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TRANSLATORS' PREFACE

BOOKS on aeronautics may be roughly divided into two

classes : the former written from an exclusively mathe-

matical standpoint, and hence intended for but a small

circle of readers; the latter, of a more elementary and

popular character, do not, as a general rule, pretend to

treat the problem of the aeroplane from its more serious

technical and scientific aspects.

The present work belongs to neither of these categories.

Its purpose is to explain in terms as simple as possible,

and with a minimum of formulae, the main principles of

dynamic flight; to give the ordinary reader an insight

into the various problems involved in the motion and

equilibrium of the aeroplane; and to enable him to cal-

culate in the simplest possible manner the various elements

and conditions of flight.

At the outset of this work it may be well to provide

against possible misconception by explaining that it in

no way aspires to present in final and conclusive form

the intricate problems which constitute the complete theory
of the aeroplane in view of the comparative youth of the

science, such an attempt cannot be made for many years
to come.

In consequence, the calculations it contains are approxi-
mate only ;

their numerical value, in fact, is founded on the

basis of experiments so few in number that, even though
their results be correct, they cannot well be accepted as

final.

A few words of explanation in regard to the author's

treatment of his subject may be required. In the first
V
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vi TRANSLATORS1 PREFACE

place it is necessary to state and the statement will be

amply borne out by a perusal of the work that through-
out recourse has only been had to the simplest elements

of mathematics and mechanics. All the mathematical

knowledge required to follow the various arguments and

calculations is, in fact, such as is possessed by almost every

schoolboy.
The author, Captain Duchene, is one of that brilliant

band of French engineer officers whose contributions to

the science of aeronautics have played a part of inestim-

able importance in the development of the aeroplane.

Born in Paris on December 27th, 1869, he entered the

Genie in 1890, after passing through the usual course at

the Ecole Polytechnique. He received his captaincy in

November 1897, and was attached to the fortress of Toul,

at that time one of the centres of military aerostation in

France. Five years ago he was transferred to the staff at

Paris.

The present work was awarded the Monthyon prize in

1911 by the Academy of Sciences. Although it may have

lost in the process of translation some part of that lucidity

and terseness of expression that form the most admirable

and characteristic features of many French scientific works,

we hope that the original value of Captain Duchene's book

remains unimpaired in its English form
;
that it may serve

to correct much loose thinking and misapprehension at

present prevailing, and that it may succeed in its en-

deavour to establish a firm connection between theory and

practice.

J. H. L.

T. O'B. H.
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INTRODUCTORY

AN aeroplane is an aerial machine sustained in the air by
the support derived from its forward motion, which, there-

fore, is essential for it to remain aloft.

To produce this sustaining force advantage is taken of

the established fact that the reaction of an air-current on

a plane or any other surface is directed approximately at

right angles to this surface
;
and this is true irrespective

of the angle of incidence that is, the angle at which the

plane meets the air, which otherwise constitutes a factor of

primary importance in the theory of the aeroplane.

It is evident that the property referred to holds good,
whether an air-current strikes a fixed plane or, alterna-

tively, whether the air-current be relative and produced
as in the case of the aeroplane by the motion of the

plane through still air.

From this consideration it follows that, by impelling

horizontally a plane meeting the air at a very small angle,
1

it is possible to obtain from the relative air-current thus

set up a reaction that is directed almost vertically upward ;

and if the velocity of motion is sufficiently high one may,

by these means, succeed in raising and sustaining the

weight of a complete aeroplane, with its planes, framework,

motor, propeller, fuel, and passengers.
But the simple utilisation of the forward motion of an

aeroplane to produce the requisite lifting-power only con-

stitutes the first part of the problem. What is required
for the solution of the whole problem is that the aeroplane

should, in addition, be in equilibrium on its path of flight;

and, further, that this equilibrium should be stable
;
that

1 The angle of incidence of planes in practice never exceeds twelve

degrees at the outside, and is, therefore, but little removed from the

horizontal.
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is, that the machine should not be liable to be upset or

deflected from its course by the slightest disturbing in-

fluence.

These preliminary considerations indicate the lines

along which the work has been subdivided.

The first, and longest, part deals with the support of

the aeroplane in still air, apart altogether from any ques-
tion of equilibrium or stability. In the first place, it treats

of the principles of this sustaining-force, that is, with the

action of a current of air on a plane. Hereupon follows

an examination of the relations that connect, in horizontal

flight, the speed, the thrust of the propelling mechanism,
and the mechanical forces called into play with the im-

portant factor constituted by the angle of incidence and
with the characteristics of the aeroplane, such as the

weight, plane area, and "
fineness." This first portion con-

cludes with the consideration of the inclination of the

flight-path and with the special case undoubtedly the

most interesting of gliding flight
*

; some remarks will be

made regarding starting and alighting.

The second portion is devoted to the consideration of

the equilibrium and stability of the aeroplane in still air, in

the threefold aspect of longitudinal, lateral, and directional

stability. Turning is another subject for consideration.

The third portion of this work treats of the effect of

wind on the aeroplane. The influence of a regular wind
on the flight-path forms the first heading, and is followed

by the effect on the equilibrium and stability of the aero-

plane of irregular wind-currents, of atmospheric pulsations,
and of gusts.

A final appendix treats of the design of screw-propellers.

1 The terms "
gliding flight,"

"
glide," are used throughout to denote

flight with the motor stopped, designated in French by the words "
vol

plane." Translators.
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PART I

FLIGHT IN STILL AIR

CHAPTER I

SUPPORT IN THE AIR ACTION OF A WIND-
CURRENT ON A PLANE

i. Action of a wind-current striking a plane surface

at right angles.
A wind-current of velocity V (in metres per second),

striking at right angles a plane surface AB of area S (in

Bl^

\

I

Is

FIG. 1. Profile.

square metres) see Fig. 1 exerts on this plane an action

equivalent to that of a force or pressure p similar in its

A
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direction and effect to the wind-current and of the magni-
tude (in kilogrammes)

1

(1) p= 0'08SV2
.

Thus, it will be seen that the magnitude of the pressure
is proportional to the area of the plane and to the square

of the velocity of the wind. Consequently, the pressure

grows very rapidly with an increase in speed.

It should be noted, in addition, that the value of this

pressure is scarcely at all affected by the shape, in plan-

form, of the plane, which may be square, rectangular,

circular, &c.

And finally, it should be remembered that, as has

already been stated, this value remains the same whether

the wind be real whether, that is, it strikes a plane fixed

in position or whether it be merely relative, as in the

case of a plane moving through still air.

2. Action of a wind-current striking a plane surface

at an angle.

A wind-current striking, at velocity V, at a small angle

FIG. 2. Profile.

i, a plane surface of area S exerts on this plane an action

1 This value of the coefficient is approximately the mean value found

by various experimenters, but it is not impossible that further experi-

ments may, in the future, lead to its modification.
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equivalent to that of a force or pressure q directed almost

at right angles to the plane, and of the magnitude (in

kilogrammes)

(2) g = &SV2
i.

The symbol k represents a quantity that may be con-

sidered as a constant coefficient, provided that the planes
acted upon are of similar shape and that the angle i

remains small. 1

The angle of incidence i is expressed as a decimal

fraction, giving the slope of one of its sides relatively to

the other : thus, an angle of O07 has one of its sides at a

slope of 7 centimetres per metre relatively to the other.2

To sum up, just as in the case of the plane struck at

right angles :

The pressure, is proportional to the area of the plane
and to theAspeed of the wind. In addition, it is propor-
tional to the angle of incidence for small angles.

On the other hand, it differs from the plane struck by
the wind at right angles, in that both the shape of the

plane, and its position relatively to the wind -current

greatly affect the quantity of the pressure.

The pressure, in fact, increases as the span of the plane
that is, its dimension transverse to the direction of flight

is increased relatively to its fore-and-aft dimension.

The relation between span and the fore-and-aft dimension

is known as the "
aspect ratio."

This phenomenon, as a matter of fact, admits of a

simple explanation. It is, in fact, evident that the tend-

ency of the air to leak over the sides of the plane remains

the same in the case of the square plane ABCD as in the

case of the wide-span plane A'B'CT)', and this "leakage"

naturally affects the total pressure to a lesser extent, as

this pressure increases, than in the case of a wide-span plane.
1 See footnote to p. 4.

2 For small angles this is equivalent to the sine of the angle.
Translators.
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And, if we pursue the same line of argument, it is also

clear that the advantage of the increase in span must

gradually grow less as the span is increased. In practice

nothing is gained by a greater aspect ratio than 5 or 6

C D'

FIG. 3.

to 1. As a matter of fact certain devices such as the

cellular partitioning of the early Voisin biplanes even

render it unnecessary to reach this limit.

It is safe to accept the increased pressure due to a

good aspect ratio as being about 1*6 times that of the

pressure on a square plane of equal area.

Accordingly, in formula (2) the value of the coefficient k

may be modified so as to allow for the effect of aspect ratio.

For a square plane, for instance, the old formula of

Duchemin gives this coefficient a value double that of O08,

its value when struck at right angles that is, 016. In

the case of a good aspect ratio, this value is increased

1*6 times, and is thus raised to 0'26. These values, how-

ever, are only given by way of example, and should not

be accepted literally.
1

This influence of the aspect ratio deserves the closest

attention : the wide span of a bird's wings forms the best

natural illustration of the principle.

1 As a matter of fact, M. Eiffel's recent researches give different

values to this coefficient. For a flat plane of 5 or 6 aspect ratio, its value

would seem to be about O34 when the angle of incidence is less than 0'13

7 degrees). As the angle of incidence increases beyond this figure, the

value of Ic rapidly falls. The variation in the value of the pressure

relatively to the angle of incidence, as established by M. Eiffel's experi-

ments, may be represented in the following two formulas :

If i is less than 0-13
<?
= 0-34SV 2

i.

If i is between 0-13 and 025 . . ?r=(0-04 + 0'02i) SV2
.
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The same principle leads to the rejection a priori of

such aeroplanes as are sometimes designed to fly with

their smaller dimension transverse to the line of flight,

whereof the schoolboy's paper dart forms a good example.
Such planes must, in fact, be most inefficient owing to the

great leakage of the air over the sides.

3. Action of a wind-current striking at an angle a

curved plane.

Modern theory and practice have shown that the lifting

efficiency of a plane is greatly increased by curving it longi-

tudinally, the concave surface being placed so as to meet

the air. Such curved planes are seen in a bird's wings.
The advantageous effect of thus curving the plane (a

second advantage will be explained in 11) resides in the

fact that the pressure on a curved plane is considerably

greater than that on a flat plane of equal area and struck

by the wind at the same angle.

But in order to justify any comparison, it here becomes

necessary to define precisely what constitutes the angle of

incidence of a curved plane.

At first one is naturally inclined to consider the chord

of the curve as the angle of incidence of the plane. Never-

theless, as will be seen, the line of the chord would not

furnish a correct basis for comparison of the pressures on
flat and curved planes respectively. It is, in fact, clear

that, when a flat plane meets the air with its leading edge

edge-on, no lift of any kind is produced ;
in other words, it

sets up no reaction directed perpendicularly to the air-

current. When, on the other hand, a curved plane meets

the air edge-on, there arises a distinct lift.

So that there may be no lift, it is necessary that the

curved plane should be struck by the air-currerit slightly
on its upper surface, at an angle shown in Fig. 4 by the

line A'C. And the angle of incidence, according to M.

Soreau, should be reckoned from this line.
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Adopting this angle as the angle of incidence, we may
now establish the following important formula on analogous
lines to formula (2) :

(3) Q = KSV*i,

wherein Q represents the pressure (in kilogrammes) exerted

by the air on the plane, S represents its area in square

Direction ofAir -current.
FIG. 4. Direction of Air-current.

metres (no regard being paid to the curvature), V the

velocity in metres per second, and i the angle of incidence

expressed as a decimal fraction and calculated from the

base-line as shown. Finally, the symbol K is a coefficient

that remains constant so long as the angle of incidence

remains small.

If, on the other hand, the angle of incidence were

calculated from the chord of the curve, formula (3) could

only be made to apply if the coefficient K varied with the

angle. As a special case : If the angle of the chord were

zero that is, if the direction of the air-current were along
the chord the coefficient K would become infinitely great
in value (for, although the angle i would be zero, the

pressure Q would nevertheless be appreciable). If, how-

ever, the chord is calculated to form the angle of incidence

as is sometimes the case the value of K can only be

regarded as constant for very small variations in this

angle.

Clearly, the values of K and of the angle formed by the

line that constitutes the base-line of the angle of incidence

and the chord will depend on the shape and depth of the

curve.

Captain Ferber laid down as the most efficient shape a

curve with a greatest depth (known as the " camber ") of y
1-
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of the fore-and-aft dimension of the plane and situated

at Jrd of this dimension from the forward edge (Fig. 5).

FIG. 5.

The distinctly flat curve adopted by the brothers Wright
as the result of long experiment, and approximately shown

in Fig. 6, would appear to have given the best practical

results hitherto.

FIG. 6.

The foregoing considerations render it evident that

a certain amount of indecision still prevails regarding the

value to be given to the coefficient K, and that different

authors, in fact, have reached widely varying results.

Captain Ferber, for instance, gives the value as O7, whereas

M. Soreau fixes it at G'4.
1

But in any case it is clear that the coefficient K, pro-
vided it is defined with sufficient accuracy, will be the

1
According to M. Eiffel's more recent experiments with a curve form-

ing the segment of a circle and with a camber of of the chord
13*5

situated at the centre of the curve, for angles below 0*35 (the base-line

being reckoned as forming an angle of 015 with the chord) the coefficient

K has a value of 0'225. In other words, if i' represents the angle formed

by the direction of the air-current with the chord, the pressure on the

plane, for angles between and O20 could be calculated from the formula

(3A) Q = 0-225 SV 2
(i' + 0-15).

But it should also be noted that the curve with which the above experi-

ments were carried out was exceptionally deep. Probably with flatter

curves, such as that used by the brothers Wright, the base-line of the

angle of incidence would form a smaller angle with the chord than 0-15,

so that the coefficient K would approximate to the value 0'4 given it by
M. Soreau.
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higher, the better the depth of the camber and the aspect
ratio of the plane selected. Consequently, the coefficient

K characterises the lifting efficiency of a plane, and will

therefore be designated as such hereafter.

Example of application offormula (3).

What is the amount of the pressure exerted on a

plane, of efficient camber and aspect ratio, which has a

lifting efficiency of 0-4 and an area of 25 sq. m., by an

air-current of 20 m. p. sec. striking it at an angle of

incidence of 0*12 ?

The value of Q in kilogrammes will be :

K S V2 i

Q = 0-4 x 25 x 400 x 012 = 480 kg.

The table of squares on page 222 will facilitate the

rapid calculation of such problems.

4, Equivalent flat plane Composition of the planes.

From the foregoing it will be understood that it is

possible, for purposes of calculation, to substitute for any
curved plane an imaginary flat plane of the same area but

having a lifting efficiency K equal to that of the curved

plane, and being inclined at an angle equal to that of the

base-line of the angle of incidence of the curved plane.

This method of calculation may be extended still

further by substituting for all the planes of a whole

aeroplane a single imaginary flat plane of equal area to

the total area of all the real planes and having a mean

lifting efficiency K. 1 M. Soreau has given the title of

equivalent flat plane of an aeroplane to the imaginary

plane calculated according to this method of composition

of the planes.
1 In the case of planes arranged in parallel, if K

x , K, . . . K ;l repre-

sent the lifting efficiencies of the planes of area S
1}

S2 . . . Sn, the value

of K is derived from the expression
K

1 S1 + K8 S2+ . . . +KnSn
8 +8+ . . . +S



CHAPTER II

HORIZONTAL FLIGHT OF AN AEROPLANE
IN STILL AIR

I. THE BASIC FORMULA

5. Condition necessary for flight.

In the first place, it will be remembered (see Intro-

ductory Chapter), that in flight an aeroplane assumes

a position of stable equilibrium on its path of flight, which

it follows at a constant angle of incidence to the relative

wind-current set up by its forward motion.

The pilot is able to vary this angle of incidence by

manipulating the elevator, whose action will be described

in detail at a further opportunity ( 52, p. 117).

In order that an aeroplane may be sustained in the air

it is necessary that the pressure exerted on its equivalent
flat plane by the wind-current that meets it should have

a vertical component equal to the weight of the aeroplane.
In Fig. 7, let AB be the equivalent flat plane of the

aeroplane, and Q the pressure exerted on it by the air. So

long as the angle of incidence i remains small, the direc-

tion of this pressure is but little removed from the vertical.

The vertical pressure component F may therefore, without

any appreciable error, be supposed equal in magnitude to

the total pressure Q. The vertical component F is termed

the "
lift."

If P represents the weight of the aeroplane in kilo-

grammes, the necessary condition for flight is represented

by the equation P = Q.
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But the value of Q may be found from formula (3)

where the symbols i, V, S, K represent respectively the

angle of incidence, the speed, the area of the equivalent
flat plane, and its lifting efficiency.

FIG. 7.

Hence we may evolve the basic formula which, though

simple in form, represents algebraically the important
condition for flight of an aeroplane :

(4) P

II. THE SPEED

6. The speed at which an aeroplane travels in

horizontal flight.

From formula (4) may be deduced :

which expresses the relation connecting the speed of the

aeroplane in horizontal flight with the following factors :

The angle of incidence i of the equivalent flat plane,

The weight P of the aeroplane,

The area S,

The lifting efficiency K of its planes.
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Of these four quantities only the first, the angle of inci-

dence i, is at the present time capable of being varied

during the course of flight.
1 The last three quantities may

henceforward be termed the characteristics of the aeroplane.
To begin with, it is therefore necessary to examine the

influence exerted by a variation of the angle of incidence

on the normal speed of an aeroplane in horizontal flight.

The three characteristics weight, area, and lifting effi-

ciency are fixed.

The next step is to examine the effect on the horizontal

speed of an alteration in any one of the three fixed charac-

teristics the third characteristic and the angle of incidence

remaining constant.

It should be distinctly understood that this latter case

no longer deals with an alteration in the speed of a given

aeroplane by the manipulation during flight of such an

organ as the elevator, but is confined to the comparison of

the speeds of two aeroplanes that only differ in a single'

characteristic (either in weight, area, or lifting efficiency),

other things remaining equal and the angle of incidence

being identical in each case.

A third and final aspect of the problem will be

examined in 9 and 31.

7. Variation in the speed of a given aeroplane
caused by the alteration of the angle of incidence

Influence of motive power.
On examination of formula (5) :

V-~

it is clear that in a given aeroplane where P, S, and K are

constant in value :

The speed in horizontal flight depends only on the

angle of incidence.

1 It is possible that, in course of time, new inventions will give the

pilot the ability to vary the area or the lifting efficiency of his planes

during the course of flight.
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At first sight this extremely important fact is likely

to cause surprise. For it would appear that the speed
of a motor-propelled vehicle depends entirely on the

mechanical power developed by the motor
; wherefore, by

increasing the power, the speed would also increase.

The fact is certainly true in so far as any land vehicle

is concerned, for it is forced to remain on the earth's

surface, and its movements are consequently confined to

two dimensions. The aeroplane, on the other hand, is

capable of free motion through the three-dimensional

space of the atmosphere. Its motive power may affect

the speed to some extent, but only indirectly and through
the intermediary of an element peculiar only to the

aeroplane, and without an equivalent in any other vehicle

of locomotion. That element is the angle of incidence.

Now, it is evident in the first place that, in order

to produce, on the planes of an aeroplane meeting the air

at a certain angle, a pressure whose vertical component
or lift shall balance the weight of the machine, the

aeroplane must move at a certain given speed, and at

no other. If the speed is either greater or less than the

given speed, the aeroplane must either rise or fall.

Further, it is clear that if the angle of incidence is

altered, then the one speed necessary for horizontal flight

will no longer be the same as in the first case.

Every value of the angle of incidence therefore requires
one definite rate of speed, as has been deduced from

formula (5).

What, then, is the part played in horizontal flight

by the power developed by the motor ? On a later page

( 43, p. 92) will be shown that the sole part played by the

motor is to maintain flight horizontal, to prevent the

machine from falling under the action of gravity.

If, during the course of horizontal flight, the pilot

stops his engine without interfering with the elevator,

the aeroplane starts to glide; that is, it follows a slowly
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descending flight-path, but and this is the important

point its velocity of flight remains practically the same

as before.

It was not, therefore, the motive power that created

and fixed the speed, for this remained unaltered when the

motor was entirely stopped.
The factor that governed the speed was the angle of

incidence, a factor depending wholly on the relative dis-

position of the planes and other parts of the machine, and

particularly on the position of the elevator.

If, as was supposed, the pilot did not manipulate his

elevator, the aeroplane assumed on its inclined gliding

path precisely the same position of equilibrium that it

possessed while in horizontal flight. Both in its former

and latter position, therefore, the angle of incidence of the

planes to the air-current created by its own speed remained

the same. And this clearly shows why the speed also

remained the same.

Horizontal Flight;.

FIG. 8.

If, while gliding, the pilot re-started his motor, gradually

increasing the power, the flight-path would gradually rise

to and even beyond the horizontal. But if the elevator

remained untouched, that is, if the angle of incidence

were not varied, the speed of the aeroplane would always
remain the same. From this it will be seen that, as already

stated, the one function of the motive power is to over-

come or moderate the action of gravity, that is, to regulate
the flight-path vertically, without interfering directly with

the speed of the aeroplane.

At the same time, it would be a mistake to conclude
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that it is impossible to increase the speed of an aeroplane

by increasing the motive power. For, if the only effect

would be to impart an upward tendency to the flight-path

so long as the elevator remains untouched, this no longer
holds true when the elevator is manipulated and the angle
of incidence thereby modified.

In the latter case the speed of horizontal flight assumes,

for each different value of the angle of incidence, the

one corresponding value which may be deduced from

formula (5).

It then becomes possible to find the correct position

of the elevator, that is, the correct angle of incidence, that

will cause the increase in the motive power to be trans-

formed, not in raising the flight-path, but in increasing the

speed of the aeroplane which then remains in horizontal

flight.

A variation in the power can, therefore, affect the speed,

but only in the case where the angle of incidence is

modified.

In other words, as already stated :

The motive power can only affect the speed of flight

through the intermediary of the angle of incidence.

Although rather anticipating questions that will be

dealt with later on, this somewhat lengthy explanation
was deemed advisable, in view of the necessity for clearly

grasping the main feature of the horizontal flight of an

aeroplane, which is totally different from all other vehicles

in that it alone possesses the power of vertical motion.

In practice, as a matter of fact, the motor usually runs

at a certain constant speed, so that the pilot has to find by

experiment the single position for the elevator that will

give the angle of incidence the correct value where the

total power developed is absorbed usefully.

The speed of the aeroplane then becomes that which

corresponds to that particular value of the angle of in-

cidence. This rate of speed is termed the normal speed
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of the aeroplane, and the corresponding angle of incidence

is termed the normal angle of incidence.

8. Speed curves Attainable speeds.

If in formula (5),

V =
VKS;'

where the characteristics P, K, and S are supposed con-

stant, the angle of incidence i is given various values
;
one

8

Angles of

005 010 R 0/5

FIG. 9.

020 Incidence

obtains the corresponding values of the speed V, which

can be plotted out in a curve somewhat of the shape shown

in Fig. 9.

The first result is the proof that :

When the angle of incidence increases, the speed

diminishes, and Yice versa. Secondly, the fact that the

curve is concave in its upper portion shows that the varia-

tion in the speed corresponding to an equivalent variation
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of the angle of incidence is greater in proportion as the

latter is smaller. As an instance, the increase in speed is

greater, if the value of the angle is diminished by O'Ol, in

the case where the original value of the angle was 0'08,

than if it had originally been O15.

Accordingly, the use of a very small angle of incidence

would seem to render possible the attainment of high

speeds. But such speeds would only be possible for an

enormous expenditure of power ;

1 and further, the diminu-

tion of the angle of incidence is limited by the danger that

the planes of such an aeroplane might be struck by the

wind on their upper surface at the slightest longitudinal
oscillation.

Practically, therefore, the angle of incidence cannot be

reduced beyond a strict limit which varies according to

the type of aeroplane. Speaking in general terms, this

extreme limit may be fixed at O05
;
that is about 3. 2

But, on the other hand, it has been stated (3 and 5)

that the fundamental formula (4) was only applicable for

small angles of incidence. According to M. Soreau, this

angle in practice is always less than -20 (about 12).
This shows that the curve derived from formula (5), which

in its turn is derived from formula (4), need only be con-

sidered in the portion between points A and B, which

indicate the angles 0'05 and 0'20 respectively.

By attainable speeds is meant the speeds comprised

by this portion of the curve. Not that an aeroplane
can necessarily attain all such speeds, but only that the

speed it can attain must perforce be included in this

relatively small portion of the curve between the limits

V .

05
and V .

20
of which the first is just about double the

second.

The normal speed VR,
as stated previously ( 7, p. 14), is

1 See also 21, p. 42.

2 In all probability such a low angle has never yet been obtained in

practice.
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in practice determined by the motive power, which can only
be wholly absorbed in horizontal flight at a certain definite

angle of incidence. This normal speed VK corresponds to

the normal angle iR which must necessarily be greater than

the lower critical angle. From this it follows that the

normal speed is bound to be included not only among
the attainable range of speeds, but that it must be lower

than the speed corresponding to the lower critical angle

(that is, to Vo^).
1

From this it is evident that it would be dangerous to

apply to a given aeroplane motive power which would

necessitate the employment of too small an angle of in-

cidence. Wherefore, the motor must necessarily be pro-

portioned to the aeroplane, because danger would arise

from the employment of too powerful a motor in an

aeroplane designed for less power.

Nevertheless, it may be pointed out that under certain

circumstances this procedure may be adopted (see 25),

but in this case the motor only gives a portion of its

power in normal flight.

In practice the aeroplane always flies at its normal

speed, and its various parts must be designed and disposed
with a view to this speed.

If the pilot wishes to fly horizontally at a different

speed from the normal speed, he is obliged to vary, not

only the angle of incidence by operating the elevator, but

the power developed by the motor.

9. Effect of the value of the aeroplane's character-

istics on its speed.

The next step in considering formula (5)

v=

is to deduce therefrom the variations to which is subject
1 This argument is considered in greater detail in 25, 27, and 30.

B
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the speed when any single one of the aeroplane's char-

acteristics P, S, or K is modified, while the other two, as

well as the angle of incidence i, remain constant.

In the first place, it is to be noted that the value of the

speed is proportional to

/P
Vff

p
If the term loading is applied to the quantity ~ (in

kilogrammes per sq. metre), one can write :

Other things being equal, the speed is proportional to

the square root of the loading of the planes.

As the loading remains an invariable quantity of the

weight of the aeroplane, and its plane area either in-

creases or diminishes in the same proportion, it follows

that the speed also remains invariable. But if only one

of these two characteristics varies the other remaining
constant the speed must also vary.

An increase in the weight of the aeroplane brings
about an increase in speed proportional to the square
root of the ratio of increase, and vice versa.

Any reduction of the plane area also causes an

increase in the speed proportional to the square root

of the ratio of reduction, and vice versa.

Should, for instance, the weight of the aeroplane be

quadrupled, while the other characteristics (area and

efficiency) and the angle remain constant, the speed will

be doubled. The same result would follow if the plane
area were reduced to one quarter.

Thus one is justified in assuming that, in the event of

high-speed machines being built in the future, their weight
will be considerable, or, more probably, their area will be

small.

It will be shown hereafter that such high-speed
machines will require very high-powered engines (see

22); their second disadvantage is the enormous diffi-
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culty in starting and alighting. But it is not impossible

that these difficulties may be eventually overcome by the

invention of the variable-surface machine, which would

permit a high speed to be maintained in normal flight,

while starting and landing could be accomplished at slow

speed.

In concluding the discussion of formula (5) a few

remarks may be made on the effect on the speed of the

lifting efficiency K of the planes.

Examination shows that if the other characteristics

(weight, speed, area) and the angle remain constant, the

speed is inversely proportional to the square root of K;
which produces the at first sight astonishing result

that, other things being equal :

The aeroplane possessing the most inefficient planes
will fly fastest.

A child's paper dart forms a good illustration of this

principle. But it will be shown at a later stage ( 22)

that this advantage is only apparent, and is only obtained

at the cost of excessive motive power. Here again, the

future may solve the problem of the variable-speed
machine by enabling the plane efficiency to be reduced

in flight so as to increase the speed.
1

Throughout the preceding discussion the angle of in-

cidence has been supposed to remain constant. But at

this point it is necessary to explain more precisely the

exact meaning of this assumption. It must, in fact, be

understood that, whether we compare the respective speeds
in flight, at a constant angle, of two separate aeroplanes

exactly similar except for a single one of their char-

acteristics, or whether we compare the speed of a single

aeroplane before and after obtaining one of its char-

acteristics, the motive-power must in each case be precisely

sufficient for the conditions offlight.

1 The use of planes with a variable camber, for instance, would, if

satisfactory in practice, allow the plane efficiency to be varied in flight.
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In other words, we have had to assume that, in com-

paring two aeroplanes, the power in either case is sufficient

for the purpose of its flight, and that, in the case of a

single aeroplane, the pilot is able by some means or other

to make his engine develop the different powers re-

quired for horizontal flight at a fixed angle of incidence

in accordance with the variation in the value of the

characteristic modified.

But the whole problem is changed if the value of any
one characteristic is modified on an aeroplane driven by
an engine that normally develops its full power (always

running "all out"), for this power remains practically

constant at every speed, as will be shown below (see 29).

Now, although this problem is interesting enough in

itself, it can obviously find no place in the preceding dis-

cussion ;
for it necessarily entails owing to the variation

of one characteristic a consequent variation in the angle
of incidence. The latter, therefore, no longer remains

constant.

This important distinction is often ignored, and the

result is confusion. Take the case of the effect produced
on the horizontal speed of a machine by the carrying of

an extra passenger. If the angle remained constant the

increase in the weight would entail an increase of speed.

But this would further require an increase in power.
On the other hand, if the motor were already producing
its full power, the angle of incidence would have to be

increased, which would result in a reduction of the

speed.
1

These two results are obviously contradictory, which is

due to the fact that the two problems set were radically

different.

Reference was made to the latter of the two at the end

of 6
;

it will be examined at greater length in 31.

1 This explanation is only approximately correct ; the real reason for

the reduction of the speed will be given in 31.
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10. Tables for the rapid calculation of speeds in

horizontal flight.

The two following tables, based on formula (5), enable

an immediate calculation to be made of the speed at which

flies in horizontal flight an aeroplane of a given weight

P, of area S, and flying at a small angle of incidence i.

Table I. gives the speeds corresponding to various

angles of incidence, the loading being taken at 10 kg.

per sq. metre.

Table II. gives the numbers by which it is necessary to

multiply the speeds given in Table I., according as the

loading varies from 10 kg. per sq. metre.

These Tables are based on the value 0*4 obtained by
M. Soreau' 1 for the coefficient K or lifting efficiency of a

good plane. Their accuracy consequently depends on that

of this value of the coefficient. It must here be once more

repeated, that the quantities given in these and other

Tables must not be taken to be accurate. They are

merely approximations.

TABLE I.

Speeds in horizontal night at varying angles of incidence, with a

loading of 10 kg. per sq. metre.

Angle i. . . .

Speed in m/s. .
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TABLE II.

Numbers by which must be multiplied the speeds given in Table I.

according to different loadings.

Loading in kg.
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The distinction is important, for whereas the vertical

component or lift P = OM, which is equal to the weight of

the aeroplane, is practically the same as the total pres-

sure Q, the parts of the aeroplane other than the planes

not exerting any lift, the case is different with the hori-

V A /<'

t

FiG/10.

zontal component t = OL, which is much greater than the

horizontal resistance of the planes alone.

This component represents the reaction horizontally

opposed by the air to the forward motion of the aeroplane,
and is known as the resistance to forward motion or drift

of the aeroplane.
The function of the motor and propeller

1
is to create

1 Motor and propeller together are termed the propelling system, but, as

a matter of fact, the term liftiny system would be more appropriate ; for, as

has been shown in 7, the forward motion of an aeroplane is not the result

of the action of the motor, since it persists when the latter is stopped.
The propelling system, therefore, rather lifts than propels the aeroplane.
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horizontally in the direction of flight a force, termed the

thrust, which must, in accordance with the principle of

the equality of action and reaction, be equal in magnitude
to the drift. Consequently: the thrust is equal and

directly opposed to the drift.

If the total reaction R on the aeroplane were accurately

perpendicular to the equivalent flat plane and directed

along On, its horizontal component h would be equal to

01 or to M.n. Now, since the angle M.0n is equal to the

angle of incidence ABX or i (for their respective sides are

at right angles to one another), and since the angle i may
be expressed as a decimal fraction, M.n may be taken as

equal to OM x i, that is, to Pi.

We may therefore write :

(6) k = ?i.

The first portion h of the drift is due to the inclination

of the plane, which, of course, is essential to produce the

necessary lift. Thus, this portion h of the resistance to

forward motion may be described not altogether inaptly
as the price paid for the lift, since the latter can only
be obtained by overcoming the former. For this reason

it may also be termed the active resistance.

It diminishes as the angle of incidence grows smaller,

as may be seen from formula (6). If, therefore, it were

possible to fly at a very small angle indeed, that is at

a very high speed, this part of the drift would become

negligible.

This is clearly shown by writing formula (6) in the

form 1

P2

(6a) /i =KST2 '

so that, in a given aeroplane, the active resistance is

smaller according as the speed is higher.

1 Since P^KSV2
i, or 1=
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Hence it follows that if active resistance made up the

whole of the drift or resistance to forward motion, the

thrust required would be the smaller the higher the speed.
But unfortunately such is not the case, for to the active

resistance must be added the passive resistance or head

resistance?- caused by the thickness of the planes, the

friction of the air on their surfaces, the presence of the

framework with its uprights, the stay wires, the landing

chassis, the motor, and the pilot with his passenger.
The head resistance is considerably diminished by the

use of curved instead of flat planes. For, in addition to

increasing the lift, a curved plane has the advantage of

causing the pressure exerted on a plane by a horizontal

air-current to assume a more nearly vertical direction.

In fact, for certain angles of incidence, the direction of

the pressure may actually pass the perpendicular to the

equivalent plane. According to M. Eiffel's latest experi-

ments, it may even, for certain angles of incidence, pass
further beyond the vertical than the perpendicular to the

chord. (See Fig. 11.)

The use of curved planes therefore brings about, to

adopt M. Soreau's expression, a counter-resistance to for-

ward motion, or "negative" resistance, which diminishes

(without, however, entirely nullifying it) the head resistance

set up by the parts of the aeroplane other than the planes.
The total result of these various sources of resistance,

diminished as it is by the negative resistance due to the

curving of the planes, may be considered as if it were

caused by the effect of a single surface such, for instance,

as a disc placed at right angles to the direction of flight.

This imaginary surface is known as the detrimental sur-

face of the aeroplane.
Its value is one of the characteristics of the machine,

together with the weight, plane area, and lifting efficiency.

It is usually represented by the symbol s, and the

1 The latter term is usually employed in English. Translators.
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value of p may be expressed, according to formula (1) see

1 as follows :

Therefore, whereas the active resistance diminishes

proportionately to the speed, the head resistance grows

proportionately to the speed.

This explains the universal aim in aeroplane design to

reduce to the lowest possible degree every cause of head

FIG. 11.

resistance, by curving the planes,
"
shaping

"

every exposed

part, by the occasional use of wind-shields, by eliminating

wires, &c.

To sum up, the total resistance to forward motion, or

drift, of an aeroplane, or the thrust which is its equiva-
lent may be written :

(8) t
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P
or, replacing V2

by its value
, according to the basic

formula (4) :

'-"+

Now, if for a reason that will be explained further on

( 14) the quantity between the brackets is represented

by ^-2
,
that is, if:

1

the drift, or thrust required, may finally be written :

This simple yet most important formula 2 connects the

value of the thrust required for flight with the following

quantities : the angle of incidence i of the equivalent flat

plane, the weight P of the machine, and the quantity /,

whose value depends, according to formula (10), on that of

the plane area, the detrimental surface, and the lifting

efficiency. The three latter are the characteristics of the

aeroplane ; consequently / is also a characteristic.

In accordance with the method pursued in considering
the speed, it is now proposed to consider formula (11)

algebraically.

The first step will be to examine the effect of any varia-

1
By giving the coefficient K a value of 0'4, formula (10) becomes :

(10.) = '

.

2
According to M. Eiffel's recent researches, the equation should be

more complicated, and have the form t = P( i + v2
- + &

),
where a and b

represent coefficients. But it has been deemed advisable in the present
case to maintain the simplicity of formula (11) and subsequent formulas,

the more so since this can be done without materially affecting the

general conclusions to which they give rise.
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tion in the angle of incidence on the thrust, in a given

aeroplane; that is, in an aeroplane with definite charac-

teristics. The next step will be to examine the modification

of this value brought about by a variation in one of the

characteristics, while the angle of incidence and the re-

maining characteristics are kept constant.

When considering the influence of speed (and the same

applies with even greater force in the present case), it was

pointed out that in any procedure of this kind it is

essential that any deductions that may be drawn from

formulae should always be rigorously in accord with the

hypothesis under consideration
;
otherwise results may be

reached that at first sight appear contradictory.
1

12. Variation of thrust with the angle of incidence

of a given aeroplane Minimum thrust Most efficient

angle.

On examination it is readily seen from formula

(ID .
'-

that in the case of a given aeroplane, in whose case, that is,

P and / are constant :

The thrust required for sustentation depends solely

on the angle of incidence.

An interesting point must be considered in connection

with the variation of the thrust according to the angle of

incidence.

The thrust, as is known, is equal to the drift, which

is composed of active resistance Pi and head resistance

p
-rg..

The former increases and diminishes with the angle

of incidence, whereas the latter grows as the angle decreases

1 A case in point was considered in 9, in connection with the effect

of an increased load on the speed of an aeroplane.
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(and vice versa). But the product of both is constant

P2

and equal to
-^

.

Now, it is admitted that the sum of two factors whose

product is constant is a minimum when these two factors

are equal to one another. Consequently the drift, and

therefore the thrust, is a minimum when the active

resistance and the head resistance are equal; and this

occurs for an angle of incidence iv which is such that

1 1
l
i
~

Jti '
^a^ 1S ^i

=
7"

j (/-[ j

This particular angle of incidence iv which requires the

least thrust to produce the necessary lift, is called the most

efficient angle or optimum angle,
1 and the minimum

2P
thrust ^ is expressed by 2Pij or -

,
-

.

The flight of an aeroplane at its least angle ^ will

henceforth be called the most efficient or optimum flight,

and the speed Vx
which it assumes under these condi-

tions will be called the most efficient speed ;
that is, the

speed at which the aeroplane meets with least resistance

to forward motion.

13. Thrust curve.

If, in formula (11), the angle of incidence i is given
various values the characteristics of the machine re-

maining constant we obtain the corresponding values

of the thrust t, which may be plotted in a curve (see

Fig. 12).

Just as in the case of the speed curve, the thrust curve

must be confined within the limits C and D, which corre-

1 If we considered only the planes of an aeroplane, the value of the

least angle would be less that i
lt
which only applies to a complete aeroplane.

There therefore exists a distinction between the optimum angle of the

planes and the optimum angle of the whole aeroplane. The latter angle
is alone referred to.
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spend to the extreme limits 0'05 and O20 of the

angle of incidence.

14. Fineness of an aeroplane.
Formula (11), whieh was set out in 11, contained a

factor/, which was of the nature ^ =
Tr^r, where s repre-

sents the detrimental surface of the aeroplane, S the plane

area, and K its lifting efficiency. The factor / also enters

into the expression of the minimum thrust
#, which, as

2P
already stated, is equal to ~V .

The greater the value of/ the smaller is the minimum

thrust, or, what is the same thing, the minimum resistance

to forward motion. Therefore, the progress through the

air of the aeroplane, when its weight remains constant,

becomes easier.1

On the other hand, the factor / also enters into the

expression of the most efficient angle of incidence i
t which

1 The comparison here is obviously of different machines.
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is equal to -
. The greater /, the smaller the angle of

incidence, so that the aeroplane driven by the minimum
thrust "sails very near to the wind," like a well-designed

sailing-boat.

Hence, the factor / defines a quality that may be

termed the fineness* of the aeroplane, a quality that

characterises the flying capabilities of an aeroplane from

the point of view of least resistance.

The fineness is one of the characteristics of an aero-

plane by the side of its weight, plane area, and lifting

efficiency. These last two, incidentally, enter into its

expression, together with the detrimental surface.

The fineness of an aeroplane becomes greater the

smaller the ratio of the detrimental surface to the plane

area, and the better the lifting efficiency.

As a general rule, therefore, aeroplanes with large plane
area have better fineness than those of small plane area.

Although any increase in the size of a plane causes an

increase of the detrimental surface since the thickness

of the plane must necessarily be greater, surface friction

increases, and the plane must be more strongly stayed
the ratio of the two does not remain the same, but

decreases
;
and so the fineness of the aeroplane is improved.

Given two machines of the same plane area, that

machine will have the better fineness in which the detri-

mental surface has been reduced to the lowest point (by
the employment of stream-line structural parts, by keeping
the landing chassis as small as possible, by adopting the

best shape of plane, &c.).
2

1 Fineness forms perhaps an inadequate translation of the French term

finesse, but it conveys the same sense of "
delicacy," and must be used

preferably to a more cumbersome expression. Translators.
2 It may be observed that an increase in the thickness of the leading

edge does not increase head resistance to anything like the extent that

might have been expected ;
but the shape of the forward edge seems to be

of considerable importance.
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Since there is a definite relation between the fineness

of the aeroplane and the value of the optimum angle

it will be convenient hereafter to define the former(f= J,
i

value by the latter, as follows :

The smaller the optimum angle, the better the fine-

ness of an aeroplane.

Hence, formula (11) may be written :

(iia)

As the result of experiments which, by the way, are

not yet complete with several types of aeroplanes, it

seems fairly well established that the Wright machines

possess the greatest fineness.

For this machine the value of the optimum angle,

according to M. Soreau, is about 0*06, which corresponds,
for a plane area of 55 sq. m., approximately to a detri-

mental surface of 1 sq. m., that is T̂ th of the plane
area.1

This excellent result is due, as already stated
( 3), to

the good design of the large planes of the Wright machine,

while the body and tail, which cause much friction, have

been practically eliminated and the landing chassis reduced

to two single skids.

The cellular-type Voisin biplane, on the other hand,

has an optimum angle value of about O'l, which corre-

sponds to a detrimental surface of about 2'5 sq. m. for

a plane area of 50 sq. m., that is, -^-th. of the plane area.

In this case the excessive detrimental surface should be

ascribed to the tail cell, to the vertical partitions, and to

the bulky chassis.2

1 From formula (10)^ = hI =

In the case under consideration

0-08
2 This type of machine is, however, gradually disappearing.
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In an average aeroplane, to-day, the optimum angle
value may be placed somewhere about O08.1

15. The effect of the value of an aeroplane's charac-

teristics on the thrust.

Proceeding to analyse formula

we have now to examine the variations in thrust caused

by a modification of any single one of the characteristics

the other characteristics and the angle of incidence

remaining constant.

The only characteristics contained in the above formula

are the weight P and the fineness /, but neither the plane
area nor the lifting efficiency is included.

This consideration leads to a first conclusion :

If the weight and the fineness of an aeroplane are

constant, the value of the thrust is not affected by that

of the plane area or the lifting efficiency.

Although this conclusion may at first sight appear

surprising, it will become perfectly clear if the primary

hypothesis is only interpreted in an exact manner, as

recommended at the end of 9.

We have, in fact, to compare so far as the thrust

value is concerned two aeroplanes of equal weight and

equal fineness flying at the same angle of incidence.

Obviously, if the plane area or the lifting efficiency is

smaller in one case than in the other, the aeroplane will

have to travel at a higher speed to obtain the requisite

lift, so that the drift (and therefore the thrust) will be the

same in either case.

Reverting once again to the analysis of formula (11), let

1 This average value belongs principally to machines with large plane

area, such as biplanes and the class of big monoplanes ; while for aero-

planes of smaller area the average value is considerably higher.

C
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the fineness / and the angle of incidence i, be supposed

constant, and the weight P variable.

Then the thrust is proportional to the weight of the

aeroplane. Hence :

In order that two aeroplanes of different weights
but of equal fineness, and flying at the same angle,

may obtain the requisite lift, the thrust in either case

must be proportional to the weight.

Secondly, let the weight and the angle remain constant,

and only the fineness be variable, then formula (11) shows

that:

The value of the thrust required to sustain an aero-

plane becomes proportionately smaller as the fineness

increases.

But, as a matter of fact, the above case may be sub-

divided into several others, since (see 11 and 14) the

value of the fineness depends on the plane area, the

detrimental surface, and the lifting efficiency, for :

(10)
1 - 0>08s

/
2
~
KS'

Now, proceeding in the same way, let two of these

latter characteristics remain constant (as well as the

weight and the angle of incidence), while the other is

variable. Then :

The value of the thrust varies as the detrimental

surface, and inversely as the plane area and the lifting

efficiency.

In other words, the greater the value of the detrimental

surface (the remaining characteristics being constant), the

greater the necessary thrust value
; similarly, the greater

the plane area and the lifting efficiency, the smaller the

thrust required.

This last conclusion is not in any sense in contra-

diction with the first conclusion set forth in the present
section (p. 33), for each one refers to a different case.
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Originally, the comparison was between two aeroplanes
of different plane area,

1 but of the same weight, lifting

efficiency, angle of incidence, and of equal fineness, whereas

in the present case the comparison is between two aero-

planes of different plane area, but of the same weight,

lifting efficiency, detrimental surface, and angle of inci-

dence, and of different fineness.

Several of the foregoing results are admittedly of

interest only from an academic point of view. It might
be more useful to examine the effect, on the same aero-

plane travelling at constant power, of the various modi-

fications we have considered. But, as in the analogous
case of the speed (see end of 9), this would lead us

outside the limits of the case under consideration. It is

quite possible, too, that results found by such a method

might appear to conflict with those arrived at above.

This, however, would be due simply to the total difference

of the nature of the two cases.

It is, in fact, quite obvious that any variation in any
one of the characteristics of an aeroplane travelling at

constant power would cause a modification of the angle
of incidence. But the basis of the entire foregoing dis-

cussion was the supposition that the angle of incidence

remained constant.

Further on ( 31) we shall be at liberty to examine

this effect of a variation in the characteristics of an

aeroplane flying at constant power.

1 6. Value of the minimum thrust in existing aero-

planes.

The minimum value of the thrust, as previously stated

( 12), is 2Pi
x ,
where ^ represents the optimum angle of

the aeroplane. In other words :

1 In this case the variable characteristic is the plane area ; but the

same reasoning would apply if the variable characteristic was the lifting

efficiency.
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The minimum thrust is a fraction of the weight of

the aeroplane expressed by double the value of the

optimum angle.

Thus, for a Wright machine, the minimum thrust

would be 0*12, or about Jth of the weight. For a cellular

Voisin biplane it would be -

20, or ^th of the weight.

Generally speaking, for an average machine of to-day
the minimum thrust may be reckoned as O16 that is,

about th of the weight of the aeroplane.

17. Table for the rapid calculation of the thrust

required to lift an aeroplane.

From the following table, which is based on formula

(11), it is possible to calculate straight away the thrust

required to propel an aeroplane of given fineness, flying at

an angle of incidence of from O05 to O20.

TABLE III.

Numbers by which must be multiplied the weight of the aeroplane
in order to obtain the thrust required for horizontal flight.

Angles
of

Incidence.
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The fineness is given by the value of the equivalent

optimum angle, between 0'06 and O10.

In order to obtain the desired result, multiply the

weight of the aeroplane by the number situated at the

intersection of the line and the column corresponding

respectively to the values of the angle of incidence and

the fineness (optimum angle).

Throughout the present work it should be remembered,

all numerical calculations are approximate only ; results

thus obtained must be regarded simply as an indication

of the truth.

Example
Calculate the thrust required for an aeroplane weigh-

ing 480 kg., whose fineness is denoted by an optimum

angle 0-07, flying at an angle of incidence (M3.

The number in the above table situated at the inter-

section of line 013 and column 0'07 is O1677.

Multiplying the weight, 480 kg., of the aeroplane by
this number gives the thrust required for horizontal flight,

i.e. 80-498 kg., or roughly 81 kg.

IV. POWER

18. Useful power required for sustentation.

When, through the effect of a thrust t (expressed in

kilogrammes), an aeroplane flies horizontally through a

space V (expressed in metres), the Avork required to produce
this result can be represented by the product ~Vt (in kilo-

grammetres).
If the space in question is covered in one second, V,

which is its length in metres, is also the speed of the

aeroplane in metres per second.

The product Vt then represents, in kilogrammetre-
seconds, the mechanical power required to enable the

aeroplane to remain in horizontal flight.
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This power is obviously useful power. Let it be repre-

sented by the symbol T
tt ; then, adopting the usual unit of

power, the horse-power (1 H.P. = 75 kilogrammetre-seconds),
we can write :

If in the above equation the symbols V and t are

replaced by the values obtained from formulae (5) and

(11), we obtain the expression of the useful power required

to propel an aeroplane in terms of the characteristics of the

aeroplane and of its angle of incidence :

19. Motive power required for sustentation.

In order to obtain the useful power required for sus-

tentation from the propelling plant (motor and propeller),

the motor must develop a greater motive power. The

relation between the useful power and the motive power

gives the efficiency of the propelling plant.

It will be shown below
(

29 and 87) that the efficiency

varies with the relation of the speed of revolution of the

propeller to the travelling speed of the aeroplane, and

reaches a maximum for a certain value of this relation.

Propellers are built at the present day that give a

maximum efficiency of 75 per cent., a figure which will no

doubt be exceeded in future. But every propeller is by no

means so efficient, nor are propellers always run under

the most favourable conditions; consequently, it would

be unwise to credit the average propelling system of the

present day with a higher efficiency than 50 per cent.

This being so, the motive power required for horizontal

flight is :

(13) Tm = 2T
tt

.



HORIZONTAL FLIGHT IN STILL AIR 39

Pursuing the same method as in the case of the value

of the speed and the thrust, we may now proceed to con-

sider algebraically the formula giving the power value.

Formula (12), expressing the useful power, will be first

considered; the results thus obtained will next
( 23) be

brought to bear on the motive power.

Firstly, we can proceed to examine the effect of a

variation of the angle of incidence on the value of the

useful power required to propel a given aeroplane.

Next, we may consider the manner in which this value

is affected by a modification of one of the characteristics,

the remaining characteristics and the angle of incidence

remaining constant.

20, Variation of the useful power with the angle
of incidence in a given aeroplane Minimum power
Economic angle and speed.

On examination, it is clear from formula (12) that in

the case of a given aeroplane that is, one in which the

values of P, S, K, and / are constant :

The value of the useful power required for flight

depends simply on the angle of incidence.

As in the case of the thrust, so too the value of the

useful power is a minimum for an angle of incidence of a

given value; this angle, however, is not the optimum

angle iv but the product of this angle and ^3 or T732.

For it can be shown that the expression ^^_|__ ,
or

/ ^v i

its equivalent . /J+ .

%
\- ,

is a minimum for a value ofv
*v

i equal to i
l

Consequently, this latter angle of incidence requires

1 It is clear that, for this value of the angle, the value of the active

resistance Pi is three times greater than that of the passive resistance

KA
i
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the least expenditure of power for flight, and is therefore

the most economical. Hence it may be termed the

economical angle, and may be expressed :

The speed at which the aeroplane travels at this angle

may be called the economical speed, and horizontal flight

at least power, economical flight.

In a Wright aeroplane the value of the economical

angle is roughly : 0'06 xl'732 = 0'll. For a cellular Voisin

biplane the angle is: 01 X r732 = Ol7 about. For an

average present-day machine, finally, it is: O08x 1*732 =
about 0*14.

21. Curve of useful power.
In Fig. 13 are reproduced the curves, that have already

been found, of the speed AB (Fig. 9), and of the thrust

CD (Fig. 12), of a given aeroplane. On each perpendicular

MX, defined by a certain value OM of the angle of in-

cidence, is marked off a length MQ proportional to the

product of the corresponding values of the speed and the

thrust (measured respectively by the lengths MN and

MP). The resulting curve EF represents the variation,

with the angle of incidence, of the useful power required
to sustain an aeroplane (for this, as already known, is

expressed by the product V).

By thus placing the three curves side by side, it is

clearly seen why the minimum thrust and the minimum

power do not correspond to the same angle of incidence.

For, as the angle of incidence increases from a low

value (from the lowest possible value 0*05) to the value i^

of the optimum angle, both the speed and the thrust

diminish. Consequently, their product which is equal

to the useful power must necessarily diminish likewise,

as is clearly shown by Fig. 13.

As the angle increases beyond \ the speed continues
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to diminish, although more slowly (see 8), but the thrust

begins to increase. But as the increase in the thrust is

only very slight at first, the value of the speed continues

preponderant in the product, and the power still continues

incidence.

FIG. 13.

to diminish
;
the rate of this decrease, however, gradually

becomes slower, until, at a certain value ie of the angle,
the increase in the thrust exactly balances the decrease in

the speed. The power therefore soon ceases to diminish

and starts to increase when the angle of incidence passes

beyond the value ie . Consequently the minimum th rust
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is found at this angle, which, as already seen, is equal

to ilX/3.

The curve clearly shows the rapid increase of the useful

power as the angle of the planes diminishes. Hence :

The high speeds attainable with very small angles

require an enormous expenditure of mechanical power.
The above consideration, together with the danger of

endeavouring to
"
sail too close to the wind," rigidly limits

the use of very small angles of incidence.

22. Effect of the value of the characteristics on the

useful power.

Proceeding with the discussion in due order of formula

-t5l ' P
V1

brings up the questions of the variations in the useful

power due to a modification of one of the aeroplane's

characteristics, the remaining characteristics and the angle
of incidence being constant.

The formula contains all four characteristics : the

weight P, the plane area S, the lifting efficiency K, and

the fineness /. Each one of these characteristics will in

turn be assumed to be variable, while the other three and

the angle remain constant.

In the first place, it should be noticed that the useful

/P
power is proportional to the product P*/

q,
that is, of the

weight multiplied by the square root of the loading.

Hence, if the weight is variable :

An increase in the weight causes an increase in the

power proportional to the product of the ratio of in-

crease and the square root of this ratio. And inversely.

If the weight, for instance, is increased four-fold (the

other characteristics and the angle remaining constant)
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the useful power required for flight grows eight-fold

(though the speed is only doubled).

Secondly, if the plane area S is variable, the useful

power is inversely proportional to ^/S. Hence :

A decrease in the plane area causes an increase in

power proportional to the square root of the ratio of

decrease. And inversely.

Thus, if the plane area of an aeroplane is reduced to

one-quarter, other things being equal, the power required
for flight is doubled (and so is the speed).

High-speed aeroplanes that may be built in the future

will probably be designed with small plane area 1 rather

than of heavy weight, since a similar increase of speed

requires in the former case only an equal increase of

power, whereas in the latter case it would require an

increase of power proportional to the cube of the increase

in speed.

Thirdly, if the lifting efficiency K is variable, the useful

power is inversely proportional to ^/K. Hence :

The better the lifting efficiency, the smaller the

power required for flight.

Thus the advantage of speed to be derived by diminish-

ing the lifting efficiency is, as already stated ( 9), wholly

illusory.
2 At the same time, it is certainly possible ( 6

and 9) that in the future the lifting efficiency may be

purposely diminished in flight to accelerate the rate of

travel.3 But this would require a sacrifice of power ;

1 A tendency which is already clearly discernible.
2 This is seen even more clearly by examining the relation existing

between the useful power and the speed, which, as stated further on

( 26), is:

This shows that when the speed V is assumed to be constant the useful

power required for flight is smaller, the greater the lifting efficiency K.
3 Certain constructors already, in fact, tend to return to the use of

flat planes for the wings in Order to gain speed. But they are forced to

employ excessive power.
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which, however, is admissible, since in normal flight there

is usually an excess margin of power available (see 25

and 30).

And lastly, if the fineness / is variable :

An increase in the fineness decreases the power re-

quired for flight.

Thus, as was foreseen, the aeroplane with the greatest

fineness, other things being equal, requires the least power
for flight.

The distinctions set forth in considering the same steps
in the discussion of the thrust are not necessary here, for

the assumption that the characteristics other than the

fineness are constant presupposes that the fineness can

only vary with the detrimental surface s.

23. Application to the motive power of the results

concerning: the useful power.
It has already been shown ( 19) that the ratio of the

useful power to the motive power actually expended gives
the measure of the efficiency of the propelling plant. Hence,
one can calculate the motive power required for flight by

dividing the useful power by the efficiency of the pro-

pelling plant. The useful power is given by formula (12) ;

but this formula contains one factor, the angle of incidence,

which affects the speed of the aeroplane and, consequently,
the efficiency of its propelling plant ( 19), since this effi-

ciency varies with the ratio of the speed to the rate of

revolution of the propeller. Thus the above method of

calculating the motive power must only be applied if the

propelling efficiency and the angle of incidence are given
their suitable values.

The same is true regarding the application of the

results obtained from the discussion of formula (12) to

the variations of the motive powers.
Such an application is only possible if the propelling

efficiency is assumed to be constant; as, for instance, in
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the case where a comparison is made between two aero-

planes differing from one another by one of their character-

istics only, the angle of incidence being constant. In such

a case one may assume the efficiency of the two propelling

plants to be identical.

#
\
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power, simply by increasing the length of the verticals in

inverse proportion to a fixed efficiency.

Such variations of the motive power can be indicated

in a curve of the form shown (unbroken line) in Fig. 14.

For any value On of the angle of incidence, the ratio

NTI
V^T- gives the propelling efficiency. This ratio varies

according to the position of the perpendicular N'NTi and

attains a maximum when the latter occupies a position

M'Mm, which corresponds to that value of the angle at

which the aeroplane travels at the speed best suited to

the rate of revolution of its propeller.

24. Tables for rapidly calculating the power re-

quired to fly an aeroplane.

As previously seen ( 18), the useful power, in horse-

V
power, required for flight

= ^. Also, it has been shown

(19) that the motive power is equal to twice the useful

V
power, that is, to

^=-^ ,
when the efficiency had its average

value of 50 per cent.

From Tables L, II., and III. ( 10 and 17), which serve

to calculate the speed and the thrust from the characteristics

of the aeroplane and from its angle of incidence, it is there-

fore also possible to calculate the useful or motive power

required for flight, irrespective of the propelling efficiency.

Example: Calculate the motive power required for

horizontal flight, at an angle of 0*13, of an aeroplane

weighing 480 kg., with a plane area of 40 sq. m.
; the

fineness being ^^ (corresponding to an optimum angle

0-07) and with a propelling efficiency of 50 per cent.

The examples in 10 and 17 related to a similar aero-

plane, and the values then found for the speed and thrust

respectively were 1519 m.p.s. and 80'496 kg.
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The product Vt will therefore be approximately 1222'7.

The fraction ^^ therefore that is, about 32'6 represents

1
the necessary motive power in horse-power. Again, ^th
of the same value that is, 16'3 H.P. represents the

useful power required for flight.

For any other efficiency, all that is required to obtain

the motive power is to divide the useful power (16'3) by
the efficiency in question.

From Table IV., in conjunction with Table II., which

is reprinted once again, it is possible to calculate directly

the motive power required for horizontal flight, at various

angles of incidence, of aeroplanes of different fineness

(defined by optimum angles of from 0'06 to 0*1), assuming

only that the lifting efficiency K is 0'4 and the propelling

efficiency 50 per cent.

TABLE IV.

For the calculation of the motive power required for horizontal flight.

(Lifting efficiency= 0-4
; propelling efficiency = 50 %.)

Angles
of

Incidence.
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In order to find the required power, multiply the

weight of the aeroplane by the number in Table IV. at

the intersection of the line and the column corresponding

respectively to the value of the angle of incidence and the

fineness (optimum angle), and multiply the product by the

number in Table II. corresponding to the loading.

TABLE II. (reprinted)

Loading in kg.
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V. ADAPTATION OF THE PROPELLING PLANT TO

THE AEROPLANE 1

25. Preliminary considerations.

It has already been stated (
20 and 21) that the

useful power required to maintain horizontal flight depends
on the angle of incidence and increases as the latter

diminishes.2

Again, it is known that a decrease in the angle brings
about an increase in the speed of the aeroplane ; and,

consequently, for the attainment of higher speeds greater
motive power is required.

Hence a given aeroplane could be flown at as high
a speed as desired provided it was furnished with a suffi-

ciently powerful motor, if it were not for the fact that the

danger of diminishing the angle places a limit to the

increase in speed. Therefore :

The greatest speed attainable by an aeroplane is that

beyond which the diminution of the angle of incidence

becomes dangerous.
The value of this critical speed, therefore, depends on

the structure of the aeroplane itself, on its capacity of

flying at low angles, on the value of its characteristics;

but it is independent of engine power.
In order to attain this critical speed, all that is required

is to provide the aeroplane with a propelling plant capable
of producing the useful power necessary for flight at the

angle of incidence corresponding to the critical speed in

question. But, as a rule, aeroplane designers, in order to

1 Those readers who wish to gain, without going too deeply into every
question, a complete survey of the problem of the aeroplane, are recom-
mended to skip this chapter for the moment, or at all events only to

examine its conclusions.
2 This is correct only if the angle of incidence is less than the eco-

nomical angle, as may be seen from the curve in Fig. 13.

D



50 THE MECHANICS OF THE AEROPLANE

facilitate starting and climbing,
1
prefer to provide their

machines with motors considerably more powerful than

would be required simply to maintain horizontal flight at

the critical speed.

So as not to go beyond this speed the motor must be

prevented from running all out by regulating the admis-

sion of the gas. Therefore flight, with the motor throttled

down, is the general rule in practice.

Nevertheless, it is essential to examine the case where

the motor develops its full power, and is running all out
;

for this will provide important information regarding the

most efficient utilisation of a given propelling plant to

sustain a given aeroplane, that is, the application of the

propelling plant to the aeroplane.
The method hereafter followed to solve this question

is very simple, although it may prove somewhat lengthy.
It consists in setting out by means of curves, firstly, the

law of variation of the useful power required to propel an

aeroplane with the speed of flight; secondly, the law

of variation of the useful power given by the propelling

plant (the motor working at full power and the propeller)

with the speed of flight of the aeroplane to which this

propelling plant is adapted; and, lastly, to approximate
these two curves.

This method of research will also lead to some interest-

ing conclusions regarding the manner in which a variation

of the characteristics affects the conditions of horizontal

flight of a given aeroplane driven by a given propelling

plant; in the previous discussions this very question, as

will be remembered, was purposely left aside.

Finally, some use will be made of the curves to be

established from the consideration of ascending flight, that

is, climbing.
1 And also for reasons connected with the nature itself of the petrol

engine, which comprises a number of cylinders ; wherefore, it is necessary
to provide sufficient power for horizonal flight even if one or more

cylinders stop working.
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26. Curve representing the variation of the useful

power required to sustain an aeroplane as a function of

its speed.

Reference has already been made ( 22, footnote, p. 43)

to the relation connecting the useful power required for

1-respondiny

\totheCriti

\-cal Speed.

Speeds.

FIG 15.

flight to the horizontal flight-speed of an aeroplane. The
relation may be established in the following manner :

The thrust required to sustain an aeroplane is, from

formula (8) ( 11), Pi+O08sV2
,
where P, i, s, and V stand

respectively for the weight, the angle of incidence, the

detrimental surface, and the speed.
p

By substituting for i its equivalent T^oy2 obtained from

the fundamental formula (4), we obtain :

P2

(14) t
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the equation connecting the thrust required to sustain

an aeroplane with the speed assumed in flight.

Vt
Next, by taking the expression =g-

of the useful power,

and substituting therein for t the values obtained from the

above equation, we finally obtain the relation required :

or, introducing the factor of fineness :

1 / P2 KSV3
\

(15a) Tm~ ~~

This relation can be diagrammatically shown in the

curves in Fig. 15.

If this curve is completed by the insertion, at various

points, of the corresponding values of the angle of in-

cidence, it will contain in a single graph all the data

relating to the variation of the useful power required

to sustain a given aeroplane.

This graph may be termed the characteristic curve, and

constitutes the first of the two curves referred to in 25.

27. Normal speed.

One particular point in this curve is of special interest
;

this is the point L, which corresponds to the critical speed
mentioned in 25, that cannot be exceeded without

danger.

Obviously, it would be advantageous to fly at this

speed, provided the motor is sufficiently powerful ;
in

which case the critical speed becomes the normal speed.

On the other hand, if the propeller is incapable of

developing the useful power required for sustentation

even though the motor be running at full power the

normal flight of the aeroplane takes place at a lower

speed. As a general rule, however, the motor should

at full power be powerful enough to enable the critical
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speed to be attained; and it may be further pointed out

(see 25) that the pilot should have a reserve of power

enabling him to exceed the critical speed.

Usually, the normal speed of an aeroplane lies between

its highest speed V
x
and its economical speed Ve . As

a matter of fact, the more closely the normal speed

approaches the speed Vx
the better; for it is not difficult

to see that, on comparing the optimum rate of travel and

the economical rate of travel, the former gives an increase

of speed of 32 per cent., and only requires an increase of

power of 13 per cent. 1

28. Variation of the power developed by an ex-

plosion motor according to its rate of revolution.

The power developed by a petrol motor, such as used

in aviation, depends on the number of its revolutions

(when running at full power). To render this point

cjgygr,
it may be explained that if, for the purpose of

SSEaqjjig the power of a motor, a Prony brake 2 is con-

nected to its shaft, the motor will assume a certain angular

speed equal to ?^ revolutions per second. The power
measured is equal to Tn

If the tension of the brake is modified, the motor will

run at a new normal speed n
2>
and the power will become

V

V-p r and

l5

so that their ratio is v/v/5 or vl'73.. that is about 1*32.
i\/3

The values of the powers Tl and Te are respectively V^ (that is, 2Pt'1V1 )

and Vete ,
that is, PiJ \/3 + r=-

J
Ve ;

their ratio is therefore equal to

v
i 2

,7- x :-
,
or T32 x 0'8<J, that is 1-13. Hence it will be seen that the

optimum speed Vl
is greater by 32 per cent, than the economical speed

Ve , whereas TI is greater than Te by only 13 per cent, of the latter's value.
2 The use of a dynamometer is more generally adopted for testing the

power of a petrol engine.
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T
ng

. By making a series of similar tests the power of the

motor may be ascertained for its various speeds of revolu-

tion. The power curve will have the shape shown in Fig. 16.

It will be seen that the motor develops its highest

power at a certain speed N^.
1 To obtain the best results

from any engine it should therefore always be run at this

speed, which is always indicated by its constructor.

Velocities ofRotation in R.P. Sec

It will, of course, be evident that at any given speed n
it is possible by throttling down the engine to make it

develop only a fraction of the power it is shown to develop
at its normal speed in Fig. 16. As a matter of fact, the

power developed by an engine running throttled down to

various degrees could be represented by a series of curves

similar to the one in Fig. 16, but of increasing flatness the

greater the throttling effect.

1 It is also worthy of note that the rising part of the curve is practi-

cally a straight line. Hence the power developed by a motor, up to the

point Nj, where it develops its maximum power, may be considered as

approximately proportional to its number of revolutions.
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29. Curve of the useful power furnished by a pro-

pelling plant at different speeds Motive power ex-

pended Maximum efficiency of a propelling plant.

If a screw-propeller is mounted on the motor shaft and

the motor set to run at full power, a normal speed of

rotation, n ,
will be attained, at which the power absorbed

by the propeller in beating the air is exactly the same as

that developed by the motor at this speed of revolution
;

in Fig. 16 this power, T
,
would correspond with the

number of revolutions per second n . The propeller exerts

a thrust, J ,
on the motor, but of course without moving it

from its position, since it is supposed to be fixed.

But when the motor is mounted on an aeroplane, the

thrust of the propeller gives it a forward speed, V1 ,
whose

value depends on the air resistance encountered by the

aeroplane in its forward motion.

There is thus set up a normal speed of rotation, nv
which is such that the power absorbed by the propeller is

equal to the power, Tv put out by the motor. As a matter

of fact, the number of revolutions per second, nlt
is slightly

greater than the number of revolutions n
,
which corre-

sponded in the first case to the rotation of the propelling

plant. On the other hand, the thrust J
l

is weaker than

the thrust J
,
which was produced when the apparatus was

stationary.

When the propeller was working in a stationary posi-

tion it was only called upon to produce the thrust J
,
but

no actual work was produced, since the point to which the

thrust was applied remained stationary.

On the other hand, when the thrust Jp created by the

rotation of the propeller, causes the apparatus to move
forward freely useful work is produced, since the func-

tion of the propeller is to cause the aeroplane to move
forward.

The propelling plant therefore, by producing useful

work, which can be expressed in kilogrammetres by V1
J

l
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and in H.P. by -y^
1

, puts out again a certain amount of

the power T^ developed by the motor. The efficiency of

the entire propelling plant can therefore be expressed by

-
(the power T

x being assumed as expressed in H.P.).

If the aeroplane is rearranged so that its head resist-

ance is reduced, each value of this head resistance will

have a corresponding value of the speed of flight V, the

number of revolutions per second n, the motive power T,

the useful power -j ,
and the efficiency 5--= .

i o / o I

By approximating the values of the motive power and

of the useful power to that of the speed of flight, a

diagram may be drawn which expresses the two former

as a function of the latter. This diagram is shown in

Fig. 17.

It includes two curves
;
the former, TKT, representing

the variation of the motive power, T, developed, and the

speed of flight V ;
the second showing the variation with

the same speed of the useful power y^- put out by the

propelling plant.

To each point N on the first curve corresponds a

point, N', on the second; if the speed of flight is On,
the efficiency of the propelling plant is given by the ratio

isr~, of the useful power produced to the motive power

developed to produce it. Further, to each couple of

points N'N corresponds a definite speed of rotation, which

may be entered on the diagram to complete it.

The highest point L' of the curve OL'U corresponds to

a certain value =VL of the speed of flight of the aero-

plane, the number of revolutions then being nL . Fig. 17

shows, however, that as a rule the efficiency of the pro-

pelling plant is not a maximum at this particular speed
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of rotation, but at the speed of rotation Om= VM ,
which is

such that the tangents to the two curves at M and M'
are parallel. The number of revolutions per second at

which the propeller then rotates is n^.

fMaximumEffieiency)

Motive Power.

(Maximum Efficiency)

Useful Power.

n I 771

FIG. 17. The vertical numbers indicate the speeds of rotation of

the propelling plant.

Thus, as has been previously stated ( 19) and the

conclusion is of the highest importance :

A given propeller does its maximum work under

certain conditions, which are defined by a definite rela-

tion between the speed of revolution of the propeller,

and the speed of flight of the aeroplane it propels.

The curve TKT in the diagram of powers also has a

highest point K. But in the general case illustrated in

Fig. 17, that is with an undefined motor and propeller,

this point is not situated vertically above the highest

point L' in the useful-power curve, nor above M', which

indicates the highest efficiency. The practical meaning
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of this lack of correspondence is that when any propeller

is affixed to any motor, the joint system produces re-

spectively its maximum useful power, and its maximum

efficiency at speeds of rotation that differ from the speed
at which the motor must rotate to develop its maximum

power ( 28).

It is obviously desirable that these various speeds
should coincide, so that the whole of the power developed

by the motor may be utilised when the whole system
is rotating at the propeller's most suitable velocity.

In principle,
1

therefore, the maximum power of the

motor, and the maximum efficiency of the whole pro-

pelling plant should be developed at the same speed (of

rotation and flight speed of the aeroplane). This con-

dition is represented by a relation between the power of

the motor and its speed of rotation, and the coefficients

of this relation depend on the dimensions and the shape of

the propeller.
2

If, therefore, a motor of given horse-power is to drive a

given propeller, this motor must in principle develop its

maximum power at a certain definite velocity of rotation

and at no other.

When the above condition is realised, the power-
velocities diagram assumes the form shown in Fig. 18.

It should be noticed that in this case the upper curve

TMT is very much flattened out. It may therefore be

laid down, more especially if the flight speed must be

1 In some cases it may be useful (see 30) to make the motor rotate

at a slightly higher normal velocity than the velocity giving the maxi-

mum power.
2 For screw-propellers of the usual type (see 87) this relation may

be fixed approximately and merely by way of an indication as Tm = O'OOOl

n3D5
,
where Twl stands for the motive power in H.P., n the velocity of rotation

in rev. per sec., and D the diameter of the propeller iii metres. Example :

If a motor of 16 H.P. actuates an average propeller of two metres dia-

meter, the motor should develop its 16 H.P. at a velocity of rotation n

so that n3 =
1 : ; that is, at 17*1 rev. per sec. or 1025 r.p.m.

O'OOOl x 32
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confined within narrow limits which is usually the case

with the aeroplane that the motive power remains practi-

cally constant.

Finally, it may be noticed that the velocity of rotation

of the propelling plant varies but slightly, as the flight

speed of the aeroplane runs through the usual values from

Power (assumed constant)

FIG. 18 The vertical numbers indicate the velocities of rotation

of the propelling plant.

zero upwards. So long as this flight speed remains within

fairly narrow limits, the variation in the number of revolu-

tions of the propeller is only slight. This explains the

reason for the flatness of the motive power curve in Figs.

17 and 18
; arid, as a matter of fact, this curve would

become a horizontal straight line if the velocity of rota-

tion and, consequently, the motive power remained exactly

constant.

To sum up : the main point to be remembered is that
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the working of a propelling plant, consisting of a motor

and a propeller suited to one another, has the character,

at different flight speeds, of the curve OM'U (Fig. 18),

showing the useful power given out by the propeller at its

various velocities.

This diagram, which is the second referred to in 25,

will hereafter be called the characteristic curve of the

propelling plant.

In order to complete it, the values corresponding to

the angular velocity n may be added, and the graph will

then include every point relating to the working of the

propelling plant. The motive power remains practically

constant, as already stated.

It may here be added once again, that the foregoing
remarks apply only to an engine running at full power.
If the motor is throttled down, the working of the pro-

pelling plant could be shown, according to the extent of

throttling, by a series of curves similar to curve OM'U
in Fig. 18; but these curves would grow flatter, the

greater the throttling.

30. Approximation of the aeroplane and propelling

plant diagrams Deductions.

Interesting results are obtained by instituting a close

approximation between the two diagrams. This may be

done by drawing in the same (Fig. 19) the aeroplane
curve GH, and the propelling-plant curve IJ (the motor

running at full power). Only those portions of the

curves need be drawn that correspond to the attainable

speeds (see 8).

Firstly, in order that horizontal flight may be possible,

GH must not lie wholly above curve IJ (Fig. 20) ;
for if it

did, it would be impossible to find a speed such that the

useful power given out by the propeller was exactly that

required to sustain the aeroplane. In such a case the

aeroplane would be unable to maintain horizontal flight,
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and the most its propelling plant could effect would be to

prolong the glide.

When the two curves are tangential (Fig. 21), horizontal

flight is possible only at the single speed VK corresponding
to the point of contact R.

The aeroplane would be unable to rise from the ground,
for this requires (as will be shown in 44) more useful

power than is needed for sustentation.

FIG. 19.

To render horizontal flight feasible, the two curves

must intersect (Fig. 22). This they do at two points, A!
and A

2
.

There are thus two values, Oax
and Oa

2 ,
of the speed

at which the propeller furnishes the requisite useful power
to sustain the aeroplane (when the motor is working at full

power). The horizontal flight of the aeroplane will there-

fore be made at one of these two speeds ;
that one being

the greater, Oa2 ,
since there is an advantage from every

point of view in choosing the higher speed.
1

Further, this

1 Several considerations that will be set out further on ( 44), in any
case, make the choice of this speed practically compulsory.
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speed Oa2 must be inferior to the critical speed Ol of the

aeroplane, to which the point L corresponds in curve

GH, otherwise it would be dangerous to run the motor at

full power in horizontal flight.

By a suitable modification of the angle of incidence the

aeroplane may be flown at any speed between Oa
l
and Oa2 ;

Speeds.

FIG. 20.

m

for instance, at the speed On corresponding to the points
N and N' on the curves.

But in this case it is essential that the motor should

not be run at full power, but should be throttled down.

At the speed On, in fact, the useful power N'w given
out by the propeller is greater than the useful power Nn
required to sustain the aeroplane, which consequently
tends to ascend, so that, in order to maintain the flight-

path horizontal, the motor must be throttled down.

By operating the elevator it is therefore possible to
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make the propelling plant (the motor running at full

power) furnish an excess of useful power which may be

turned to use in various ways, as will be shown hereafter

(
44 and 45).

This excess of useful power reaches a maximum when

the aeroplane is travelling at a certain speed, Om (that is,

Speeds.

FIG. 21.

at a certain angle of incidence), to which correspond the

two points M and M' on the two curves.

The value of the maximum excess of power is deter-

mined by the distance MM'.

The maximum excess of useful power leads to several

important results in connection with the application of the

propelling plant to the aeroplane.
Let GH be the characteristic curve of a given aeroplane

(Fig. 23), and on this curve let L be the point corresponding
to the critical speed.
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In order that the aeroplane might be sustained at this

critical speed, for the least expenditure of motive power,
the propelling-plant curve IJ would have to be of the

shape shown in Fig. 23 (with the motor working at full

power), that is, the highest point of the curve IJ, corre-

sponding to the maximum efficiency, would have to be

precisely the point L. The maximum excess of useful

FIG. 22.

power available would then have the value MM'; and

it would be obtained at the speed Om.
If it were desired to increase the excess of useful power

available, the motive power would have to be increased.

This could be accomplished in two ways :

(a) By providing the aeroplane with a propelling plant
whose curve (with the motor running at full power) is of

the shape of the curve I
l
J

l
in Fig. 24. In this case the

maximum excess of available useful power would be the

greatest possible when the highest point of the propeller

curve was situated above the lowest point of the aeroplane
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curve. This particular arrangement
1

is shown in the

curve 1^ (Fig. 24). The maximum excess M^M^ would

then be obtained at a speed, Om (the economical speed),

entirely by the operation of the elevator. But normally
the propelling plant would not be running at its maximum -

Speeds.

FIG. 23.

efficiency speed, since the point L representing the normal

speed is not the highest point in the curve I
1
J

1
.

(b) Provide the aeroplane with a propelling plant whose

full power curve has the form I
2
J9 (Fig. 24), but run the

propeller at part power in order not to exceed the critical

speed. In this case the point L would be below the curve

1 The general case has not been included in this fig., in order to avoid

complication. In the general case the highest point of the curve IJ

would not be situated above the lowest point of the curve GH. The
curve IJ would always pass through the point L. It may be readily seen

by drawing the curve IJ (of the same height as the curve IxJj), that the

maximum excess of useful power it renders attainable must always be

inferior to that obtained from the arrangement I
1
J

1
. This will be shown

more clearly in the discussion of the curve IoJ2 which constitutes another

special case of the general one.



66 THE MECHANICS OF THE AEROPLANE

I
2
J
2 . The maximum excess of useful power would then

have the value M
2
M'

2 ,
and would be obtained at a certain

speed, Om2 , by means of a double manoeuvre : the opera-
tion of the elevator and opening out the throttle.

If the propelling plant in each case is supposed to be

capable of developing the same maximum useful power
(if, for instance, it consists in each case of a motor of the

same H.P. driving a propeller of similar efficiency), the

FIG. 24.

curves I^ and I
2
J
2 ,

which have been purposely included

in the same figure, are equal in height.

Comparison will show that the curve I^-, which cor-

responds to the motor working at full power, provides a

greater reserve of power M^M^ than is provided (M2
M'

2) by
the curve I

2
J

2 corresponding to the motor throttled down.

This result may be interpreted as follows: in order to

obtain the same excess of useful power in certain circum-

stances it is necessary to employ, throttled down, a motor
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of greater power than would be the case if it were run
all out.

Again, it is more advantageous to run the motor

normally at full power, thus partly sacrificing the effi-

ciency of the propelling plant, the while reserving its full

efficiency for the moment when it will be necessary to

make use of its excess of power, rather than to run the

motor normally throttled down, and to make use when

necessary of the excess power produced by running it at

full power.
As stated in 25, constructors as a general rule equip

their machines with engines capable of developing greater

power than is required merely for horizontal flight. Al-

though the procedure answers one purpose, it would seem

desirable not to exaggerate this tendency, for it is obviously
unreasonable to provide for a reserve of power, that can

at most only be required momentarily, by burdening the

aeroplane with excess power (which means excess weight),
which is not called upon throughout normal flight.

1

There is room for the belief as shown by the fore-

going consideration that, by judiciously adapting the

propelling plant to the aeroplane, this necessary increase

in the power of the motor may be reduced to a minimum.

By adopting the method illustrated by the curve I
2
J

2 ,

the propelling efficiency is partly sacrificed and the motor

run at a speed slightly greater than its normal speed,
which corresponds to its maximum power ( 28).

Hereafter, however (see Part IV.), in making numerical

calculations to set out the relations that must exist between

the values of the aeroplane's characteristics, and the con-

structional data of the propelling plant, it will be assumed,
so as not to complicate the calculations, that the propeller

1 This stricture would lose its force if it became possible and there

is no reason why it should not in future to diminish the area in flight

(see 6, 9, and 22), thus transforming the reserve power available into

speed, without altering the angle of incidence.
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works normally at full efficiency, and that both motor and

propeller have been adapted to the conditions indicated

in 29.

31. Influence of a variation of the aeroplane's char-

acteristics on the values of its speed, and of the thrust

in horizontal flight at constant power.

Lastly, we have to consider the effect exerted on the

speed and thrust values by a modification of one of the

characteristics of an aeroplane running all out, that is

at approximately constant power ( 28). This point has

been alluded to at the end of 6, 9, and 15.

The first case to be examined will be that of an altera-

tion in the weight, which often arises in practice when,

for instance, an additional passenger is carried.

In Fig. 25, let GH be the curve of an aeroplane of

weight P, area S, lifting efficiency K, and fineness /.

When the weight is given a value P' greater than P,

the other characteristics remaining constant, the aeroplane

curve becomes G'H'.

This curve lies wholly above GH. In fact, on referring

to formula (15a) of 26 :

T = 1

(

P2
|

KSV3
)

it will be seen that the values of the useful power which

correspond to the same value V of the speed are greater,

the greater the weight P.

The difference TU TU between the values assumed by
the useful power when the weight increases from P to P'

T)/2 TD2

is expressed by ,
and grows smaller as the speed V

increases. The curves GH and G'H', as shown in Fig. 25,

lie closer together in proportion as the curves are farther

away from the vertical axis passing through 0.

If the propelling plant curve IJ is brought on to the
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same Fig., its points of intersection R and R' with the

curves GH and G'H', fix the values VB and VR , of the

normal speeds
l
corresponding respectively to the values

P and P' of the weight. From Fig. 25 it is seen that

the speed VR - is smaller than the speed VR . Thus :

By increasing the load carried by a given aeroplane

driven by a given propelling plant running at full power,

Fig. 25.

the speed is reduced, but more slightly according as it

was originally greater.

As stated in 9, this conclusion differs from that

reached by considering the effect of an increase in the

weight on the value of the speed in horizontal flight,

always supposing the angle of incidence to remain con-

stant. For in this latter case, in order to maintain the

1 These speeds are assumed to be less than, or at most equal to, the

critical speed of the aeroplane.
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angle constant, it is necessary to increase the power, and

thereby the speed.

Returning to the problem previously under considera-

tion, it is further seen from Fig. 25 that an alteration of

the weight has but little effect on the value of the useful

power, more especially so if the point R is close to the

highest point of the curve IJ. In the general case, besides,

this value would tend rather to increase than to decrease,

since as a rule the point R is situated to the right rather

than to the left of the highest point of the curve IJ.

Since the value of the speed diminishes, that of the

thrust must increase, owing to the fact that their product

being proportional to the value of the useful power
varies little, but always in the direction of an increase.

In a similar manner the effect of an alteration of the

plane area, the lifting efficiency, and the fineness might be

examined in succession. But until the future has suc-

ceeded in producing aeroplanes with variable surface or

lifting efficiency, the practical value of such a discussion is

only secondary.

Besides, the problem is distinctly complicated, since

any variation of the plane area brings about (see 14) a

consequent variation of the detrimental surface
;
but if the

latter is assumed to be constant the question is consider-

ably simplified.

The difference T'
tt

T
tt

of the values assumed by the

useful power when the plane area passes from the value

S to the value S' being deduced from formula (15) instead

of from formula (I5a) may be expressed as

_
75KVVS' S

If the area S' is greater than the area S the difference

is negative ; further, the absolute value of this difference is

less in proportion as the speed V is greater.

The curve G'H' (Fig. 26), corresponding to the value
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S' of the area therefore lies wholly below the curve GH
corresponding to the value S, and these curves fall closer

together as they are situated farther away from the vertical

axis passing through 0.

The normal speed VB> corresponding to the point of

intersection R' of the curve G'H' and the curve IJ of the

propelling plant, is consequently greater than the normal

Speeds
VR VR -

FIG. 26.

speed VR corresponding to the point of intersection R of

the curves GH and IJ. Thus :

By increasing the area of a given aeroplane driven

by a given propelling plant working at full power, the

speed is increased, but more slightly according as it

was originally greater.

If the variation of the detrimental surface be taken

into account, it will be found that the curve G'H' lies even

closer to the curve GH when the speed increases
;

it may
even meet it and pass above it. For speeds exceeding a
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certain value the results just obtained would consequently
have to be reversed.

Regarding a variation of the thrust, finally, the same

observation holds good. Since the value of the useful

power remains approximately constant, the thrust varies

inversely as the speed.

VI. SUMMARY OF CHAPTER II.

32. Preliminary remarks.

In examining successively, in this chapter, the various

factors affecting horizontal flight, chief stress has been laid

on the predominant part played, in the flight of a given

aeroplane, by the angle of incidence on which depend the

values of the speed, the thrust, and the power required for

sustentation.

Moreover, the effect on these values, exerted by the

constituent parts of the aeroplane, termed its character-

istics, has been specially studied from two points of view :

(1) in comparing different aeroplanes; (2) in examining
the flight at constant power of the same machine.

Finally, tables have been drawn up by means of which

it is possible to calculate approximately these various

effects, and to solve numerically every problem relating
to horizontal flight.

At the end of this long chapter it has been deemed
desirable to sum up the various questions studied, and,

further, to lay down a few practical rules, easily remem-

bered, for rapidly calculating the approximate values of

the constituent elements speed, thrust, and power of the

normal flight of an average aeroplane whose weight and
area are known.

33. Summary of the chief properties of horizontal

flight.

A. In a given aeroplane the speed, thrust, and power
entirely depend on the angle of incidence.
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When the angle increases :

1. The speed diminishes.

2. The thrust at first diminishes, reaches a

minimum at the optimum angle, and again

increases.

3. The power at first diminishes, reaches a

minimum at the economical angle, and again

increases.

In a given aeroplane the angle of incidence is invari-

able, except when the motive power varies at the same

time.

B. When the other characteristics and the angle of

incidence are assumed to be constant (in different aero-

planes or in the same machine with variable power)

(a) An increase of the weight :

1. Increases the speed proportionately to the

square root of the ratio of increase (if the

weight is quadrupled the speed is doubled).

2. Increases the thrust proportionately to the

ratio of increase (if the weight is doubled

the thrust is doubled).

3. Increases the power proportionately to the

product of the ratio of increase and the

square root of this ratio (if the weight is

quadrupled the power is multiplied by 8).

And inversely.

(b) A reduction in the area of an aeroplane :

1. Increases the speed and the power propor-

tionately to the square root of the ratio of

reduction (if the area is reduced to one-

quarter, the speed and power are doubled).

2. Does not affect the thrust.

And inversely.

(c) A variation in the lifting efficiency affects the

speed, the thrust, and the power in the same

sense as a variation of the area.
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(d) An increase in the fineness of an aeroplane :

1. Does not affect the speed.

2. Diminishes the power and the thrust.

And inversely.

C. When the other characteristics and the motive

power are assumed to be constant (the angle of incidence

being variable), an increase in the weight :

1. Diminishes the speed.

2. Increases the thrust.

And inversely.

34. Practical rules for calculating the elements of

horizontal flight of an average, present-day type, aero-

plane.

It may be simply stated, in the light of all that has

gone before, that the values of the speed, of the thrust, and

of the motive power belonging to the horizontal flight of

an average, present-day, aeroplane (whose fineness, there-

fore, is TW\O> lifting efficiency 0'4, propeller efficiency 50 per

cent.) are, for optimum flight (at the mean optimum angle

0-08) :

V
x
=
5-6^1

, t,
= 016 P, T!= 0-0239

These values in economical flight (at the mean econo-

mical angle 0'08 x 1-732, or about 014) are :

e
=
4-25^1

, t.
= 0184 P, T

e
= 0'0209

If we assume as practice entitles us to do that the

normal speed VK lies between the speeds Vx
and Ve and

that the propeller efficiency is slightly more than 50 per

cent., the following formulae will give, for the purpose of

rapid and approximately correct calculation, the values of

the speed, the thrust, and the motive power :

VP̂ (in metres per second).
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p
(17) tR= 7* (in kilogrammes).

(18) TR= P (in horse-power).

From this we may deduce the following practical rules:

I. The normal speed of an average aeroplane, in

metres per second, is equal to 5 times the

square root of the loading in kilogrammes per

square metre.

II. The normal thrust of an average aeroplane is

equal to one-sixth of its weight.

III. The motive power required to sustain an aver-

age aeroplane, in horse-power, is equal to

one^^bf the product of the weight (in

kilogrammes) multiplied by the square root

of the loading (in kilogrammes per square

metre).

VP
V

q its value -^ ,

extracted from formula (16), we obtain :

(19)
-

T,

which enables us to calculate the motive power required
to propel at a speed VR an average aeroplane of weight
P, that is, to solve the cardinal problem of vehicles of

transport :

What power must be expended to transport a given

weight at a given speed ?

The solution of this problem is contained, in a form

easily remembered, in the fourth practical rule :

IY. The motive power required to drive an average

aeroplane at a certain speed is equal, in h.p.,

to
250th

of the product of this speed (in
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metres per second) multiplied by the weight
of the aeroplane (in kilogrammes).

1

This rule may be still further simplified as follows :

IMa. One h.p. can transport 250 kilogrammes at a

speed of 1 m. p. sec.

Examples of the application of these rules

Calculate approximately the elements of horizontal

flight of an average aeroplane weighing 320 kg. and

measuring 20 sq. m. in area.

The loading is 16 sq. m.
;

its square root is 4.

The normal speed of the aeroplane is therefore

5 x 4 = 20 m. p. sec., or 70 km. p. h.

320
The thrust is

---
,
or 53 kg>

The motive power is
-^ ,

or about 25*6 H.P.

Example 2. What should be the plane area of an

average aeroplane weighing 500 kg. and driven by a

30 h.p. motor?

The square root x of the loading must be such that

500 xx~~
that is, x = 3.

1 The practical formula (19) enables us to calculate approximately the

effect exerted on the value of the speed of an average aeroplane by the

ratio of the weight of its motor to the weight of the whole machine, and,

further, the effect on the speed value of the weight per H. P. of the motor.

If m represents the ratio of the weight of the motor to the weight of the

aeroplane (a ratio usually equal to about -J), and p the weight of the

motor per H.P. (about 2 kg. per H.P. at the present time), we can obtain,

by introducing these values into formula (19),

Giving m and p their respective values and 2, the value of V is found to

be 20 m. p. sec. or 75 km. p. h., which is as a matter of fact the average
value of the speeds attained by aeroplanes at the present day.
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The loading would therefore be 9 kg., which would

give a plane area of -Q- = about 55 sq. m.

Example 3. What should be the power of a motor to

drive an average aeroplane weighing 500 kg. at a speed

of 20 m. p. sec.?

By applying the fourth rule, the power is

500 x 20

250 ,
or 40 H.P.

Example 4. What will be the speed of an average

aeroplane weighing 500 kg. and driven by a 36 h.p.

motor ?

If x represent the speed required, x must be such

that:

500 Xfl~~'
which gives for x a value of 18 m. p. sec., or about

65 km. p. h.

The table on p. 224 facilitates the speedy solution of

such problems in cases where square roots have to be

extracted.



CHAPTER III

OBLIQUE FLIGHT OF THE AEROPLANE
IN STILL AIR

I. GENERAL CONSIDERATION OF OBLIQUE FLIGHT

35. Definition of oblique flight Slope of the flight-

path Angle of incidence.

When the direction of forward motion of an aeroplane
is not horizontal, but ascending or descending, its flight is

said to be oblique. The angle of this direction to the

horizontal is termed the slope of the flight-path. It is

expressed by a decimal fraction, is positive in ascending

flight and negative in descending flight. It will be repre-

sented by the symbol a.

As stated previously ( 7), the aeroplane is so built

that if, when flying horizontally at a certain angle of

incidence, its flight-path becomes inclined for some reason

or other, the whole machine swings through an angle

equal to that of the slope, so that the relative air-current,

which has now a fresh direction, still strikes the planes at

the same angle as before
; provided always that the aviator

has not manipulated his elevator.

This is what is meant by the expression,
" an aeroplane

lies on its flight-path
"
(the cause of this property will be

explained in 52).

If the flight-path becomes nearly vertically downwards,

the aeroplane is said to dive. If, on the contrary, it

approaches a vertical direction upwards, the aeroplane
is said to rear. 1

1 The French equivalents piquer and cabrcr are often, though for no

apparent reason, used in English publications. In addition to being fully

as explicit, the terms dire and rear have the merit of English nationality.

Translators.
78,
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Thus the angle of incidence, in oblique flight as in

horizontal flight, remains the angle formed by the equiva-

lent flat plane with the air-current which meets it, that is,

with the flight-path.

36. Speed in oblique flight.

In the following we will throughout assume that the

angle of the slope in oblique flight is a small angle. As

a matter of fact, in practice it nearly always is a small

angle, or at any rate every effort is always made to keep
it small, since an aeroplane is not constructed to fly at

a very steep angle.

FIG. 27.

The reaction R of the air on the aeroplane (Fig. 27)

may therefore, as in the case of horizontal flight, be con-

sidered near enough to a vertical direction l to allow us to

assume it to be equal in magnitude to its component in

this direction
;
and this component balances the weight of

the machine.

Thus, the fundamental formula (4) may again be

applied in the present case :

P = KSV2
i,

1 In descending flight, the reaction K is more nearly vertical than in

horizontal flight; in ascending flight, on the other hand, it is farther

removed from the vertical.
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whence the following important conclusion, to which refer-

ence was already made in 7, may be deduced :

Provided the angle of the flight-path is feeble, the

speed assumed by an aeroplane in oblique flight is the

same as that whereat it would travel in horizontal flight

at the same angle of incidence.

A slight slope in the flight-path therefore has no effect

on the value of the speed.

37. Power in oblique flight.

In horizontal flight the useful power required for sus-

tentation ( 18) is measured in kilogrammetre-seconds by
the product V of the speed and the thrust; its value

is Pu-f--j ,
where P, /, and i stand for the weight of

the aeroplane, its fineness, and the angle of incidence.

In other words, the useful power required for horizontal

flight may be written :

PV(i+

If the aeroplane, travelling a distance V in one second,

has risen in the same time along a slope a, it has climbed

a height Va.

The work thus expended, in kilogrammetres, is PVa,
and since it was expended in one second, the expression

PVa also measures, in kilogrammetre-seconds, the addi-

tional power required for the ascent.

The total useful power required for oblique flight up a

slope a, therefore finally amounts to :

(20) TM
= PV

Since the whole of this useful power must be furnished

by the propelling plant, and since the latter's efficiency is

assumed as previously to be 50 per cent., oblique flight
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along a slope a requires the expenditure of motive power

equal in H.P. to :

(21) T
'
=
3T5 PV

\
i+

J*,

This simple formula, assuming that the angles i and a

are small, is applicable to ascending and descending flight.

In the latter case, the slope a, of course, has a negative
value.

II. GLIDING FLIGHT

38. Gliding flight defined.

Examination of formula (21) shows that in descending

flight, when the slope a gradually assumes more and more

pronounced negative values, the power required for flight

at a given angle of incidence i gradually grows smaller

until it becomes zero at the slope :

(22) a =

Thus when left to itself, with its motor stopped, the

aeroplane takes a descending flight-path inclined at a

certain angle of slope a. This is known as gliding flight.

39. Variation of the slope of gliding flight with the

angle of incidence in a given aeroplane Maximum
slope Maximum range.

From formula (22) it will be seen that, in the case of a

given aeroplane, or at any rate if/is constant :

The value of the slope of gliding flight depends only
on that of the angle of incidence.

It will be remembered that the latter value, in its turn,

depends only on the relative position of the various organs
of the aeroplane, and the elevator in particular.

Here again, formula (22), like its parent formula (21),

can only be applied if the angles i and a are small a



82 THE MECHANICS OF THE AEROPLANE

condition which is satisfied if the angle of incidence lies

between the limits 0'05 and O20.1

The absolute value i+ -- of the slope reaches aA
minimum when the angle of incidence has a value -

J

(which is the value of the optimum angle i^), since it is

the sum of two factors whose product is constant and

equal to
-^

. Thus:

The optimum angle is the Yalue of the angle of in-

cidence that enables an aeroplane to glide at the gentlest

slope, that is, to travel the greatest horizontal distance

for a given loss of altitude.

The value of the minimum slope is therefore :

or double the value of the optimum angle.

The maximum range corresponding to a given loss of

altitude z is :

*
or ?/.

2*! 2

The same results may be reached in a different manner.

For, if equation (22) is written in the form :

i2 ai + i^ = 0,

it becomes an equation whose roots have the values :

.(23) ^-!,
so that :

a2 4i
x

2 > 0, or a > 2 ir

The value a = 2i
t
is therefore the minimum slope.

It is clear, furthermore, that to each value a of the

1 For an aeroplane of average fineness -
,
the gliding slopes cor-

0'08

responding to the angles of incidence O'Oo and O20 would be respectively

0-18 and 0-23.
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slope correspond two values i' and i" of the angle of

incidence, deduced from formula (23), and such that :

i' -|-i" = a, or i'i" = if .

Hence, a single path may be followed in gliding flight

at two different angles of incidence whose sum is equal to

the slope of the path, and whose product is equal to the

square of the optimum angle of the aeroplane.

40. Speed in gliding flight.

Since the fundamental formula :

(4) P=KSV2i

is applicable to oblique flight at a small angle, and there-

fore to gliding flight, the same thing is true of formula (5)

directly derived from it :

(5) V:

Now, it has just been seen that to each value a of the

slope of the flight-path correspond two angles of incidence,

i' and i", the one greater, the other smaller than the

optimum angle ir Substituting these two values in

formula (5), we obtain two values for the speed, V and

V", the one greater, the other smaller than the optimum
speed Vr Thus :

The same flight-path may be followed, in gliding

flight, at two different angles of incidence and at two

different speeds. When the slope of the flight-path is a

minimum the two speeds and the two angles coincide.

These characteristic features of gliding flight may be

represented by a curve such as shown in Fig. 28. This

curve simply indicates the positions occupied, after the

lapse of one second, by a machine starting to glide from

at the different usual angles of incidence. 1

1 One assumes that the aeroplane takes up its proper path from the

point (see 41).
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In other words, OA and

OB represent in length and

in direction the speeds as-

sumed by the aeroplane at

these angles of incidence.

It will be seen that to

one flight-path OX for

instance correspond two

values, OE and OH, of the

speed. At various points

on the speed curve is in-

dicated the corresponding
value of the angle of inci-

dence. The part of the

curve plotted in a thick

line, from A to B, corre-

sponds to gliding flight at

the usual angles of inci-

dence from 0-05 to O20.

The point C corre-

sponds to the minimum

slope 2i
{ ,
and to the opti-

mum angle ir The straight

line OC is tangential to the

curve at C, which proves

that the two values of the

angle of incidence and

those of the speed coincide

for this flight-path.

At the point D the

tangent to the curve is

horizontal. Therefore, by

following the path OD, the

glider loses least altitude in

one second
;
in other words,

its vertical or falling speed
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will be least. In this case, therefore, the work produced,
in unit time, by the weight of the aeroplane, or, to use

another mode of expression, the mechanical power pro-

duced by the force of gravity is minimum. It will be

easily understood that this result is obtained by utilising

the economical angle of incidence ie ,
which is equal to

The same result is derived from calculation, since the

minimum rate of fall in one second (expressed by Va)
will take place if V and a are given their values, as a

function of i, derived respectively from formulae (5) and

(22), corresponding to the value ie of the angle of incidence.

It is further clear that, in this case, the slope ae has the

value

By taking these results as the basis of further calcula-

tion (which, however, is too long to be set out here), it is

possible to complete the curve in Fig. 28 so as to include

the case where the slope of the flight-path is no longer at

a small angle (Fig. 29).

The dotted portion AM corresponds to gliding flights

made at large angles of incidence from 12 to 90. The

lowest speed OM '
is that of the parachute fall, which is,

however, impossible in practice (see footnote 1, p. 146).

The dotted portion BLN corresponds to the very small

angles of incidence, that is, to the dangerous angles. The

greatest speed ON is that of the vertical dive.

The fact that the portion BLN of the curve is by far

the most extensive clearly shows the important effect of

the very slightest variation in the angle of incidence when
the latter is small. In such a case even a minute diminu-

- 1 This speed is, indeed, the lowest, but would not if practicable give
the slowest rate of fall. As seen previously, this is given by the flight-

path OD corresponding to the economical angle of incidence. In any

case, the differences in the rate of fall are only slight for the usual angles
of incidence.



86 THE MECHANICS OF THE AEROPLANE

tion of the angle causes the flight-path to approach the

vertical. And, as the aeroplane always
"
lies down "

on its

M
ISO')

\ **V--..Ji

Angles of\
Incidence. \

N ---~

B (0.05=3 about)^

FIG. 29.

flight-path, a very slight decrease in the angle of incidence

suffices to make the machine dive.

This shows the danger of seeking to obtain high speed
in propelled flight by adopting a very small angle of

incidence : if the motor should stop, the machine may
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suddenly dive unless the aviator immediately works his

elevator to increase the angle of his planes.

Having regard to this, it may be desirable to place the

propeller axis slightly above the centre of gravity, this

arrangement having the effect (see 53), in case the pro-

peller stops, of altering the longitudinal equilibrium of

the machine relatively to its flight-path by automatically

increasing the angle of incidence, without requiring the

pilot to work his elevator.

41. Effect of the value of the characteristics of the

aeroplane on that of its gliding slope.

In formula :

(22) _

the only characteristic of the aeroplane included is the

fineness. This leads to the following conclusion :

The gliding slope followed by an aeroplane of given
fineness depends neither on its weight nor on its plane
area.

At first sight this conclusion may well appear astonish-

ing, more especially in so far as it concerns the weight. It

must be distinctly understood, in the first place, that what

is referred to is only the slope followed by the gliding

aeroplane once this gliding path has been regularly estab-

lished. For, at the start of its descent, a glider when it is

abandoned to the air from a position of rest begins to

follow a curved path (Fig. 30), until the moment when it

attains arid keeps to the slope of its final rectilinear gliding

path.

If several aeroplanes of the same fineness but of the

most divergent dimensions whether small paper gliders
or full-size machines are thus liberated, the heaviest ones

will, it is true, descend more steeply than the lighter ones

before they enter upon their final straight gliding-path ;

but, provided these various machines move at the same
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angle of incidence, this final gliding-path will have pre-

cisely the same slope in every single case; and herein

resides the importance of our previous statement.

The only respect in which the flight of these various

machines can differ is in their speed, and this is dependent
on their loading.

With regard to the effect of the plane area, we have

once again to emphasise the distinction that had to be

FIG. 30.

made in the discussion of the thrust in horizontal flight

(15):
It is only by assuming the fineness to be constant that

we are entitled to assert that the slope of the gliding-

path is independent of the plane area. The discussion

in question might, in fact, well be reproduced integrally

in the present case on account of the analogy of formula

(22) and (11). The fineness, after all, is the only char-

acteristic of the aeroplane whose value, for an equal angle

of incidence, affects the slope of the gliding-path. The

greater the fineness of the aeroplane, the smaller the slope

of its gliding-path.

Aeroplanes possessing the greatest fineness are the

best gliders.

It may be recalled that the fineness of an aeroplane is

greater according as the detrimental surface is smaller, the
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plane area more extended, and the lifting efficiency better.

Hence :

Aeroplanes with large wing area and good lifting

efficiency are, other things being equal, the best gliders.

The value of the minimum gliding slope 04
= 2^, or

the value ^ of the maximum range corresponding to a
2

loss of altitude z, enables us to determine the gliding

quality of a given aeroplane.

For a Wright biplane the value of the minimum gliding

slope would be 0*1 2, or about -; the maximum range there-

fore would be about eight times the loss of altitude.

For a cellular Voisin biplane the value of the mini-

mum gliding slope would be about 0'20, or -
;
the maxi-

5

mum range would be about five times the loss of altitude.

For an average present-day type of aeroplane, that is,

for an aeroplane of the fineness ,
the value of the mini-

O'Oo

mum slope would be 0'16, or about -
;
and the maximum

range equal to about six times the loss of altitude.

After the foregoing, it appears almost superfluous to

point out the error of believing, as some do, that an aero-

plane may be able to sustain itself without motive power
in still air. However perfect a glider may be, it must yet
remain inexorably subjected to the force of gravity ;

that is,

it must descend if no other force is opposed to gravity.

The error just alluded to can only have been enter-

tained by reason of the fact that certain species of birds

can sustain themselves in the atmosphere for long periods

of time without the slightest wing beat. It will be seen

hereafter ( 75) that these birds probably extract from the

movements of the air itself the power required to sustain

them. As a matter of fact, there is no reason why the
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aviators of the future should not be able to capture and

utilise the same sources of natural energy.

42. Table for the rapid calculation of the gliding

slope of an aeroplane.
Table III., which was drawn up ( 17) to enable rapid

calculation of the thrust required to sustain an aeroplane,

and is here reprinted, also serves for the rapid calculation

of the absolute value of the gliding slope followed, for an

angle of incidence between 0'05 and 0*20, by an aeroplane
or glider of given fineness.1

TABLE III. (reprinted)

Gliding Slopes.
2

Angles of

Incidence.
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In order to obtain the result sought for, all that is

required is to take the number situated at the intersection

of the line and column corresponding respectively to the

values of the angle of incidence and of the fineness (opti-

mum angle).

The warning made in 17 regarding the exactness of

the numbers in Table III. was of a general nature, and of

course applies with equal force to the present case.

Example of how to use this table

Calculate the absolute value of the gliding slope

followed, for an angle of incidence of 0*11, by an aero-

plane of the fineness .

The number in the table, situated at the intersection of

line Oil and column 0'09, is (H836. The value of the

gliding slope is therefore approximately
-

184.

43. Part played by the motive power in horizontal

flight.

A knowledge of the properties of gliding flight gives
a correct perception of the part played by the motive

power in the flight of an aeroplane. The following re-

marks have, in any case, already been partly set forth

in 7.

A given aeroplane left to itself when its motor stops will

glide down along a path whose slope depends only on the

value of the angle of incidence. The speed wherewith

it travels along its flight-path remains the same as if it

were flying horizontally or in oblique flight along a small

slope at the same angle of incidence.

If, while gliding down, the pilot switches on his engine

again, and gradually increases the power, the flight-path

gradually resumes an ascending tendency, returns to the

horizontal, and even, provided the power be sufficient,
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exceeds it; but the speed does not vary, if the angle of

incidence remains the same. Thus :

The function of the motive power is simply and

solely to balance and overcome the action of gravity,

and has no direct effect on the speed.

It may also be said that the part of the motive power
is also to alter the direction of gravity, although it only
does so in an imaginary way.

In fact, if an aeroplane glides down the slope OY
(Fig. 31), and if the engine, being switched on, tends to

FIG. 31.

raise the flight-path along OX, for instance, the flight

along OX may be considered as a glide through a sur-

rounding medium in which the force of gravity acts in the

direction OP', making an angle a with the vertical OP.

From the foregoing it is absolutely clear that any
excess power has the result of making the aeroplane

ascend, while any lack of power causes it to descend, but

without altering the speed; this is the direct opposite to

what takes place with terrestrial vehicles which are forced

to move on a fixed surface.

The flight of an aeroplane therefore constitutes a

perpetual equilibrium of forces, and any irregularity in
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the motive power tends to alter the direction of flight,

which can only be maintained by a constant modification

of the angle of incidence.

On the other hand, the importance of any irregularity

in the working of the motor should not be exaggerated ;

it is only slight (as will be made clear in 44), and the

part played by the elevator in maintaining equilibrium

would be unimportant if it were not for the constant

irregularities of the wind ( 75).

III. STARTING AND ALIGHTING

44. Ascending flight in practice Climbing.

As it has already been stated several times that any
excess power causes the aeroplane to ascend, without

altering its speed, an increase in the motive power there-

fore affords a ready means of passing from horizontal to

ascending flight.

This presupposes, of course, that the motor is not

normally working at full power ;
so that the above method

is not usual.

But there exists another method, which can be adopted
even when the motor is working at full power, that is

( 29), at constant power. The method is extremely

simple and is the one usually adopted by aviators. It

consists in operating the elevator.

From Fig. 32 (which is Fig. 22 of 30 reprinted),

containing the useful power and speed curves GH and IJ

of the aeroplane and propelling plant respectively (the

motor working at full power), it will be seen that as the

normal speed in horizontal flight of an aeroplane is VR ,

which is measured by the length Or and the correspond-

ing angle of incidence iR if this angle of incidence be

increased to in ,
the useful power required to sustain the

aeroplane diminishes and assumes the value Nti, instead

of Rr. Since the useful power developed by the propelling
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plant has, in its turn, become N'w, which is greater than

Nn, there is an excess of power, and the aeroplane ascends.

It would, in fact, continue to ascend indefinitely, the

angle of incidence still preserving its value, iny if the rare-

faction of the air which has not hitherto been considered

in order not to complicate the discussion did not reduce

Speeds.

o ----- jn- -nr r

FIG. 32.

the value of the pressure on the planes and consequently
their lift.

1 Thus :

By simply operating the elevator the aviator may
alter the angle of his flight-path.

But this is only possible if, in normal horizontal flight,

an excess of power is available, that is, so long as the

curves GH and IJ intersect
;

if they are merely tangential

(see 30), the aeroplane would be able to fly horizontally
at a single speed and angle of incidence, but it would be

unable to ascend, and consequently would be unable to

rise from the ground.
If the angle of incidence is still further increased, the

excess of useful power continues to grow, and so too the

1 The rarefaction of the air also affects the working of the propelling

plant.
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slope of the climb. This increase will continue until the

angle of incidence has attained the value im , corresponding
to the maximum excess MM' of useful power. Therefore :

There exists an angle of incidence im the use of which

gives the aeroplane its greatest climbing slope.

Beyond this definite value any increase in the angle of

incidence diminishes the slope of ascent.

The considerations set out in 30 have already made it

clear that, to obtain the best results from a given motive

power, the angle im should not be far removed from the

economical angle ie .

From formula (21), 37 :

(21)
' T

B=3

it is easy to calculate the slope along which an aeroplane
can ascend for a given excess, h, of motive power (in H.P.).

PVa
This slope a must be such that h = q=-= , always assum-

O I O

ing the propelling plant to have an efficiency of 50 per
cent. Its value therefore is :

Let us assume, in order to convey an idea of the im-

portance of this limit slope in practice, that P and V have

the average values 375 kg. and 20 m.p.s. Then :

Hence, in order to cause an aeroplane weighing 375 kg.
and travelling at 20 m.p.s. (that is, driven by 30 H.P. accord-

ing to formula (19) 34 to ascend along the feeble slope
of 1 centimetre per metre (O'Ol), one requires an excess of

power amounting to 2 H.P.

The above is at any rate reassuring in so far as it con-

cerns the effect on the flight-path of any variations in the
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motive power due to the irregular working of the motor.
But it shows, on the other hand, that in order to ascend at

a fairly steep angle, as is often required in practice, the

maximum excess MM' of motive power must be quite
considerable.

This fact may lead to the partial sacrifice (see 30) of

the efficiency of the propelling plant with a view to increas-

Speeds.

n r

FIG. 33.

ing the value of the maximum excess of power available.

In practice it also leads to the use of more powerful motors

than required simply for horizontal flight, which is then

effected with the motor throttled down.

The effect of the manipulation of the elevator may also

be considered in the case where the point, on the curve

GH, corresponding to horizontal flight of the aeroplane is
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situated within the portion EG (Fig. 33), for instance at R,

and when the aeroplane is, consequently, flying at an angle
of incidence greater than the economical angle.

In this case any alteration of the angle of incidence

brings about a lack of power ; for, as the point on the curve

is hereby brought back to N, the useful power NT& required
to sustain the aeroplane is greater than the useful power
Wn actually developed by the propelling plant.

Here, therefore, it is true however astonishing it may
appear that an increase of the angle of incidence causes

the aeroplane to fall instead of to rise. Conversely, any
diminution of the angle of incidence in such a case causes

the machine to ascend.

This reversal of the usual effect of the elevator may be

fraught with a certain amount of danger, more especially

in starting (this will be further referred to in 45). It is

therefore desirable that the angle of incidence should

remain smaller than the economical angle.
1

45. Starting.

In order to rise from the ground, the aviator places his

elevator in an attitude corresponding to flight at a very
small angle of incidence, for the purpose of eliminating
the active resistance or lift, and of reducing air resistance

as far as possible to its passive part. The motor is then

started, usually at full power.
As only the passive air resistance and the friction against

the ground resist its forward motion, the aeroplane quickly
attains a good rate of speed on the ground.

When the aviator deems the speed sufficient he inclines

the elevator at an angle corresponding to flight at a fairly

large angle of incidence. The machine then leaves the

1 This consideration, already referred to in 30 (footnote, p. 61), practi-

cally compels the choice, for the normal speed, of the greater of the two

speeds possible in horizontal flight for a given aeroplane equipped with a

given propelling plant working at constant power.
G
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ground under the action of the lift, greater than its weight,
created by its speed. Since the motor is working at full

power, and as the friction on the ground has disappeared,
the aeroplane is provided with a certain excess of power,
and consequently continues to ascend.

If the machine rises too steeply, the elevator must be

depressed; but this is a delicate manoeuvre requiring

experience, from lack of which arise the frequent mishaps
in starting.

In order to rise after only a short run, the planes
should be given a large angle of incidence.

The best angle, obviously, would be im,
which gives the

maximum excess of useful power available, and conse-

quently the maximum slope of ascent (see 44). But as

it is difficult in practice to judge the precise attitude of

the elevator corresponding to this value im of the angle
of incidence, the aviator may easily make the angle of

incidence too large.

Should the angle of incidence given to the planes be,

in fact, greater than the economical angle, it may be

necessary as stated at the end of the preceding section

to reverse the usual operation of the elevator, otherwise the

pilot, attempting to check the rapidity of ascent, is exposed
to the danger of increasing still further the steepness of

the slope.
1

It need scarcely be pointed out that there is every

advantage in starting head-on to the wind, since the speed
of the wind is then added to the speed of the machine on

the ground to produce the lift required for starting.

46. Alighting.

The aviator may alight either with his motor running
1
This, however, is only possible if the motor is much more powerful

than required to sustain the aeroplane. In such a case the best method

perhaps is not to follow the maximum slope of ascent corresponding to

the full motive power ;
in other words, always to sustain the angle of

incidence below the value im , and keep the motor running at full power.
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or in gliding flight. But in both cases his first object is to

reduce his vertical speed, that is, his rate of fall.

With the motor working, the descent can be easily

regulated by the combined use of the elevator and the

throttle. In gliding flight, there is every advantage in

descending at the economical angle of incidence which, as

we have seen
( 40), reduces the rate of fall to a minimum.

In either case, when near the ground, the aviator

manipulates either the elevator or the motor so as to flatten

out his flight-path and skim the earth. At the exact

moment of landing it may be advisable to check the

horizontal speed of the machine by increasing the angle of

incidence, after the fashion adopted by birds, and pigeons
in particular. The friction of the running wheels, or skids,

on the ground plays an important part in checking the

horizontal speed.

Finally, for reasons that will be explained in 72, and

in accordance with the dictates of common sense, the

landing should always be made against the wind.



PART II

EQUILIBRIUM AND STABILITY OF THE
AEROPLANE IN STILL AIR

CHAPTER IV

EQUILIBRIUM AND STABILITY IN

STRAIGHT FLIGHT

I. GENERAL CONSIDERATIONS

47. Preliminary Remarks.

As has been said at the beginning of this work, in

order that the problem of aerial navigation by the aero-

plane may be completely solved, it is not enough that the

forward motion should generate a lift capable of support-

ing the machine
;
that is merely a beginning.

In flight, an aeroplane must be evenly balanced on its

flight-path and, above all, the balance must be stable,

that is to say, the machine must not upset or veer when

subjected to a small disturbing influence.

That the question of the equilibrium and stability of

the aeroplane may be considered in its true aspect, it is im-

portant, first of all, to examine carefully some postulates

which follow :

1. An aeroplane moving through the air may, for the

purpose of studying its equilibrium and stability, be con-

sidered as if, motionless and suspended from its centre

of gravity, it were struck by a wind equal to that set up

by its own speed.

This idea, in fact, is the interpretation of the mechanical
100
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theory known as the theory of the movement of the centre

of gravity.

2. As the oscillations of the aeroplane about various

axes passing through its centre of gravity are slow on

account of the considerable inertia of the machine, the

reactions which the air opposes to these movements, if

they are taken to be equal to those of still air, have a

small and negligible value even if they occur with large

surfaces,
1
although common error insists otherwise.

The first principle of the operation of all stabilising

surface is the speed of the aeroplane itself.

It must not be forgotten that the machine is subjected
in every part to the strong air-current, which it itself

creates a current which tends to keep in its proper course

any surface opposed to it by exercising a force equal to the

square of its speed. This is the best basis for stability ;

the orthogonal resistance to oscillation goes for nothing.

At the same time, the rapidity of the oscillations, if appre-

ciable, can be compounded with the speed of the aeroplane,

so that the resultant, meeting the surfaces obliquely,

deadens the oscillations and produces a braking effect,

as will be shown later on ( 55 and 61).

3. There is another very widespread error that likens

the equilibrium of the aeroplane to that of a floating

body, a boat or balloon.

A floating body is, however, only subject to the vertical

reaction of gravity. Its equilibrium can be represented

diagrammatically (Fig. 34) by two vertical equal and

opposite forces, P the weight applied to the centre of

gravity G, and R, the reaction of the fluid, applied to

a certain point C. When the body is gently moved from

its position of equilibrium by rotation around its centre

of gravity, the point C moves to G', and R, remaining

1 For example, a surface of 10 sq. m. striking the air at a speed of

1 m.p.s. only produces a stabilising force equal, by formula (1), 1, to

O'OSx 10 x 1 = 800 grammes, which is clearly insignificant.
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vertical, acts relatively to the point G, as a lever-arm Qg,

which, if the equilibrium is stable as in the case of

Fig. 34, exercises a righting effect. But this cannot be

applied to the aeroplane, because, when its equilibrium

c

FIG. 34. FIG. 35.

is disturbed, the reaction of the air R (Fig. 35), instead

of keeping its original direction, turns with the machine.

If, then, its point of application moves from C to C', no

righting lever arm is produced, as R still passes through
the centre of gravity.

1

1 This is only true in the case of transverse oscillations in certain

aeroplanes. In longitudinal oscillations, as we shall see ( 54), the re-

action R moves relatively to C', thus forming what may be either a

righting or upsetting lever arm.
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48. The centre of pressure.

When an air-current strikes a vertical plane such as

AB (Fig. 36), the pressure p, which

is exerted on the plane, is applied
to the symmetrical centre 0. But

when the plane is struck obliquely,

the stream-lines follow paths similar <.

to those shown in Fig. 37. A loss
^

of speed (and perhaps even a back-

ward motion) of the molecules of

air, giving rise to a compression, F 36
results near the forward edge, while

in the rear of the plane, where there is usually negative

pressure, the stream-lines are only slightly affected.

FIG. 37.

If from every point of a surface perpendiculars are

drawn of a length proportional to the pressure at each

point, a diagram is obtained similar to the lower portion
of Fig. 38 (under surface).

Behind the plane, on the contrary, a negative pressure
is produced wherein are eddies, and its distribution is

represented on the upper part of Fig. 38 (upper surface).

M. Eiffel has shown by recent experiment that when
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the angle of incidence of a flat plane is low, the value of

the negative pressure on the upper surface of a plane
is considerably more than that of the positive pressure

Diagram of

UpperSurface

Diagram of

UnderSurface.

on the Bunder surface. Thus, in this case it is the upper
side of the plane that contributes most towards the crea-

tion of the lift, a function increasing as the angle grows

FIG. 39.

smaller. This fact shows that the shape and smoothness

of the upper surface of a plane have as much, if not more,

importance,from the point of view of the value of pressure,
as those of the under surface. The result of the double

action of the air-current with pressure in front and nega-
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tive pressure behind, both unequally distributed, is that

the total reaction on the plane is applied at a point C

(Fig. 39), nearer to the forward edge A than to the

trailing edge B. This point C is called the centre of

pressure of the plane.

In a flat plane, C moves towards the forward edge as

the angle of incidence becomes smaller until, when the

60

FIG. 40.

90

angle is zero, it reaches the limit point C the distance

between A and C
x being equal, approximately, to \ of the

fore and aft dimension AB of the plane.
M. Eiffel, from his recent experiments, has plotted a

curve (see Fig. 40) showing the variations of the position
of the centre of pressure on a flat plane as the angle of

incidence moves from to 90.

For the usual small angles of incidence, and supposing
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the variation to be small, it can be stated that the distance

CCj (Fig. 39) is given by the formula

CC^ali,

I representing the chord of the plane, and a a coefficient

whose value, according to an old formula of Avanzini, is

30

75
s

FIG. 41.

about 0'3. In the light of M. Eiffel's recent researches, the

mean value of this coefficient is slightly greater 0*4 at

least for the usual angles of incidence. We will adopt
this value, so that the rule governing the variations of the

centre of gravity on a flat plane will be represented by the

formula :

(24) CC^ 0'4Zi.

In curved planes the rule is, according to M. Eiffel, quite
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different, and he has prepared a diagram (Fig. 41) to illus-

trate it (the angles of incidence being those of the chord).

It may be seen that the centre of pressure, which is situated

at the middle of the curve when the air-current is parallel

to the chord, moves directly into the air-flow until it

Diagram of

Upper Surface.

Diagram of

Under Surface.

FIG. 42.

reaches a definite point regulated by the angle of the

chord and then moves back to its original position.

Fig. 42 shows the pressure and negative pressure curves

on the section of a curved plane, and Fig. 43 the stream-

line flow.

As planes curved similarly to those used by M. Eiffel

would in actual practice only be used at angles of in-
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cidence smaller than that which corresponds to the for-

ward limit point of the centre of pressure, it can be said

that the variation of the centre of pressure in curves is

inverse to that in flat planes.
But the curve, as previously mentioned ( 3), is suffi-

ciently deep to bring about this result. With the planes
flatter it is possible that the forward limit point of the

centre of pressure would be reached at a smaller angle
of incidence, that is to say, at a usual value of the angle.

FIG. 43.

It is somewhat difficult, in this case, to determine precisely

how the centre of pressure varies at different angles since,

according as the angle at which this variation starts is

either greater or less than the particular angle correspond-

ing to the limit point, an equal variation in the angle of

incidence will cause the centre of pressure to advance in the

one case and retreat in the other. At any rate, the varia-

tions of the centre of pressure complicate the problem of

aeroplane stability, and therefore it is important to reduce

them. As they are proportional to the chord of the plane,

it is advantageous to increase its span and reduce its chord,

while keeping the same area. The same result can be
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obtained by distributing the carrying surface among several

planes, as the variations of the centre of pressure are more

limited in a multiplane than in a monoplane of the same

supporting area (presuming the planes to be of a similar

shape).

49. The three kinds of stability.

In order to fly, the aeroplane must preserve on its

flight-path equilibrium of three kinds :

1. Longitudinal stability,

that is to say, the least disturbing influence does not cause

it to dive or rear.

2. Lateral stability,

that is to say, the least side inclination does not turn it

completely over.

3. Directional stability,

that is to say that the least change in its direction does

not cause it to veer, and that it moves always head-on to

the wind it creates, without drifting to leeward.

Moreover, the rolling and pitching oscillations must

not become so great that, as a result of an action similar

to that of a pendulum, the aeroplane upsets.

II. LONGITUDINAL STABILITY

50. The longitudinal equilibrium of the aeroplane

on its flight-path.

In all the following remarks, the tractive effort of the

propelling plant, that is, the thrust exerted along the axis

of the propeller, will be taken as passing through the

centre of gravity of the aeroplane.

This condition has the effect of preserving equilibrium

when the thrust is cut off by the aviator stopping the

motor for a glide. (At the same time we may admit that

the equilibrium is upset to a certain degree, and place the

axis of the propeller a little above the centre of gravity.)
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oG

If an aeroplane consisting of one principal plane, or

perhaps of several other planes besides, is supposed to

remain rigidly in a certain position and a stream of air be

directed perpendicularly to its main plane, the effect on all

parts of the machine can be summed up in a single re-

sultant situated in the plane of

symmetry of the aeroplane.

Let R90 (Fig. 44) be the direc-

tion in which this resultant works.

Then, the aeroplane remaining
fixed, by altering the direction of

the air-current so as successively

to meet the main plane at de-

creasing angles i
lt

i
2, &c., and

finally at zero, a different resul-

tant of the air pressure is obtained

each time. Let Rf ,
R

{ , . . . R
be the directions of these various

resultants, which can be imagined
to be identical with and rigidly

attached to the machine.

Now, supposing the aeroplane
to be free in the air, in order that

it may be in equilibrium on the

flight-path, the three forces which

affect it, i.e. its weight, the thrust

of the propeller, and the reaction

of the air, must, collectively, exercise no turning moment
about the centre of gravity. As the first two forces pass

through this centre, the reaction must do likewise. If,

therefore, the centre of gravity, G, be outside the lines of

the resultants (Fig. 44), it is not possible to find an angle
of incidence of which the corresponding resultant passes

through G. The machine is therefore unstable.

On the other hand, when the centre G coincides with

one of the resultants, R* (Fig. 45), which corresponds to
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a certain angle of incidence, in) the three said forces pass

through the centre of gravity, consequently inducing

stability at this point. In such a case the aeroplane will

be stable only when the angle of incidence has the one

value in . We may conclude as follows:

An aeroplane in which the planes are fixed relatively

to one another can only fly

at a single angle of incidence.

Therefore it is essential for

one, at least, of the planes
to be movable.

The movable plane is

usually called the elevator.

It will be considered at length
in 52.

For every fresh position
of the movable plane the lines

of the resultants change, and

it is no longer the resultant

Rf , corresponding to the

angle of incidence in) but the

resultant R; , , corresponding

to the angle of incidence in, ,

which passes through the

centre of gravity.

Therefore it is possible

by altering the angle of the

movable plane or elevator

to cause the aeroplane to assume on its flight-path a
series of different stable attitudes corresponding to the

different values of the angle of incidence.

At the same time the centre of gravity must occupy
a definite position, for if it is not possible by altering the

angle of incidence to find a resultant which passes through
the said centre of gravity, stability is unobtainable, and
the aeroplane will have been badly designed.

FIG. 45.
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The action of the elevator does not generally permit of

all angles of incidence ranging from to 90, so that

stability can only be achieved by the values of the

angle of incidence between two fixed limits.

It is evident, too, that the angle of incidence corre-

sponding to the normal speed of the machine is included

in the scale of angles, without which the machine is badly

designed.
The foregoing considerations show, also, that the angle

of incidence can be altered by altering the position of the

centre of gravity.

51. Example of longitudinal stability The stability

of a rectangular plane.

Let AB (Fig. 46) be a rectangular plane, the length,

AB, being 100 m/m., according to the scale of the diagram.
The forward limit point of the centre of pressure is at C

1?

situated from the leading edge at a distance AC
15 equal to

J of the length of the plane, that is 25 m/m. The pres-

sures will be taken as entirely normal to the plane AB.

If, then, a current of air is directed perpendicularly

upon it, the resultant, that is the pressure R^, passes

through the centre of the figure. As the angle be-

tween the current and the plane is diminished the

pressure approaches its limit point R (which passes

through C
x)

and reaches it when the angle of incidence

is zero.

The resultants considered in the preceding section are

the same, in this single case, as the perpendiculars to the

line AB between R90
and R . One sees, moreover, that if

the centre of gravity, assumed to be situated on the plane

AB, is outside the region OC1 ,
it will not be possible to find

for AB a stable position on its flight-path.

But if the centre of gravity G is placed between the

points O and C, stability is possible, as a resultant R
i?i

,
cor-

responding to the angle of incidence in) passes through this
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point. And in order that this angle of incidence in may
be included between the practical limits O05 and 0'20, the

resultant R
{

must itself be included between the result-

,P

Roo

R0.20

FIG. 46.

ants R .

05
and R .20 situated respectively, according to

formula

(24) CC^ (MM,

at the distance 0'02AB and O'OSAB from the resultant R
,

that is, in the present example, 2 m/m. and 8 m/m.
Thus to each position of the centre of gravity there

H
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corresponds one angle of incidence, and only one
;
and in

order that this angle may be confined within practical

limits the centre of gravity must be placed in the shaded

portion of Fig. 46, that is to say, between two points
distant less than T

* of the length AB from each other.1

52. The tail The elevator.

The foregoing considerations show that for flying at

different angles of incidence without altering its centre of

gravity, an aeroplane must consist of at least two planes,

one fixed and the other movable.

Let two such planes be taken, as in Fig. 47, which are

are at a small angle x to one another and a short distance

apart. Now when the air strikes the leading plane AB at

the angle i it exerts upon it the pressure R^KjSjV2
^

(S1
= the surface, Kj = the total resistance, lift, and drift

of the plane).

The second plane is struck at the angle i x, and taking
the symbols S

2
and K

2
as representing respectively its sur-

face and its total resistance, the pressure R
2,

which it

sustains, equals K2
S

2
V2

(i x).

To achieve stability, the product of each of the pressures
and its distance from the centre of gravity, in other words,

the moment of each pressure in relation to this point, must

be the same :
2

R
1 xG(/1

= R
2 xG5r2 ,

or

K^V2
; x G& - K2

S
2
V2

(i
-

x) x G& .

1 This conclusion conveys some idea of the sensitiveness of a device

whereby the angle of incidence of a single flat plane might be varied by

altering the position of the centre of gravity. With a plane 2 m. in length,
it would be enough to move the centre of gravity 12 cm. in order to

cause the angle of incidence to pass through the whole scale of its

admissible values.
2 This supposes ( 50) that the thrust passes through the centre of

gravity. If it did not, this force would produce a moment which would

have to be taken into account in writing the equation of stability ( 53).

One must, moreover, assume that the head resistance of the parts of the

aeroplane other than the planes also pass through the centre of gravity.
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It is clear, firstly, that speed need not be considered in

this equation, which shows that an aeroplane in equili-

brium struck in a certain direction by a current of air

travelling at a certain speed will preserve its equilibrium,

even though the speed of the air-current changes, if the

direction remains unaltered. Also in this equation the

values of Ggl
and G</2 ,

which depend on the angle i, must

be altered as the centre of pressure varies at different

angles of incidence. (If the second plane be small and

sufficiently far from the centre of gravity, one can neglect
the variations of the centre of pressure and assume Gg2

to

be constant.)

One obtains, finally, a relation between the angles i and

x, which is affected by certain characteristics and dimen-

sions in the construction of the aeroplane, particularly

those which fix the position of the centre of gravity with

regard to the planes.

The existence of such relation clearly shows that the

value of the angle x made by the two planes and that of

the angle of incidence i when the aeroplane is stable on

its flight-path correspond to each other. This result

agrees with the deductions of a general character set out

in 50.
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Moreover, it allows us to take into account the influence

on the relationship of the values of the constituent parts of

the aeroplane, especially those of the dimensions which fix

the position of the centre of gravity. And, in particular,

the reality of the factors of the equation in i assuming x

to be constant shows the possibility of finding a solution

of the problem.
All these calculations will not be shown here since they

would take up too much space,
1
besides, it is chiefly the

results that they give that are of interest. They show the

importance of having an auxiliary plane smaller than

the main plane and placed at a certain distance from the

centre of gravity in order to preserve the longitudinal

stability. Such plane is usually called the tail.

The tail, as a rule, comprises both fixed and movable

parts.

The fixed tail is usually placed in rear and in such a

way that the stable attitude of the machine resulting from

its position and from its size corresponds to the single

angle of incidence.

While very important in some machines (Voisin), the

fixed tail is suppressed in others (Wright), but it should be

noticed that such suppression cannot be absolute. The

action of the air on the parts other than the planes always
establishes even though such parts were not so disposed

with this object a vertical component which is due to

the thickness of the materials used, to the angle at which

they are struck by the wind which the speed creates,

and to the skin friction, &c. However little these

components are removed from the centre of gravity,

they interfere by their movement with the longitudinal

stability in a way which, though slight, cannot be dis-

regarded.
An aeroplane has therefore, of necessity, an imaginary

1 A simple instance of this class of calculation is shown, however, by

way of exampie, at the end of the present paragraph. (See footnote 2, p. 119.)



EQUILIBRIUM AND STABILITY 117

fixed tail, even if the constructor has not designedly
allowed for it, in the same way as it possesses detri-

mental surface
( 11).

If it is desired to represent this tail by a hypothetical

surface, its size should vary with its supposed distance

from the centre of gravity. The best way is to assume

that the effect of the imaginary fixed tail is measured by a

certain moment around this point.
The tail comprises besides its fixed part, real or

imaginary, a movable part which is an essential, for, as

has been seen, it enables the aeroplane to fly at various

angles of incidence.

This movable part, termed the elevator, is placed some-

times in front and sometimes at the rear. 1
Ordinarily its

movements are made about an axis perpendicular to the

plane of symmetry.
2

There is, for every position of the elevator, one stable

position of the aeroplane, and one only, that is to say,

one angle of incidence.

It can be mathematically determined what conditions

must be fulfilled so that the operation of the elevator has

a correct influence, neither too much nor too little, on the

value of the angle of incidence. These conditions obvi-

ously depend on the size of the machine and on the

relative positions (as well as on their form in section) of

the planes, and also influence the value of the limits

between which the angle of incidence may be varied by
operating the elevator. Moreover, it is necessary that the

practical values of the angle of incidence, that is, those

comprised between the normal angle and the angle of

incidence below which it would be dangerous to go, should

1 The effect of a forward elevator is quicker, but also more abrupt, than
that of the rear elevator.

2 It seems possible that it will, later on, be found useful to use an
elevator capable of sliding horizontally without rotating, or perhaps a
fixed plane with a variable surface.
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be included in the scale of angles, failing which the

machine is badly designed.
The tail action makes it clear why it is said that the

aeroplane lies on its flight-path (
7 and 35).

As the elevator has a fixed position, the stability is

only possible for the machine at one angle of incidence on

its flight-path in whatever direction this path may lie.

If, therefore, the aeroplane changes direction, it ought, as

the angle of incidence is not altered, to tilt about the

centre of gravity into its new flight-path.

The tail may or may not lift. As a rule, fixed tails do

not
; they are placed so as to present no angle to the wind

when the main plane is at its normal angle of incidence

(Fig. 48). In this case the centre of gravity should be

projected from the point CR ,
the centre of pressure cor-

responding to the normal angle of incidence, iR ,
in order

that the moments of the pressure on the main plane and

the tail should be equalised, that is to say, eliminated.

Later on it will be seen ( 75) that this arrangement is

advantageous in view of the wind effect.

In the case of the arrangement shown in Fig. 49,

where the tail is struck on its upper surface, the projection

of the centre of pressure lies in front of the point CR ,
and

will be discussed in 54 and 75.
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In the original Wright machine the single
l

tail, con-

stituting the elevator, lifts. The stability, moreover, of

this aeroplane is peculiar, as the main plane is placed
behind (Fig. 50). The projection, g, of the centre of

gravity must in this case lie in advance of the centre of

pressure CB .

2 Besides the function just denned, the tail

plays the double part of an automatic stabiliser and of a

damper-out of oscillations
(

54 and 55).

1

Single, because the imaginary tail which is necessary in all aeroplanes

is embodied in it, and at the same time the machine has no fixed tail.

2 By way of example, it will perhaps be well to give an instance

of the kind of calculation mentioned at the beginning of the present

paragraph.
Let there be supposed an aeroplane consisting only of a main plane

and a movable tail or elevator placed in rear (see Fig. 47). Further, to

simplify the case, let the centre of pressure be taken as constant when

the angle of incidence varies.
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53. The direction and position of the thrust.

If the elevator occupies a fixed position, the aeroplane
can only fly at one angle of incidence.

Then, if it is granted that

Gffi
=

ffi . Gg-t= ff& g^r
=

,

the equation of stability will be

gji= mg2 (i-x), .-. i=-~^- .

It is clear, moreover, in order that the angle of incidence of the main

plane may have a positive value that the inequality gi<mgz be satisfied.

The position of the centre of gravity should not then be moved back

beyond a certain limit point.

Furthermore, as was foreseen, the value of the angle of incidence i

only depends on that of the angle x which the two planes make between

them, that is to say, on the position of the elevator.

In the present example, the two angles in question vary proportionately

one to the other, and their relation - is measured by the value of the

expression

When </i
= 0, the angles i and x are equal. In this case any movement of

the elevator affects only the value of the angle of incidence. The tail

always remains parallel with the wind and does not lift.

When </i is positive, as in the case of a lifting tail, the angle of in-

cidence varies more than the angle made by the two planes. It varies

less when g is negative, as happens in the case of the tail struck on its

upper surface. If the planes are relatively placed in the position assumed

G
FIG. 50A.

in a Wright aeroplane (Fig. 50A), the equation of stability becomes

taking the symbol i to equal the angle of incidence of the main plane and

assuming that

gj, ...<.JL.
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This is true whatever the direction of flight, horizontal

or oblique, and whatever the direction and value of the

forces affecting the machine may be, particularly the

thrust.

This last result may appear surprising, and it seems

at first sight that the aeroplane ought to follow its pro-

peller, that is, that the flight-path of the machine should

naturally follow the line of the propeller's axis. It is not

so, however, for if the axis (which for the moment we will

suppose to pass through the centre of gravity) does not

make with the main plane an angle equal to the single

angle of incidence as fixed by the position of the elevator,

the axis and the flight-path will never coincide whatever

the latter may be; the two lines will always be at the

same angle to each other (Fig. 51).

Anyform offlight can le made a horizontal flight for
instance by giving the axis of the propeller a certain

inclination.

This happens when the aeroplane flies at an angle of

incidence other than its normal angle ;
the plane and the

axis of the propeller being immovable in their relationship,
if the angle of the former increases with the direction of

the flight-path, the angle of the latter to the said flight-

path is increased to the same amount.

It is possible to consider the equilibrium of the aero-

plane in horizontal flight in another way.

The necessary condition g^>mgl means, by analogy with the case taken

above, that the centre of gravity should not be moved back beyond a
certain limit -point.

Again, according as the said centre of gravity were placed on either

one side or the other of a second point, so that
g<2.
= mg\, the angle of

incidence will vary either more or less than the angle formed by the two

planes.

Since these results are only approximate, as the shifting centre of

pressure has not been taken into account, it should be plainly stated that

the influence of the position of the elevator on the value of the angle of

incidence may be regulated at will by the dimensions of the machine,
and particularly by the situation of the centre of gravity in relation to

the planes.
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Let GX (Fig. 52) be the direction

of that one of the resultants explained
in 50, which, corresponding to a cer-

tain angle of incidence i, passes through
the centre of gravity. The aeroplane
can only fly at this angle of incidence i.

If it is supposed that the machine flies

horizontally, the direction of the resul-

tant GX will not alter. Also, let P be

the weight of the aeroplane. If any

straight line GY is drawn from G, it is

always possible to resolve the force P,

which is equal and directly opposed to

the weight of the machine, into two

forces: t directed along GY, and R
directed along GX.

Thus, for every direction of the thrust

GY it is possible to find a value of it, t,

and a value, R, of the reaction of the

air on the aeroplane, which together

sustain its weight.
Horizontal flight is then obtainable

at the given angle of incidence i what-

ever the direction of the thrust may
be; it is accomplished, for example, in

each case at a certain speed V, so that

the reaction R of the air has a value

equal to KSV2
i.

In other words, if the thrust has a

vertical component, that is, if it tends to

lift a portion of the aeroplane's weight,

the lift of the plane may be reduced by

just that portion of the weight.

Toreduce the lift theaeroplane should

then go slower than when the plane sup-

ports the entire weight of the machine.
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If the thrust has a vertical direction, the horizontal

speed vanishes. The thrust should then be equal to the

weight, and it will no longer be necessary for the plane,

which thus becomes useless, to lift.

FIG. 52.

The machine would operate as a helicopter.

An examination of Fig. 52 shows that since the ex-

tremity of the component t is on ZZ, which is parallel to

GX and met by the extremity M of the force P, the

direction in which this component, the thrust, offers the

least value is along the perpendicular GU. And this
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being at a slight angle from the vertical, one departs in

practice from the conditions of the minimum thrust 1
by

placing the propeller so that at the normal speed and

angle of incidence of the machine its axis coincides with

the flight-path.

It has been hitherto supposed that the axis of the pro-

peller or, what is equivalent, the thrust, passes through
the centre of gravity of the aeroplane.

If it does not (Fig. 53), the machine's position in longi-

'

ffz"
FIG. 53.

tudinal equilibrium will be altered, because the moment

arising from this change is added according as the thrust

is above or below the centre of gravity to one of the two

moments set up by the action of the air on the tail and on

the main plane. Equilibrium could not then be obtained

at the same angle of incidence.

Such an arrangement destroys the equilibrium when

the motor stops and the moment that the thrust ceases.

But it can be advantageous, nevertheless, to adopt it, if it

is desired that at the instant the spark is cut off the angle

1 This minimum thrust must not be confounded with that which has

been defined in 12. It is the direction of the thrust which varies, the

angle of incidence is assumed to be fixed.
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of incidence should, without the elevator being moved,

take on a value best fitted for the glide, allowing the

slowest rate of fall, that is, the value of the economic

angle ( 40).

As the value of the normal angle of incidence is, how-

ever, the smallest, as a rule, that can be adopted without

danger and corresponds to the speed-limit ( 25 and 27),

the loss of equilibrium brought about by the motor stop-

ping if it should so happen should have the effect of in-

creasing this value rather than of diminishing it, and in

consequence the axis of the propeller should be above the

centre of gravity. This arrangement is used in the Wright
machine

;
the distance between the axis and the centre of

gravity is about 0*50 m.

54. Automatic longitudinal stability.

The aeroplane should have a position of longitudinal

equilibrium on its flight-path ;
this equilibrium should be

stable, so that when the machine is disturbed from this

position, it should automatically return to it.

It has been seen in 50, that an aeroplane, sup-

posedly stationary, experiences, when struck by air-

currents at different angles, reactions of which the

resultant assumes a position varying with- the angle
at which the main plane is struck, and that, moreover,

the resultant which passes through the centre of gravity

corresponds to a single angle of incidence at which the

aeroplane flies at a position of equilibrium.
Let R

4 (Fig. 54) be this resultant passing through the

centre of gravity G of the machine. Continuing to assume

this to be fixed, when the angle at which the air strikes the

machine increases to the extent of the very small angle i',

the resultant of the reactions changes its position to Rf +i,,

making with respect to the centre of gravity a lever arm

Gg, which would tend, if the aeroplane were not fixed, to

make it turn in a certain direction.



126 THE MECHANICS OF THE AEROPLANE

The same thing happens when the aeroplane, instead

of being immovable, flies in equilibrium on its flight-path,

and is subjected to a slight change of angle around its

centre of gravity, which has the effect of increasing its

angle of incidence. The automatic

longitudinal stability or otherwise

of the aeroplane depends entirely on

the action of the lever-arm, according
as it exercises a righting or an upset-

ting moment.

The consideration of the simple
case already treated in 51 will make
this stability process more readily

understood.

An aeroplane consisting of a single

plane,
1 AB (Fig. 55), is in equilibrium

on its flight-path when the pressure
or resultant R

in
, corresponding to a

certain value in of the angle of inci-

dence, passes through the centre of

gravity.

When the angle of the plane is

reduced by the small amount i', and

moves from AB to A'B', the pressure
instead of continuing to pass through the centre of gravity

moves forward (as we know occurs when the angle of

incidence is diminished), and occupies the position

Ri _4
/

,
thus creating in respect to the centre of gravity a

righting moment. (The result would be just the same if

the angle of incidence were increased instead of diminished.)

Therefore :

An aeroplane consisting of a single flat plane is auto-

matically stable in the longitudinal sense.

FIG. 54.

1 It will be supposed, in order to make the case as general as possible,

that the centre of gravity lies outside the surface of the plane.
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If this single plane were curved instead of flat, a lessen-

ing of the angle of incidence would have the effect, as has

been seen, of causing the centre of pressure to move back.

The moment of the resultant, R
( _ 4,, would then be an

upsetting moment. So that :

An aeroplane consisting of a single curved plane is,

usually, unstable in the longitudinal sense.

FIG. 55.

The problem of longitudinal stability is best under-

stood by the aid of calculation. The method is simple.

Taking first the general case of the aeroplane consisting
of two planes, flat or curved, an examination afterwards

of special cases will help the reader to grasp the results

arrived at.

First of all the equation of stability is written, which

in the general case under consideration is

The signs K, S, V, i have their usual meaning, the

sign g represents the distance between the centre of pres-



128 THE MECHANICS OF THE AEROPLANE

sure and the centre of gravity. The index sign i applies
to the forward plane, which may be the main plane, as it

generally is, or the tail as in the original Wright machine
;

the index-sign 2 denotes the rear plane.
One proceeds to express the variation of each of the

two moments producing equilibrium when both the angles
of incidence, ^ and i

2, vary by the same small angle i'.

The difference between these two variations is the same
as the value of the righting or upsetting moment set up by
the angular change i'.

As a rule, the values of the two factors which compose
the normal moment of the plane the pressure and the

leverage are both influenced by an alteration of the angle
of incidence. The value of the pressure is doubly in-

fluenced, since it depends, at the same time, on that of

the angle of incidence and on that of the speed, which

latter also varies with the angle.

But supposing that the aeroplane flies oscillating

rapidly through a small arc, it may be granted, on

account of the inertia of the mass, that the speed has not

time to be affected appreciably, and therefore it remains

constant.

If the centre of pressure did not move, the variation of

the normal moment of the front plane might be expressed

by K^VV-
But the centre of pressure does move, though like the

angular change i' the movement is very small, and can be

considered proportional to i' and measured by the product

a^ift
the sign I being the fore-and-aft dimension of the

plane and a a coefficient, positive or negative according as

the plane is flat or curved, and according to its position

relatively to the centre of gravity.

The variation of the moment 1 due to the travel of the

1 The variation of the value of the pressure can here be disregarded as

it would merelj introduce a negligible term i'
z
.
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centre of pressure is therefore : K^V*^ x ajtf,', and the

total variation of the normal moment of the front plane is

or

Similarly the variation of the normal moment of the

rear plane is :

The difference between these two variations, the for-

mula for which is too long to write here, represents the

value of the moment set up by the resultant of the air-

pressure when the aeroplane gets off its normal angle to

the extent of i
f

.

In order that the longitudinal equilibrium may be

automatically stable, this must be a righting moment, and

pursuing the formula, it is clear that such a condition is

realised when the inequality
l

is satisfied.

The examination of special cases will show exactly
the sense in which this condition of stability should be

interpreted.

In the first place, if it be supposed that the centre of

pressure does not travel as the angle of incidence varies,

the coefficients a
x
and a

2
can be made algebraically of no

value, so that the said condition of stability becomes :

i i
2 > 0, or ij > i

2
.

In this case, for' the aeroplane to be stable the angle of

incidence of the front plane (whether it is the tail or main

plane) must be larger than the angle of incidence of the

1 In the latter part of this formula one of the two products -

which concerns the tail is generally negligible, so that the movement
of the centre of pressure on the tail can be practically disregarded.

I
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rear plane in other words, the planes must form in rela-

tion to one another a dihedral angle or V (Fig. 56). This

dihedral angle need not be very far removed from 180, at

which figure the equilibrium is indifferent.

When, in the inequality expressing the general con-

dition of stability, the second portion, O+oj ,
is posi-

^ 9i 9z '

tive, as is usual in the case of curved planes, the first

portion must, a fortiori, be positive also.

E_ B^-^
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righting moment set up by a small change in angle and

this angle itself. It would take too long to discuss the

value, taking the relationship in the general case just

stated, so only two very simple hypotheses will be examined

here, one where the aeroplane consists of a single plane,

and the other where it has a non-lifting tail.

In the first instance, the righting moment resulting

from the change in angle i' is expressed, as formerly stated,

as KSV2/
i x ali', or, by substituting the weight P for the

product KSV2
i, as aPli'.

The relation of this moment to the change of angle i'

causing it, which characterises the degree of longitudinal

stability, bears the value aPl, where, in flat planes, a = 0'4

( 48). So that an aeroplane composed of a single flat

surface will be the more stable in the longitudinal sense as

its weight and chord increase.

It would therefore be profitable to increase the chord

of the planes and to dimmish their span, which would

reduce their lift. But it is clear that the use of a fixed

tail renders unnecessary this disadvantageous method of

increasing stability.

Taking an aeroplane with a non-lifting tail (Fig. 57), and

considering the main plane separately, the change if in the

angle of incidence creates the principal moment with a

value, as in the preceding case, of aPli', a being positive if

the plane is flat, and negative if it is curved.
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Furthermore, the angle of incidence of the main plane
causes the tail to deviate from the path of the wind, thus

giving rise to a second moment, which is always a righting

moment, of a value KsW x L, s and L being respectively

the surface of the tail and its lever-arm on the distance

G</2
from the centre of gravity to a vertical line drawn

through the centre of pressure C2
of the tail (the variation

of which can be disregarded). The coefficient K is, in

the interests of simplicity, supposed to be the same for the

tail as for the main plane.

p
If =-. ,

taken from the fundamental formula 1
(4) is

oi>

substituted for the product KV2 and the relation
|-
between

o

the surface of the tail and the main plane is represented

by 77i, the formula of this second moment is :

The righting moment due to the tail is, as has been

seen, inversely proportional to the angle of incidence.

Therefore :

The aeroplane is more stable longitudinally, the

smaller the angle of incidence, that is, the higher the

speed.

Moreover, the righting moment is proportional to the

lever-arm L of the tail, and to the relation m, between

the surface of the tail and that of the main plane.

Indeed, the stabilising action of the tail is of so much

greater importance than that of the main plane that the

latter, if not negligible, is entirely secondary. Figures give

some idea of the relative value of these forces.

If, for instance, a flat-surfaced aeroplane is flying at an

angle of incidence O'l and its main plane chord is 2 m.,

and the tail with a lever-arm of 4 m. has a surface equal to

1 The tail surface is not included in the value S of this formula, as it

is supposedly non-lifting. t
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TVth of the main plane, the righting moment due to the

main plane is 0'8 Pi', arid that due to the tail is 4 Pi', or

five times as much. The tail, therefore, establishes ex-

cellent automatic longitudinal stability if it is judiciously

disposed.

It is, moreover, indispensable when the main plane is

curved, for then the moment aPli
f

,
which arises from the

angular displacement of this plane, is an upset-

ting moment; 1
it is only because the righting G-

moment of the tail is so much greater that the

machine remains stable. Therefore :

The tail should be larger, all other things

being equal, in an aeroplane with curved planes
than in an aeroplane with flat planes.

The degree of longitudinal stability in an

aeroplane can be compared with a pendulum.
The total righting moment due to the change
i
r
in the angle of incidence is :

^j., . PmL .,aPh -\ ; ^' ,

or Pi' al+ a

\
*

If from a point G (Fig. 58) a weight P equal
to that of the aeroplane is suspended on an arm

i 4.T. i I i .

7HIA , . .
,

FIG. 58.
of a length equal to al-\ t-

,
and if the arm

\ ^ /

is moved out of the vertical to the extent of the small

angle i', it tends to return to the vertical by the action of

a righting moment which is exactly

Pi' _mL\

The degree of longitudinal stability of the aeroplane

1 Some people suggest that for this reason curved planes should be
abandoned for flat ones.
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under consideration is therefore the same as if its total

weight was applied to the end of the arm of a length as

above stated and fastened rigidly to the machine at its

centre of gravity.

In the concrete case lately considered, the arm in

question would be 4'80 m. in length (of which 4 m. would

represent the stabilising efficiency of the tail and 0'80 m.

that of the main plane).

The problem of longitudinal stability
1 has just been

1 It is easy to show experimentally, in a rough and ready but interest-

ing manner, the connection of the results which concern the equilibrium
and the automatic longitudinal stability of an aeroplane, the function of

the tail and also the glide.

Take a rectangular sheet of paper (which it is best to bend, length-

ways, into a dihedral angle, so as to give it transverse stability) and,

FIG. 58A.

holding it horizontally, allow it to drop. It will fall vertically, keeping
its horizontal position. But if from any cause it tilts, it will begin to

glide immediately in the direction of the tilt. As the angle of incidence

thereby diminishes, the centre of pressure moves forward from G to c

(Fig. 58A) and sets up a righting moment, under which the sheet returns

to the horizontal, passes it, and takes a tilt in the opposite direction,

continuing its fall with similar oscillations, which increase in intensity
until it completely overturns.

If this sheet is weighted between the centre and one of the sides with
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considered with a non-lifting tail. The same method can

be followed with a lifting tail or with a tail struck on its upper
surface. With this (see 52) the longitudinal stability of

the aeroplane is excellent. Moreover, as will be seen later

on
( 75), such an arrangement (Fig. 59), which does not

seem to have been used hitherto, appears advantageous
from the point of view of the effects of the wind

;
on the

other hand, it has a drawback in diminishing the lift of

the machine, as the tail suffers a reaction directed towards

the ground.

a small heavy object, such as a piece of lead or thick steel wire stuck on

by a wafer or gummed paper, it will, on being dropped, tilt and glide,

usually with a pitching motion, towards the side so loaded.

By moving the weight forward or by increasing it, the centre of

gravity is placed in a spot corresponding to the usual angles of incidence

( 51). The sheet then takes longer glides, while the oscillations are

reduced
; for, as has been seen, the smaller the angle of incidence, the

more stable is the aeroplane. As the weight, that is, the centre of gravity
is placed farther and farther

forward, it proves, when a cer-

tain position is passed, that it

is not possible to maintain

equilibrium, and the sheet

dives. FIG. 58s.

By adding a tail (Fig. 58s)
in the rear the sheet can find its equilibrium and glide. The angle of

glide varies, moreover, with the angle of the tail, and by successive trials

the inclination of the tail is found that gives the longest glide. If the

Weight..4
FIG. 58c.

tail is lowered instead of raised, the sheet will dive as before, which

proves that this position of the tail, as stated in 54, gives instability.

Similar experiments can be carried out with a sheet of paper cut out

roughly in the form of an aeroplane, such as is illustrated in Fig. 58C.
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The necessity of having the tail well away from the

centre of gravity increases the weight of the aeroplane

through the addition of a fuselage or body, which also

increases the detrimental surface. For this reason the

correct distance should be observed; a tail too far

away from the centre of gravity is most troublesome,

especially in a gusty wind
( 75). (Birds, by the way,

with big tails, such as magpies, are not nearly the best

flyers.) The tail of the Wright aeroplane is used as an

elevator, which greatly diminishes the area of detrimental

surface, and in consequence decreases the head resistance

of this machine.

Some remarks may here be made on the influence

exerted by the distance between the centre of gravity
from the main plane on the longitudinal stability of the

aeroplane, which is generally called the lowering of the

centre of gravity.
Let R{ (Fig. 60) be the resultant of the air-pressure

on a stable aeroplane flying normally. This resultant

passes through the centre of gravity, G, of the machine.

When the angle of incidence varies as the very small

angle i', the resultant moves, and takes up, in relation

to its original position one of the three positions numbered
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1, 2, 3 on the figure. If the resultant moves parallel to

itself (position 1), the righting moment thus created

remains constant whatever the position of the centre of

gravity on the line R; may be. In this case, it can

therefore be said that the lowering of the centre of gravity

does not exert any influence on the

longitudinal stability. If the resultant

takes up the position 2, cutting the

line R
i?i

above the centre of gravity, the

lowering of this point, from G to G' for

example, increases the righting moment
and therefore the stability.

Again, in position 3, the lowering
of the centre of gravity diminishes the

stability and can change it into in-

stability, if it descends below the point
of intersection of the allied resultants,

to G" for instance. On the other hand,
if the aeroplane be unstable, the lower-

ing of the centre ofgravity will diminish

its instability, and will be capable of

changing it into stability.

Let us apply these geometrical con-

siderations in practice. In an aeroplane

consisting of a single flat plane, the

allied resultants are nearly parallel;

though they try to assume position 2,

as can be seen by reference to the

results of M. Eiffel's experiments.
1 The lowering of the

centre of gravity in such an aeroplane exercises an insig-

nificant influence, though in the direction of increasing

stability.

According to the same experiments, when an aeroplane
of a single curved plane is used, the allied resultants take

1 Memoires de la Socicte des Ingenieurs civils de France (Bulletin de

Janvier, 1910).

FIG. 60.
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up position 3, but we know in this case that the aeroplane
is unstable. The lowering of the centre of gravity will

dimmish its instability and could, if low enough, make the

machine stable.

Both these cases are, as has been said already, quite

hypothetical, the aeroplane with one plane being imagi-

nary. With the usual tailed aeroplane the allied result-

ants always
1 assume position 2, but their point of

intersection is generally high above the planes. There-

fore:

The lowering of the centre of gravity only increases

the longitudinal stability of the aeroplane in quite an

insignificant way.
This conclusion is contrary to a widespread opinion

which is founded on the error, mentioned at the beginning
of the present chapter, which compares the equilibrium
of the aeroplane with that of a floating body.

55. The function of the tail in damping out oscil-

lations.

When the equilibrium of an aeroplane which possesses

good automatic longitudinal stability is disturbed, a right-

ing moment is set up which restores it. It does not stop,

however, at the position of equilibrium, but under the

impulse received, passes it and sets up a new righting
moment in the opposite direction to the first. Thus
a series of oscillations or pitching motions arise that must
be damped out as quickly as possible.

First of all, to get this damping effect, the oscillations

must not be allowed to assume so great proportions that

the righting moment of the tail is insufficient, so that the

machine overturns, but the motion resulting from the

oscillations must be kept smaller than the moment of

1 Position 3 cannot be realised with a tailed aeroplane, unless the

main plane and the tail form an inverted dihedral angle, and this will

occasion instability, except in very special and entirely theoretical cases.
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inertia of the machine around the axis, perpendicular to

the plane of symmetry, passing through the centre of

gravity (one of the three principal axes of inertia). There-

fore :

It is essential that the stabilising efficiency of the

tail should be proportional to the value of the moment
of inertia of the aeroplane in a longitudinal direction.

A machine heavily weighted fore and aft, that is to

say, with a large moment of inertia, and having only
a small tail, sets up a rocking motion which speedily
culminates in a complete upset.

We may conclude, then, that a condition of stability

exists denned by the necessary relation between the longi-
tudinal moment of inertia arid the stabilising efficiency

of the tail measured by the product of its surface and

its lever-arm.

The function of the tail in damping out the longitudinal

oscillations of the aeroplane is not confined to the creation

of a righting moment in any static sense which has hitherto

been considered. Should these oscillations have an appre-

ciable angular velocity, they will endow the tail with a

vertical speed which is important because it creates a

dynamic righting moment, thus damping out the pitching.

Let DE (Fig. 61) be a tail, in a position of equilibrium,

struck by the wind at the angle i. If, by oscillating, it

descends at the speed v, the air strikes it at the same

speed v in an upward direction. This speed is compounded
with the speed V of the air-flow occasioned by the passage
of the aeroplane. Let W be the resultant speed. The

tail is therefore, when oscillating, subject to the action of a
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current of air of speed W, which is greater than V, striking

it at an angle I, which is greater than i.

In addition to the static righting moment arising

simply from the inclination of the machine, a dynamic

righting moment is produced, the importance of which

increases with the rapidity of the oscillation. The increase

in the angle of incidence having a value, in Fig. 61, of
y,

v
the excess pressure exerted on the tail is KsV2 x y or KsVv.

The dynamic righting moment is only proportional to the

speed of the aeroplane while the static righting moment
is proportional to the square of this speed. The dyna-
mic righting moment is also proportional to the linear

speed v of the tail, which increases with the length of

the lever-arm and with the rapidity of oscillation. To

sum up :

The tail acts as a damper-out of oscillations by

creating a dynamic righting moment.

A final pitching effect has to be considered. When
the angle of incidence diminishes as a result of oscillation,

since the motive power remains constant, the aeroplane

descends, and similarly as the angle increases it rises.

Consequently the trajectory of the centre of gravity would

be a series of curves. But, owing to the inertia, the action

of this diminution in the lift affects the trajectory less as

the speed increases, and if oscillation is sufficiently rapid,

the lift can recover and surpass its normal value before the

trajectory is appreciably varied.

For the reasons just mentioned, it will be advantageous
to diminish the moment of inertia by concentrating the

weight near the centre of gravity, so as to make the

oscillations as rapid as possible. (By virtue of this, lower-

ing the centre of gravity which increases the moment of

inertia becomes detrimental if carried to any extent.) On
the other hand, pitching oscillations should be relatively
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slow, so that the aviator can anticipate them and correct

them with the elevator.

Moreover, the aeroplane is less sensitive to disturbing

influence (see Part III.) as its moment of inertia increases.

A middle course must, therefore, be steered between these

two contradictory conclusions, and, as M. Soreau writes,

"aeroplanes judiciously loaded fore and aft are particularly

stable, and have a happy dislike of oscillating. But they
must be fitted with more powerful tails." In practice,

however, constructors are disposed to concentrate the

weight rather than to distribute it.

III. LATERAL STABILITY

56. The lateral equilibrium of an aeroplane on its

flight-path.

At first sight it seems that symmetrical construction

insures lateral equilibrium. This is quite true if a

FIG. 62.

machine is imagined consisting of a straight plane, that

is, of two wings perpendicular to the place of symmetry
placed in the same straight line. As the wings are of

equal dimensions, the air pressure upon each is identical

and at an equal distance from the centre of gravity, so

that equilibrium necessarily follows (Fig. 62). This reason-
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ing is applicable whether the plane of symmetry is vertical

or not, so that the transverse stability of an aeroplane,

supposed to consist simply of a straight plane, will be

indifferent.

57. The keelplane.
To reduce an aeroplane to a single plane is, of course, a

theoretical fiction
;
but in practice one must take into con-

sideration, in dealing with transverse stability, the idea of

a keelplane.

When an aeroplane is struck laterally by a current of

air perpendicular to its plane of symmetry, the components

representing the action of the air on the various parts of

the machine in the direction of the current result in a

force applied to a certain point CQ .

By an assumption similar to the ideas of the detri-

mental surface (11) and of the imaginary tail ( 52), it

may be taken that all parts of the aeroplane offering

lateral resistance can be replaced by a single hypothetical
surface of a size SQ ,

called the keelplane, the centre of

which is the point CQ .

The keelplane is most pronounced in certain aeroplanes
with vertical partitions, such as the early Voisin, or in

machines whose planes are set at a transverse dihedral

angle. On the other hand, it is reduced to a minimum in

such machines as that of the Wright Brothers, but it

exists even in them. In fact :

All aeroplanes have keelplanes, in the same way as

they have a detrimental surface and an imaginary tail.

When an aeroplane, flying horizontally, is struck

laterally by a horizontal gust of wind, which instead of

being perpendicular to the plane of symmetry is at an

angle to it, the action of the air on the various parts of the

machine will in each case have a component perpendicular
to the said plane of symmetry.

If all these forces are taken, their resultant passes
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through the plane of symmetry and the keelplane at a

certain point Oqt which can be called the centre of pressure

of the keelplane.

When the direction of the horizontal lateral air-current

alters, that is to say, when the angle at which it strikes

the plane of symmetry of the aeroplane moves from 90

to 0, the centre of pressure of the keelplane moves from

the position CQ ,
its centre, to a limit point C

, which is

reached when the air-current strikes the machine head-on.

The study of lateral stability and of the wind leads, as

will be seen later on, to a consideration of the effects of

lateral air-currents striking the keelplane of the aeroplane
at small angles. The centre of pressure Cq , corresponding
to the action of such currents, remains near the limit-

point C
, just defined, the position of which partakes,

therefore, of a special interest.

58. The axis of lateral rotation.

The keelplane, as we have seen, plays an important

part in the lateral equilibrium of the aeroplane, but there

is another factor which must be taken in account, and

that is the position of the axis of rotation around which

the lateral oscillations occur. This line is the same as the

principal longitudinal axis of inertia of the machine.

It can be considered as being rigidly fixed to the aero-

plane, and an integral part of it. Briefly, this axis of

rotation passes through the centre of gravity and is con-

tained in the keelplane, which coincides with the plane of

symmetry of the aeroplane.

59. As a rule, the aeroplane has only one position of

lateral equilibrium.

If the axis of rotation were coincident with the trajec-

tory of the aeroplane's centre of gravity, this trajectory
would remain in the plane of the keel when the machine

heels, since the rotation takes place around it. Thus the
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lateral inclination of the aeroplane would not alter the keel-

plane's angle to the air-current, or by this means set up any

righting or upsetting moment ; the equilibrium would
remain indifferent. But this is an exceptional case, and

usually the axis of rotation, which as we have just seen is

a fixed quantity, does not coincide with the trajectory of

the centre of gravity, which depends on the angle of

incidence of the main plane.

If Fig. 63 is considered as a section of the aeroplane

perpendicular to the axis of rotation, and if AA', I, t, Is, are

Front View.

t.

I

FIG. 63.

taken as the respective paths of the main plane, of the axis

of rotation, the trajectory of the centre of gravity, and the

keelplane (or plane of symmetry), when the plane is

inclined as A
1
A/

1
the points I and t do not alter, and the

path of the keelplane becomes Isr The trajectory of the

centre of gravity remaining on the side t of Isv a reaction

of the air is produced by the inclination of the aeroplane
on this side of the keelplane, which is proportional to the

square of the speed.

If the point where this force goes through the plane of

symmetry, that is, if the centre of pressure, Cq ,
of the keel-

plane (which, being struck at a small angle, is near its
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limit point C ( 57)), moves above the axis of rotation, the

reaction caused sets up a righting moment, if below, an

an upsetting moment.

It is only when the point Cq coincides with the axis oi

rotation a rare event that no moment is created, and

the equilibrium remains indifferent.

In every way it is clear that save in exceptional cases

where the trajectory of the centre of gravity coincides with

the principal longitudinal axis of inertia or with the axis

of rotation, or where the centre of pressure of the keel is

upon this axis

There is only one position of lateral equilibrium of

the machine on its flight-path, and that is when the plane
of symmetry is vertical.

60. Automatic lateral stability.

It has just been explained that the lateral equilibrium
of the aeroplane attainable only in one position can be

stable or unstable as the axis of rotation and centre of

pressure of the keelplane assume various positions rela-

tively to each other. Therefore :

An aeroplane may possess automatic lateral stabi-

lity just as it may possess automatic longitudinal

stability.

The keelplane
* acts as the agent in the former in the

same way as the tail acts in the latter.

To discuss the influence of the relative positions of the

plane, the axis of rotation, the keelplane, and the trajec-

1
Apart from the action of the keelplane, either a righting or up-

setting moment can be created, from the fact that when the axis of

rotation does not coincide with the trajectory of the centre of gravity, the

forward edge of the plane does not remain horizontal but heels over. If

the lower side moves in advance of the other, a slight displacement of the

centre of pressure is caused towards this side, and, in consequence, a

righting moment; while if the higher side moves in advance of the other,

the moment caused is an upsetting one. In any case the effect is of little

importance.
K
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tory of the centre of gravity would take too long. It can

be briefly summed up as follows :

Firstly, to obtain automatic lateral stability, it may be

necessary to make the axis of rotation coincide as nearly

as possible with a line drawn parallel to the plane of the

wings through the centre of gravity.

Secondly, the limit point C of the keelplane's centre

of pressure ought to be placed above the axis of rotation.

In these circumstances automatic lateral stability in-

creases with the angle of incidence of the plane. It would

reach its maximum in the case of a vertical gliding descent

of a horizontal plane, if such were possible.
1

(See 40.)

On the contrary, it diminishes and may even disappear

when the angle of incidence becomes very small.

Similar considerations have led to the adoption in some

machines of planes set at a transverse dihedral angle or V,

or of a vertical keel above the plane
2
(Fig. 63A). But as

this arrangement presents serious disadvantages when the

1 It is not possible, because in the case of the aeroplane longitudinal

equilibrium at an angle of incidence in the neighbourhood of 90 is either

impossible or unstable. (See 52 and 54.)

.
2 It is generally admitted that a dihedral plane ACA' (Fig. 63A) is

equivalent to a plane aa' furnished with a vertical keel, CD. From the

standpoint of lateral stability, however, this is not justifiable, for the

dihedral plane sets up a greater righting moment when tilted at a similar

angle than the keel. In fact, it will be shown (see footnote, p. 148, and

footnote, p. 151), that if the axis of rotation is brought sufficiently near

to the apex of the dihedral angle, the result of lowering one wing is to

increase its angle of incidence on this side, while that of the raised wing
is decreased. Two united righting moments are the result, and their

lever-arm, equal to half the span of a wing, is considerable. On the other

hand, the lever-arm of the single moment of the keel CD is quite small.
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machine is struck laterally by a wind gust ( 77), it is

gradually being abandoned.

The inverted dihedral form or /\ (Fig. 64) is usually

supposed only to effect an unstable equilibrium, and this

is so when the angle of incidence has a certain value,

especially in the case of a vertical parachuting descent

(which is impossible, as has been shown).
But it is capable of conducing to stable equilibrium

and the more so as the angle of incidence decreases when
the axis of rotation and the plane make between them an

FIG. 64.

angle greater than the said angle of incidence (in this

case the point I (Fig. 63) will be below the point t) :

this is perhaps the explanation of certain sea-birds placing
their wings in this position.

1 The effect of lateral gusts is

much less to be feared with the inverted dihedral form

than with the other (see 77).

The question can be summed up as follows :

The lowering of the centre of gravity is usually only
of quite small importance from the standpoint of auto-

matic lateral stability.

However, the change in position of the axis of rotation,

which results therefrom, is capable of influencing in a

certain degree the lateral automatic stability which is

peculiar to certain plane-shapes and to certain arrange-
ments of the keelplane (perhaps to the extent even of ren-

dering stable laterally an unstable aeroplane, or conversely).

It must be noted that a lateral inclination of an aero-

1 It is not impossible, as will be shown later (2nd footnote to 77),

that, in the future, when the head resistance of the aeroplane is lessened

and it can fly at small angles of incidence, some advantage may be gained
by placing the wings at a slight inverted dihedral angle.
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plane usually leads to a longitudinal inclination of the

machine :

Rolling, in fact, produces pitching.

That follows from reasons that may now be stated.

Firstly, according as the angle formed by the axis of

rotation and the main plane is greater or smaller than the

angle of incidence (that is, as, in Fig. 63, the point I is

above or below the point t), so the tilt of the plane
increases or diminishes the value of the said angle of

incidence, which can be proved geometrically.
1

Secondly, the analogous effect produced on the tail is,

usually, different, and sometimes even inverse, according
as the axis of rotation, projected, passes above or below it.

Therefore, the result of a lateral tilt is generally to

disturb the longitudinal equilibrium and, consequently,

1 By redrawing Fig. 63 (Fig. 64A), it is seen that the line AjA'j being
tangential to the circle described, with I as the centre and la as radius,

A
(t,

t

FIG. 64A.

the distance to
a

is smaller than ta, which proves that, in the position
shown in the figure, the angle of incidence is smaller when it is tilted

than when it is not.



EQUILIBRIUM AND STABILITY 149

to cause a pitching motion, save only if the machine has

been built so as to prevent this.

The position of the tail with respect to the axis of

rotation is thus of considerable importance.

61. The function of the keelplane and of the main

plane in damping out oscillations.

An aeroplane, laterally stable, on being disturbed from

its position of equilibrium, is subject to a righting moment
which restores it and throws it back beyond this position.

Thus rolling oscillations are set up in the same way as

pitching oscillations. It will be obviously desirable that

the impulse arising from the effect of these oscillations

should not become of such importance that the righting

moment cannot cope with it, and one conceives that there

ought to exist, as in the case of longitudinal equilibrium

( 55), a condition of stability determined by a relation

between the lateral moment of inertia of the aeroplane
and the forces which compose the stabilising efficiency of

the keelplane. But, as will be seen a little later ( 63),

the use of methods of dynamic stabilisation operated by
the aviator, neutralises the devices for automatically insur-

ing the lateral stability of the aeroplane. Therefore, the

consideration of this condition of lateral stability is usually

neglected.

On the other hand :

The main plane, in damping out the lateral oscilla-

tions of the aeroplane, plays a part similar to that of

the tail, which damps out the longitudinal oscillations.

Each wing acts in the same way as the tail, and a

dynamic righting moment arises from the rolling motion,
which is proportional to the rapidity of the oscillations, to

the speed of the aeroplane, and to its span. This action

tends to stop transverse oscillation, but only when the

oscillation is sufficiently rapid ;
it cannot of itself prevent

the aeroplane from slightly slipping sideways under the
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influence of various small disturbing forces ; such motion

can only be stopped by the creation of a righting moment

arising either from the existence of lateral automatic

stability or by the direct manipulation of the aviator.

From both these points of view it is profitable to re-

duce the lateral moment of inertia of the aeroplane, that

is to say, to concentrate the weight towards the plane of

symmetry, but, as has been said a propos of longitudinal

stability, it is best that the oscillations should be slow in

order that the aviator can see them coming and remedy
them in time. Just as in the matter of longitudinal

stability, there is a middle course which may be taken

between these two contradictory conclusions.

62. The effects of skidding.
Lateral oscillations can have the effect, especially when

they are slow, of causing the plane to slide laterally, that

is to say, to skid each time it tilts. If the normal speed of

the aeroplane is small, the result is a zigzag trajectory of

the centre of gravity, a movement which combined with

the oscillation itself produces a balancing effect.
1

This effect disappears when the keelplane has a certain

value, thus causing it to act as a damper-out of oscilla-

tions, and, if in addition its centre of pressure is above the

axis of rotation, as a righting element.

63. Dynamic lateral stability effected by the aviator.

The damping effect noted in 61 is capable of checking
the rocking motion of the aeroplane but not of preventing
it. On the other hand, the automatic lateral stability

which an aeroplane can possess is not comparable in im-

portance with the automatic longitudinal stability insured

1 This can be observed with a sheet of paper weighted in the way
shown in the footnote on page 134, but without the dihedral angle (the

paper must either be thick or the sheet must be small).
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by the tail.
1

Besides, the extension and raising of the

keelplane, which usually increase lateral stability, present
serious disadvantages in the event of lateral gusts. For

1
Although the study of such a question leads to more advanced

mathematics and to the use, hitherto avoided, of trigonometry, it seems

necessary to make clear, by an example, the importance of the transverse

righting moment in the particular case of a dihedral plane with the apex
parallel to the axis of rotation.

Let p
f

(Fig. 64s) be the right wing of the plane, making with the

plane p drawn perpendicularly to the plane of symmetry from the apex
AB the angle a. On the other hand, let CB be a line drawn from B
parallel to the trajectory of the centre of gravity. (For the sake of clear-

ness in perspective this trajectory has been taken in the figure as

descending.)
The angle of incidence of the plane p will be CBA.= i ; that of the

wing p' will be CBD = i' ; the point D being the projection of C on the

plane p'. Taking the angles i and i' as small, it is easy to see the relation

between them, that is, i' = i cos a.

If the plane were not dihedrally bent, the action of the air on the wing
p would be

S representing the total wing surface. On p', supposing it equal to p, it

would be

Therefore
F'~F cos a.
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this reason, in certain types of machines little regard has

been paid to the development of automatic stability. In

some, the Wright aeroplane for instance, automatic stability

When the angle a varies as a', the difference /' of the force F' is

/' = F [cos a - cos (a + a')].

That is,/' = Fa' sin a, taking, as a' is small, sin a' to equal a' and cos a'

to equal 1.

In Fig. 64C, I and g represent the span of the wing and the height of

FIG. 64c.

the apex above the axis of rotation (the two lines are supposed to be

parallel), then the moment of the force/' is expressed as far as it concerns

the wing by

fj

sinaj.

The moment of the other wing, which is equal to the above, is added
to this, and, finally, the total righting moment is represented by

M= 2Fa' sin a ( %+g sin a
J

,

Or substituting its value for F,

M= KS\' 2ia' sin a( ^+y sin a \ .

But the weight P equals the sum of the vertical components of the two
forces F', so that one can write :

P=KSV2icos 2 a.
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is discarded, or nearly so, in favour of indifferent lateral

equilibrium, which is advantageous in view of lateral gusts.

It has been preferred in these machines to put at the

aviator's disposal a means for producing at will, in the

event of an involuntary inclination of the plane, a righting
moment proportional to the square of the speed and operat-

ing at a considerable distance from the centre of gravity,

which insures a very strong action. The method usually
consists in increasing the angle of incidence at the end of

the lowered wing, and of decreasing it at the end of the raised

wing, either by warping, as is done by the Wright Bros.,

who invented this method, or by the use of balancers or

small planes moving about an axis parallel to the forward

edge of the main plane.
1

So the righting moment takes the following definite expression :

In 54 the longitudinal stability of an aeroplane was compared to

that of a pendulum of equal weight ;
if we compare results, the length of

the pendulum spindle should be expressed by :

I

cos-8

The transverse stability, therefore, increases as the angle ,
that is to

say, as the dihedral angle is more pronounced.
For the purpose of estimating the degree of stability that it gives, let

us suppose, for example, that sin a= 0'2 (so that the angle a is 12, and
that its cosine differs but little from unity), and that = 5 metres and

g = Q'5Q metres.

The length of the pendulum spindle will then have a value of

0-2 (2-5+05x0-2), say, 0'52.

This proves fairly conclusively that automatic lateral stability is much
less.than the automatic longitudinal stability produced by the tail, since,

taking the numerical example given in 54, the length of the spindle
works out at 4-80 metres.

It will also be seen how lowering the centre of gravity has quite an

insignificant effect on the lateral stability of an aeroplane, for even

lowering g, twice as far, to 1 m., the length of the pendulum spindle is

only increased by 2 centimetres.
1 Other ways of dynamic stabilisation can be imagined, for instance, by

increasing the span of the lowered plane by means of a small sliding panel
which would prolong it. This arrangement could perhaps be made into
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In the first Voisin machines no such arrangement
existed. It is claimed that these machines possessed the

utmost automatic lateral stability from the fact of their

large spread of keelplane, the centre of which, moreover,

was raised considerably above the axis of rotation.

In addition, when the automatic stability was not suffi-

cient to prevent the machine tilting, the aviator could

re-establish equilibrium by a suitable movement of his

vertical rudder.

IV. DIRECTIONAL STABILITY

64. The aeroplane ought to fly head to wind.

The aeroplane ought to be constructed in such a way
that if, as has been hitherto supposed in the consideration

of questions of equilibrium and stability, it be suspended
from its centre of gravity and subjected to a wind current

equal to that created by its speed, its plane of symmetry
would adjust itself so as to lie directly in the wind's eye.

In other words :

The aeroplane ought always to fly head to wind,

and should not turn aside or veer with a small disturbing

influence. In fact it ought to behave like a good weather-

cock, and in this sense also
"
lie on its trajectory."

The problem of the weathercock is quite simple. If

the point G (Fig. 65) is the projection of the axis of the

plane of the weathercock AB, and if this point is behind

the axis of the limit point C of the centre of pressure, the

plane AB takes up a position A'B' under the action of

wind blowing in its direction, thus making with its original

position the angle i, so that the centre of pressure Cq is on

the axis G.

A weathercock like the one described will be, moreover,

a means for establishing dynamic automatic stability if there were two of

these little panels rigidly connected, thus forming a moving apparatus

capable of sliding very freely under the effect of gravity, at the slightest

transverse inclination of the aeroplane.
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a bad one, as it will be always several points out from the

true direction of the wind. In order that it should act

correctly, the axis G ought to be in

front of the limit point C of the

centre of pressure. The Aveathercock

will then lie head to wind, and be A A
the more stable in proportion as

these two points are farther apart.

In aeroplanes this result is ob-

tained if the centre of gravity is in

front of a certain point C of the

keelplane, which is the same as the

limit point of the centre of pressure
of the said plane ( 57).

Bearing this in mind, the centre

CQ of the keelplane must be placed

considerably behind the centre of

gravity of the aeroplane.
The boat-shaped form given to

the body in certain machines is

usually enough to secure this, but,

at the same time, the bow must not
r>

jy

FIG. 65. Plan.
be too big, or the machine will

deflect.

In other machines it is necessary to place a vertical

keel in rear, which usually includes a movable part con-

stituting the rudder
( 65).



CHAPTER V

TURNING

65. The action of the vertical rudder.

The first idea that comes to mind when one desires

to furnish an aeroplane with an organ, whose operation
will cause it to change the direction of its flight in a

horizontal sense, is to give it a vertical rudder in the

rear such as is used in boats and dirigible balloons, but in

order that such an organ can fulfil this function, the

aeroplane must have a certain resistance to lateral motion,

that is to say, an adequate keelplane.
1

If one takes the imaginary case of an aeroplane with

no keelplane at all (Fig. 66), and consisting of a plane
AA' BB' and a vertical rudder CD, when this rudder is

placed in the position CD' it experiences, on account of

the speed, a perpendicular reaction p, which will have

the effect of turning the machine round its centre of

gravity until the rudder again lies head to the wind.

The aeroplane will take up in consequence a direction

oblique to the wind. In other words, it will be deflected,

but will, notwithstanding, continue to advance in a

straight line, the only horizontal forces which affect it,

the thrust t and the head resistance r being equal and

opposite to each other along the axis of the machine.

The desired end is, therefore, not attained, and one can

see that

The operation of a vertical rudder on an aeroplane

1 It is for this reason that keeled boats obey their helm better than

flat-bottomed boats.
156
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without a keelplane, if such a machine were possible,

only produces a deflection of the machine, without

altering its original trajectory.

If it be supposed, however, that there is a keelplane EF
(Fig. 67), so that the aeroplane has directional stability, the

machine will assume on its flight-path, when the hori-

zontal rudder is moved from CD to CD", a position of

equilibrium, in which the pressures p and q exerted in
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opposite directions by the air on the vertical rudder and
on the keelplane have equal moments with respect to the

centre of gravity. (This problem of equilibrium is similar

to that which has been studied in 54, Fig. 59.)

But it must be taken into consideration that the forces

q and p, being unequal, have a resultant equal to q p,

Deviation.

FIG. 67. Plan.

which passes through the centre of gravity, since both

forces balance themselves around this point. The centre

of gravity is subject, therefore, to the continuous centri-

petal action of the forces q p, which tends to curve the

trajectory until this curvature sets up a centrifugal re-

action, which balances the forces q p.

In this case the vertical rudder operates effectively

and turns the aeroplane.

The turning action is the more pronounced and the

radius of the 'turn is shorter, as the pressure q is larger

and the pressure p is smaller. The value of the pressure
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q increases with the effective surface of the keelplane and

with the size of the angle of deflection. Fig. 67 plainly

shows that the latter is always smaller than the angle

through which the rudder is turned. Moreover, it more

nearly approaches this angle as the centre of pressure of the

keelplane approaches the centre of gravity. If these two

points coincide, the angle of deflection will be absolutely

equal to the angle through which the vertical rudder is

turned. (This is a similar case to that of the aeroplane

with a non-lifting tail. See 54, Fig. 57.) On the other

hand, the pressure p decreases with the area of the rudder.

To sum up :

In order that the action of the vertical rudder may
be efficient, it is necessary to increase the effective

surface of the keelplane and to bring it near the centre

of gravity, so that it can maintain directional stability

and, at the same time, to reduce the area of the vertical

rudder. Consequently the rudder is placed at a con-

siderable distance from the centre of gravity, in order

that it may possess an adequate lever-arm.

This explains the part played by the vertical partitions

of a biplane, such as the original Voisin machines, which

formed a considerable part of the keelplane, and were in

front of the centre of gravity. The dihedral form given to

the wings in other machines has a similar effect besides

that of stability. Another result of turning the keeled

aeroplane ought to be mentioned. The centripetal force

q p has a component in the direction of the trajectory

which increases the head resistance, so that the aeroplane

drops as it turns, unless the aviator increases the angle of

incidence, and consequently the lift, by means of his elevator.

Such increase in the angle of incidence is produced

automatically if the rudder and the keelplane are high

enough. The component previously mentioned then passes

above the centre of gravity and produces a moment which

increases the angle.
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66. Result of tilting the planes.

As the keelplane in certain machines is reduced to- a

minimum, the action of the vertical rudder is insufficient

to enable a turn to be made in a small radius. Other

means are, therefore, brought into play.

When an aeroplane turns, the extremities of the wings
move at different speeds, with the result that the outside

FIG. 68. Elevation.

wing rises and the inside wing, towards the middle of the

circle described by the machine, is depressed. The aero-

plane, in fact, heels.

The pressure R of the air (Fig. 68) on the plane inclines

with it, taking up a lateral component/, which always, acting

through the centre of gravity, produces a centripetal effect.
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If the turn results from the action of the rudder, the

force / adds itself to the resultant g p ( 65), and the

sum of these two forces should be equalised by the centri-

fugal reaction.

The lateral inclination which is inevitable may also be

employed as a cause as well as an effect. If by any means

the machine is inclined, the centripetal component of air-

pressure immediately induces a turn without the aid of the

rudder, and this is done when the keelplane is too small to

insure the effective operation of the rudder.

The most practical way of doing this is by warping or

by similarly acting arrangements, such as balancers, whose

primary use is to insure lateral dynamic stability ( 63).

The use of these methods has a secondary effect of

increasing the head resistance on the side where the angle
of incidence is increased, which tends to turn the aero-

plane in the reverse direction to that desired. To prevent
this occurring, an antagonistic moment must be created

by the rudder.

This is the chief use of the rudder in the Wright
machine, which can be used separately or conjointly with

the warping.

67. Relation between the radius of the turn and
the speed of the aeroplane.

Referring to Fig. 68, in the case of an aeroplane without

a keelplane, that is to say, when the horizontal component /
of the air pressure alone balances the centrifugal force, the

inclination b, which represents the tilt of the machine, is

equal to the force / divided by the vertical component F
of the pressure, and as F equals the weight P of the

aeroplane :

PV2

And as the centrifugal force /= ----
(g represents the

i/

L
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acceleration 9*8, or in round numbers 10, of gravity), the

value of the tilt of the aeroplane turning in the radius r at

the speed V is given by the formula :

V2

The tilt is therefore proportional to the square of the

speed, and inversely to the radius of the turn.

As a certain lateral inclination should not be exceeded,

it can be laid down that sharp turns should not be made
at a high rate of travel. For example, if 0*30 m. per
metre is fixed as the admissible maximum tilt, turns

must not be made at a speed of 15 m.p.s. in a radius less

than 70 m.
;
at a speed of 20 m.p.s. in a radius of less than

130 m., and so on.

Too much importance, however, should not be attached

to these figures, which are quite theoretical, as they relate

to a hypothetical instance of an aeroplane without a keel-

plane.

In a well-constructed aeroplane the tilt will be less

than indicated in formula (25), and consequently the limit

of the radius corresponding to the turn made at a certain

tilt will be less than has been said
; the more so, in fact,

as the size of the keelplane increases and as its position is

further in advance relatively to the centre of gravity.

68. Lateral equilibrium in turning.

We may sum up the foregoing statements by saying,

that the centripetal force which occasions the turn of an

aeroplane can be due :

1. To the pressure of the air on the keelplane and

on the vertical rudder set up by the operation
of the latter

;
or

2. By the tilting of the plane resulting, by the wings

having different speeds, from the raising of

the wing exterior to the turn.
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We will take the former case first.

If the centre of pressure of the keelplane is above the

axis of rotation, as is usual in aeroplanes having auto-

matic lateral stability, the reaction on this point sets up a

moment which tries to tilt the machine towards the inside

of the turn.

The reaction on the vertical rudder sets up an inverse

moment, but in the case under consideration it is less than

the former, since the rudder being taken as effective the

pressure it experiences is less than that on the keelplane.

(An instance where it is not so will be considered later on.)

At the same time the unequal speed of the wings pro-

duces, from the increased pressure on one of them, another

moment also tending to tilt the aeroplane inwards. Under
this double action the tilt increases constantly, and, by the

cause and effect changing places, diminishes the radius

of the turn more and more, finally causing the machine

to fall if not checked by an antagonistic moment, which

in aeroplanes with good automatic lateral stability is set

up by the inclination of the machine. 1

Thus the aeroplane takes up on its curved trajectory
an inclined but stable position, so that at the same time

the righting and upsetting moments as well as the centri-

petal and centrifugal forces are equal.

As the centripetal force is the sum of the pressure on

the keelplane and vertical rudder and the horizontal com-

ponent of the inclined plane, it is clear that the tilt neces-

sary to produce a centrifugal force sufficient to balance

it will be less when the machine has a keelplane of an

appreciable size near the centre of gravity, than indicated

in formula (25) which is applicable to an aeroplane without

a keelplane.

Taking the second case, mentioned at the beginning of

1
Equality between the two moments is not arrived at without creating

reactions. Therefore, aeroplanes with large keelplanes turn abruptly, and
there is a risk of straining them in trying to turn too quickly.
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this section, of an aeroplane with an inefficient keelplane
which is made to turn through the raising of one wing, it

will be seen that the upsetting moment thus caused has

not any antagonistic moment to balance it. It follows

that any turn will result in a fall, if the aviator does not

intervene and create, by a contrary action, an inverse

moment, so that equilibrium in the tilted position suitable

to the turn desired may be possible.

Formula (25) is applicable to the present case in which

the lateral component of pressure alone balances the centri-

fugal force.

The tilt taken by aeroplanes with inefficient keelplanes,

such as the original Wright, in order to turn in a certain

radius at a certain speed, is bigger than that taken under

similar conditions by aeroplanes with efficient keelplanes,

such as the original Voisin.

It has been assumed above that the moment exerted

around the axis of rotation during a turn, by the action of

the air on the vertical rudder, was smaller than that on the

keelplane, and it has been seen that this inequality tends

to tilt the aeroplane inwards on the turn.

When this tendency is considered too great, it can

readily be reduced by raising the position of the rudder.

By this means the righting moment that it sets up is

increased. The rudder must not, however, be raised so

high as to produce a righting moment greater than the

upsetting moment on the keelplane, or the effect will be to

turn the machine in the reverse direction to the one desired.

69. Loss of elevation due to turning.

In 65 we saw that in aeroplanes with considerable

keelplanes the deflection made through the rudder resulted

in an increase of head resistance, and consequently caused

a loss of elevation. Apart from this special case, an aero-

plane generally falls while turning, as the tilting of the

plane reduces the horizontal component of air pressure
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upon it, and consequently the lift becomes less than the

weight (Fig. 69).

This effect increases with the tilt, and it is obvious that

it is the more pronounced in the case of aeroplanes with

an inconsiderable keelplane. Turning at a small eleva-

tion above the ground is consequently extremely dangerous.

However, the fall can easily be checked by increasing

FIG. 69.
,

the angle of incidence and consequently the lift, while

making a turn, by the use of the elevator.

This increase in the angle of incidence can be made

automatic, either in the way mentioned at the end of 65

if the turn is made with the rudder, or, if the machine is

tilted for the turn, by placing the tail in such a position

relatively to the axis of rotation, that the loss of longitu-
dinal equilibrium due to the tilt (see end of 60) causes

an increased angle of incidence.



PART III

EFFECT OF THE WIND ON THE
AEROPLANE

CHAPTER VI

THE WIND REGULAR AND IRREGULAR WINDS.
THEIR ACTION ON THE AEROPLANE

I. THE WIND

70. General considerations.

In all that has been written hitherto, both in Part I.

and Part II., the air has been assumed to be quite still.

But in practice this hypothesis can be said to be never

realisable, and usually the aeroplane is subjected to the

action of the wind, which at any given moment can be

divided into the two entities of speed and direction.

A regular wind is one of which the speed and direction

are constant. Any other wind is irregular.

It can be said that a regular wind does not exist, as its

speed and direction are nearly always changing.

However, there is usually a mean speed and direction,

from which the wind, except in a storm, does not alter

very much, that can be made the basis of discussion.

Such an irregular wind we will now consider.

Near the ground the contour of the earth sets up
eddies which makes it impossible to lay down any law for

the motion of the wind. But the higher one gets in the

air, the disturbing elements which affect the mean speed
and direction of the wind assume a certain regularity and

166
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rhythm, and increasingly obey the great natural law of

undulatory motion. Aerial waves are produced like waves

in the sea, and at any fixed point a local increase of speed
follows a decrease, which is succeeded in turn by a fresh

increase these phenomena following one another at

relatively regular intervals.

The waves, or atmospheric pulsations, exist even when
the air is comparatively calm; and when the wind rises

they become squalls.

The direction of the wind must be considered not only
in its horizontal motion but also in its inclinations to the

horizontal. Roughly speaking, the wind tends to a hori-

zontal direction the higher it is above the earth. One can,

however, find ascending and descending currents.

Near the earth the wind generally follows the contour

of the ground ;
vertical obstacles such as cliffs, crags, and

woods for example, cause upward currents and eddies.

The idea mentioned above of considering an irregular
wind as composed of a regular wind, the mean speed and

direction of which is subject to disturbances, allows the

study of effects of wind on the aeroplane to be divided into

two parts.

First of all, we will take the action of a regular wind
on the general motion of the machine, and afterwards the

action of the various disturbances of the wind which can

affect the aeroplane's equilibrium and stability.

II. ACTION OF A REGULAR WIND ON THE

AEROPLANE

70. Aerial vessels in a regular wind The acces-

sible circle and angle.

All machines capable of moving through the air an

aeroplane or a dirigible balloon, for example behave in a

regular wind in exactly the same way as in a dead calm.

This point escapes most people, and it is important to

examine it.
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Aeronauts in a free balloon do not feel a breath of air,

even if they are borne along by a very high wind. If

a dirigible balloon is used, then, when the motor is started,

they only experience and feel the wind which they thus

create.

The dirigible balloon or aeroplane becomes part of the

air which carries it along, and it is as if the air were

motionless, in the same way as a fly flies in a carriage

FIG. 70.

on the railway without perceiving or feeling the effect of

the speed of the train.

By the aid of an idea due to Colonel Renard, which he

termed " the accessible circle and angle," the effect of a

regular wind on the movement of any aerial vessel can

be determined.

If such a vessel starting from the point (Fig. 70) in

quite calm air has an independent speed V, it will arrive

in the lapse of one second at some point, according to the

direction taken, on the circumference drawn with as

centre and V as radius. (The circumference is dotted in

the figure.)
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If, on the contrary, the vessel encounters a regular
wind of the speed v, the circumference, on which it will

find itself after one second, will be that of the radius V
drawn from the centre 0' so that 00' will be equal in

length and direction to the speed v of the wind. (The
circumference is drawn as a line in the figure.)

Again, if the pilot wished to go from to M, he will

head in a direction parallel to OM', and to any observer

who, like him, is being carried by the wind (for instance,

an observer in a free balloon), the pilot will appear to go
in the direction OM'. The line OM will be the real path
of the vessel and OM' its apparent trajectory.

In fact an aerial vessel can only reach in a second

points situated inside the circle with the centre 0', which

for this reason is known as the accessible circle.

When the circumference of this circle includes the

point 0', that is, when the independent speed V of the

vessel is superior to the speed v of the wind (as in Fig. 70),

the vessel can move in all directions around 0, and par-

ticularly can go against the wind, that is, from to A.

And though its actual speed is only V v it can operate

effectively and is actually dirigible.

If, on the other hand, the speed of the wind is greater
than the independent speed of the machine, the accessible

circle does not include the point (Fig. 71), and the

vessel cannot, when starting from this point, proceed in

any direction except those included in the angle BOB',
formed by tangents drawn from the said point to the

accessible circle.

To go, for instance, from to M, the machine must
head in a direction parallel to OM'. If turned head to

wind it will (in one second) only succeed in reaching the

point A; in other words, it will be driven backwards.

Such a machine is not then dirigible; the most that can

be done is to alter the angle of its flight-path with respect
to the direction of the wind.



170 THE MECHANICS OF THE AEROPLANE

The angle BOB' limits, according to the direction of

the wind, the paths to be taken by the aeroplane ;
for this

reason it is called the accessible angle.
The mean independent speed of aeroplanes at the

present moment is from 75 to 80 km. per hour, and it will

without doubt increase in the future.

Hitherto aerial vessels have been unable to go out

except in comparatively light winds, but the aeroplane can

FIG. 71.

be included in the first category of machines mentioned

above
;

it is dirigible, and will become more so.

72. Effect of a regular horizontal wind on a glide.

A regular horizontal wind acting on a glider in motion

has the effect of altering the angle of glide, the result

differing as the wind is in front or behind the glider.

Let OX (Fig. 72) be the flight-path, in still air, of a

glider starting from 0. At the end of one second the

glider will arrive at A, and its horizontal speed will be

measured along the line aA.
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If, instead of being in still air, the glider is carried

forward by a following wind of the speed AAP its actual

path will be OA
15
or more nearly horizontal than OA.

This explains how certain birds gliding along with a

high wind do not appear to drop appreciably. They must,

however, come down, provided the wind is regular and

absolutely horizontal, for its speed would have to be

infinite to prevent this.

On the other hand, if the glider comes down head to

wind in a current of the speed AA2 ,
its actual trajectory will

be OA
2 , more abrupt than OA. This trajectory would be

vertical if the speed of the wind equals the mean horizontal

speed of the glider, and an observer on the ground would

see the glider slowly descending vertically
1 at a speed that

FIG. 72.

would be less as the angle of incidence approached the

economic angle (see 40) at which the air can be held for

the longest possible time.

It should be remarked that the aviator can only become

aware of the variations of his actual flight-path by

watching the ground.
The machine always follows its path in respect to the

wind, and lies wholly on it
;
in consequence, if its angle of

incidence has not been altered by the elevator, the glider,

when it follows the different actual paths OA^ OA
2 , Oa,

1 This species of descent, which is at present made only, and then not

often, by birds (for aviators do not go out when the wind speed equals the

mean speed of their machines), must not be confused with the parachute
descent ( 60, footnote 2). Both, however, would look just alike to an

observer on the ground, the actual difference being that the first is made

against the wind and the second in calm air.
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always remains parallel to the position which it assumed
on the path OA in calm air.

The flight-path is, so to speak, compelled by the wind,

the glider continuing in the same path as if no wind

existed.

The foregoing considerations explain why it is better to

land facing the wind (see 46), which acts as a brake on

the machine.

73. Effects of ascending currents on the glider.

If a glider, starting from the point (Fig. 73), is

capable in calm air of reaching the point A in the space of

FIG. 73.

one second, if it were subjected to the action of a regular

ascending wind of the speed AA1?
it would be, at the end of

the same time, at the point Ap and its actual flight-path

would be OAr
It follows that, given a certain speed and direction of

the ascending current, the machine would glide without

falling.
1 In calm air, of course, this could not occur

( 41), nor hi a regular horizontal current, as gravity must

always be served.

1 This result can also be brought about by a head wind (Fig. 73A).

FIG. 73A.

Experiment with model gliders is quite interesting, for they can be got
to advance against the wind, which must, however, be ascending as well.
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Ascending currents have been quoted to explain the

soaring flight of certain birds, but we shall see later on in

75 that this explanation is inadmissible except in special

cases.

III. THE ACTION OF IRREGULAR WIND ON THE

AEROPLANE
\

74. General considerations.

The disturbances to which the aeroplane can be subject

consist generally (see 70) in changes in the speed and

direction of the wind. They can be represented, there-

fore, by arrows or vectors of given size and direction.

Whether an aeroplane is flying in calm air or is being
carried along by a regular wind, the action of a disturbing

force is divisible, like all mechanical actions as applied to

solid bodies, into two parts : one being a force tending to

alter the motion of its centre of gravity, the other tending
to turn it around an axis passing through this point.

The first of these primary forces may be compared to

the effect of regular wind. It changes the direction of the

actual flight-path, but not that of the apparent one. In

other words, it seems as if the mass of air surrounding the

aeroplane moved with it. Furthermore, an aeroplane

flying horizontally and struck by an up-current, will be

bodily lifted up without the pilot being conscious of it, but

only if the wind performs the function of the force under

consideration and nothing more.

In this case unless the pilot is watching the ground he

will not feel his sudden elevation, and will imagine he is

still pursuing as his machine remains horizontal his

original path.

The second force, that of the moment, alters the equi-

librium, which in turn alters the direction of the aeroplane.

This time the apparent flight-path is involved, and the

aviator can feel and correct the changes.
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To form some idea of these effects, one must suppose,
as previously, that the aeroplane is suspended by its centre

of gravity.

If the vector OA (Fig. 74) represents in extent and
direction the speed V of the aeroplane, the speed of the

A' ._-_v - ... . v . A

FIG. 74. Plan or elevation.

wind striking the machine is represented by the vector

OA', equal and opposite to OA. If, on the other hand, the

vector OB is taken as the speed v of the disturbance, a

new speed OC' of the opposing wind compounded from the

vectors OA' and OB is obtained.

The diagram of Fig. 74 can be applied to currents both

FIG. 75. Plan or elevation.

upward and horizontal (though not necessarily horizontal

to the direction of motion of the machine).
It will be clear from the fact that the machine rolls and

pitches along the line taken by the opposing wind that the

second force mentioned above has the effect of deflecting

the apparent flight-path.

Both the first and second forces may combine in a

single gust of wind. Taking then the arrangement of

Fig. 74 and completing it as in Fig. 75, in which OD

equals the wind speed taken by the aeroplane under the
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effect of the first force, it appears that the flight-path is

pushed two ways at once to OD and OC, OC being directly

opposed to the new direction of the wind OC'. The actual

path resulting from the total effect is consequently but

little different from that which the machine was originally

following. The aviator will feel that his trajectory has

altered, but as, at the same time, he will be carried away
without his knowing it in a direction opposite to that of

the apparent change, his path will only be slightly

deflected.

The mass of an aeroplane considerably affects its be-

haviour with regard to wind gusts. If it is light it will

almost immediately conform to the new speed ; if, on the

contrary, it is heavy, the time taken to acquire a different

speed will be appreciable; and during this time the air

exerts pressures on it similar to those which it would

experience if, instead of being entirely free, it found itself

partially impeded in motion. Such pressures are utilised

to economise power by heavy birds, but at present to an

aviator they are rather detrimental, though perhaps some

day they may be of use to him.

The effects on the aeroplane of atmospherical dis-

turbances or gusts of wind will be treated successively in

the following special instances :

1. The action in horizontal flight of a gust of wind

directed along the flight-path.

2. The action in oblique flight of a horizontal gust
of wind.

3. The action in horizontal flight of a horizontal gust
of wind from the side.

4. The action in horizontal flight of an oblique gust of

wind.

75. The action in horizontal flight of a gust of wind
directed along the flight-path.

It is necessary here to distinguish the effects of the
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two elementary forces defined in 74 : the change of the

actual trajectory of the centre of gravity and the change
of longitudinal equilibrium.

The effect of the first force is as follows :

If a gust of wind strikes the aeroplane head-on, the

lift is increased and the machine rises. When the disturb-

ing force strikes it from behind the aeroplane falls, and

this effect can be considerable if the speed of the gust is

equal to the mean speed of the machine. If the speed of

the wind is greater, the lift momentarily vanishes and

becomes negative, the plane finding itself struck from the

rear and from above.

We may, therefore, say that :

It is advantageous to increase the mean speed of an

aeroplane flying in disturbed air.

With regard to the effect of the second force, if the

wind attacks the main plane and the tail simultaneously?

the longitudinal equilibrium will not be altered, for it is

independent of the value of the speed ( 62), but a gust of

wind which is a kind of wave proceeds like all undulating
motions at a definite speed; it therefore first strikes the

front plane and upsets the longitudinal equilibrium, and

then, passing along to the rear plane, creates either another

loss of equilibrium in the opposite sense or an accentuation

of the first. The result is a pitching motion, which can

become dangerous if the plane arrives at the condition of

being struck from above.

For this reason, when the main plane is placed in

front, it is as well to bring as close together as possible

the centre of pressure corresponding to the normal angle
of incidence and the (projected) centre of gravity. This

negatives to a large extent the pitching effect. In the

case where the two points exactly coincide, the non-lifting

tail (see 52 and 54) remains parallel to the path of the

wind, and is consequently barely affected by the gust.

After what has just been said, it is evident that the
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nearer the main plane and the tail are together the more

quickly the gust passes by the machine, and consequently

the loss of equilibrium is smaller. But as we have seen

that in calm air the stabilising effect of the tail is pro-

portional to its size and distance from the main plane, it

would appear of advantage, when bringing it closer to the

main plane in order to decrease the effects of wind gusts,

at the same time suitably to enlarge its surface. The

result would be to produce an aeroplane shorter in its

longitudinal dimension than those now existing. Nature

herself furnishes an example of this : good flyers among
the birds are much shorter proportionately than modern

aeroplanes. We may therefore say that :

Long bodies, which in calm air contribute to

excellent longitudinal stability, are much less advan-

tageous, and can even become detrimental, in disturbed

air.

It was this fact that led the Wright Brothers to neglect

automatic longitudinal stability almost completely, and to

construct the tail of their machine as a single movable

organ, which was also the elevator. As this device was

placed in front, the aviator could as it were see the gust

coming, and prepare the main plane to meet it by a suit-

able alteration of the angle of incidence. On the other

hand, longitudinal equilibrium must be constantly pre-

served, even in calm air, by the action of the pilot, to

whom a false movement or even momentary inattention

might be fatal. The machine, however, is remarkably
"
tender," and responds to the smallest prompting of the

pilot.

By way of comparison, it may be said that the longi-

tudinal stability of a tailed aeroplane is like that of a

bicycle, while the Wright aeroplane similarly corresponds
to a monocycle.

After all, the best results are brought about by fur-

nishing the aeroplane with a reasonable tail and using a
M
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forward elevator to damp out fore and aft oscillations. This

arrangement is used on a large number of machines. 1

A method of preserving, automatically, longitudinal

stability against wind gusts has naturally been much sought

after, and the experiments made hitherto are divisible into

two classes :

1. Those which are intended to correct the oscillation

after it has started.

2. Those to prevent any oscillation whatsoever (which

appear, a priori, to be preferable).

The first class is based on the automatic control of the

elevator either by a pendulum or by a gyroscope, the idea

being to produce a fixed lever point which is unaffected

by the oscillation of the machine. But at the present
moment no results of any value have been obtained.

From the second class better things may be expected.
In this case the idea is to use feelers (palpeurs) or a

sort of antennae something like weathercocks, which would

encounter the gust before it reached the main plane and

prepare it to meet it by altering the angle of incidence

through the medium of a control connecting them with

the elevator.

Whatever may ultimately be the means employed, it

seems likely that aviators will not have to busy themselves

with maintaining equilibrium, and that the aeroplane of

the future will fly by itself so stably that one will believe

it, in M. Soreau's phrase,
"
to be guided by invisible rails."

Wind gusts have more effect on an aeroplane as its

mean speed increases.

If the speed V of an aeroplane is subject to an accelera-

tion v, the pressure of the air upon the planes, since it

varies as the square of the speed, increases proportionately

1 In the modern type of Wright biplane the combined elevator and

tail, which have been simplified into a single plane, of which the trailing

edge is capable of being warped up or down, is placed behind the main

planes in rear of the vertical rudder.
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as (V+ v)
2 V 2

,
or if v* is disregarded as negligible, as

The effect of the acceleration v on the aeroplane is, of course,

greater as the mean speed V is greater. This explains

why, when the wind seems slight, aviators constantly
encounter gusts.

1

It must not, however, be imagined that because the

disturbing effect of a gust of wind increases with the speed
of the aeroplane encountering it, that longitudinal stability

decreases as the machine's speed increases. On the con-

trary, the effect is proportional to the speed, and the

righting moment which it sets up is proportional to the

square of the speed.

The stability of an aeroplane, therefore, increases

with its speed.

We will conclude this section with a brief discussion of

the fact that certain large birds, by making use of the

intermittent flow of the air, can support themselves in

the air without apparent motion. The most reasonable

explanation of this is that of M. Soreau, who terms this

particular form of flight, which some species practise above

wide expanses such as seas and deserts,
"
soaring flight."

When the bird experiences a gust, its inertia momen-.

tarily resists it, and it immediately places its wings at such

an angle, that the effect of the gust is to raise it. As soon

as the gust passes and is succeeded by a comparative lull,

the bird again alters the angle of its wings and glides
down at the most economical angle until it encounters

a fresh gust.

It is evident that birds use ascending currents when

they come across them, but one can scarcely admit that

the existence of the currents, which must supposedly be

1 These gusts, by the way, are more frequent when the machine
is flying into the wind than with the wind, for the simple reason that

the gusts have a certain speed, and the aeroplane therefore meets more of

them, in the same space of time, when flying into the wind than when

travelling with it.
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permanent, sufficiently explains the phenomena of "
soaring

flight," which can be prolonged for several hours.

In our latitudes, moreover, one can readily observe

birds of prey rising in a wind without any apparent move-

ment of their wings by describing circles, and they all,

when flying together, seem to rise and circle at the same

rate of speed.

Perhaps the period of their circles coincides with the

rhythm of the gusts, and they turn when the gust is suc-

ceeded by a lull, so as to convert the effect of the lull into

that of a gust, thereby utilising to the full the intermittent

waves of the air.

76. The action, in oblique flight, of a horizontal

gust.

When, instead of flying horizontally the aeroplane flies

obliquely, the two primary actions ( 74) of a gust hori-

zontal to the flight-path (that is to say, situated in the

same vertical plane) are the same as the foregoing. At

the same time, the variation of the pressure on the plane

depends not so much on the strength of the wind as on

the inclination of the flight-path.

The general idea in 74 can, in fact, be applied in the

case of ascending flight (Fig. 76) as well as in descending

FIG. 76. Elevation.

flight (Fig. 77). If OX is the direction of the flight-path,
the effect of a gust of wind from the front, OB = v, will be

to direct the relative wind striking the machine along the

line OC'. This will result in an alteration, COA, of the
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angle of incidence, increasing it if the machine is rising,

and diminishing it if the machine is descending.

This alteration will be greater for the same increase

of the speed v as the inclination of the plane is more pro-

nounced and as the mean speed of the machine is less.

The pressures, therefore, on the planes will change not

only from variation of the speed, but from the alteration

FIG. 77. Elevation.

of the angle of incidence. This latter alteration will be

inverse in the case of a following gust.

To sum up :

An aeroplane is more affected by horizontal gusts
when flying obliquely than when horizontally, and the

more so as its mean speed is less.

77. The action, in horizontal flight, of a horizontal

lateral gust.

When the aeroplane, flying horizontally, is struck from

the side by a gust of wind also horizontal, the two primary
actions of this gust have, generally speaking, the same
effects as in 74, and the diagram of Fig. 75 (reproduced
as Fig. 78) is applicable, taking into consideration the

altered conditions.

If OA is the mean speed V of the machine and OB
that of the wind gust v, the direction of the wind ex-

perienced by the aeroplane will be OC', and, supposing
it to possess directional stability, it will turn head to wind
and take up the apparent trajectory OC. The aviator will
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be quite aware of this movement, and can, by the aid of a

compass, measure the amount of deviation.

But, at the same time, the effect of the first primary
action of the wind will be to give the aeroplane the actual

FIG. 78. Plan.

trajectory OD, of which the aviator will know nothing.
1

As a matter of fact, the actual path of the aeroplane as

observed from the ground will be very little changed.
The second primary action, the moment of the wind,

will cause the machine to swing round horizontally.

Taking the speed and direction of an aeroplane to be

constant, one can easily find out in what direction the

' A

FIG. 79. Plan.

gust should blow in order to create a maximum horizontal

swing.
In applying Fig. 74 it is clear that the direction will

be perpendicular to the tangent drawn from the point

(Fig. 79), to the circumference described with A' as the

centre and the speed, v
,
of the gust as radius. If the cir-

cumference includes the point (Fig. 80), that is, if the

1 Unless he is watching the ground.
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speed of the gust is more than the speed of the machine,
the deviation will amount to 180. In other words, an

aeroplane struck from behind by a gust, the speed of

which is greater than that of the machine, will turn com-

pletely round like a weathercock greatly to the danger of

the pilot, and it will do so the more quickly in proportion
as its directional stability is greater.

As mentioned in 75, in this case the planes can be

struck from above also. For both these reasons it is de-

FIG. 80. Plan.

sirable to increase the mean speed of the aeroplane, and

to reduce directional stability to the minimum consistent

with efficiency. Too much importance should not, how-

ever, be attached to this extreme case, which would be

very rare in practice. But aviators should not risk being

struck by gusts of a speed greater than that of their

machine. As the speed of the aeroplane is increased, the

possibility of this will gradually disappear.

It has been seen that by the application of Fig. 74, the

effect of the second primary action of a wind gust on the

apparent path of the aeroplane could be determined, that
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is, the effect of the moment of the reaction due to the

gust in respect to the principal axis of inertia which is

practically vertical.

But this reaction can also affect the principal longi-

tudinal axis of inertia, or what has been called in 58 the

axis of rotation. In such case the lateral equilibrium will

be upset, the machine will tilt and oscillate in a way which

may become dangerous.
In the first place the initial tilt of the machine will

cause a tendency to turn. If the pressure this tendency
exercises on the keelplane is above the axis of rotation, the

turn will be made by the machine in the opposite direction

to that in which its directional stability would turn it.

Generally the effect of the turn is the stronger ;
the aero-

plane drifts before the wind, and, being side-on, its loss

of equilibrium due to the action of the gust of wind is

accentuated.

On the other hand, if the pressure is below the axis of

rotation, the tendency to turn keeps the aeroplane in the

wind and damps out the disturbing influence. This can

be seen in sea-birds, which place their wings in the form of

an inverted dihedral (see also Fig. 64, 60).

From this point of view it would appear advantageous
to adopt a similar form for planes, or to lower the centre of

the keelplane. But this can only be done ( 60) when the

axis of rotation occupies a certain position in respect to

the plane, and it is usually considered to upset the lateral

stability.
1

Usually, a lateral gust is not absolutely perpendicular
to the plane of symmetry, and consequently it introduces

a component parallel to the direction of the flight-path

(see 75).

1 However, in future, as aeroplanes improve, the wings may possibly

form a slight inverted dihedral. The centre of gravity should then be

placed quite low, so that the axis of rotation forms with the plane an

angle greater than the angle of incidence.
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One can, therefore, say that a lateral gust of wind, as

a rule, disturbs simultaneously both the lateral and the

longitudinal stability, and gives rise to pitching
1 and

rolling oscillations.

We can say, as we did in the case of longitudinal

equilibrium, that :

Arrangements which in still air insure lateral

stability, such as planes placed at a dihedral angle
or a high keelplane, are most disadvantageous in dis-

turbed air.

For this reason many constructors have not hesitated

to sacrifice almost entirely any guarantee of automatic

lateral stability, by placing the centre of the keelplane
at a very small distance above the axis of rotation and

by abandoning the dihedral-angled plane. Of the Wright
machine, particularly, it can be said that it has no trans-

verse (as it has no longitudinal) stability. However, the

aviator must be provided with some means for dynamic

stability. These have been described in 63 (warping,

balancers, &c.).

The same methods used or suggested for longitudinal

stability, such as the pendulum,
2
gyroscope,

"
feelers," &c.,

may be employed in transverse stability, and though none

of these means have yet yielded any positive results, the

problem will doubtless be solved in the near future.

78. The action, in horizontal flight, of an oblique

gust of wind.

When an aeroplane, flying horizontally, is struck by an

oblique gust of wind, as happens when it encounters an

ascending or descending current or an eddy, the same pro-

1
Independently of those which (see 60) result from rolling oscil-

lations.
2 The procedure briefly discussed in the second footnote to 63 is

included in the category of those which have the action of the pen-
dulum for their principle, since the weight of the machine causes it

to be displaced, whence the righting moment is created.
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cedure applies as used heretofore, and Fig. 75 (reproduced
in Fig. 81) is again applicable.

If OA is the mean speed V of the aeroplane, and OB
the speed v of the gust, the new direction of the wind will

be OC'. The machine will therefore tilt, and tend to take

an apparent trajectory 00. Of this the pilot will be

conscious.

But at the same time the effect of the first primary
action will result in its following the actual path OD, of

which the aviator will not be aware. The path of the

machine, viewed from below, will not therefore be much
altered.

But this is not all, for the gust strikes the forward

FIG. 81. Elevation.

plane first and upsets the longitudinal equilibrium; the

two primary actions of the disturbance both x tend to

make the machine rise, and then as the forward plane

gets clear the gust meets the other, and another loss of

equilibrium in an inverse sense occurs. In fact, such a

gust creates both a considerable pitching motion and a

vertical undulation of the flight-path.

It is therefore important, with a view to diminishing
these detrimental motions so to construct and handle

the aeroplane, that the pressure on the main plane should,

under normal conditions of flight, pass through the centre

of gravity.

1 This will not be so if the aeroplane has a tail (Fig. 59) which is

struck by the wind on its upper surface.
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79. Conclusions.

The motion of the aeroplane in an atmospherical dis-

turbance is in reality a combination of those taken in the

foregoing simple cases, for it is very seldom that a gust
can be exactly classed in any one of the categories men-

tioned, and usually it is composed of two or more of them.

But it has been made clear that :

1. The aeroplane is less affected by gusts in pro-

portion as its speed increases.

(The machine of the future should therefore fly at high

speeds.)

2. Arrangements that insure automatic stability in

calm air are not suitable or useful in disturbed air.

From this comes the tendency of several constructors,

such as the Wrights, to insure equilibrium by indifferent

equilibrium and dynamic control. Machines constructed

on this principle hold the wind better than others, and are

very responsive and manageable ; moreover, the suppression
of big tails and large keels increases their fineness ( 14).

But to drive them, whether in calm or disturbed air,

makes a constant demand on the powers of the pilot, and

the slightest inattention might cause an accident.

The foregoing considerations show the considerable

interest that attaches to the solution of the automatic

stability of an aeroplane in disturbed air.

Fear of the effects of the wind will not always oblige

the sacrifice of the guarantees for security which the

present-day machines possess as far as calm air is con-

cerned, and aviators will yet go out, when the wind is not

too strong, without experiencing a continual and dangerous

struggle against it. Then only will the aeroplane become

a really practical means of transport.

This consummation is nearer than most people think.

Who knows, too, if man will not one day go out and brave,

dominate, and subdue a tempest !



PART IV

PROPULSION

CHAPTER VII

THE SCREW-PROPELLER

80. Definition of the Screw Pitch Thrust Slip.

To utilise the power of the motor for producing the

force necessary to sustain the aeroplane, the screw-propeller
1

is employed.
One can briefly consider it as acting like a screw. It

is composed of a number of arms or blades, which are

usually sectors of a screw surface.

If it acted exactly like a screw entering a solid body
it would advance in one turn a distance equal to the pitch
of the screw, and therefore this distance is known as the

pitch of the propeller.

But as the air is essentially volatile, the same result

does not obtain in it as in a solid body. The blades, to

produce a thrust, should attack the air in the same way as

the planes of a flying-machine. It follows that the pro-

peller only advances a distance appreciably less than its

pitch for each complete turn. In this way slip is produced,
which is as indispensable for the creation of the thrust as

the angle of incidence is for the lift of an aeroplane.
1 It is not impossible that in the future other means of utilising the

motive power will be employed, such as the vertical beating of the carry-

ing planes, which is not so impracticable as some affirm. The vertical

oscillation of a heavy mass would effect this, and Captain Eteve has

given the name of ornithoplanes to machines which can be constructed

on this principle.
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81. The angle of incidence of a portion of the

propeller- blade varies with the forward speed of

the propeller The actual angle of incidence The

apparent angle of incidence.

FIG. 82. Perspective.

In all that follows, the term "
portion of the propeller-

blade" will be applied to a section of the blade ABA'B'

(Fig. 82) narrow enough to be considered as a plane.

D

FIG. 83. Profile.

The first principle to be learned in the study of pro-

pellers is as follows :

The angle of incidence of a portion of the blade,

that is, the angle at which the portion bites the air,

is smaller than it appears to be when the propeller
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moves forward when revolving, and it becomes less as

the propeller's forward speed increases.

Let XX (Fig. 83) be the horizontal axis of a screw-

propeller, and AB the section of a portion of the blade

viewed from the tip, this portion being at a distance ~ from
ft

the axis.

If the propeller revolves without advancing, that is,

if it is stationary, the point C describes a circumference at

FIG. 84.

a linear velocity CD, or U, of the value Trnd, n being the

angular speed in revolutions per second. AB therefore

seems l to attack the air at the angle ACD.
If the propeller, revolving at the number n of revolu-

tions per second, advances with the speed V (Fig. 84), the

velocity of the point C is no longer CD but CE, or W, the

resultant of the added speeds U and V. The angle of

incidence of AB is therefore ACE, smaller than the angle

ACD, and it grows less as the forward speed V of the

propeller increases.
1 See footnote, next page.
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This idea is extremely important, and must be

thoroughly grasped before proceeding further.

The angle ACE will be called the actual angle of

incidence of the portion of the blade and represented by
the symbol i.

The angle ACD will be called the apparent angle of

incidence, because it is that at which the portion appears
l

to meet the air, and will be represented by the letter I.

This angle is also the complement of the angle ACX
which the chord of the portion makes with the direction

of the propeller axis. For this reason the angle I will

be frequently mentioned as the inclination of the portion

of the blade.

If the propeller entered a solid body instead of air, the

point C would follow the path CA (Fig. 84).

Since during one revolution C travels in the direction

CD, from the fact of rotating, a distance equal to that,

Trd, of the circumference of the circle it describes, and, at

the same time, in the direction CX, from the fact of for-

ward motion, a distance equal to the pitch H of the pro-
TT

peller, the ratio
^
of these two distances gives the value

of the apparent angle of incidence or pitch, ACD, of the

portion of the blade. This value depends at the same time

on those of the propeller pitch H and the distance d of the

said portion from the axis.

Reference to Fig. 85 a view in perspective makes it

clear that the nearer the portion of the blade is to the axis

the greater the inclination.

The angle ECD (Fig. 84), made by the speed W and

the speed IT, which will be called I', can be measured by
V V

the expression ^ or
-^

. Its value, therefore, depends on

1
Similarly when stationary, the real angle of incidence of the portion

of the propeller-blade is smaller than its apparent angle, because the

propeller, acting like a ventilator, works permanently in the air-current

which it creates.
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that of the ratio of the forward motion of the propellern
to its velocity of rotation, and also on that of the distance

d of the said portion from the axis.

FIG. 85. Perspective.

The actual angle of incidence i of the portion of the

blade is equal to the difference between the angles ACD
and ECD :

Taking a known propeller revolving and advancing

FIG. 8G.

at known speeds, thus supposing H, V, and n (or rather

yH and constant, one can represent graphically, as in

Fig. 86, the variations of the two angles I and I' proper
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to each portion of the blade, and also that of the actual

angle of incidence i (the difference between I and I') with

the difference of each portion from the propeller axis.

If above the horizontal line CX two lines ee and aa

2V
parallel to it are drawn at the distance respectively of -

2H
and , then to each point D, situated on the horizontal

7T

CX at a distance
9
from C, there correspond two angles ECD

y
and ACD, the first of which is equal to

-^
and the second

TT

to -. . Consequently these angles are equal to those

designated by the same letters in Fig. 84 in other words,
to the angles I' and I.

The angle ACE therefore represents the actual angle of

incidence i of the portion of the blade at a distance ^
2t

from the propeller axis.

The geometrical study of this shows that the actual

angle of incidence is variable for every point on the blade,

and reaches a maximum value at a definite distance from
the axis.

82. The thrust and resistance to rotation of a por-
tion of the propeller-blade.

From the foregoing considerations it will be apparent
that the problem of the propeller is very similar to that of

the planes of the aeroplane.
Each portion of the blade AB (Fig. 87) at the angle i

creates by the air pressure a reaction R, proportional both

to the said angle i and to the square of the speed W of

the point C. This reaction R can be divided into two

parts, j the thrust, operating parallel to the propeller

axis, and q the resistance to rotation, operating perpen-

dicularly to this axis.

N
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The useful work of the propeller is the thrust the

total thrust J is the sum of all the small thrusts created

by the various portions of the blade.1

The resistance to rotation q includes, in the same way
as the resistance of a plane, an active part, inseparable

from the creation of the thrust, and a part entirely passive

due to the thickness of the blade and the skin friction on

its surfaces.

This latter part should be diminished as much as

FIG. 87. Profile.

possible by putting a fine finish on the blades and elimi-

nating projecting ribs.

Moreover, wide blades are quite useless, in spite of

some inventors who would have us use Archimedean

screws as propellers, for if the blade is too wide the skin

friction on the surfaces increases much more rapidly than

the thrust. A propeller-blade, like the planes of an aero-

plane, should have a large aspect ratio. Reference to

Fig. 38 ( 48) shows that the trailing edge of a plane gives

very little lift and usually creates a suction.

1 It is quite possible, however, that every portion does not work as it

would if it were a separate entity.
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83. Efficiency of a portion of the blade The opti-

mum angle The maximum maximorum efficiency.

We know ( 18) that the useful power required for

sustentation is expressed by the product V of the speed V
of the aeroplane and the tractive effort t, which is the

thrust J of the propeller. The necessary useful power has,

therefore, a value VJ, the product of its forward speed and

the thrust.

Every part of the blade participates in the production
of this useful power, and its quota is measured by the

product V?, wherein j represents the thrust of the said

portion.

On the other hand, in order to rotate the portion of the

blade at the number of revolutions per second n, it is

necessary to overcome the resistance q which the air

opposes to its rotation by communicating to the point of

application C of q a circumferential velocity U, of which

the value is Trnd. Thus a motive power is applied to the

portion of the blade under consideration equal to frndq.

V?
The ratio r = 4~ of the useful power furnished by

irndq
the portion of the blade and the motive power employed to

produce it, represents the efficiency of this portion. The
relation can also be put in the following form :

I' representing the angle defined in 81 whose value

(equal to the difference I i between the apparent angle of

incidence and the actual angle of incidence proper to the

portion of the blade under consideration) is measured by the

y
expression -^

. The efficiency of a portion of the blade

has the final expression :
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Supposing the inclination I of the portion of the blade

to be given, the value of the thrust j and the resistance to

rotation q and also that of their relation - depend only on

the value i of the actual angle of incidence. Therefore the

same applies to the value r of the efficiency of the portion
of the blade.

Pursuing the subject further, we find that :

The efficiency of a portion of the blade, taking its

inclination I to be always constant, reaches a maximum
when the actual angle of incidence i has a certain

value iv

When, taking another value I' of the inclination, one

wishes to find out in a similar way the value of the actual

angle of incidence which gets the highest efficiency out of

a certain portion of the blade, one always finds it to be the

same value iv

The efficiency of every portion of the blade is at its

maximum when the forward speed and the velocity of

rotation of the propeller are such that the actual angle of

incidence has the single value ir

The value \ varies in every propeller, and is called its

optimum angle.

If the value i
lt
of the actual angle of incidence, which

gets the maximum efficiency out of the inclination I of a

portion of the blade, is independent of the value of this

inclination, the same does not apply to the value, r^ of the

said maximum efficiency. To each value of I there corre-

sponds a value of maximum efficiency obtained at the

angle of incidence iv but it changes with the value of the

inclination I, which at about 45 (theoretically) gives the

greatest maximum value of efficiency. Therefore :

There is a portion of the blade whose maximum

efficiency is maximum maximorum.

This portion must conform* simultaneously to the two

following conditions :
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1. It must actually meet the air at the optimum
angle iv

2. It must possess an inclination in the neighbour-
hood of 45.

Of these conditions, the first is by far the most impor-

tant, and it would be useless to give the portion of the

blade such an inclination if it did not actually meet the air

at the optimum angle.

84. M. Drzewiecki's variable-pitch propellers.

We have seen in 81 that when the pitch H of the

y
propeller and the relation of its forward speed to its

rotary velocity remain constant, the actual angle of incidence

varies with the distance from the axis of the portion of the

blade under consideration.

It is not therefore possible, if the propeller is a true

screw, that is, with a constant pitch, for each portion of

the blade to give out its maximum efficiency, for if the

actual angle of incidence is the best for any one portion, it

will be so for it alone, and all the others will have angles

differing from the optimum angle by the distance they are

away from the aforesaid portion of the blade.

M. Drzewiecki, with the idea of getting the maximum

efficiency out of every part of the propeller, varies the pitch
at each point so that the actual angle of incidence is

everywhere the optimum angle.

Propellers of this kind are known as variable-pitch

propellers, and are consequently no longer true screws.

Although a maximum efficiency may be obtained from

each part of these screws, the value (see 83) is not the

same for every part. It is greater in proportion as

the inclination of the part more nearly approaches the

inclination of maximum maximorum efficiency or the

neighbourhood of 45.
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85. Total efficiency of a propeller.

Each portion of the blade of a propeller gives out a

thrust j, and the sum of all these forces constitutes the

total thrust J of a propeller.

The parts near the extremities of the blades obviously
contribute the greatest proportion of this total thrust,

since j varies as the square of the circumferential velocity.
1

The useful work TM of the propeller is measured ( 83) by
the product VJ of the forward speed multiplied by the

thrust.

On the other hand, each portion of the blade offers a

certain resistance to rotation q, all of which can be in-

corporated in the single resistance Q, applied at a certain

distance I from the axis or, instead, by a moment of

resistance of the value Q.

The motive power Tm,
absorbed by the propeller, is

therefore expressed :

7i being the angular velocity in revolutions per second.

T
The ratio ^ of the useful power to the motive power

J-m

absorbed in obtaining the same gives the total efficiency oj

the propeller.

It is really a mean of the efficiencies of the different

portions of the blade, but not an arithmetical mean, since

the work is principally done by the tips ;
and as the total

value is not much greater than that of the efficiency of

the blade-tips, the latter should be increased as much as

possible in fact, up to the maximum maximorum

efficiency.

To realise this result, as shown in 83, the actual angle
of incidence of the portion of the blade must have

its optimum value, and the inclination of the said portion

1 It is supposed that the thrust.?' is the same as if the portion produc-

ing it acted by itself, which is scarcely probable. But as we are not here

working to a strict formula, this may be admitted.
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must be about 45. The latter condition is hard to fulfil

in practice, since, in starting, the actual angle of incidence

of the tips, though less than the apparent angle, will be

far greater than the optimum angle.

The propeller would thus work under the worst

conditions, with the blades beating the air at too great

an angle, and consequently absorbing power out of all

proportion to the work done.1

However, the considerations which follow in 87 show

that the employment of such an inclination at the tips of

the blades would only be justified if the speed of transla-

tion of the machine were very great and the rotary velocity

of the propeller were small that is to say, when the pro-

pellers are of very large diameter. Finally, any benefit

accruing from adopting this method, from the standpoint
of the total efficiency of the propeller, would not com-

pensate for the difficulties of construction inseparable from

it (especially in the case of wooden propellers).

It is a principle of construction a characteristic

that two propellers, geometrically alike, have their tips

inclined at the same angle, even though their diameters

are not equal.

If the diameter of a propeller is D and its pitch H, the
TT

value of its inclination is ^ .

TTJJ
TT

This value is proportional to that of the ratio h =
^r

of the pitch to the diameter, known as the pitch ratio of

the propeller.

The pitch ratio, in consequence, is a coefficient of form

which remains the same for all propellers geometrically

alike, and can therefore distinguish species of propellers.

1 There are some systems of propellers whose pitch may be varied

during flight at the will of the pilot, so that a small pitch can be used
in starting and afterwards increased as the speed grows up to the desired

inclination. Their employ if they were practicable would therefore

facilitate starting.
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At the present time the pitch ratio generally varies

between 0'50 and 1
;
the latter value, corresponding to an

inclination at the tips of about 17, does not appear to

have been exceeded in practice.

The efficiency of the tips in such propellers is not,

therefore, maximum maximorum, and, as we have said, the

total efficiency of a propeller is not much more than that

of the tips.

In the Drzewiecki propeller, as all parts of the blade

actually meet the air at the optimum angle, the efficiency

maximum at every point goes on increasing from the

tip to that portion inclined at about 45, which is the

maximum maximorum, and then decreases from that

point onwards towards the boss. The total efficiency of

the whole propeller, of course, always remains greater than

that of the tips, though the influence on its value of the

inner portions of the blade is quite small, owing to their

slow rotational velocity.
1

86. The fineness of a propeller.

The value ^ of the optimum angle obviously influences

that of the efficiency of the portion of the blade, and

furthermore that of the total efficiency of the propeller.

But this value depends on the suitability of the shape, on

the polish of the surface in a word, on the fineness of the

propeller.

The greater the fineness, the smaller the optimum
angle becomes, and the higher the maximum propeller

efficiency.

It is therefore possible to write the fineness / as the

inverse -.- of the value of the optimum angle (as was done

1 In the case of a propeller with a constant pitch, the variation of

efficiency along the blade is not so easily followed, because the inclination

and actual angle of incidence vary simultaneously and counteract each

other.
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in the case of the plane in 14), and to regard it, like the

pitch ratio, as a coefficient distinguishing a class of pro-

pellers. The characteristics of a propeller of constant

pitch are, therefore, its diameter D, its pitch ratio h,

and its fineness, taken as the inverse of the value of its

optimum angle.

According to M. Drzewiecki, the value of the optimum
angle for good propellers is about 0*03, which will lead,

for the maximum efficiency of a portion of the blade,

to a value greater than 0*9, and, for the total maximum

efficiency of a variable-pitch propeller, to 0*9 or there-

abouts.

Certain considerations lead one to suppose that these

figures are a little exaggerated. In practice the value of

the optimum angle is, for well-made propellers, about

0*075, and the total maximum efficiency of the best types
of propellers yet constructed is about 75 per cent. ( 19).

One has a right, however, to hope that in the future this

figure will be surpassed.

87. The relations between the characteristics of a

propeller, its forward speed and its velocity of rotation.

Elsewhere it has been explained ( 19 and 29) that

the -efficiency of a propeller was maximum when a certain

relation existed between its velocity of rotation and the

speed of the machine propelled by it.

The reason of this should be apparent from statements

occurring in foregoing sections.

For instance, we saw in 85 that to get the highest

efficiency out of a propeller, the actual angle of incidence

of the tips of its blades should be the optimum angle;
and in 81 it was stated that the value of the actual

angle of incidence of a portion of the blade of any given

propeller depended on that of the relation - between its
fi

forward speed and its rotational velocity. The actual angle
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of incidence of a propeller tip cannot therefore be the

optimum angle unless the ratio - has one certain value.

As a result it can be definitely laid down that :

In order to get the highest efficiency out of any given

propeller, thereinustbe one certain ratio, and one only,

between the^SwSaSfYelocity and the speed of the vehicle

Untive Power. (Constant)

FIG. 88.

it propels, be it aeroplane, dirigible balloon, hydroplane,
or what not.

This rule is extremely important, and dominates the

entire problem ofpropulsion by the screw-propeller.

Its neglect has been a fruitful cause of error, and we
have seen propellers built with great care giving most

moderate results, for the simple reason that the speed
of the machines they propel has no relation to their

velocity of rotation.
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However, it is possible to depart a little from a strict

observance of this rule, since the maximum efficiency of a

propeller varies but slightly, as will be seen by reference

to Fig. 18 (reproduced as Fig. 88). Thus, when the cause

is understood, the application of the rule is capable of

accommodation to circumstances, while to misunderstand

or to ignore it is to court failure.

In 30 we stated that it was sometimes profitable to

sacrifice a proportion of propeller efficiency, with a view to

increasing the excess reserve of useful power ; but, for con-

venience sake, in all future statements the propeller will

be taken as giving out its maximum efficiency.

The value of the relation that should exist between the

speed of rotation n of a propeller and the forward speed
Vm the good speed suited to this velocity of rotation

depends, obviously, on the value of the propeller's charac-

teristics
;
and we arrive at the idea of what this relation

should be when we say that the actual angle of incidence

of the tip of the blade (the value of which depends on
those of the characteristics D and h the diameter and the

pitch ratio respectively) should be equal to the optimum
angle iv or the third characteristic of the propeller.

By expressing this equality algebraically, an extremely

simple formula is obtained, giving the relation 1 between

all the above quantities, as follows :

(26) Vm

1 The result is obtained in the following way. The actual angle of

incidence i of a portion of the blade is equal ( 81) to the difference

between the two angles I and I', the trigonometrical tangents of which
TT 7 -TV-

have for their respective values or, what is equivalent, - and .

ird TT irnd

Assuming the tips of the blade at a distance - from the axis, to be the

portion in question, the equality between the actual angle of incidence and
the optimum angle is expressed by :

h=i-i',
which leads to the following :

tan I - tan I'
tan ij

= --
,

1 + tan I tan I'
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a being a coefficient the value of which is given by the

formula :

(27) a = h- TT (1 +01 A% .

Formula (26) is of the utmost importance. It clearly

shows that for propellers of the same type, that is, with

the same fineness and pitch ratio in which case according
to formula (27) the coefficient a is constant the good
forward speed Vm is proportional to the product nD, which

is itself proportional to the rotational velocity nnD of the

tip of the blade. Therefore :

In order that a propeller of a given type should

give out its maximum efficiency, the speed of the

machine which it propels should be a definite fraction

of the rotational velocity of the tips of the blades.

This fraction is expressed in the term -, and its value

increases with that of the coefficient a, that is to say,

as the pitch ratio of the propeller is increased.

If the optimum angle ^ is given the value 0*075

(see 86), the value of the coefficient a can be calculated

as a function of h, the value of the pitch ratio.

The table below gives for this coefficient seven theo-

retical values, of which the first six correspond to the

usual values of the pitch ratio.

The angle i- being small, ^ can be substituted for tan ilt and tan2
! for

tan I tan I'. Then giving the tangents their respective values, and taking
into consideration that the speed V has assumed its good value Vm ,

the

following is obtained :

h Vm
wnD

Or, solving for Vm and taking ?r
2 as equal to 10 :

Vm = [A
- TT (1 + O'lfcVJ nD

,

which is the same as formula (26), in which the value of a given in formula

(27) has been substituted for the coefficient itself.
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Pitch ratio A
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150 m.p.s.
1 In the case just taken it would be necessary

to use very large propellers to produce an appreciable

thrust or perhaps to use several (see 90), but it is quite

true that an increased efficiency is reached thereby. How-

ever, reasons of a practical order against the use of pro-

pellers with so great a pitch ratio such as difficulty in

starting and construction, &c. have already been men-

tioned in 85.

88. Calculation of an aeroplane propeller.

The complete theory of the screw-propeller shows that

the thrust J produced by a propeller of diameter D ad-

vancing at a good speed VTO is given by the simple formula :

(28) J = &V'D2
,

where b stands for a coefficient whose value as in the

case of the coefficient a in formula (26) depends on that

of the characteristics h and \ of the propeller.

It would take too long to examine the variation of the

value of this coefficient b with that of the characteristics

mentioned above. Suffice it to state that in the case

where the pitch ratio is 0*75, the optimum angle always

being assumed as equal to 0'075, the coefficient b has the

theoretical value 0'045.

By the use of formulae (26) and (28) it is very easy to

calculate the diameter and rotational velocity of a propeller

of a given species (characterised by the values of coefficients

a and b) suitable for propelling a given aeroplane or even,

to take a more general case, any kind of vehicle.

The known factors of the problem are the speed Vm ,
at

which the vehicle must be propelled, and the thrust J

required to propel it at the speed Vm :

Applying formula (28), we obtain the value of the

diameter of a suitable propeller, that is, of a propeller
1 With wooden propellers.
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which, advancing at the good speed Vm ,
is capable of

producing the required thrust J :

Formula (26), again, gives the value of the angular

velocity at which the propeller should rotate :

In the case of an aeroplane the problem may be set

as follows :

Calculate the diameter and rotational velocity of a

propeller of a given type (characterised by the values of

coefficients a and b) capable of propelling at a speed Vm
an aeroplane of given weight P, plane area S, and fineness

f (the lifting efficiency K of the planes being assumed

equal to 0*4).

In order that the problem may be capable of solution,

the first condition is that the speed Vm must be one of the

attainable speeds (see 8) of the aeroplane; that is, it

must correspond to an admissible and safe value of the

angle of incidence. If this condition is fulfilled, it is

possible, by the use of Tables I., II., and III. ( 10 and 17)

or of the relation (14) set out in 26 (and reproduced

again in 89), to calculate the value of the thrust required

to sustain an aeroplane at the speed Vm .

An example will render the exquisite simplicity of this

method of calculation even clearer.

The aeroplane of fineness , weighing 500 kg., and

of 50 sq. m. plane area, is to be propelled at a speed of

1768 m. p. sec. What are to be the diameters and

rotational velocity of a propeller of average type (pitch

ratio 0-75) suitable to be fitted to this aeroplane ?

In the first place, Table I. shows that the speed 17*68 m.
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p. sec. is, in fact, an attainable speed for the aeroplane in

question, the loading of which is 10 kg. per sq. metre.

This speed corresponds to the angle of incidence 0'08.

Secondly, by the aid of Table III. it is possible to cal-

culate the value of the thrust required to sustain the

aeroplane at the above angle of incidence. This value

is 70*6 kg.

In the case of propellers of the usual type employed at

the present time, formulae (26) and (28) become, as already
stated :

(26a) V = 0-5wD.

(28a) J = 0-045VD2
.

By applying formula (28a) we obtain as the value of the

diameter required :

70-6
,

= about 2-243 m.
0-045 x(!7'68)

2

And the rotational velocity of the propeller, therefore,

assumes the value, according to formula (26a) :

15*8 r. p. sec., or 948 r.p.m.

Thus the propeller suitable for driving the aeroplane in

question should have a diameter of about 2'25 m. and

revolve at about 950 r.p.m.

It should, however, be observed that formulae (26a)

and (28a), though perfectly correct for a given type of

propeller, may lead to results that are impossible in

practice. In particular, if the speed of flight to be attained

is high, 25 m. p. sec. for instance, the value of the product

nD derived from formula (26a) would be 50, corresponding

to a peripheral velocity of 157 m. p. sec., which may well

appear excessive.

The means to be adopted in such a case is to employ
a different type of propeller with a greater pitch ratio
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0-90 for instance. This would give the coefficient a, in

formula (26), a value 0'65, and the product nD would

have the more reasonable value 38.

Similarly, it may be necessary to use a certain engine
which runs at a given number of revolutions when de-

veloping its full power. If the rotational velocity n

resulting from formula (26a) differs widely from the

number of revolutions of the engine, it becomes necessary
either to gear down the propeller or to modify its pitch
ratio.1

Up to now nothing has been said of the calculation of

the motive power to be exerted on the propeller shaft.

This power may be easily obtained through dividing the

useful power VTOJ by the efficiency of the propeller, the

value of which depends on that of its characteristics, the

pitch ratio and the fineness. Since the values of Vm and

J are given respectively by formulae (26) and (28), the

value of the motive power is obtained from the following' :

(29) Tm= jBVD,
wherein the value of the coefficient c depends, as in the

case of a and 6, on the value of the propeller's character-

istics.

With good propellers of the usual type, whose efficiency

is about 70 per cent., formula (29) becomes (TTO being

expressed in H.P.) :

(29a) Twl
= 0-00086VD2

.

Applying formula (29a) to the example given above,

gives, as the value of the motive power required to sustain

the aeroplane, 23'8 H.P., which is less than the 33*3 H.P.

that would have been obtained from Tables II. and IV.

( 24). This divergence is due to the fact that Table IV.

1 The value of coefficients a and b corresponding to the various values

of the pitch ratio may be found theoretically, or, with greater certainty,

by practical experiment. Such practical experiments would prove of the

very highest value to constructors.

O
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was based on the average value obtained in practice with

the propellers of present-day aeroplanes. This average
value cannot be reckoned as 70 per cent., firstly, because only
a limited number of propellers attain to this degree of

efficiency, and secondly, because the propeller is not always

working under the most favourable conditions. The mean

efficiency on which Table IV. was based was reckoned

as 50 per cent.

89. Relation between the propeller diameter and the

detrimental surface of the aeroplane.

The known factors in the general problem just con-

sidered were the speed of the vehicle to be propelled and

the thrust required to attain this speed.

Now these two factors, so far from being independent
of one another, are, in the case of an aeroplane, as has

been seen in 26, connected by the following relation :

(14)

where t, P, K, S, and s stand respectively for the thrust

required for sustentation, the speed, the weight, the lifting

efficiency, the plane area, and the detrimental surface of

the aeroplane.

Thus, in calculating the most suitable propeller for a

given aeroplane, the speed cannot be arbitrarily fixed

at the same time as the thrust required to obtain this

speed, since the value of the one determines the other.

Referring now to what was said in 88, it will be seen

that the method of calculation therein set out leads to the

expression, the speed under consideration being a good

(28) J= 6V2D2
.

Since equations (14) and (28) both express the value of

the same quantity the thrust required to sustain the
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aeroplane and the propeller thrust that produces this

sustentation their second members may be equated :

or, extracting the speed :

P2

(30) ~KS(6D2
-0-08s)'

The important feature of this formula resides in the

fact that, if V is to have real and not infinite values, the

expression within the brackets in the denominator must

necessarily be positive ;
in other words, fcD2 > O'OSs, or :

(31) D>/^.
Hence, in order that one of the speeds* at which the

aeroplane can travel may be a good speed so far as the

propeller efficiency is concerned, the diameter of the pro-

peller must not be less than a certain limit, the value

of which depends on that of the detrimental surface of

the aeroplane. Consequently :

Larger propellers must be used, the larger the detri-

mental surface of the aeroplane; and the propeller

diameter must not be less than a certain limit, other-

wise the efficiency drops.

This feature deserves consideration. It is certainly

remarkable that the diameter in no way depends on the

value of the other characteristics the weight and plane
area of the aeroplane.

It amounts to this, that there must exist a fixed ratio

between the surface of the circle swept by the propeller
and the imaginary disc

( 11) that represents the detri-

mental surface. It could easily be shown that, with the

usual type of propeller with a pitch ratio of 0*75, the

propeller diameter must be greater than the product of

the diameter of the imaginary disc aforesaid by T4.
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Example

The detrimental surface of the aeroplane being 1*80

sq. metres, what is the smallest diameter for a propeller

of the usual type with a pitch ratio of 0-75 ?

The value of the diameter required, according to

(31) is:

1*79 metres.
0-045

In practice, as a matter of fact, this limit for the

diameter must be exceeded,
1 since it corresponds, as

shown by formula (30), to an infinite value of the good

speed. But, on the other hand, the dimension of the

diameter should not be exaggerated, as this would lead

to too small a value of good speed.

In any case, by following the method of calculation set

out in 88, one can arrive with sufficient accuracy at the

correct diameter for a given speed, without incurring the

danger of falling into either excess.

90. The value of static tests.

From the foregoing it is clear that the one quality

to be sought for in a propeller is a high maximum

efficiency, the value of which depends on the pitch ratio

and the fineness.

The only method of measuring directly by experiment
the value of the maximum efficiency of a propeller is to

cause it to propel some kind .of vehicle and to measure

at different speeds the thrust exerted in travelling as well

as the motive power absorbed. This method of testing,

however, requires complicated apparatus, that has only

as yet been installed in a very few laboratories. The

1 Since the value depends on that of coefficient b, it varies with the

pitch ratio of the propeller. If the latter is greater than 0'75, the

diameter limit will also be greater.
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majority of constructors are therefore content with testing
the propeller statically, or on the bench; that is, they

measure, at different velocities of rotation, the thrust it

exerts and the motive power required to produce this

thrust.

Tests of this nature cannot, however, as a rule furnish

direct evidence of the value of propeller efficiency.
1

They
only afford information regarding the capacity of the

propeller to produce, under analogous conditions of work-

ingthat is, statically the greatest possible thrust for

a given expenditure of motive power ;
in other words,

they afford information regarding the quality of the pro-

peller as a lifting-screw. The term quality is here

purposely employed, as it was used by Colonel Renard

to designate a coefficient which defines the common value,

as lifting-screws, of propellers belonging to the same

species, that is, possessing a similar geometrical shape.
The thrust J (in kilogrammes) given out on the bench

by a propeller of diameter D (in metres) driven by a

motive power Tm (in H.P.) satisfies, as shown experi-

mentally by Colonel Renard, the relation :

(32) J3=ATD2
,

where A is a coefficient that measures the quality of the

propeller as a lifting-screw, a quality that only depends on

the shape of the propeller, that is, on its finenes ( 86)\
and, if the pitch is constant, on its pitch ratio h.

For the best lifting-screws known the value of this

quality A varies between 450 and 500; in some cases it

may even reach 550.

An example will show more clearly the practical signi-

ficance of formula (32).

1

Captain Ferber has, however, shown that the coefficients of certain

formulae applicable to the study of screw-propellers could be calculated

from the basis of static tests.
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Calculate the thrust produced, statically, by a pro-

peller of 2 m. diameter, of the type defined by its value

of A = 580, driven by 10 h.p.

Applying formula (32), we obtain :

J3= 480x 100x4,

therefore J = 57'69 kg.

Thus, to test a propeller statically, we must not calcu-

late the simple ratio of thrust to power, for this ratio is

in fact variable with the rotational velocity and diameter

of the propeller.

J3

We have to find the value of A = m 2 j^2 ,
which is ap-

proximately constant, whatever the rotational velocity or

the diameter. The propeller is a better lifting-screw, the

greater the above value (which should be about 480 if the

propeller is to be of normal quality).

Nor is a single test sufficient, for its results may easily

be subject to error; the propeller must be rotated at

different powers, and the mean taken of all the results

in order to form an exact idea of the value of its quality.

The quality A is therefore the final test of the value

of a lifting-screw. The same screw used as a propeller
under the best conditions would have a maximum effi-

ciency e. One would be naturally inclined to believe that

these two qualities A and e vary one with the other, and

that, of two propellers tested statically, the one with the

best lifting quality would give the highest maximum

efficiency when used for propulsion.

But this is not so, save in the one case where the

propellers to be compared (assuming the pitch to be con-

stant) have the same pitch ratio; for in this case the

lifting quality and maximum efficiency depend only on

the fineness of the propeller and vary with it.

But, generally speaking, the lifting quality and the

maximum propelling efficiency vary principally with the
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value of the pitch ratio (the pitch being assumed con-

stant 1
),
and not necessarily in the same sense. Thus, it

has already been seen
( 85) that the efficiency of a propeller

is maximum maximorum when the value of its pitch ratio

is somewhere about TT, that is, 3*14.

Now, Colonel Renard has shown by experiment that

the quality of a lifting-screw is highest when its pitch

ratio has a value of about 0*75.

Consequently, if we compared a series of screws of

pitch ratios ranging from O75 to 3T4, we should find

that their propelling efficiency grows with the value

of the pitch ratio, while their lifting quality diminishes.

For instance, a screw with a pitch ratio of 2'5 would, if

used as a propeller under good conditions ( 87), have

excellent efficiency, while it would be an indifferent lifting-

screw.

As a matter of fact, the average type of screw-propeller

used at the present day has a pitch ratio of about 0'75,

so that it is, as a rule, a good lifting-screw at the same

time. This, however, is a pure coincidence. If we

suppose that in the future propellers of much greater

pitch ratio than 0'75 will be used to propel high-speed

aeroplanes, such propellers would probably give far worse

results when tested statically than those at present in use.

91. Tilt of the aeroplane due to propeller action-

Gyroscopic effect Use of two propellers.

If the aeroplane possessed no automatic lateral stability,

and if its axis of rotation ( 58) coincided with the pro-

peller axis, the revolution of the propeller would cause

the aeroplane to rotate slowly in the opposite direction.

A tendency to this effect is actually noticeable in reality,

1 In the case of variable-pitch propellers (such as those designed by
Drzewiecki for instance) the question becomes extremely complicated ;

in

any case it has not yet been proved that the same helicoidal surfaces are

suitable for both screw-propellers and lifting-screws.
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but it is checked, if the aeroplane is laterally stable, by
the righting moment that arises from its tilt.

The aeroplane then flies with a slight permanent lateral

tilt, which produces a constant tendency to turn it. Since

such a tilt cannot be permitted in practice, two methods

may be adopted to prevent it : either the position of the

centre of gravity must be rendered unsymmetrical by

suitably distributing the masses in the aeroplane, or two

propellers must be used turning in opposite directions,

thus counter-balancing one another.

Consideration of another effect, known as the gyro-

scopic effect, may also lead to the adoption of the latter

method.

It is known that when a force is applied to the axis of

a gyroscope tending to displace it in a certain direction, it

actually tends to move in a direction at right angles to the

forrner, and with the greater energy according as the force

applied to it is more violent, the velocity of revolution

higher, and the moment of inertia of the gyroscope

greater.

The propeller of an aeroplane may set up effects of this

kind, more especially if it is heavy ; thus, a sudden hori-

zontal deviation may, if violent enough, set up a tendency
to pitch longitudinally.

This tendency, undesirable even in itself, has the further

disadvantage of subjecting the framework to stresses which

may easily become dangerous if they have not been pro-

vided for. Consequently, it is desirable to eliminate the

gyroscopic effect, which can be done by the use of two

propellers ; but, although this method has several advan-

tages, there are distinct practical difficulties that have

hitherto strictly limited its use.

The calculation of two propellers follows precisely the

lines of the method used in the case of a single one. We
only need to apply formula (28), giving the thrust J half

the value of the thrust required to sustain the aeroplane.



THE SCREW-PROPELLER 217

From this we can deduce the required propeller diameter

and, applying formula (26), the joint rotational velocity.

Referring once again, for the sake of greater clearness,

to the example already considered in 88, where the

required thrust was 70'6 kg., we should require in the

present case a thrust of 35'3 kg. from each propeller,

which gives the diameter :

0-045 x(!7'68)
2

The velocity of rotation is :

1 tr./^o

n =
0-5 x 1*58

35 '3 = about 1-58 m.

r.p.m.

These brief calculations show that we can apply the

results for a single propeller to the case of two propellers

by multiplying the number of revolutions and dividing

the diameter by *J%, or T414.

The power required for sustentation does not vary,
1

since it is proportional to the product of the given factors

of the problem the speed of the aeroplane and the thrust

required to attain this speed.

92. Influence of the curve and shape of propeller-

blades Influence of the number of blades.

In considering the planes of the aeroplane, the im-

portant effect of the curve in the planes was examined,

both in increasing the lift and diminishing the drift. It

seems only reasonable to suppose that the curvature of the

propeller-blades should conduce to similar effects, and

that, in the case of screws used for propulsion, these

advantages should be evidenced in an increased efficiency.

Nothing absolutely definite is known in regard to this

point, but various considerations would seem to show that

1
Provided, of course, that all the propellers in question have, as we

have tacitly assumed, the same maximum efficiency.
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one of the chief effects of curving the propeller-blade is to

maintain the efficiency to a better extent when the actual

angle of incidence of the blade, that is, the ratio between

the forward speed and the rotational velocity, varies. In

other words, this constructional device would enable the

propeller to be used at speeds differing considerably from

a good speed, without incurring a serious loss of efficiency.

The shape in plan-form of the propeller-blade must

obviously affect the maximum efficiency of the propeller ;

but on this point few experiments have been made, and

guesswork is not wholly absent from design in this respect.

Many constructors design their propellers with a curved

leading edge (Fig. 89). It has been stated by some, in

support of this conformation, that the marks left on the

propeller-blade, after rotation, by dust particles and oil

assume this shape. Others and with better apparent

justification claim that the curved leading edge reduces

the vibration due to the torsional stresses on the blades.

Finally it may be stated that :

An increase in the number of blades only seems to

have a slight effect on the efficiency of a propeller.

It appears, however, that a four-bladed propeller is

slightly more efficient than one with two blades.

93. Bending stress on a propeller-blade Articu-

lated blades.

The thrust and the resistance to rotation exerted on
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a propeller-blade, which is only maintained in position

by being fixed in the boss, subject it to a bending stress
;

such forces may deform or even break it, if its strength is

insufficient, and in any case probably constitute a source

of harmful vibration.

Colonel Renard invented an ingenious method of over-

coming this disadvantage without increasing the weight

o

FIG. 90.

of the propeller. This method consists in articulating

the blades at the point where they are mounted on the

boss.

Let OA (Fig. 90) represent diagrammatically a propeller

blade articulated at 0.

Since the blade is subjected on the one hand to a

thrust j, and on the other to a centrifugal force /, it auto-

matically takes the direction of the resultant of the two
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forces exerted upon it, and is consequently no longer

subjected to a bending strain.

Similarly, by articulating the blade in the direction in

which is exerted the resistance to rotation, or drift, q

(Fig. 91), this force is neutralised by
the centrifugal force, and the blade

axis BA takes the direction of the

resultant. But for this, the point of

articulation B must be situated at

some distance from the propeller
axis XX.

It should, however, be noted that

the direction taken, in both cases

under notice, by the propeller-blade
is independent of the rotational velo-

city, since each of the three forces j,

q, and / is proportional to the square
of this velocity.

To apply Colonel Renard's method

each blade must be doubly articulated,

with a Cardan joint for instance.

Propellers of this type have, in

fact, been built.1
But, as Colonel

Renard himself showed, it may be

FIG. 91. Elevation, per-
sufficient for practical purposes to

pendicuiar to axis.
give tne bia(je fa suitable direction

in both senses, the while keeping the propeller rigid. By
this means the bending strain would be eliminated.

Throughout the course of the foregoing treatise every

effort has been made to preserve its theoretical nature;

for this reason care has been taken not to overload it with

1 The propellers of the Italian dirigible, for instance. Other pro-

pellers (German
" Parseval

"
type) are limp when at rest, and only acquire

the necessary rigidity, when rotating, by centrifugal force.
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such extraneous matter as historical references, descrip-

tions of machines, or details of construction.

Recourse has only been had to the most elementary

principles of mathematics and mechanics, while an attempt
has been made to reduce to the lowest possible point the

use of formulae, the mere sight of which only too often

inclines the reader to throw aside the book that contains

them, after a rapid glance at its pages. Perhaps it is not

too much to hope that the present work at first sight will

not appear too dry and severe, in spite of the strictly

scientific nature of its subject, to find a place upon those

library shelves that are reserved for books of enduring
interest and value.

And, on the other hand, some of its readers who

might well have been repelled at first by books of a more

scientific character may be led to take a deeper interest

in the subject whereof it treats, and so be induced to make
a more profound study, in more advanced works, of many
problems that had perforce to be dismissed in somewhat

summary fashion in the foregoing pages.

Even had we attained to no better result than this, to

serve as it were as an introduction to scientific authority

of greater eminence, we would deem ourselves fortunate in

having been able to assist, however slightly, the further-

ance of the grandest task whereto man has ever set his

hand
;
in having contributed a pebble to the magnificent

edifice that future generations will behold complete.
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METRIC AND ENGLISH EQUIVALENTS
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TABLE I

FEET AND METRE CONVERSION TABLE

Feet.
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TABLE II

MILES AND KILOMETRES CONVERSION TABLE

Miles.
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TABLE III

METRES PER SECOND AND MILES PER HOUR

Metres per Second.
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TABLE IV

VELOCITY AND PRESSURE OF THE WIND

Kg. per Square Metre.

(R=-075V2).
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TABLE V

DEGKEES, GRADIENTS, AND SINES

Degrees.
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SYMBOLS AND NOTATION USED IN THE
PRESENT WORK

S . . . Area (in sq. metres).

p . . . Total air-pressure on normal flat plane (in kilos.) = O08 SV2
(1).

V . . Relative wind velocity (metres per second)= ASVV Kbt
5 ... Total air-pressure on inclined flat plane (in kilos.) = JcSV2

i ( 2).

i . . . Angle of incidence (expressed as decimal fraction) 2, 3.

Jc . . . Coefficient of air resistance on flat planes. For value see

footnote, p. 4.

Q . . Total air-pressure on inclined curved plane (in kilos.) = KSV 2
i

( 3, 5).

K . . Lifting efficiency ;
coefficient of air resistance on curved plane

of good aspect ratio= 0'4
( 3).

P . . . Weight of aeroplane (in kilos.) = F =KSV 2
i

( 5).

F . . . Lift ; vertical component of air resistance P= Q.
VR . . Normal speed (7,8).
iR . . Normal angle of incidence

( 7, 8).

R . . Total air resistance on an aeroplane ( 11).

t . . . Drift of an aeroplane, or thrust (in kilos.) =
(11).

A ... Drift of the planes alone, or active resistance= Pi
( 11).

p
s ... Detrimental surface

;
head resistance of an aeroplane =^ (11).

i\. . . Optimum angle= ^( 12).

|j. . . Minimum thrust= 2?^ ( 12).

Vj . . Most efficient speed ( 12).

/. . . Fineness=t ( 14).
h

V*
Tu . . Useful power= (in horsepower) 18 and 24.

T,B Motive power= 2T ( 19 and 24).

\ e Economical angle of incidence = ilv/3 ( 20).
Ve . . Economical speed ( 20 and 27).
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