).

PAGE 396 [1900]. Since 1892 the subject of the vibration of vessels and the

balancing of marine engines has been very extensively discussed in papers for the

most part appearing in the Transactions of the Institution of Naval Architects. It

has been placed on a solid foundation by the experimental researches combined

with theoretical investigation of Herr Otto Schlick, some of whose earlier results

are given in the text. Also may be mentioned papers by Mr. Mallock,

Mr. Macfarlane Gray, Professor Dalby, and others. The author regrets that the

limits of this work render it impossible to do more than allude to these researches.

Article 203A on the centrifugal whirling of shafts has been added to the

present edition, as the subject has of late become one of considerable importance.

PAGE 403. A line of stress may be regarded as the geometrical axis of a curved

rod which is in tension or compression, as the case may be, under the action of a

load perpendicular to itself. The whole solid, therefore, may be conceived as made
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up of a set of rods, each of which is a rope of linear arch in equilibrium under a

transverse load. Each rod transmits stress in the direction of its length. If there

be no lateral stress the rods are straight, but otherwise they are curved. In a

framework structure loaded at the joints, the bars of the frame may be regarded
as lines of stress except at the joints where those lines assume complex forms. The

tendency of modern science is to regard all force as being due to the transmission

of stress through a medium of some kind, even in such cases as that of gravity,

where no medium perceptible to our senses exists. All forces on this conception

are represented by a system of lines of stress.

PAGE 405 [1892]. Except in beams of / section, the effect of shearing in

increasing the maximum stress and strain due to bending is unimportant, even

when the length is only two or three times the depth. This remark, however,

does not hold good. for materials such as timber, which have a relatively small

resistance to longitudinal shearing. Timber beams not unfrequently give way by

longitudinal shearing at the neutral surface.

PAGE 410. The theory of elastic solids has been much more fully treated with

reference to practical application by GRASHOF, SAINT VENANT, and other con-

tinental writers than in any English treatise. The author is chiefly indebted to

GRASHOF'S work, Die Festiykeits lehre (Berlin, 1866), a new edition of which

appeared in 1878. An attempt has been made in the present work to distinguish

clearly between those parts of the subject which are necessarily true either exactly
or to a degree of approximation which is capable of being exactly calculated, and

those parts which depend on hypotheses more or less probable. The first are

placed in the present chapter ; the second in the chapter which follows.

[1892.] Since the publication (1884) of the present work, a part of the late Dr.

Todhunter's History of the Elasticity and Strength of Material* has appeared.
The book has been edited and put into its present form by Professor Karl

Pearson, Vol. I. containing the early history of the subject, and an exhaustive

account of all that has been done up to the year 1850 appeared in 1886. The first

chapter of the second volume, entirely written by Professor Pearson, was published
in 1889 as a separate work entitled the Elastical Eestarches of Barre de St.

Venant. It covers the whole of ST. VENANT'S labours on the subject of Elasticity,

extending over a period of 35 years.

[1895.] The second volume of the History has since appeared, in which the

work just mentioned is incorporated, and to which therefore references are made.

The standard German treatise on the technical applications of the theory of

elasticity is at present Professor Bach's Elasticitdl und Festiykeit, Berlin, 1890,

to which valuable work the author is indebted for information and corrections,

especially in Chap. XVIII.

PAGE 412. Attempts have been made to prove by theoretical reasoning that, in

a perfectly elastic isotropic material, the value of m is necessarily 4, and the

demonstration is still considered valid by some authorities, while others consider

that such reasoning simply shows that matter is not constituted in the way
supposed in the.demonstration. It is difficult to obtain material which is really

perfectly isotropic, but all the experimental evidence at present goes to show that

m may have various values.

PAGE 416. Some other points in the theory of bending may here be

noticed: (1) The effect of curvature is that a lateral stress // must exist on,
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the longitudinal layers given by the same equation as is used for thick hollow

cylinders under internal fluid pressure (page 410), viz.,

Replacing r by R + y, and p by the value given in the text we find

d . , . Ey
5"*>=!?'

and therefore, by integration,

W&
pr -^ + constant.

Since p' is zero at the outer surface where y %h,

where pl
is the stress due to the bending at the outer surface, and r is replaced by

its mean value It. At the neutral surface p' is greatest, but even there has only

the very small value

This lateral stress is therefore never great enough to have any perceptible

influence on the elasticity of the layers.

(2) It has been stated on page 299 for the case of tension, page 311 for the case

of bending, and page 355 for the case of torsion, that the distribution of stress on

any transverse section is the same, however the straining forces are applied to a

bar, provided only that their resultant be given in magnitude and position. This

may be regarded as a general principle applicable in all cases. Any other distri-

bution of stress produced on a transverse section by friction or other external

forces applied directly to it will change with great rapidity on passing to transverse

sections not directly exposed to such forces. It is, however, generally necessary

to provide additional strength at these exceptional sections.

PAGE 416 [1895]. Assuming the transverse curvature circular the elevation (u)

of the sides of the beam above the centre is given by the formula

62 p_ I2 M_ 362 M
''~SmE

'

y~8mE
'

I ~2mEh*
'

A'

obtained on page 413, for a rectangular section.

Now the value of du/dx is evidently the difference of steepness of a central line

traced on the side of the bar and the geometrical axis of the bar. Hence if Aq
be the difference of shear at the side and at the centre, g the mean shear over

the whole section,

du 362

For a square section assuming m 4 and remembering that |g is the mean shear

along the neutral axis, we find that the difference between the shear at the side

where it is a maximum and the shear at the centre where it is a minimum is

one-tenth the mean. The maximum then exceeds the mean by about 5 per cent.

This rough calculation is given for the purpose of illustrating the remarks in the

text, but as the formula for u is not exact when shearing is taken into account,

accurate numerical results can only be obtained by ST. VENANT'S calculations.
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PAGE 417 [1895]. The formulas for plates supported at the edges, and exposed
to normal forces, have long been known in two or three simple cases, and are

frequently quoted. Unfortunately these formula? have not as yet been sufficiently

verified by experiment and have therefore been omitted in the present work

notwithstanding the importance of the question. Readers who wish to see the

present state of the subject are referred to Professor Bach's small work, Versuche

iiber die. Wider-standsfahiykeit ebener Flatten. Berlin, 1891.

PAGE 420. The lines of stress for a thick hollow cylinder under internal fluid

pressure, and also under the action of tangential stress applied as in Ex. 6, p. 406,

will be found to be equiangular spirals, the angle of the spiral depending on the

proportion between the fluid stress and the tangential stress.

The verification given in the text is necessary because, otherwise, we could not

be sure that the assumptions on page 418 were consistent with one another.

This is very well shown by supposing the cylinder to rotate and obtaining a

solution of the problem when thus modified, assuming the cylinder to remain

cylindrical and employing the equation of verification. It will be found that the

solution thus obtained can only be true if the stress on the transverse section

varies according to a certain law. If the cylinder is long it appears that this

must really be the case except very near the ends. The problem of a swiftly

rotating circular saw appears not as yet to have been attempted ; it is found by

experience that a saw to run at high speed must be hammered so as to be "
tight

"

at the periphery. The same difficulty occurs if the material of the cylinder be

not isotropic.

PAGE 427. TRESCA'S experiments are described in detail, with a great variety

of interesting illustrations in a series of memoirs which have been separately pub-
lished (Memoires sur VEcoulement des Corps Solides). The example in the text is

taken from the second memoir (Paris, 1869). It is to be remarked that the

influence of time was not taken into account.

PAGE 435. The modulus of elasticity in compression is found to be less than

that in tension in cast iron as well as wrought iron in about the same ratio. This

circumstance, together with the equality of the moduli for bending and tension,

leads us to conjecture that the effect is due to lateral bending which cannot be

wholly prevented by the trough.

PAGE 436 [1892. 1895]. When a tube is thin and stiffened so as to prevent

flexure as a whole, crushing may take place by local buckling. On the subject of

buckling the reader is referred to a paper by Mr. J. A. Yates on the Internal

Stresses in Steel Plating due to Water Pressure in the Transactions I.N.A. for 1891

(Vol. XXXII., page 190). Since that time the mathematical theory of buckling

has been discussed in some papers by Mr. Bryan, which have appeared in the

Proceedings of the Mathematical Society.

PAGE 438. The argument of Art. 224 applies equally to any case where stress

is not uniformly distributed. In the hydraulic press cylinder the stress is never

reversed, and the increase of strength is probably reliable.

PAGE 446 [1895]. BACH'S experiments on plates here referred to are noticed on

page 614. See also a paper on Bulkheads, by Dr. Elgar, in the Trans. I.N.A.,

1893.
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PAGE 440. No formula of this kind is anything more than a formula of inter-

polation supplying the place of missing experiments. The author is led to make
this remark by the elaborate manner in which such formulae are discussed by
some writers. The study of WOHLER'S original memoir cannot be too strongly

recommended to those interested in the subject.

PAGE 449 [1890J. The proposal (which has been partially carried out in practice)

to employ a margin instead of a factor of safety in boilers was made by the late

Mr. Sennett, formerly engineer-in-chief of the navy, and his views were endorsed

on the discussion of his paper (Transactions of the Institution of Naval Architects,

Vol. XXIX.) by Mr. A. C. Kirk and Mr. Marshall. To the remarks made in the

text it may be added by way of caution that though theoretical reasoning and

laboratory experiments may furnish valuable indications of the direction in which

to move, yet any steps in the direction of lower factors of safety should be very

gradual, and only taken by those who possess the widest knowledge and the

greatest experience of nearly similar cases. It is impossible a priori to foresee all

the circumstances which may influence the necessary margin of safety.

PAGE 456 [1892]. The values given for the resilience of timber in the two

earliest editions of this work were much too large. When the yield-point of the

ductile metals is regarded as the limit of elasticity, the resilience is given in

Table III. on the following page.

V.-HYDRAULICS AND HYDRAULIC MACHINP^S.

PAGE 473. The standard experiments on the co-efficients of velocity and con-

traction in the case of orifices are those made by WEISBACH, and described by him

in his treatise Die Experimental Hydraulik (Freiberg, 1S55), to which the reader

is referred for details. A short pipe projecting inwards is known as Borda's

mouthpiece. The theoretical minimum value of the co-efficient of contraction

(5, see p. 498) is closely approached when the pipe is very thin and sharp-edged ;

otherwise the value is somewhat larger, say about '55.

[1892.] Experiments by BAZIN and others on orifices of large size (7 inches

diameter and upwards) give a co-efficient of discharge of '6. MAIR, however,

obtained the value '61 in an orifice only 1 inch diameter.

PAGE 476. The use of the term " head "
for the energy per unit of weight of a

fluid is not free from inconvenience the two things not being identical unless the

datum level be at the surface of the fluid.

PAGE 477. The velocity of the water in any one of the ideal pipes is inversely

proportional to the sectional area of the pipe. Now the form of the pipes depends

solely on the form of the bounding surfaces, and it follows, therefore, that the

velocities of all parts of the stream bear a fixed proportion to each other, depend-

ing only on the nature of the bounding surfaces. In the language of the theory

of mechanism, the fluid forms a closed kinematic chain. The chain is closed by

the pressure of the bounding surfaces, and when the velocity exceeds a certain

limit the chain opens. Energy can then no longer be transmitted uniformly to all

parts of the fluid, and is no longer uniformly distributed. When energy is

unequally distributed, eddies are formed.

PAGE 477 [1895]. The steady motion of an undisturbed stream is one of the

principal objects of study in treatises on analytical hydrodynamics, and to such
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works the reader is referred for an account of what is known on the subject.

Some important points, however, can be rendered intelligible by methods of more

limited scope, and the note which follows, taken from the Philosophical Magazine
for February ] 876, is therefore here introduced. The motion of the fluid is sup-

posed to be in two dimensions, that is, all particles are supposed to be moving in

directions parallel to a given plane taken for convenience as vertical and the

motion in all planes parallel to the given plane is the same.

In Fig. 212 AB, CD are consecutive lines of motion, commonly described as

s u

Fig. 212.

*' stream lines
"
lying in the same vertical plane, and representing the section of

an elementary stream which flows, as described in the text, without intermingling
with the rest of the fluid, just as it would in a pipe of varying section. P and Q
are particles moving in these lines with velocities v and v + 8v, which at the

instant considered are so placed that PQ the line joining them is normal to the

stream. Then if h be the total head at Q,

,_ p v2

'^w
+W

which remains by Art. 243 always the same as the particle moves. The total head

at P is given by a similar equation, and the difference 5h of the two is found by
differentiation. Thus

,7 .
t
dp v .dv

0/1 = 02 H (-- .

iv g

Now dz is the elevation of P above Q, that is,

where is as shown in the figure the angle PQ makes with the vertical.

But if we imagine a small cylinder described round PQ as an axis, and consider

its equilibrium in the direction of the normal, it is clear that

w v2

op , a = . . a . PQ -w.a. PQ . cos <j>,

y P

where a is the sectional area of the cylinder and p the radius of curvature of the

stream lines at P or Q. Combining this with the preceding equation we get

xh
v* PO + v ' Sv V ' PQ(V

...
Sv

Ofl= . -r(/H = ~ + "757
gp <J o \P p

Now v . PQ is constant, being the flow in the elementary stream, and dh is

constant, being the difference of two quantities which are each of them constant.

We conclude therefore that
v dv
-+ -~j=.

= constant.
P f'J



622 NOTES AND ADDENDA.

Each of the terms of this equation has a definite physical meaning for v/p is the

angular velocity of the tangent to the stream line at P or Q, while 5v/PQ is the

angular velocity of the line joining the particles P, Q, which line at the instant

considered is perpendicular to the tangent, but does not remain so, having a

different angular velocity. If a small square portion of the elementary stream be

considered, having PQ as a centre line, the angular velocities in question are the

angular velocities of the sides of the square, and their half sum is the angular

velocity with which the square would rotate if it became suddenly solid. It is

described as the molecular rotation, and the physical signification of the equation

just obtained is that the molecular rotation for each fluid particle remains

unchanged as the fluid moves. Moreover, it is proportional to 5h, and therefore

when the energy is uniformly distributed, as in Art. 244, the molecular rotation

is zero. The motion of the fluid is then described as being
"
irrotational," and in

the absence of hydraulic resistances of any kind no other motion than this can be

produced from fluid originally at rest. In the particular case of a free vortex,

considered on page 468, the equation becomes

dv v
t

* + ;='
which when integrated gives

vr constant,

as stated in the text.

PAGE 478. In the flow of rivers it is well-known that it is the outer side of a

bend, not the inner, which suffers erosion, so that the windings of the river have

a constant tendency to increase in extent. The reason of this has been explained

by J. THOMSON to be that the layers of water in contact with the bottom are

greatly retarded, and hence have less centrifugal force than the upper layers.

The excess pressure at the outer side of the bend is therefore partially unbalanced

below, and an inward flow takes place carrying material with it from the outer

side to the inner. This was verified by experiment. (B.A. Report for 1876, p. 31.)

PAGE 482 [1892]. The article here introduced on similar motions has been

added to the present (1892) edition. The importance of the principle in h}
7draulics

generally appears to have been first perceived by J. THOMSON, who recommended

the employment of a triangular notch (p. 510). There are obvious objections

on principle to the method of finding the discharge from a notch or orifice.

PAGE 484. That hydraulic resistances of all kinds are independent of the pres-

sure is one of the best established laws of experimental mechanics, but how far

this may be true at very high pressure is, of course, uncertain. In some books it

is stated as confidently as if it were an observed fact that the friction of the skin

of a vessel near the keel is greater than that near the surface on account of

increased pressure, but there is no foundation for this assertion.

The explanation in the text of the diminution of friction in long surfaces is that

given by FROUDE in his reports on surface friction, and also by BOUKGOIS in his

treatise referred to farther on.

PAGE 490. The formation of eddies by the meeting of different streams and the

passage of water past solid bodies is familiar to all observers of the motions of

fluids, and is described in the earliest treatises on hydraulics. The way in which

they absorb energy has long been understood : thus PONCELKT says,
" En general,
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la production des tourbillons est 1'un des moyens dont la nature se sert pour
e"nteindre ou, plutdt dissimuler, la force vive dans les changements brusques de

mouvement des fluids" (Mec. IncL, p. 571). The italics are the author's. The

passage is too long to quote at length, but is worth studying throughout. The
extent to which eddy motion may prevail throughout the mass of a fluid, often

without any clear indication at the surface, was not understood till long after-

wards.

The theory of simple systems of eddies has of late attracted much attention, but

the extreme intricacy of the internal motions of fluids will probably long defy
calculation in such cases as commonly occur in practice.
The particular case mentioned in the text (Fig. 180) is one observed by the

author, in which conspicuous eddies were formed, one or two at a time, with great

regularity.

PAGE 495. If the motion of water in a pipe or channel be supposed of the

undisturbed kind (p. 467) and viscosity be taken into account (p. 479), it is possible
to find the discharge due to a given head. In the case of tubes of very small

diameter it was shown by POISEUILLE that the flow actually does take place

according to this law, and the co-efficient of viscosity was found. The loss of head

is then proportional not to the (vel.)
2
, but to simple velocity.

In pipes of ordinary diameters through which water is flowing with ordinary

velocities, the loss of head is, however, certainly, approximately as the (vel.)
2

, and,

moreover, BOUSSINESQ has shown that it is enormously greater than it would be

according to the law for undisturbed flow with the co-efficient deduced by
POISEUILLE. The inevitable conclusion is, that the loss is mainly due to the

formation of eddies. In the case of large rivers it is found by experiment that

the velocity diminishes as the bottom is approached according to a law represented

by the ordinates of a parabola, a result which is consistent with the law of undis-

turbed flow. Nevertheless, in this case also, the facts cannot be explained except

by supposing that the resistance is due to eddies. With fluids, the viscosity of

which is small, as in water, undisturbed flow only occurs at very low velocities

in very small channels.

Although these facts were tolerably well established, it is only very recently that

any attempt has been made to discover the connection which must exist between

the viscosity of the fluid, its velocity, and the dimensions of the channel in which

it flows, in order that the flow may or may not be undisturbed. This has at length
been done by OSBORNE REYNOLDS, who has succeeded in connecting by a common
law POISECILLE'S experiment on capillary tubes and DAKCY'S experiments on full-

sized pipes. For particulars the reader is referred to his paper published in the

Philosophical Transactions (1883, Part III.). It need only here be mentioned that

it is shown that the loss of head in a pipe may be expressed by a formula which,.

when stated in a simplified form sufficient for our present purpose, becomes

where n is an index depending on the nature and condition of the surface. When
the surface is rough n 2, and we get the formula already given on p. 487 ; this

is the case for an encrusted pipe, but for a clean cast-iron pipe it falls off to 1*9,

and in a lead pipe is 1 '723. This falling off in the index in smooth surfaces is

quite analogous to that already found by FROUDE in his direct experiments ou

surface friction (p. 485).
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[1892.] A great variety of formulae have been proposed for determining the

loss of head in a pipe, and the results deduced by different investigators from the

same experiments are by no means always consistent. It seems clear, however,
that the law of velocity is that stated in the text, the index varying according to

the nature and condition of the surface. Further, at a given velocity the loss of

head in a pipe the length of which is a given multiple of the diameter, is less the

greater the diameter, a fact pointed out by YOUNG in the early part of the present

century. DARCY proposed the formula,

4/= -02 [1 +4 J (d in inches),

and as DARCY'S experiments are recognized as the most important yet made on

pipes of considerable size this formula has been much employed, and was given in

former editions of this book. It does not appear, however, that this formula has

any sufficient basis, and the HAGEN formula appears preferable, especially as it is

more convenient for calculations notwithstanding the apparent simplicity of

DARCY'S form. It will be seen that according to REYNOLDS the sum of the indices

of the velocity and diameter should be equal to 3 or x= y in the form of formula

given in the text. In small pipes this may be true, but the conclusion has not as

yet been verified by other investigators in pipes of some size.

The influence of temperature (page 486) was pointed out by GERSTNER and

YOUNG, though the experiments relied on were apparently only on pipes of

small diameter. REYNOLDS concludes that the effect diminishes as the velocity

increases, becoming insensible at high velocities, a very important result should

it ultimately be confirmed.

PAGE 503. The formula for eddj
T resistance is given in this form by PONCELET,

and the reasoning in the text is essentially that employed by him (Mec. Ind.,

p. 585). It is well suited to show the real nature of the law of hydraulic

resistance (p. 472). All that is supposed in this law is, that the average
velocities of the particles of fluid bear a fixed proportion to each other depending

solely on the form of the 'bounding surfaces, as is actually the case in un-

disturbed motion. If the bounding surfaces are of invariable form the law

should be accurately verified for a fluid absolutely devoid of viscosity. The

causes of irregularity are explained on page 495 and elsewhere. A variation of

20 per cent, in the course of the same experiment was actually observed by
FROUDE.

PAGE 504. In the absence of hydraulic resistances the motion of water past

a submerged body is necessarily irrotational (p. 622), and in consequence the

paths described by the fluid particles are definite curves, the forms of which

depend only on the form of the solid and of the fixed bounding surfaces within

which the fluid must be imagined to be enclosed. This question will now be

briefly discussed, taking, as before, the case of motion in two dimensions only,

and employing the method explained on the page just cited.

Fig. 213 shows a portion of a stream flowing between fixed boundaries BB,
BE. One of the elementary streams, into which it may be supposed to be

analysed, is shown in full, bounded by two stream lines, of which LL is one.

The stream line 1, 1, 1, 1, 1 next the boundary BB is also shown in full, and parts

of three others aa, bb, cc; the rest of the lines are omitted for clearness. If
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e be the breadth of any elementary stream, v the velocity at the point considered,

the flow in the stream is evidently

ve= Constant.

B
Fig. 213.

B

Now, in representing a stream by a set of lines, it is convenient to suppose
them so drawn that the flow in all the streams is the same, and the constant

in the foregoing equation is consequently the same for all streams. Differ-

entiating on this hypothesis we obtain an equation

which connects the change of velocity dv on passing transversely from the

stream ab to the stream be, with the corresponding change of breadth de. Now,
in irrotational motion, we found (p. 607) that

the breadth e being PQ in Fig. 212
; hence by substitution we obtain

a simple geometrical relation between the change of breadth of two consecutive

elementary streams and their radius of curvature. The sharper the curvature

the more rapidly does the breadth of the streams increase on moving away
from the centre of curvature. The equation, moreover, shows that if two

consecutive stream lines are given, all the rest can be found : for example,

suppose one boundary line BB to be given, and also the stream line 1, 1, 1, 1, 1,

which lies next to it ; then e. and p are known at every point, so that Se can

be found. Thus, the second line reckoning from BB is determined, from

which the third can be found, and so on. If both the boundary lines BB
are given, it is clear from this reasoning ]

that one and only one set of lines

can be found which can represent the stream, and the whole motion is definitely

determined. When the boundaries are arbitrarily chosen, the actual construc-

tion of the lines presents difficulties which are often insuperable, but a definite

set of lines always exists, and hence the velocity of each particle of the fluid

bears a fixed proportion to the velocities of all the others ;
the motion being,

in fact, like that of a mechanism, a closed kinematic chain.

In particular cases the lines are known, and from these known cases any
number of others can be obtained graphically by a method introduced by

RANKINE, which we have not space to explain. RANKINE'S methods in their

application to ship-shaped forms have recently been considerably extended by
Mr. D. \V. Taylor in two papers which will be found in the Transactions l.N.A.

lor 1894, 1895.

C.M. 2 R
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The most obvious of these known cases is also that which is most important,.

namely, where the boundaries BE are parallel straight lines. The stream lines

are now equidistant parallel straight lines, and the velocity uniform
;
this being

the only motion within straight parallel boundaries which is irrotational.

Imagine now a horizontal casing of uniform rectangular section of indefinite

length through which water is flowing, the motion being irrotational ; and in

the casing let a solid of any size or shape be placed, the sides of which are

perpendicular to the flat sides of the casing between which it is fixed, so that

the motion is still in two dimensions. Near the solid the stream lines will.

be curved, their f<ym depending on the form of the solid, but at a great

distance in front and behind they must become equidistant parallel straight

lines, being evidently unaffected by its existence. Hence the particles of fluid

after passing the solid necessarily return to their original straight line paths,

and consequently to their original velocity. But as it is supposed that there

is no dissipation of energy of any kind, the usual equation of steady motion

shows that if the velocity is the same, the pressure must also be the same,
and it appears that the solid produces no permanent change in the condition

of the water; and therefore the water can have no longitudinal action on the

solid. The resultant longitudinal force on the solid must therefore be zero;

and this conclusion is equally true if the water in the casing be supposed at

rest, and the solid move through it with uniform velocity in a straight line,

for the relative motion is necessarily the same in the two cases.

The proposition that a body of any size or shape, moving through water with

uniform velocity in a straight line, would experience no resistance in the absence of

viscosity and eddies, paradoxical as it has often been thought to be, is thus definitely

proved for motion in two dimensions. If a solid of revolution be placed within

a cylindrical casing of circular section with its axis coinciding with the axis

of the casing, it is easily understood that the same thing holds good. In fact

the stream lines are plain curves, and the foregoing reasoning can be easily

modified so as to apply to this case.

Nor does it appear that there can be any difference for any other form of

solid placed in a cylindrical casing, unless it be skew-shaped like an ordinary
screw propeller. If such a skew-shaped solid be placed in a stream and held

fast so that it cannot rotate, the fluid after passing the solid will rotate, the

resultant velocity of the fluid particles will be increased and their pressure

consequently lowered. There will then be a resultant force on the solid in

the direction of motion. The resistance in this case may be described as eddy
resistance, and is given by the same formula,

with a value of k, which in the present state of our knowledge can only be

determined by experiment. The case differs from that given in the text only
in the scale of the eddies produced, some of which are now so large that

they may endure for a considerable period before being dissipated by fluid

friction.

If the screw propeller be permitted to rotate freely, the resistance will be

due to small scale eddies alone. If it be forcibly constrained to rotate by

energy supplied from without, a longitudinal force will be produced which

propels the vessel. The value of k is then a function of the ratio of the
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velocity of rotation to the speed of advance (the slip-ratio), which has been

determined by experiment. Attempts ha e been made to calculate k : the

simplest and most practically useful of these "theories of the screw propeller
s briefly noticed further on.

PAGE 507 [1895]. Experiments by Mr. Dines on the resistance of the

atmosphere to the motion of a flat plate moving through it are described in

Vol. XV. (1889) of the Journal of the Meteorological Society, p. 187. The plate

was mounted upon a bell crank lever, pivoted on the end of a revolving arm
about 29 feet long. The other end of the lever carried an adjustable weight,
the centrifugal force of which measured the pressure. The pressure per square
foot on a round or square plate was found to be about 1 Ib. per square foot

at a speed of 20*86 miles per hour (30'63 f.s.). This is equivalent to 1 Ib. per

square foot at a speed of about 17 miles per hour, and differs little from

FROUDE'S estimate given by Sir W. H. White (Naval Architecture, 2nd ed.,

p. 491) for the pressure on a flat plate moving uniformly through still air.

Assuming a density of the air of 13 cubic feet to the pound, this gives k=l'35,
a value somewhat though not very much greater than the most probable
value for water ; an excess which may be attributed to the effect of the

difference in viscosity and elasticity of the fluid on the formation and extinction

of eddies. Some of DINES' experiments, however, give a somewhat smaller

result. The value is independent of the size of the plate, but is somewhat

greater (according to DINES about 13 per cent.) for a long narrow plate, as

might be expected. For the case of a sphere, DINES gives a value which

is four-ninths that for a flat plate. This corresponds to k='Q, and appears
somewhat large.

At low speeds, such as are here referred to, the resistance undoubtedly
varies as the square of the velocity. The limit at which this ceases to be

true on account of the compressibility of the air probably varies according to

the form of the body. In the case of shot, according to VALLIER, it is as

low as 100 metres per second (330 f.s.), after which the resistance increases

according to the 2 '5 power of the velocity until the velocity of sound is ap-

proached. The value of k therefore continually increases, most probably because

the compression of the air increases the plus portion of the co-efficient.

Beyond the velocity of sound (1100 f.s.) the resistance follows an entirely

different law, being then closely represented by the ordinates of a straight

line. This straight line law has been deduced by VALLIER and others from

extensive experiments made abroad at velocities up to 1000 metres per second ;

but it is also clearly apparent in the older experiments of BASHFORTH. For

velocities in feet per second the resistance in Ibs. of a spherical shot d feet

diameter is given with tolerable approximation according to these experiments

by the formula (v>1100)

^=3c^(v-800).

The resistance of an ogival-headed shot is of course much smaller ; it depends
on the angle of the ogive, but in the elongated shot experimented on by
BASHFORTH was about two-thirds that of a sphere. In shot of recent type it

is no doubt still less. If the hinder part of the shot were elongated instead

of flat the resistance would be greatly reduced : in bullets this idea has been

carried out by making them tubular with ends fined off both in front and

rear. At these high speeds the resistance is mainly due to sound waves,

which by the aid of photography have been rendered visible in bullets.
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In a paper read at Chicago in 1893, and reproduced in the Philosophical

Magazine for May 1894, Professor Langley shows that wind, however steady
and uniform it apparently may be, is in fact a motion of an extremely complex
character, each small portion of the fluid being in a state of pulsation. The

velocity at any point of a wind current therefore goes through periodic changes
of great magnitude, although the motion of a large body floating in the air

may be perfectly uniform. It is believed that birds have the power of utilizing

the internal energy corresponding to these periodic changes for the purpose of

sustaining themselves, and even rising without visible movement of the wings.
Hence it is, most probably, that the pressure on small areas exposed to wind

is much greater than that just given for motion through still air. The value

commonly accepted for the pressure per square foot of a wind of V miles per
hour is F2

/200. This corresponds to k= 2, being 50 per cent, greater than

before. According to the best authorities on hydraulics, as stated in the text,

there is a corresponding increase in the case of water, but it is difficult to

say how far this is due to irregularity in the stream and how far to errors

in the experiments.
The pressure on a large area of 300 square feet has been shown by Sir B.

BAKER to be only two-thirds that on a small area
;
that is, it is about the

same as for motion in still air.

The relation between the pressures on an oblique and a normal surface, so

far as is known, is the same in air as in water, but it must be remembered
that the exposure of the surface will have an enormous influence. Thus, the

pressure on a sloping roof will be much less if it rests on walls than if it is

carried on pillars so that the air has free passage below.

PAGE 537 [1900]. The outward flow turbine was introduced by FOURNEYRON
about 1828, and its theory given by PONCELET in 1838. The inward flow

THOMSON turbine followed some 20 years later. A wheel sometimes less than

2 feet diameter in these machines replaces a slow-moving cumbrous water-wheel,
and may be made to yield a very considerable power.
The efficiency of a turbine is in general not precisely a maximum when the

conditions of no whirl at exit and no shock at entrance are satisfied. To explain
this and some other points of more actual importance in the working of turbines,

an approximate investigation of their efficiency is now added.

The losses considered are (1) the kinetic energy of flow on discharge from

the wheel together with the loss by friction of pipes and passages, and (2) the

kinetic energy of whirl on discharge together with the loss by "shock" on

entrance. For simplicity Case I. of the text is taken in which the vanes are

radial at entrance and the angles of the guide-blades and vanes so proportioned

that, at a certain speed, the two conditions of no whirl and no shock are

simultaneously satisfied. The notation is that of the text with a slight modi-

fication to be mentioned presently, and in addition the ratio r2/ra
is denoted by m.

The kinetic energy of flow is uz
/2y, and, as the velocity through the pipes

and the passages of the wheel is proportional to u, in a turbine of this type
where all the passages are always completely filled with water, the loss by
surface friction will be F. u2

/2g where F as usual is a suitable co-efficient of

resistance. The losses (1) are therefore
(
1 + F)u2

/2(j. Now u - v
1
cot 6

1
and it is

convenient to express u in terms of v^. These losses then become pv-fftg where

is a co-efficient which may be supposed known.
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The whirl at exit is

v2= F2
- u . cot 6.2

=m( Vl
-
vj,

while the loss by shock at entrance is
( V\

-
v^jlg, the losses (2) are therefore

(1 + mz
)( FI- Vi)

2
/2#, and the total loss of head (h

f

)
is given by the equation

2gh' =^+ (
1 +mz

) ( V -
v)

2
,

in which formula the suffix 1 is suppressed, being no longer necessary.

For the useful work we have

gh= VlVl
- V2vz= V&

the suffix 1 being suppressed as before.

Adding together the losses and the work we obtain the energy exerted repre-

sented by the fall or actual head H, so that

The case considered in the text is that in which v=V. This gives

2 h 2

Hence the efficiency at this speed is 2/(2 + /3), and as this may be taken at 80 per

cent, it follows that the value of (3 in well-designed turbines is about *5.

At other speeds H remains the same, while v and V vary, and by differentiation

CLV W2 - 1

As already remarked v is proportional to u the velocity of flow, and therefore

to the delivery. Hence in an outward flow turbine the delivery increases with

the speed, and in an inward flow, for which m is fractional, it diminishes. This

important conclusion might have been foreseen ; for reasoning as in the case of

the reaction wheel (p. 531) the virtual head at discharge is increased in the

outward flow and diminished in the inward flow, by the " head due to centri-

fugal force" (compare page 546) a quantity which increases rapidly with the

speed. The influence on the working of the machine is most important, for, in

consequence, the outward flow turbine is in practice unstable and the inward

flow stable ; and hence the value of m, which in a Fourneyron turbine should not

exceed 1"25, may with advantage in a Thomson turbine be reduced to '5. (See

Unwin, "Hydraulics," EncycL Britannica, page 529.)

Next let us see how the efficiency varies. Differentiating the equation for A,,

and then putting v= V

which on substitution for dv/dV gives

dh_ /3(7tt
2
-l)

9 ~
2

The speed for which v= Fis that at which there is no shock at entrance and

no whirl at exit ; and we see that this is not the speed of maximum efficiency ; in

an outward flow turbine dh/dv is then negative and a lower speed is better, while

in an inward flow it is positive, and the best speed is higher. The reason is

that reduction of flow by a change of speed reduces the losses (1), thus more

than compensating for the introduction of losses (2). If, however, Ah be the
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change in h consequent on a change A V in speed from the value \/gk which

gives v= V
_

h
~ ~

V
'

"r+ma + j8'

from which it appears that the change of efficiency is only a small fraction of the

change of speed. Thus to reduce the efficiency from 80 to 79 per cent, or to

increase it to 81 per cent, a change of at least 7 per cent, in the speed is necessary.

This agrees well with common experience, since it is well known that a change
of 10 per cent, in the speed has little influence on the efficiency.

We might now proceed further and determine the actual speed of maximum

efficiency from the equations just given, but the result would be of no practical

importance, as the frictional resistances are not, and perhaps cannot be, deter-

mined with sufficient accuracy. It is, however, probably safe to infer that the

best speed of an inward flow turbine is decidedly greater than that of an outward

flow. The external resistances referred to on page 535 have the effect of lowering

the speed of maximum efficiency.

The useful work (U) is wQh, and therefore proportional to the product vh.

From the values of dv/d V and dh/d V given above it is easy to derive the value

of A(vA), and hence at the speed for which vV,
_-

U -I 1 P) y

The supply of available energy therefore increases with the speed in an outward,
and diminishes in an inward, flow turbine ; unless by obstruction of the supply
the efficiency becomes less than two-thirds when the converse will hold good.

But the rate of increase is small, and varies greatly at different speeds, while, for

the reason stated above, it cannot be determined accurately.

A similar calculation may be made in the more general case (page 537) in which

the vanes are not radial at entrance but inclined at a given angle. The results

are similar though more complex, and may be expressed by replacing the con-

stants j8 and m of the formulae by other values dependent on this angle.

PAGE 538. The undisturbed motion of a perfect liquid within fixed boundaries

is always reversible, that is, if every particle of liquid were imagined to be set

in motion with the same velocity in the reverse direction, the motion would

continue undisturbed. But if water be set in motion from rest this will

generally not be the case. If, for example, we imagine a pipe connected with

a tank by a mouthpiece in the form of the vena contracta, then, when water

flows out of the tank, it will issue in a continuous stream with small loss of

head ; but if the motion be reversed most of the energy of motion of the water

in the pipe will be wasted in the internal motions soon after entering the tank.

The loss is not unavoidable, as will be seen on reference to the case of a

trumpet-shaped pipe (Fig. 175, page 477), but may be rendered small by enlarging
the pipe very gradually.

PAGE 540 [1895]. The second of the two approximate calculations of the

efficiency of a centrifugal pump has been added to this article in the present

(1895) edition, for the purpose of showing that when the chamber is properly

designed radial vanes are not necessarily less efficient, and may be more efficient

than curved back vanes. But it must not be supposed that the form is actually
of little importance. The investigation is based on the supposition that the

only loss during the passage through the fan is due to surface friction, as
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"would be the case if the motion were steady and continuous. But it is by
no means certain that steady continuous flow is possible under the circum-

stances, and if breaking up occurs the value of ft might be greatly increased,

and might depend on the speed. In a centrifugal pump with high lift the

changes of velocity imposed on the water during the passage through the fan

are enormously great and rapid, and the form of vane may be of great importance
in facilitating or otherwise the tendency to break up. On page 536 it has

already been suggested that it might be advantageous to curve the vanes, so

that IT should change (in this case increase) uniformly from entrance to exit.

It is only by systematic experiment that the best form and number of vanes

could possibly be determined ; any reasoning on this point must be very un-

certain. The equation given in Art. 278, page 546, gives the stead}' flow through
a pipe attached to a rotating casing, but it does not necessarily follow that

steady flow is possible in a radiating current.

In recent designs of fans for blowing air the vanes are curved forwards

instead of backwards, and it is quite conceivable that the tendency to break

up may be diminished in this way. The RATEAU fan described in the Engineer

for May 24th, 1895, is an example. It is said to give excellent results.

VI. ELASTIC FLUIDS.

PAGE 562 [1900], Some important experiments by Professor Osborne Reynolds
and Mr. Moorby on the mechanical equivalent of heat are described by them in

the Philosophical Transactions for 1897. The result obtained, omitting decimals,

is 777 ft.-lbs., the unit of heat being such that the mean specific heat of water

between 32 and 180 F. is unity. It is probable that this number will be generally

accepted as the true value, but for the purposes of this work it has not been

thought necessary to alter the provisional value given in the text.

PAGE 566 [1895]. If Aft be a small quantity of heat supplied at temperature T
when raising the temperature of a Ib. of water, the mechanical value of that heat

as explained in the text is &h(T - TJ/T, and the total mechanical value of the

whole heat supplied in raising the temperature of the feed water from T to 7\ is

T

If the specific heat of water is taken as unity this becomes

which is a formula very commonly used. The result is too small, because the

specific heat of water increases as the temperature rises. If we adopt an approxi-
mation suggested by RANKINE we may take

and on substitution the formula given in the text is obtained. The result is

greater than before, and the error of the approximation partially compensates
for the neglect of the excess specific heat of water. The formula in the text

may therefore be preferred unless special tables of the "entropy "of water are

available.
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The second or mechanical formula for the available heat of steam

M=P9V9 .lQfr?i
Po

given in the text is based on the fact explained in the author's work on the Steam

Engine that the saturation curve is approximately midway between an hyperbola
and an adiabatic curve starting from the same initial pressure. If then an hyper-
bola is traced starting from the lotcer pressure pQ on the saturation curve the area

of the hyperbola must be very approximately the same as that of the adiabatic

curve. The result given by this formula is too small : the deficiency increasing

as the pressure-ratio increases
;
but the error does not exceed 2 per cent. For

pressure-ratio less than 5 it is insensible.

PAGE 575 [1892]. The facts relating to the transmission of energy by com-

pressed air are much better known now than when this book originally appeared.

The remarks made on the subject have therefore been re-written and amplified.

PAGE 578. If the fluid be supposed at rest, and elevation be taken into-

account, we obtain

KpT+z= Const,, or 3'5 PF+ z= Const.

This gives the distribution of pressure and temperature of the atmosphere for

"convective equilibrium" (CLEEK MAXWELL'S Theory of Heat, 1st edition,

p. 301). Energy is then uniformly distributed.

PAGE 579 [1900]. Until recently little of any importance had been added to

the ordinary theory of efflux described in the text, the sketch given in Art. 300

remaining unaltered since it was originally written fin 1884. Since 1895 the

subject has attracted some attention, and it has been pointed out that the velocity

through the section of maximum density when the critical ratio given by the table

on page 580 is over-passed is the velocity of sound in the issuing fluid at the

temperature of outflow. This observation, originally, it is believed, due to M.

Hugoniot, can be easily verified by means of the formulae given in the text. More

recently experiments by M. Parentey, Mr. W. Rosenhain, and others have raised

many points of interest. Rosenhain's experiments, described in a paper published
in a recent volume (vol. 140, p. 99) of the Proceedings of the Institution of Civil

Engineers, are chiefly devoted to the comparison of different types of orifice.

They show that, as might have been expected, in trumpet-shaped nozzles the

expansion down to atmospheric pressure takes place within the nozzle. In forms

of orifice where this is not the case the expansion is extremely sudden and the jet

subsequently is for some distance cylindrical. The discharge is greater than the

theoretical maximum, as calculated on the supposition of dry steam and adiabatic

flow
; the excess in trumpet-shaped nozzles with rounded inlet being apparently

about 14 per cent. How far this excess can be accounted for by the water mixed

with the steam or by the error of the hypothesis of adiabatic flow is uncertain.

PAGE 582. This formula for the flow of air in a long pipe was given by
UNWIN (Min. Proc. Inst. C. E., Vol. XL1IL), and somewhat earlier by GRASHOF.

It is a question of considerable practical interest. By comparison with experi-

ment it has been shown that the co-efficient is given by a formula of the

same form (DARCY'S), as in the flow of water through pipes, an important
verification of theoretical principles. The equation for the case where the

temperature varies can be obtained without difficulty, but has not as yet been

practically applied.
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VII. RESISTANCE AND PROPULSION OF SHIPS.

[1892.]

The importance of this subject is so great that though outside the intended

limits of this work some information relating to it may be useful. The brief

summary here given of the leading facts relating to it would, however, require-

expansion into two or three long chapters if anything like a full statement

wrere attempted.

Submerged Bodies. If a uniform current be flowing through a straight pipe or

cylindrical casing of indefinite length, which it completely fills, and a solid of any
size or shape be fixed within it, the particles of water after passing the solid

return ultimately to the original straight line paths in which they moved before

reaching the solid, unless the current be disturbed by the causes discussed at

length in Ch. XIX. of this book. Each particle, after passing, has ultimately

the same velocity and pressure as it had before reaching the solid, no permanent

change being possible except such as may be produced (1) by viscosity (page 479)

or (2) by eddies due to surface friction or other causes (pages 501-7). Hence

it follows that the longitudinal resultant pressure upon the solid must be zero-

The grounds on which these statements are made, the qualifications to which-

they are subject, are discussed on page 626.

If the water in the casing be at rest and the body move uniformly through it in

a straight line parallel to the sides, the relative motion of solid and water is the

same as when the solid is at rest and the water moves. We therefore conclude

that the water will offer no resistance to the motion except such as may be due to-

hydraulic losses. And as the casing may be supposed of any size we please,

this conclusion must be tiue for any case where a body is sufficiently deeply

submerged.
In bodies of very small size, such as particles of a finely divided solid, the direct

action of viscosity is the principal cause of resistance, but in bodies of the size of

a ship or even of a model of a ship the direct action of viscosity is so small as to

be negligible, and the resistance of a submerged solid is therefore practically due

to exactly the same causes as produce loss of head in a pipe or passage.

Eddy resistance has already been discussed (page 502). On examination of Fig.

191 it will be seen that eddies are not formed immediately in front but behind the-

corners and in the rear. A solid, therefore, may be blunt ended in front without

giving rise to eddy resistance, provided the shoulders are rounded off sufficiently,

and a tail of sufficient length be attached behind. Eddy resistance may thus be

reduced to a very small amount, and surface friction then becomes by far the

most important cause of resistance in a deeply submerged body moving uniformly
in a straight line.

Surface Friction has been discussed on page 485, and a table given of FROTJDE'S

results, which is directly applicable when the surface is plain. When the

surface is curved the question is in principle much more complex, because the

water glides over the different parts of the surface with a different velocity.

Let q be the ratio which the velocity of gliding over a small area 5S, bears to the

speed of the solid (V), then /. q*V5S is the energy dissipated by surface friction

per second, and /. V2
I q*dS is the corresponding resistance, which is the same as

that of a plane the area of which is
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If the velocity of gliding was not altered by friction the co-efficient q would be

on the average greater than unity. In short [surfaces therefore S1 is greater
than the actual area of wetted surface, and is described as the Augmented
Surface. The idea of an augmented surface is due to RANKING, who based upon
it a well-known formula for the resistance of ships. It has long been recognized
that this formula is not of practical value, and the reason for its failure is simply
that the velocity of gliding over a surface of any considerable length is so much
disturbed by friction as to be far less than the calculation value, and the friction

is correspondingly reduced. Calculations of the surface friction of vessels are

therefore made as if the surface were plain, due regard being had to the length

and nature of the surface in estimating the probable value of the co-efficient.

The area of wetted surface is calculated from the drawings of the vessel, but as

the calculation is complex, and throws no light on the relation between the

wetted surface, the displacement, and the draught of water, the formula

may be used in which A is the displacement in salt water in tons, L the length,

D the draught of water, both in feet. This formula in most cases gives a very
fair approximation to the surface of the bare hull, as has recently been shown

by Mr. Archibald Denny if the co-efficient 2 be replaced by 1'7. In this note,

however, it will be used without this modification and then includes a certain

margin for bilge keels, or similar appendages. If J3BDL be the cubic dis-

placement where B is the beam and j8 a co-efficient of fineness the formula

becomes

Law of Comparison. When a careful estimate of the surface friction and

eddy resistance of a solid is compared with the actual resistance the solid offers

to uniform motion in a straight line, it will be found that in a submerged body
of fair form the two are nearly the same, and this is also true for a vessel at

low speeds. But in a floating body the difference at high speeds is very con-

siderable, and increases rapidly with the speed. This difference is described

as the Residuary Resistance of the vessel, and is mainly due to the formation

of waves at the surface of the water, a cause which would operate even if there

were no hydraulic resistances of any kind. It is no longer true as in a submerged

body that the resultant pressure on the body in the direction of motion is zero.

Hence so far as independent of hydraulic resistance the residuary resistance

must be subject to the law of comparison stated in Art. 247 (page 483) of this

book, so that in similar vessels at corresponding speeds under similar circum-

stances the residuary resistance must be in the proportion of their displacements.

The most convenient way of expressing this principle, is by taking

F-c.VZ

where V is the speed in knots, L the length in feet, and c a co-efficient of speed.

The law of comparison may now be expressed by saying that the residuary

resistance when expressed in Pounds per Ton of displacement must be a function

of c the speed co-efficient, which function must be the same in similar vessels.

As a general principle in hydrodynamics this law of comparison had long been

known, but FROUDE made it his own in its application to vessels by showing

(1) that it was not applicable to surface friction, the resistance due to which

is much more important on a small scale than the law would imply, and (2)
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that it was applicable to the residuary resistance. The experimental verification

consists partly in the famous experiments made on the Greyhound and her

model, and partly in the fact that it is now possible to predict the power
required to propel an entirely new type of vessel by means of experiments made
on a model of the vessel, a method systematically employed by FROUDE'S
successors.

It must be distinctly understood that no particular law of speed is implied,
but only a relation connecting the law of size with the law of speed. To
illustrate this point, suppose the resistance to vary as the fourth power of the

speed, then by the law of comparison the resistance is

Ji= k
1 . A.c4

where
,

is a numerical co-efficient. Replacing c by its value V/\
f

L, and

remembering that A must be proportional to the cube of the linear dimension

R= k.l. V4

where k is another co-efficient depending on the particular linear dimension (I)

chosen which may be the length, beam, draught of water, or any linear combina-

tion of these quantities. If then the resistance vary at V4
it must also vary in

direct proportion to the linear dimensions of the vessel. Similarly, if the

resistance vary as the square of the speed, it must also vary as the square of

the linear dimension, that is, as the transverse section, and consequently eddy
resistance pure and simple (page 503) satisfies the law. On the other hand
surface friction does not satisfy it, for, referring to pages 495, 496, it will be

seen that the general form of the formula is

when
//, the co-efficient is taken from FROUDE'S table for fresh water, in which the

standard speed is 600 feet per minute, or approximately 6 knots. This may be

written using the second formula for S

where/ the co-efficient is not constant as it should be if the law of comparison

applied, but is given by

Wave Resistance. Waves produced on the surface of* water by the action of

a body moving through it are of two distinct kinds. The first is a solitary

shallow water wave generated in front of a barge moving in a narrow canal. In

such a wave the particles of water are lifted up, carried forward along with the

wave through a short distance, and then set down at rest, while the wave

travelling onward leaves them behind. A wave of this class is described as

a Wave of Translation ;
it possesses a certain definite amount of energy, which

is transmitted with it from particle to particle as it moves, and hence when of

any size it travels for great distances without external agency when once created.

Such a wave is consequently only a cause of resistance to the generating body
while it is being formed. The second class occur in series, and the particles

of water oscillate backwards and forwards : the translation along with the wave

is relatively small and for most purposes may be neglected : they are therefore

described as Oscillating Waves. In a purely oscillating wave the particles
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describe closed curves resembling an ellipse which becomes a circle in deep-

water. The speed of an oscillating wave in deep water depends on its length

only, the speed in knots of a wave of length X feet being

F2 =1'8X.

This formula shows that the length X of a wave travelling at the same speed in<

the same direction as a vessel of length L is

where c is the speed co-efficient.

An oscillating wave possesses both kinetic and potential energy in nearly equal

amounts, but as was first pointed out by OSBOKNE REYNOLDS, the kinetic energy

is not transmitted along with the wave but remains behind, and therefore when

such a wave travels onwards into still water its height necessarily diminishes

unless it is kept up by external agency, such as a moving body which supplies it

with energy. Waves then are a cause of resistance, not only when a new wave is

continually being created as the vessel moves, but also when waves already

existing are kept up to their full height. The energy of a complete wave is

proportional to its length and the square of its height; and of this a certain

definite fraction has to be supplied by the vessel as it moves through a wave

length. Hence the resistance due to a wave system of a given type varies as the

square of the height. If the type remained the same at different speeds the

height of the waves would vary as the square of the speed, and the corresponding

wave resistance as the fourth power of the speed, a law of resistance already

mentioned.

A third class of waves not necessary here to consider are the "capillary"

waves, so called because their motion is in great measure governed by capillary

action, that is, by what is known to physicists as "surface tension." They
are of very minute size, and are also known as "ripples." The wave resist-

ance of a model vessel would be affected by surface tension if the model

was small enough. No effect of this kind appears to have been noticed at

present.

Interference. If the residuary resistance of a vessel as determined by a set of

speed trials upon a model be divided by the fourth power of the speed the

quotients are in general neither constant nor continuously increasing or

diminishing. On the contrary they show very distinctly a periodic change, being

alternately greater and less than a certain mean value. The cause of this

remarkable result was conclusively shown by FROUDE to be the interference of

two distinct wave systems one created at the bow, the other at the stern of the

vessel. The experimental demonstration of this consisted in comparing the

residuary resistances at a given speed of a set of models, the fore body and after

body of which were the same in all, but which had different lengths of middle

body. If for simplicity we suppose that the bow and stern generate simple

waves of heights h-Jiz at points distant s from each other, measured along the side

of the vessel, the result of the combination by a principle well known in physical

science will be a simple wave of height h given by the formula

&3= ^2 + h * +2^ . Cos 27T -,
X

X being the wave length which is the same for all, being connected as before-

explained with the speed of the vessel. Hence when s is changed by varying the
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length of middle body the residuary resistance suffers a. periodic change, and this

conclusion was exactly verified by the experiment. When a given model is tried

at various speeds * remains nearly the same, but X as well as hfi* varies as the

square of the speed, the formula then shows that the resistance, while increasing

rapidly on the whole, suffers a periodic change whereby the rate of increase is

alternately excessive and moderate.

The fact that the residuary resistance is a periodic function of the speed is

shown graphically by the "
humps" and "hollows" which are found in curves of

resistance, and is mainly accounted for by interference. But the interference is

of a more complex kind than in the simple case supposed, and it would not be

safe to conclude that interference is the sole cause of variation in type of the

wave system especially at certain critical speeds. The form of water surface has

been investigated by LORD KELVIN (Sir W. Thomson), but a rational formula for

wave resistance is probably unattainable, varying as it must according to the

lines of the vessel.

Approximate Formula. From what has been said it appears that omitting (1)

the resistance of the air, (2) the resistance of various appendages to the vessel her-

self and her propelling apparatus, an item which may be considerable, and which

must be separately estimated the resistance of a vessel in Pounds per Ton is

given by the general formula
r= ac2 + xc4

,

where the first term gives the surface friction in terms of a co-efficient
,
which

can be calculated with a fair degree of approximation, while the second term gives

the wave resistance in terms of x, a periodic function of c. The character of the

resistance will depend on the value of c, the second term being relatively small at

low speeds.

The values of c which occur in actual vessels may be grouped as follows :

(1.) In steamers employed for the transport of merchandise c ranges from '5 to

'7, and by the formula already given the length of waves travelling at the same

speed as the vessel rarely exceeds one-fourth the length of the vessel and is

usually much less. The wave resistance is in this case one-fourth or less of the

whole, and the single constant formula

R=K .A3 .F2

may conveniently be employed. The value of K for displacements in tons and

speeds in knots ranges from "55 to '66 in full-sized sea-going vessels, excluding

any resistance due to the nature or condition of the wetted surface and to

(2.) In recent ironclads and in mail steamers the value of c ranges from "7

to '95, and the length of waves travelling at the same speed as the vessel

increases to nearly one-half her length. The wave resistance now becomes

nearly one- half the whole, and the term representing it cannot be merged into

the term representing the surface friction. Already, before FROUDE'S researches,

this had been recognized, and formulae had been given showing that the. resist-

ance of a ship increased faster than the square of the speed. By far the most

important of these is the formula given by BOCRGOIS in a treatise referred to

further on.

The first two terms of this formula represent surface friction and eddy resistance

which may be better effected in the way already explained. The physical mean-

ing of the third term was only partially understood by BOURGOIS, but it is now
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evident that it amounts to taking an average value of the periodic function x

and assuming that the beam B of the vessel is the linear dimension which is

principally effective in the production of wave resistance. On substituting we
find the average value of x to be

where b is a numerical co-efficient. The value of k employed by BOURGOIS was -14

in French units for all cases except where the beam is as much as one-fourth the

length, when it is increased to '16. The value of 6, which corresponds to k= '14,

is '23, and in some types gives good results, but it may be doubted whether

it applies so universally as BOURGOIS assumed. The values of both x and a

necessarily depend on the lines of the vessel, so that no fixed relation can exist

between the two, but the author has found that the formula

gives good results in a great variety of types, though in heavy ironclads the

number 8 should be reduced to 7, or in some cases perhaps still further. The

same restrictions must be understood as in the preceding case. The resistance

of vessels of small draught of water is much greater, and may be approximately
estimated by the formulae already given. The resistance of the air and of append-

ages may be included by a suitable addition to the constant a.

(3.) In cruisers and torpedo gunboats, by the use of engine power amounting
to from 2 to 5 H.P. per ton, values of c are obtained exceeding unity, sometimes

even reaching 1 '4, the waves are now about the same length as the vessel, and

at this critical point the periodic variation of x is so great that no formula is

of much value.

(4.) Beyond this speed no full-sized vessel can be propelled from the impossi-

bility of putting sufficient engine power on board, but in torpedo boats a power
of 15 H.P. to the ton can be employed, and we find values of c ranging from 1'8

to 2*3. The character of the wave resistance has now altogether changed, as

might be expected since the waves are now two or three times the size of the

vessel. It increases much more slowly, probably nearly as the square of the

speed. The total resistance of a torpedo boat appears to be about 30c2 pounds

per ton.

Effective Horse Power. From the formulae for the resistance of a vessel we may
immediately deduce formulae for the effective horse power required to propel her.

The first of these gives the absolute power

A-TP
where C is a constant at low speeds, which under the restrictions already men-

tioned may be taken as 500 or 600. If applied to high speeds the value of C is

much reduced as it diminishes rapidly with the speed. The second gives the

effective horse power per ton

e.h.p.^-^-V,

where the constant C will, subject to the remarks already made, usually be from

40 to 45, but may sometimes be increased to 50 or even more.

It must be distinctly understood, however, that as formulae of this class take

no account of the periodic variation of the resistance indicated by the "
humps

and hollows
"
of the resistance curve, no certain and close estimate of the E.H.P.
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can be made except by the method of comparison. If a full-sized vessel of the

same type exists, of which the E.H.P. is known, the principle may be applied with-

out much error to the total resistance
;
but if the type be new, a model must be

tried and the principle employed to determine the residuary resistance alone : the

surface friction, being relatively much greater in the model, as already explained
must be separately calculated.

Propellers in general. Let us next consider briefly the means by which the

vessel is propelled through the water.

Every propeller operates by driving astern some or all of the water passing

through it, the reaction of which furnishes a propelling force equal and opposite
to the "thrust" of the propeller. Since the resistance is directly astern, the

velocity impressed on the water must be sternward as far as it is of any utility

for the purpose of driving the vessel. Some forms of propeller as, for example,
the screw give lateral motions to the water, but the energy thus employed is

wasted. An ideally perfect propeller, then, impresses upon every particle of

water passing through it a reaction astern which for simplicity we may suppose
the same for all. This water may for the present be supposed to be initially at

rest, and therefore to be passing the ship with the velocity V, which of course

is the speed of the ship. After passing through the propeller this velocity is

increased to v
t
v-V being the absolute velocity of the current or "race" produced

by its action. For convenience we write

v-V=<rV, v-V = sv,

where <r, s are two fractions described as "
slip-ratios," the velocity v-V being

the absolute "
slip

"
of the propeller. What is called in ordinary language the

slip per cent, is 100 -s, but in calculations the fraction <r is often the more useful.

The quantity of water Q acted on per second may in like manner be expressed
in two ways. In the first we consider the sectional area A of the race formed

when the propeller is acting ;
in the second the area A through which the same

quantity of water passes by the motion of the ship before reaching the propeller.

Thus we have Q = Av =A Q V.

The propelling reaction or "thrust" of the propeller is, reasoning as in Art. 270*

R^~Q(v-V) = - A^V\
y j

a quantity which must be equal to the resistance of the ship. It is convenient to

reckon areas in square feet and velocities in knots, then the value of the constant

w/g for sea water is about 17/3.

At moderate speeds the resistance of the vessel as explained above is K .

where K is a co-efficient
; hence, equating thrust and resistance, we find that for

all speeds with the same notation as before

57 A* 35A

In sea-going vessels the value of jSL/A"
3

'

varies little and may be taken on an

average as 10, though in vessels of small draught of water it may exceed 20

Adopting the value 10 and assuming Ko'7, we find

BD
' =
35X '

a convenient formula for obtaining a rough idea of the minimum size of propeller

necessary for a given slip. It should be observed that the slip is constant only so-
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long as K is constant, and it therefore increases at high speeds where the resist-

.ance cannot be regarded as varying as the square of the speed.
The energy exerted by the engines per second is employed in changing the

velocity relatively to the ship of the quantity of water Q, and in overcoming
various useless resistances. Omitting the waste

-y2 _ T7"2

Energy exerted = ivQ ,

where the useful work is R V ; that is

Useful work = wQ .
V(v ~ V

\
9

Hence the efficiency of an ideally perfect propeller when operating on water

initially at rest is

2 V 2
Efficiency = ^= ~J v+ V 2 + a-

In such a propeller the only loss is in the kinetic energy of the propeller race, a

loss which cannot be avoided when the water is initially at rest. The case where

the water is not at rest but moves along with the ship before the propeller acts

upon it will be mentioned further on.

Evidently the efficiency is greater the smaller the slip-ratio a, but this involves

.an increase in the area A
,
which measures the quantity of water acted on.

Hence in every propeller, in the absence of frictional losses and of any disturbance

due to the passage of the vessel, the efficiency it greater the greater the quantity oj

water upon which it operates. Let us now apply these general principles to

particular cases.

Jet-Propeller. In the jet-propeller the water is drawn into the vessel through
suitable orifices in her bottom and by means of a large centrifugal pump, fre-

quently described as a "turbine" projected through two nozzles pointing astern,

one on each side of the vessel. Here the theoretical conditions are exactly

satisfied, and the efficiency apart from frictional losses is consequently found

from the formula just given, while the joint area of the nozzles is

A=-^L= BD
~~l+(r~35(l + <r)(r*

For constructive and other reasons the size of the orifices must not be too

large, and <r is constantly not less than unity in practical cases. We have

therefore

Efficiency = j

The losses in the pump left out of account in this calculation are necessarily

large, the efficiency of centrifugal pumps in cases like the present not exceeding

*5, so that the efficiency of jet propulsion can hardly be estimated as greater

than -33 even when designed in the best way. Assuming the constructive

difficulties involved in large orifioes overcome it would still be undesirable

to make <r much less than unity, for the hydraulic resistances would be

relatively increased. To illustrate this point let us suppose that by improper

arrangements at the orifices of entry the head due to the velocity of V with

which the water enters the vessel to be wasted. The energy exerted per second

by the engines will be increased from wQ(v2 - V'2 )l'2g to ioQv
2
/2g, and the efficiency

becomes
_,. . 2V(v- V) 2<r

Efficiency^
-- =.
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This is easily seen to be greatest when a is unity, the maximum efficiency being

'25. And if other hydraulic resistances were considered, the same conclusion

would be reached, namely, that the efficiency is greatest for a certain value of <r

which cannot be very small. The question is closely analogous to that of a simple

reaction wheel already considered in Art. 263. It is probable, therefore, that a

jet-propeller cannot compete with other forms of propeller so far as economy is

concerned, though the considerable advantages it offers in other respects may
render it advisable to employ it in special cases.

Paddles. On observing the action of paddles two streams are seen proceeding
from the floats, which play the part of the jets in a jet-propeller. In the most

efficient kinds the floats have a "feathering" movement, being mounted on axes,

upon which they turn so as to enter and leave the water without any considerable

shock. The streams are simple jets of sectional area not very different from

that of the floats themselves, and are driven astern with about the same velocity.

If then v be the speed of the paddles calculated from their effective diameter and

revolutions, V the speed of the ship, the propelling reaction is given by the same

formula as for jets, while the energy exerted per second is greater, being Rv.

Hence the efficiency is

V 1

Efficiency= = =-J v 1+cr

For given velocities this is less than that of a simple jet when no losses are con-

sidered except such as are necessarily involved in the action of the propeller, the

reason being that the value just found includes the loss due to breaking up the

water as the paddles press on it and drive it upwards in a mass of foam before it

settles down to the comparatively undisturbed motion of the race. The waste of

energy in this process is equal to the kinetic energy of the race, and the total

waste in the paddles is therefore double that in the jet. On the other hand, the

paddles act on a very much larger body of water, the value of cr being '5 or less

instead of unity, and the energy wasted in other ways is much less ; the efficiency

of propulsion is consequently much greater in smooth water when the paddles are

properly immersed, probably exceeding '5 in good examples.

Screw-Propellers in general. In rough water the efficiency of paddles is greatly

reduced, and this is also the case when the immersion varies in consequence

of the consumption of coal on a long voyage or from other causes. Even in

smooth water paddles work to advantage only at the particular speed for which

they have been designed in consequence of the change of immersion due to the

alteration in position of the waves accompanying the vessel. When the draught

of water permits, paddles are therefore almost always replaced by a screw.

In an ideally perfect screw-propeller the race would consist of the water passing

through the screw disc, to which would be communicated a sternward velocity as

in paddles. The diameter of the screw (supposed single) will be somewhat less

than the draught of water (/>), and A Q the area occupied before reaching the

screw may therefore be taken as about irZ)2/4, while Q= A V will be the quantity

of water acted on. Assuming as before cr V as the change of velocity produced

on passing through the screw and applying the roughly approximate formula

previouslv given,
BD B

C.M. 2 S
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Assuming D= "4B, this gives for the slip-ratios

1 1
*=n : '=

i2'

corresponding to a slip of 8 per cent.

This calculation is of interest as giving a theoretical minimum value for the slip

of a screw
; the actual average must be much greater, because the whole of the

water passing through the screw disc is not moved astern, and the other assump-
tions made are all of a nature to reduce the calculated result.

Efficiency of Screws. Though a screw, like every other propeller, operates by
impressing a sternward velocity upon the water, yet the manner in which it does

this is so entirely different from the action of a paddle that it is desirable to con-

sider the question from a different point of view. Imagine a tube of uniform

transverse section to be formed into a cylindrical spiral of uniform pitch z
,
and

let the axis of the spiral be a shaft projecting astern exactly parallel to the direc-

tion of motion of the vessel. The tube being fixed to the shaft rotates with it at

N revolutions per second where

F=A%.
Neglecting the disturbance of the water by the passage of the vessel, the effect

of this arrangement is that the spiral tube screws its way through the water

without disturbing it in any way in the absence of friction, the velocity U with

which the water moves through the tube being V . cosec a where a is the pitch

angle. Under these circumstances the tube has no propelling effect ; but now,

suppose that a portion of the tube is taken and its curvature altered so that the

pitch, while remaining equal to z at the end where the water enters, gradually
increases to 2^ at the end where the water issiies, the radius of the spiral being

unchanged. The effect of this is that the stream flowing through the tube, while

retaining the same mean velocity and pressure, has its direction altered by the

small angle 0, by which the pitch angle at entrance differs from that at exit. By
reasoning as on pages 489, 519, it is now easy to find the resultant action upon
the tube of the water inside which will be given by the formula

P= a . Q . U(f>
=aSU2

(f>,

in which S is the sectional area of the tube and a a co-efficient which might be

exactly calculated. The reasoning here given may be compared with that in

Art. 260, p. 505, in which an equivalent result is arrived at.

It was pointed out by FROUDE that a screw blade might be considered as a body

moving nearly edgewise through the water, the small angle of obliquity (depend-

ing as it does on the slip) being described as the "
slip angle." This small angle

is different at each point of the blade, but does not exceed 10 in practical cases.

A particle of water in contact with the blade traces out upon it a spiral curve, and
each of the spiral elements into which the blade may be thus divided behaves

nearly as the spiral tube just described, deflecting through the small angle a

stream the breadth and therefore the sectional area of which is proportional to the

length of the element. Hence the propelling reaction is a force P normal to

the blade given by the same formula as in the tube, S being now the area of

the element. In ideal cases the co-efficient a can be calculated, but in an actual

screw blade must be determined experimentally.
In addition to the normal force there will be a tangential force fSU2 due to

friction, / being a co-efficient much less than a. Calling this F and v///a, 7,

F=L =t
P CHf) </>'
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thus for a given slip angle the ratio F/P is given just as in the case of the friction

of a solid screw in its nut, discussed on page 241. Introducing a " friction angle
"

which we may now call 0' to distinguish it from and proceeding as in the

article cited it will be found that

tan {a
-

d>\
Efficiency = -&,

tan {a + 0'}

In determining the maximum value of this we must remember that and are

independent, but that 0' is connected with 0. When 0' is small 00' = y-. Hence

the maximum efficiency is when = 0' = 7 and a = 45, the value being

/I -y\ 2

Maximum Efficiency= ( = -

J

Thus the friction and efficiency of screw propellers as determined by this calcula-

tion, which is due to FROUDE, are governed by laws closely analogous to those

which govern an ordinary screw and its nut.

The value ascribed to the co-efficient 7 for a simple element by FROUDE was

0685, corresponding to a maximum efficiency of 76 per cent, at a slip of about

13 per cent. To make a similar calculation applicable exactly to an ordinary

screw blade it would be necessary to suppose that 7 had the same, or at any rate

some known, value for all elements of the blade, but although quantitative results

are unattainable, the principle of the calculation is undoubtedly correct. There

must always be a slip of maximum efficiency which cannot be very small, and at

small slips the waste by friction is enormously great.

Experiment on model screws bears out this conclusion. Such experiments have

been systematically made by Mr. R. E. Froude and others in great numbers, with

the result of showing that in good examples the efficiency varies little at slips

between 15 and 30 per cent., being then about '66 rising to nearly 70 per cent, at

a slip of about 20 per cent.

Disturbed Water. The conclusions we have arrived at appear at first sight con-

trary to experience, for we know that the slip of screw propellers is commonly less

than 15 per cent., and often less than the theoretical minimum of 8& per cent,

obtained above. The reason of this is that the screw works in water which is not

at rest, but travels onwards along with the ship with a mean velocity u, which

probably often reaches 10 per cent, of the speed of the ship. Hence the water

enters the screw not with velocity V, but with velocity V- u, and the real slip is

correspondingly increased, being probably seldom less than 20 per cent, in good

examples. The effect on the efficiency of the screw is complicated. In the first

place, the useful work done in propelling the ship is greater for the same real slip,

and therefore for the same turning moment and speed, so that prima facie the

efficiency is increased. But on the other hand, a screw of ordinary dimensions

sucks more water through it than would naturally flow there, an action which

augments the resistance of the ship unless the screw is placed further astern than

is possible for constructive reasons. In a screw with many blades of considerable

length there would be little if any suction, but too great blade area is a cause of

great loss by friction. FROUDE stated that the augmentation was often as much

as 40 or 50 per cent., but it was afterwards explained by his son that this estimate

included the resistance of thick square stern posts and appendages to the pro-

peller, the augmentation proper varying from 8 to 18 per cent. The lower value

applies to twin screws and vessels with fine lines. Experiment appears to show

that in models the loss by augmentation on the average about compensates for the
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direct gain by working in disturbed water, the efficiency of a model screw being
about the same when a corresponding vessel is run ahead of it as when the vessel

is removed.

The best results are doubtless obtained by an exact adaptation of the dimen-

sions, number, and form of the screw blades to the type of vessel. At present

such adaptation can only be effected by the principle of comparison from

some example known to give good results. The method is fully explained by
Mr. Sydney Barnaby in his work on Marine Propellers.

Indicated Power. From what has been said it appears that the power required

to drive a propeller will be (1+e^E.H.P. where
e-^

is a fraction, which in the

best examples of jet, paddle, or screw will seldom be much less than '5. This

addition of 50 per cent, to the effective power is due to waste of energy in giving

various motions to the water acted on by the propeller, including the production
of eddies, by surface friction of blades and otherwise. To obtain the indicated

power we must now consider the friction of the engines and other resistances,

such as air-pumps, feed-pumps, and the like. These consist (as described on

page 258) of two parts, a variable part proportional to the mean effective pressure,

and a constant part most conveniently expressed as a fraction of the effective

pressure at full speed. Thus the formula

/. H. P. =( 1 + ei + e,) . E. H.P.+es . E^H^ .

-^

gives with sufficient accuracy for the present purpose the indicated power at the

given speed of vessel and r solutions (JV) of the engines in a set of speed trials,

where e.2 ,
e3 are fractions i the suffix 1 refers to full speed. The counter-

efficiency at full speed is
e-^ + e^ + e.^,

which in screw propulsion in the best

examples is about 1'8, and aking e
l
as '5 we find e.2 + e3

= '3, of which at least one-

half is due to the constant .friction. At lower speeds the efficiency of propulsion
is much less, because the el -t of the constant friction is relatively great.

The ratio Af F3
//. H. P. i: .escribed as the "displacement constant." It has

long been known that it is i )t the same at different speeds in a set of progressive

speed trials, but that it has a maximum value at a certain speed (about c= *7 in

full sized vessels), diminifr ng considerably both at high speeds and at low

speeds. The explanation of this is sufficiently clear from what has been said.

It can, however, be used as a means of comparison if care be taken to compare

only vessels at corresponding speeds with engines working at the same fraction of

their full power.
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B. ORGANIZATION OF THE CLASSES IN ENGINEERING
AND NAVAL ARCHITECTURE IN THE

ROYAL NAVAL COLLEGE.

A SCHOOL of naval architecture was founded in Portsmouth dockyard so long ago

as 1810, but, after existing for more than twenty years, was abolished in 1833. In

1844 it was re-established, but only to be once more abolished in 1853. In 1860

the Institution of Naval Architects was founded, and by its influence a third

school was commenced under the direction of the Science and Art Department at

South Kensington. For particulars respecting the two earlier of these schools the

reader is referred to a paper by SCOTT RUSSELL in ^bhe Transactions I.X.A. for

1863. The third was afterwards incorporated with the Royal Naval College, of

which it now forms a department.
This department is divided into two classes, of v ;

iich the junior serves as the

final stage in the training of the engineer officers or '\e navy, the majority of whom

spend nine months at Greenwich immediately on eu ring the service, after several

years spent in the dockyard. (See p. 647.) The semor is an advanced class, con-

sisting partly of a small number of engineer officers Delected by competition from

the preceding, and partly of students in naval rr" cecture originally selected by

competition from the dockyard apprentices to j<
\ the junior class. The full

course in the advanced class lasts three years, of wtflch one is spent in the junior,

and two in the senior class. There are also private students who generally go

through the full course. The programme of these cJ'sses differs in some important

respects from that of most other technical colleges, and it may be useful to describe

it briefly here.

The three principal branches of study are :

I. Pure and Applied Mathematics ;

II. Applied Mechanics ;

jjy /Naval Architecture,

IMarine Engineering ;

to each of which the time allotted is about the same. In addition, there is a

course in Physics and Chemistry. The mathematical course includes the theory

of electricity, while the technical applications to electric lighting and torpedo
work are included in the laboratory course on physics. The following remarks

will be confined to the second and third of the principal subjects.

In APPLIED MECHANICS the subjects are

A. Elementary Subjects.

j> /Stability and Oscillation of Ships.
I. Theory of the Steam Engine.

C. Wave motion. Resistance and Propulsion of Ships.
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Subjects A. are pretty closely represented by the present treatise, but there are

a few omissions and some additions, especially in graphical statics and elementary

theory of the steam engine. The course lasts two years, each subject being com-

menced in the junior class and completed in the senior.

Subjects B. are commenced in the second year and completed in the third. The

first is studied by students in naval architecture only, and the lectures on it are at

present given by the Instructor in Naval Architecture. The second is studied by
students in engineering only.

Subjects C. occupy the greater part of the third year.

In NAVAL ARCHITECTURE the course followed is very fully explained in a paper

by Mr. (now Sir) W. H. White in the Transactions I.N.A. for 1877 (Vol. XVIII. ,

p. 361), and it need not therefore be further considered here.

In MARINE ENGINEERING the course for the junior class occupies nine hours a

week. Each of the principal parts of the marine engine, including the boiler and

propeller, are taken in detail, the dimensions proper for that part determined, and

the other practical questions considered which are involved in its design. An

example is set, and the student is expected to work out a design from the data

proposed, and to produce working drawings. About 30 of these drawings are pre-

pared in the session, the subjects being :

Details ofprincipal parts of Engine

Piston, Piston Rod, Connecting Rod, Cross-head and Guides, Thrust-block,.

Crank-shaft, Cylinders and Fittings.

Propeller

Shafting and Couplings, Boss, Blades.

Slide Valves

Zeuner's Diagrams for Solid and Open Bar Links, Valve-ellipse, Construc-

tion and setting of Slide Valves, Link Motion.

Boilers

Dimensions and Structural Details, Fittings.

Condensers and Air Pumps
Fittings and General Arrangement.

The foregoing course is gone through by all students in engineering. Those who
are selected to enter the advanced class devote eight hours a week on the average
to the subject in two following sessions. In the second year detailed drawings
are made of the parts, and three views of the general arrangements, of a set of

marine engines of large power suitable to propel a given ship at a given speed.
The drawings of the details and propeller are completed, and the general drawings

pencilled. In the third year the boilers are designed, and drawings made showing
the disposition of the pipes and auxiliary engines. The general drawings are

completed, the whole design being represented by a set of about 20 drawings.
The practical training of students both in naval architecture and in engineering

takes place in the dockyards for a period of at least 4 years before entering the

College and during the three summer months in which the College is closed. This

is a point of great importance, for, quite irrespectively of the absolute necessity of

such training for its own sake, no theoretical course can be thoroughly understood

without some preliminary knowledge of a practical kind. A college workshop is

a very imperfect substitute and occupies time which is better spent elsewhere.

The author, however, must not be understood to depreciate the importance of a
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" mechanical laboratory," provided with testing machines, hydraulic apparatus,
steam engines, and the like, for the purpose of studying mechanics experimentally.
Such a laboratory, when properly organized, is capable of rendering great service,

but it in no way replaces training in a large workshop carried on for commercial

purposes. Nor are these remarks intended to apply to the lower grades of

technical education, in which the workshop to a great extent plays the part of a

laboratory.

In the author's opinion, much the same may be said as to the use of models in

teaching mechanics. An engineer does not use models
;
he employs drawings

almost exclusively ;
and so, in the instruction of professional students, models are

of little value for descriptive purposes. Nor should they be used to demonstrate

the laws of motion. But in explaining a mechanical principle, a model is some-

times of service
;

it plays the same part as the figure in a proposition of Euclid in

aiding the conception of the learner. And, as before, in the lower grades of

technical education, models may properly be used for demonstrative purposes,

while, in the case of non-professional students, they are often indispensable for

descriptive purposes. In the " steam "
department of the Royal Naval College,

organized for the purpose of imparting to the executive officers of the navy a

knowledge of the mechanism and working of a marine engine, models are freely

used in this way. On the subject of technical education in naval architecture, the

reader is referred to two valuable papers by Mr. John and Mr. W. Denny in the

Transactions of the Institution of Naval Architects, the first in Vol. XIX., p. 120 ;

the second in Vol. XXII., page 144.

[1892.] In the year 1877 a college for the training of engineer students was

established first at Portsmouth, on board the Marlborough, afterwards at Keyham.
In recent years a certain proportion of the engineer officers on entering the Navy
have been sent afloat at once instead of passing through Greenwich, and the

majority of the students of naval architecture have been selected for study at

Greenwich from the Keyham students. A large part of the time at Keyham is

spent in practical work in the dockyard and engine factory ;
but of late a part of

the instruction in applied mechanics and marine engineering has been carried out

there, leaving more time for the development of the subjects at Greenwich.
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