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One of the two " clinometers " in use in the Testing Laboratory of the College of Civil En^-
neering at Cornell University (see p. 241). The main barrel or sleeve of the instrument encircles

the horizontal shaft or rod (in testing machine) whose angle of torsion is to be obtained, near

one extremity of the same. At each end of the barrel are four brass screws having smooth
rounded ends where they bear on the shaft. These are used for centering the barrel on the

shaft, but do not grip it. The four steel " gripping screws," at the middle of the barrel, are

thumb-screws with flat heads and hardened sharp points. They serve to grip the shaft after

the centering is completed. After the shaft has thus been gripped at a certain transverse

section, the collar carrying the graduated arc is clamped upon the barrel, the plane of the arc

and its vernier arm being that of the points of the gripping screws. By taking a reading of the

vernier on the arc at any stage of the test (the vernier-arm being adjusted each time so that the

bubble of the spirit level carried by this arm is brought to the center ot its scale) and subtract-

ing its initial reading, the angle through which the transverse section has turned from its initial

position becomes known. The second clinometer is placed at another transverse section, near

the other end of the shaft, and serves to measure its turning movement. The difference of

these movements is the angle of torsion. The verniers read to single minutes. (The shaft in

above figure is H in. in diameter).
Frontispiece.
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PREFACE.

In presenting a revised edition of this work for the use of technical

schools the writer would call attention to the principal changes that have
been made; omissions as well as additions.

The chapter on "Continuous Girders by Graphics" has been omitted

in its entirety, while the graphic treatment of the horizontal straight girder,

formerly a part of the chapter on "Arch Ribs," has been removed to the

appendix, in which will also be found varioiis paragraphs involving special

problems in flexure, once located in the body of the book. Former chap-

ters V and VI in Part III, on beams under oblique forces and on columns,

respectively, have been merged in one (Chapter VI), -^e matter having been
largely rewritten and more fully illustrated, with introduction of the more
modern formiiisB for columns and some treatment of the problem of eccen-

tric loading.

Chapter V in Part III of the revised book, on "Flexure of Reinforced

Concrete Beams," is entirely new and presents both theory and numerical '

illustration; as also diagrams aiding in practical design. New matter will

also be found in an analytical treatment of "Circular Ribs and Hoops,"
placed at the end of the chapter on "Arch Ribs." Two other new chapters

in Part III, are XII, on the flexure of beams treated by a geometrical method
(which, however, does not call for the use of drafting instruments) leading

to a very simple and available form of the Theorem of Three Moments ; and
XIII, which gives the analysis of stresses in thick hollow cylinders and
spheres. A few pages on the strength of plates have also been added in

Chapter III.

In Part IV additional matter is presented relating to the differential

manometer, gas- and oil-engines, the Cippolletti weir, losses of heads in

pipes and bends, the hydraulic grade-line, the Venturi meter, current-meters,

Pitot's tube, use of Kutter's formula, etc. In Parts I and II numerous
additional examples and illustrations are introduced while many pages have
been rewritten throughout the book, aside from the new chapters already

referred to. Tables of logarithms, trigonometric functions, and hyperbolic

sines and cosines, will be found in the appendix.

Grateful acknowledgment is again due to Dr. H. T. Eddy for the use of

his methods* in treating arch ribs; to Prof. C. L. Crandall for the chapter

on retaining-walls ; and to Col. J. T. Fanning for the table of coefficients

of friction of water in pipes. The writer would also extend his thanks to

Messrs. Buff and Buff of Boston, for the half-tone cut of their current-meter;

and to Builders Iron Foundry of Providence, R. I., for the engravings

illustrating the Venturi meter.
Cornell University, Ithaca, N. Y,

June, 1908.

Note.^Additional matter involving many examples and forming an
appendix to the present work, but too bulky to be incorporated with it,

was issued in a separate volume in 1892 and entitled "Notes and Examples in
Mechanics." A second edition, revised and enlarged, was published in 1897.

* See pp. 14 and 25 of " Researches in Ghaphical Statics." by Prof. H. T. Eddy, C.E.,
Ph.D., publi.shed by D. Van Nostrand, New York, 1878, reprinted from Van Nostrand's
Magazine for 1877; or the German translation of the same, " Neue Constructionen aus der
Graphischen Statik," published by Teubner u. Cie., I.eipsic, 1880.



INTRODUCTORY NOTES.

Preparation.—Prior to tlie use of this book the student is supposed to have
had the usual training given in technical schools in analjrtical geometry and
in the differential and integral calculus ; and also a year of college physics.

Gravitation Measure of a Force. Mass and Weight.—Since the gravitation
measure of a force is the one almost exclusively used by engineers, a brief resume
of its nature is here given, aside from the paragraph of p. 835, Appendix.

The amount of matter in a certain piece of platinum, kept by the British
government, is called by the physicist a pound of mass, but the engineer
understands by the word "pound" the force of gravitation, or weight, exerted
by the earth on this piece of metal at London; and if this piece of metal
be supported, at London, by a spring balance, the scale of which is so grad-
uated that the pointer now stands at unity, such a balance constitutes a
standard instrument with which to measure forces for the purposes of the
engineer. According to the indications of such an instrument the same
piece of metal, if suspended on the same balance at the equator, at sea-level,

would be found to weigh only 0.997 lbs. (force) on account of the diminished
intensity of gravitation; the difference, however, being only about three
parts in a thousand, or one-third of one per cent. For ordinary engineering
problems involving the strength of structures, this difference is of no prac-
tical importance.
A unit of force based on this gravitation method is called a gravitation

measure of force. The mass of the piece of platinum, has, of course, suffered

no change in the transit from London to the equator, and since the fraction
obtained by dividing the weight (obtained from the spring balance) by the
acceleration of gravity, g, is constant, regardless of the place where the two
quantities are measured, it is convenient (though not essential) for the
engineer to give the name "mass" to this fraction when it occurs in the
equations of kinetics. For instance, since g (for foot and second) =32.18 at

1.000 0.997
London, and 32.09 at the equator (at sea-level), we note that „^ „ = „^ ^„

=0.03108.
Arithmetic.—In arithmetical operations the student should remember

that the degree of refinement attained or employed does not depend on the
number of decimal places used, but upon the number of significant figures.

Thus, each of the quantities 0.0003674 and 510.4 contains four significant

figures. For instance, let us suppose that the value of x is to be obtained
from the relation x= a-b, where a= 0.0000568 and b= 0.0000421. Should
the student conclude that five decimal places would be accurate enough and^

thus write 0.00005 for a, and 0.00004 for b, he would obtain a:= 0.00001, con-
taining only one significant figure; whereas the true result is a; = 0.0000147.
Hence the former result is seen to be in error to the extent of 47 parts in

147, or 32 parts in 100, i.e., 32 per cent. ; which is a very gross and totally

unnecessary error. Values obtained from the ordinary 10-inch slide rule

usually contain only three significant figures (four if near left of scale).

Logarithms.—The following facts and operations are not usually fresh in

the student's mind. The logarithm of a number less than unity is a negative
quantity but is usually expressed as the algebraic sum of a positive mantissa
(or decimal part) and a negative characteristic which is a whole number;

thus, the common logarithm of 0.20 is f.301030 . . . , that is, log. 0.20=
-1-0.301030-1.000000 (or, -1-9.301030-10). This should be borne in mind
in raising such a number to any power. For example: required the value of

Solution.—^^OMQl and log. 0.8461 = 1.9274, i.e., =0.9274-1.0000.

Hence 0.71 X log. 0.846_1 = 0.71(0.9274 -1.0000), =0.6584 -0.7100,

= -0.0516= 1.9484= log. 0.8880; therefore a;=0.8880.

Note that, according to the definition of a logarithm, the statement
en=m is equivalent to the statement n = loge m.

iv



MATHEMATICAL DATA.

Trigonometry. cos^A +sin^A = 1.

cos^A — sin^A ^ cos 2

A

sin 2A = 2 sin A cos A
cos 2A =cos^A — sin^A

sin A
1 — cos A

Solution of Oblique Triangles, etc.

B

2 sinM = l — cos 2A.

2cos2A = l + cos2A.

tan A 1

cot iA =

.

sin A =

cos A =

Vl+tan^A cosecA

1 1

Given a, b, B; to find A

:

a, b, C;

a,b,C;

a, b, c:

A:

c:

C:

sin A =

tan A =

Vl+tan^A sec A

sin A _ sin B_ sin C
a b c '

d = a sin C d= c sin A

m= c cos A n= o cos C

d=mtanA d=n tan C

a sin B

a sin C

cos C

b— a cos C

c' = a^ + &^— 2a& cos C
a^ + b'^ — c^

2ab

^—{a-

r

(the

Mensuration. Area of a circle =;rr';

^ circumference = 2n,r. Area of sector

^ / a°
A5C0A=(3gQ,

latter a ia radians). Vol. of sphere=
4
^Ttr^. Area of the segment, ABCDA, of

a circle,

W
= (area of sector ABCOA)- (area of triangle ACO).

Area of rightsegment of a para6oto= two-

thirds that of circumscribing rectangle,

= f(2/ia). Equation to curve OA is

v^ X —
p= -. Distance OC, of center of gravity,

3
is X= ?a, from vertex 0.

ti
o



VI MATHEMATICAL DATA.

Integral Forms.—(Each integral to be taken between limits, or to have

a constant added and determined). (See also p. 480.)

ixndx
xn+1

J
n+ 1

cos X da; = sin x;

j* dx

J X

dx

\/.T^ ± a'

dx

= sin— ix;

= loge(a;+v'x^

1

isin x dx= — cos x
;

' dx

1 + x^

'-'y' \^a

tan— ix;

dx

+ hx— cx^

, y/ab + bx
loge -7=- l'=-2^'^oge{a-bx^).

\a-bx^ SVab'"* Vab-bx' ja-bx^

Numerical Constants.—The acceleration of gravity, g, (for the English

foot and second) is 32.16 for the latitude of Philadelphia at sea-level, and

for any latitude ji, and elevation h above sea-level, is

32.1723-0.0833 cos 2/?-0.000003/i.

For ordinary problems in mechanics, however, in the northern United

States g may be taken as 32.2, for which value we have

\/23 = 8.025; - = 0.03105;
9

and j^ =0.01553.

22
The ratio 7r = 3. 141592, or approx. 3J-, i.e., -=-;

-=0.31831; ;r2 = 9.86960; ^=0.10132; V'7r= 1 .77245.

1° = 0.01745 radians. One radian= 57° 17' 44.8".

If n denote, any number, then

Login (n) = 0.43429 X logs (r>) ; and loge (n) =2.30258 Xlogio (n).

Base of nat. logs. = e, =2.71828; base of Briggs system= 10.

GREEK ALPHABET.

A a
B p
ry

E €

z c
H V
Odd
I I

K K
A X

Mix

Names,

Alpha

Beta

Gamma
Delta

Epsilon

Zeta

Eta

Theta

Iota

Kappa
Lambda
Mu

Letters. Names.

N V Nu
E a Xi

o Omicroa
Htt Pi

P P Rho
2 (T s Sigma
T t Tau
Tv UpsiloQ

Phi

Xx Chi

W^ ip Psi

n CO Omega
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MEOHAmCS OF ENGINEERING.

PEELIMINARY CHAPTER.

1. Mechanics treats of the nnitual actions and relative mo-

tions of material bodies, solid, liquid, and gaseous ; and by

Mechanics of Engineering is meant a presentment of those

principles of pnre raeclianics, and their applications, which are

of special service in engineering problems.

2. Kinds of Quantity.—Mechanics involves the following

fundamental kinds of quantit}' : Space, of one, t\vo, or three

dimensions, i.e., length, surface, or volume, respectively ; time,

which needs no definition here; force and mass, as defined be-

low; and abstract numbers, whose values are independent of

arbitrary units, as, for example, a ratio.

3. Force.—A force is one of a pair of equal, opposite, and

simultaneous actions between two bodies, by which the state*

of their motions is altered or a change of form in the bodies

themselves is effected. Pressui-e, attraction, repulsion, and

traction are instances in point. Muscular sensation conveys

the idea of force, while a spring-balance gives an absolute

measure of it, a beam-balance only a relative measure. In

accordance with Newton's third law of motion, that action and

reaction are equal, opposite, and simultaneous, foi'ces always

occur in pairs; thus, if a pressure of 4:0 11)S. exists between

bodies A and B, if A is considered by itself (i.e., " free"),

apart from all other bodies whose actions upon it are called

forces, among these forces will be one of 40 lbs. directed from

B toward A. Similarly, if B is under consideration, a force

* The state of motion of a small body under the action of no force, or of

balanced forces, is cither absolute rest, or uniform motion in a right line.

If the motion is different from this, the fact is due to the action of an un-

balanced force (§ 54),
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of 40 lbs. di]-ected from A toward £ takes its place ;imoiig the

forces acting on £. This is the interpretation of Newton's

third law,

[Note.—In some common phrases, such as " The tremendous force '' o^ a heavy Dody in

rapid motion, the word force is not used in a technical sense, but signifies energy (as ex-

plained in Chap. VI.). The mere fact that a body is in motion, whatever its mass and

velocity, does not imply that it is under the action of any force, necessarily. For instance,

at any point in the path of a cannon ball through the air, the only forces acting on it ara

the resistance of the air and the attraction of the earth, the latter having a vertica in(J

downward direction.]

4. Mass is the quantity of matter in a body. The masses of

several bodies being proportional to their weights at the same

locality on the earth's surface, in physics the weight is taken

as the mass, but in practical engineering another mode is used

for measuring it (as explained in a subsequent chapter), viz.'.

the mass of a body is equal to its weight divided by the ac-

celeration of gravity in the locality where the weight is taken,

or, symbolically, M= G -r- g. This quotient is a constant

quantity, as it should be, since the mass of a body is invariable

wherever the body be carried.

6. Derived Quantities.—All kinds of quantity besides the

fundamental ones just mentioned are compounds of the latter,

formed by multiplication or division, such as velocity, accele-

ration, momentum, work, energy, moment, power, and force-

disti'ibution. Some of these are mej-ely names given for

convenience to certain combinations of factors which come

together not in dealing with first principles, but as a result of

common algebraic transformations.

6. Homogeneous Equations are those of such a form that they

are true for any arbitrary system of units, and in which all

terms combined by algebraic addition are of the same kind.

of
Thus, the equation s = ~ (in which g = the acceleration of

gravity and t the time of vertical fall of a body in vacuo,

from rest) will give the distance fallen through, «, whatevei

units be adopted for measuring time and distance. But if foi
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g we write the niimerlcal value 32.2, which it assumes when

time is measured in seconds and distance in feet, the equation

s = IQ.lf is true for those units alone, and the equation is not

of liomogeneous form. Algebraic combination of homogeneous

equations should always produce homogeneous equations ; if

not, some error has been made in the algebraic woi'k. If any

equation derived or proposed for practical use is not homogene

ous, an explicit statement should be made in the context as to

the proper units to be employed.

7. Heaviness.—By heaviness of a substance is meant tlie

weight of a cubic unit of the substance. E.g. the heaviness of

fresh water is 62.5, in case the unit of force is the pound,

and the foot the unit of space; i.e., a cubic foot of fresh

water weighs 62. 5 lbs.* In case the substance is not uniform

in composition, the heaviness varies from point to point. If

the weight of a homogeneous body be denoted by G, its volume

by F", and the heaviness of its substance by y, then G = Yy,

Weight in Pounds of a Cubic Foot (i.e., the heaviness) of vakious
MATEIIIAL&

Anthracite, solid 100

" broken 57

Brick, common hard 125

" soft 100

Brick-work, common 112

Concrete 125

Earth, loose 72

" as mud 102

Granite 164 to 172

Ice 58

Iron, cast 450

" wrought 480

Masonr}^ dry rubble 138
" dressed granite or

limestone 165

Mortar 100

Petroleum
_ 55

Snow 7
" wet 15 to 50

Steel 490

Timber 25 to 60

Water, fresh 62.

5

sea 64.0

8. Specific Gravity is the ratio of the heaviness of a material

to that of water, and is therefore an abstract number.

9. A Material Point is a solid body, or small particle, whose
dimensions are practically nothing, compared with its range of

motion.

- Or, we may write 62.5 lbs./cub. ft.; or 62.5 Ibs./ft.^
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10. A Eigid Body is a solid, M-liose distortion or change of

form under anj system of forces to be brought upon it in

practice is, for certain purposes, insensible.

11. Equilibrium.—When a system of forces applied to a

body produces the same effect as if no force acted, so far as

the state of motion of the body is concerned, they are said to

be balanced, or to be in equilibrium. [If no force acts on a

material point it remains at rest if already at rest ; but if

already in motion it continues in motion, and uniformly

(equal spaces in equal times), in a right line in direction

of its original motion. See § 54.]

12. Division of the Subject.—^to^^'c* will treat of bodies at

rest, i.e., of balanced forces or equilibrium; kinetics, of

bodies in motion ; strength of materials will treat of the effect

of forces in distorting bodies ; hydraulics, of the mechanics

of liquids and gases (thus mcXxx&mg j)7ieumatics).

13. Parallelogram of Forces.—Ducliayla's Proof. To fully

determine a force we must have given its amount, its direc-

tion, and its point of application in the body. It is generally

denoted in diagrams by an arrow. It is a matter of experience

that besides the point of application already spoken of any

other may be chosen in the line of action of the force. This

is called the transmissibility of force; i.e., so far as the state of

motion of the body is concerned, a force may be applied any-

where in its line of action.

The Resultant of two forces (called its components) applied

at a point of a body is a single force applied at the same point,

which will replace them. To prove that this resultant is given

in amount and position by the diagonal of the parallelogram

formed on the two given forces (conceived as laid off to some

scale, so many pounds to the inch, say), Duchayla's method

requires four postulates, viz. : (1) the resultant of two forces

must lie in the same plane with them
; (2) the resultant of two

equal forces must bisect the angle between them
; (3) if one of

the two forces be increased, the angle between the other force

and the resultant will be greater than before; and (4) the trans-

missibility of force, already mentioned. Granting these, we

proceed ns follows (Fig. 1) : Given the two foi'ces P and Q -
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P' + P" {P' and P" being each equal to P, so that Q = 2P),

applied at 0. Transmit P'[ to A. Draw the parallelograms

OP and AP ; OP will also be a parallelogram. By postulate

(2), since OP is a rhombus, P and P' at may be replaced by

a single force P acting through P. Transmit P' to P and

replace it by P and P\ Transmit P from P to A, P' from

P to i?. Similarly P and i-*", at A, may be replaced by a

single force P" passing through P ; transmit it there and re-

solve it into P and P" . P' is already at P, Hence P and

P' -\- P'\ acting at J?, are equivalent to P and P' -f- P" act-

ing at {?, in their I'espective directions. Therefore the result-

ant of P and P' -\- P" must lie in the line OP^ the diagonal

of the parallelogram formed on P and Q = 2P at O. Similarly

SLg-a
C/ FV /B

--:^...N^.;::JD

H\E

Fig. 2.

this may be proved (that the diagonal gives the direction of

the resultant) for any two forces P and mP ;
and for any two

forces nP and mP, m and i^ being any two whole numbei-s,

i.e., for any two commensurable forces. When the forces are

incommensurable (Fig. 2), P and Q being the given forces,

we may use a reductio ad ahsurdum^ thus : Form the parallelo-

gram OP on P and Q applied at 0. Snppose for an instant

that P the resultant of P and Q does not follow the diagonal

OP, but some other direction, as OP'. Note the intersection

H, and draw HG parallel to PP. Divide P Into equal parts,

each less than HP ; then in laying off parts equal to these from

O along OP, a point of division will come at some point F
between C and P. Complete the parallelogram OFEG. The

force Q" = OF is commensurable with P, and hence their
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resultant acts along OE. Now Q is greater than Q'\ while R
makes a less angle with P than OE^ which is contrary to pos-

tulate (3); therefore R cannot lie outside of the line OD.
Q. E. D.

It still remains to prove that the resultant is represented in

amount, as well as position, by the diagonal. OD (Fig. 3) is

••. /p' the direction of M the resultant of P and

/F ''\^ Q ; required its amount. If P' be a force

^"~—
"^^r:;^ y equal and opposite to P it will balance P

••• i^ "''nD/. ^^^ Q 5 ^'^j tl^^ resultant of P' and P
P

l^'-<
must lie in the line QO prolonged (besides

^^**' ^' being equal to Q). We can therefore de-

termine P' by drawing PA parallel to DO to intersect QO
prolonged inA ; and then complete the parallelogramBF on BO
and BA as sides. Since OFAB and AODB are paraUelograms,

OF must=5A and BA must= OL'. Hence OF and OD are

equal and lie on the same right line. Evidently if R^ were

any shorter or any longer than OF the resultant of it and

OB(=P) would not take the direction QOA. Hence R^ must

= 0F, i.e., =0D', and hence R=zOD in amount. Q. E. D.

Corollary.—The resultant of three forces applied at the same

point is the diagonal of the parallelopiped formed on the three

forces.

14. Concurrent forces are those whose lines of action intersect

in a common point, while non-concurrent forces are those which

do not so intersect ; results obtained for a system of concurrent

forces are really derivable, as particular cases, from those per-

taining to a system of non-concurrent forces.

15. Resultant.—A single force, the action of which, as re-

gards the state of motion of the body acted on, is equivalent to

that of a number of forces forming a system, is said to be the

Resultant of that system, and may replace the system ; and con-

versely a force which is equal and opposite to the resultant of

a system will balance that system, oi', in other words, when it

is combined with that system there will result a new system in

equilibrium ; this (ideal) force is called the Anti-resultant.

In general, as will be seen, a given system of forces can al-
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ways De I'eplaced by two single forces, but tliese two can be

combined into a single resultant only in particular cases.

15a. Equivalent Systems are those which may be replaced by

the same set of two single forces— or, in other words, those

which have the same effect, as to state of motion, upon the

given body.

15b. Formulae.—If in Fig. 3 the forces P and $ and the angle or=
PO Q are given, we have, for the resultant.

JS = OD = V-f" + §' + 2 Pg cos tx.

(If a is > 90° its cosine is negative.) In general, given any three parts

of either plane triangle D Q, or D B, the other three may be obtained

by ordinary trigonometry. Evidently if a = 0, R = P + Q; ifa =
180°, i? = P - ^ ; and if a =t 90°, R = V -?" + Q"-

15c. Varieties of Forces.— Great care should be used in deciding

what may properly be called forces. The latter may be divided into ac-

tions by contact, and actions at a distance. If pressure exists between two

bodies and they are perfectly smooth at the surface of contact, the pressure

(or thrust, or compressive action), of one against the other constitutes a force,

whose direction is normal to the tangent plane at any point of contact (a

matter of experience) ; while if those surfaces are not smooth there may also

exist mutual tangential actions or friction. (If the bodies really form a

continuous substance at the surface considered, these tangential actions are

called shearing forces.) Again, when a rod or wire is subjected to tension,

any portion of it is said to exert a pull or tensile force upon the remainder ;

the ability to do this depends on the property of cohesion. The foregoing

are examples of actions by contact.

Actions at a distance are exemplified in the mysterious attractions, or re-

pulsions, observable in the phenomena of gravitation electricity, and mag-
netism, where the bodies concerned are not necessarily in contact. By the

term weight we shaU always mean the force ot the earth's attraction on the

body in question, and not the amount of matter in it.

lad. Example 1.—If OD, = R, is given, =40 lbs., while the angle BOD
is 110° and QOD= 40° (also= ODB), find the components P and Q.

Solution.—From the triangle BOD, OB.OD: :sin 40°: sin 30°; whence
P, or OB, = (40X0.6428) -^ 0.5000 = 51.42 lbs.

Similarly, from triangle BOD, we have BD:OD: :sin 110°: sin 30°,

.-. Q, or 5Z), = (40X0.9397) ^0.05000 = 75.17 lbs.

Example 2.—Given P= 20 lbs., Q = 30 lbs., and angle a{ = POQ), =115°,

find the resultant R in amount and direction. As to amount

R^s/{20)'+{30) +2X 20X30 X( -0.4226) = V792:88 = 28.16 lbs.

As to direction, let /? denote the angle ODB,==QOD; we then have,

from triangle OBD, 20:28.16: :sin /?:sin 65°; whence, solving,

sin/? =(20X0.9063)^-28.16 = 0.6437; i.e., angle ^= 40° 4'.



PART I.-STATICS.

CHAPTER I.

STATICS OF A MATERIAL POINT.

16. Composition of Concurrent Forces.—A system of forces

acting on a material point is necessarily composed of concurrem:

forces.

Case I.—All the forces in One Plane. Let be the

material point, the common point of apph'catiou of all the

forces ; Pj, P^, etc., the given forces, making

""j?z angles tVj, a^^ etc., with the axis X. By the

-/A -p^p, parallelogram of forces P, may be resolved

^/J2^4^i i

i^to and replaced by its components, P^ cos or,

-^-*

—

'-—*^—^ acting along JT, and P^ sin a^ along Y.
Fig. 4. Similarly all the remaining forces may be re<

placed by their X and Y components. We have now a new
system, the equivalent of that first given, consisting of a set of

^forces, having the same line of application (axis X^^ and a

set of I^ forces, all acting in the line Y. The resultant of the

X forces being their algebraic snm (denoted by "^X^ (since

they have the same line of application) we have

^X=^ P^ cos a, -\- P^ COS fl'j + etc. = '2{^P cos «),

and similarly

^Y =^ P^ sin ar, + P^ sin a^ -|- etc. = 2{P sin a).

These two forces, 2X and ^Y^ may be combined by the

parallelogram of forces, giving P = VCSXY -\- i^Y^ ^^ ^^^^

single resultant of the whole system, and its direction is deter-

:sY
mined by the angle or; thus, tan a = ^^r^-; see Fig. 5. For

eQuilibrium to exist, R must = 0, which requires, sejparately^
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'2X^=0, and ^1^= (for tlie two squares {2X^y and

{2 Yy can neither of them be negative quantities).

Case II.—The forces having any directions in space,

but all applied at 0, the material point. Let ^j, P^,

etc., be the given forces, jP^ making the angles a^, ^j, and y^,

respectively, with tliree arbitrary axes, X^ T^, and Z (Fig. 6),

at right angles to each other and intersecting at 0, the origin.

Siniilai-ly let a^, /3^, y^, be the angles made by jP^ with these

axes, and so on for all the forces. By the parallelepiped of

forces, 7^1 may be replaced by its components.

Xi = Pi cos ofj, Yi = Pi cos /3i, and Z^ = JP^ cos ;/, ; and

Y

2Y' R

^^ : X

sx
Fig. 5. Fig. 6. Fig. r.

similai-ly for all the forces, so that the entire system is now-

replaced by the tliree forces,

2X= F, cos a^ + J\ cos a^ -\- etc

;

2 T = P, cos ^, + P, cos 13, + etc

;

^Z = P, cos y, + P^ cos /^ + etc

;

and finally by the single resultant

R = V{2Xf + [2 ry + {2zy.

Therefore, for eqnilibrinm we mnst have separately,

:SX= 0, :SY = 0, and 2Z= 0.

^s position may be determined l)y its direction cosines, viz.,

cos
2x , ^r ^z

a — —^ ; cos // == -jy- ; cos ;k = -^.

17. Conditions of Equilibrium.—Evidently, in dealing with

a system of concurrent forces, it would be a simple matter to
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replace any two of the forces by their resultant (diagonal

formed on them), then to combine this resultant with a third

force, and so on until all the forces had been combined, the

last resultant being the resultant of the whole system. The
foregoing treatment, however, is useful in showing that for

equilibrium of concurrent forces in a plane onlj' two conditions

are necessary, viz., ^JT = and 2 JT = 0; while in space

there are three, 2^= 0, 2Y = 0, and 2Z = 0. In Case I.,

then, we have conditions enough for determining two unknown
quantities ; in Case II., three.

18. Problems involving equilibrium of concurrent forces.

(A rigid body in equilibrium under no more than three forces

may be treated as a material point, since the (two or) three

forces are necessarily concurrent.)*

Problem 1.—A body weighing G lbs. rests on a horizontal

table: required the pressure between it and the table. Fig. 8.

Consider the body free, i.e., conceive all other bodies removed

,

(the table in this instance), being replaced by the

forces which they exert on the first body. Taking

the axis J" vertical and positive upM^ard, and not

+X assuming in advance either the amount or drrec-

|IM tion of JV, the pressure of the table against the

I
body, but knowing that G, the action of the earth

Fig. 8. ^^ ^j^^ body, is vertical and downward, we have

here a system of concurrent forces in equilibrium, in which

the ^ and Y components of G are known (being and —
G respectively), while those, iVx ^"^ -^^ of JV are unknown.

Putting 2^ = 0, we have JV^ -|- = ; i.e., iVhas no hori-

zontal component, .'. iV is vertical. Putting 2Y= 0, we
have iVy — G = 0, .". JV^ =^ -\- G; or the vertical component

of JV, i.e., JV itself, is positive (upward in this case), and is

numerically equal to G.

Peoblem 2.—Fig. 9. A body of weight G (lbs.) is moving

in a straight line over a rough horizontal table with a uniform

velocity v (feet per second) to the right. The tension in an

oblique cord by which it is pulled is given, and = P (lbs.),

* Three parallel forces form an exception ; see §§ 20, 21, etc.
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•which remains constant, the cord making a given angle of

elevation, a^ with the patli of the body. Required the vertical

pressure iV (lbs.) of the table, and also its ^y'

horizontal action F (friction) (lbs.) against

the body

Referring by anticipation to Newton's fii'st

law of motion, viz., a material point acted

•on by no force or by balanced forces is either fig. 9.

.at rest or moving uniformly in a straight line, we see that this

problem is a case of balanced forces, i.e., of equilibrium. Since

there are only two unknown quantities, iV and F, we may
•detei-mine tliem by the two equations of Case I., taking tlie

axes Xand Y as before. Here let us leave the direction of

iVas well as its amount to be determined by the analysis. As
^must evidently point toward the left, treat it as negative in

summing the X components ; the analysis, therefore, can be

•expected to give only its numerical value.

2X = gives P 0,0^ a — F= 0. .-. F = P cos a.

^^I^= givesiV+P sin «- G = 0. .-. I^= G - Psin a.

.". iV is upward or downward according as 6^ is > or < P
sin a. For i\^ to be a downward pressure upon tlie body would

require the surface of the table to be above it. The ratio of the

friction F to the pressure iV" which produces it can now be

•obtained, and is called the " coefficient of friction." It may

Tary somewhat with the velocity. (See p. 168.)

This problem may be looked npon ns arising fi'om an experi-

ment made to determine tlie coefiicieiit of friction between the

given surfaces at the given uniform velocity.

19. The Eree-Body Method.—The foregoing rather labored so-

lutions of very simple problems have been made such to illus-

trate what may be called the "free-body method" of treating any

problem involving a body acted on by a system of forces. It

consists ill conceiving the body isolated from all others which

act * on it in any way, those actions being introduced as so many
forces known or unknown, in amount and position. The sys-

tem of forces thus formed may be made to yield certain equa-

tions, whose character and number depend on circumstances, such

as the behavior of the body, whether the forces are confined to

* That is, in any "force-ahle" way.
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a plane or not, etc. , and which are therefore theoretically avail-

able for determining an equal number of unknown quantities.

li'a. Examples.—1. A cast-iron cylinder, with axis horizontal, rests

against two smooth inclined surfaces, as shown in Fig. 9a. Its length,

I, is 4 ft., diameter, d, is 10 in., and "heaviness" (p. 3) 480 lbs. /cub. ft.

Required the pressures (or "reactions," or " supportivg forces"), P and
Q at the two points of contact A and B. (Points, in the end view.)

These pressures on the cylinder are shown pointing normal to the sur-

faces {smooth surfaces) and hence pass through the center of the body,

p; i \
40° ,

/
,'^ "^^

-^20° J^

;i§p||
G

\'?0''

^] X 4X480= 1047.6 lbs.

Fig. 9a. Fig. 9h.

C, where we may consider the resultant weight, G, of the body to act.

These' three forces, then, form a concurrent system, and the body is

in equilibrium under their action.

4~''^4
.

i:X= gives: +P cos 40°-Q cos 20°+ = 0; (1)

IY = Q " +Psin40° + Q sin 20°-G= 0; . (2)

that is, numerically, 0.7660P-0.9396Q = 0; (3)

and 0.6428P+ 0.3420Q = 0.1047.6 lbs (4)

From (3) we have P=1.227Q, which in (4) gives

(0.7887 + 0.3420)Q = 1047.6 lbs. ; and hence Q = 926.4 lbs. \ .

Therefore P, =1.227Q, =1127.6 lbs. /

Example 2.—Fig. 96. The 4-ton weight is suspended on the bolt C,

which passes through the ends of boom OC^ and tie-rod DC. Bolt C
is also subjected to a horizontal pull tov/ard the left, due to the 2-ton

weight, suspended as shown. . Find the pull P in the tie and the thrust

Q in the boom. Note that the boom is pivoted at both ends and hence
(if we neglect its weight) is under only two pressures; both of which,

therefore (for the equilibrium of the boom), m,ust point along its length..

Hence the thrust Q on bolt C makes an angle of 41° with the horizontal.

Similarly, P, the action of tie-rod on C, is at 15°.

Solution.—At (?>) we see the bolt as a "free body"; in equilibrium

under the four concurrent forces.

2X = Qcos41°-Pcosl5°-(?2-0= 0; (5)

iF= Q sin41°-Psin 15°-Gi-0= 0; (6)

or, numerically, 0.7547Q-0.9659P-2= 0, (7)

and 0.6560Q-0.2588P-4 = (8)

From (7), Q = 2.6514- 1.279P, which in (8) gives

0.6560(2.651 + 1.279P) - 0.2588P= 4

;

that is, 1.740-H0.8390P-0.2588P= 4; and hence, finally,

P= 2.260 ^0.5802= 3.896 tons, and .-. Q = 7.633 tons. Ans.
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CHAPTER 11.

PARALLEL FORCES AND THE CENTRE OF GRAVITY.

20. Preliminary Remarks.—Althongli by its title tliis section

sliould be restricted to a treatment of tiie equilibrium of forces,

certain propositions involving the composition and resolution

of forces, without reference to the behavior of the body under

their action, will be found necessary as preliminary to the prin-

cipal object in view.

As a rigid body possesses extension in three dimensions, to

deal with a system of forces acting on it we require three co-

ordinate axes : in other words, tlie system consists of " forces

in space," and in general the forces are non-concurrent. In

most problems in statics, however, the forces acting are in one

plane: we accordingly begin by considering non-concurrent

forces in a plane, of which the simplest case is that of two

parallel forces. For the present the body on which the forces

act will not be shown in the figure, but must be understood to

be there (since we have no conception of forces independently

of material bodies). The device will frequently be adopted of

introducing into the given system two opposite and equal forces

acting in the same line : evidently this will not alter the e£fect

of the given system, as regards the rest or motion of the body.

21. Resultant of two Parallel

Forces.

Case I.—The two forces have

the same d'u'ection. Fig. 10.

Let P and Q be the given forces,

and AJB a line perpendicular to

them {P and Q are supposed to have sL---3/---Js

been transferred to the intersections ^^<*- ^^^

A and B). Put in at A and B two equal and opposite

forces 8 and S^ combining them with P and Q to form P'

6 "S A

TP t^
i Q Q

< VOr -"^
"f;

X--H

D /B S
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shaded by dots, .•,

iave* -7^ ==
Q X

and Q'. Transfer P' and Q' to tlieir intersection at C, and thera

resolve them again into S and P, /S'and Q. 8 and /iS^ annul each

other at C', therefore P and Q^ acting along a common line CD,
replace the P and Q first given

;
i.e., the resultant of the origi-

nal two forces is a force R =^P -\- Q, acting parallel to them

through the point P, whose position must now be determined.

The triangle CAP is similar to the triangle shaded by lines,

.'. P : S :: GP : a?; and CPB being similar to the triangle

8 '. Q :: a — a? : CP. Combining these, we

'• "^ ^ '^TO "^ %• ^^^ write this

Px = Qa, and add Pc, i.e., i^c-j- Qg, to each member, c being

the distance of (Fig. 10), any point in AP produced, from

A. This wull give P{x -\- c) = Pc -\-Q{a -{- c), in which c,

a-\~ c, and x -\- c are respectively the lengths of perpendiculars

let fall from upon P, Q, and their resultant P. Any one of

these products, such asPc, is for convenience (since products of

this form occur so frequently in Mechanics as a result of alge-

braic transformation) called the Moment of the force about the

arbitrary point 0. Hence the resultant of two parallel forces of

the same direction is equal to their sum, acts in their plane, in

a line parallel to them, and at such a distance from any arbi-

trary point in their plane as may be determined by writing

its moment about equal to the sum of the moments of the

two forces about 0. O is called a centre of moments, 'dud each

of the perpendiculars a lever-arm.

Case II.—Two parallel forces i^ and Q of opposite direc-

11. By a process similar to the foregoing, we
obtain P =P- Q and {P — Q)x

= Qa, i.e., Px = Qa. Subtract

each member of the last equation

from Pc (i.e., Pc—Qc), in wliicli c

is the distance, from A, of any arbi-

trary point in A£ produced. This

gives P{c — x) = Pc — Q{a -j- c).

But ((? — «), G, and {a-{-G) are re-

FiG. 11. spectively the perpendiculars, from

* That is, the resultant of two parallel forces pointing in the same direc-

tion divides the distance between them, in the inverse ratio of those foi'ces.

tions.
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O., upon i?, P^ and Q. That is, i?(c — x) is the moment of R
about 0\ Pc, that of P aboiit 0; and ^(«+c), that of Q
about 0. But the moment of Q is subtracted from that of P,
which corresponds with the fact that Q in tliis figure would

produce a rotation about opposite in direction to that of P.
Havi.jg in view, tlien, this imaginary rotation, we may define

the moment of a force && positive when tlie indicated direction

about the given point is against the hands of a watch; as nega-

tive when with the hands of a watch.*

Hence, in general, the resultant of any two parallel forces is,

in amount, equal to their algebraic sum, acts in a parallel direc-

tion in the same plane, while its moment, about any arbitrary

point in the plane, is equal to the algebraic sum of the mo-

ments of the two forces about the same point.

Corollary.—If each term in the preceding moment equations

be multiplied by the secant of an angle {a, Fig, 12) thus;

p..

%-'^""

^^^

..^'i'

Of^-—-a-i-
jt 1 0, y

j

k— -
fta 'A

Fig. 13. Fig. 13.

(using tlie notation of Fig. 12), we have

Pa sec a = Pxai sec a+P^jii sec a, i.e., P6= Pi6i -I-P2&25

in which, h, h\ and 62 are tHe oblique distances of the three

lines of action from any point in tlieir plane, and lie on the

same straight line ; P is the resultant of the parallel forces P^

and P2'

22. Resultant of any System of Parallel Forces in Space.—
LetP*i, ^2? Pii 6tC'5 t>e the forces of the system, and a?,, y„
s„ a?,, ^j, Sj, etc., the co-ordinates of their points of application

as referred to an arbitrary set of three co-ordinate axes X, Y^

and Z, perpendicular to each other. Each force is here re

* These two directions of rotation are often called counter clockwise, and

clockwise, rescectively.
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stricted to a definite point of application in its line of action

(with reference to establishing more directly the fundamental

equations for the co-ordinates of the centre of gravity of a

body). The resultant P' of any two of the forces, as

Pj and /*„ is = P, + P^ ^^^ ™^y be applied at C, the in-

tersection of its own line of action with a line BD joining

the points of application of P^ and P^^ its components.

Produce the latter line to^, where it pierces the plane ^Y^
and let 5„ &', and 5^, respectively, be the distances of B^ (7,

D^ from A. \ then from the corollary of the last article we have

p'y^Ph^p^K',

but from similar triangles

V \\\\\\z' : z, : 0„ .-. P'z' = P,z,+ P,3,.

Now combine P., applied at C^ with P^^ applied at E^ calling

their resultant P" and its vertical co-ordinate z'\ and we obtain

P"z" = P'z' + P3S3, i-e., P"z" = Pa + P.\ + ^3^3,

also

P-=P' + P3 = P,+P,+ P,.

Proceeding thus until all the forces have been considered, we
shall have finally, for the resultant of the whole system,

P-P. + i'.+ i^s + etc.;

and for the vertical co-ordinate of its point of application,

which we may "write 3,

Rz — P,z,+ P,s, + P3S3+ etc
;

- P,z, + P,z, + P,z,... _^{Pz)^
..e.,2 _ p^_^p^_^p^:^ - ^p ,

and similarly for the other co-ordinates.

In these equations, in the general case, such products as P,j!!i»

etc., cannot strictly be called moments. The point whose co»
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ordinates are the x, y, and b, just obtained, is called the Centre

of Parallel Forces, and its position is independent of the {com-

mon) direction of the forces concerned.

ExaTYijple.—If the parallel forces are contained in one plane,

and the axis I^be assumed parallel to the direction of the

forces, then each product like P^x^ will be a moment, as de-

fined in § 21 ; and it will be noticed in the accompanying nu-

merical example, Fig. 14, that a detailed substitution in the

equation R iY R ra
_ t

f^

L-i-l 1
i?a?=:P,a?, + P,a?,+ etc., . . . (1) U -i..i^ |_

having regard to the proper sign of each ^, 0| +X

force and of each abscissa, gives the same fig. i4.

result as if each product Px were first obtained numerically,

and a sign affixed to the product considered as a moment
about the point 0. Let P^ = — 1 lb.; P, = + 2 lbs.; P^ =
+ 3 lbs.; P^^~-& lbs.; a?^ = + 1 ft.; a;^ = -f 3 ft.; a?, = — 2

ft.; and a?^ = — 1 ft. Required the amount and position of the

resultant R. In amount R = -SP =— 1 + 2 + 3 — 6 = — 2

lbs.; i.e., it is a downward force of 2 lbs. As to its position,

Rx= 2{Px) gives ( — 2)« = ( - 1) X (+ 1) + 2 X 3 +
3 X (- 2) + (-6) X(-l) = -l + 6-6 + 6. Now from

the figure, by inspection, it is evident that the moment of P,
about is negative {with the hands of a watch), and is numer-

ically = 1, i.e., its moment = — 1 ; similarly, by inspection,

that of Pj is seen to be positive, that of P^ negative, that of

P, positive; which agree with the results just found, that

(- 2)^ = - 1 + 6 - 6 + 6 = + 5 ft. lbs. (Since a moment
is a product of a force (lbs.) by a length (ft.), it may be called

so many foot-pounds.) Next, solving for a?, we obtain

X = (+ 5) -f- (— 2) = — 2.5 ft.; i.e., the resultant of the given

forces is a downward force of 2 lbs, acting in a vertical line

2.5 ft. to the left of the origin. Hence, if the body in question

be a horizontal rod whose weight has been already included in

the statement of forces, a support placed 2.5 ft. to the left of

and capable of resisting at least 2 lbs. downward pressure

will preserve equilibrium ; and the pressure which it exerts
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against the rod must be an upward force, P^, of 2 lbs., i e. tiie

equal and opposite of the resultant of P^, P^? P^^ Pa-

Fig. 15 shows the rod as a fi-eo body in equilibrium under

the live forces. P^ = -|- 2 lbs. — the reaction of the support.

Of course P^ is one of a pair of equal

and opposite forces ; the other one

J
is the pi'essure of the rod against the

I'

"—I \

' ^ ^
?^\
—

-gi-s- iO support, and would take its place among
Fig. 15. the forces acting on the support.

23. Centre of Gravity.—Among the forces acting on any

rigid body at the surface of the earth is the so-called attraction

of the latter (i.e., gravitation), as shown by a spring-balance,

which indicates the weight of the body hung upon it. The
weights of the different particles of any rigid body constitute a

system of parallel forces (practically so, though actually slightly

convergent). The point of application of the resultant of these

forces is called the centre of gravity of the body, and may also

be considered the centre of onass, the body being of very small

dimensions compared with the earth's radius.

If a?, y, and z denote the co-ordinates of the centre of gravity

of a body referred to three co-ordinate axes, the equations

derived for them in § 22 are directlj' applicable, with slight

changes in notation.

Denote tlie weight of any particle * of the body by dG, its

volume by d F, by ;^its heaviness (rate of weight, see § 7) and

its co-ordinates by a?, y, and z ; then, using the integral sign as

indicating a summation of like terms for all the particles of the

body, vs^e have, \v: heterogeneous bodies (see also p. 119, Notes).

r~_fy^dy^ -_frydV_, - _fr^. ,-,x^- fydV' y ~ fydV' ^ - fydV^ * '
^^^

while, if the body is homogeneous, y is the same for all its ele-

ments, and being therefore placed outside the sign of sumnu\-

tion, is cancelled out, leaving for homogeneous bodies {Y de-

noting the total volume)

-„ _-«I. ^ -Ml., and I --^I f2)a? — p:— , y — y ,
ana z — y . . . \^z)

* Any subdivision of the body may be adopted for use of equations (1)

and (2), etc.; but it must be remembered that the ai (or y, or s) in each term
of the summations, or integralSj is the co-ordinate of the center of gravity of
the subdivision employed.
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Corollary.—It is also evident that if a homogeneous body is

for convenience considered as made up of several finite parts,

whose volumes are y^, F^? etc., and whose gravity co-ordinates

are a?„ y„ z^ ; «„ y,, z^ ; etc., we may write

. = -^-j-^-^-— .... (3)

If the body is heterogeneous, put G^ (weights), etc., instead

Df T^i, etc., in equation (3).

If the body is an infinitely thin homogeneous shell of uni-

form thickness = h, then dV =^ hdF{dFdawoimg an element,

and J^the whole area of one surface) and equations (2) become,

after cancellation,

^-f^il. z-Ml. -,-fi^ u)

For a thin homogeneous plate, or shell, of uniform thick-

ness, and composed of several finite parts, of area Fi, F2, etc.,

wdth gravity co-ordinates Xi, X2, etc., we may write

_ FiXi+F2X2+ . . . , . -

^= F,+F2+... •
• • • (^«)

Similarly, for a homogeneous wi?'e of constant small cross-

section (i.e.. a geometrical line, having weight), its length

being s, and an element of length ds, we obtain

3=^;^=>^»;i=-^. ... ^5)

24. Symmetry.—Considerations of symmetry of form often

determine the centre of gravity of homogeneous solids without

analysis, or limit it to a certain line or plane. Tlius the centre

of gravity of a sphere, or any regular polyedron, is at its centre

of figure;, of a right cylinder, in the middle of its axis; of a

thin plate of the form of a circle or regular polygon, in the

centre of figure ; of a straight wire of uniform cross-section, in

the middle of its length.

Again, if a homogeneous body is symmetrical about a plane,

the centre of gravity must lie in that plane, called a plane of
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gravity; if about a line, in that line called a line of gravity;

if about a point, in that point.

25. By considering certain modes of subdivision of a homo-

geneous body, lines or planes of gravity are often made appar-

ent. E.g., a line joining the middle of the bases of a trape-

zoidal plate is a line of gravity, since it bisects all the strips

of uniform width determined by drawing parallels to the

bases; similarly, a line joining the apex of a triangular plate to

the middle of the opposite side is a line of gravity. Other

cases can easily be suggested by the student.

26. Problems.—(1) Required the position of the centre of

A, gravity of %fine homogeneous wire of the

,,. r-g^ form of a circular arc, A£, Fig. 16. Take

the origin at the centre of the circle, and

the axis ^ bisecting the wire. Let the

length of the wire, s, = 2Si ; ds = ele-

ment of arc. We need determine only the

X, since evidently y ^ 0. Equations (5),

fxds
Fig. 16. 23, are applicable here, i.e., x

From similar triangles we liave

7 ^^V
ds : dy :: r : x; .-. ds = —-;

,?/ = + a ^ra
:^ I dy — -^r—, i.e., = chord X radius -r- length of
2s

wire. For a semicircular M'ire, this reduces to x == 2r -~ 7t.

Problem 2. Centre of gravity of trapezoidal {and trian-

giilar) thin plates, homogeneous, etc.—Prolong the non-parallel

sides of the trapezoid to intersect at 0, which take as an origin,

making the axis X perpendicular to the bases h and &,. We
may here use equations (4), § 23. and may take a vertical strip

for our element of area, dF, in determining x; for each point

of such a strip has the same x. Now dF ^ {y -f- y')dx. and

* The two triangles meant {m being any point of the wire) are the

finite triangle Omc, and the infinitely small one at m formed by the

infinitesimal lengths dy, dx, and ds.
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from similar triangles y-{-y' = jx. 'NowF, = -{hh — bji,),"^

can be written ^ , {^^ ~ K'), and x = --^— becomes

=
Ji UK -2a(^-^0 =

3;,. -K
for the trapezoid.

For a ti•iangle h^ = — 2
0, and we liave x = h

;
that

centre of gravity of a triangle is one tliird the altitude from the

base. The centre of gravity is finally determined by knowing

Fig. 17. Fig. 18.

that a line joining the middles of h and h^ is a line of gravity;

or joining O and the middle of h in the case of a triangle.

Problem 3. Sector of a circle. Thin plate, etc.—Let the

notation, axes, etc., be as in Fig. 18. Angle of sector = 2<ar;

a? = ? Using polar co-ordinates, the element of area dF (a

small rectangle) = pdqi . dp, and its a? = p cos qj ; hence the

total area =

9F= J'^'^XfpdiP\dcp = y^+"^ r'd^ =

i.e., F:= T^a. From equations (4), § 23, we have

- \ n
X = -jp i xdF

Note that h\•.'h^'.•.'h'.h, so that ?)ifei=(&-^^)i'ii'.
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{Note on double integration.—The quantity

cos (p J p' dp \dq),

is that portion of the summation / / cos cpp'dpdq) which

belongs to a single elementary sector (triangle), since all its

elements (rectangles), from centre to circumference, have the

same q) and dcp.)

That is,

— 1 r^ n + a. 'p^ r+a 2 y sin or

a? = ^^-o / cos ^c?ffi> = 5-^ sinffl = -5-. :

o c^ T 1 ^ — 4 7* sin -I /?
or, putting p =z 'za z= total angle 01 sector, a? = -^ -z

•

— 4:7'

For a semicircular plate this reduces to a? = 7;—.

\_Mote.—In numerical substitution the arcs a and /? used

above (unless sin or cos is prefixed) are understood to be ex-

pressed in circular measure (;r-measure) ; e.g., for a quad-

rant, yS =
I
= 1.5707*+ ; for 30°, /? = ^ ; or, in general, if fi

m degrees := , then p in ;r-measure = —

.

° n n J

Problem 4. Sector of a flat ring ; thin

_ -^^ plate, etc.—Treatment similar to that of

,^y \.---^...\\- Problem 3, the difference being that the

#^^P^ If
- _ ... . P'

limits of the interior integrations are

instead of
|

. Result,
FiQ, 19. 1-0

- _ 4 T^ — r^ sin ^/?

^""l- r/ - r: ' ~~W~°
* "Radians."
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Pkoblem 5.

—

Segment of a circle ; thin plate, etc.—Fig. 20.

Since each rectangular element of any ver-

tical strip has the same x, we may take the

strip as dF \w finding x, and use y as the

half-height of the strip. dF = 2ydx, and

from similar triangles x : y :: {— dy):dx,^

i.e., xdx = — ydy. Hence from eq. (4),

- ^/(vdF

^

/x^ydx - 2XVVZy _2__

F F F SF

but a = the half-chord, hence, finally, x =
12F.

Fio. 21.

Problem 6.

—

Trajpezoid ', thin plate, etc.,

by the method in the corollary of § 23 ; equa-

tion (4a). Kequired the distance x from the

base AB. Join BB^ thus dividing the trape-

zoid ABCB into two triangles ABB = F^
and BBC = F^, whose gravity a?'s are, re-

spectively, x^ = ^h and x^ = |A. Also, F^
= iMj, F^ = ^hh^, and F (area of trape-

zoid) = ih{h, + h,). Eq. (4a) of § 23 gives

Fx = F^x^ -\- F^x^ ; hence, substituting,

(6i +62)^ = k^ih^lhji.

_^h (61 + 2&2)
•'• ^-3 * 61+62 •

The line joining the middles of 5, and h^ is a line of gravity, and

is divided in such a ratio by the centre of gravity that the fol-

lowing construction for finding the latter holds good : Prolong

each base, in opposite directions, an amount equal to the other

base; join the two points thus found: the intersection with

the other, line of gravity is the centre of gravity of the trape-

zoid. Thus, Fig. '21, with BF= h &ndBF= \, join FF,
etc.

* The minus sign is used for dy since, as we progress from left to right

in bringing into account all the various strips, x increases while y diminishes;

i.e., dx is an increment and dy a decrement. At the point of beginning of

the summation, on left, y= +a; while at the extreme right, y = 0.
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Peoblem 1. Homogeneous ohlique cone or pyramid.—
Take the origin at the vertex, and the axis X perpendicular to

the base (or bases, if a frustum). In finding x we may put

dY^ =^ vohirae of any lamina parallel to YZ, ^ being the base

•of such a lamina, each point of the lamina having the same x.

Hence, (equations (2), § 23), (see also Fig. 22).

x= ^fxdV, V=/dV=/Fdxi

but, from the geometry of similar plane figures,

F:F, :: x' : h,% .-.F.
F

and

^=i-^»'*'^^=§''
-',fxdY=^Jx'dx=-!F̂K LI*

Q Z 4 Z, 4

-For a frustum, x = 7 •
,
'3
~

y\ I
while for a pyramid, Aj, be-

— 3
ing = 0, a? = jA. Hence the centre of gravity of a pyramid

is one fourth the altitude from the base. It also lies in the line

joining the vertex to the centre of gravity

of the base.

Pkoblem 8.—If the heaviness of the ma-
terial of the above cone or pyramid varied

directly as x, y^ being its heaviness at the

base F^, we should use equations (1)5 § 23,

putting y = j^ x\ and finally, for the frustum,

- 4 h:-h:

Fig. 23.

r«

h:-hr

and for a complete cone m = — A,.

27. The Centrobaric Method.—^If an elementary area dF he
revolved about an axis in its plane, through an angle a < 'Itt.
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the distance from the axis being = x, tlie volume generated is

^Y =z axdF^ and the total volume generated by all the dF''%

of a finite plane figure whose plane con-
^^,g

tains the axis and which lies entirely on one

;side of the axis, will be T^ = fd V =
afxdF. But from §23, afxdF^aFx\
ax being the length of path described by

the centre of gravity of the ])lane iigure, Ym. 23.

we may write : The vohime of a solid of revolution generated

hi/ a plane figure, lying on one side of the axis, equals the

area of the figure multiplied hy the length of curve descrihed

hy the centre of gravity of the figure.

A corresponding statement may be made for the surface

generated by the revolution of a line. The arc a must be ex-

pressed in It measure in numerical work.

27a. Centre of Gravity of any Cluadrilateral.—Fig. 23a.

Construction', ABOD being any quad-

rilateral. Draw the diagonals. On the

long segment DK of DB lay off BE =
BK, the shorter, to determine E\ simi-

larly, determine iV^on the other diagonal,

by making GN = AK. Bisect FK in H
and KN in M. The intersection of FM
and NH\& the centre of gravity, C.

p.poof—R being the middle of BB, and AH and HG
Slaving been joined, I the centre of gravity of the triangle

ABB is found on AH, by making ^/= i-^iZ; similarlj^, by

makino- HB = ^HG, B is the centre of gravity of triangle

BBG. .
'

. IB is parallel to AG and is a gravity-line of the

whole figure; and the centre of gravity Cmay be found on it

if we can make CB : CI :: area ABB : area BBG (§ 21).

But since these triangles have a common base BB, their areas

are proportional to the slant heights (equally inclined to BB)
AK and KG, i.e., to GN and NA. Hence HN, which di-

vides IB in the required ratio, contains C, and is .'. a gravity-

line. By similar reasoning, using tlie other diagonal, AG, and

Fig. 23a.
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the two triangles into wliicb it divides the whole figure, we
may prove E2i to be a gravity-line also. Hence the construc-

tion is proved.

27b. Examples.—1. Required the volume of a sphere bj

the centrobaric method.

A sphere may be generated by a semicircle revolving about

its diameter through an arc a = 27r. The length of the path

descj'ibed by its centre of gravity is = Stt^— ("see Prob. 3, §

26), while the area of the semicircle is |-7^r^ Hence by § 27,

4r 4
Yolume venerated = 27r . 7-— . ^nr^ = — nr'.

2. Tiequired the position of the centre of gravity of the sectoi*

of a flat ring in which '}\ = 21 feet, r^ = 20 feet, and /3 = 80°

(see Fig. 19', and § 26, Prob. 4).

/3 .

sin —= sin 40° = 0.64279, and y5 in circular measure =•

80 4
T^7^=-q7r= 1.3962 radians. By using ri and r2 in feet,

X will be obtained in feet.

• I
_ 4 ri^-r2^ ^^^- 2 4 1261 0.64279

.'.T=— — — = - -, • - = 18 87 feet"^ S'n^-r^^- /?
3*41 '1.3962 ^^-^'leei.

3. Find tlie height (z, = OC) of the center of gravity of

05" uo.e'tj
the plane figure in Fig. 23&

"I
above its base OX.

L This figure is bounded

i by straight lines and is an

j_ approximation to the shape:

'^ o -15-—-»«5-i of the cross-section of a steel

^'^- 2^^-
, "channel" (see p. 275).

Dividing it into three rectangles and two triangles (see

dotted lines in figure) and applying eq. (4a) of p. 19, we have

i.r

J.

15X.6X.3-f2[3.4x.6x2.3]+2
z=—

71
1.7X.5X^

— = 0.882 in.
15X0.6 + 2[3.4X0.6] + 2[1.7X0.5]

(The student should carefully verify these numerical details.)
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CHAPTER III.

STATICS OF A RIGID BODY.

28. Couples.—On account of the peculiar properties and

utility of a system of two equal forces acting in parallel lines

and in opposite directions, it is specially ^^
considered, and called a Couple. The

z^::::^^^^^^^^ t
ar7n of a couple is the perpendicular

« fr^^V^^ ""'^'^^^^

distance between the forces ;
its TwomeTi^, P S'* lQJ<i J^

the product of this arm, by one of the |<^ ^^'"'^^^
.^^^^^^^^^

forces. The axis of a couple is an ^"^''^^:>^^,^^<^^^^

imaginary line drawn perpendicular to y\q. 24.

its plane on tliat side from which the rotation appears positive

(against the hands of a watch). (An ideal rotation is meant,

suggested by the position of the arrows ; any actual rotation

of the rigid body is a subject for future consideration.) In

dealing with two or more couples the lengths of their axes are

made proportional to their moments; in fact, by selecting a

proper scale, numerically equal to these moments. E.g., in Fig.

24, the moments of the two couples there shown are Pa and

Qh\ their axes p and q so laid off that Pa : Qh '.: p : q, and

that the ideal rotation may appear positive, viewed from the

outer end of the axis.

For example, if each force P of a couple is 60 lbs., and the

arm is a=6 ft., its moment is 360 jbot-pounds; or 0.180 foot-

tons; or 4320 inch-pounds; or 2.16 inch-tons.

29. No singleforce can halance a couple.—For suppose the

couple P^ P, could be balanced by a force P', then this, acting

?f at some point C, ought to hold the couple

ni /..:-. -P- -Q in equilibrium. Draw CO throuo-h 0, the

tT /p p^f centre of symmetry of the couple, and

Fig. 25. make OD = OC. At D put in two op-

posite and equal forces, S and T, equal and parallel to P',

The supposed equilibrium is undisturbed. But if P\ P, and
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P are in equilibrium, so ought (by symmetry about 0) S, jP,

and P to be iu equilibrium, and they may be removed without

disturbing equilibrium. But we have left Tand P', which are

evidently not in equilibrium ; .•. the proposition is proved by

this reductio ad absurdum. Conversely a couple has no singlo

resultant.

30, A couple may he transferred anywhere in its own plane.

—First, it may be turned through any angle «', about any

p* point of its arm, or of its arm produced.

Gt- -;
j^- -|- Let {P^ /*')be a couple, G any point of its

\-.-'-j^-4 yp' arm (produced), and a. any angle. Make

^^^.,_
i

0G= GA, CD — AB, and put in at G,

'^ \
^ \; I

P^ and P^ equal to P {or P'), opposite to

--* "^ each other and perpendicular to GC; and
'® ""

\
R*' P^ and P^ similarly at P. IS^ow apply and

Fig. 26. combine P and P, at 0, P' and P, at 0'\

then evidently P and R' neutralize each other, leaving P^ and

P^ equivalent to the original couple {P^ P'). The arm

CD = AB. Secondly, if G be at infinity, and or = 0, the

same proof applies, i.e., a couple may be moved parallel to

itself in its own plane. Therefore, by a combination of the

two traiisferrals, the proposition is established for any trans-

ferral in the plane.

31. A coujple. may he replaced hy another of equal moment
in- a parallel plane.—Let {P, P') be a couple. - Let CD, in a

parallel plane, be parallel to AB. At D put in a pair of equal

and opposite forces, ^3 and S^., parallel to P and each = ^=:iP.
ED

Similarly at (7, 8^ and 8^ parallel to P and each = ==-P.
sLkj

But, from similar triangles,

^ — ^. . o _ c _ o _ e
pjjy

—
PC'' ' '

"^
—

5
—

'
— *'

* See Fig. 27, which is a perspective view. The arm of the couple (P, P')

is AB, in the background. The length of CD, which is in the foreground,

may be anything whatever.
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[Note.—The above values are so chosen that the intersection point E
may be the point of application of (P' -|- JS2), the resultant of F and /6a;.

and also of {P-\- Sa), the resultant of Pand S3, as follows from § 21; thus

(Fig. 28), Ji, the resultant of the two parallel forces Pand iSs, is = P-f-xSg,

and its moment about any centre of moments, as E, its own point of ap-

plication, should equal the (algebraic) sum of the moments of its com-
AhJ

ponents about E; i.e., B X zero = P . AE — Sz . DE; .-.83 = == . P.]UE

lA

S,|
Ihk-ff" I R!

Fig. 27.

D E

Fig. 28.

I

Replacing P' and S, by {P' + S,\ and P and S, hj
{P -f- ^,), the latter resultants cancel each other at E^ leaving

the couple {S^, 8^ with an arm CD^ equivalent to the original

couple P, P' vi^ith an arm AB. But, since 8^ = ===. P =
MjL/

-=r. . P, we have S.xOP = PxAB ; that is, their moments

ai'e equal.

32. Transferral and Transformation of Couples.— In view of

the foregoing, we may state, in general, that a couple acting on

a rigid body may be transferred to any position in any parallel

plane, and may have the values of its forces and arm changed

in any way so long as its moment is kept unchanged, and still

have the same eifect on the rigid body (as to rest or motion,

not in distorting it).

Corollaries.—A couple may be replaced by another in any

position so long as their axes are equal and parallel and simi-

larly situated with respect to their planes.

A couple can be balanced only by another couple whose axis

is equal and parallel to that of the jfirst, and dissimilarly situ-

ated. For example. Fig. 29, Pa being = Qb^ the rigid body

AB (here supposed without weight) is in equilibrium in each
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case shown. By " reduction of a couple to a certain arm «"

is meant that for the original couple whose arm is a' ^ with

forces each = P\ a new couple is substituted whose arm shall

be = «, and the value of whose forces P and P must be com-

puted from the condition

Pa = P'a\ i.e., P = P'a' -^ a.

Fig. 29. Fig. 30.

33. Composition of Couples.—Let (P, P') and {Q, Q') be two

-couples in different planes reduced to the same arm AB = a,

which is a portion of the line of intersection of theii' planes.

That is, whatever the original values of the individual forces

and arms of the two couples were, they have been transferred

and replaced in accordance with § 32, so that P . AP, the

moment of the first couple, and the direction of its axis, p,
have remained unchanged ; similarly for the other couple.

Combining P with Q and P' with Q', we have a resultant

couple {P, i?')M^hose arm is also AP. The axes p ^.nd q of

the component couples are proportional to P . AP and Q . AB,
i.e., to P and Q, and contain the same angle as P and Q.

"Therefore the parallelogram p . . . q\& similar to the parallelo-

gram P . . . Q\ whence p '. q : r'.'.P '. Q : P, or p : q : ri:

Pa : Qa : Pa. Also r is evidently perpendicular to the plane

of the resultant couple (P, i?'), whose moment is Pa. Hence

r, the diagonal of the parallelogram on p and q, is the axis of

the resultant couple. To combine two couples, therefore, we
have only to combine their axes, as if they were forces, by v>

parallelogram, the diagonal being the axis of the resultant

couple ; the plane of this couple will be perpendicular to tlie
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axis just found, and its moment bears the same relation to the

moments of the component couples as the diagonal axis to the

two component axes. Thus, if two couples, of moments Pa
and Q}}^ lie in planes perpendicular to each other, their result-

ant couple has a moment Re = ^{Paf + {Qbf'

It three couples in different planes are to be combined, the

axis of their resultant couple is the diagonal of the parallelo-

piped formed on the axes, laid off to tliesame scale 2a\d point-

ing in the proper directions, the proper direction of an axis

being away from the plane of its couple, on the side from

which the couple appears of positive rotation.

34. If several couples lie in the same plane their axes are

parallel and the axis of tlie resultant couple is their algebraic

sum ; and a similar relation holds for the moments : thus, in

Fig. 24, the resultant of the two couples has a moment = Qh
— Pa, which shows us that a convenient way of combining

couples, when all in one plane, is to call the moments positive

or negative, according as the ideal rotations are against, or with,

the hands of a watch, as seen from the same side of the plane

;

the sign of the algebraic sum will then show the ideal rotation

of the resultant couple.

35. Composition of Non-concurrent Forces in a Plane.—Let

Pj, Pa, etc., be the forces of the system ; x^, y^, x^, y^, etc., the

y:

-x^, -/-^y^^

/

J'
y;''

Fig. 31.

co-ordinates of their points of application ; and a^, a^, . , . etc.,

their angles with the axis X. Replace P^ by its components

Xj and ]rj, parallel to the arbitrary axes of reference. At the

origin put in two forces, opposite to each other and equal and

parallel to X^ ; si'milarly iovY^. (Of course X^ = P^ cos oc and

Y^ = P^ sin a.) We now have P^ replaced by two forces X.
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and y, at the origin^ and two couples, in the same plane, whose

moments are respectively — X{y^ and + ^x^x-:
^"^ ^^^ there-

fore (§34) equivalent to a single couple, in the same plane with

a moment = {Y^x^—X^y^.
Treating all the remaining forces in the same way, the whole

system of forces is replaced by

the force :2{X) =X, +X, + . . . attlie origin, along the axisX;

the force ^{Y) = Y,^ Z, + . . . at the origin, along the axis Y-

and the couple whose mom. G= ^ { Yx — Xy), which may be

called the couple C (see Fig. 32), and may be placed anywhere

in the plane. Now -5'(X) and 2( Y) may be combined into a

force jR
i

i.e.,

, ... ^XR = V[^Xf -\- 2 Yy and its direction-cosine is cos a = —p-.

Since, then, the whole system reduces to C and i?, we must

have for equilibrium B = 0, and G = ; i.e., for equilibrium

2X= 0, ^r= 0, and ^{Yx-Xy) = 0. . eq. (1)

If i? alone = 0, the system reduces to a couple whose mo-

ment is 6^ = ^( Yx—Xy) ; and if G alone = the system re-

duces to a single force i?, applied at the origin. If, in general,

neither I^ nor G = 0, the system is still equivalent to a single

force, but not applied at the origin (as could hardly be ex-

pected, since the origin is arbitrary) ; as follows (see Fig. 33)

:

Replace the couple by one of equal moment, G, with each

G
force = jR. Its arm will therefore be -^. Move this couple

in the plane so that one of its forces i? may cancel the i? al-

ready at the origin, thus leaving a single resultant i? for the

whole system, applied in a line at a perpendicular distance,

G
c = -p , from the origin, and making an angle or whose cosine =

2X^ , wdtb the axis X. It is easily preyed that the " moment"

Re, of tbe single resultant, about tbe origin 0, is equal to the

algebraic sum of those of its " components " (i.e., the forces of

the system.

36. More convenient form for the equations of equilibrium

of non-concurrent forces in a plane.— In (I.), Fig. 34, being
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any point and a its perpendicular distance from a force P\
put in at two equal and opposite forces P and P' = and ||

to P, and we have P replaced by an equal single force P' at

0, and a couple whose moment is -|- Pa. (II.) shows a simi-

lar cunstrtcrion, dealing- with the JTand 1^ components of P,

so that in (II.) P is replaced by single forces ^' and Y' at

^.....^......Liix

^_ 1! „
X X'

Y^ (TI.)(I.)

Fig. 34.

(and they are equivalent to a resultant P', at 0, as in (I.), and

two couples whose moments are -|- Yx and — ^y.
Hence, being the same point in both cases, the couple Pa

is equivalent to the two last mentioned, and, their axes being

parallel, we must have Pa = Yx — Xy. Equations (1),

§ 35, for equilibrium, may now be written*

:SX- 0, 2Y = 0, and :S{Pa) = 0. . . (2)

In problems involving the equilibrium of non-concurrent

forces in a plane, we have three independent conditions^ or

equations.^ and can determine at most tliree unknown quantities.

For practical solution, then, the rigid body having been made

free (by conceiving the actions of all other bodies as repre-

sented by forces), and being in equilibrium (which it must be

if at rest), we apply equations (2) literally ; i.e., assuming an

origin and two axes, equate the sum of the JT components of

all the forces to zero; similarly for the 1^ components ; and

then for the "moment-equation," having dropped a perpen-

dicular from the origin upon each force, write the algebraic

sum of the products {moments) obtained by multiplying each

force by its perpendicular, or " lever-armj^'' equal to zero, call-

ing each product + or — according as the ideal rotation ap-

pears against, or with, the hands of a watch, as seen from the

same side of the plane. (The converse convention would do as

well.)

* Another proof is given on p. 15 of th« " Notes and Examples in Mechanics,"
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Sometimes it is convenient to use three moment equations,

takkig a new origin each time, and then the 2X =i and 2Y
= are superfluous, as they would not be independent equa-

tions.

37. Problems involving Non-ooncurrent Forces in a Plane.—
Remarks. The weight of a rigid body is a vertical force

through its centre of gravity, downwards.

If the surface of contact of two bodies is smooth the action

(pressure, or force) of one on the other is perpendicular to the

surface at the point of contact. If a cord must be imagined

cut, to make a body free, its tension must be inserted in the

line of the cord, and in such a direction as to keep taut the

small portion still fastened to the body. In case tiie pin of

a hinge must be removed, to make the body free, its pressure

against the ring being unknown in direction and amount, it is

most convenient to represent it by its unknown components X
and J^, in known directions. In the following problems there

is supposed to be no friction. If the line of action of an un-

known force is known, but not its direction (forward or back

ward), assume a direction for it and adhere to it in all the three

equations, and if the assumption is correct the value of the

force, after elimination, will be positive ; if incorrect, negative. *

ProhleTTh 1.—Fig. 35. Given an oblique rigid rod, with two

loads (xj (its own weight) and G^ ; required the reaction of the

smooth vertical wall at A, and the direction and amount of the

A^^^e-pressure at 0. The reaction at A
must be horizontal ; call it X'. The pres-

^1 sure at 0, being unknown in direction, will

have both its X and ]P" components un-

known. The three unknowns, then, are

^^^^^^'^^ ^M ^'
1
and J^o, while G^, G^, «„ a„ and

^''^ h are known. The figure shows the rod
Fis. 35.

^g ^ y^^^ hody, all the forces acting on it

have been put in, and, since the rod is at rest, constitute a sys-

tem of non-concurrent forces in a plane, ready for the condi'

tions of equilibrium. Taking origin and axes as in the figure,

* That is, the force must point in a direction opposite to that first

assumed for it.

6
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2X= gives +X„ - X' = ; :SY= gives -^ T, - G,

— G, = 0; while 2{Fa) = 0, about 0, gives + XA —
(?,«j — G^a^ = 0. (Tiie moments of JC^ and Y^ about

are, each, = zero.) By elimination we obtain Y^ ^ ^i 4"

6^2 ; Xj = X' = [6^iaj -f- ^2*^2] -i- '^^j while the pressure at

= VX^ -[" ^o^ ^"d makes with the horizontal an angler,

whose tan = I^o -r- X,,.

[N.B. A special solution for this problem consists in this, that the result-

ant of the two known forces Oi and O2 intersects llie line of X' in a point

which is easily found by § 21. The hinge-pressure must puss through this

point, since three forces in equilibrium must be concurrent.]

IN'ote that the line of action of the pressure at 0, i.e. , of the

resultant of Xq and Yq, does not coincide with the axis of the

rod; the rod being subjected to more than the two forces at

its extremities. The case therefore differs from that presented

by the boom in Ex. 2 of p. 12.

Problem, 2.—Given two rods with loads, three hinges (or

" pin-joints"), and all dimensions: required the three hinge-

Fig. 36. FiGf. sr.

pressures; i.e., there are six unknowns, viz., three Xand three

Y components. We obtain three equations from each of the

two free bodies in Fig. 37. The student may fill out the de-

tails. Notice the application of the principle of action and

reaction at B (see § 3).

ProMem 3.—A Warren bridge-truss rests on the horizontal

smooth abutment-surfaces in Fig. 38. It is composed of equal

isosceles triangles ; no piece is

continuous beyond a joint, each

of which is a,pin connection. All

loads are considered as acting at

the joints, so that each piece will lj j j i^i

be subjected to a simple tension pjo ^g.

'

or compression. " Two-force ipieces ; Bee -p. 18, Notes.)
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First, required the reactions of the supports "Fj and T^'

these and the loads are called the external forces. '^[Pd)

about = ^ gives (the whole truss is the free body)

F,3« - P, \a I\.%a- P3.f« = 0;

while ^{Pa) about K =^ gives

and

- F, . 3« + P3 . i« + P^^a + P,|a = 0;

V. = iCA + 3P. + 5^3].

Secondly, required the stress (thrust or pull, compression or

tension) in each of the pieces A, P, and Cent by the imaginary

line PP. The stresses in the pieces are called internal forces.

These appear in a system of forces acting on a free body only

when a portion of the truss or frame is conceived separated

from the remainder in such a way as to expose an internal

plane of one or more pieces. Consider as a free body the por-

tion on the left of PE (that on the right would serve as well,

I p p
but the pulls or thrusts in A, P, and

6^ would be found to act in directions

opposite to those they have on the

other portion ; see § 3). Fig. 39. The

^iIq arrows (forces) A, B, and C, are as-

sumed to 23oint, respectively, in the

directions shown in the figure.

They, with Vi, P\, and P2, form a system holding the body

in. equilibrim.

For this system, I (Pa) about (9=0 gives

0+Ah-Vi2a+Pi fa+P2 • ia= 0;

and hence A = {ia^h)[Wi-3Pi^P2l
which is positive; since, (see above), 4Fi is >3Pi+P2.

Therefore the assumption that A points to the left is con-

firmed and A is a thrust, or compression
;

(its value as above.)

Again, taking moments about Oi (intersection of A and B),

we have an equation in which the only unknown is (7, viz.

,

C/i-7i|a+Pia=0; /. C=(ia-J-/i)[37i-2PJ,

Fig. 39.
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a positive value since 37i is >2Pi; :.C must point to the

right as assumed; i.e., is a tension, and=—[STi— 2Pi].

Finally, to obtain 5, j)ut 2'(vert. comp8.)=0; i.e.

5 cos <j6 + 7i-Pi-P2 = 0.

.*. B cos 9S =Pi +P2— Vi ; but, (see foregoing

value of V\) we may write

K = (P. + PJ - (iP, + IP^ + ^P3,

/. P cos cp will be + (upward) or — (downward), and P will

be compression or tension^ as ^P^ is < or > [^P, -j- iPj.

P = [P,+ P,-FJ--cos9> ^^-V.+P.-rj.
Problem 4.—Given the weight G^ of rod, the weight G^,

and all the geometrical elements (the student will assume a

w\|Pi m

Gi AG,

Fig. 40. Fig. 41.

convenient notation); required the tension in the cord, and the

amount and direction of pressure on hinge-pin. Fig. 41.

Problem 5.—Roof-truss; pin-connection; all loads at joints

;

wind-pressures W and TF, normal to OA ; required the three

reactions or supporting forces (of the two horizontal surfaces

and one vertical surface), and the

stress in each piece. All geomet-

rical elements are given ; also P,
P,P„Tr(Fig.40).

38. Composition of Non-concur-

rent Forces in Space.—Let P„ P„
etc., be the given forces, and a?j, y^^

2!„ 35,, y,, s,, etc., their points of ap-

plication referred to an arbitrary

origin and axes; a^^ /?j, y^^ etc., Fig. 42.

the angles made by their lines of application with Xs. Y^ and Z,
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1

Considering tlie first force* i^j, replace it by its three com-

ponents parallel to the axes, J^^ = P^ cos a^^ Y^ = P^ cos /?,;

and Z, = P^ cos y^ {P^ itself is not shown in the figure). At
(?, and also at A^ put a pair of equal and opposite forces,

each equal and parallel to Z^ ; Z, is now replaced by a single

force Z^ acting upward at the origin, and two couples, one

in a plane parallel to YZ and having a moment = — Z^y^ (as

we see it looking toward from a remote point on the axis

-\- JT), the other in a plane parallel to XZ and having a mo-

ment :=
-f~ ^\^\ (seen from a remote point on the axis -^ Y^.

Similarly at and G put in pairs of forces equal and parallel

to -Z^, and we have X^^ at B^ replaced by the single force X^
at the origin, and the couples, one in a plane parallel to XY^
and having a moment -|- X{y^^ seen from a remote point on

the axis -|- Z, the other in a plane parallel to XZ. and of a

moment =— ^i^i, seen from a remote point on the axis -\-Y\

and finally, by a similar device, Y^ at B is replaced by a force

Y^ at the origin and two couples, parallel to the planes XY
and YZ^ and having moments — Y^x^ and -f^ i^2j, respective*

ly. (In Fig. 42 the single forces at the origin are broken

lines, while the two forces constituting any one of the six

couples may be recognized as being

equal and parallel, of opposite di-

rections, and both continuous, or

both dotted.) We have, therefore,

replaced the force P^ by three

forces Xj, y"j, Z^, at 0, and six

couples (shown more clearly in

Fig. 43; the couples have been

transferred to symmetrical posi-

tions). Combining each two couples

whose axes are parallel to X^ Y^

or Z, they can be reduced to three, viz.,

one with an X axis and a moment = Y^z^ — Z^y^
;

one with a T^axis and a moment = Z-^o^ — X^z^\

one with a Z axis and a moment =: X^y^ — Y^x^.

* This "first force," Pj, is applied at the point B, whose co-ordinates

are Xi, y^, and 2i, and is typical of all the other forces of the system.

Fig. 43.
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Dealing with each of the other forces P^, P^, etc., in the same

manner, the whole system maj finally be replaced by three

forces 2X, ^Y, and 2Z, at the origin and three couples

whose moments are, respectively, (ft-lbs., for example)

Z, = 2( Yz — Zy) with its axis parallel to X\
M = 2{Zx — Xs) with its axis parallel to JT;

JV = -2'(.Zy — Yx) with its axis parallel to Z.

The " axes" of tliese couples, being parallel to the respective

co-ordinate axes JT, Y, and Z, and proportional to tl]^ mo-

ments Z, 2f, and JV, respectively, tlie axis of their resultant

C, whose moment is G, must be the diagonal of a parallelo-

pipedon constructed on the three component axes (propor-

tional to) Z, M, and iT. Therefore, G = VZ' ~{-
M'

-^ ]V%
while the resultant of ^X, -2 Y, and 2Z is

p = Vi^xy + (^ Yy + {:szy

acting at the origin. If a, y5, and y are the direction-angles

^X , 2Y 2Z
of P, we have cos oc = —^, cos p = ~ti-, and cos ;^ i= -^ ;

while if A, ju, and r are those of the axis of the couple C, we-

Z J^ . ^
have cos A, = -p, cos >u = --^, and cos r = --^.

For equilibrium we have both G = and ^ = ; i.e.,

separately, six conditions, viz.,

:^X= 0, 2 r = 0, 2Z=:0 ; and Z=0, Jf=0, JV=0 . (1)

Now, noting that :SX = 0,:2Y= 0, and ^(Xy - Yx) =
are the conditions for equilibrium of the system of non-concur-

rent forces which would be formed by projecting each force of

our actual system upon the plane XY, and similar relations

for the planes YZ and XZ, we may restate equations (1) in

another form, more serviceable in practical problems, viz.

:

Note.—I]f a system of non-concurrent forces in space is in

equilibrium, the plane systemsformed hy projecting the given

systein upon each ofthree arbitrary co-ordinateplanes will eaah

be in equilibrium. But we car obtain only six independent



40 MECHANICS OF ENGINEERING.

equations in any case, available for six unkno'wns. If H alone

^ 0, we have the system equivalent to a couple C^ whose

moment = ^ ; if 6^^ alone = 0, the system has a single re-

sultant R applied at the origin. In general^ neither i? nor G
being = 0, we cannot further combine i? and G (as was done

with non-concurrent forces in a plane) to produce a single re-

sultant unless B, and C happen to be in parallel planes ; in which

case the system may be reduced to a single resultant by use

•of the device explained near foot of p. 32.

Remark.—In general, R and C not being in parallel planes, the system

may be reduced to two single forces not in the same plane, b^ assigning

any value we please to P, one of the forces of the couple C, computing

the corresponding arm a= G-i-P, transferring C until one of the P's has

the same point of application as R, and then combining these two forces

into a single resultant. This last force and the second P are, then, the

equivalent of the original system, but are not in the same plane. (See

§§ 15 and 15a.)

Again, if a reference plane be chosen at right angles to R, and the

couple C be decomposed into two couples, one in the reference plane and

the other in a plane at right angles to it, this second couple and R may
be replaced by a single force (as on p. 32) and we then have the whole

system replaced by a single force and a couple situated in a plane perpen-

dicular to that force; (and this may be called a "screwdriver action.")

Example.—A shaft, with crank and drum attached and supported

horizontally on two smooth cylindrical bearings, constitutes a hoisting

device. See Fig. 43a.
| „ ,,^

A force P is to be

applied to the crank

handle at 30° with the

horizontal (and T to

the crank), and acting

in a plane at right

angles to the shaft;

and is to be of such

value as to preserve

equilibrium when the

weight of 800 lbs. is

sustained, as shown.

The weight of the

shaft, etc., is 200 lbs.,

and its center of grav-

ity is at C in the axis of the shaft. (Counterpoise for crank not shown.)

The reactions at the two bearings will lie in planes T to the axis of

the shaft {smooth cylindrical surfaces), making unknown angles with

the vertical; and will be represented by their X and Z componentsi

8001

Fig. 43o.



STATICS OF A EIGID BODY. 41

as shown. It is required to find the proper value for P and the amount

and position of the two reactions.

Solution.—The seven forces shown in the figure (of which five are un-

known) constitute a non-concurrent system of forces in space; in equi-

librium. Since there are no Y-components the condition -- F= is already

satisfied. Let us now apply the statement of the "note" on p. 39,

first projecting the forces on the plane ZX (vertical plane T to the shaft).

(That is, we take an "end-view" of the system.) Each of the seven forces

projects in full length, or value, since they are all parallel to that plane.

Treating the plane system so formed as in equilibrium and taking mo-
ments about the point 0, we find (feet and lbs.)

+PX1.5-800XH0= 0; .-. P= 177.77 lbs. . . . (1)

Next projecting on the vertical plane ZY, containing axis of shaft

(i.e., taking a "side-view" of the system) we note that#the projection

of P is P sin 30° and those of Xq and X^ each zero, while Z^, Z^, and

the 200 and 800 lbs., project in full length; hence taking moments about

we have

-|-200Xlf+800X2-ZiX3-PX0.50X4+0=0 ... (2)

while moms, about Oigives+ZoX 3-Px0.5Xl-200Xli- 800- 1 = (3)

Finally, projecting on the horizontal plane XZ ("top-view"), the

forces in this projection are P cos 30°, X^, and X^; so taking moms.
about point Oj,

+ZoX3-Px0.8660Xl = 0; .-. X„= +51.34 lbs.; . (4)

whne from ^X= 0, X^-X^= 0, or X^=Xq; i.e., Xi= +51.34 lbs. . (5)

From (2) and (3) we have Zi= +525.93 lbs., and Zo= +385.18 lbs.

All these + signs show that the arrows for X^, X^, Zg, and Z^ have been

correctly assumed (Fig. 43a) as to direction. Combining results, we
find that the pressure or reaction at O is Rq, =VXo^+ Zo^ = 388.6 lbs-

and makes an angle whose tang, is Xq-hZq, (i.e., 0.1333), Viz., 7° 36',

on the left of the vertical; also that the pressure or reaction at 0^ is

Pi, =V'Xi^+ Zi^= 528.4 lbs., at an angle on the right of the vertical

whose tang., =X^^Z^, (= 0.09763); i.e., 5° 34'.

39. Problem (Somewhat similar to the foregoing.)—Given all geo-

metrical elements (including a,

/?, ;-, angles of P) , also the weight

of Q, and weight of apparatus

G; A being a hinge whose pin

is in the axis F, a ball-and-

socket joint -.vequiredthe amount

of P (lbs.) to preserve equi-

librium, also the pressures

(amount and direction) at A
and O; no friction. Replace

P by its X, Y, and Z com-

ponents. The pressure at A
will have Z and X components;

that at 0, X, Y, and Z com-

ponents. [Evidently there are six unknowns; Yq will come out negative.

Fig. 44.
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CHAPTER lY.

STATICS OF FLEXIBLE CORDS.

40. Postulate and Principles.—The cords are perfectly flexi-

ble and inexteiisible. All problems will be restricted to one

plane. Solutions of problems are based on two principles,

viz.:

Pein. I.—The strain or tension, in a cord at any point can

act only along the cord, or along the tangent if it be curved.

Pein. II.—We may apply to flexible cords in equilibrium

all the conditions for the equilibrium of rigid bodies ; since,

if the system of cords became rigid, it would stiU, with

greater reason, be in equilibrium.

41. The Simple Pulley.—A "simple pulley" is one that is

acted on by only one cord (or belt) and the reaction of the

bearing supporting its axle (or "journal").

A cord in equilibrium over a simple pulley whose axle is

smooth is under equal tensions on both sides; for, Fig. 46,

Fig. 46. Fig. 47.

considering the pulley and its portion of cord free 2(Pa) —
about the centre of axle gives I^'r =^ Pr, i.e., J*' = I^ = ten-

sion in the cord. Hence the pressure i? at the axle bisects

the angle ex, and therefore if a weighted pulley rides upon a

cord ABC, Fig. 47, its position of equilibrium, B, may be

found by cutting the vertical through A by an arc of radius

CD = length of cord, and centre at C, and drawing a horizon-

tal through the middle of AD to cut CD in B. A smooth

ring would serve as well as the pulley ; this would be a slip-

knot. From Fig. 46, R= 2P cos Ja.
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42. If tliree cords meet at 2i fixed Tcnot, and are in equilib-

rium, the tension in any one is the equal and ymy/»y^///..

^opposite of the resultant of those in the other y _

two.

43. Tackle.—If a cord is continuous over a

number of sheaves in blocks forming a tackle,

neglecting the weight of the cord and blocks and

friction of any sort, we may easily find the ratio

between the cord-tension P and the weight to be

sustained. E.g., Fig. 48, regarding all the straight

cords as vertical and considering the block B
free, we have, Fig. 49 (from •2Y=%^P- G

ri

= 0, .*. P = -T-. The stress on the support G will = 5P.
4

Fig. 49^ Fig. 49c.

G

Fig. 49c?.

Other designs of tackle are presented in Figs. 49a, 496, 49c, and 49<^,

and should be worked out as exercises by the student. In each case

the weight G is supposed to be given and [a value of the smaller

weight (or pull) P must be determined for the equilibrium of the tackle.

Friction, and the weights of the pulleys and cords, are neglected and
all straight parts of cords (or chains) are considered vertical.

. All of the pulleys shown are "simple pulleys," except the one at A in

Fig. 49d, which represents a "differential pulley" tackle. Pulley A
consists of two ordinary pulleys fastened together, the groove in each

being so rough, or furnished with "sprocket-teeth" in case a chain is

used, that slipping of the cord or chain is prevented. The chain or cord

is endless, the loop C being slack. B is a simple pulley. In this case,

for equilibrium the pull P must =W(r^~r)-r-ri. The other results

.are p=iG for Fig. 49a; iG for 496; and IG for 49c.
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44. Weights Suspended at Fixed Knots.—Given all the geo.

metrical elements in Fig. 50, iind

one weight, G^\ required the re-

maining weights and the forces

iZoi 1^05 Hn ^i'^ y^ni at the points

of support, that equilibrium may
obtain. H^^ and Fq are the hori-

zontal and vertical components of

the tension in the cord at 0\
simihvrlj 11^ and Y^ those at n. There are ^ -f 2 unknowns..

(The solution of this problem is deferred. See p. 420.)

Fig. 50a.

45. Example.—The boom OD, tie-rod RT), with four simple pulleys

and a cable, form a crane as shown in Fig. 50a. Find the necessary

vertical force P to be exerted on the piston at H, that the load of

800 lbs. may be sustained. Also find the pressure of pulley B on its

bearing, the pull T in the tie-rod and the pressure Pq (amount and
position) at pin O; neglecting all friction and rigidity (p. 192) and the

weights of the members. Dimensions as in figure. Since all puUeye
are "simple" the tension in cable is the same at all points; and is.

= 400 lbs. since the straight parts of cable adjoining pulley A are parallel.

For a similar reason P= 800 lbs.

Pressure at B bisects the angle (50°) between adjoining straight parts

of cable; i.e., is 25° with vertical, and =2X400Xcos 25°= 725 lbs., (§ 41).

Next take the free body in Fig. 506 (boom and pulley '5 together

with a part of cable.) Three unknowns and three equations.

^(moms.)o= 0; .-. -F TXQXtan 40°+ 400X 1-400X9-400X7 = (1)

i.e., TX 9 X 0.8391 = 6000 ft.-lbs.; .-. 2"= 794.3 lbs., (tension in tie-rod.)

IX= Xi, .•.Xo-400cos40°-r= 0; .-. Xo= 794.3-H400X .766= 1100.7 lbs.

^F=0, .-. Yo-^OO sin40°-400-400= 0;

.-. y„= 400 X.6428 + 800 =1057. 12 lbs.

Hence P„, = VZo^ -F Fo^ = 1 526 lbs. at tan-* Fo/Zq, or 43° 50', with horiz..
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Note.—If the weight 800 lbs. were attached directly to cable on right.

of pulley B, the value of P would need to be 1600 lbs.

46. Loaded Cord as Parabola.—If the weights are equal and

inlinitelj small, and are intended to be uniformly spaced

along the horizontal, when equilib-

rium obtains, the cord having no

weight, it will form a parabola. Let

q = weight of loads per horizontal

linear unit, O be the vertex of the

curve in which the cord hangs, and

Tn any point. We may consider

the portion Om as a free body, if

the reactions of the contiguous portions of the cord are put in,

J3q and T, and these (from Prin. I.) must act along the tangents

to the curve at O and m, respectively ; i.e., Sq is horizontal,

and T makes some angle cp (whose tangent = —, etc.) with

the axis X! Applying Prin. II.,

2X = gives Tcos, cp — Hq= ; i.e., T^~^ = jSq
;ds

2Y= gives T sin (p — qx = ', i.e., T-j- =

. (1)

qx. . . (2)

Dividing (2) by (1), member by member, we have — = -^ ;

q
dy = -^xdx, the differential equation of the curve ;,

B,

(/ -_-._ / tJuCLvO — -r~r or X y, the equation oi a

parabola whose vertex is at (9 and axis vertical.

Note.—The same result, ~ = %- , mav be obtained by considering that

we have here (Prin. II.) ?ifree rigid hody acted on

by three forces, T, Hq, and R = qx, acting verti-

cally through the middle of the abscissa x; the

resultant of Hq and R must be equal and oppo-

site to T, Fig. 53.
R dy qx

tan o) = —-, or -f
=--

Ho dx H^
Evidently also the tangent-line bisects the ab-

scissa X. (Try moments about m.)

Example.—Let g= 800 lbs. "per foot run" and .'c= 100 ft., with 2/ = 20 ft.

Then we have, for the value of the tension at the vertex of the parabola,

F = ?x=^ 2j/ = 800X (100) => -^ 40= 200,000 lbs.
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47. Problem under § 46. [Case of a suspension-bridge m
which the suspension-rods are vertical, the weight of roadway

is uniform per horizontal foot, and large compared with that

of the cable and rods. Here the roadway is the only load : it

is generally furnished with a stiffening truss to avoid deforma-

tion under passing loads.]—Given the span = 2J, Fig. 53,

Y; vf 71 ^^1® deflection = a, and the rate of loading

j. ^_ —j^y^^ = q lbs. per horizontal foot ; required the

tension in the cable at 0, also at m ; and

^ the length of cable needed. From the

equation of the parabola qx^ = 'iH^y, put-

ting a? = 5 and y = a, we have Mq = qjf -r- 2« — the tension

at 0. From -S'T' = we have Y^ = qb, while ^^= gives

qr--x-

Fis. 53.

M, = U,\ .-. the tension at m = \^H^ + Y^= ^-{_qb V4:a'-\- b'].
Act

The semi-length, Om , of cable (from p. 88, Todhunter's In-

tegral Calculus) is (letting n denote Hq -t- 2^', = 5^ -f- 4a)

Otn = Vna -\- a" -{- n . log^ [( Va -j- Vn -j- a) -^- Vti].

48. The Catenary.*—A flexible, inextensible cord or chain, of

uniform weight per unit of length, hung at two points, and

supporting its own weight alone^ forms a curve called the

catenary. Let the tension Hq at the lowest point or vertex be

represented (for algebraic convenience) by the weight of an

imaginary' length, c, of similar cord weighing q lbs. per unit

of length, i.e., 11^=. qG\ an actual portion of the cord, of

length 5, weighs qs lbs. Fig. 54 shows -as,free and in equilib-

-f-^^ ^ rium a portion of the curve of any

length s, reckoning from the

vertex. Requii-ed the equation of

the curve. The load is uniformly

spaced along the curve, and not

horizontally, as in §§ 46 and 47.

Fig. 54. 2T gives
2-J^

= ^s; while

rdxSX - gives T-^- = qG.

squaring, c^«?2/'' = ^do^. .

Hence, by division, cdy = sdx, and

• (1)

* For the " transformed catenary," see p. 395.
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Put dy^ = ds^ — dx^, and we have, after solving for dx

ods /*s (is rs

and X =0 . log, [(s+ V? + c') -^ c], . . . (2)

a relation between the horizontal abscissa and length of curve

Again, in eq. (1) put dx^ = ds^ — dy"^, and solve for dy.

This gives dy =
,

= ^r . \ , ocr. Therefore .^ ^
i/c^ -I-

5« 2 (c^+5')* •

2/ = iX'{o' + 5')~*c?(c' + «') = i '2(c^ + sy, and finally

y = |/*^ 4- c" _ c (3)

Clearing of radicals and solving for c, we have

c = («'-y')-% (4)

Kow T, the tension at any point, = V(qs)~ + (56)2, and

from (3) we obtain

T=q(y+ c) (4a)

Example.—A 40-foot chain weighs 240 lbs., and is so hung from

two points at the same level that the deflection is 10 feet. Here, for

s=20ft., ?/= 10; hence eq. (4) gives the parameter, c = (400 — 100) -^-20 = 15

feet. 5= 240-^-40 = 6 lbs. per foot. .•. the tension at the middle is if
(;
= gc

=6X15= 90 lbs.; while the greatest tension is at either support and
= \/90M^120'=150 lbs.

Knowing c=15 feet, and putting s= 20 feet = half length of chain,

we may compute the corresponding value of x from eq. (2) ; this will

be the half-span. That is,

.x= 15 . loge 3 = 15 X2.303 X 0.4771 = 16.48 ft.

To derive s in terms of x, transform eq. (2) in the way that

?i = logg m may be transformed into e^ = m, clear of radicals

and solve for s, obtaining "^

or, s = c.sinh(— j. . . (5)

Again, eliminate s from (2) by substitution from (3), trans-

form as above, clear of radials, and solve for y+c, whence

y +c= lc[ee -{-e
«
J; or, ?/-l-c= c. cosh|— j. (6)

which is the equation of a catenary with axes as in Fig. 54.

If the horizontal axis be taken a distance= c below the vertex,

* sinh and cosh denote "hyperbolic" sine and cosine; see table, appendix.
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the new ordinate z= y-\-c, while x remains the same; the last

equation is simplified. See figure below.

If the span and length of chain are given, or if the span

and deflection are given, c can be determined from (5) or (6)

only by successive assumptions and approximations.

48a. Catenary (Chain or Cable) with Supports at Different Levels.—Given
the span k, the difference of

elevation d of the two supports,

and the whole length of chain, Z;

it is required to find x' and y'

(see Fig. 54a) and thus deter-

mine the position of the vertex,

or lowest point, 0, of the cate-

nary. By applying the equa-

tions of p. 47 to parts A'O and
B'O, in turn, and combining,

we may finally deduce (see

p. 179 of Rankine's Applied

Mechanics)Fig. 54a.

-d^= 2c.sinh( k" (7)

(8)

-l/P-d^= ch2c-e 2cJ; i.e., ^/P-

and also the relation x'— x"= c-\oge\ y—i •

From (7) we find the "parameter," c, by trial; then the value of x'— x"
from (8) ; whence, finally, we obtain x' and x" separately (since x'-f a;"= fc).

With x' known y' is found from (6) ; i.e.,

[x' x'-i

^ . - ^- ec +e c\ or, y' + c-- =c-coshl

—

(9)

Thus the position of the vertex is located. The greatest tension

will be at the highest point A', viz., TA' = q{y'+ c) (10)

[The expression ^-[e^— g-w] is called the "hyperbolic sine" of the number
u, or sinh (u); and ^[e^+e-u] the "hyperbolic cosine" of w, or cosh (u);

e being the Naperian base 2.71828 . . . Tables of sinh u and cosh u
will be found in the appendix.]

Example.—A chain 100 ft. long is supported at two points 80 ft. apart

horizontally and 30 ft. vertically; find the position of its lowest point.

That is, (Fig. 54a) given Z=100 ft., k= 80 ft., d= 30 ft.

Solution.—\/P-d^= \/9100= 95A ft., the left-hand member of (7).

Assuming c= 20 ft. as a first trial, we find fc-r-2c= 2.00 and sinh (2.00)

= 3.6269, so that 2c sinh (2.00) is 145.176, which is much larger than

95.4. Next, with c assumed as 40, 39, and 38.3 ft., we find 2c sinh (A;-r-2c)

to be 2X40X1.1745= 93.96; 2X39X1.2153 = 94.8; and 2X38.3 X 1.2444

= 95.3, respectively; and hence conclude that c=38.2 ft. will satisfy

eq. (7) with sufficient accuracy. Eq. (8) now becomes

a;'-x" = 38.2X2.303X0.2689 = 23.66 ft.;

and finally we obtain x'= 51.83 and x" = 28.17 ft. From eq. (9) we now
have 2/' + 38.2= 38.2X2.07 13 = 79. 10 ft. and .-. j/' = 40.9 ft. With
?=1.5 lbs. per foot, the tension at A'=l.5X79. 1 = 118.6 lbs.



PART II.-KINETICS.

CHAPTEE I.

EECTILINEAR MOTION OF A MATERIAL POINT,

49. Uniform Motion implies that the moving point passes

over equal distances in equal times ; variable motion, that un-

equal distances are passed over in equal times. In uniform

motion the distance passed over in a unit of time, as one sec-

ond, is called tlie velocity (= v), which may also be obtained

by dividing the length of any portion (= s) of the path by

the time (= t) taken to describe that portion, however small or

great ; in variable motion, however, the velocity varies from

point to point, its value at any point being expressed as the

quotient of ds (an infinitely small distance containing the

given point) by dt (the infinitely small portion of time in

which ds is described).

49«. By acceleration is meant the rate at which the velocity

of a variable motion is changing at any point, and may be a

uniform acceleration, in which case it equals the total change

of velocity between any two points, however far apart, divided

by the time of passage ; or a variable acceleration, having a

different value at every point, this value then being obtained

by dividing the velocity-increment, dv, or gain of velocity

in passing from the given point to one infinitely near to it, by

dt, the time occupied in acquiring the gain.* (Acceleration

must be understood in an algebraic sense, a negative accelera-

tion implying a decreasing velocity, or else that the velocity in

a negative direction is increasing.) The foregoing applies to

motion in a path or line of any form whatever, the distances

mentioned being portions of the path, and therefore measured

along tlie path. (Sue p. 43 in the '
' Notes,

'

' etc.

* See addendum on p. 836.
49
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50. Eectilinear Motion, or motion in a straight line.—The
general relations of the quantities involved may be thus stated

(see Fig. 55) : Let v = velocity of the body at any instant

;

-s g .as as, t^ ^^^^^ ^^ ~ ^^^^ ^^ velocity
•

? \ \ I
in an instant of time dt. Let

idtidt'k i
i^ = time elapsed since the

body left a given fixed point,

which will be taken as an origin, 0. Let s = distance (-f- or

— ) of the body, at any instant, from the origin ; then ds =
distance traversed in a time dt. Let^ = acceleration = rate

at which v is increasing at any instant. All these may be

variable ; and t is taken as the independent variable, i.e., time

is conceived to elapse by eqical small increments, each = dt
;

lience two consecutive dsh will not in general be equal, their

difference being called d^s. Evidently d^t is = zero, i.e., dt is

constant.

Since -,- = number of instants in one second, the velotity at

any instant (i.e., the distance which would be described at that

•IN . 7 1 ^^ /TV
rate m one second) \q v = ds . -n-', .'

. v = -^- (L)

Similarly, J> =^ dv . -t> and I since dv = di^^J =~^ J'

dv d^s

Eliminating dt, we have also vdv = pd^. (HI.)

Tliese are the fundamental differential formulae of rectilinear

motion (for curvilinear motion we have these and some in ad-

dition) as far as kinematics, i.e., as far as space and time, is

concerned. The consideration of the mass of the material

point and the forces acting upon it will give still another rela-

tion (see § 55).

Example.—If we have given s= [6<^+ 3<^+ 2<] ft., for a certain motion,

then the velocity, v, at any time, =ds^^dt, =[18i'*+6< + 2] ft. per sec;

and the acceleration, p, =dv-^dt, =[36t+ 6]ft. per sec. per sec.

61. Rectilinear Motion due to Gravity.—If a material point

fall freely in vacuo, no initial direction other than vertical

having been given to its motion, many experiments have
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sho^*•n that this is a uniformly accelerated rectilinear motion

in a vertical line having an acceleration (called the accelera-

tion of gravity) equal to 32.2 feet per square second,* or 9.81

metres per square second ; i.e., the velocity increases at this

constant rate in a downward direction, or decreases in an up-

ward direction.

[Note.—By " square second " it is meant to fay stress on tlie fact that an

acceleration (being = d^s -h df^) is in quality equal to one dimension of

length divided by two dimensions of time. E.g., if instead of using the

foot and second as units of space and time we use the foot and the minute,

g will = 33.3 X 3600; whereas a velocity of say six feet per second would
= 6 X 60 feet per minute. The value of g = 33.3 implies the units foot

and second, and is sufficiently exact for practical purposes.]

52. Free Fall in Vacuo.—Fig. 56. Let the body start at

v,dth an initial downward velocitj^ = c. The accelera- _s
tion is constant and = -\- g. Reckoning both time and I

distance (-|- downwards) from O, required the values of „i^\
the variables s and v after any time t. From eq. (II.),

\
\

c

§ 50, we have -{- g = dv -^ dt; .'. dv = gdt, in which the " k

two variables are separated. I 1

dv = gj dtt\ i.e., v ^=^ g\ t\ ox v — c =^ ""j

gt — ^\ and finally, -y = c+ (/^ (1) fig. 56.

(ISTotice the correspondence of the limits in the foregoing

operation ; when ^ = 0, -y = -f- <^')

From eq. (I.), § ^^^v ^= ds -^ dt\ .'. substituting from (1),

ds ^ {c -{- gt)dt, in which the two variables s and t are sepa-

rated.

ds = cj^ dt+ gj^ tdt
;
i.e.,

[_^5
= e\j+ ^[^ ^ '

or 5 = c? + ^gf (2)

Again, eq. (Ill-), § 50, vdv = gds, in which the variables v

and ,9 are already separated.

/v ps r"u r~s

vdv = gj^ ds; or
\

iv' = g s; i.e., ^{v' — c') = gs,
_.c L-0

* Or, 82.3 "feet per second per second."
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If the initial velocity = zero, i.e., if the body falls from rest,

teq. (3) gives s=^-audv= V^gs. [From the frequent re-

currence of these forms, especially in hydraulics, ^is called the

"height due to the velocity t;," i.e., the vertical height through

which the body must fall from rest to acquire the velocity v
;

while, conversely, V'2gs is called the velocity due to the height

or "head" s.]

By eliminating g between (1) and (3), we may derive another

formula between three variables, s, v, and t, viz.,

S = i{G-i-V)t . (4:)

Example.—A leaden ball occupies 4.6 seconds in falling from the eaves

of a tall building to the sidewalk; initial velocity zero. Find the height

fallen through, =s'. We have from eq. (2)

s' = + i(32.2)(4.6) = = 341 ft.

53. Upward Throw.—If the initial velocity were in an up-

ward direction in Fig. 56 we might call it — c, and introduce it

with a negative sign in equations (1) to (4), just derived ; but

for variety let us call the upward direction -|-, in which case

an upward initial velocity would = -|- c, while the acceleration

= — g, constant, as before. (The motion is supposed confined

within such a small range that g does not sensibly vary.) Fig.

i 67. Fromp = dv -^ dt we have dii = — gdt and

J^
dv = — gj^ dt; r.v — G = — gt\orv = G — gt. {l)a

From V ^=ds -^ dt, ds = cdt — gtdt,
ns r*t r>t

i.e.,
J^

ds = cj^ dt — gj^ tdt ; or s=Gt — ^gt\ (2)a

O i

' p' p^
—S vdv = pds gives / vdv = — a I ds, whence
Fig. 57.

.^ & «/c ifJo

^(^' — c') = — gs, or finally, s = . . (3)a

And by eliminating g from {l)a and (3)a,

s = i{G-{-v)f (4)a

The following is now easily verified from these equations ;

the body passes the origin again (6' = 0) with a velocity = — c,

after a lapse of time =2g -r- g. The body comes to rest (for

if
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an instant) (put v = 0) after a time = c -^ ^, and at a distance

s = c^ -^ 2g (" height due to velocity c") from 0. For t >
G -^ g, V is negative, sliowing a downward motion ; for t >
2g -^ g, s is negative, i.e., the body is below the starting-point

while the rate of change of v is constant and = — ^ at all

points.

Example.—Let c be 40 ft./sec. Then in a time= 40 -r- 32.2, =1.24

sec, the body will reach its maximum height, (40)2^-2X32.2 = 24.84

ft. above the start. After 3 sec. the body will be found a distance

S3=40x3-i(32.2)(3)2=-24.9 ft. from the origin, i.e., below it.

54. Newton's Laws.—As showing the relations existing in

general between the motion of a material point and the actions

(forces) of other bodies upon it, experience furnishes the fol-

lowing three laws or statements as a basis for kinetics

:

(1) A material point under no forces, or under balanced

forces, remains in a state of rest or of uniform motion in a

right line. (This property is often called Inertia^

(2) If the forces acting on a material point are unbalanced,

' an acceleration of motion is produced, proportional to the re-

sultant force and in its direction.

(3) Every action (force) of one body on another is always

accompanied by an equal, opposite, and simultaneous reaction.

(This was interpreted in § 3.)

As all bodies are made up of material points, the results ob-

tained in Kinetics of a Material Point serve as a basis for the

Kinetics of a Rigid Body, of Liquids, and of Gases.

55. Mass.-—If a body is to continue moving in a right line,

the resultant force P at all instants must be directed along that

line (otherwise it would have a component deflecting the body

from its straight course). (See addendum on p.' 835.)

In accordance with Newton's second law, denoting by j? the

acceleration produced by the resultant force {O- being the

body's weight), we must have the proportion P \ G : : jp \ g \

i.e.,

P = — .p , orP=i^. . . (lY.)

Eq. lY. and (I.), (II.), (III.) of § 50 are the fundamental

equations of Dynamics. Since the quotient G — g \s, invaria-
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ble, wherever the body be moved on the earth's surface {O and

g changing in the same ratio), it will be used as the measure

of the massM ov quantity of matter in the body. In this way

it will frequently happen that the quantities G and g will ap-

pear in problems where the weight of the body, i.e., the force

of the earth's attraction upon it, and the acceleration of gravity

have no direct connection with the circumstances. No name
will be given to the unit of mass, it being always understood

that the fraction G -^ g will be put forM before any numeri-

cal substitution is made. From (lY.) w'e have, in words,

accelerating force = mass X acceleration^

also, acceleration — accelerating force -=- Quass.

56. Uniformly Accelerated Motion.—If the resultant force is

constant as time elapses, the acceleration must be constant (from

eq. (IV.), since of course J/" is constant) and = P -^ M. The
motion therefore will be uniformly accelerated, and we have

only to substitute + pi, (constant) , ior g in eqs. (1) to (4) of

§ 52 for the equations of this motion, the initial velocity being

= c (in the line of the force).

v = G-]-pit . . . (1); s = ct-i-ipit^; , . . (2)

('y*-_c'')

If the force is in a negative direction, the acceleration will

be negative, and may be called a retardation; the initial veloc-

ity should be made negative if its direction requires it.

57. Examples of Unif. Ace. Motion.—Exomh;ple 1. Fig. 58.

A small block whose weight is \ lb. has already described a

—

S

g P M ^ g distance Ao = 4-8 inches over a
A SMOOTH —7-> ^" -0^~

1 smooth portion of a horizontal

Fig. 58. table in two seconds ; at 6^ it en-

counters a rough portion, and a consequent constant friction of

2 oz. Required the distance described beyond 0, and the time

occupied in coming to rest. Since we shall use 32.2 for g,

times must be in seconds, and distances in feet ; as to the unit

8 = ^-^;, . . (3), and5 = K^+ ^)^5 ... (4)
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-t force, as that is still arbitrary, say ounces. Since AO was

smooth, it must have been described with a uniform motion

(the resistance of the air being neglected); hence with a veloc-

ity = 4 ft. -^ 2 sec. = 2 ft. per sec. The initial velocity for

the retarded motion, then, is c = -|- 2 at (9, At any point be-

yond the acceleration = force -— mass = (— 2 oz.) -r- (8 oz.

-f- 32.2) = — 8.05 ft. per square second, i.e., p = — 8.05 =
constant ; hence the motion is uniformly accelerated (retarded

here), and we may use the formulae of § 56 with g = + 2, pi =
— 8.05. At the end of the motion v must be zero, and the

corresponding values of s and t may be found by putting v =
in equations (3) and (1), and solving for s and t respectively :

thus from (3), 5 =^(-4)-4- (— 8.05), i.e.,s = 0.248 +, which

must be feet ; while from (1), t={—2)-^{— 8.05) = 0.248 +,
which must be seconds.

Examjple 2. (Algebraic.)—Fig. 59. The two masses J/", =
G^ -~ g and M^ G -^ g are connected by a flexible, inexten-

sible cord. Table smooth. Required the acceleration common
to the two rectilinear motions, and the tension in the string S,.

i^s.

Fig. 59. Fig. 60.

there being no friction under G^, none at the pulley, and no

mass in the latter or in the cord. At any instant of the mo-

tion consider G^ free (Fig. 60), iV being the pressure of the

table against G^. Since the motion is in a horizontal right line

^(vert. compons.)= 0, i.e., iV— G^ = 0, which determines iV„

S, the only horizontal force (and resultant of all the forces) =
M,p, i.e.,

S= G,p-^g. (i;

At the same instant of the motion consider G free (Fig. 61);.

the tension in the cord is the same value as above = S. The

accelerating force is ^ — 8, and

.*. = mass X ace, or G — 8 ^= {G -^ g)p. . (2)
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j
|g

From equations (1) and (2) we obtain p — {Gg) ~
\ y, {G -^ G^ = a constant ; hence each motion is uniformly

j
r S accelerated, and we may employ equations (1) to (4) of

i ^ § 56 to find the velocity and distance from the starting-

^ points, at the end of any assigned time t, or vice versa.

The initial velocity must be known, and may be zero.

Also, from (1) and (2) of this article,

S = {GG,) -^ ((9 + G,) = constant.

Example 3.—A body of 2J (short) tons weight is acted on

during ^ minute by a constant force P. It had previously de-

scribed 316f yards in 180 seconds under no force ; and subse-

quently, under no force, describes 9900 inches in -^ of an hour,

Eequired the value of P. Ans. P = 22.1 lbs.

. / Example 4.—A body of 1 ton weight, having an initial

''velocity of 48 inches per second, is acted on for \ minute by a

force of 400 avoirdupois ounces. Required the final velocity,

Ans. 10.03T ft. per sec.

Exa/mjple 5.—Initial velocity, 60 feet pei second ; body weighs

0.30 pf a ton. A resistance of 112|- lbs. retards it for -^-^ of

a ininute. Required the distance passed over during this time.

Ans. 286.8 feet.

Example 6.—^Required the time in which a force of 600 avoir-

dupois ounces will increase the velocity of a body weighing \\

tons from 480 feet per minute to 240 inches per second.

Ans. 30 seconds.

Example 7.—What distance is passed over by a body of (0.6)

tons weight during the overcoming of a constant resistance

(friction), if its velocity, initially 144 inches per sec, is reduced

to zero in 8 seconds. Required, also, the friction.

Ans. 48 ft. and 55 lbs.

Example 8.—Before the action of a force (value required) a

body of 11 tons had described uniformly 950 ft. in 12 minutes.

Afterwards it describes 1650 feet uniformly in 180 seconds.

The force acts 30 seconds. P — % Ans. P = 178 lbs.
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58. Graphic Eepresentations. Unif. Ace. Motion.—With the

initial velocity = 0, tlie equations of § 56 become

V =pit,.

= V 2pi,

(1)

(3)

s = ipit",.

and

(2)

(4)

Eqs. (]), (2), and (3) contain each two variables, which may
graphically be laid off to scale as co-ordinates and thus give a

curve corresponding to the equation. Thus, Fig. 62, in (I.), we

A

V

J
s

.

0-

t-

!t

MQ-

0^J^-y(
(II.) (HI.)

Fig. 63.

have a right line representing eq. (I.) ; in (II.), a parabola with

axis parallel to s, and vertex at the origin for eq. (2) ; also a

parabola similarly situated for eq. (3). Eq. (4) contains tlii'ee

variables, s, -y, and t. Tliis relation can be shown in (I.), s be-

ing represented by the a?'ea of the shaded triangle = ^vt.

(11.) and (III.) have this advantage, that the axis OS may be

made the actual path of the body. [Let the student determine

how the origin shall be moved in each case to meet the supposi^-

tion of an initial velocity = -|- c or — c] (SeelSTotes, p. 120.)

59. Variably Accelerated Motions.—We here restate the equa-

tions ( differential)

9) = ds

dt

dv d^s
•(i-);p =^ =

dt df
. (XL); v<?'y=^^5..(III.)

and resultant force

= P=Mp,. , . . o . (lY.);

which are the only ones for general use in rectilinear motion

and involve the five variables, s, t, v, p, and P.

Problem 1.—In pulling a mass M along a smooth, horizon-

tal table, by a liorizontal cord, the tension is so varied that

i? = 4:f {not a homogeneous equation / the units are, say, the

foot and second). Required by what law the tension varies.
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From (L) , = ^^
= A_l ^ i^f ; from (IL), p = ^-^ =

24:t', and (lY.) the tension = P = 2fp = ^^Mt, i.e., varies,

directly as the time.

Pkoblem 2. " Harmonic Motion," Fig. 63.—A small block

Tig. 63

on a smooth horizontal table is attached to two horizontal

elastic cords (and they to pegs) in snch a way that when the-

block is at (9, each cord is straight but not tense ; in any other

position, as ^y?., one cord is tense, the other slack. The coi'ds

are alike in every respect, and, as with springs, the tension

varies directly with the elongation (= 5 in figure). If for an

elongation s^ the tension is Tj, then for any elongation s it is-

r = riSH-Si.v If the block be given an initial velocity =c
at 0, it begins to execute an oscillatory motion on both

sides of 0; m is any point of its motion. The tension

T is the accelerating force ; variable and always pointing

toward 0. The acceleration at any point m, then, is

p — — {T -^ M) = — {T^s -f- J/Sj), which for brevity put

^ = — as, a being a constant. Required the equations of

motion, the initial velocity being = -[- c, at 0. From eq. (til.)-

vdv = — asds ; .'. / vdv := — a I sds,

i.e., ^(y' — c') = — ^as^ ; or, y' = 6'' — as\ . (1)-

From (I.), dt = ds^v',\ CK^ r\, .-
-, \ ,-,^ > I dt= I [ds^yc^—as^]: or,
hence from (1), }Jo Jo

1 . JsV^\
Va ^

= ~-^sm-^[-—j (2),
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Inverting (2), we have 5 = (c -r- Va) sin (t Va), ... (3)

iLgain, by differentiating (3), see (I.), -y = c cos (tVa) (4)

Differentiating (4), see (II.), 2^ = — cVa sin {t Va). . . (5)

These are the relations required, each between two of the

four variables, s, t, v, and p; but the peculiar property

of the motion is made apparent by inquiring the time of pass-

ing from (? to a state of rest ; i.e., put i) = in equation (4),

we obtain i =z ^tt -i- Va, or ^tc — Va, or ^n -^ V~a, and so on,

while the cori-esponding vakies of s (from equation (3)), are

'\-{g -^ Va), — (c -^ Va), -f- (c -^ Va), and so on. This shows

that tlie body vibrates equalW on both sides of in a cycle or

period whose duration = 2;r -^ Va, and is indejpendent of the

initial velocity given it at 0. Each time it passes the

velocity is either -|- c, or — c, the acceleration = 0, and the

time since the start is = nn -f- \/a^ in which n is any whole

number. At the extreme point ^9 = :f c j/a, from eq. (5).

If then a different amplitude be given to the oscillation by

changing c, the duration of the period is still the same, i.e.,

the vibration is isochronal.'^ The motion of an ordinary pen-

dulum is nearly, that of a cycloidal pendulum exactly, harmonic.

If the crank-pin of a reciprocating engine moved uniformly

in its circular path, the piston would have a harmonic motion

if the connecting-rod were infinitely long, or if the design in

•< 2r >

Fig. 64.

Fig. 64 were used. (Let the student prove this from eq. (3).)

Let 2r = length of stroke, and c = the uniform velocity of the

crank-pin, and M = mass of the piston and rod A£. Then

the velocity of M at mid-stroke must = c, at the dead-points,

zero; its acceleration at mid-stroke zero; at the dead-points

the ace. = c Va, and s = r = c -7- Va (from eq. (3)) ; .*. V~a

=: c -^ r, and the ace. at a dead point (the maximum ace.)

* See illustrations and example on pp. 47, 48, of the "Notes."
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:= c* -4- r. Hence on account of the acceleration (or retarda-

tion) of J!/^in the neighborhood of a dead-point a pressure will

be exerted on the crank-pin, equal to mass X ace. = M& -^ r

at those points, independently of the force transmitted due to

steam-pressure on the piston-liead, and makes the resultant

pressure on the pin at G smaller, and at D larger than it would

be if the '"''inertia)'' of the piston and rod were not thus taken

into account. We may prove this also by the free-body method,

considering ABfree immediately after passing the dead-point

P,

A
Fig. 65.

\
?'

C, neglecting all friction. See Fig.

65. The forces acting are : G, the

weight ; W, the pressures of the

guides ; P, the known effective steam-

pressure on piston-head ; and P', the unknown pressure of

crank-pin on side of slot. There is no change of motion ver-

tically ;
.-. iT'+ i\^— 6^ = 0, and the resultant force is P — P'

= mass X accel. = Mc" -^ r^ hence P' ^= P — M& — r.

Similarly at the other dead-point we would obtain P' =^ P -{-

Mc^ -^ r. In high-speed engines with heavy pistons, etc.,

Mg^ -^ r is no small item. [The upper half-revol., alone, is

here considered.] (See example on p. 68, "Notes.")

Problem 3.—Supposing the earth at rest and the resistance

of the air to he null, a body is given an initial upward vertical

velocity = c. Required the velocity at any distance s from

the centre of the earth, whose attraction varies in-

versely as the square of the distance s.

See Fig. Q^.—The attraction on the body at the

surface of the earth where s = r, the radius, is its

weight G; at any point m it will be P = G(r2-=- s^),*

while its mass = G -7- g.

Hence the acceleration at m = j? = ( — P) -j- J/
= — ^(r° -=- s°). Take equation III., vdv = j)ds,

and we have

vdv = — gr^s ~^ds°, .'.

Fig. 66.

I vdv =z — gr^ I s 'ds or. 4^,«fv = — gr

I.e. ii^' ^')=-^r^{l-~ (1)

* That is, the force of attraction, {P, lbs.) at any distance, s, from O
is to the force at the surface (viz., G lbs.) as r'' is to s^.
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Evidently v decreases, as it should. Now inquire how small

A value c may have that the body shall never return/ i.e.,

that V shall not = until 5 = oo. Put v = and s =s 00 in

(1) and solve for g ; and we have

c = V2ffr = V2 X 32.2 X 21000000,

= about 36800 ft. per sec. or nearly 7 miles per sec. Con-

versely, if a body be allowed to fall, from rest, toward the

earth, the velocity with which it would strike the surface

would be less than seven miles per second through whatever

distance it may have fallen.

If a body were allowed to fall through a straight opening in

the earth passing through the centre, the motion would be har-

monic, since the attraction and consequent acceleration now
vary directly with the distance from the centre. See Prob. 2.

.

This supposes the earth homogeneous.

Problem 4.—Steam working expansively and raising a weight.

Fig. 67.—A piston works without

friction in a vertical cylinder. Let

S = total steam-pressure on the

underside of the piston ; the weight

G, of the mass G — g (which in-

cludes the piston itself) and an

atmospheric pressure = A^ con-

stitute a constant back-pressure.

Through the portion OB = s^, of

the stroke. Sis constant = S^, while beyond B, boiler com-
munication being " cut off," S diminishes with Boyle's law, i.e.,

in this case, for any point above JB, we have, neglecting the

" clearance", 2^ being the cross-section of the cylinder, *

S:S,::Fs,: Fs; or S=S,s,-^s.

(Which gives *S as a function of s at any point above B.)

Full length of stroke = ON" = s^. Given, then, the forces

S^ and A, the distances s, and 5„, and the velocities at and

at ^both = (i.e., the massM= 6^^ -j- ^ is to start from rest at

O. and to come to rest at iV), required the proper weight G to

* See p. 627 for meaning of "clearance."

Fig. 67.
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fulfil these conditions, ^S* varying as already stated. The accel-

eration at any point will be

j9= [_S-A-G^~M. . . . . (1)

Hence (eq. III.) Mvdv = [S— A — G'jds, and .*. for the

whole stroke

J/j^ vdv=J^ [S-A- G]ds; i.e.,

= Sj^ & + <Sa/ -^-A^de-oX ds,

or 8A[l + iog/fJ = As,+ es,.. . . (2)

Since S = /S^ ^ constant, from O to £, and variable, =
^i^i -^ 5, from ^ to JV, we have had to write the summation

X Sds in two parts.

From (2), G becomes known, and .". J!f also {= G — g).

Required, further, the time occupied in this upward stroke.

From to B (the point of cut-off) the motion is uniformly

accelerated, since p is constant {8 being = 8^ in eq. (1) ),

with the initial velocity zero; hence, from eq. (3), § 56,

the velocity 2it B = v^ z= V'i, \_8^ — A — G'\s^ -^ M'k known
;

.'. the time ^j = 2Sj -i- v^ becomes known (eq. (4), § 56) of de-

scribing OB. At any point beyond B the velocity v may be ob-

tained thus : From (III.) vdv — _pds, and eq. (1) we have,

summing between B and any point above,

M^vd. = S,s.£ ~-iA + <?)/&; i.e.,

G (v" — V') S
f A y n^ f N--—2—^ = ^1*1 log. --{A^G){s- 5,).

This gives the relation between the two variables v and 8

anywhere between B and iV"; if we solve for -y and insert its

value in dt ^= ds -~- v, we shall have dt = a. function of s and

ds, which is not integrable. Hence we may resort to approxi-
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mate methods for the time from B to iT. Divide the space

BN'mio an imeveii nnuiber of equal parts, say five; the dis-

tances of the points of division from will be s„ s,, s^, s^, s^,

and Sn- For these values of s compute (from above equation)

Wi (already known), v„ -y,, v,, v,, and v^ (knowTi to be zero). To
the first four spaces apply Simpson's Eule,* and we have the

time from JS to the end of 5,,

t
1 , 4 , 3 . 4: . 1

: / - ; approx. = ^. - -
-\

L-

while regarding the motion from 5 toiTas uniformly retarded

(approximately) with initial velocity = t\ and the final = zero,

we have (eq. (4), § 56),

-TV

t = 2{S^ - S,) -r- V,.

—6

By adding the three times now found we have the whole time

of ascent. In Fig. 67 the dotted curve on the left shows by

horizontal ordinates the variation in the velocity as the distance

s increases ; similarly on the right are ordinates showing the

variation of jS. The point ^, where the velocity is a maximum
= v,n, may be found by putting p = 0, i.e., for S = A-\- G,

the acelerating force being = 0, see eq. (1). Below ^the ac-

celerating force, and consequently the acceleration, is positive;

above, negative (i.e., the back-pressure exceeds the steam-

pressure). The horizontal ordinates between the line IIEKL
and the right line HT hve proportional to the accelerating force.

If by condensation of the steam a vacuum is produced be-

low the piston on its arrival at iV^, the accelerating force is

downward and ^ A-\- G. [Let the student determine how
the detail of this problem would be changed, if the cylinder

were horizontal instead of vertical.]

60. Direct Central Impact.—Suppose two masses J/j and Jf,

to be moving in the same right line so that their distance apart

continually diminishes, and that when the collision or impact

takes place the line of action of the mutual pressure coincides

with the line joining their centres of gravity, or centres of

* See p. 13 of the "Notes and Examples."
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mass, as they may be called in this connection. This is called

a direct central impact, and the motion of each mass is varia-

bly accelerated and rectilinear during their contact, the only

force being the pressure of the other body. The whole mass

of each body will be considered concentrated in the centre of

mass, on the supposition that all its particles undergo simul-

taneously the same change of motion in parallel directions.

(This is not strictly true ; the effect of the pressure being

gradually felt, and transmitted in vibrations. These vibrations

endure to some extent after the impact.) When the centres

of mass cease to approach each other the pressure between the

bodies is a maxinmm and the bodies have a common velocity;

after this, if any capacity for restitution of form (elasticity)

exists in either body, the pressure still continues, but dimin-

ishes in value gradually to zero, when contact ceases and the

bodies separate with different velocities. Reckoning the time

from the first instant of contact, let t' = duration of the first

period, just mentioned ; t" that of the first -(- the second (resti-

tution). Fig. 68. Let Jf^ and Jf^ be the masses, and at any

<..?i.
I

—^..3?2.^ instant during the contact let v^ and v^

~1)T be simultaneous values of the velocities
-^

p
Ml M2 of the mass-centres respectively (reckon-

^^®- ^^- ing velocities positive toward the right),

and f* the pressure (variable). At any instant the acceleration

of J[fj is j?j = — (P -^ J!/i), while at the same instant that of

M, is j)^ = -\- {P -^ M^ ; Jfj being retarded, M^ accelerated,

in velocity. Hence (eq. 11.,^ = dv -f- dt) we have

M,dv,= — Pdt\ and M^dv^— -\- Pdt. . . (1)

Summing all similar terms for the first period of the impact,

we have (calling the velocities before impact c^ and c^, and the

common velocity at instant of maximum pressure G)

^Jcy^^= - H'P^i^ ^-e-' ^^(^' -^a) = - S! Pdt
; (2)
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The two integrals * are identical, numerically, term by term,

since the pressure which at any instant accelerates J/, is nu-

merically equal to that which retards J/, ; lience, though we do

not know liow P varies with the time, we can eliminate the

definite integral between (2) and (3) and solve for C. If

the impact is inelastic (i.e., no power of restitution in either

body, eitlier on account of their total inelasticity or damaging

effect of the pressure at the surfaces of contact), they continue

to move with tliis common velocity, which is therefore their

final velocity. Solving, \Ne have

^- M,+M, ^^^

Next, supposing that the impact \q partially elastic, ihid, the

bodies are of the same material, and that the summation

I Pdt for the second period of the impact bears a ratio, e,

to that / Pdt, already used, a ratio peculiar to the material,

if the impact is not too severe, we have, summing equations

(1) for the second period (letting Y^ and Y^ = the velocities

after impact),

^^ X""^^^ = - S"^^*^ ^•^•' ^'( ^- ^) = - ^/*^^^; (s)

M,/V = + X'Pdt, i.e., M,{ Y- 0) = + ej^dt. (6)

6 is called the coefficient of restitution.

Having determined the value of / Pdt from (2) and (3) in

terms of the masses and initial velocities, substitute it and that

of (7, from (4), in (5), and we have (for the final velocities)

y. = W^: + M^c- eMlc-c:j\ - [if,+ JfJ; . (7)

and similarly

F, = [JfA + ^.c.+ ^^,(^-^.)]-W + ^,]- • (8)

For d = 0, i.e., for inelastic impact^ Y^= Y,= C m eq. (4) ; for

* That is, the right-hand members of eqs. (2) and (3).
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<g= 1, or elastic impact^ (7) :ind (8) become somewhat simpli-

fied.

To deterinino e experimeiitallj, let a ball (-3/,) of the sub-

stance fall upon a very large slab [M^ of the same substance,

noting both the height of fall h^. and the height of rebomid H^.

Considering M^ as = cc, with

Ci= ^ ^yh^, V=—V ^H,, and c, = o,

eq. (7) gives

— ^/ "^gH^, =— eV "Igh, ;
.-. e = V^, -^ h^.

Let the student prove the following from equations (2), (3),

(5), and (6)

:

{a) For any direct central impact whatever,

[The product of a mass by its velocity being sometimes

called its momentum^ this result may be stated thus

:

In any direct central impact the snm of the momenta before

impact is eqnal to that after impact (or at any instant during

impact). This principle is called the Conservation of Momen-
tum. The present is only a particular case of a more genei'al

proposition.

It can. be proved that C, eq. (4), is the velocity of the centre

of gravity of the two masses before impact ; the conservation

of momentum, then, asserts that this velocity is unchanged by

the impact, i.e., by the mutual actions of the two bodies.]

(h) The loss of velocity of Jf,, and the gain of velocity of

J/j, are twice as great when the impact is elastic as when in-

elastic.

(c) If e = 1, and M, = M„ then V, = + c^, and V^ = c,.

Example.—Let Mi and M^ be perfectly elastic, having weights = 4 and

6 lbs. respectively, and let Ci = 10 ft. per sec. and C2 = — 6 ft. per see.

(i. e., before impact M^ is moving in a direction contrary to that of Mi).

By substituting in eqs. (7) and (8), with 6 = 1, Mi — A-^ g, and Jfa = 5 -i- g,

we have

Vi = ir4 X 10 + 5 X (- 6) - 5 (lO - (- 6))]= - 7.7 ft. per sec.

Vi = lr4 X 10 + 5 X (- 6) + 4 Ao - (- 6))]= + 8.2 ft. per sec.

as the velocities after impact. Notice their directions, as indicated by thdr
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CHAPTER II.

"VIRTUAL velocities;

61. Definitions.—If a material point is moving in a direction

not coincident with that of the resultant force acting (as in

cnrvihnear motion in the next chapter), and any element of its

path, ds, projected npon this force;* the length of this projec-

tion, du, Fig. 69, is called the "Virtual Yelocity" of the

force, since du -^ dt uvAy be considered the veloc-

ity of the force at this instant, just as ds -=- dt is ,7,,

that of the point. The product of the force by q^

its du will be called its mrtucd moment, reckoned

-f- or — according as the direction from (9 to Z^ is

the same as that of the force or opposite.

62. Prop. I.— The virtual moment of a force equals the

algebraic sum of those of its components. Tig. YO. Take the

p direction of ds as an axis JT; let P^ and P,
'^ be components of P\ a^, a^, and a their

angles with X. Then (§ 16) P cos a. =^

cos a^-\-P^ cos a^. Hence P{ds cos ar)=

P^{ds cos a^) -\- PJids cos a^. But ds cos a
= the projection of ds upon P, i.e., ^ du

;

Fig. 70. ^^ gQg ^^ _ ^/^^^^ g^g^ . _._ J^^^^ _ p^g.^^ _j_

P^du^. If in Fig. 70 a^ M'ere > 90°, evidently we would

have Pdu = — Pfi.u^ -|- P^du^^ i.e., Pflu^ would then be

negative, and OD^ would fall behind 0; lience the definition

of -\- and — in § 61. For any number of components tlie

proof would be similar, and is equally applicable whether they

are in one plane or not.

63. Prop. II.—The sum of the mrtual moments equals zero,

for concurrentforces in equilihrium.

,

* We should rather say " projected ou the line of action of the force ;*

but the phrase used may be allowed, for brevity.
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(If the forces are balanced, the material point is moving in

a straight line if moving at all.) The resultant foi'ce is zero.

Hence, from § 62, P^du^ -f- P^du^ -\- etc. = 0, having proper

regard to sign, i.e., ^{Pdv) = 0.

64. Prop. III.—The sum of the mrtual moinents equals zero

for any small displacement or motion of a rigid hody in equi-

librium under non-concurrentforces in a plane^ all points oj

the hody moving parallel to this plane. (Although the kinds

of motion of a given rigid body which are consistent with

balanced non-concurrent forces have not yet been investigated,

we mav ima^ne any slio-ht motion for the sake of the alo;'e-

braic relations between the different du^^ and forces.)

• First, let the motion be a translation^ all

points of the body describing equal parallel

..^ lengths = ds. Take ^parallel to ds ; let aTj,

J^.3.^^ \jr etc., be the angles of the forces with X.

^^v Then (§ 35) '2{P cos «') = ; .-. ds^{P cos a)

* = ; but ds cos a^ = du^ ; ds cos a^ = du^
;

^^ ^ etc. ; .-. :2{Pdu) ^ 0. Q. E. D.

Secondly, let the motion be a rotation
Fig. 71. through a small angle dd in the plane of the

forces about any point in that plane, Fig. 72. With (9 as a pole

let /Oj be the radius-vector of the point of application of P^. and

«j its lever-arm from 0\ similarly for the p

other forces. In the rotation each point of

application describes a small arc, ds.^^ ds^, / / ' '

etc., propoi'tional to Pj, Pg, etc., since ds^ //'^^ ..--''^\

^ p,dd, ds, = p,dd, etc. From § 36, ^ ..^'-r^'.'-i^^ ^/^

P^a^ -\- etc. = ; but from similar triangles
'^""-•-d

ds^ : du^ :: Pi : a, ;
.*. «, = p^d^i-^ -^ ds^

'"-'

= du^ -f- dd ; similarly a^ = du, -=- dO, etc.
^^'^' ^^"

Hence we must have [P^du^ -\- P^du, -j- . . .] -f- dd = 0, i.e.,

^{Pdu) = 0. Q. E. D.

Now since any slight displacement or motion of a body may
be conceived to be accomplished by a small translation fol-

lowed by a rotation through a small angle, and since the fore-
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going deals only with projections of paths, the proposition is

established and is called the Principle of Virtual Velocities.

[A simihxr proof may be used for any slight motion what-

ever in space when a system of non-concurrent forces is bal-

anced.] Evidently if the path {ds) of a point of application is

perpendicnlar to the force, the virtual velocity {du), and con-

sequently the virtual moment {Pdu) of the force are zero.

Hence we may frequently make the displacement of such a

character in a problem that one or more of the forces may be

excluded from the summation of virtual moments.

65. Connecting-Rod by Virtual Velocities.—Let the effective

steam-pressure P be the means, througli the connecting-rod

and crank (i.e., two links), of raising the weight G very slowly

^

neglect friction and the weight of the links themselves. Con-

sider AB as free (see (5) in Fig. 73), BC also, at (c) ; let the

Bi

B/- \ N "^^X nN^^>\

Fig. 73.

"small displacements" of both be simidtaneous small portions

of their ordinary motion in the apparatus. A has moved to A^

througli dx ; B to ^i, through ds, a small arc ; C has not

moved. The forces acting on AB are P (steam-pressure), N
(vertical reaction of guide), and N' and :7^(the tangential and

normal components of the crank-pin pressure). Those on BC
are N' and T (reversed), the weight (7, and the oblique pressure

of bearing P'. The motion being slow (or rather the accelera-

tion being small), each of these two systems will be considered ais

balanced. Now put 2{Pdu) = for AB, and we have

Pdx -\-]^xO-\-]V' XO-Tds = 0. . . (1)

For the simultaneous and corresponding motion of BC,

^(Pdu) = gives
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iV^' X + Tds - Gdh + P' X = 0, . . (2)

(Zh being the vertical projection of {j's motion.

From (1) and (2) we Lave, easily, Pdx — Gdh = 0, . (3)

./Bi which is the same as we mio'ht have

I
_^^>'--^k(^^ -?^ 'i obtained by putting 2{Pdu) = Ofor

i^.-.-.-::."^-''' .... Jq\ p' the two links together^ regarded col-
^

' \ lectively as a free hody^ and describ-

^i**- 74. iiig a small portion of the motion

they really have in the mechanism, viz., (Fig. 74,)

Pdx+WxO- Gdh-^P' X0 = 0. , o (4)

We may therefore announce the

—

66. Generality of the Principle ofVirtual Velocities.

—

If ci^y

mechanism of jtexible inextensible cords, or of rigid bodies

jointed together, or hoth, at rest, or in motion with very son all

accelerations, he consideredfree collectively {or any portion of

it), and all the external forces put in ; then {disregarding

mutualf'ictions) for a small portion of its prescribed motion,

2{Pdu) must = 0, in which the du, or virtual velocity, of
each force, P, is the projection of the path of the point of

application upon the force (the product, Pdu, being -j- or —
according to § 61).

67. Example.—In the problem of § 65, having given the

weight G, required the proper steam-pressure (effective) P to

hold G in equilibrium, or to raise it uniformly, if already in

motion, for a given position of the links. That is. Fig. 75,

given a, r, c, a, and /?, re- \^^/\p--a
\^

quired the ratio dh \ dx; for, ^^-'^^^:'''^ '

from equation (3), § 65, P
^^.i^:::^^^^^''''''''''^

= G{dh : dx). The projec- p^_^^.^-::::^^^y^ /! "^^§^1

tions of dx and ds upon AP dx A, ^ r -•>-

will be equal, since A£ = ^^^- '^^

A^B^, and makes an (infinitely) small angle with A^B^, i.e.,

6^ cos a = ds cos (/3 — a). Also, dh = {c '. r)ds sin J3.
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Eliminating ds, we have,

dfi c sin /? cos a

dx r cos (/i — oc)
'

P= 6^
<? sin /? cos a
7" cos (/? — a)'

68. When the acceleration of the parts of the mechanism is

riot practically zero, 2{Pdu) will not = 0, but a function of

the masses and velocities to be explained in the chapter on

Work, Energy, and Power. If friction occurs at moving joints,

enough '• free bodies" should be considered that no free body

extend beyond such a joint ; it will be found that this friction

cannot be eliminated in the way T and N' were, in § 65.

69. Additional Problems; to be solved by "virtual velocities." Problem
1.—Find relations between the forces acting on a straight lever in equi-

librium; also, on a bent lever.

Problem 2.—When an ordinary copying-press is in equilibrium, find

the relation between the force applied horizontally and tangentially at

Lhe circumference of the wheel, and the vertical resistance under the

screw-shaft. See Fig. 75a.

Solution.—Considering free the rigid body consisting of the wheel and
screw-shaft, let B be the resistance at the point of the shaft (poiuting

along the axis of the shaft), and Pthe required horizontal tangential force

at edge of wheel. Let radius of wheel be r. Besides R and P there are

also acting on this body certain pressures, or "supporting forces," consist-

ing of the reactions of the collars, and reactions of the threads of nut against

the threads of screw. Denote by s the " pitcJi" of the screw, i.e., the dis-

tance the shaft would advance for a full turn of the wheel. Then if we
imagine the wheel to turn through a small angle dB, the corresponding

advance, ds, of the shaft would be x<-, from the proportion s : ds :: %Tt: dB

.

The path of the point of application of P is AS, a small portion of

a helix, the projection of which on the line of P is rdQ, while d& projects,

in its full length on the line of the

force R. In the case of each of

the other forces, however, the path

of the point of application is per-

pendicular to the line of the force

(which is normal to the rubbing

surfaces, , friction being disre-

garded). Hence, substituting in

I{Pdu) = 0, we have

+ P . rdd-R . ds+ + 0=0;
whence

dsP=
rdO

R-
'Inr

R.
Fig. 75a.
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CHAPTER HI.

CURYILINEAR MOTION OF A MATERIAL POINT.

A° f
° D°

Ln R'/7

^ AC^-^ /'/ °

o A// bA
1 -ii/

1 \ kJ \

Fig. 76.

[Motion in a plane, only, will be considered in this chapter.]

70. Parallelogram of Motions.—It is convenient to regard

the curvilinear motion of a point in a plane as compounded, or

made up, of two independent rectilinear motions parallel

respectively to two co-ordinate axes X. and 7^ as may be ex-

plained thus : Fig. 76. Consider
.
the

drawing-board CD as fixed, and let the

head of a T-square move from A
toward B along the edge according to

any law whatever, while a pencil moves

fromM toward Q along the blade. The

result is a curved line on the board, whose

form depends on the character of the

two ^ and IT component motions, ^^ they may be called. If

m a time z5, the 2^-square head has moved an ^distance = J/7V,

and the pencil simultaneously a Y distance = MP, hy com-

pleting the parallelogram on these lines, we obtain li, the

position of the point on the board at the end of the time t^.

Similarly, at the end of the time t^ we find the point at R'.

71. Parallelogram of Velocities.—Let the X and T" motions

be uniform, required the resulting motion. Fig. 77. Let g„

and Cy be the constant uniform X and Y velocities. Then in

any time, t, we have a? = c^,^ and y = v Y/

€yt ; whence we have, eliminating t,

as ~r y = c„ -^ Cy =. constant, i.e., x is

proportional to y, i.e., the path is a O-^,

straight line. Laying off OA = c^, I—^. /<*.-

and AB = Cy, ^ is a point of the path, Fig. n.

and OB is the distance described by the point in the first
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second. Since by similar triangles OR : x i: OB : c„ we

have also OH = OB . t ; hence the resultant motion is uniform,

and its velocity, OB = g, is the diagonal of the parallelograTn,

formed on the two component velocities.

Corollary.—If the resultant motion is curved, the direction

and velocity of the motion at any point will be given by the

diagonal formed on the component velocities at that instant.

The direction of motion is, of course, a tangent to the curve.

72. TJniformly Accelerated X and Y Motions.—The initial

velocities of hath heing zero. Required the resultant motion.

Fig. Y8. From § 56, eq. (2) (both c^, andCj, / ^
being = 0), we have x = ^pj^ and y = //'" ^<^
^yf, whence x -i- y = Px-^Py=^ constant, wVy'^^^i /
and the resultant motion is in a straight j/^^^h -r- L—

y^

line. Conceive lines laid off from 6^ on ^ ^* ^

and Y to represent j?a. and^j, to scale, and ^®' '^

'

form a parallelogram on them. From similar triangles {OB
being the distance described in the resultant n^^otion in any

time t), OB : x :: 'OB : p^ ;
.-. Oir= ^OBf\ Hence, from the

form of this last equation, the resultant motion is uniformly

accelerated, and its acceleration is OB =pi, (on the same scale

as^^ and^j,).

This might be called the parallelogram of accelerations, but

is really a parallelogram of forces, if we consider that a free

material point, initially at rest at 0, and acted on simulta-

neously by constant forces P^ and Py (so that p^. = P^ -^ M
2a\^ Py — Py -=- J[/), must begin a uniformly accelerated recti-

linear motion in the direction of the resultant force, {having

no initial velocity in any direction.)

73. In general, considering the point hitherto spoken of as a

free material point, under the action of one or more forces, in

view of the foregoing, and of Newton's second law, given the

initial velocity in amount and direction, the starting-point,

the initial amounts and directions of the acting forces and the
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laws of their variation if they are not constant, we can resolve

them into a single ^ and a single T^ force at any instant,

determine the^ and T' motions independently, and afterwards

the resultant motion.

Note.—The resultant force is never in the direction of the tangent to the

path (except at a point of infiection). The relations which its amount

and position at any instant bear to the velocity, rates of change of

that velocity (i.e., accelerations), both as to amount and position, and

the radius of curvature of the path, will now be treated (§ 74).

In Fig. 79, A, B, and C are three ' 'consecutive" positions of the moving

point, AB and BC being two short chords of the curve. When dt is

taken smaller and smaller (position B remaining unchanged) and finally

becomes zero, the points A and C merge into B and the chords AB and

BC becomes tangents at B; and hence the results to be obtained only

apply to a single point, B. But note that before dt becomes zero each

equation [except (7)] is divided through by dt (or dt^) and therefore the

individual terms do not necessarily become zero also.

74. General Equations for the curvilinear motion of a ma-

terial point in a plane.—The motion will be considered result-

,.K
I

ing from the composition of

,H''''
"'•- independent JT and 1^ motions,

..-0' r^ ^' \ C. -
,

' '

5^tv ^ X and Y being perpendicular to

^2\L..--" eacli other. Fig. 79. In two

consecutive equal times (each

= dt), let dx and dx' = small

spaces due to the X motion

;

and dy and CK^ dy\ due to

the Y motion. Then ds and

ds' are two consecutive elements

of the curvilinear motion. Pro-

long ds, making BE =^ ds; then EE = d'x, dF= d^y, and

00 = d^s {EO being perpendicular to BE). Also draw CL
perpendicular to BG and call CL d^n. Call the velocity of

the JT motion v^.-, its acceleration 'p^; those of the J" motion,

Vy and fy. Then,

dx dy dv.

For the velocity along the curve (i.e., tangent)

V = ds -T dt, we shnll have, since ds^ = dx^ -\- dy''

Fig. 79.

_ d'^x , _ d^y _ ^V~ df' ^^^^'>~~dt~ d¥°

dsV _ fdxV [dy\
+ Vdl)dt dtl

'Vx +V (1)



CURVILINEAR MOTION OF A MATERIAL POINT. 75

Hence v is the diagonal formed on v^^ and Vy (as in § 71).

Let pf=thG acceleration of v, i.e., tlie tangential acceleration.

then Pt = ^'"5 -J- ^^? ai^d, since d's = the sum of the projec-

tions of ^^and CI^ on £C, i.e., d''s = d^x cos a -\- d^y sin a,

we have

d^s d^x
,

«^'2/ . . , . /^v^ = ^ cos «? +^ sin or; i.e.,_^j =^^ cos or +^^s]n o'. (2)

By Normal Acceleration we mean the rate of cliaisge of the

velocity in the direction of the normal. In describing the ele-

ment AB = ds^ no progress lias been made in the direction of

the normal JBHi.e.^ there is no velocity \\\ the direction of the

normal; bnt in describing ^C' (on account of the new direc-

tion of path) the point has progressed a distance GL (call it

d^n) in the direction of the old iiormal BH (though none in

that of the new normial (7/). Hence, just as the tang. ace.

ds' — ds d^s ^ - , CL — zero d^7i=
775 = -m, so the normal accel. = ^, = ^-,-.
df df dt df

It now remains to express this normal acceleration (^j^^) in

terms of tlie X and Y accelerations. From the figure, CL
= CM- ML, i.e.,

d^n = d'y cos a — d^x sin a | since EF = d?x\
;

dj'n d^y d^x .

-df^df "^' ""-df '^" ''•

Hence ^^^^j^cosor — ^a.sino' (3)

The norm. ace. may also be expressed in terms of the tang.

Telocity -y, and the radius of curvature r, as follows

:

ds' =. rda, or da = ds' ~ r ; also d^n = ds'da, = ds'''' ~ r,

. d'n [ds'yi v'

'''^df-\-dtl P ^^ ^- = r (^)

If now, Fig. 80, we resolve the forces jf = Mp^ and Y
Y = Mpy, which at this instant account for the

JT and Y accelerations (M = mass of tlie

\ /\.'^^ material point), into components along the

.\^-'''\a \ tangent and normal to the curved path, w^e

-Jt.

,£-^^-^M\ ,.---'" shall have, as their eqioivalent, a tangential
-^

T = Mj>x cos ^ + ^Pv sin or,
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and a normal force

J7= Mjpy COS a — Mjpx sin or.

But [see equations (2), (3), and (4)] we maj also write

r= Jf?>, = J/-^; and N^M^^^m"^. . (5)

Hence, if a free material point is moving in a curved path^

the sum of the tangential components of the actingforces must

equal (the mass) X tang, accel.; that ofthe normal components,

=^ (the mass) X normal accel. = (mass) X (square of veloc. ia

path) H- (rad. curv.).

It is evident, therefore, that the resultant force (= diagonal

on T andN or on JTand Y, Fig. 80) does 7iot act along the tan-

gent at any point, but toward the concave side of the path ; un-

less r = oo.

Hadius of curvature.—From the line above eq. (4) we

have d'^n = ds'^ -~ r ; hence (line above eq. (3) ), ds''' -r- r =
d^y cos a — d^x sin a ; but cos a-=:dx-^ ds, and sin a = dy ^ ds,

T

dx -,„ dy
I-; dX-f
as ds

ds'^ds

- = dVij7 - ^''^^o '

I.e. = dx^d

ds ds , ,

or ' = dx
r

dy-

_dx_

ds'''ds'^

w

'dxd'y — dyd"x

dx^

= dx^d (tan a-),

~ I dx\' di2iCQ. a"

'dij dT'

or. y = -y -^
r 2 ^ *^" ^'

(6)

whicli is equally true if, for v^ and tan or, we put Vy and

tan (90° — a;). I'espectively.

Change in the velocity square.—Since the tangential accelera^

dv
^ ^ dv , .

tion -.- ^Pf, we have ds-^- =pfd8\ i.e.,

-^-dv-=ptds, or vdv=.ptds and /. —r— = / pfds. (7)

having integrated between any initial point of the curve where
V = c, and any other point where v = v. This is nothing

more than equation (HI.), of § 50.
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75. Normal Acceleration. Another Method.—Fig. 81. Consider a material

point TO describing a circular path ABC, with constant velocity

= v; the center of the curve being at

and the radius = r. The velocity v is

always tangent to the curve. Let the

linear arc BC be described in the small

time dt, the angle at the center being da.

At B the velocity is directed along the

tangent BT, while at C it is 1 to OC
and makes an angle da with a line parallel

to BT. As m moves along the curve

from B to C, the point n, which is the

foot of the T dropped from any position Fig. 81.

of TO upon the normal BO, moves from B toward D; whUe the foot, a,

of the T let fall from to upon the tangent BT, moves along BT with

an average velocity= v', a little less than v. Now the motion of to may
be regarded as compounded of these two motions, viz., that of n and

that of a. The motion of n is called the "motion of to along the normal."

The velocity of n is zero at B, where i" is T to the normal, and is v sin da

at the point D; hence in the time dt the gain of n's velocity is v sin da— 0,

and the rate of gain, or acceleration, is pn=v sin da-i-dt. But sin da
= CD-^r and CD = BC'= v'dt. Substituting, we have pn=vv'^r.

Now make dt equal to zero and we have v'= v; and finally pn=v^-i-r,

as the value of the normal acceleration, just at the point B.

76. TTniform Circular Motion. Centripetal Force.—The ve-

locity being constant, j!?^ must be = 0, and .'. T{ov 2Tii there

are severalforees) must = 0. The resultant of all the forces,

therefore, must be a normal force = {Mc^ -i- r) = a con-

stant (eq. 5, § 74). This is called the " deviating force,"

or " centripetal force ;" without it the body would continue

in a straight line. Since forces always occur in pairs (§ 3),

a " centrifugal force," equal and opposite to the " centri-

petal" (one being the reaction of the other), will be found

among the forces acting on the body to whose constraint the

deviation of the first body from its natural straight course is

due. For example, the attraction of the earth on the moon
acts as a centripetal or deviating force on the latter, while the

equal and opposite force acting on the earth may be called

the centrifugal. If a small block moving on a

smooth horizontal table is gradually turned from

its straight course^^ by a fixed circular guide,

tangent to AB at ^, the pressure of the guide

against the block is the centripetal force M&-^ r

directed toward the centre of curvature, wliile
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y/////////^,///

Fig. 83.

the cent "'^ugal force Mc^ -^ r is tlie pressure of the bloct

against th«. uide^ directed away from that centre.

Note.—One is not justified, therefore, in saying that a body descrifeing

a circular path is under the action of a "centrifugal force.'

The Conioal Pendulum^ or governor- ball.—Fig. 83. If a

material point of mass z= M =^ G ^ g^ suspended on a cord of

leLgth ^ Z, is to maintain a uniform cir-

cular motion in a horizontal plane, with a

given radius r, under the action of gravity

and the cord, required the velocity c to be

given it. At B we have the body free.

The only forces acting are G and the cord-

tension P. The sum of their normal com-

ponents, i.e., -5'i\^, must = Mc^ -r- r, i.e., P sin a = Md^ -f- r
;

but, since -2" (vert, comps.) = 0, /^ cos a =. G. Hence

G tan a = Gc^-^ gr; .•. c = Vgr tan a. Let u = number of

revolutions per unit of time, then u = c -v- 27rr = Vg -i- 27r Vh
;

i.e., is inversely proportional to the square root of the vertical

projection of the length of cord. The time of executing one

revolution is =1 -hw.

JElevation of the outer rail on raih'oad curves (considera-

tions of traction disregarded).—Consider a single car as a

material point, and free^ having a given

velocity = c. J^ is the rail-pressure r^

against the wheels. So long as the car $^_ -t—R-H;;

follows the track the resultant P of P '

"^

and 6r must point toward the centre of

curvature and have a value = Md^ -^ r.

But ^=:= 6^ tan a, whence tan or = c^-f- gr.

If therefore the ties are placed at this

angle a with the horizontal, the pressure

will come upon the tread and not on the flanges of the wheels
;

in other words, the car will not leave the track. (This is really

the same problem as the preceding)

Apparent weight of a body at the equator.—This is less than

the true weight or attraction of the earth, on account of the

uniform circular motion of the body with the earth in its

diurnal rotation. If the body hangs from a spring-balancej

Fig. 84.
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whose indication is G lbs. (apparent weight), while the true

attraction is G' lbs., we have G' — G == M& -^ r. For M
we may use G ^ g (apparent values); for r about 20,000,000

ft.; for c, 25,000 miles in 24 hrs., reduced to feet per second.

It results from this that 6^ is < ^' by -^G' nearly, and

(since 17^ = 289) hence if the earth revolved on its axis seven-

teen times as fast as at present, G would = 0, i.e., bodies

would apparently have no weight, the earth's attraction on

them being jnst equal to the necessary centripetal or deviating

force necessary to keep the body in its orbit.

Centripetal force at any latitude.—If the earth were a ho-

mogeneous liquid, and at rest, its form would be spherical ; but

when revolving uniformly about the polar diameter, its form

of relative equilibrium (i.e., no motion of the particles relatively

to each other) is nearly ellipsoidal, the pohir diameter being an

axis of symmetry.

Lines of attraction on bodies at its surface do not intersect

in a common point, and the centripetal force requisite to keep

a suspended body in its orbit (a small circle of the ellipsoia),

at any latitude /? is the resultant, iT, of the attraction or true

weight G' directed (nearly) toward the centre, and of G tiie

tension of the string. Fig. 85. ^ = the apparent weight, in-

dicated by a spring-balaTice and MA is its ..^G

line of action (plumb-line) normal to the y^r.:.....L.:'i:\.:^^U

ocean surface. Evidently the apparent

weiglit, and consequently g, are less than

the true values, since N must be perpen- x eq^^j^—

dicular to the polar axis, while the true

values themselves, varying inversely as ^^igTssT

the square of MC, decrease toward the equator, hence the ap-

parent values decrease still more rapidly as the latitude dimin-

ishes. The apparent g for any latitude /5, at h ft. above sea-

level, is (Chwolson, 1901), for foot-second units,*

^ = 32.lY23-0.083315cos2,5-0.000003/i.

(The value 32.2 is accurate enough for practical purposes.)

Since the earth's axis is really not at rest, but moving about

* At the equator, g^ = 32.09 at sea-level but decreases to 32.06 at an ele-

vation of 10,000 ft. above the sea.
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the sun, and also about the centre of gravity of the moon and

earth, the form of the ocean surface is periodically varied, i.e.,

the phenomena of the tides are produced.

77. Cycloidal Pendulum.—This consists of a material point

at the extremity of an imponderable, flexible, and inextensible

cord of length = Z, confined to the arc of a cycloid in a ver^

tica] plane by the cycloidal evolutes shown in Fig. 86. Let

the oscillation begin (from rest) at A, a height = h above

*;he vertex. On reaching any lower point, as JS (height = 3

above 0), the point has acquired some velocity v, which is at

this instant increasing at some rate = Pf l^ow consider the

point free, Fig. 87; the forces acting are I^ the cord- tension,

normal to path, and G the M^eight, at an angle (p with the

path. From § 74, eq. (5), ^T = Mpt gives

6^ cos ^ + P cos 90° = {G -^ g)2Jt\ :. Jpt = ^ cos ^

Hence (eq. (7). § 74), 'vdv = p4s gives

qidv = g cos cpds ; bnt ds 0,0% cp =. — dz\ .'. vdv = — gdz.

Summing between A and _5, we have

¥^' = - ^A^^; ^'' ^' = 2^(^^ ~ ^)5

-.he same as if it had fallen freely from rest through the height

h — z. {This result evidently applies to any form of path

when, hesides the weight G, there is hut one other force, and

that always norwal to the path, y^

From ^iV" = J/v" -^ r,, we have P — G sin q) = Mv* -j-ri,

* Compare with lower part of p. 83.
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whence P^ the cord-tension at any point, may be found (here

r{=- the radius of curvature at any point = length of straight

portion of the cord).

To find the time of passing from ^ to (9, a half-oscillation,

substitute the above value of -y^ in v ^ ds -^ dt^ putting ds^

= dx" -j- ds"", and we have df = {dx" + dz'') -=- [2^(A — s)].

To find dx in terms of dz, differentiate the equation of the

curve, which in this position is

a? = r ver. sin.~^ (0 -^- r) -j- V'irz — z^
;

whence

dx =

.'. dx^ =

rdz (r^— z)dz {2r — z)dz

V2rz

~2r

V2rz — z^ V2:rz

- 1 dz'

{r = radius of the generating circle). Substituting, we have

^r (— dz)

g
'

\/hz - z""

'
dt =

{> = V ^-/
dz rh

ver. sin.
^^0 y/is — s^ y g

Hence the whole oscillation occupies a time = rr Vl ^ g
(since I = 4r). This is independent of A, i.e., the oscillations

are isochronal. This might have been proved by showing that

'pt is proportional to OB measured^ along the curve j i.e., that

the motion is harmonic. (§ 59, Prob. 2.)

78. Simple Circular Pendulum.—If the material point oscil-

lates in the arc of a circle, Fig. 88. proceeding

as in the preceding problem, we have finally,

after integration by series, as the time of a full \ <

oscillation, in one direction,* L.t^ _
\§-''' ^

"\
gjL

1 +
9 ^

256' P
225 h^

18432 *F + ..

Hence for a small h the time is nearly tt Vl -=- g. and the os-

* See p. 651 of Coxe's translation of Weisbach's Mechanics.
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dilations nearly isochronal. (For the Compound Pendulum,

see § 117.)

[Note.—While the simple pendulum is purely ideal, the conception is

a very useful one. A sphere of lead an inch in diameter and suspended

by a silk thread, or very fine wire, more than 2 ft. in length, makes a

close approximation to a simple pendulum; the length I being measured

from the point of suspension to the middle of the sphere (strictly it

should be a little greater). The length of the simple pendulum beating

seconds (small amplitude) is about 3.26 ft.; (see p. 120)].

79. Change in the Velocity Square.—From eq. (7), § 74, we
have ^{v'^ — g'^) z=Jpfds. But, from similar triangles, du be-

ing the projection of any ds of the path upon the resultant

fo]-ce S at that instant, Hdu = Tds (or, Prin. of Yirt. Yels.

§ 62, lidu = Tds + iV^ X 0). T and iV^are the tangential and

normal components of ^. Fig. 89. Hence, finally,

IMv' -\MG^^fRdu, («)

for all elements of the curve between any two points. In ^gen-

-^^ -v eneral R is different in amount and direc-

-/
'"""

-4. . '" tion for each ds of the path, but du is the

~'--.jp distance through which R acts, in its ownN

Fig. 89. direction, while the body describes any ds
;

Rdu is called tlie work done by R wlien ds is described by the

body. The above equation is read : The difference hetween the

initial andfinal hinetio energy of a hody = the work done hy

the residtantforce in that portion of the path.

(These phrases will be fui-ther spoken of in Chap. YI.)

Application of equation (a) to a planet in its orhit about

the sun.—Fig. 90. Here the only force at any iTistant is the at

traction of the sun R =^ O -^ u"^ (see Prob. 3, § 59),

where (7 is a constant and u the variable I'adius Ns.

vector. As u diminishes, v increases, therefore \ "

dv and du have contrary signs ; hence equation i c??^X^®

{a) gives {p being the velocity at some initial 1 / \
point 0) LJr X^

Ji 2} Juo U

1 1

u, u„
\Q>)

^Cri In ^su-
•.

-y, =A / c^'-f ijF — — — .which is independ- fig. 90.

ent of the direction of the initial velocity c.
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Ajpplication of eq. (a) to a projectile in vacuo

body's weight, is the only force acting, and

therefore = i?, whileM= G -^ g. Tliere-

fore equation {a) gives

-
. -^- = Gj dy = Gy,',

G, the

dy-dii

G=R

"""^\}yl
dy]

.V ^r<i

G^-'

Fig 93.

,". -y. = \/c' ~\- 2^2/,' which is independent of fiq. 91

the angle, a^ of projection.

Application of equation (a) to a body sliding, wit/iovt fric*

tion, on a iixed curved guide in a vertical plane, initial velo-

city = c at 0.—Since there is some pressure at each point be-

tween the body and the guide, to consider the bod)' free in

space, we must consider the guide removed and that the body

describes the given curve as a re-

sult of the action of tlie two forces,

its weight G, and the pressure /*,

of the guide against the body. G
is constant, wdiile jP varies from

point to point, though always (since

^ there is no friction) normal to curve.

At any point, H being the resultant

of G and jP, project ds upon i?, thus obtaining du ; on G,

thus obtaining dy ; on I^, thus obtaining zero. But by the

principle of virtual velocities (see § 62) we have Rdu = Gdy
+P X zero"^ = Gdy, which substituted in eq. (a) gives

~l{v,^ - 0^) =f''Gdy=Gfyy=Gy:., .-.v,^ VT^W,

and therefore depends only on the vertical distance fallen

througli and the initial velocity, i.e., is independent of the

fo7")n of the guide.

As to the value of P, the mutual pressui-e betw'een the guide

and body at any point, since ^iVinust equal 3fv'^ ~ r, r being

the variable radius of curvature, we have, as in §77,

P — G&m q) = Mv" -^ r ; .. P = G\fix\ cp-^^v" ~ gr)\

As, in general, q) and r are different from point to point of

* It is quite essential that the guide be fixed, as well as smooth, in order

that this projection be zero; sinci if the guide were in motion, the

*orce P, although 1 to the guide, would not be T to the ds or element

of the path oi the body, for that path would then be different from the

curve of the guide.
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the path, P is not constant. Should the curve at the point in

question be convex upward (instead of concave upward as in

Fig. 92) we must write G &m.(f)—P=Mv^-i-r; etc.

80. Projectiles in Vacuo.—A ball is projected into the air

(whose resistance is neglected, hence the

'"""f!^ ,'--"'Tf
plirase in vacuo) at an angle = a^ with the

/•i" G'''^ horizontal ;* required its path ; assuming it

\
i i „ coniined to a vertical plane. Resolve the

'oil Cx ±\ ... . , -^
ZZTl^'ZIZl^""' motion into independent horizontal {X)

Fig. 93. and vertical {Y) motions, G, the weight,

the only force acting, being correspondingly replaced b}^ its

horizontal component = zero, and its vertical component

= — G. Similarly the initial velocity along X= 0^^-=^ c cos <x^,

along y, = Cy = csin a^. The JT acceleration =j?a; = -^ J/

= 0, i.e., the X motion is uniform, the velocity v^. remains

= c^ = c cos a^ at all points, hence, reckoning the time from 0^

at the end of any time t we have

X = c(cos a^t (1)

In the Y motion, j?y = (— G) -^ M=. — g^ i.e., it is uniformly

retarded, the initial velocity being Cy =^ c sin a^
; hence, after

any time t, the Y velocity will be (see § 56) v^ = c sin a^ — gt,

while the distance

y = c(sin a^)t - ^gf (2)

Between (1) and (2) we may eliminate t, and obtain as the

equation of the trajectory or path

y =: X tan a. — —-z —

.

^ " 2c^ cos' o'o

For brevity put c' = 2gh, h being the ideal height due to the

velocity c, i.e., c^ -f- 2g (see § 53 ; if the ball were directed ver-

tically upward, a height h = o^ -^ 2g would be actually at-

tained, oTfl being = 90°), and we have

y = xt^na,--^j^^^- (3)

This is easily shown to be the equation of a parabola, with its

axis vertical.

* And with a velocity of c ft. per sec.
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The ho7'izontal range.-

tion (3), we obtain

a?

X tan ar„

4A cos^ «„

-Fig. 94. Putting y = in equa-

0,

Fig. 94.

which is satisfied both by a? = (i.e., at the

origin), and by a? = 4:A cos a^ sin a^. Hence
the horizontal range for a given g and a^ is

x^ = 4A cos <arg sin a^ = 2A sin 2a^.

For afg =: 45° this is a maximum (c remaining the same),

being then = 2A. Also, since sin 2a^ = sin (180° — 2a^) =
sin 2(90° — a^), therefore any two complementary angles of

projection give the same horizontal range.

Greatest height of ascent / that is, the value of y maximum,
= y^.—Fig. 94. Differentiate (3), obtaining

dy X

dx
~

" 2A cos'' or

'

which, put = 0, gives a? = 2A sin a^ cos ar„, and this value of

X in (3) gives y^=i h sin" oc^.

(Let the student obtain this more simply by considering the

Y motion separately.)

81. Actual Path of Projectiles.—Small jets of water, so long as

they remain unbroken, give close approximations to parabolic

paths, as also any small dense object, e.g., a ball of metal, hav-

ing a moderate initial velocity. The course of a cannon-ball,

however, with a velocity of 1200 to 1400 feet per second is

much affected by the resistance of the air, the descending

branch of the curve being much steeper than the ascending;

see Fig. 96(2. The equation of this curve has not yet been

determined, but only the expression for the slope (i.e.,

dy : dx) at any point. See Professor Bart-

lett's Mechanics, § 151 (in which the body

is a sphere having no motion of rotation).

Swift rotation about an axis, as well as an

unsymmetrical form with reference to the

direction of motion, alters the trajectory

still further, and may deviate it from a vertical plane,

presence of wind would occasion increased irregularity

Fig. 96a.

The
See

Johnson's Encyclopaedia, article " Gunnery." (See p. 823.)
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82. Special Problem (imaginary ; from Weisbach's Mechan-
ics. The equations are not homogeneous).—Suppose a ma-

terial point, mass = M^ to start

from the point 0, Fig. 97, with

a velocity = 9 feet per second

along the — Y axis, beiiig snb-

ilJ_J^,^ jected thereafter to a constant

attractive JT force, of a valne X
= 12M, and to a variable Y
force increasino; with the time

Fig. 97. (in scconds, reckoned from 0),

viz., Y = 8Mi. Required the path, etc. For the JC motioa

we Imvepx = X -^ If= 12, and hence

dvy. = I ])Jit = 13 / dt\ i.e., 'o^ = 12^;

dx = j v^dt ; i-.e., a? = 12 / tdt = 6f. . (1)

For the Y motion ^j, = Y~3f=St, ..f 'd/Vy=%f tdt
;

/y pt
dy =^ I Vydtj

.'. y = ^f fdt — 9^ dt, or y = |f — 9f. . . (2)

Eliminate t between (1) and (2), and we have, as the equa-

tion of the path,

4:fx\^ (x\i

which indicates a curve of the third order.

The velocity at any jpoint is (see § 74, eq. (1) )

(3)

-y=|/^,^ + 'U/=4if + 9 (4)

The length of cu7've measured from will be (since v =
ds -i- dt)

s —Tds =f vdt =
4c
f fdt -^9jdt = ^f+ 9^. (5)

The slojpe, tan a, at any point = -y^^ -^ -Va, = {Aff — 9) -^ 12^,

d tan a U^ -^9
and .*.

dt l^f
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TTie radius of curvature at any point (§ 74, eq. (6) ), sub-

stituting Vg. = 12f, also from (4) and (6), is

r = v^ -i- \vj
d tan a 1

^^j=i#^'+9r, . . (7)

and the normal acceleration = v^ — r (eq. (4), § 74), becomes

from (4) and (7)^^= 12 (ft, per square second), a constant.

Hence the centripetal or deviating force at any point, i.e., the

SW of tiie forces X and Y, is the same at all points, and =
Mv' -^r = 12M.
From equation (3) it is evident that the curve is sjunmetrical

about the axis X. Negative vahies of ?! and s would apply to

points on the dotted portion in Fig. 97, since the body may be

considered as having started at any point whatever, so long as

ill the variables have their proper values for that point.

(Let the student determine how the conditions of this motioa

could be approximated to experimentally.)

83. Relative and Absolute Velocities.—Fig. 98. Let JUT be a

material point having a uniform motion of velocity v^ along a

straight groove cut in the deck of a steamer, which itself has

a uniform motion of translation, of velocity v^, over the bed of

a river. In one second 3f ad- \ /

vances a distance v^ along the \ /

groove, which simultaneously has z"^^-' iVi72^II^f^^^^----..._

moved a distance v, = AJB with I I ///\/ ll

tlie vessel. The absolute path of —~

d^r'[^~J
r̂:::.

M during the second is evidently fig. 98.

w (the diagonal formed on -y^ and -y^), which may therefore be

called the ahsolute velocity of the body (considering the bed

of the river as fixed) ; while v^ is its relative velocity, i.e., rela-

tive to the vessel. If the motion of the vessel is not one of

translation, the construction still holds good for an instant of

time, but V^ is then the velocity of that point of the deck over

which JSTis passing at this instant, and v^ is Jff's velocity rela-

tively to that point alone.

Conversely, if M be moving over the deck with a given

absolute velocity = lu, v^ being that oi the vessel, the relative

velocity v,^ may be found by resolving w into two components^

one of which shall be v^ ; the other will be v^.

'A„..-"B
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If w is the absolute velocity and direction of the wind., the

vane on rfie mast-head mmII be parallel to 3£T, i.e., to v^ the

relative velocity; while if the vessel be rollins^ and the mast-

head therefore describing a sinuous path, the direction of tha

vane varies periodically.

Evidently the effect of the wind on the sails, if any, will

'depend on v^ the relative, and not directly on w the absolute,

velocity. Similarly, if w is the velocity of a jet of water, and

Vj that of a water-wheel channel, which the water is to enter

without sudden deviation, or impact, the channel-partition

should be made tangent to v^ and not to w.

Again, the aberration of light of the stars depends on the

;Same construction ; v^ is the absolute velocity of a locality of the

earth's surface (being practically equal to that of the centre)

;

w is the absolute direction and velocity of the light from a

certain star. To see the star, a telescope must be- directed

.2,\o\)g MT, i.e., parallel to v^ the relative velocity; just as in

the case of the moving vessel, the groove must have the direc-

tion MT. if the moving material point, having an absolute

velocity w, is to pass down the groove without touching its

sides. Since the velocity of light = 192,000 miles per second

=: w, and that of the earth in its orbit = 19 miles per second

= -Wj, the angle of aberration SMT, Fig. 98, Avill not exceed

20 seconds of arc ; while it is zero when w and v^ are parallel.

Returning to the wind and sail-boat,"^ it will be seen from

Fig. 98 that when 'y, = or even > w, it is still possible for -y,

to be of such an amount and direction as to give, on a sail

properly placed, a small wind-pressure, having a small fore-and

aft component, which in the case of an ice-boat may exceed

the small fore-and-aft resistance of such a craft, and thus v^ will

be still further increased ; i.e., an ice-boat may sometimes travel

faster than the wind which drives it. This has often been

proved experimentally on the Hudson Hiver. (See p. 819.)

84. Examples.—1. A platform-car on a straight I-evel track carries a

vertical smooth pole loosely encircled by an iron ring weighing 30 lbs.,

and is part of a train having a uniform northward motion with velocity of

20 miles/ hour. The ring, at first fastened at the top of pole, 10 ft. above

floor, is set free. Find its absolute velocity just before striking the floor

and the distance the car has progressed during the fall of ring.

Solution.—The X-motion (horizontal) of the ring is that of the car and

has a constant velocity Cx= 20X5280^3600= 29.34ft./sec. Its F-motion
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(i.e., along pole) has initial velocity=0 and a constant downward acceler-

ation py=g (since the only force acting on ring is vertical and is its own
weight) . Hence from § 56 the time of the 10-ft. fall= i/2X10h-32.2 = 0.788

sec. and the F-velocity generated at end of that time is Vy~gt = 25A ft./sec.

This is now combined with the simultaneous X-velocity of riag, i.e., 29.34,

to give V, =l/ca;^+%^ =38.8 ft./sec, for the required final absolute

velocity of ring, which is therefore at this instant moving obliquely north-

ward and downward at an angle of 40° 52' with the horizontal (since

^j,-=-Ca;= 25.4-^29.34= 0.8655 =tan 40° 52').

Example 2.—Pole and car, etc., as in example 1, but the train now has

a uniformly accelerated motion, gaining 25 velocity-units (ft. per sec.) in

each 5 sees, of time. The ring begins to drop when the train already has

a velocity of 6 ft./sec. Find the final absolute velocity of ring; also the

final pressure of pole on ring.

Solution.—The ^''-motion of ring is the same as before, since the pressure

on the ring from the pole (smooth vertical sides) must be horizontal and

hence does not affect the F-motion. Hence the time of descent is, as before,

€.788 sec. During this time the velocity of the train has increased to a

value of i;x= 6-h (25^5)0.788 = 9.94 ft./sec, which is the velocity of the

JC-motion of the ring at the final instant, whence its final absolute velocity,

-w, =1/(9.94)2+ (25.4)2, =27.3 ft./sec, directed obliquely downward and

northward at an angle of 68° 38' with horizontal (9.94-^27.3) =0.3642
= cos 68° 38'. The pressure of the pole on ring is constant and =Px=Mpx
= (30^32.2) X 5= 4.65 lbs.

Example 3.—Conical pendulum. Fig. 83, p. 78. Given G = 8 lbs. and
1=2 ft., at what angle a will the cord finally place itself with the vertical

if a steady rotation is kept up at the rate of 50 revs./min. ; and what will

then be the tension in the cord?

Solution.—^With the ft., lb., and sec. as units we have w= 0.8333 revs. /sec,

= 8, 1= 2, a=? Hence from v?= g-^ {4:n%) , we find /i= 1.174 ft. and

cos a, =h-^l, =0.5873; /. a = 54°0'. As for the tension in cord,

P=G-^ cos a= 13.62 lbs.

\Note.—In this example, if the assigned value of u, or of the cord-length

Z, had been so small as to make lu'''^g^-{i7i^), we should have obtained for

cos a a value ^1.00; which is, of course, impossible for a cosine. That

is, the value assigned for u must be ^i/g-^(27r]/Z), in order that the cord

may depart at all from its original vertical position.]

Example 3.—Compute the length Z of a simple pendulum which is to

oscillate 4500 times in an hour. Amplitude small; 5°.

Solution.—For small oscillations we have, from p. 81, t= Tt\/l-^g as the

time of one oscillation ; that is, for the foot and second as units,

3600-^500= 7r-j/Z-^32.2; and therefore Z= 2.089 ft.

Example 4.—A leaden ball weighing ^ ounce, and of diameter 0.53 in.,

is allowed to slide down the inside of a fixed and rigid hemispherical bowl,

of perfectly smooth internal surface and with its upper edge in a horizontal

plane. Its radius is 18 in. The ball is to start from rest at upper edge.

Find the time occupied by the ball in reaching the lowest point, and the pressure

under it as it passes that point; also the pressure in passing the 45° point.
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Solution.—Regarding the ball as a material point we note that its motion
is practically that of a simple pendulum with ^= [18— ^(0.53)] in., =1.478 ft.,

for which (see Fig. 88, p. 81) the ratio h-r-l=1.00. Hence (§ 78, p. 81) the

time of a half oscillation (applicable here) will be (ft. and sec),

(For a small amplitude this would be only -|7Z-(.02143)JL00]= 0.337 sec.)

At the bottom the velocity will be (p. 83), v= '\/2gl, whence v'^-hgl= 2;

and the pressure (see foot p. 83, with sin = 1.0, is P=-K1 +2) = 1.5 ounces.

As the ball passes the 45° point its velocity is v' = '\/2gX0.707l; i.e.,

^'^-|-3i= 1.414, while sin 45° = 0.707; whence, for the pressure, P',

P' = i[0.707 + 1.414]= 1.06 ounces.

Example 5.—A body at latitude 41° weighs apparently (i.e., by spring

balance) 10 lbs.; what is the amount and direction of its real weight?

(Fig. 85.) That is, we have given G = 10 lbs. and angle /?= 41°; and desire

the value of force G' and of the angle which it makes with MA (plumb line)

.

(This angle, 0, =that at vertex G of the parallelogram in Fig. 85).

Solution.—At the equator the earth's radius is r = 20,920,000 ft. and
the velocity of objects at the surface is c=1521 ft. /sec. The radius of the

small circle at M is r' = r cos 41° = 15,780,000 ft., and hence the velocity of

the 10-lb. body at M is c', =(r'H-r)c, =1148 ft./ sec. Therefore the result-

ant iV, = Mc^~r', = [(10 --32.2)(1148)2]H- 15,780,000 = 0.0259 lbs.

Call the projection of N on GM prolonged, T, and its projection on a

1 to GM, S; then T, =N cos /?, = 0.01954 lbs., and S, =Nsm /?, =0.01699

lbs. We have also tan = 5-4- [G + T]= 0.0016957; hence = 0° 5' 48".

Then G', ={G + T) sec 0, =10.01955 lbs.

[By a somewhat more refined process we obtain 10.01964 lbs. (Du Bois).]

Example 6.—A small compact jet of water (see Fig. 94, p. 85) issues

obliquely from a nozzle. It strikes the horizontal plane of nozzle at 6 ft.

from the latter, and its highest point is 26.4 in. above that plane. Find
c, the velocity at nozzle, and the angle of projection a^.

Solution.—From p. 85 (foot and second units) we have Ah cos ao sin «„

= 6 ft., and h sin^ q;o
= 2.2 ft.; whence, by division (tan «(,-=- 4) = (2.2 -=-6),

or tan ctg= 1 .4666 ; and therefore ao = 55°43'. a^ being now known we
find from /i sin^ ao= 2.2 that A = 3.22 ft. But h simply stands for the ex-

pression c^^2g, and hence, finally, we obtain for the velocity of the jet

where it leaves the nozzle c = 14.4 ft. per sec.

Example 7.—If in Fig. 98, the absolute velocity of the air-particles

(wind) is w = 10 miles/ hour and directly from the northwest, the boat's

velocity being =12 miles/hour toward the east, in what direction and with
what velocity does the wind appear to come, to a man on the boat?

Ans. From a direction 34° 52' east of north, and at 8.62 ft. /sec.

Example 8.—If to a passenger on board a boat going eastward at 15
miles /hour, the wind appears to come from the northeast and to have a
velocity 10 miles/ hour, what is the true or "absolute" velocity of the wind,
and what is its true direction (angle with north and south line)?

Ans. 10.63 ft./ sec, and from a point 41° 44' east of north.
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CHAPTER lY.

MOMENT OF INERTIA.

[Note,—For the propriety of this term and its use in Mechanics, see

§§ 114, 216, and 229 ; for the present we deal only with the geometrical

Jiature of these two kinds of quantity.]

85. Plane Figures.—Just as in dealing with the centre of

gravit}' of a plane figui-e (§ 23), we had occasion to suni tlie

&eY\eifzdF, 3 being the distance of any element of area, dF,

from an axis ; so in subsequent chapters it Mall be necessarj' to

know the value of the seriesysW-^for plane figures of various

shapes referred to various axes. This summation J'z'^dF of

the products arising from multiplying each elementary area of

the figure by the square of its distance from an axis is called

the moment of inertia of the plane figure rcith respect to the

axis ill question / its symbol will be I. If the axis is perpen-

dicular to the plane of the figure, it may be named the polar

mom. of inertia (§94); if the axis lies in the plane, the rec-

tangular mom. of inertia (§§ 90-93). Since the / of a plane

figure evidently consists oi four dimensions of length., it inay

always be resolved into two factors, thus /= Fk^^ in which

i^= total area of the figure, while h = Vl-r- F, is called the

Tadius of gyration, because if all the elements of area were

situated at the sa^ne radial distance, Jc, from the axis, the

moment of inertia would still be the same, viz.,

I=fk'dF= kfdF= Fh\
For example, if the moment of inertia of a certain plane figure about a

specified axis is 248 biquadratic inches (i.e., four-dimension inches; or in.'*),

while its area is 12 sq. in. (or in. 2), the corresponding radius of gyration is

A; = 1/248-^12= 4.55 in.

86. Rigid Bodies.—Similarly, in dealing with the rotary

motion of a rigid body, we shall need the sura of the series

fp'^dM, meaning the summation of the products arising from

multiplying the mass dM oi each elementary volume dY oi &.
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rigid body bj the square of its distance from a specified axis..

This will be called the moment of inertia of the hody with
respect to the particular axis mentioned (often indicated by a.

subscript), and will be denoted by /. As before, it can oftea

be conveniently written Mh^^ in which 3£ is the whole muss,

and h its "radius of gyration" for the axis used, h being

= Vl -T- M. If the body is homogeneous, the heaviness, y, of

all its particles will be the same, and we may write

.
I=fp''dM={r~ g)fp^d V={y~g) Vl\

87. If the body is a homogeneous plate of an infinitely smaW.
thickness = r, and of area = F, we have Z = (/ -f- g^fp'dK
'"= {y -^ 9YfP^'^^'-, i-e-, = {y -^ g) X thickness X mom. iner-

tia of the plane figure.

88. Two Parallel Axes. Reduction Formula.*—Fig. 99. Let

Z and Z' be two parallel axes. Tiien Ig

=fp'dM, and I^.^fp'^dM. Bu t d being

the distance between the axes, so that a^'

-f lf= d\ we have p'^= {x - af-\-{y-hf
= (£»' + y"") -\-d^ — 2aa? — %y, and .-.

I^, =fp'dM-\-dYdM- ^afxdM
-%fydM. . (1)

Fig. m. V>\\ifp''dM= /^,fdM= M, and from the-

theory of tlie centre of gravity (see§23, eq. (1), knowing that

dJI =yd V~ g, and .-. that S^fyd F] -^ g=M) we \\2,YefxdM

= Mx dindifydM = My\ hence (1) becomes

/^, = I,-\- Mid' - 2«^ - %y\ .... (2)^

in which a and h are the x and y of the axis Z'\ x and y refer

to the centre of gravity of the body. If Z is a. gravity-axis-

(call it g), both x and y = 0, and (2) becomes

I,.=I^+ Md\... or h,'^k;+d\ . . (3)

It is therefore evident that the mom. of inertia about a grav-

ity-axis is smaller than about any other parallel axis.

Eq. (3) includes the particular case of a plane figure, by

* The particle of mass=dM, shown in Fig. 99, is typical of the vast

number of particles which form the rigid body. That is, o, 6, and d
are constants, but x, y, z, p, and p' are variables.
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writing area instead of mass, i.e., wlien Z (now g) is a gravitj-

axis,

I,,=I^-\-Fd\ (4)

89. Other Reduction Formulse ; for Plane Figures.—(The axes

here mentioned lie in the plane of the figure.) For two sets

of rectangtdar axes, having the smne origin, the following holds

good. Fig. 100. Since

I^=fifdF, and ly^fx'dF,

we have Ix+ Iy =/(«;' + y')dF.

Similarly, I^+ Iy =f{v' + %iyF.

But since the x and y of any <^^have the same hypothennse as

the u and v, we have v^ -{- v^ = ic^-J- y"; .
". -^x+ -^r = A;-+ -^r-

Fig. 100. Fig. 100a.

Let Xl)e an axis of symmetry ', then, given Ix and Iy {0 is

anywhere on X). required Ijj, JJheing an axis through and

maJcing any angle a with X. See Fig. 100a.

I^ -^fv^dF^fiy co&oc —X sin dfdF\ i.e.,

Ijj= cos^ af/dF— 2 sin a. cos afxydF-\- sin* afx^dF.

But since the area is symmetrical about X, in summing up the

products xydF, for every term x{ -\- y)dF, there is also a term

K — y)dF to cancel it ; which givesfxydF =: 0. Hence

Ijj^— cos* al^ -f- sin* aly.

The student may easily prove that if two distances a and h

be set ofE from on X and Y^ respectively, made inversely

proportional to Vix and VTy, and an ellipse described on a and

h as semi-axes ; then the moments of inertia of the figure about
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im
dz

^n

any axes through are inversely proportional to the squares

of the corresponding semi-diameters of this ellipse ; called

therefore the Ellijpse of Inertia. It follows therefore that the

moments of inertia about all gravity-axes of a circle, or a

regular polygon, are equal ; since their ellipse of inertia must

be a circle. Even if the plane figure is not symmetrical, an

" ellipse of inertia" can be located at any point, and has the

properties already mentioned ; its axes are called t\\e principal

axes for that point.

90. The Rectangle.—First, ahout its hase. Fig. 101. Since

all points of a strip parallel to the base
-j,....^ ^ ?) -^ have the same co-ordinate, 0, we may take

dz the area of such a strip for dF =^ hds\

.-. Ib= z'dF= I / z'dz

L-o

Secondly, about a gravity-axis parallel to hase.

z'dz = -^W.
-ih

Hence the radius of gyration =k = h-^\' 12.

Thirdly, about any other axis in its plane. Use the results

already obtained in connection with the reduction-formulae of

§§ 88, 89.

90a. The Triangle.—First, about an axis through the vertex

and parallel to the base ; i.e., 1-^ .^ .1, » ^ .j,,

in Fig. 103. Here the length

of the strip is variable ; call it y. ^
From similar triangles l

_i. .\j^. _v AZ i V
2/ = (& -i- h)z

; Fig. 103. Fig. 104.

Fig 101. Fig. 102.

Uh'.'. ly ^fz'dF^ fz'ydz = {h-^ h)f z'dz = I

Secondly, about g, a gravity-axis parallel to the hase.

104. From § 88, eq. (4), we have, since F=^ ^hh and

d = |A, Ig = Iy- Fd' = IW - Ihh . ^h' = ^W.

Fig
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Thirdly^ Fig. 104, about the hase • Ijb = 1 From § 88, eq.

(4), Ib=^ Ig-\- Fd^, with 6? = -JA ; hence

IJ, = ^^hh' + ^hh . \h' = -^hkK

91. The Circle.—About any diameter, as g, Fig. 105. Polar

co-ordinates, Ig =^ fz^dF. Here we take dF=^ area of an ele-

mentary rectangle = pdq) . dp, while z=^ p sin cp.

» h— -•

1
f-i^r

hi
^1

--*•-

c

ibi-

Fig. 105. Fig. 106.

Ig= I I {p sin (pypdcpdp = I I

sin' cpdcpj p^dp
J

= — / sin'' 9?<^^ = T / "^^"^ ~" ^^^ '^(p)dqi

^* /.S'^fl 1 ~|

=
:fy^ 1^2^^ - J . cos

2(?)^(2^)J

_o)-(0-0)_.

1 .r^Vl
= r
= r

2;r

2" »^. = 4'^^*-

Hence the radius of gyration =\r.

92. Compound Plane Figures.—Since I =^ fz^dF is an in-

finite series, it may be considered as made up of separate

groups or subordinate series, combined by algebraic addition,

corresponding to the subdivision of the compound figure into

component figures, each subordinate series being the moment of

inertia of one of these component figures ; but these separate

moments Tnust all he referred to the same axis. It is con-

venient to remember that the {rectangular) / of a plane

figure remains unchanged if we conceive some or all of its

elements shifted any distance parallel to the axis of refer-

ence. E.g., in Fig. 106, the sum of the Is of the rectangle CE,

and that of FD is = to the Ib of the imaginary rectangle
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formed by shifting one of tliem parallel to B, until it touches

the other ; i.e., I^ of CE-^ Ib of FD = ^hX (§ 90). Hence

the Ib of the T shape in Fig. 106 will be = I^ of rectangle

AD - Ib of rect. CE- Ib of rect. FIf.

That is, /^ of T = i[5/''' - \Kl • • • (§ 90). . . (1)

Ahoiit the gravity-axis, g, Fig. 106. To find the distance d
from the base to the ceiirre of gravity, we may make use of

eq. (3) of § 23, wu-iting areas instead of volumes, or, experi-

mentally, having cut the given shape out of sheet-metal or

card-board, we may balance ition a knife-edge. Supposing d
to be known by some such method, we have, from eq. (4) of

§ 88, since the area E= bh — hjt„ Ig=: Ib— Fd^
;

i.e., Ig = l\hk' - hji,'-] - {hh - lji,)d' (2)

The doiihle-'Y (on), and the hox forms of Fig. 106a, if

syminetrical about the gravity-

axis g, have moments of inertia

alike in form. Here the grav-

ity-axis (parallel to base) of the

compound figure is also a grav-

FiG. 106a. ity axis (parallel to base) of each

of the tw-o component rectangles, of dimensions h and A, h^ and

Aj, respectively.

Hence by algebraic addition we have (§ 90), for either com-

pound figure,

I,= i,\}h^-\h.n (3)

(If there is no axis of symmetry parallel to the base we must

proceed as in dealing with the T-form.) Similarly for the ring,

Fig. 107. Fig. 108.

Fig. 107, or space between two concentric circumferences, we

have, about any diam-eter or ^ (§ 91),

Io = \«-r:) (4)
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The rhorribus about a gravity-axis, g, perpendicular to a

diagonal, Fig. 108.—This- axis divides the figure into two

equal triangles, symmetrically jplaced, hence the Ig of the

rhombus equals double the moment of inertia of one triangle

about its base ; hence (§ 90a)

/, = 2 . ^li^Kf = -i^W (5)

(The result is the same, if either vertex, or both, be shifted

•any distance parallel to AB.)
For practice, the student may derive results for the trapezoid

^

for the forms in Fig. 106, when the inner corners are rounded

into equal quadrants of circles; for the double- "f, when the

lower flanges are shorter than the upper; for the regular

polygons, etc. (See table in the Cambria Steel Co.'s hand-book.

)

93. If the plane figure be bounded, wholly or partial]}', by

curves, it may be subdivided into an infinite number of strips,,

and the moments of inertia of these (referred to the desired

axis) added by integration, if the equations of the curves are

hnown I if not, Simpson's Rule,* for a finite even number of

strips, of equal width, may be employed for an approximate

result. If these strips are parallel to the axis, the / of any one

strip = its length X its width X square of distance from axis;

while if perpendicular to, and terminating in, the axis, its

/=
-J its width X cube of its length (see § 90).

A graphic method of determining the moment of inertia of

any irregular figure will be given in a subsequent chapter.*

94. Polar Moment of Inertia of Plane Figures (§ 85).—Since

the axis is now perpendicular to the plane of the figure, inter-

secting it in a point, (9, the distances of the ele-

ments of area will all radiate from this point,

and would better be denoted by p instead of s;

hence, Fig. 109, fp^dF'^s the polar moment, of
|

inertia of any plane figure about a specified

point ; this may be denoted by Ip. But p^ Fiq. 109.

= a?" -|- 2/^ for each dJ^', hence

4 =f{x' + f)dF=fx^dF+fy^dJ^= /^+ /^.

7

* See pp. 13, 79, 80, and 81 of the author's "Notes and Examples in

Mechanics," and p. 454 of this book.
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i.e., the polar Tnoment of inertia ahout any gwen point i/n

the plane equals the sum of the rectangular moine^its of iner-

tia about any two axes of the plane figure^ which intersect ai

right angles in the given point. We liave therefore for the

circle about its centre

7p = \7ir' -}- ^Ttr" = ^Ttr"
;

For a ring of radii r^ and r,,

4 = k7t{r: - r:)
;

For the rectangle about its centre^

For the square, this reduces to

-^p — 6" •

(See §§90 and 91.)

95. Slender, Prismatic, Homogeneous Rod.—Returning tcv the

moment of inertia of rigid bodies, or solids, we begin with tliat

of a material line, as it uiiglit be called, about

^^^yy"^' an axis througli its extremity making some an-

r y^^i ./"'' gle oi with the rod. Let I = length of the rod,

y^--^"

X

i^its cross-section (very small, the result being
y''

strictly true only when F = 0). Subdivide

Fig. 110. the rod into an inlinite number of small prisms,

each having _^as a base, and an altitude = ds. Let y = the

heaviness of the material ; then the mass of an elementary

prism, or dJif, = (r "^ 9)F'ds, while its distance from the axis

Z \% p ^= s sin a. Hence the moment of inertia of the rod

with respect to Z as an axis is

Jz= fp'dM= {y -^ ^)i^sin^ afs^^ds = ^{y H- g)FT sin' a.

But yFl -~ g =z mass of rod and I sin a z= a, the distance ot

the further extremity from the axis ; lience Iz = ^Ma^ and

tiie radius of gyration, or Jc, is found by writing-|-J!/a'''= Mh^
;

.-. ]c' = ^a\ or h = V^a (see § 86). If or = 90°, a = l.

96. Thin Plates. Axis in the Plate.—Let the plates be homo-

geneous and of small constant thickness = t. If the surface of
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the plate be = F, and its lieaviness y, then its mass = yFr — g.

From § 87 we have for the plate, about anj axis,

I ^^ {y -^ g)r X m,oin. of inertia of the j)lanefgureformed hy

the shape of the plate (1)

Rectangular 'plate. Gravity-axisparallel toJ)ase.—Dimen-

sions h and h. From eq. (1) and § 90 we have

Similarly, if the base is the axis, I^ = \MU, .'. Tc^ = -|A^

Triangular plate. Axis through vertex parallel to hase.—
From eq. (1) and § 90a, dimensions being h and A,

ly = {y -^ g)rlW = {yihhr ^ g)^h' = ^Mh'; .'. ¥ = \h\

Circular plate, with any diameter as axis.—From eq. (1)

and § 91 we have

Ig = {y -^ gy^Ttr" — {yytr'^t -^ g)^r^ = ^Mr^; ¥ = ^\

Fig. 111.

97. Plates or Right Prisms of any Thickness (or Altitude).

Axis Perpendicular to Surface (or Base).—As before, the solid is

homogeneous, i.e., of constant heaviness y,
let the altitude = h. Consider an elementary

pi'ism, Fig. Ill, whose length is parallel to the

axis of reference Z. Its altitude = h = that

of the whole solid ; its base = dF= an element
\

of i^the area of the base of solid ; and each

point of it has the same p. Hence we may
take its mass, = yhdF -^ g, as the dMin summing the series

l^=fp^dM',
.'.Iz={yh^g)fp-'dF

= {yh -^ g) X polar mom. of inertia of base. . . (2)

By the use of eq. (2) and the results in § 94 we obtain the

following:

Circular plate, or right circular cylinder, about the geo-

metrical axis, r = radius, h = altitude.

Ig = {yh -^ g)^7tr' = (yhrrr' -i- g)ir' = ^Mr'; .'. ¥ — \r\

Right parallelopiped or rectangular plate.—Fig. 112,

I. = (r^ - g)^M^' + ^1 = -^iV^'; ••• ^^ = ^^-
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For a hollow cylinder^ about its geometric axis,

—
"A—

~](n
b:::::^- V

Fig 112. Fig. 113.

98. Circular Wire.—Fig. 113 (perspective). Let Z be a

gravity-axis pei-pendicular to tlie plane of the wire ; X and Y
lie in this plane, intersecting at right angles in the centre 0.

The wire is hoitiogeneons and of constant (small) cross-section.

Since, referred to Z, each dM has the same p — r, we have

/^ ^fr''dM= Mr\ ]N"ow I^ must equal 7^, and (§ 94) their

sum = Iz-,

.-. 7x5 or Iy, = iMr\ and ^x^ ov Ity = ^^

99. Homogeneous Solid Cylinder, dboxd a diameter of its base.

—Fig. 114. 7x ^ ? Divide the cylinder into an infinite num-

ber of larainse, or thin plates, parallel to the

base. Each is some distance s from X, of

thickness ds, and of radius r (constant). In

each draw a gravity-axis (of its own) parallel to

Fig. 114. X. We may now obtain the I^ of the whole

cylinder by adding the IxS of all the laminae. The Ig of any
one lamina (§96, circular plate) = its mass X i^''; hence its

Ix (eq- (3), § 88) = its ^ -(- (its mass) X ^^ Hence for the

whole cylinder

Ix= f\{ydznT'^^g){\r'^^z-^)-\
I/O

i.e., Jx = {jtr-'hy - g\lr^ + W) == M^kr' + W)-
100. Let the student prove (1) that if Fig. 114 represent

any right prism, and hp denote the radius of gyration of any

one lamina, referred to its gravity-axis parallel to X^ then the

Ix of whole prism = M{]i^ -|- \li^) ; and (2) that the moment
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of inertia of the cylinder about a gravitj-axis parallel to the

base is = M{ir' + J^^')-

101. Homogeneous Right Cone.—Fig. 115. First, about an

axis F, through the vertex and jparallel to the base. As before,

divide into laminae parallel to the base. Each is a

circular thin plate, but its radius, x, is not = r, but, 1^

from proportion, is a? = (r -^ h)z. \ \i 'rX:^

The /of any lamina referred to its own gravity- ^

axis parallel to "Fis (§96) = (its mass) X ia?^, and
|_

its Iv (eq. (3), §88) is .-. = its mass X i^i^ + fig. lis.

its mass X s\

Hence for the whole cone,

ly— I {nx^dzy -^ g)[iaf -j- s']
^

/Secondly, about a gravity-axis parallel to the hase.—From
eq. (3), § 88, with d = ^h (see Prob. 7, § 26), and the result

just obtained, we have /= J^-i-o[_r" -\- ^h^^.

Thirdly, about its geometric axis, Z.—Fig. 116. Since the

axis is perpendicular to each circular lamina through the centre,

its Iz (§ 97) is

= its mass X i-(rad.)° = {ynx^dz -^ g')^.

Now a? = (r H- Ti)z, and hence for the w^hole cone

Iz= \{yitr' - gU) t z'dz = {litr^hy - g)i-^r' = M^r\

Fig. 116. Fig. 118.

102. Homogeneous Eight Pyramid of Rectangular Base.—
About its geometrical axis. Proceeding as in the last para-
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graph, we deri^^e Iz = M^^d\ in which d is the diagonal of the

base.

103. Homogeneous Sphere.—About any diameter. Fig. 118.

Iz = ? Divide into lamiuge perpendicular to Z. By § 97, and
noting that a?' = r'— z% we have finally, for the whole sphere,

Iz = {yTt ^ 2g)

r+r
{r'^ - ¥'^' + ¥1 = T^r^r^ - ^

For a segment, of one or two bases, put proper limits for s

in the foregoing, instead oi -\- r and — r.

104. Other Cases.

Y

Fig. 119. Fig. 120.

-Parabolic plate, Fig. 119, homogeneous

and of (any) constant thickness, about

an axis through 0, the middle of the

)-X chord, and perpendicular to the plate.

This is

The area of the segment is = fAs.

For an elliptic plate. Fig. 120, homogeneous and of any

constant thickness, semi-axes a and h, we have about an axis

through 0, normal to surface Iq = M^[a^ -f- h^'] ; while for a

very small constant thickness

I^=Mih% and Iy=Mia\

The area of the ellipse = rrah.

Considering Figs. 119 and 120 as plane figures, let the

student determine tlieir polar and rectangular moments of

inertia about various axes.

For numerous other cases Kent's Mechanical Engineers'

Pocket-Book may be consulted ; also Trautwine's Civil Engi-

neers' Pocket-Book.

105. liTumerical Substitution.—The momsnts of inertia of
'plane figures involve dimensions of length alone, and will be

utilized in the problems involving flexure and torsion of beams,

where the inch is the most convenient linear unit. E.g., the
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polar moment of inertia of a circle of two inches radius about

its centre is ^Ttr* = 25.1 o -[-Mquadralie, or four-dimension^

inches, as it may be called. Since this quantity contains iowv

dimensions of length, the use of the foot instead of the inch

would diminish its numerical value in the ratio of the fonrtli

power of twelve to unity.

The moment of inertia of a rigid hody, or solid, liowever,

= MTc* = (G- -^ ffWi ill which G, the weight, is expressed in

units oiforce, g involves both time and space (length), while W
involves length (two dimensions). Hence in any homogeneous

formula in whicli the / of a solid occurs, we must be careful to

employ units consistently ; e.g., if in substituting G -^ g for M
(as will always be done numerically) we put g = 32.2, we
should use the second as unit of time, and the foot as linear

unit.

106. Example.—Hequired the moment of inertia, about the

axiS of rotation, of a pulley consisting of a rim, four parallelo-

pipedical arms, and a cylindrical hub which may be considered

solid, being filled by a portion of the shaft.

Fig. 121. Call the weight of the hub G,

its radius t\ similarly, for the rim, {r^, r^

and 7*2 ; the weight of one arm being = G^.

The total / will be the sum of the /'s of

the component parts, referred to the same

axis, viz. : Those of the hub and rim will

be {G ~ g)hy and {G, ~ ^)K^.=+ r;),

respectively (§ 97), while if the arms are ^^cj- 1-^-

not very thich compared with their length, we have for them

(§§ 95 and 88)

4 (^1- g) [i(^. - ry ~ i(r, -. ry+ [r+ l{r, - r)]'],

i.e., 4((7i-^g)[Kr2-r)2+rr2] .... (4)

as an approximation (obtained by reduction from the axis at

the extremity of an arm to a parallel gravity-axis, then to the

required axis, then multiplying by four). In most fly-wheels,

the rim is proportionally so heavy, besides being the farthest

removed from the axis of rotation, that the moment of inertia

of the other parts is only a small part of the whole.

Numerically let us have given r = 4, r2 = 36, and r^ = ^7 inches; the
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respective weights being <?2= 500 lbs. for the rim, (ri = 48 lbs. for each
arm, and ^= 120 lbs. for the hub. The quantity ^ will be retained as

a mere symbol. Using the foot-pound-second system of units we then
have for the moment of inertia of the huh (120-^gf)^[^]^= 6.66 -i-g';

for that of the four arms [by substitution in eq. (4) above]

4 36'
-S)

2-/36 _£Y
3\12 12/

'^
12 12

1
while for the rim we obtain (500-f-gr)—

Sry /36

12J ^ll2

1647.2 ^q;

= 4627.0 ^g.

^^=(^-^j^(^) = 7.91 sq.ft.,

These results are seen to be approximately in the ratio of the numbers
1, 100, and 700; showing that the neglect of the hub and arms in com-
puting the moment of inertia would give a result about ^ too small.

Adding, we find for the total moment of inertia of the body about
the axis of rotation the quantity /= 5280.8 -^gr, for the units foot and
pound. The unit of time is still involved in the quantity g.

We are now ready to compute the square of the corresponding radius of
gyration, viz., k"^, by dividing / by the whole mass M, =668 -i-g (see § 86)

;

whence

and therefore k itself= 2.82 ft.

This is seen to be a little less than the 3.04 ft. value for k which would
be implied in the approximate assumption that the moment of inertia

is the same as if the whole mass were concentrated at the mid-point
of the thickness of the rim, which assumption would be very nearly

true if the masses of the hub and arms could be neglected.

107. Ellipsoid of Inertia.—The moments of inertia about

all axes ptissing through any given point of any rigid body

whatever may be proved to be inversely proportional to the

squares of the diameters which they intercept in an imaginary

ellipsoid, whose centre is the given point, and whose position

in the body depends on the distribution of its mass and the

location of the given point. The three axes which contain the

three principal diameters of the ellipsoid are called the Princi-

pal Axes of the body for the given point. This is called the

ellipsoid of inertia. (Compare §89.) Hence the moments of

inertia of any homogeneous reguhir polyedron about all gravity-

axes are equal, since then the ellipsoid becomes a sphere. It

can also be proved that for any rigid body, if the co-ordinate

axes .X^ T", and .^, are taken coincident with the three principal

axes at any point, we shall have

fxydM= ; fyzdM= ; and fsxdM = 0.

Note.—These three siimmations are called the "-products of inertia" and
will occur in § 114 of this book.
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CHAPTER Y.

KINETICS OF A RIGID BODY.

108. General Method.—Among the possible* motions of a

figid body the most important for practical purposes (and for-

tunately the most simple to treat) are : a motion of translation,

in which the particles move in parallel right lines with equal

accelerations and velocities at any given instant; and rotation

about a fixed axis, in which the particles describe circles in

parallel planes with velocities and accelerations proportional

(at any given instant) to their distances from the axis. Other

motions will be mentioned later. To determine relations, or

-equations, between the elements of the motion, tlie mass and

form of the body, and the forces acting (which do not neces-

sarily form an unbalanced system), the most direct method to

be employed is that of two equivalent systems of forces (§ 15),

one consisting of the actual forces acting on the body, con-

sidered free, the otlier imaginary, consisting of the infinite

number of forces which, applied to the separate material points

composing the body, would account for their individual mo-
tions, as if they were an assemblage of particles without mutual

actions or coherence. If the body were at rest, then considered

J'ree, and the forces referred to three co-ordinate axes, they

would constitute a balanced system, for which the six summa-
tions ^X, 2Y, ^Z, ^(mom.)x. ^''(mom.)y, and -^'(mom.)^.

would each = ; but in most cases of motion some or all of

these sums are equal (at any given instant), not to zero, but to

the corresponding summation of the imaginary equivalent

system, i.e., to expressions involving the masses of the particles

(or material points), their distribution in the body, and the

elements* of the motion. That is, we obtain six equations by

putting the IX of the actual system equal to the IX of the

imaginary, and so on ; for a definite instant of time (since some

of the quantities may be variable),

* Motions of such character that the particles of the body do not

.change their relative positions. In other words, the body remains rigid.
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108a. The "Imaginary System."—In conceiving the imagi-

nary equivalent system in § 108, applied to the material points

or particles (supposed destitute of mutual action, and not

exposed to gravitation), which make up the rigid body, we
employ the simplest system of forces that is capable, by the

Mechanics of a Material Point, of producing the motion, which

the particles actually have. If now the mutual actions, co-

herence, etc., were suddenly re-established, there would evi-

dently be no change in the motion of the assemblage of parti-

cles ; that is, in what is now a rigid body again, hence the imagi-

nary system is equivalent to the actual system.

In applying this logic to the motion of translation of a rigid

body (see § 109 and Fig. 122,) we reason as follows

:

If the particles or elementary masses did not cohere together,

being altogether without mutual action and not subjected to

gravitation, their actual rectilinear motion in parallel lines, each

having at a given instant the same velocity and also the sams

acceleration, p, as any other, could be maintained only by the

application, to each particle, of a force having a value= its mass

X p, directed in the line of motion. In this way system (II.) is

conceived to be formed and is evidently composed of parallel

forces all pointing one way, whose resultant must be equal to "^eir

sum, viz.
I
dMXp. But since at this instant p is common

to the motion of all the particles, this sum can be written

p i dM, =the whole mass Mxp.
If now the mutual coherence of contiguous particles were sud-

denly to be restored, system (II.) still acting, the motion of the

assemblage of particles would not he affected (precisely as the fall-

ing motion in vacuo of two wooden blocks in contact is just the

same whether they are glued together or not) and consequently

we argue that the imaginary system (II.) is the equivalent of

whatever system of forces the body is actually subjected to,

viz. system (I.), (in which the body's own weight belongs)

producing the actual motion.

Since the resultant of system (II.) is a single force, = ikfp,

parallel to the direction of the acceleration, and in a line passing

through the center of gravity of the body, it follows that th&

resultant of the actual system is the same.
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• 109. Translation.—Fig. 122. At a given instant all the par-

ticles liave the same velocity = v, in parallel right lines (par-

allel to the axis >^, say), and the

same acceleration p. Required

the 2^ of the acting forces,

shown at (I.). (II.) shows the

imaginary equivalent system, con-

sisting of a force = mass X ace.

= dMp applied parallel to 21 to

each particle, since such a force

would be necessary (from eq. {YY.)

§ 55) to account for the accelerated rectilinear motion of the

particle, independently of the others. Putting {'2X)i-={'2X)ii,

we have

Fig. 122.

(^X)j =fpdM =j)fdM= Mp. (^•)

It is evident that the resultant of system (II.) must be paral-

lel to X; hence* that of (I.), which = (2X)j and may be de-

noted by -S, must also be parallel to X; let a = perpendicular

distance from H to the plane YX; a will be parallel to Z.

Now put [-2'(mom.)y]j = \_2(mom. y)]ii, (T'is an axis perpen-

dicular to paper through 0) and we have — lia = —fdMjpz
= —pfdMz = —pMz (§88), i.e., a := 2. A similar result

may be proved as regards y. Hence, if a rigid hody has a

motion of translation., the resultant force m,ust act in a line

through the centre of gravity (here more ])roperly called the

centre of mass), and parallel to the direction of motion. Or,

practically, in dealing with a rigid body having a motion of

translation, we may consider it concentrated at its centre of

mass. If the velocity of translation is uniform, R =M X
= 0, i.e., the forces are bnlanced.

109a. Example.— The symmetrical rigid body in Fig. 122a weighs

(G= ) 4 tons, and touches a smooth horizontal floor at the two points

and B, symmetrically situated. Its center of gravity, C, is 6 ft. above

the floor; and it is required to find the effect of applying a horizontal

orce of P=l ton, pointing to the right and 4 ft. below the level of the

center of gravity C. Evidently a motion of translation will ensue from

left to right, with some acceleration p, unless the body should begin

to overturn about or 5 as a pivot. The latter would be proved to

* The forces of system (I.) cannot form a couple; since those of system

(II.) do not reduce to a couple, all pointing one way.
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J^G. 122a.

be the case if either reaction, Vg or V, of the floor against the body at
O and B, is found to be negative as the result of an analysis which
assumes translation to occur. The actual forces acting on the body

are only four, viz.: G and P, and the

unknown vertical reactions V and Fq.

A special device (very convenient for

the present case) will now be used as a

means of solution. The resultant of the

"equivalent system," II, in this case

of translation (see Fig. 122), is R, =Mp,
lbs., acting through the center of gravity

in a line parallel to that of the motion

and in the direction of the acceleration,

and hence is also the resultant of the

actual system (just described). If, there-

fore, we annex to the actual system its

anti-resultant (which is a force, R', of the

same value, Mp, as R, and in same line, but pointing in the opposite

direction) we thereby form a system under which the body would be in

equilibrium; which would justify our writing iX= 0, IY=0, i'(moms.)

= 0, etc. (R' is called the "reversed inertia force" and is, of coiKse,

fictitious). With this system, then, in view, putting IX= we obtain

P—R'= 0; i.e., R', =Mp, =lton; whence the acceleration p=lH- (G-h^)

= 1-^(4-^32.2) = 8.05 ft./sec.2

By T(moms. about point A) = we find E'X4'-F(?X2'-FX4'=
or 7= 2.5 tons; and, by -Z= 0, ¥+ ¥^-0= 0, or Fo= 4-2.5=1.5 tons.

Since neither V nor Fq is found to be negative the body does not tend

to overturn but moves parallel to itself (i.e., translation) with a uniformly

accelerated motion, the value of the acceleration being p= 8.05 ft. /sec. ^;

so that at the end of the first second the body would be 4.025 ft. from

the start (no initial velocity); at the end of the second second, 16.1 ft.

If P were zero, or if P Were applied horizontally through the center

of gravity, F and Fq would each be one haK of G, i.e. 2 tons. It appears,

therefore, that the effect of the eccentric application of P (viz. 4 ft.

below the center of gravity C) is to increase F by 0.5 ton and diminish

Fq by an equal amount. If P acted 4 ft. above C, F and Fq would
change places in this respect. For F to be just zero, P (in its present

position) would need to have a value of 2 tons, and the body would

be on the point of overturning toward the left. Or, again, with P
= 1 ton, its line of application would have to be 8 ft. below or above

C, for one of the reactions to be just zero. In fact, in the fictitious

equilibrated system which includes R', since P=R' (in this simple case)

they form a couple; and hence the three forces G, F, and Fq are equiva-

lent to a couple of equal and opposite moment (viz. 4 ft.-tons in Fig. 122a).

From the above it is seen that in the case of the last car of a railroad

train, when it has an accelerated motion (just leaving a station), the

pressures under the front and rear trucks will be slightly different from

their values when the motion is uniform or zero, if the pull in the coupling

does not pass through the center of gravity of the car.
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110. Rotation about a Fixed Axis.—First, as to the elements

of space and time involved. Fig. 123. Let be the axis of

rotation (perpendicular to paper), OY d. fixed e
^"—

--- x,w

line of refei-ence, and OA a convenient line of (^ y^V\
the rotating body, passing through the axis and / X.^ \

perpendicular to it, accompanying the body in /
——1~

its angular motion, Mdiich is the same as that of V_^_,,^-__^
—

^

OA. Just as in linear motion we dealt with ^^*^- '^

linear space (.§), linear velocity (-y), and linear acceleration {^jp)y

so here M'e distinguish at any instant

;

a, the angular space between OY and OA, (radians; or de-

grees, or revolutions)

;

a)= -TT^ the angular velocity, or rate at which a is changing,

(such as radians per sec. , or revolutions per minute, etc.); and

^ = -^= -77^, the angular acceleration, or rate at which 0/

is changing (radians per sec. per sec, e.g.)

These are all in angular measure and may be + or — , ac-

cording to their direction against or with the hands of a watch.

da. is a small increment of a, while d^a is the difference be-

tween two da^s, described in two consecutive small and equal

time-intervals, each= dt.

(Let the student interpret the following cases : (1) at a cer-

tain instant gd is -|-, and —
; (2) go is — , and 6 -{-; (3) a is

— , GO and 9 l)otli -f ; (4) a -{-, go and 6 both — .) For rotary

motion we have therefore, in general,

and .•. (by elimination) codco — 6da; (VIIL)

corresponding to eqs. (I.), (II.), and (III.) in § 50, for rectilinear

motion. .

Hence, for uniform rotary motion, go being constant and

^ = 0, we have a = Got, t being reckoned from the instant

when a = 0.

* See pp. 132, 133, of the "Notes," etc, for further illustration.
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For uniformly accelerated rotary motion Q is constant, and

if (jjQ denote tlie initial angular velocity (when a and t = 0) we
may derive as in § 5G, denoting the constant d by 6'i,

,Go= Go^-\-dit; . . (1) a= Go^t + ^dxt'-', . . (2)

a = —^—-"-
; . . (3) and a = i{oa^ + ^y- - • (4)

If in an_y problem in rotary motion 0, go, and a have been

determined for any instant, the corresponding linear vakies for

any point of the body whose radial distance from tlie axis is p,

will be 5= o'p (= distance described by the point measured

along its circular path from its initial position), v = cop = its

velocity, and j?^ = dp its tangential acceleration, at the instant

in question, ii a, w and d, are expressed in radians.

Example.—(1) What value of co, the angular velocity, is

implied in the statemient that a pulley is revolving at the rate

of 100 revolutions per minute if the radian is unit angle?

100 revolutions per minute is at the rate of 2;rXl00

= 628.32 radian units of angular space per minute= 10.472

per second. .". (y = 628.32 radians per minute or 10.472

radians per second.

(2) A grindstone whose initial speed of rotation is 90 revo-

lutions per minute is brought to rest in 30 seconds, the an-

gular retardation (or negative angular acceleration) being con-

stant; required the angular acceleration, di, and the angular

.space a described. Use the second and radian as units.

a»o = 27r|| = 9.4248 radians per second; .'. from eq. (1)

/?!=—-—= — 9.424 -=-30= —0.3141 radians per sec. per sec.
t

The angular space, from eq. (2) is

a =a;o^ + J^ii2 = 30X9. 42-1(0.314)900 = 141.

3

radians; that is, the stone has made 22.4 revolutions in

<3oming to rest and a point 2 ft. from the axis has described a

distance s = ap = 141. 3 X 2 = 282. 6 ft. in its circular path.

111. Rotation. Preliminary Problems. Axis Fixed.—For

clearness in subsequent matter we now consider the following
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80 lbs.

problem. Fig. 124 shows a rigid homogeneous right cylin-

der A of weight G= 200 lbs. and radius r= 2 ft., mounted on

a horizontal axle and concentric with the same. The center

of gravity of the cyUnder is in the axis of rotation (Z). The

axle carries a Ught and concentric drum, of 10 in. radius, from

which a light inextensihle cord may unwind as the attached

weight B descends, thus imparting an accelerated rotary motion

to the cylinder. The weights and masses of the drum, cord,

and axle, and all friction, will be neglected; and the two journals

will be considered as one. The cylinder being originally at rest

we wish to deter-

mine its motion

as produced by
a constant down-

ward pull or ten-

sion of 80 lbs. in

the vertical cord.

(I) ^V.^L^--^B"(n>
(T^' necessary

y Fig. 124. \t weight, G', of the

body to be used at B*, to secure this 80 lbs. tension in the

cord, will be found later.) During this motion the real system

of forces (system (I)) acting on a body A consists of the weight

200 lbs., always acting through Z, the fixed axis of rotation;

the downward pull of 80 lbs. at 10 in. from the axis; the ver-

tical component V of the reaction of the bearing; and the

horizontal component (if any), H. At (II), Fig. 124, is shown

an imaginary equivalent system capable of producing the same

motion in the particles, each of mass= dM, if they were inde-

pendent. Since each particle is moving in a circle of some

radius p with some linear (tangential) acceleration pt at any

instant, the cylinder having at that same instant some an-

gular velocity co and some angular acceleration 6, we have

v= a)p atid pt= ^P- (^ ^nd 6 in radians.)

This circular motion of each particle could be produced

(see eq. (5), p. 76) by a tangential force dT lbs., =dMpt,
= 6dMp, accompanied by a normal force dN lbs., =dMv^-^p,
= co^dMp. Our equivalent system, then, in (II), consists of

a dT and a dN of proper value applied to each particle of body

A at a given instant. Axes X and Y are shown in Fig. 124,

* The body B is not shown in the figure.
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axis Z, the axis of rotation, being i to the paper through

origin 0. Let us now, for any instant of the motion, equate

I (moms.)^ of the actual system, (I), to J (moms.)^ in sys-

tem (II) ; using the integral sign to denote a summation which

extends over all the particles of body A (for this instant; the

integral might therefore be called an instantaneous integral).

This gives, if we note that each of the normal forces dN of

system (II) has no moment about axis Z, and that d is common
to all the particles at this instant, (with ft.-lb.-sec. units),

+80x10/12= +/dT.p=+d/dMp^=^ +61,. . (1)

The summation (instantaneous) /dMp^ is seen to be the

quantity called "moment of inertia," about axis Z, of the

body A and remains constant, since the p's do not change

in value as the motion proceeds. For a solid homogeneous

cylinder Ig= ^Mr^ (p. 99), and hence

800= 6^[200-^32.2](2)2; i.e., ^= 7.376 rads./sec.2

That is, 6 is constant and the rotary motion of the cylinder

is uniformly accelerated.

(N. B.—From eq. (1) we note that, in general, in order to obtain the

angular acceleration, 6, of the rotary motion [of a rigid body about a
fixed axis Z we have only to treat the body as a "free body" and write

J! (moms.) about axis of rotation= angul. accel.Xmom. of inertia about Z.)

112. Further Results in Preceding Problem.— As to the necessary weight,

G', of body B (suspended on the cord and causing the motion of both

bodies), in order to produce the 80 lbs. tension in the cord, we note

that body B has the same motion (only in a right line), as a point

in the circumference of the drum, where the acceleration is p'=dX ^
= 4.48 ft. /sec. That is, the 'motion of B wUl be uniformly accelerated,

with an acceleration of 4.48 ft. /sec. ^ Hence the weight of B must not

only produce the 80 lbs. tension in the cord but also accelerate the mass
of B, {M'= G'-^g) with an acceleration of 4.48 ft./ sec. ^ I.e., we have

G'= 80+ {G'^g)p'; which is nothing more than saying that the net

accelerating force, G'— 80, =massXaccel. ; whence we find, on solving,

G'= 92.9 lbs. for the weight of the body to be used at B.

For example, in the first 3 sec. of time, starting from rest, B will

descend a distance (see p. 54), s^= ip'(3y= 20.16 ft. and will have ac-

quired a (linear) velocity of V3=p'X3 = 13.44 ft. /sec. ; while body A
will have turned through an angle of a3= Ji9(3)^= 33.19 radians, (or

5.283 revolutions) and will possess an angular velocity of a>3=5X3 = 72.13

rads./sec. or, (33.19 ^2;r= ), 3.525 revs./sec.

Reaction of the bearing; (two journals considered as one). To find

the two components H and V of this reaction, we again have recourse

to the two equivalent systems of Fig. 124, acting on body A. (N.B.

—

The upward 80 lbs. and the force G' do not belong to system (I), since

they act on body B.) During the motion, the coordinates x and y of each

particle (of mass = dM) are continually changing, as also the angle ^
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between the p of the particle and axis Y (but not p itself). At any given

instant we note that x= p sin 4> ^^d y— p cos
(f>,

for each particle. Let us

now put i'F of system (I) equal io lY oi system (II). This gives us

V-2m-m=fdT sin ^-/dN cos <^ . .... (2)

As before, these integrals are "instantaneous integrals," being extended

over all the particles of the body at a given instant of time, [so that in

general the value of each may change with the progress of the motion.

Substituting for dT and dN, etc., this may be written

F- 200- 80

=

efdMp sin ^- u?fdMp cos ^S ... (3)

or, F-200-80=5/dM:c-w2/dMy, (4)

Note that the value of (9, and also of w, at this single instant are

common to all the particles and have been factored out, as shown.

But the summation of fdMx is nothing more than Mx\ where M
is the mass of the whole cylinder A ( = 200-^?) [see p. 18, eq. (1)], and

X is the X coordinate of its center of gravity; and, similarly, J~dMy= My.
We may therefore write

V-2m-SQ= eMx-w'^My (5)

But in the present case, since the center of gravity of body A is in

the axis of rotation at all times, we have both x and 2/= zero at all

times; and hence finally 7-200-80=0; or F= 280 lbs.

As to the horizontal component, H, of the bearing reaction, we place

2X of system (I) equal to IX of system (II) and obtain

H= -fdT cos ^-fdN sm4>=- OfdMp cos ^

-

oJ^fdMp sin 4>, (6)

i.e., H=-efdMy-w^fdMx,= -eMy-w^Mx (7)

But since x and y are zero at all times, H must be zero, from (7) ; and

we therefore conclude that in this case the reaction of the bearing is

purely vertical at all times and is V, = 280 lbs.

113. Centre of Percussion of a Rod suspended from one End.—

>

Fig. 126. The rod is initially at rest (see (I.) in figure), is sti-aight,

homogeneous, and of constant

(small) cross-section. Neglect its

weight. A horizontal force or

pressure, P, due to a blow (and

varying in amount during the

blow), now acts upon it from the

left, perpendicularly to the axis,

Z, of suspension. An accelerated

rotary motion begins about the fixed axis Z.

°y° n
^^dt

(in.)(TI.)

Fig. 126.

(II.) shows the rod

free, at a certain instant, with the reactions X^ and Y,, put in

at 0„. (III.) shows an imaginary system which would produce

the same effect at this instant, and consisting of a dT= dMOp,

and a <^iV= oo^dMp applied to each dM, the rod being composed

of an infinite number of dM^s, eacli at some distance p from
tlie axis. Considering that the rotation has just begun, go, the
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angular velocity is as yet small, and will be neglected. Re-

quired Yo tlie horizontal reaction of the support at in terms

of P. By putting lYji= lYm, we have

P-Yo =/dT= e/pdM = eu'p.

/. J^o = -P — OM

p

; p is the distance of the centre of gravity

from the axis (IST.B. J'pdM = Mp is only true when all the

p's are parallel to each other). But the value of the angular

acceleration 6 at this instant depends on P and a, for 2 (mom.)>

in (IL) = :2 (luom.)^ in (III.), whence Fa = dfp'dM^ diz,

where Iz is the moment of inertia of the rod about Z, and from

§ 95 = \Ml\ Now p = i^ ; hence, finally,

"F — pfl _ ?- -'
U. ± J.

i) ' 1

If now J^u is to = 0, i.e., if there is to be no shook between

the rod and axis, we need only apply P at a point whose dis-

tance a = f/ from the axis ; for then Y^ = 0. This point is

called the centre of percussion for the given rod and axis. It

and the point of suspension are interchangeable (see § 118).

(Lay a pencil on a table; tap it at a point distant one third of

the length from one end ; it will begin to rotate about a vertical

axis through the farther end. Tap it at one end ; it will begin

to rotate about a vertical axis through the point first mentioned.

Such an axis of rotation is called an axis of instantaneous rota-

tion, and is different for each point of impact—^just as the

point of contact of a wheel and rail is the one point of the

wheel which is momentarily at rest, and about which, therefore,

all the others are turning for the instant. Tap the pencil at

its centre of gravity, and. a motion of translation begins; see

§ 109.)

114. Rotation. Axis Fixed. General Formulae.—Consider

Fig. 127. Fig. 128.

|.ng now a rigid body of any shape whatever, let Fig. 12Y indi-

cate the system of forces acting at any given instant.^ Z being
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the fixed axis of rotation, go and 6 tlie angular velocity and

angular acceleration, at the given instant. X^ and IT are two

axes, at right angles to each other and to Z^ fixed in space. At
this instant eacii clM oi the body has a definite x, y, and q)

(see Fig. 128), which will change, and also a p, and 0, which \v ill

not change, as the motion progresses, and is pursuing a circu-

lar path with a velocity = cop and a tangential acceleration

= dp. Hence, if to each dM of the body (see Fig. 128) we
imagine a tangential force dT =^ dMOp -Audi a normal force

— dJf{oopy -^ p = QJ^dMp to be applied (eq. (5), §74), and

these alone, we have a system comprising an infinite number of

forces, all parallel to XJ^, and equivalent to the actual system

in Fig. 127. Let ^JT, etc., represent the sums (six) for Fig.

127, whatever they may be in any particular case, while for

128 we shall write the corresponding sums in detail, looting

that

fdli cos cp = GoYdMp cos cp = coydMy = g9^J/^(§88);

that/6^iV^sin (p = coydMp sin cp = coydMx = go'Mx;

and similarly, that /dT cos cp = dfdMp cos q) = 6My, and

fdT sin q) = OMx; while in the moment sums (the moment
of dT cos 9? about J^, for example, being — dT cos (p . z =
— OdMp (cos (p)s=— 6dMyz, the sum of the moms, y of all the

(^rcos 9>)'s = - QfdMyz)

fdTeo% (pz = dfdMyz,fdN^m cpz = aoydMxz, etc.,

W6 have, since the systems are equivalent,

:sX=-{-6My-Go'Mx; . . . . (IX.)

:SY :=-6Mx-co'Ify, . . . . (X.^

2Z= 0; (XL)
2 moms.x = - 0/dMxz — coydMyz ; . (XIL)

:S moms.y = - e/dllyz+ JfdMxz ; . (XIII.)

:S moms.^ = OfdMp' = 61^. . • . (XIY.)

These hold good for any instant. As the motion proceeds x

and y change, as also the sums fdMxz and fdMyz. If the

Ijody, however, is homogeneous, and symmetrical about the

plane XY, fdMxz and fdMyz would always = zero ; since
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the z of any <^JI/'does not change, and for every term dMy{-\-z\

there would be a term dMy{— z) to cancel it ; similarly for

fdMxz. The eq. (XIY,), ^ (moms, about axis of rotat.) =
fdTp = QJdMff = {angular accel.) X {mom. of inertia oj

hody about axis of rotat.), shows how the snvafdMp^ arises in

problems of this chapter. That a iovce dT :=^ dMdp should

be necessary to account for the acceleration (tang-ential) dfj of

the mass dM, is due to the so-called inertia of the mass (§ 54),

and its moment dTp, or OdMp^, might, with some reason, l>e

called t\\e moment of inertia oi the dll, imdf6dMp^= OfdMp'
that of the whole body. But custom has restricted the nanse

to the snmfdMp^, Mdiich, being without the 0, has no term to

suggest the idea of inertia. For want of a better the name is

still retained, and is generally denoted by /. (See §§86, etc.

)

115. Example of the Preceding.—

A

liomoofeneous riglit par-

FiG. 129.

allelopiped is mounted on a vertical

axle (no friction), as in figure. is

at its centre of gravity, hence hoth

X and y are zero. Let its henviness

be y, its dimensions A, 5„ and b (see

§ 97). XY is a plane of symmetry,

hence both fdMxz and fdMyz are

zero at all times (see above). The
tension P in the (inextensible) cord

is caused by the hanging weight P^
(but is not = /^j, unless the rotation is uniform). The figure

shows both rigid bodies^r^e. P^ will have a motion of trans-

lation ; the parallelopiped, one of rotation about a fixed axis.

No masses are considered except P^ -^ g. and bhb^y -^ g. The

Iz = MTc^ of the latter = its mass X tV(^i' + ^')' § ^T. At
any instant, the cord being taut, if ^ = linear acceleration of

^., we have jp = da. eq. (<?)

From (XIY.), Pa = 61^ ; .: P = Olz ~ a. . . . (1)

For the free mass P^ -i- g we have (§ 109) P^ — P =
mass X ace,

= {P.'^9)p = {P.-^g)ea; .:P = P,{l-ea^g). (2)

Equate these two values of P and solve for 6^, whence

Mkl-^{P,-^g)a' ^^^6 =
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All the terms here are constant, hence d is constant ; there-

fore the rotary motion is uniformly accelerated, as also the

translation of P,. The formulae of § 56, and (1), (2), (3), and

(4) of §110, are applicable. The tension P is also constant;

see eq. (1). As ior the five unknown reactions (components)

at (?i and 0^, the bearings, we shall find that they too are con-

stant ; for

from (IX.) we have' Zi + Z2= 0; (4)

from (X.) we have P + ri+F2= 0; (5)

from (XI.) we have Z^-G = 0; (fi)

from (XII.) we have P . AO + Y, .0,0-Y^ .0^0= 0; (7)

from (XIII.) we have -X^ . Ofi + X^ ."0^ = 0. (8)

Numerical substitution in the above problem.—Let the parallelepiped

be of wrought-iron ; let Pi= 48 lbs.; a = 6 in. = J ft.; 6 = 3 in. = J ft.

(see Fig. 112); 6i = 2 ft. 3 in. = |^ft.; ^.nd /i= 4 in.=i ft. Also let

0^0 = 020 = 18 in.= | ft., and AO= S in. = i ft. Selecting the foot-

pound second system of units, in which g'= 32.2, the linear dimensions

must be used in feet, the heaviness, ^, »of the iron must be used in lbs.

per cubic foot, i.e., ^'= 480 (see § 7), and all forces in lbs., times in

seconds.

The weight of the iron will be G = Fr= ^f'i^r= i • I iX480 = 90 lbs.;

its mass= 90 -T- 32.2= 2.79; and its moment of inertia about Z=/z= MA;2^

=Mxi^(V_-|-62) = 2.79X0.426 = 1.191. (That is, the radius of gyration,

kz, ="i/0.426 = 0.653 ft.; or the moment of inertia, or any result depend-

ing solely upon it, is just the same as if the mass were concentrated in

a thin shell, or a line, or a point, at a distance of 0.653 feet from the

axis.) We can now compute the angular acceleration, d, from eq. (3)

;

48 X + 24

1.191 + (48H-32.2)Xi'" 1.191+0.372"

radians per sec. per sec. The linear acceleration of Pi is p= 0a= 7.68

feet per sec. per sec. for the uniformly accelerated translation.

Nothing has yet been said of the velocities and initial conditions of

the motions; for what we have derived so far applies to any point of

time. Suppose, then, that the angular velocity <y = zero when the time,

t=0; and correspondingly the velocity, v= o^a, of translation of Pj,

be also = when t= Q. At the end of any time t, a>= 9t (,§§ 56 and 110)

and v= pt= 6at; also the angular space, a = ^dt^, described by the

parallelopiped during the time t, and the linear space s= \pt'^= ^Qat'^,

through which the weight P^ has sunk vertically. For example, during

the first second the parallelopiped has rotated through an angle a = ^9t'

=iX 15.36 XI = 7.68 radians, i.e., (7.68 -^2;r) = 1.22 revolutions, while P^
has sunk through s= ^9at^= 3.84: ft., vertically.
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The tension in the cord, from (2), is

P= 48(l-15.36Xi-^?) =48(1-0.24) = 36.48 lbs.

The pressures at the bearings will be as follows, at any instant: from

(4) and (8), X^ and X2 must individually be zero; from (6) Z2=G=Vj-
= 90 lbs.; while from (5) and (7), Yi= -21.28 lbs., and 1^2= -15.20 lbs.,

and should point in a direction opposite to that in which they were

assumed in Fig. 129 (see last lines of
Jj-
39).

117. The Compound Pendulum is any rigid body allowed to

oscillate without friction under the action of gravity when
mounted on a horizontal axis. Fig. 131 shows the

body /"ree, in any position during the progress of

the oscillation. C is the centre of gravitj^; let OG
= s. From (XIY.), § 114, we have 2 (mom. about

fixed axis)

= angul. ace. X mom. of inertia.

.-. — Gs sin a = 61^,

and = — Gs sin a -^ I^ = — Mgs sin a -f- MTcl,

i.e., = — ^s sin «r -^ ^/ (1)

Hence d is variable, proportional to sin a. Let us see what

the length I = OJT, of a simple circular pendulum, must be, to

have at this instant (i.e., for this value of a) the same angular

acceleration as the rigid body. The linear (tangential) accelera-

tions of ^ the extremity of the required simple pendulum

would be (§ 77) Pt = — 9 sin a, and hence its angular accelera-

tion* would = — gsina-^l. "Writing this equal to d in eq.

(i), we obtain

^ = ^0^^^ (2)

Bat this is independent of a ; therefore the length of the sim-

ple penduhim having an angular acceleration equal to that of

the oscillating body is the same in all positions of the latter,

and if the two begin to oscillate simultaneously from a position

of rest at any given angle oc^ with the vertical, they will keep

abreast of each other during the whole motion, and hence have

* Most easily obtained by considering that if the body shrinks into a mere

point at K, and thus becomes a simple pendulum, we have both ka and s

equal to I ; which in (1) gives B — — g sin a -i- 1.
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the same duration of oscillation ; which is .*.
,for small ampli-

tudes (§ 78),

t' = 7t VT^ = 7t Vk; -^ gs, .... (3)

j^is called the centre of oscillation corresponding to the given

centre of suspension 0, and is identical with the cenl/re ofper-

cussion (§ 113).

Example.—Required the time of oscillation of a cast-iron

cylinder, whose diameter is 2 in. and length 10 in., if the axis

of suspension is taken 4 in. above its centre. If we use 32.2

for g, all linear dimensions should be in feet and times in

seconds. From § 100, we have

Jf(f

From eq. (3), § 88,

.-. i; = 0.170 sq. ft.;

1 7,2\ — llffi 1 II 10 0\ — ]\f 1 103

M[^.\^^+ i-]=Mx0.m;

t'= 7t VO.ITO -^ ^32.2 Xi) = 0.395 sec.

118. The Centres of Oscillation and Suspension are Inter-

changeable.—(Strictly speaking, these centres are points in the

line through the centre of gravity perpendicular to the axis of

suspension.) Refer the centre of oscillation K to the centre

of gravity, thus (Fig. 132, at (I.) ) :

= l-s = Ms s = MJic' + Ms'

Ms s = —- (1)
s ^ ^

!N'ow invert the body and suspend it at K',

required CK^, or s^i to find the centre of

oscillation corresponding to K as centre of

suspension. By analogy from (1) we have s

s^ = he -^ -Si ; but from (1). k^ -^ s^ ^ s .'.

s^ = s\ in other words, ^j is identical with

0. Hence the proposition is proved.

Advantage may be taken of this to determine the length X
of the theoretical simple pendulum vibrating seconds, and thus

finally the acceleration of gravity from formula (3), § 117, viz..

(I.) (11.)

Fig. 132.
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when i! = 1.0 and I (now = Z) has been determined experi-

mentally, we have

g (in ft, per sq. second) = X (in ft.) X tt*. . . (2)

This most accurate method of determining g at any locality

requires the use of a bar of metal, furnished with a sliding

weight for shifting the centre of gravity, and with two project-

ing blocks provided with knife-edges. These blocks can also

be shifted and clamped. By suspending the bar by one knife-

edge on a proper support, the duration of an oscillation is com-

puted by counting the total number in as long a period of

time as possible; it is then reversed and suspended on the

other with like observations. By shifting the blocks between

successive experiments, the duration of the oscillation in one

position is made the same as in the other, i.e., the distance be-

tween the knife-edges is the length, I, of the simple pendulum

vibrating in the computed time (if the knife-edges are not equi-

distant from the centre of gravity), and is carefully measured.

The I and t' of eq. (3), § 117, being thus known, g may be com-

puted. The length, in feet, of the simple pendulum vibrating

seconds, at any latitude /?, and at a height of h ft. above sea-

level, is (Chwolson, 1902).

L= 3.25974-0.008441 cos 2/3-0.0000003/i.

119. Isochronal Axes of Suspension.—In any compound
'pendulum.,for any axis of suspension, there are always three

others, parallel to it in the same gramty-plane, for which the

oscillations are Tnade in the same time as for the first. For

any assigned time of oscillation t', eq. (3), § 117, compute the

corresponding distance CO = s oi O from O;

. Mk: 7r\MkJ + Ms^
i.e.,from t = ^ ^^-

=

^- ,

we have s= {gt"-^27r')± V{g'r-r-4:7r') — kJ. . . (1)

Hence for a given f, there are two positions for the axis O
parallel to any axis through C, in any gravity-plane, on both

sides; i.e.,four parallel axes of suspe?ision, in any gravity-

plane, giving equal times of vibration ; for two of these axes
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we must reverse the body. E.g., if a slender, homogeneous,

prismatic rod be marked off into thirds, tlie (small) vibrations

will be of the same duration, if the centre of suspension is

taken at either extremity, or at either point of division.

Examjple.—Required the positions of the axes of suspension,

parallel to the base, of a right cone of brass, whose altitude is

six inches, radius of base, 1.20 inches, and weight per cubic inch

is 0.304 lbs., so that the time of oscillation may be a half-

second. (N.B. For variety, use the inch-pound-second system

of units, first consulting § 51.)

120. The Fly-Wheel in Fig. 133 at any instant experiences

a pressure P' against its crank-pin from the connecting-rod

and a resisting pressure P" from the teeth of a spur-wheel with

Fi& 133.

which it gears. * Its weight G acts through C (nearly), and

there are pressures at the bearings, but these latter and G have

no moments about the axis C (perpendicular to paper). The
figure shows it free^ P" being assumed constant (in practice

this depends on the resistances met by the machines which D
drives, and the fluctuation of velocity of their moving parts).

P\ aiivl therefore T its tangential component, are '.variable,

depending on the effective steam-pressure on the piston at any

instant, on the obliquity of the connecting-rod, and in high-

speed engines on the masses and motions of the piston and con-

necting-rod. Let r. = radius of crank-pin circle, and a the

perpendicular from G on P" . From eq. (XIY.), § 114, we
have

Tr - P"a = Qlg, .: 6 = {Tr - P"a) -^ Ig, • (1

*Bearings at C not shown. P is the thrust in the piston-rod due

to steam pressure on piston.
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as the angular accelei-atioii at any instant ; substituting wliicliin

the general equation (VIII.), § 110, we obtain

IqWcLoo = Trda — P"ada (2)

From (1) it is evident that if at any position of the crank-pin

the variable Tr is equal to the constant P"a^ 6 is zero, and

consequently the angular velocity a) is either a maximum or a

minimum. Suppose this is known to be the case both at m
and n\ i.e., suppose T, which was zero at the dead-point A,
has been gradually increasing, till at n, Tr = P"a\ and there-

after increases still further, then begins to diminish, until at m
Tr again = P"a^ and continues to diminish toward the dead-

point P. The angular velocity go, whatever it may have been

on passing the dead-point A, diminishes, since 6 is negative^,

from A to n, where it is c»^, a minimum ; increases from n to-

??^. where it reaches a maximum value, c»,^. n and m being

known points, and supposing co^ known, let us inquire what
Go^ will be. From eq. (2) we have

IcJ^ Goda>=J^^ Trda-P"J^^ ada. . . (3>

But rda = 6/s = an element of the path of the crank-pin, and

also the " virtual velocity" of the force T, and ada = ds", an.

element of the path of a point in the pitch-circle of the fly-

wheel, the small space through which P" is overcome in dt.

Hence (3) becomes

/ci(c»J - GD^') =J^ Tds - P" X linear arc EF. (4>

To determine / Tds we might, by a knowledge of the vary-

ing steam-pressnre, the varying obliqnit}^ of the connecting-rod,

etc., determine T for a number of points equally spaced along-

the cnrve nm^ and obtain an approximate value of this sum by

Simpson's Rule; but a simpler method is possible by noting

(see eq. (1), § 65) that each term Tds of this sum = the corre-

sponding term Pdx in the series / Pdx, in which P = the^
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effective steam-pressure on the piston in the cylinder at any in-

stant, dx the small distance described by the piston while the

crank-pin describes any ds^ and n' and m' the positions of the

piston (or of cross-head, as in Fig. 133) when the crank-pin is

at n and m respectively. (4) may now be written

Ic\{po^ -O =J^^,
Pdx - P" X linear arc EF, (5)

from which c»^ may be found as proposed. More generally, it

is available, alone (or with other equations), to determine any

one (or more, according to the number of equations) unknown
quantity. This problem, in rotary motion, is analogous to that

in §59 (Prob, 4) for rectilinear motion. Friction and the in-

ertia of piston and connecting-rod liave been neglected. As
to the time of describing tlie arc wm, from equations similar to

(5), we may determine values of co for points along nm, divid-

ing it into an even number of equal parts, calling them cw^, &?„

etc., and then employ Simpson's Rule* for an approximate value
pm n,m g^

of the sum \ t= I — (from eq. (YL), § 110) ; e.g., with

four parts, we would have

f^l ri4241~
^ = T-=: (angle wC'w, in rads.) —

I

1 1 1-—
Ln 12 ^ ° Lo^n ' Ci5, C^j 0^3 <^m-^

.(6)

121. Numerical Example. Fly-Wheel.—(See Fig. 133 and

the equations of § 120.) Suppose the engine is non-condensing

and non-expansive (i.e., that P is constant), and that

P = 5500 lbs., r = 6in. = ift., a = 2ft.,

and also that the wheel is to make 120 revolutions per minute,

i.e., that its inean angular velocity is to be

oo' = ^^- X 27r, i.e., oa' = 47r " radians" per sec.

First, required the amount of the resistance P" (constant)

that there shall be no permanent change of speed, i.e., that the

angular velocity shall have the same value at the end of a com-

plete revolution as at the beginning. Since an equation of the

form of eq, (5) holds good for any range of the motion, let

* See p. 13 of the "Notes and Examples in Mechanics."
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that range be a complete revolution, and we shall have zero as

the left-hand member
;
fPdx = P X 2 ft. = 5500 lbs. X 2 ft.,

or 11,000 foot-pounds (as it may be called); while P" is un-

known, and instead of lin. arc EF we have a whole circumfer-

ence of 2 ft. radius, i.e., 4;r ft.;

.-. = 11,000 - P" X 1 X 3.1416; whence P" = 875 lbs.

Secondly, required the pi'oper mass to be given to the fly-

wheel of 2 ft. radius that in the forward stroke (i.e., while the

crank-pin is describing its upper semicircle) the max. angular

velocity g?^ shall exceed the minimum go^ by only ^L-g?', assum-

ing (which is nearly true) that ^{oj^ -j- go^) = go'. There be-

ing now three unknowns, we require three equations, which

are, including eq. (5) of § 120, viz.:

J^^C i-(^m + COn){(^m " ^n)

=J^^
Pdx - P" X linear arc EF\ (5)

\{<^m-\- (^n)= co'=4:7r; (7) and go^- go^ = -^gj' = ^n. (8)

The points n and m are found most easily and with sufficient

accuracy by a graphic process. * Laying off the dimensions to

scale, by trial such positions of the crank-pin are found that

T, the tangential component of the thrust P' produced in the

connecting-rod by the steam-pressureP (which may be resolved

into two components, along the connecting-rod and a normal

to itself) is =(a -^r)P'\ i.e., is = 3500 lbs. These points will

be n and m (and two others on the lower semicircle). The
positions of the piston n' and W, corresponding to n and m of

the crank-pin, are also found graphically in an obvious manner.

"We thus determine the angle nCm to be 100°, so that linear

arc EF= \^7t X 2 ft. = ^tt ft., while

nm' pin'

/ Pdx = 5500 lbs. X / dx= 5500x^/iW=5500x 0.77 ft.,

n'm' being scaled from the draft.

Xow substitute from (7) and (8) in (5), and we have, with

Jcq = 2 ft. (which assumes that the mass of the fly-wheel is con-

centrated in the rim),

* See p. 85, "Xotes and Examples," etc.
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{G-^g)X4:X4:7tx^7c = 5500 X C.77 - 875 X ^^,
which being solved for G (with

ff
= 32.2 ; since we have used

the foot and second), gives G = 600.7 lbs.

The points of max. and min. angular velocity on the back-

stroke may be found similarly, and their values for the fly-

wheel as now determined ; they will differ but slightly from

the Go^ and co^ of the forwai'd stroke. Professor Cotterill says-

that the rim of a fly-wheel should never have a max. velocity

> 80 ft. per sec; and that if made in segments, not more than

4rO to 50 feet per second. In the present example M^e have for

the forward stroke, from eqs. (7) and (8), gl;^= 13.2 (7r-measure

units) per second; i.e., the corresponding velocity of the wheel-

rim is VJ,^ = co^a = 26.4 feet per second.

122. Angular Velocity Constant. Fixed Axis.—If co is con-

stant, the angular acceleration, 6, must be = zero at all times^

which requires 2 (mom.) about the axis of

rotation to be = (eq. (XIY.), § 114). An
instance of this occurs when the only forces

acting are the reactions at the bearings on

the axis, and the body's weight, parallel to

or intersecting the axis ; the values of these ^"\2i2'EA^y'

reactions are now to be determined for dif- /' ^ —^
ferent forms of bodies, in various positions fig. 134.

relatively to the axis. (The opposites and equals of these reac-

tions, i.e., the forces with which the axis acts upon the bearings,

are sometimes stated to be due to the " centrifugalforces^'' or

" centrifugal action," of the revolving body.)

Take the axis of rotation for Z, then, with = 0, the equa-

tions of § 114 reduce to

— 00"Mx
;

— oo'My
;

0: . .

^ moms.x = — GofdMyz
;

'2 moms.y = -{- a^fdMxz ;

'2 moms.^ = 0. . . .

(IX«.)

(X«..).

(XIa.)

(X1I«.)

(Xllla.)

(XIYa.)
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For greater convenience, let ns suppose the axes ^ and Y
{since tlieir position is arbitrary so long as tliey are perpen-

dicular to each other and to Z) to revolve with the hody in its

uniform rotation.

122a. If a homogeneous hody have a plane of symmetry

and rotate uniformly about any axis Zperpendicular to that

plane {intersecting it at 0)^ then the acting forces are equiva-

. lent to a singleforce^ = co'^Mp, applied

at and acting in a groA^ity-line, hut

directed away from the centre of

gravity, it is evident that such a
/^- ^ . -

.

force P :3= ofMp, applied as stated

^"'- '^''-

(see Fig. 135), will satisfy all six con-

ditions expressed in the foregoing equations, taking ^through

the centre of gravity, so that x = p. For, from (IX«.), i^must

= afMp, while in each of tlie other summations the left-

hand member will be zero, since P lies in the axis of ^; and

as their right-hand meinbers will also be zero for the present

body (y = 0; and each of the sumsfdMyz andfdlfxB is zero,

since for each term dMy{ -\- z) there is another dMy{^ — z)

to cancel it ; and similarly, forfdMxz), they also are satisfied

;

Q.E.D. Hence a single point of support at will suffice to

maintain the uniform motion of the body, and the pressui-e

against it will be equal and opposite to P.*

First Example.—Fig. 136. Supposing (for greater safety)

that the uniform rotation of 210 revolutions

per minute of each segment of a fly-wheel is .^--""'

maintained solely by the tension in the cor- <f -f'

responding arm, P ; required the value ofP * P

if the segment and arm together weigh -J^- of

a ton, and the distance of their centre of ^^<^- ^3^-

gravity from the axis is p = 20 in., i.e., = |- ft. "With thefoot-

ton-second system of units, with g = 32.2, we have

P = co'Mp = [^ X 27cY X [^ ^ 32.2] X f = 0.83 tons^

or 1660 lbs.

* That is, neglecting gravity. The body's weight, if considered, will

take its place among the actual forces acting on the body.
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Second Exmnple.—Fig. 137. Suppose the Tiniform rotation

of the same ily-wheel depends solely on the tension in the rim,

required its amount. The figure shows the half-

rim fi-ee, with the two equal tensions, ]r*\ put in at

the surfaces exposed. Here it is assumed tliat the

arms exert no tension on the rim. Erom §122a we

have 2P' = oo'^Mp^ where J/^is themass of the half- p'

rim, and p its gravity co-ordinate, which may be ob- fig. 137.

tained approximately by § 26, Problem 1, considering the rim

as a circular wire, viz., p = 2r -^ rt.

Let M= (180 lbs.) -^- g, with r = 2 ft. We have then

P' = i(22)Xl80 ~ 32.2)(4 -^ n) = 1718.0 lbs.

(In realit}^ neither the arms nor the rim sustain the tensions

just computed ; in treating the arms we have supposed no duty

done by the rim, and vice versa. The actual stresses are less,

and depend on the yielding of the parts. Then, too, we have

supposed the wheel to take no part in the transmission of mo-

tion by belting or gearing, which would cause a bending of the

arms, and have neglected its weight.)

122b.' If a homogeneous hody have a line of symmetry and
rotate uniformly dboxit an axis parallel to it [0 being thefoot

of the perpendicularfrom the centre of gravity on the axis)^

then the acting forces are equivalent to a single force P
= Go'Mp, applied at O and acting in a gravity-line away

from the centre of gravity.

Taking the axis X^ tiirough the

(JM centre of gravity, Z being the

"H axis of rotation, Fig. 138, while

j
Z' is the line of symmetry, pass

an auxiliary plane Z' IT' parallel

to ZY. Then the sum fdMxz
may be written fdM{p -\- x')z

which = JfdMz + fdMx'z.
Fi»- 138. ButfdMz = Mz = 0, since 1

= 0, and every term dJif{-\- x')z is cancelled by a numerically



128 MECHANICS OF ENGINEERIISrG.

equal term dM{— x')3 of opposite sign. 'H.emefdMxz = 0.

AlsoydMyz = 0, since each positive product is annulled by an

equal negative one (from symmetry about Z'). Since, also,

3/ r= 0, all six conditions in § 122 ai-e satisfied. Q. E. D.

If the lioiiiogeneous body is any solid of revolution whose

geometrical axis is jparallel to the axis of rotation, the forego-

ing is directly applicable.

122c. If a homogeneous hody revolve uniformly about any
axis lying in a plane of symmetry, the actingforces are equiv-

alent to a singleforce P = oa'Mp, acting parallel to the grav-

ity-line which is perpendicular to the axis (Z), and away
from the centre of gravity, its distancefrom any origin in

the axis Z being = [fdMxB] -^ Up {the plane ZX being a

gravityplane).—Fig. 139. From the position of the body we

have p z=z X, and y = \ hence if a

value cD^Mp be given to P and it be

made to act through Z and parallel to

X, and away from the centre of gravity,

all the conditions of § 122 are satisfied

except {Xlla.) and (XIII«.). But

symmetry about the plane XZ makes

fdMyz = 0, and satisfies (XJI«.), and

by placing P at a distance a =fdMxz -^ Mp from along Z
we satisfy (XIII«.). Q. E. D.

Example.—A slender, homogeneous, prismatic rod, of length

= I, is to have a uniform motion, about a ver- q
tical axis passing through one extremity,

maintained by a cord-connection with a fixed p

point in this axis. Fig. 140. Given oo, (p, I,

(p =: \l cos cp), and F the cross-section of the

rod, let s = the distance from to any dJif

of the rod, dM being = Fyds -^ g. The x

of any dM =^ s cos q); its s = s . sin qj ;

.\fdMx3 = {Fy -T- g) sin (p cos q) / s^ds

— -^{Fyl -r- g)r sin cp cos (p = iJifl' sin q> cos <p.

Fig. 139.

Fig. 140.
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HeiKje a, =^fdMxz -^ Mp, is = |Z sin 9?, and the line of ac-

tion of P ( = oo'Mp = gl)' (i'VZ -^- ^) ^Z cos q)) is therefore

higher up than the middle of the rod. Find the intersection

D of G and the horizontal drawn tlirongh ^ at distance <zfroni

0. Determine P' by completing the parallelogram GP', at-

taching the cord so as to nudvc it coincide with P'^ for this will

satisfy the condition of maintaining the motion, Mdien once be-

gun, viz., that the acting forces G, and the cord-tension P',

shall be equivalent to a force P = oo'^Mp, applied horizontally

through Z at a distance a from 0.

123. Free Axes. Uniform Rotation.—Referring again to § 122

and Fig. 134, let us inquire under what circumstances the

lateral forces, J^^. 1^„ ^^. Y^, with which the bearings pi'ess

the axis, to maintain the motion, are individually zero, i.e., that

the hearings are not needed, and may therefore he removed

(except a sniooth horizontal plane to sustain the body's weight),

leaving the motion undisturbed like that of a top "asleep."

For this, not only must 2X and 2 Y both be zero, but also

(since otherwise X^ and X^ might form a couple, or Y^ and Y^

similarly) ^ (moms.)^and 2 (moms.)y must each = zero. The

necessary peculiar distribution of the body's mass about the

axis of rotation, then, must be as follows (see the equations of

§122):

First, X and y each = 0, i.e., the axis must he a gravity-axis.

Secondly,fdMyz — 0, KndfdMxz = 0, the origin being any-

where on Z, the axis of rotation.

An axis {Z) (of a body) fulfilling these conditions is called

a Free Axis, and since, if either one of the three Principal Axes

for the centre of gravity (see § 107) be made an axis of rotation

(the other two being taken for X and Y), the conditions

^ = 0, y = 0, fdMxz = 0, and fdMyz = 0, are all satisfied,

it follows that every rigid hody has at least three free axes,

which are the Principal Axes * of Inertia of the centre of

gramit/y at right angles to each other.

In the case of homogeneous hodies free axes can often be

.

determined by inspection : e.g.. any diameter of a sphere ; any

* See § 107. p. 104.
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transverse diameter of a right circular cylinder througli its

centre of gravity, as well as its geometrical axis; the geomet-

rical axis of aTi}^ solid of revohition ; etc.

124. Rotation about an Axis which has a Motion of Translation,

—Take only the particular case where the moving axis is a

fjj^ gravity-axis. At any instant, let the

dM d? velocity and acceleration of axis Z be?;

and p ; the angular velocity and accelera-

tion about that axis, oo and 6. Then, since

'1^ the actual motion of a dM in any dt is

compounded of its motion of rotation

about the gravity-axis and the motion of

translation in common with that axis,

Fig. 141. we may, in forming the imaginary equiva-

lent system in Fig. 141, consider each dM as subjected to the

simultaneous action of dP = dMjp parallel to ^, of the tan-

gential dT = dMdp^ and of the normal dN= dMioopf -^ p
= Go^dMp. Take ^in the direction of translation, Z (perpen-

dicular to paper through 0) is the moving gravity-axis ; Y
perpendicular to both. At any instant we shall have, then, the

following conditions for the acting forces (remembering that

/> sin 9? = y.fdMy = 3fy ~ ; etc.)

:

:2X =fdP -fdT sin cp -fdN Qo&<p = Mp; . (1)

2Y=/dTcos(p -/dJ^siu (p =0;. . (2)

^ moms.^ =/dTp -fdPy ^ dfdMp" = dl^ ^ OMlcz', (3)

and three other equations not needed in the following example.

Example.—A homogeneous solid of revolution rolls {with-

out slipping) down a rough inclined

plane. Investigate the motion. Con-

sidering the \>o^j free., the acting forces

are G (known) and N and P., the un- ^ ...-

known normal and tangential compo- ''V

nents of the action of the plane on the

roller. If slipping occurs, then P is the ^'*^- ^^^

gliding friction due to the pressure Ni^ 156); here, however, it is

less by hypothesis (perfect rolling). At any instant the four

unknowns are found by the equations
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JSX, i.e., G sin fi
- P, = {G-^ g)p ; . (1)

:SY, i.e., (? cos ^ - if, = ; . . . . (2)

^ moms.^, i.e., Pa, = OMkz ; • • (^)

while on account of the perfect rolKng, da=p . . • (4)

Solving, we have, for the acceleration of translation,

_2? = ^ sin /i - [1 + (/./ - a')l

(If the body slid wirhont friction, j9 would = p'sin /?.) Hence

for a cylinder (§ 97), kz" beiiio- = -^a", we have^ = f^ sin /3
;

and for a sphere (§ 103) j> = ^g sin /3.

(If the plane is so steep or so smooth that both rolling and

slipping occur, then da no longer = _p, but the ratio of i-* to iV

is known from experiments on sliding friction ; hence there are

still four equations.)

The motion of translation being thus found to be uniformly

accelerated, we may use the equations of § 56.

Numerically, if a homogeneous solid sphere took 1.20 sec. to descend

(from rest() 10 ft. along a rough inclined plane, with /?= 30°, did any-

slipping occur, or was the motion perfect rolling? From p. 54 we have

s= -|-p/^ that is, 10= -|- . ^ .^ sin 30° . t^, for perfect rolling; from which

we obtain i=1.32 seconds, which is >1.20 sec. Hence some slipping

must have occurred. (The time of descent would have been only

i= "|/2s-=-^g= 1.114 sec, if the surfaces had been perfectly smooth; and
the sphere would have had simply a motion of translation, the force P
being zero).

N.B.—A hollow sphere would occupy a longer time than a solid one in

descending the plane (if rough) ; since the ratio kz^a is greater for the
former.

125. Parallel-Rod of a Locomotive.
—
"When the locomotive

moves uniformly, each dJf of the rod between the two (or

three) driving-wheels rotates with
j

\
;

uniform velocity about a centre of its

own on the line j5i>, Fig. 143, andwith

a velocity -y* and radius r common ^._.^

to all, and likewise has a horizontal ( * js : , ; m t )

M/l'^/or7;^ motion ot transhition. Hence (ii.)

if we inquire what are the reactions P ^^^- ^^3.

* This velocity is that which the dM ?ias relatively to the frame of the

locomotive, in a circular path. E.g., if the locomotive (frame; has a velocity

of GO miles per hour and the radius r is one-third of the radius of the driver,

then V is 20 miles per hour.
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of its supports, as induced solely T)y its weight and motion^

w'.ien in its lowest position (independently of any thrust along

the rod), we put JSJT of (I.) = 2Y of (II.) (II. shows the

imaginary equivalent system), and obtain

2P - G =fdN =fdMo' -^r^iv'-^ r)fdM = Mv' :- r.

Example.—Let the velocity of translation = 50 miles per

hour, the radius* of the pins be 18 in. = f ft., and = half that

of the driving-wheels, while the weight of the rod is 200 lbs.

With g = 32.2, we must use the foot and second, and obtain

V = i[60 X 5280 ^ 3600] ft. per second = 36.6;

while Jf= 200 ^ 32.2 = 200 X .0310 = 6.20
;

and finally P = i[200 + 6.2(36.6)^-=- f] = 2868.3 lbs.,

or nearly If tons, about thirty times that due to the weight

alone.

126. So far in this chapter the motion has been prescribed,

and the necessary conditions determined, to be fulfilled by the

acting forces at any instant. Problems of a converse nature,

i.e., where the initial state of the body and the acting forces

are given while the resulting motion is required, are of much
greater complexity, but of rare occurrence in practice.

For further study in this direction the reader is referred to Routh's

"Rigid Dynamics," Rankine's "Applied Mechanics," Sehell's " Theorie

der Bewegung und der Kraefie," and Worthington's "Dynamics of Rota-

tion" (this last being a small but clearly written and practical book).

In Wood's "Analytical Mechanics" will be found the proof of "Euler's

Equations," which are the basis of the treatment of the gyroscope in the

book of that name by Gen. J. G. Barnard (Van Nostrand's Science Series,

No. 90). The article on the gyroscope in Johnson's Cyclopaedia is by
Gen. Barnard. Perry's "Spinning Tops" is an interesting popular book.

The Brennan "Monorail Car" (model) is described in the Engineering

Record for Aug. 31, 1907, p. 226, and depends for its stability (there

being but one rail under the car) upon two gyroscope wheels revolving

at 7000 revs, per min. in a vertical plane parallel to the rail. See also

McClure's Magazine for Dec, 1907, p. 163.

* Or, rather, the radius of the circular path of the pin-centre, whose
velocity in this path is 25 miles per hour.
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CHAPTER YI.

WORK, ENERGY, AND POWER.

127. Remark.—These quantities as defined and developed

in this cliapter, though compounded of the fundamental ideas

of matter, force, space, and time, enter into theorems of such

wide application and practical use as to more than justify their

consideration as separate kinds of quantity,

128, Work in a XJniform Translation. Definition of Work.—
Let Fig. 144 represent a rigid body having a motion of trans-

lation parallel to X, acted on by a yrp^

system of forces P^, P^, H^, and Ii^, ^f —''~'&</<VY^
which remain constant.* ("'^y\,...s..-~^

''•'2_s-..:.-\J_

Let s be any distance described by f ^^'"'''sa.., g \
^

the body during its motion
;
then ^JT^+VP^" '"*""

'^'\\P/j

must be zero (§ 109), i.e., noting that Rf- ^-v,^_^ /\y^^
R^ and R^ have negative X com- ^"^^ ^fi

ponents (the supplements of tlieir ^^'^- '^^'^•

angles with ^are used),

P^ cos a-j -J- P^ cos a^ — R^ cos a^ — R^ cos o'^ = ;

or, multiplying by s and transposing, we have (noting that

s cos cfj = Sj the projection of s on P^^ that s cos a^ = s^, the

•projection of s on P^^ and so on),

P,s, + P,5, - R^s^ + R,s^ {a)

The projections s^^ s^, etc., may be called the distances de-

scribed in their respective directions by the forces Pj, P^, etc;

Pj and P^ having \\\Q)\%^ forward^ since 5, and s^ fall infront

of the initial position of their points of application ; R^ and R^
backward, since s^ and a\ fall behind the initial positions in

their case, (By forward and backward we refer to the direc-

* Constant in direction as well as amount.
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tion of each force in turn.) The name Work is given to tlie

product of a force hy the distance described in the direction

of the force l)y the point of application. If the force moves

forward (see above), it is called a worhingforce, and is said ta

do the work (e.g., P^s^ expressed by this prodnct ; while if

hachioard, it is called a resistance, and is then said to have the

worh (e.g., R^s^, done upon it, in overcoming it through the

distance mentioned (it might also be said to have done nega-

tive work).

Eq. {a) above, then, proves the theorem that : In a uniform
translation, the ivorhing forces do an amount of work which

is entii'ely applied to overcoming the resistances.

129. Unit of Work.—Since the work of a force is a product

of force by distance, it may logically be expressed as so many
foot-pounds, inch-pounds, kilogram-meters, according to the

system of units employed. The ordinary English unit is the

foot-pound, or ft.-lb. It is of the same quality as a force-

moment.

130. Power.—Work as already defined does not depend on

the time occupied, i.e., the work P^s^ is the same whether per-

formed in a long or short time ; but the element of time is of

so great importance in all the applications of dynamics, as well

as in such practical commercial matters as water-supply, con-

sumption of fuel, fatigue of animals, etc., that the rate of worh
is a consideration both of interest and necessit}'.

Power is the rate at which work is done, and one of its

units is one foot-pound per second in English practice ; a larger

one will be mentioned presently.

The power exerted by a workingforce, or expended upon a

resistance, may be expressed symbolically as

L = P,s, - t, or ^,^3 -^ t,

in which t is the time occupied in doing the work P^s, or P^s,

(see Fig. 144) ; or if v^ is the component in the direction of

the force P^ of the velocity v of the body, we may also write

L=P\V\, ft. -lbs. per sec {h}
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131. Example.—Fig. 145, shows as a free hody a sledge

which is being drawn uniformly up

a rough inclined plane by a cord

parallel to the plane. Required the

total power exerted (and expended),

if the tension in the cord is P^ = 100

lbs., the weiglit of sledge ^3 = 160 Fig. 145.

lbs., P = 30°, and the sledge moves 240 ft. each minute. iV^

and J^^ are the normal and parallel (i.e., P^ = friction) com-

ponents of the reaction of the plane on the sledge. From eq.

(1), § 128, the work done while the sledge advances through

s = 240 ft. may be obtained either from the working forces,

which in this case are represented by _Pj alone, or from the

resistances JR, and P^. Take the former method first. Pro-

jecting s upon ^j we have s^ = s.

Hence P,s, or 100 lbs. X 240 ft. = 24,000 ft.-lbs.

of work done in 60 seconds. That is, thepower exerted hy the

workingforces is

L = P,5, -=- ^ = 400 ft.-lbs. per second.

As to the other method, we notice that ^g and R^^ are resist-

ances, since the projections s^= s sin ^, and s^ — s, would fall

back of their points of application in the initial position, while

JV is neutral, i.e., is neither a working force nor a resistance,

since the projection of s upon it is zero.

From :SX = we have — £,— R3 sin /? + Pi = 0,

And from 2T = (§ 109) JV — Ji, cos /3 =0;

whence /^, the friction = 20 lbs., and JV = 138.5 lbs. Also,,

since s, = 5 sin /6f = 240 X i = 120 ft., and s^ = s, = 240 ft.,

we have for the work done upon the resistances (i.e., in over-

coming them) in 60 seconds

B^s, + ^,6', = 160 X 120 + 20 X 240 = 24,000 ft.-lbs.,

and the power expended in overcoming resistances,

L = 24,000 -^ 60 = 400 ft.-lbs. per second,

as already derived. Or, in words the power exerted by the

tension in the cord is expended entirely in raising the weight

a vertical height of 2 feet, and overcoming the friction through
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a distance of 4 feet along tlie plane, every second ; the motion

heing a uniform translation.

132. Horse-Power.-—As an average, a horse can exerts a trac-

tive effort or pull of 100 lbs., at a uniform pace of 4 ft. per sec-

ond, for ten hours a day without too great fatigue. This gives

a power of 400 ft.-lbs. per second ; but Boulton & Watt in

rating their eiigines, and experimenting with the strong drav-

liorses of London, fixed upon 550 ft.-lbs. per second, or 33,000

ft.-lbs. per minute, as a convenient large unit of power. (The

Prench horse-power, or cheval-vapeur^ is slightly less than the

English, being 75 kilogrammeters per second, or 32,550 ft.-lbs.

per minute.) This value for the horse-power is in common
use. In the example in § 131, then, the power of 400 ft.-lbs,

per second exerted in raising the weight and overcoming fric-

tion may be expressed as (400-^550 =) yjof a horse-power. A
man can work at a rate equal to about J^ of a liorse-powe»

,

with proper intervals for eating and sleeping,

133. Kinetic Energy. Retarded Translation.—In a retarded

translation of a rigid body whose mass = Jf, suppose thei-e

are no working-forces, and that the resistances are constant and

their resultant is H. (E.g., Fig. 146 shows such a case ; a

sledge, having an initial velocity c and slid-

—7 ^^ ing on a rough horizontal plane, is gnidu-

^^T ally retarded by the friction H.) i?is par-

allel to the direction of translation (§ 109)
Fig. 146. and the acceleration is j? = — M -^ M

]

hence from vdv =-pds we have ';
\

)

fvdv = - (1 -^ M)fRds. .... (1)

But the projection of each ds of the motion upon R \q = ds

itself ; i.e. (§ 128), Rds is the work done upon jR, in overcoin

ing it through the small distance ds, and /Rds is the snm of

,all such amounts of work throughout any definite portion ol

the motion. Let the range of motion be between the points

where the velocity = c, and where it = zero (i.e., the mass

lias come to rest). "With these limits in eq. (1), (0 and s' be-

ina; the corresponding 1 M(? C^'t^ .

limits for s), we have J 2 *Jo ^ '



WORK, ENERGY, AND POWEK. 137

Til at is, in giving up all its velocity c the hody has heen ahle

to do the worhfRds (this, if R remains constant, reduces to

JR.s') or its equal —^7—. If, then, bv energy we designate tlie

ability to ^perform work, we give the name kinetic energy of

a niuving body to the product of its mass hy half the square

. fJ'fv^\

cf its velocity \~h~"); ,i-e., energy due to motion.

Example.—If the sledge in Fig. 146 has initially a velocity oi c=^j
ft./sec. and its weight is G= 322 lbs. (so that its mass in the ft.-lb.-sec.

system is M= 10) its initial kinetic energy is ilfc^J_2=500 ft.-lbs. If

the friction or resistance, R, is constant and has a value of 20 lbs., we
compute s'= 25 ft. (from 500= Rs') as the distance the sledge will go

in overcoming this resistance; i.e., in giving up all its kinetic energy.

If the sledge goes 40 ft. we conclude the average resistance to have been

only 12.5 lbs.; since 500-^-40= 12.5. Now suppose R variable, say

= (20+ 4s) lbs., (s in ft.), and we have 500= / [20+ 4s]ds= 20s'+2s'2;

.-. s' = 11.6ft.

134, Work and Kinetic Energy in any Translation.—Let P
be the resultant of the working forces at any instant, R that

of the resistances ; they (§ 109) will both M

uact in agravity-line* parallel to the di- <-

rection of translation. The acceleration C—'_ -§'. ----*o'

at any instnnt is ^ = {^A. -^ M) fig. 147.

=: {^P — R) -T- M\ hence from vdv ^ pds we have

Mvdv = Pds — Rds (1)

Integrating between any two points of the motion as and 0'

where the velocities are 'o^ and v\ we have after transposition

/ Pds= Rds 4-
'Mv" Mv,

. 2 ~ 2 J
{d)

But P being the resultant of P^, P^, etc., and R that oi

^,, ^5,. etc., we may prove, as in § 62. that if dii^. du,, etc.. be

the respective projections of any ds upon P^. P^, etc., while

dw^, dv\, etc., are those upon R^, R^, etc., then

Pds=.P,du^-\-P^du^-\- and Rds=R,dw^-\-R,dw, ;

and (d) may be rewritten

* That is, a line passing through the centre of gravity.
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£ P^du,+y' P^du,+ . . .

.

P,dw, +y P,dw, + +
I

-^ ~2^
J 5 (^)

°

or, in words : In any translation, a portion of the worh done

hy the working forces is applied in overcoming the resistances

lohile the remainder equals the change in the kinetic energy of

the l)ody.

It will be noted that the bracket in {e) depends only on the

initial and final velocities, and not upon any intermediate

values ; hence, if the initial state is one of rest, and also the

final, the total change in kinetic enei'gy is zero, and the work

of the working forces has been entirely expended in the work

of overcoming the resistances ; but at intermediate stages the

former exceeds the work so far needed to overcome resistances,

and this excess is said to be stored in the moving mass ; and as

the velocity gradually becomes zero, this stored energy becomes

available for aiding the working forces (which of themselves

are then insufficient) in overcoming the resistances, and is then

said to be restored. (The function of a fly-wheel might be

stated in similar terms, but as that involves rotary motion it

will be deferred.)

Work applied in increasing the kinetic energ}' of a body is

sometimes called " work of inertia," as also the work done by

a moving body in overcoming resistances, and thereby losing

speed.

135. Example of Steam-Hammer.—Let us apply eq. {e) to

determine the velocity v' attained by a steam-hammer at the

lower end of its stroke (the initial velocity being = 0), just

before delivering its blow upon a forging, supposing that

the steam-pressure i-*^ ^^ "^ stages of the downward stroke is

given by an indicator. Fig. 148. Weight of moving mass

is 322 lbs.; .-. J!/' =10 (foot-pound-second system), Z = 1 foot.

The workingforces at any instant are P^^ O ^= 322 lbs.; P^,

which is variable, but whose values at the s,&wQn equally spaced
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fZs

joints a, h, c, d, e, f, g, are 800, 900, 900, 800, 600, 500, 450

lbs., respectively. R^ the exhaust-pressure (16

lbs. per sq. inch X 20 sq. inches piston-area) =
320 lbs., is the only resistance, and is constant.

Hence fi*om eq. {e), since here the projections

du^^ etc., of any ds upon the respective forces i

are equal to each other and = ds,

Pj ds +y P,ds = Rj ds + ^-. (1)

'The term fP^ds can be obtained approximately *

^Qj Simpson's Rule, using tlie above values for

six equal divisions, vi^hich gives

J^[800+ 4(900 + 800 + 500)

-f 2(900 -(- 600) + 450]

.= 725 ft.-lbs. of work. Hence, making all the substitutions.

we have, since I ds =^1 ft.,

322 X 1 + 725 = 320 X 1 + IMv"; .-. ^Mv" = 727 ft.-lbs.

of energy to be expended on the forging. (Energy is evi-

dently expressed in the same kind of unit as work.) We may
then say that the forging receives a blow of 727 ft.-lbs.

•energy. The pressure actually felt at the surface of the ham-

mer varies from instant to instant during the compression of

the forging and the gradual stopping of the hammer, and

-depends on the readiness with which the hot metal yields.

If the mean resistance encountered is R^, and the depth of

compression s", we would have (neglecting the force of gravity,

and noting that now the initial velocity is v', and the final

zero), from eq. (c),

^Mv" = Rrr^s"; i.e., R^ = [727 -^ s" (ft.)] lbs.

E.g., if s" = I of an inch = -gL of a foot, R^ = 43620 lbs.,

and the maximum value of R would probably be about double

this near the end of the impact. If the anvil also sinks during

the impact a distance s'", we must substitute s'" -\- s" instead

•of s" ; this will give a smaller value for ^^.

* See p. 13 of "Notes and Examples in Mechanics."
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By mean value for B, is meant [eq. (c)] that value, B,^^ which

satisfies the relation

BJ =f Bds.

This may be called more explicitly a space-average, to dis-

tinguish it from a time-average, which might appear in some
problems, viz,, a value Bt^, to satisfy the relation {t' being the

duration of the impact)

I^tnt' = / Bdt,

and is different from B^.

From \Mv'^ = T2T ft.-lbs., we have v' = 12.06 ft. per sec,

whereas for a free fall it would have been 4/2x32.2x1 = 8.03.

(This example is virtually of the same kind as Prob. 4, § 59,

differing chiefly in phraseology.)

136. Pile-Driving.*—The safe load to be placed upon a pile

after the driving is finished is generally taken us a fraction (from

^ to ^) of the resistance of the earth to the passage of the pile as

indicated by the effect of the last few blows of the ram, in ac-

cordance with the following approximate theory : Toward the

* end of the driving the resistance B encountered by

! the pile is nearly constant, and is assumed to be that

^ met by the I'am at the head of the pile; the distance

i s' through which the head of the pile sinks as an

M^^ effect of the last blow is observed. If G, then, is

the weight of the ram, = 3Ig, and h the height of

free fall, the velocity due to h, on sti-iking the pile,

is c = V2gh (§ 52), and we have, from eq. (c),

iMc\ i.e., GL = f Bds = Bs' . . (1)

{B being considered constant) ; hence B = Gh -f- s'

.

and the safe load (for ordinary wooden piles),

P = from \ to ^ oi Gh^s' (2)

Maj. Sanders recommends |- from experiments made at Fort

Fig. 149.

* See also p. 87 of the author's Notes and Examples in Mechanics.
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Delaware in 1851; Molesworth, |-; General Barnard, ^, from

extensive experiments made in Holland.

Of course from eq. (2), given J*, we can compute s'.

(Owing to the uncertainty as to how much of the resistance

H is due to friction of the soil on the sides of the pile, and

how mucli to the inertia of the soil around the shoe, the more

elaborate theories of Weisbach and Rankine seem of little

practical account.)

137. Example.—In preparing the foundation of a bridge-pier

it is desired that each pile (placing them 4 ft. apart) shall bear

safely a load of 72 tons. If the ram weighs one ton, and falls

12 ft., what should be the effect of the last blow on each pile?

Using the foot-ton-second systein of units, and Molesworth

factor \, eq. (2) gives

s' = 1(1 X 12 -j- 72) = ^- of a foot = J of an inch.

That is, the pile should be driven until it sinks only J incih

^nder each of the last few blows.

138. Kinetic Energy Lost in Inelastic Direct Central Impact.—
Referring to § 60, and using the same notation as there given,

we find that if the united kinetic energy possessed by two in-

elastic bodies after their impact, viz., ^Jf^C -j" i^^^O^ C' hav-

ing the value {M,c, + M^o^) -^ {M^ + i/,), be deducted from

the amount before impact, viz., ^M^c^ -{- ^M^e^. the loss of

Tcinetic energy dxiring iwijpact of two inelastic hodies is
*

An equal amount of energy is also lost by partially elastic

bodies during the first period of the impact, but is partly re-

gained in the second. If the bodies were perfectly elastic, we
would find it wholly regained and the resultant loss zero, from

the equations of § 60 ; but this is not quite the reality, on

account of internal vibrations.

The kinetic energy still remaining in two inelastic hodies

after impact (they move together as one mass) is

* See Eng, News, July, 1888, pp. 33 and 34.
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•|^(J/"j + ^^C-, or, after inserting the value of

C = {M,G, + M^c^) -- {M, + M^, we have

2 (2)

M,|

Exainjple 1.—The weight ^^ = M^g falls freely

through a height A, impinging upon a weight 6^,

= JI/2^, which was initially at rest. After their {in-

elastic) impact they move on together with the com-

bined kinetic energy just given in (2), which, since

Cj and (?25 the velocities before impact, are respectively

\^'2gh and 0, may be reduced to a simpler form.

This energy is soon absorbed in overcoming the

flange-pressure R^ which is proportional (so long as

the elasticity of the ]-od is not impaired) to the

elongation 6', as with an ordinary spring. If from

Fig. 150. previous experiment it is known tliat a force R^
produces an elongation «„, then the variable R = (^„ -^ s^)s.

Keglecting the weight of the two bodies as a working force,

we now have, from eq. (d),

+ 4^

s ids

R.

I.e.

R,

0=^ f sds+

(3)

When s = s\ i.e., when the masses are (momentarily) at rest

in the lowest position, the flange-pressure or tensile stress in the

rod is a maximum, R' = {R^ -^ s^)s', whence s' = R's^ ~- R^;

and (3) may be written

M:gh

or

R'

2

2R.

s =

M^gh

(4)

(5)

Eq. (3) gives the final elongation of the rod. and (5) the greatest

tensile force upon it, provided the elasticity of the rod is not
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impaired. The forin ^R's' in (4) may be looked upon as a direct

integration of / jRds, viz., the mean resistance {^H') multi-

plied by the whole distance {s') gives the work done in over-

coming the variable R through the successive ds's,.

If the elongation is considerable, the working-forces G, and

G^ cannot be neglected, and would appear in the term-|-(^i

-f- G^s' in the right-hand members of (3"). (4), and (5). The
upper end of the rod is firmly fixed, and the rod itself is of

small mass compared with M^ and M^.

Exmnple 2.—Two ears, Fig. 151, are connected by an elastic

chain on a horizontal track. Yelocities before impact (i.e.,

before the stretching of the chain be- ^g^ o ^ci

gins, by means of which they are l_-[~.,_____^ H

brought to a common velocity at the M^ Mi

instant of greatest tension R', and Fig. 151.

elongation s' of tlie chain) are <?j = g^, and c^ = 0.

During the stretching, i.e., the first period of the impact, the

kinetic enei'gy lost by the masses has been expended in sti-etch-

ing the chain, i.e., in doing the work ^i?V ; hence we may
write (the elasticity of the chain not being impaired) (see eq. (1)

)

M,M,e,^ _ 1 _ R, ^^_^.„

in which the different symbols have the same meaning as in

Example 1, in which the rod corresponds to the chain of this

example.

In this case the mutual accommodation of velocities is due

to the presence of the chain, whose stretching corresponds to

the compression (of the parts in contact) in an ordinary impact.

In numerical substitution, 32.2 for g requires the use of the

units foot and second for space and time, while the unit of

force may be anything convenient.

139. Work and Energy in Rotary Motion. Axis Fixed.—
The rigid body being considered free, let an axis through O
perpendicular to the paper be the axis of rotation, and resolve

all forces not intersecting the axis into components parallel

and perpendicular to the axis, and the latter again into com-

ponents tangent and normal to the circular path of the point
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of application. These tangential com-

ponents are evidently the only ones

of the three sets mentioned which

have moments about the axis, those

having moments of the same sign as

00 (the angular velocity at any instant)

being called working forces^ T^, T„
etc. ; those of opposite sign, resist-

ances, T^', T^', etc.; for when in time

dt the point of application ^j, of T^, describes the small arc

ds^ =: a^da, whose projection on T^ is = ds^, this projection

falls ahead (i.e., in direction of force) of the position of the

point at the beginning of dt, while the reverse is true for T/.

From eq. (XIY.), § 114, we have for 6 (angul. accel.)

6 = '

J , (1)

which substituted in codco = Qda (from § 110) gives (remem-

bering that a^doi =. ds^, etc.), after integration and transposition,

T,ds,+J^ TA + etc.

T^dsi-^j^ T:ds: ^^i^.-\-\_\oo^^i -koo:i\ (2)

where and n refer to any two (initial and final) positions of

the rotating body. Eq. (4), § 120, is an example of this.

Now \oo^I— \Qo^fdMp' =f^dM{GOnpf, which, since go^P

is the actual velocity of any dM ^i this (final) instant, is nothing

more than the sum of the amounts of kinetic energy possessed

at this instant by all the particles of the body ; a similar state-

ment may be made for \oa^I. (a»o a^nd ojn in radians.)

Eq. (2) therefore may be put into words as follows

:

Between any two positions of a rigid hody rotating about a

fixed axis, the worh done hy the workingforces is partly used

in overcoming the resistances, and the remainder in changing

the kinetic energy of the individual particles. If in any case

this remainder is negative, the final kinetic energy is less than

the initial, i.e., the work done by the working forces is less than

that necessary to overcome the resistances through their respec-

tive spaces, and the deficiency is made up by the restoring of
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some of the initial kinetic energy of the rotating body. A
moving fly-wheel, then, is a reservoir of kinetic energy.

Example.—The 668-lb. pulley of p. 104 was found to have a radius

of gyration of |/7.91 ft., and a moment of inertia about its axis, Z, of

ikfA;^ = (668-7-3) 7.91. Let us suppose it mounted on a short shaft of

(ro = ) 2 in. radius (whose 7z may be neglected) supported in proper

bearings. The pulley and shaft are in contact with nothing except

the bearings, which offer a friction T/, tangent to outer surface of shaft,

of 120 lbs. If the pulley has an initial rotary speed of 300 revs./min.,

in how many turns, n, will it be brought to rest? Evidently ^^= 0,

while o^Q, = 27r300 -;- 60, =31.41 rads./sec. That is, the initial kinetic

energy is i^'Mk^ =a(31.41)2(668-h32.2) 7.91, =80,810 ft.-lbs.: and
the final, zero. T'i' = 120 lbs., constant, and the work done on T/ is,

T^' I "'ds^' = 120 .n{2n) .lr== 125.Qn ft.-lbs. Hence from eq. (2) we.
JO

have = 125.6n+ [0-80,810]; i.e., n-643 turns, Ans.

140. Work of Equivalent Systems the Same.

—

If two plane
systems offorces acting on a rigid hody are equivalent (§ 1 oa),

the aggregate worh done hy either of them during a given slight

displacement or motion of the hody parallel to their plane is

the same. By aggregate work is meant what Las ah'eady been
defined as the sum of the " virtual moments" (§§ 61 to 64), iu

any sniall displacement of tlie body, viz., the algebraic sum of

the products, 2 [Pdu), obtained by multiplying eacli foi'ce by
the pi'ojection {du) of the displacement of (or small space

described by) its point of application upon the force. (We
here class resistances as negative working forces.)

Call the systems A and B] then, if all the forces of B were
reversed in direction and applied to the body along Avith those

of A. the compound system would be a balanced system, and
lience we should have (§ 64), for a small motion parallel to the
plane of the forces,

:2{Pdii) = 0, i.e.. 2{Fdu) for A - :S{Fdu) for ^ = 0,

or
. + 2{Pdtc) for A = -{- 2{Fd'u) for B.

But -f- 2 (Fdu) for A is the aggregate work done by the forces

of A dui-ing the given motion, and -f 2(Fdu) for B is a
similar quantity for the forces of B (not reversed) during the
same small motion if B acted alone. Hence the theorem is

p)-oved, and could easily be extended to space of three dimen=
sions.

10 -
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Fig. 153.

£>, of the body; a final, n

141. Relation of Work and Kinetic Energy for any Extended

Motion of a Rigid Body Parallel to a Plane.—(If at any instant

any of the forces acting are not

parallel to the plane mentioned,

their components lying in or

parallel to that plane, will be used

instead, since the other compo-

nents obviously would be neither

working forces nor resistances.)

Fig. 153 shows an initial position,

and anj' intermediate, as q. The
forces of the system acting may vary in any manner during

the motion.

In this motion each dM describes a curve of its own with

varying velocity v, tangential acceleration
j^t-, ^^^d radius of

curvature r ; hence in any position ^, an imaginary system JB

(see Fig. 154), equivalent to the actual system A (at q in Fig.

153), would be formed by applying to each dM a

tangential force dT =^ dMpt, and a normal force

dN' = dMv'^ -V- r. By an infinite number of con-

secutive small displacements, the body passes from

o to n. In the small displacement of which q is the

initial position, each 6?J/^ describes a space ds^ and

dT does the work dTds = dMvdv, while dJV does the work-

dJV X = 0. Hence the total work done by £ in the small

displacement at q would be

dN

dT

dM'v'dv' + dM"n}"dv" -f etc., (1)

including all the dM^& of the body and their respective veloci-

ties at this instant.

But the work at q in Fig. 153 by the actual forces (i.e., of

system A) during the same small displacement must (by § 140)

be equal to that done by B. hence

P,du, -f P,du^ + etc. = dM'v'dv' + dM"v"dv" -f etc. (^)

Now conceive an equation like {g) written out for each of
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the small consecutive displacements between positions o and

yi and corresponding terms to be added ; this will give

P/hc^ -\- 1 P^du^ -\- etc.

= dW / v'dii' + dM" / v"dv" + etc.

= \dM'{v^^ - ^;=) + i^^Jf'XV - <'') + etc.

The second member may be rewritten so as to give, finally,

/ P,dit,+ P,du,-^etG.=:S{idMv,')-:S{^dMv,'),{XY.)

or, in words, the worTi, done hy the actingforces {treating a re-

sistance as a negative worhing force) between any two posi-

tions is equal to the gain {or loss) in the aggregate Icinetic

energy of the particles of the hody hetwee7i the tioo positions.

To avoid confusion, 2 has been used instead of the signy in

one member of (XY.), in which v^ is the final velocity of any

dM {not the same for all necessarily) and v^ the initial.

(The same method of proof can be extended to three dimen-

sions.)

Since kinetic energy is always essentially positive, if an ex-

pression for it comes out negative as the solution of a problem,

some impossible conditions have been imposed.

142. Work and Kinetic Energy in a Moving Machine.—
Defining a mechanism or machine as a series of rigid bodies

jointed or connected together, so that working-forces applied

to one or more may be the means of overcoming resistances

occurring anywhere in the system, and also of changing the

amount of kinetic energy of the moving masses, let us for

simplicity consider a machine the motions of whose parts are

all parallel to a plane, and let all the forces acting on any one

piece, considered free, at auy instant be parallel to the same

plane.

Now consider each piece of the machine, or of any series of

its pieces, as a free body, and write out eq. (XY.) for it be-

tween any two positions (whatever initial and final positions are

selected for the first piece, those of the others must be corre-

sponding initial and corresponding final positions), and it will
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be found, on adding np corresponding members of these equa-

tions, that the terms involving tliose components of the mutual

pressures (between the pieces considered) which are normal

to the rubbing surfaces at any instant will cancel out, while

their components tangential to the rubbing surfaces {i.e., fric-

tion, since if the surfaces are perfectly smooth there can be

no tangential action) will appear in the algebraic addition as

resistances multiplied by the distances rubbed through, meas-

ured on the rubbing surfaces. For example. Fig. 155, where

one I'otating piece both presses and rubs on another. Let the

normal pressure between them at A be R^ = P^ ; it is a work-

ing force for the body of mass M" , but a resistance for M'

,

hence the separate symbols for the numerically equal forces

(action and reaction).

Similarly, the fliction at ^ is i?3 = ^Pg ; a resistance for M'

,

a working-force for M" . (In some cases, of course, friction

may be a resistance for both bodies.) For a small motion, A
describes tlie small arc AA' abont 0' in dealing with M\ but

for M" it describes the arc AA" about 0" . A'A" being

parallel to the surface of contact AD, while AB is perpen-

FiG. 156. Fig. 157.Fig. 155.

dicular to A'A" . In Figs. 156 and 15Y we see M' and M"
free, and their corresponding small rotations indicated. During

these motions the kinetic energy (K. E.) of each mass has

clianged by amounts <f(K. E.)j,f/ and (i(K. E.)j/// respectively, and

hence eq. (XY.) gives, for each free body in turn,

P\a^' - R,AB - R,A^ = di^. E.)^. . (1)

-RW+ P.AB + P^JJ^ = d(K. 'E.)m". . (2)

Now add (1) and (2), member to member, remembering that

P^ = P^ and P^ = P^ = P^ = friction, and we have

P,aa' - F,A'A" - R^jb" = d{K. E.)^' + d{lL E.)m", (3)



WUllK, ENERGY, AND POWER. 149

in which the mutual actions of M' and M" do not appear,

except the friction, the work done in overcoTning which, when
the t'loo hodies are thus considered collectively, is the product

of the friction hy the distance A'A" of actual nibbing meas-

tired on the rubbing sttrface. For any number of pieces, then,

consideredfree collectively, the assertion made at the beginning

of this article is true, since any finite motion consists of an

infinite number of small motions to each one of wliich an equa-

tion like (3) is applicable.

Summing the corresponding terms of all such equations, we
have

f" P,du, -{-fF,du,+ etc. = :^(K.E.),,- :^(K. E.)o.(XYI.)

This is of the same form as (XY.), but instead of applying to a

single rigid body, deals with any assemblage of rigid pai-ts

forming a machine, or any part of a machine (a similar proof

will apply to thi-ee dimensions of space); but it must be remem-

bered that it excludes all the mutual actions* of the pieces con-

sidered except friction, which is to l)e introduced in the manner

just illustrated. A flexible inextensible cord may be considered

as made up of a great number of short rigid bodies jointed

M'ithout friction, and hence may form part of a machine with-

out vitiating the truth of (XVI.).

^(K. E.)„ signifies the sum obtained by adding the amounts

of kinetic energy {^dMv^ for each elementary mass) possessed

by all the particles of all the rigid bodies at their final posi-

tions ; ^(K. E.)„, a similar sum at their initial positions. For

example, the K. E. of a rigid body having amotion of transla-

tion of velocity -y, =^ ^vfdM =^ ^Mv^
',
that of a rigid body

having an angular velocity go about a fixed axis Z, = ^oo'^Iz

(§ 139) ; while, if it has an angular velocity w about a gravity-

axis Z, which has a velocity Vz of translation at right angles to

itself, the (K. E.) at this instant may be j)roved to be (§ 143)

the sum of the amounts due to the two motions separately.

* These mutual actions consist only of actions by contact (pressure, ruo,

etc.) . No magnetic or electrical attractions or repulsions are here considered.
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143. K. E. of Combined Rotation and Translation.—The last

statement may be thus proved. Fig. 158.

At a given instant the velocity of any dJf is

V, the diagonal formed on the velocity Vz of

translation, and the rotaiy velocity oop rela-

tively to the moving gravity-axis Z (per-

pendicnlar to paper) (see § Yl),

Fig. 158. i-©., v' = Vz + {oopY— ^{Gop)vz COS 9?

;

hence vv^e have K. E., at tliis instant,

= f^dMv' = \v^fdM + WfdMp" - GovzfdMp cos ^,

but p cos q) ^=:y, and fdMy = My = 0, since Z is a gravity-

axis,

.-. K. E. = iMvz' + WIz- Q. E. D.

It is interesting to notice that the K. E. due to rotation, viz.,

\go^Tz = \M{w]tY^ is the same as if the whole mass were con-

centrated in a point, line, or thin shell, at a distance ^,-the

radius of gyration, from the axis.

Example.—A solid homogeneous sphere of radius r= 6 in. and weight

= 322 lbs. is rolling down an incline. At a certain instant the velocity

of its centre is 10 ft. per sec. and hence, i'/ no slipping occurs, its angular

velocity about its centre is co, ==Vz-^r, =10-7- J, =20 radians/ sec. Con-

sequently, at this instant (see § 103, p. 102) its total kinetic energy is

i(322 4_32.2)[(10)2 + (20)2 . f(i)2] = 700 ft.-lbs.

144. Example of a Machine in Operation.—Fig. 159. Con-

sider the four consecutive moving masses, M\ M'\ M"\ and

M'^^ (being tlie piston ;
connecting-rod ; fly-wheel, crank, drum,

and chain ; and weiglit on inclined plane) as free, collectively.

Let us apply eq. (XYI.), the initial and final positions being

taken when the crank-pin is at its dead-points o and n\ i.e., we
deal with the progress of the pieces made while the crank-pin

describes its upper semicircle. Remembering that the mutual

actions between any two of these four masses can be left out

of account (except friction), the only forces to be put in are

the actions of other bodies on each one of these four, and are
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shown in the figure. The only mutual friction considered will

be at the crank- pin, and if tliis as an average — F'\ the work
done on it between o and n = F"7tr" ^ where r" = radius of

cranlv-pin. The work done by jP^ the effective steam-pressure

(let it be constant) daring this period is = I^^l' ; that done in

overcoming J^j, the friction between piston and cylinder, = I^^l'
;

that done upo?i the weight G'oi connecting-rod is cancelled by

the work done by it in the descent following ; the work done

Fig. 159,

upon G''', = G'^Tta sin /?, where a = radius of drum ; that

upon the friction i^^, = J^^rra. The pressures JV, W, N'^, and

N'", and weights G' and G'", are neutral, i.e., do no work either

positive or negative. Hence the left-hand member of (XVI.)

becomes, between o and n,

P,V - F,V - F"7tr"- G'^Tta sin /? - Fjta, . . (1)

provided the respective distances are actually described by

these forces, i.e., if the masses have sufficient initial kinetic

energy to carry the crank-pin beyond the point of minimum
velocity, with the aid of the working force P^^ whose effect is

small up to that instant.

As for the total initial kinetic energy, i.e., ^(K. £.)„, lei; us

express it in terms of the velocity of crank-pin at o, viz., Y^.

The (K.E.)„ of M' is nothing ; that of M" , which at this in-

stant is rotating about its right extremity {fixed ioix \\\& instant)

with angular velocity oo" = F„ ^ l'\ is \(^"^1^' \ that oiM'"
= \o!}"'^I^'\ in which oo'" = V^^r; that of M''' (translation)

^ iJf^X''"? in which v;^ = {a-^r) V,. 2(K. E.)„ is expressed
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in a corresponding manner with F^ (final velocity of crank-pin)

instead of Y^. Hence the right-hand member of (XYI.) will

give (potting the radius of gyration of Jf about 0" = Jc",

and that of Jf about G = Jc)

i( K' - F;)[j/-|^ + M^-~ +M-y~']. . . (2)

By writing (1)= (2), we have an equation of condition, capa-

ble of solution for any one unknown quantity, to be satisfied

for the extent of motion considered. It is understood that the

chain is always taut, and. that its weight and mass are neg-

lected.

145. Numerical Case of the Foregoing.—(Foot-pound-second

system of units for space, force, and time ; this 'requires g
= 32.2.)

Suppose the following data :

Feet. Lbs. Lbs. Mass Units.

V = 2.0
I" = 4.0
a = 1.5
r = 1.0
k = 1.8

k" = 2.3
r" = 0.1

Pi =
Fi =

F" (av'ge) =
F,=

6000
200
400
300

0' = 60
G" = 50
0'" = 400
0'^ = 3220

(and .-.)

M' = 1.86
M" = 1.55
M'" = 12.4'

M^^ = 100.0

Also let Fo = 4 ft. per sec; /:/=30''

Denote (1) by TTand the large bracket in (2) by M (this l)y

some is called* the total mass ^'- reduced''^ to the crank-pin).

Putting (1) = (2) we have, solving for the unknown Vn,

K = 2Tf
i-v:. (3)

For above values,

W = 12,000 - 400 - 125.T - Y590.0 - 141Y.3

= 2467 foot-pounds
;

while ^ = 0.5 + 40.3 -f 225.0 = 265.8 mass-units;

whence F„ = 4/18.56 + 16 = VsU^ = 5.88 ft. per second.

As to whether the crank-pin actually reaches the dead-point

n, requires separate investigations to see whether F becomes

zero or negative between o and n (a negative value is inad-
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inissible, since a reversal of direction Implies a different

value for W), i.e., whether the proposed extent of motion is

realized ; and these are made by assigning some othei' inter-

mediate position 771, as a final one, and computing F^, remem-

bering that when m is not a dead-point the (K. E.),^ of M' is not

zero, and must be expressed in terms of F^, ;uid that the

(K. E.)to of the connecting-rod J/'''^raust be obtained from § 143.

146. Eegulation of Machines.—As already illustrated in

several exauiples (§ 121), a fly-wheel of sufficient weight and

radius may prevent too great fluctuation of speed in a single

•stroke of an engine ; but to prevent a permanent change, which

must occur if the work of the working force or forces (such as

the steam-pressure on a piston, or water-impulse in a turbine)

exceeds for several successive strokes or revolutions the work

required to overcome resistances (such as friction, gravity, re-

sistance at the teeth of saws, etc., etc.) through their respective

spaces, automatic governors are employed to diminish the

working force, or the distance tlu-ough wliich it acts per stroke,

until the normal speed is restored ; or vice versa, if the speed

slackens, as when new resistances are temporarily brought into

play. Hence when several successive periods, strokes (or other

-cycle), are considered, the kinetic energy of the moving parts

will disappear from eq. (XYI.), leaving it in this form :

work of' worhing-forces = work done upon resistances.

147. Power of Motors.—In a mill Avhere the same number of

machines are run continuously at a constant speed proper for

theii- work, turning out per hour tlie same number of barrels

of flour, feet of himber, or other coujmodity, the motor (e.g.,

a steam-engine, or turbine) woi'ks at a constant rate, i.e., de-

velops a definite horse-power (H.P.), which is thus found in

the case of reciprocating steam-engines (doubie-actingj,

II.P. = total mean effective \ l distance in feet
]

steam-pressure on I X •< travelled by pis- I ~- 550,

piston in lbs. ) ( ton per second. )

i.e., the work (in ft.-lbs) done per second by the working force
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divided by 550 (see § 132). The total effective pressure at auj"

instant is the excess of the forward over the back-pressure^

and by its mean vakie (since steam is nsnally used expansively)

is meant such a vahie^' as, multiplied by the length of stroke-

I, shall give

P'l=.J Pdx,

where P is the variable effective pressure and dx an elemenfc

of its path. If u is tlie number of strokes per second, we may
also write {foot-jpound- second system)

H.P. = P'lu -^ 550 = fPdx u -^ 550. (XYII.)'

Yery often the number of revolutions _^er minute, m, of th&:

crank is given, and then

H.P. = P' (lbs.) X 2Z (feet) X m ^ 33,000.

II P= area of piston we may also write P' ^Pp', where j?'

is the mean effective steam-pressure per unit of area. Evi-

dently, to obtain P' in lbs., we multiply i^in sq. in. byj?' ia

lbs. per sq. in., or P m sq. ft. hj p' in lbs. per sq. foot ; the

former is customary, p^ in practice is obtained by measurements

and computations from " indicator-cards " (see § 152, p. 159,

where the value of P' is found by Simpson's Rule) ; or P'7, i.e.,

/ Pdx, may be computed theoretically as in § 59, Problem 4..

The power as thus found is expended in overcoming the-

friction of all moving parts (which is sometimes a large item),

and the resistances peculiar to the kind of work done by the ma-
chines. The work periodically stored in the increased kinetic

energy of the moving masses is restored as they periodically

resume their minimum velocities.

Example.—In the steady running of a (reciprocating) steam-engine

operating a mill, the value of the mean total effective pressure on the

piston is P' = 16,800 lbs. and the radius of the circle described by the

crank-pin is 10 in. (so that the length of stroke is 1= 20 inches). The^

fly-wheel turns at rate of 330 revs./min. Find the horse-power developed..

Substituting, we find H.P. = [16,800X2 XffXSSO]-^ 33,000= 560 H.P.
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148. Potential Energy.—There are other ways in which work

or energy is stored and then restored, as follows

:

First. In raising a weight G through a height h, an amount

of work = Gh is done ujyon G, as a resistance, and if at any

subsequent time the weight is allowed to descend through the

same vertical distance Ti (the form of path is of no account), G,

now a worMngforce, does the work Gh, and thus in aiding the

motor repays, or restores, the Gh expended by tlie motor in

raising it. If h is the vertical height tlirough which the centre

of gravity rises and sinks periodically in the motion of the

machine, the force G may be left out of account in i-eckoning

the expenditure of the motor's work, and the body when at its

liighest point is said to possess an amount Gh of potential

energy, i.e., energy of jposition, since it is capable of doing the

work Gh in sinking through its vertical range of motion.

Second. So far, all bodies considered have been by express

stipulation rigid, i.e., incapable of changing shape. To see

the effect of a lack of rigidity as affecting the principle of

work and energy in machines, -^---.JC^^^^^^^rr^ A

take the simple case in Fig. 160. ^ Y^^'^''^^^ ?

A helical spring at a given in- ^f---^^;^;^;|^^^^j~^
Btant is acted on at each end by f'^'^'i r ti>?' ^

a force jP in an axial direction ' '
'

/
j

(they are equal, supposing the Fig. leo.

mass of the spring small). As the machine operates of which

it is a member, it moves to a new consecutive position J^,

suffering a further elongation dX in its length (if F is increas-

ing). P on the right, a woi'king force, does the work Pdx'',

how is this expended ? ^ on the left has the work Pdx done

upon it, and the mass is too small to absorb kinetic energy or

to bring its weight into consideration. The remainder, Pd'x'

— Pdx = Pdx, is expended in stretching the spring an addi-

tional amount dX, and is capable of restoration if the spring

retains its elasticity. Hence the work done in changing the

form of bodies if they are elastic is said to be stored in the

form of potential energy. Tliat is, in the operation of ma-

chines, the name potential energy is also given to the energy

stored and restored periodically in the changing and regaining

of form of elastic bodies.
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EKatiif)le.—A given helical spring, when held stretched s'=J ft. beyond

its "natural" (or unstrained) length, exerts a pull of i2'= 1200 lbs.

at its two ends; and the "potential energy" residing in it is— mean forceX

distance, =^R's\ = (i) 1200 (^), =300 ft.-lbs. If such a stretched

spring be placed on a car of 644 lbs. weight on a level track and properly

connected with a driving-wheel, which does not slip on the track, its

recovery of natural length may be made the means of starting the car

into motion and causing it to attain a final velocity of v= 5A7 ft. /sec.

(if no friction is met with); from i(644-f-32.2)i;2= 300.

149. Other Forms of Energy.—Numerous experiments witli

various kinds of apparatus have proved that for every 7Y8

(about) ft.-lbs. of work spent in overcoming friction, one British

unit of heat is produced (viz., tlie quantity of lieat necessary to

raise tlie temperature of one pound of water from 32° to 33°

Fahrenheit); while from converse experiments, in which the

amount of heat used in operating a steam-engine was all carefully

estimated, the disappearance of a certain portion of it could only

be accounted for by assuming that it liad been converted into

work at the same rate of (about) 778 ft.-lbs. of vs^ork to each

unit of heat (or 427 kilogrammetres to each French unit of

lieat). This number 778 or 427, according to the system of

units employed, is called the Mechanical Equivalent of Htot

Heat then is energy, and is supposed to be of the kinetic

form due to tJie rapid motion or vibration of the molecules of

a substance. A similar agitation among the molecules of the

(hypothetical) ether diffused through space is supposed to pro-

duce the phenomena of light, electricity, and magnetism.

Chemical action being also considered a method of transform-

ing energy (its possible future occurrence as in the case of coal

and oxygen being called potential energy), the well-known

doctrine of the Consernation of Energy^ in accordance with

which energy is indestructible, and the doing of work is simply

the conversion of one or more kinds of energy into equivalent

amounts of others, is now an accepted hypothesis of physics.

Work consumed in friction, though practically lost, still re-

mains in the universe as heat, electricity, or some other subtile

form of energy.

150. Power Required for Individual Machines. Dynamome-

ters of Transmission.—If a machine is driven by an endless

belt from the main-shaft, A^ Fig. 161, being the driving-pulley
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Fig. lUl.

on the machine, the working force which drives the machine,,

in other words tlie " grip" with which the

belt takes hold of the pulley tangentially^

= /^ — P' ^ P and P' being the tensions

in the "driving" and ''following" sides of

the belt respectively. The belt is supposed

not to slip on the pulley. If v is the ve-

locity of the pulley -circumference, the

work expended on the machine per second, i.e., \\\q lyower, is

L = (P-POv, ft.-lbs. per sec. .... (1)

To measure the force {P — P')^ an apparatus called a Dy-
nainometer of Transmission may be placed between the main

shaft and the machine, and the belt made to pass through it in

such a way as to measure the tensions P and P' ^ or princi-

pally their difference, without meeting any resistance in so do-

ing
; that is, the power is transmitted^ not absorbed, by the

apparatus. One invention for this purpose (mentioned in the

Journal of the FranMin Institute some years ago) is shown

{in principle) in Fig. 162. A ver-

tical plate carrying four pulleys and

a scale-pan is first balanced on the

pivot C. The belt being then ad-

justed,- as shown, and the power

turned on, a sufficient weight G is

placed in the scale-pan to balance

Fig. 163. tlie plate again, for whose equilib-

rium we must have Gh = Pa — P'a, since the P and P' on

the right have action-lines passing through C. The velocity of

belt, V, is obtained by a simple counting device. Hence

(P —P') and V become known, and .'. L from (1).

Many other forms of transmission-dynamometers are in use,

some applicable whether the machine is driven by belting or

gearing from the main shaft. Emerson's Hydrodynamics de-

scribes his own invention* on p. 283, and gives results of meas-

m-ements with it ; e.g., at Lowell, Mass., the power required

to drive 112 looms, weaving 3 6-inch sheetings, No. 20 yarn,

60 threads to the inch, speed 130 picks to the minute, was

found to be 16 H.P., i.e., \- H.P., to each loom (p. 335).

* Prof . Flather's '^Dynamometers" is a standard book (1907).
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Example.—The endless belt connecting the pulley (running at n=180
revs./min., with a radius of r= 2 ft.) of an engine shaft with that of a

planing machine is led over the idle pulleys of the apparatus in Fig. 162,

as there shown (engine pulley on left, and that of machine on right;

but neither shown in figure). To balance the plate in position shown
(with a= 2 ft. and 6= 4 ft.) is found to require a weight G = 210 lbs.

We have, therefore, from {P-P')a= Gb, P-P' = 210X4 --2 = 420 lbs.

as the net working force operating the machine; while the velocity of

the belt is v, =n2;rr, =(180-^60) 2;r2= 18.85 ft. /sec. Hence the

power transmitted through the dynamometer of transmission is L,

= {P-P')v, =420X18.85= 79,170 ft.-lbs. per sec, or 14.4 H.P

151. Dynamometers of Absorption.—These are so named
.since they furnish in themselves the resistance (friction or a

weight) in tlie overcoming (or raising) of which the power is

expended or absorbed. Of these the Prony Friction Brake
is the most common, and is nsed for measuring the power

developed by a given motor (e.g., a steam-engine or turbine)

mot absorbed in the friction of the motor itself. Fig:. 163

«hows one fitted to a vertical pulley driven by the motor. By
tightening the bolt B^ the velocity i) of pulley-rim may be

made constant at any desired value (within certain limits) by

the consequent friction, -y is measni-ed by a counting appara-

tus, while the friction (or tangential components of action be-

tween pulley and brake), = I\ becomes known by noting the

weight G which must be placed in the scale pan to balance the

arm between the checks; then with G^''=weight of brake and

h' =tlie horizontal distance of its center of gravity from the

center of pulley, we have, for the equilibrium of the brake

(moments about pulley center),

Fa=Gb + GV', (1)

and the work done on F per unit of time, or power, is

L=i^y, ft.-lbs. per sec (2)

(In case the pulley is horizontal, a bell-crank must be inter-

posed between the arm and the scale-pan.)
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Example.—A vertical pulley of a= 2 ft. radius and run by a turbine
water-wheel, is gripped by a Prony brake, as in Fig. 163, with arm
fe = 4 ft. 9 in. A load of G = lQO lbs. is placed in the scale pan, the water
turned on, and the bolt B screwed up until the friction F of pulley-rim

on brake is just sufficient to lift the weight and hold the brake in equi-

librium Weight of brake is (r' = 40 lbs., with centre of gravity 6' = 1.5 ft.

on right of pulley centre. The speed to which the pulley now adjusts

itself is at rate of 210 revs./min. The friction is F ={Gb + Gb')^a=
(160X4.75+40X1.5)-h2= 410 lbs.; the velocity of pulley-rim is v =
(210^60) 27rX2 = 44 ft. /sec; hence the power developed is F'?;= 410X44
= 18,040 ft.-lbs. per sec. ; or 32.8 H.P.

Note.—For an account of various modern designs of absorption and
transmission dynamometers, the reader is referred to Prof. Flather's

book, already mentioned in the foot-note on p. 157. This is a recent

and a standard work. In the "Notes and Examples in Mechanics" by
the present writer, brief descriptions are given (pp. 96 and 97) of the

Appold and the Carpentier dynamometers of absorption, with the theory

of the same; both of these are "automatic" or "self-adjusting."

It must be carefully noted by the student that in the absorption dyna-

mometer, which for purposes of test temporarily takes the place of useful

machines, the power is absorbed and converted into heat, necessitating

cooling devices if the parts are to run smoothly and lubricants are to

remain unaffected; whereas in the dynamometer of transmission the

power simply passes through without heating effect.

152, The Indicator, used with steam and other fluid engines,

is a special kind of dynamometer in which the automatic mo-

tion of a pencil describes a curve

on paper whose ordinates are

proportional to the fluid pres-

sures exerted in the cylinder at

successive points of the stroke.

Thus, Fig. 164, the back-pres-

sure being constant and = P^, fig. lu.

the ordinates P^, P^, etc.. represent the effective pressures at

equally spaced points of division. The mean effective pressure

P' (see § 147) is, for this figure, by Simpson's Rule (six equal

spaces),

P' = tV[^o + 4(P, + P3 + P.) + 2(P. + P.) + Pe].

This gives a near approximation. The power is now found by

§147^

153. Mechanical Efficiency of a Steam or Vapor Engine (gas,

petroleum, gasoline, or alcohol vapor, etc.). By the term
*' mechanical efficiency " is meant the ratio of the power obtained

< --
l

!

^\/

fk<

P1 P2 P3 P4
Pa

T 1

Pe

l^b 2ERC3 LINE X
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at tlie rim of tlie pnlley or fly-wheel on the main shaft of the

engine (where it would be connected with machinery to be

operated or where in a test the resistance of brake-friction

wonld be overcome) to the power exerted directly on the piston

of the engine by the pressure of the fluid concerned. This

latter item becomes known through the use of the '

' indicator '

'

(see preceding paragraph) and is hence often called the 'indi-

cated 'power ;
" the power spent on friction provided by a Prony

brake, for testing purposes, being called the " brake-power.^^

Example.—If from indicator-cards the value of P', or total mean
effective pressure on the piston of an engine, is found to be 12,000 lbs.,

the piston speed being at the (mean) rate of 6 ft. per sec, the "indi-

cated power" of the engine is= 72,000 ft.-lbs./sec. Now, when the

engine is running under these same conditions of pressure and speed,

if it is found by the use of a Prony friction brake that the power spent

on brake friction consists of overcoming a friction of 6000 lbs. through

10 ft. each second, and that therefore the power obtained at the brake,

or "brake power," is equal only to 60,000 ft.-lbs./sec, the mechanical

efficiency of the engine (in this test) is 60,000-^72,000, =0.833 or 83J per

cent. In other words, 16t per cent of the power exerted by the fluid

pressure on the piston, or "indicated power," is lost in the overcoming

of the friction of the engine itself, i.e., among the moving parts situated

between the piston and the rim of the test pulley.

153a. Efficiency of Power Transmission.—In transmitting

power through a long line of shaftmg, or by ropes or belts, or

water in pipes, or by electric current, the efficiency is the ratio

of the power put in at the sending station to that obtained at

at the receiving station. For example,

Example.—An engine exerts power at the rateof (say) 600,000 ft.-lbs./sec,

in running a "dynamo" at the sending or power station. The electric

current so generated is conducted 60 miles through wires to a receiving

station, where by operating an electric motor it enables a pulley to be

run within a Prony brake from whose indications it is found that a power
of 360,000 ft.-lbs./sec. is there obtainable. Hence the efficiency of

transmission is 360,000-^600,000, =60 per cent.

154. Boat-Rowing. —x^'ig. 166. During the stroke proper,

let /* = mean pressure on one oar-handle ; hence the pressures

on the foot-rest are 2P, resistances. Let J!f"= mass of boat

and load, v^ and Vn its velocities at beginning and end of stroke.

Pj = pressures between oar-blade and water. Ji = mean re-

sistance of water to the boat's passage at this (mean) speed.

These are the only (horizontal) forces to be considered as act-

ing on the boat and two oars, considered free collectively.

During the stroke the boat describes the space s^ = CD, the

oar-liandle tlie space s„ = AB, wliile tlie oar-blade slips back-
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ward through the small space (the " slip") = s^ (average).

Hence by eq. (XYI.), § 142,

i.e., 2P{s,-s,)=2FxAJi=2Fs =Bs,+2P,s,-\- iMiv^'-v,');

or, in words, the product of the oar-handle pressures into the

distance described by them measured on the hoat, i.e., the work-

done by these pressures relatively to the hoat, is entirely ac-

counted for in the work of slip and of liquid-resistance, and in^

..si>^

Fig. 166.

creasing the kinetic energy of the mass. (The useless work
due to slip is inevitable in all paddle or screw propulsion, as

well as a certain amount lost in machine-friction, not considered

in the present problem.) During the '' recover" the velocity

decreases again to v^. (See example on p. 9T, Notes, etc.)

155. Examples.—1. What work is done* on a level traci^, in

bringing up the velocity of a train weighing 200 tons, from

zero to 30 miles per hour, if the total frictional resistance (at

any velocity, say) is 10 lbs. per ton, and if the change of speed

is accomplished in a length of 3000 feet ?

{Foot-ton-second system.) 30 miles per hour = 44 ft. per

sec. The mass

- 200 -^ 32.2 = 6.2 ;

.'. the change in kinetic energy,

(= Wv-' -iM X 0%
= i(6.2) X 44* = 6001.6 ft.-tons.

* That is, what work is done by the pull, or tension, P, in the draw-bar

between the locomotive and the "tender."



162 MECHANICS OF ENGlNEEKliMG.

The work done in overcoming friction = Fs, i.e.,

= 200 X 10 X 3000 = 6,000,000 ft.-lbs. = 3000 ft.-tons

;

.-. total work = 6001.6 + 3000 = 9001.6 ft.-tons.

(If the track were an up-grade, 1 in 100 say, the item of

200 X 30 = 6000 ft.-tons would be added.)

Exmnjple 2.—Required the rate of work, or power, in Ex-

ample 1. The power is variable, depending on the velocity of

the train at any instant. Assume the motion to be uniformly

accelerated, then the working force is constant ; call it P.
The acceleration (§ 56) will be ^='y'-=-2^=1936-^6000= 0.322

ft. per sq. sec; and since P — J^= Mjp^ we have

P = 1 ton + (200 -=- 32.2) X 0.322 = 3 tons,

which is 6000 -^ 200 = 30 lbs. per ton of train, of which 20 is

due to its inertia, since when the speed becomes uniform the

work of the engine is expended on friction alone.

Hence when the velocity is 44 ft. per sec, the engine is

working at the rate of P'o = 264,000 ft.-lbs. per sec, i.e., at the

rate of 480 H. P.;

At i of 3000 ft. from the start, at the rate of 240 H. P., half

as much
;

At a uniform speed of 30 miles an hour the power would be

simply 1 X 44 = 44 ft. -tons per sec. = 160 H. P.

Example 3.—The resistance offered by still water to the

passage of a certain steamer at 10 knots an hour is 15,000 lbs.

What power must be developed by its engines, at this uniform

speed, considering no loss in " slip" nor in friction of ma-

chinery ? A71S. 461 H. P.

Example 4,—Same as 3, except that the speed is to be 15

knots (i.e., nautical miles ; each = 6086 feet) an hour, assum-

ing that the resistances are as the square of the speed (approxi-

mately true). Ans. 1556 H. P.

Example 5.—Same as 3, except that 12^ of the power is ab-

soi-bed in the " slip" (i.e., in pushing aside and backwards the

water acted on by the screw or paddle), and 8^ in friction of

machinery. Ans. 576 H. P.

Example 6.—In Example 3, if the crank-shaft makes 60
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revolutions per minute, the crank-pin describing a circle of 15

incbes radius, required the average* value of the tangential

component of the thrust (or pull) of the connecting-rod against

the crank-pin. Ans. 26890 lbs.

Example 7.—A solid sphere of cast-iron is rolling up an in-

cline of 30°, and at a certain instant its centre has a velocity of

36 inches per second. Neglecting friction of all kinds, how

much further will the ball mount the incline (see § 143) %

Ans. 0.390 ft. \

Example 8.—In Fig. 163, with J = 4 f t. and a = 16 inches,

it is found in. one experiment that the friction which keeps the

speed of the pulley at 120 revolutions per minute is balanced

by a weight G — 160 lbs. Eequired the power thus measured..

Ans. 14.6 H. R
Although in Examples 1 to 6 the steam cylinder is itself in

motion, the work per stroke is still = mean effective steam-

pressure on piston X length of stroke, for this is the final form

to which the separate amounts of work done by, or upon, the

two cylinder heads and the two sides of the piston will re-

duce, when added algebraically. See § 154.

* By " average value" is meant such a value, Tm, as multiplied into the
length of path described by the crank-pin per unit of time shall give the
power exerted.
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CHAPTEK YIL

FRICTION.

156. Sliding Friction.—When the surfaces of contact of two
bodies are perfectly smooth, the direction of the pressure or pair

of forces between them is normal to these surfaces, i.e., to their

;
tangent-plane ; but when thej are rough, and

'Y"'f \
moving one on the other, the forces or ac-

pV 4N tions between them incline awaj from the

i \
I ij-,

P- normal, each on the side opposite to the di-

WmJ Ŝ^W//Jw///M ^^ction of the (relative) motion of the body
/-. ^q/ ///M ^^ which it acts. Thus, Fig. 167, a block
Fig. 167. whose weight is G, is drawn on a rough

horizontal table by a horizontal cord, the tension in which is

P. On account of the roughness of one or both bodies the ac-

tion of the table upon the block is a force P^^ inclined to the

normal (which is vertical in this case) at an angle = (p away
from the direction of the relative velocity -y. This angle q) is

called the angle offriction^ while the tangential component of

P^ is called the friction = F. The normal component N^
which in this case is equal and opposite to G the weight of tlie

body, is called the normal pressure.

Obviously i^= iV^tan <p, and denoting tan cp hjf we have

F=fJ^. (1)

/"is called the coefficient offriction, and may also be defined

as the ratio of the friction ^to the normal pressure JSf which

produces it.

In Fig. 167, if the motion is accelerated (ace. =J?), we have

(eq. (lY.), § 55) P - i^ = J!/^ ; if uniform, P - F= ; from

vv'hich equations (see also (I))/" may be computed. In the

latter case/" may be found to be different with different veloci-

ties (the surfaces retaining the same character of course), and

then a uniformly accelerated motion is impossible unless P
— P were constant.

As for the lower block or table, forces the equals and op-

posites of iV^andP(or a single force equal and opposite to P^)

are comprised in the system of forces actirg upon it.

As to whether i^ is a worMng force or a resistance, when
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either of the two bodies is considered free, depends on the cir-

cumstances of its motion. For example, in friction-gearing

the tangential action between the two pulleys is a resistance

for one, a working force for the other.

If the force P^ Fig. 167, is just sufficient to start the body,

or is just on the point of starting it (this will be called impending

fnotion), F\& called ihefriction of rest. If the body is at rest

and P is not sufficient to start it, the tangential component will

then be < the friction of rest, viz., just =^ P. AsP increases,

this component continually equals it in value, and P^^ acquires

a. direction more and more inclined from the normal, until the

instant of impending motion, when the tangential component

=/'-ZV"= the friction of rest. When motion is once in prog-

ress, the friction, called then the friction of motion., = fJV,

in which/" is not necessarily the same as in the friction of rest.

157. Variation of Friction and of tlie Coefficient of Friction, f.—Careful

distinction must be made between the friction of dry surfaces and of

those that are lubricated; though in the latter case as the supply of lubri-

cant (oil, soap, graphite, etc.) is reduced from the extreme state of

"flooding," the friction approximates in variation and magnitude to

that of dry surfaces. Also, if the pressure is very great, the lubri-

cant may be pressed out and the phenomena reduced to those of dry

surfaces, which imder great pressures "seize," i.e., abrade, one another.

With dry surfaces the amount of friction, F (lbs.), depends on the

nature of the materials and their initial roughness, being somewhat

reduced as they become more polished, when a sliding motion has been

long continued. With the surfaces in a given condition it is found

(unless the pressure is very low) that increase of velocity diminishes

the friction, as is unfortunately the case with railroad brakes, the

friction between a brake-shoe and the rim of the car-wheel being least

^t the first application of the brakes, when the velocity of rubbing is

greatest (see p. 168). The friction increases with the normal pressure N
(the coefficient /, itself, increasing with N when N is large) and is some-

what smaller after motion begins than when motion is "impending"

(friction of rest).

With well lubricated surfaces, however, the following may be said:

The nature of the materials of the two bodies has but slight influence

on the amount of friction, F, and when motion has begun, the friction

is very much less than that of "impending motion." The friction is

practically independent of the pressure when the lubrication is very

copious (bearings "flooded") (resembling, therefore, "fluid friction;" see

p. 695), the coefficient / being as small as 0.001 or under (Tower); but

with more scanty lubrication conditions may approach those of dry

surfaces. As to the effect of velocity (Goodman), the frictional resistance
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varies directly as the speed for low pressures. For high pressures, how-

ever, it is relatively great at low velocities, a minimum at about 100

ft./min., and afterwards increases approximately as the square root of

the speed. A rise of temperature has a very important influence in

diminishing the viscosity of the oil and enlarging the diameter of the

bearing of a shaft more than that of the shaft itself.

In the problems of this chapter the coefficient / will be considered as

constant; so that where it really varies (as when the velocity changes)

an average value will be understood.

158. Experiments on Sliding Friction.—These may be made
with simple aj)pai'atus. If a block of weight = G, Fig. 168,

be placed on an inclined plane of uniformly rough surface,

and the latter be gradually more and more inclined from the

horizontal until the block begins to move,, the value of fS at

Fig. 168. Fig. 169.

this instant =; cp, and tan cp =f =^ coefficient of friction of

rest. For from -2'X = we have F, \.%.^ fN^ = G sin ySj

from ^1^= 0, iV^=: G cos fi ; whence tan /? =y, .-, /? must

= cp.

Suppose /? so great that the motion is accelerated, the body

starting from rest at o, Fig. 169. If it is found that the

distance x varies as the square of the time, then (§ 56) the

motion is uniformly accelerated (along the axis X). (Notice

in the figure that G is no longer equal and opposite to Pi, the^

resultant of N and P, as in Fig. 168.) We have, then

lY = 0, which gives N- (? cos ^= ;

JZ = Mpi, whicli gives G sin /?- fN = {G ^g)pi ;

while (from § 56) pi = '2x^t^.

Hence, by elimination, x and the corresponding time t having

been observed, we have for the coefficient of friction of motion,

2x
' '^

gt^ cos /?

as an average (since the acceleration may not be uniform).
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In view of (3), § 157, it is evident that if a value /3^ has been

found experimentally for /? such that the block, once started hy

hand, preserves a uniform motion down the plane, then, since

tan /3^ =.f for friction of motion, /?^ may be less than the /?

in Fig. 168, for friction of rest.

159. Another apparatus consists of a horizontal plane, apul-

lej^, cord, and two weights, as shown in Fig. 59. The masses

of the cord and pulley being small and hence neglected, the

analysis of the problem when G is so large as to cause an ac-

celerated motion is the same as in that example [(2) in § 57],

except in Fig. 60, where the frictional resistanceyW^ should be

put in pointing toward the left. iT still = G^^ and .*.

8-fG^^{G,^g):p', (1)

while for the otlier free body in Fig. 61 we have, as before,

G-8={G-^g):p (2).

From (1) and (2), 8 the cord-tension can be eliminated, and
solving for p, writing it equal to 2^ -^ f, s and t being the ob-^

served distance described (from rest) and corresponding time,,

we have finally for friction of motion (as an average)

'^- G, - G, ' gf ^^>

If G, Fig. 59, is made just sufficient to start the block, or

sledge, G^, we have for the friction of rest

.
/=|.. ....... ii)

160. Results of Experiments on Sliding Friction.—For accounts of recent

experiments (and others) and deductions therefrom, the reader may consult

the Engineer's "Pocket-books" of Kent and Trautwine; also Thurston's

"Friction and Lost Work," Barr and Kimball's "Machine Design," and
" Lubrication and Lubricants,

'

' by Archbutt and Deely. The following

table gives a few values for the coefficient of friction, /, for slow motion,

taken from the results obtained by Morin and others. Small changes in

the condition of the surfaces may produce considerable variation in the

value of /. Our knowledge is still quite incomplete in this respect.
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TABLE FOR FRICTION OF SLOW MOTION.

No. Surfaces. Unguent. Angle <t). / = tan ^.

1 Wood oil wood. None. 14° to 36i° 0.25 to 0.5U
2 Wood on wood. iSoap. 2° to nr 0.04 to 0.20
3 Mcilal on wood. None. 26r to 3ir 0.50 lo 0.60
4 Metal on wood. Water. 15° to 20° 0.25 10 0.35
5 Metal on wood. Soap. 1U° 0.20
6 Leather on metal. None. 29;5r° 0.56

7 Leather on metal. Greased. 13° 0.23
8 Leather on metal. Water. 20° 0.36
9 Leather on metal. Oil. sr 0.15
10 Metal on metal Mone 8*° to 18° 0.15 to 0.30
11 Metal on metal Water 18° (average) 0.30
12 Metal on metal Oil 0.001 to 0.080

For the coefficient of friction of rest, the above values might be in-

creased from 20 to 40 per cent., roughly spealdng.

As showing the effect of velocity in diminishing the friction of dry

surfaces, we may note that in the Galton-Westinghouse experiments

with railroad brakes (cast-iron brake-shoes on steel-tired car-wheels),

values for / were found as follows: When the velocity of rubbing was

10 miles per hour, /= 0.24; for 20 miles per hour, / = 0.19; for 30, 40,

50, and 60 miles per hour / was found to be 0.164, 0.14, 0.116, and

0.074, respectively. The foregoing values of / were obtained imme-

diately on the application of the brake, but when the brake-shoe and

wheel had been in contact some five seconds at a constant velocity,

/ was reduced some 20 or 30 per cent. ; while for a contact of 15 seconds

still further reduction ensued. The value of / for a "skidding" car-

wheel (i.e., held fast by the brake pressure) sliding or "skidding" on the

rail, was reduced from 0.25 for impending skidding, to 0.09 at a velocity

of 7 miles per hour; and to 0.03 for 60 miles per hour. (See p. 190.)

That increasing the velocity of lubricated surfaces diminishes the co-

efficient of friction is well shown in the results obtained by Mr. Welling-

ton, in 1884, with journals revolving at different speeds, viz.,

For velocity = 0.00 2.16 4.86 21.42 53.01 106ft /min.

Coeff. / =0.118 0.094 0.069 0.047 0.035 0.026

For a sledge on dry ground Morin found /= 0.66. For stone on stone,

see p. 555 of this book.

161. Cone of Friction.—Fig. 170. Let A and B be two

a-ougli blocks, of which jB is immovable, and P the resultant

.-.. 0/ of all the forces acting on A. except the pres-

sure from £. jB can furnish any required

normal pressure JV to balance P cos /?, but

the limit of its tangential resistatice is /"iV^.

So long then as /? is < cp the angle of fric-

tion, or in other words, so long as the line of

Fig. 170. action of P is within the " cone offriGtion"
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generated by revolving 6^6* about ON^ the block A Mall not

slip on B^ and the tangential resistance of B is simplj P sin

/? ; but if ^ is > cp, this tangential resistance being oiiijfN
and < P sin /?, A will begin to slip, with an acceleration.

162. Problems in Sliding Friction. ^—In the following prob-

lemsy is supposed known at points where rubbing occurs, or

is impending. As to the- pressure iV^ to which the friction is

due, it is generally to be considered unknown until determined

by the conditions of the problem. Sometimes it may be an

advantage to deal with the single unknown force P\ (resultant

of N 'Aw^fN^ acting in a line making the known angle 9? with

the normal (on the side away from the motion).

Problem 1.—Keqnired the value of the weight P^ Fig. lYl,

the slightest addition to which will cause motion of the hori-

zontal rod OB, resting on rough planes at 45°. The weight

G of the rod may be applied at the ys^^y

middle. Consider the rod free ; at

€ach point of contact there is an un-

known JSf and a friction due to it

fN\ the tension in the cord will be

= P, since there is no acceleration

and no friction at pulley. Notice fig. 171.

the direction of the frictions, both opposing the impending

motion. Take axes OX and OF as shown, and note the inter-

sections, A and C, of the line of G with axes OX. and OY

.

The student should not rush to the conclusion that, if G were

transferred to A and there resolved into components along

AO and AB, the value of 'N (and A^i) would be equal to that of

one of these components, viz., mG (where m denotes sin 45°).

Few problems in mechanics are so simple as to admit of an

immediate mental solution, and guess-work should be care-

fully avoided.

It will be found of advantage to take C as a center of

moments. The line of P at is considered as passing through

point C , as also the lines of /AT and /iVi- For equilibrium

(impending slipping) we have, therefore,

i-Z^O; i.e.,/iVi+mG-iV-P = 0; . . . (1)

27 = 0; i.e., i\ri+/Ar-mG = 0; .... (2)

i'(moms.)c=0; i.e., iVa-A^'ia = 0. ... (3)
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The three unknowns P, N, and Ni, can now be founds

From (3) we have N= Ni, which in (2) gives A^= t-71-

Also from (1) we now find P=^^jN; and hence finally

P
1 +/"!+/ G.

Peoblem 2.—Fig. 1Y2. A rod, centre of gravity at middle,.,

leans against a rough wall, and rests on an equally rough floor;

how small may the angle a become before it

slips ? Let a = the half-length. The figure-

p shows the rod free, and following the sugges-

P tion of § 162, a single unknown force ^,

p making a known angle (p (whose tan =/")

P with the normal D^, is put in at D, leaning^

away from the direction of the impending

motion, instead of an JV and /"iV; similarly

7^2 acts at C. The present system consisting^

of but three forces, the most direct method of finding or, with-

out introducing the other two unknowns jP^ and P*^ at all, is

to use the principle that if three forces balance, their lines

of action must intersect in a point. That is, P*^ must inter-

sect the vertical containing G, the weight, in the same point

as Pi, viz., A.

ISTow, since CF is 1 to FD and the two angles <f> are equal,

CA is T to DA and therefore DAC is a right triangle. "We

also note that if CA be prolonged to meet DF in some point K,

A must be the mid-point of CK, since B is the mid-point of

CF ; and therefore it follows that in triangle DCK not only

does DA bisect the side KC but is 1 to it. In other words,

KDC is an isosceles triangle, with DK and DC as the two

equal sides, and therefore the line DA bisects the angle KDC.
Hence the angle KDC= '2(p. That is to say, the angle a,

which was to be determined, is the complement of double the

friction-angle, or

a: = 90°- 20.
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Pkoblem 3.—Fig. 173. Given the resistance Q, acting

parallel to tlie fixed guide C, the angle a, and tlie (equal) co-

efficients of friction at the rubbing surfaces, required the

Fig. 173.

amount of the horizontal force P, at the head of the block A
(or wedge), to overcome Q and the frictions. D is fixed, and

ah is perpendicular to cd. Here we have four unknowns, viz.,

JP, and the three pressures iV^, JV^, and JV^, between the blocks.

Consider ^ and 5 as free bodies, separately (see Fig. 174), re-

membering l^ewton's law of action and reaction. The full

values {e.g.,f]V) of the frictions are put in, since we suppose

.a slow uniform motion taking place.

For A, 2X= and :Sr = give

i^i — iVcos a -|-y^sin a — J^ sin a = ; .

f¥^ +N sin a -[-/iTcos a — P cos a = 0. .

'FoyB, :SXand ^Zgive

'Q-JSr,+fJV, = 0;....iS) and W,-fJ^, = 0.

Solve (4) for JV^ and substitute in (3), whence

j^.o^-r) = Q

(1)

(2)

m

(5)

Solve (2) for JV, substitute the result m (1), as also the value

of i\r^ from (5), and the resulting equation contains but one un-

known, P. Solving for P, putting for brevity

ycos a-\- sin a

we have P =

m and cos a — /"sin a = n,

{w,-\-fn)Q

or

{n . cos a -\- m . sin a)(l —yy
{T}
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Numerical Examjple of Problem 3.—If Q = 120 lbs., /"

= 0.20 {an abstract number, and .*. the same in any system of
units), while a = 14°, whose sine = 0.240 and cosine = .970,,

then

m = 0.2 X.97 + 0.24 = 0.43 and t^ = .97 — .2X.24 = 0.92,.

whence P = OMQ = 76.8 lbs.

While the wedge moves 2 inches P does the work (or exerts

an energy) of 2 X 76.80 = 153.6 in.-lbs. = 12.8 ft.-lbs.

For a distance of 2 inches described by the wedge horizon-

tally, the block P (and .•. the resistance Q) has been moved
through a distance = 2 X sin 14° = 0.48 in. along the guide-

G, and hence the work of 120 X 0.48 = 57.6 in.-lbs. has been

done upon Q. Therefore for the supposed portion of the

motion 153.6 — 57.6 = 96.0 in.-lbs. of work has been lost in

friction (converted into heat).

For the "mechanical efficiency" of this machine (see § 153)

we have 57.6-153.6=0.375. Also note that for / = 1.0(>

P = '^
; andfor a: = 90°, P= Q.

Problem 4. Numerical.—With what minimum pressure

P should the pulley A be held against P, which it drives by

^ n x riA
" frictioiial gearing," to transmit 2 H. p.;.

^ - p -(---^ > if a = 45°, f for impending (relative)

«y 7>! ^ motion, i.e., for impending slipping =
Fig. 175. 0.40, and the velocity of the pulley-rim;

is 9 ft. per second ?

The limit-value of the tangential " grip"

T = 2/i\^= 2 X 0.40 X P sin 45°,

2 H. P. = 2 X 550 = 1100 ft.-lbs. per second.

Putting T X 9 ft. = 1100, we have*

2 X 0.40 X 4/5 X P X 9 = 1100 ; .: P = 215 lbs..

Problem 6.—A block of weight G lies on a rough plane,

inclined an angle ^ from the horizontal ; find the pull P, mak-

ing an angle a with the first plane, which will maintain a uni-

form motion up the plane.

* In this problem the student should note that, in general, when a is not 45°,

we have N = iP -v- cos a (since in such a case the parallelogram of. forces i&
not a square).



FRICTION. 173

Pkoblem 7.—Same as 6, except that the pull P is to permit

a uniform motion down the plane.

Pkoblem 8.—The thrust of a screw-propeller is 15 tons.

Tlie ring against which it is exerted has a mean radius of 8

inches, the shaft makes ©ne revolution per second, andy= 0.06.

Required the H. P. lost in friction from this cause.

Ans. 13.7 H. P.

163. The Bent-Lever with Friction. Worn Bearing.—Fig.

176. Neglect the weight of the lever, and suppose the plumb-

er-block so worn that there is

contact along one element only of

the shaft. Given the amount and

line of action of the resistance R^
and the line of action of jP, re-

quired the amount of the latter for

impending slipping in the direction

of the dotted arrow. As P grad-

ually increases, the shaft of the

lever (or gear-wheel) rolls on its fig. 176.

bearing until the line of contact has reached some position Ay
when rolling ceases and slipping begins. To find A^ and the

value of P^ note that the total action of the bearing upon the

lever is some force ^,, applied at A and making a known
angle q) (^f

=: tan q)) with the normal A C. P^ must be eqnal

and opposite to the resultant of the known P and the unknown

P, and hence graphically (a graphic is much simpler here than

an analytical solution) if we describe about C 2i circle of radius

= r sin 9?, r being the radius of shaft (or gudgeon), and draw

a tangent to it from P, we determine PA as the line of action

of P^. If PG is made = P, to scale, and ^^ drawn parallel

to P . . . P, P is determined, being = PP, while P^ = PK
If the known force P is capable of acting as a working force,

by drawing the other tangent PP from P to the " friction-

circle," we have P = PP, and P^ = PK, for impending

rotation in an opposite direction.

If P and P are the tooth-pressures upon two spur-wheels,

keyed upon the same shaft and nearly in the same plane, the
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y = [Pj sin (p]27rr.

same constructions hold good, and for a continuous uniform

motion, since the friction = P, sin cp,

the work lost in friction

per revolution,

It is to be remarked, that without friction Pj would pass

through 0, and that the moments of i? and I^ would balance

about C (for rest or uniform rotation) ; whereas with friction

thej balance about the proper tangent-point of the friction-

circle.

Another way of stating this is as follows : So long as the

resultant of I^ and P falls within the " dead-angle" BDA,
motion is impossible in either direction.

If the weight of the lever is considered, the resultant of it

and the force M can be substituted for the latter in the fore-

going.

164. Bent-Lever with Friction. Triangular Bearing.—Like

the preceding, the gudgeon is much exaggerated in the figure

(1Y7). For impending rotation in

direction of the force P, the total

actions at A^ and A^ must lie in

known directions, making angles = cp

with the respective normals, and in-

clined away from tlie shpping. Join

the intersections D and L. Since

the resultant of P and R i^i D must

act along PL to balance that of P^
and P^^ having given one force, say

Fig. 177. B, wc easily iind P = PE, wliile

P^ and P^ = ZJf^and ZiV respectively, LO having been made
= PP, and the parallelogram completed.

(If the direction of impending rotation is reversed, the change

in the construction is obvious.) If P^ = 0, the case reduces

to that in Fig. 176 ; if the construction gives P^ negative, the

supposed contact at A^ is not realized, and the angle A^OA^
should be increased, or shifted, until P^ is positive.

As before, P and P may be the tooth-pressures on two
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spur-wheels nearly in tiie same plane and on the same shaft

;

if so, then, for a uniform rotation.

"Work lost in fric. per revol. = [P^ sin cp -\- P^ sin cp\^7tr.

165. Axle-Friction.—Tiie two foregoing articles are intro-

ductory to the subject of axle -friction. When the bearing is

new, or nearly so, the elements of the axle which are in contact

with the bearing are iniinite in number, thus giving an infinite

number of unknown forces similar to P^ and P^ of the last

paragraph, each making an angle cp with its normal. Refined

theories as to the law ox distribution of these pressures are of

little use, considering tne uncertainties as to the value of

y ( ^ tan <p) ; hence tor practical purposes axle-friction may be

written

in which f is a coejficieni of axle-friction derivable from

experiments with axles, and JR the resultant pressure on the

bearing. In some cases Jti may be partly due to the tightness

of the bolts with which the cap of the bearing is fastened.

As before, the work lost in overcoming axle-friction j)6r

revolution is =.fR'^7tr^ in wliich r is the radius of the axle.

/'', like y, is an abstract number. As in Fig. 176, a " friction'

circle," of radius =fr, majr be considered as subtending the

" dead-angle."

166. Experiments with Axle-Friction.—Prominent among

recent experiments liave been those

of Professor Thurston (1872-73),

who invented a special instrument

for that purpose, shown (in princi-

ple only) in Fig. 178. By means of

an internal spring, tne amount of

whose compression is reaa on a scale,

a weighted bar or pendulum i5 oaused

to exert pressure on a projecting axle

from which it is suspended. Tlie

axle is made to rotate at any desired

velocity by some source of power, the axle-friction causing
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the pendulum to remain at rest at some angle of deviation

from the vertical. The figure shows the pendulum free, the

action of gravity upon it being (r, that of the axle consisting

of the two pressures,* each= i?, and of the two frictions (each

being F =^fR\ due to them. Taking moments about (7, we
have for equilibrium

^f'Rr = Gh,

in which all the quantities except jT are known or observed.

The temperature of the bearing is also noted, with reference

to its effect on the lubricant employed. Thus the instrument

covers a wide range of relations.

General Morin's experiments as interpreted by Weisbach

give the following practical results: (See also p. 192).

0.054 for well-sustained

lubrication

;

0.07 to .08 for ordinary

lubrication.

For iron axles, in iron or

brass bearings
/' =

By "pressure per square inch on the bearing" is commonly

meant the quotient of the total pressure in lbs. by the area in

square inches obtained by multiplying the width of the axle by

the length of bearing (this length is quite commonly four times,

the diameter) ; call it j?, and the velocity of rubbing m feetper

minute, v. Then, according to Rankine, to prevent overheat-

ing, we should have

p{v+ 20) < 44800 . . . (not homog.).

Still, in marine-engine bearings pv alone often reaches 60,000^

as also in some locomotives (Cotterill). Good practice keeps

P within the limit of 800 (lbs. per sq. in.) for other metals

than steel (Thurston), for which 1200 is sometimes allowed.

With ^ = 200 (feet per min.) Professor Thurston found that

for ordinary lubricants p should 2iot exceed values ranging,

from 30 to 75 (lbs. per sq. in.).

The product pv is obviously proportional to the power ex-

pended in wearing the rubbing surfaces, per unit of area.

* The weight O being small compared with the compressive force Hia.

the spring, each pressur*^ is practically equal to B.
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167. Friction-Wheels—(Or, rather, anti-friction wheels).

In Fig. 179, M and M (and two more behind) are the "fric-

tion-wheels," with axles Ci and C\ in fixed bearings.

G is the weight of a heavy wheel, Pi is a known vertical

resistance (tootli-pressnre), and P an

unknown vertical working force,

whose value is to be determined to

maintain a uniform rotation. The

utility of the friction-wheels is also

to be shown. The resultant of P^,

G, and J-* is a vertical force P, pass-

ing nearly through the centre C of

the main axle which rolls on the four

friction-wheels. J?, resolved along

€A and CB, produces (nearly) equal

pressures, each being J^ =: P -r- 2 cos (x, at the two axles of

the friction- wheels, which rub against their fixed plumber-

blocks. P ^ P -\- P^-\- 6^„ and .*. contains the unknown P,
but approximately = G-{- 2P^, i.e., is nearly the same (in this

case) whether friction-wheels are employed or not.

When G makes one revolution, the friction /'''iV^ at each axle

C^ is overcome through a distance = (r, : a^) 27rr, and

Work lost per revol. \

Fig. 179.

T T \

" n. n. cc«, COS oc
fP^Ttr.with

friction-wheels,

Whereas, if C revolved in a fixed bearing,

Work lost per revol.
)

without V =f'P'i7tr.
friction-wheels,

)

Apparentl)^, then, there is a saving of work in the ratio r^ :

a, cos o', but strictly the P is not quite the same in the two cases

;

for with friction-wheels the force P is less than without, and P
depends on P as well as on the known G and P^. By dimin-

ishing the ratio r^ : a^^ and the angle or, the saving is increased.

If a were so large that cos or < r, : a^, there would be no saving,

but the reverse.

As to the value of P to maintain uniform rotation, we have

12
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foi' equilibrium of moments about (7, with fri-ction-wlieels (con^

sidering the large wheel and axleyV'ee),

P5 = PA + 21>, ....... (1)

in which T is the tangential action, or "grip," between one

pair of friction-wheels and the axle C which rolls upon them.

^ would noL equal yiV unless slipping took place or were im-

])ending at E^ but is known bj considering a pair of friction-

wheels free, when ^ (-P«) about C^ gives

2 ' cos «'

which in (1) gives finally

b T TP = iP,^ ^-f'R. (2)
' ' »! cos a*^ ^ '

Without friction-wheels, we would have

P^\p,^fR\ : . (3)

The last term in (2) is seen to be less than that in (3) (unless

a is too large), in the same ratio as already found for the saving

of work, supposing the jS's equal.

If P^ were on the same side of C as P^ it would be of an

opposite direction, and the pressure i? would be diminished.

Again, if P were horizontal, R would not be vertical, and the

friction-wheel axles would not bear equal pressures. Since P
depends on Pj, G^ and thefrictions^ while the friction depends

on R^ and R on P^^ G, and P, an exact analysis is quite

complex, and is not warranted by its practical utility.

Example.—If an empty vertical water-wheel weighs 25,000

lbs., required the force P to be applied at its circumference to

maintain a uniform motion, with « = 15 ft., and r = 5 inches.

Here P^ = 0, and R = G (nearly ; neglecting the influence of

P on R), i.e., R = 25,000 lbs.

Eirst, iDiihoutfriction-wheels (adopting the foot-pound-sec-

ond system of units), withy =: .07 (abstract number). Frona

eq. (3) we have

P =: + 0.07 X 25,000 X (tV "^ 1^) = 48.6 lbs.
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The work lost in friction per revolution is

f'B^Tir = O.or X 25,000 X 2 X 3.14 X A = ^580 ft.-lbs.

Secondly, with friction-wheels, in which r^ '. a^ =: ^ and

cos a = 0.80 (i.e., a = 36°). From eq. (2)

J> = 0-^^.\^X 48.6 = only 12.15 lbs.,

while the work lost per revolution

= 1.
.
jMi X 4580 = 1145 ft.-lbs.

Of course with friction- wheels the wheel is not so steady as

without.

In this example the force J* has been simply enough to

overcome friction. In case the wheel is in actual use, JP is the

weight of water actually in the buckets at any instant, and does

the work of overcoming I^^, the resistance of the mill machinery,

and also the friction. By phicing J*^ pointing upward on the

same side of C as P, and making h^ nearly =!), H will = G
nearly, just as when the Avheel is running empty; and the

foregoing numerical results will still hold good for practical

purposes.

168. Friction of Pivots.—In the case of a vertical shaft or

axle, and sometimes in other cases, the extremity requires sup-

port against a thrust along tlie axis of the axle or pivot. If

the end of the pivot \%flat and also the surface

against which it rubs, we may consider the

pressure, and therefore the friction, as uniform

over the surface. With a flat circular pivot,

then. Fig, 180, the frictions on a small sector

of the circle form a system of parallel foices

whose resultant is equal to their sum, and is
^^'^' "^^°"

applied a distance of -|r from the centre. Hence the sum of

the moments of all the frictions about the centre =y!^|r, in

which .^ is the axial pressure. Therefore a force P necessary

to overcome the friction with uniform rotation must have a

moment
Pa =fR\r,
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and the work lost in friction per revolution is

^fR^Tt .\T = ^,7tfRr. . . . . (1)

As the pivot and step become worn, the resultant frictioii*

in the small sectors probably approach the centre; for the

greatest wear occurs first near tlie outer edge, since there the

product ^J)^> is greatest (see § 166). Hence for \r we may more

reasonably put ^\
Exam]jle.—A vertical flat-ended pivot presses its step with

a force of 12 tons, is 6 inches in diameter, and makes 40 revolu-

tions per minute. Required the H. P. absorbed by the friction.

Supposing the pivot and step new, and /"for good lubrication

= 0.07, we have, from eq. (1) {foot-lb. -second),

"Work lost per revolution

= .07 X 24,000 X 6.28 X I • i = 1758.4 ft.-lbs.,

and .*. work per second

= 1758.4 X |-t = 1172.2 ft.-lbs.,

which -i- 550 gives 2.13 H. P. absorbed in friction. If ordi-

nary axle-friction also occurs its effect must be added.

If the flat-ended pivot is hollow, with radii r^ and r^, we may
put ^{i\-\-')\) instead of the fr of the preceding.

It is obvious that the smaller the lever-arm given to the

resultant friction in each sector of the rubbing surface the

smaller the power lost in friction. Hence pivots should be

made as small as possible, consistently with strength.

For a conical pivot and step, Fig. 181, the resultant friction

in each sector of the conical bearing surface has

a lever-arm = fr, about tlie axis A, and a value

>- than for a flat-ended pivot ; for, on account

of the wedge-like action of the bodies, the

pressure causing friction is greater. The sum of

the moments of these resultant frictions about

A is the same as if only two elements of the

cone received pressure (each = iV= ^R -f- sin or). Hence the
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moment offriction of the pivot, i.e., the moment of the force

necessary to maintain uniform rotation, is

'^ 3 ' "^ sm or 3 "

4 B
and work lost per revolution = o'^f~ '^vo sin oi

By making r^ small enough, these values may be made less

than those for a flat-ended pivot of the same diameter = 2r.

In Schiele's " anti-friction" pivots the outline is designed

according to the following theory for securing uniform vertical

wear. Let j!? = the pressure per r—

—

^^—

_

—
horizontal unit of area (i.e., Ip jA ip

= -^ -r- horizontal projection of.^ !

L<c^^^^^^
the actual rubbing surface)

;
"^^^^ I "^^t^^^^

this is assumed constant. Let i!?C..'^^<n z^^^.
tlie unit 01 area be small, for M ~ic ^
algebraic simplicity. The fric- fig. 182.

tion on the rubbing surface, whose horizontal projection= unity,

is = yiV=y(^ -f- sin a) (see Fig. 182; the horizontal com-

ponent of J9 is annulled by a corresponding one opposite). The
work per revolution in producing wear on this area = fN^ny.
But the vertical depth of wear per revolution is to be the same

at all parts of the surface ; and this implies that the same

volume of material is worn away under each horizontal unit of

area. HenceyiTSTr^/, i.e.,y-r^^— B^ry, is to be constant for all

values of y ; and since ^7^ and 27r are constant, we must have,

as the law of the curve,

y
, i.e., the tangent BC = the same at all potnts.

sm a

This curve is called the " tractrixP Schiele's pivots give a

very uniform wear at high speeds. The smoothness of wear

prevents leakage in the case of cocks and faucets.

169. Normal Pressure of Belting.
—

"When a perfectly flexible

cord, or belt, is stretched over a smooth cylinder, both at rest,
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the action between them is normal at every point. As to its

j^ \_\ t t s
^^0^1^ ^3 i^j P^r linear unit of arc, the fol-

C\\^-d:::^ > lowing will determine. Consider a semi-

circle of the 2'2vd tree, neglecting its weight.

Fig. 183. The forces holding it in equilib-

rium are tlie tensions ar the two ends (these

are equal, manifestly, the cylinder being

„ smooth ; for tnev are the only two forces

* / 7/1 having moments about c/, and each has the

Fig. 183. smus lever-ariTi^. and the normal pressures,

which are infinite in number, but nave an intensity, p^ per

linear unit, which must be constant along the curve since 8 is

the same at all points. The normal pressure on a single ele-

ment, ds, of the cord is = //Jsr. aiid its JT component =
pds cos 6 — prdd cos ^. Hence S.X= gives

cos BdQ — 2/S' = 0. i.e., rjp\ sin d = 28;
.-in

.'. rp[l — (— 1)] = 26' or z> =
S

(1)

170. Belt on Eough Cylinder. ImDending Slipping.—If fric-

tion is possible between the two bodies, the tension may vary

»k)ug the arc of contact, so that ^also varies, and consequently

Fig. 184. Fig. 185.

the friction on lui element (^s being =^ds =f{8-^ r)ds, also

varies. If slipping is impendina. the law of variation of the

tension S may be found, as follows ° Fig. 184, in which the
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impending slipping is toward the left, shows the cord free.

For any element, ds, of the cord, we have, putting 2 (moms,

about 0) = Q (Fig. 185),

{8+ dSy = Sr + dFr ; i.e., dF= dS,

or (see above) dS =f{S -^ r)ds.

But ds = rdO ; hence, after ti-ansfonning,

fde = §. (1)

In (1) the two variables and S are separated
; (1) is there-

fore ready for integration.

fa = loge 8n — l0g« 8, = l0ge[_^J. (2)

Or, by inversion, 8^ef"- — 8n, (3)

<?, denoting the Naperian base, = 2.71828 -{-; a of course is in

TT-measure.

Since 8n evidently increases very rapidly as oc becomes

larger, 8^ remaining the same, we have the explanation of the

well-known fact that a comparatively small tension, 8^, exerted

by a man, is able to prevent the slipping of a rope around a

pile-head, when the further end is under the great tension 8^

due to the stopping of a moving steamer. For example, with

^= ^, we have (Weisbach)

for or = J turn, or ^r = ^tt, 8^ = l-BQ-SI,

;

=
"I

turn, or a = 7t^ 8n = '2.S68„

;

= 1 turn, or a- = 2;r, 8^ = S.lS^Su

;

= 2 turns, or a = 4c7t, 8^ = 65.94^„

;

= 4 turns, or a = Stt, 8^ = 4348.56/S'„.

If slipping actually occurs, we must use a value of f for fric-

tion of motion.

Examjple.—A leather belt drives an iron pulley, covering

one half the circumference. What is the limiting value of the
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ratio of Sn (tension on driving-side) to S^ (tension on follow-

ing side) if tlie belt is not to slip, taking the low value of

y= 0.25 for leather on iron ?

We have givenya: = 0.25 X ^r = .T854, which by eq. (2) is

the Naperian log. of {S^ '. /So) when slipping occurs. Hence the

common log. of {S^ : /S,) = 0.7854 X 0.43429 = 0.34109 ; i.e.,

if

(5;:/S;) = 2.193,say2.2,

the belt will (barely) slip (for/= 0.25).

(0.43429 is the modulus of the common system of loga-

rithms, and = 1 : 2.30258. See example in § 48.)

At very high speeds the relation^ = /S' -i- r (in § 169) is not

strictly true, since the tensions at the two ends of an element

ds are partly employed in furnishing the necessary deviating

force to keep the element of the cord in its circular path, the

remainder producing normal pressure.

171. Transmission of Power by Belting or Wire Eope.—In the

simple design in Fig. 186, it is required to find the motive

weight Gy necessary to overcome the given resistance ^ at a

DRIVING SIDE

Fig. 186.

uniform velocity = v^; also the proper stationary tension

weight G„ to prevent slipping of the belt on its pulleys, and

the amount of power, Z, transmitted.

In other words.

Given

:

j B, a, y, a^, r^; a z= n for both pulleys,

)

( -y,; andy for both pulleys

;

)andy for both pulleys;

-p • ^ . j Z ; ^, to furnish Z ; G^ for no slip ;
'y the velocity

'\<A G\ v' that of belt ; and the tensions in belt.
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Neglecting axle-friction and the rigidity of the belting, tlie

power transmitted is that required to overcome i? through a

distance = v^ every second, i.e.,

Z = Bv, ,. (1)

Since (if the belts do not slip)

we have

a : r::v' : V, and a^ : r^iiv' : v^,

V = —v., and v = v.. (2)

I^egleeting the mass of the belt, and assuming that each pul-

ley revolves on a gravity-axis, we obtain the following, by con-

siderino^ the free bodies in Fig'. 187

:

CA free) (B free)

Fig. 187.

(B and tr_u.ck fr.e.e)

2 (moms.) = in Afree gives Er^ = {8^ — S,)a, ; . (3)

2 (moms.) = in^ free gives Gr = (Sn — Sa)a ; . (4)

whence we readily find
r a.

Evidently JR and G are inversely proportional to their velo-

cities v^ and v ; see (2). This ought to be true, since in Fig.

186 G is the only working-force, ^ the only resistance, and

the motions are uniform ; hence (from eq. (XYI.), § 142)

Gv - Ev, = 0.

2J^ = 0, for _5 and truck free, gives

G, = S^+S„ (5)

while, for impending slip,

^n = ^0^^' (6)
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By elimination between (4), (5), and (6), we obtain

and ^n = -/ • ^aZII: (8)

Hence G^ and 8^, vary directly as the power transmitted and

inversely as the velocity of the belt. For safety G^ should be

made > the above value in (T) ; corresponding values of the

two tensions may then be found from (5), and from the rela-

tion (see § 150)

{8^-8y = L (64

These new values of the tensions will be found to satisfy the-

condition of no slip, viz.,

(^,:xS'„)<^-(§170).

For leather on iron, ef"" = 2.2 (see example in § lYO), as a.

low value. The belt should be made strong enough to with-

stand 8n safely.

As the belt is more tightly stretched, and hence elongated,,

on the driving than on the following side, it ^' creeps'^ back-

ward on the driving and forward on the driven pulley, so that

the former moves slightly faster than the latter. The loss of

work due to this cause does not exceed 2 per cent with ordinary

belting (Cotterill).

In the foregoing it is evident that the sum of the tensions in

the two sides = G„, i.e., is the same, whether the power is^

being transmitted or not ; and this is found to be true, both in

theory and by experiment, when a tension-weight is not used,

viz., when an initial tension S is produced in the whole belt

before transmitting the power, then after turning on the latter

the sum of the two tensions (driving and following) always

= ^S, since one side elongates as much as the other contracts

;

it being understood that the pulley-axles preserve a constant

distance apart.

172. Rolling Friction.—The few experiments which have-

been made to determine the resistance offered by a level road-
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"Way to the uniform motion of a roller or wheel rolling upon it

corroborate approximately the following theory. The word

friction is hardly appropriate in this connection (except when
the roadway is perfectly elastic, as will be seen), but is sanctioned

by usage.

Firsts let the roadway or track be compressible, but inelastic,

O the weight of the roller and its load, and P the horizontal

force necessary to preserve a uniform motion ^—~\

—

>

(both of translation and rotation). The track / |g \

(or roller itself) being compressed just in h"^ j'"*'^

front, and not reacting symmetrically from \ q[\ ,_^^
behind, its resultant pressure against the //////////mmW^y^-'^'^^^-

roller is not at vertically under the centre, ^^**" ^^^'

but some small distance, OD = h, in front. (The successive

crushing of small projecting particles has the same effect.)

Since for this case of motion the forces have the same relations

as if balanced (see § 124), we may put 2 moms, about D = 0,

.'.Fr=Gh; or, P = ~G (1)

According to Professor Goodman we have the following

values of b, approximately :

Inches.

Iron or steel wheels on iron or steel rails. . 6 = 0.007 to 0.015

" " " " " wood 0.06 " 0.10

" " " " " macadam 0.05 " 0.20

" " " " " soft ground 3.0 "5.0
Pneumatic tires on good road, or asphalt.. 0.02 " 0.022

'' " heavy mud 0.04 " 0.06

Solid rubber tires on good road, or asphalt 0.04

" " heavy mud 0.09 " 0.11

According to the foregoing theory, P, the " rolling fi-iction"

(see eq. (1)), is directly proportional to G, and inversely to the

radius, if h is constant. The experiments of General Morin and

others confirm this, while those of Dupuit, Poiree. and Sauvage

indicate it to be proportional directly to G, and inversely to the

square root of the radius.
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Although J is a distance to be expressed in linear units, and
not an abstract number like the /"and f for sliding and axle-

friction, it is sometimes called a " coefficient of rolling fric-

tion." In eq. (1), h and r should be expressed in the same
unit.

Of course if P is applied at the top of the roller its lever-

arm about D is 2r instead of r^ with a corresponding change

in eq. (1).

With ordinary railroad cars the resistance due to axle and

rolling frictions combined is about 8 lbs. per ton of weight on

a level track. For wagons on macadamized roads & = |- inch,

but on soft ground from 2 to 3 inches.

Secondly^ when the roadway is jperfectly elastic. This is

chiefly of theoretic interest, since at first sight no force would

be considered necessary to maintain a uniform rolling motion.

But, as the material of the roadway is compressed under the

roller its surface is first elongated and then recovers its former

state ; hence some rubbing and consequent sliding friction must

occur. Fig. 189 gives an exaggerated view of the circum-

stances, P being the horizontal force applied at the centre

necessary to maintain a uniform motion. The roadway (rub-

ber for instance) is heaped up both in front and behind the

roller, being the })oint of greatest pressure and elongation

of the surface. The forces acting are ^, P^ the normal

pressures, and the frictions due to them, and must form a

balanced system. Hence, since G and P^ and also the normal

pressures, pass through C^ the resultant of the frictions must

also pass through G\ therefore the frictions, or tangential

actions, on the roller must be some forward and some backward

(and not all in one direction, as seems to be asserted on p. 260

of Cotterill's Applied Mechanics, where Professor Reynolds'
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explanation is cited). The resultant action of the roadwaj
upon the roller acts, then, through some point J9, a distance

OD = h ahead of (9, and in the direction DC, and we have as

before, with 2? as a centre of moments,

Pr=Gh, or P=-G.

If rolling friction is encountered above as

well as helow the rollers, Fig. 190, the

student may easily prove, by considering

three separate free bodies, that for uniform

motion

p = '-^<^' Fia. 190.

where h and h^ are the respective " coefficients of rolling fric-

tion
'

' for the upper and lower contacts. (See Kent's " Pocket-

Book for Mechanical Engineers'' for "friction-rollers,'^

"ball-bearings," and "roller-bearings."

Exa/mjple 1.—If it is found that a train of cars will move
uniformly down an incline of 1 in 200, gravity being the only

working force, and friction (both rolling and axle) the only

resistance, required the coefficient, f\ of axle-friction, the

diameter of all the wheels being 2f = 30 inclies, that of the

journals 2a = S inches, taking h = 0.02 inch for the rolling

friction. Let us use equation (XYI.) (§ 142), noting that while

the train moves a distance s measured on the incline, its weight
1 A

G does the work G ^z s, the rolling friction — G (at* the axles)

has been overcome through the distance s, and the axle-friction

(total) through the (relative) distance — sin the journal boxes j

whence, the change in kinetic energy being zero,

1 ^ b ^ a
Gs-^Ga-^Gs--fas = 0.

Gs cancels out, the ratios h : r and a : r are = tAtt ^"<5 iV*
respectively (being ratios or abstract numbers they have the

* That is, the ideal resistance, at centre of axles and || to the incline, equiV'
alent to actual rolling resistance.
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same numerical values, whether the inch or foot is used), an (J

solving, we have

/ = 0.05 - 0.0133 = 0.036.

Examjple 2.—How many pounds of tractive effort per ton

of load would the train in Example 1 require foi- uniform mo-
tion on a level track ? Ans. 10 lbs.

173. Eailroad Brakes.*—During the uniform motion of a

railroad car the tangential action between the track and each

wheel is small. Thus, in Example 1, just cited, if ten cars of

eight wheels each make up the train, each car weighing 20 tons,

the backward tangential action of the rails upon each wheel is

only 25 lbs. When the brakes are applied to stop the train

this action is much increased, and is the only agency by which

the rails can retard the train, directly or indirectly : directly^

when the pressure of the brakes is so great as to prevent the

wheels from turning, thereby causing them to "skid" (i.e.,

slide) on the rails ; indirectly^ when the brake-pressure is of

such a value as still to permit perfect rolling of the wheel, in

which case the rubbing (and heating) occurs between the brake

and wheel, and the tangential action of the rail has a value

equal to or less than the friction of rest. In the first case,

then (skidding), the retarding influence of the rails is the/r^c-

iion of motion between rail and wheel; in the second, a force

which may be made as great as thefriction of rest between rail

and wheel. Hence, aside from the fact that skidding produces

objectionable flat places on the wheel-tread, the brakes are

more effective if so applied that skidding is impending, but

not actually produced ; for the friction of rest is usually greater

than that of actual slipping (§160). This has been proved

experimentally in England. The retarding effect of axle and

rolling friction has been neglected in the above theory.

Example 1.—A twenty-ton car with an initial velocity of 80

feet per second (nearly a mile a minute) is to be stopped on a

level within 1000 feet ; required the necessary friction on each

of the eight wheels.

Supposing the wheels not to skid, the friction will occur

* See statement on p. 168, as to diminution of the coefficient / with

;speed.



iJ'RICTION. 191

between the brakes ana wheels, and is overcome through the

(relative) distance 1000 feet. Eq. (XYI.), § 14:2, gives (foot-

Ib.-second system)

1 40000
- 8i^'X 1000 = - 1 ^^(80)^

from whichF { = friccion at circumference of each wheel)

= 496 lbs.

Note.—This result of 496 lbs. must be looked upon as only an average

value. For a given pressure, A'^, of brake-shoe on wheel-rim on account

of the variation of the coefficient /' with changing speed (see p. 168)

the friction will be small at first and gradually increase. This same
remark applies to Examples 3 and 4, also.

1/

Examjple 2.—Supoose sisiddins^ to be impending in the fore-

going, and tlie coefhcient of friction of rest (i.e., impending

slipping) between ran ana wneel to be/'=0,20o In what

-distance will the. car oe stopped? Ans. 496 ft

Example 3.—Supoose tne car in Example 1 to be on an up»

grade of 60 feet to tne mile. Qn applying eq. (XVI.) here,

the weight 20 tons win enter as a resistance.) Ans. 439 lbs.

Example 4.—In Ji,xample 3. consider all four resistances,

viz., gravitj^, rolling triction. and brake and axle frictions, the

distance being 1000 ft., and \F the unknown quantity.

(Take the wheel dimensions of p. 189.) Ans. 414 lbs.

174. Friction of Car-journals in Brass Bearings.—:(Prof. J.

E. Denton, in Vol. xii Transac. Am. See, Mecli. Engs.,

p. 405; also Kent's Pocket-Book.) A new brass dressed

with an emery wheel, loaded with 5000 lbs., may have an

actual bearing surface on the journal, as shown by the polish

of a portion of the surface, of only one sq. inch. "With this

pressure of 5000 Ibs./sq.in. the coefficient of friction may be

0.060 and the brass may be overheated, scarred, and cut ; or,

on the contrary, it may wear down evenly to a smooth bearing,

giving a highly polished area of contact of 3 sq. in., or more,

inside of two hours of running, gradually decreasing the

pressure per sq. in. of contact, and showing a coefficient of

friction of less than 0.005. A reciprocating motion in the

direction of the axis is of importance in reducing the friction.

With such polished surfaces any oil will lubricate and the
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coefficient of friction then depends on the viscosity of the oil.

With a pressure of 1000 lbs, per sq. in. , revolutions from 170

to 320 per min., and temperature of 75° to 113° Fahr., with

both sperm and parraffine oils, a coefficient as low as 0.0011

has been obtained, the oil being fed continuously by a pad.

175. Well Lubricated Journals. Laws of Friction.—In the

Proc. Inst. Civ. Engs. for 1886 (see also Engineering News
for Mar. 31, April 7 and 14, 1888) Prof. Goodman presents

the conclusions arrived at by him as to the laws of friction of

well lubricated journals as based on the experiments made by

Thurston, Beauchamp Tower, and Stroudley. They are as

follows

:

1

.

The coefficient friction with the surfaces efficiently lubri-

cated is from ^ to^ that for dry or scantily lubricated surfaces.

2. The coefficient of friction for moderate pressures and

speeds varies approximately inversely as the normal pressure

;

the frictional resistance varies as the area- in contact, the

normal pressure remaining constant.

3. At very low journal speeds the coefficient of friction is

abnormally high, but as the speed of sliding increases from

about 10 to 100 ft. per min. the friction diminishes; and

again rises when that speed is exceeded, varying approximately

as the square root of the speed.

4. The coefficient of friction varies approximately inversely

as the temperature, within certain limits, viz., just before

abrasion takes place.

In one of Mr. Tower's experiments it was found that when

the lubrication was made by a pad under the journal (which

received pressure on its upper surface) the coefficient was

some seven times as large as when an '
' oil bath, '

' or copious

supply of oil, was provided; (0.0090 as against 0.0014).

176. Rigidity of Ropes.—If a rope or wire cable passes over

a pulley or sheave, a force J-* is required on one side greater

than the resistance Q on the other for uniform motion, aside

from axle-friction. Since in a given time botli I^ and Q
describe the same space s, if ^ is > Q, then I^sis > Qs, i.e.,

the work done by i^ is > than that expended upon Q. This

is because some of the work J*s has been expended in bending

the stiff rope or cable, and in overcoming friction between the

strands, both where the rope passes upon and where it leaves



FRICTION. 198

the pulley. With hemp ropes, Fig. 191, the material being

nearly inelastic, the energy spent in bending it on at D is

nearly all lost, and energy must also be spent in straightening

Fig. 191.

it at E\ but with a wire rope or cable some of this energy is

restored by the elasticity of the material. The energy spent

in friction or rubbing of strands, however, is lost in both cases.

The iigure shows geometrically why P must be > ^ for a

uniform motion, for the lever-arm, a, of P is evidently < h

that of Q. If axle-friction is also considered, we must have

Pa=qb^f{P-^Q)r,

r being the radius of the journal.

Experiments with cordage have been made by Prony, Cou-

lomb, Eytelwein, and Weisbach, with considerable variation in

the results and forraulse proposed. (See Coxe's translation of

vol. i., "Weisbach's Mechanics.)

With pulleys of large diameter the effect of rigidity is very

slight. For instance, Weisbach gives an example of a pulley

five feet in diameter, with which, Q being = 1200 lbs., P
= 1219. A wire rope f in. in diameter was used. Of this

difference, 19 lbs., only 5 lbs. was due to rigidity, the remainder,

14 lbs., being caused by axle-friction. When a hemp-rope 1.6

inches in diameter was substituted for the wire one, P— ^=27
lbs., of which 12 lbs. was due to the rigidity. Hence in one

case the loss of work was less than \ of \%. in the other about

1^, caused by the rigidity. For very small sheaves and thick

ropes the loss is probably much greater.

13
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/Vl'^, Miscellaneous Examples.—Example 1. Tiie end of a

\ /shaft 12 inches ill diameter and making 50 revolutions per min-

1/ ute exerts against its bearing an axial pressure of 10 tons and

/ a lateral pressure of 40 tons. With /"^y = 0.05, required

the H. P. lost in friction. Ans. 22.2 H. P.

Example 2.—A leather belt passes over a vertical pulley,

covering half its circumference. One end is held by a spring

balance, which reads 10 lbs. vi'hile the other end sustains a

vreight of 20 lbs., the pulley making 100 revolutions per min-

ute. Required the coefficient of friction, and the H. P. spent

in overcoming the friction. Also suppose the pulley turned

in the other direction, the weight remaining the same. The
diameter of the pulley is 18 inches. . {f= 0.22

;

^^'
I 0.142 and .284 H. P.

Example 3.—A grindstone with a radius of gyration = 12

inches has been revolving at 120 revolutions per minute, and

at a given instant is left to the influence of gravity and axle

friction. The axles are 1|- inches in diameter, and the wheel

makes 160 revolutions in coming to rest. Required the coeffi-

(jient of axle-friction. (Average.) Ans. /= 0.039.

Example 4.—A board A, weight 2 lbs., rests horizontally on

another B:, coefficient of friction of rest between them being

f = 0.30. B is now moved horizontally with a uniformly

accelerated motion, the acceleration being = 15 fset per " square

seco'id ;" will A keep company with it, or not ? Ans, " ifo."

y

V



STRENGTH OF MATERTALSo
[Or Mechanics of Materials] =

CHAPTEE I.

ELEMENTARY STRESSES AND STRAINS.

178. Beformation of Solid Bodies.—In tlie preceding por-

tions of this work, what was called technically a " rigid

body," was supposed incapable of changing its form, i.e.,

the positions of its particles relatively to each other, under

the action of any forces to be brought upon it. This sup-

position was made because the change of form which must
actually occur does not appreciably alter the distances,

angles, etc., measured in any one body, among most of

the pieces of a properly designed structure or machine.

To show how the individual pieces of such constructions

should be designed to avoid undesirable deformation or

injury is the object of this division of Mechanics of En-
gineering, viz., the Strength of Materials,

,^6

'€5.
D

Fis. 193. § 178.

AS perhaps tne simplest instance of the deformation or

distortion of a solid, let us consider the case of a prismatic

rod in a state of tension, Eig. 192 (eye-bar of a bridge

195
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truss, e.g.). The pull at each end is P, and the body is

said to be under a tension of P (lbs., tons, or other unit),

not 2P. Let ABGD be the end view of an elementary

parallelopiped, originally of square section and with faces

at 45° with the axis of the prism. It is now deformed, the

four faces perpendicular to the paper being longer"^ than

before, while the angles BAD and BCD, originally right

angles, are now smaller by a certain amount d, ABC and

ADG larger by an equal amount d. The element is said

to be in a state of strain, viz.: the elongation of its edges

(parallel to paper) is called a tensile strain, while the alter-

ation in the angles between its faces is called a shearing

strain, or angular distortion (sometimes also called a slid-

ing, or tangential, strain, since BG has been made to slide,

relatively to AD, and thereby caused the change of angle).

[This use of the word strain, to signify change of form and

not the force producing it, is of recent adoption among
many, though not all, technical writers.]

179. Strains. Two Kinds Only.—Just as a curved line may
be considered to be made up of small straight-line ele-

ments, so the substance of any solid body may be consid-

ered to be made up of small contiguous parallelopipeds,

whose angles are each 90° before the body is subjected to

the action of forces, but which are not necessarily cubes.

A line of such elements forming an elementary prism is

sometimes called a> fibre, but this does not necessarily imply

a fibrous nature in the material in question. The system

of imaginary cutting surfaces by which the body is thus

subdivided need not consist entirely of planes ; in the sub-

ject of Torsion, for instance, the parallelopipedical ele-

ments considered lie in concentric cylindrical shells, cut

both by transverse and radial planes.

Since these elements are taken so small that the only

possible changes of form in any one of them, as induced

by a system of external forces acting on the body, are

* When a is nearly 0° (or 90°) BG and AD (or AB and DG) are shorter

than before, on account of lateral contraction; see § 193.
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elongations or contractions of its edges, and alteration of

its angles, there are but two kinds of strain, elongation

(contraction, if negative) and shearing.

180. Distributed Forces or Stresses.—In the matter preced-

ing this chapter it has sufficed for practical purposes to

consider a force as applied at a point of a body, but in

reality it must be distributed over a definite area ; for

otherwise the material would be subjected to an infinite

force per unit of area. (Forces like gravity, magnetic at-

traction, etc., we have already treated as distributed over

the mass of a body, but reference is now had particularly

to the pressure of one body against another, or the action

•of one portion of the body on the remainder.) For in-

stance, sufficient surface must be provided between the

end of a loaded beam and the pier on which it rests to

avoid injury to either. Again, too small a wire must not

be used to sustain a given load, or the tension per unit

of area of its cross section becomes sufficient to rupture

it.

Stress is distributedforce, and its intensity at any point

of the area is

• o e (1)

"where dF is a small area containing the point and dP the

force coming upon that area. If equal dP^s (all parallel)

act on equal dF'soi a plane surface, the stress is said to

be of uniform intensity, which is then

i>=p . . . . (2)

where P=-= total force and ^the total area over which it

acts. The steam pressure on a piston is an example of

stress of uniform intensity.
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For example, if a force P= 28800 lbs, is uniformly dis-

tributed over a plane area of ^=72 sq. inches, or ^ of a

sq. foot, the intensity of the stress is

28800 ,^^,, . ,p= =400 lbs. Der sq. inch,

(or jp = 28800^ >^ =57600 lbs. per sq. foot, or p=14400-j'

^=28.8 tons per sq. ft,, etc...

181. Stresses on an Element : of Two Kinds Only.—When a

solid body of any material is in eauiiibrium under a sys-

tem of forces which do not rupture it. not only is its shape

altered (i.e. its elements are strained), and stresses pro-

duced on those planes on which the forces act, but other

stresses also are induced on some or all internal surfaces

which separate element from element, f over and above the

forces with which the elements mav have acted on each

other before the application of the external stresses or

" applied forces "). So long as the whole solid is the "free

body " under consideration, these internal stresses, being

the forces with which the portion on one side of an imag-

inary cutting plane acts on the portion on the other side,

do not appear in any equation of eauiiibrium (for if intro-

duced they would cancel out); but if we consider free a

portion only, some or all of whose bounding surfaces are

cutting planes of the original bodv. the stresses existing

on these planes are brought into the eauations of equilib-

rium.

Similarly, if a single element of the body is treated by

itself, the stresses on all six of its faces, together with its

weight, form a balanced system of forces, the body being

supposed at rest.

FiS. 138.
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As an example of internal stress, consider again the case

of a bar in tension ; Fig. 193 shows tlie whole bar (or eye-

bar) free, the forces P being the pressures of the pins in.

the eyes, and causing external stress (compression here)

on the surfaces of contact. Conceive a right section made
through BS, far enough from the eye, (7, that we may con-

sider the internal stress to be uniform * in this section, and

consider the portion BSG as a free body, in Fig. 194. The
stresses on R8, now one of the bounding surfaces of the

free body, must be parallel to P, i.e., normal to B8;
(otherwise they would have components perpendicular to

P, which is precluded by the necessity oi lY being = 0,

and the supposition of uniformity.) Let .^ = the sec-

FlG. 194,

Fig. 195.

tional area RS, and p = the stress per unit of area ; then.

PIX-= gives P= Fp, i.e., p=F .(2).

The state of internal stress, then, is such that on planes

perpendicular to the axis of the bar the stress is tensile and

normal (to those planes). Since if a section were made
oblique to the axis of the bar, the stress would still be

parallel to the axis for reasons as above, it is evident that

on an oblique section, the stress has components both nor-

mal and tangential to the section, the normal component
being a tension.

* As will be shown later (§ 295) the line of the two P's in Fig. 193 must

pass through the centre of gravity of the cross-section RS (plane figure) of

the bar, for the stress to be uniform over the section.
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The presence of the tangential or shearing stress in ob-

lique Sections is rendered evident by considering that if an

oblique dove-tail joint were cut in the rod, Fig. 195, the

shearing stress on its surfaces may be sufficient to over-

come friction and cause sliding along the oblique plane.

If a short prismatic block is under the compressive ac-

tion of two forces, each =P and applied centrally in one

base, we may show that the state of internal stress is the

same as that of the rod under tension, except that the nor-

mal stresses are of contrary sign, i.e., compressive instead

of tensile, and that the shearing stresses (or tendency to

slide) on oblique planes are opposite in direction to those

in the rod.

Since the resultant stress on a given internal plane of a

body is fully represented by its normal and tangential

components, we are therefore justified in considering but

iwo kinds of internal stress, normal or direct, and tangen-

tial or shearing.

182. Stress on Obliq[ue Section of Rod in Tension,—Consider

free a small cubic element whose
edge =a in lengthy it has two

faces parallel to the paper, being

taken near the middle of the rod

in Fig. 192. Let the angle which

the face AB, Fig. 196, makes with

the axis of the rod be = a. This

angle, for our present purpose, is

considered to remain the same
while the two forces P are acting,

as before their action. The re-

sultant stress on the face AB hav-

ing an intensity p=P-h-F, (see eq.

2) per unit of transverse section

of rod, is = jp (a sin a) a. Hence
its component normal to AB is

pa^ sin^ a ; and the tangential or shearing component along

AB '=*pa^ sin a cos a. Dividing by the area, a^, we have

the following

:

For a rod in simple tension we have, on a plane making
an angle, a, with the axis :
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a Normal Stress =p Bin? a per unit of area . . (1)

and a Shearing Stress =p sin a cos a per unit of area . (2)

" Unit of area " here refers to the oblique plane in ques-

tion, while p denotes the normal stress per unit of area of

a transverse section, i.e., when a=90°. Fig. 194.

The stresses on CD are the same in value as on AB,
while for BG and AD wq substitute 90°

—

a for a. Fig.

197 shows these normal and shearing stresses, and also,

much exaggerated, the strains or change of form of the

element (see Fig. 192).

182a, Eelation between Stress and Strain.—Experiment

shows that so long as the stresses are of such moderate

value that the piece recovers its original form completely

when the external forces which induce the stresses are re-

moved, the following is true and is known as Hoohe's Law
(stress proportional to strain). As the forces P in Fig.

193 (rod in tension) are gradually increased, the elonga-

tion, or additional length, of BK increases in the same

ratio as the normal stress, p, on the sections BS and KI^^

per unit of area [§ 191].

As for the distorting effect of shearing stresses, considei

in Fig. 197 that since

p sin a cos a = p cos (90°

—

a) sm (90°

—

a)

the shearing stress per unit of area is of equal value on all

four of thefaces (perpendicular to paper) in the elementary

block, and is evidently accountable for the shearing strain,

i.e., for the angular distortion, or difference, d, between
90° and the present value of each of the four angles. Ac-
cording to Hooke's Law then, as P increases within tlvg

limit mentioned above, d varies proportionally to

p sin a cos a, i.e. to the stress.

182b. Example.—Supposing the rod in question were of

a kind of wood in which a shearing stress of 200 lbs. per
sq. inch along the grain, or a normal stress of 400 lbs. per

8q. inch, perpendicular to a fibre-plane will produce rup-
ture, required the value of a the angle which the grain
must make with the axis that, as P increases, the danger
of rupture from each source may be the same. This re-
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quires that 200:400::p sin a cos a :p sin^a, i.e. tan. a must
= 2.000.-.a=63i^°. If the cross section of the rod is 2 sq.

inches, the force P at each end necessary to produce rup-

ture of either kind, when a=63^°, is found by putting

p sin a cos ^=^00.'.^=500.0 lbs. per sq. inch. "Whence, since

p=P-^F, P=1000 lbs. (Units, inch and pound.)

183. Elasticity is the name given to the property which
most materials have, to a certain extent, of regaining their

original form when the external forces are removed. If

the state of stress exceeds a certain stage, called the Elastic

Limit, the recovery of original form on the part of the ele-

ments is only partial, the permanent deformation being

called the Set.

Although theoretically the elastic limit is a perfectly defi-

nite stage of stress, experimentally it is somewhat indefi-

nite, and is generally considered to be reached when the

permanent set becomes well marked as the stresses are in-

creased and the test piece is given ample time for recovery

in the intervals of rest.

The Safe Limit of stress, taken well within the elastic

limit, determines the working strength or safe load of the

piece under consideration. E.g., the tables of safe loads

of the structural steel beams for floors, made by the Cambria

Steel Co. , at Johnstown, Pa, , are computed on the basis that

the greatest normal stress (tension -or compression) occurring

on any internal plane shall not exceed 16,000 lbs. per sq. inch;

and, again, by the building laws of Philadelphia, the greatest

shearing stress to be permitted in '
' web plates " of " mild

steel" is 8750 lbs./in.

2

The tJltimate Limit is reached when rupture occurs.

184. The Modulus of Elasticity (sometimes called co-efficient

of elasticity) is the number obtained by dividing the stress

per unit of area by the corresponding relative strain.

Thus, a rod of wrought iron ^ sq. inch sectional area

being subjected to a tension of 2^ tons =5,000 lbs., it is
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iound that a length whicli was six feet before tension is

»= 6.002 ft. during tension. The relative longitudinal strain

or elongation is then= (0.002)-^6= 1 : 3,000 and the corres-

ponding stress (being the normal stress on a transverse

plane) has an intensity of

i?t=P^i^= 5,000-^ 1^=10,000 lbs., per sq. inch.

Hence by definition the modulus of elasticity is (for ten-

sion), if we denote the relative elongation by s,

Bt-=Pt'^£=10,000^ g-^ =30,000,000 lbs. per sq. inch, (the

sub-script " t " refers to tension).

It will be noticed that since £ is an abstract number, Et
is of the same quality as p^, i.e., lbs. per sq. inch, or one di-

mension of force divided by two dimensions of length.

(In the subject of strength of materials the inch is the

most convenient English linear unit, when the pound is

the unit of force ; sometimes the foot and ton are used to-

gether.)

The foregoing would be called the modulus of elasticity

of lorought iron in tension in the direction of the fibre, as

given by the experiment quoted. • But by Hooke's Law p
and £ vary together, for a given direction in a given ma-
terial, hence ivithin the elastic limit E is constant for a given

direction in a given material. Experiment confirms this

approximately.

Similarly, the modulus of elasticity for compression E^

in a given direction in a given material may be determined

by experiments on short blocks, or on rods confined lat-

erally to prevent flexure.

As to the modulus of elasticity for shearing, E^, we
divide the shearing stress per unit of area in the given

direction by (? (in radians) the corresponding angular strain

or distortion; e.g., for an angular distortion of 0.10° or

,^= .001T4, and a shearing stress of 15,660 lbs. per sq. inch,

we have £;=^^= 9,000,000 lbs. per sq. inch.



204 MECHANICS OF ENGINEERING.

184a. Young's Modulus is a name frequently given toEf and

Ec, it being understood that in the experiments to determine

these moduli the elastic limit is not passed, and also that the

rod or prism tested is not subjected to any stress on the sides.

See p. 507.

185. Isotropes.—This name is given to materials which
are homogenous as regards their elastic properties. In

such a material the moduli of elasticity are individually

the same for all directions. E.g., a rod of rubber cut out

of a large mass will exhibit the same elastic behavior when
subjected to tension, whatever its original position in the

mass. Fibrous materials like wood and wrought iron are

not isotropic ; the direction of grain in the former must
always be considered. The " piling " and welding of nu-

merous small pieces of iron prevent the resultant forging

from being isotropic.

186. Resilience refers to the potential energy stored in a

body held under external forces in a state of stress which

does not pass the elastic limit. On its release from con-

straint, by virtue of its elasticity it can perform a certain

amount of work called the resilience, depending in amount
upon the circumstances of each case and the nature of the

material. See § 148.

187. General Properties of Materials.—In viev/ of some defi-

nitions already made we may say that a material is ductile

when the ultimate limit is far removed from the elastic

limit ; that it is brittle like glass and cast iron, when those

limits are near together. A small modulus of elasticity

means that a comparatively small force is necessary to

produce a given change of form, and vice versa, but implies

little or nothing concerning the stress or strain at the

elastic limit ; thus Weisbach gives E^, lbs. per sq. inch for

wrought iron = 28,000,000= double the E^ for cast iron

while the compressive stresses at the elastic limit are the

same for both materials (nearly).
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188. Element with Normal Stress on Sides as well as on End-Faces.

Ellipse of Stiess.—In Fig. 193, p. 198, the parallelopiped RKNS is sub-
jected to stress on the two end-faces only. Let us now consider a small
square-cornered element of material subjected to a normal stress p^
(tension) on the two vertical end-faces, while on the horizontal side faces

there acts a normal (also tensile) stress of pj Ibs./in.^; (but no stress

on the vertical side ^- ^n'---^ /

faces). In Fig. 197a
''''

'
^""- '^

is shown, as a free

body in equilibrium,

a triangular prism

ABC, which is the

upper right-hand

half of such an ele-

ment; obtained by
passing the cutting

plane AC along a

diagonal of the side

plane (plane of

paper) on which

there is no stress,

and 1 to it. The
angle 6 may have

any value and it

is desired to deter-

mine the unit stress "iG- 197a.

5o induced on the oblique plane AC by the normal stresses Pi and Pz

acting respectively on the end face BC and on the side face AB. The
unit stress q^ on the face AC is not 1 to that face but makes with it

some angle ^. Let AB = h inches, BC= n in., and AC= c in.; each

of the rectangular areas having a common dimension, =d in., T to

the paper. Then the total (oblique) stress on face AC is q^cd lbs., that

on AB is P'pd, and that on BC is p-jid lbs. Since the total stress on AC
is the anti-resultant of the other two, and these are T to each other,

we have

{,q^cdy={,PTndy+{p^hdy; i.e., ?o^= fpiyj + (pj-

But, since ?i^c= sin d, and fe-^c= cos 6, this may be written

q-'={p,smey+{p,coBdy (i)

Eq. (1) gives the magnitude of q^ for any value of angle d; but both

position and magnitude are best shown by a geometrical construction.

being any point on AC, draw a circle with center at and radius,

OH^, equal by scale to the unit stress p^. Similarly, with radius OH2,

equal (on same sea'"") to the unit stress P2, draw the circle H2E2. Through

draw EfiN normal to the face AC on which the stress 50 is to be deter-

mined, and note the intersections E^ and £'2 (both on left of 0) with

the two circles respectively. A vertical line through E^ and a hori-

zontal through E2 intersect at some point m. Cm is the magnitude

and position of the stress q^; since mD2= EiDi= pi sin 0, and ODj=
P2COSO; hence from eq. (1) Om=5o.
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The point m is a point in an ellipse whose semi-principal axes are OH^
and OH2, i.e., p^ and pj. This ellipse is called the Ellipse of Stress;

Om being a semi-diameter, determined in the way indicated. (Similarly,

if the elementary right parallelepiped is subjected to the action of three

normal stresses, Pi, p2, and p^, on all three pairs of faces, respectively,

the unit stress on any oblique plane is a semi-diameter of an Ellipsoid

of Stress).

The unit shearing stress on the oblique face AC is qs=^qo cos ,u; and
the unit normal stress is q=qo sin /;.

In case the normal stress P2 on the face AB were compressive, p^ being

tensile, a horizontal would be drawn through E'2 on the circle of radius

OH2, instead of through E2, to meet the vertical through E^, and would

thus determine Om', instead of Om, as the stress on AC. If, in such

a case, P2 were numerically equal to p^, and d were 45°, go would= Pi = pj,

and would lie in the surface AC (pure shear; compare with Exam. 5,

p. 242). With Pi = P2, and both tensUe, or both compressive, 50 would

be equal to Pi, =P2, for all values of d.

189. Classification of Cases.—Althougli in almost any case

whatever of the deformation of a solid body by a balanced

system of forces acting on it, normal and shearing stresses

are both, developed in every element which is affected at

all (according to the plane section considered,) still, cases

where the body is prismatic, and the external system con-

sists of two equal and opposite forces, one at each end of

the piece a,nd directed away from each other, are commonly
called cases of Tension; (Fig, 192); if the piece is a short

prism with the same two terminal forces directed toward

each other, the case is said to be one of Compression ; a case

similar to the last, but where the prism is quite long

(" long column "), is a case of Flexure or bending, as are also

most cases where the " applied forces " (i.e., the external

forces), are not directed along the axis of the piece. Rivet-

ed joints and " pin-connections " present cases of Shearing;

a twisted shaft one of Torsion. When the gravity forces

due to the weights of the elements are also considered, a

combination of two or more of the foregoing general cases

may occur.

In each case, as treated, the principal objects aimed at

are, so to design the piece or its loading that the greatest

stress,* in whatever element it may occur, shall not exceed

a safe value ; and sometimes, furthermore, to prevent too

great deformation on the part of the piece. The first ob-

ject is to provide sufficient strength; the second sufficient

stiffness.

* See § 405b for mention of the "elongation theory" of safety. This

is based on considerations of strain, or deformation, instead of stress.
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te:nsion.

191. Hooke's Law by Experiment.—As a typical experiment

in the tension of a long rod of ductile metal sncli as

wrought iron and the mild steels, the following table is quot-

ed from Prof. Cotterill's " Applied Mechanics." The experi-

ment is old, made by Hodgkinson for' an English Railway

Commission, but well adapted to the purpose. From the

great length of the rod, which was of wrought iron and

0.517 in. in diameter, the portion whose elongation was
observed being 49 ft. 2 in. long, the small increase in length

below the elastic limit was readily measured. The succes-

sive loads were of such a value that the tensile stress

p=P^F, or normal stress per sq. in. in the transverse

section, was made to increase by equal increments of 2657.5

lbs. per sq. in., its initial value. After each application of

load the elongation was measured, and after the removal

of the load, the permanent set, if any.

Table of Elongations of a Wrought Iron Rod, of a

Length= 49 Ft. 2 In.

p X JA e^X^l X'

Load (lbs

square ii

. per Elongation,
ich.) (inches.)

Increment
of

Elongation.

s, the relative
elongation, (ab-
stract number.)

Permanent
Set.

(inches.)

1X2667.5 .0485 .0485 0.000082

2X ' . 1095 .061 .000186

3X ' . 1675 .058 .000283 0.0015
4X ' .224 .0565 .000379 .002

5X ' .2805 .0565 .000475 .0027

6X ' .337 .0565 .000570 .003

7X ' .393 .056 .004

8X ' .452 .059 .000766 .0075

9X ' .5155 .0635 .0195

lOX ' .598 .0825 .049

IIX ' .760 .162 .1545

12X ' 1.310 .550 .667
etc.
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Referring now to Fig. 198, the notation is evident. P
is the total load in any experiment, F the cross section of

the rod ; hence the normal stress on the transverse section

is p=P-r-F. When the loads are increased by equal in-

crements, the corresponding increments of the elongation

a should also be equal if Hooke's law is true. It will be

noticed in the table that this is very nearly true up to the

8th loading, i.e., that JX, the difference between two con-

secutive values of }., is nearly constant. In other words the

proposition holds good

;

if P and Pi are any two loads below the 8th, and X and ki

the corresponding elongations.

The permanent set is just perceptible at the 3d load, and

increases rapidly after the 8th, as also the increment of

elongation. Hence at the 8th load, which produces a ten-

sile stress on the cross section of j9= 8x2667.5= 21340.0

lbs. per sq. inch, the elastic limit is reached.

As to the state of stress of the individual elements, if

we conceive such sub-division

of the rod that four edges of

each element are parallel to the

axis of the rod, we find that it

is in equilibrium between two

normal stresses on its end faces

''^^ (Fig. 199) of a value ^pdF==
{P^F)dF where dF is the hor-

izontal section of the element.

If dx was the original length,

and dX the elongation produced by pdF, we shall have,

since all the dx's of the length are equally elongated at the

dX X
same time, w" ^

T

where Z= total (original) length. But dX^dx is the relative

elongation e, and by definition (§ 184) the Modulus of Elas-

ticity for Tension, Ei, = jp^e, {Young's Modulus, § 184a).
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.'.E.=-4rr or E,=^^ .... (1)

Jblq. (1) enables us to solve problems involving the elonga-

tion of a prism under tension, so long as the elastic limit

is not surpassed.

The values of E^ computed from experiments like those

just cited should be the same for any load under the elas-

tic limit, if Hooke's law were accurately obeyed, but in

reality they differ somewhat, especially if the material

lacks homogeneity. In the present instance (see Table)

we have from the

2d Exper. ^=^-^£=28,680,000 lbs. per sq. in.

5th " Ec= " =28,009,000

8th " ^t= " =27,848,000

192. Stress-Strain Diagrams.—If the relative elongations

or "strains " (s) corresponding to a series of values of the

tensile unit-stresses (p) (Ibs./in.^) to which a rod of metal

has been subjected in a testing machine, are plotted as

abscissae, and the unit-stresses themselves (p) as ordinates,

we have in the curve joining these points a useful graphic,

representation of the results of experiment.

Fig. 200 shows some of these curves, giving average re-

sults for the principal "ferrous " metals. On the left, in

(I), the scale adopted (horizontal) for the "strain " (e) or

"unit-elongation " is one hundred times as great as that

used in the right-hand diagram, (II) ; while the vertical

scale for stress (p) in (I) is only twice as great as that in

'

(II) . The change of form within the elastic limit is so

small compared with that beyond, that this difference in

scale is quite necessary in order that diagram (I) may show

what occurs within the elastic limit and a Httle beyond.

Diagram (II) shows the remainder of the curves of wrought

iron and soft steel, up to the point of rupture.

We have here the means of comparing the properties of the

four typical metals represented, as to elasticity and tenacity.

Up to the respective elastic hmits, B, B' , B" , and B'" , stress

is fairly proportional to strain, and a straight line is the result;
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the "true elastic limit " being regarded as the point where

such proportionahty ceases. In the case of wrought iron and

soft steel there is a point Y, called the "yield point," a little

above the true elastic limit, and sometimes called the "apparent

elastic limit/' or "commercial elastic limit/' immediately be-

yond which further slight increments of stress produce rela-

tively great increments of strain, permanent set becoming

very marked; i.e., the part YD of the curve is almost hori-

zontal. Beyond D the curve rises again, more steeply, but

just before rupture [see (II)] may descend somewhat; since,

50,000 r r--y^—

^

40,000

10,000

Ibs./iv}

Fig. 200.

on account of the lateral contraction mentioned in the next

paragraph, here plotted, the stress being computed by dividing

the total pull by the original sectional area, is less toward

rupture than at stages closely preceding.

If at any point beyond the elastic limit, as at C (see curve

for wrought iron) in (I), the stress be gradually removed, the

relations of stress and strain during this gradual diminution

of stress, are shown by the straight line CC. The position of

the point C indicates that there is in the rod (now under no

stress) a permanent set, or relative elongation, of £= 0.0015,

or 15 parts in 10,000, an elastic recovery having occurred from

0.0028 to 0.0015 (see horizontal scale).

Since by definition the modulus of elasticityE= p^s, the values

of the respective moduli for the metals in diagram (I) are propor-
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tional to the tangent of the angle which the corresponding

straight portions OB, OB' , etc., make with the horizontal axis.

From the various ordinates and abscissae for the points B, B',

etc., we find E for cast iron to be 14,000,000 Ibs./in.^ and for

the other three metals 28,000,000, 30,000,000, and 40,000,000,

respectively. The curve for the "harder steel" is not

shown in (II), being beyond the limits of the diagram, as

to stress; and the complete curve for cast iron is contained

within the limits of diagram (I), since the elongation at

rupture is very small in the case of this metal, only about

3/10 of one per cent, or 3 parts in 1000; whereas that for

wrought iron or soft steel is 300 parts in 1000 (or 30 per

cent). In the case of cast iron the elastic limit is very ill-

defined and the proportion of carbon and the mode of manu-

facture have much influence on its behavior under test.

"Soft steel" is another name for "structural steel," used

in construction on a large scale, as in buildings and bridge

trusses; "medium steel " being a somewhat harder grade

of the same. Many grades of steel are made which are

much stronger and harder than these, such as tool steel,

nickel steel, and piano wire (whose rupturing stress may
be as high as 300,000 Ibs./in.^). Wrought iron in the form

of wire is much stronger than in bars.

Note.—Such a line as CC, showing the relation of stress and strain

as the stress is gradually removed, will be called an "elasticity line"

on p. 241. In § 206 some mention will be made of the phenomena of

"overstraining" a test-piece of iron or steel, showing that on re-applying

stress after a certain period of rest the plotted results of stress and
strain relations show that the line C'C is retraced to C and continues

in the same straight line prolonged, to a new elastic limit higher than C,

before curving off to the right.

193. Lateral Contraction.—In the stretching of prisms of

nearly all kinds of material, accompanying the elongation

of length is found also a diminution of width whose rela-

tive amount in the case of the three metals just treated is

about ^ or i^ of the relative elongation (within elastic

limit). Thus, in the third experiment in the table of § 191,

this relative lateral contraction or decrease of diameter

~ H ^^ /i ^^ ^> ^^•> about 0.00008. In the case of cast

iron and hard steels contraction is not noticeable ex-
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csept by very delicate measurements, both within and with-

out the elastic limit ; but the more ductile metals, as

wrought iron and the soft steels, when stretched beyond
the elastic limit show this feature of their deformation

in a very marked degree. Fig. 201 shows by dotted lines

the original contour of a wrought iron rod, while the con-

tinuous lines indicate that at rupture. At the cross section

of rupture, whose position is determined by some
local weakness, the drawing out is peculiarly

pronounced.

The contraction of area thus produced is some-
times as great as 50 or 60% at the fracture.

194. "Flow of Solids."—When the change in re-

lative position of the elements of a solid is ex-

treme, as occurs in the making of lead pipe,

I

drawing of wire, the stretching of a rod of duc-

j

tile metal as in the preceding article, we have
Fig. 201. instances of what is called the Flow of Solids, in-

teresting experiments on which have been made by
Tresca.

195. Moduli of Tenacity.—The tensile stress per square

inch (of original sectional area) required to rupture a

prism of a given material will be denoted by T and called

the modulus of ultimate tenacity ; similarly, the modulus oj

safe tenacity, or greatest safe tensile stress on an element,

by T' ',
while the tensile stress at elastic limit may be

called T". The ratio of T' to T" is not fixed in practice

but depends upon circumstances (from j4, to ^).
Hence, if a prism of any material sustains a total pull

or load P, and has a sectional area=jP, we have

P=FT for the ultimate or breaking load. \

P'=FT' " " safe load.
f

' ' (^^

P"=FT" " " load at elastic limit. )

Of course T' should always be less than T". (The hand-,

book of the Cambria Steel Co. , in quoting from the building

laws of various cities of the U. S., gives allowable unit-

stresses for ordinary materials, both in tension and com-

pression.)
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196. Resilience of a Stretched Prism.—^Fig. 202. In the

gradual stretcliing of a prism, fixed at one extremity ^ the

value of the tensile force P at the other necessarily de-

pends on the elongation A at each stage of the lengthening,

according to the relation [eq. (1) of § 191.]

' ^^
(8)FE,

within the elastic limit. (If we place a weight G on the

^^ flanges of the unstretched prism and then leave

^ it to the action of gravity and the elastic action

of the prism, the weight begins to sink, meeting

an increasing pressure P, proportional to l, from

the flanges). Suppose the stretching to continue

until P reaches some value P" (at elastic limit

\\ say), and I a value X'. Then the work done so

N^ far is (see p. 155)

Fig 802
^7= mean force X space = ^ P" /I" . . (4)

But from (2) F'=FT", and (see §§ 184 and 191)

K"=e"l

.-. (4) becomes XJ=y2 T e". Fl=}^ T e" V . . (6)

where Fis the volume of the prism. The quantity }4T"£",

or work done in stretching to the elastic limit a cubic

inch (or other unit of volume) of the given material, may
be called the Modvlus of Resilience for tension. From (5)

it appears that the amounts of work done in stretching to

the elastic limit prisms of the same material but of differ-

ent dimensions are proportional to their volumes simply.

The quantity }4T"e" is graphically represented by the

area of one of the triangles such as OA'B, OA'B" in Fig.

200 ; for (in the curve for wrought iron for instance) the

modulus of tenacity at elastic limit is represented by ^'P,
and e" (i.e., e for elastic limit) by OA'. The remainder of
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the area OBG included between the curve and the hori-

zontal axis, i.e., from B to G, represents the work done in

stretching a cubic unit from the elastic limit to the point

of rupture, for each vertical strip having an altitude =p
and a width =de, has an area ^pde, i.e., the work done by
the stress p on one face of a cubic unit through the dis-

tance de, or increment of elongation.

If a weight or load = (r be " suddenly "applied to stretch

the prism, i.e., placed on the flanges, barely touching

them, and then allowed to fall, when it comes to rest again

it has fallen through a height X^, and experiences at this

instant some pressure P\ from the flanges; Pi=:?. Apply-

ing to this body the "Work and Energy" method (p. 138),

noting that its initial and final kinetic energy are each zero

and that the force G is constant, while the upward force P
(from the flanges) is variable, with an average value of JPi,

we have

GAi = iPiAi + 0-0; whence Pi = 2(?.

Since Pi = 2G, i.e., is >(t, the body does not remain in

this position but is pulled upward by the elasticity of the

prism. In fact, the motion is harmonic (see §§ 59 and

138). Theoretically, the elastic limit not being passed, the

oscillations should continue indefinitely.

Hence a load O " suddenly applied " occasions double the

tension it would if compelled to sink gradually by a sup-

port underneath, which is not removed until the tension is

just = Q, oscillation being thus prevented.

If the weight G sinks through a height —h before strik-

ing the flanges. Fig. 202, we shall have similarly, within

elastic limit, if ^i= greatest elongation, (the mass of rod
being small compared with that of G).

G{h^K)=%P,K .... (6)

If the elastic limit is to be just reached we have from eqs.

(5) and (6), neglecting ^ compared with h,

Gh=%T"B"V . . . (7>



TBNSIOX. 215

nn equation of condition that tlie prism shall not be in-

jured.

Example.—If a steel prism have a sectional area of i/

eq. inch and a length ^=10 ft. =120 inches, what is the

greatest allowable height of fall of a weight of 200 lbs.,

that the final tensile stress induced may not exceed T"=
30,000 lbs. per sq. inch, if e" z=.002 ? From (7), using tha

inch and pound, we have

h= T"e"V 30,000 X.002x1^x120.

2^ 2x200
:4.5 inches.

197. Stretching of a Prism by Its Own Weight.—In the case

of a very long prism such as a mining-

pump rod, its weight must be taken into

account as well as that of the terminal

load P , see Fig. 203. At (a.) the prism

is shown in its unstrained condition ; at

(&) strained by the load P^ and its own
weight. Let the cross section be =jP, the

heaviness of the prism =y. Then the rela-

tive extension of any element at a distanceFig. 203.

jy from o is
"^

^_dX {P,+rFx)
dx' FE,

(1)

{See eq. (1) § 191) ; since P^-^-Fjx is the load hanging upon
the cross section at that locality. Equal c?a?'s, therefore,

are unequally elongated, x varying from to I. The total

elongation is

=/*=jk/f^''"+''^"'"^=/i;
'/2GI

FE,

Le., k= the amount due to Pi, plus an extension which

half the weight of the prism would produce, hung at the

lower extremity.

PI
* In A. = put dX for A, dx for I, and (P, + j^^.r) for P,

FEt
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The foregoing relates to tlie deformation of the piece,

and is therefore a problem of stiffness. As to the strength

of the prism, the relative elongation e=dA-h-dx [see eq. (1)],

which is variable, must nowhere exceed a safe value e'=

T'^E, (from eq. (1) § 191, putting P=FT', and X=X),

Now the greatest value of the ratio dX : dx, by inspecting

eq. (1), is seen to be at the upper end where x=l. The
proper cross section F, for a given load Pj, is thus found.

Putting ^]^-~^ ^e have F=^^ . (2)

198. Solid of Uniform Strength in Tension, or hanging body

of minimum material supporting its own
weight and a terminal load Pj. Let it be a

solid of revolution. If every cross-section

P at a distance =x from the lower extrem-

ity, bears its safe load FT', every element

of the body is doing full duty, and its form

is the most economical of material.

The lowest section must have an area
Fi(j.204. Fo=P^-^T', since Pi is its safe load. Fig.

204. Consider any horizontal lamina ; its weight is yFdx,

(j= heaviness of the material, supposed homogenous), and

its lower base Pmust have Pi-\-G for its safe load, i.e.

G+F,=FT' ... a)

in which G denotes the weight of the portion of the solid

below F. Similarly for the upper base F-\-dF, we have

G+P,+r^dx={F+dF)T' . , (2)

By subtraction we obtain

rFdsc=T'dFi ie. -l.dx^ ^T F
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in whicli the two variables x and F are separated. By in-

tegration we now have

;or^,=log.e^ . . (3)

.
\x p yx

1.6., F=Foer =-1, e~ (4)

from which i^may be computed for any value of x.

The weight of the portion below any F is found from (1)

and (4); i.e.

while the total extension ^ will be

^=^"^1 (6)

"the relative elongation dX-i-dx being the same for every dx
and bearing the same ratio to e" (at elastic limit), as T'

does to T".

199. Tensile Stresses Induced by Temperature.—If the two

ends of a prism are immovably fixed, when under no strain

and at a temperature t, and the temperature is then low-

ered to a value t', the body suffers a tension proportional

to the fall in temperature (within elastic limit). If for a

rise or fall of 1° Fahr. (or Cent.) a unit of length of the

material would change in length by an amount t^ (called

the co-efficient of expansion) a length =1 would be con-

tracted an amount X=-fjl(t-t') during the given fall of tem-
perature if one end were free. Hence, if this contraction
is prevented by fixing both ends, the rod must be under a

:tension P, equal in value to the force which would be
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necessary to produce the elongation X, just stated, under

ordinary circumstances at the lower temperature.

!From eq. (1) §191, therefore, we have for this tension

dtite to fall of temperature

For 1° Cent, we may write

For Cast iron -f] = .0000111

;

« Wrought iron = .0000120

;

« Steel = .0000108 to .0000114 J

« Copper yj = .0000172
;

« Zinc 7^ = .0000300,

COMPRESSION OF SHORT BLOCKS.

200, Short and Long Columns.—In a prism in tension, its-

own weight being neglected, all the elements between thl

jocaiities of application of the pair of external forces pro-

ducing; the stretching are in the same state of stress, if the

external forces act axially (excepting the few elements in the

immediate neighborhood of the forces ; these suffering

local stresses dependent on the manner of application of

the external forces), and the prism may be of any length

without vitiating this statement. But if the two external

forces are directed toivard each other the intervening ele-

ments will not all be in the same state of compressive

stress unless the prism is comparatively short (or unless

numerous points of lateral support are provided). A long

prism will buckle out sideways, thus even inducing tensile

stress, in some cases, in the elements on the convex side.

Hence the distinction between sTiort UocTcs and long

columns. Under compression the former yield by crush-

ing or splitting, while the latter give way by flexure (i.e.

bending). Long columns, then will be treated separately
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In a subsequent chapter. In the present section tlie blocks

treated being about tliree or four times as long as wide,

^11 tlie elements will be considered as being under -equal

compressive stresses at tbe same time.

201. Notation for Compression.—By using a subscript c,

we may write

E^= Modulus of Elasticity;* i.e. tlie quotient of the

compressive stress per unit of area divided by the relative

shortening. (Young's Modulus; no stress on sides);

C= Modulus of crushing ; i.e. the force per unit of sec-

tional area necessary to rupture the block by crushing
;

G'= Modulus of safe compression, a safe compressive

stress per unit of area ; and

G"= Modulus of compression at elastic limit.

For the absolute and relative shortening in length we
may still use X and e, respectively, and within the elastic

limit may write equations similar to those for tension, F
being the sectional area of the block and F one of the ter-

minal forces, while p = compressive stress per unit of area

of Ff viz.:

. (1)
v-F _

-dx X-

rF_
A

~
.PI

~FX

ithin the elastic limit.

Also for a short block

Crushing force =FG
Compressive force at elastic limit =iFG" }• . (2]f

Safe compressive force =FG'
limit r=FG" \ .

7'
)

202. Remarks on Crushing.—As in § 182 for a tensile

stress, so for a compressive stress we may prove th<at a

*[NoTE.—It must be remembered that the modulus of elasticity,

whether for normal or shearing stresses, is a number indicative of stiff-

ness, not of strength, and has no relation to the elastic limit (except
that experiments to determine it must not pass that limit).]
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shearing stress = p.sin. a cos a is produced on planes at an

angle a with the axis of the short block, p being the com-

pressive stress per unit of area of transverse section. Experi-

ment shows, however, that, although the above value for the

shea,riug stress is a maximum for a = 4:5°, in the crushing of

shoi^t blocks or rather brittle materials like cast iron and stone,

the surface along which separation takes place makes an angle

smaller than 45° with the axis (35° for cast iron, according to

Hodgkinson's experiments) ; but the block must be two or

three times as long as wide to enable this phenomenon to take

place. This seems to show that the presence of the com-

pressive stress on the 45° plane is sufficient to strengthen the

material against rupture by shearing on that plane, causing

the separation to occur along a plane on which the compressive

stress is considerably less. Crushing by splitting into pieces

parallel to the axis sometimes occurs.

Blocks of ductile material, however, yield by swelling

out, or bulging, laterally, resembling plastic bodies some-

what in this respect.

The elastic limit is more difficult to locate than in ten-

sion^ but seems to have a position corresponding to that

in tension, in the case of wrought iron and steel. With
cast iron, however, the relative compression at elastic

limit is about double the relative extension (at elastic

limit in tension), but the force producing it is also double.

For all three metals it is found that E^^=E^ quite nearly,

so that the single symbol U m.aj be used for both.

EXAMPLES IIS" TENSIONAND COMPRESSION.

203. Tables for Tension and Compression.—The round

numbers in the following tables are to be taken as rude aver-

ages only ; the scope and design of the present work admitting

of nothing more. For abundant details of the more import-

ant experiments and researches of recent years, the reader

is referred to Professor J. B. Johnson's "Materials of Con-

struction
'

' and the works of Professors Thurston, Burr, and

Lanza ; also to '
' Testing of Materials '

' by Unwin, and

Martens' work of similar title. Another column might

have been added giving the Modulus of Resilience, viz.

:

ie"T'\ {~^T"^^2E; see §196). e is an abstract num-
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ber, and =X-^l, while E^, T", and T are given in pounds
per square incli:

TABLE OF THE MODULI, ETC., OP MATEEIALS IN TENSION.

e" £ K rpn T
Material. (Elastic limit.) At Rupture. Mod. of Elast. Elastic limit. Eupture.

abst. number. abst. number. lbs. per sq. in. lbs. per sq. in. lbs. per sq. in.

Soft Steel, .00120 .3000 30,000,000 35,000 60,000

Hard Steel, .00200 .0500 40,000,000 60,000 120,000

Cast Iron,

Wro't Iron,

Brass,

.00066

.00080

.00100

.0020

.3000

14,000,000

28,000,000

10,000,000

9,000

22,000

f 7,000
to

L 19,000

18,000
• 45 000

to
60,000
16.000

to
50,000

Glass, 9,000,000 3,500

Wood, with

the fibres.

( .00200
K to
( .01100

.0070
to

.0150

200,000
to

2,000,000

3,000
to

19,000

6,000
to

28,000

Hemp rope, 7,000

[N.B.—Expressed in kilograms per square centim., E^, T and T" would be nu
merically about V]4 as large as above, while € and e" would be unchanged.]

TABLE OF MODULI, ETC.; COMPEESSION OP SHORT BLOCKS.

e" £ E, G" C
Material. Elastic limit. At lupture- Mod. of Elast. Elastic limit. Rupture.

abst. number abst. number. lbs. per sq. in. lbs. per sq. in. lbs. per sq. in.

Soft Steel, 0.00100 30,000,000 30,000

Hard Steel. 0.00120 0.3000 40,000,000 50,000 200,000

Cast Iron, 0.00150 14,000,000 20,000 90,000

Wro't Iron, 0.00080 0.3000 28,000,000 24,000 40,000

Glass, 20,000

Granite,

Sandstone,

Brick,

See

§213a

10,000

5,000

3,000

Wood, with

the fibres.

I 0.0100
< to
1 0.0400

350,000
to

2,000,000

2,000
to

10,000

Portland 1

Cement, f
(§ 213a) 4,000
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204. Examples. No. 1.—A bar of tool steel, of sectional

area =0.097 sq. inches, is ruptured by a tensile force of

14,000 lbs. A portion of its length, originally ^ a foot,

is now found to have a length of 0.532 ft. Required T,

and e at rupture. Using the inch and pound as units (as

in the foregoing tables) we have T=1^=144326 lbs. per

Bq. in.; (eq. (2) § 195) ; while

e=(0.532—0.5)x12h-(0.50x12)=0.064.

Example 2.—Tensile test of a bar of " Hay Steel " for

the Glasgow Bridge, Missouri. The portion measured was
originally 3.21 ft. long and 2.09 in. X 1.10 in. in section.

At the elastic limit P was 124,200 lbs., and the elongation

was 0.064 ins. Required E^, T''^ and e" (for elastic limit).

e"=^ =,-M54^=.00166 at elastic limit.
I 3.21x12

r"=124,200--(2.09xl.l0)=54,000 lbs. per sq. in.

Nearly the same result for E^ would probably have been

^obtained for values of p and e below the elastic limit.

The Modulus of Resilience of the above steel (see § 196)

would be ^2 e" :!r"= 44.82 inch-pounds of work per cubic

inch of metal, so that the whole work expended in stretch-

ing to the elastic limit the portion above cited is

Cr= y^ e" T" r=3968. inch -lbs.

An equal amount of work will be done by the rod in re-

-covering its original length.

Example 3.—^A hard steel rod of ^ sq. in. section and
:20 ft. long is under no stress at a temperature of 130'
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Cent., and is provided witli flanges so that tlie slightest

contraction of length will tend to bring two walls nearer

together. If the resistance to this motion is 10 tons how
low must the temperature fall to cause any motion ? tj be-

ing =.0000110 (Cent, scale). From § 199 we have, ex-

pressing P in lbs. and F in sq. inches, since E^= 40,000,000

^hs. per sq. inch,

10x2,000 =40,000,000 x }4 X(1304') x 0,000011 ; whence
^'=39.0° Centigrade.

Example 4.—If the ends of an iron beam bearing 5 tons

at its middle rest upon stone piers, required the necessary

bearing surface at each pier, putting C for stone =200
lbs. per sq. inch. 25 sq. in., Ans.

Example 5.—How long must a wrought iron wire* be,

supported vertically at its upper end, to break with its

own weight ? 216,000 inches, Ans.

Example 6,—One voussoir (or block) of an arch-ring

presses its neighbor with a force of 50 tons, the joint hav-

ing a surface of 5 sq. feet ; required the compression per

sq. inch. 138.8 lbs. per sq. in., Ans.

205. Factor of Safety.—When, as in the case of stone, the

value of the stress at the elastic limit is of very uncertain

determination by experiment, it is customary to refer the

value of the safe stress to that of the ultimate by making
it the w'th portion of the latter, n is called a factor o/

safety, and should be taken large enough to make the safe

stress come within the elastic limit. For stone, n should

not be less than 10, i.e, C'^G-^n; (see Ex. 6, just given).

206. Practical Notes.—It was discovered independently by
Commander Beardslee and Prof. Thurston, in 1873, that

if wrought iron rods were strained considerably beyond
the elastic limit and allowed to remain free from stress

* Take T = 60,UU0 lbs. per square incli.
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for at least one day thereafter, a second test would sliow

higher limits both elastic and ultunate.

In 1899 Mr. James Muir discovered that this recovery of

elasticity and raising of both the yield-point and ultimate

strength, in the case of iron and steel after "overstraining,"

may be brought about by sim23ly heating the metal for a few
minutes in a bath of boiling water. In one experiment a bar

of a kind of mild steel which under ordinary tests broke at

39 tons/in.2 with 20% elongation on 8 in., was stretched just

to its yield-point, then relieved and heated for a few minutes
to 100° Cent., then stretched just to its new yield-point,

then relieved and heated as before; and so on, for three

times more. The first yield-point was at 27, the others at

33, 38, 43i, and 47 tons/in.2 The bar was then broken at

49 tons/in.2 with total extension of 12%. The diminished

ultimate extension shows the hardening effect of the treatment.

(See Prof. Ewing's ''Strength of Materials,'' pp. 38 and 40.)

'Bjfatigue of metals we understand the fact, recently dis-

covered by Wohler in experiments made for the Prussian

Ci-overnment, that rupture may be produced by causing the

stress on the elements to vary repeatedly between two
limiting values, the highest of which may be considerably

below T (or G), the number of repetitions necessary to

produce rupture being dependent both on the range of

variation and the higher value.

For example, in the case of Phoenix iron in tension,

Tupture was produced by causing the stress to vary from

to 52,800 lbs. per sq. inch, 800 times ; also, from tc

44,000 lbs. per sq. inch 240,858 times ; while 4,000,000 va-

liations between 26,400 and 48,400 per sq. inch did not

cause rupture. Many other experiments were made and

the following conclusions drawn (among others):

Unlimited repetitions of variations of stress (lbs. per

^q. in.) between the limits given below will not injure the

paetal (Prof. Burr's Materials of Engineering).

^ , , . j From 17,600 Comp. to 17,600 Tension,
roug iron.

| ^^ ^ ^^ ^^^^^^

( From 30,800 Comp. to 30,800 Tension.

Axle Cast Steel. ^ " to 52,800

( " 38500 Tens, to 88,000 «

(See p, 5i3'2 for an addendum to this paragraph.)
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SHEARING.

207. Rivets.—The angular distortion called shearing

strain in the elements of a body, is specially to be provided

for in the case of rivets joining two or more plates. This

distortion is shown, in Figs. 205 and 206, in the elements

near jhe plane of contact of the plates, much exaggerated.

jT^

i >
>r*

T

Fig. 205. Fig, 206.

In Fig. 205 (a lap-joint) the rivet is said to be in single

shear ; in Fig. 206 in double shear. If P is just great

enough to shear off the rivet, the modulus of ultimate shear-

ing, which may be called S, (being the shearing force per

unit of section when rupture occurs) is

F iTid^
(1)

in which i^==the cross section of the rivet, its diameter

being =d. For safety a value S'= }{ to ^ of >S' should

be taken for metal, in order to be within the elastic limit.

As the width of the plate is diminished by the rivet

hole the remaining sectional area of the plate should be

ample to sustain the tension P, or 2P, (according to the

plate considered, see Fig. 206), P being the safe shearing

force for the rivet. Also the thickness t of the plate

should be such that the side of the hole shall be secure

against crushing ; P must not be > C'td, Fig. 205.

Again, the distance a, Fig. 205, should be such as to

prevent the tearing or shearing out of the part of the

plate between the rivet and edge of the plate.
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For economy of material tlie seam or joint sliould be

no more liable to rupture by one tban by another, of the

o o ^ o
.t

Fig. 307.

four modes just mentioned. The relations which must
then subsist will be illustrated in the case of the " butt=

joint " with two cover-plates, Fig. 207. Let the dimen-

sions be denoted as in the figure and the total tensile force

on the joint be = Q. Each rivet (see also Fig. 206) is ex-

posed in each of two of its sections to a shear of I2 Q}

hence for safety against shearing of rivets we put

12 Q- -% Tides' (1)

Along one row of rivets in the main plate the sectional

area for resisting tension is reduced to {b—^d)t,, hence for

safety against rupture of that plate by the tension Q, we
put

Q=(h—3d)t,T' , (2)

Equations (1) and (2) suffice to determine d for the rivets

and ^1 for the main plates, Q and b being given ; but the

values thus obtained should also be examined with refer-

ence to the compression in the side of the rivet hole, i.e.,

J^ Q must not be > C't.d. [The distance a, Fig. 205, to the

edge of the plate is recommended by different authorities

to be from d to 3d.]

Similarly, for the cover-plate we must have

and 12^ not > G'td,

^4QoT(b—dd)tT'
<

(8)
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If the rivets do not fit their holes closely, a large margin
should be allowed in practice. Again, in boiler work, the

pitch, or distance between centers of two consecutive rivets

may need to be smaller, to make the joint steam-tight, than

would be required for strength alone.

208, Shearing Distortion.—The change of form in an ele-

ment due to shearing is an angular deformation and will

be measured in tt-measure. This angular change or dif-

ference between the value of the corner angle during strain

and ^4i'^, its value before strain, will be called d, and is

proportional (within elastic limit) to the shearing stress

per unit of area, p^, existing on all the four faces whose
angles with each other have been changed.

Fig. 208. (See § 181). By § 184 the Modulus of Shearing

Elasticity is the quotient obtained by dividing p^hj d \ i.e.

{elastic limit not passed)^

^s=^ . . . . (1)

or inversely, d=p^-^E^ (1)'

The value of E^ for different substances is most easily

I

determined by experiments on torsion

in which shearing is the most promi-
/ nent stress.* (This prominence depends

y\ on the position of the bounding planes

j^ of the element considered ; e.g., in Fig.

_

__.L 208, if another element were considered

/ '---cix->, within the one there shown and with

Fig. 208. its plaues at 45° with those of the first,

we should find tension alone on one pair of opposite faces,

compression alone on the other pair.) It will be noticed

that shearing stress cannot be present on two opposite

faces only, but exists also on another pair of faces (those

perpendicular to the stress on the first), forming a couple

of equal and opposite moment to the first, this being

necessary for the equilibrium of the element, even when
* For instance, see numerical example on p. 237, giving a value of

Es as resulting from a torsion test made by students in the Civil Engi-

neering Laboratory at Cornell University, April, 1904.
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tensile or compressive stresses are also present on the

faces considered.

209. Shearing Stress is Always of the Same Intensity on the

Four Faces of an Element.—(By intensity is meant per unit

of area ; and the four faces referred to are those perpen-

dicular to the paper in Fig. 208, the shearing stress being

parallel to the paper.)

Let dx and dz be the width and height of the element

in Fig. 208, while dy is its thickness perpendicular to the

paper. Let the intensity of the shear on the right hand
face be =q^, that on the top face =Ps. Then for the ele-

ment aw a free body, taking moments about the axis per-

pendicular to paper, we have

q^ dz dy X dx—^g dx dy x dz=0 .•. qs =p^

{dx and dz being the respective lever arms of the forces

q^ dz dy and p^ dx dy.)

Even if there were also tensions (or compressions) on

one or both pairs of faces their moments about would

balance (or fail to do so by a differential of a higher order)

independently of the shears, and the above result would

still hold.

210. Table of Moduli for Shearing.

d" ^s 8" s

Material.

i.e. 6 at elastic
limit.

Mod. of Elasticity
for Shearing.

(Elastic limit.) (Rupture.)

arc in radians. lbs. per sq. in. lbs. per sq. in lbs. per sq. in.

Soft Steel, 9,000,000 30,000 70,000

Hard Steel, 0.0033 14,000,000 45,000 90,00C

Cast Iron, 0.0021 7,000,000 15,000 30,00C

Wrought Iron, 0.0022 9,000,000 20,000 50,000

Brass, 5,000,000

Glass,

Wood, across (

fibre, 1

1,500
to

8,000

Wood, along (

fibre, (

500
to

3,200
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As in tlie tables for tension and compression, tlie above

values are averages. The true values may differ from

these as mucli as 30 per cent, in particular cases, accord-*

ing to the quality of the specimen.

211. Punching rivet holes in plates of metal requires the

overcoming of the shearing resistance along the convex

surface of the cylinder punched out. Hence ii d = diam-

eter of hole, and t= the thickness of the plate, the neces-

sary force for the punching, the surface sheared being

F= tjvd^ is

P=8t^d (2)-

Another example of shearing action is the " stripping
"

of the threads of a screw, when the nut is forced off lon-

gitudinally without turning, and resembles punching in

its nature.

212. EandEgj Theoretical Relation.—In case a rod is in

iension within the elastic limit, the relative (linear) lateral

contraction (let this =m) is so connected with E^ and E^

ihat if two of the three are known the third can be de-

duced theoretically. This relation is proved as follows,

by Prof. Burr. Taking an elemental cube with four of its

faces at 45° with the axis of the piece, Fig. 209, the axial

half-diagonal AD becomes of a length AD'=AD-\-s.AD
under stress, while the transverse half diagonal contracts

to a length B'D'=AD—m.AD, The angular distortion d

.-\U.S .

•

X<'>^'
/^<\^^^

A<^ D D/^ ^^'

,.

\>6-^

Fig. 209. § 212. Fig. 210.
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is supposed very small compared with 90° and is due to

the shear j9g per unit of area on the face BG (or BA\
From the figure we have

tan(45°—-) = __^,=__=1—m—s, approx.

[But, Fig. 210, tan(45°

—

x)=l—2x nearly, where a; is a

small angle, for, taking CA=unitj=AE, ian AD=AF=
AE—EF. Now approximately EF= EG,y2 andEG=
BDa^^=x^^ .'. AF= 1—2a7 nearly.] Hence

1

—

d= 1—m—£ ; or d=m+e . . (2)

Eq. (2) holds good whatever the stresses producing the

deformation, but in the present case of a rod in tension,

if it is an isotrope, and if ^ = tension per unit of area on
its transverse section, (see § 182, putting «=45°), we have

^t==p-=-£ and E^={psOJx BG')-^d=}^p-^d. Putting also

(m : £)= h, whence m=k£, eq. (2) may finally be written*

>4-==(^+ l)4-; i.e., ^s=-^^ . . (3)

Prof, Bauschinger, experimenting with cast iron rods,,

found that in tension the ratio m: £was =m} as an average,

which in eq. (3) gives

^=12^^,= !^, nearly. , , . (4)
246 5

^ ^ ^

His experiments on the torsion of cast iron rods gave

^,= 6,000,000 to 7,000,000 lbs. per sq. inch. By (4), then,

E, should be 15,000,000 to 17,500,000 which is approxi-

mately true (§ 203).

Corresponding results may be obtained for short blocks

in compression, the lateral change being a dilatation in-

stead of a contraction.

* This ratio, m-^e, denoted by k, is called Poisson's Ratio. For metals

its value lies approximately between 0.20 and 0.35. See also p. 507.
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—

Example 1.—Kequired the^

proper length, a, Fig. 211, to

guard against the shearing off,

along the grain, of the portion

ah, of a wooden tie-rod, the force

P being = 2 tons, and the width

of the tie = 4 inches. Using a

value of S' = 100 lbs. per sq. irL.s

we put 6a/S''= 4,000 cos 45° ; i.e.

Fi^m. a= (4,000x0. 707)--(4x100)= 7.07

inches.

Example 2.—A ^ in. rivet of wrought iron, in single

shear (see Eig. 205) has an ultimate shearing strength

P= FS=}(7T(PS= %7t{ Yqy X 50,000= 30,050 lbs. For safety,

putting aS"= 8,000 instead of aS',P'=4,800 lbs. is its safe

shearing strength in single shear.

The wrought iron plate, to be secure against the side-

crushing in the hole, should have a thickness t, computed
thus I

P'=tdC' ; or 4,800=^.^ x 12,000 ,-. ^=0.46 in.

If the plate were only 0.23 in. thick the safe value of P
would be only ^ of 4,800.

Example 3.—Conversely, given a lap-joint, Fig. 205, in

which the plates are ^ in. thick and the tensile force on
the joint = 600 lbs. per linear inch of seam, how closely

must ^ inch rivets be spaced in one row, putting jS"=8,000

and 6" =12,000 lbs. per sq. in. ? Let the distance between

centres of rivets be =x (in inches), then the force upon
each rivet =600a7, while its section P=0.44 sq. in. Having
regard to the shearing strength of the rivet we put 600cc=

0.44x8,000 and obtain a?=5.86 in.; but considering that the

safe crushing resistance of the hole is =1^-^.12,000=

2,250 lbs., 600aj=2,250 gives a;=3.75 inches, which is the

pitch to be adopted. What is the tensile strength of the.

reduced sectional area of the plate, with this pitch '?
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Example 4—Double butt-joint
;
(see Fig. 207) ; ^s iiich

plate; ^ in. rivets; F=C'=12,000 ; S'=8,333; width of

plates=14 inches. Will one row of rivets be sufficient at

each, side of joint, if ^=30,000 lbs.? The number of rivets

^^ ? Here each rivet is in double shear and has therefore

a double strength as regards shear. In double shear the

safe strength of each rivet =2i^>S"= 7,333 lbs. Now 30,000^

7,333=40 (saj). With the four rivets in one row the re-

duced sectional area of the main plate is =[14—4x ^] X^s

=4,12 sq. in., whose safe tensile strength is =i^J"=4„12x

12,000=49,440 lbs.; which is > 30,000 lbs. .% main plate is

safe in this respect. But as to side-crushing in holes

in main plate we find that G't^d (i,e, 12,000 X Vs >^ M^^'^'^^
lbs.) is <.%Q i,e. <7,500 lbs., the actual force on side of

hole. Hence four rivets in one row are too few unless

thickness of maiiL plate be doubled. Will eight in one

row be safe ?

213a, (Addendum to § 206.) Elasticity of Stone and Cements.

—Experiments by Gen. Gillmore with the large Watertowi»

testing-machine in 1883 resulted as follows (see p. 221 for

notation)

:

With cubes of Haverstraw Freestone (a homogeneous brown-

stone) from 1 in. to 12 in. on the edge, E^ was found to be

from 900,000 to 1,000,000 lbs. per sq. in. approximately ; and

C about 4,000 or 5,000 lbs. per sq. in. Cubes of the same

range of sizes of Djckerman's Portland cement gave E^ from

1,350,000 to 1,630,000, and G from 4,000 to 7,000, lbs. per sq.

in. Cubes of concrete of the above sizes, made with the

Newark Cc.'s Rosendale cement, gave E^ about 538,000^ while

cubes of cement-mortar, and some of concrete, both made with

National Portland cement, showed E^ from 800,000 to 2,000,-

OOO lbs. per sq. in.

The compressibility of hrick jpiers 12 in. square in section

and 16 in. high was also tested. They were made of common
North River brick with mortar joints f in. thick, and showed

a value for E„ of about 300,000 or 400,000, while at elastic

limit C" was on the average 1,000, lbs. per sq. in.
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CHAPTER IL

TOKSION.

S14. Angle of Torsion and of Helix. "When a cylindrical

beam or shaft is subjected to a twisting or torsional action,

I. e. when it is the means of holding in equilibrium two
couples in parallel planes and of equal and opposite mo-
ments, the longitudinal axis of symmetry remains straight

and the elements along it exper-

lience no stress (whence it may be

I

called the "line of no twist"),

while the lines originally parallel to

Fig. 212. i^ assume the form of helices, each

element of which is distorted in its angles (originally

right angles), the amount of distortion being assumed pro-

portional to the radius of the helix. The directions of the

faces of any element were originally as follows : two radial,

two in consecutive transverse sections, and the other two

tangent to two consecutive circular cylinders whose com-
mon axis is that of the shaft. E.g. in Fig. 212 we have

an unstrained shaft, while in Fig. 213 it holds the two
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couples (of equal moment Pa= Qh) in equilibrium. These

couples act in parallel planes perpendicular to the axis of

the prism and a distance, ?, apart. Assuming that the

transverse sections remain plane and parallel during tor-

sion, any surface element, m, which in Fig. 212 was entire-

ly right-angled, is now distorted. Two of its angles have

been increased, two diminished, by an amount d, the angle

between the helix and a line parallel to the axis. Suppos-

ing m to be the most distant of any element from ihe axis,

this distance being e, any other element at a distance s

from the axis experiences an angular distortion =- <§„

If now we draw B' parallel to 0'A the angle B B',

=a, is called the Angle of Torsion, while d may be called the

helix angle', the former lies in a transverse plane, the latter

in a plane tangent to the cylinder. Now

tan d = (linear arc B B')-t-1; but lin. arc B B' =' ea; hence,

putting d for tan d, (3 being small)

(1)

(d and « both in radians).

215. Shearing Stress on the Elements. The angular distor-

tion, or shearing strain, d, of any element (bounded as al-

ready described) is due to the shearing stresses exerted on

it by its neighbors on the four faces perpendicular to the

tangent plane of the cylindri-

cal shell in which the element

is situated. Consider these

neighboring elements of an
outside element removed, and
the stresses put in ; the latter

are accountable for the dis-
^®- ^*^ tortion of the element and

-pdF
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hold it in equilibrium. Fig. 214 shows this element

"free." Within the elastic limit ^ is known to be propor-

tional to jOg, the shearing stress per unit of area on the

faces whose relative angular positions have been changed.

That is, from eq. (1), § 208, S -^^p^-r-Us; whence, see (1) of

§ 214,

In (2) Ps, and e both refer to a surface element, e being

the radius of the cylinder, and p^ the greatest intensity of

shearing stress existing in the shaft. Elements lying nearer

the axis suffer shearing stresses of less intensity in pro-

portion to their radial distances, i.e., to their helix-angles.

That is, the shearing stress on that face of the element

which forms a part of a transverse section and whose dis-

tance from the axis is z, is p, =— p^, per unit of area, and

the total shear on the face is pdF, c?^ being the area of the

face.

216. Torsional Strength.—^We are now ready to expose tlia

full transverse section of a shaft under torsion, to deduce

formulae of practical utility. Making a right section of

the shaft of Fig. 213 anywhere between the two couples

and considering the left hand portion as a free body, the

forces holding it in equilibrium are the two forces P of

the bft-hand couple and an infinite number of shearing

forces, each tangent to its circle of radius s, on the cross

section exposed by the removal of the right-hand portion.

The cross section is assumed to remain plane during tor-

sion, and is composed of an infinite number of dF's, each

being the area of an exposed face of an element | see !Fig.
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elementary shearing force = S p^dF, and s is its

lever arm about the axis Oo . For equilibrium, S (mom.),

about the axis Oo must =0 ; i.e. in detail

_p^o^p^a+ f ( -£ p,dF)%^ii

©r, redncing.

h rz^dF=Pa\ or, A.^Pa
eJ e

(3)

Eq, (3) relates to torsional strength, since it contains ^s, tha

greatest shearing stress induced by the torsional couple,

whose moment Pa is called the Moment of Torsion, the

stresses in the cross section forming a couple of equal and
opposite moment. Pa is also called the "torque."

Ip is recognized as the Polar Moment of Inertia of the cross

section, discussed in § 94 ; e is the radial distance of the

outermost element, and = the radius for a circular shafto

217. Torsional Stiffness.—In problems involving the angle

of torsion, or deformation of the shaft, we need an equa-

tion connecting Pa and a, which is obtained by substitut-

ing in eq. (3) the value of p^ in eq. (2), whence

I
=Pa. (4)

From this is appears that the angle of torsion, a, is pro-

portional to the moment of torsion, or " torque," Pa inch-lbs.,

within the elastic limit; a must be expressed in radians.
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Example.—A portion 3.4 ft. long, of a solid cylindrical shaft of soft

steel, of diam. = 1.5 in., is found by the use of "Torsion Clinometers"
(see frontispiece) to be held at an angle of torsion of a = 5.41°, =0.0944
radians, just before the elastic limit is reached, by a "torque," =Pa, of

10,200 in. -lbs. Compute the Modulus of Elasticity for Shearing.

Substituting in eq. (4), with I-p=Tzr^l2, (§94), =7r(0.75)^^2, =0.497
in.*, and Z= 3.4X 12= 40.8 in., we have

10,200X40 .8 Qg^nnnniv.'^ 0.0944 X 0.497
^ 8,870,000 lbs. per sq. m.

218. Torsional Resilience is the work done in twisting a

shaft from an unstrained state until the elastic limit is

reached in the outermost elements. If in Fig. 213 we
imagine the right-hand extremity to be fixed, while the

other end is gradually twisted through an angle each

force P of the couple must be made to increase grafdually

from a zero value up to the value Pj, corresponding to ai.

In this motion each end of the arm a describes a space

= ^aai, and the mean value of the force = }4Pi (compare

§ 196). Hence the work done in twisting is

Ui=}4FiX}4aaiX2=}4Piaaj^ . . (5)

By the aid of preceding equations, (5) can be written

If for ps "^e write 8' (Modulus of safe shearing) we have

for the safe resilience of the shaft

U'=4r^ -. . . . (7)

If the torsional elasticity of an originally unstrained shaft

is to be the means of arresting the motion of a moving
mass whose weight is O, (large compared with the parts

intervening) and velocity =v, we write (§ 133)

g 2'

as tlie condition that the shali shall not be injnrecL
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21U. roiar Moment of Inertia.—^For a shaft of circular

cross section (see § 94) /p=i^7rr*; for a hollow cylinder

/p=i^7r(ri*

—

r^) ', while for a square shaft If=yih^, h being

"the side of the square ; for a rectangular cross-section

sides h and li, I^=lJbh{lf-\-¥). For a cylinder e=r; if hoi-

low, e=r , the greater radius. For a square, e=i^6y'2.

220. Ifon-Circular Shafts.—If the cross-section is not cir-

cular it becomes warped, in torsion, instead of remaining

plane. Hence the foregoing theory does not strictly ap-

ply. The celebrated investigations of St. Tenant, how-
ever, cover many of these cases. (See § 708 of Thompson
and Tait's Natural Philosophy ; also, Prof. Burr's Elas-

ticity and Strength of the Materials of Engineering). His
results give for a square shaft (instead of the

ab'E.^ Pa of eq. (4) of § 217),
Ql

Pa=OMl^t . . . . (1)

and Pa=Jffi^p^f instead of eq. (3) of § 216, 2?s being the

greatest shearing stress.

The elements under greatest shearing strain are found

at the middles of the sides, instead of at the corners, when
the prism is of square or rectangular cross-section. The
warping of the cross-section in such a case is easily veri '

fied by the student by twisting a bar of india-rubber in

his fingers.

221. Transmission of Power.—Fig. 216. Suppose the cog-

wheel B to cause A, on the

same shaft, to revolve uni-

formly and overcome a resis-

tance Q, the pressure of the

teeth of another cog-wheel,

P 5 being drivenby still another

Fig. 216. wheel. The shaft AB is un-

der torsion, the moment of torsion being =Pa= Qh. (Pi

and ^1 the bearing reactions have no moment about the

axis of the shaft). If the shaft makes u revolutions per

unit-time, the work transmitted {transmitted ; not expend^
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ed in twisting the shaft whose angle of torsion remains
constant, corresponding to Fa) per unit-time, i.e. the Power,

is

X/=P.27ra.u=27ruPa . , , (8)

To reduce L to Horse Power (§ 132), we divide by N,
the number of units of work per unit-time constituting

vOne H. P. in the system of units employed, i.e.,

Horse Power =H. p=?!E!^
JSl

For example JSf=33,000 ft. -lbs. per minute, or =396,000
inch -lbs. per minute ; or = 550 ft. -lbs. per second. Usually

the rate of rotation of a shaft is given in revolutions per

minute.

But eq^. (8) happens to contain Fa the moment of torsion

acting to maintain the constant value of the angle of tor-

sion, and since for safety (see eq. (3) § 216) Fa= S'I.^-^ e,

with -ZJ,= y^TiT^ and e=r for a solid circular shaft, we have

for such a shaft

(Safe),H.P.=?f^ . . . (9)N

which is the safe H. P., which the given shaft can trans-

mit at the given speed. S' may be made 7,000 lbs. per sq.

inch for wrought iron ; 10,000 for steel, and 5,000 for cast-

iron. If the value of Pa fluctuates periodically, as when

a shaft is driven by a connecting rod and crank, for (H. P.)

we put toX(H. p.), m being the ratio of the maximum to

the mean torsional moment; m= about 172 under ordi-

nary circumstances (Cotterill).

With a hollow cylindrical shaft, of outer radius= rj, and inner= r 2

the r^ of eq. (9) must be replaced by (?*i*— /•2*)-^'"i- If> furthermore, the

thickness of metal is small, we may proceed thus, taking numerical data:

Let the radius to the middle of the thickness be ro= 10 in., the thickness

t=\ in., and the (steel) shaft make m=120 revs./min. ; with *S' = 5000
Ibs./in.^; then the total safe shearing stress in the cross-section is-

12'= 27rroi5;' = 27rlOXiX 5000= 78,540 lbs., whHe the velocity of the
mid-thickness is v' = 27rroU= 27: 10X2= 125.6 in./sec. = 10.47 ft. /sec. Hence
the (safe) power that may be transmitted at given speed is L= R'v'
= 78,540X10.47= 822,100 ft.-lbs. per sec; or, (-^550), =1495 H.P.
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222. Autographic Testing Machine.—Tlie principle of Prof
Thurston's invention bearing this name is shown in Fig

• Fie. 217.

217. The test-piece is of a standard shape and size, its

central cylinder being subjected to torsion. A jaw, carry-

ing a handle (or gear-wheel turned by a worm) and a drum
on which paper is wrapped, takes a firm hold of one end

of the test-piece, whose further end lies in another jaw

rigidly connected with a heavy pendulum carrying a pen-

cil free to move axially. By a continuous slow motion of

the handle the pendulum is gradually deviated more and

more from the vertical, through the intervention of the

test-piece, which is thus subjected to an increasing tor-

sional moment. The axis of the test-piece lies in the axis

of motion. This motion of the pendulum by means of a

proparly curved guide, WH, causes an axial (i.e., parallel

to axis of test-piece) motion of the pencil A, as well as an
angular deviation /9 equal to that of the pendulum, and
this axial distance CF,=^sT, of the peiicil from its initial

position measures the momenr of torsion =i^«=:^(? sin )5..

As the piece twists, the drum and paper move relatively

to the pencil through an angle sUo equal to the angle

of torsion a so far attained. The abscissa so and ordinate

sT oi the curve thus marked on the paper, measure,,

when the paper is unrolled, the values of a and Pa through.
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all the stages of the torsion. Fig. 218 shows typical

Fig. 218.

Jurves thus obtained. Many valuable indications are

given by these strain diagrams as to homogeneousness of

composition, ductility, etc., etc. On relaxing the strain

at any stage within the elastic limit, the pencil retraces

its path ; but if beyond that limit, a new path is taken

called an " elasticity-line," in general parallel to the first

part of the line, and showing the amount of angular re-

CO very, BC, and the permanent angular set, OB.

2222i.. Torsion Clinometers.—^When the test-piece used in the

Thurston testing machine is short, the indicated angles of

torsion below the elastic limit are far in excess of the actual

values, on account of the initial yielding of the wedges in the

jaws. By the use of " torsion clinometers," however (see

frontispiece) the angle of torsion can be measured accurately

within one minute of arc.

223. Examples in Torsion.—The modulus of safe shearing

strengtn. S', as given in § 221, is expressed in pounds per

square inch ; hence these two units should be adopted

throughout in any numerical examples where one of the

above values for S' is used. The, same statement applies

to the modulus of shearing elasticity, E^, in the table of

§ 210.

- Example 1.—Fig. 216. With P = 1 ton, a = 3 ft., I ^
10 ft. , and the radius of the cylindrical shaft r=2.5 inches,

required the max. shearing stress per sq. inch, ps, the

shaft being of wrought iron. From eq. (3) § 216

Pae 2,000x36x2.5 o oomi, • -u

^----T^' V..X(2.5)^
=2,930 lbs. per sq. inch,

which is a safe value for any ferrous raetaL
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Example 2.—What H. P. is the shaft in Ex. 1 transmit-

ting, if it makes 50 revolutions per minute ? Let u =
number of revolutions per unit of time, and N= the num-
ber of units of work per unit of time constituting one

horse-power. Then H. V.^Pu^na-^N, which for the foot»

pound-minute system of units gives

H. P.=2,000x50x27rx3--33,000=57i4: H. P.

Example 3.—What different radius should be given t(-

the shaft in Ex. 1, if two radii at its extremities, originally

parallel, are to make an angle of 2° when the given moment
of torsion is acting, the strains in the shaft remaining con-

stant. From eq. (4) § 217, and the table 210, with a=i|^c;r=*

0.035 radians (i.e. ;7-measure), and I^=^j^T^^ we have

y^
2,000x36x120

>^7r0.035x 9,000,000
-—=17.45 .-. r=2.04 inches.

(This would bring about a different p,, but still safe.) The

foregoing is an example in stiffness.

Example 4.—A working shaft of steel (solid) is to tran:^-

mit 4,000 H. P. and make 60 rev. per minute, the maximum
twisting moment being 1^ times the average; requireil

its diameter. • c^=14.74 inches. Ans.

Example 5.—In example 1, p = 2,930 lbs. per square

inch ; what tensile stress does this imply on a plane at 45°

with the pair of planes on which Ps acts ? Fig. 219 shows

p,dx

dx^'Ps

'dx^ps

Via. 220.
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a small cube, of edge =dx, (taken from the outer helix of

Fig. 215,) free and in equilibrium, tbe plane of the paper

being tangent to the cylinder ; while 220 shows the portion

BD 0, also free, with the unknown total tensile stress jorfa;^,^/^

acting on the newly exposed rectangle of area =dxxdx^%
p being the unknown stress per unit of area. From sym-

metry the stress on this diagonal plane has no shearing

component. Putting 2' [components normal to^-D]=0,

we have

pdx^^2=2dx'^p^Gos4:5°=dx^p^^/2.'.p=ps . (1)

That is, a normal tensile stress exists in the diagonal

plane BD of the cubical element equal in intensity to the

shearing stress on one of the faces, i.e., =2,930 lbs. per sq.

in. in this case.

Similarly in the plane AG will be found a compressive

stress of 2,930 lbs. per sq. in. If a plane surface had been

exposed making any other angle than 45° with the face of

the cube in Fig. 219, we should have found shearing and

normal stresses each less than p^ per sq. inch. Hence the

interior dotted cube in 219, if shown " free " is in tension

in one direction, in compression in the other, and with

no shear, these normal stresses having equal intensities.

Since S' is usually less than T' or C, ii Ps is made = S'

the tensile and compressive actions are not injurious. It

follows therefore that when a cylinder is in torsion any
helix at an angle of 45° with the axis is a line of tensile,

or of compressive stress, according as it is a right or left

handed helix, or vice versa.

Example 6.—A solid and a hollow cylindrical shaft, of

equal length, contain the same amount of the same kind

of metal, the solid one fitting the hollow of the other.

Compare their torsional strengths, used separately.

The solid shaft has only^ the strength of the hollow

one, Ans.
Example 7.—Compare the shafts of Example 6 as to tor-

sional stiffness (i. e. , the angles of torsion due to equal moments)

.

The solid shaft is only one-third as stiff as the other ; an equal

moment produces three times the angle. Ans.
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CHAPTER in.

FliEXUREOFHOMOGENEOUSPRISMSUHDEK
PERPENDICULAK FORCES IN ONE PLANE.

224. Assumptions of tlie Common Theory of Plexure.—Wlien

a prism is bent, under tlie action of external forces per-

pendicular to it and in tlie same plane witli each otlier, it

may be assumed tliat the longitudinal fibres are in tension

on the convex side, in compression on the concave side,

and that the relative stretching or contraction of the ele-

ments is proportional to their distances from a plane in-

termediate between, with the understanding that the flex-

ure is slight and that the elastic limit is not passed in any
element. i

This " common theory " is sufficiently exact for ordinary

engineering purposes if the constants employed are prop-

erly determined by a wide range of experiments, and in-

volves certain assumptions of as simple a nature as possi-

ble, consistently with practical facts. These assumptions

are as follows, (for prisms, and for solids with variable cross

sections, when the cross sections are similarly situated as

regards a central straight axis) and are approximately

borne out by experiment

:

(1.) The external or " applied " forces are all perpendicu-

lar to the axis of the piece and lie in one plane, which may
be called the force-plane ; the force-plane contains the

axis of the piece and cuts each cross-section symmetri-

cally
;

(2.) The cross-sections remain plane surfaces during

flexure
;

(3.) There is a surface (or, rather, sheet of elements)

which is parallel to the axis and perpendicular to the

force-plane, and along which the elements of the solid ex-
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perience no tension nor compression in an axial direction,

this being called tlie Neutral Surface;

(4.) The projection of the neutral surface upon the force

plane (or a
||
plane) being called the Neutral Line or Elastic

Curve, the bending or flexure of the piece is so slight that

an elementary division, ds, of the neutral line may be put

^dx, its projection on a line parallel to the direction of

the axis before flexure ;

(5.) The elements of the body contained between any

two consecutive cross-sections, whose intersections with

the neutral surface are the respective Neutral Axes of the

sections, experience elongations (or contractions, accord-

ing as they are situated on one side or the other of the

neutral surface), in an axial direction, whose amounts are

proportional to their distances from the neutral axis, and

indicate corresponding tensile or compressive stresses ; ,

(6.) E,=E,;

(7.) The dimensions of the cross-section are small com-
pared with the length of the piece ;

(8.) There is no shear perpendicular to the force plane

on internal surfaces perpendicular to that plane.

In the locality where any one of the external forces is

Applied, local stresses are of course induced which demand
separate treatment. These are not considered at present.

225. Illustration.—Consider the case of flexure shown in

Fig. 221. The external forces are three (neglecting the

Fig. 22i.
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weight of the beam), viz.: P^, Pg, and P3. P^ and P3 are

loads, P2 the reaction of the support.

The force plane is vertical. N^L is the neutral line or

elastic curve. NA is the neutral axis of the cross-section

at m / this cross-section, originally perpendicular to the

sides of the prism, is during flexure ~| to their tangent

planes drawn at the intersection lines ; in other words, the

side view QNB, of any cross-section is perpendicular to

the neutral line. In considering the whole prism free we
have the system Pj, P2, and P3 in equilibrium, whence
from 2^=0 we have P2=Pi+P3j and from 2" (mom. about

P) =0, P3?3=Pi?i. Hence given Pi we may determine the

other two external forces. A reaction such as Pg is some-

times called a supporting force. The elements above the

neutral surface NiOLS Sive in tension ; those below in com-
pression (in an axial direction).

226. The Elastic Forces.—Conceive the beam in Fig. 221

separated into two parts by any transverse section such

as QA, and the portion NiOJSf, considered as a free body

in Fig. 222. Of this free body the surface QAB is one of

^^dx

T«e. 222.
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tlie bounding surfaces, but was originally an internal sur-

face of tlie beam m Fig. 221. Hence in Fig. 222 we must
put in the stresses acting on all the dF^^ or elements of area

of QAB. These stresses represent the actions of the bodj
taken away upon the body which is left, and according to

assumptions (5), (6) and (8) consist of normal stresses (ten-

sion or compression) proportional per unit of area, to th©

distance, z, of the cZi^'s from the neutral axis, and of shear-

ing stresses parallel to the force-plane (which in most
cases will be vertical).

The intensity of this shearing stress on any dF varies

with the position of the dF with respect to the neutral

axis, but the law of its variation will be investigated later

(§§ 253 and 254). These stresses, called the Elastic Forces

of the cross-section exposed, and the external forces Pj and
P2, form a system in equilibrium. We may therefore ap-

ply any of the 3onditions of equilibrium proved in § 38.

227. The Neutral Axis Contains the Centre of Gravity of the

Cross-Section.—Fig. 222. Let e— the distance of the outer-

most elem.ent of the cross-section from the neutral axis, and
the normal stress per unit of area upon it be =p, whether

tension or compression. Then by assumptions (5) and (6),

§ 224, the intensity of nprmal stress on any dF is = -1 p
and the actual

normal stress on any dFis= — pdF , {1}

This equation is true for dF's having negative «'s, i.e.

on the other side of the neutral axis, the negative value

of the force indicating normal stress of the opposite char-

acter ; 'for if the relative elongation (or contraction) of two
axial fibres is the same for equal g's, one above, the other

below, the neutral surface, the stresses producing the
changes in length are also the same, provided ^t=:^^; see§§
184 and 201.

For this free body in equilibrium put 2'X=0 (Xis a

horizontal axis). Put the normal stresses equal to their

X components, the flexure being so slight, and the X com-
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ponent of the shears = for the same reason. This gives

(see eq. (1) )

r± pdF= ; i.e.Z PdFz^ ; or, ^ i^i=0 (2)

Ih which z— distance of the centre of gravity of the cross-

section from the neutral axis, from which, though un-

known in position, the g;'s have been measured (see eq.

(4) § 23).

In eq. (2) neither p-^e nor F can be zero .•. z must = ;

i.e. the neutral axis contains the centre of gravity. Q. E. D.

[If the external forces were not all perpendicular to the

beam this result would not be obtained, necessarily.]

228. The Shear.—The " total shear," or simply the
'* shear," in the cross-section is the sum of th.e vertical

shearing stresses on the respective dF's. Call this sum
J, and we shall have from the free body in Fig. 222, by

putting ^y=0 (F being vertical)

P,—F,—J=0.:J=F,—Pi . . (3)

That is, the shear equals the algebraic sum of the ex-

ternal forces acting on one side (only) of the section con-

sidered. This result implies nothing concerning its mode
of distribution over the section.

229. The Moment.—By the "Moment of Flexure" or

simply the Moment, at any cross- section is meant the sum
of the moments of the elastic forces of the section, taking

ihe neutral axis as an axis of moments. In this summa-
tion the normal stresses appear alone, the shear taking no part,

having no lever arm about the axisiVA. Hence, Fig. 222, the

moment of flexure (or "moment of resistance")

=J(ipdF).=f/dF.^=£^ (*)

This function, CdFz^, of the cross-section or plane figure



FLEXURE. 249

is the quantity called Moment of Inertia of a plane figure,

§ 85. For the free body in Fig. 222, by putting 2'(mom.3
about the neutral axis NA)=0, we have then

^

—

PiX^-]rP^X2=Q, or in general^ lL=zM . (5)
e e

in which M signifies the sum of moments,* about the neutral

axis of the section, of all the forces acting on the free body
considered, exclusive of the elastic forces of the exposed

section itself. M is also called the "Bending Moment."

Example.—In Fig. 222 let Pi = 3 and P2= 4 tons, Xi = l ft. 8 in. and

^2= 5 in.; the section of the beam being a rectangle, with NA=b= 3 in.

and QB=^h = Q in. Then I about axis NA is, (p. 94), fo/i^n- 12= 54 in.*;

and e=3 in. Hence the "bending moment," M, =3X20-4X5 = 40

in.-tons. Equating M to the "moment of resistance" [or moment of

the "stress couple" (see § 230)] we obtain, from eq. (5), p= Me-^I=

40X 3 H- 54= 2.22 tons/in.^ for the unit normal stress in the outer

fibre at Q, or B. We find also, for the shear at section QB, /=4— 3 = 1 ton.

230. Strength in Flexure.—Eq. (5) is available for solving

problems involving the Strength of beams and girders, since

it contains p, the greatest normal stress per unit of area to

be found in the section.

In the cases of the present chapter, where all the exter-

nal forces are perpendicular to the prism or beam, and

have therefore no components parallel to the beam, i.e. to

the axis X, it is evident that the normal stresses in any

section, as QB Fig. 222, are equivalent to a couple ; for the

condition I!X=0 falls entirely upon them and cannot be

true unless the resultant of the tensions is equal, parallel,

and opposite to that of the compressions. These two equal

and parallel resultants, not being in the same line, form a

couple (§ 28), which we may call the stress-couple. The
moment of this couple is the " moment of flexure " '~

, and

it is further evident that the remaining forces in Fig. 222,

viz.: the shear J and the external forces Pj and Pg* are

equivalent to a couple of equal and opposite moment to

the one formed by the normal stresses,

* It is evident, therefore, that J!f (ft.-lbs., or in. -lbs.) is numerically equal

to the "moment of flexure," or moment of the " stress couple "
; so that

occasionally it maybe convenient to use "Jf" to denote the value of the

latter momeut also.
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231. Flexural Stiffness.—Tiie neutral line, or elastic curvo^

containing the centres of gravity of all tlie sections, was
originally straight ; its radius of curvature at any point,

as N, Fig. 222, c'uring flexure may be introduced as fol-

lows. QB and U'V are two consecutive cross-sections,

originally parallel, but now inclined so that the intersec-

tion G, found by prolonging them sufficiently, is the centre

of curvature of the ds (put =dx) which separates them, at

JSf, and CG=p= the radius of curvature of the elastic

curve at N. From the similar triangles U' TIG and GNG we
have dk'.dx'.:e;Pf in which dX is the elongation, U' U^ of a

portion, originally =c?cc, of the outer fibre. But the rela-

tive elongation £=-t— of the latter is, by §184, within the

elastic limit, =^.\ -:^ =— and eq. (5) becomeLE E p ^ ^

EI=M (6)

AXIS X

From (6) the radius of curvature can be computed. E~
the value of E^—E^, as ascertained from experiments in

bending.
~ To obtain a differential equation of the elastic curve, (6)

may be transformed thus, Fig. 223. The curve being very

flat, consider two consecutive

(is's with equal dx's ; they may
be put = their c^x's. Produce

the first to intersect the dy of the

second, thus cutting off the d^y^

i'e. the difference between two

^^Jfy consecutive dy'^. Drawing a per-

pendicular to each ds at its left

extremity, the centre of curva-

ture G is determined by their in-

tersection, and thus the radius

of curvature p. The two shaded

Fig. 223. triangles have their small angles

equal, and d^y is nearly perpen-

dicular to the prolonged ds

;

hence, considering them sim-

ilar, we have

\p,dx:'.dx'.d^y :.-^J^^,
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and hence from eq. (6) we ) , , ^A^V
may write |

(approx.) ±EI^=M . (7)

as a differential equation of the elastic curve. From this

the equation of the elastic curve may be found, the de-

flections at different points computedj and an idea thus

formed of the stiffness. All beams in the present chap-

ter being prismatic and Jiomogeneous both jE' and / are the

same (i.e. constant) at all points of the elastic curve^ In

using (7) the axis Xmust be taken parallel to the length

of the beam before flexure, which must be slight ; the

minus sign in (7) provides for the case when d^y-r-dx^ ises"=

sentialiy negative.

232. Resilience of Flexure.—If the external forces are made
to increase gradually from zero up to certain maximum
Yalues,. some of them may do work, by reason of their

points of application moving through certain distances

due to the yielding, or flexure, of the body. If at the be-

ginning and also at the end of this operation the body is

at rest, this work has been expended on the elastic resis-

tance of the body, and an equal amount, called the work
of resilience (or springing-back), will be restored by the

elasticity of the body, if released from the external forces,

provided the elastic limit has not been passed. The energy

thus temporarily stored is of the potential kind; see §§

148, 180, 196 and 218,

232a. Distinction. Between Simple, and Continuous, Beams (or

** Girders ").—The external forces acting on a beam consist

generally of the loads and the " reactions " of the sup*
ports. If the beam is horizontal and rests on two supports
only, the reactions of those supports are easily found by
elementary statics [§ 36] alone, without calling into ac-

count the theory of flexure, and the beam is said to be a

Simple Beam, or girder ; whereas if it is in contact with
more than two supports, being " continuous,'* therefore,

over some of them, it is a Continuous Girder (§ 271). The
Temainder of this chapter will deal only with simple
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ELASTIC CURVES.

233. Case I. Horizontal Prismatic Beam, [Supported at Both

Ends, With a Central Load, Weight of Beam Neglected.—Fig.

224. First considering the whole beam free, we find eack

k- -Vd-

% .—x-

-I-
:^

Fig. 324. § 233.

reaction to be =%P. AOB is the neutral line ; required

the equation of the portion OB referred to as an origin,

and to the tangent line through as the axis of X To
do this consider as free the portion mB between any sec-

tion, m on the right of and the near support, in Fig.

225 The forces holding this free body in equilibrium

Fig. S25. Fis. S26.

nre the one external force ^P, and the elastic forces act-

ing on the exposed surface. The latter consist of J, the

shear, and the tensions and compressions represented in

the figure by their equivalent " stress-couple." Selecting

N, the neutral axis of m, as an axis of moments (that J
may not appear in the moment equation) and putting

2 (mom) =0 we have

P (I

2V"2
—X

j

rd^y-i 'y -P (I

dx" dx' 2 \2 /
(1)

Fig. 226 shows the elastic curve OB in its purely geomet-

rical aspect, much exaggerated. For axes and origin as in.

figure d^y-^doc^ is positive.
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Eq. (1) gives the second a;-deriYative of y equal to a

function of x. Hence tlie first fl?-derivative of y will be

equal to tlie a?-anti-derivative of tliat function, plus a con-

stant, (7. (By anti -derivative is meant tlie converse of de-

rivative, sometimes called integral though not in the sense

of summation). Hence from (1) we have (^/ being a con-

stant factor remaining undisturbed)

M^=~(Lx—-\+G . . (2)*
dx 2 V2 2r

(2)' is an equation between two variables c?2/-i-c?a; and a?, and
holds good for any point between and B; dy-^dx de-

noting the tang, of a, the slope, or angle between the tan-

gent line and X At the slope is zero, and x also zero

;

nencs at (2)' becomes

^7x0=0—0+C

which enables us to determine the constant C, whose value

must be the same at as for all points of the curve.

Hence C=0 and (2)' becomes

EIay _ r ( I xf\ ..^

^~2"i-2'^2j • • '
^^'

from which the slope, tan. «, (or simply a, ir jt-measure:
since the angle is small) may be found at auy point. Thus
at B we have x=}4l and dy-^dx=ai, and

. _ 1 PI'
••"^""16" M

Again, taking the cp-anti-derivative of both, members of eq,

(2) we have

^i2/=-f-(^-^)+C" . . . (3)'

and since at both x and y are zero, G' is zero. Hence
the equation of the elastic curve OB is
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^^^=f(^f) • • • <«'

To compute the deflection of from the right line joiii'^

ing A and ^ in Fig. 224, i.e. BK, =c?, we put x^}^lm{^), a

being then =d, and obtain

^^=^=©•5
• • •

<**

Eq. (3) does not admit of negative values for x ; for if

the free body of Fig. 225 extended to the left of 0, the ex-

ternal forces acting would be P, aownward, at ; and y^P,

upward, at B, instead of the latter alone ; thus altering

the form of eq. (1). From symmetry, however, we know

that the curve AO, Fig. 224, is symmetrical with OB about

the vertical through Q.

Numerical Illustration.— Let [the beam shown in Fig. 224, resting

on two unyielding supports at the same level, be of white oak timber

and bear a load of P= 200 lbs. at the middle, its length being Z=12 ft.

and cross-section rectangular with a width (horizontal) of 6 = 2 in. and

height /i = 6 in. The modiilus of elasticity E will be taken as 1,600,000

lbs./ in. ^ Required the radius of curvature, p, or the elastic curve at

a point 4 ft. from the right-hand pier (or left).

From the free body in Fig. 225 we have, using the form El-i-p for

the moment of the stress-couple in the section, and putting i'(moms.)j\r

= 0, with x= 2 ft., £7 -^J0= 100X48, the inch and pound being selected

as units. Now I=bh^-irl2 (p. 94) which= 36 iu.^j whence, solving,

(0= 1,600,000X 36 -H 4800= 4000 in. The cin-ve is evidently very flat.

The smallest radius of curvature is found at the middle of the beam
and is 2666 in.; at either extremity, A or B, it is infinite, since at each

of these points the moment of the stress-couple is zero.

At the same point (4 ft. from B) the "slope" of the elastic curve,

viz., dy^dx, is found by putting x= 2 ft. = 24 in!, in eq. (2) from which
is derived tan a = dy Idx= Q.Q025, corresponding to an angle of 0° 8' 36".

At the extremity B we find, from ai= PP-7-16£'/, the slope of the tangent

line to be ai = 0.0045; which is the tangent of 0° 15' 29".

The deflection of the middle point is known from eq. (4), viz.,

d = PP^48EI; i.e., d=(200X 144 X 144X 144) -v- (48X1,600,000X36) =
0.216 in.

It now remains to ascertain if the elastic limit is passed in any fibre

of the beam. If we put the form p/-^e (for moment of stress-couple)

in place of the present left-hand member of eq. (1), and solve for the

unit (normal) stress in outer fibre, we findp=JPe(J Z— 2;)-f-/, which
shows that p is greatest in the outer fibre of the section for which ^l—x
is greatest, within the limits of the half-length; and this occurs at the
middle of the beam, where x= 0. With this substitution we obtain
p(max.) = pm = Pie h- (47) ; or pm = (200 X 12 X 12 X 3) -f- (4 X 36) = 600
lbs./ in. ^, which is well within the elastic limit, for tension or compression
in white oak.
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233a. Load Suddenly Applied.—Eq. (4) gives the deflection

d corresponding to the force or pressure P applied at the

middle of the beam, and is seen to be proportional to it

If a load G hangs at rest from the middle of the beam,

P=G', but if the load G, being initially placed at rest

.upon the unbent beam, is suddenly released from the ex-

ternal constraint necessary to hold it there, it sinks and

dehects the beam, the pressure P actually felt by the beam
varying with the deflection as the load sinks. What is

the maximum deflection d^ ? and what the pressure P^^

between the load and the beam at the instant of maximum
deflection? In this motion of the body, or "load," it is

acted on by two forces, the constant downward force G (its

weight) and the variable upward force P, whose average vahie

is |Pni ; while its initial and final kinetic energy are each zero.

G does the work Gd^, while the work done upon P is ^Pmdm \

hence, by the theorem of '' Work and Energy " (p. 138), v/e

have

Gd^^hPrJra+0-Q (5)

That is, Pm= 2(r. Since at this instant the load is sub-

jected to an upward force of 2 (r and to a downward force

of only G (gravity) it immediately begins an upward mo-
tion, reaching the point whence the motion began, and

thus the oscillation continues. We here suppose the elas-

ticity of the beam unimpaired. This is called the " sud-

den " application of a load, and produces, as shown above,

double the pressure on the beam which it does when grad-

ually applied, and a double deflection. The work done

by the beam in raising the weight again is called its re-

silience.

Similarly, if the weight G is allowed to fall on the mid-

dle of the beam from a height Ji, we shall have

Gx(h+d^, or approx., Gh,= ^P^d^i

and hence, since (4) gives d,^ in terms of P^,

e;i=i .^P oreA=2i^^ . (6)



256 MECHANICS OIT EXGINEEEIXG.

This theory suppcs5es the mass of the beam small com-
pared with the falling weight.

234. Case II. Horizontal Prismatic Beam, Supported at Both

End? Bearing a Single Eccentric Load. Weight of Beam Neg-

p p lected.—Fig. 227. The reactions

4 t . of the -points of support, Pn and
O

I

AXIS X I

B

"
.

X i '
>^

y'^^^^i^^J?^ Jvm ^i^^^^^^^^fe
-^1' ^^^ easily found by consider-

j,— -]Ei^._-_J^^^^^^'^ I ing the whole beam free, and put-

j
Ip j

ting first 2'(mom.)o=0, whence i'l

^\
'^'

1 =PZh-Zi, and then J(mom.)B=0,
ri«227. whence Po=An—O^^i- i'o and

Pi will now be treated as known quantities.

The elastic curves 0(7 and OP, though having a comm on

tangent line at (and hence the same slope a^, and a com-
mon ordinate at 0, have separate equations and are both

referred to the same origin and axes, as shown in the

figure. The slope at 0, «o> and that at P,«i, are unknown
constants, to be determined in the progress of the work.

Eq[uation of OC.—Considering as free a portion of the

beam extending from P to a section made anywhere on

OC, X and y being the co-ordinates of the neutral axis of

that section, we conceive the elastic forces put in on the

exposed surface, as in the preceding problem, and put

2'(mom. about neutral axis of the section) =0 which gives

(remembering that here d?y-~dx^ is negative.)

Ei^^=p{y-x)—p,{k—x)', , . (1)
(X OC

whencO;. by taking the x anti-derivatives of both members

M^ =P(lx—^)-F,{lx—-^)+C
ax 2 2

To find 0, write out this equation for the point 0, where
dy-^dx=aQ and a;=0, and we have 0=P/«o> hence the

equation for slope is
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EI^=P{lx—^)-P,{l,x-^)+EIa^
.. (2)

Again taking the x anti-derivatives, we have from (2)

Ely =P (^^|1_|^._P,^^|^_^ YEIa,x+{C'=0) (3)

'^at Oboth X and 2/ are —0 .°. C'=0). In equations (1), (2),

and (3) no value of x is to be used <0 or >Z, since for

points in CB different relations apply, thus

Equation of CB.—Fig. 227. Let the free body extend

from ^ to a section made anywhere on (7^.2'(moms.), as

before, =0, gives (see foot-note on p, 322)

^^^=-^^^1-^) . . . (4)

(N.B. In (4), as in (1), Eld^y—dx^ is written equal to a neg-

ative quantity because itself essentially negative ; for the

curve is concave to the axis X in the first quadrant of the

co-ordinate axes.)

From (4) we have in the ordinary way (aj-anti-deriv.)

EI"^ =-Pil,x -J^)+C" . . (5X
ax 2

To determine C", consider that the curves CB and OG
have the same slope (dy-r-dx) at G where x=l; hence put

x~l in the right-hand members of (2) and of (5)' and

equate tha results. This gives C" = %PV-\-EIaQ and .-.

^it-^+ ^I'^PS.^t^ . (5)

A A o
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At C, where J5= ?, botli curves have the same ordinate;

hence, by putting x— l in the right members of (3) and (6)'

and equating results, we obtain C'"——}iPl^. .'. (6)' bo

comes

Mly = y2Pl'x+EIa^7>—P^
~2 6" ~6" (6)

as the Equation of CB, Fig. 227. But ag is still an unknown
constant, to find which write out (6) for the point B where

X = li, and y = 0, whence we obtain

- 1 ^Fl'—3Fl\-{-2P,l,^] . . , (7)" 6m\

«!= a similar form, putting Pq ^^t P,, and (l^—I) for I.

235. Maximum Deflection in Case II—Fig. 227. The or-

dinate ?/„ of the lowest point is thus found. Assuming

^> /4 k> it will occur in the curve G. Hence put the

dy-h-dx of that curve, as expressed in equation (2), =0.

Also for O.Q write its value from (7), having put Pi=P?-r-Zij

and we have

whence [a? for max. y]= ^yi(2k—l)

Now substitute this value of x in (3), also ao from (7), and

putPi =P?-T-Zi, whence

Max. Deflec.=2/max=^% . -^ ll'—3l%+W,'] ^M^^O-

236. Case III. Horizontal Prismatic Beam Supported at Both

Ends and Bearing a Uniformly Distributed Load along its Whole

Length.—(The weight of the beam itself, if considered,
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constitutes a load of this nature.) Let 1= the length

of the beam and w= the weight, per unit of length,

of the loading ; then the load coming upon any length x

will be =ivx, and the whole load ^=ui. By hypothesis w
is constant. Fig. 228. From symmetry we know that the

W=«)?

Ulli I 1 1 1 lU

Fig. 228.

reactions at A and B are each =}4iol, that the middle of

the neutral line is its lowest point, and the tangent line at

is horizontal. Conceiving a section made at any point

m of the neutral line at a distance x from 0, consider as

free the portion of beam on the right of m. The forces

holding this portion in equilibrium are yz'^h ^^^ reaction

at B ; the elastic forces of the exposed surface at m, viz.:

the tensions and compressions, forming a couple, and J
the total she?r ; and a portion of the load, iv(^/2l—x). The
sum of the mc ments of these latter forces about the neu-

tral axis of m, is the same as that of their resultant; (i.e.,

their sum, since they are parallel), and this resultant acts in

the middle of the length ^Z

—

x. Hence the sum of these

moments =w(}4l—x)^[}4l—x). Now putting 2' (mom.
about neutral axis of w)=0 for this free body, we have

BI
dx^

}4wl{}4l—x)—}^w(}41^xy

i.e.,^/g-= >
^t^(l^?2_^) (1)
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Taking tlie cc-anti-derivative of both sides of (1),

^^Tx =yM}{l^'^—}i^')+{G=0) (2)

as the equation of slope. (The constant is =0 since at

both dy-i-dx and x are =0.) From (2),

my=-^i}il'x'-%x')+[C'=0] . . (3)

which is the equation of the elastic curve ; throughout,

i.e., it admits any value of x from x=-\-y2^ to x=— yil.

This is an equation of the fourth degree, one degree high-

er than those for the Curves of Cases I and II, where

there were no distributed loads. If w were not constant,

but proportional to the ordinates of an inclined right line,

eq. (3) would be of the fifth degree ; if lo were propor-

tional to the vertical ordinates of a parabola with axis

vertical, (3j would be of the sixth degree ; and so on.

By putting x=y^l in (3) we have the deflection of be-

low the horizontal thro ugh A and B, viz.: (with W=^ total

load ^wl)

384 ' m S84:
' FI ' ' ^

^

237. Case IV. Cantilevers.—A horizontal beam whose only

support consists in one end being built in a wall, as in

Fig. 229(a), or supported as in Fig.

229(&) is sometimes called a canti-

lever. Let the student prove that in

Fig. 229(a) with a single end load P,

the deflection of^ below the tangent

at Ois d=j/Pl^-i-£^I;the same state-

ment applies to Fig. 229(&), but the

tangent at is not horizontal if the

beam was originally so. It can also

be proved that the slope at B, Fig.

229(a) (from the tangent at 0) is
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«i= 2^7"

The greatest deflection of the elastic curve from the right

line Joining AB, in Fig. 229(6), is evidently given by the

equation for y max. in § 235, by writing, instead of P of

that equation, the reaction at in Fig. 229(&). This assumes

that the max. deflection occurs between A and 0. If it

occurs between and B put (li—l) for I.

If in Fig. 229(a) the loading is uniformly distributed

along the beam at the rate of w pounds per linear unit,

the student may also prove that the deflection of B below

the tangent at is

238. Case V. Horizontal Prismatic Beam Bearing Equal Ter-

minal Loads and Supported Symmetrically at Two Points.—

Fig. 231. Weight of beam neglected. In the preceding

cases we have made use of the approximate form Eld'^y-r-dx^

in determining the forms of elastic curves. In the present

ris~T%p\
1-^ '- < 1-

Pig. 231. Fig. )i^Z.

case the elastic curve from to (7 is more directly dealt

with by employing the more exact expression EI-^f> (see

§ 231) for the moment of the stress-couple in any sectioUo

The reactions at and Care each =P, from symmetry.

Considering free a portion of the beam extending from A
to any section m between and C (Fig. 232) we have, by
putting 2 (mom. about neutral axis of m)=0,

P{i+x)- ^~Px==o .-. p^ 4r
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That is, the radius of curvature is the same at all points

of OG ] in other words 0(7 is the arc of a circle with the

above radius. The upward deflection of F from the right

line joining and G can easily be computed from a knowl-

edge of this fact. This is left to the student as also the

value of the slope of the tangent line at (and G). The
deflection of D from the tangent at G=^l^Pf-^EL as ip

Fig, 229(a),

SAFE LOADS IIS^ FLEXUKE.

239. Maximum Moment.—As we examine the different sec-

tions of a given beam undar a given loading we find differ-

ent values oi p, the normal stress per unit of area in the

outer element, as obtained from eq. (5) § 229, viz.:

^=il/. . . . , (1)
e

in which I is the " Moment of Inertia "
(§ 85) of the plane

figure formed by the section, about its neutral axis, e the

distance of the most distant (or outer) fibre from the neu<

tral axis, and ilf the sum of the moments, about this neu-

tral axis, of all the forces acting on the free body of which

the section in question is one end, exclusive of the stresses

on the exposed surface of that section. In other words

Jf is the sum of the moments of the forces which balance

the stresses of the section, these moments being taken

about the neutral axis of the section under examination.

For the prismatic beams of this chapter e and /are the

same at all sections, hence p varies with M and becomes a

maximum when J/ is a maximum. In any given case the

location of the " dangerous section" or section of maximum
M, and the amount of that maximum value may be deter-

mined by inspection and trial, this being the only method
(except by graphics) if the external forces are detached.
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If, however, the loading is continuous according to a de-

finite algebraic law the calculus may often be applied,

taking care to treat separately each portion of the beam
between two consecutive reactions of supports^ or detached

loads.

As a graphical representation of the values of 31 along

the beam in any given case, these values may be conceived

laid off as vertical ordinates (according to some definite

scale, e.g. so many inch-lbs. of moment to the linear inch

of paper) from a horizontal axis just below the beam. If

the upper fibres are in compression in any portion of the

beam, so that that portion is convex downwards, these or-

dinates will be laid off below the axis, and vice versa ; for

it is evident that at a section where ilf=0, p also =0, i.e.,

the character of the normal stress in the outermost fibre

changes (from tension to compression, or vice versa) when
if changes sign. It is also evident from eq. (6) § 231 that

the radius of curvature changes sign, and consequently the

curvature is reversed, when J/ changes sign. These mo-
ment ordinates form a Moment Diagram, and the extremities

a Moment Curve.

The maximum riioment, ilf^, being found, in terms of

the loads and reactions, we must make the p of the " dan-

gerous section," where M= M^^ equal to a safe value R',

and thus may write

^=M^ . . . o (2)
e

Eq. (2) is available for finding any one unknown quanti-

ty, whether it be a load, span, or some one dimension of

the beam, and is concerned only with the Strength, and not

with the stiffness of the beam. If it is satisfied in any

given case, the normal stress on all elements in all sections

is known to be = or <i?', and the design is therefore safe

in that one respect.

As to danger arising from the shearing stresses in any
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section, the consideration of the latter will be taken up in

11 subsequent chapter and will be found to be necessary

only in beams composed of a thin web uniting two flanges.

The total shear, however, denoted by J, bears to the mo-
ment ilf, an important relation of great service in deter-

mining M^. This relation, therefore, is presented in the

next article.

pd?

t-pdF ^

240, The Shear is the First x-Derivative of the Moment.—

^

Fig. 233. {x is the distance of any section, measured parallel

wdx ij' to the beam from an arbitrary

p'dp origin). Consider as free a ver-

tical slice of the beam included

between any two consecutive

vertical sections whose distance

apart is dx. The forces acting

are the elastic forces of the two
internal surfaces now laid bare,

and, possibly, a portion, tvdx,

of the loading, which at this

part of the beam has some intensity =w lbs. per running

linear unit. Putting 2'(mom. about axis .iV)=0 we have

(noting that since the tensions and compressions of section

JSf form a couple, the sum of their moments about N' is

just the same as about N,)

i- ^^— + Jdx+ivdx :0

But P^=M, the Moment of the left hand section,^ =31%
6 e

that of the right ; whence we may write, after dividing

through by dx and transposing.

M'—M
dx

-r
,

(jjdu . dM r

dx
(3)

for w -2 vanishes when added to the finite J, and M*^—M=
d3l= increment of the moment corresponding to the incre-

ment, dx, of X. This proves the theorem.
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Now the value of a? wliich renders M a maxininm or

minimum would be obtained by putting the derivative

dM~ dx = zero; hence we may state as a

Corollary.

—

At sections whe7'e the 'tnoment is a maximum
or Tninimiwrn the shear passes through the value zero.

The shear J at any section is easily determined by con°

sidering free the portioiL of beam from the section to either

end of the beam and putting 2'(vertical components)= 0.

In this article the words maximum and minimum are

used in the same sense as in calculus ; i.e., graphically,

they are the ordinates of the moment curve at points

where tie tangent line is horizontal. If the moment curve be

reduced to a straight line, or a series of straight lines, it

ias'no maximum or minimum in the strict sense just

stated ; nevertheless the relation is still practically borne

out by the fact that at the sections of greatest and least

ordinates in the moment diagram the shear changes sign

suddenly. This is best shown by drawing a shear diagram,

whose ordinates are laid off vertically from a horizontal

axis and under the respective sections of the beam. They
will be laid off upward or downward according as J" is

found to be upward or downward, when the free body con-

sidered extends from the section toward the right.

In these diagrams the moment ordinates are set off on

an arbitrary scale of somany inch-pounds, or foot-pounds,

to the linear inch of paper ; the shears being simply

pounds, or some other unit oiforce, on a scale of so many
pounds to the inch of paper. The scale on which the

beam is drawn is so many feet, or inches, to the inch of

(paper.

241. Safe Load at the Middle of a Prismatic Beam Support-

ed, at the Ends.—Fig. 234. The reaction at each support
is ^P. Make a section n at any dis.tance cc<-L from B.

Consider the portion nB free, putting in the proper elas-

tic and external forces. The weight of beam is neglected.

From i'(mom. about %)=0 we have
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pL=^x; i.e., M=%Px
e 2

Evidently Tlfis proportional to x, and tlie ordinates repre^

senting it will 4;lierefore be limited by the straight line

Fig. 234.

B'Bt forming a triangle B'BA'. From symmetry, another

triangle ORA' forms the other half of the moment dia-

gram. Frqm inspection, the maximum iHf is seen to be in

the middle where cc= }4l, and hence

(il/max.)=7!/;„=i^P? . (1)

Again by putting 2'(vert. compons.)=0, for the free body
nB we have

and must point downward since ~ points upward. Hence
the shear is constant and = i^P at any section in the right

hand half. If n be taken in the left half we would have,

nB being free, from J(vert. com.)=0,
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tlie same numerical value as before ; but J" must point up-

ward, since | at 5 and J at n must balance tbe downward
P at A. At A, then, the shear changes sign suddenly,

that is, passes through the value zero; also at A, Mis a

maximum, thus illustrating the statement in § 240. Notice

the shear diagram in Fig. 234.

To find the safe load in this case we write the maximum
value of the normal stress, p,^=R% a safe value, (see table

in a subsequent article) and solve the equation for P.

But the maximum value of p is in the outer fibre at A,

since Jf for that section is a maximum. Hence

S^^%Pl (2)

is lh.e equation for safe loading in this case, so far as the

normal stresses in any section are concerned.

Example.—If the beam is of wood and has a rectangu-

lar section with width &= 2 in., height h-= 4 in., while its

length 1= 10 ft., required the safe load, if the greatest nor-

mal stress is limited to 1,000 lbs. per sq. in. Use the

pound and inch. From § 90 1=^1^ M^=Vi2X2x64= 10.66

biquad. inches, while e=l=2 in.

.-. P- ifiZ-ixiM^O^^lTT.T lbs.
le 120x2

^ 242. Safe Load Uniformly Distributed along a Prismatic Beam
Supported at the Ends.—Let the load per lineal unit of the

length of beam he =w (this can be made to include the

weight of the beam itself). Fig. 235. From symmetry,

each reaction = yiwl. For the free body wO we have, put''

ting 2'(mom. about n)=Q,

pi wl / X a? ii/r w ,1 9\^ = -^x— (tax) - .-. Jf= j-ilx-^3ty)
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wliicli gives Jf for any section by making x vary from (F

to I. Notice tliat in this case tlie law of loading is con-

tinuous along tlie wliole length, and that hence the mo-
ment curve is continuous for the whole length.

W=«;?

Fig. 235.

To find the shear J, at n, we may either put 2'(vert. com
pons.)=0 for the free body, whence e7= YiWl—wx^ and mus
therefore_be downward for a small value of x ; or, employ

ing § 240, we may write out dM-~dx, which gives

J= dM
dx

(l—2x) (1/

the same as before. To find the max. 31, or Jfn,, put J- O.-

which gives cc^^L This indicates ajnaximum, forwliaB

substituted in d^3I-^dx\ i.e., in —iv, a negative result TB

obtained. Hence ilf^ occurs at the middle of the beam and

its value is

= iiwl'; .'. ^=yiwV=%Wl m

the equation of safe loading. W= total load=tyl-

It can easily be shewn that the moment curve is 2 por«
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lion of a parabola, whose vertex is at A" under the mid-

Jls of the beam, and axis vertical. The shear diagram

consists of ordinates to a single straight line inclined to

its axis and crossing it, i.e., giving a zero shear, under the

middle of the beam, where we find the max. 31.

If a frictionless dove-tail joint with vertical faces were

introduced at any locality in the beam and thus divided

the beam into two parts, the presence of J" would be made
manifest "by the downward slipping of the left hand part

oji the right hand part if the joint were on the right of the

middle, and vice versa if it were on the left of the middle.

This shows why the ordinates in the two halves of the

shear diagram have opposite signs. The greatest shear

is close to either support and is Jj^=^wl.

243, Prismatic Beam Supported at its Extremities and Loaded

in any Manner. Equation for Safe Loading.—Fig. 236. Given

p .p^ p the loads Pj, P^, and P3, whose

g I
'

I
I

Q distances from the right sup-

^^.. lLi port are l^, l^, and ^ ;
,required

the equation for safe loading

;

i.e., find ilf^ and write it =

If the moment curve were

continuous, i.e., if M were a

continuous function of x from

end to end of the beam, we
could easily find Jf^ by making

Fig. 236. dM-^dx=0, i.e., J=0, and sub-

stitute the resulting value of x in the expression for M.

But in the present case of detached loads, J is not zero,

necessarily, at any section of the beam. Still there is

sore J one section where it changes sign, i.e., passes sud-

denly through the value zero, and this will be the section

of greatest moment (though not a maximum in the stric^j

sense used in calculus). By considering any portion n '^

as free, «/is found equal to the Reaction at Diminished by

the Loads Occurring Between n and 0. The reaction at B is
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obtained by treating the whole beam as free (in which case

no elastic forces come into play) and putting 2'(mom.

about O)=0; while that at 0,=Pf,=Py-^P^-\-P^—Ps
If n is taken anywhere between and E, J=Pq

E " F,J=Po-Pi
F " H,J^P^-P^-P^
H " B, J=Po-P\-P2-Ps

This last value of j/also = the reaction at the other

support,^. Accordingly, the shear diagram is seen to

consist of a number of horizontal steps. The relation

J=dM-^dx is such that the dope of the moment curve is

proportional to the ordinate of the shear diagram, and

that for a sudden change in the slope of the moment curve

there is a sudden change in the shear ordinate. Hence in

the present instance, J being constant between any two
consecutive loads, the moment curve reduces to a straight

line between the same loads, this line having a different

inclination under each of the portions into which the beam
is divided by the loads. Under each load the slope of the

moment curve and the ordinate of the shear diagram change

suddenly. In Fig. 236 the shear passes through the value

zero, i.e., changes sign, at E; or algebraically we are sup-

posed to find that Pq—P^ is + while PQ—P1—P2 is — , in

the present case. Considering EO, then, as free, we find

Jf;„ to be

Mai=Poh~Pi{h~^i) and the equation for safe loading is

?^-Pol-P.{k-k) (1)

(i.e., if the max. il/is at F). It is also evident that the

greatest shear is equal to the reaction at one or the other

support, whichever is the greater, and that the moment
at either support is zero.

The student should not confuse the moment curve, which
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is entirely imaginary, with the neutral line (or elastic

curve) of the beam itself. The greatest moment is not

necessarily at the section of maximum deflection of the

neutral line (or elastic curve).

For the case in Fig. 236 we may therefore state that the

max. moment, and consequently the greatest tension or

compression in the outer fibre, will be found in the sec-

tion under that load for which the sum of the loads (in-

cluding this load itself) between it and either support first

equals or exceeds the reaction of that support. The
amount of this moment is then obtained by treating as free

either of the two portions of the beam into which this

section divides the beam.

244. Numerical Example of the Preceding Article.—Fig. 237.

Given Pi, Pg* -Ps* equal to i/^ ton, 1 ton, and 4 tons, re-

spectively ; <i
=5 feet, ^2= 7 feet, and ^3= 10 feet ; while ike

total length is 15 feet. The beam is of timber, of rectan-

gular cross-section, the horizontal width being b=10
inches, and the value of B' (greatest safe normal stress),

= ^ ton per sq. inch, or 1,000 lbs. per sq inch.



272 ' MECHANICS Of^ ENGINEERING.

Requirea the proper deptli k lor the beam, for safe load-

ing.

Solution.—Adopting a definite system of units, viz., the

inch-ton-second system, we must reduce all distances such

as I, etc., to inches, express all forces in tons, write K'= ^^

(tons per sq. inch), and interpret all results by the same sys-

tem. Moments will be in inch-tons, and shears in tons.

[N. B. In problems involving the strength of materials

the inch is more convenient as a linear unit than the foot,

since any stress expressed in lbs., or tons, per sq. inch, is

.
numerically 144 times as small as if referred to the square

foot.]

Making the whole beam free, we have from moms, about

O, Pb~ [>^X 60+1x84+4x120] ^3.3 tons .-. Po=5.5—
3.3=2.2 tons.

The shear anywhere between O and ^is J= Po=2.2 tons.

^ and i^ is e/ =2.2— 1^=1.7

tons.

The shear anywhere between i^ and His J =2.2—^—1=
0.7 tons.

The shear anywhere between H and B is J = 2.2

—

}4—

1

—4 =—3.3 tons.

Since the shear changes sign on passing H, .-. the max.
moment is at ^; whence making HO free, we have

M at H=M,,, =2.2 x 120— ^^ x 60—1 x 36 =198 inch-tons.

For safety M,„ must = , in which B'='^ ton per sq.

inch, e= }4^ — }4 of unknown depth of beam, and /, §90, =
I bM, with &= 10 inches

,vi. >^ .|-Xl0.¥^198; or 71^-237.6 .-. h=15A inches.

245. Comparative Strength of Rectangular Beams.—For such

a beam, under a given loading, the equation for safe load-

ing is

^=3i;„ i. e. ye E bh'=M^ .... (1)
«
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whence the following is evident, (since for the same length,

mode of support, and distribution of load, M^ is propor-

tional to the safe loading.)

For rectangular prismatic beams of the same length,

same material, same mode of support and same arrange-

ment of load :

(1) The safe load is proportional to the width of beams
having the same depth (A).

(2) The safe load is proportional to the square of the

depth of beams having the same width (h).

(3) The safe load is proportional to the depth of beams
having the same volume (i. e. the same hh]

(It is understood that the sides of the section are hori-

zontal and vertical respectively and thai the materia] \^

homogeneous.)

246. Comparative Stiflfness of Rectangular Beams.—Taking tli*.

deflection under the same loading as an inverse me^-sure

of the stiffness, and noting that in §§ 233, 235, and 236,

this deflection is inversely proportional to I—k hh^=
the " moment of inertia "of the section about its neutral

axis, we may state that

:

For rectangular prismatic beams of the same length,

same material, same mode of support, and same loading .•

(1) The stiffness is proportional to the width for beams
of the same depth.

(2) The stiffness is proportional to the cube of the

height for beams of the same width (&).

(3) The stiffness is proportional to the square of the

ciepth for beams of equal volume (hhl),

(4) It the length alone vary, the stiffness is inversely

proportional to the cube of the length.

247. Table of Moments of Inertia.—These are here recapitu-

lated for the simpler cases, and also the values of *?. the

distance of the outermost fibre from the axis.

Since the stiffness varies as /(other things being equal).



274 MECHANICS OF ENGINEERING.

while tlie strength, varies* as I~-e, it is evident that a

square beam has the same stiffness in any position (§89),

while its strength is greatest with one side horizontal, for

then e is smallest, being —^6.

Since for any cross-section 1= j dF z^^ in which «=the

distance of any element, dF, of area from the neutral axis,

a beam is made both stiffer and stronger by throwing

most of its material into two flanges united by a vertical

web, thus forming a so-called " I-beam " of an I shape. But
not without limit, for i;he web must be thick enough to

cause the flanges to act together as a solid of continuous

substance, and, if too high, is liable to buckle sideways^

thus requiring lateral stiffening. These points will be

treated later.

SECTION. / e

Rectangle, width = b, depth = h (vertical) Vm bh^ %h
Bollow Rectaiigle, symmet. about neutral axia. See 1

Fig. 238 (a) f
Vi» [6i h,»-b^ h\^ %h,

•Triangle, width =6, height = h, neutral axis parallel
^_

to base (horizontal). )

Vse M3 %h

Circle of radius r %^r^ r

Eing of concentric circles. Fig. 238 (b) }in(r\~r*^) Ti

Ehombus; Fig. 238 (c) h = diagonal which is vertical. V4e 5AS %h

Square with side b vertical. Via b* %b
" " " 6 at 45° with horiz. Vn ** HbVS

248. Moment of Inertia of I-beams, Box-girders, Etc.—In

common with other large companies, the Cambria Steel

* This function, /-r-e, of the plane figure formed by the cross-section

of a beam is evidently of three dimensions of length (cubic inches, for

example), and is tabulated in the handbooks of the steel companies for

different shapes of section; it is called the "section-modulus." See
next page.
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Co. of Johnstown, Pa., manufactures prismatic rolled beams

and other "shapes," of structural steel, which are variously

called I-beams, deck-beams (or " bulb-beams "), rails, angles,

T-bars, channels, Z-bars, etc., according to the form of their

sections. See Fig. 239 for some of these forms. The company

d-^ T
CHANNEL. DECK-BEAM. RAIL.

Fie. 239.

publishes a pocket-book giving tables of quantities rela-

ting to the strength and stiffness of beams, such as the

safe loads for various spans, moments of inertia of their

sections in various positions, etc., etc„ The moments of

inertia of /-beams and deck-beams are computed accord-

ing to §§ 92 and 93, with the inch as linear unit. The
/-beams range from 4 in. to 24 inches deep, the deck-

beams being about 7 and 8 in. deep. (See foot-note, p. 274.)

For beams of still greater stiffness and strength com-

binations of plates, channels, angles, etc., are riveted to-

gether, forming " built-beams,"' or " plate girders." The
proper design for the riveting of such beams will be ex-

amined later. For the present the parts are assumed to

act together as a continuous mass. For example, Fig. 240

shows a " box-girder," formed of two " channels " and

two plates riveted together. If the axis of symmetry, JV,

h h \ is to be horizontal it becomes the neu-

3 ff"* tral axis. Let (7= the moment of iner-

tia of one channel (as given in the

pocket-book mentioned) about the axis

iV perpendicular to the web of the chan-

nel. Then the total moment of inertia oj

the combination is (nearly)

^

m ^
Fig. 340.

4 =W^'iUd?—ld't'{d^y2if (1>
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In (1), &, t, and d are the distances given in Fig. 240 {d ex-

tends to the middle of plate) while d' and t' are the length

and width of a rivet, the former from head to head
(i.e., d' and t' are the dimensions of a rivet-hole).

For example, a box-girder of structural steel is formed of

two 15 -in. channels (35 lbs, per foot) and two plates 10 in.

wide and 1 in. thick ; the rivet-holes | in, wide and If in.

long. That is, 5-10; i= l; d=8; f= f; and d' = l| in.

Also from the hand-book we find that for the channel in

question C==320 in,-* (i.e., biquad. in.). Hence, eq. (1),

7^=640+ 2X10X1X64-4x1. 1(8-^)^ = 1625 in.4^

In this instance e=8^in, ; and if 15,000 lbs, /in.^ ( = 7,5

tons/in.2) be taken as the value of R' (greatest safe normal

stress in the extreme fibre of any section) as used by the

Cambria Steel Co. for box-girders in buildings, we have

" R'l 15000X1625 . . .,—= ^^ = 2, 867,500 inch-lbs.
e 8.5 ' '

That is, the max, safe ^'moment of resistances^ of the box-

girder is M^= 2,867,00O inch-lbs. = 1433.7 inch-tons; this

quantity having to do with normal stresses in the section. The

greatest " hending-momenf^ due to the amount, and mode, of

loading on the beam, must not exceed this. Proper provision

for the shearing stresses in the section, and in the rivets, wiU

be considered later,)

249. Strength of Cantilevers.—In Fig. 241 with a single

,

I ^ w^w? concentrated load P at the

i::!::^:::::::;;^ Q_i_J_J_J_J_Jl projecting extremity, we

r° easily find the moment at

71 to be Jf =Px, and the

/ max. moment to occur at

the section next the wall,

j
^f its value being M^=Pl.

The shear, J", is constant,
Fi«-24i. Fig. 242. ^mj = P at all sections.

The moment and shear diagrams are drawn in accordance

with these results.
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If the load W= wli^ uniformly distributed on tlie can-
tilever, as in fig. 242, by making nO free we have, putting
-2'(mom. about n) = 0,

pi
^-^=ivx . I .'.M=}iwaP.'. J4=;^w;Z2= ^ Wl.

Hence the moment curve is a parabola, whose vertex is at
0' and axis vertical. Putting I (vert, compons.) = we
obtain J = ivx. Hence the shear diagram is a triangle,

and the max. J= wl = TV.

250. Resume'ofthe Four Simple Cases.—The following table
shows the values of the deflections under an arbitrary
load P, or W, (within elastic limit), and of the safe load

;

Deflection

J
Safe load (from ?!I

I = Mm)

Relative strength

j Relative stiffness

1 under same load

j Relative stiffness

I under safe load

J Max. shear = Jm,(.wa.d

t location,

Cantilevers.

With one end
loadP
Fii?. 241

EI

B'l

P, (at wall)

With unif . load

Fig. 242

Beams with two end supports.

Load P in
middle
Fig. 234

EI
B'l

J.
3

W, (at wall)

iS'EI

,B'l

ViP, (at supp).

Unif. loaa
W=wl
Fig. 235

5 y\/fi

384' EI

8
128

6

16

5

W, (at suppi)

also the relative strength, the relative stiffness (under the

same load), and the relative stiffness under the safe load,

for the same beam.

The max. shear will be used to determine the proper

web-thickness for /-beams and " built-girders." The stu-

dent should carefully study the foregoing table, noting

especially the relative strength, stiffness, and stiffness

under safe load, of the same beam.

Thus, a beam with two end supports will bear a double



278 MECHANICS OF ENGINEERING.

load, if uniformly distributed instead of concentrated in

the middle, but will deflect ^;( more ; whereas with a given

load uniformly distributed the deflection would be only

5/^ of that caused by the same load in the middle, provided

<-he elastic limit is not surpassed ii? either case.

261. E', etc. For Various Materials.—The formula& = Jf^,
e

from which in any given case of flexure we can compute

the value of p^, the greatest normal stress in any outer

element, provided all the other quantities are known,

holds good theoretically within the elastic limit only.

Still, some experimenters have used this formula for the

rupture of beams by flexure, calling the value of p^ thus

obtained the Modulus of Rupture, B. R may be found to

differ considerably from both the ^ or C of § 203 with

some materials and forms, being frequently much larger.

This might be expected, since even supposing the relative

extension or compression (i.e., strain) of the fibres to be

proportional to their distances from the neutral axis as

the load increases toward rupture, the corresponding

bLi'esses, not being proportional to these strains beyond the

elastic limit, no lono^'er vary directly as tlie distances from the

neutral axis ; and the neutral axis does not pass through the

centre of gravity of the section, necessarily.

The following table gives average values for R, R', R",

and E for the ordinary materials of construction.'^ E, the

modulus of elasticity for use in the formulsB for deflection,

is given as computed from experiments in flexure, and is

nearly the pame as E^^ and E^.

In any example involving R', e is usually written equal

to the distance of the outer fibre from the neutral axis,

whether that fibre is to be in tension or compression

;

since in most materials not only is the tensile equal to the

compressive stress for a given strain (relative extension

or contraction) but the elastic limit is reached at about

the same strain both in tension and compression.

* Wet, or unseasoued, timber is very cousiderably weal^er than that (such as
ordinary " dry" timber) containing only 12 per cent, of moisture. Large pieces
of timber talie a much longer time to season than small ones. (Johnson.)
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Table foe Use in Examples in Flexure.

Timber. Cast Iron. Wro't Iron,
Structural

Steel.

Max. safe stress in outer fi-

)

bre—if'dbs. per sq. inch).

)

600
to

1,200

6,000 in tens.

12,000 in comp.
12,000 15,000

Stress in outer fibre at Elas.

)

limit =j?''(lbs. per sq. in.) )

17,000*
to

35,000
30,000

and upward.

" Modul. of Rupture " 1

=i?=lbs. per sq. inch. )

4,000
to

10,000
40,000 50,000 60,000

E^Mod. of Elasticity, j

=lbs. per sq. inch. )

1,000,000
to

2,000,000
17,000,000 25,000,000 29,000,000

In the case of cast iron, however, (see § 203) the elastic

limit is reached in tension with a stress =9,000 lbs. per

sq. inch and a relative extension of ^^ of one per cent.,

while in compression the stress must be about double to

reach the elastic limit, the relative change of form (strain)

being also double. Hence with cast iron beams, once

extensively used but now largely replaced by rolled beams

of structural steel, an economy of material was effected

by making the outer fibre on the compressed side twice

as far from the neutral axis as that on the stretched side.

Thus, Fig. 243, cross-sections with unequal flanges were

used, so proportioned that the centre of

gravity was twice as near to the outer

fibre in tension as to that in compression,

i.e., e2=2ej; in other words more material

J is placed in tension than in compression.

The fibre A being in tension (within elas-

tic limit), that at B, since it is twice as far from the neu-

tral axis and on the other side, is contracted twice as much
as A is extended ; i.e., is f.nder a compressive strain

double the tensile strain at A, but in accordance with the

above figures its state of stress is proportionally as much
within the elastic limit as that of A.

* In the tests by U. S. Gov. in 1879 with I-beams, B" ranged from 25,000
to 38,000, and tlie elastic limit was reached with less stress in the large
than in the smaller beams. Also, for the same beam, U" decreased with
larger spans.

1

N

i

1 ^

A f.

Fig. 243.
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The great range of values of R for timber is due not

only to the faet that the various kinds of wood differ

widely in strength, while the behavior of specimens of

any ona kind depends somewhat on age, seasoning, etc.,

but also to the circumstance that the size of the beam un-

der experiment has much to do with the result. The ex-

periments of Prof. Lanza at the Mass. Institute of Tech-

nology in 1881 were made on full size lumber (spruce), of

dimensions such as are usually taken for floor beams in

buildings, and gave much smaller values of R (from 3,200

to 8,700 lbs. per sq. inch) than had previously been ob-

tained. The loading employed was in most cases a con-

centrated load midway between the two supports.

These low values are probably due to the fact that in

large specimens of ordinary lumber the continuity of it&

substance is more or less broken by cracks, knots, etc.,

the higher values of most other experimenters having

been obtained with small, straight-grained, selected pieces,

from one foot to six feet in length. See footnote p. 278*

Yaluable information and tables relating to timber beams

may be found in the hand-book of the Cambria Steel Co.

The value R'= 1^,000 lbs. per sq. inch is employed by the

Cambria Steel Co. in computing the safe loads for their

rolled I-beams of structural steel ; but with the stipulation

that the beams (which are high and of narrow width) must

be secure against yielding sideways. If such is not the

case the ratio of the actual safe load to that computed with

i2' = 16,000 is taken less and less as the span increases.

The lateral security referred to may be furnished by the

brick arch-filling of a fire-proof floor, or by light lateral

bracing with the other beams.

252. Numerical Examples.

—

Example 1.—A square bar of

wrought iron, 1^ in. in thickness is bent into a circular
:|:

arc whose radius is 200 ft,, the plane of bending being par-

allel to the side of the square. Bequired the greatest nor^

mal stress p^ in any outer fibre.

Solution. From §§ 230 and 231 we may write

—t =£— .'. p=eU-T-p, i.e., is constant.
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For the units incli and pound (viz. tliose of the table in §

251) we have e=% in., /> =2,400 in., and ^=25,000,000 lbs.

per sq. inch, ani .•.

i>=i>m=^x 25,000,000-^2,400 =7,812 lbs. per sq. in.^

which is quite safe. At a distance of ^ inch from tne

neutral axis, the normal stress is =\_%-^}i.^Pm — %Pm—
5,208 lbs. per sq. in. (If the force-plane (i.e., plane of

bending) were parallel to the diagonal of the square, e

would =}4x 1.5^^2 inches, giving p^= \l,S12x ^/2 ] H^s.

per sq. in.) § 238 shows an instance where a portion, 0C7,

Fig. 231, is bent in a circular arc.

Example 2.—A hollow cylindrical cast-iron pipe of radii

3 y2 and 4 inches* is supported at its ends and loaded in

middle (see Fig. 234). Eequired the safe load, neglecting

the weight oi the pipe. From the table in § 250 we have

for safety

P=4
l̂e

From § 251 we put i?'= 6,000 lbs. per sq. in.; and from §

247/=^(ri*

—

rf)\ and with these values, r2 being =4> '"'i
—

4l, e=ri=4, 7i=-B- and Z=144 inches (the inch must be the

unit of length since i?'= 6,000 lbs. per sq. inch) we have

7>=4x6,000x;^- ^(256-150)-r-[144x4] .-. P=3,470 lbs.

The weight of the beam itself is (r= Vy, (§ 7), i.e.,

Q^^^r,'^ri)lr= f-(16-12i^)144Xjg=448 lbs.

(Notice that y, here, must be lbs., per cubic inch). This

weight being a uniformly distributed load is equivalent to

half as much, 221 lbs., applied in the middle, as far as the

strength of the beam is concerned (see § 250), .*. P must be

taken =3,249 lbs. when the weight of the beam is consid-

ered.

* And length of 13 feet, should be added.
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Example 3.—A Cambria I-beam, of structural steel, is to

be placed horizontally on two supports at its extremities and

is to be loaded imiformly (Fig. 235), the span being ^= 20 ft.

5g„_^ Its cross-section. Fig. 244, has a depth

T ^V^ parallel to the web, of 15 in. In the

lA

W f\

^
Fig. 244.

handbook of the Cambria Steel Co. it

-\ n" is designated as B 53, 15 in. in depth,

and weighing 42 lbs. per foot of length;

its section having a moment of inertia

/i = 442 in.4 about a gravity axis per-

pendicular to the web (for use when the web is vertical; the

strongest position) and 72= 14.6 in.^ about a gravity axis

parallel to the web (i.e., when the web is placed horizontally).

First, placing the web vertically, we have from § 250,

7->/7

Wi = safe load, distributed, =8-^. With R' = 16,000,

1 1 = 442, I= 240 inches, and ei --^ 7J inches, this gives *

TFi = (8 X 16,000 X 442) - (240X 7.5) - 31,430 lbs.

But this includes the weight of the beam, =20x42= 840

lbs.; hence a distributed load of 30,600 lbs., or 15.3 tons,

may be placed on the beam (secured against lateral yielding).

The handbook of the Cambria Steel Co. referred to gives 15.7

tons as the safe load.)

With the web placed horizontally, we find as safe load

Tf2= 8^-^^= (8 X 16,000 X 14.6) ^ (^240 X^) = 2830 lbs.

;

or less than 1/10 of Wi. Hence in this position the beam

could carry safely only 1990 lbs. above its own weight.

Example 4.—Required the deflection at the middle in the

first case of Ex. 3. From § 250 this deflection is

, _A
^'"384

* The handbook of the Cambria Steel Co. also gives in a separate

column the quantity /j^ej, called the "section-modulus," S, (cub. in.

or in.^); so that the formula for the safe load would be TFj = 8JS'*S -e- i,

S having the value 58.9 in.' in the present instance.

Wil^ 5 8R'h l^ 5 R' Z2

Ell "384" lei 'Ell "48 E '

ei
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. , 5 16,000 (240)2
'-'•' ^^^48 • 29,000,000 'V ^ ^'^^

.-. d,=0. 4:4:1 in.

Example 5.—A rectangular beam of yellow pine, of widtli

6=4 inches, is 20 ft. locg, rests on two end supports, and is

to carry a load of 1,200 lbs. at the middle ; required the

proper depth h. From § 250

le T 12 ' ^h

.: h?=6Pl-^4:B'b. For variety, use the inch and ton. For
this system of units P=0.60 tons, i?'=0.50 tons per sq. in.,

1=24:0 inches and 6= 4 inches.

.-. /i2=(6x0.6x240)4-(4x0.5x4)=108sq. in. .-. ^=10.4 in.

Example 6.—Suppose the depth in Ex. 5 to be deter-

mined by the conditien that the deflection shall be = Ygoo

•f the span or length. "We should then have from § 250

d= k 1=1 ^'
600 48 EI

Using the inch and ton, with ^=1,200,000 lbs. per sq. in.,

which = 600 tons per sq. inch, and /=Yl2^^^ we have

;^3^ 500x0.60x240x240x12 ^^^ _. ^^^^^ ^
48x600x4

As this is > 10.4 the load would be safe, as well.

Example 7.—Required the length of a wro't iron pipe

supported at its extremities, its internal radius being 2}^
in., the external 2.50 in., that the deflection under its oivn

weight may equal Yioo of the length. 579.6 in. Ans.

Example 8.—Fig. 245. The wall is 6 feet high and one

foot thick, of common brick work
(see § 7) and is to be borne by an

7-beam in whose outer fibres no

n
greater normal stress than 8,000

*£ lbs. per sq. inch is allowable. If

Pio. 245. a number of I-beams is available,
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ranging in height from 6 in. to 15 in. (by whole inches),

which one shall be chosen in the present instance, if their

cross-sections are Similar Figures, the moment of inertia of

the 15-inch beam being 800 biquad. inches ?

The 12-inch beam. Ans.

SHEARIXa STRESSES IN FLEXURE.

253. Shearing Stresses in Surfaces Parallel to the Neutral

Surface.—If a pile of boards (see Fig. 246) is used to sup-

port a load, the boards being free to slip on each other, it

is noticeable that the ends overlap, although the boards

Fig. 246.

are of equal length (now see Fig. 247) ; i.e., slipping has

occurred along the surfaces of contact, the combina-

tion being no stronger than the same boards side by
side. If, however, they are glued together, piled as in the

former figure, the slipping is prevented and the deflection

is much less under the same load P. That is, the com-

pound beam is both stronger and stiifer than the pile of

loose boards, but the lendency to slip still exists and is

known as the " shearing stress in surfaces parallel to the

neutral surface." Its intensity per unit of area will now
be determined by the usual " free-body " method. In Fig.

248 let AN' be a portion, considered free, on the left of any

N N

FiQ. S48.
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section N', of a prismatic beam slightly bent under forces

in one plane and perpendicular to the beam. The moment
equation, about the neutral axis at JSf', gives

^=M' ; whence «'= —=^
e 1

(1)

Similarly, with AN as a free body, NN' being =^dx,

t—=M; whence^=- .

e I
. (2)

p and p' are the respective normal stresses in the outer

fibre in the transverse sections N and N' respectively.

Now separate the block NN', lying between these two

consecutive sections, as a free body (in Fig. 249). And

^W
%f^^ I

BART OF J

furthermore remove a portion of the top of the latter block,

the portion lying above a plane passed parallel to the neu-

tral surface and at any distance z" from that surface. This

latter free body is shown in Fig. 250, with the system of

forces representing the actions uj)on it of the portions taken

away. The under surface, just laid bare, is a portion of a sur-

face (parallel to the neutral surface) in which the above men-
tioned slipping, or shearing, tendency exists. The lowfer por-

tion (of the block NN') which is now removed exerted this
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rubbing, or sliding, force on the remainder along the under

surface of the latter. Let the unknown intensity of this

shearing force be X(per unit of area) ; then the shearing

force on this under surface is =Xy"dx, (y",= oa in figure,

being the horizontal width of the beam a.t this distance z"

from the neutral axis of N') and takes its place with the

other forces of the system, which are the normal stresses

between , and portions of J and J', the respective
_z=z"

total vertical shears. (The manner of distribution of J
over the vertical section is as yet unknown ; see next arti-

cle.)

Putting 2 (horiz. compons.) = in Fig. 250, we have

P -p'dF— r -pdF—Xy"dx=0

,'.Xy"dx=P'—P fzdF
^ z"

But from eqs. (1) and (2), p'—p = (iHf—Jf)J-=^ dM,

while from § 240 dM = Jdx
;

..Xrd.=^-^jlaF.:X=^fliF (3)
z " z

as the required intensity per unit of area of the shearing
force in a surface parallel to the neutral surface and at a
distance z" from it. It is seen to depend on the " shear " J
and the moment of inertia I of the whole vertical section;

upon the horizontal thickness* y'' of the beam at the sur-

face in question ; and upon the integral / zdF,
^«"

which (from § 23) is the product of the area of that part of
the vertical section extendingfrom the surface in question to

the outerfibre, by the distance of the centre of gravity of that

part from the neutral surface.

* Thickness of actual substance.
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It now follows, from § 209, that the intensity (per unit

area) of the shear on an elementary area of the vertical

cross section of a bent beam, and this intensity we may call

Z, is equal to that X, just found, in the horizontal section

which is at the same distance (z") from the neutral axis.

254. Mode of Distribution of J, the Total Shear, over the Verti-

cal Cross Section.—The intensity of this shear, Z (lbs. per

sq. inch, for instance) has just been proved to be

Z=X=^, CzdF (4)
ly

To illustrate this, required the

value of Z two inches above the neu-

tral axis, in a cross section close to

the abutment, in Ex. 5, § 252. Fig.

251 shows this section. From it we
have for the shaded portion, lying

above the locality in question, y" =

4 inches, and C ~ ' sdF = (area
^ z"= 2

of shaded portion) X (distance of

its centre of gravity from J^A) = Fia.aoi.

(12.8 sq. in.) x (3.6 in.) = 46.08 cubic inches.

The total shear J = the abutment reaction = 600 lbs.,

while 1= L bM = ^ X 4 X (10.4)^ = 375 biquad. inches.

Boih J Siud I refer to the whole section.

600x46.08 ift.oiK= 18.42 lbs. per sq. m....Z-
375x4

•qui+e insignificant. In the neighborhood of the neutral

axis, where z" = 0, we have y'" = 4 and

r^ zdF= r^zdF=^ 20.8 X 2.6=54.8,J z"=0 Jz''=0 J
wh__e J and I of course are the same as before,

for z" =0
Hence
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Z=^o^ 21.62 lbs. per sq. in.

At the outer fibre since f^ zdF^O, %" being = e, ^ is =

for a beam of any shape.

For a solid rectangular section like the

above, Z and 2" bear the same relation to

each other as the co-ordinates of the para-

bola in Fig. 252 (axis horizontal).

Since in equation (4) the horizontal

thickness, y" , from side to side ef the sec-

tion of the locality where Z is desired, ^iq, 25?

occurs in the denominator, and since / %dF

increases as g" grows numerically smaller, the following

may be stated, as to the distribution of J, the shear, in

any vertical section, viz.:

The intensity (lbs. per sq. in.) of the shear is zero at

the outer elements of the section, and for beams of ordi-

nary shapes is greatest where the section crosses the neu-

tral surface. For forms of cross section having thin webs

its value may be so great as to require special investiga-

tion for safe design.

Denoting by Z^ the value of ^at the neutral axis, (which

=Xo in the neutral surface where it crosses the vertica

section in question) and putting the thickness of the sub-

stance of the beam = &o at the neutral axis, we have,

Zq—Xq— J
Iho

X
area above
neutral axis

(or below)
X the dist. of its cent,

grav.from that axis (5)

255. Values of Zo for Special Forms of Cross Section.—From
the last equation it is plain that for a prismatic beam the

value of Zo is proportional to J, the total shear, and hence

to the ordinate of the shear diagram for any particular

case of loading. The utility of such a diagram, as obtain-
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ed in Figs. 234-237 inclusive, is therefore evident, for by-

locating tlie greatest shearing stress in the beam it

enables us to provide proper relations between the load-

ing and the form and material of the beam to secure safety

against rupture by shearing.

The table in § 210 gives safe values which the ^^s-^

maximum Zq in any case should not exceed. It is
\

only in the case of beams with thin webs (see Figs.

238 and 240) however, that Zq is likely to need at-

tention.

For a Rectangle we have, Fig. 253, (see eq. 5, §

!

l4

Fig. 253.

254) 6o=&, I=>/xib'h\ and C\dF=%'h'h , yih^yiW

.'.Zn— Xn-
2
~ (total shear) -7-(whole area)

Hence the greatest intensity of shear in the cross-section

is A as great per unit of area as if the total shear were
uniformly distributed over the section.

Fig. 254. Fig. 233. Fig. ^5

For a Solid Circular section Fig. 254

Fig. 257.

Z,= -^f^dF =
IhffJo l^nr^ . 2r Stt 3 Tir^

[See § 26 Prob. 3].

For a Hollow Circular section (concentric circles) • Fig.

255, we have similarly,
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J
Xri*-r2*)2(ri-n)

J{r{'—r.i')

3 ;r(ri*— r2*)(ri— rg)

A-pplying this formula to Example 2 § 252, we first have

as the max. shear J„, =^P =1,735 lbs., this being the abut-

ment reaction, and hence (putting tc = (22 -=-
7))

^0 max. =_ 4x7xl735[64-42.8]

3x22[256-150](4-3.5)
= 294 lbs. per sq. in.

which cast iron is abundantly able to withstand in shear-

ing.

For a Hollow Rectangular Beam, symmetrical about its

neutral surface, Fig. 256 (box girder)

;7_ 3}i{hJh'-hJii) _3 J[5,V-5,V ]

' %ihji,'-hjh%h-h,) 2* [6A-^-M/][6;-&,]

The same equation holds good for Fig. 257 (I-beam with

square corners) but then &2 denotes the sum of the widths

of the hollow spaces.

256. Shearing Stress in the Web of an I-Beam.— It is usual to

consider that, with I-beams (and box-

beams) with the web vertical the shear J,

in any vertical section, is borne exclusively

by the web and is uniformly distributed

over its section. That this is nearly true

may be proved as follows, the flange area

being comparatively large. Fig. 258.- Let

Fi be the area of one flange, and F^ that of

the half web. Then since

_i =
N

b<

Fig. 258.

/=^ W+2i^, (f

)
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(tlie last term approximate, ^ /iq being taken for the radi-

us of gyration of jPi,) while

r zdF=Fi ±.-{-Fq-^, (the first term approx.) we have

J r\dF
Jo _ J%K{^F,+F,) J

if we write (2i^i+i^o) ^ (6i^i+2i^o)=K • ^ut &o^o is the

area of the whole web, .'. the shear per unit area at the

neutral axis is nearly the same as if J were uniformly dis-

tributed over the web. E. g., with jPi = 2 sq. in., and Fq

= 1 sq. in. we obtain Zq = 1.07 (J-r-hoh^.

Similarly, the shearing stress per unit area at n, the

upper edge of the web, is also nearly equal to e7-f- JqAo (see

eq.,4(§254) for then \ T {zdF)'\ ^ F^.y^K nearly,

while / remains as before.

The shear per unit area, then, in an ordinary I-beam 1&

obtained by dividing the total shear J by the area of the

web section.*

Example.—It is required to determine the proper thick-

ness to be given to the web of the 15-inch structural steel

rolled I-beam of Example 3 of p. 282, the height of web

being 13 in., and the maximum safe shearing stress being

taken as 8750 lbs./in.^ (as prescribed by the Philadelphia

building laws for mild steel). The web is vertical.

The greatest total shear, J^^ which occurs at either support,

is equal to half the load, i.e., to 15,715 lbs.; and hence,

with 6o denoting the thickness of web, we have

J 15 715
Zomax.=^; i.e., 8750= ,-^—j^ ;

.-. 6o = 0.138 in.

* That, is, for the vertical, or horizontal, section of web. The shear

on bome oblique plane may be somewhat larger than this. . See §§ 270a

and 314.
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(Units, inch and pound). The 15-incli I-beam in question of

the Cambria Steel Co.), weighing 42 lbs. to the linear foot,

has a web 0.41 in. thick, which provides a very ample resist-

ance to shearing stress.

In the middle of the span, Zo = 0, since J= 0. '

257. Designing of Riveting for Built Beams.—The latter are

generally of the I-beam and box forms, made by riveting

together a number of continuous shapes, most of the ma-
terial being thrown into the flange members. E. g., in fig.

259, an I-beam* is formed by riveting together, in the

manner shown in the figure, a " vertical stem plate " or

web, four "angle-bars," and two "flange-plates," each of

Fig. 259. Fig. 260.

these seven pieces being continuous through the whole
length of the beam. Fig 260 shows a box-girder. If the

riveting is well done, the combination forms a single rigid

beam whose safe load for a given span may be found by
foregoing rules ; in computing the moment of inertia, how-
ever, the portion of cross section cut out by the rivet

holes must not be included. (This will be illustrated in

a subsequent paragraph.) The safe load having been com-
puted from a consideration of normal stresses only, and

the web being made thick enough to take up the max.

total shear, J",,, with safety, it still remains to design the

riveting, through whose agency the web and flanges are

caused to act together as a single continuous rigid mass.

It will be on the side of safety to consider that at a given

* Such a built I-beam is usually designated a " plate-girder. '\ See

handbook of the Cambria Steel Co.
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locality in the beam the shear carried by the rivets con-

necting the angles and flanges, per unit of length of beam,
is the same as that carried by those connecting the angles

and the web ("vertical stem -plate"). The amount of this

shear may be computed from the fact that it is equal to

that occurring in the surface (parallel to the neutral sur-

face) in which the web joins the flange, in case the web
and flange were of continuous substance, as in a solid I-

beam. But this shear must be of the same amount per

horizontal unit of length as it is per vertical linear unit in

the web itself, where it joins the flange
;
(for from § 254 Z

=X) But the shear in the vertical section of the web,

being uniformly distributed, is the same per vertical linear

unit at the junction with the flange as at any other part

of the web section (§ 256,) and the whole shear on the ver-

tical section of web = J, the " total shear " of that section

of the beam.

Hence we may state the following :

The riveting connecting the angles with the flanges, (or

the web with the angles) in any locality of a built beam,

must safely sustain a shear equal to J on a horizontal length

eqtial to the height of web.

The strength of the riveting may be limited by the re-

sistance of the -rivet to being sheared (and this brings

into account its cross section) or upon the crushing resist-

ance of the side of the rivet hole in the plate (and this in-

volves both the diameter of the rivet and the thickness of

the metal in the web, flange, or angle. In its hand-book, the

Cambria Steel Co. gives tables for the safe strength of rivets,

and compressive resistance of plates ; based on unit shearing

stresses from 6,000 to 10,000 Ibs./sq. in. for shearing stress in

the rivets, and 12,000 to 20,000 Ibs./sq. in. compressive re-

sistance,in the side of the rivet hole, the axial plane section of

the hole being the area of reference.

In fig. 259 the rivets connecting the web with the angles

are in double shear, which should be taken into account in

considering their shearing strength, which is then double
;

those connecting the angles and the flange plates are in
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single shear. In fig. 260 (box-beam) where the beam is

built of two webs, four angles, and two flange plates, all

the rivets are in single shear. If the web plate is very high

compared with its thickness, vertical stiffeners in the form

of "angles " may need to be riveted upon them laterally

[see § 314].

Example.—^A built I-beam of structural steel (fig. 259)

is to support a uniformly distributed load of 40 tons, its ex-

tremities resting on supports 20 feet apart, and the height

and thickness of web being 20 ins. and J in. respectively.

How shall the rivets, which are | in. in diameter, be spaced

between the web and the angles which are also ^ in. in thick-

ness? Let the unit stresses taken be 7500 for shearing, and

12,500 for side compression (Ibs./in.^). Referring to fig. 235

we find that J = | W= 20 tons at each support and diminishes

regularly to zero at the middle, where no riveting will there-

fore be required. Each rivet, having a sectional area of J7r(|)2

= 0.60 sq. inches, can bear a safe shear of 0.60x7500= 4500 lbs.

in single shear, and hence of 9000 lbs. in double shear, which is

the present case. But the safe compressive resistance of the

side of the rivet hole in either the web or the angle is only

I in. Xj in. X 12500= 5470 lbs., and thus determines the spacing

of the rivets as follows

:

Near a support the riveting must sustain a shear equal

to 40,000 lbs. on a horizontal length equal to the height of

web, i.e., to 20 ins., and the safe compression for each rivet

is 5470 lbs. Hence 4000 h- 5470, or 7.2, rivets will be needed

for the 20-inch length. In other words, they must be spaced

20-^7.2= 2.7 in. apart, center to center, near the supports;

5.4 in. apart at ^ the span from a support; none at all in the

middle. By the Cambria handbook, this distance apart

should never be less than 3 diameters of the rivet; and, in

connecting plates in compression, should not exceed 16 times

the thickness of the plate.

As for the rivets connecting the angles and flange plates,

being in two rows and opposite (in" pairs) the safe shear-
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ing resistance of a pair (eacli in single shear) is 9,000 lbs.,

while the safe compressive resistance of the sides of the

two rivet holes in the angle bars (the flange plate being

much thicker) is =10,940 lbs. Hence the former figure

(9,000) divided into 40,000, gives 4.44 as the number of

pairs of rivets for 20 in. of length of the beam; i.e., the

rivets in one row should be 20^-4.44= 4.5 in. apart, centre

to centre, near a support ; the interval to be increased in

inverse ratio to the distance from the middle of span,

(^bearing in mind the practical limitation just given).

If the load is concentrated in the middle of the span,

instead of uniformly distributed, e/is constant along each

half-span, (see fig. 234) and the rivet spacing must accord-

ingly be made the same at all localities of the beam.

SPECIAL, PROBLEMS IN FLEXURE.

258. Designing Cross Sections of Built Beams.—The last par-

agraph dealt with the riveting of the various plates ; we

now consider the design of the plates themselves. Take

for instance a plate-girder, fig. 261 ; one vertical stem=

Fig. 261.
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plate, four angle bars, (each of sectional area = A, re-

maining after the holes are punched, with a gravity axis

parallel to, and at a distance = a from its base), and two
flange plates of width = h, and thickness = t. Let the

whole depth of girder = 7^, and the diameter of a rivet

hole =f. To safely resist the tensile and compressive

forces induced in this section by M,^ inch-lbs. (itf^ being

the greatest moment in the beam which is prismatic) we
have from § 239,

ifn. = — - (1)
e

E' for mild steel = 15,000 lbs. per sq. inch, e is = ^ ^

while i, the moment of inertia of the compound section,

is obtained as follows, taking into account the fact that

the rivet holes cut out part of the material. In dealing

with the sections of the angles and flanges, we consider

them concentrated at their centres of gravity (an approx-.

imation, of course,) and treat their moments of inertia

about N as single terms in the series fdF z^

(see § 85). The subtractive moments of inertia for the

rivet holes in the web are similarly expressed ; let 6o
=

thickness of web.

j
It, for web = ^h, (h—2tf—2b,t' [^—t—a'Y

„•, } I^ for four angles = 4A ['l

—

t—aY
( In for two flanges = 2(6—2f) t ('^f

the sum of which makes the ^ of the girder. Eq. (1) may
now be written

which is available for computing any one unknown quan-

tity. The quantities concerned in /^ are so numerous and

they are combined in so complex a manner that in any

numerical example it is best to adjust the dimensions of

the section to each other by successive assumptions and
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trials. (The hand-book of the Cambria Steel Co. gives tables

of safe loads of beam box-girders and plate-girders for a large

variety of sizes and distances between supports ; but attention-

is called to the fact that the loads given in the tables are based

on the assumption that the girder is supported laterally, and

that otherwise a proper reduction in the allowable safe load

must be made, as explained elsewhere in the hand-book. The

value of 15,000 Ibs./sq. in. for R' has been used in computing

these tables.)

Example.—(Units, inch and pound) . A plate-girder with

end supports, of span = 20 ft. = 240 inches, is to support

a uniformly distributed load of 45 tons = 90,000 lbs. If f

inch rivets are used, angle bars 3" X 3'' X 2'% vertical

web I" in thickness, and plates 1 inch thick for flanges, how
wide (6 = ?) must these flange-plates be ? taking h = 22

inches = total height of girder.

Solution.—From the table in § 250 we find that the max.

31 for this case is ^ Wl, where W = the total distributed

load (including the weight of the girder) and I = span-

Hence the left hand member of eq. (2) reduces to

Wl h 90000 X 240 X 22

16 • R' - 16 X 15000 "^^^^•

That is, the total moment of inertia of the section must
be = 1,980 biquad. inches, of which the web and angles

supply a known amount, since &o = >^", t = l''> t'= )'i"

,

a' = 1^", A= 2.0 sq. in., a = 0.9', and h = 22", are

known, while the remainder must be furnished by the

flanges, thus determining their width b, the unknown
quantity.

The elective area. A, of an angle bar is found thus

:

The full sectional area for the size given, = 3 X ^ +
2>^ X % = 2.75 sq. inches, from which deducting for two

rivet holes we have

A= 2.75—2 X ^ X >^_ 2.0 sq. in.

The value a = 0.90" is found by cutting out the shape
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X3of two angles from sheet iron, tlius : I

and balancing it on a knife edge* (The

gaps left by the rivet holes may be ignored,

without great error, in finding or). Hence, fig!^ a

substituting we have

Ih for web =A. . 1^x20^—2x>^ . ^ l8}(Y=282.d
In for four angles =4x2x [9.10]2=662.5

In for two flanges=2(6—|)xlx(10>^)2=220.4(&—1.5)
.-. 1980=282.3+662.5+(Z^1.5)220.4

whence b = 4.6 + 1.5 = 6.1 inches

the required total width of each of the 1 in. flange plates.

This might be increased to 6.5 in. so as to equal the

United width of the two angles and web.

The rivet spacing can now be designed by § 257, and

the assumed thickness of web, )4 in., tested for the max,

total shear by § 256. The latter test results as follows ;

The max. shear J^„ occurs near either support and =
)4 ^=45,000 lbs. .-., calling 6'o the least allowable thickness

of web in order to keep the shearing stress as low as 8, 000

lbs. per sq. inch,

6'o X 20" X 8000 = 45000 .-. 6'o=0.28 in.

showing that- the assumed width of )4 in. is safe.

This girder will need vertical stiffeners near the ends,

as explained subsequently, and is understood to be sup-

ported laterally, f Built beams of double web, or box-

form, (see Fig. 260) do not need this lateral support,

259. Set of Moving Loads.—When a locomotive passes over

a number of parallel prismatic girders, each one of which
experiences certain detached pressures corresponding to

the dijfferent wheels, by selecting any definite position of

the wheels on the span, we may easily compute the reac-

tions of the supports, then form the shear diagram, and

finally as in § 243 obtain the max. moment, Jf^s and the

* The Cambria hand-book gives values of / and a for sections of angle-

bars.

t See § 314.
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max. shear J^, for this particular position of the wheels.

But the values of Jf^ and J^ for some other position may
be greater than those just found. We therefore inquire

"which will be the greatest moment among the infinite

number of {M^Js, (one for each possible position of the

wheels on the span). It is evident from Fig. 236 from the

nature of the moment diagram, that when the pressures or

loads are detached, the 31^ for any position of the loads,

which of course are in this case at fixed distances apart,

must occur under one of the loads (i.e. under a wheel).

We begin .*. by asking : What is the position of the set of

moving loads when the moment under a given wheel is

greater than will occur under that wheel in any other po-

sition? For example, in Fig. 262, in what position of the

Fig 263.

loads Pi, P2> stc. on the span will the moment ilfa* i-6.,

under Pn, be a maximum as compared with its value under

Pg in any other position on the span. Let P be the resultant

of the loads which are now on the span, its variable distance

from be = cc, and Unfixed distance from Pg = a'', while

a, h, c, etc., are the fixed distances between the loads

(wheels). For any values oi x , as the loading moves

through the range of motion within which no wheel of the

set under consideration goes off the span, and no new

wheel comes on it, we have Pi =--^ P, and the mament

under Pg

=M^=RS-(x-a'y]—P^h-Pih-\-c)
'

i.e. M2=j(l^—'^^a'x)—P,b—P,(b-\-c) (1)
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In (1) we liave M2 as a function of x, all tlie other quan-

tities in tlie right hand member remaining constant as the

loading moves ; x may vary from x=^a-\-d to

x=l—{c-\-h—a). For a max. M2, we put dMi-h-dx=0, i. e.

m

j{l-2x+a)=0 .'. x{ioT Max M.,)=}4l+}^(^'

(For this, or any other value of x, (FM^-^daf is negative,

hence a maximum is indicated). For a max. M2, then, B
must be as as far {%Oj') on one side of the middle of the

span as P2 is on the other ; i.e., as the loading moves, the

moment under a given wheel becomes a max. when that

wheel and the centre of gravity of all the loads {then on

the span) are equi-distantfrom the middle of the span.

In this way in any particular case we may find the-

respective max. moments occurring under each of the

wheels during the passage, and the. greatest of these is the

3I„^ to be used in the equation ilt/,„ =^R'I-^e for safe loading:.*

As to the shear J, for a given position of the wheels this

will be the greatest at one or the other support, and

equals the reaction at that support. When the load moves
toward either support the shear at that end of the beam
evidently increases so long as no wheel rolls completely

over and beyond it. To find J" max., then, dealing with

each support in turn, we compute the successive reactions

at the support when the loading is successively so placed

that consecutive Avheels, in turn, are on the point of roll-

ing ofi^ the girder at that end ; the greatest of these is the

max. shear, J^^. As the max. moment is apt to come under

the heaviest load it may not be necessary to deal with

more than one or two wheels in finding M,„.

Example.—Given the following wheel pressures,

^< . .
8'

. . >B< . .
5'

. . >C< . . 4 . . <D
4 tons. 6 tons. 6 tons. 5 tons,

on one rail which is continuous over a girder of 20 ft. span,

under a locomotive.

* Since this may be regarded as a case of " sudden application" of a load, it is

customary to make R' much gmaller than for a dead load; from one-third to one-half

smaller.
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1. Required the position of the resultant of A, B, and (7'

2. " " " " A, B, C, and I)
;

3. " " " " B, G, and I).

4.. In what position of the wheels on the span will the

moment under ^ be a max. ? Ditto for wheel C? Required

the value of these moments and which is M^^ ?

5. Required the value of J^, (max. shear), its location and

the position of loads.

Results.—(1.) 7.8' to right of A. (2.) 10' to right of A.

(3.) 4.4' to right of B. (4.) Max. M^ = 1,273,000 inch lbs.

with all the wheels on ; Max. Jfc = 1,440,000 inch-lbs. with

wheels B, C, and JD on. (5.) J^ = 13.6 tons at right sup-

port with wheel I) close to this support.

260. Single Eccentric Load.—In the following special cases

of prismatic beams, peculiar in the distribution of the

loads, or mode of support, or both,

the main objects sought are the

values of the max. moment M^] for

use in the equation

il4^:?y(see§239);
e

and of the max. shear J,^, from

which to design the web riveting

in the case of an I or box-girder.

The modes of support will be such

that the reactions are independent

of the form and material of the

beam (the weight of beam being

neglected). As before, the flexure is to be slight, and the

forces are all perpendicular to the beam.

The present problem is that in fig. 263, the beam being
prismatic, supported at the ends, with a single eccentric

load, P. We shall first disregard the weight of the beam
itseli Let the span = ?i4-?2- First considering the whole
beam free we have the reactions Bi = PI, ^ I and B2 =
PI, -f- Z.

Making a section at m and having Om free, x being < I2,

S (vert, compons,) == gives

Fig. 263.
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i?2

—

J=0, i.e., e7=i?2

;

while from H (moni.),„=0 we have

P-^-R.,x= .-.Jf= B,x=?}}x
e I

These values of J and M hold good between and 0, J
being constant, while 31 is proportional to x. Hence for

C the shear diagram is a rectangle and the moment dia^

gram a triangle. By inspection the greatest M for C is

for X = I2, and = FI1I2 -4- I. This is the max. M for the

beam, since between G and B,M is proportional to the disr

tance of the section from B.

.'.M^=?}^a.Tid.^=I}i' ... (1)lei
is the equation for safe loading.

J = A\ ill any section along OB, and is opposite in sign

to what it is on 0(7; i.e., practically, if a dove-tail joint

existed anywhere on 0(7 the portion of the beam on the

right of such section would slide downward relatively to

the left hand portion ; but vice versa on GB.

Evidently the max. shear «/„, = ^x 01* ^2> as I2 or Z^ is the

greater segment.

It is also evident that for a given span and given beam
the safe load P', as computed from eq. (1) above, becomes

very large as its point of application approaches a sup-

port ; this would naturally be expected but not without

limit, as the shear for sections between the load and the

support is equal to the reaction at the near support and

may thus soon reach a limiting value, when the safety of

the web or the spacing of the rivets, if any, is considered.

Secondly, considering the weight of the heam, or any

uniformly distributed loading, weigliing w lbs. per unit of

length of beam, in addition to P, Fig. 264, we have the

reactions

'

iJ,=^+|'; and B,=i^+^

Let 1-2 he >?i ; then for a portion Om of length a?<^
moments about m give
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^— BoX + ivx.~=0
e

"

2

Le., on 00, M—B-iX — y^ lox^ . . . , (2)

Evidently for x = (i.e. at 0) M = 0, while for x = Iz (i.e.

at (7) we have, putting w = W -r- I

Mr=B>,l,— y: wll-
Z 2 ^^ J

(3)

(4)

it remains to be seen whether a value of M may not exist

in some section between- and G, (i.e., for a value of x

<l2 in eq. (2)), still greater than Mq. Since (2) gives Ji" as

a continuous function of x between and C, we put

dM-r- dx = 0, and obtain, substituting the value of the con-

stants B2 and w,

( max,
B^—ivx^O .'. Xa -< for M or

( min.

This must be for 31 max., since d^M -^ dx^ is negative

when this value of x is sub-

stituted. If the particular

-—J value of X given by (4) is

'P <l2, the corresponding vahie

of 31 (call it iSiJ from eq.

(2) will occur on 00 and will

be greater than 3Iq (Dia-

grams II. in fig. 264 show
this case) ; but if x„ is> h,

we are not concerned with

the corresj)onding value of

31, and the greatest 31 on 00
would be 3Ic.

For the short portion BG,

which has moment and shear

diagrams of its own not con-

tinuous with those for 00, it

"' may easily be shown that

3£c is the greatest moment of

P,gj_ge4. any section. Hence the 31
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max., or Ji|„, of tlie whole beam is either Mq or J^,

according as x^ is > or < I2. This latter critPT.ion may be

expressed thus, [with h— yi I denoted by l^, the distance

of P from the middle of the span] :

From (eq. 4)

and since from (4) and (2)

£ii_L.i/n>7 IS equiv
?F^^'7<- alent to L tf)<OjJ

if. -Pk W PI,

w (5)

The equation for safe loading is

and
e JV li

—=Jf„,when^is < ^

e W k

. . . . (6)

Seeeqs. (3) and (5)
for M, and Jf„

If either P, W, \, or \ is the unknown quantity sought, the

criterion of (6) cannot be applied, and we .•. use both equa-

tions in (6) and then discriminate between the two results.

The greatest shear is J^=Bi, in Fig. 264, where l^ is

281. Two Equal Terminal Loads, Two Symmetrical Supports

Fig. 265. [Same case as in Fig. 231, § 238]. Neglect

weight of beam. The reaction at each support being=P,
(from symmetry), we have for a free body Om with a; < Z,

.Pl
.0Px—^.

e
M=Px

while where a? > Zi and < ?i+?2

Px-P {x--\)—^=0 .: M=P\

(1>

(2)

That is, see (1), ilf varies directly with x between and C,

while between G and D it is constant. Hence for safe

loading

i.e.,— ^Pl , . (3)
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a(i11 illlllllk.i

MOMS.

illlllllllllllllllll

1

SHEARS

Tlie construction of the

B moment diagram is evident

^l^ ^1
^^

p from equations (1) and (2).

\ !
As for J", tlie shear, the

same free bodies give, from
I, (vert. forces)=0.

On OG . J=^P ... (4)

On CD . J=P—P==zerol5)

(4) and (5) might also be ob-

Pig 265 tained from (1) and (2) by-

writing J=d M-T-dx, but the

former method is to be preferred in most cases, since the

latter requires M to be expressed as a function of x while

the former is applicable for examining separate sections

without making use of a variable.

If the beam is an I-beam, the fact that J is zero any-

where on G D would indicate that we may dispense with

a web along G D io unite the two flanges ; but the lower

flange being in compression and forming a " long column "

would tend to buckle out of a straight line if not stayed by
a web connection with the other, or some equivalent brac-

ing.

282. XTniform Load over Part of the Span. Two End Supports.

Fig. 266. Let the load= W, extending from one support

over a portion =c, of the span, (on the left, say,) so that

W= IOC, w being the load per unit of length. Neglect

weight of beam. For a 'free body Dm of any length

X <, B (i.e. < c), 2" moms^=0 gives

pi wx-

2
-^icc=0 .'.M= (1)

which holds good for any section on B. As for sections

on B (7 it is more simple to deal with the free body m'G,

of leiigth

' x' < G B from which we have M^R^ x' . (2)



MECHANICS OF ENGINEEEH^TG.

Fig. 2G6.

wMch shows the moment
curve for B G tohe a. straight

line DC, tangent at D to the

parabola 0' D representing

eq. (1.) (If there were a con-

centrated load at B, CD
would meet the tangent at

D at an angle instead of co-

inciding with it ; let the stu-

dent show why, from the

shear diagram).

The shear for any value of

ic on -S is :

On 5
while on B C . e/=Bo= constant

(3)

The shear diagram is constructed accordingly.

To find the position of the max. ordinate of the para-

bola, (and this from previous statements concerning the

tangent at the point D must occur on B, as will be seen

and will .'. be the M^ for the whole beam) we put e/=--0 in

eq (3) whence

X (for JC)= i?i_JF[?—|] ^_(?
w tu

(5)

Wand is less than c, as expected. [The value oi Bi^--j- (l—'^\

—[wc ~-T) (I—2), (the whole beam free) has been substi-

tuted]. This value of x substituted in eq. (1) gives

is the equation for safe loading.

The max. shear J^ is found at and is

evidently >i?2j at C.

Bx, which is
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263. XTniforin Load Over Whole length With Two Symmetricj

Supports. Fig. 267.—With the notation expressed in the fig-

ure, the following results may be obtained, after having

divided the length of the beam into three parts for sepa-

rate treatment as necessitated by the external forces, which

are the distributed load W, and

and the two reactions, each =
}^ W. The moment curve is

made up of parts of three dis-

tinct parabolas, each with its

axis vertical. The central par-

abola maj sink below the hori-

zontal axis of reference if the

supports are far enough apart,

in which case (see Fig.) the elas-

tic curve of the beam itself becomes concave upward be-
tween the points E and F of " contrary flexure." At each
of these points the moment must be zero, since the radius

of curvature is co and M = EI ^ p (see § 231) at any sec-

tion
; that is, at these points the moment curve crosses its

horizontal axis.

As to the location and amount of the max. moment M^,
inspecting the diagram we see that it will be either at H,
the middle, or at both of the supports B and C (which from
symmetry have equal moments), i.e., (with I = total length,)

Fig. 267.

w
Mr.[and.-.—J=

( either ~
\
%li-l,^-] at ^

or Ell' at ^ and a
2Z

according to which is the greater in any given case ; i.e.

according as I2 is > or < l^ y'g.

The shear close on the left oi B = ivl^, while close to the

right oiBit=}4 W — id^. (It will be noticed that in this

case since the beam overhangs, beyond the support, the

shear near the support is not equal to the reaction there,

as it was in some preceding cases.)
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Hence (/„= wli

/2 ^-t^Zi P^^^^^^^g
^^ ^1 <^

264, Hydrostatic Pressure Against a. Vertical Plank.— From
elementary hydrostatics we know that the pressure, per

unit area, of quiescent water against the vertical side of a

tank, varies directly with the depth, x, below the surface,

and equals the weight of a prism of water whose altitude

= X, and whose sectional area is unity. See Fig. 268.

Fig. 26S.

*Tt& plank is of rectangular cross section, its constant

breadth, — b, being r~ to the paper, and receives no sup-

port excepi at its two extremities, and B, being level

with the water surface. The loading,' or pressure, per unit

of length of the beam, is here variable and, by above defini-

nition, is = w= yxb, where ;' = weight of a cubic unit

(i.e. the heaviness, see § 7) of water, and x = Om = depth

of any section m below the surface. The hydrostatic pres-

sure on dx = ivdx. These pressures . for equal dx's, vary

as the ordinates of a triangle ORiB.

Consider Onti free. Besides the elastic forces of the ex-

posed section m, the forces acting are the reaction Bq, and
the triangle of pressure OEm. The total of the latter is

W.
0(?=

I
wdx = yb I xdx = 'fb-^ (1)

and the sum of the moments of these pressures about m is

equal to that of their resultant ( = their sum, since they

are parallel) about m, and .% ==: jb -^ , ^,
A o



rLEXHRB. SPECIAL PEOBLEMS. 309

[From (1) wh«n x==1,wq have for tlie total water pres-

sure on the beam Wi = jb ^ and since one-third of this

will be borne at we have i?o =^}i T^^^-~\

Now putting i'( moms, about the neutral axis of wi)=0,

for Om free, we have

Box—JK . ^—^=0 .-. 31= /eyb {Vx—:j(?)
O 6

(2)

(which holds good from x = Oto x — I). From I (horiz.

forces) = we have also the shear

J=R,— W^=% yh {P—Sx') .... (3)

as might also have been obtained by differentiating (2),

since J = dM -^ dx. By putting e7 = (§ 240, corollary)

we have for a max. M, x = I -i- V3, which is less than I

and hence is applicable to the problem. Substitute this

in eq. 2, and reduce, and we have

Efl ,, . R'l 1 1
-^=Ji^, i.e. —=g "^^•rbV' . (4)

as the equation for safe loading.

265. Example.—If the thickness of the plank is h, re-

quired 7i = ?, if B' is taken = 1,000 lbs. per sq. in. for

timber (§ 251), and I = 6 feet. For the inch-pound-second

system of units, we must substitute B' = 1,000 ; ? = 72

inches ; y = 0.036 lbs. per cubic inch (heaviness of water

in this system of units); while I =h¥ -4- 12, (§ 247), and e

— }i h. Hence from (4) we have

1000 &A3 0.0366x723 ,„ ..^ . n 07 •

^rs 7T——n /- 1 ••• ^^=5.16 .'. h = 2.27 m.

It will be noticed that since x for ilfm = I -^ Vs, and not

^ I, ifm does not occur in the section opposite the resul-

tant of the water pressure ; see Fig. 268. The shear curve

is a parabola here ; eq. (3).
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^ ^ ^ ^'^ ^T

£r ^ 1 wTtr-

Fig. 289. Fig. 269a.

266. Flat Circular Plate, Homogeneous and of Uniform Thick-

ness, Supported all Eound its Edge and Subjected to Uniform Fluid

Pressure of w lbs. per sq. in. A strict treatment of this case

being very complicated, an approximate method, due to Prof.

C. Bach, will be presented."* Fig. 269 shows a top view of the

circular plate, in a horizontal position and covering a circular

I

opening, its edge

being supported

C^) continuously on

the edge of the

opening (but not

clamped to it).

Let the radius of

the plate be r and

its thickness h.

Under the plate

is the atmosphere,

while on its upper surface, acting uniformly over the whole of

that surface, is a fluid pressure whose excess over that of the at-

mosphere is w Ibs./sq. in. The particles near the upper surface

are under compressive stress, which is obviously greater near the

center of the circle ; those near the lower surface are in tension.

Let now the half-plate, CODE, (cutting along the diameter

CD) be considered as a "free body" in Fig. 269a; the tensile

and compressive stresses in the section COD being assumed to

form a stress-couple, as in previous case of flexure, the unit-

stress varying as the distance from the middle of the thick-

ness, with the stress in the outermost fiber denoted by p.

Then the moment of this couple will be written pi — e, as

before, where e = ^h and I =2rh^ -i- 12. On the upper surface

of the free body we find a total pressure of | W7rr^ lbs., covering

a semicircular surface ; so that (p. 22) the distance of the re-

sultant from is 4 r -^ Stt. The upward reaction from the

supporting edge is also | wirr'^ lbs., but its resultant acts 2r/7r

in. from (center of gravity of a semicircular "wire," p. 20).

Taking moments, then, about we have

wrrr^ r2 r 4 rl _ prh^
~2~ [V~3^J^

""3"

* Elasticitaet und Festigkeit, by C. Bach ; Berlin, 1898.

or, tv = -,« (0)
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Notwithstanding the imperfections of this analysis, the

experimental work of Prof. Bach shows that a modification of

eq. (0), viz. :—

-

(1)
5 K" „,

r

may be used with safety for the design of a plate under these

circumstances ; R% a safe unit working stress for the material,

having been substituted for p.

For example, let the plate (e.g., cylinder-head of a loco-

motive) be of mild steel with h = 1 in. and r = 8 in. Putting

R' = 16,000 lbs. /sq. in., we have from eq. (1) a safe w
= 1 (16000) X (1 H- 8)' =. 208 lbs. per sq. in.

[N.B. If the plate is clamped all round the edge, we may
write f instead of the |. (Bach.)

]

266a. Homogeneous Circular Plate of Uniform Thickness, h,

Supported all Round the Edge, with Concentrated Load (P lbs.) in

Center. By the same method as before we may here derive

P = 1 Trh^p ; but from his experiments in this case Prof. Bach
concludes that the formula for safe design should be written

P lirh'R'.
o

(2)

It is seen from eq. (2) that the value of P is independent of

the radius of the plate; depending only on the material and

the thickness, h.

266b. Homogeneous Elliptical and Rectangular Plates of Con-

stant Thickness, h , Supported all Round the Periphery. According

to Prof. Bach's approximate analysis, as supplemented by his

experimental researches, we may use the following formulae for

Fig. 269&.

safe design of elliptical and rectangular plates, supported (not

clamped) around the whole periphery. See Fig. 2696 for

notation of dimensions ; h being the uniform thickness in each



312 MECHANICS OF ENGINEERING.

case, and a being > 6. R' = max. safe unit stress for the

material.

For the elliptical plate under unifornily distributed pressure

(over whole area) of w lbs. / sq. in., denoting the ratio 6 -r- a by

m, we have

w = ^ {1 +m')J^,.R'; .... (3)

and under a central concentrated load of P lbs.,

3^ 3 + 2m^+ 3w^ , ...

(N.B. If the edge is clamped down all round we may use

values of w and P about 50 per cent, greater than the above.)

With rectangular plates under a uniformly distributed pressure,

denoting the ratio 6 -;- a by m, we have

w = l{l +m')f,.R' ..... (5)

and for a concentrated central load P, with n denoting the ratio

P = i- (1 + n') . h'R' .'.... (6)
on

In the particular case of the square plate, the side of the

square being a, eqs. (5) and (6) reduce to

7 2

(uniform pressure) w = S.6 — .R'; (7)

(central load) P =o h'R' (8)
o

266c. Homogeneous Flat Circular Plate, of TTniforin Thickness, used as Piston

of an Engine. In such a case we have fluid pressures ou both sides of the plate

or disc, neither of which is necessarily one atmosphere ; while at the center

we have acting the concentrated pull or thrust, P lbs., of the piston rod. (Fric-

tional forces around the edge may be disregarded.) If w denote the greatest

difference between the (uniform) fluid pressures (per sq. in.) on the two sides,

we may write (according to Grashof's analysis, as quoted by Unwin), for safe

design in this case :
—

^-If.-^' . (9)

(E', h, and r, have the same meaning as before.)
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267. ResilienceofBeamWithEndSupports.—Fig. 270. If a

9g mass whose weight is G {G large com-

!^
I

pared with that of beam) be allowed to

^^ J __^^'-l_p
fall freely through a height = h upon

g J
I

- 1^ ^j^^ centre of a beam supported at its

a-.y
TPm extremities, the pressure P felt by the

Fig. 270. beam increases from zero at the first

instant of contact up to a maximum P^, as already stated

in §233a, in which the equation was derived, d^ being

small compared with h,

The elastic limit is supposed not passed. In order that

the maximum normal stress in any outer fibre shall at most

be=^', a safe value, (see table §251) we must put

=-7^ [according to eq. (2) §241,] i.e. in equation (a)

above, substitute F^= [4 Ii'l]-^Ie, which gives

having put I==FJi? {h being the radius of gyration §85)

and Fl= V the volume of the (prismatic) beam. From
equation (&) we have the energy, Gh, (in ft. -lbs., or inch-

lbs.) of the vertical blow at the middle which the beam of

Pig. 270 will safely bear, and any one unknown quantity

can be computed from it, (but the mass of G shaiili not

be small compared with that of the beam.)

The energy of this safe impact, for two beams of the

same material and similar cross-sections (similarly placed),

is seen to be proportional to fheii volumes; while if further-

more their cross-sections are the same and similarly

placed, the safe Gh is proportional to their lengths. (These
same relations hold good, approximately, beyond the elas'

tic limit.)

It will be noticed that the last statement is just the re-
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verse of wliat was found in §245 for static loads, (the

pressure at tlae centre of the beam being then equal to

the weight of the safe load) ; for there the longer the beam
(and .°. the span) the less the safe load, in inverse ratio.

As appropriate in this connection, a quotation will be

given from p. 186 of " The Strength ' of Materials an^

Structures," by Sir John Anderson, London, 1884, viz.:

"It appears from the published experiments and state-

ments of the Railway Commissioners, that a beam 12 feet

long will only support )4 of the load that a beam 6 feet

long of the same breadth and depth will support, but that

it will bear double the weight suddenly applied, as in the

case of a weight falling upon it," (from the same height,

should be added) ;
" or if the same weights are used, the

longer beam will not break by the weight falling upon it

unless it falls through twice the distance required to frac-

ture the shorter beam."

268. Combined Flexure and Torsion. Crank Shafts. Fig. 271.

Let OiB be the crank, and NOi the portion projecting

beyond the nearest bearing

N. P is the pressure of the

connecting-rod against the

crank-pin at a definite in-

stant, the rotary motion be-

ing uniform. Let a= the

perpendicular dropped from

the axis OOi of the shaft

upon P, and 1= the distance

of P, along the axis Oj from

the cross-section iV^TwiV^' of the

Let NW be a diameter of this

In considering the portion

NOiB free, and thus exposing the circular section iVmZV^,

we may assume that the stresses to be put in on the ele-

ments of this surface -are the tensions (above NN') and

the compressions (below NN') and shears "| to NN', due

to the bending action of P ; and the shearing stress tan=

shaft, close to the bearing,

section, and parallel to a.
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gent to tlie circles which have as a common centre, and

pass through the respective dF's or elementary areas,

these latter stresses being due to the twisting action of P.

In the former set of elastic forces let p = the tensile

stress per unit of area in the small parallelopipedical ele-

ment m of the helix which is furthest from NN' (the neu-

tral axis) and /= the m.oment of inertia of the circle about

NN'-, then taking moments about NN' for the free body,

(disregarding the motion) we have as in cases of flexure

(see §239)

pT T.7 . .. . .. Plr.= PI ; i.e., p- («)

[None of the shears has a moment about iVW.] Next

taking moments about OOi, (the flexure elastic forces, both

normal and shearing, having no moments about OOi) we
have as in torsion (§216)

^^^-i^= Pa ; i.e., p^=
Par
~I7

Q>)

in which p^ is the shearing stress per unit of area, in the

torsional elastic forces, on any outermost dF, as at m

;

and 7p the polar moment of inertia of the circle about its

centre 0.

Next consider free, in Fig. 272, a small parallelopiped

taken from the helix at m (of Fig. 271.) The stresses [see

§209] acting on the four faces p" to the paper in Fig. 272

are there represented, the dimensions (infinitesimal) being

n " to NN, &
II
to 00,, and d -] io the paper in Fig. 272.

/pnd

pM'

^Pgticl

—"pM

p^na

pnd

- H
-J) M

P,M^,

-p/id

Fig. 272.

qcd-
./""

Fiff. 273.

pnd
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By altering the ratio of 6 to % we may make the angle 6

what we please. It is now proposed to consider free the

triangular prism, GUT, to find the intensity of normal

stress q, per unit of area, on the diagonal plane GH, (oi

length— c,) which is a bounding face of that triangulai'

prism. See Fig, 273. By writing 2" (compons. in direc-^

tion of normal to GII)=0, we shall have, transposing,

qcd=pnd sin d+pjbd sin d+pjid cos d ; and solving for q

q=jp -- sin d+p, -sin<?+-. cos 6j ; . (1;

but n : c= sin d and b : c= cos 6 .*.

q=p sin^^+Ps2 sin d cos d . . (2)

This may be written (see eqs. 63 and 60, O. W. J. Trigo-

nometry)

q^}4pO—Gos2d)+p,sm2d . . (3)

As the diagonal plane GH is taken in different positions

(i.e., as d varies), this tensile stress q (lbs. per sq. in. for

instance) also varies, being a function of d, and its max,
value may be >^. To find 6 for q max. we put

tJ, =j9sin2^4-2^sCos2(?, . . (4)

= 0, and obtain: tan[2(^ for q max)]=>

—

~ . . • (5)

Call this value of 6, 6'. Since tan 2d' is negative, 2d' lies

either in the second or fourth quadrant, and hence

sin2^^=± ,

^" and cos 2^'=rp—7=^= (6)

[See equations 28 and 29 Trigonometry, O. W. J.] The
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apper signs refer to tlie second quadrant, the lower to tlie

fourth. If we now differentiate (4), obtaining

^=2i)cos2^-4p,sin2^ . . . (7)

W8 laote that if the sine and cosine of the [2^'] of the 2nd
quadrant [upper signs in (6)] are substituted in (7) the re-

sult is negative, indicating a maximum ; that is, g is a max-
imum for 6= the d' of eq. (6) when the U2>per signs are taken

(2nd quadrant). To iind q max., then, put 6' for 6 in (3)

substituting from (6) (upper signs). We thus find *

g-max =;^[p+Vy+4^] . . (8)

A similar process, taking components parallel to GH,
Fig. 273, will yield q^ max., i.e., the max. shear per unit of

area, ^hich for a given p and p^ exists on the diagonal

plane GH in any of its possible positions, as d varies.

This max. shearing stress is

g^max =^yp2_|_4^^2 ^
^ (9j

In the element diametrically opposite to m in Fig. 211, p
is compression instead of tension ; q maximum will also

be compression but is numerically the same as the q max.

of eq. 8.

269. Example.—In Fig. 271 suppose P=2 tons = 4,000

lbs., a=Q in., 1=5 in., and that the shaft is of wrought
iron. Required its radius that the max. tension or com-
pression may not exceed i^'= 12,000 lbs. per sq. in.; nor the

max. shear exceed /S"= 7,000 lbs. per sq. in. That is, we
put 5'=12,000 in eq. (8) and solve for r : also ^,,=7,000 in

(9) and solve for r. The greater value of r should be

taken. From equations (a) and (5) we have (see §§ 219 and

247 for /p and i)

* According to the conceptions of § 405&, safe design would require

that we put the max. '^ strain" in this case equal to a safe value, as

determined by simple tensile or compressive tests. Here the max.
strain (tensile) is £=[|p+ |-\/p^+ 4ps^]-^-E'- (Grashof's method.)
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\P= r ^^cl p^= -.

•which in (8) and (9) give

mas. g=>^~ [4?+|/(4^)=+4(2«)"] ^ . . (8^

p
and max. g's=^—3A/(4!)H4(2a)2 . . • (9«)

With max. g=12,000, and the values of P, a, and Z, already

given, (units, inch and pound) we have from (8a), r^=2.72

cubic inches .*. r=1.39 inches.

Next, with max. 5's=7,000; P, a, and I as before; from
(9a), r^=2.84 cubic inches .*. r=1.41 inches.

The latter value of r, 1.41 inches, should be adopted. It

is here supposed that the crank-pin is in such a position

(when P= 4,000 lbs., and a=Q in.) that q max. (and q^

max.) are greater than for any other position ; a number
of trials may be necessary to decide this, since P and a are

different with each new position of the connecting rod. If

the shaft and its connections are exposed to shocks, H and

S' should be taken much smaller.

270. Another Example of combined torsion and flexure is

shown in Fig. 274. The
'"

' /^^ "^^

"^i< ^B
'wo^k of the working force

Pi(vertical cog-pressure) is

B expended in overcoming the

resistance (another vertical

cog-pressure) Q^.

^la- 27'4. That is, the rigid body
consisting of the two wheels and shaft is employed to

transmit power, at a uniform angular velocity, and since

it is symmetrical about its axis of rotation the forces act-

ing on it, considered free, form a balanced system. (See

§ 114). Hence given Pi and the various geometrical quan-
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titles «!, 5i, etc., we may obtain Q^, and the reactions Pq and

Pr, in terms of Pj. The greatest moment of flexure in the

shaft will be either FJi, at G; or PJ3, at B. The portion

CD is under torsion, of a moment of torsion =Piai= Qih^.

Hence we proceed as in the example of § 269, simply put-

ting Poll (or Pb4, whichever is the greater) in place of Fl,

and PiCTi in place of Pa. We have here neglected the

weight of the shaft and wheels. If Qi were an upuard ver-

tical force and hence on the same side of the sh:it as Pj,

the reactions Pq and Pg would be less than before, and on©

or both of them might be reversed in directioji.

270a. Web of I-Beam. Maximum Stresses on an Oblique

Plane.—The analysis of pp. 315, 316, etc., also covers the

case of an element of the web of a horizontal I-beam under

stress, when this element is taken near the point of junction

with the flange. Supposing that the thickness of web has

already been designed such that the shearing stress on the

vertical (and therefore also on the horizontal) edges of such

an element is at rate of 8000 lbs. per sq. inch ; and that the

horizontal tension at each end of this element (since it is

not far from the outer fibre of the whole section) is at rate

of 10,000 lbs. per sq. in.; we note that Fig, 272 gives us a.

side view of this element, with p^ = 8000, and p = 14,000,

lbs. per sq. inch. GTis the lower edge of the upper flange,

corresponding (in an end view) to the point n in Fig. 258 on

p. 290. (We here suppose the upper flange to be in tension
;

of course, an illustration taken from the compression side

would do as well.)

Substitution in equations (8) and (9) of p. 317 results in

giving as maximum stresses on internal oblique planes

:

q max. = 17,630 lbs. per sq. in. tension;

and g^ max. =10,630 " " " " shearing.

These two values are seen to be considerably in excess of

the respective safe values for shearing and tensile stresses in

the case of structural steel, and the necessity is therefore em-

phasized of adopting values for shearing stress in webs some-

what lower than the 8000 lbs./in.2 used above ; to avoid the

occurrence of excessive stress on internal oblique planes. See

p. 291.
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CHAPTER IV.

FLEXURE, CONTINUED.

CONTINUOUS GIRDERS.

271. Definition.—A continuous girder, for present pur«

poses, may be defined to be a loaded straight beam sup-

ported in more than two points, in which case we can no

longer, as heretofore, determine the reactions at the sup-

ports from simple Statics alone, but must have recourse

to the equations of the several elastic curves formed by its

neutral line, which equations involve directly or indirect-

ly the reactions sought ; the latter may then be found as

if they were constants of integration. Practically this

amounts to saying that the reactions depend on the man-
ner in which the beam bends ; whereas in previous cases,

with only two supports, the reactions were independent of

the forms of the elastic curves (the flexure being slight,

however).

As an Illustration, if the straight beam of Fig. 275 is placed

on three supports 0, B, and (7, at the same level, the

reactions of these supports seem at first sight indeterm-

inate ; for on considering the p -i ^

whole beam free, we have three \'^_~^~1. '^
j;* $

unknown quantities and only bZT""^ Z^° ^—-^
two equations, viz : S (vert. fig. 275.

compons.) = and S (moms, about some point) = 0. If

now be gradually lowered, it receives less and less pres-
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sure, until it finally readies a position where the beam
barely touches it ; and then O's reaction is zero, and B and

C support the beam as if were not there. As to how
low must sink to obtain this position, depends on the

stiffness and load of the beam. Again, if be raised

above the level of B and C it receives greater and greater

pressuTt., until the beam fails to touch one of the other

supports. Still another consideration is that if the beam
were tapering in form, being stiffest at 0, and pointed at

B and (7, the three reactions would be different from their

values for a prismatic beam. It is therefore evident that

for more than two supports the values of the reactions de-

pend on the relative heights of the supports and upon the

form and elasticity of the beam, as well as upon the load.

The circumstance that the beam is made continuous over

the support 0, instead of being cut apart at into two

independent beams, each covering its own span and hav-

ing its own two supports, shows the significance of the

term " continuous girder."

All the cases here considered will be comparatively

simple, from the symmetry of their conditions. The
beams will all be prismatic, and all external forces (i.e.

loads and reactions) perpendicular to the beam and in the

same plane. All supports at the same level,

272. Two Equal Spans; Two Concentrated Loads, One in the Mid-

^e of Each Span. Prismatic Beam.—Fig. 275. Let each half-

Bpan = i^ /i. Neglect the weight of the beam. Required

the reactions of the three supports. Call them P^, Pq and
p
\.. From symmetry P^ = Pc, and the tangent to the

elastic curve at is horizontal ; and since the supports

are on a level the deflection of C (and B) below O's tangent

is zero. The separate elastic curves OD and DC have a

common slope and a common ordinate at D.

For the equation of OD, make a section n anywhere be-

tween and Z>, considering n(7 a free body. Fig. 276 (a)
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Y

—X ^>|

(6)

Fig. 276.

•with origin and axes as there indicated. * From H (moms
about neutral axis oi n) = we have (see § 281)

Ei'^^=p{y2i—x)—Pc{i—x)

eA =F{y2ix—%
dx

(1

(2)

The constant = 0, for at both x, and dy -^ dx, = 0.

Taking the x-anti-derivative of (2) we have

^/2/=P(^_^')-Pe[^-|'] . . (3)

Here again the constant is zero since at 0,x and y both =0.

(3) is the equation of OD, and allows no value of cc <0
or>^. It contains the unknown force P^.

For the equation of BC, let the variable section n be made
anywhere between D and C, and we have (Fig. 276 ih\ j x
may now range between J^Z and T)

^^^^—^^(^-)

^jdy_
dx

Ix-t^+C

(4)

(5)'

To determine C\ put x = }4l both in (5)' and (2), and
equate the results (for the two curves have a common
tangent line at D) whence C" = ^ PV

Elp.^yiP¥—Pjl 0[?\

2~j (5)

* These are such that XOY is our "first quadrant"; in which, for points

in a part of a curve convex toward the axis of X, d^yldx^ is essentially

positive; and vice versa. It will be seen that both eqs. (1) and (4) are

on this basis. They must be on the same basis; otherwise, later com-

parisons of equations would result in error.
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Hence Ely ^ % PT?x-PA^^—^'\j^O" . . (6)'

At D tlie curves have the same y, hence put a? = i- in the

right hand member both of (3) and (6)', equating results,

and we derive C"=—^ Pf

EIy=y,PVa>~P^\^__p^^XPf . . (6)

which is the equation of DC, but contains the unknown
reaction P^. To determine P^ we employ the fact that O's

tangent passes through G, (supports on same level) and

hence when a? = Hn (6), y is known to be zero. Making
these substitutions in (6) we have

Q=y,pf-y,p^f-±pi^ ... P=^P

From symmetry P^ also = —P, while Pq must = ~P,

since P^ + P^ + P<7 = 2 P (whole beam free). [Note.—
If the supports were not on a level, but if, (for instance)

the middle support were a small distance = Ag below

the level line joining the others, we should put x = I and

y = —Iiq in eq. (6), and thus obtain P^ = Pc= -^^ P +
SET—, which depends on the material and form of the

prismatic beam and upon the length of one span, (whereas

with supports all on a level, P^ — P^ = -| P is independent

of the material and form of the beam so long as it is ho-

mogeneous and prismatic.) If Pq, which would then =
?| P — 6 EI {Jiq-^F'), is found to be negative, it shows that

requires a support from above, instead of below, to

cause it to occupy a position 7^o below the other supports,

i.e. the beam must be " latched down " at 0.]

The moment diagram, of this case can now be easily con-

structed ; Fig. 277, For any free body nC, n lying in BG,

we have
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i.e., varies directly as cc, un-

c til X passes D wlien, for any

point on DO,

I

wliicli is =0, (point of in-

flection of, elastic curve)

I for .T=yii? (note that x is

Fig. 277. measured from C in this

figure) and at 0, where x= I, becomes —^^Pl

•'• K=—lPl; M^^O; 3I^=LPl; andif„=0

Hence, since if max. =^Ply the equation for safe loading

is

B'l 6
-PI (7)

The shear at (7 and anywhere on CD=~Pf while on DO
it =^^P in the opposite direction

.•.j;„=;ip .

"

. . . (8)

The moment and shear diagrams are easily constructed,

as shown in Fig. 277, the former being svmmetrical about

a vertical line through 0, the latter about the point 0"

Both are bounded by right lines.

273. Two Equal Spans. IJniformly Distributed Load Over

„, ,
Whole Length. Prismatic Beam.

^ y\ ^_:^ ^ c —Fig. 278. Supports B, 0,

bQIM I I 1 \ [\\ 111 C, on a level. Total load

V~- — o|
1^--^ ^---1 = 2W= ^icl and may include

I |po j ^'^k^'^ j
that of the beam

P.
^

, , "w IS con-

I I li I I 11 stant. Asbefore, from sym-
metry P^=P^, the unknown

i
Pc| reactions at the extremi-

VMt. 278. ties.
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Let On=x ; then with wC free, 2" moms, about n= gives

rdy IVEI'^^- lFx-lx'+^]-F,[lx- ^]+[Coiist=0] (2)

[Const.=0 for at both dy-i-dx the slope, and x, are =0]

... EIy= '^[}4Fc^-j4M+Vi2^]-P.[}4lx^-y6^]+{G=0) (3)

[Const. =0 for at both x and y are =0]. Equations (1),

(2), and (3) admit of any value of x from to I, i.e., hold

good for any point of the elastic curve OC, the loading on

which follows a continuous law (viz. : w= constant). But
when x=l, i.e., at G, y is known to be equal to zero, since

0, B and G are on the axis of X, (tangent at 0). "With

these values of x and y in eq. (3) we have

0= |L . t-y^pj? ... p,=y8wi=yQW

.-. PB=^^and Po=27r—2Pe=? W

The Moment and Shear Diagrams can now be formed since

;j jovv all tli6 external forces are

Lw^ known. In Fig. 279 meas-

ure X from G. Then in any

section n the moment of the

"stress-couple " is

M^yQWoo-
wxr

. (1)

j

which holds good for any

value of x on GO, i.e., from

07=0 up to x=l. By inspec-

PiG S79. tion it is seen that for 07=0,

M=0 ; and also for x=yi, M=0, at the in/lection point' G,

beyond which, toward 0, the upper fibres are in tension
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the lower in compression, whereas between C and G the;^

are vice versa. As to the greatest moment to be found on

CG, put dM-i-dx—0 and solve for x. This gives

^ W—wx=0 .'. [X for if max.]=^Z . (2)

i^rhich in eq. (1) gives

Jfu(at JV, seefigure)=+^jr? . . (2)

But this is numerically less than Mo{=—}i Wl) hence the

stress in the outer fibre at being

T/ Wle /Q\Po=%—j-, ... (3)

the equation for safe loading is

B'l _., Wl . . . . (4)

the same as if the beam were cut through at 0, each half,

of length I, retaining the same load as before [see § 242 eq.

(2)]. Hence making the girder continuous over the mid-

dle support does not make it any stronger under a uni-

formly distributed load ; but it does make it considerably

stiffer.

As for the shear, J, we obtain it for any section by tak-

ing the x-derivative of M in eq. (1), or by putting ^(ver-

tical forces) =0 for the free body nG, and thus have for

any section on GO

J=z/qW—wx ... (5)

j/is zero for x='^l (where M reaches its calculus maxi-

mum M^ ; see above) and for x=l it =

—

Yq fF" which is nu
merically greater than yi W, its value at G. Hence

Jm=y8w . . . ". (6)
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The moment curve is a parabola (a separate one for each

span), the shear curve a straight line, inclined to the hor-

izontal, for each span.

Problem.—How would the reactions in Fig. 278 be

changed if the support were lowered a (small) distance

Iiq below the level of the other two ?

274. Prismatic Beam Fixed Horizontally at Both Ends (at

Same Level). Single Load at Middle.—Fig. 280. [As usual

j
/^~x p-| the beam is understood to

1^^ — V^py

—

—
-

'

I

be homogeneous so that E
E ^P~ I

'-' ^ is the same at all sections].

IJ
I

*
j

The building in, or fixing,

i lyij ji of the two ends is supposed

objr^-Jt:;;™--—1^

—

--—^^^—(c* to be of such a nature as to

Yi ' Br——-

—

Vi-T--^ cause no 'horizontal con-

FiG. 280. straint ; i.e., the beam does

not act as a cord or chain, in any manner, and hence the

sum of the horizontal components of the stresses in any

section is zero, as in all preceding cases of flexure. In

other words the neutral axis still contains the centre of

gravity of the section and the tensions and compressions

are equivalent to a couple (the stress-couple) whose mo-
ment is the " moment of flexure."

If the beam is conceived cut through close to both wall

faces, and this portion of length=Z, considered free, the

forces holding it in equilibrium consist of the downward
force P (the load) ; two upward shears J^ and J^ (one at

each section) ; and two " stress-couples " one in each sec-

tion, whose moments are 31^ andJ/g. From symmetry we
know that J,— J„ and that M^=M,. From I Y=Q for the

free body just mentioned, (but not shown in the figure),

and from symmetry, we have «/„= % P and J^-= % P ', but

to determine M^ and M„ the form of the elastic curves

B and B G must be taken into account as follows :

Equation of OB, Fig. 280. I [mom. about neutral axis

of any section n on 5] = (for the free body nC which
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lias a section exposed at each end, n being tlie variable

section) will give

BI^y-= P(y2 l-x) + M,- -y2P{i~x) (1)

J^Note. In forming this moment equation, notice that

M^ is the sum of the moments of the tensions and com-
pressions at G about the neutral axis at n, just as much as

about the neutral axis of 0', for those tensions and com-
pressions are equivalent to a couple, and hence the sum of

their moments is the same taken about any axis whatever

"I to the plane of the couple (§32).]

Taking the a:-anti-derivative of each member of (1),

EI^=P(% I x—% a^)-f- if, x—y PQ x—% x")
ax (2)

(The constant is not expressed, as it is zero). Now from
symmetry we know that the tangent-line to the curve B
s>i B is horizontal, *.e., for x^y^l, dy-^dx^Q, and these

values in eq. (2) give us

0=yi Pf+ y^I^l—f^PV; whence M,=M,=}i PI , (3)

Safe Loading. Fig. 281. Having now all the forces which
act as external forces in straining the beam 00, we are

ready to draw the moment diagram and find M^^. For con-

venience measure x from 0. For the free body nO, we
have [see eq. (3)]

y2Px-M, + P~=0.'.M=}iPl-}4Px ... (4)

p Eq. (4) holds good for any

J section on OB. By put-

f7^ ting x=0 we have M=M^=
y% PI; \&j oEEO'=M, to

scale (so many inch-pounds

moment to the inch of pa-

per). At B, for x^y I,

M^=—y^ PI ; hence lay

offB'I)=ys PI on theop-

FiG. 281. posite side of the axis O'O'

c
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from HG', and join DH. DK, symmetrical witli i>^ about

B'D, completes the moment curves, viz.: two riglit lines.

The max. iHf is evidently =yi Fl and the equation of safe

loading

?Li=upi (5)

Hence the beam is twice as strong as if simply supported

at the ends, under this load ; it may also be proved to be

four times as stiff.

The points of inflection of the elastic curve are in the

iniddles of the half-spans, while the max. shear is

J.n= y2P (8)

275. Prismatic Beam Fixed Horizontally at Both Ends [at Same
Level]. Uniformly Distributed Load Over the Whole Length.

Pig. 282. As in the preceding problem, we know from

symmetry that e/o=^c=/^ ^=/^ *^^> ^^^ tl^s-^ Mq=M^, and

determine the latter quantities by the equation of the

curve OG, there being but one curve in the present in-

stance, instead of two, as there is no change in the law of

loading between and C. "With nO free, I (mom^)=0
.gives

ax 2 oX

9

(1)

(2)

^N^wl &
i C \n

J

opr

J i I 11 I I H i L

Fig. 282.
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The tangent line at being horizontal we have for x=0,
dx

0, .'. C=0. But since the tangent line at C is also hori-

zontal, we may for x=l put dy-^dx=0, and obtain

O^—i^Wl'+lIol+yewV; whence Mo=^Wl (3)

a.s the moment of the stress-couple close to the wall at

and at 0.

Hence, Fig. 283, the equation of the moment curve (a

single continuous curve in this case) is found by putting
2' (moma)=0 for the free body nO, of length x, thus

obtaining

w y^=wl

lUi I ] j lull

Fig. 283.

lL+i4Wx-Mo iva^ =0

I.e. M=lWl+ ^-}4Wx , .(4)

an equation of the second degree, indicating a conic. At 0,

M=Mq of course,= 4- ^^/ ati?by putting a;= i^ Z in (4), we

have M^——}^ Wl, which is less than Jig, although M^ is the

calculus max. (negative) for 31, as may be shown by writ-

iijg the expression for the shear {J=% W—wx) equal to

zero, etc.
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Hence 31^=^ Wl, and tlie equation for safe loading is

--^Wl (5)
B'l __^

Since (with this form of loading) if the beam were not

built in but simply rested on two end supports, the equa-

tion for safe loading would be \_R'I-^e\ = yi Wl,isee §242),

it is evident that with the present mode of support it is 50

per cent, stronger as compared with the other ; i.e., as re-

gards normal stresses in the outer elements. As regards

shearing stresses in the web if it has one, it is no stronger,

since t/m= j^ JFin both cases.

As to stiffness under the uniform load, the max. deflec-

tion in the present case may be shown to be only i- of that

in the case of the simple end supports. Eiieiit

It is noteworthy that the shear diagram in Fig. 283 is

identical with that for simple end supports §242, under

uniform load ; while the moment diagrams differ as fol-

lows : The parabola KB'A^ Fig. 283, is identical with tha*-

in Fig. 235, but the horizontal axis from which the ordi-

nates of the former are measured, instead of joining the

extremities of the curve, cuts it in such a way as to have

equal areas between it and the curve, on opposite sides

i.e., areas [^C"^'+^i6^'0']=area R'G'B'

In other words, the effect of fixing the ends horizontally

is to shift the moment parabola upward a distance = 3Ic

(to scale), = i Wl, with regard to the axis of reference,

0'^', in Fig. 235.

276. Remarks.—The foregoing very simple cases of con-

tinuous girders illustrate the means employed for deter-

mining the reactions of supports and eventually the max.

moment and the equations for safe loading and for deflec-

tions "When there are more than three supports, with

spans of unequal length, and loading of any description

the analysis leading to the above results is much more

complicated and tedious, but is considerably simplified
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and systematized by tlie use of tlie remarkable theorem of

three moments, the discovery of Clapeyron, in 1857. By
this theorem, given the spans, the loading, and the vertical

heights of the supports, we are enabled to write out a rela-

tion between the moments of each three consecutive sup-
ports, and thus obtain a sufficient number of equations to

determine the moments at all the supports [p. 641 Eankine'a
Applied Mechanics.] From these moments the shears

close to each side of each support are found, then the

reactions, and from these and the given loads the moment
at any section can be determined ; and hence finally the

max. moment ilf^,,, and the max. shear J^„.

The treatment of the general case of continuous girdera

hy algebraic methods founded on the properties of familiar geo-

metrical figures, however, is comparatively simple ; and will

be developed and applied in another part of this book. (See

Chap. XII, pp. 485, etc.)

THE DANGEROUS SECTIOIS^ OF ]S^O]?^-PRIS-

MATIC BEAMS.

277. Eemarks. By " dangerous section " is meant that sec-

tion (in a given beam under given loading with given mode
of support) where p, the normal stress in the outer fibre,

at distance e from its neutral axis, is greater than in the

outer fibre of any other section. Hence the elasticity of

the material will be first impaired in the outer fibre of

this section, if the load is gradually increased in amount
(but not altered in distribution).

In all preceding problems, the beam being prismatic, I,

the moment of inertia, and e were the same in all sections,

hence when the equation P—=M [§289] was solved for »,
e

Me ....

giving i>=— . . . . (1)

we found that p was a max., = p^, for that section whose

ili" was a maximum, since p varied as M, or the moment
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of the stress-couple, as successive sections along the beam
were examined.

But for a non-prismatic beam Zand e change, from sec-

tion to section, as well as 31, and the ordinate of the

moment diagram no longer shows the variation of p, nor

is ^ a max. where ilf is a max. To find the dangerous

section, then, for a non-prismatic beam, we express the ilf,

the I, and the e of any section in terms of x, thus obtain-

ing ^=func. {x), then writing dp-~dx=0, and solving for x.

278. Dangerous Section in a Double Truncated Wedge. Two
End Supports. Single Load in Middle.—The form is shown in

Fig. 284. Neglect weight of beam ; measure x from one sup-

port 0. The
r e a c tion a t

each support

is i^ F. The
width of the

beam == 5 at

all sections, while its height, v, varies, being = h at 0.

To express thee = }4 v, and the /= 1 hv^ (§247) of any

section on 0(7, in terms of x, conceive the sloping faces

of the truncated wedge to be prolonged to their intersec-

tion A, at a known distance = c from the face at 0. We
then have from similar triangles

[Tpl

Fig. 284.

V : X -{- c : : h 3, .: V = ~ (x -\- c)
c

and e = h
(x-{-G) and I = K^ -^x-^rcf

For the free body nO, H (moms.^)

Px—tL±
e

[That is, the M = )4 Fx.]

p=SF and^= 3F ^
axhH ' {x+cf '

By putting dp -t- dx =

(1)

(2)

(3)

we find X = + c\ showing a

gives

Fxe

'~w • • •

But from (2), (3) becomes

dp_ o-p & {x-\-cy—2a;(a;-t-c)

p-
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maximum for p (since it will be found to give a negative

result on substitution in d^p 4- dotf).

Hence tlie dangerous section is as far from tlie support

0, as the imaginary edge^ A, of tlie completed wedge, but

of course on the opposite side. This supposes that the

half-span, )4l, is, > ^; if not, the dangerous section will

be at the middle of the beam, as if the beam were

prismatic.

tx -xi, ) the equation for safe { Dfh'h'2Hence, with L ^^.^1^ .^^ ^f^>^^,^^^,\ ^-%Pl (5)
A'' <^

) at middle) (
^

while with
)tl^e equation for safe

j ^,j ^A]^ , , p ,..

1/7 ^ r h
loading is : (put x=c { ^-^= V2 Pc (6)

/^^ > ^
) and_p=i?'in [3]) ( ^

(see §239.)

279. Double Truncated Pyramid and Cone. Fig. 285. For

Fig. 285.

the truncated pyramid both width = u, and height = v^

are variable, and if h and Ji are the dimensions at 0, and
c = QJ[ = distance from to the imaginary vertex A, we

shall have from similar triangles u=~ (a;+c)and v= ~ (x-\-c).
G c

Hence, substituting 6=^^ and 7=1 uv^, in the moment
equation

£^_^=0.weW^=34,.^-|-,. . (7)

. dp ^ op <^ (x+c)^—3x [x+cy
' * dx bW"

'

{x-\-cf
(8)
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Putting the derivative =0, for a maximum p, we liave x=
-h ^ c, hence the dangerous section is at a distance a?=^ c

from 0, and the equation for safe loading is

either :?^= 14: PZ if >^ Z is < >^ c . . . , (9)

(in which V and h' are the dimensions at mid-span)

or MM)lhlf=y^P,,iy^i
6

is > >^ c ... (10)

For the truncated cone (see Fig. 285 also, on right) where
e = the variable radius r, and / = i^ ;r r*, we also have

/=[Const.] .,—^.3 (11)

and hence j9 is a max. for a? = ^ c, and the equation for

safe loading

either 5£i^ = % Fl,iox %l <% c , . , , . (12)

(where r' = radius of mid-span section)

;

^^
^-R' (l^o)' ^%Fc,ioxy2l> %c (13)

(where r^ = radius of extremity.)

IS^ON-PMSMATIC BEAMS OF "UNIFORM
. STRE]?^GTH."

380. Eemarks. A beam is said to be of " uniform

strength " when its form, its mode of support, and the dis-

tribution of loading, are such that the normal stress ^ has

the same value in all the outer fibres, and thus one ele-

ment of economy is secured, viz. : that all the outer fibres

may be made to do full duty, since under the safe loading,

p will be = to B' in all of them. [Of course, in all cases

of flexure, the elements between the neutral surface and
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fclie outer fibres being under tensions and compressions

less than R' per sq. inch, are not doing full duty, as

tegards economy of material, unless perhaps with respect

to shearing stresses.] In Fig. 265, §261, we have already

had an instance of a body of uniform strength in flexure,

viz. : the middle segment, CD, of that figure ; for the

moment is the same for all sections of CD [eq. (2) of that

§], and hence the normal stress p in the outer fibres (the

beam being prismatic in that instance).

In the following problems the weight of the beam itself

is neglected. The general method pursued will be to find

an expression for the outer-fibre-stress p, at a definite sec-

tion of the beam, where the dimensions of the section are

known or assumed, then an expression for p in the varia-

ble section, and equate the two. For clearness the figures

are exaggerated, vertically.

' 281. Parabolic Working Beam. UnsymmetricaL Fig. 286

i.

Pig. 286,

CBO is a working beam or lever, B being the fixed fulcrum
or bearing. The force P^ being given we may compute P^
from the mom. equation Pq^o = PJ^u while the fulcrum

reaction is P^^P^-^-P^^. All the forces are ~\ to the beam.
The beam is to have the same width h at all points, and is

to be rectangular in section.

Ilequir6*d first, the proper height hx, at B, for safety.

From the free body BO, of length = l^, we have I (momss)
= ; i.e.,

-^ rX,oxp^- -— ... (1)
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Hence, putting jo^ = B', h^ becomes known from (1).

Required, lecondly, tlie relation between the variable

height V (at any section n) and the distance x ot n from 0.

For the free body nO, we have (2 momSu = 0)

3iL=F,x ; or ^" ^^ ^^' =P,x and .-. p, =^l^ (2)

But • for " uniform strength " p^ must = p^ \ hence

equate their values from (1) and (2) and we have

^ = —1, which may be written {% vj = .>'^p' x (3)

so as to make the relation between the abscissa x and the

ordinate }4 v more marked; it is the equation of a para-

bola, whose vertex is at 0.

The parabolic outline for the portion BC is found simi-

larly. The local stresses at G, B, and must be proper-

ly provided for by evident means. The shear J = Pq, at

0, also requires special attention.

This shape of beam is often adopted in practice for the

working beams of engines, etc.

The parabolic outlines just found may be replaced by
trapezoidal forms, Fig. 287, without using much more ma-
terial, and by making the slop-

ing plane faces tangent to the

parabolic outline at points Tq

and Ti, half-way between and
^^"^^b^^"'^'^

°

B, and C and B, respectively. It fis. 287.

can be proved that they contain minimum volumes, among
all trapezoidal forms capable of circumscribing the given

parabolic bodies. The dangerous sections of these trape-

zoidal bodies are at the tangent points Tq and Ti. This is

as it should be, (see § 278), remembering that the subtan-

gent of a parabola is bisected by the vertex.
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283. Rectang. Section. Height Constant. Two Supports (at Ex-

tremities). Single Eccentric Load.

—Fig. 289. h and Ji are tlie

dimensions of the section at

B. "With BO free we have

Pah Folo=0.\pj,
6Po?o

(1)

Fig. 289.

At any other section on BO, as n, where the width is u,

the variable whose relation to x is required, we have for

wOfree

P^^.F,x;ovPll/^=P,x QP,,x
Pn=

Equating pu and ^„ we have u :h :: x :Iq „

That is, BO must be wedge-shaped ; edge at 0, vertical.

(2)

(3)

k- 1 ^k-^wl

Fig. 289 a.

283a. Sections Rectangular and Similar. Otherwise as Before.—Fig. 289a.

The dimensions at B are b and h; at any other section n, on BO, the

height V, and width u, are the variables whose relation to x is desired,

and by hypothesis are connected by the relation u:v::b:h (since the

section at m is a rectangle similar to that at B). By the same method
as before, putting pB= Pn, we obtain lf^^bh'^= x-i-uv^; in which placing

u^bv^h, we have finally

v^=(h^^lf))x; and similarly, u^={b^-^lQ)x; . . . (4)

i.e., the width u, and height v, of the different sections are each pro-

portional to the cube root of the distance x from the support. (The

same relation would hold for the radii, in case all sections were circular.)

283b. Beam of Uniform Strength under Uniform Load. Two End Supports.

Sections Rectangular with Constant Width.—Fig. 289&. WeigM of beam
neglected. How should the height v vary, (the height and width

at middle being h and b) ? As before, we equate pB and pn ',
whence

finally

(ivy= [h^^P](lx-x') (5)

This relation between the half-height ^v (as ordinate) and the abscissa.

X is seen to be the equation to an ellipse with origin at vertex.
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CHAPTER V.

Flexure of Reinforced Concrete Beams.

284. Concrete and "Concrete-Steel" Beams. Concrete is an

artificial stone composed of broken stone or gravel (sometimes

cinders), cement and sand, properly mixed and wet beforehand

and then rammed into moulds or " forms " and left to harden or

" set." This material, after thorough hardening or " setting,"

thouglT fairly strong in resisting compressive stress is compara-

tively weak in tension. When it is used in the form of beams
to bear transverse loads (i. e., under " transverse stress ") the

side of the beam subjected to tensile stress is frequently " re-

inforced " by the imbedding of steel rods on that side. In this

way a composite beam may be formed which is cheaper than a

beam of equal strength composed entirely of concrete or one

composed entirely of steel.

Of course the steel rods are placed in the mixture when wet,

and previous to the ramming and compacting, and their aggre-

gate sectional area may not need to be more than about one per

cent, of that of the concrete.

No reliance being placed on the tensile resistance of the

concrete (on the tension side of the beam) it is extremely

important that there should be a good adhesion, and consequent

resistance to shearing, between the sides of the steel rods and

the adjacent concrete, for without this adhesion the -rods and

the concrete would not act together as a beam of continuous

substance.*

In some specifications, for instance, it is required that the

shearing stress, or tendency to slide, between the steel rods and

the concrete shall not exceed 64 lbs. per sq. in. Sometimes

the steel rods are provided with projecting shoulders, or ridges,

or corrugations, along their sides, to secure greater resistance to

sliding. *

* For an account of tests of this adhesion see Engineering News, Aug. 15,

1907, p. 169, and also p. 120 of the Engineering Record for Aug. 3, 1907.
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Fig. 290 gives a perspective view of a concrete-steel beam

of rectangular section, placed in a horizontal position on two

supports at its extremities, and thus fitted to sustain vertical

loads or weights ; while Fig. 291 shows a concrete-steel beam

flange-

teeb, or stem-

of T-section, in which the flange is intended to resist compres-

sion, while the steel rods in the lower part of the " stem " are

to take care of the tension. These two shapes of beam will be

the only ones to be considered here, in a theoretical treatment.

The ratio of the Modulus of Elasticity of steel (viz.— about

30,000,000 lbs. per sq. in.) to that of concrete (say, from

1,000,000 to 4,000,000 lbs. per sq. in., according to the propor-

tions of ingredients used) is of great importance in the theory,

since in general the stresses induced in two materials for a given

percentage change of length are directly proportional to the

modulus of elasticity (for same sectional area).

Generally the diameter of a steel rod is so small compared

with the full height of the beam that the stress in the rod is

taken as uniform over the whole of its section.

285. Concrete-Steel Beam of Rectangular Section. Flexure

Stresses. — As in the common theory of flexure of homogeneous

beams, it will be assumed that cross-sections plane before

flexure are still plane when the beam is slightly bent, so that

changes of length occurring in the various fibers are propor-
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tional to the distances of those fibers from a certain neutral axis

of the cross-section, and upon the amount of any such change

of length (relative elongation) can be based an expression for

the accompanying stress. Now in the case of concrete it is not

strictly true that stresses are proportional to changes of length

(" strains " or deformations) ; in other words its modulus of

elasticity, E, is not constant for different degrees of shortening

under compressive stress. Nevertheless, since this modulus

does not vary much, within the limits of stress to which the

concrete is subjected in safe design, it' will be considered con-

stant, the resulting equations being sufficiently accurate for

practical purposes.

Let us now take as a " free body " any portion, ON, of the

beam in Fig. 290, extending from the left-hand support to any

section, at any distance x from that support. In the plane

section terminating this body on the right, BNS (see now Fig.

292, in which we have also, at the right-hand, an end-view of

< 6 >

t
1

]

h
\

1

-4--

1

AS-;>:-iy:V;-:;?il!

N. axis

—•—•—•—

End View..
"

the body), we note that the fibers of concrete from Z> down to a

neutral axis iV^are in a state of compression, while below iVthe

steel rod alone is considered as under stress, viz., a total tensile

stress of F'p', where F' is the aggregate sectional area of all

the steel rods, these rods being at a common distance a' above

the lower edge of the section, and p' is the unit (tensile) stress

in the steel rods.

The distance BN, or " ^," of the neutral axis N below the

" outer fiber " i), is to be determined. Let p denote the unit

compressive stress in the fiber at I) (outer fiber) of the concrete
;

then the unit stress in any fiber of the concrete at distance z

from iV will be - j9, lbs. per sq. in., and the total stress on any
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such fiber is — »c?i^, lbs. (where c?jPis the sectional area of the
e

fiber). All the (horizontal) fibers between the two consecutive

cross sections DS and D'8' were originally dx inches long, but

now (during stress), we find that the fiber at D has been shortened

an amount d\ and the steel rod "fibers " elongated an amount

d\'^ so that we have the proportion d\ : d\' : :e: a — e;

d\ e , ,».
or, -— = (0)

dV a- e ^ ^

For the free body in Fig. 292 we have, for equilibrium, the

sum of horizontal components of forces = (the shear J" has no

horizontal component); that is, remembering that below iVno
tensile forces are considered as acting on the concrete, but

simply the total tensile stress F'p' in the steel rods,

t/n

- pdF - F'p' = 0.
e

But here =^ is a constant ; and for the rectangular cross-section,

dF = b . dz, and

'iI>'^-'T4-'-'T-^y • • • W
But from the definition of modulus of elasticity (F for the

concrete and E^ for the steel), we have (§ 191)

F = p —- (relat. elongation), or F = p -i- [dX/dx) ; and

similarly, F' = p' -^ {dV/dx) ; whence

d\' p'' E ^ ^

But, from eq. {\.)^ p -— p' = IF' -^ he, combim'ng which

with eqs. (0) and (2), and denoting the ratio F' -^ Fhj n,

we mid = —^— . . (3)
a — e be

The ratio n may have a value from 10 to 25 for " rock-

concrete," and still higher for " cinder-concrete
;
" see § 284.

Now solve eq. (3) for the distance e, obtaining

F'nfj2ab ^ A
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This locates the neutral axis, iV". [See, later, eq. (29), §

291.]

Returning to the free body OJV in Fig. 292 above, we note

that the resultant compression in the concrete between iV^

and D, viz., ^ p .he, lbs. [see eq. (1)], is equal in value to

the total tension F'p', lbs., in the steel rods at G', and that they

are parallel. Consequently they form a couple (the " stress-

couple " of the section) whose moment is equal to the product

of one of these forces, say

F'p\ by the perpendicular | j^ \

distance = a", between Gr'

and a point Cr (see now Fig.

293) whose distance from the

" outer fiber " i> is one-third

of e. The "arm" of this

couple is a' a- - For
Fig. 293.

equilibrium of the free body ON in Fig. 292 the shear J and

the two forces V (reaction) and P^ (load) must be equivalent

to a couple of opposite and equal moment to that of the stress

couple. Call this moment M [in this case it has a value of

Yx — P^{x — a;J]; it is the " bending moment " of the section

at DS. We may therefore write (see Fig. 293) :

M = F'p' [« — i e] ; and .-. p' = M
F\a-\e) (5)

which will give the unit-stress p\ induced in the steel rods at

section BS. It is seen to depend on the position of the neutral

axis N (i.e., upon e); upon the bending moment, M, at that

section; upon the sectional area F' of the steel rods (aggre-

gate); and on the distance, a, at which they are placed from

the compression edge, B, of the beam.

But since the resultant compression, h p -he, is equal to the

resultant tension, .F'p', we may also write

2MM= ^p .be [« — i e] and .-. p =
he (a — I e)

(6>

which gives the unit-stress (compression) in the outer " fiber
"

at i), of the concrete, for this section BS.
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286. Horizontal Shear in the Foregoing Case (Rectangular Sec-

tion). The shear per sq. in. along the sides of the steel rods,

I ^^

and also along the horizontal

,/' " Neutral Surface,'' NN" (see

Fig. 294), may be obtained as

follows : — Let dx be the length

of a small portion of the beam

,, , , „ (of Fig'. 290) situated between
^ r^^^^n '-— two vertical sections Do and

D"S". Fig. 294 shows this

^^*^- 294. portion as a " free body." The

forces acting consist of the tension F'p' on the left-hand end of

the steel; the tension on the right-hand end of these rods

[being something greater (say) and expressed by F' (^p' -\- dp'^

in which dp is the difference between the unit-tensions at the

two ends of the steel " re-inforcement "] ; the resultant com-

pression, i he.p, in the concrete on the left; and that,

1 5g . (j? -f dp^, on the right ; and, finally, the two vertical shears,

J'and J". Here p is the unit compressive stress (lbs. per sq. in.)

in outer fiber of concrete at the left-hand extremity of the same,

while p -\- dp expresses the unit compressive stress in the same

outer fiber at the right-hand extremity.

Evidently the difference between the total tensile stresses at

the extremities of the steel rods will give the total horizontal

shearing stress on the sides of those rods and this may be

written pjl^dx (lbs.), where pj = unit shearing stress between

the steel and concrete and l^ == aggregate perimeter of the steel

rods (so that l^dx = total area of the outside surface of rods in

Fig. 294);

hence p/l^dx ^ F' {p' j^- dp') — F'p' .... (7)

But if, for the free body of Fig. 294, we put 2 moms. =
about the point Cr (a distance ^ e from upper fiber)

we find Jdx = [F' (p' + dp') — F'p'']{a -\ e)\ . . (8)

and hence ) , J"
/q\

see (7), \
^' ^

l^ (a -^ e) ^ ^
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p bdx

Also, if we let p^ denote the unit shearing stress (or tendency

to slide) along the horizontal sur-

face NN" or neutral surface, the

total amount is pjbdx (lbs.).

In Fig. 295, which shows as a

free body the portion NN"S"S of

Fig. 294, we see this horizontal

force (of concrete on concrete) act-

ing toward the left. The other ^^°- ^^s.

forces acting on the free body are as shown in Fig. 295 and, by

putting 2 horiz. compons. = 0,

we find

and finally,

see eq. (8),

F' {f + df) — F'p' = pJbdx;

J
Ps

(9a)

(10)5(a-ie) •

This (unit) shearing stress in the concrete along NN", the

"neutral surface," should nowhere exceed a certain value \Q.g.,

64 lbs. per sq. in.). For horizontal planes above NN" it is

smaller than along NN". Similarly, the unit stress pj should

not exceed a proper limit.

287. Numerical Example of a Concrete-Steel Beam of Bectangular Section.

(See foregoing equations.)

Fig. 296 sliows the section [8 by 11 inches] of the beam. Four round steel

rods are imbedded near the under (tension) side, their centers being 10 in. from

W=600 Ihs.

.- d=0.45

4L p-^?

Fig. 296.

the top of section (a = 10 in.). This beam is to be placed on two supports at

the same level and 8 feet apart, and is to support a concentrated load P, lbs.,

at the middle of the span as well as its own weight, which is K = 600 lbs.

P is to be determined of such a safe value that the greatest stress in the

steel rods shall not exceed 16,000 lbs. per sq. in. The compressive stress in

concrete is not to exceed 700 lbs. per sq. in., nor the greatest shear either in the

concrete or between the steel and the concrete, 64 lbs. per sq. in.

Each steel rod is continuous throughout the whole span and has a diameter

of 0.45 in., from which we easily compute the aggregate perimeter of the rods
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to be 5.65 inches (=io)> ^^^ ^^^ aggregate sectional area to be 0.64 sq. in

(= Fy
The ratio of the modulus of elasticity for steel to that of the concrete will

be taken as 15 to 1 ; i.e., n = 15.

The first step is to locate the neutral axis by finding the value of e from

eq. (4), thus:—
64 15 / / 2 X 10 X 8

, , , \ „
J,

. .

^-iOQ-T(V .64X15
+l-l)=3.84m.

Next, if for p' we write 16,000 (using inch and pound) and substitute in

eq. (5), solving for M, we obtain the greatest bending moment to which any

section of the beam should be exposed, so far as the steel is concerned, viz:—

M = p'F'la-
I)

= 16,000 x 0.64 (10 - 1.28) =
j

e\ ..nnn.. n«..in 1 oe^ _ i
89,000

in.-lbs.

i.e., max. moment is to be 89,300 in.-lbs.

For the mode of loading of the present beam the max. moment occurs at

the section at the middle of the span and has a value (with I denoting the span,

PI Wl
or 96 in.) of — + -tt- • We therefore write

PX96 ^ 6_00x9_6 ^ gg 3^^_ ^^^^^ ^ ^ g^^^O lbs.
4 o

To find the accompanying maximum compressive stress in the concrete,

eq. (6) gives (for outer "fiber")

2Jf 2 x 89,300 __ -,

P = T-, ;
—

-s
= 5—FTTH s-^ = 666 lbs. per sq. m.,

•^ le{a-\e) 8 x 3.84 x 8.72 ±' ^ >

which is within the limit set (700 lbs. per sq. in.).

As for the max. shearing unit stresses Ps and ps, they are greatest where
the vertical shear, J, is a max., which is close to one of the supjjprts. Here we
note that J is equal to J of 3,420 + i of 600 = 2,010 lbs. Hence, from eq. (9),

2,010 2,010
^' - 5.65 X (10 - 1.28)

= 5.65 x 8.72
" = ^^"^ ^^'- ^^^ "I- ''''

while ) 2,010

from (10) i^^
= 8"3r8^ = ^^'^ ^^^- P^^ ^*1- ^"•'

These shearing stresses are seen to be well within the limit set, of 64 lbs. per
sq, in. As to compressive stress, the building laws of most cities put 500 lbs.

per sq. in. as max, safe limit forp, the compressive stress in concrete.

288. Concrete-Steel Beam of T-Form Section. See Fig. 297.
In this form of beam, to secure simplicity in treatment, it will

be considered that the flange {TK') alone is subjected to com-
pressive stress [although strictly a small portion of "stem"
between the flange and the neutral axis of a section is under
that kind of stress] . The part of stem below the neutral axis

(as before) is not considered to offer any tensile resistance, all
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tension being borne by the steel rods or " re-inforcement." Fig.

297 shows a side view and also an end-view of a portion of the

beam in Fig. 291 extending from the left-hand support np to

any section DjS (or up to W in Fig. 291). - As before, sections

plane before flexure are considered to be still plane during

flexure, so that the elongations or shortenings of any horizontal

*' fiber," w^hether steel or concrete, are proportional to the dis-

Fig. 297.

tances from a neutral axis iV, at some distance e from the top

fiber of the flange, where the unit compressive stress has some

value p.

Also, since the U for concrete in compression is to be taken

as constant the stresses in the concrete will also be proportional

to the distances of the " fibers " from H the neutral axis. Let

p'^ denote the unit-stress in the concrete at H, the bottom fiber

of the flange ; then, by proportion, p :p^' : : e: e — d, where d is

the thickness of the flange. Since the compressive stresses in

the concrete between H and D are distributed over a rectangle

their average unit-stress is (p-\-p'')/2, and their resultant,

which acts horizontally through some point Gr, has a value of

bd.(p -\- p")l2\ or, as it may be written (see above for y ),

'{^p {1 e - d) .Id) -^ {1 e\
.

The total tensile stress in the steel rods will be ¥'p', as

before, where ¥' is the aggregate sectional area of the rods and

p' the unit stress in them at section DS. Besides the stresses

just mentioned the other forces acting on the free body in Fig.

297 are all vertical ; viz., the shear J'and the pier reaction and

certain loads between and D ; hence by summing the horizon-

tal components we note that the compressive stress in the con-

crete is equal to the tensile stress F'p' in the steel, so that this
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tensile force F'p' and the resultant compressive stress form a

couple (^^ stress-couple '^ of the section; with an arm = 6r6r',

= a"), and we have

pi2e-d)bd ^ •

2e -^
^ ^

Consequently the shear and the other vertical forces acting on

the free body form a couple also, and the moment of this couple

(equal to that of the " stress-couple ") will be called M. In the

figure these vertical forces are not shown, but simply an equiva-

lent couple (on the left).

If at this part of the beam a length dx of the steel has

stretched an amount dX' and an equal length, dx, of the outer

fiber at D has shortened an amount dX, we have from eq. (2)

of previous work

dX'-p'"E' ^^^^'

where E' and E are the moduli of elasticity of the steel and

concrete, respectively. But, from (11),

p' (e - ^d)bd' ^ ^

and from similar triangles dX : dX' : : e : (a — e) . . . .(14)
Eqs. (33), (14), and (12), with E' -i- E = n, give

F-n.a+—-
'=

bd + En '

^^^^'

and thus the neutral axis, iV, is located.

It will now be necessary to locate the point of application,,

between E and E, of the resultant compressive stress on EE ;

that is, the point (r in Fig. 298 which gives a side view of

these stresses alone, forming, as they do, a trapezoidal figure

whose center of gravity, U, projected horizontally on EE gives-

the desired point, G: The lower base EC^^ of this trapezoid
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represents the unit stress jw"; the upper, DC", represents the

unit stress p. The distance, call it c,

of G- from N, is to be determined.

Let the trapezoid be divided into a

rectangle BD'" C"H and a triangle

D'"G"'Q". The center of gravity of

the latter is at a vertical distance of \ d

from a line WW" drawn horizontally

at distance \ d from D . H"H'" passes

through the center of gravity of the

rectangle. Let us now find the distance GrR" by writing the

moment of the resultant stress about point W equal to the

sum of those of its two parts, or components, represented by

the rectangle and the triangle ; whence we have

Fig. 298.

\{p^p").uy. aw = o + ^P-^P^'^ .'^ (16)

Noting that ji?'' =

d-"

- d
p, we have, solving,

aw=\
6 2e- d

NCr, i.e., c, = e

, and therefore, measuring from N,

d 1

2
"^

6 2e - cZ
(17)

Now that both e and c have been determined in any given

case it remains to find expressions for the unit stresses p' and j?

(in steel and fiber I) of concrete}.

Since (r is the point of application of the resultant compres-

sion in flange, the arm of the stress-couple, a" (Fig. 297), is

the distance from G- to Gr' (see Fig. 297); that is,

a" = c -{- [a— e); and hence we may write

Pf(c + a-e)~M;.:f =
^,^/^^_^^ .(18)

Also, by eliminating the ratio d\:d\' from eqs. (12) and

(14) we have, solving for^,

p = p e

n (a — e)
(19)
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289. Shearing Stresses in T-Form Concrete-Steel Beams. As
regards the unit shearing stress, p'^ induced on the sides of the

steel rods, in this case of the concrete steel beam of T-form

section, an analysis similar to the corresponding one in the case

of the beam of rectangular section leads to the result

J ( where «7is the total vertical shear at ) ,oa\

Iq{c -\- a— e)
I
the section BS, and l^ the aggregate

)

perimeter of the steel rods.

And, similarly, for the unit shearing stress on the horizontal

surface separating the flange from the "web" or "stem" (see

Fig. 297 ) at H, where the width of the web is h", we find for this

unit horizontal shear, p^,

P'= V-(c + a-e)
(^^'

290. Deflections of Concrete-Steel Beams. The deflection of a

loaded prismatic concrete-steel beam resting on two supports at

its extremities, may be obtained for the cases dealt with in

§§ 233-236 inclusive, in connection with homogeneous beams ;

provided the product EI occurring in the expressions for these

deflections be replaced by [ a— -^), for concrete-steel beams

of rectangular section; and by E' F' {a — e) (c + a — e), for

those of T-form section.

291. Practical Formulae and Diagrams for use with Concrete-Steel Beams
of Rectangular Section. The equations of the foregoing theory will now be put

into convenient form for practical use in designing these

beams. Let us denote the ratio of p' (stress in steel at

section of max. moment) to p (stress in outer fiber of

concrete) by r ; i.e., r = p'/p ; while n = E'/E, as before.

Also let ?n, = M -^h, denote the max. bending moment per

inch of width (6) of beam ; and let F' (area of steel) -h & be

called/, i.e., steel areajjer mc/i of width {b). In other words,

we have the notation

r =-?:_; n= -=-;™ = ^; and /'= -=-; . . . . (22)
Fig. 299. p E

If we now substitute e= 2 r/, from eq. (1), in eq. (3),

we have 2Tf {r+n)=an (23)

Now e= 2 r/, which from (23) =an-^{r + n) ;
Hence eq. (5)

-will give 3?n(r+ Ti) = a/'p'(3r + 2n) (24)
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If now S denote the quotient /'-=-a (i.e., /S=area of steel section j3er unit

area of concrete section above the steel), (23) may be written in the form

S= n-h[2r{r+n)] (25)

3 J'4-2 n
Asain, let ^— r- be denoted by Q - . . . (26)° 3(r+ n) ^ '

Prom (24), (25) and (26) we may then derive

M=qSp'a^b .... (27); andi m = QSp'a^ ...... (28)

for practical use in design; in connection with Diagrams I and II (opp. pp.

350 and 351) from which we may obtain values of Q and 8, respectively, for

any given values of r and n.

As to unit shearing stresses, which should not exceed 64 lbs. per sq. in.

(say), use is made of eqs. (9) and (10), § 286, in which the maximxim total vertical

shear Jm should be substituted. In computing "e " for use in (9) and (10), it is

simplest to employ the relation [derived from eqs. (1), (23) and (25)]

e= 2 Sra (29)

292. Numerical Examples. Rectangular Section. Let us suppose that in the

cross-section of maximum moment the stresses in both materials are to attain

their greatest safe values; viz., 16,000 lbs. per sq. in. tension for the steel, and

600 for the compressive stress in outer fiber of the (rock) concrete. Also suppose

that ^'= 30,000,000 and £'= 2,000,000 lbs. per sq. in. That is, we have n=15
and r= 16,000 H- 500, = 32 ; and from Diagram I find S= 0.005. In other words

the necessary area of steel section is J of one per cent, of the area of the concrete

(above steel rods). "We also find, from Diagram II, that Q = 0.894,

If now " a " be taken as 10 in., eq. (28) gives :
—

m = 0.894 X 0.005 X 16,000 X 100, = 7,152 inch-lbs. bending moment that

could safely be withstood by each inch in the width &; so that if "&" were 8

inches we should have M = mb = 7,152 x 8 = 57,216 inch-lbs., safe bending

moment for the section of the beam.

Again, with r and n still equal to 32 and 15, respectively, and hence with

Q and /S as before, viz., 0.894 and 0.005, if b is assumed as 10 in., and the max.

bending moment to be sustained is If = 80,000 inch-lbs. (so that m = 8,000),

we find from eq. (28)

= \/^« = ^/ -.894x0^07x16,000 = ^^''^ ^^^^^^'

as necessary value of a ; while the total area of steel section needed is

F', = S . a &= 0.005 X 10. 58 X 10= 0. 5290 sq. in.

which is seen to be one half of one per cent, of the area [10x10.58] of the

concrete above steel (i.e., S= 0.005, as found from Diagram I originally).

293. Cost of Beams of Rectangular Section. While in a general sense

economy in cost is favored by having the width " &" of the rectangular section

small compared with the height " a," a limit to narrowness of width is set by

the unit shearing stress in the neutral surface which would be found to exceed

a safe limit if the beam were too narrow. The thickness "a'" of concrete

below the steel rods (see Fig. 292) might be made -^5 of " a."
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CHAPTER VI.

Flexure. Columns and Hooks. Oblique Loads.

294. Oblique Prismatic Cantilever. In Fig. 301, at (a),

(on p. 354) we have a prismatic beam built in at K, projecting-

out obliquely, and carrying -a vertical load P at upper end ; the

line of action of P passing through the center of gravity of the

upper base of the prism. In such a case the fibers of the beam
where they cross any transverse plane mg will evidently be

subjected to compressive stress (called a ^'thrust'''') due to the

component of P parallel to the axis OKoi the prism ; to a shear

J" due to the component of P at right angles to that axis ; and

also to additional stresses, both tensile and compressive, formings

a " stress-couple^^ due to the moment of P (i.e., Pu) about ^, the

center of gravity of the cross-section m'm.

More in detail, consider in Fig. 300 a portion AB of the

prism, being the part lying above a cross-section mm' near the

top, so that the portion gO of

axis is practically perpen-

dicular to the section mm'
which is a plane both before

and after flexure, g being

the center of gravity of the

plane figure formed by the

cross-section.

Let the unit stress on the

end of the extreme fiber at

m be represented by the

length sm and that [also com-

pression (say)] on the other

extreme fiber, at m', by s'm'.

Draw the straight line ss'
;

then by the common theory of flexure the stress on any inter-

mediate fiber, at c, would be the intercept, or ordinate, ac to this

line. Now the unit stress p^, on the fiber g at the center of

gravity of cross-section, being gr, draw through r a line t'rt

Fia. 300.
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parallel to m'm, and we now have the stress on any fiber as o

divided into two parts be, or p^, the same for all the fibers ; and

ab, different for the different fibers but proportional to the

distance z of the fiber from g. Hence we have

:

the unit stress on any fiber c is

P = Pi -\ P2 (ibs. per sq. in.) . . . . (1)

where p^ is st and e the distance of the extreme fiber ??? from g ;

and hence the total stress on fiber c ispdF =p^dF H— Pnli^F, lbs.
;

where dF is the area (sq. in.) of section of fiber, or element of

area of the cross-section, F being the total area of the cross-

section, mm' . Geometrically, we note that while the system of

normal stresses on all the fibers forms a trapezoid, m's'sm in

this side-view, and that they are all compressive, they are

equivalent to a rectangle, m't'tm, of stress of uniform compressive

unit-stress p^ ; and two triangles, one, rst, of compressive stress,

and the other, rs't', of tensile stress.* It will now be shown that

the sum of the moments of the stresses of the rectangle about

center g is zero, and that the two triangles of stress form a couple.

^(moms.) of stresses in triangle = I (p^dF)z = pi dFz

=p^Fz = zero ; since z =zero, the 2's being measured from the

center of gravity, g, of section mm' [§ 23, eq. (4)].

Again, if we sum (algebraically) the stresses of the two

triangles,

we have /
- p dF= — I zdF = ^Fz, = zeYo

Jz = -e' e e J e

that is, the resultant of the compressive stresses in rts equals

that of the tensile stresses in rs't' ; hence they form a couple.

If, therefore, we have occasion to sum the moments about

g, of all the stresses acting on the fibers in section wm' we are

to note that this moment-sum involves the stresses of the triangles

alo7ie (that is, of the couple), and is

in.-lbs. ; where I^ is the " moment of inertia " of the cross-section

* These plane figures are the side views of geometric solids.
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referred to an axis through g (its center of gravity) and perpen=

dicular to the "force plane " (plane of paper here).

If, again, we sum the components of all the stresses (on plane

mm') parallel to the axis gO we note that this sum is zero for

the couple and also for the shear J and hence reduces simply to

fp^dF =_Pj CdF=p^F, lbs. (the Thrust) . . (3)

(corresponding to the rectangle, fm).

The sum of components perpendicular to axis ^ is of course

simply the shear, J, lbs.

Evidently the unit stress (normal) in fiber at m is expressed

e'
as jp,„ = j9j 4-^2' ^^^^ ^^^^ ^^ *^' '^^^ Pm'=Pi P2' ^^ ^^ ^^^J

case the latter is negative it indicates that the actual stress in

this fiber is tension.

295. Oblique Cantilever. Fig. 301, (a) and (5). At (h) is shown

as a " free body," a portion [of the cantilever at (a)] of any

length X from top. The

forces acting are the vertical

load P at 0, and the stresses

on the ends of the fibers in

the section m'm.; and these

stresses are now indicated

as consisting of a thrust, T,

of uniform intensity p^, the

total thrust being ^9^^', lbs.,

(where Y is the total area of

section) ; of a stress-couple,

'

'"
C, whose moment is -^ in.-

FiG. 301. e

lbs., in which pj = Pm — P^ ^^^ I is the " moment of inertia
"

of the cross-section (about an axis through its center of gravity

g at right angles to the plane (" force plane ") containing Og
and force P ; the same I that has been used in previous cases of

flexure) ; and the total shear, J, lbs., parallel to force plane and

perpendicular to gO. The lever arm of P about g i^ u which

practically = x sin a (unless the beam is considerably bent or

is nearly vertical).
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For this free bjdy (in order to find p^, p^ and J

)

Xxr A • Ti -n f\
Pcosa

Jl = Ogives: /^ cos a—p^i^ =0 ;
.•. p^ = F

X^
X A Vol r> A -^^^

(moms.)^ = .
.-^ Fu = 0; .-. p^ = —— •

(4)

. (5)

and Xi'=o P sin a — J" = (9 ; .-.J — P sin a, (6)

As X varies, from to Z, we note that p^ and J remain

unchanged but tliat p., increases ivith u ; so that the maximum
value of the unit stress jo,,,, Avhicli = p^ + p,' will be found in

the section at K, where x = I ; and if this stress is not to exceed

a safe value, R', for the material, we put p^i,^^ K) +p^ = R',

(as the equation of safe loading)
;

^^nan ^, .... (7)or, P "cos a

~'f~

Pn

(N. B. For a cross-section of unusual shape the stress

e'

,
= p^ P2, at K, might happen to be numerically greater

than Pj^„ and thus govern the design).

296. Experimental Proof of Foreg^oing. A
stick or test piece of straight-grained pine

wood, 12 inches in length and of square

cross-section (one inch square), originally

straight and planed smooth and with bases

perpendicular to ^the length, was placed in

a testing machine ; steel shoes, with (outside)

spherical bearing surfaces, being centered

on the ends. See Fig. 302, where AB is

the stick and S, S\ the two steel shoes. The

stick was gradually compressed between

the two horizontal plates B,B'^ of the machine

and bent progressively in a smooth curve

under increasing force. From the nature of

the "end conditions," as the stick changed

form, the line of action of the two end

pressures P,P, always passed through the

centers of gravity, a and h, of the respective bases.

When the force P had reached the value 4500 lbs. a fine

wrinkle was observed to be forming on the right-hand surface

Fie. 302.
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of the stick at the outside fiber m of the middle section gm. The
other tibers of this section were evidently uninjured. At m then,

the unit-stress must have been about 8000 lbs. per sq. in., the

crushing stress (as known from previous experiments with sticks

of similar material and equal section but only three or four

inches long; these were too short to bend, and wrinkles formed

around the whole 'perimeter^ showing incipient crushing in all the

fibers). The distance gc at this time was found to be \ in.

;

i.e., the lever arm, w, of the force P about g, the center of gravity

of the section. In this case, then, it is to be noted that the

value of %i was entirely due to the bending of tit e piece.

Substituting, in eqs. (4) and (5) of § 295, the values w = |- in.,

a = 0, cos a = l, e = e', =i inch, i^=l sq. in.,

hh^ 1x1^ 1
and i; = — , =

^^
= — in/, we find p^ = 4500

lbs. per sq. in. and p^= 3375 lbs. per sq. in.

Hence stress at m, = Pi-\- P21 == 7875 lbs. per sq. in., which is

about 8000, as should be expected. On the fiber at 0, how-

ever, we find a stress of p^ — p., or of only 1125 lbs. per sq. in.

compression.

We find, then, that in the section om, when P reached the

value of 4500 lbs., there was a total-thrust (p,F^ of 4500 lbs.;

a unit-thrust (w^) of 4500 lbs. per sq. in. ; and a stress-couple

pi
having a moment of Pw, = ^— , = 562.5 in .-lbs., (implying a

separate stress oi p^^^'^l^ lbs. per sq. in. in the outer fibers,

to be combined with that due to the thrust). Also that /, the

shear, was zero.

297. Crane-Hooks. First (Imperfect) Theory. Fig. 303 shows

a common crane-hook of iron or steel. Early writers (Brix and

others) treated this problem as follows :
—

The load being P, if we make a horizontal section at AB^
about whose gravity axis, gr, P has its greatest moment, and con-

sider the lower portion C as a free body, in Fig. 304), we find,

using the notation and subdivision of stresses already set forth

in § 294 for an oblique prism, that the uniformly distributed

pull (or " negative thrust ") on the fibers is p^F = P, lbs. ;
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P

while the moment of the stress-couple is ^- = Pa ft.-lbs.; and
e

that the shear, /, is zero.

Hence on the ex-

treme fiber at B we
have a total unit

tensile stress of

Pae

T'
which for safe de-

sign must not ex-

ceed the safe unit-

stress for the ma-

terial, R' lbs. per sq. in. ; whence we should have

p[l +
f]

= iS' . .

as the equation of safe loading.*

Example: Safe P = ?, if section AB is a circle of radius

2 in., while a = 4 in. ; the material being mild steel for which

(in view of the imperfection of the theory) a low value, say

6000 lbs. per sq. in., should be taken for R'. With these data

we obtain:—
1 4x2"

Fig. 303. Fig. 304. Fig. 305.

(8)

P = 6000 -[12.56 ^ 50.24h 25130 lbs.

The simple crane in Fig. 305, being practically an inverted

hook, may be treated in the same manner.

298. Crane-Hooks. Later, More Exact, Theories. The most

exact and refined theory of hooks yet produced is that of

Andrews and Pearson,! but it is very complicated in practical

application and far too elaborate and extended to be given

here.

The next best (and fairly satisfactory) treatment is that of

Winkler and Bach, of which the principal practical features

and results will now be presented.

* See experiments by Prof. Goodman, in Engineering, vol. 72, p. 537. Re-

sults are irregular, due probably to the use of this imperfect theory.

t Drapers' Company Research Memoirs. Technical Series I. London,

1904.
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In AB, Fig. 306, we have again the free body of Fig. 304,

but the vertical stresses acting on the cross-section m'm are

proportional to the ordinates of a curve instead of a straight

line. The imperfection of the early theories lies in the fact

that the sides of a hook are curved, and not straight and par-

allel as in the prismatic body of Fig. 301 ; and the variation of

stress from fiber to fiber on the cross-section must follow a dif-

ferent law, as may thus be illustrated

:

As preliminary, the student should note, from the expres-

P EX
sion— = —-of p. 209, that in the case of two fibers under ten-

F I

sion, with the same sectional area F, the unit-stress P -^ F (or

p) is not proportional to the elongation }. of the fiber unless the

two lengths I are equal. In Fig. 306 the center of gravity of

the cross-section is g, and is the center of curvature of the

curved axis gk of this part of the hook (or other curved body).

The two consecutive radial sections m'm and ft are assumed

to remain plane during stress, and hence the changes of length,

due to stress, of the (verti-

cal) fiber lengths between

them are proportional to

the ordinates of a straight

line ; and if these fiber

lengths were equal in

length (as would be the

case for a prismatic beam)

the unit-stresses acting

would also be proportional

to the ordinates of a

straight line (this is the

case in Fig. 301).

But in the present case

these fiber-lengths are un-

equal, so that the unit-

stresses in action are (in

general) proportional to

the ordinates of a curved line. Such a curved line we note in

vCi Fig. 306, the ordinates between which and the horizontal

line hi represent the unit-stresses, p, acting on the upper ends

Fig. 306.
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of the vertical fibers from m' to m. Tlius, the stress on the

fiber mt is p^ = ei (tension); and that on the other extreme

fiber, (at m') is p^, = hv (compression).

If now we compute the average unit-stress p^ =^ P -i- F and

lay it off, == is, upward from hi, and draw the horizontal 6s, we
thereby re-arrange the stresses into a uniformly distributed pull

(or " negative thrust ") p^F ^hs., represented by the rectangle

hsih, and a stress-couple formed by the ordinates lying between

the curve and the axis hs.

It will be noted in Fig. 306 that there is a fiber at some

point n (on right of g) where the stress is zero ; i.e., the " neu-

tral axis " of the section is at n, ~1 to paper. Also, at some

point n', the actual stress is equal to the average, p^, and an

axis ~] to paper through this point would be the neutral axis if

the forces acting on this free body, other than the fiber stresses,

consisted, not of a single force P, but of a couple, with a mo-

ment = Pa. This axis through n' might be called the neutral

axis for " pure bending ", since then the whole system of fiber

stresses would reduce to a couple and the stresses would be

measured by the ordinates between hs and the curve.

299. Crane-Hooks. Winkler-Bach Theory. Formula for Stress. In Fig.

306, let F be the area of the plane figure formed by the section m'm, dF an
element of this area, and z its distance (reckoned positive toward the right)

from the gravity axis, g^ of the section. The radius of curvature of gk is r,

and a is the lever arm of P, the load, about g. Let gm = e and gm' = e' (dis-

tances of extreme fibers) and let

/Vr r'=+^ I dF
S denote the quantity

( t,
/

(

an abstract number depending on the area, shape, and position, of the cross-

section m'ni ; and upon the radius of curvature r. Its value may be obtained

by the calculus (or Simpson's Eule) for ordinary cases. For instance, if the

section is a rectangle of width b, and altitude = A, = m'm, we find

-1
; (1)

'-jh-'^l)-' (^:

From the Winkler-Bach theory it results that the unit-stress on any fiber

between m and m', at a distance z from the gravity axis g (on the right, toward

the center of curvature, 0; if on the left, z is negative) is

a /. Z 1"'J"

^^F
I

r\ r — z S/.
(3)

lbs. per sq. inch. A positive result from (3) indicates tension; a negative, com-
pressive stress. Of course, for P -=- Pwe might write the symbol p^, or " aver-

age stress." If p were set = zero, a solution of (3) for z would locate the neu-
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tral axis, n, of Fig. 306; while by placing p — Pj = 0, a solution for z would

locate the point n', or neutral axis for "pure bending."

300. Numerical Example. Let the cross-section be a trapezoid, of base

6 = 3 in. at m, and upper base 6' = 1 in. at ?/i', both | to paper ; the altitude

/i, =• m/m, being 4 in. This brings g f in. (= e) from m and | in. (= e') from

m'. LetN be in the same vertical as and Om = 2 in. Hence r=a = 2 + |.=

y in. The material is mild steel and the load P is 8 tons ;
find p^ and -pm'

.

From above dimensions we find area ^=8 sq. in,, while from eq. (1),

(using the calculus), S= 0.0974. For p^ w^ put z = + f in. in eq. (3) ; and for

Pm', 3 = - I in. ; obtaining, finally, p,« = 17,120 lbs. per sq. in. (tension) ;
and

Pm' = — 7,980 (compression). Evidently the elastic limit is not passed.

Using the imperfect theory of § 297, we should have obtained pm = 12,000

lbs. per sq. in., only ; which is seen to be about 30 per cent, in error, compared

with the above value of 17,120. The reason for taking a low value for the safe

unit-stress, B', in the example of § 297 is now apparent, an additional reason

being the fact that loads are sometimes "suddenly applied " on hooks.

301. By "column" or "long column" is meant a straight

beam, usaally prismatic, which is acted on by two com-

pressive forces, one at. each extremity, and whose length

is so great compared with its diameter that it gives way
(or " fails ") by buckling sideways, i.e. by flexure, instead

of by crushing or splitting like a short block (see § 200).

The pillars or columns used in buildings, the compression

members of bridge-trusses and roofs, the " bents " of a

trestle work, and the piston-rods and connecting-rods of

steam-engines, are the principal practical examples of long

columns. That they should be weaker than short blocks

of the same material and cross-section is quite evident, but

their theoretical treatment is much less satisfactory than

in other cases of flexure, experiment being very largely

relied on not only to determine the physical constants

which theory introduces in the formulae referring to them,

but even to modify the algebraic form of those formulae,

thus rendering them to a certain extent empirical.

302. End Conditions.—The strength of a column is largely

dependent on whether the ends are free to turn, or are

fixed and thus incapable of turning. The former condi-

tion is attained by rounding the ends,' or providing them
with hinges or ball-and-socket-joints ; the latter by facing

off' each end to an accurate plane surface, the bearing on

which it rests being plane also, and incapable of turning.

In the former condition the column is spoken of as having
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round ends ;
* Fig. 311, (a) ; in the latter as having fixed ends,

(ov flat bases ; or square ends), Fig. 311, (&).

Fig. 312.

Sometimes a coliimn is fixed at one end while the othei

end is not only round but incapable of lateral deviationfrom
the tangent line of the other extremity ; this state of end

conditions is often spoken of as "Pin and Square," Fig.

311, (c).

If the rounding * of the ends is produced by a hinge or
** pin joint," Fig. 312, both pins lying in the same plane

and having immovable bearings at their extremities, the

column is to be considered as round-ended as regards flex-

ure in the plane 1 to the pins, but as square-ended as re-

gards flexure in the plane containing the axes of the pins.

The " moment of inertia " of the section of a column will

be understood to be referred to a gravity axis of the sec-

tion which is "I to the plane of flexure (and this corres-

ponds to the " force-plane " spoken of in previous chap-

ters), or plane of the axis of column when bent.

303. Euler's Formula.—Taking the case of a round-ended

column, Fig. 313 (a), assume the middle of the length as

an origin, with the axis X tangent to the elastic curve at

that point. The flexure being slight, we may use the form

EI (Py-^dx^ for the moment of the stress-couple in any

* With round ends, or pin ends, it should be understood tliiit the force

at each end must be so applied as to act through the centre of gravity of the

base (plane figure) of the prismatic column at that end ; and continue to do
so as the column b^ nds.
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dp dy dy

dx- —'r-yJ/c

dx-" /
/
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1

I

Y

Fig. 313. Fig. 314.

^section w, remembering tliat with this notation the axis X
must be || to the beam, as in the figure (313). Considering

the free body nC, Fig, 313 (h), we note that the shear is

zero, that the uniform thrust =P, and that 2'(moms.n)=0

gi'ves (a being the deflection at 0)

EI d'y

dx^
--F{ar-y)

Multiplying each side by dy we have

El
dx"

dy (Fy=Pa dy—Fy dy

(1)

(2)

' Since this equation is true for the y, dx, dy, and d^y of any

element of arc of the elastic curve, we may suppose it

written out for each element from where ?/=0, andc''y=0,

up to any element, (where dy=dy and y=y) (see Fig. 314)

and then write the sum of the left hand members equal to

itliat of the right hand members, remembering that, since

dx is assumed constant, l-^dsc^ is a common factor on the

left. In other words, integrate between and any point

of the curve, n. That is.

f[dy]d[dy] =Fa f dy—P T ydy (3)

The product dy d^y has been written {dy)d(dy\ (for d^y m

EI
da?
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the differential or increment of dy) and is of a form like

xdx, or ydy. Performing the integration we have

EI d_l y^ .... (-1)
dx' 2^2 ^

which is in a form applicable to any point of the curvej

and contains the variables x and y and their increments

dx and dy. In order to separate the variables, solve for dxy

and we have

di

dx=l^-JL==^OTdx=^ IEI, \aJ ...

d(y)

'^ (X \C(/ /

i.e.,a!=±y-p- (vers, sin ^^j , , . (6)

(6) is the equation of the elastic curve DOG^ Fig. 313 (a),

and contains the deflection a. If P and a are both given,

y can be computed for a given cc, and vice versa, and thus

the curve traced out, but we would naturally suppose a to

depend on P, for ineq. (6)whena7=^Z, y should —a. Mak-
ing these substitutions we obtain -

^

'A^= V^ (^^^"- ^^^ "' ^-^^^
'
^•^- >^^= 7^ I ^^^

Since a has vanished from eq. (7) the value for P ob-

tained from this equation, viz.:

i\=EI ^ .... (8)

is independent of a, and

is ,\ to be regarded as that force (at each end of the round'

ended column in Fig. 313) which will hold the column at

any small deflection at which it may previously have been

set.
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In other words, if the force is less than Pq no flexure at

all will be produced, and hence P,, is sometimes called the

force producing " incipient flexure." [This is roughly ver-

ified by exerting a downward pressure with the hand on

the upper end of the flexible rod (a T-squai e-blade for in-

stance) placed vertically on the floor of a room ; the pres-

sure must reach a definite value before a decided buckling

takes place, and then a very slight increase of pressure oc-

casions a large increase of deflection.]

It is also evident that a force slightly greater than P^

would very largely increase the deflection, thus gaining for

itself so great a lever arm about the middle section as to

cause rupture. For this reason eq. (8) may be looked

upon as giving the Breaking Load of a column with round

ends, and is called Euler^s fornfiula.

Referring now to Fig. 311, it will be seen that if the three

parts into which the flat-ended column is di-

vided by its two points of inflection A and B
are considered free, individually, in Fig. 315,

the forces acting will be as there shown, viz.:

At the points of inflection there is no stress-

couple, and no shear, but only a thrust, =P,
and hence the portion AB is in the condition

of a round-ended column. Also, the tangents

to the elastic curves at and G being pre-

served vertical by the frictionless guide-blocks

and guides (which are introduced here simply

as a theoretical method of preventing the ends

from turning, but do not interfere with verti-

cal freedom) OA is in the same state of flex-

ure as half of AB and under the same forces.

Hence the length AB must = one half the

total length I of the flat-ended column. In

other words, the breaking load of a round-

ended column of length =^Z, is the same as

that of a flat-ended column of length —I.

Hence for the I oi eq. (8) write %l and we
have as the breaking load of a column with

flat-ends and of length =1.

}il

f/MWM

Fig. 315.
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r.^4.m^ .... (9)

Similar reasoning, applied to tlie " pin-and-square

"

mode of support (in Fig. 311) where the points of inflec-

tion are at B, approximately y^ I from G, and at the

extremity itself, calls for the substitution of ^ I for I in

eq. (8), and hence the breaking load of a ^'pin-and-square
"

column, of length = I, is

P^=l ^/^ . . . (10)

Comparing eqs. (8), (9), and (10), and calling the value of

Pi (flat-ends) unity, we derive the following statement

:

The breaking loads of a given column are as the numbers

1

flat-ends

9/16

pin-and-square
y^ j

according to the

round-ends \ mode of support.

These ratios are approximately verified in practice.

Euler's Formula [i.e., eq. (8) and those derived from it,

(9) and (10)] when considered as giving the breaking load

is peculiar in this respect, that it contains no reference to

the stress per unit of area necessary to rupture the material

of the column, but merely assumes that the load producing
" incipient flexure ", i.e., which produces any bending at

all, will eventually break the beam because of the greater

and greater lever arm thus gained for itself. In the canti-

lever of Fig. 241 the bending of the beam does not sensibly

affect the lever-arm of the load about the wall-section, but

with a column, the lever-arm of the load about the mid-

section is almost entirely due to the deflection produced.

It is readily seen, from the form of eqs. (8), (9) and (10),

that when I is taken quite small the values obtained for Po, Pi,

and P2 become enormous, and far exceed what would be

found from the formula for crushing load of a short block,

viz., P=FC (see p. 219), with F denoting the area of section

of the prism and C the crushing unit-stress of the material.

The degree of slenderness a column must have to justify the

use of Euler's relations will appear in the next paragraph.
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304. Euler's Formula Tested by Experiment.—Since the

"moment of inertia," /, (referred to a certain axis) of the cross-

section of the column may be written I= Fk^, where k is the

"radius of gyration " (see p. 91), and F the area of the plane

figure, eq. (8), for ''round 1 Pq tz^E

ends," may be written \ F~~(l^ky ' *

Here Po^F is the average unit-stress (compressive) on the

cross-section and l^k is a ratio measuring the slenderness of

the column. (Of course, when the column actually gives way
by buckhng, the unit-stress on the concave side at the middle

of the length is much greater than the average). In the ex-

periments by Christie, described on p. 112 of the Notes and

Examples, the value of the ratio l-i-k ranges from 20 to 480.

As an example consider a 3"x3"Xi" angle-bar (or "angle")

of wrought iron, with Z= 15 ft., to be

used as a column. Fig. 315a shows

the cross-section of this shape, with di-

mensions. Q is the center of gravity

of this plane figure. Let the force be

applied at each end of the column

according to Christie's mode of "round

ends," i.e., by a ball-bearing device. Fig. 3l5a.

the force always passing through the point C of the section at each

extremity of the column. Since the ends are free to turn in any

plane, the axis

of the column

will deflect in

the plane CN 1

to the axis 2 ... 2

(of the plane

figure) about

which the values

of / and of k are

least. For this

shape, we find

from the hand-

book of theCam-
bria Steel Co.,

that k about

axis 2 ... 2 is the least radius of gyration and =0.58 in. ; also that
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the area of the figure is F= 2.75 sq. in. Hence the "slender-

ness-ratio-;' l^k, is 180" -^ 0.58" = 310; and from eq. (11) we
have, with E for wrought iron taken as 25,000,000, lbs./in.2

(p. 279),

I (Po -rF)=Ti^X 25,000,000 -^ (310)2 = 2570 lbs. / in.2

;

while from the Christie experiments we find (Po^P)=2650
lbs. /in.2 as the average unit-stress at rupture; a fairly close

agreement with the Euler result. The total rupturing load

would then be Po= 2570X2.75= 7070 lbs., and the safe load,

with the "factor of safety " of 8 recommended in the Christie

report, would be 884 lbs.

In this way it may be ascertained that for values oi l^k
from 200 to 400 for "round ends " and from 300 to 400 for

fixed ends there is an approximate agreement between

Euler's equations and the Christie experiments. But most

of the columns used in engineering practice involve values

oil^k less than 200, so that Euler's formulae are not adapted

to actual columns (though used to some extent in Germany).

A formula of such nature as to be available for all degrees

of slenderness has therefore been established (Rankine's,

see next paragraph), based partly on theory and partly on

experiment, which has obtained a very wide acceptance

among engineers.

In Fig. 3156 is shown a curve, Er, resulting from plotting as abscissa

and ordinate the values of Po-Hi^ and Z-h A:, as related in Euler's formula

(8) for columns with round ends, for "medium" structural steel; with
£'= 30,000,000 lbs./ in- ^ Ej is a similar curve plotted from Euler's formula

(9) for fixed ends for the same material. Each of these Euler curves is

tangent to both axes at infinity. The other curves wUl be referred to later.

305. Rankine's Formula for Columns.—The formula of this
name (some times called Gordon's, iu some of its forms) has

a somewhat more rational basis than Euler's, in that it in-

troduces the maximum normal stress in the outer fibre and
is applicable to a column or block of any length, but stili

contains assumptions not strictly borne out in theory, thus

introducing some co-efficients requiring experimental de-

termination. It may be developed as follows :

Since in the flat-ended column in Fig. 315 the middle
portion AB, between the inflection points A and B, is

acted on at each end by a thrust = P, not accorapanied by
any shear or stress-couple, it will be simpler to treat thai
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p.,

portion alone Fig. 316, (a), since the thrust and stresa-

couple induced in tlie section at

R, the middle of AB, will be equal

to those at the flat ends, and G,

in Fig. 315. Let a denote the de-

flection of R from the straight line

AB. Now consider the portion

AR as a free body in Fig. 316, (b),

putting in the elastic forces of the

section at R, which may be clas-

sified into a uniform thrust =
PiF, and a stress couple ofmoment Fiq. sie.

294). (The shear is evidently zero, from= L:_, (see
e

I (hor comps.) = 0). Here p^ denotes the uniform pres-

sure (per unit of area), due to the uniform thrust, and jpg

the pressure or tension (per unit of area), in the elastic

forces constituting the stress-couple, on the outermost

element of area, at a distance e from the gravity axis (~|

to plane of flexure) of the section. F is the total area of

the section. / is the moment of inertia about the said

gravity axis, g

1 (vert, comps.) = gives P == p^F , . (Tj

2' (moms.j,) = gives Pa =^— .... (2)

For any section, n, between A and R, we should evidently

have the same^j as at R, but a smaller pi, since Py < Pa
while e, /, and F, do not change, the column being pris-

matic. Hence the max. (pi+JJa) is oil the concave edge at

R and for safety should be no more than G -^ n, where G
is the Modulus of Crushing (§ 201) and w is a " factor of

safety." Solving (1) and (2) for j9i and^gj and putting their

sum = C -V- %, we have

P.Pae G
(3)

We might now solve for P and call it the safe load, biat a§
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is customary to present the formula in a form for giving

the breaking load, the factor of safety being appHed after-

ward. Hence, we shall make n=l, and solve for P, calling

it then the breaking load. Now the deflection a. is unknown,

but may be expressed approximately, as follows, in terms

of e and l.

If we now consider ARB to be a circular arc, of radius= |0,

we have from geometry (similar triangles) a=(Z-^- 4)^^2/9;

and if we equate the two expressions for the moment of the

EI V2I
stress-couple at R there results —=— (see pp. 249 and 250)

.

A combination of these two relations gives ae=(p2^S2E)P,

Now under a safe load the total stress, pi + p2, in the outer

fibre (concave side) at R will have reached a safe value, R',

for the material, and is therefore constant for this material,

and if the rude assumption is made that the portion p2 of

this stress is also constant, it follows that the fraction (p2 h- S2E)

= a constant; which may be denoted by /?, (an abstract number).

Let us also write, for convenience, I= Fk^, (k being the radius

of gyration of the cross-section about a (gravity) axis through

^ 1 to paper). Hence finally, we have, from eq. (3),

Breaking load 1 FC
forflatends

J
^^r+^5(m)2 • • • (4)

By the same reasoning as in § 303,' for a round-ended

column we substitute 21 for I; for a column with one end round

and the other '^fiat " or ''fixed " (i.e., for a " pin-and-square "

column), ^l for I; and obtain

Breaking load for a round- 1 FC
^

ended column \^^^TTW(hW' •
• • (^)

Breaking load for a ''pin-

1

FC
and-square " column J ^^^l + 1.78/9(Z-^/c)^' '

' • ^^^

Each of these equations (4), (5), and (6), is known as Ran-

kine's Formula, for the respective end-conditions mentioned.

They find a very extended use among engineers in English-

speaking countries; with some variation, however, in the
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numerical values used for quantities C and /?, which are con-

stants for a given material; and also in the fraction of the

breaking load which should be taken as the safe, or working,

load (the reciprocal of this fraction being called the "factor

of safety,") =n. A set of fair average values for these con-

stants, as recommended by Rankine and others, is here pre-

sented :

Hard
steel.

Medium
Steel.

Soft
Steel.

Wrought
Iron.

Cast
Iron.

Timber,

C (lbs./in.2) 70,000 50,000 45,000 36,000 70,000 7,200

/? (abstract number) ....
1 1 1 1

36,000

1 1

25,000 36,000 36,000 6,400 3,000

The factor of safety, n, usually employed with the fore-

going formulae and constants, is n= 4 for wrought iron and

steel in quiescent structures; and 5 under moving loads, as

in bridges; while n = 10 should be used for timber and 8 for

cast iron.

In Fig. 315?) are two dotted curves, plotted for round ends

(Rr) and fixed ends (Rj) in the case of medium steel; the above

equations (Rankine), with the above values of C and /?, having

been used. The ''slenderness ratio," l^k, i& the abscissa;

and Po^F, or Pi^F, (the average breaking unit-stress), is

the ordinate, of any point. These curves may now be com-

pared with the Eule'r curves, E^. and £/, (in the same figure),

.already mentioned as having been plotted for structural steel

(of modulus of elasticity £?= 30,000,000 lbs./in.2)

306. Examples; under the Rankine Formulae.—Example 1.

Let it be required to compute the breaking load of awrought-

iron solid cylinder, used as a column, of length 1= 8 ft. and

diameter, =d, =2.4 inches; with round ends, i.e., the pressure

acting at each end at the center of the circular base, the ends

being free to turn in any direction.

The "end conditions " call for the employment of the

''least k," but here k is the same for any gravity axis of the

circular section. That is we have

A;2= / ^^= 17,^4 ^ ;,^2_i ^2 _ 1(1,2)2_ 0.36 in.2; .-. /(;= 0.6 in.
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and (Z-^A;) = "slenderness-ratio " = 96-j-0.6= 160. Hence from

eq. (5)

KT^C 1
Po= j^pX^Tieop' ^^^^ '^^

36 000
^^^ <^= 36,000 lbs./in.2; Le.,

;r(1.2)236,000 162,800 ,<, .nn ik

It is seen that, on account of the degree of slenderness of

the column, the breaking load is about one quarter of what

it would be for a short prism of same section.

With a factor of safety of 5 we should take 5 of 42,300,

i.e., 8460 lbs., as safe load.

Example 2.—It is required to compute the diameter, d, .

of a solid cast-iron cylinder, 16 ft. in length, to serve as a

column with fiat ends, whose safe load is to be 6 tons, the

factor of safety being 6. This calls for the use of eq. (4) in

which we put Pi = 6x12,000= 72,000 lbs., the required break-

ing load ; with C= 70,000 lbs. / in.2 and /3= 1 -^ 6400. The least

radius of gryation should be used, but in this case the k"^ is

constant for all axes of the section, viz., k'^ ^\7tii^ ^nr^ ^d^ ^IQ.

Hence from eq. (4) we have (for inch and pound)

„ \Kd^C 54,980^2 ^onnmu
^' =

l + 7ra-/cl2
=-

r^ = 72,000 lbs.

This on reduction leads to the bi-quadratic equation

#-1.309^2 = 120.7;

which being solved for d^ gives d2 = o.645± 11.01. The upper

sign being taken we have, finally, c?= 3.41 in. as the required

diameter.

The "slenderness ratio," therefore, proves to be 192-^0.85

= 225, which though seemingly high is not extreme for a flat-

ended column; corresponding, as it does, to 112 for a round-'^

ended column.

Example 3.—A prism of medium steel, of uniform rec-

tangular section (solid) with dimensions 6 = 3 in. and /i= l in.,

is to be subjected to a thrust (connecting-rod of a steam-

engine). Its ends are provided with pins (see Fig. 312) capable^

of turning in firm bearings, the axis of each pin being T to
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the "b" dimension of the rectangular section. The length

between axes of pins, is Z= 6 ft. It is required to find the

breaking load by the Rankine formula).

Since the end conditions would be ''round-ends" if the

axis of the column were to bend in a plane T to the axes of

the pins (as in Fig. 312), but ''flat-ends" [Fig. 311(6)] in

case it bent in the plane containing the axes of the pins;

and since the k of the section is different for the two cases,

it will be necessary to make each supposition in turn and

take the smaller of the two results for breaking load (i.e.,

as the one to which the factor of safety should be applied).

For round-ended buckling the value of k^ is I^F=
[hh^^l2]^hh= 0.75 in.^; and, with the values of C and ^
for medium steel, we have from eq. (5),

p 50,000X3.0 150,000 ^,^^^,.

^36,000' 0.75

while for flat-ended buckling, in the other plane, the P
to be used would be A;^ = [6/^3^ 12] -6/i= 0.0833 in.2, and

hence from eq. (4)

p 50,000X3.0 150,000 -, ^.q lu

^^36,000' 0.0833

It is seen that Pi is smaller than Pq, so that with a factor

of safety of 6 we have for the safe, or working, load, I of

54,933, =9,155 lbs.

307. Radii of Gyration.— The following table, taken from

p. 523 of Eankine's Civil Engineering, gives values of ^'^,

the square of the least radius of gyration of the given cross-

eection about a gravity-axis. By giving the least value oi

h^ it is implied that the plane of flexure is not determined

by the end-conditions of the column (i. e., it is implied

that the column has either flat ends or round ends). If

either end (or both) is a pin-Joint the column may need to

be treated as having a flat-end as regards flexure in a plane

containing the axis of the column and the axis of the pin,

if the bearings of the pin are firm ; while as regards flexure

in a plane perpendicular to the pin it is to be considered

round-ended at that extremity.
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In the case of a " thin cell " the value of h"^ is strictly

true for metal infinitely thin and of uniform thieJcness ; still,

if that thickness does not exceed ^ of the exterior diame-

ter, the form given is sufficiently near for practical pur-

poses; similar statements apply to the branching forms.

f f^mm
h i

h

<—-h >

(a) (5)

wmmm,

Fig. 317.

*—-.. \W
(6) (cj

Fia. 818.

Solid Eectangle.

%— least side.

Thin Squfire Cell.

Side— In.

Thin Kectangular Cell. Yia 317 fc> -" /i^ /i+36

h^=- least side.

Solid Circular Section.

Diameter —d.

Thin Circular Cell.

Exterior diam. = d.

Fig. 317(a). ]z''=l^}i^

Fig. 317(6). A;2 = |/i2

p =
12'/i+6

Fig. 317 (c?). p^i^2
Id

Fig. 317(e). A;2 = Jd2

Angle-Iron of Equal
j^ig. 317^^) A;2=^-62

ribs

F:
62^*

A^ngle-Iio-n of unequal
, -^-g g^g^^^^ ^=

12(F+3?)

Cross of equal arms. Fig. 318 (6). ^=4^'

I-Beam as a pillar.

Let area of web =5, j.- 313 (c). F= -. . -^-j-^
« « &o^A flanges

& ^ ^ 12 A-^-H

=A.

Channel ^ig. 318(^). ^=^^^ [l2T^)+iT^^]
Let area of web =B; of flanges =A (both). ^ extends

from edge of flange to middle of web.
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308. Built Columns.—The "compression members" of

bridge trusses, and columns in steel framework buildings are

generally composed of several pieces of structural steel riveted

together, each column being thus formed of a combination of

plates, channels, angles, Z-bars, etc. In Figs. 319 and 320

PHCENIX COLUMN.

Fig. 319.
^^**-

are shown examples of these compound shapes. The Phoenix

column is seen to consist of four quadrantal segments riveted

together. In Fig. 319 is a combination of two channels and

one plate, these three pieces being continuous along the whole

length of the column. On the side opposite to the plate are

seen lattice bars, arranged in zig-zag, which serve to stiffen

the column on that side. The center of gravity of the cross-

section of this column is nearer to the edge carrying the plate

than to the lattice edge; and if the ends of the column are

provided with pins 1 to the webs of the channels the axis of

each of these pins should be so placed as to contain the center

of gravity of the cross-section of the column at that point.

The handbooks of the various steel companies present

formulae and tables enabling the breaking loads to be found

for their various designs of built columns, and for single I-beams

used as columns. For example, the tables given in the hand-

book of the Cambria Steel Co. for built columns of "medium
steel " are stated to be computed from the following formulae

(which are evidently of the Rankine type).

The breaking load for a column of length I and with cross-

section of area F and least radius of gyration k is (in pounds)

:

Square Bearing, Pin and Square Bearing. Pin Bearings.

50,000i^ „ 50,000i^ _ 50,000i^
Pi =

1 +
36,000W P2=

1 +
24,000 ar

Po=

1+
18,000VA:
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In these formulae I and k should be in the same unit (both

feet, or both inches; since (l^k) is a ratio) and the proper

k to be used for the case of "pin and square bearing " (i.e.,

one end provided with a pin and the other with a square

bearing) should be ascertained as in example 3, p. 371.

To obtain the total safe load for the column: "For quiescent

loads, as in buildings, divide by 4. For moving loads, as in

bridges, divide by 5."

Considerable variety will be found among the formulae

of the Rankine type proposed by different engineers as best

satisfying the results of experiment. For accounts of ex-

periments beyond those already quoted in the author's

"Notes and Examples in Mechanics," the reader is referred

to special works. Kent's Pocket Book for Mechanical

Engineers contains much valuable matter on the subject

of columns. The handbooks of the Carnegie Steel Co., the

Pencoyd Iron Works, and the Phoenix Iron Co., give ex-

tensive data relating to steel columns. Osborne's Tables of

moments of inertia and radii of gyration of compound sec-

tions is a valuable book in this connection.

309. Moment of Inertia of Built ColumiL Example.—It is pro-

posed to form a column by joining two I-beams by lattice-

work, Fig. 321, (a). (While the lattice-work is relied upon
to cause the beams to act together as one piece, it is not

regarded in estimating the area F, or the moment of iner-

tia, of the cross section). It is also required to find the

proper distance apart = x, Fig. 321, at which these beams

must be placed, from centre to centre of webs, that the

liability to flexure shall be equal in all axial planes, i.e.

that the 1 of the compound section shall be the same

about all gravity axes. This condition will be ful-

filled if Iy can be made ~i^* (§89), being the centre

of gravity of the compound section, and X perpendicular

to the parallel webs of the two equal I-beams.

Let F' = the sectional area of one of the I-beams, Fx
Tsee Fig. 321(a) its moment of inertia about its web-axis,

that about an axis ~[ to web. (These quantities can 1)8

* That is, with flat ends or ball ends ; but with pin ends, Fig. 313, if the

pin is II to X. put 4/y = Ixi if II to Y, put 47x = Ir .
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found in tlie hand-book of the iron company, for each size

of rolled beam).

Then the

total 7x = 2rx ; and total I^ = 2ri'v -f W-Yl

(see §88 eq. 4.) If these are to be equal, we write them so

and solve for a?, obtaining

X
V jr, (1)

310. Numerically; suppose each girder to be a 10}4 inch

light I-beam, 105 lbs. per yard, of the N. J. Steel and Iron

Co., in whose hand-book we find that for this beam I'x =
185.6 biquad. inches, and I'r = 9.43 biquad. inches, while

F' = 10.44 sq. inches. "With these values in eq. (1) we
have

„^J± (185.6-9.43) Vera = 8.21 inchea.
V 1 0.4-4.

n^

V

7^ ^

r'l^
-a;—

H

^
iai

^

^

^^ -P-

^11:=.

(6)

Fig. 331.

The square of the radius of gyration will be

F=2Px-^2i^'= 371.2 -^20.88=17.7 sq. in. . (2)

and is the samefor any gravity axis (see § 89).

As an additional example, suppose the two I-beams united

by plates instead of lattice. Let the thickness of the plate

= t, Fig. 321, (&). Neglect the rivet-holes. The distance

a is known from the hand-book. The student may derive

a formula for x, imposing the condition that (total /x)= /y-
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310a. Design of Columns.—General considerations governing

economy and efficiency in the design of built columns are

that the various pieces, besides being continuous for the whole

length, should be placed as far from the axis of the column

as possible, in order to increase the value of k the (least) radius

of gyration, thus leading to a larger value of the safe load for

a given amount of material, or to a minimum amount of material

for a given required safe load; and that the parts should be well

fastened together by rivets, preventing all relative motion. The

economy secured by placing the material as far from the center

as possible also holds, of course, for single pieces used as columns.

For example, if the safe load of a hollow cylindrical cast-iron

flat-ended column, 20 ft. long, is to be 40 tons, i.e., 80,000 lbs.,

and the thickness of metal is not to be less than \ in., we find,

after a few trials with Rankine's formula eq. (4), p. 369, taking

a factor of safety of 8 (so that the breaking load would be

640,000 lbs.) that an outside diameter of d= 8 in. is the largest

permissible. Thus, taking the least k"^, {^(F^8), from p. 373,

for a thin cylindrical cell, with Z= 240 in., with the sectional

area, F, as the quantity to be solved for, we have

\^'^^^.94QN2 =640,000 lbs.; .-. i^= 19.43 sq. in.

1 + :

6400 [82-8]

Let ^2 denote the internal diameter of the section; then

j(82— d22) = 19.43; whence ^2= 6.26 in.; i.e., the thickness

of metal==^(d— ^2) =0.87 in., or practically | in.

310b. The Merriman-Ritter-Formula for Columns was de-

rived independently by Professors Merriman and Ritter (see

Engineering News, July 19, 1894) and has a mathematical

basis as follows. In Fig. 315& curves have been plotted for

the Euler and Rankine formulae for medium steel, both for

flat and round ends; and it is seen that each of the Rankine

curves is tangent to the horizontal line through V and is roughly

parallel to, and not very distant from, the corresponding

Euler curve on the extreme right. Professor Merriman de-

rives the equation (of the same form as Rankine's) for a curve

which has a horizontal tangent at V, and is exactly tangent
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to the Euler curve at some point on the extreme right (at

infinity, in fact) and thus secures a more rational value for

the constant called ^ in Rankine's formula.

With P' denoting the safe load for the column and C the

safe compressive unit-stress for the material, this

formula may be written . . . P' = — Tvrpp^i • • '^ • (M)

where C" denotes the unit compressive stress at elastic limits

E the modulus of elasticity, F the sectional area, and n an

abstract number whose value (as before, in the Rankine for-

mulae) is 1, 16/9 (or 1.78), and 4, for flat ends, pin-and-square,

and round ends, respectively.

If for Q we write P, the breaking load, and correspondingly

C for C, and plot values oi P-^F and l-^k, the curve would

not differ greatly from the Rankine curve in Fig. 120 for medium
steel; and similarly for wrought iron; but for timber and cast

iron the variation is considerable, and hence Prof. Merriman

does not recommend the use of his formula for the latter two

materials. (Crehore's formula differs from the above only

in replacing C" by C.)

310c. The "Straight-Line Formula."—It will be noticed

that in Fig. 315& the straight line connecting points A and C
(medium steel, round ends) or A' and C (medium steel, flat

ends) would not vary widely from the Rankine curve, so that

on account of its simpKcity, when restricted to proper Hmiting

values of the ratio l-^k,& straight line, or hnear relation, between

the quantity P-^F and ratio l-i-k was proposed by Mr. T. H.

Johnson (see Transac. Am. Soc. C. E., 1886, p. 530) for the

breaking loads of columns of various materials. Among them
are the following

:

Wrought iron: Hinged ends, Po= [42,000- 157/'^]li^;

" Flat ends. Pi = [42,000- 128(|-)lP;

Mild steel : Hinged ends, Po= [52,000- 220(77)]^;

" " Flat ends, Pi = [52,000 -179(^)lp.
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In these formulae Pq, or Pi, is breaking load in lbs., F=
sectional area (in sq. in.), Z= tlie length, and k is the least

radius of gyration of the cross-section for flat ends (as for

hinged ends, see example 3, § 306) ; I and k in same unit.

310d. The J. B. Johnson Parabolic Formula for Columns.

—If in. Fig. 315a a parabola be plotted with its axis vertical

(and downward) and vertex at the point V of the two Rankine

curves, and also made tangent to the Euler curve for the end

conditions concerned, the points on such a curve for values of

l^k between zero and the point of tangency to the Euler curve

are found to agree fairly well with experiment; and the corre-

sponding formula, or the equation to the curve, is of much
simpler form than that of the Rankine types, being almost

as simple as the straight line formula. Such a formula was

proposed by the late Prof. J. B. Johnson, those for mild steel

and wrought iron being given below (breaking load in lbs.).

Mild steel:

Pin ends, Pq= [42,000-0.97(^HF; U not >150

Flat ends. Pi = [42,000- 0.62(^ MP; 1^ not >190

Wrought iron:

Pin ends, Po= [ 34,000-O.erQHp; (^ not >170

Flat ends. Pi = [34,000 -0.43(^ MP; U not >210

The notation is the same as in the preceding article. The

limiting values mentioned for l^k refer to the points of tan-

gency with the Euler curve. In Fig. 3156 the curve FTT^A^

is a parabola fulfilling the above mathematical condition for

medium steel, with flat ends.

311. Solid Wooden Columns and Posts. Formula of U. S.

Dept. of. Agriculture, Division of Forestry.—This formula was

derived by Johnson from the results of experiments sonducted

by the Division of Forestry and appUes to solid wooden columns

provided with '' square ends," the constraint due to which,

however, is not to be considered as fully equivalent to that

of "fixed ends." The breaking load being denoted by Pi,
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the sectional area by F, the ratio of length I to the ^^ least

dimension,'^ d,' oi the cross section, by m (i.e., l^d= m), and

the unit crushing stress for the material by C, the formula is

J700 + 15m)FC
^ 700 + 15m+ m2 ^^

The values of C to be used for different kinds of timber

are given as follows

:

White oak and Georgia yellow pine 5000 Ibs./in.^

Douglas fir and short-leaf yellow pine 4500 ''

Red pine, spruce, hemlock, cypress, chestnut, CaU-

fornia redwood, and Cahfornia spruce 4000 '

'

White pine and cedar 3500 '

'

The fraction of Pi to be taken as the safe load depends

on the wood and the degree of moisture present, four classes

being designated in this respect; from Class A (18 per cent

of moisture; timber exposed to weather), to Class D (10 per cent;,

timber at all times protected from the weather). For yellow

pine the safe load should be from 0.20Pi for Class A to O.SlPi

for Class D. For all other timbers, from 0.20Pi for- Class A
to 0.25Pi for Class D.

312. Column under Eccentric Loading.—In Fig. 322 let the load P be

applied at i, at a distance or "eccentricity" =c from the center of gravity

1^1 A oi the upper base of the column, the reaction at

j^\ j

the. other end (at k) having an equal eccentricity

yj
i from B; the ends of the column being free to turn.

^^
/

j

(In an extreme case Ai and Bk might be brackets

/ [
"^ fastened to the ends of the column.)

/ .
I

AOB is the elastic curve, or bent condition of the

1^1 \

j^
axis of the column, originally straight. With as

)"r"
I

I origin, any point n in the elastic curve has a vertical

I
I I

co-ordinate x and a horizontal co-ordinate y. The
\

I

I
unknown lateral deflection of the point from AB

\
I

T is a. With n cs any point in the elastic curve, and
\i

I
nAi as free body, we have for the moment of the

^
Bj

I

stress couple in section at n £'/[d2?/^dx^]= P(c -I- a—?/);.

!^_c_J which is seen to differ from eq. (1) of p. 362 only in

I having the constant c+ a in place of the constant a.

Fig. 322. y^^ ^^j therefore use eq. (6) of p. 363 for the present

case, after replacing a by c+ a; and hence, denoting 's/P^EI by h, remem-
bering that vers. sin. = 1 — cos, we may write, as the equation to the elastic

curve, y=(c+ a)[l-cos (6x)] (1)

For x= ^l, y should= the deflection o; on substituting which values in.

(1) there results finally
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o=c sec (-^1—1 . . (2); and c+o=c- sec (-^j. •

Hence the moment of the stress couple at is M^= P{c+ a) = Pc- sec I -^\

(3)

bl\

and the unit stress in outer fibre on concave side at is

p-
P_ M,e P Pc secQftZ)

"y^
I

(4)

(In this case of eccentric loading, then, the deflection a is not indeter-

minate as was the case in deriving Euler's formula on p. 363. Note that

^bl is an angle in radians.)

Example.—Let the value of P be 10,000 lbs., the length of the colunin

be Z=20 ft. = 240 in., and the cross-section be a square cell [see Fig. 317 (6)]

4 inches being the side of the outer square ; area F= 7 m? and /= 14.58 in.^ Let

the eccentricity be c= 2 in., each force P being applied in the middle of a side

of the 4 in. square. Let £'= 30,000,000 Ibs./in.^; material, medium steel.

"With this position of the force plane, e= 2 in.

Here we have hhl=*(/^
10,000

) X 240= 0.5736 radians, corre-
V30, 000,000X 14. 58^

spending to 32° 52', whose sec. = 1.190; and therefore a= 2X (1.190-1)

= 0.380 in., and Mo=10,OOOX2X 1.190= 23,800 in.-lbs. Finally

p-.
10,000 23,800X2

+ - = 1430 + 3265= 4695 lbs./ in.

^

7 14.58

With P= 20,000 lbs., we should obtain iW= 0.811 radians (46° 30'),

a=0.906 in., Mo= 57,120 in.-lbs., and p= 2860+ 7835 =10,695 Ibs./in.^

This latter unit stress is seen to be only moderate in value for the mate-

rial, leading to the conclusion that 20,000 lbs. for P is a safe load; but on

account of the possible original lack of straightness in the column, and of

lack of homogeneity, both of which causes might increase a and Mq, it

would be better to limit the load to 15,000 lbs. ; considering, also, the fact

that Rankine's Formula for round ends (with a safety factor of 4) applied

to this column for the case of no eccentricity would give about 22,000 lbs.

as safe load.

Fig. 322a.

318. Beam or Column with Eccentric End Pressures and also under Uniform

Transverse Loading.—For example, in Fig. 322a let AB he the -bent axis

of a beam, or column (originally straight), the longitudinal forces P and
P being applied at an eccentricity c from A and B, while there is at the

same time a vertical loading W, =wl, uniformly distributed along the
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whole length at rate of w lbs. per running inch. The reactions of the two

end supports will therefore be each ^W. The ends of the column are free

to turn. It is required to find the deflection a, the moment Mq of the couple

at middle section 0, and the unit stress p on the concave side at O. Take
the free body iAn, n being any point of the elastic curve AOB, with co-

ordinates X and y referred to the horizontal and vertical axes through

as an origin, as shown. Then the moment of stress couple at n is

EI{d'y^dx') = P{c+ a-y) + {i)w{P-4x^) .... (5)

Since (d^y-r-dx^) is a variable, let us denote i—EI-i-P)(d^y-T-dx^) by u,

as an auxiliary variable; and eq. (5) wUl now read

y-u=c+a+[{i)w{P-4:X^)]^P (6)

Differentiating (6) twice, with respect to x, we have

d^y d^u w . d^u P w=
; that is, —= u-\— (7)

dx' dx' P' ' dx' EI P ^^

Multiplying (7) by 2du, and denoting P-i-EI by b^ and 2w-^P by h, we
have by integration, {dx'^ is a constant, x being the independent variable),

(dM)^-7-(dx)^= — 6^M^+ /iM+C, where C is a constant of integration; and

hence dx= dM-f- (VC+ Zim— 6V), which integrates into

a;=A.sm-M ,
— +C^ (8)

where C is a constant. Transformation of (8) gives

(Vh'+ ACb') sin [b(x-C')]+h= 2b^u (9)

Eliminating u by aid of eqs. (6) and (9) we have

2b'y==\/h'+ 4Cb'-sin [b(x-C')]+ h+ 2b\c+a) + (i)b^h{P-4x^) (10)

from which

2b\dyldx) = bVh^+ 4C6^ • cos [b {x- C')]-b^hx . . . (11)

To determine the three constants C, C", and a, we now make use of the

facts that in (10) when x= 0, y also =0, and for x= ^l, y= a; and that in

(11) for x=0, dy/dx, must =0. The three equations thus obtained, con-

taining constants only, enable us to determine C, C, and a, and insert their

values in (10) ; thus giving us as the equation to the elastic curve AOB,

2/
= (,

h \ri-cos (6a: "1
,, , ,^„^

^+26-^jL^os(i60-J"*^'^'
^^'^

as also the value of the deflection

a^[c+{h^2b^)lsec{^bl)-l]-{i^)hV .... (13)

To find the moment of stress couple, Mq, at 0, we have now only to sub-

stitute a;= and y = in eq. (5), and for a its value from (13); and thus
obtain

[fc+^Ysec(i60-^j (14)

With F as the sectional area of the cross-section of the (prismatic) column
(or beam, as it might also be called in this connection), and e as the dis-

tance of the outer fibre from the gravity axis of the section, we now have
for p, the stress in outer fibre on concave side at 0,

V-l^^f (15)

M„=P
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Since 6 and h denote VP-i-EI and 2w-^P, respectively, it is seen

that when w is zero, h is zero and eq. (13) reduces to eq. (2) of the

previous article. Again, if the two forces P are central, i.e., [applied at

A and B, we put c= 0; in which case an approximate result may be

reached by writing for the deflection a the value it would have if the

5 WP
end forces P were not present, i.e., ^^ • -^j, as due to the uniform load

W alone (see p. 260). On this basis the value of M^ is Pa+ (,^)Wl.

(In case the vertical load on the beam or column in Fig. 322a is a

single load Q concentrated in the middle at 0, a treatment similar to

the foregoing may be applied, but is somewhat more complicated. For

details of such a case the reader is referred to Mecanique AppUquee,

by Bresse, Tome I. p. 384.)

314. Buckling of Web-Plates in Built Girders.—In §257 men-
tion was made of the fact that very high web plates in

built beams, such as /beams and box-girders, might need

to be stiffened by riveting " angles " on the sides of the web.

(The girders here spoken of are horizontal ones, such as

might be used for carrying a railroad over a short sj^an of

20 to 50 feet.

An approximate method of determining whether such

stiffening is needed to prevent lateral buckling of the web,

may be based upon Rankine's formula for a long column
and will now be given.

In Fig. 323 we have, free, a portion of a bent I-beam,

between two vertical sections at a distance apart= Ai =
the height of the web. In such a beam under forces L ^o

its axis it has been proved (§256) that we may consider

the web to sustain all the shear, J, at any section, and the

flanges to take all the tension and compression, which

form the " stress-couple" of the section. These couples

and the two shears are shown in Fig. 323, for the two

exposed sections. There is supposed to be no load on this

portion of the beam, hence the shears at the two ends are

Fig. 324.
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equal. Now tlie shear acting between eacli flange and tlie

horizontal edge of the web is equal in intensity per square

inch to that in the vertical edge of the web ; hence if the

web alons, of Fig. 323, is shown as a free body in Fig. 324,,

we must insert two horizontal forces = J, in opposite

directioii^,, on its upper and lower edges. Each of theM
^ J since we have taken a. horizontal length hi = height

of web. In this figure, 324, we notice that the effect oi

the acting forces is to lengthen the diagonal BD ancj

shorten the diagonal AG, both of those diagonals making

an angle of 45° with the horizontal.

Let us now consider this buckling tendency along ^(7,

by treating as free the strip ^(7, of small width = \. This

is shown in Fig. 325. The only forces acting in the direc-

tion of its length AG&ie the components along AG oi the

four forces J' at the extremities. "VVe may therefore treat

the strip as a long column of a length I = hi ^2, of a sec-

tional area F = bb^, (where b is the thickness of the web
plate), with a value of F = Yjg

6^ (see § 309), and with

fixed (or flat) ends. Now the sum of the longitudinal

components of the two J'.'s &t A is. Q = 2 J' ]/?, V2

= J' V2 ; but J' itself = rr. b j4 bi \'% since the small

rectangle on which J' acts has an area = b )4 h^ ^2, and

ihe shearing stress on it has an intensity of (J -r- bh{) per

unit of area. Hence the longitudinal force at each end of

this long column iis

'i-r/ w
According to eq. (4) and the table in § 305, the safe load

(factor of safety= 4) for a medium steel column of this form,

with flat ends, would be (pound and inch)

ib6i50,000 _ 12,500&&i

1
1 2/ii2 1 h^ • • (2)

^36,000* V1262 1 + 1,500' 62

If, then, in any particular locality of the girder (of medium
steel) we find that Q is >Pi, i.e.
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12,500&

l+rl,.-'^
(pound and inch). (3)

W =40 TONS

1,500 62

then vertical stiffeners will be required laterally.

When these are required, they are generally placed at inter-

vals equal to hi, (the depth of web), along that part of the

girder where Q is >Pi.

Example Fig. 326.—Will stiffening pieces be required in

a plate 'girder of 20 feet span, bearing a uniform load of

40 tons, and having a web 24 in. deep

and I in. thick?

From § 242 we know that the -|t

greatest shear, J max., is close to

either pier, and hence we investigate

that part of the girder first.

J max. = iTF= 20 tons -40,000 lbs.

.'. (inch and lb.), see (3),

J _ 40,000

hi

-10^—
-^ Trn

Fig. 326.

24
= 1666.6

while, see (3), (inch and pound),

12,500X1

1 + .

242
1270

(4)

(5)

1,500 (1)2

which is less than 1666.66.

Hence stiffening pieces will be needed near the extremities

of the girder. Also, since the shear for this case of loading

diminishes uniformly toward zero at the middle they will

be needed from each end up to a distance of ^ of 10 ft.

from the middle.
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CHAPTER Vn.

UJTEAK ARCHES (OF BLOCKWOKI^.

815. A Blockwork Arch is a structure, spanning an openicg

or gap, depending, for stability, upon the resistance to

compresssion of its blocks, or voussoirs, the material ot

which, such as stone or brick, is not suitable for sustain-

ing a tensile strain. Above the voussoirs is usually

placed a load of some character, (e.q. a roadway,) whose
pressure upon the voussoirs will be considered as vertical,

only. This condition is not fully realized in practice,

unless the load is of cut stone, with vertical and horizontal

joints resting upon voussoirs of corresponding shape (see

Fig. 327), but sufficiently so to warrant

its assumption in theory. Symmetry
of form about a vertical axis will also

be assumed in the following treatment.

316. Linear Arches.—For purposes of

theoretical discussion the voussoirs of

Fig. 327 may be considered to become

Fig. 327.
infinitely small and infinite in number,

thus forming a " linear arch," while retaining the same

shapes, their depth "1 to the face being assumed constant

that it may not appear in the formulae. The joints

between them are "1 to the curve of the arch, i.e., adjacent

voussoirs can exert pressure on each other only in the

direction of the tangent-line to that curve.
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317. Inverted Catenary, or Linear Arch Sustaining its Own
Weight Alone.—Suppose tlie infinitely smalJ voussoirs to

have weight, uniformly distributed along the curve, weigh-

ing q lbs. per running linear unit. The eqiii]ibrium of

such a structure, Fig. 328, is of course unstable but theo-

retically possible. Required the form of the curve when
equilibrium exists. The conditions of equilibrium are,

obviously : 1st. The thrust or mutual pressure T between

any two adjacent voussoirs at any point. A, of the curve

must be tangent to the curve ; and 2ndly, considering a

portion BA as a free body, the resultant of Hq the pres-

FiQ. 328. Fig. 329. Fig. 330.

sure at B the crown, and T &i A, must balance R the re-

sultant of the
il
vertical forces (i.e.,weights of the elementary

voussoirs) acting between B and A.

But the conditions of equilibrium of a flexible, inexten-

sible and uniformly loaded cord or chain are the very

same (weights uniform along the curve) the forces being

reversed in, direction. Fig. 329. Instead of compression

we have tension, while the ||
vertical forces act toward in-

stead of away from, the axis X. Hence the curve of equi-

librium of Fig. 328 is an inverted catenary (see § 48) whose

equation is

y+c=
e -\- e

. (1)

See Fig. 330. e = 2.71828 the Naperian Base. The "par-

ameter " c may be determined by putting x = a, the half

span, and y= Y, the rise, then solving for c by successive
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approximations. The " horizontal thrust" or H^^, is = yc,

while if s = length, of arch OA, along the curve, the thrust

T at any point A is

T=^IRiffs' (2..)

From the foregoing it may be inferred that a series ot vcui»'

soirs of finite dimensions, arranged

so as to contain the catenary curve,

with joints "I to that curve and of

equal weights for equal lengths of

arc will be in equilibrium, and

moreover in stable equilibrium on

account of friction, and the finite

width of the joints ; see Fig. 331.

FIG. 331.

318. Linear Arches under Given Loading.—The linear arches

to be considered further will be treated as without weight

themselves but as bearing vertically pressing loads (each

voussoir its own).

Problem.—Given the form of the linear arch itself, it is

required to find the law of vertical depth of loading under

which the given linear arch will be in equilibrium. Fig.

332, given the curve ABC, i.e., the linear arch itself, re-

quired the form of the curve MON, or upper limit of load-

ing, such that the linear arch ABC shall be in equilibrium

under the loads lying between the two curves. The load-

ing is supposed homogeneous and of constant depth "^ to

paper ; so that the ordinates z between the two curves are

proportional to the load per horizontal linear unit. Assume
a height of load z^ at the crown, at pleasure ; then required

the z of any point m as a function of ^ and the curve

ABC.
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Practical Solution.—Since a linear arcli under vertical

pressures is nothing more than the inversion of the curve

assumed by a cord loaded in the same way, this problenj

might be solved mechanically by experimenting with a

light cord, Fig. 333, to which are hung other heavy cords,

or bars of uniform weight per unit length, and at equal

horizontal distances apart ivhen in equilibrium,. By varying

the lengths of the bars, and their points of attachment, we
may finally find the curve sought, MON. (See also § 343.)

Analytical Solution.—Consider the structure in Fig. 334

A number of rods of finite length, in the same plane, are in

equilibrium, bearing the weights P, P^ etc., at the con-

FiG. 334. Tig. 335.

necting joints, each piece exerting a thrust T against the

adjacent joint. The joint A, (the " pin " of the hinge), im-

agined separated from the contiguous rods and hence free,

is held in equilibrium by the vertical force P (a load) and

the two thrusts T and T', making angles = d and d' with

the vertical ; Fig. 335 shows the joint -4 fi'^e. From 2'(hor«^

izontal comps.)=0, we have.

That is, the horizontal component of the thrust in any roJ

is the same for all ; call it H^. ,\

T^ H.
Bin (1)
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Now draw a line As *i to T' and write 2* ( compons. I to

As)=0; whence F sin ^'=2^ sin ^, and [see (1)]

. p_ jgp sin /?

sm 6sm (2)

Let the rods of Fig. 334 become infinitely small a,nd infi-

nite in number and the load continuous. The length of

each rod becomes =ds an element of the linear arch,
fi

is

the angle between two consecutive ds's, d is the angle be-

tween the tangent line and the vertical, while P becomes
the load resting on a single dx, or horizontal distance be-

tween the middles of the two cZs's. That is, Fig. 336, if

Y= weight of a cubic unit of the

loading, P-=yzdx. (The lamina of

arch and load considered is unity,

1 to paper, in thickness.) -Ho=a
constant = thrust at crown

;

6=6', and sin /3=ds-^p, (since the'

angle between two consecutive tan-

gents is = that between two con-

secutive radii of curvature). Hence

eq. (2) becomes

Yzdx= Kds
p BID? 6

but dx—ds sin 6y

Fia. 336.

,\yz-
H.

p siii^/?
(3)

Call the radius of curvature at the crown. /?o» and since

there z=Zq and ^*=90°, (3) gives x^qPq~3^', hence (3) may
be written

sin^ d
(4)

This is the law of vertical depth of loading required. For
a point of the linear arch where the tangent line is verti-

cal, sin 6 =0 and z would == oo ; i.e., the load would be in-
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finitely high. Hence, in practice, a full semi-circle, for in-

stance, could not be used as a linear arcli.

319. Circular Arc as Linear Arch.—^As an example of the

preceding problem let us ap-

ply eq. (4) to a circular arc,

Fig. 337, as a linear arcb.

Since for a circle p is con-

stant — r, eq. (4) reduces

to

sin^ 6
(5)

Fig. 337. Hence tlie deptb of loading

must vary inversely as the cube of tbe sine of the angle d

made by the tangent line (of the linear arch) with the ver-

tical.

To find the depth z by construction.—Having z^ given, C
being the centre of the arch, prolong Ga and make ob =
go ; at 5 draw a 1 to Gb, intersecting the vertical through a

at some point d ; draw the horizontal dc to meet Ga at

some point c. Again, draw ce "| to Gc, meeting ad m e\

then ae= z required ; a being any point of the linear arch.

For, from the similar right triangles involved, we have

z„=ab=ad sin 0=ac sin d. sin ^=ae sin d sin d sin d

ae=—^— ; i.e., ae=2. Q.E.D.
mn'd [-gee (5.)]

320. Parabola as Linear Arch.—To apply eq. 4 § 318 to a

parabola (axis vertical) as linear arch, we must find values

of p and po the radii of curvature at any point and the

crown respectively. That is, in the general formula.

-Mdy\

dx) _ dx

we must substitute the forms for the first and second dif-

ferential co-efficients, derived from the equation of the
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Fig. 338. Fig. 339.

curve (parabola) in Fig. 338, i.e. from x^ =^ 2 py; whence
we obtain

~2.,or cot 0,= — ana-^=—
ax p dor p

Hence ^=i3^°M=^^ l^P
cosec. I.e. p

sin^^
. (6)

At tbe vertex d = 90** ,*. />„ = p. Hence by substituting

for p and p^ in eq. (4) of § 318 we obtain

g=s^= constant [Fig. 339) (7)

for a parabolic linear arcli. Therefore tbe depth of homo-
geneous loading must be the same at all points as at the

crown ; i.e., the load is uniformly distributed with respect

to the horizontal. This result might have been antici-

pated from the fact that a cord assumes the parabolic

form when its load (as approximately true for suspension

bridges) is uniformly distributed horizontally. Sae § 46

in Statics and Dynamics.

321. Linear Arch for a Given Tipper Contour of Loading, the

arch itself being the unknown lower contour. Given the

upper curve or limit of load and the depth z^ at crown, re-

quired the form of linear arch which will be in equili-

brium under the homogenous load between itself and that

upper curve. In Fig. 340 let MON be the given upper
contour of load, z^ is given or assumed,s' and z" are the

respective ordinates of the two curves -S^ (7 and MON,
Required the eqation of BAG.
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Fig. mo. Fig. 341.

As before, tlie loading is homogenous, so that the

weights of any portions of it are proportional to the

corresponding areas between the curves. (Unity thick-

ness "I to paper.) Now, Fig. 341, regard two consecutive

ds's oi the linear arch as two links or consecutive blocks

bearing at their junction w the load dP =y (^z -\- z"} dx in

which Y denotes the heaviness of weight of a cubic unit of

the loading. If T and T' are the thrusts exerted on these

two blocks by their neighbors (here supposed removed)

we have the three forces dP, T and T', forming a system

in equilibrium. Hence from IX =0,

T cos <p = T' cos cp' (1)

and

1*7=0 gives T' sin cp'— T sin <p = dP ... (2)

From (1) it appears that T cos f is constant at all points

of the linear arch (just as we found in § 318) and hence

.= the thrust at the crown, = Jff, whence we may write

T=H-^ cos <p and r^E~ cos q)' . . . (3)

Substituting from (3) in (2; we obtain

H (tan
<f'
— tan <p)=dP (4)

But tan <p =-^ and tan ip'= ^

"J
^

, {dx constant)

while dP = y {z' -\- z") dx. Hence, putting for convenience

H = yo?, (where a = side of an imaginary square of the
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loading, whose thickness = unity and whose weight = IT)

we have.

^=^'+'"'> <^>

as a relation holding good for any point of the linear arch

which is to be in equilibrium under the load included

between itself and the given curve whose ordinates are «",

Fig. 340.

322. Example of Preceding. Tipper Contour a Straight Line.—

Fig. 342. Let the upper contour be a right line and hor-

izontal ; then the a" of eq. 5 becomes zero at all points of

ON. Hence drop the accent of z' in eq. (5) and we have

dot? €^

Multiplying which by dz we obtain

dz dh 1

do(?
zdz (6)

This being true of the z, dz, d?z and dx of each element of

the curve O'B whose equation is desired, conceive it writ-

ten out for each element between 0' and any point m, and

put the sum of the left-hand members of these equations

= to that of the right-hand members, remembering that

a,^ and dx'^ are the same for each element. This gives

dz=dz z=z

d^ I « / ** 2 al2 2j
nJ (te— %/ z=Zo

adz ^
[ zj .... (7.)

d

.'. da;=-T^==««
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Fig. 342. Pis 343

Integrating (7.) between 0' and any point m

/,

f =«[:iog..(^+,/(-i)-i) . . (8)

i.e., fl?=a log.

D-^]=

or %= gg r i -E.-1

(8.)

(9.)

This curve is called the transformed catenary since we may
obtain it from a common catenary by altering all the ordi-

nates of the latter in a constant ratio, just as an ellipse

may be obtained from a circle. If in eq. (9) a were = z^

the curve would be a common catenary.

Supposing Sj and the co-ordinates x^ and gj of the point

B (abutment) given, we may compute a from eq. 8 by put-

ting X =Xi and z = g„ and solving for a. Then the crown-

thrust H = ya^ becomes known, and a can be used in eqs.

(8) or (9) to plot points in the curve or linear arch. From
eq. (9) we have

(10)area
00'mn

Fig. 343.

Call this area, A. As for the thrusts at the different

joints of the linear arch, see Fig. 343, we have crown-

thrust = ZT = ^a' . . . ; • - . • (11)

and at any joint m the thrust

T^VH'+irAf =rV^^^' .... (12}
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323. Remarks.—The foregoing results may be utilized

with arches of finite dimensions by making the arch-ring

contain the imaginary linear arch, and the joints 1 to the

curve of the same. Questions of friction and the resist-

ance of the material of the voussoirs are reserved for a

succeeding chapter, (§ 344) in which will be advanced ^

more practical theory dealing with approximate linear

arches or " equilibrium polygons " as they will then be

called. Still, a study of exact linear arches is valuable on

many accounts. By inverting the linear arches so far pre-

sented we have the forms assumed by flexible and inexten-

sible cords loaded ini the same way-
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CHAPTER VrX

ELEMENTS OE GRAPHICAIi STATICS.

324. Definition.—In many respects graphical processes

titve duvantages over tlie purely analytical, whicli recom-
mend their use in many problems where celerity is desired

without refiiied accuracy. One of these advantages is that

gross errors are more easily detected, and another that

the relations of the forces, distances, etc., are made so

apparent to the eye, in the drawing, that the general effect

of a given change in the data can readily be predicted at

a glance.

Graphical Statics in the system of geometrical construc-

tions by which prt^blems in Statics may be solved by
the use of drafting iixsiruments, forces as well as distances

being represented in amount and direction by lines on the

paper, of proper length and position, according to arbi-

trary scales ; so many fest of distance to the linear inch of

paper, for example, for distances ; and so many pounds or

tons to the linear inch of paper for forces.

Of course results should be interpreted by the same
scale as that used for the data. The parallelogram of

forces is the basis of all constructions for combining and

resolving forces.

325. Force Polygons and Concurrent Forces in a Plsuae.—If a

material point is in equilibrium under three forces Pi P,

P3 (in the same plane of course) Fig. 344, any one of them,
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as Pi, must be equal and opposite to B the resultant of

the other two (diagonal of their parallelogram). If now
we lay off to some convenient scale a line in Fig. 345 =
Pi and

II to Pi in Fig. 344 ; and then from the pointed end
of Pi a line equal and || to Pg and
laid off pointing the same ivay, we
note that the line remaining to

p close the triangle in Fig. 345 must
be = and || to Pg, since that tri-

angle is nothing more than the

left-hand half-parallelogram of

Fig. 345. Fig. 344. Also, in 345, to close

the triangle properly the directions of the arrows must
be continuous Point to Butt, round the periphery. Fig.

345 is called a force polygor ; of three sides only in this

case. By means of it, given any two of the three forces

which hold the point in equilibrium, the third can be

found, being equal and 1| to the side necessary to " close
"

the force polygon.

Similarly, if a number of forces in a plane hold a mate-

rial point in equilibrium, Fig. 346, their force polygon.

FiG.344.

Fig. 347, must close, whatever be the order in which its

sides are drawn. For, if we combine Pj and P2 into a re-

sultant Oa, Fig. 346, then this resultant with P3 to form a

resultant Oh, and so on ; we find the resultant of Pi, P2, Ps?

and P4 to be Oc, and if a fifth force is to produce equilib-

rium it must be equal and opposite to Oc, and would close

the polygon OdabcO, in which the sides are equal and par-
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allel respectively to the forces mentioned. To utilize tliis

fact we can dispense witli all parts of tlie parallelograms in

Pig. 346 except tlie sides mentioned, and tlien proceed as

follows in Fig. 347 :

If P5 is the unknown force which is to balance the other

four (i.e, is their anti-resultant), we draw the sides of the

force polygon from A round to B, making each line paral-

lel and equal to the proper force and pointing the same

way ; then the line BA represents the required F^ in

amount and direction, since the arrow BA must follow

the continuity of the others (point to butt).

If the arrow BA were pointed at the extremity B, then

it gives, obviously, the amount and direction of the result^

ant of the four forces Pj . . . P4. The foregoing shows

that if a system of Concurrent Forces in a Plane is in equi-

librium, ii^ force polygon must close.

326. Non-Concurrent Forces in a Plane.—Given a system of

non-concurrent forces m a plane, acting on a rigid body,

required graphic means of finding their resultant and anti-

resultant ; also of expressing conditions of equilibrium.

The resultant must be found in amount and direction ; and

also in position (i.e., its line of action must be determined).

E. g., Fig. 348 shows a curved rigid beam fixed in a vise

at T, and also under the action of forces Pi P2 P3 and P^

{besides the action of the vise); required the resultant of

By the ordinary

parallelogram of

forces we com-
bine Pi and P2 at

a, the intersection

of their lines of

PjQ 34g
action, into a re-

sultant Pa, ; then Pa with Pg at b, to form PbJ and finally P,,

with P4 at c to form B^ which is .*. the resultant required,

ie., of Pi . . . . P4 ; and c . , . P is its line of action.
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Fig. 349.

The separate force triangles (half-parallelograms) by
wliich. the successive partial resultants B^^, etc., were found,

are again drawn in Fig. 349. Now since B^ acting in the

line C..F, Fig. 348,

is the resultant of

Pi . . Fi, it is plain

that a force FJ
equal to B,. and act-

ing along c . . i^.but

in the opposite di-

rection, would balance the system Pi . . . P4, (is their anti-

resultant). That is, the forces Pi P2 P3 P4 and BJ would
form a system in equilibrium. The force B^' then, repre-

sents the action of the vise T upon the beam. Hence re-

place the vise by the force B/ acting in the line . . . F . . .c •

to do which requires us to imagine a rigid prolongation of

that end of the beam, to intersect F . . . c. This is shown in

Fig. 350 where the whole beam is free, in equilibrium, under

the forces shown, and in precisely the same state of stress,

part for part, as in Fig. 348. Also, by combining in one

force diagram, in Fig. 351, all the force triangles of Fig. 349

(by making their common sides coincide, and putting B/
instead of B^., and dotting all forces other than those of

Fig. 350), we have a figure to be interpreted in connection

with Fig. 350.

A "poL^^iQH J'

SPACE DIAGRAM
Fig. 350.

FORCE DIAGRAM
Fig. 351.

Here we note, first, that in the figure called a force-dia-

gram, P1P2P3P4 and R/ form a closed polygon and that



Gr^APHlCAli STATICS. 401

their arrows follow a continuous order, point to butt,

around the jperimeter ; which proves that one condition of

equilibrium of a system of non-concurrent forces ir^ a, plane

is that its force polygon must close. Secondly, note that ah

is
II
to Oa', and be to Oh' ; hence if the force-diagram has

been drawn (including the rays, dotted) in order to deter-

mine the amount and direction of HJ, or any other one force,

we may then find its line of action in the space-diagram, as

follows: (N. B.—By space diagram is meant the figure show-
ing to a true scale the form of the rigid body and the lines

of action of the forces" concerned). Through a, the intersec-

tion of Fi and F-j, draw a line || to Oa' to cut P3 in some point

b ; then through b a line || to Ob' to cut F^ at some point c; cF
drawn

||
to Oc' is the required line of action of RJ, the anti-

resultant of Pi, F2, P3, and P4.

abc is called an equilibrium polygon; this one having but

two segments, ab and bo (sometimes the lines of action of F^

and RJ may conveniently be considered as segments.) The

segments of the equilibriumpolygon are parallel to the respect-

ive rays of the force diagram.

Hence for the equilibrium of a system of no;ti-conciirrent

forces in a plane not only must its force polygon close,

but also the first and last segments of the corre-

sponding equilibrium polygon must coincide with

the resultants of the first two forces, and of the last

two forces, respectively, of the system. E.g., ab coin-

cides with the line of action of the resultant of F^ and F^, I

he with that of F^ and E'c- Evidently the equil. polygon

"will be different with each different order of forces in

the force polygon or different choice of a pole, 0. But if

the order of forces be taken as above, as they occur along

the beam, or structure, and the pole taken at the " butt " of

the first force in the force polygon, there will be only one j

(and this one will be called the special equilibrium polygon

in the chapter on arch-ribs, and the " true linear arch " in

dealing with the stone arch.) After the rays (dotted in

Fig. 351) have been added, by joining the pole to each
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vertex with wliicli it is not already connected, tJbe finai

figure may be called the/brce diagram.

It may sometimes be convenient to give tlie name of

rays to tlie two forces of tlie force polygon which, meet
at the pole, in which case the first and last segments of

the corresponding equil. polygon will coincide with the

lines of action of those forces in the space-diagram (as we
may call the representation of the body or structure on
which the forces act). This " space diagram " shows the

real field of action of the forces, while the force diagram,

which may be placed in any convenient position on the

paper, shows the magnitudes and directions of the forces

acting in the former diagram, its lines being interpreted

on a scale of so many lbs. or tons to the inch of paper ; in

the space-diagram we deal with a scale of so many/ee^ to

the inch of paper.

We have found, then, that if any vertex or corner of the

closed force polygon be taken as a pole, and rays drawn
from it to all the other corners of the polygon, and a cor-

responding equil. polygon drawn in the space diagram., the

first and last segments of the latter polygon must co-incide

with the first and last forces according to the order

adopted (or with the resultants of the first two and last

two, if more convenient to classify them thus). It remains

to utilize this principle.

327. To Find the Resultant of Several Forces in a Plane.—This

might be done as in § 326, but since frei^^uently a given set

of forces are parallel, or nearly so, a special method will

now be given, of great convenience in such cases. Fig. 352.

Let Pi Pg and

Pa be the given

forces whose
resultant is re-

quirsd. Let us

first find their

and -' resultant,

or force which

Fig. 352. Pm. 353. will balance
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them. This anti-resultant may be conceived as decom-

posed into two components P and P' one of which, say P,

is arbitrary in amount and position. Assuming P, then,

at convenience, in the space diagram, it is required to lind

F'. The live forces must form a balanced system ; hence

if beginning at Oi, Fig. 353, we lay off a line O^A = P by

scale, then Al = and || to P,, and so on (point to butt), the

line POi necessary to close the force polygon is = P' re-

quired. Now form the corresponding equil. polygon in

the space diagram in the usual way, viz.: through a the

intersection of P and P^ draw ab || to the ray 0, . . . 1

(Avhich connects the pole Oi with the point of the last force

mentioned). From h, where ab intersects the line of Pg*

draw he, || to the ray O^ . . 2, till it intersects the line of Pg.

A line mc drawn through c and || to the P' of the force

diagram is the line of action of P'.

Now the resultant of P and P' is the anti-resultant of

Pi, P2 and P3; .'. d, the intersection of the lines of P and
P', is a point in the line of action of the anti-resultant re-

quired, while its direction and magnitude are given by the

line BA in the force diagram ; for BA forms a closed poly-

gon both with Pi P2 P3, and with PP'. Hence a line

through (i
||
to BA, viz., de, is the line of action of the anti-

resultant (and hence of the resultant) of Pj, P2, P3.

Since, in this construction, P is arbitrary, we may first

choose Oi, arbitrarily, in a convenient position, i.e., in such
a position that by inspection the segments of the result-

ing equil. polygon shall give fair intersections and not
pass off the paper. If the given forces are parallel the

device of introducing the oblique P and P' is quite neces-

sary.

328.—The result of this construction may be stated as
follows, (regarding Oa and cm as segments of the equil.
polygon as well as ah and he): If any tivo segments of an
equU. polygon he prolonged, their intersection is a point in

the line of action of the resultant of those forces acting at
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the vertices intervening between the given segments,

the resultant of Pi P2 P3 acts through d.

Here,

329. Vertical Reaction of Piers, etc.—Fig. 354. Given the

vertical forces or loads Pj P2 and P3 acting on a rigid body
(beam, or truss) which is supported by two piers having

smooth horizontal surfaces (so that the reactions must be

vertical), required the reactions Fq and V^ of the piers.

For an instant suppose V^ and V^ known ; they are in

iVn

Fig. 354.

equil. with Pi Pg and P3. The introduction of the equal

and opposite forces P and P' in the same line will not dis-

turb the equilibrium. Taking the seven forces in the

order P Vq Pj Pg P3 V^ and P', a force polygon formed with

them will close (see (h) in Fig. where the forces which

really lie on the same line are slightly separated). With

Oy the butt of P, as a pole, draw the rays of the force dia-

gram OA, OB, etc. The corresponding equil. polygon

begins at a, the intersection of P and V^ in {a) (the space

diagram), and ends at n the intersection of P' and V^.

Join an. Now since P and P' act in the same line, an

must be that line and must be || to P and P' of the force

diagram. Since the amount and direction ofP and P' are

arbitrary, the position of the pole is arbitrary, while

Pi, P2, and P3 are the only forces known in advance in the

force diagram.

Hence Vq and V^ may be determined as follows : Lay off

the given loads Pi, P2, etc., in the order of their occur-

rence in the space diagram, to form a " load-line " AD
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(see (h.) Fig. 854) as a beginning for a force-diagram ; take

any convenient pole 0, draw the rays OA, OB, 00 and

OD. Tlien beginning at any convenient point a in the

vertical line containing the unknown Vq, draw ab || to OA,

be
II
to OB, and so on, until the last segment [dn in this

case) cuts the vertical containing the unknown V„ in some
point n. Join an (this is sometimes called a closing line)

and draw a ||
to it through 0, in the force-diagram. This

last line will cut ths " load-line " in some point n', and

divide it in two parts n' A and i>w', which are respectively

Vq and Va required.

Corollary.—Evidently, for a given system of loads, in given

vertical lines of action, and for two given piers, or abut-

ments, having smooth horizontal surfaces, the location of the

point n' on the load line is independent of the choice of a

•pole.

Of course, in treating the stresses and deflection of the

ligid body concerned, P and P' are left out of account, as

being imaginary and serving only a temporary purpose.

330. Application of Foregoing Principles to a Roof Truss-

Fig. 355. Wi and W.^ are wind pressures. Pi and P. are

loads, while the lemaining external forces, viz., the re-
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actions, or supporting forces. To, F'„ and H^i niay be fonnd

by preceding §§. (We here suppose that the right abut-

ment furnishes all the horizontal resistance ; none at the

left).

Lay off the forces (known) Wi, W2, Pi, and P2 in the

usual way, to form a portion of the closed force polygon.

To close the polygon it is evident we need only draw a

horizontal through 5 and limit it by a vertical through 1.

This determines H^ but it remains to determine ?^' the

point of division between F^ and V^. Select a convenient

pole Oi, and draw rays from it to 1, 2, etc. Assume a con-

venient point a in the line of V„ in the space diagram, and

through it draw a line || to Oil to meet the line of W^ in

some point b ; then a line || to Oi2 to meet the line of W2

in some point c ; then through c || to OjS to meet the line

of Pi in some point d ; then through d || to Oi4 to meet the

line of P2 in some point e, (e is identical with d, since Pi
and P2 are in the same line) ; then efW to Oi5 to meet Hj^

in some point/; then fg \\ to OS to meet V^ in some
point g.

abcdefg is an equilibrium polygon corresponding to the

pole Oj.

Now join ag, the " closing-line," and draw a || to it

through Oi to determine n', the required point of division

between Vo and V„ on the vertical 1 6. Hence F^ and V^

are now determined as well as H^^.

[The use of the arbitrary pole Oi implies the temporary

employment of a pair of opposite and equal forces in the line

ag, the amount of either being = Oiti'].

Having now all the external forces acting on the truss,

and assuming that it contains no " redundant parts," i.e.,

parts unnecessary for rigidity of the frame-work, we proceed

tc find the pulls and thrusts in the individual pieces, on

the following plan. The truss being pin-connected, no

piece extending beyond a joint, and all loads being con-

sidered to act at joints, the action, pull or thrust, of each

piece on the joint at either extremity will be in the direction

of the piece, i.e., in a knoivn direction, and the pin of each
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joint is in equilibrium under a system of concurrent forces

consisting of the loads (if any) at tlie joint and the pulls

or thrusts exerted upon it by the pieces meeting there..

Hence we may apply the principles of § 325 to each joint

in turn. See Fig. 356. In constructing and interpreting

the various force polygons, Mr. E.. H Bow'g convenient

notation will be used; this is as follows: In the space

diagram a capital letter [ABC, etc.] is placed in each tri-

angular cell of the truss, and also in each angular space in

the outside outline of the truss between the external forces

and the adjacent truss-pieces. In this way we can speak of

the force Wi as the force BC, of W2 as the force C-E, the

stress in the piece a/3 as the force QI), and so on. That

is, the stress in any one piece can be named from the

letters in the spaces bordering its two sides. Corresponding

to these capital letters in the spaces of the space-dia~

gram, small letters will be used at the vertices of the closed

force-polygons (one polygon for each joint) in such a way
that the stress in the piece CD, for example, shall be thQ

forc3 cd of the force polygon belonging to any joint in

which that piece terminates ; the stress in the piece FO
by the force fg, in the proper force polygon, and so on.

In Fig. 356 the whole truss is shown free, in equili-

brium under the external forces. To find the pulls or

thrusts (i.e., tensions or compressions) in the pieces, con-

sider that if all but two of the forces of a closed force

polygon are known in magnitude and direction,, while the

directions, only, of those two are known, the wliole force

polygon may he drawn, thus determining the amounts of

those two forces by the lengths of the corresponding

sides.

We must .'. begin with a joint where no more than two

pieces nieet, as at a
;
[call the joints a, /9, y, d, and the cor-

corresponding force polygons a', /9' etc. Fig. 356.] Hence

at a' (anywhere on the paper) make oh \\
and = (by scale)

to the known force AB (i.e., V^) pointing it at the upper end,

and from this end draw he — and || to the known force BG
(i.e., Wj) pointing this at the lower end.
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Fig. 356.

To close the polygon draw througli c a || to the piece

CD, and through a a || to AD ; their intersection deter-

mines d, and the polygon is closed. Since the arrows

must be point to butt round the periphery, the force with

which the piece CD acts on the pin of the joint a is a

force of an amount = cd and in a direction from c toward

d ; hence the piece CD is in compression ; whereas the

action of the piece DA upon the pin at a is from d toward

a (direction of arrow) and hence DA is in tension. Notice

that in constructing the force polygon «' a right-handed

(or clock-wise) rotation has been observed in considering

in turn the spaces ABC and D, round the joint a. A
similar order will be found convenient in each of the other

joints.

Knowing now the stress in the piece GD, (as well as in

DA) all but two of the forces acting on the pin at the joint

/? are known, and accordingly we begin a force polygon, /3',

for that joint by drawing dc,= and || to the dc of polygon

a', hut pointed in the opposite direction, since the action of

OD on the joint /? is equal and opposite to its action on

the joint a (this disregards the weight of the piece).

Through c draw ce = and || to the force CE (i.e., W^ and



GRAPHICAL STATICS. 409

pointing tlie same way ; tlien ef, = and || to tlie load EF
(i.e. Pj) and pointing downward. Througli f draw a || to

tlie piece FG and through d, a || to the piece OB, and the

polygon is closed, thus determining the stresses in the

pieces FG and GT>. Noting the pointing of the arrows,

we readily see that FG is in compression Avhile GD is in

tension.

Next pass to the joint (5, and construct the polygon o'

,

thus determining the stress gli in GB. and that ad in AD
;

this last force ad should check with its equal and oppo-

site ad already determined in polygon a'. Another check

consists in the proper closing of the polygon y', all of

whose sides are now known.

[A compound stress-diagram may be formed by super-

posing the polygons already found in such a way as to

make equal sides co-incide ; but the character of each

stress is not so readily perceived then as when they are

kept separate].

In a similar manner we may find the stresses in any pin-

connected frame-work (in one plane and having no redun-

dant pieces) under given loads, provided all the support-

ing forces or reactions can be found. In the case of a

braced-arch (truss) as

shown in Fig. 357, hinged

to the abutments at both

ends and not free to slide

laterally upon them, the

reactions at and B de-

FiG. 357. pend, in amount and direc-

tion, not only upon the equations of Statics, but on the

form and elasticity of the arch-truss. Such cases will be

treated later under arch -ribs, or curved beams.

332. The Special Equil. Polygon. Its Relation to the Stresses

in the Rigid Body.—Eeproducing Figs. 350 and 351 in Figs.

358 and 359, (where a rigid curved beam is in equilibrium

under the forces P^ Pg, P3, P4 and B'^) we call a . . b . ,
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tiie special equil. polygon because it corresponds to a force

diagram in which the same order of forces has been ob-

S3rved as that in which they occur along the beam (from

left to right here). From the relations between the force

SPACE DIAGRAM
Fig. 358.

FORCE DIAGRAM
Pig, 359.

diagram and equil. polygon, this special equil. polygon in

the space diagram has the following properties in connec-

tion with the corresponding rays (dotted lines) in the force

diagram.

The stresses in any cross-section of the portion O'A of

the beam, are due to P^ alone ; those of any cross-section

on AB to Pi and P2, i.e., to their resultant R , whose mag-
nitude is given by the line Oa' in the force diagram, while

its liLe of action is ah the first segment of the equil. poly-

gon. Similarly, the stresses in BC are due to P^, P^ and

P., i.e., to their resultant R^, acting along the segment &c,

its magnitude being =^0h' in the force diagram. E.g., if

the section at m be exposed, considering O'ABm as a free

body, we have (see Fig. 360) the elastic stresses (or inter-

P3

Fig. 360. Fig. 361.

nal forces) at m balancing the exterior or " applied forces
"

Pi, Pj and P3. Obviously, then, the stresses at m are just



GEAPHIOAL STATICS. 411

the same as if B^, tlie resultant of Pj, P^ and Pg, acted upon
an imaginary rigid prolongation of tlie beam intersecting

he (see Fig. 361).i?i, might be called the " anti-stress-resuU-

ant" ior the portion PC of the beam. We may .•. state

the following : If a rigid body is in equilibrium under a sys-

tem of Hon-Concurrent Forces m a plane, and the special equi-

librium polygon has been draivn, then each ray of tlie force

diagram is the anti-stress-resultant of that portion of the beam
which corresponds to the segment of the equilibrium polygon

to which the ray is parallel ; and its line of action is the seg-

ment just mentioned.

Evidently if the body is not one rigid piece, but com-
posed of a ring of uncemented blocks (or voussoirs), it may
be considered rigid only so long as no slipping takes place

or disarrangement of the blocks; and this requires that the

" anti-stress-resultant " for a given joint between two

blocks shall not lie outside the bearing surface of the

joint, nor make too small an angle with it, lest tipping or

slipping occur. For an example of this see Fig. 362, show-

ing a line of three blocks in equilibrium under five forces.

The pressure borne at the

s^2 joint MN, is = Pa ^^ the

force-diagram and acts in

the line ab. The con-

struction supposes all

the forces given except

Fig. 362. oue, in amount and posi-

tion, and that this one could easily be found in amount, as

being the side remaining to close the force polygon, while

its position would depend ox^ I;he equil. polygon. But in

practice the t^m forces Pj and B\ are generally unknown,

hence the point 0, or pole of the force diagram, can not

be fixed, nor the special equil. polygon located, until other

considerations, outside of those so far presented, are

brought into play. In the progress of such a problem, as

will be seen, it will be necessary to use arbitrary trial po-

sitions for the pole 0, and corresponding ^rmZ equilibrium

polygons.
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CHAPTER IX.

GRAPHICAL. STATICS OF VERTICAL. FORCES,

333. Remarks.—(Witli the excoption of § 378 a) in prob-

lems to be treated subsequently (either the stiff arch-rib,

or the block-work of an arch-ring, of masonry) when the

body is considered free all the forces holding it in equil.

will be vertical (loads, due to gravity) except the reactions

at the two extremities, as in Eig, 363 ; but for convenience

each reaction will be replaced by its horizontal and verti-

cal components (see Fig. 364). The two fi^'s are of course
pqual, since they are the only horizontal forces in the

system. Henceforth, aU equil. polygons under discussion will

he understood to imply this kind of system of forces. Pi, Pz,

r r f

A t\

U v„

Fig. 363. Fig. 364a.Fig. 364.

etc. , will represent the '
' loads " ; Vq and F„ the vertical

components of the abutment reactions; H the value of

either horizontal component of the same. (We here sup-

pose the pressures To and Tn resolved along the horizontal

and vertical.)
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334. Concrete Conception of an Equilibrium Polygon.—Any
equilibrium polygon has this property, due to its mode
of construction, viz.: If the ab and be of Fig. 358 were im-

ponderable straight rods, jointed at b without frictioiij they

would be in equilibrium under the system of forces there

given. (See Fig. 364a). The rod ah suffers a compression

equal to the H^ of the force diagram, Fig. 359, and be a

-^compression = B^^. In some cases these rods might be in

tension, and would then form a set of links playing the

part of a suspension-bridge cable. (See § 44).

335. Example of EcLuilibrium Polygon Drawn to Vertical Loads

—Fig. 365. [The structure bearing the given loads is not

shown, but simply the imaginary rods, or segments of an

equilibrium polygon, which would support the given loads

in equilibrium if the abutment points A and B, to which

the terminal rods are hinged, were firm. In the present

case this equilibrium is unstable since the rods form a

standing structure ; but if they were hanging, the equilibri-

um would be stable. Still, in the present case, a very light

bracing, or a little friction at all joints would make the

equilibrium stable.

2 FT. TO aNOH

Fig. S65.

Given three loads Pi, F2, and P3, and two " abutment
verticals " A' and B', in which we desire the equil. poly-

gon to terminate, lay off as a "load-line," to scale, Pj, P2,

and P« end to end in their order. Then selecting any pole.
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0, draw the rays 01, 02, etc., of a force diagram (tlie F's

and P's, though really on the same vertical, are separated

slightly for distinctness ; also the H's, which both pass

through and divide the load-line into V^ and F^). We
determine a corresponding equilibrium polygon by draw-

ing through A (any point in A') a line
|| to . . 1, to inter-

sect Pi in some point b ; through 6 a || to . . 2, and so ou>

until B'' the other abutment-vertical is struck in some
point B. AB is the " abutment-line " or " closing-line."

By choosing another point for 0, another equilibrium

polygon would result. As to which of the infinite

number (which could thus be drawn, for the given loads

and the A' and B' verticals) is the special equilibrium poly'

gon for the arch-rib or stone-arch, or other structure, on

which the loads rest, is to be considered hereafter. In

any of the above equilibrium polygons the imaginary

series of jointed rods would be in equilibrium.

336. Useful Property of an Equilibrium Polygon for Vertical

Loads.—(Particular case of § 328). See Fig. 366. In any

equil. polygon, supporting vertical loads, consider as free

any number of consecutive segments, or rods, with the

loads at their joints, e. g., the 5th and 6th and portions of

C/r^.^ the 4th and 7th which, we sup-

/g i ,>^ ^6"--. ^-^^ pose cut and the compressive—
~S<^^ forces in them put in, T^ and

^^ Tj, in order to consider 4 5 6 7

"^^ ^ as a free body. For equil,,

~^~[-^\ according to Statics, the lines
'

' 'Pe "\ of action of Ti and Ty (the com-
i^iG. 366. pression in those rods) must in-

tersect in a point, C, in the line of action of the resultant

of Fi, P5, and Pq ; i.e., of the loads occurring at the inter-

vening vertices. That is, the point C must lie in the ver-

tical containing the centre of gravity of those loads. Since

the position of this vertical must be independent of the

particular equilibrium polygon used, any other (dotted

lines in Fig. 366) for the same loads will give the same re-
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suits. Hence tlie vertical CD, containing the centre of

gravity of any number of consecutive loads, is easily found

by drawing tlie equilibrium polygon corresponding to

any convenient force diagram having the proper load-line.

This principle can be advantageously applied to finding

a gravity -line of any plane figure, by dividing the latter

into parallel strips, whose areas may be treated as loads

applied in their respective centres of gravity. If the strips

are quite numerous, the centre of gravity of each may be

considered to be at the centre of the line joining the mid-

dles of the two long sides, while their areas may be taken

as proportional to the lengths of the lines drawn through
these centres of gravity parallel to the long sides and lim-

ited by the end-curves of the strips. Hence the " load-

line " of the force diagram may consist of these lines, or

of their halves, or quarters, etc., if more convenient (§ 376).

USEFUL, RELATIONS BETWEEN FORCE DIA-

GRAMS AND EQUILIBRIUM POLYGONS,,

(for vertical loads,)

237. Il6sum6 of Construction.—Fig. 367. Given the loads

Pi, etc., 'their verticals, and the two abutment verticals ^4'

and B', in which the abutments are to lie ; we lay off a

load-line 1 ... 4, take any convenient pole, 0, for a force-

diagram and complete the latter. For a corresponding

equilibrium polygon, assume any point A in the vertical"

A', for an abutment, and draw the successive segments
Al, 2, etc., respectively parallel to the inclined lines of the

force diagram (rays), thus determiDiDg finally the abut-
ment B, in B', v/hich {B) will not in general lie in the hor-
izontal through A.

Now join AB, calling AB the abutment-line, and draw a
parallel to it through 0, thus fixing the point n' on the
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Pi
P. t

l'

Fig.

load-line. This point %', as above determined, is indepen'

dent of the location of the pole, 0, (proved in § 329) and

divides the load-line into two portions ( V'o = 1 . . . n\ and

V'n = n' .. .4:) which are the vertical pressures which two
supports in the verticals A' and B' would sustain if the

given loads rested on a horizontal rigid bar, as in Fig. 368.

See § 329. Hence to find the point n' we may use any

convenient pole 0.

[N. B.— The forces V^ and V^ of Fig. 367 are not identi-

cal with F'o and V'„, but may be obtained by dropping a

"I from to the load-line, thus dividing the load-line

into two portions which are V^ (upper portion) and F^.

However, if A and B be connected by a tie-rod, in Fig.

367, the abutments in that figure will bear vertical press-

ures only and they will be the same as in Fig, 368, while

the tension in the tie-rod will be = On'.^

338. Theorem.—The vertical dimensions of any two equili-

brium polygons, drawn to the same loads, load-verticals, and

abutment-verticals, are inversely proportional to their H^s {or

"pole distances "). We here regard an equil. polygon and

its abutment-line as a closed figure. Thus, in Fig. 369,

we have two force-diagrams (with a common load-line, for

convenience) and their corresponding equil. polygons, for

the same loads and verticals. From § 337 we know that

On' is
II
to AB and OqW' is || to A^B^. Let CD be any ver-

tical cutting the first segments of the two equil. polygons.
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SB|

Denote the intercepts thus determined by z' and %\, respect-

gC r ively. From the

parallelisms just
mentioned, and
others more famil~

,/ iar, we have the

triangle \n' sim*

ilar to the triangle

Az' (shaded), and

the triangle O^n'

similar to the tri-

angle Ajz,^,. Hence

c
1

P.

u-^

/
hi

1 .

p^ ^.

A.
^y

1

—-1-.. -^-N^

Fig. 369.

the proportions between ( \n'

bases and altitudes
( H h

and

.*. z' : z\ : : H^ ' H. The same kind of proof may easily

be applied to the vertical intercepts in any other segments,

e. g., 2" and z'\. Q. E. D.

339. Corollaries to the foregoing. It is evident that

:

(1.) If the pole of the force-diagram be moved along a

vertical line, the equilibrium polygon changing its form

in a corresponding manner, the vertical dimensions of the

equilibrium polygon remain unchanged ; and

(2.) If the pole move along a straight line which con-

tains the point n\ the direction of the abutment-line

remains constantly parallel to the former line, while the

vertical dimensions of the equilibrium polygon change in

inverse proportion to the pole distance, or H, of the force-

diagram, [^is the "1 distance of the pole from the load-

line, and is called the pole-distance].

§ 340. Linear Arch as Equilibrium Polygon.—(See § 316.)

If the given loads are infinitely small with infinitely small

horizontal spaces between them, any equilibrijim polygon

becomes a linear arch. Graphically we can not deal with

these infinitely small loads and spaces, but from § 336 it

is evident that if we replace them, in successive groups.
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Fig. 370.

bj finite forces, eacli of wliicli = tlie STim of those com^.

I I I I I I I I

P°''^^ """^ ^^""^P ^""^ ^'

.M i V..M M. .^^ M I ,M I + /, applied tlirougli the cen-

tre of gravity of that

group, we can draw an

equilibrium polygon

whose segments will be

tangent to the curve of

the corresponding linear

arch, and indicate its posi-

tion with siifficient exactness for practical purposes. (See

Fig. 370), The successive points of tangency A, m, n, etc..

lie vertically under the points of division between the

groups. This relation forms the basis of the graphical

treatment of voussoir, or blockwork, arches.

341. To Peas an Equilibrium Polygon Through. Three Arbitrary

Points.—(In the present case the forces are vertical. For

a construction dealing with any plane system of forces see

construction in § 378a.) Given a system of loads, it is re-

^
quired to draw

r /^l ^^ equilibrium

polygon for

t h em through

-anythree points,

two of which
may be consid-

ered as abut-

ments, outside of the load-verticals, the third point being

between the verticals of the first two. See Fig. 371. The
loads Pi, etc., are given, with their verticals, while A, p,

and B are the three points. Lay oft the load-line, and

with any convenient pole, Oj, construct a force-diagram,

then a corresponding preliminary equilibrium polygon

beginning at A. Its right abutment P,, in the vertical

through B, is thus found. Oj n' can now be drawn || to AB^,

to determine n\ Draw n'O \\ to BA. The pole of the

required equilibrium polygon must lie on n'O (§ 337}

Fig. 371.



GEAPHICAL STATICS.

Draw a vertical throiigli jp. The E. of tlie required equili-

brium polygon must satisfy the proportion H : H^ : : rs i

pm. (See § 338). Hence construct or compute H from
the proportion and draw a vertical at distance H from
the load-line (on the left of the load-line here) ; its inter-

section with n' gives the desired pole, for which a

force diagram may now be drawn. The corresponding

equilibrium polygon beginning at the first point A will

also pass through p and B ; it is not drawn in the figure.

342. Symmetrical Case of the Foregoing Problem.— If two
points A and B are on a level, the third, p, on the middle

vertical between them ; and the loads (an even number)
symmetrically disposed both in position and magnitvde, about

p, we may proceed more simply, as follows : (Fig. 372).

From symmetry n'

must occur in the mid-
dle of the load-line, of

which we need lay off

only the upper half.

Take a convenient pole

piG. 372. Oi, in the horizontal

through n', and draw a half force diagram and a corres-

ponding half equilibrium polygon (both dotted). The up-

per segment he of the latter must be horizontal and being

prolonged, cuts the prolongation of the first segment in a

point d, which determines the vertical CD containing the

centre of gravity of the loads occurring over the half-span

on the left. (See § 336). In the required equilibrium poly-

gon the segment containing the point p must be horizon-

tal, and its intersection with the first segment must lie in

CD. Hence determine this intersection, C, by drawing the

vertical CD and a horizontal through p ;
then join CA,

which is the ^rst segment of the required equil. polygon.

A parallel to GA through 1 is the Jirst ray of the corres-

ponding force diagram, and determines the pole on the

horizontal through n'. Completing the force diagram foi
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Fig. 373.

this pole (half of it only here), the required equil. poly-

gon is easily finished afterwards.

343. To Find a System of Loads Under Which a Given Equi-

librium Polygon Would be in Equilibrium,—Fig. 373. Let AB
he the given equilibrium polygon. Through any point

as a pole draw a parallel to each

segment of the equilibrium polygon.

Any vertical, as V, cutting these

lines will have, intercepted upon it,

a load-line 1, 2, 3, whose parts 1 . . 2,

2 . . 3, etc., are proportional to the

successive loads which, placed on

ih@ corresponding joints of the equilibrium polygon would

be supported by it in equilibrium (unstable).

One load may be assumed and the others constructed. A
hanging, as well as a standing, equilibrium polygon may be

dealt with in

hke manner,

but will be

in stable
equilibrium.

The problem

in § 44 may
be solved in

this way, the various steps and final re-

sults being as follows (Fig. 50 is here re-

peated) :

—

Let weight Gi be given, =66 lbs., and

the positions of the cord segments be as in

Fig. 50. We first lay of! (see Fig. 373a)

vertically, a6 = 66 lbs., by some convenient

scale, and prolong this vertical fine indefi- d

nitely downward. aO is then drawn parallel to

and bO parallel to 1 ... 2. Their intersection determines a

pole, 0, through which Oc and Od, parallel respectively to

2 ... 3 and 3 . . . n, are drawn, to intersect ad in c and d.

We also draw the horizontal On, in Fig. 373a. By scaling,

we now find the results:

—

G2= bc= 42 lbs.; G3= cd= 50 lbs.;

H= 58.5 lbs., (= Ho and'^„ of Fig. 50); while 70= ^^=100
lbs. and y„ = 58 lbs.

Fig. 373a.

.1 of Fig. 50,



AECHES OF MASOifBT. 421

CHAPTER X.

RIGHT ARCHES OF MASONRY.

Note.—The treatment given in this chapter is by many engineers

considered sufficiently exact for ordinary masonry arches, the mOie
refined methods of the "elastic theory" being reserved for arches of

fairly continuous material, such as those of metal and of concrete (re-

inforced or otherwise); and is accordingly retained in this revised

edition.

844.—In an ordinary "right" storce-arcli (i.e., one in

which the faces are "[ to the axis of the cylindrical soffit,

or under surface), the successive blocks forming the arch-

ring are called voussoirs, the joints between them being

planes which, prolonged, meet generally in one or more
horizontal lines; e.g., those of a three-centred arch in three

II
horizontal lines ; those of a circular arch in one, the axis

of the cylinder, etc. Elliptic arches are sometimes used. The
inner concave surface is called the soffit, to which the radiat-

ing joints between the voussoirs are made perpendicular.

The curved line in which the soffit, is intersected by a plane

Fig. 374.

H to the axis of the arch is the Intrados. The curve in the

same plane as the intrados, and bounding the outer ex-

tremities of the joints between the voussoirs, is called the

Extrados.

Fig. 374 gives other terms in use in connection with, a
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stone arch, and explains those already given.

" springing-line."

AB is the

345o Mortar and Friction.—As 'common mortar hardens
very slowly, no reliance should be placed on its tenacity

as an element of stability in arches of any considerable

size ; though hydraulic mortar and thin joints of ordinary

mortar can sometimes be depended on. Friction, however,

between the surfaces of contiguous voussoirs, plays an

essential part in the stability of an arch, and will there-

fore be considered.

The stability of voussoir-arches must .•. be made to

depend on the resistance of the voussoirs to compresssion

and to sliding upon each other ; as also of the blocks

composing the piers, the foundations of the latter being

firm.

346. Point of Application of the Eesultant Pressure between

two consecutive voussoirs
;

(or pier blocks). Applying

Navier's principle (as in flexure of beams) that the press-

ure per unit area on a joint varies uniformly from the

extremity under greatest comj)ression to the point of least

compression (or of no compression); and remembering

that negative pressures (i.e., tension) can not exist, as they

might in a curved beam, we may represent the pressure

per unit area at successive points of a joint (from the intra-

dos toward the extrados, or vice versa) by the ordinates of

a straight line, forming the surface of a trapezoid or tri-

angle, in which figure the foot of the ordinate of the cen-

tre of gravity is the point of application of the resultant

pressure. Thus, where the least compression is supposed

Fig. 575. Fig. 376. Fig. 377. Fig. 378,
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to occur at the intrados A, Fig. 375, tlie pressures vary as

tlie ordinates of a trapezoid, increasing to a maximum value

at B, in the extrados. In Fig. 376, where the pressure is zero

at B, and varies as the ordinates of a triangle, the result-

ant pressure acts through a point one-third the joint-

length from A. Similarly in Fig. 377, it acts one-third

the joint-length from B. Hence, when the pressure is not

zero at either edge the resultant pressure acts within the

middle third of the joint. Whereas, if the resultant press-

ure falls loitliout the middle third, it shows that a portion

-4m of the joint, see Fig. 378, receives no pressure, i.e., the

joint tends to open along Am.
Therefore that no joint tend to open, the resultant press-

ure must fall within the middle third.

It must be understood that the joint surfaces here dealt

with are rectangles, seen edgewise in the figures.

347. Friction.—By experiment it has been found the

angle of friction (see § 156) for two contiguous voussoirs

of stone or brick is about 30° ; i.e., the coefficient of fric-

tion is / = tan. 30°. Hence if the direction of the press-

ure exerted upon a voussoir by its neighbor makes an

angle a less than 30° with the normal to the joint surface,

there is no danger of rupture of the arch by the sliding

of one on the other. (See Fig. 379).

348. Resistance to Crushing.—When the resultant pressure

falls at its extreme allowable limit, viz. : the edge of the

middle third, the pressure per

unit of area at n, Fig. 380, iy

double the mean pressure per

unit of area. Hence, in de-

signing an arch of masonry,

we must be assured that at

every joint (taking 10 as a

factor of safety)

( Double the mean press-
| ^^^^ ^^ j^^^ ^^^^ y g

I ure per unit oi area \
'

Fig. 379. Fig. 380.
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C being tlie ultimate resistance to crushing, of tlie material

emj)loyed (§ 201) (Modulus of Crushing).

Since a lamina one foot thick will always be considered

in what follows, careful attention must be paid to the units

employed in applying the above tests.

Example.—If a joint is 3 ft. by 1 foot, and the resultant

pressure is 22.5 tons the mean pressure per sq. foot is

p=22.5-^3=7.5 tons per sq. foot

.'. its double=15 tons per sq. foot=208.3 lbs. sq. inch,

which is much less than '/lo of C for most building stones

;

see § 203, and below.

At joints where the resultant pressure falls at the middle,

the max. pressure per square inch would be equal to the

mean pressure per square inch ; but for safety it is best to

assume that, at times, (from moving loads, or vibrations)

it may move to the edge of the middle third, causing the

max. pressure to be double the mean (per square inch).

Gem Gillmore's experiments in 1876 gave the following

results, among many others :

NAME OF BUILDING STONE. C IN LBS. PER SQ. INCH.

Berea sand-stone, 2-inch cube, - - - - 8955

4 " " - - - - 11720

Limestone, Sebastopol, 2-inch cube {chalk)^ - - 1075

Limestone from Caen, France, - - . . 3650

Limestone from Kingston, ]^. Y., - - . - 13900

Marble, Vermont, 2-inch cube, - - 8000 to 13000

Granite, New Hampshire, 2-inch cube, 15700 to 24000

349. The Three Conditions of Safe E(iiiilibriiim for an arch of

uncemented voussoirs.

Recapitulating the results of the foregoing paragraphs,

we may state, as follows, the three conditions which must
be satisfied at every joint of arch -ring and pier, for each

of any possible combination of loads upon the structure

:

(1). The resultant pressure must pass within the middle-

third,

(2). The resultant pressure must not make an angle >
30° with the normal to the joint.

(3). The m'^.an pressure per unit of area on the surface
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of tlie joint must not exceed Ygo of the Modulus of crush-

ing of the material.

350. The True Linear-Arch, or Special Equilibrium Polygon;

and the resultant pressure at any joint. Let the weight

of each voussoir and its load be represented by a vertical

force passing through the centre of gravity of the two, as

in Fig. 381o Taking any

two points A and JB, A
being in the first joint and

B in the last ; also a third

point, p, in the crown

joint (supposing such to

be there, although gener-

ally a key-stone occupies |
the crown), through these fig. ssi.

three points can be drawn [§ 341] an equilibrium polygon
for the loads given ; suppose this equil. polygon nowhere
passes outside of the arch-ring (the arch-ring is the por-

tion between the intrados, mn, and tha (dotted) extrados

m'n') intersecting the joints at h, c, etc. Evidently if such
be the case, and small metal rods (not round) were insert-

ed at A, h, c, etc., so as to separate the arch-stones slight-

ly, the arch would stand, though in unstable equilibrium,

the piers being firm ; and by a different choice of A, p, and
B, it might be possible to draw other equilibrium poly-

gons with segments cutting the joints within the arch-

ring, and if the metal rods were shifted to these new inter-

sections the arch would again stand (in unstable equilib-

rium).

In other words, if an arch stands, it may be possible to

draw a great number of linear arches within the limits of

the arch-ring, since three points determine an equilibrium

polygon (or linear arch) for given loads. The question

arises then : luMch linear arch is the locus of the actual re-

sultant pressures at the successive joints ?

[Considering the arch-ring as an elastic curved beam
inserted in firm piers (i.e., the blocks at the springing-line
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are incapable of turning) and Jbaving secured a close fit at

all joints before the centering is lowered, the most satisfac-

tory answer to this question is given in Prof. Greene's
" Arches," p. 131 ; viz., to consider the arch-ring as an

arch rib of fixed ends and no hinges ; see § 380 of next

chapter;, but the lengthy computations there employed
(and the method demands a simple algebraic curve for the

arch) may be most advantageously replaced by Prof.

Eddy's graphic method (" New Constructions in Graphical

Statics," published in Van Nostrand's Magazine for 1877)„

which applies to arch curves of any form.

This method will be given in a subsequent chapter, on
Arch Eibs, or Curved Beams ; but for arches of masonry a
much simpler procedure is sufficiently exact for practical

purposes and will now be presented].

If two elastic blocks

of an arch-ring touch at

one edge. Fig. 382, their

adjacent sides making a
small angle with each

•"iG- ^82. Fig. 383. other, and are then grad-

ually pressed more and more forcibly together at the edge

m, as the arch-ring settles, the centering being gradually

lowered, the surface of contact becomes larger and larger,

from the compression which ensues (see Pig. 383); while

the resultant pressure between the blocks, first applied at

the extreme edge m, has now probably advanced nearer the

middle of the joint in the mutual adjustment of the arch-

stones. With this in view we may reasonably deduce the

following theory of the location of the true linear areh

(sometimes called the " line of pressures " and " curve of

pressure ") in an arch under given loading and with^rm
piers. (Whether the piers are really unyielding, under the

oblique thrusts at the springing-line, is a matter for sub-

sequent investigation.

351. Location of the True Linear Arch.—Granted that the

voussoirs have been closely fitted to each other over the
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centering (sheets of lead are sometimes used in tlie joints

to make a better distribution of pressure); and tliat the

piers are firm ; and that the arch can stand at all without

the centering ; then we assume that in the mutual accom-

modation between the voussoirs, as the centering is low-

ered, the resultant of the pressures distributed over any

joint, if at first near the extreme edge of the joint, advances

nearer to the middle as the arch settles to its final posi-

tion of equilibrium under its load ; and hence the follow-

ing

352. Practical Conclusions.

I. If for a given arch and loading, with firm piers, an

•equilibrium polygon can be drawn (by proper selection of

the points A, p, and B, Fig. 381) entirely within the mid^

die third of the arch ring, not only will the arch stand, but

the resultant pressure at every joint will be within the

middle third (Condition 1, § 349) ; and among all possible

equilibrium polygons which can be drawn within the mid-

dle third, that is the " true " one which most nearly coin-

•cides with the middle line of the arch-ring.

II. If (with firm piers, as before) no equilibrium poly-

rgon can be drawn Avithin the middle third, and only one

within the arch-ring at all, the arch may stand, but chip-

ping and spawling are likely to occur at the edges of the

joints. The design should .*. be altered.

III. If no equilibrium polygon can be drawn within

the arch-ring, the design of either the arch or the loading

.must be changed ; since, although the arch may standi

from the resistance of the spandrel walls, such a stability

must be looked upon as precarious and not countenanced

in any large important structure. (Very frequently, in

small arches of brick and stone, as they occur in buildings,

the cement is so tenacious that the whole structure is vir-

tually a single continuous mass).

When the " true " linear arch has once been determined,

the amount of the resultant pressure on any joint is given

by the length of the proper ray in the force diagram.
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ARRANGEMENT OF DATA FOR GRAPHIC
TREATMENT.

353. Cli-aracter of Load.—In most large stone arch bridges

the load (permanent load) does not consist exclusively of

masonry up to tlie road-way but partially of earth filling

above the masonry, except at the faces of the arch where
the spandrel walls serve as retaining walls to hold the

earth. (Fig. 384). If the intrados is a half circle or half-

Fig. 385.Fig. 384.

ellipse, a compactly-built masonry backing is carried up
beyond the springing-line to AB about 60° to 45° from the

crown. Fig. 385 ; so that the portion of arch ring below

AB may be considered as part of the abutment, and thus

AB is the virtual springing-line, for graphic treatment.

Sometimes, to save filling, small arches are built over

the haunches of the main arch, with earth placed over

them, as shown in Fig. 386. In any of the preceding cases

Fig. 387.

it is customary to consider that, on account of the bond-
ing of the stones in the arch shell, the loading at a given

distance from the crown is uniformly distributed over the

width of the roadway.
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354, Reduced Load-Contour.—In the graphical discussioa

of a proposed arch we consider a lamina one foot thick,

this lamina being vertical and "| to the axis of the arch

;

i.e., the lamina is
||
to the spandrel walls. For graphical

treatment, equal areas of the elevation (see Fig, 387) of

this lamina must represent equal weights. Taking the

material of the arch-ring as a standard, we must find for

each point "p of the extrados an imaginary height z of the

arch-ring material, which would give the same pressure

(per running horizontal foot) at that point as that due to

the actual load above that point. A number of such or-

dinates, each measured vertically upward from the extra-

dos determine points in the "Reduced Load-Contour," i.e.,

the imaginary line, AM, the area between which and the

extrados of the arch-ring represents a homogeneous load

of the same density as the arch-ring, and equivalent to the

actual load (above extrados), vertical hy vertical.

355. Example of Reduced Load-Contour.—Fig, 388. Given
an arch-ring of granite (heaviness = 170 lbs. per cubic
foot) with a dead load of rubble (heav. = 140) and earth

(heav. = 100), distributed as in figure. At the point p, of

the extrados, the depth 5 feet of rubble is equivalent to a

depth of [^^ x5]=4.1 ft. of granite, while the 6 feet of earth

is equivalent to [l°?x6]=3.5 feet of granite. Hence the

Reduced Load-Contour has an ordinate, above p, of 7.6 feet.

That is, for each of several points of the arch-ring extrados-

reduce the rubble ordinate in the ratio of 170 : 140, and

the earth ordinate in the ratio 170 : 100 and add the re-

sults, setting off the sum vertically from the points in the

extrados*. In this way Fig. 389 is obtained and the area

*TUs is most conveniently done by graphics, thus : On a right-line set off 17 equal.

parts (of any convenient magnitude.) Call this distance OA. Through t> draw another
right line at any convenient angle (30° to 60°) with OA, and on it from O

set off OB equal to 14 (for the ruhble ; or 10 for the earth) of the eame egaal
parts. Join AB. From O toward A set off* all the rubble ordiaates to be reduced^
(each being set off from 0} and through the other extremity of each draw a Bne par-

allel to AB. The reduced ordinates will be the respective lengths, from O, along OB,

to the intersections of these parallels ynth OB.
* Witli the dividers.
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:/EART.HV; Av,*//%V;*i*»'v5i;'i!lV;?V/;i;;*'uVf/-^;;-';^^

there given is to be treated as representing liomogeneous

granite one foot thick. This, of course, now includes the

arch-ring also. AB is the " reduced load- contour."

356. Live Loads.—In discussing a railroad arch bridge

the " live load " (a train of locomotives, e.g., to take an ex-

treme case) can not be disregarded, and for each of its po-

sitions we have a separate Reduced Load-Contour.

Example.—Suppose the arch of Fig. 388 to be 12 feet

wide (not including spandrel walls) and that a train of lo-

comotives weighing 3,000 lbs. per running foot of the track

covers one half of the span. Uniformly * distributed later-

ally over the width, 12 ft., this rate of loading is equiva-

lent to a masonry load of one foot high and a heaviness of

250 lbs. per cubic ft., i.e., is equivalent to a height of 1.4

ft. of granite masonry [since ^[|- X 1.0— 1.4] over the half

span considered. Hence from Fig. 390 we obtain Fig. 391

in an obvious manner. Fig. 391 is now ready for graphic

treatment.

Fig. 390. Fig. 391.

357. Piers and Abutments.—In a series of equal arches

the pier between two consecutive arches bears simply the

weight of the two adjacent semi-arches, plus the load im-

* If the earth-filling is sLallcw, the Icminse directly under the track prob*
aibly receive a greater pressure than the others.
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mediately above the pier, and .-. does not need to be as

large as the abutment of the first and last arches, since

these latter must be prepared to resist the oblique thrusts

of their arches without help from the thrust of another on

the other side.

In a very long series of arches it is sometimes customary

to make a few of the intermediate piers large enough to

act as abutments. These are called " abutment piers," and

in case one arch should fall, no others would be lost except

those occurring between the same two abutment piers as

the first. See Fig. 392. A is an abutment-pier.

Fig. 39;^.

GRAPHICAL. TREATMENT OF ARCH.
358.—Having found the " reduced load-contour," as in

preceding paragraphs, for a given arch and load, we are

ready to proceed with the graphic treatment, i.e., the first

given, or assumed, form and thickness of arch-ring is to be

investigated with regard to stability. It may be necessary

to treat, separately, a lamina under the spandrel wall, and

one under the interior loading. The constructions are

equally well adapted to arches of all shapes, to Gothic as

well as circular and elliptical.

359.—Case I. Symmetrical Arch and Symmetrical Loading.—

(The " steady " (permanent) or " dead " load on an arch is

usually symmetrical). Fig. 393. From symmetry we need

Fig. Fig. 394. Fis. 395.
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deal witli only one half (say the left) of tlie arch and load.

Divide this semi-arch and load into six or ten divisions

by vertical lines ; these divisions are considered as trape-

zoids and should have the same horizontal width = 6 (a

convenient whole number of feet) except the last one, LKN,
next the abutment, and this is a pentagon of a different

v\ridth hy, (the remnant of the horizontal distance LC). The
weight of masonry in each division is equal to (the area

of division) X (unity thickness of lamina) x (weight of a cu-

bic unit of arch-ring). For example for a division having

an area of 20 sq. feet, and composed of masonry weighing

160 lbs. per cubic foot, we have 20x1x160=3,200 lbs.,

applied through the centre of gravity of the division.

The area of a trapezoid. Fig. 394, is^&(7ii+7i2), audits cen-

tre of gravity may be found. Fig. 395, by the construction

of Prob. 6, in § 26 ; or by § 27a. The weight of the pen-

tagon LN, Fig, 393, and its line of application (through

centre of gravity) may be found by combining results for

the two trapezoids into which it is divided by a vertical

through K. See § 21.

Since the weights of the respective trapezoids {excepts

ing LN) are proportional to their middle vertical in-

tercepts [such as ^(^1+7^2) Fig- 394] these intercepts (trans-

ferred with the dividers) may be used directly to form the

load-line, Fig. 396, or proportional parts of them if more
convenient. The force scale, which this implies, is easily

computed,, and a proper length calculated to represent the

weight of the odd division LN ; i.e., 1 ... 2 on the load-

line.

Now consider A, the middle point of the abutment joint.

Fig. 396, as the starting point of an equilibrium polygon

(or abutment of a linear arch) for a given loading, and re-

quire that this equilibrium polygon shall pass through j>,

the middle of the crown joint, and through the middle of

the abutment joint on the right (not shown in figure).

Proceed as in § 342, thus determining the polygon Ap
for the half-arch. Draw joints in the arch-ring through

those points where the extrados is intersected by the ver-
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Jig. 396. Fig. 397.

Heal separating tlie divisions (not the gravity verticals),

Tlie points in which these joints are cut by the segments

of the equilibrium polygon, Fig. 397, are (very nearly, if

th« joint is not more than 60° from jp, the crown) the points

of application in these joints, respectively, of the resultant

pressures on them, (if this is the " true linear arch " for

this arch and load) while the amount and direction of each

such pressure is given by the proper ray in the force -dia-

gram.

If at any joint so drawn the linear arch (or equilibrium

polygon) passes outside the middle third of the arch-ring,

the point A, or p, (or both) should be judiciously moved
(within the middle third) to find if possible a linear arch

which keeps within limits at all joints. If this is found

impossible, the thickness of the arch -ring may be increased

at the abutment (giving a smaller increase toward the

crown) and the desired result obtained ; or a change in the

distribution or amount of the loading, if allowable, may
gain this object. If but one linear arch can be drawn
within the middle third, it may be considered the " true

"

one ; if several, the one most nearly co-inciding with the

middles of the joints (see §§ 351 and 352) is so considered.

360.—Case II Unsymmetrical Loading on a Symmetrical Arch,'

(e.g., arch with live load covering one half-span as in Figs.

390 and 391). Here we must evidently use a full force

diagram, and the full elevation of the arch-ring and load*
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See Fig. 398. Select three points A, p, and B, as follows,

to determine a trial equilihriu'm ])6lygon :

'

Select A at the Joicer limit of the middle third of tLa

Fig. 398.

abutment-joint at the end of the span -vihich is the more
heavily-loaded ; in the other abutment-joint take B at tht

upper limit of the middle third ; and take p in the middle

of the crown-joint. Then by § 341 draw an equilibrium

polygon (i.e., a linear arch) through these three points for

the given set of loads, and if it does not remain within the

middle third, try other positions for A, p, and B, within

the middle third. As to the " true linear arch " alterations

of the design, etc., the same remarks apply as already

given in Case I. Very frequently it is not necessary to

draw more than one linear arch, for a given loading, for

even if one could be drawn nearer the middle of the arch-

ring than the first, that fact is almost always apparent on

mere inspection, and the one already drawn (if within

middle third) will furnish values sufiiciently accurate for

the pressures on the respective joints, and their direction

angles.

360a.—The design for the arch-ring and loading is not

to be considered satisfactory until it is ascertained that for

the dead load and any possible combination of live-load

'(in addition) the pressure at any joint is
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1.) Witliin the middle third of that joint
;

{2.) At an angle of < 30° with the normal to joint-

SYirface.

(3.) Of a mean pressure per square inch not > thanVa)
of the ultimate crushing resistance. (See § 348.)

§ 361. Abutments.—The abutment should be compactly

and solidly built, and is then treated as a single rigid mass.

The pressure of the lowest voussoir upon it (considering

a lamina one foot thick) is given by the proper ray of the

force diagram (0 .. 1, e. g., in Fig. 396) in amount and direc-

tion. The stability of the abutment will depend on the

amount and direction of the resultant obtained by com-
bining that pressure P^ with the weight G of the abutment

and its load, see Fig. 399. Assume a probable width RS
for the abutment and compute the weight G
of the corresponding abutment OBRS and
MNBO, and find the centre of gravity of the

whole mass G. Apply G in the vertical

through C, and combine it with P„ at their in-

tersection D. The resultant P should not cut

the base R8m. a point beyond the middle third

p/^ / " (or, if this rule gives too massive a pier, take

I / /
°

such a width that the pressure per square

I// inch at 8 shall not exceed a safe value as

^
Fis. 399. computed from § 362.) After one or two

trials a satisfactory width can be obtained.

We should also be assured that the angle PD G is less

than 30°. The horizontal joints above RS should also be

tested as if each were, in turn, the lowest base, and if

nscessary may be inclined (like mn) to prevent slipping.

On no joint should the maximum pressure per square inch

be > than y^o the crushing strength of the cement. Abut-

ments of firm natural rock are of course to be preferred

where they can be had. If water penetrates under an

abutment its buoyant effort lessens the weight of the lat-

ter to a considerable extent.
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362. Maximum Pressure Per Unit of Area When the Resultant

Pressure Falls at Any Given Distance from the Middle ; according

to Navier's theory of the distribution of the pressure ; see

§ 346. Case I. Let the resultant pressure P, Fig. 400, (a).

Fig. 400. Fig. 401.

fall within the middle third, a distance = wc? (< ^ d)

from the middle of joint [d = depth of Joint.) Then we
have the following relations :

p (the mean press, per.- sq. in.,),^,,, (max. press, persq. in.),

and p^ (least press, per sq. in.) are proportional to the lines

h (mid. width), a (max. base), and c (min. base) respectively,

of a trapezoid. Fig. 400, (&), through whose centre of gravity

P acts. But (§ 26) •

nd=---. i.e., n= y^ —=— or a=h (6w+l)
6 a-\-c n .

''• Pm—JP (6w+l). Hence the following table:

If 7id= j4> d Ya d

press. Pn,= 2 y^ Vs

then the max.

times the mean pressure.

Case II. Let P fall outside the mid. third, a distance=
"nd {^ )4 d) from the middle of joint. Here, since the

joint is not considered capable of withstanding tension,

we have a triangle, instead of a trapezoid. Fig. 401. First

compute the mean press, per sq. in.

V -
P (lbs.)

(1— 2w) 18 d inches

foot thick).

or from this table : (lamina ona
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For nd = ^d hd hd T\d ^d ^d

P =
1 P
10* d

1 P
8 * d

1 P
6 * d'

1 P
4 <^

1 P
2 6^

infinity.

{d in inches and P in lbs.; with arch lamina 1 ft. in thickness.)

Then the maximum pressure (at A, Fig. 401) />,„, = 2p,

becomes known, in lbs. per sq. in.

362a. Arch-ring under Uon-vertical Forces.—An example of

this occurs when a vertical arch-ring is to support the pressure

of a liquid on its extrados. Since water-pressures are always

at right angles to the surface pressed on, these pressures on the

extradosal surface of the arch-ring form a system of non-paral~

lei forces which are normal to the curve of the extrados at;

their respective points of application and lie in parallel

vertical planes, parallel to the faces of the lamina. "We here

assume that the extradosal surface is a cylinder (in the most

general sense) whose rectilinear elements are 1 to the faces of

the lamina. If, then, we divide the length of the extrados,

from crown to each abutment, into from six to ten parts, the

respective pressures on the corresponding surfaces are obtained

by multiplying the area of each by the depth of its centre of

gravity from the upper free surface of the liquid, and this

product by the weight of a unit of volume of the liquid ; and

each such pressure may be considered as acting through the

centre of the area. Finally, if we find the resultant of each

of these pressures and the weight of the corresponding portion

of the arch-ring, these resultants form a series of non-vertical

forces in a plane, for which an equilibrium polygon can then

be passed through three assumed points by § 378a, these three

points being taken in the crown-joint and the two abutment-

joints. As to the " true linear arch" see § 359.

As an extreme theoretic limit it is worth noting that if the

extrados and intrados of the arch-ring are concentric circles ; if

the weights of the voussoirs are neglected ; and if the rise of

tb« arch is very small compared with the depth of the crown

^/elow the water surface, then the circularGentre-line of the

wrch-ring is the " true linear archP
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CHAPTER XI.

ARCH-RIBS.

Note.—The methods used in this chapter for the treatment of the

"elastic arch" are practically the equivalent of those based on the theory

of "Least Work."

364. Definitions and Assumptions.—An arcli-rib (or elastic-

arch, as distinguished from a block-work arcb) is a rigid

curved beam, either solid, or built up of pieces like a

truss (and then called a braced arch) the stresses in which,

under a given loading and with prescribed mode of sup-

port it is here proposed to determine. The rib is sup-

posed symmetrical about a vertical plane containing its

axis or middle line, and the Moment of Inertia of any cross

section is understood to be referred to a gravity axis of

the section, which (the axis) is perpendicular to the said

vertical plane. It is assumed that in its strained condi-

tion under a load, the shape of the rib differs so little

from its form when unstrained that the change in the ab-

scissa or ordinate of any point in the rib axis (a curve)

may be neglected when added (algebraically) to the co-

ordinate itself ; also that the dimensions of a cross-section

are small compared with the radius of curvature at any

part of the curved axis, and with the span.

365. Mode of Support.—Either extremity of the rib may be

hinged to its pier (which gives freedom to the end-tangent-

line to turn in the vertical plane of the rib when a load is

applied); or may 'hef,xed, i.e., so built-in, or bolted rigid-

ly to the pier, that the en^-tangent-line is incapable of

changing its direction when a load is applied. A hinge

may be inserted anywhere along the rib, and of course
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destroys the rigidity, or resistance to bending at that

point. (A hinge having its pin horizontal "1 to the axis of

the rib is meant). Evidently no more than three such

hinges could be introduced along an arch- rib between two

piers ; unless it is to be a hanging structure, acting as a

suspension-cable.

366. Arch Rib as a Free Body.—In considering the whole

rib free it is convenient, for graphical treatment, that no

section be conceived made at its extremities, if fixed ; hence

in dealing with that mode of support the end of the rib

will be considered as having a rigid prolongation reach-

ing to a point vertically above or below the pier junction,

an unknown distance from it, and there acted on by a force

of such unknown amount and direction as to preserve the

actual 'extremity of the rib and its tangent line in the same
position and direction as they really are. As an illustra-

tion of this Fig. 402

shows free an arch rib.

ONB, with its extremi-

ties and BJixed in the

piers, with no hinges, q

and bearing two
loads P. and P^. The
other . :ces of the sys-

tem holding it in equi-

librium are che horizontal and vertical components, of the

pier reactions {H, V, H,„ and V^), and in this case of fixed

ends each .of these two reactions is a single force not in-

tersecting the end of the rib, but cutting the vertical

through the end in some point F (on the left ; and in G on
the right) at some vertical distance c, (or d), from the end.

Hence the utility of these imaginary prolongations OQF,
and BRG, the pier being supposed removed. Compare
Figs. 348 and 350.

The imaginary points, or hinges, F and G, will be called

ctbutments being such for the special equilibrium polygon

Fig. 402.
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(dotted line), while and B are the real ends of the curved

beam, or rib.

In this system of forces there are five unknowns, viz.: V,

V,„ H = H^, and the distances c and d. Their determina-

tion by analysis, even if the rib is a circular arc, is ex-,

tremely intricate and tedious ; but by graphical statics

(Prof, Eddy's method ; see § 350 for reference), it is com-

paratively simple and direct aiid applies to any shape of

rib, and is sufficiently accurate for practical purposes.

This method consists of constructions leading to the loca-

tion of the " special equilibrium polygon " and its force

diagram. In case the rib is hinged to the piers, the re-

actions of the latter act through these hinges, Fig. 403,

i e., the abutments of the special

equilibrium polygon coincide with

the ends of the rib and B, and for

a given rib and load the unknown
quantities are only three V, F'n, and

H; (strictly there are four ; but IX "^^

= gives H^ = H). The solution fig. 403.

by analytics is possible only for ribs of simple algebraic

curves and is long and cumbrous
;

'whereas Prol Eddy's
graphic method is comparatively brief and simple and ia

applicable to any shape of rib whatever.

367. Utility of the Special Equilibriun Polygon and its force

diagram. The use of locating these will now be illustrated

[See § 832]. As proved in §§ 332 and 334 the compres-

sion in each " rod " or segment of the '* special equilibrium

polygon" is the anti-stress resultant of the cross sections in

the corresponding portion of the beam, rib, or other struc-

ture, the value of this compression (in lbs. or tons) being

measured by the length of the parallel ray in the force

diagram. Suppose that in some way (to be explained sub-

sequently) the special equilibrium polygon and its force

diagram have been drawn for the arch -rib in Fig. 404 hav-

ing fixed ends, and B, and no hinges ; required the elastic

stresses in any cross-section of the rib as at m. Let the
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FiG. 404.

of the force-diagram on the right be 200 lbs. to the

inch, say, and that of the space-diagram (on the left) 30 ft.

to the inch.

The cross section m lies in a portion TK, of the rib, cor-

responding to the rod or segment he of the equilibrium

polygon; hence its anti-stress-resultant is a force R2 acting

in the line 6c, and of an amount given in the force-diagram.

Now i?2 is the resultant of V, H, and Pj, which with the

elastic forces at m form a system in equilibrium, shown in

?ig. 405 ; the portion FOTm being considered free. Hence

Pig. 405. Fio. 406.

taking the tangent line and the normal at m as axes we
should have I (tang, comps.) = ; -T (norm, comps.) = j

and 2* (moms, about gravity axis of the section at w) = Oj

and could thus find the unknowns pi, "p^, and J", which ap-

pear iu the expressions 'p^F the thrust,^ the moment* of
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the stress-couple, and J the shear. These elastic stresses

are classified as in § 295, which see. p^ and jpa are ^hs. per

square inch, J is lbs., e is the distance from the horizontal

gravity axis of the section to the outermost element of

area, (where the compression or tension is p^ lbs. per sq.

in., as due to the stress-couple alone) while I is the " mo-
ment of inertia " of the section about that gravity axis.

[See §§ 247 and 295 ; also § 85]. Graphics, however, gives

us a m.ore direct method, as follows : Since i?2> i^ the line

he, is the equivalent of V, H, and Pj, the stresses at m will

be just the same as if ^2 acted directly upon a lateral pro-

longation of the rib at T (to intersect ScFig. 405) as shown
in Fig, 406, this prolongation Tb taking the place of TOF
in Fig. 405. The force diagram is also reproduced here.

Let a denote the length of the "] from m's gravity axis

upon he, and 2 the vertical intercept between m and Jc.

For this imaginary free body, we have,

from I (tang. compons.)=0, i?2 cos a=^piF

and from 2' (norm. compons.)=0,i?2 sin «=«/

while from J' (moms, about) ) ^ ^ rj P2I
,-, ., ^- 4; \ A }-we have ixott =^ -^ •

the gravity axis 01 to)=0,
j

^

e

But from the two similar triangles (shaded ; one of them

is in force diagram) a :z :; Zf:i?2 .•. R^a^Hz, wIh&tigq we
may rewrite these relations as follows (with a general state-

ment), viz.:

If the Special Equilibrium Polygon and Its Force Diagram Have

iBeen Drawn for a given arch-rib, of given mode of support,

p.nd under a given loading, then in any cross-section of the

J ib, we have {F = area of section):

The projection of the proper

i \ \ rri.^T>.,m.f i^ ^ rr- J ^«2/ (of tlie force diagram) up-
(L) The Thrust. i.e.,i>,i^-^ ^^^^^ ^^^^^^^ ^.^^ ^^ ^-^^ ^i^,

drawn at the given section.
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(2.) The Shear, i.e., J", = C

/ 1-11 1 J.1 The proieetion of me proper
(upon which dependstne

, » ,i « -,. ^
^, .

,
. ,1 ray (oi the lorce diaarram) up-

shearmg stress m the-^ "^
.; ? , i^i -i

web). (See §§ 253 and

256).

on the normal to the rib curve

at the given section.

(3.) The Moment of the

stress couple, i.e.,-^ , =
"

6

The product {Hz) of the fl

(or pole-distance) of the force-

diagram by the vertical dis-

tance of the gravity axis of the

section from the spec, equilib-

rium polygon.

By the ** proper ray " is meant that ray which is parallel

to the segment (of the equil. polygon) immediately under

or above which the given section is situated. Thus in

Fig. 404, the proper ray for any section on TK is B2 ; on

KB, i?3 ; on TO, Bi. The projection of a ray upon any

given tangent or normal, is easily found by drawing through

each end of the ray a line ^ to the tangent (or normal)

;

the length between these "I's on the tangent (or normal) is

the force required (by the scale of the force diagram). We
may thus construct a shear diagram, and a thrust diagram

for a given case, while the successive vertical intercepts

between the rib and special equilibrium polygon form a

moment diagram. For example if the s of a point m is ^
inch in a space diagram drawn to a scale of 20 feet to the

inch, while Zf measures 2.1 inches in a force diagram con-

structed on a scale of ten tons to the inch, we have, for the

moment of the stress-couple at m, J!f=^s=[2.1x10] tons

X
[^ X 20] ft. =210 ft. tons.

368.—It is thus seen how a location of the special equili

Ibrium polygon, and the lines of the corresponding iovoi

diagram, lead directly to a knowledge of the stresses in al

the cross-sections of the curved beam under consideration,

bearing a given load; or, vice versa, leads to a stateme?^^

of conditions to be satisfied by the dimensions of the rir

for proper security.

It is here supposed that the rib has sufficient latei
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bracing (witli others wliicli lie parallel witli it) to prevent

buckling sideways in any part like a long column. Before

proceeding to the complete graphical analysis of the differ-

ent cases of arch-ribs, it will be necessary to devote the

next few paragraphs to developing a few analytical rela-

tions in the theory of flexure of a curved beam, and to

giving some processes in " graphical arithmetic."

369. Change in the Angle Between Two Consecutive Rib Tan-

gents when the rib is loaded, as compared with its value

before loading. Consider any small portion (of an arch

rib) included between two consecutive cross- sections ; Fig.

407. KHGW is its unstrained form. Let EA, = ds, be

the original length of this portion of the rib axis. The
length of all the fibres (ii to rib-axis) was originally =ds
(nearly) and the two consecutive tangent-lines, atE and Ay

made an angle = dO originally, with each other. While
under strain, however, all the fibres are shortened equally

an amount dX^, by the uniformly distributed tangential

thrust, but are unequally shortened (or lengthened, accord-

ing as they are on one side or the other of the gravity axis

E, or A, of the section) by the system of forces making
what we call the " stress couple," among v/hich the stress

at the distance e from the gravity axis A of the section is

called p-i per square inch ; so that the tangent line at A'

now takes the direction A'D ~j to H'A'G' instead of A'G
(we suppose the section at E to remain fixed, for coUTezii-

^6! =^

t/"/^'^' cIp.^'

.-r-

"'v-^.^f**

^pd?
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ence, since tlie change of angle between tlie two tangents

depends on the stresses acting, and not on tlie new posi-

tion in space, of this part of the rib), and hence the angle

between the tangent-lines at E and A (originally = dd) is

now increased by an amount GA'D = d(p (or O'A'R = dip);

G'H' is the new position of GH. We obtain the value of

d(p as follows : That part {dk^ of the shortening of the

fibre at Q, at distance e from A due to the force p.^dFy is

§ 201 eq. (1), dX.2 = ^ft' But, geometrically, J^ also ~edf,

Eedcp-^pzds (1.)

But, letting ilf denote the moment of the stress-couple

at section A (ilf depends on the loading, mode of support,

etc., in any particular case) we know from § 295 eq. (6) that

Jf=-^j and hence by substitution in (1) we. have

•, Mds r^x

'^^^I . • . . (2)

[If the arch-rib in question has less than three hinges,

the equal shortening of the due to the thrust (of

the block in last figure) p^F, will have an indirect effect on

the angle d(p. This will be considered later.]

370. Total Change i.e. CcU in the Angle Between the End

Tangents of a Rib, before and after loading. Take the ex-

ample in Fig. 408 of a rib fixed at one end and hinged at

Fig. 408.
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the other. When the rib is unstrained (as it is supposed

to be, on the left, its own weight being neglected ; it is not

supposed sprung into place, but is entirely without strain)

then the angle between the end-tangents has some value

6'= j dd— the sum of the successive small angles dd for
do

each element ds of the rib curve (or axis). After loading.,

[on the right, Fig. 408], this angle has increased having

now a value

d'-\- r d(p, i.e., a value = d'+ C -—jr (I.)

Fig. 409.

There must oe no hinge between

and B.

§ 371. Example of Eq[iiation (I.) in Anal"

ysis.—^A straight, homogeneous, pris-

matic beam, Fig. 409, its own weight

neglected, is fixed obliquely in a wall.

After placing a load P on the free end,

required the angle between the end-

tangents. This was zero before load-

ing .'. its value after loading is

=o+f'=o+ 4r r'-^^^^UIJo

By considering free a portion between and any da of the

beam, we find that M=Fx=mom.. of the stress couple.

The flexure is so slight that the angle between any ds and

its dx is still practically =a (§ 364), and .*. ds=dx sec a.

Hence, by substitution in eq. (I.) we have

^'=A rms= l^rxdx=
^ EIJo EI Jo

P sec ar'*'^*

L2 'EI

... ^'=?^^^l [Compare with § 237].
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It is now apparent that if hoth ends of an arcli rib are

fixed, wlien unstrained, and the rib be then loaded (within

elastic limit, and deformation slight) we must have

r {Mds-^Eiy zero, since (p'=0.

372. Projections of the Displacement of any Point of a Loaded

Uib Relatively to Another Point and the Tangent Line at the Lat-

ter.—(There must be no hinge between and B). Let
be the point whose displacement is considered and B the

other point. Fig. 410. If ^'s tangent-line is fixed while

the extremity is not supported in any way (Fig. 410)

then a load P put on, is displaced to a new position 0^,

Fig. 410. Fig. 411, Fig; 413.

With as an origin and OB as the axis of X, the projec-

tion of the displacement OOj, upon X, will be called Ja?,

that upon Y, Ay.

In the case in Fig.. 410, O's displacement with respect to

B and its tangent-line BT, is also its absolute displacement

in space, since neither B nor BT has moved as the rib

changes form under the load. In Fig. 411, however, the

extremities and B are both hinged to piers, or supports,

the dotted line showing its form when deformed under a

load. The hinges are supposed immovable, the rib being

free to turn about them without friction. The dotted line

is the changed form under a load, and the absolute dis-

placement of is zero ; but not so its displacement rela-

tively to B and j5's tangent BT, for BT has moved to a

new position BT'. To find this relative displacement con-
ceive the new curve of the rib superposed on the old in

a way that B and BT m&j coincide with their original po-
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sitions. Fig. 412. It is now seen that O's displacement

relatively to B and BT is not zero but =00„, and lias a

small Jx but a comparatively large zly. In fact for this

case of hinged ends, piers immovable, rib continuous be-

tween 'them, and deformation slight, we shall write Jx=
zero as compared with Jy, the axis Xpassing through OB).

373. Values of the X and Y Projections of O's Displacement Rela-

tively to Band B's Tangent; the origin being taken at 0.

Fig. 413. Let the co-

ordinates of the dif-

ferent points jE, I), G,

etc., of the rib, re-

ferred to and an

arbitrary X axis, be

X and y, their radial

distances from be-

. ing u (i.e., u for G, u'

for D, etc.; in gener-

al, ^0- OEDG is the J

unstrainedform of the

rib, (e.g., the form it

would assume if it lay flat on its side on a level platform,

under no straining forces), while 0,,E"B'GB is its form
under some loading, i.e., under strain. (The superposi-

tion above mentioned (§ 372) is supposed already made if

necessary, so that BT i^ tangent at B to both forms).

Now conceive the rib OB to pass into its strained condi-

tion by the successive bending of each ds in turn. The
straining or bending of the first ds, BC, through the small

angle d(p (dependent on the moment of the stress couple

at G in the strained condition) causes the whole finite piece

OG io turn about (7 as a centre through the same small

angle d(p ; hence the point describes a small linear arc

00'=ov, whose radius = u the hypothenuse of the x and

y of G, and whose value .*. is dv=ud(p.

Next let the section B, now at D\ turn through its

proper angle d(p' (dependent on its stress-couple) carrying

Fig. 413.
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with it the portion D'O', into the position D'O", making
0' describe a linear arc O'O"= {dvy =u'd(p', in which u'=
the hypothenuse on the x' and y' (of D), (the deformation

is so slight that the co-ordinates of the different points

referred to and X are not appreciably affected). Thus,

each section having been allowed to turn through the an-

gle proper to it, finally reaches its position, 0„, of dis-

placement. Each successive dv, or linear arc described by

0, has a shorter radius. Let dx, {dx)', etc., represent the

projections of the successive (^v)'s upon the axis X; and
similarly dy, (dy)' etc., upon the axis Y. Then the total X
projection of the curved line . . . . 0^ will be

Jx= / (5j? and similarly J?/= / dy , , , (1)

But d V = u d
(f,

and from similar -right-triangles,

3 x: dv : : y : u and dy : 8v :: x : u .'. 8x = yd<p and dy=xd<p

;

whence, (see (1) and (2) of §369)

Ax = fS. = fyd^=£JMl... (IL)

and Ay = C dy = C xd(p = C ^^ . . . , (III.^

If the rib is homogeneous E is constant, and if it is of

constant cross-section, all sections being similarly cut by
the vertical plane of the rib's axis (i.e., if it is a " curved

prism ") /, the moment of inertia is also constant.

374. Hecapitulation of Analytical Relations, for reference*

(Not applicable if there is a hinge between and E)

Total Change in Angle between ) _ ^^Mdstai Lfiiaiige lu Aiigie oerween / _ p>"m.as .j ^
tangent-lines and ^ [

~
Jo ^ '

o
• • W

The X-Projection of O's Displacement
"]

Relatively to B and B's tangent- I A^Myds /tt ^
line

;
{the origin being at 0) I — / —^fjr- • • • (JJ-J

and the axes X and F 1 to [

^o i^i

each other) •
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The Y-Prqjection of O's Displacement,
| _

etc., as above. . (m.)

Hviie X anv.. y are the co-ordinates of points in the rib-

curve, ds an element of that curve, M the moment of the

stress-couple in the corresponding section as induced by

the loading, or constraint, of the rib.

(The results already derived for deflections, slopes, eto„,

for straight beams, could also be obtained from these

formulae, I., 11. and III. In these formulae also it must
be remembered that no account has been taken of the

shortening of the rib-axis by the thrust, nor of the effect

of a change of temperature.)

374a. R^sumfe of the Properties of Ec^mlibiiiim Polygons and

their Force Diagrams, for Systems of Vertical Loads.—See §§ 335

to 343. Given a system of loads or vertical forces, P^, P2,

1 etc., Eig. 414, and

two abutment verti-

cals, F' and G' ; if

"we lay off, vertically,

to form a " load-

line," 1 .. 2 - P^, 2. .

.

8=P2> etc., select any

Pole, Oi, and join 0^

... 1, Oi . . . 2, etc.

;

also, beginning at

any point F^ in the

vertical P', if we draw i^i . . . a
I|
to Oj . . 1 to intersect the

line of Pi ; then ah \\ to Oi . . 2, and so on until finally a

point G]y in G', is determined; then the figure Pj ,ahc G^iis

an equilibrium polygon for the given loads and load verti-

cals, and Oi . . . 1234 is its ". force diagram." The former

is so called because the short segments PjCt oh, etc., if

considered to be rigid and imponderable rods, in a vertical

plane, hinged to each other and the terminal ones to abut-

ments Pi and G^, would be in equilibrium under the given

loads hung at the joints. An infinite number of equilil>

Fig. 414.
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rium polygons may be drawn for tlie given loads and

abntment-verticals, by choosing different poles in the force

diagram. [One other is shown in the fignie ; O2 is its

pole. {Fi Gi and F2 U-^ are abutment lines.)] For all of

these the following statements are true :

(1.) A line through the pole,
i|
to the abutiifint line cutii

the load-line in the same point n', whichever equilibrium

polygon be used ( /. any one will serve to determine n'

(2.) If a vertical GI) he drawn, giving an intercept z' in

each of the equilibrium polygons, the product Hz' is the

same for all the equilibrium polygons. That is, (see Fig.,

414) for any two of the polygons we have

H,:H,:: z/ : z,' ; or H,z,' = H, z,'.

(3.) The compression in each rod is given by thai

" ray " (in the force diagram) to which it is parallel.

(4.) The " pole distance " H, or ~| let fall from the pole

upon the load-line, divides it into two parts which are the

vertical components oi the compressions in the abutment-

rods respectively ( the other component being horizontal) ;

H is the horizontal component of each (and, in fact, of

each of the compressions in all the other rods). The
compressions in the extreme rods may also be called the

abutment reactions (oblique) and are given byti^e extreme

rays.

(5.) Three Points [not all in the same segment (or rod)]

determine an equilibrium polygon for given loads. Hav-
ing given, then, three points, we may draw the eaailibrium

polygon by §341.
«

375. Summation of Prcducts. Before proceedini^ to treat

graphically any case of arch-ribs, a few processes in

graphical arithmetic, as it may be called, must be pre-

sented, and thus established for future use.

To make a summation of products of two factors in each

by means of an equilibrium polygon.
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Construction, Suppose it required to make the summa-
tion I {x z) {. e., to sum the series

Xi %+ X2 Z2 + x^z^ 4. bj graphics.

Having first arranged the terms in the order of magnf-
tude of the ic's, we proceed as follows : Supposing, for

illustration, that two of the s's (% and z^ are negative

(clotted in figure) see Fig. 415. These quantities x and z

may be of any nature whatever, anything capable of being

represented by a length, laid off to scale.

First, in Fig

416, lay off the

s's in their

order, end to

end, on a ver-

tical load-line

taking care to
"^ lay off % and

.. % upuard in

^« their turn.
Take any con-

FiG. 416. venient j-ola

; draw the rays ... 1, ... 2, etc.; then, having pre-

viously drawn vertical lines whose horizontal distances

from an extreme left-hand vertical F' are made = x^, x-,

Xs, etc., respectively, we begin at any point F, in the verti-

cal F', and draw a line 11 to ... 1 to intersect the Xi ver-

tical in some point ; then 1' 2'
II to . . . % and so on, fol-

lowing carefully the proper order. Produce the last seg-

ment (6' ... (x in this case) to intersect the vertical F' in

some point K. Let KF =k (measured on the same scale

as the i»'s), then the summation required is

J/ {xz) = m.
H is measured on the scale of the 2's, which need, not be

the same as that of the aj's ; in fact the 2's may not be the

same kind of quantity as the a;'s.

[Peoof.—From similar triangles H: z^v.x^^: h^, .'. x^z^— IHc^
\

and " " " H\Zo :: x^ : ^2> •*• x.^Zi=Hki

.

Fig. 415.
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and so on. But H{h,+h+eiG.)^HxFK=Hh'].

376. Gravity Vertical.—From the same construction in

Fig. 415 we can determine tlie line of action (or gravity

vertical) of tlie resultant of the parallel vertical forces 2i,

Z2, etc. (or loads); by prolonging the first and last segments

to their intersection at

0. The resultant of the

system of forces or loads

acts through C and is

vertical in this case ; its

value being = ^ (2),

that is, it = the length

1 ... 7 in the force dia-

gram, interpreted by the

proper scale. It is now
supposed that the 2's

represent forces, the x'b,

being their respective

lever arms about F. If

the ?'s represent the

areas of small finite por-

tions of a large plane

figure, we may find a

gravity -line (through C)

of that figure by the

above construction; each

z being-applied through

the centre of gravity of

its own portion.

Calling the distance

X between the verticals

through C and F, we
have also x . I [z) =
I (xz) because I (z) is

the resultant of the || z's.

^' This is also evident from

the proportion (similar

triangles)

H : (1. .7)::x:Jc.
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376a. Moment of Inertia (of Plane Figure) by Graphics.*

—

rig. 416a. /n= ? First, for the portion on right. Divide OR
into equal parts each = ^x. Let «i, Z2, etc., be the middle

ordinates of the strips thus obtained, and x^, etc. their

abscissas (of middle points).

Then we have approximately

/n for 0R=Ax.ZyX^-\-Ax.Z2xi-{-

=Ax[{z^Xi)x^+{z2X^X2-\- ...]..(!)

But by §375 we may construct the products ZyXi,Z2X2, etc.,

taking a convenient H\ (see Fig. 416, (&)), and obtain \, ki,

etc., such that z^x^ = H'ki, z^x^ = H'k2i etc. Hence eq. (1)

becomes

:

li,ioT OR a.-p-prox.=II'^x[kiXi-\-k2X2-{- ...]... (2)

By a second use of § 375 (see Fig. 416 c) we construct Z,

such that kiX^ + kzXz +....= £["l \^H" taken at con-

venience]. .'. from eq. (2) we have finally, (approx.),

In for OR=H'H"lAx (3)

For example if OR — 4 in., with four strips. Ax would =
1 in.; and if ^' = 2 in., H" = 2 in., and I = 5.2 in., then

Jn for OR = 2x2x5.2x1.0=20.8 biquad. inches.

The 7x for OL, on the left of N, is found in a similar

manner and added to 7^ for OR to obtain the total I^. The
position of a gravity axis is easily found by cutting the

shape out of sheet metal and balancing on a knife edge ; or

may be obtained graphically by § 336 ; or 376.

377. Construction for locating a line vw (Fig. 417) at (a), in

the polygon FG in such a position as to satisfy the two

following conditions with reference to the vertical inter-

cepts at 1, 2, 3, 4, and 5, between it and the given points

1„ 2, 3, etc., of the perimeter of the polygon.

* Another graphic method for this purpose will be found in § 76 (p. 80),

of the author's Notes and Examples in Mechanics.
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Condition I.—(Calling these intercepts u^, u^, etc., and tlieir

horizontal distances from a given vertical F, x^, x.^, etc.)

2" (u) is to = ; i.e., the sum of the positive u's must be

numerically —
- that of the negative (which here are at 1

and 5). An infinite number of positions of vm will satisfy

condition I.

Condition II.—2* (ux) is to = ; i.e., the sum of the

ij
1

1

. r-—;^?n moments of the positive u'^

•

—
'
—"^^^^

' about F must = that of the

'' negative -m's. i.e., the moment
of the resultant of the posi-

tive w's must = that of the

resultant of the negative

;

and .*. (Condit. I being

already satisfied) these two
resultants must be directly

opposed and equal. But the

ordinates u in (a) are indi-

vidually equal to the difiFer-

ence of the full and dotted

ordinates in (&) with the

same cc's .'. the conditions

may be rewritten :

I. 2 (full ords. in (6))=
2" (dotted ords. in (&))

II. 2 [each full ord. in (h)

X its £c] = - [each dotted

ord. in (b) x its x] i.e., the

Fig. 4ir. Centres of gravity of the full

and of the dotted in (6) must lie in the same vertical

Again, by joining ^(x, we may divide the dotted ordi-

nates of (b) into two sets which are dotted, and broken, re-

spectively, in (c) Then, finally, drawing in (d),

B, the resultant of full ords. of (c)

T, " " " broken " " "

T', " " " dotted " " "
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we are prepared to state in still another and final form tlie

conditions wliicli vm must fulfil, viz. :

(I.) T+T must = i?; and (II.) The resultant of T
and T' must act in the same vertical as R.

In short, the quantities T, T', and R must form a bal-

anced system, considered as forces. All of which amounts
practically to this : that if the verticals in which T and T'

act are known and R be conceived as a load supported by
a horizontal beam (see foot of Fig. 417, last figure) resting

on piers in those verticals, then T and T' are the respec-

tive reac^'^ons o/" ^Aose jjiers. It will now be shown that the

verticals of T and T' are easily found, being independent of

the position of vm; and that both the vertical and the mag-
nitude of R, being likewise independent of vm, are deter-

mined with facility in advance. For, if v be shifted up
or down, all the broken ordinates in (c) or {d) will change

in the same proportion (viz. as vF changes), while the

dotted ordinates, though shifted along their verticals, do

not change in value ; hence the shifting of v affects neither

the vertical nor the value of T', nor the vertical of T.

The value of T, however, is proportional to vF. Similar-

ly, if m be shifted, up or down, T' will vary proportionally

to mG, but its vertical, or line of action, remains the same.

T is unaffected in any way by the shifting of m. R, de-

pending for its value and position on the full ordinates of

(c) Fig. 417, is independent of the location of vm. We
may .*. proceed as follows :

1st. Determine R graphically, in amount and position,

by means of § 376.

2ndly. Determine the verticals of T and T' by any trial

position of vm (call it v-im.,), and the corresponding trial

values of T and T' (call them T, and T',).

3rdly. By the fiction of the horizontal beam, construct

(§ 329) or compute the true values of T and T', and then

determine the true distances vF and w6^ by the propor-

tions

vF : v.F :: T : T. and mG : m,G : : T' i T^.
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Example of this. Fig. 418. (See Fig. 417 for s and t.)

From A tovi^ard B in (e) Fig. 418, lay off the lengths (or

lines proportional

to them) of the full

ordinates 1, 2, etc.,

of (/). Take any

pole Oi, and draw the

equilibrium poly-
gon {/y and pro-

long its extreme seg-

ments to find C and

thus determine ^'s

vertical. JR is repre-

sented by AB. In

(g) [same as (/) but

shifted to avoid
complexity of lines]

draw a trial VoWi and

join V2 G2. Deter-

mine the sum T2 of

the broken ordi- TFig. 418.

nates (between V2G2 ana ^^2^2) and its vertical line of ap-

plication, precisely as in dealing with B ; also T'2 that of

the dotted ordinates (five) and its vertical. Now the true

T=Btj-{s+t) and the true T'=Bs^(s+t). Hence com-

pute vF={T^T2) ^2 and ?^^=(T'-^^^) m^G^., and by
laying them off vertically upward from F and G respec-

tively we determine v and m, i.e., the line vm to fulfil the

conditions imposed at the beginning of this article, rela-

ting to the vertical ordinates intercepted between vm and

given points on the perimeter of a polygon or curve.

Note (a\ If the verticals in which the intercepts lie are

equidistant and quite numerous, then the lines of action

of T2 and T'2 will divide the horizontal distance between

F and G into three equal parts. This will be exactly true

in the application of this construction to § 390.

Note (b). Also, if the verticals are symmetrically placed

about a vertical line, (as will usually be the case) VjWg is
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best drawn parallel to FG, for then T^ and T'^ will be

equal and equi-distant from said vertical line.

378, Classification of Arch-Eibs, or Elastic Arches, according

to continuity and modes of support. In the accompany^

ing figures Htxefull curves show the unstrained form of the

rib (before any load, even its own weight, is permitted to

come upon it) ;the dotted curve shows its shape (much ex-

aggerated) when bearing a load. For a given loading

Three Conditions must be given to determine the special

equilibrium polygon (§§ 366 and 367).

Class A.—Continuous rib, free to slip laterally on the

piers, which have smooth horizontal surfaces. Fig. 420.

This is chiefly of theoretic interest, its consideration

being therefore omitted. The pier reactions are neces-

sarily vertical, just as if it were a straight horizontal

beam.

Class B. Rib of Three Hinges, two at the piers and one

intermediate (usually at the crown) Fig. 421. Fig. 36 also

is an example of this. That is, the rib is discontinuous

and of two segments. Since at each hinge the moment of

tlie stress couple must be zero, the special equilibrium

polygon must pass through the hinges. Hence as three

points fully determine an equilibrium polygon for given
load, the special equilibrium is drawn by § 341.

Fig. 420. Fig. 421.

[§ 378a will contain a construction for arch-ribs of three

hinges, when the forces are not all vertical.]

Class C. Rib of Two Hinges, these being at the piers, the
rib continuous between. The piers are considered im-
movable, i.e., the span cannot change as a consequence of

loading. It is also considered that the rib is fitted to its
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hinges at a definite temperature, and is tlien under no con-

straint from the piers (as if it lay flat on the ground), not

even its own weight being permitted to act when it is fi-

nally put into position. When the " false works

"

or temporary supports are removed, stresses are in-

duced in the rib both by its loading, including its

own weight, and by a change of temperature. Stresses

due to temperature may be ascertained separately and

then combined with those duo to the loading. [Classes

A and B are not subject to temperature stresses.] Fig.

422 shows a rib of two hinges,

at ends. Conceive the dotted

curve (form and position un-

der strain) to be superposed

on the continuous curve
(form before strain) in such

a way that B and its tangent

line (which has been dis-

placed from its original position) may occupy their pre-

vious position. This gives us the broken curve O^B. 00,^

is .*. O's displacement relatively to B and -S's tangent,

Now the piers being immovable OqB (right line)=05 ; i.e.,

the X projection (or Jx) of OOn upon OB (taken as an axis

of X) is zero compared with its Jy. Hence as one condi-

tion to fix the special equilibrium polygon for a given load-

ing we have (from § 373)

Fig. 422.

r^[Myds-^EI^=0 (1)

The other two are that the [ must pass through . (2)

special equilibrium polygon ) " " " B . (3)

Class D. Bill with Fixed Ends and no hinges, i.e., continu-

ous. Piers immovable. The ends may be ^xed by being

inserted, or built, in the masonry, or by being fastened to

large plates which are bolted to the piers. [The St. Louis

Bridge and that at Coblenz over the Rhine are of this

class.] Fig. 423. In this class there being no hinges we
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Fig. 423.

have no point given in advance througli whicli the special

equilibrium polygon must pass. However, since O's dis-

placement relatively (and absolutely) to B and ^'s tangent

is zero, both z/a:; and z/^[see § 373] = zero, AIsq the tan-

gent-lines both at and B being

fixed in direction, the angle be-

tween them is the same under

loading, or change of temperature,

as when the rib was first placed

in position under no strain and at

a definite temperature.

Hence the conditions for locating the special equilibrium

polygon are

p^ Mds _ Q . p Myds ^ ^ . n^Mxds _ q
Jo ^jT ' Jo '~m~ ' Jo EI

In the figure the imaginary rigid prolongations at the

ends are shown [see § 366].

Other designs than those mentioned are practicable

(such as : one end fixed, the other hinged ; both ends fixed

and one hinge between, etc.), but are of unusual occur-

rence.

378a. Eib of Three Hinges, Forces not all Vertical,* If the

given rib of three hinges upholds a roof, the wind-press-

ure on which is to be considered as well as the weights of

the materials composing the roof-covering, the forces will

not all be vertical. To draw the special equil, polygon in

such a case the following

construction holds : Re-

quired to draw an equilib-

rium polygon, for any

plane system of forces,

through three arbitrary

xs^ points. A, p and B ; Fig,

B 423a. Find the line of

action of B^, the resultant

of all the forces occurring

between A and p; also,Fig. 423a.

* See p. 117 of the author's "Notes and Examples io Mechanics" for >

detailed example of the following construction.
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that of R,, tlie resultant of all forces between ^p and B ;

also the line of action of B, tlie resultant of B^ and B.2, [see

§ 328.] Join any point iH^ in ^ witli A and also witli B,

and join the intersections iVand 0. Then A iV will be the

direction of the first segment, B that of the last, and

NO itself is the segment corresponding to p (in the de-

sired polygon) of an equilibrium polygon for the given

forces. See § 328. If A N'p 0' B are the corresponding

segments (as yet unknown) of the desired equil. polygon,

we note that the two triangles MNO and M'N' O, having

their vertices on three lines which meet in a point [i.e., B
meets Bi and B^ in C], are homological [see Prop. YII. of

Introduc. to Modern Geometry, in Chauvenet's Geometry,]

and that .
•

. the three intersections of their corresponding

sides must lie on the same straight line. Of those inter-r

sections we already have A and B, while the third must be

at G, found at the intersection of AB and NO. Hence by
connecting C and p, we determine N and 0'. Joining

N'A aiid O'B, the first ray of the required force diagram will

be
II
to NA, while the last ray will be || to O'B, and thus

the pole of that diagram can easily be found and the cor-

responding equilibrium polygon, beginning at A, will pass

through p and B.

(This general case includes those of §§ 341 and 342.)

379. Arch-Rib of two Hinges; by Prof. Eddy's Method.*

[It is understood that the hinges are at the ends.] Re-

quired the location of the special equilibrium polygon. "VVe

here suppose the rib homogeneous (i.e., the modulus of

Elasticity E is the same throughout), that it is a " curved

prism " (i.e., that the moment of inertia / of the cross-

section is constant), that the piers are on a level, and that

the rib-curve is symmetrical about a vertical line. Fig.

424. For each point m of the rib

curve we have an x and y (both

known, being the co-ordinates of

the point), and also a z (intercept

between rib and special equilib-

FiG. 424.
^ rium polygon) and a z' (intercept

*P. S5 of Prof. Eddy's book ; see reference in preface of this work.
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between tlie spec. eq. pol. and the axis X (whicli is OB).

The first condition given in § 378 for Class C may be

transformed as follows, remembering [§ 367 eq. (3)] that

M = Hz at any point m of the rib (and that EI is con-

stant).

1^

EI
Hr Myds = 0, i.e.,— C zyds= .

•
. f zyds

do El c/o t/o

^^y _^, \-''J^(y~
^')yds=0', i.e.,

J^
yyds

=J^
yz'ds . (1)

In practical graphics we can not deal with infinitesimals

;

hence we must substitute As a small finite portion of the

rib-curve for ds', eq. (1) now reads I^ yy As = 2'^ yz' As.

But if we take all the As's equal, As is a common factor

and cancels out, leaving as a final form for eq. (1)

I^\yy) = I^^{yz') . . . (1/

The other two conditions are that the special equilibrium

polygon begins at and ends at B. (The subdivision of

the rib-curve into an even number of equal As's will be ob-

served in all problems henceforth.)

379a. Detail of the Construction. Given the arch-rib B,

Fig. 425, with specified loading. Divide the curve into

Fig. 425.
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eight equal ^s's and draw a vertical through the middle

of each. Let the loads borne by the respective ^s's be

Pi, P2, etc., and with them form a vertical load-line A C to

some convenient scale. With any convenient pole 0"

draw a trial force diagram 0" AC, and a corresponding

trial equilibrium polygon F G, beginning at any point in

the vertical F. Its ordinates %", 22", etc., are propor-

tional to those of the special equil. pol. sought (whose

abutment line is OB) [§ 374a (2)]. We next use it to de-

termine n^ [see § 374a]. We know that OB is the " abut-

ment-line " of the required special polygon, and that .
'

.

its pole must lie on a horizontal through n'. It remains

to determine its H, or pole distance, by equation (1)' just

given, viz. : IJ^ yy = Sfyz'. First by § 375 find the value

of the summation Ii{yy), which, from symmetry, we may
write = 2i'/(2/2/)=2 [2/12/1+2/22/2+2/32/3+2/42/4]

Hence, Fig. 426, we obtain

11 {yy)=2 [HM

Next, also by § 375, see Fig.

427, using the same pole dis-

tance Ho as in Fig. 426, we
find

I\{yz")=HA"; i.e.,

+2/22:2'' + 2/3%" +2/4^'.=

Again, since II {yz") = ysz/'

+ 2/7^7" + 2/6^6" + 2/5^5" which
from symmetry (of rib)

=2/i%"+2/2^7"+2/326"+2/'<',

we obtain, Fig. 428,

l"! (2/O = ^oV', (same /^,);

and .-.

Jf {yz")=ff, {\"+hJ'). If now we find that /fc/'+/b/'=2yfc.
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the condition 2^1 (yy) = II {y^'') is satisfied, and the pole

distance of our trial polygon in Fig. 425, is also that of

the special polygon sought; i.e., the z" 's.are identical in

value with the s"s of Fig. 424. In general, of course, we
do not find that ky'~{-k/' = 2A;. Hence the z" 's must all

be increased in the ratio 2k: {lc^"-\~k/') to become equal to

the g"s. That is, the pole distance H of the spec, equil*

polygon must be

7j-_ ki'-\-'k/' jT,, (in whichW = the pole distance of the

2^c trial polygon) since from §339 the ordi-

nates of two equilibrium polygons (for the same loads)

are inversely as their pole distances. Having thus found

the if of the special polygon, knowing that the pole must
lie on the horizontal through n', Fig. 425, it is easily

drawn, beginning at 0. As a check, it should pass through

B.

For its utility see § 367, but it is to be remembered that

the stresses as thus found in the different parts of the

rib under a given loading, must afterwards be combined
with those resulting from change of temperature and the

shortening of the rib axis due to the tangential thrusts,

before the actual stress can be declared in any part.

Note.—Variable Moment of Inertia. If the / of the rib section is dif-

ferent at different sections we may proceed as follows: For eq. (1); we
PB ds i'B ds

now write I yyy = I yz'—-. Taking the I of the crown section (say)
Jo i Jo I

as a standard of reference, denoting it by /', we may write for any other

section I= nl', where n is a variable ratio, or abstract number; whence

eq. (1) becomes, after putting Js for ds, y / 2/J/— ="77 / V^—-

If now the length of each successive Js, from the crown down, be made
directly prop>ortional to the number n at that part of the rib, the quantity

^ s^n will have the same value in all the terms of each summation and
may be factored out ; and we then have a relation identical in form with
eq. (1)', but with the understanding that the j/'s and 2"s concerned are

those in the successive verticals drawn through the mid-points of the
unequal -s's, or subdivisions along the rib, obtained by following the

above plan that each As is proportional to the value of the moment of

inertia at that part of the rib. For instance, if the / of a section near

the hinge 0, or B, is three times that (/') at the (3rown, then the length

of the Js at the former point must be made three tim,es the length of

the As first assumed at the crown when the subdivision is begun. By
a little preliminary investigation, a proper value for this crown , s may
be decided upon such that the total .number of As's shall be sufficient

for accuracy (sixteen or twenty in all)
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f-$BO. Arch Rib of Fixed Ends and no Hinges,—Example of

Class D. Prof. Eddy's Method.* As before, E and / are

constant along tlie rib Piers immovable. Rib curve

symmetrical about a vertical line. Fig. 429 shows such a

rib under any loading. Its span is OB, wliicli is taken as

an axis X. The co-ordinate of any point m' of the rib

curve are x and y, and z is the vertical intercept between

w' and the special equilibrium polygon (as yet unknown,

but to be constructed). Prof. Eddy's method will now be

given for finding tha spe-

cial equil. polygon. The
three conditions it

must satisfy (see § 378,

Class D, remembering

that E and /are constant

and that M — ITz from

§ 367) are
H-« ^^

Fig. 429.

/ zds=^ ; / xzds— ; and / yzds =0
e/o e/o e/o

(1)

Now suppose the auxiliary reference line (straight) vm
to have been drawn satisfying the requirements, with

respect to the rib curve that

/ z'ds—0 ; and / xz'ds=Q
e/o c/o

(2)

in which z' is the vertical distance of any point m' from

vm and x the abscissa of mf from 0.

From Fig. 429, letting z" denote the vertical intercept

(corresponding to any m') between the spec, polygon and

the auxiliary line vm, we have z=z'—z", hence the three

conditions in (1.) become

r{z'-z")ds=0; i.e., see eqs. (2) C^. z"ds=0 , .. (3)

* p. 14 of Prof. Eddy's book ', see reference in preface of this work.
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B B

fx {z'—^')ds=0 ; i.e., see eqs. (2) f xz"ds=o (4/

^nifh'-^)ds=;0,^7^^Zl-f}.'ds=fkds . (5)

provided vm has been located^s prescribed.

For graphical purposes, having subdivided the rib curve

into an even number of small equal J.s's, and drawn a verti-

cal through the middle of each, we first, by § 377, locate

vm to satisfy the conditions

ll{z')=0 and l^,{xz')=0 . . (6)

(see ec[. (2) ; the di cancels out) ; and then locate the

special equilibrium polygon, with vm as a reference-line,

by making it satisfy the conditions.

:EI{z'')=0 . (7); Il{xz")=Q . (8); I^Xyz")^l^Xyz') . (9)

(obtained from eqs. (3), (4), (5) by putting ds= ^s, and can-

celling).

Conditions (7) and (8) may be satisfied by an infinite

number of polygons drawn to the given loading. Any one

of these being drawn, as a trial polygon, we determine for it

the value of the sum l'f^(yz") by § 375, and compare it with

the value of the sum l'^,{yz') which is independent of ihe

special polygon and is obtained by § 375. [N.B. Itmist

be understood that the quantities (lengths) x, y, z, z\ and z"

,

kere dealt with are thosa pertaining to the verticals drawn
through the middles of the respective ^s's, which must be

sufficiently numerous to obtain a close result, and not to

the verticals ia which the loads act, necessarily, since these

latter may be few or many according to circumstances, see

Fig. 429]. If these sums are not equal, the pole distance

of the trial equil. polygon must be altered in the proper

ratio (and thus change the 2;'"s in the inverse ratio) neces-

sary to make these sums equal and thus satisfy conditicn

(9). The alteration of the 2'"s, all in the same ratio, will
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aot interfere with conditions (7) and (8) whicli are alreadj^

satisfied.

381. Detail of Construction of Last Problem. Symmetrical Arch-

Rib of Fixed Ends.—As an example take a span of the St.

Louis Bridge (assuming /constant) "with. " live load'' cov-

sring the half span on the left. Fig. 430, where the verticaJ

feME:^^d==Ui
Fig. 430.

scale is much exaggerated for the sake of distinctness*.

Divide into eight equal Js's. (In an actual example sixteen

or twenty should be taken.) Draw a vertical through the

* Each arch -rib of the St. Louis bridge is a built up or trussed, rib of steel about 53i

ft. span and 52 ft. rise, ia the form of a segment of a circle . Its moment of inertia,

however, is not strictly constant, the portions near each pier, of a length equal to one

twelfth of the span, having a value of / one-half greater than that of the remainder at

the arc.
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middle of each ^s. P^ , etc., are the loads coming upon

the respective Js's.

First, to locate vm, by eq. (6) ; from symmetry it must

be horizontal. Draw a trial vm (not phown in the figure),

and if the (-{- 8')'^ exceed the (— 2')'s by an amount z^, the

true vm will lie a height —z' above the trial vm (or below,

if vice versa) ; n = the number of z/s's.

Now lay off the load-line on the right (to scale),

take any convenient trial pole 0'^' and draw a correspond-

ing trial equil. polygon F'"G"\ In r"G"', by §377,

locate a straight line v"'m!" so as to make 2^(2'") = and

^l(xz!") = (see Note (&) of § 377).

[We might now redraw F'" G'" in such a way as to bring

v"'m!" into a horizontal position, thus : first determine a

point n'" on the load-line by drawing 0"'n"' \ to v"'m"'

,

take a new pole on a horizontal through n'" , with the same

II'" , and draw a corresponding equil. polygon ; in the lat-

ter v"'m"' would be horizontal. We might also shift this

new trial polygon upward so as to make v"'m!" and vm.

coincide. It would satisfy conditions (7) and (8), having

the same %'"'''& as the first trial polygon ; but to satisfy con-

dition (9) it must have its 2""s altered in a certain ratio,

which we must now find. But we can deal with the individ-

ual 2""s just as well in their present positions in Fig. 430.]

The points ^and L in vm, vertically over E'" and L'" in

v"'m'", are now fixed ; they are the intersections of the special

polygon 7'equired, ivith vm.

The ordinates between v"'m"' and the trial equilibrium

polygon have been called z'" instead of z" ; they are pro-

portional to the respective g"'s of the required special

polygon.

The next step is to find in what ratio the (s'")'s need to

be altered (or H'" altered in inverse ratio) in order to be-

come the {z"^^ ; i.e., in order to fulfil condition (9), viz.

:
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^.{yz")=I\{yz') . (9)

This may be done pre-

cisely as for tlie rib with

two hinges, but the nega-

tive (s'")'s must be prop-

erly considered (§ 375)

See Fig. 431 for the de-

tail. Negative 2;"s or g""s

point upward.

From Fig. 431a

[j ' .*. from symmetry

I\{yz')=2H^h

From Fig. 4315 we have

riyz"')=HX
Pig. 431.

and from Fig. 431c

Il{yn=Ho^
[The same pole distance H^ is taken in all these construc-

tions] .. I\yz")=H,{k,-\-\).

If, then, Ho {\-\-k,) = 2HJc condition (9) is satisfied by the

z""s. If not, the true pole dista-nce for the special equil.

polygon of Fig. 430 will be

2k '

With this pole distance and a pole in the horizontal through

n'" (Fig. 430) the force diagram may be completed for the

required special polygon ; and this latter may be con-

structed as follows : Beginning at the point E, in vm,

through it draw a segment || to the proper ray of the force

diagram. In our present figure (430) this " proper ray
"

would be the ray joining the pole with the point of meet-

ing of P2 and Pi on the load-line. Having this one seg-
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ment of the special polygon the others are added in an

obvious manner, and thus the whole polygon completed.

It should pass through L, but not and B.

For another loading a different special equil. polygon

would result, and in each case we may obtain the tkrusty

shear, and moment of stress couple for any cross-section of

the rib, by § 367. To the stresses computed from these,

should be added (algebraically) those occasioned by change

of temperature and by shortening of the rib as occasioned

by the thrusts along the rib. These " temperature

stresses," and stresses due to rib-shortening, will be con-

sidered in a subsequent paragraph. They have no exist-

ence for an arch-rib of three hinges.

Note.—If the moment of inertia of the rib section is

variable, instead of dividing the rib axis into equal Js's,

we should make them unequal, following the plan indicated

in the note on p. 464, the As being made proportional to

the values of the moment of inertia along the rib. After such

subdivision is made, and a vertical drawn through the mid-

point of each Js, the various ^'s, z^'s, etc., in these verticals

are dealt with in the same manner as just shown for the

case of constant moment of inertia.

381a. Exaggeration of Vertical Dimensions of Both Space and

Force Diagrams.—In case, as often happens, the axis of the

given rib is quite a flat curve, it is more accurate (for find-

ing M) to proceed as follows :

After drawing the curve in its true proportions and pass-

ng a vertical through the middle of each of the equal

z/s's, compute the ordinate (y) of each of these middle points

from the equation of the curve, and multiply each y by
four (say). These quadruple ordinates are then laid off

from the span upward, each in its proper vertical. Also
multiply each load, of the given loading, by four, and then
with these quadruple loads and quadruple ordinates, and
the upper extremities of the latter as points in an exagge-
rated rib-curve, proceed to construct a special equilibrium
polygon, and the corresponding force diagram by the
proper method ( for Class B, C, or D, as the case may be)
for this exaggerated rib -curve.

The moment, Hz, thus found for any section of the ex-
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aggerated rib-curve, is to be divided by four to obtain the

moment in tlie real rib, in tlie same vertical line. To find

the thrust and shear, however, for sections of the real rib,

besides employing tangents and normals of the real rib W9
must draw, and use, another force diagram, obtained from

the one already drawn (for the exaggerated rib) by re-

ducing its vertical dimensions (only), in the ratio of four

to one. [Of course, any other convenient number besides

four, may be adopted throughout.]

382. Stress Diagrams.—Take an arch-rib of Class D, § 378,.

i.e., of fixed ends, and suppose that for a given loading (in-

cluding its own weight) the special
,^^^^ ^thrust

equil. polygon and its force diagram

have been drawn [§ 381]. It is re- "^^^^ " —coopte-

quired to indicate graphically the

variation of the three stress-elements

for any section of the rib, viz., the

thrust, shear, and mom. of stress-

couple. / is constant. If at any

point TO of the rib a section is made, then the stresses in

that section are classified into three sets (Fig. 432). (See

§§ 295 and 367) and from § 367 eq. (3) we see that the ver-

tical intercepts between the rib and the special equil.

polygon being proportional to the products Hz or

moments of the stress-couples in the corresponding sec-

tions form a moment diagram, on inspection of which we

can trace the change in this moment, Hz = ^ , and
e

hence the variation of the stress per square inch, jJjj (as.

due to stress couple alone) in the outermost fibre of any
section (tension or compression) at distance e from the

gravity axis of the section), from section to section along

the rib.

By drawing through lines On' and OV parallel re-

spectively to the tangent and normal at any point m of the

rib axis [see Fig. 433] and projecting upon them, in turn,

the proper ray (B^ in Fig. 433) (see eqs. 1 and 2 of § 367)

tJ

Fig. 432.
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we obtain the values of the thrust and shear for the sec-

tion at m. When found in this way for a number of points

along the rib their values may be laid off as vertical lines

from a horizontal axis, in the verticals containing the re-

spective points, and thus a thrust diagram and a shear dia-

gram may be formed, as constructed in Fig. 433. Notice

that where the moment is a maximum or minimum the

shear changes sign (compare § 240), either gradually or

Fig. 433.

suddenly, according as the max. or min. occurs between

two loads or in passing a load ; see m', e. g.'

Also it is evident, from the geometrical relations involv-

ed, that at those points of the rib where the tangent-line

is parallel to the " proper ray " of the force diagram, the

thrust is a maximum (a local maximum) the moment (of
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stress couple) is either a maximum or a minimum and the

shear is zero.

From the moment, Hz = ^, p2 — —

-

e 1

may be computed. From the thrust = Fp^^, pi=- , (F

= area of cross-section) may be computed. Hence the

greatest compression per sq. inch (Pi+p^) may be found in

each section. A separate stress-diagram might be con-

structed for this quantity (pi+p^)- Its max. value (after

adding the stress due to change of temperature, or to rib-

shortening, for ribs of less than three hinges), wherever it

occurs in the rib, must be made safe by proper designing

of the rib. The maximum shear J,,^ can be used as in §256

to determine thickness of web, if the section i?^ I-shaped,

or box-shaped. See § 295.

383. Temperature Stresses.—In an ordinary bridge truss

and straight horizontal girders, free to expand or contract

longitudinally, and in Classes A and B of § 378 of arch-

ribs, there are no stresses induced by change of tempera-

ture ; for the form of the beam or truss is under no
constraint from the manner of support ; but with the arch-

rib of two hinges (hinged ends, Class C) and of fixed ends

(Class D) having immovable piers which constrain the dis-

tance between the two ends to remain the same at all tem-

peratures, stresses called " temperature stresses '* are in-

duced in the rib whenever the temperature, t, is not the

same as that, t^, when the rib was put in place. These

may be determined, as follows, as if they were the only

ones, and then combined, algebraically, with those due to

the loading.

384. Temperature Stresses in the Arch-Rib of Hinged Ends,—

(Class C, § 378.) Fig. 434. Let E and /be constant, with



i74 MECHANICS OF ENGINEBErNG.

Fig. 434.

oilier postulates as in § 379.

Let t^, = temperature of

erection, and i — any other

temperature ; also let I =
length of span = OB (in-

variable) and 7^ "CO -efficient

of linear expansion of the

material of the curved beam or rib (see § 199), At tempeia-

fcure t there must be a horizontal reaction H at each hinge

to prevent expansion into the form O'B (dotted cuive),

which is the form natural to the rib for temperature t and

without constraint. We may /. consider the actual form

OB as having resulted from the unstrained form O'B by

displacing 0' to 0, i.e., producing a horizontal displace-

ment O'O =1 {t-Q-/j.

But O'O = Jx (see §§ 373 and 374) ;
(KB. B'% tangent

has moved, but this does not affect Jx, if the axis X is

horizontal, as here, coinciding with the span ;) and the

ordinate y of any point m of the rib is identical Avith its

z or intercept between it and the spec, equil. polygon,

which here consists of one segment only, viz. : OB, Its

force diagram consists of a single ray Oi n' • see Fig. 434.

Now (§ 373)

.J
B

Ja? = -A j3Iyds ; and M=Hz = in this case, Hy

H
.:l{t-Qrj=—Jfds;

hence for graphics, and
equal Js's, we have

Ell{t-t,)y^=HJs I^y' . . . . (1)

From eq. (1) we determine H, having divided the rib-curve

into from twelve to twenty equal parts each called Js

.

For instance, for wrought iron, t and t^,, being expressed

In Fahrenheit degrees, -/j = 0.0000066. If E is expressed

in lbs. per square inch, all linear quantities should be la

inches and H will be obtained in pounds.

2'o?/^ may be obtained by § 375, or may be computed. B
being known, we find the moment of stress-couple = Hy,
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at any section, while the thrust and shear at that section

are the projections of //, i.e., of O^n' upon the tangent and

normal. The stresses due to these may then be determined

in any section, as already so frequently explained, and

then combined with those due to loading.

385. Temperature Stresses in the Arch-Ribs with Fixed Ends,—

See Fig, 435. (Same postulates as to symmetry, E and J

constant, etc., as in § 380.) t and t^ have the same meaning

as in § 384.

Here, as before, we
consider the rib to

have reached its ac-

tual form under tem-

perature t by having

had its span forcibly

shortened from the

length natural to

temp, t, viz. : O'B',

to the actual length OB, which the immovable piers compel

it to assume. But here, since the tangents at and B are

to he the same in direction under constraint as before, the two

forces H, representing the action of the piers on the rib,

must be considered as acting on imaginary rigid prolonga-

tions at an unknown distance d above the span. To find

H and d we need two equations.

From § 373 we have, since M=Hz=H {y—d),

Ax, i.e., WO-VBW, i.e., \t-t:)r^,=-^J{y-^yds . (2)

or, graphically, with equal As's

Fig. 435.

EIl{t- -Qr- -HAs I-f-dSly (3)

Also, since there has been no change in the angle betweeij

end-tangents, we must have, from § 374,

^_rMds=0; i.e., — / 2c?s=0;i.e., ny-d)ds=0
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or for graphics, witli equal jU 's, I'^y = nd . , • (^\

in wMcli n denotes tli6 number of J.s's. From (4) wq

determine d, and tlien from (3) can compute U. Drawing

the horizontal F G, it is the special equilibrium polygon

(of but one segment) and the moment of the stress-couple

at any section = Hz, while the thrust and shea\' are the

projections of H=^0{ii' on the tangent and normal respect-

ively of any point m of rib.

For example, in one span, of 550 feet, of the St. Louis

Bridge, having a rise of 55 feet and fixed at the ends, the

force H of Fig. 435 is = 108 tons, when the temperature is

80° Fahr. higher than the temp, of erection, and the en-

forced span is 3^ inches shorter than the span natural to

iliat higher temperature. Evidently, ;f the actual temp-

erature I is lower than that ^„, of erection, ^must act in a

direction opposite to that of Figs. 435 and 434, and th&

"'thrust " in any section will be negative, i.e., a pull.

386. Stresses Due to Rib-Shortening—In § 369, Fig. 407, the

shortening of the element AE to a length A'E, due to the

uniformly distributed thrust, PiF, was neglected as pro-

ducing indirectly a change of curvature and form in the

rib axis ; but such will be the case if the rib has less than

three hinges. This change in the length of the different,

portions of the rib curve, may be treated as if it were due

to a change of temperature. For example, from § 199 we-

see that a thrust of 50 tons coming upon a sectional area.

of i^ = 10 sq. inches in an iron rib, whose material has a

modulus of elasticity — E = 30,000,000 lbs. per sq. inch,

and a coefficient of expansion yj = .0000066 per degree

Fahrenheit, produces a shortening equal to that due to a

fall of temperature {to—t) derived as follows: (See § 199)

(units, inch and pound)

^°
^ FEri 10 X 30,000,000 X.0000066"

Fahrenheit.

Practically, then, since most metal arch bridges of

©lasses G and D are rather flat in curvature, and the thrusts.
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due to ordinary modes of loading do not vary more than 20

or 30 per cent, from each other along the rib, an imagin-

ary fall of temperature corresponding to an average thrust

in any case of loading may be made the basis of a con-

struction similar to that in § 384 or § 385 (according as the

ends are hinged, ov fixed) from which new thrusts, shears,

and stress-couple moments, may be derived to be combin-

ed with those previously obtained for loading and for

change of temperature.

387. Resume—It is now seen how the stresses per square

inch, both shearing and compression (or tension) may be

obtained in all parts of any section of a solid arch-rib or

curved beam of the kinds described, by combining the re-

sults due to the three separate causes, viz.: the load,

change of temperature, and rib-shortening caused by the

thrusts due to the load (the latter agencies, however, com-

ing into consideration only in classes G and D, see § 378).

That is, in any cross-section, the stress in the outer fibre

is, [letting J',/, T-^", T^"', denote the thrusts due to the

ihree causes, respectively, above mentioned
; {H&)', {Hz)"y

{Hz)'", the moments]

^T}}.^I}l'^I^±tUHz)'±{Hzy'±{Hzy"'\ . . . (1)

i.e., lbs. per sq. inch compression (if those units are used).

The double signs provide for the cases

where the stresses in the outer fibre, due

to a single agency, may be tensile. Fig.

436 shows the meaning of e (the same
used heretofore) /is the moment of in-

ertia of the section about the gravity

axis (horizontal) (7. i^ = area of cross-

section. [Ci = e ; cross section symmet-

rical about (7]. For a given loading we

may find the maximum stress in a given rib, or design the

rib so that this maximum stress shall be safe for the ma-

terial employed. Similarly, the resultant shear (total, not
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per sq. inch) = «/' ± J" ± 3'" is obtained for any section

to compute a proper thickness of web, spacing of rivets,

etc.

388 The Arch-Truss, or braced arch. An open-work
truss, if of homogeneous design from end to end, may be

treated as a beam of constant section and constant moment
of inertia, and if curved, like the St. Loi*is Bridge and the

Coblenz Bridge (see § 378, Class D), may be treated as an

arch-rib.* The moment of inertia may be taken as

r=2i^,
A

(I)

where F^ is the sectional area of one of the pieces
II
to the

curved axis midway between them. Fig. 437, and h = dis«

fcance between them.

Fig. 438. Fig. 437.

Treating this curved axis as an arch-rib, in the usual

way (see preceding articles), we obtain the spec, equil. pol.

and its force diagram for given loading. Any plane ~| to

the rib -axis, where it crosses the middle m of a " web-

member," cuts three pieces, A^ B and 6', the total com-

*The St Louis Bridge 13 not strictly of constant moment of inertia, being somewha*
strengthened near eaoli pier,
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pressionB (or tensions) in which are thus found : For the
point m, of rib-axis, there is a certain moment = Hz, a

thrust = Th, and a shear = J, obtained as previously ex-

plained. We may then write Psin/9 = J . . . • (1)

and thus determine whether P is a tension or compres-

sion ; then putting P'+P" ± P cos /? = T,, 2

(in which P is taken with a plus sign if a compression, and

mlQus if tension), and

(P'-P")^=Rz ...... (3)

we compute P* and P", whi(5h are assumed to be both com-'

pressions here. /9 is the angle between the web member
and the tangent to rib-axis at m, the middle of the piece.

See Fig. 406, as an explanation of the method just

adopted.

Circular Ribs akd Hoops.

389. Deflections and Changes of Slope of Curved Beams. Analyt-

ical Method. For finding these quantities we may use eqs. (I.),

(II.) and (III.) of § 374. For example, we have in Fig. 439,

a curved beam of the form of the ox k —
quadrant of a circle, fixed vertically

^

at lower extremity p, and carrying

a single concentrated load, P, at

the free end 0. [Its own weight

neglected.]

As a consequence of the load- i /^^^' \q \
ing, the extremity is displaced to kfl__ 1__^J^
some position, ^\, but the bending M^^^
is slight. Required, the projections

^^^' ^^^'

Ax and Ay of this displacement and also the angle OKOn or <^,

which the tangent-line at 0„ makes with its former fhorizon-

tal) position OX. The beam is homogeneous and of constant

cross-section ; i.e., E and / are constants.

To use the equations for Ax and Ay we must take as an

origin (since is the point whose displacement is under con-
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sideration). Hence the co-ordinates x and y of any point, m, of

the axis of the beam are as shown in the figure. Taking now
polar co-ordinates, as shown, we note tliat x = r cos_fi-|

y = r ( 1 — sin ^) ; and ds = rdO. We must also put down
the following integral forms for reference ; viz. :

—
fsin ^ . d^ = — cos ^

;
f^ . cos 6* . di9 = e . sin ^ + cos ^

;

fcos e.de = + sin d
;

fsin^ 6 .dd = ^ 6 ~ \s,m2 d
;

fsin e.cos e .de = \ sin^ e
;

C c,o%^ 6 ,de = ^ 6 + \sva.20.

Taking the portion 0„m {m being any point on curved axis

of beam) as a free body, we have, for the moment of the stress

couple a.t m, M — Px, = Pr cos 6, and hence derive, for the

angle ^,

Also 5

and z z
1 r^ Pr^ r /'^ z*^ 1 Pr^

^^'=^X^-^''^' = ^[Jo «<^«^-^^-X
-^^•--^•^^] = 2^z- (3>-

It must be understood that the elastic limit is not passed in

any fiber and that the bending is very slight. A simple curved

crane and a ship's davit are instances of this problem, provided

the cross-section has the same moment of inertia, /, about a

gravity axis perpendicular to the plane of the paper in Fig.

439, at all parts of the beam.

390. Semi-Circular Arch-Rib. Hinged at the Two Piers or Sup-

ports, and Continuous Between. Fig. 440. The supports are at the

same level. The arch-rib, or curved beam, is homogeneous

and has a constant I at all sections. (It is a " curved prism".)

It is stipulated that no constraint is necessary in fitting the rib

upon the hinges at the piers before any load is placed on the

rib ; that is, that the distance apart of the piers (which are

unyielding') is just equal to the distance between the ends of

the rib when entirely free from strain. In other words, after

the rib is in position it is under no stress until a load is put

upon it. Its own weight is neglected and the load is a concen-

trated one of 2 P lbs. placed at the " crown ", B. As a conse-
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quence of the gradual placing of the load the crown B settles

slightly, but on account of symmetry the tangent-line to the

curved axis at B remains horizontal. Also the extremities

and A tend to spread further apart, but this is prevented by
the fact that the piers are immovable (or we may express it

"the span is invariable"). Hence the reaction at each hinge

support will have a horizontal component ^as well as a ver-

tical component, V, lbs. Fig. 2 shows the axis of the rib.

Taking the whole rib as a

free body we easily find (by

putting ^ vert, comps. = zero,

and from symmetry) that

each y=P; the whole load

being called 2 P ; but for de-

termining the value of H
(same at each hinge ; from

2 (horiz. comps.) =zero) we
must have recourse to the

theory of elasticity ; i.e., must depend on the following fact,

viz. : — that in the gradual settling of point B under the load,

B remains in the same vertical, and the tang, line at B remains

horizontal, and hence (since moves neither horizontally nor

vertically in actual space) the horizontal projection of O's dis-

placement relatively to B and ^B's tangent is zero (or Ax^O),
while the vertical projection of O's displacement relatively to

B and 5's tangent (A?/) equals the distance B has settled in

actual space. Here we must take as origin for x and y (as

in figure) for any point m between and B\ and note that

the X = r {1 — cos 6), and y = r mi 6; while ds = r. d6.

With Om as a free body (m being any point between and

5) we have for the moment of the stress couple at m,

M.^Vx- Hy, = Px- Hy.

1 rB r^
Ax, = — j Myds, =0 ;

.'.
I [P(X- rco^ 6) - Hr sm e'jr^ sm Odd =^0',

Fig. 440.

.-. P C sin0.de - P C smdcosddd-H C sin'6'.d^ = 0:
Jo Jo Jo

and hence, (see integrals in § 389),
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(-[- COS 6
Slll^ H

0 _ sin 2 6h\"^

2""
4

= 0.

Inserting the limits, we have

pr_0 + l-i +
0J-//|^|-0-0-(-0)"

= 0;

.:H = 2 P load

Also we may obtain, for the settlement of the crown, at B
1 C^ Pr'^ r3 TT 1 "IAw of relatively to 5, = =7 / Mxds = -77^ -. — 2^ "^ EI Jo EI I 4: TT j

while the tangent-line at 0, originally vertical, now makes with

the vertical (on the outside)

'eT

This is a ''statically indeterminate structure "
; that is, one in

which a solution is impossible by ordinary statics but must

depend on the theory of the elastic change of form of the beam

or body in question.

If the load were not placed at the crown, or highest point,

we should be obliged to put

an angle
EI Jo

Mds = - +1-

jj£Myds^O
EI

for the Ax of relatively to A (instead of to jB).

391. Cylindrical Pipe Loaded on Side. A cylindrical pipe of homogeneous
material and small uniform thickness of pipe-wall, i, and length I, (so that

the moment of inertia of the cross-section of wall is for present purposes

I = It^ -i- 12) rests in a horizontal position on a firm horizontal floor and bears

a concentrated load of 2P at the highest point, or crown, jB. See Fig. 441.

It is to be considered as a continuous curved beam or " hoop ", without hinges.

We neglect the weight of the pipe itself. The dotted circle shows the original

unstrained form of the pipe-wall, or hoop, while the full line is its (slightly

deformed) shape when it bears the load. The elastic limit is of course not to

be passed. The upward force 2P at iV"is the reaction of the floor. Required,

the maximum moment of stress-couple ; and also the increase in the length of

the horizontal diameter, and the decrease in that of the vertical diameter.

Consider as a free body the upper left-hand quadrant of the hoop, viz.,

OB, in Fig. 442, cutting just on the loft of the load at L', a horizontal section

being made at 0. At each end of this body we must indicate a stress-couple,

a shear, and a thrust. But at it is evident, after a little consideration, that

the shear (which would be horizontal) must be zero ; there being at 0, .•. only
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a thrust Tg and a stress-couple of unknown moment M^. At the other section

the shear must he equal to one half of the load 2P (from considerations of

symmetry) i.e., J" at B = P ; while the thrust at B is soon shown to be zero

(since S (horiz. compons.) must = zero, and this thrust if it existed would b»

Fig. 441. Fig 442. Fig. 443.

the only horiz. force besides those formhig the stress-couple at B). At B,

therefore, we find only a stress-couple, of an unknown moment Ms, and a

shear Jb of direction shown in Fig. 442. By writing S (vert, compons.)

= zero for this free body we find that the thrust, Tg, at 0, must have a value P.

To determine M^ we make use of the fact (evident from Fig. 441) that in

the deformed condition of the '
' hoop '

' the tangent-lines at points and B are

still vertical and horizontal, respectively ; in other words that the angle be-

tween them has not changed, i.e., is still' 90°. Hence the value of 0, or change

of angle between tangents at and B is zero. Apply this fact to Fig. 442. Take

as origin for the x and y of any point m on OB (using 6 later). From a

consideration of the free body Om shown in Fig. 443 we have for the stress-

couple-moment M at any section m the value M = Px — M^. We have also

a; = r (1 — cos d)
; y = r sin 6 ; and ds = rdd.

Since 1 r^ r^
0, = ^ j Jfds, = 0, .-. j \_Pr^ - Pr^ cos 6 - Mf\ dd = ;

i.e., {Pr^ [0 - sin e\ - M^rd) 2 = ; or, Pr^ f^ ~ ^ 1 ~
-^^^l

^ ^ ''

whence, finally, we have Jlfg = Pr 1 I (1)

Now that Jlfg is known, we may find Mb by taking moments about the

lower section, 0, in Fig. 442, with OB as fj-ee body whence Mb = (2 -=- tt) Pr,

which is greater than M^. Hence the equation for safe loading is {R'l -=- e)

= 2Pr -^ TT, where R' is the maximum safe unit-stress for the material, and e

the distance of the extreme fiber from the gravity axis of a section. (If, how-
ever, the radius, r, of the cylinder is not large compared with the radial thick-

ness of the section, see §§ 298 and 299.)

Evidently the horizontal diameter has been lengthened by an amount 2 Ax,

if Ax denote the horiz. proj. of O's displacement relatively to B and 5's tan-

gent ; and similarly, the shortening of the vertical diameter is 2 Ay, if Ay denote

the vert. proj. of O's displacement with regard to B and JS's tangent-line.
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Hence ^

ix =. =y j Myds = J- j
[Pr^ sin 6 .dO - Pr^ cos 6 sin edd — M^r'' sin edd];

from which we have, with M^ = Pr [1 — {2 -t- tt)],

TT

^y =^C -^a^s, = -^ r ^ [Pr3 (1 - COS ey de - M,r^ {dd - COS edd)-],

Pr^ ^2 _ 8

It will be noted that the results obtained in this problem apply also to the

case where the hoop is a circular link of a chain under a tension 2 P, except

that the moments will be of opposite character and shears and thrusts of oppo-

site direction. Also, the change of length 2 Ax of the horiz. diameter will be a
shortening, that of the vertical diameter, a lengthening. (See Prof. Filkins'

article on p. 99 of Vol. IV of the Transac. of Assoc. C. E. of Cornell Univ.

and Engineering News, Dec. 1904, p. 547.)

BTumerical Example. Fig. 441. The length of a cast iron pipe is 10 ft., the

thickness of wall ^ inch, and the radius of the pipe (measured* to the middle

of the thickness) is 6 inches. Kequired, the value of the safe load at crown, 2 P
when the pipe is supported horizontally on a firm smooth bed or floor; the

max. safe unit-stress being taken at the low figure 2000 lbs. per sq. inch.

Solution. "We have only to substitute these values in M^ = R' I -i- e and
*9000 V 120 V C^y

Obtain (since I =1. P ^ 12), frrr_iL^Lil^== (0.6366 P X 6) ; hence safeload
(^) X (2) X 1^

= 2 P, = 5236. lbs. ; that is, 43.63 lbs. per running inch of pipe length.

If now the thickness be doubled, i.e., t = 1", with other data unchanged,

we find the safe load to be four times as great, i.e., 2 P = 20,944 lbs. ; or 174.5

lbs. per running inch of pipe-length.

Although the load is called "concentrated" as regards the end-view of the

pipe, it must be understood to be uniformly distributed along the length.
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CHAPTER XII.

Flexure of Beams ; both Simple and Continuous.

Geometrical Treatment.

392. By Geometrical Treatment is meant making use of the

properties of geometrical figures to deduce algebraic relations.

This does not necessitate the use of drafting instruments ; but the

graphic ideas involved greatly simplify the algebraic detail of

finding deflections, angles, moments, shears, etc., in the case of

horizontal beams originally straight and slightly bent under

vertical loads and reactions. In the case of " continuous

beams", or "girders", (p. 320), this mode of treatment leads to

conceptions and methods which are remarkably clear and simple.

393. Angle Between End-Tangents of a Portion of a Bent Beam.

If the cantilever beam of Fig. 443a (slender and originally

o
|C B

.ax
I

norvuilto CD '_ ^^—T" ^.
,,

\d(p ^'' »
' -*

1

^1

Fig. 443a. Fig. 4436.

straight) be loaded as shown, and the beam thus slightly bent,

the two cross-sections, AH and CD, at the two ends of any dx

of the axis of beam, are no longer parallel but become in-

clined at a small angle d<^ which is also the angle between the

normals to these sections, in their new (relative) position (see

now Fig. 4436). AZT now occupies the position A'W (relatively

to (7Z)). The outer fiber AC (originally of length = dx) is

longer by some amount dX ; and evidently the value of angle

d^ may be written = dX -j- g. But, by the definition of the

modulus of elasticity of the material, J5', we have also

E = p H- —
, (p. 209) ; whence d^ = '^-^

dx hiQ
(1)
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Now if M denote the moment of the stress-couple to which

the tensions and compressions on the ends of the fibers in the

section A^ H' are equivalent (M would equal Px in this simple

case) we may combine the relation, (§ 229), M = pi -r- e with

eq. (1) and thus derive, as

a fundamental relation : , . . d4> =—— (2)
EI

for the angle between two tangents to the elastic curve,

one at each end of the elementary length, dx, of the curve

;

since the two normals to the sections A'H' and C D in Fig.

4436 are tangents to the ends of the short length dx of the

elastic curve. (This value of the angle d^ is in 7r-measure ;

i.e., radians.)

It follows, therefore, that when the cantilever of Fig. 443a

is gradually bent from its original condition (in which the

tangent lines at the two extremities and B Avere coincident,

i.e., made with each other an angle of

zero) into its final form, by the gradual

application of the load P at 0, the

angle between the tangent to elastic

curve at 0^ (the final position of 0)
and that at B (which tangent, in this

,,. case, has not moved) will have a value
Fig. 444. \ _

-^

obtained by summing up all the small

values of d^, one for each of the dx'^ between and B (these

dx'^ making up the length of curve between those points).

Or, in general, if 0„ and B are any two points of an elastic

curve (of axis of bent beam, originally straight and now only

slightly bent, x beiag measured along the beam) we have for the

angle between the
^ _ ., _ T^ Mdx ,on

tangents at 0„ and B\^ Jo EI

(See Fig. 444 for case of cantilever.) This may. be called

the angle hstween end-tangents of any portion of such elastic

curve. The beam must be continuous between these two
j)oints and only slightly bent. Usually the beam in question

is homogeneous and then E may be taken outside of the integral

sign. Also, if the beam be prismatic in form (i.e., sides par-

allel to a central axis, originally straight) the moment of inertia,
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/, of the cross-section is the same for each dx, and may be

placed outside of the / sign.

394. (Relative) Displacement of any Point, 0, of Elastic Curve

of a Bent Beam. In the case of the simple cantilever of

Fig. 443a let us consider that the axis of the beam, originally

straight and in position OB, passes gradually into its final form

or elastic curve 0„ A'" A'' . . . B hj the successive change of

form of each small block, or elementary length dx ; beginning

Successive bending of each
dx of Cantilever.

Fig. 444a.

at the end B. When the section at A^ turns through its angle

d(f)^, as due to the lengthening and shortening of the fibers

forming the block (i.e., to the stress-couple in section A', of

moment M') it carries with it all the portion OA' (still straight)

into position O^A' so that the extremity describes a small

distance (practically vertical) 00 ^ = OA' . d(f>^. Similarly

when, next in order, the section at A^' turns through its small

angle d(f>^, the left-hand end of the beam describes a further

small distance Ofi^ ^ ^^" • ^^2 ' ^^^ ^° ^^^
'

"i^^til finally the

extremity has arrived at its final position 0„, having executed

a total (vertical) displacement OOn-, which will be called Ay.

If, now, any one of the elementary vertical displacements

(like OjOj? as typical) be called 8y, we note that Ay is the sum
of all these small 8i/'s, each of which is practically a small cir-

cular arc described with a radius x swinging through a small

angle d(fi, (the successive x's being successively smaller for the

Sy's lower in the series), so that By = xd(}>; hence

Ay, =- fSy, = Cxd(j>. But, from eq. (2), d(f> = Mdx -^ AT;

( Displacement of point 0) _ _ T ^ Mxdx

I relatively to 5's tangent
)

Jo -^-^
(4)
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(N.B. In the use of this relation the x of each dx must he

measuredfrom the point whose displacement is desired.)

Although the special case of the cantilever has been in mind
in the figure used in this connection, this result in eq, (4) may-

be generalized by stating that it gives the displacement A?/ of

any point from the tangent-line drawn at any other point, B,

of the elastic curve formed by the axis of a beam originally

straight and slightly bent under the action of vertical forces

and reactions. In order to use it, the value of the moment M
of the stress-couple in each successive dx must be expressed as

a function of x. If, in addition, the beam has a constant moment
of inertia, /, of the cross-sections, the " I " may be taken outside

of the sign of integration. An integration is then generally

possible. (For example, in the above cantilever, for M we
should write Px.)

395. Deflections and Slopes of Straight Homogeneous Prismatic

Beams Slightly Bent under Vertical Loads and Eeactions. (Beam

Horizontal.)

If the beam is a prism and homogeneous, both U and I are

constant along its length and may be taken outside of the in-

D^ tegral sign in eqs. (3)

B,.-*':^^'' and (4), and these two

J \ '^T^v----^c'""°''^ equations may now be

I [dxi

applied to a portion of a

beam situated between

any two points and B
Fig. 4446. of the elastic curve as-

sumed by the (originally straight) axis of the beam (Fig. 4446)

under some load. The tangent-lines at 0„ and B were origi-

nally coincident, and hence the angle between these tangents

when the beam is bent is the total change in angle between the

1 r^
tangents, and consequently may be written (^= __ / Mdx and

is 0„ 00 in the figure. Again, if a vertical be drawn through

the point 0„ to B's tangent-line OB, the length 00,^ is evi-

dently O's displacement relatively to 5's tangent-line, since

originally the point 0„ was situated in 5's tangent itself.

1 r^
That is, 00„, or A?/, = -— I Mxdx,\n which M is the mo-

hil Jo
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ment of the stress-couple in the cross-section at any distance, x,

from 0. Note that in general Mis a variable; also that the x

must be measured from the point whose displacement is

under consideration.

Example I. Simple cantilever (Fig. 444,), huilt Inliorizontally at B and bear-

ing a concentrated load = P lbs. at the free extremity. Both E and / are con-

sfcant (homogeneous prism). Pind the deflection 00« and the slope (p.

Solution. From the free body OhVI (m being any point between and B)

we have M = Px as mom. of stress-couple at ?n.

PP
2ET

1 /.5 p p!
the "slope" at On- For Jy

we have
Pl^

Fig. 444i. Fig. 4442-

Example II. Prismatic beam on two end-supports. Concentrated load P,

V)S., in middle, Fig. 4442- The two supports being at same level we note that

from symmetry the tangent at the middle point B of the elastic curve is hori-

zontal. Hence the displacement OOn of the extremity from this tangent is

«qual to the deflection of B itself below the horizontal line 0„G. To find OOn
or Jy,

Pl^

40/
Example III. Prismatic beam on two end-supports at same level, the load

being uniformly distributed over the whole span, I. Fig. 4443. That is, W = wl,

1 r-B 1 /-S pP -| P /•!=
2

Jy = -=-:- I Mx dc= -r— 1 TT X \ xdx = -—
, ^ I x^dx ^

^ ElJo EIJo L2 J 2ElJx=^

W = ivl

Fig. 4443. Fig. 4444.

w being the load per running inch. As before, the tangent-line at middle

point B of the elastic curve must be horizontal, so that the displacement of

extremity On from this tangent will also give the deflection of B from the

horizontal OnC. Measuring x from (as must always be done in these cases)

we note that M at any point m W wx-

I pBr-WX'^ WX3 -| 1 r WX^ WXn 5
°^« = MJo I

^^"- -2-^^J= ^[-6-- Xjo
= 5

584 EI
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Example IV. Prismatic beam on end-supports, hearing two equal loads, each

= P, symmetrically placed on the span. Fig. 444^. Required, tlie deflection

of the middle point, B, of the elastic curve, below the horizontal OnC.
Length = 4a.

Solution. In previous problems of this article the expression for M, the

mom. of stress-couple for any point m betvreen the points O and B, has been a

single function of x, applying to all such points m. But in the present problem,

having found the reaction at O to be = P lbs., we note by considering a free

body Onin (where m is any point between On and B) that the value of 31 is

M= Pz ; whereas if the free body extends into the portion DB the expression

for M (the free body being now Onm') is M=Px —P{x — a) which reduces to

M=Pa, a, different function of x; (in fact a constant). Therefore, in making

the summation 00«= (l-=-^J) ( Mx dx for all the dx^s between and B, this

summation must be divided into two parts, viz. : one from to D, involving for

X the limits x=0 and x=a; and the other from D to B, for which the limits for

X are x=a and x=2a. Hence

(The student should verify all details of this operation, noting that each sum-
mation or integi'al contains the proper value of M, as a function of x, for the

proper portion of the elastic curve. As before, it should be said that on ac-

count of symmetry the tangent-line at the middle point B is horizontal, and
parallel to OnC. Otherwise OnO would not he equal to the deflection of B.)

396. Non-prismatic Beam. VariableMoment of Inertia, I. If the J is vari-

able, (e.g., if the beam tapers) it must be retained on the right of the integral

sign in the expressions for cj) and Jy and then expressed as a function of x be-

fore the integration can be proceeded with. In some cases I may be constant

within the limits of definite portions of the beam and then the procedure is

simple. For instance, if the beam in Fig. 444^ has a constant value, = I^, for

3
the portions OB and FC, and a larger (but constant) value, of J,) = h ^i»

for all the sections from B to F, the following takes the place of eq. (1) above :

. P fa Pa /'2a 4 Pa^

397. Properties of Moment Diagrams (Moment-Areas and Cen-

ters of Gravity). Prismatic Beams in Horizontal Position. Vertical

Loads and Reactions. In Fig. 445 let AI) be the bent condition

(i.e., elastic curve) of the axis of a straight prismatic homo-

geneous beam supported on supports at, or nearly at, the

same level (so that all tangent lines to the elastic curve deviate

but slightly from the horizontal. That is, the bending is slight).

Also, let A"D"B"' 0'" be the corresponding moment diagram (as

defined and illustrated on pp. 265 to 309). For instance, for

any point m of the elastic curve the moment of stress-couple (or

"bending moment ") in that section of the bent beam is repre-
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sented (to scale) by the ordinate m"m"' or M, in the same

vertical as m.

If now a small horiz. distance dx^ or m'V, be laid off

from m" and a vertical r . .8

be drawn through r, the pro-

duct M . dx would be proj)or-

tional to, and may be repre-

sented by, the area of the

vertical strip m"rsm"'. Now
dx being inches (say) and M
being inch-lbs., this product

might be called so many "sq.

inch-lbs." of moment-area (as

it will be called). But the

angle <^ between the tangent-

i^. ,^ ^ Mom. Diagraml

Fig. 445.

lines drawn at an}- two points On and B of the elastic curve is

1 r^
equal to —- / Mdx ; and hence we may write

<!>

[total " moment-area

between and B ]' EI (la]

or, for brevity, ((> ={A^^ ) ^ EI . . . . . . . . . . (1)

This " moment-area," then, between and B is the pro-

duct of the base O'^B" (inches) by the average moment be-

tween and B regarded as the average altitude of the figure,

0"B"B"V", this altitude being inch-lbs.

Again, if the elementary " moment-area " Mdx be multiplied

by x, its horizontal distance from 0" (i.e. from and 0„), and

these products summed up for all the dx'^ between and 5,

there results the expression I (M , dx) . x which may be

written {A^^.x, where x denotes the horiz. distance of the

center of gravity of the moment-area O^'B'" from 0''0"' (since,

from the theory of the center of gravity, the sum of the pro-

ducts of each ^tri]} of an area by its x co-ordinate is equal to

the product of the whole area by the distance of its center of

gravity from the same axis). In the figure the center of grav-

ity of the moment-area 0"B"' is shown at C" •, and the cor-

responding X is marked.
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But we have

^y, or OOn, -

\J Mxdx 1 -5- E/ =r r Mdx ,x'\^ EI\

Sv —

-

and hence we may write

00,,, or AV, = [(A^) ,i] -^ E7 . . . . (2)

which furnishes us with a simple means of determining the dis-

placement of any point 0^ in the elastic curve of the bent beam
from the tangent-line at any other point B in that elastic curve.

Evidently, from equations (1) and (2) we have A?/, = 00^^

= j>x ; and can therefore state that the intersection of the two

tangent-lines, one drawn at 0, the other at B, lies in the same

vertical as the center of gravity of the intervening moment-area-

(N.B. Instead of the product {Ao)'X, we may, of course,

use the algebraic sum of similar products for any component

parts into which it may be convenient to subdivide the total

moment-area.)

398. Examples of TJse of Eqs. (1) and (2) of Preceding Paragraph.

Example I. Simple Cantilever. Concentrated load at free end. Fig. 444i.
Constant E and I. {Prism.) Here the moment-diagram for whole length is a

triangle (§ 249) whose base is I inches and whose
altitude is PI inch-lbs.

• Hence, with and B taken as in Fig.

445,, we note that

AB-.'?=('•?).

...,= [.?].

2
and that x = ^ Z.

o

E.I.==

at On', while OOn =

T^ 1

Fig. 445i.

I.e., OOn^^
EI ['•"]

PP ^

2 EI'

1_

EI
pn 2

3

for the slope

i^l)' ^>

Z = PP
3. EI

Example II. Prismatic Beam on Two End-Supports, Load Uniformly dis-

tributed over the whole span or length, I', W = wl. From p. 268 we know that

the moment-diagram (Fig. 4462) is a symmetrical segment of a parabola with

axis vertical, and that the moment at the middle section is Wl -^ 8. Also,

from p. 12 of Notes, etc., in Mechanics, we find the x of the left-hand half of this

moment-figure, measured from the left-hand extremity On, is ^ Z — | of 1 1; i.e.,

i = f of 1 1.

The area of this semi-pardbolic-segment is two-thirds that of the circum-

scribing rectangle. From symmetry, the tangent-line drawn at B, the middle

point of the elastic curve, is parallel to On D, so that the displacement OnO of

from that tangent is equal to the deflection of B from OnD. Hence

-2 IWl 5 I-

3 •2* 8
OnO,

(Ao).x
EI ' a^ 384 EI
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Example III. Prismatic Beam. Ends Supported. Two Concentrated Loads
Equidistant from Supports. Fig. 4453.

Here, as before, from symmetry the tangent at B is horizontal, parallel to

V yvYvVVvVYYVVYVVVYVV
On C •

D.

-^

j^-

FiG. 4452. Fig. 4453.

OnD; so that On equals the deflection of B from C (its position before load-

ing of beam). Each load P is in middle of a half-span. Required OnO ;, i.e.,

CB=?
In this case the moment-diagram is easily shown to consist of a triangle at

each end with a central rectangle of altitude = Pa (inch-lbs.). To find OnO
we need the product (A^).x. But this A^ consists of the triangle 0"A"N
with its center of gravity distant f of a from and of the rectangle A"B"KN
whose center of gravity is at a distance of | of a from 0. Utilizing, therefore

the principle stated in the N.B. of § 397, we write

Q-Q _ (^)O- 1 r Pa 2a -r. 3 a
--l-a.Pa-^

n Pa^

~(S-Er'

Example IV. Prismatic Beam on End Supports. Single Eccentric Load, P.

Fig. 445^. Here a tangent drawn to the elastic curve at the load-point B, not

being horizontal, is not par-

allel to OnCn, and hence OnO
does not = the deflection, 5,

otB.

However, the displace-

ments (= (^1 andd.,), of Ofrom
5's tangent and of C from

B's tangent, are easily found,

the moment-diagram 0"NC"
having been drawn, in which

'B"N = {Pa,a, -^ I) inch-lbs.

(§260). Call" the "moment-
Fig. 445,.

area" of triangle 0"B"N, A' and that on right of load, viz. of C"B"N, A".
Then, from eq. (2) of § 397, we may write

Eld^ = A'z,; and Eld., = A"x.,.

If now we draw a horizontal line, HI)., through the point B of the elastic

curve, we note, from the similar triangles thus formed, the proportion

-J

—

-r = — . From these three equations d^ and d., may be eliminated and d
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obtained; (since A
and Xj = I a, )

Pa{a^ ~ I, and A" = ^ Pa^^ -i- I; while Xj = ja^,

We thus obtain 5 = (J Pa^^a.^-) -^ {EI, I) (3)

This is for the load-point. For the maximwn deflection see next example.

Example V. Maximum Deflection of Prismatic Beam. End Supports.

Single Eccentric Load. Fig. 4i5g. To locate the lowest point D of elastic

curve and determine its deflection,

d, below the horizontal 0„B.
Draw a tangent at D, also at

B whose distance n from D is, as

yet, unknown. Note that the tan-

gent at D is horizontal.

The moment-diagram is a tri-

angle of altitude ik'
;
(M'= Pah^l);

denote the moment at B by m'.

We have m' =.(n -h 6) .M'. Now
the angle (p =d' -h I, and

d' = (AI) .x-^EI =
Fig. 4455. ^ M'l (a+| [J (a+ &) - a])--E'I.

. •. 6 EI4> = M' (2 a -j- 6). But0, = (^^) -- ^I, = n . ?n' ^ 2EI, and ^ = 0^

;

.-., finally, we have n = \^\b{2a+ b), which locates the point R.

Now note that the intersection C lies in the vertical through the center of

gravity of the shaded triangle (§ 397). Hence CB = In and therefore from

similar triangles B8 = \ns. But RB, =d, = BS- BS, and BS = <p^.CB =
<i>.\n. Hence d = |0n and finally by substitution, and with M' placed =
Pah -H I, we have (with h> a) .

Pah
^-\ EI

[2a + 6] Vifi (2a + h)

same as

on page 258

399. The "Normal Moment Diagram.'' If a portion, OB, of a

horizontal beam carrying loads, be conceived separated from

the remainder of beam and placed on two supports at its

extremities and B, while carrying the loads [say P^ and PJ
originally lying between and B, the corresponding moment-

diagram, 0'"TB"' of Fig. 446 may be called the "normal-moment

diagram" for portion* OB (of original beam) and its load. If

Vq is the pier reaction at left, we have for any section t (say

between P^ and P^) x ft. from 0, the moment of stress-couple

[call it Mn or " normal moment "]

M„ Vf^x — P,(x — a) (1)

Now consider OB in its original condition (see lower part

of Fig. 446) when forming part of a much longer beam sup-
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ported in any manner. If we consider OB, now, as a " free

body," M^e must put in, besides the loads P^ and P^, a shear Jq

and a stress-couple of moment Mq in section at 0, and Jq and

couple of moment Mb at B. The moment in any section t of

OB is now M = Mo + /o^ — Pi (x — a). Let 7 = difference

between J^ and Vq,

I.e.,

then M= Mo + 7x + [7o:c-P,(a;-a)] . (2)

i.e. [see (1)], M = M^ + Vx +M„ (3)

N, ~T^° :-

Hence the momentM {=kwin. Fig. 446) of any section of OB
is made up of a constant

part Mw a part proportional

to X, and a third part equal

to the " normal moment " of

th&,t section. Therefore, if,

in the moment-diagram

0'B'B"wO" for OB we join

0" and B" by a straight

line, and also draw a hori-

zontal through 0'^ the ver-

tical intercepts [such as

uvo] between the line 0"B"
[or "chord"] and the broken

line 0"wB" are the normal

moments for OB and its

load, and the area (mom.-

area) of the figure formed by

these intercepts is equal to

that of the normal moment

diagram.

It is also evident that the center of gravity of the figure

0"B"w lies in the same vertical as that of the normal moment

diagram.

(In the next paragraph the trapezoid 0'B'B"0" will be

divided into two triangles, instead of into a triangle and a

rectangle.

)

Fig. 446.
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400. The Theorem of Three Moments. Let 0, B, and C,

Fig. 446a, be any three points in the elastic curve of a

homogeneous, continuousy

and prismatic beam, origi-

nally straight and hori-

zontal but now slightly

bent under vertical forces

(some of which are reac-

tions of supports; no loads

or forces are shown in the

figure).

Let Mq, Mj, and M^ be

the moments of the couples

in sections 0, B, and C.

The moment-diagram for

portion OBC is 0'C'C"T^B"TP". Join 0"B' and C"B' ; also

0"B" and C"B" . At the point B of elastic curve draw a tan-

gent mjn^ and join OC. Then Omo, or d^, is the displacement

of point from 5's tangent, and d^ = Cm^, is the displacement

of Cfrom the same tangent; while S is the deflection of Bfrcm
the straight line joining and C.

Now the vertical displacement d^ = [mom .-area O'B'T^ X
distance of its cent. grav. from 00"'\ -^ El. But the moment-

figure O'B'T^, under OB, is composed of the two triangles shown

and the ''normal moment-diagram ''for OB, viz. : 0"B"T^, whose

mom.-area may be called A^ and whose center of gravity is x^ ft.

from 00", while the corresponding distances for the triangles

are i a and | a .

Hence, from eq. (2), § 397, we have:

(1)

and similarly, with corresponding notation, for the right-hand

portion, or- segment, BC-, of OBC (denoting the " normal mom.-

area " C"B"T^ by A^ and reckoning x^, etc., from CC"),

Eld. = i M^a^ ¥ ^2 + i M,a, . 7 a, + A.x^. (2)

If now a straight line be conceived to be drawn 'through B
parallel to OC, we have, from the similar triangles so formed.
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(as ill Fig. 4454), {d, -h) ^ a, = {h- d,) -^ a,

this with eqs. (1) and (2) we have finally

Combining

Mpg, M^(a, + aS) M^a^ A^ A^x
+ + + + EI8 (4)

6 ' 3 '6
1

which is the "Theorem of Three Moments."

E is the modalus of elasticity of material of beam, I the

" moment of inertia " of its cross-section ; M^, M^, M^, the

moments of stress-couples (" bending-moments ") at 0, B, and

C respectively. Distances a^ and a^ are shown in Fig. 446a,

while A^, A^, x^, and x^ are as above ; 8 being the deflection of

point B from the straight line joining and C.

U.B. It should be carefully noted that eq. (4) does not

apply unless the part of beam from to C is continuous and pris-

matic ; also that in its derivation, the elastic curve is considered

concave upward throughout ; hence if a negative number is ob-

tained for Mq, M,, or M^, in any example by the use of eq.

(4), it implies that at that section the beam is convex upward,

instead of concave ; in other words that the upper fibers are in

tension and the lower in compression (instead of the 'reverse,

as in Fig. 446a).
401. Values of ^,1-, and A2X2 iii Special Cases. The Theorem of Three

Moineuts involves the use of the (imaginary) normal mom.-area of each of the

two portions (left and right "spans", or "panels"), OB and BC ; i.e. of the

products ^jXi and A^x.^, where Xj is measured from the left end of the left panel,

and x, from the right end of the right panel. "We are now to determine values

of ^jX, and A^x., for several ordinary cases of loading.

I. Single Cen-

tral Concentrated Load,

P, Fig. 446j. Here, for

a left-hand panel,

PI I I

4 2 2'
A^x,=

— ; and for a right-

hand panel,

AoX., =
PP
16"'

1^ X

Fig. 446i.

Case II. Single Non-central Concentrated Load, P.
case as a left-hand panel,

Pbc (I + c)

A,x^= [-

Fig. 4462.

Fig. 4463. For this

while, as a right-hand

panel, -42X2=
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Case III. Two (or more) Concentrated Loads. Fig. 4463.

A^, =
I
[P'b'C (I + b') + P"b"c" {I + &")] ; and for each load more than

two add a proper term in the bracket.

For A.^2 interchange b' and c', b" and c", etc.

' B o
-hi

^%-

Fig 446,. Fig. 4464.

Case IV. Any Continuous Load over a Part or the Whole of the Span; of w
ibs. per linear foot, w being variable or constant. Fig. 446^. The load on a
length dx (of loaded part) is wdx lbs. ; comparing which with the P of Case II,

(or one of the P's of Case III), we note that x corresponds to b, and l—x to c
;

— 1 /^X=Ci 1 /»Cl

hence AjX^ = ^ t wdx {I — x)x{l + x) =g- t wx {P — x') dx.

If w is variable it must first be expressed in terms of x. (For A^^ we
measure x from the right-hand end, B.)

Case V. Uniformly Distributed Load over Whole Span ; (i. e. , w is constant).

Let W, = wl, = whole load, lbs. Fig. 4465.

o liilUIIIUiUlB oliiiUUU
A^x, = A.x^

-2
I

Wl I

^WP
~ 24*

Case VI. Uniformly

Distributed Load Ad-
joining one End of

Span; (left end for

example). Fig. 446g.

Total load =W= wb. Applying method of Case IV, withCj = &, and b^ =0,

we have A^^ = J^ Wbd^ — \ b^). Also from Case IV, now measuring x from

B,A.j^, = ^\W{l'-c^) (l + c).

Parabola

Fig. 446s.
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Case VII. Uniformly Distributed Load Not Adjoining either End of the

Span. Fig^. 446. Whole load = W= w (e- 6). By Case IV, we tind

A,x, — W{e + b)
-[''-

e2 + 62

A^2 ~~

12 , L

'

2 J

'

12 D'-^l
It is now seen how A^x^^ and ^2*2 ™^y

be obtained for any loading.

402. Continuous Girders Treated

by the Theorem of Three Moments.

This theorem is of special advan-

tage in solving continuous beams

(p. 271) ; and examples will now
be given.

Example I. Fig. 447^. A straight, homogeneous, prismatic

beam or girder, 35 feet long, is placed upon three supports at

the same level, forming two spans of 15' and 20'; two concen-

trated loads in the left span, a uniformly distributed load on part

of right span. Required the maximum moment, and maximum
shear. (Neglect weight of beam.)

Take 0, B, and C, as the three sections where the three

moments Mo, M^, and M^ are situated [respectively] used in the

theorem of § 400. But both Mo and M^ are zero in this case,

and 8 (deflection of point B from line joining and C) is also

zero (since the supports are on the same level). Hence M^ (i.e.,

at B) is the only unknown quantity in applying the theorem of

§ 400 (eq. (4) ) to this problem.

Taking the A^x^ from Case III, and A^x^ from Case VII (with

/= 0), of § 398, we obtain (using the foot and ion as units),

Mr^^ + ^O)
_^ ^ _^_ _1 1-6x4x11x19+8x10x5x251

3 6 X 15 •- -"
+

16x16

12x20
202-

16^
1=0; and .'. M, = - 39.2 ft.-tons.

The negative sign shows that at section B the elastic curve

is convex on its upper side (see N. B. in § 400). To follow up

the solution from this point, let us draw the actual moment-

diagram somewhat differently from that in Fig. 446a, (which

see), where the actual moment for any section is measured from
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a continuous horizontal line, O'C, as an axis. Let the

« chords " 0"B" and B"C" of the two normal moment fig-

AVo

>'E

-f.^>-^6'-

>'F

Vb
10 urns

Hy i y V I i l i i I i i I i

AVo

k

-^—i5'-j-—M-t--
—16'—

>-l:

Fig. 447i.

ures, 0"B"T^
and C"B"T^, be

made a contin-

uous horizontal

line by an up-

ward shifting

{each in its own
vertical) of the

intercepts of

those figures.

The intercepts

0"0', B"B',

and C"C', and

the four tri-

angles involved

with them, now
extend upward

from that hori-

zontal line. But in our present problem both M^^ and M^ are

zero; hence the two upper triangles disappear and the two inner

triangles project above the horizontal line, with M^ as a com-

mon base. The actual moments of the points of the elastic

curve are now measured (in general) by the vertical intercepts

between the lower boundary of the normal moment figures and

the upper edges of the two triangles ; but since in the present

case ilf
J
is negative, M^ must be laid off below the (new) hori-

zontal line so that the lines 0"B" and C"B" will cross the

lower boundaries of the normal figures ; the actual moments being

now measured by the vertical intercepts between these two oblique

lines and the curved (or broken^ boundaries of the normal figures.

This re-arrangement has been observed in the moment-diagram

0"B" G" of Fig. 447j, where line-shaded areas correspond to the

parts of the elastic curve which are concave upward; and the dot-

shaded areas, to parts convex upward (or upper fibers in tension).

Before determining the shears, J, along the beam, we must

first determine the reactions at the support, viz. Vq, Fgj and V^
Consider the portion OB as a " free body", cutting just on left
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of support B, and put ^ (moments) = about the neutral

axis of section at B -,
deriving

6x11 + 8x5- 39.2 _ 7^ x 15 = 0; and .-. Vo= 4.5 tons.

Similarly, with EC as free body, taking moments about B,

16 x 12 - 39.2 - y^, X 20 = 0; and .-. Vo = 7.6 tons; and

hence, since V o + Vb + Vc = ^^ tons, Vg = l'^-^ tons. The

shear-diagram is now easily formed (see Fig. 417^) ; the Jiiax-

imum shear being evidently 9.55 tons, occurring in the section

just on the left of support B.

We note that the shear changes sign three times, corre-

sponding to the three (local) maximum moments (at E, B, and

K). To locate, and determine, M^, note that the change of sign

of the shear at I) is gradual and that hence the shear is exactly

zero at K; which requires that "the load between K and the

support be equal to the reaction at C, (from the free body

concerned). Since w along HC is one ton per foot, the dis-

tance ^Cmust be 7.64 tons -v- 1.00, = 7.6 ft. From this free

body, KC, we now find, by moments, that ilf^ = 29.2 ft.-tons.

As to the other maximum moment, i.e., at E, we note that

the moment at E in the normal moment^figure would be E^'' E"
= 28.2; from which by deducting t*^ of Mb (i.e., of 39.2) we
obtain M^, = 17.7 ft.-tons. Hence, the greatest moment to be

found in the beam is that at B, viz. 39.2 ft.-tons, and upon

this depends the choice of a safe and economical beam. .

Example II. Fig. 4472, Con-
tinuous prismatic beam OG.
Three supports at same level.

Find maximum moment, etc.,

under given loading, the 12 tons

being uniformly distributed over

whole of right-hand span. Neg-
lect weight of beam.

i/ max. =ilfi,= 16.6 ft.-tons. Ans.

rj ions

-^5

"B-

us 20-
-40-

''10 if 10 tons

Fig. 4473.

^—16'—4^

> ' 16 tons

Fig. 4472.

Example III. Continuous

prismatic beam on three supports

O, B, C, at same level. Three

concentrated loads. Neglect

weight of beam. Find Mb and
maximum moment, etc.

Mb= - 92.6 ft.-tons. Max.
if = 116 ft.-tons, at D. Ans.
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Example IV. Continuous prismatic beam, 40 ft. long and extending ovei

four supports at the same level. The loading is symmetrical, as shown (Fig.

lUlUiUiUl UllilUllUio

4474). Here we note that from symmetry Jf^ must = Mc; also Mo and Mj)
each = 0. Applying the Three-Moment Theorem to O, B, and C, (with 5=0)
we find

+ 1 Jf5X26+lilfBXl2+ l.?|xl7+ J-^.i X 12^ =0;

and . •. Ms = — 23.7 ft. -tons, ( = Mc, also).

Completing the mom.-diagram we find that Mb(= Mc), or 23.7, is greater

than any other moment along the beam; .-. M max. =23.7 ft.-tons. The
reactions of the supports are found to be : Fq (and Vd) =8.3 tons ; and Vb

25 tons (and Vc) = 16.6 tons. Evi-

illliJ,!! dently the elastic curve is con-

vex up, over both B and C.

' 10 tons

-<r—:is!- >\

^-6':

\<—7'-

S! ^

Fig. 4476-

The maximum shear is 11.8

tons, close on the left of sup-

port B, (or close on right of C)

.

Example V. Continuous

prismatic beam, 38 ft. long, on

three supports at the same level.

Fig. 447^. Uniformly distributed loads over portions of the length. Find the

maximum moment and maximum shear, (J).

Max. if = - 39.6 ft.-tons (at B)
;

Max. J = 10.2 tons (close at right of B)

Example VI. Fig. 447„. Continuous prismatic beam, 50 ft. long, on /our

supports at same level ; but the arrangement of loading and span-lengths is non-

symmetrical. Fig. 4476. Find the max. M and max. J. In this case Mo and

Md are each = 0, but Mb is not = Mc- We are therefore compelled to apply

the Theorem of Three Moments twice, viz. : first to the three points 0, B, and

C; and then to the three points B, C, and B ; whence we have

- Mb (14 + 20) McX 20 16 X 6 X 8 (14 + 6) 20 x 2D»

Ans.

6 X 14 24 X20

Mb X 20 Mc (20 + 16) + +
20 X 203 16 X 7 X 9 qe + 7) _
24 X 20 6X16



FLEXURE OF BEAMS; GEOMETRICAL TREATMENT. 503

(1)

(2)

or, 68Jlf5 + 20 ifc+ 1097.1 + 2000 = 0; ....
and 20 Mb + 72 ifc + 2000 + 1358.3 = ; ....
two simultaneous equations, foi- determining ifs and Mc-

Solving, we find if5 = - 34.6, and Mo = - 37.0, ft.-tons.

The three "normal mom. -diagrams " having been drawn to the common
base 0"B"C"D" in the figure, we lay off B"B' downward from B" and

aiiiuiiiiuiiiic

''-\-s'-
20'.

9^
—7^

Iq" Ic" Id"

1^—-:J416'-\-

Fig. 4476.

= 34.6 ft.-tons; and C"C', also downward, = 37.0; and draw the straight

lines 0"B\ B'C, and C'B" ; thus completing the mom. -diagram, in which,

as before, the differently shaded portions show whether the elastic curve is con-

cave up (line-shading), or convex up (dot-shading), in the corresponding part of

beam.

The four reactions of supports are then found, viz. : To, F^, Fc, and Vd,
= 6.7, 19.2, 19.0, and 6.1 tons, respectively. Shears are now easily found and
are shown in the shear diagram, the max. J being 9.8 tons, occurring just on

the right of support B. The max. if is found to occur at E, and to have a value

of 42.7 ft.-tons.

402a. Continuous Beam with One Span Unloaded. In Fig. 448

we have a continuous prismatic beam supported at three points

0, S, and C at the same level ; but the support at is above

the beam, instead of below; since that end tends to rise, there

being no load in the left-hand span. (Case of a drawbridge with

the left-end " latched down "). Neglect weight of beam. By
the Theorem of Three Moments applied to 0, B, and C, with

Mq and Mc = 0, and Mb unknown, we find Mb = — 4.9 ft.-tons.

In forming the moment-diagram here, we note that since there is

no load from to B the lower edge of the "normal mom.-diagram"
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J), tons

Fig. 448.

for OB coincides with its upper edge, i.e., with the axis itself,

viz. 0"B". The "normal mom.-diagram " for BG is, a. triangle,

with. B"Q" as base. Laying off B"B' = 4.9 downward from

B', and joining 0"B' and

B'C'^-, we complete the

actual (shaded) mom.-

diagram, as shown.
Max. moment is found

under the load and = +
9.55 ft. -tons.

To find the reaction

at 0, take OB as " free

body", cutting close on

left of ^. (See (i^) in

the figure. Note the

position of stress-couple

at right-hand end of this

body.) By moments about B we have V a X 10 — 4.9 = 0,

whence V q = (say) 0.5 tons. The other reactions and the shear

diagram are now easily d'etermined.

403. Supports out of Level. In the foregoing examples the

quantity S has been zero in each instance of the application of

the Theorem of Three Moments ; but when such is not the

case the quantities E and I are brought into play. In this con-

nection it must be remembered that any unequal settling of the

supports (originally at same level) after the beam has been put

in place, may cause considerable changes in the values of the

various moments and shears, and consequent stresses in the

material. (See lower half of p. 323.)

404. Continuous Beam with " Built-in" Ends. Fig. 449. As
a case for illustration take the prismatic beam in Fig. 449,

" huilt-in " or clamped, horizontally, at B and at C ; at the

same level. A load P is placed as

shown. On account of the mode of

support the tangents to the elastic

curve at B and will be horizontal

and are coincident ; so that portions

of the curve near the ends are convex

up

a->

Fig. 449.

Now conceive the beam to be sustained at i? by a simple
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support underneath and to extend toward the left a length Qq

at the end of which a support, 0, is placed above the beam, and

at same level as B and C (allowing for thickness of beam).

This makes an additional span (with M q = zero) ; and the tan-

gent to elastic curve at B will no longer be horizontal. But it

may he made as nearly horizontal as we please, by taking ttg small

•enough (supposing no limit to strength of beam). When a^ =
zero the tangent at B will be in its actual position (horizontal).

We may therefore apply the Theorem of Three Moments (§400)
to 0, B, and C, [noting that there is no load on 5], if we
write both Mq, and a^, = 0, whence (see also Case II of § 401),

a(Sa + 2a)^^ Ms (0 + 3a) ^ Mc^ ^ Q ^ P^a
0.

3 ' 6 ' ' 6 x,3a

Similarly, by conceiving the beam extended to tlie right, a dis-

tance a' to a point D, for another support, etc., we may apply

the theorem to the three points, B, C, and D in like fashion,

with Mo and a' = 0, obtaining

Ms^a
,

M^(3a + 0)

6 3
+ + P2a. a (3a + a)

6 X 3a
+ = 0.

Elimination gives Mb = —
t: Pa-, and Mc =
V

-Pa, ft.-tons.
y

405. Deflections found by the Theorem of Three Moments for

Prismatic Beams. Since this theorem contains h (see Fig. 446a)

the deflection of the point B
of the elastic curve of a con-

tinuous prismatic beam from

the line joining the two

others, and C, we may
use the theorem in many
cases for determining deflec-

tions when the three mcments are known.

Example I. Fig. 450. Case of two end-supports and a

single non-central load, P
;
(with weight of beam neglected).

Taking 0, B, C, as the three points (i.e., OB is the left-hand,

and BO the right-hand, span: icith no lead on either span) we

have, with Mq and Mc = 0, and Mg = Pa^a, -i- I,

Fig. 450.

+ ~ i^ - + -h
I 3

= ElS
aJ

d = Pa,%^
SEI

'
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Example n. If n is any point between and 5, at x ft.

from 0, and 0, n, and C are taken as the three points for the

theorem, we may find 8„, the deflection of n below OC^ That

is, with Mo and Mc = and Mn = P{a^ ^ I) x,

+^^L£-ii + 4- + -P^2(c^t -^)i{l -^) +^2]

3Z
'

Q{1 — x)

= EI8„
X I — xj

or, after reduction,

^"^eif^
[z^-<-a:^> (4)

Now if ttj > a^, we may find the distance x\ from 0, of the

point of maximum deflection, by putting " = : whence is
dx

obtained x' = V ^ {l^ - a,') C^)

and this substituted in (4) gives

Pa
)EI

(Compare with pp. 258 and 494.)

max. deflection, = -^^ (f - a}) V\ {I' - a/) ... (6)

(The following example is the one referred to at the loot of page 514.)

Example.—A hollow sphere of mild steel, of thickness 2 in. and internal

radius of
?'o
= 4 in., contains fluid at a pressure of 2 tons/in.^ Find max.

stress and max. strain; with £'=15,000 tons/in.^ and A; = 0.30. Here
»i= 1.5; and by substitution in eq. (30) we obtain max. hoop stress to be

§0= — 2.26 tons/in.^ (tension), while from eqs. (22) and (23) the tangential,

or hoop strain, at inner surface is found to be £3=" 0-000145 (elongation),

and the radial strain to be £1= +0.000224 (shortening).

The latter strain, £^, is seen to be the greater and the ideal ^'equivalent

simple stress" (see § 4056) is ££1=4-3.35 tons/in.^, compression, i.e., much
larger than the actual max. stress (2.26) in this case. On the "elongation

theory" (see § 4056), the 3.36, and not the 2.26, tons/in.^, is the figure that,

for safety, should not pass a prescribed unit stress ais Liferred from com-

pressive tests with an ordinary testing machine.
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A' d\

CHAPTER XIII.

THICK HOLLOW CYLINDERS AND SPHERES.

405a. General Relations between Stress and Strain.

—

(Elas-

tic limit not passed.) If a small cube of homogeneous and
isotropic material, dx inches long on each edge, is subjected

to a compressive stress of pi Ibs./in.^ on two opposite faces,

not only is its length in direction of the stress diminished,

and by an amount dX, but its lateral dimensions are increased

by an amount d/' which is a certain fraction (from 0.20 to

0.35 for metals) of dL This ratio, or fraction, is called Poisson's

Ratio, and will be denoted by k. Thus, in Fig. 450a we have
such a cube, AD being its unstrained

form. Axes 1 and 2 are in the plane of

the paper while axis 3 is 1 to the paper.

On the left and right faces is shown acting

the compressive unit-stress pi Ibs./in.^,

A'D being the form of the cube under

this stress. If now E represent the

modulus of elasticity (Young's) of the

material, we have (see p. 203) denoting

the ratio dX-^dx, or relative decrease in length, by si, ei = px -r-E;

so that if dX" is the increase in length of the vertical edges we
havedX" -i-dx (call this ratio £2=^—kpi^E; while the relative

increase of length in the horizontal edges 1 to paper will

be an equal amount, viz., e^^—kpi-^E. These ratios £i, £2,

and £3 are called the strains along the three axes 1, 2, and

3, respectively, and are abstract numbers. Hence the three

strains produced by the stress pi acting alone are

P\ kpi kpx .

£i =^; ^2=-~-^; and £3=--^. . . (1)

Now if while pi is still in action a compressive stress of

P2 lbs./in.2 acts on the two horizontal faces, and also a com-

pressive stress of ps on the two vertical faces which are parallel

to the paper, the total strain in the direction of axis 1 (that is,

the relative shortening of the cube in that direction) will be,

by superposition, £r

1- dx

Fig. 450a.

Pi k{p2+ Pz) J • M 1
• +U-^ ^ — ; and similarly, m the

directions of the other two axes, we have

£0—^—P2 kipi + ps)

E E and £3 = Ts

—

Ps k(pi + p2)

E E (2)
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(This form of stress-strain relation is due to Grashof.)

Note that if either p^, p2, or ps is a tensile stress, a negative

number must be substituted for it; and that if a negative num-

ber is obtained for si, £2, or £3, in any problem, it indicates a

lengthening instead of a shortening. Similarly, if the con-

dition is imposed that the strain £2 (say) shall be a relative

elongation of 0.00020,-0.00020 must be substituted for it in

above relation.

405b. "Elongation Theory" of Safety.—In all preceding

chapters the criterion of safety has been that the unit-stress

in the element of the elastic body where the stress is highest,

regardless of stress on the side faces, should not exceed a cer-

tain value, or working stress, =R' Ibs./in.^, as determined

upon by a consideration of the stress at "elastic limit; " this

"elastic limit " being itself determined by the ordinary ex-

periments on "simple " tension or compression of rods of the

material in question, there being no stress on the sides of the

rod. In such experiments, however, an element with four

faces parallel to the axis is subjected to stress, say p, on two

(end) faces only; and the question naturally arises whether

the elastic limit would be reached for the same value of p as

before, in case there were also present tensile or compressive

stress acting on the side faces of the element. Experiments

which would throw much light on this point are unfortunately

wanting, and some authorities,, notably on the continent of

Europe, contend that the extreme limit of safety, as regards

state of stress in isotropic materials, is when the greatest rela-

tive strain (elongation or shortening), say £1, is as great as

would be produced at the elastic limit in an experiment involving

only "simple " tension, or compression (as above described),

in an ordinary testing machine. This view would make the

greatest "strain," or deformation (change of form), the cri-

terion of safety instead of the greatest stress. Now if a stress

of "simple " tension, =p', (no side stresses) acts on an element,

the highest strain produced is in thQ direction of this stress

and has a value e' = p' ^E, since Young's modulus, E, is deter-

mined by experiments of this very nature; that is, p' = Ee'.

Hence if the greatest strain in an element in some compound
state of stress, as in § 405a, is £1, and it is desired to place it

equal to | (say) of the £1 in simple tension at elastic limit,

we may write £i = f
£' = |(p'-^£'); or E£i = lp'. If now we
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denote |p' by p" we may write Eei==p" and describe j/' , or Eei,

as the ideal tensile stress which would produce a strain, or relative

elongation, equal to £i in case there were no side stresses; Cotterill

calls this ideal stress (Esi) the ^'equivalent simple stress."

For instance, if on an element of the shell of a cylindrical

steam-boiler of soft steel the "hoop stress "
(p. 537) is pi on

two end faces and the stress on two of the other faces is p2,

= -|pi, (the stress on the remaining two opposite faces being

ps = practically zero in this connection) we have for the strain

in direction 1, by eq. (2), Eei = pi-k{hpi + 0). . . . (2')

Let p", =—15,000 lbs./in.2, tension, be the safe working

stress for the metal in simple tension; with £'= 30,000,000

lbs./in.2, and Poisson's ratio = A;= 0.30. Then according to

the view of preceding chapters the greatest safe value for the

stress pi would be —15,000 Ibs./in.^ But according to the

new view now being illustrated the safe value of pi must be

determined by limiting the strain si to a value which would

be produced by 15,000 Ibs./in.^ in simple tension, i.e., —0.00050,

(which =^p" -^E); which amounts to the same thing as re-

quiring that the ''equivalent simple stress" shall =15,000

lbs./in.2 Hence, substituting in eq. (2'), we have

- 15,000= pi(l- J. (0.30)); i.e., pi = -17,600 lbs./ in.2

tension; which is considerably greater than the 15,000 allowed

by the older theory. The relation thus brought out in this

case that the tenacity of a material is increased by the presence

of lateral tension "can hardly be considered as intrinsically

probable, and such direct experimental evidence as exists is

against the supposition " (Cotterill).

But in many cases the results of this "elongation theory "

are more probable than those based on the older theory ; hence

the former is much favored by continental writers.

405c. Thick Hollow Cylinder. Stresses and Strains.—Fig.

4506 shows a longitudinal section of a thick hollow cyUn-

der of homoge-

neous and isotropic

material (say steel

or iron) provided

with end stoppers

(^no iriciion nor vj/,,,,,,,^,,,,,,. „y ,,^yy„,,^//,/,,///////,///

leakage); and Fig. Fig. 4506.

450c a transverse section, giving dimensions.

Fig. 450c.

ro is the inner
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radius and nro the outer radius {n is a ratio). Fig. 450c also

shows (dotted Knes) an elementary hoop, or shell, of inner

radius r and outer radius r+ dr. The interior of the cylinder

is filled with fluid under a high pressure, po Ibs./in.^; and it

is required to determine the stresses and strains in a cubic

element in any elementary hoop or sign such as ABC, Fig. 450c.

Let the half hoop ABC of Fig. 450c be considered as a "free

body " in Fig. 450d, showing also at 3 a small cubic element,

as mentioned above. The compressive stress

P+dpk \ A-j-,'^ on the inner surface of the hoop isp (radial),

\l jK^^'^^jT exerted on it by the adjacent inner hoop;

while on the outer surface of the elementary

\ I hoop, and exerted on it by the adjacent

r___i-Ji— a'- outer hoop, is the compressive stress p+dp.
The thickness of the hoop is dr. The stress

on the edges, A and C, of this free body

(half hoop), will be taken as compressive

/\ ^h-y^l" at first, of intensity q Ibs./in.^ Let the

21 / / f
s ^ hoop or thin shell have a length =Z, 1 to

Fig. 450d.
^^^^^ -^ ^^ longitudinally (see Fig. 4506).

Now for this free body put IX= and we have (see pp. 525

and 526) {p+ dp)i2r+ 2dr)l-2ql . dr~p{2rl)=0 . .(3)

i.e., pr+ r . dp+ p . dr+ dp . dr— q . dr—pr= . . (4)

and hence, omitting the term dp . dr of the second order,

r . dp+ p . dr^q . dr (5)

which is a differential equation of stress. Next consider the

relations of stress and strain to be found in the small cube at

3, Fig. 450d. It is subjected to a compressive stress p along

the radial axis 1 ; to a compressive stress q a long the tangential

axis 2; while on the front and back faces the stress is p3= zero,

parallel to axis 3 (t to paper). Let now oi denote the radial

strain, £2 the tangential, and £3 the axial strain, this latter

being parallel to the axis of the cylinder. All of these strains

are supposed to be shortenings for the present; and from the

circumstances of the case the third strain £3 (axial) is con-

sidered constant (i.e., the same for all values of the variable

r), since the cylinder is under no constraint as to longitudinal

change of form.

We may therefore write the relations (see § 405a)

Ee, = p-k.q, (6); Ee2=q-k.p, (7); Ee3= 0-k(p+ q), (g)
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From (8) we have q=—'p—{Eez-^k), which in (5) gives

r .dp+ 2pr .dr=-{Ee3^k)dr .... (9)

Now multiply by r (integrating factor) and denote Eos-^k

by A, an unknown constant, (unknown since it contains the

strain £3) and we have

r2. dp+ 2pr . dr=—Ar . dr; . . . (10)

that is to say, d[r^p]= —Ar . dr; . .' . (11)

which may be integrated; giving, r^p=—^Ar^-\-C; . . (12)

where C is a constant of integration. The two constants A
and C may now be determined by substituting in (11) the

values To and po which the two variables r and p assume at

the inside surface of the cylinder. Similarly, at the outside

surface r and p have the values nro and (atmospheric pressure

relatively small and hence neglected); which being placed in

(11) give rise to a second equation, which like the first contains

constants only. From these two equations we easily find

. 2po , „ n^ro^po
A = -^—r; and C=^—r-;

n^— r n^— 1

and hence finally, from equations (12) and (8),

P=^[^-'l (13);and,= -J^j[5>Vl]. (14)

From (13) and (14) we may find the stresses p and q for

any value of the variable distance, r, from the axis. The
negative sign for q shows that it is in reality a tensile stress,

the reverse of the character assigned to it at first; i.e., it is

a "negative compressive " stress for this case of fluid pressure

acting inside the cylinder. Both p and q have maximum values

at the inner surface and diminish toward the outside.

Example.—With inner radius rQ = 4 in.; and outer, =5 in. (hence w= 5/4

or 1.25); and j9o
= 800 lbs. /in. ^; we find q max. (or q^), at inner surface,

to be 3644 Ibs./in.^; while at outer surface g= — 2844 lbs. /in. ^, tension.

If the metal is cast iron we may put ^ = 0.23 (see p. 230) and £'= 15,000,000

lbs. /in. ^, and thus obtain for the radial strain at the inner surface, e,=

+ 0.000109, indicating a shortening; and for the "hoop" strain (or tan-

gential strain) at the same place, £2= ~ 0-000255, i.e., a relative elongation

of about 2^ parts in 10,000. (The student should verify all the details of

this example, carefully noting the proper signs to be used).

405(1. Thick Hollow Cylinder under External Fluid Pressure.—If the cylinder is

siirrounded by fluid under high pressure, pn lbs. /in. ^, the internal pressure

Po being practically zero (atmosphere) in comparison, we must determine

the constants A and C of eq. (12) on the basis that p= for r= ro and
that p= pn for r= nr^ ; whence, finally, we obtain

^=5^('-'^)^ ('« "-^^ii^^')) a«
for the stresses at any distance r from the axis. Here both p and q are com-
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pressive stresses; the latter increasing, and the former diminishing, toward

the center. Evidently if the cylinder were not hollow, but solid, r^ would= 0,

and n= cc ; and both p and q would be constant, =pn, at all points.

405e. Approximate equalization of the tensile hoop stress in

successive rings of a thick hollow cylinder under internal

fluid pressure may be brought about by using two or more

separate, cylinders of which fhe outer ones are successively

"shrunk on" before the fluid is introduced. For instance,

with only two cylinders, the outer one is first heated to such

an extent that it barely fits over the inner one, the latter being

cold. When the compound cylinder has cooled the outer one

has shrunk and is in a state of hoop tension, while the inner

one is in a state of hoop compression. The radial pressure

between them, at their siirface of contact, is an internal or

bursting pressure for the outside cylinder, and an external

or collapsing pressure for the inside cylinder. The original

and final temperatures being known, we are able to make
use of the foregoing equations [(6) to (16)] to compute all

stresses and strains thus induced before the fluid is intro-

duced into the interior of the smaller cylinder. When the

internal pressure is eventually produced, the hoop stresses

in the smaller cylinder, initially compressive, will be con-

verted into moderate tensions and the tensile stresses in the

external cylinder will be increased; but the maximum ten-

sion is not so great as if the complete cyhnder had been origi-

nally continuous.. (See Prof. Ewing's Strength of Materials).

In the case of thick hollow cylinders subjected to the severe

internal pressures needed in the manufacture of lead pipe, to

produce ''flow" of the metal, it is well known (Cotterill)

that a permanent increase in the internal diameter takes place,

showing that in the inner layers of the cylinder the elastic

limit has been passed. In this way an approach is made to

equalization in the hoop stresses of all the layers and the above

formuliE no. longer hold; but the cylinder as a whole is not

injured, having simply adapted itself better to its function.

Cast-iron hydraulic press cylinders are sometimes subjected

to the high internal pressure of 3 tons/in.^ If the cylinder

is short, its resistance is doubtless much increased by connec-

tion with the end plates, or ''domes."

405f. Equation of Continuity for Thick Hollow Cylinder under Stress.—(Cotterill.)

In Fig. 450e we have mABCD the form and position of a " cubical" element (of

an elementary hoop) between thetwo radial planes ABO and Z)CO, in its con-
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dition of no stress. After it is subjected to stress it will still be iound*between

the same radial planes and will occupy some position A'B'C'D'. The radial'

thickness AB = dr, or t,
f i

will have changed to t',
/ /L ? '

BC has changed to B'C,
etc. With axes 1 and 2
as shown, 1 being radial,

and 2 tangential (or cir- I"

cumferential), we note

that the whole circumfer-

ence of which BC is a part

has shortened from a

length 2Tzr to 27rs, so that 27rs=2ffr(l— Sj), £2 being the value of the tan-

gential strain, or "hoop" strain, at distance r from center 0; and similarly

2ns'= 27zr'{l— £'2), where £3' is the hoop strain at distance r' (i.e., r+dr)

from 0. But £2 varies with r, so £2'= ^2 + t -j^- Hence, subtracting.

FiG. 450e.

t'= t-t£,-r't

s=(r'-

ds2

dr

r){l~e2)-

dr'

-r't-r.
dr

or.

whence £1 — e. = r
d£.

-r't'^-
dr

'

dr

(17)

(18>

.(19)

which is the "equation of continuity of substance," of the cylinder.

Since in the foregoing cases of thick hollow cylinder, under bursting or'

collapsing fluid pressure, both s^ and $2 may be expressed as functions of^

r, it is a simple matter for the student to show that (19) is verified in those

cases, and that hence the solutions given are adequate.

Evidently eq. (19) also holds in the case of the thick hollow sphere, where

there is a hoop strain £3, q to paper in Fig. 450, equal to that, £2? along axis 2.

lOcg. Thick Hollow Sphere under Internal Fluid Pressure.— (For thin-

walled spheres see p. 536). As thick hollow spheres are sometimes used'

to hold fluids under high pressure, and the halves of such spheres fre-

quently form the ends of thick hollow cylinders, the following treatment

will be of practical value. In Fig. 450/ we have a cross-section of the sphere

through the center. The inner radius is Tq; the

outer, nro (where n is a ratio) ; while the (variable)

r is the inner radius of

any thin spherical shell,

Fig. 450/. Fig. 450?.

of thickness dr, an infinite number of which make up the complete sphere.
Though each of these shells is under a "hoop tension," when the internal
fluid pressure is in action, we shall at first deal with this stress as if

compressive, for uniformity in applying the principles of § 450a.
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Consider as a free body any hemispherical shell as shown in Fig. 450g.

The pressure (radial) on the inside, from the adjacent shell, is p lbs. /in.*;

and that from the adjacent shell on the outside is p+ dp, or p'. The radius

of the outside will be called r', { = r+ dr). The "hoop compression" on the

thin edge of the shell is q Ibs./in.^ These three quantities, p, r, and q,

are variables, i.e., refer to any infinitesimal shell of the sphere. The strains

affecting any small "cubical" block in any shell are p, radial; q, tangential;

and 53, =q, along a tangent T to the first mentioned.

Taking an axis X through the center and T to sectional plane AB, and
putting 2 (X-components) = 0, for equilibrium, we have

7ir'^p'— 7rr^p—27:r.dr.q= 0; i.e., r'^p'— r^p= 2qr . dr.

But the difference, r'^p'— r^p, is nothing more than the increment accruing

to the product r^p when r takes the increment dr, and is therefore the

differential of the quantity or product r^p ; hence we may write

d{r^p)=^2qr . dr; or, r^ . dp+2pr . dr= 2qr . dr . . . (20)

We next consider the relations of stress and strain in the small cubical

element shown in Fig. 450/i, having four radial and two tangential faces.

The unit stresses on the faces are as there shown; p on the two tan-

gential, and q on the four radial, faces. Radial strain = e^ and hoop strain

(tangential) = £2= same for any tangent. It has already been proved in

§405/ that e,-e,=r.^; (21)

and we also have, from § 405a, Eei = p—2kq; (22)

and Ee2 = q-k{p+ q) (23)

From the four equations, (20), (21), (22) and (23), containing the five

variables p, q, £1, £2) and r, we may by elimination and integration finally

determine p and q, each as a function of r; as follows: (C, C", Cj, C^, etc.,

will denote constants of integration, or, constant products involving E and k.

From (22) and (23) we obtain a value for £1— £n which in (21) gives rise

to an expression for p—q. Another expression for p—q is obtained from

(20) . Equating these two expressions we derive —dp= Ci . dsi', that is,

by integration, — p = Ci£2+ C2 (24)

By elimination of £2 between (24) and (23) we obtain q in terms of p which
substituted in (20) produces r^ . dp + 2>pr . dr= C^r . dr .... (25)

Eq. (25) is made integrable by multiplying by r (integrating factor);

whence r^ . d'p+ 3pr^ . dr = C^r'^ . dr

The left-hand member is evidently d[r^p\ Therefore (^[r^^?]= C^r^ . dr
;

C"
or, integrating, Hp= ^Cor^+ C^ ; that is, p =C'-\—3-, . . (26)

dp 3C" C"
whence, also, -f^= ^; which in (20) gives rise to q= C'— -^. . (27)

We may now determine the two constants C and C" substituting in eq. (26),

first p= P(, and r= rg ; and then p = with r= nr^. The values of C" and C" so

obtained are placed in (26) and (27), resulting finally in the relations

P=„-^5?^-l)^ • (28) and ,_--.?i-.("^+l).
. (29)

The negative sign of q shows that it is a tensile stress, or "hoop tension."

It is evidently a maximum for r=rf), this maximum value being

Pi

^(^+0 <^«

(For a numerical example see foot of p. 506).

go, =gmax.,=
. ^^



PART IV.

HYDRAULICS.

CHAPTEE I.

DEFINITIONS—FLUID PRESSURE-HYDROSTATICS BEGUN.

406. A Perfect Fluid is a substance the particles of which

are capable of moving upon each other with the greatest free

dom, absolutely without friction, and are destitute of mutual

attraction. In other words, the stress between any two con-

tiguous portions of a perfect fluid is always one of comjpression

and normal to the dividing surface at every point ; i.e., no

shear or tangential action can exist on any imaginary cutting

plane.

Hence if a perfect fluid is contained in a vessel of rigid ma-

terial the pressure experienced by the walls of the vessel is

normal to the surface of contact at all points.

For the practical purposes of Engineering, water, alcohol,

mercury, air, steam, and all gases may be treated as perfect

fluids within certain limits of temperature.

407. Liq[uids and Gases.—A fluid a definite mass of which

occupies a definite volume at a given temperature, and is in-

capable both of expanding into a larger volume and of being

compressed into a smaller volume at that temperature, is called

a Liquid, of which water, mercury, etc., are common examples;

whereas a Gas is a fluid a mass of which is capable of almost

indefinite expansion or compression, according as the space

within the confining vessel is made larger or smaller, and al-

ways tends to fill the vessel, which must therefore be closed in.

every direction to prevent its escape.

515
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Liquids are sometimes called inelastic fluids, and gases

elastic fluids.

408. Eemarks.—Though practically we may treat all liquids

as incompressible, experiment shows them to be compressible

to a slight extent. Thus, a cubic inch of water under a pres-

sure of 15 lbs. on each of its six faces loses only fifty millionths

(0.000050) of its original volume, while remaining at the same

temperature ; if the temperature be sufficiently raised, how-

ever, its bulk will remain unchanged (provided the initial tem-

perature is over 40° Fahr.). Conversely, by heating a liquid in

a rigid vessel completely filled by it, a great bursting pressure

may be produced. The slight cohesion existing between the

particles of most liquids is too insignificant to be considered in

the present connection.*

The property of indefinite expansion, on the part of gases,

by which a confined mass of gas can continue to fill a confined

space which is progressively enlarging, and exert pressure

against its walls, is satisfactorily explained by the " Kinetic

Theory of Gases," according to which the gaseous particles are

perfectly elastic and in continual motion, impinging against

each other and the confining walls. Nevertheless, for prac-

tical purposes, we may consider a gas as a continuous sub-

stance.

Although by the abstraction of heat, or the application of

great pressure, or both, all known gases may be reduced to

liquids (some being even solidified); and although by con-

verse processes (imparting heat and diminishing the pressure)

liquids may be transformed into gases, the range of tempera-

ture and pressure in all problems to be considered iu this work

is supposed kept within such limits that no extreme changes of

state, of this character, take place. A gas approaching the

point of liquefaction is called a Vapor.

Between the solid and the liquid state we find all grades of

intermediate conditions of matter. For example, some sub-

stances are described as soft and plastic solids, as soft putty,

moist earth, pitch, frosh mortar, etc.; and others as viscous and

sluggish liquids, as molasses and glycerine. In sufficient bulk,

* Water has recently been subjected to a pressure of 65,000 Ibs./in.^;

resulting in a reduction of 10 per cent in the volume. See Engineering

News, Oct. 1900, p. 236.
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however, the latter may still be considered as perfect fluids.

Even water is slightly viscous.

409. Heaviness of Fluids.—The weight of a cubic unit of a

homogeneous fluid will be called its heaviness,* or rate of

weight (see § 7), and is a measure of its density. Denoting it

hy y, and the volume of a definite portion of the fluid by Vy

Ive have, for the weight of that portion,

6^= Fr. a)

This, like the great majority of equations used or derived in

this work, is of homogeneousform (§ 6), i.e., admits of any sys-

tem of units. E.g., in the metre-kilogram-second system, if y
is given in kilos, per cubic metre, Y must be expressed in

cubic metres, and G will be obtained in kilos.; and similarly

in any other system. The quality of 7, = 6^ -f- "F, is evidently

one dimension of force divided by three dimensions of length.

In the following table, in the case of gases, the temperature

and pressure are mentioned at which they have the given

heaviness, since under other conditions the heaviness would be

different ; in the case of liquids, however, for ordinary pur-

poses the effect of a change of temperature may be neglected

(within certain limits).

HEAVINESS OF VARIOUS FLUIDS.*

[In ft. lb. sec. system; y = weight in lbs. of a cubic foot.]

Liquids.

Freshwater, y =^ 63.5

Sea water 64.0

Mercury 848.7
Alcohol 49.3

Crude Petroleum, about 55.0

(N.B.—A cubic inch of water
weighs 0.0361 lbs.; and a cubic
foot 1000 av. oz.)

p(„„„„ J At temp, of melting ice; and 14.7
^^tdbet,

j jjjg pgj, gq jj^_ tension.

Atmospheric Air 0807C
Oxygen 0.0893
Nitrogen ...0.0786
Hydrogen 0.0056
Illuminating ) from 0. 0300

Gas, )to 0.040(^

Natural Gas, about 0.0500

* Sometimes called "specific weight;" while its reciprocal, or \^x
may be styled the "specific volume" of the substance, i.e., the volume
of a unit of weight.
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For use in problems where needed, values for the heaviness

of pure fresh water are given in the following table (from

Rossetti) for temperatures ranging from freezing to boiling

;

as also the relative density, that at the temperature of maxi-

mum density, 39°.3 Fahr. being taken as unity. The temper-

atures are Fahr., and y is in lbs. per cubic foot.

Temp. Rel.
Dens. 7- Temp. Rel.

Dens. V- Temp. Rel.
Dens. V-

32° .99987 62.416 60° .99907 62.366 140° .98338 61.886
35° .99996 62.421 70° .99802 62.300 150° .98043 61.203
39°. 3 1.00000 62.424 80° .99669 62.217 160° .97729 61.006
40° .99999 62.423 90° .99510 62.118 170° .97397 60.799
43° .99997 62.422 100° .99318 61.998 180° .97056 60.586
45° .99992 62.419 110° .99105 61.865 190° .96701 60.365
50° .99975 62.408 120° .98870 61.719 200° .96333 60.135
55° .99946 62.390 130° .98608 61.555 212° .95865 59.843

From D. K. Clark's] for temp. =
" Manual." \ y =^

230°

59 4

250° 270°

58.7 58.2

290°

57.6

298°

57.3

338°

56.1

366°

55.3

390°

54.5

Example 1. What is the heaviness of a gas, 432 cub. in. of

which weigh 0.368 ounces? Use ft.-lb.-sec. system.

432 cub. in. = \ cub. ft. and 0.368 oz, = 0.023 lbs.

.*. y =. -z=: -'——= 0.092 lbs. per cub. foot.
y i

Example 2. Required the weight of a right prism of mer-

cury of 1 sq. inch section and 30 inches altitude.

30F=30 X 1 = 30 cub. in

table, y for mercury = 848.Y lbs. per cub. ft.

30

^ ^^ - cub. feet : while from the
1Y28.

'

its weight = ^ = Yy
17!

X 848 r = 14.73 lbs.

410. Definitions.—By Hydraulics we understand the me-

<'iianics of fluids as utilized in Engineering. It may be divided

i7Jto

Hydrostatics^ treating of fluids at rest ; and

Hydrokinetics^ which deals with fluids in motion. (The

name Pneumatics is sometimes used to cover both the statics,

and kinetics of gaseous fluids.)
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411. Pressure per Unit Area, or Intensity of Pressure.—As in

§ 180 in dealing with solids, so here with fluids we indicate the

pressure per unit area between two contiguons portions of

fluid, or between a fluid and the wall of the containing vessel,

by J?, so that if dP is the total pressure on a small area dF^

we have

dP ...

^^dF (^)

as the pressure per unit area, or intensity of pressure (often,

though ambiguously, called the tension in speaking of a gas)

on the small surface dF. If pressure of the same intensity

exists over a finite plane surface of area = F, the total pres-

sure on that surface is

P = fpdF=pfdF= Fp, 1

P ^ .... (2)
or i? = p. J

(N.B.—For brevity the single word " pressure" will some-

times be used, instead of intensity of pressure, where no am-

biguity can arise.) Thus, it is found that, under ordinary con-

ditions at the sea level, the atmosphere exerts a normal pressure

(normal, because fluid pressure) on all surfaces, of an intensity

of about p = 14:7 lbs. per sq. inch (= 2116. lbs. per sq. ft.).

This intensity of pressure is called pne atmosjphere. For ex-

ample, the total atmospheric pressure on a surface of 100 sq.

in. is [inch, lb., sec]

P=i^p=. 100X14.7= 1470 lbs. (= 0.735 tons.)

The quahty of p is evidently one dimension of force

divided by two dimensions of length.

By one ^' atmosphere,^' then (or "standard atmosphere;"

an arbitrary unit), is to be understood a unit-pressure of

14.70 Ibs./sq. in., or 2116.8 Ibs./sq. ft. This would be the

weight of a prismatic column of w^ater one sq. in. in section

and 33.9 ft. high (commonly considered 34 ft. for ordinary

computations); or of a prismatic column of mercury 30 in.

high and one sq. in. section. These numbers, 14.70, 34,
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and 30, with their meanings as above, should be memorized

by the student; as they are to be of very frequent service

in this study.

At high altitudes the actual pressure of the air is much
smaller than the conventional "atmosphere." E.g. (see

p. 621) at 7000 ft. above the sea the height of a mercury

column measuring the air pressure- is only about 24 in.,

instead of the 30 in. above cited; varying somewhat, of

course, with the weather.

412. Hydrostatic Pressure; per Unit Area, in the Interior of a

Fluid at Rest.—In a body of fluid of uniforin heaviness, at

rest, it is required to find the mutual pressure per unit area be-

tween the portions of fluid on opposite sides of any imaginary

cutting ])]ane. As customary, we shall consider portions of

the fluid as free bodies, by supplying the forces exerted on

them by all contiguous portions (of fluid or vessel wall), also

those of the earth (their weights), and then apply the condi-

tions of equilibrium.

First, cutting plane horizontal.—Fig. 451 shows a body of

homogeneous fluid confined in a rigid

vessel closed at the top with a small air-

tight but frictionless piston (a horizontal

disk) of weight = G and exposed to at-

mospheric pressure {=Pa per ^ii^it area)

on its upper face. Let the area of piston-

face be = ^. Then for the equilibrium

of the piston the total pressure between

its under surface and the fluid at must

be

WSM

Fm. 451.

F=G + Fpa,

and hence the intensity of this pressure is

' G
i^o F -\-Pa' (1)

It is now required to find the intensity, p, of fluid pressure

between the portions of fluid contiguous to the horizontal cut-

ting plane BCa.t a vertical distance = A vertically below the pis-

ton 0. In Fig. 452 we have as a free body the right parallel©-
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piped OBC oi Fig. 451 with vertical sides (two || to paper and

four ~j to it). The pressures acting on its six faces are normal

to them respectively, and the weight of the prism is = vol.

X;k = FhVi supposing y to have the same value at all parts of

the column (which is practically true for any height of liquid

and for a small height of gas). Since the

prism \2 in equilibrium under the forces

shown in the figure, and would still be so

were it to become rigid, we may put (§ 36) >i

2 (vert, compons.) = and hence obtain
*"

j

Fp-F:p,- Fhy = 0. . . (2) r !

^^^

>JT-i-T—rx"

(In the figure the pressures on the ver- ^

tical faces
i|

to paper have no vertical com- ^P

ponents, and hence are not drawn.) From fig. 452,

(2) we have

JP =P. + hy. (3)

{hy, being the weight of a column of homogeneous fluid of unity

cross-section and height A, would be the total pressure on the

base of such a column, if at rest and with no pressure on the

upper base,, and hence might be called intensity due to weigJd.)

Secondly, cutting plane oblique.—Fig. 453. Consider free

an infinitely small right triangular prism bed, whose bases are

li to the paper, while the three side

faces (rectangles), having areas = dF,
dF^ ,

and dF^ , are respectively hori-

zontal, vertical, and oblique ; let angle

cbd = a. The surface he is a portion

^_ V^h of the plane BC oi Fig. 452. Given

H— V j? (= intensity of pressure on dF) and
"

) Of, required ^2? the intensity of pressure

on the oblique face hd, of area dF^.

SJS,. B.—The prism is taken very small

in order that the intensity of pressure may be considered con-

stant over any one face ; and also that the weight of the prism

may be neglected, since it involves the volume (three dimen-

Fm. 453.
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sions) of the prism, while the total face pressures involve onlj

two, and is hence a differential of a higher order.]

From ^ (vert, compons.) = we shall have

p^dF^ cos a —j>dF= ; but dF-^ dF^ = cos or

;

I>.=P, (4)

which is independent of the angle a.

Hence, the mtensity of fluid 'pressure at a given point is

the same on all imaginary cutting planes containing the

point. This is the most important property of a fluid, and is

true whether the liquid is at rest or has any kind of motion ;

for, in case of rectilinear accelerated motion, e.g., although the

sum of the force-components in the direction of the accelera-

tion does not in general = 0, but = mass X ace, still, the

mass of the bodj in question is = weight -i- g, and therefore

the term mass X ace. is a dijfferential of a higher order than

the other terms of the equation, and hence the same result

follows as when there is no motion (or uniform rectilinear

motion).

413. The Intensity of Pressure is Equal at all Points of any

Horizontal Plane in a body of homogeneous fluid at rest. If

we consider a right prism of the fluid in Fig. 451, of small

vertical thickness, its axis lying in any horizontal plane £0^
its bases will be vertical and of equal area dF. The pressures

on its sides, being normal to them, and hence to the axis, have

no components |1 to the axis. The weight of the prism also

has no horizontal component. Hence from 2 (hor. comps.

II to axis) = 0, we have,^i smdp^ being the pressure-intensi-

ties at the two bases,

p,dF-p,dF=0; .:p=p,, .... (1)

which proves the statement at the head of this article.

It is now plain, from this and the preceding article, that

the pressure-intensity p at any point in a homogeneous fluid

at rest is eqiial to that at any higher point, plus the weight



FLUID PRESSURE. 523

{hy) of a column of the jiuid of section unity and of altitude

\fi) = vertical distance between the joints.

^.(^., p =p.+ hy, (2)

whether they are in the same vertical or not^ and whatever he

the shajpe of the containing ^
vessel {or pipes), provided the

fluid is continuous hetween

the two pointsI for, Fig, 454,

bj considering a series of

small prisms, alternately ver-

tical and horizontal, ohcde, we
know that

Pd=Pc — Ky ;
and Pc—Pd'i

hence, finally, by addition we have

(in which A = Aj — h^.

If, therefore, upon a small piston at <?, of area = ^o, a force

jP„ be exerted, and an inelastic fluid (liquid) completely fills the

vessel, then, for equilibrium, the force to be exerted upon the pis-

ton at 6, viz., Pg , is thus computed : For equilibrium of fluid

p^ =.p^ -\- hy ; and for equil. of piston o, j?„ = P„ -^ F^ ; also,

P, = ^^P,-\-FM. (3)

From (3) we learn that if the pistons are at the same level

{h, = 0) the total pressures on their inner faces are directly

proportional to their areas.

If thie fluid is gaseous (2) and (3) are practically correct if

h is not > 100 feet (for, gas being compressible, the lower

i^^trata are generally more dense than the upper), but in (3) the

pistons must be fixed, and P^ and P„ refer solely to the in-

terior pressures.
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Again, if A is small or jp^ very great, the term hy may be

omitted altogether in eqs. (2) and (3) (especially with gases,

since for them y (heaviness) is usually small), and we then

have, from (2),

i^=i?o; (4)

being the algebraic form of the statement: A l)ody of Jkiid

at 7'est transmits pressure with equal intensity in every direc-

tion and to all of its parts. [Principle of "Equal Transmis.

sion of Pressure."]

414. Moving Pistons.—If the fluid in Fig. 454 is inelastic

and the vessel walls rigid, the motion of one piston (c) through

a distance s^ causes the other to move through a distance s^ de-

termined by the relation F^s^ = F^s^, (since the volumes de-

scribed by them must be equal, as liquids are incompressible)

;

but on account of the inertia of the liquid, and friction on the

vessel walls, equations (2) and (3) no longer hold exactly, still

are approximately true if the motion is very slow and the

vessel short, as with the cylinder of a water-pressure engine.

But if the fluid is compressible and elastic (gases and vapors
;

steam, or air) and hence of small density, the effect of inertia

and friction is not appreciable in short wide vessels like the

cylinders of steam- and air-engines, and those of air-compres-

sors ; and eqs. (2) and (3) still hold, practically, even with high

piston-speeds. For example, in the space ABy
Fig. 455, between the piston and cylinder-head

of a steam-engine (piston moving toward the

right) the intensity of pressure, ^, of the

steam against the moving piston B is prac-

FiG. 455. tically equal to that against the cylinder-head

A at the same instant.

415. An Important Distinction between gases and liquids

(i.e., between elastic and inelastic fluids) consists in this:

A liquid can exert pressure against the walls of the contain-

ing vessel only by its weight, or (when confined on all sides)

by transmitted pressure coming from without (due to piston

pressure, atmospheric pressure, etc.); whereas

—
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A gas, confined, as it must be, on all sides to prevent dif-

fusion, exerts pressure on the vessel not onlj by its v^eiglit,

but by its elasticity or tendency to expand. If pressure from

without is also applied, the gas is compressed and exerts a still

greater pressure on the vessel walls.

416. Component, of Pressure, in a Given Direction.—Let

A BCD, whose area = c.Zi^ be a small element of a surface,

plane or curved, and^ the intensity of A

fluid pressure upon this element, then ^ap\ /i\
the total pressure upon it is pdJF, and is \/^

I \q
of course normal to it. Let A'B'CD be / ---'''^^

>

the projection of the element dJc upon cc X \|b'^,--'

a plane CDM making an :?.ngle a with y" ^X,-^-'"''

the element, and let it be required to j
'

find the value of the component oijpdF ^^^' '*°^"

in a direction normal to this last plane (the other component

being understood to be 1| to the same plane). We shall have

Compon. ofpdF ~\ to CDM= pdF cos a =j>{dF. Goa a). (1)

But dF . cos a = area A'B'CD^ the projection of <i^upon

the plane CDM,

.', Compon. 1 tojplane CDM =p X {project, ofdFon CDM)\

i.e., the component offluid pressure (on an element of a sur-

face) in a given direction (the other component being ~1 to

the first) isfound hy midtiplying the intensity of the pressure

hy the area of the projection of the element xpon a plane 1 to

the given direction.

It is seen, as an example of this, that if the fluid pressures

on the elements of the inner surface of one hemisphere of a

hollow sphere containing a gas are resolved into components ~|

and
II
to the plane of the circular base of the hemisphere, the

sum of the former components simply = n'r^p, where r is the

radius of the sphere, and^ the intensity of the fluid pressure

;

for, from the foregoing, the sum of these components is just

the same as the total pressure would be, having an intensity p.,
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Oil a great circle of the sphere, the area, Trr^, of this circle being

the sun) of the areas of the projections, upon this circle as a

base, of all the elements of the hemispherical surface. (Weight

of fluid neglected.)

A similar statement may be made as to the pressures on

the inner curved surface of a right cylinder.

417. Non-planar Pistons.—From the foregoing it follows that

the sum of the components || to the piston-rod, of the fluid

pressures upon the piston at A, Fig. 457, is just the same as at

_5, if the cylinders are of equal size and the steam, or air, is at

the same tension. For the sum of the projections of all the

elements of the curved surface of A upon a plane ~\ to the

piston-rod is always = Ttr'^ = area of section of cylinder-bore.

Fig. 457.

If the surface of A is symmetrical about the axis of the cylin-

der the other components (i.e., those ~] to the piston-rod) will

neutralize each other. If the line of intersection of that sur-

face with the surface of the cylinder is not symmetrical about

the axis of the cylinder, the piston may be pressed laterally

against the cylinder-wall, but the thrust along the rod or

" working force'' (§ 128) is the same (except for friction in-

duced by the lateral pressure), in all instances, as if the surface

were plane and 1 to piston-rod.

418. Bramah, or Hydraulic, Press.—This is a familiar instance

of the principle of transmission of fluid pressure. Fig. 458.

Let the small piston at O have a diameter <^ = 1 inch = -^ ft.,

while the plunger E, or large piston, has a diameter d' = AB
= CD=lh in. = I ft. The lever MJ^ weighs <?, = 3 lbs.,

and a weight G — 4S) lbs. is hung at M. The lever-arms of

these forces about the fulcrum N are given in the figure.

The apparatus being full of water (oil is often used), the fluid

pressure P„ against the small piston is found by putting
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5(moms. about JV) == for the equilibrium of the leverj

whence [ft., lb , sec]

P„ X 1 - 40 X 3 - 3 X 2 = 0. /, P„ = 126 IbSo

Fig. 458.

But, denoting atmospheric pressure by ^„, and that of the

water against the piston by p^ (per unit area), we may also

write

Solving for p^ , we have, putting p^, = 14.7 X 144 lbs, per

aq. ft.,

p, = [126 -^ ~ {-^yl + 14.Y X 144 = 25286 lbs. per sq. ft.

Hence at e the press, per unit area, from § 409, and (2), § 4185 m

p^ = j>„ 4- A;j/ = 25236 + 3 X 62.5 = 25423 lbs. per sq. ft.

= 175.6 lbs. per sq. inch or 11.9 atmospheres, and the total

upward pressure at e on base of plunger is

P = FePe =7t'±-p, = i 7r{iy X 25423 = 81194 lbs.,

or almost 16 tons (of 2000 lbs. each). The compressive force

upon the block or bale, C, = P less the weight of the plunger

and total atmos. pressure on a circle of 15 in. diameter.
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419, The Dividing Surface of Two Fluids (which do not mix) in

Contact, and at Sest, is a Horizontal Plane,—For, Fig. 459, sup-

posing any two points e and O of this, sur-

face to be at different levels (the pressure

at being ^o, that at ejCg, and the teavi-

nesses of the two fluids 7, and y^ respec-

tively), we would have, from a considera-

tion of the two elementary prisms eb an

to (vertical and horizontal;, the relationFig. 459.

while from the prisms eo and gO^ the relation

These equations are conflicting, hence the aoove supposition

is absurd. Therefore the proposition is true.

For stable equilibrium, evidently, the heavier fluid must oc-

cupy the lowest position in the vessel, and if there are several

fluids (which do not mix), they will arrange

themselves vertically, in the order of their den-

sities, the heaviest at the bottom, Fig. 460. On
account of the property called diffusion the par-

ticles of two gases placed in contact soon inter-

mingle and form a uniform mixture. This fact

gives strong support to the " Kinetic Theory of

Gases" (§ 408).
Fig. 460,

420. Free Surface of a Liquid at Rest.—The surface (of a

liquid) not in contact with the walls of the containing vessel

,...,._.,...,,.., is called a free surface^ and is necessarily

^fi^'^^^^^^^^m^:^'^ T'
horizontal (from § 419) when the liquid is at

:..;,(.:,.- w-i;: .,•'

yq%\.. Fig. 461. (A gas, from its tendency

to indefinite expansion, is incapable of hav-

ing a free surface.) This is true even if the

space above the liquid is vacuous, for if the

surface were inclined or curved, points in the

body of the liquid and in the same horizon-

tal plane would have different heights (or " heads") of liquid

Fig. 461.
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between ttein and the surface, producing different intensities

of pressure in the plane, which is contrary to § 413.

When large bodies of liquid like the ocean are considered,

grayitj can no longer be regarded- as acting in parallel lines

;

consequently the free surface of the liquid is curved, being ~\

to the direction of (apparent) gravity at all points. For ordi-

nary engineering purposes (except in Geodesy) the free surface

of water at rest is a horizontal plane.

421. Two Liquids (whicli do not mix) at Rest in a Bent Tube

open at Both Ends to the Air, Fig. 460 ; water and mercury, for

instance. Let their heavinesses be y^

and y^ respectively. The pressure at e

may be written (§ 413) either

or

according as we refer it to the water

column or the mercury column and

their respective free surfaces where the

pressure j?Oj =i?Og = Pa = atmos. press.

€ is the surface of contact of the two liquids.

_.-Xv_>«

Hence we have

l>a+ Kr,=Pa+ Kn; i.e., ^, : K-'-n- r^- • (3)

le., the heights of thefree surfaces of the two liquids above the

surface of contact are inversely proportional to their respec-

tive heamnesses.

ExamJ'le.—If the pressure at ^ = 2 atmospheres (§ 896) we
shall have from (2) (inch-lb.-sec. system of units)

KYx = JPe — /?a = 2 X 14.7 — 14.7 = 14.7 lbs. per sq. inch.

.-. \, must = 14.7 -j- [848.7 -H 1728] = 30 inches

(since, foi mercury, y^ = 848.7 lbs. per cub. ft.). Hence,

from (3), .

, h,y, 30 X [848.7 -- 1728] , „g . , „ . ._^
^' = 7r" 6275-^1728 = ^^^ ^^'^"'

= ^^ ^-
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i.e., for equilibrium, and that j?e may = 2 atmospheres, k^ aud

Aj (of mercarj and water) must be 30 in. and 34 feet respec-

tively.

422. City Water-pipes.—If h = vertical distance of a point

^ of a water-pipe below the free surface of reservoir, and tlie

water be at rest, the pressure on the inner surface of the pipe

at B (per unit of area) is

p =p^-\- hy ; and here j!?o =^„ = atmos. press.

Example.—If h = 200 ft. (using the inch, lb., and second)

P = 14.7 + [200 X 12][62.5 -=- 1T28] = 101.5 lbs. per sq. in.

The term hy, alone, = 86.8 lbs. per sq. inch, is spoken of as the

'hydrostattG press-ure due to 200 feet height, or "Head," of

water. (See Trautwine's Pocket Book for a table of hydro-

static pressures for various depths.)

If, however, the water {^flowing through the pipe, the pres-

sure against the interior wall becomes less (a problem of Hy-

drokinetics to be treated subsequently), while if that motion

is suddenly checked, the pressure becomes momentarily much

greater than the hydrostatic. This shock is called ' water-

ram" and " water-hammer," and may be as great as 200 to 300

lbs. per sq. inch.*

423. Barometers and Manometers for Fluid Pressure.—If a

tube, closed at one end, is filled with water, and ihe other ex-

tremity is temporarily stopped and afterwards

opened under water, the closed end being then

a (vertical) height = h above the surface of

the water, it is required to find the intensity,

jp^ , of fluid pressure at the top of the tube, sup-

posing it to remain filled with water. Fig.

463. At E inside . the tube the pressure is

14.7 lbs. per sq. inch, the same as tljat outside

at the same level (§ 413) ; hence, from Pe=^ P<s

Fig. 463.

H-Vj
P.=I>E-hy. w

* See pp. 203-214 of the author's "Hydraulic Motors."
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Example.—Let A = 10 feet (with inch-lb.-sec. system) ; then

f^ = 14.Y - 120 X [62.5 -^ 1T28] = 10.4 lbs. per sq. inch,

or about f of an atmosphere. If now we inquire the value

of A to make 'p^ = zero, we put j?^ — hy = and obtain h =z

408 inches, = 34 ft., which is called the height of the water-

haroineter. Hence, Fig. 463^^, ordinary atmospheric pressure

will not sustain a column of water higher than 34 feet. If

mercury is used instead of water the height supported by one

atmosphere is

I = 14.Y -^ [.848.7 -=- 1723] = 30 inches,

Fig. 463a.

= 76 cefatims. (about), and the tube is of more manageable

proportions than with water, aside from the ad-

vantage that no vapor of mercury forms above

the liquid at ordinary temperatures. [In fact, the

water-barometer height 5 = 34 feet has only a

theoretical existence since at ordinary tempera-

tures (40° to 80° Fahr.) vapor of water would

form above the column and depress it by from

0.30 to 1.09 ft.] Such an apparatus is called a

Barometer^ and is used not only for measuring

the varying tension of the atmosphere (from 14.5

to 15 lbs. per sq. inch, according to the weather and height

above sea-level), but also that of any body of gas. Thus, Fig.

464, the gas in D is put in communication with

the space above the mercury in the cistern at

(7; and we have jp = hy^ where y = heav. of

mercury, andp is the pressure on the liquid in

the cistern. For delicate measurements an at-

tached thermometer is also used, as the heavi-

ness y varies slightly with the temperature.

If the vertical distance CD is small, the ten-

sion in Cis considered the same as in D.

For gas-tensions greater than one atmosphere,

the tube may be left open at the top, forming an open ma-

n.

Fig. 464.
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nometevy Fig. 4C5. In this case, tlie tension of the gas above

the mercury in lh% cistern is

c

-.^

AjR-:-':,-'

h

m

;;;;

— '
Y

i

D
1 ''''-CS

Fig. 465.

J?
= (A -f h)r (1)

in which 5 is tlie height of mercury (abf>ut 30

in,) to which the tension of the atmosphere above

the mercury column is equivalent.

Example.—If A = 51 inches, Fig. 465, we
have (ft., lb., sec.)

p = [4.25 ft. + 2.5 ft.] 848.Y = 5728 lbs. per sq. foot

= 39.7 lbs. per sq. incli = 2.7 atmospheres.

Anotherform of the open manometer consists of a U tube,

Fig. 464, the atmosphere having access to one branch, the gas

to be examined, to the other, while the

mercury lies in the curve. As before, we
•^

' AIR

nave -^ ^ -"

jp = qi-^l)y = hy -\-2>^ (2) r^:^
where j^ei = atmos. tension, and h as above.

The tension of a gas is sometimes spoken , ^j

of as measured by so many inches of 7ner- •"- ^^^^

G^iry. For example, a tension of 22.05 fig. 466.

lbs. per sq. inch {1^ atmos.) is measured by 45 inches of mer-

cury in a vacuum manometer (i.e., a common barometer),

Fig. 464. With the open manometer this tension (1-|- atmos.)

would be indicated by 15 incbes of actual mercury, Figs. 465

and 466. An ordinary steam-gauge indicates the eaaoess of

tension over one atmosphere ; thus " 40 lbs. of steam" implies

a tension of 40+ 14:.7 = 54.7 lbs. per sq. in.

The Bourdon steam-gauge in common use consists of a

curved elastic metal tube of flattened or elliptical section

^^with the long axis ~] to the plane of the tube), and has one

end fixed. The movement of the other end, which is free and
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closed, bj proper mechanical connection gives motion to the

pointer of a dial. This movement is caused by any change of

tension in the steam or gas admitted, through the fixed end, to

the interior of the tube. As the tension increases the ellip-

tical section becomes less flat, i.e., more nearly circular, caus-

ing the tv70 ends of the tube to separate more widely, i.e., the

free end moves away from the fixed end ; and vice versa.

Such gauges, however, are not always reliable. They are

graduated by comparison with mercury manometers ; and

should be tested from time to time in the same way.*

424. The Differential Manometer.—In Fig. 467 OO'NK is a

portion of a pipe with the upper wall 00' horizontal. In

this pipe water is flowing from left to right in so called

"steady flow; " that is, there is no change, as time goes on,

in the velocity or internal pressure of the water at a given

section, as at or 0'. At 0' the velocity is greater than at

0, since the sectional area is smaller and the pressure po is

smaller than that, po, at 0; (as explained later) (p. 654).

The U-tube dmm contains mercury weighing 7-^ lbs. /eft.

in its lower part and is connected by the tubes aO and hO',

as shown, with holes in the upper wall of the pipe at and
0'. Air previously contained in these

tubes has been expelled through the

cocks a and 6, which are now closed.

The water columns Oac and dhO' and
the mercury in cm have adjusted them-

selves to a state of rest and are therefore

in a hydrostatic condition. The water

in the pipe exerts an upward pressure, yo,

as it flows by, against the base of the

stationary Uquid in tube Oa; and at 0' a

smaller upward pressure, p^ , against

the base 0' of the stationary water

column O'h. If the height h (between summits of the

mercury columns) be read from a scale, we are enabled to

compute the value of the difference, po— p^ , of the pressures

at and 0'; as may thus be shown (with p^ and p^ denoting

the pressures at c and d, respectively) :

—

Since between and c we find stationary and continuous

water (heaviness = 7-) , we have po = Pc+^r- • • • (1)

* Of late years gauges have come into use constrncted of boxes with cor-

rugated sides of thin metal like the aneroid barometer. Motion of the sides,

under varying internal fluid pressure, causes movement of a pointer on a dial.
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Similarly, between 0' and d, po' -=pd+(hi-x)y;

while between d and c we have, for the mercury,

By elimination there easily results

(2)

(3)

po-
^-^= /if^-l

^0-*
•>f«.-v.-?-V-V..:V.>

Po'=h{rm-r); or ^-^^=h[^j-ij. . (4)

Evidently, if in place of the mercury we use a Hquid only

slightly heavier than water and that

does not mix with the latter, h would

be quite large for a small value of

po— po'', i-G-, the instrument would

be more sensitive. If kerosene oil,

which is a little lighter than water,

were used instead of mercury, an

arrangement of tubes like that in

Fig. 467a would be necessary, and

similar analysis, (if yk denote the

heaviness of kerosene) gives rise to

the formula.

Po-po'^Hr-n); or 2»-^'=a(i-Q), (5)

c—

^

:is

E 4~yi

^•-
-r I-'-

Fig. 468.

425. Safety-valves.—Fig. 468. Eequired the proper weight

G to be huDg at the extremity of the horizontal lever AB,
with fulcrum at B, that the flat

disk- valve ^sliall not be forced

upward by the steam pressure,^',

until tlie latter reaches a given

value =p. Let tlie weight of

the arm be G^ , its centre of grav-

ity being at 0, a distance = o

from JB ; the other horizontal distances are marked in the

figure.

' Suppose the valve on the point of rising; then the forces

acting on the lever are the fnlcrum-reaction at B, the weights

G and G^ , and the two fluid-pressures on the disk, viz. : JPp^

(atmospheric) downward, and I^p (steam) upward. Hence,

from ^(moms. ^) =0,

Gb + G,G + F;p^a - Fpa = 0. ... (1)
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Solving, we have

(^ = IF{P-I>a)-G,t. (2)

Example.—"With a = 2 inches, 5 = 2 feet, c — 1 foot

G^=: 4c Ibs.,^ = 6 atmos., and diam. of disk = 1 inch; with

the foot and pound,

G = I. . ^'fAVce X 14.7 X IM - 1 X 14.7 X 144] - 4 X^.24*4 \12

.-. G = 2.81 lbs.

[Kotice the cancelling of the 144; for J^{p —j)a) h pounds,

being one dimension of force, if the pound is selected as the

unit of force, whether the inch or foot is used in both fac-

tors.] Hence when the steam pressure has risen to 6 atmos.

(= 88.2 lbs. per square inch) (corresponding to 73.5 lbs. persq.

in. by steam gauge) the valve will open if 6^^ = 2.81 lbs., or be

on the point of opening.

426. Proper Thickness of Thin Hollow Cylinders (i.e., Pipes

and Tubes) to Resist Bursting by Fluid Pressure.

Case I. Stresses in the G?vss-section due to End Pressure

j

Fig. 469.—Let AB be the circular cap clos-

ing the end of a cylindrical tube containing

fluid at a tension =:^. Let i>^ = internal

radius of the tube or pipe. Then considering

the cap free, neglecting its weight, we
have three sets of || forces in equilibrium

in the figure, viz. : the internal fluid pres-

sure =:: nr'^jp ; the external fluid pressure

= nr^'Pa ; while the total stress (tensile) on

the small ring, whose area now exposed is

^Tcrt (nearly), is = '^rcrtj^^
, where t is the thickness of the pipe,

aTid^?j the tensile stress per unit area induced by the end-pres-

sures (fluid).

Fig. 469.
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For equilibrium, therefore, we may put ^(hor. comps.) = ;

1.6.,

KP -Pa)
.i>i
=

^t
(1)

(Strictly, the two circular areas sustaining the fluid pressures

are different in area, but to consider them equal occasions but

a small error.)

Eq. (1) also gives the tension in the central section of a thin

hollow sphere, under bursting pressure.

Case II. Stresses in the longitudinal section ofpipe, due to

radial 'fluid pressures.^—Consider free the half (semi-circular)

of any length I of the pipe, be-

tween two cross-sections. Take an

axis X (as in Fig. 470) ~\ to the

longitudinal section which has been

made. Let p^ denote the tensile

stress (per unit area) produced in

the narrow rectangles exposed at A
and B (those in the half-ring edges,

having no X components, are not

drawn in the figure). On the in-

ternal curved surface the fluid pres-

sure is considered of equal intensity

=.p at all points (practically true even with liquids, if 2r io

small compared with the head of water producing p). The
fluid pressure on any dF or elementary area of the internal

curved surface is =. pdF. Its X component (see § 416) is

obtained by multiplying j? by the projection of dF on the ver-

tical plane ABO, and since p is the same for all the dF^% of

the curved surface, the sum of all the JT components of the in-

ternal fluid pressures must = 2^ multiplied by the area of rect-

angle ABCD, = 'iirlp I and similarly theX components of the

Fig. 470.

* Analytically this problem is identical with that of the smooth cord on

a smooth cylinder, § 169, and is seen to give the same result.
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external atraos. pressures = '^rljp^ (nearly). The tensile stresses

( II
to X) are equal to 'ilt])^ ; hence for equilibrium, '2X =

gives

mp^ - 2rZ^+ 2r^j9a = ;

"Pi — ^ \^)

This tensile stress, called hoop tension,p^, opposing rupture by

longitudinal tearing, is seen to be double the tensile stress
^:>i

induced, under the same circumstances, on the annular cross'

section in Case I. Hence eq. (2), and not eq. (1), should be

used to determine a safe value for the thickness of metal, t, or

any other one unknown quantity involved in the equation.

For safety against rwpture, we must put p^ = T', a safe

tensile stress per unit area for the material of the pipe or tube

(see §§ 195 and 203)

;

,,t = TiPp^ (8)

(For a thin hollow sphere, t may be computed from eq. (1)

;

that is, need be only half as great as with the cylinder, other

things being equal.)

Example.—A pipe of twenty inches internal diameter is to

contain water at rest under a head of 340 feet ; required the

proper thickness, if of cast-iron.

340 feet of water measures 10 atmospheres, so that the in

ternal fluid pressure is 11 atmospheres ; but the external pres

sure Pa being one atmos., we must write (inch, lb., sec.)

{p —pa) = 10 X 14.Y = 147.0 lbs. per sq. in., and r = 10 in.,

while (§ 203) we may put T' =^oi 9000 = 4500 lbs. per sq.

in. ; whence

. 10 X 147 ^ Qo« • 1
^ =—Tir^— == 0.326 mches.

4500
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But to insure safety in handling pipes and iraperviousnesB to

the water, a somewhat greater thickness is adopted in practice

than given by the above theory.*

Thus, Weisbach recommends (as proved experimentally also)

for

Pipes of sheet iron, t = [0.00172 rA + 0.12] inches;
" " cast " t = [0.00476 rA + 0.34] "

" " copper t = [0.00296 rA 4- 0.16] "
" " lead t = [0.01014 rA + 0.21] "
" " zinc t = [0.00484 rA + 0.16] "

in which t = thickness in inches, r = radius in inches, and A
= excess of internal over external fluid pressure (i.e., p — Pa)
expressed in atrnmjpheres.

For instance, for the example just given, we should have

(cast-iron), ^-.00476x10X10 + 0.34 = 0.816 in.

With riveted steel pipes, if the longitudinal seams are pro-

vided with two rows of rivets, a value of 10,000 Ibs./ini^

may be used for the T' of eq. (3). This makes a fair allow-

ance for the weakening of the steel plates by the rivet holes.

The East Jersey Water Co. uses such pipes 2r— 4 ft. in

diameter, with a thickness of i= f in., under a head of 340 ft.

At the Mannesmann Works in Hungary, special steel tubes

4 in. in diameter and | in. thick have been made, safely

withstanding an internal fluid pressure of 2000 Ibs./in.^

Water Ram.—When water flowing in pipes is subject to sudden arrest

of motion, a high bursting pressure, called '"water ram,", or "water

hammer," may be produced. See pp.- 204-211 of the writer's Hydraulic

Motors.

In thick hollow cylinders, on account of the thickness of the walls,

the stress in the nietal is not uniformly distributed. See pp. 507, etc.,

of this book.

427. Collapsing of Tubes under Fluid Pressure. (Cylindrical

boiler-flues, for example.)—If the external exceeds the internal

fluid pressure, and the thickness of metal is small compared

with the diameter, the slightest deformation of the tube . or

pipe gives the external pressure greater capability to produce

a further change of form, and hence possibly a final collapse;

just as with long columns (§ 303) a slight bending gives great

advantage to the terminal forces. Hence the theory of § 426



COLLAPSE OF TUBES. 539

is inapplicable. According to Sir Wm. Fairbairu's experi-

ments (1858) a thin wrouglit-iron cylindrical (circular) tube

will not collapse until the excess of external over internal

pressure is

^(in lbs. per sq. in.) = 9672000^. . . (1) . . (not homog.)

(f, I, and d must all be expressed in the same linear unit.)

Here t = thickness of the wall of the tube, d its diameter, and

I its length ; the ends being understood to be so supported aa

to preclude a local collapse.

Example.—^With 1 = 10 ft. = 120 inches, d = 4: in., and t =
^ inch, we have

p = 9672000
J

-^ H- (120 X 4) = 201.5 lbs. per sq. inch.

For safety, ^ of this, viz. 40 lbs. per sq. inch, should not be

exceeded ; e.g., with 14.7 lbs. internal and 54.7 lbs. external.

[Note.—For simplicity the power of the thickness used in eq. (1) above

has been given as 2.00. In the original formula it is 2.19, and then all

dimensions must be expressed in incJies. A discussion of the experiments

of Mr. Fairbairnwill be found in a paper read by Prof. Unwin before the

Institute of Civ. Engineers (Proceedings, vol xlvi.). See also Prof. Unwin's
" Machine Design," p. 66. It is contended by some that in the actual con-

ditions of service, boiler-flues are subjected to such serious straining

actions due 1o unequal expansion of the connecting parts as to render the

above formula quite unreliable, thus requiring a large allowance in ita

application.]

437a. Collapsing Pressure of Steel Tubes.—Recent experiments by Prof.

R. T. Stewart (see Engineering News of May 10, 1906, p. 528) on Bes-

semer steel lap-welded tubes of 8§- in. in diameter and all commercial

thicknesses of wall and in lengths of 2]-, 5, 10, 15, and 20 ft.; and also on

single lengths of 20 ft. (between end connections) in seven sizes from 3 to

10 inches outside diameter and in all commercial thicknesses obtainable;

have shown that length has practically no influence on the strength, if the

length is greater than six times the diameter. From these experiments

Prof. Stewart has deduced the following formulae in which p is the col-

lapsing unit-pressure in lbs. per sq. inch, d the outside diameter of the

tube in inches, and t the thickness of wall of tube, also in inches :

—

p= 1000(l-/j/l-1600|^), (4)

p = 86670J— 1386.0 (5)

Eq. (4) is for use where f-j-d is less than 0.028, and eq. (5) for larger

T^alues of that ratio.
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CHAPTEE II.

HYDROSTATICS (Cow^mwecZ)—PRESSURE OF LIQUIDS IN TANKS.
AND RESERVOIRS.

428. Body of Liquid in Motion, but in Relative Equilibrium.—

By relative equilibrium it is meant that the particles are not

changing their relative positions, i.e., are not moving among
each other. On account of this relative equilibrium the fol-

lowing problems are placed in the present chapter, instead of

under the head of Hydrodynamics, where they strictly belong.

As relative equilihriwm is an essential property of rigid bodies,

we may apply the equations of motion of rigid bodies to bodies

of liquid in relative equilibrium.

Case L All the particles moving in parallel right lines

with equal velocities ^ at any given instant (i.e., a motion of

translation.)—If the common velocity is constant we have a

uniform translation, and all the forces acting on any one par-

ticle are balanced, as if it were not moving at all (according to

iNewton's Laws, § 54); hence the relations of internal pressure^

free surface, etc., are the same as if the liquid were at rest.

Thus, Fig. 471, if the liquid in the moving tank is at rest rel-

^ atively to the tank at a given instant, with
"

?____ _n its free surface horizontal, and the motion

^^^^^^^ of the tank be one of translation with a uni-

y^J \y^ ' '" form velocity, the liquid will remain in this

mdmm^^ condition of relative rest, as the motion
Fig. 471.

,

proceeds.

But if the velocity of the tank is accelerated with a consta/nt

acceleration ^=p (this symbol must not be confused with p
for pressure), the free surface will begin to oscillate, and finally

come to relative equilibrium at some angle oc with the horizon-

tal, which 18 thus found, when the motion is horizontal. See

Fig. 472, in which the position and value of a are the same,

whether the motion is uniformly accelerated from left to rigbt
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Let be the lowest

-->p

Fig. 473.

or uniformly retarded from right to left,

point of the free surface, and Oh a

small prism of the lig^uid with its

axis horizontal, and of length = x
;

rib is a vertical prism of length =
0, and extending from the extremity

of Oh to the free surface. The
pressure at both and n \% jp^i=.

atmos. pres. Let the area of cross-

section of both prisms be = dF.

l!^ow since Oh is being accelerated in direction ^(horizont.),

the difference between the forces on its two ends, i.e., its ^Xy
must = its mass X accel. (§ 109).

.'.jp^dF-jpadF^ixdF.y — g']]). . . . (1)

{y = heaviness of liquid
; pi, = press, at h) ; and since the ver-

tical prism nh has no vertical acceleration, the -2(vert. com-

pons.) for it must = 0.

.\pSF-padF-zdF.y=^, ..... (2)

From (1) and (2),

xv —
-^.p = zy\

X g°
(3)

... (4)

Hence On is a right line, and therefore

z V
tan a, or — , =-^. . .

X g

[Another, and perhaps more direct, method of deriving this

result is to consider free a small particle of the liquid lying in

the surface. The forces acting on this particle are two : the

first its weight = dG ^ and the second the resultant action of

its immediate neighbor-particles. ]^ow this latter force (point-

ing obliquely upward) must be normal to the free surface of

the liquid, and therefore must make the unknown angle a with

the vertical. Since the particle has at this instant a rectilinear

accelerated motion in a horizontal direction, the resultant of the

two forces mentioned must be horizontal and have a value =
mass X acceleration. That is, the diagonal formed on the two
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forces must be horizontal and have the value mentioned, =
{dG -V- g)jp ;

while from the nature of the figure (let the stu-

dent make the diagram for himself) it must also = dG tan a.

dG P Q. E. D..*. dG tan a = —.p ; or, tan a =
9 9

If the translation were vertical, and the acceleration xijpward

[i.e., if the vessel had a uniformly accelerated upward motion

or a uniformly retarded downward motion], the free surface

would be horizontal, but the pressure at a depth = h below the

surface instead oi jp =^Pa + ^7 would be obtained as follows:

Considering free a small vertical prism of height = Ji with

upper base in the free surface, and putting 2(vert. compons.)

= mass X acceleration, we have

hdF. ydF .p — dF . jpa — hdF . y
9

p

'P=I>a-[-hy

'

9+P
L g ..

(5)

If the acceleration is downward (not the velocity necessarily)

we make J? negative in (5). If the vessel falls freely, j} =— g
and .'.p =pai in all parts of the liquid.

Query : Suppose jp downward and > g.

Case II. Uniform Rotation about a YerticalAxis.—If the

narrow vessel in Fig. 473, open at top and containing a liquid,

^c be kept rotating at a uniform angu-

lar velocity cl> (see § 110) about a

vertical axis Z, the liquid after some

oscillations will be brought (by fric-

tion) to relative equilibrium (rotat-

ing about Z, as if rigid). Required

the foi-m of the free surface (evi-

dently a surface of revolution) at

each point of which we know

JP=Pa-
Let be the intersection of the

axis Z with the surface, and n any point in the surface ; J being

V
1

71
/

1

/

\ 1 /
-'k. n /

?\:~~-^^f

3S

—

/
Fig. 473.
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a point vertically under n and in same horizontal plane as 0.

Every point of the small right prism nh (of altitude = s and

sectional area 6^^) is describing a horizontal circle ahont Z. nnd

has therefore no vertical acceleration. Hence for this prism,

free, we have 2Z = 0; i.e.,

dF.j?t, - dF.pa - zdF. y = (1)

!Now the horizontal right prism Oh (call the direction ...h^

^) is rotating uniformly about a vertical axis through one ex-

tremity, as if it were a rigid body. Hence the forces acting

on it must be equivalent to a single horizontal force, — ca/Mp.

(§122«,) coinciding in direction with JT. IM= mass of prism

= its weight -^ g, and p = distance of its centre of gravity

from ; here p = ^x= ^ length of prism]. Hence the 2X
xdF

of the forces acting on the prism Oh must = — ta^ y^x.

But the forces acting on the two ends of this prism are their

own ^components, while the lateral pressures and the weights

of its particles have no Xcompons.

;

JTT JTT —Gifx^dF.y ,^.
,'.dF.jc>a — dF.pt— o ~' • • (2)

From (1) and (2) we have

^--27 -2^' ...... (3)

where v = axe = linear velocity of the point n in its circular

path.

[As in Case T, we may obtain the same result by considering

a single surface particle free, and would derive for the resultant

force acting upon it the value dG tan n' in a horizontal direc-

tion and intersecting the axis of rotation. But here a is dif-

ferent for particles at different distances from the axis, tan a

being the -j- of the curve On. As the particle is moving uni-

formly in a circle the resultant force must point toward the
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eectre of the circle, i.e., horizontally, and have a value— . —

,

g 10

where x is the radius of the circle [§ 74, eq. (5)] ;

jj^ . dG (goxY ^ dz Go^x
.*. aijr tan a = -^—-^ ; or tan «,=—-,=—

;

g X ax g

.*. / dz — -~ I xdxi or, z = — . -. . Q. E. D.

Hence any vertical section of the free surface through the

axics of rotation Z is a, parabola, with its axis vertical and vertex

at 0; i.e., the free surface is 2i paraboloid of revolution, with

Z as its axis. Since cox is the linear velocity v of the point

h in its circular path, ^ = " height due to velocity" v [§ 52],

Example.—If the vessel in Fig, 4Y3 makes 100 revol. per

minute, required the ordinate s at a horizontal distance of a? =
4 inches from the axis (ft.-lb.-sec. system). The angular veloc-

ity OS =. [^Tt 100 -V- 60] radians per sec. [K. B.—A radian =
the angular space of which 3.1415926 . . . make a half-re vol.,

or angle of 180°]. With a? = i ft. and g — 32.2,

and the pressure ht b (Fig. 473) is (now use inch, lb., sec.)

62 5
P& —Pa+^r— 14:.7+^X j;^ = 14.781 lbs. per sq. in.

Picf. Mendelejeff of Russia has recently utilized the fact an-

nounced as the result of this problem, for forming perfectly

true paraboloidal surfaces of plaster of Paris, to receive by

galvanic process a deposit of metal, and thus produce specula

of exact figure for reflecting telescopes. The vessel contain-

ing the liquid plaster is kept rotating about a vertical axis

at the proper uniform speed, and the plaster assumes the de-

sired shape before solidifying. A fusible alloy, melted, may
also be placed in the vessel, instead of liquid plaster.
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top, ex-Remaek.—If the vessel is quite full and closed on

except at 0' where it communicates

bj a stationary pipe with a reser-

voir, Fig. 474, the free surface

cannot be formed, but the pres-

sure at any point in the water is

just the same during uniform rota-

tion, as if a free surface were formed

with vertex at
;

i.e., p-„=p^ + (A„ 4- z)y. . (4)

See figure for h^ and z. (In subse-

quent paragraphs of this chapter

the liquid will be at rest.)

Fig. 474.

428a. Pressure on the Bottom of a Vessel containing Liquid at

Rest.—If the bottom of the vessel is plane and horizontal, the

intensity of pressure upon it is the same at all points, being

^ISi^

Fig. 475.

p—ip^J^hy (Figs. 475 and 476), and the pressures on the ele-

ments of the surface form a set of parallel (vertical) forceSo

This is true even if the side of the vessel overhangs, Fig. 476,

the resultant fluid pressure on the bottom in both cases being

P = Fp-F2?a = Fhy. (1)

(Atmospheric pressure is supposed to act under the bottom.)

It is further evident that if the bottom is a rigid homogeneous

plate and has no support at its edges, it may be supported at a
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single point (Fig. 477), which in this case (horizontal plate)

is its centre of gravity. This point is calle*]

the Centre of Pressure, or the point of apjili-

cation of the resuliant of all tlie fluid pressures

acting on the plate. The present case is such

that tliese pressures reduce to a single result-

ant, but this is not always practicable.

Example.—In Fig. 476 (cylindrical vessel

containing water), given A = 20 ft., h^ =
15 ft., r^ = 2 ft., )\ = 4 ft., required the pressure on the bot-

tom, the vertical tension in the cylindrical wall CA^ and the

hoop tension (^§ 426) at G. (Ft., lb., sec.) Press, on bottom =
Fhy= Ttr^hy = vtlQ X 20 X 62.5 = 62857 lbs.; while the

upward pull on CA =

{m;' - 7rr;)h,y = ;r(16 - 4)15 X 62.5 = 35357 lbs.

If the vertical wall is t = -^-q inch thick at C'this tension will

be borne by a ring-shaped cross section of area = 27T7\t (nearly)

= 27r48 X tV = 30.17 sq. inches, giving (35357 -^ 30.17) =
about 1200 lbs. per sq. inch tensile stress (vertical).

The hoop tension at C is horizontal and is

p" = r^P —Pa) -^ i (see § 426), where^ =p^ -f h,y
;

„ 48 X 15 X 12 X (62.5 ^ 1728) __„
,,.\j}" z= ^ i = 3125 lbs. per sq. in.,

(using the inch and pound).

429. Centre of Pressure.—In subsequent work in this chapter,

since the atmosphere has access both to the free surface of

liquid and to the outside of the vessel walls, and p^ would can^

eel out in finding the resultant fluid pressure on any elemen,

tary area d.F of those walls, w^e shall write :

' The res^dtant fluid pressure on any dF' of the vessel wall is

normal to its surface and is dP z=pdF "= zydF. in which s

is the vertical distance of the element below the free surface

of the liquid (i.e., s = the ''head of water"). If the surface

pressed on is plane, these elementary pressures form a system

of parallel forces, and may be replaced by a single resultant
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(if the plate is rigid) which will equal their sum, and whose

point of application, called the Centre of Pressure, may be

located by the equations of § 22, put into calculus form.

If the surface is curved the elementary pressures form a sys

tem of forces in space, and hence (§ 38) cannot in general he

reduced to a single resultant, but to two, the point of applica-

tion of one of which is arbitrary (viz., the arbitrary origin,

§38).

Of course, the object of replacing a set of fluid pressures by

a single resultant is for convenience in examining the equi-

librium, or stability, of a rigid body the forces acting on which

include these fluid pressures. As to their effect in distorting

the rigid body, the fluid pressures must be considered in their

true positions (see example in § 264), and cannot be replaced

by a resultant.

430. Resultant Liquid Pressure on a Plane Surface forming

Part of a Vessel "Wall. Co-ordinates of the Centre of Pressure.

—

Fig. 478. Let JL5 be a portion (of any shape) of a plane

surface at any angle with the

horizontal, sustaining liquid

pressure. Prolong the plane

of AB till it intersects the free

surface of the liquid. Take

this intersection as an axis Y,

being any point on Y. The

axis X, ~1 to Y, lies in the

given plane. Let a = angle

between the plane and the free

surface. Then x and y are the

co-ordinates of any elementary

area dF oi the surface, referred to Xand Y. z = the "head

of water," below the free surface, of any dF. The pressures

are parallel.

The norinal pressure on any dF = zydF", hence the swn of

these, = their resultant.

Fig. 478.

=.P, = yfsdF=Fzy', (1)
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in which z = the " mean s," i.e., the b of the centre of gravity

G of the plane figure AB, and ^= total area of AB \_F z —
fzdF^ from eq. (4), § 23]. y = heaviness of liquid (see § 409).

That is, the total liquid py^essure on a plane figure is equal

to the weight of an imaginary jprism of the liquid hamng a.

'base = area of the given figure and an altitude = vertical

depth of the centre of gravity of the figure helow the surface

of the liquid. For example, if the figure is a rectangle with

one base (length = V) in the surface, and lying in a vertical

plane,

P = lh. \hy = ^hhy.

Evidently, if the altitude be increased, P varies as its square.

From (1) it is evident that the total pressure does not de-

fend on the horizontal extent of the water in the reservoir.

Now let a?c and y^ denote the co-ordinates, in plane YOX^
of the centre of pressure., G, oy point of application of the re-

sultant pressure P, and apply the principle that the sum of

the moments of each of several parallel forces, about an axis "1

to them, is equal to the moment of their resultant about the

same axis [§ 22]. First taking OY 2iS> an axis of moments,

and then OX, we have

Px^ =
J*

{zydF)x, and Py^ = f {zydF)y. . (2)

But P = Fzy = Fx{sm a)y, and the z of any dF= X sin a.

Hence eqs. (2) become (after cancelling the constant, y sin a)

F X Fx Fx

in which Iy = the " tnojn. of inertia''^ of the plane figure re-

ferred to Y (see § 85). [_'N. B.—The centre of pressure as

thus found is identical with the centre of oscillation (§ IIY)

and the centre of percussion [§ 113] of a thin homogeneous

plate, referred to axes X and Y, Y being the axis of suspen-

sion.]

Evidently, if the plane figure is vertical a = 90°, a? = ^ for
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all 6?^'s, and a? = s. It is also noteworthy that the position

of the centre of pressure is independent of a.

JSToTE.—Since the pressures on the equal cZ^'s lying in any

horizontal strip of the plane figure form a set of equal parallel

forces equally spaced along the strip, and are therefore equiva-

lent to their sum applied in the middle of the strip, it follows

that for rectangles and triangles with horizontal bases, the

centre of pressure must lie on the straight line on which the

middles of all horizontal strips are situated.

431. Centre of Pressure of Rectangles and Triangles with Bases

Horizontal.—Since all the dF''% of one horizontal strip have

the same a?, we may take the area of the strip ^

for <i^ in the summation /b'^^^ Hence for T

the rectangle AB, Fig 4Y9, we have from eq.
\

(3), § 430, ynt\\dF= hdx, I

x,=KG=
tJu CL'to

KK-K)
h,-\-h,

dx

— -5--— ->B

Fia. 479.

while (see note, § 430) y^ = i^-

Whe7i the tipjyer hase lies in the surface, h^ = 0, and x^ =
1^2 =: ^ of the altitude.

For a triangle loith its hase horizontal and vertex tip. Fig.

480, the length %i of a horizontal strip is variable and dF=-

udx. From similar triano;les it = -{x — h^ \
therefore

\ — A,

K
I x^{x — h}jdx

lh{K K)Uh-^Wh-K)]

x'ix — h^dx =
U,V4

'2 /a?' 7 X

-6--B >

Fig. 480.

J,
3A/ + 2AA + A;

(2)
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Also, since the centre of pressure must lie on the line AB join-

ing the vertex to the middle of base (see note, § 430), we easilji

determine its position.

Evidently for A, = 0, i.e., when the vertex is in the surface,

o
^

jY Xc = fAj. Similarly, /br a triangle with

] y*i hase horizontal and vertex doion^ Fig. 481,

mV 7~i /D we find that

\l....±..^ If tli6 base is in the surface, A^ = and

Fig. 481. (3) rcduccs to Xc = ^h^.

It is to be noticed that in the case of the triangle the value

of Xc is the same whatever be its shape, so long as h^ and k^

remain unchanged and the base is horizontal. If the base is

not horizontal, we may easily, by one horizontal line, divide

the triangle into two triangles whose bases are liorizontal and

whose combined areas make up the area of the first. The re-

sultant pressure on each of the component triangles is easily

found by ths foregoing principles, as also its point of applica-

tion. The resultant of the two parallel forces so determined

will act at some point on the line joining the centres of pres-

sures of the component triangles, this point being easily found

by the method of moments, while the amount of this final re-

sultant pressure is the sum of its two components, since the

latter are parallel. An instance of this procedure will be

given in Example 3 of § 483. Similarly, the rectangle of Fig.

479 may be distorted into an oblique parallelogram with hori-

zontal bases without affecting the value of x^ , nor the amount

of resultant pressure, so long as h^ and h^ remain unchanged.

432. Centre of Pressure of Circle.—Fig. 482. It will lie on

the vertical diameter. Let r = radius. From eq. (3), § 430,

° 1 i ]

^
/^ L^Fla" iTtr' -^ Ttr'a"

^4-1—

^

-T a? jT a? Tvrx

M 1^l\ C^®^ ®<i- (^)' § ^^' ^^^ ^^^^ § ^^0

\ _.i__Jc J 12
X___y .'.x, = x-\-j.-. ... (4)

l<a. 482. ^ X
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433. Examples.—It will be noticed that although the total

pressure on the plane figure depends for its value upon the

head, s, of the centre of gravity, its point of application is al-

ways lower than the centre of gravity.

Example 1.—If 6 ft. of a vertical sluice-gate, 4 ft. wide,

Fig. 483, is below the water-surface, the total

water pressure against it is (ft., lb., sec. ; eq.

(1), § 430)

P - Fzy = 6 X 4 X 3 X 62.5 = "4500 lbs.,

and (so far as the pressures on the vertical

posts on which the gate slides are concerned)

is equivalent to a single horizontal force of

that value applied at a distance a?c = f of

6 = 4 ft. below the surface (§ 431).

Example 2.—To (begin to) lift the gate in Fig. 483, the

gate itself weighing 200 lbs., and the coefficient of friction

between the gate and posts being/"= 0.40 (abstract numb.) (see

§ 156), we must employ an upward vertical force at least

= P' = 200 + 0.40 X 4500 = 2000 lbs.

Fig. 483.

Example 3.—It is required to find the resultant hydro-

static pressure on the trapezoid in Fig. 483a with the dimen-

sions there given and its bases horizontal ; also its point of ap-

plication, i.e., the centre of pressure of

the plane figure in the position there

shown. From symmetry the C. of P. will

be in the middle vertical of the figure,

as also that of the rectangle B CFE^ and

that of the two triangles ABE and

CDF i2tkQ,r\ together (conceived to be

shifted horizontally so that CF and

BE coincide on the middle vertical,

thus forming a single triangle of 5 ft. ba.se, and having the

same total pressure and C. of P. as the two actual triangles

taken together). Let P^ = the total pressure, and xj refer to

the C, of P., for the rectangle ; P^ and x/, for the 5 ft. tri-

EF= 5

Fig. 4S3a.
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angle; Aj = 4 ft. and h^ = 10 ft. being the same for both.

Then from eq. (1), § 430, we have (with the ft., lb., and sec.)

P^ = 30 X 7r = 210x ; and P, = ^ x 6 X 5 X 6;k = 90^;

while from eqs. (1) and (3) of § 431 we have also (respectively)

, 2 1000 - 64 2 936

3 100 - 16 3

,_1 48 + 80 + 100

84
= 7.438 feet;

228

8+10 2X18
= 6.333 feet.

The total pressure on the trapezoid, being the resultant of

jPj and Pj , has an amount ^ P^-\- P^ (since thej are parallel),

and has a lever-arm x^. about the axis OY io be found by the

principle of moments, as follows :

^ _ P,x:+ P,x: _ (210 X 7.438 + 90 X 6.33)^ _ » naft

The total hydrostatic pressure on the trapezoid is (for fresh

water)

P = P,-^P,^ [210+ 90] 62.5 = 18750 lbs.

Example 4.—Required the horizontal force P\ Fig. 484, to

be applied at N (with a leverage of a' = 30 inches about the

N fulcrum M) necessary to (begin

to) lift the circular disk ^^ of

radius r = 10 in., covering an

opening of equal size. NMAB
is a single rigid lever weighing
6^' = 210 lbs. The centre of

gravity, G^ of disk, being a ver-

tical distance z = 0'G = ^^

inches from the surface, is 50

inches (viz., the sum of OM =
l = 20" and 3IG = 30") from

axis OY; i.e., a? = 50 inches.

Fig. 484. The Centre of gravity of the

whole lever is a horizontal distance i', = 12 inches, from M.

— 'O 4—i-

1
i

-

M/\
y^i

Ti /

/ /

/ (^ / J
\-B —/A

^x,^ /A

m-'=j
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"For impending lifting we must have, for equilibrium of the

lever,

P'a' = Q'y -\-P{x,-h); . . . . (1)

where P = total water pressure on circular disk, and Xg =
OC. From eq. (1), § 430, (using inch, lb., and sec.,)

P = Fzy = Ttr'zy = ttIOO X 40 X
62.5- = 454.6 lbs.

_ 1 5.2 1 100
From §432, x,= 00 = x + ~-= 50 -\- ^ . ^ = 50.5 in,

^ '
'= '4

a;
' 4 50

-^P' = l^[_G^y + P{^o-^'J

= JL [210 X 12 + 454.6 x 30.5] = 546 lbs.

434. Example of Flood-gate.—Fig. 485. Supposing the rigid

double gate AP, 8 ft. in total width, to
^

have four hinges ; two at e, and two at/",

1 ft. from top and bottom of water chan- "^^ 'j

lael ; required the pressures upon them, ^T
taking dimensions from the figure (ft

lb., sec).

"Wat. press. = P z= Psy
= 72 X 4i X 62.5 = 20250

i

)

G

C

Fig. 485.

pounds, and its point of application (cent, of press.) is a dis-

tance a^c = f of 9' = 6' from (§ 431). Considering the

whole gate free and taking moments about e^ we shall have

(press, at /) x T' = 20250 X 5 ; .-. press, at /= 14464 lbs.

(half on each hinge at/), and

.*. press, at ^ = P — press, at/ = 5875 lbs.

(half coming on each hinge).
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If the two gates do not form a single rigid body, and hence

are not in the same plane when closed, a wedge-like or toggle-

joint action is induced, producing nauch greater thrusts against

the hinges, and each of these thrusts is not "I to the plane of

the corresponding gate. Such a case forms a good exercise

for the student.

f—b'- >
A
1

--4. - /)

—
I—

i

— 1

^^\=\x,=
i'

-1
1

9*
1

=i-^p-
B

E

\Ei

1

1

1

— 1

—
1

<- ^
v//////y////y////w///Mf; •—

^

Fig. 486.

435. Stability of a Vertical Rectangular Wall against Water

Pressure on One Side.—Fig. 486. All dimensions are shown in

the figure, except /, which is the length

of wall 1 to paper. Supposing the wall

to be a single rigid block, its weight G'

= Vh'ly' iy' being its heaviness (§ 7),

and I its length). Given the water

depth = A, required the proper width

h' for stability. For proper security :

First, the resultant of G' and the

water-pressure P must fall within the

base BD (or, which amounts to the same thing), the moment
of G' about D, the outer toe of the wall, must be numerically

greater than that of P ; and

Secondly, P must be less than the sliding friction /'6r' (see

§ 156) on the base BD.
Thirdly, the maximum pressure per unit of area on the

base must not exceed a safe value (compare § 348).

ISTowP = Fzy ^ hi ~ y ^ ^^^^^Vfiv = heaviness of water)

;

and Xg = \h.

Hence for stability against tipping about Z>,

P\h must le < G'W ; i.e., ^Uly < ^V'h'ly' ; . (1)

while, as to sliding on the base,

P must le <fG'\ i.e., \Uly <fh'h'ly'. . . (2)

As for values of the coefficient of friction,/", on the base of

wall, Mr. Fanning quotes the following among others, from

various authorities

:
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For point-•dressed granite on dry clay, /" == 0.51

u a " " "• moist clay, 0.33

a. u " '' " gravel. 0.58
a u ^ " " smooth concrete, 0.6^
u u " " " similar granite, O.TO

For dressed hard limestone on like limestone, 0.38

u ' u u brickwork, 0.60

For common bricks on common bricks, 0.64

To satisfactorily investigate the third condition requires the

detail of the next paragraph.

L„1Sr
Fig. 487.

436. Parallelopipedical Reservoir Walls. More Detailed and

Exact Solution.—If (1) in the last paragraph were an exact

equality, instead of an inequality,

the resultant B oi P and G'

would pass through the corner

D, tipping would be impending,

and the pressure per unit area at

D would be theoretically infinite.

To avoid this we wish the wall

to be wide enough that the re-

sultant R^ Fig. 487,* may cut

BD in such a point, E\ as to cause the pressure per unit area,

X>m-> af P to have a definite safe value (for the pressure j^m at

D^ or quite near D^ will evidently be greater than elsewliere

on BD ; i.e., it is the maximum pressure to be found on BD).
This may be done by the principles of §§ 346 and 362.

First, assume that H cuts BD otdside of the middle third',

i.e., that

YE\ = nb\>\V{pxn>\y,

'where n denotes the ratio of the distance of E' from the mid-

dle of the base to the whole width, Z*', of base. Then the pres-

sure (per unit area) on- small equal elements of the base BD
(see § 346) may be considered to vary as the ord mates of a

triangle MND (the vertex M. being within the distance BD),
9^^WD^\\\ = \WD\ i.e.,

* The student should note that Fig. 487 only shows the lower jmH
of the wall of Fig. 486 ; and that the resultant R, now applied at E' , is

there decomposed into its original components P and G'.



556 MECHANICS OF ENGINEEEING.

The mean pressure per unit area, on MD^

and hence the maximum pressure (viz., at D), being double

the mean, is

J?^3.26^'-[3J7(i-7^)]; . . . . (0)

and if j[)„jis to equal C'{^ee §§ 201 and 203), a safe value ifor the

crushing resistance, per unit area, of the material, y^e shall

have

57(i -n)C'=W = Wh'l/,

•°
2 3"^' ^^^

To find h', knowing n, we put the JS'(moms.) of the G' and P"

at ^, about ^', = zero (for the only other forces acting on

the wall are the pressures of the foundation against it, along

JUD ; and since the resultant of these latter passes through E\
the sum of their moments about £'' is already zero) ; i.e.,

G'nh' - P\h = ; or, nh"h'ly'= ^h . ^hHy
;

Having obtained h\ we must also ascertain if P is <fG\ the

friction ; i.e., ifP is < J-h'h'ly'. If not, h' must be still further

increased. (Or, graphically, the resultant of G' and P must

not make an angle > 0, the angle of friction, with the ver-

tical.

If ?i, computed from (1), should prove to be < ^, our first

assumption is wrong, and we therefore assume n < -|-, and pro-

ceed thus

:

Secondly, n being < | (see §§ 346 and 362), we have a
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trapezoid of pressures, instead of a triangle, on BD. Let the

pressure per unit area at D be j?^ (the maximum on base).

The whole base now receives pressure, the mean pressure (per

unit area) being = 6r' -f- [57] ; and therefore, from § 362,

Case I, we have

p^ = [6^+ l]^; ..... (Oa)

and since, here, G' = Vh'ly', we may write

Pm = {Qn + l)h'y'.

For safety as to crushing resistance we put

{Qn + l)h'y' = C'\ whence n = ^f^ ~ ^1 ' ' ^^

Having found n from eq. (la), we determine the proper

width of base V from eq. (2), in case the assumption n. < -^ is

verified.

Example.—In Fig. 486, let h! — 12 ft., A = 10 ft., while

the masonry weighs {j' =) 150 lbs. per cub. ft. Supposing

it desirable to bring no greater compressive stress than 100 lbs.

per sq. inch (=::? 14400 lbs. per sq. ft.) on the cement of the

joints, we put C = 14400, using the ft.-lb.-sec. system of units.

Assuming n > \^ we use eq. (1), and obtain

_ 1 _ 2 12 X 15 _ 5_
**~2 3* 14400

~~ 12'

which is >-|-; hence the assumption is confirmed, also the

propriety of using eq. (1) rather than (la).

Passing to eq. (2), we have

7, H. / 62.5 X 10
' o/TiT .

6' = 10 X A / 1
-.S^ -.^A = 3-^ feet.^ Y I X 12 X 150

But, as regards frictional stability, we find that, with/*= 0.30,

a low value, and V = 3.7 ft. (ft., lb., sec),



558 MECHANICS OF EISTGINEEEING.

P _ ^liHy _ 100 X 62.5 -15.
JG' "fhWiy ~ 2 X 0.3 X 3.7 X"T2 X 150 ~ ' '

which is greater than unity, showing the friction to be insuf-

ticient to prevent sliding (with y=0.30); a greater width

must therefore be chosen, for frictional stability.

If we make n = 1-, i.e., make li cut the base at the outer

edge of middle third (§ 362), we have, from eq. (2),

z/ -.A / 62.5 X 10 ^ Koaf ,

and the pressure at D is now of course well within the safe

limit ; while as regards friction we find

i> H-/(?' = 0.92, < unity,

and therefore the ^vall is safe in this respect also.

With a width of base = 3.7 feet lirst obtained, the portion

3ID, Fig. 487, of the base which receives pressure [according

to Navier's theory (§ 346)] would be only 0.92 feet in length,

or about one fourth of the base, the portion .i> JIT tending to

open, and perhaps actually suffering tension, if capable (i.e., if

cemented to a rock foundation), in which case these tensions

should properly be taken into account, as with beams (§ 295),

thus modifying the results.

It has been considered safe by some designers of high

masonry dams, to neglect these possible tensile resistances, as

has just been done in deriving h' = 3.7 feet ; but others, in

view of the more or less uncertain and speculative character of

Javier's theory, when applied to the very wide bases of such

structures, prefer, in using the theory (as the best available),

to keep the resultant pressure within the middle third at the

base (and also at all horizontal beds above the base), and thus

avoid the chances of tensile stresses.

This latter plan was favored by Messrs. Church and Fteley,

as engineers of the proposed Quaker Bi^idge Dam in connec-

tion with the IsTew Croton Aqueduct of JSTew York City, in

their report of 1887. See § 439.
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437. Wall of Trapezoidal Profile. Water-face Vertical.—
Economy of material is favored by using a trapezoidal profile,

A^—-6-'—

>

Fig. 488. With this form the

stability may be investigated in

a corresponding manner. The
portion of wall above each

horizontal bed should be ex-

amined similarly. The weight

G' acts through the centre of

gravity of the whole mass.

Detail.—Let Fig. 488 show

the vertical cross-section of a

trapezoidal wall, with notation

for dimensions as indicated ; the

portion considered having a length == ^, "] to the paper. Let

Y = heaviness of water, y' that of the masonry (assumed homo-

geneous), with ?^ as in § 436.

For a triangle of^ressure^ MD, on the base, i.e., with ^ > -g-,

or resultant falling outside the middle third (neglecting pos-

sibility of tensile stresses on left of M\ if the intensity of

pressure j?m at 2> is to = ^' (§ 201), we put, as in § 436,

ni^ -n-\C' = %G\ i.e., = ¥h' .W + V')y',

whence

1 \h'y' J'_|_
n = —— —

-

2 3 (7' h'
(1)'

For r. trapezoid ofpressure, i.e. with n <^,oy the resultant

of P and G' falling within the middle third, we have, as be-

fore (§ 362, Case I),

G'

whence

n
irc'h'i r\ . ir ^c'h' ,n ., y



660 MECHANICS OF ENGINEERIISTG.

From the geometry of the figure, having joined the middles

of the two bases, we have

(§ 26,Prob. 6), and, by similar triangles, OV : KV '.'.gO'.h',

whence

^^=#it^'-^''^'

The lines of action of G' and P meet at E, and their result-

ant cuts the base in some point E'. The sum of their moments

about E' should be zero, i.e., P . ^h=^ G' . 0E'\ that is, (see

eq. {a) above, and eq. (1), § 430,)

^my = ih'y'^q)' + h")\^-. y^y , + ^^
J ; (^)

i.e., cancelling,

hy =^h'y'[{V + %"){h' - h') -t- Qnl)'{h' + h")\ (2)'

Hence we have two equations for finding two unknowns

viz.: (l)'and (2)' when n y \\ and (la)' and (2)' when n <i\.

For dams of small height (less than 40 ft., say), if we im-

mediately put n = ^, thus restricting the resultant pressure to

the edge of middle third, and solve (2)' for h', h" being as-

suiaed of some proper value for a coping, foot-walk, or road-

way, while h' may be taken enough greater than h to provide

against the greatest height of waves, from 2.5 to 6 ft., the

value of p^ at D will probably be < C. In any case, for a

value of n =, or <, -| we put p^ for Cm equation (la)' and

solve for jt?^, to determine if it is no greater than C.
Mr. Fanning recommends the following values for 6" (in lis.
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fer sq.foot) witli coursed rubble masonry laid in strong mor-

tar:

For Limestone. Sandstone. Granite. Brick.

a = 50,000 50,000 60,000 35,000

Av. heaviness of /

the masonry in \ 152 132 154 120
lbs. per cub. ft. \

As tofrictional resistance, P must be <.fG'\ i.e.,

wiY<f^'y'w^y') (3y

If the base is cemented to a rock foundation with good

material and workmanship throughout, Messrs. Church and

Fteley (see § 436) consider that the wall may be treated as

amply safe against sliding on the base (or any horizontal bed),

provided the other two conditions of safety are already satis-

fied.

438, Triangular Wall with Vertical Water-face.—Making
y = in the preceding article, the trapezoid becomes a rigid

triangle, and the equations reduce to the following

:

^- = 3^76^
for ^ > i, . . . . (1)''

and

i?r. = lAV[6^ + l]for^<i. . . . (la)''

{p^ not to exceed C in any case) ; while to determine the

breadth of base, V, after n is computed [or assumed, for small

height of wall], we have from eq. (2)',

Uy = \h'l'y\_^n-\-l-\. „ , . , (2)''

A.lso, for frictional stability,

\my must be < ifh'h'ly' (3)"
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439. High Masonry Dams.—Although the principle of the

arch maj be utilized for vertical stone dikes of small height

(30 to 50 feet) and small span, for

greater heights and spans the

formula for hoop tension, § 426 (or

rather, here, " hoop compression"),

on the vertical radial joints of the

horizontal arch rings, Fig. 489, calls

'% for so great a radial thickness of

joint in the lower courses, that

straight dikes (or "gravity dams")

are usually built instead, even

where firm rock abutments are available laterally.

For example^ at a depth of 100 feet, where the hydrostatic

pressure is hy = 100 X 62.5 = 6250 lbs. per sq. ft., if we as-

sume for the voussoirs a (radial, horizontal) thickness = 4 ft,,

with a (horizontal) radius of curvature r = 100 feet, we shall

find a compression between their vertical radial faces of (ft.j

lb., sec.)

Fig. 489.

p- =_ 7{p —p^ _ 100 X 6250 _= 156250 lbs. per sq. ft.,

or 1085 lbs. per sq. inch ; far too great for safety, even if there

were no danger of collapse, the dike being short. If now the

thickness is increased, in order to distribute the pressure over

a greater surface, we are met by the fact that the formula for

" hoop compression" is no longer strictly applicable, the law of

distribution of pressure becoming very uncertain ; and even

supposing a uniform distribution over the joint, the thickness

demanded for proper safety against crushing is greater than

for a straight dam {^^ gravity dam^^) at a very moderate depth

below the water surface, unless the radius of curvature of arch

can be made small. But the smaller the radius the more does

the dam encroach on the storage capacity of the reservoir, while

in no case, of course, can it be made smaller than half the span.

Another point is, that as masonry is not destitute of elas-

ticity, the longer the span the more unlikely is it that the

parts of the arch will " close up" properly, and develop the
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abutment reactions when the water is first admitted to the

reserv^oir ; which should occur if it is to act as an arch instead

of bj gravity resistance.

For these reasons the engineers of the proposed Quaker

Bridge Dam reported unfavorably to the plan of a curved de-

sign for that structure, and recommended that a straight dam

be built. See reference in § 436. According to their designs

this dam was to be 258 feet in height (exceeding by about 90

feet the height of any dam previously built), about 1400 feet

in length at the top, and 216 feet in width at the lowest point

of base, joining the bed-rock.

More recently, however (1888), a board of experts, specially

appointed for the purpose, having examined a number of

different plans, reported favorably to the, adoption of a

curved form for the dam, as offering greater resistance under

extraordinary circumstances (Impact of ice-floes, earthquakes,

etc.), on account of its arched form (though resisting by

gravity action under usual conditions) than a straight struc-

ture ; and also as more pleasing in appearance.

Fig. 490 shows the profile of a straight high masonry dam
as designed at the present day. Assuming a width V = from

6 to 22 feet at the top, and a sufficient h" (see figure) to ex-

ceed the maximum height of waves, the up-stream outline

ACM is made nearly vertical and perhaps somewhat concave,

while the down-stream profile BDN^ by computation or

graphical trial, or both, is so formed that when the reservoir is

full the resultant R, of the weight

6r of the portion ABGD of ma-

sonry above each horizontal bed, as

CD^ and the hydrostatic pressure P
on the corresponding up-stream face

AC^ shall cut the bed CD in such a

point E' as not to cause too great

compression p^ at the outer edge D
(not over 85 lbs. per sq. inch accord-

ing to M. Krantz in " Reservoir ^«- •*^-

"Walls"), jp^ being computed by one of the equations [(0) and

(06») of 1 436]
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For ^'outside the middle third ]
26^ ,^.,-»

>• ..7? =z (ly
and neglecting tension )

* '^"^
S.C'J) .l(^— n)

For £:' inside middle third I ..p^ = (^^_j~ ^)^
• naY^'

' CD. I

where I = length of wall 1 to paper, usually taken = one foot,

or one inch, according to the unit of length adopted; ior n,

see § 436.

]^or, when the reservoir is emjpty and the water pressure

lacking, must the weight G resting on each bed, as (7j9, cut

the bed in a point E" so near the edge (7 as to produce exces-

sive pressure there (computed as above). The figure shows

the general form of profile resulting from these conditions.

The masonry should be of such a character, by irregular bond-

ing in every direction, as to make the wall a monolith.

440. The New Croton Dam* (completed in Feb. 1906).—
Attempts, by strict analysis, to determine the equation of the

curve BN, AM. being assumed straight, so as to bring the

point E' at the outer edge of the middle third of its joint, or

to make the pressure at D constant below a definite joint, liave

failed, up to the present time ; but approximate and tentative

methods are in use which serve all practical purposes. As an

illustration the method set forth in the report on the Quaker

Bridge Dam will be briefly outlined ; this method confines E'
to the middle third.

The width AB = h" is taken = 22' for a roadway, and h" =
T ft. The profile is made a vertical rectangle from A down
to a depth of 33 ft. below the water surface {o^eservoir full).

Combining the weight of this rectangle of masonry with the

corresponding water pressure (for a length of wall = one foot),

we find the resultant pressure comes a little within the outer

edge of the middle third of the base of the rectangle, while

p^ is of course small.

* This dam was built across the Croton River (see foot of p. 558) about
a mile above the site chosen (in 1884) for the proposed "Quaker Bridge"
Dam (which was not built). The profile and plan adopted were based
entirely upon the plans prepared for the Quaker Bridge Dam. See

Mr. Wegmann's paper on the New Croton Dam in vol. Ivii (June, 1907)

of Transac. Am. Soc. Civil Engineers; also his. book on Construction of
Masonry Dams, which gives an analytical treatment to replace the

tentative graphic method originally used, and described in the report

on the Quaker Bridge Dam.
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The rectangular form of profile might be continued below

this horizontal joint, as far as complying with the middle

third requirement, and the limitation of pressure-intensity, is

concerned ; but, not to make the widening of the joints too

abrupt in a lower position where it would be absolutely re-

quired, a beginning is made at the joint just mentioned by

forming a trapezoid between it and a joint 11 ft. farther down,

making the lower base of the latter of some trial width, which

can be altered when the results to which it gives rise become

evident. Having computed the weight of this trapezoid and

constructed its line of action through the centre of gravity of

the trapezoid, the value of the resultant G of this weight and

that of the rectangle is found (by principle of moments or by

an equilibrium polygon) in amount and position, and combined

with the water pressure of the corresponding 44 ft. of water to

form the force R^ whose point of intersection with the new
joint or bed (lower base of trapezoid) is noted and the value of

jp^ computed. These should both be somewhat nearer their

limits than in the preceding joint. If not, a different width

should be chosen, and changed again, if necessary, until satis-

factory. Similarly, another layer, 11 ft. in height and of

trapezoidal form, is added below and treated in the same way

;

and so on until in the joint at a depth of 66 ft. from the

water surface a width is found where the point E' is very

close upon its limiting position, while j&^ is quite a little under

the limit set for the upper joints of the dam, 8 tons per square

foot. For the next three 11 ft. trapezoidal layers the chief

governing element is the middle-third requirement, E' being

kept quite close to the limit, while the increase of jp^ to 7.95

tons per sq. ft. is unobjectionable ; also, we begin to move

the left-hand edge to the left of the vertical, so that when the

reservoir is empty the point E" shall not be too near the up-

stream edge C.

Down to a depth of about 200 ft. the value of j9^ is allowed

to increase to 10.48 tons per sq. ft., while the position of E'
gradually retreats from the edge of its limit. Beyond 200 ft.

depth, to prevent a rapid increase of width and consequent

extreme flattening of the down-stream curve, p^ is allowed

to mount rapidly to 16.63 tons per sq. ft. (=231 lbs. per

sq. in.), which value it reaches at the point N oi the base of
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the dam, which has a width = 216 ft., and is 258 feet below

the water surface when the reservoir is full.

The heaviness of the raasonrj is taken as y' = 156.25 lbs.

per cubic foot, just f of ;/ = 62.5 lbs. per cub. foot, the heavi-

ness taken for water.

"When the reservoir is empty, we have the weight G of the

superincumbent mass resting on anj bed CD, and applied

through the point ^J" ; the pressure per unit area at C can

then be computed by eq. (la)"', § 439, n being the quotient of

{^CD — GE"^-^ GT) for this purpose. In the present case

we find E" to be within middle third at all joints, and the

pressures at G to be under the limit.

For further details the reader is referred to the report itself

(reprinted in Engineering News, January, 1888, p. 20). The

graphic results were checked by computation, Wegmann's

method, applied to eacli trapezoid in turn.*

441. Earthwork Dam, of Trapezoidal Section, f—Fig.4:91. Itis

<L_-5_,.».n required to find the conditions of sta-

bility of the straight earthwork dam
V ABDE, whose length =1, L to

\ paper, as regards sliding horizontally

\e on the plane AE\ i.e., its frictional

-c---> stability. With the dimensions of

the figure, y and y' being the heavi-

FiG. 491. nesses of the water and earth respec-

tively (see § Y), we have

Weight of dam = 6^, = vol. X r' = ^^i[^ + i(<^: +^W

-

(1)

Kesultant water press. = P =Fzy = OA X I X ^hy, , (2)

Horiz. comp. oi P = H = P Bm a

= [OA sin a-]ihly = ^hHy. . . . (3)

From (3) it is evident that the horizontal component of P is

just the same, viz., = hi . ^hy, as the water pressure would be

* See the Engineering Record of Dec. 30, 1899, for a description of the
Assuan Dam across the river Nile; also the issue of April 22, 1905, for
mention of Mr. Atcherley's paper on masonry dams, etc.

f Mr. Bassell's "Earth Dams" is a recent publication; New York, 1904.
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on a vertical rectangle equal to the vertical projection of OA
and with its centre of gravity at the same depth (^h). Com-
pare §416. Also,

Vert. comp. oi I* = V= P cos a

= [OA cos a]^hly = ^ahly, ... (4)

and is the same as the w^ater pressure on the horizontal projec-

tion of OA if placed at a depth = O'G = ^h.

For stability against sliding, the horizontal component of P
must be less than the friction due to the total vertical pressure

on the plane A£^, viz., G^-\- V; hence if /"is the coefficieEt of

friction onA£J, we must have ^</' [G^ -\- Y], i.e. (see above),

^h^ly must be <y ZA,[5 4-iK+c)]/+ia% . . (6)

However, if the water leak under the dam on the surface A^,
so as to exert an upward hydrostatic pressure

F^ = K + 5 + c]?Ar,

(to make an extreme supposition,) the friction will be only

=fL(^.+ V- Fl
and (6) will be replaced by

B<f[G,+ F- Fl (6)

Experiment shows (Weisbach) that with f=O.SS computa-

tions made from (6) (treated as a bare equality) give satisfactory

results.

Example.—(Ft., lb., sec.) With / = 0.33, h = 20 ft., k, =.

22 ft., a = 24: ft., a^ = 26.4 ft., and c = 30 ft., we have, mak-

ing (6) an equality, with y' = 2y,

ihHy =/ \y'lK{b + ^L±i) + ^ahly -(a^J^l^ c)lh^
;

.-. i(400)= ^[22(J+28.2)2 +1(24X20) -(26.4+5+30)20]j

whence, solving for J, the width of top, h = 10.3 feet.
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442. Liquid Pressure on Both Sides of a Gate or Rigid Plate.

—

The sluice-gate AB, for example, Fig. 492, receives a pressure.

P^ , from the " head-water" J/, and

an opposing pressure P^ from the

_N "tail-water" iT. Since these two

._^^^ I

—^n- horizontal forces are not in the same
"=^

—f^jTjfi^ line, though parallel, their resultant

l-c^r=P.)— I-
, J^^ which =^ P^ — P^, acts horizon-

—
,
~^ tally in the same plane, but at a dis-

FiG. 492. tance below (9i = u, which we may
find by placing the moment of P about 0^ , equal to the alge-

braic sum of those of P^ and P^ about 0^.

.'. Bu = P,x: - PlxJ'+h).

u =
p,-p.

(1)

(2)

Ci and C^ are the respective centres of pressure of the surfaces

O^P and O^B, and u = distance of P from 0^ , while h = dif-

ference of level between head and tail waters. If the surfaces

O,^ and O^B are both rectangular,

%K and xj' = fAg.

Example.—Let the dimensions be as in Fig. 493, both sur-

A faces under pressure being rect-

^ .^.. angular and 8 ft. wide. Then (ft.,

02 T^°^ t lb., sec.) P = P,-P,, or (§ 430)

;^ = [12X8.X6-8X8X 4]62.5

= 20000 lbs. riotous:

Fig. 493. while from ex. (2)

_ [12X8X6X8- 8 X8X 4(9i)]62.5-
20000

That is, u = 6.93 feet, which locates C. Hence the pressure

of the gate upon its hinges or other support is the same (aside
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from its own weight), provided it is rigid, as if the single

horizontal force J? = 10 tons acted at the point C, 2.93 ft. be-

low the level of the tail-water surface.

443. If the plate, or gate, is entirely below the tail-water

surface, the resultant pressure is applied in the centre of gravity

of the plate.—Proof as follows: Conceive the surface to be

divided into a great number of small equal areas, each = dF\
then, the head of water of any dF being = a?, on the head-

water side, and = x^ on the tail-water side, the resultant pres-

sure on the dF is ydF{x^ — x^ =.yhdF, in which A is the

difference of level between head and tail water. That is, the

resultant pressures on the equal dF''^ are eq^ual, and hence

form a system of equal parallel forces distributed over the plate

in the same manner as the weights of the corresponding por-

tions of the plate ; therefore their single resultant acts through

the centre of gravity of the plate
; Q. E. D. This single re-

sultant =fyhdF= yhfdF= Fhy.

Example.—Fig. 494. The resultant pressure on a circular

disk ab of radius = 8 inches, (in

the vertical partition OK,) which

has its centre of gravity 8 ft.

below the tail-water surface, with

A = 2 ft., is (ft., lb., sec.)

E = Fhy = ^r^jhy

62.5= ;r 8' X 24 X
1Y28

= lY4.61bs.,

Fig. 494.

and is applied through th^ centre

of gravity of the circle. Em-
dently R is the same for any

depth below the tail-water surface, so long as h=^ it. [Let

the student find a graphic proof of this statement.]

444. Liq[uid Pressure on Curved Surfaces.—If the rigid surface

is curved, the pressures on the individual dF''^, or elements of

area, do not form a system of parallel forces, and the single re-

sultant (if one is obtainable) is not equal to their sum. In
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general, tlie system is not equivalent to a single force, but can

always be reduced to two forces (§ 38) the point of application

of one of which is arbitrary (the arbitrary origin of § 38) and

its amount = V{2Xy + (2 Y)' + {2Z)\

A single Example will be given ; that of a thin rigid shell

having the shape of the curved surface of a right cone. Fig.

495, its altitude being h and radius of base = r. It has no

bottom, is placed on a smooth horizontal table, vertex up, and

is filled with water through a small hole in the apex (9, which is

left open (to admit atmospheric

pressure). What load, besides its

own weight G', must be placed

upon it to prevent the water from

lifting it and escaping under the

edge A ? The pressure on each

dF of the inner curved surface is

zydF 2iwdi is normal to the surface.

Its vertical compon. is zydFmi «,

and horizontal compon. = zydF cos a. The dF\ have all

the same cf, but different s's (or heads of water). The hfting

tendency of the water on the thin shell is due to the vertical

components forming a system of || forces, while the horizon-

tal components, radiating symmetrically from the axis of the

cone, neutralizie each other. Hence the resultant lifting force

Fig. 495.

IS

1^= ^(vert. comps.) = y sin afzdF-= y sin a Fz
; (1)

where i^= total area of curved surface, and z = the "head of

water" of its centre of gravity. E(][. (1) may also be written

thus:

- V=yF,'^; (2)

in which Ff, = Fsin a = area of the circular base = area of

the projection of the curved surface upon a plane "] to the

vertical, i.e., upon a horizontal plane. Hence we may write

V=\yn7% (3)

since z = fA, being the z of the centre of gravity of the curved
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surface and not that of the hase. y = heaviness of water". If

Q' = weight of the shell and is < V, an additional load of

V— G' will be needed to prevent the lifting. If the shell has

a bottom of weight = G'\ forming a base for the cone and

rigidly attached to it, we find that the vertical forces acting on

the whole rigid body, base and all, are: I^ upward; G' and

G" downward ; and the liquid pressure on the base, viz.,

Y' = nr^hy (§ 428c!^) also downward. Hence the resultant

vertical force to be counteracted by the table is downward, and

= 6^' + G" -\-Y' -Y, which = G' -\- G" + Inr'hy
; (4)

i.e.^ the total weight of the rigid vessel and the water in it, as

we know, of course, in advance.
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EARTH PRESSURE AND RETAINING WALL8.

[!NoTE.—This chapter was outlined and written mainly by

Prof. C. L. Crandall, and is here incorporated with his permis-

sion. The theory of earth pressure is arranged from Bau-

meister.]

445. Angle of Repose.—Granular materials, like dry sand,

loose earth, soil, gravel, pease, shot, etc., on account of the

friction between the component grains, occupy an intermediate

position between liquids and large rigid bodies. When heaped

up, the side of the mass cannot be made to stand at an inclina-

tion with the horizontal greater than a definite angle called the

angle of natural slope, or angle of 7'epose, different for each

material ; so that if the side of the mass is to be retained per-

manently at some greater angle, a Retaining Wall (or " Hevet-

ment Wall^'' in military parlance) becomes necessary to sup-

port it. If the material is somewhat moist it may be made to

stand alone at an inclination greater than that of the natural

slope, on account of the cohesion thus produced, but only as

long as the degree of moisture remains ; while if much water

is present, it assumes the consistency of mud and may require

a much thicker wall, if it is to be supported laterally, than if

In dealing with earth to be supported by a retaining wall,

we consider the former to have lost any original cohesion

which may have existed among its particles, or that it will

eventually lose it through the action of the weather ; and hence

treat it as a granular material.

A few approximate values of the angle of natural slope are

572
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given below, being taken from Fanning, p. 345 ; see reference

on p. 538 of this work.

Matebiai..

Dry sand, fine.

.

" " coarse
Damp clay
Wet clay
Clayey gravel . .

.

Sblugle
Gravel
Firm loam
Vegetable soil. .

.

Peat..

Angle Coefficient Ratio
of Repose. of Friction. of Slope.

Horiz. to V
28° .583 1.88 to
30° .577 1.73 '

45^ 1.000 100 '

15° .368 373 '

45° 1.000 1.00 '

43° .900 1.11 '

38° .781 1.38 '

36° .737 1.38 '

35° .700 1.43 '

30° .364 3.75 '

The angle of repose, or natural slope, is also, evidently, the

angle of friction between two masses of the same granular

material.

446. Earth Pressure, and Wedge of Maximum Thrust.—Fig.

496. Let AB be a retaining wall, having a plane face AB in

contact with a mass of earth ABD, both wall and earth being

of indefinite extent 1 to the paper.

LetAD be the natural slope of the earth, making an angle yS

with the vertical (/? is the complement of the angle of repose

;

see preceding table). Since AB^ making an angle a with

the vertical, is more nearly vertical than AD, the retaining

wall is necessary, to keep the mass ABD in the position

shown. The profile BCD may be of anyform in this general

discussion. Suppose the wall to be on the point of giving

way ; then the following motions are impending :

1st. Sliding is impending between some portion ^J^C'^^ of

the mass of earth and the remainder CAD, the surface of

rupture AC {C not shown in figure because not found yet,

but lying somewhere on the profile BCID) being assumed

plane, and making some angle 0' (to be determined) with the

vertical. At this instant the resultant pressure N' of AC

D

on thic plane ^6" of the mass ABC (a wedge) must m,ak6

an angle = /? ( = comp. of angle of friction) with AG' on

the upper side.
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2d. A downward sliding of the mass ABC along the back

face AB of the wall. That is, the resultant pressure P' of

the wall against the mass BAC at this instant inakes an angle

Fig. 496.

6 {= complement of angle of friction between the earth and

wall) with the plane AB and on the ujpper side. The weight

of the wedge of earth BAG' will be called G', and we desire

to find the pressure P' against the wall.

LetBA C be a wedge (of the earth-mass), in which A makes

any angle with A V, and suppose it to be on the point of

moving down and forcing out the wall ; thus encountering

friction both on the plane A C and the plane AB. Then the

forces acting on it are three, acting in known directions ; viz.

:

(r, its own weight, vertical ; N., the resultant pressure of the

earth below it, making an angle ^ with A G on upper side
;

and P, the resultant pressure of the wall, at angle 6 with AB
(see Fig. 496 for positions of iV and P). If now we express

the force P in terras of and other quantities, and find that

value 0', of 0, for which i^ is a maximnm, we thereby deter-

mine the '^ loedge of maximum tJirust^'^ ABG'A ; while this

maximum thrust, P\ is the force which the wall must be de-

signed to withstand. [If the wall is overturned, the earth

will sink with it until this part of its surface gradually as-

sumes the natural slope.]

Let G = weight of prism of base ABG, and altitude = unity

~1 to paper; then G = y X area ABG, where y = '^ heavi-

ness" = wgt. per cub. unit, of earth, l^ow P, G, and iV

balance ; therefore, in triangle aic, if ah and ao are drawn ||
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and = G and irrespectively, he is = and |( to P; and from
Trigonometrj we have

sin[/?+d-0]' • • • • W

in which (5^ stands for a -\- 6, for brevity, being the angle

whichP makes with the vertical. N makes an angle = /? —
with the vertical.

The value, 0', of 0, which makes P a maximum is found

dP
by placing -^—- = 0. From eq. (1), remembering that 6r is a

function of 0, and that /? and S are constants, we have

~sia{^-<l>)- GcosdS -<^)"l4-esiii(^-(|))cos(j8 4-6-(^)
d4> J

-dGSm i H -(- O — CD 1

1

dP
di>

~
sin^ [|8 + 5 - (/)]

For P to be a maximum we must put

numerator of above = {a)

dG
To find a geometrical equivalent of -y—

-
, denote A C by L,

and draw ^^, making an angle = ^0 with AC. Now the

area AOI =: AI X kUE={L + dL)\Ld(l> = iZ'd(p . . .

(neglecting infinitesimal of 2d order). Now

dGdG = y X area ACT X unity ;
.-. -^- = ^yP'; .*. (a) becomes

sin (/?+ d— ^)lyP sin (y^— 0)- sin (/?+ (^— 0)6^ cos(/S-0)

+ 6^ sin (yS - 0) cos (/? + (^ - 0) = ;

i.e., (9= =

l-^/Z" sin (/? — 0) sin (yg -[- (^ - 0)

sin (/? + (^ — 0) cos (y5 — 0) — cos (yS+ (^ — 0) sin (/? — 0)
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when 7^ is a maximum ; and hence, calling O' and 4*' and I)

the values of O^ 0, and Z, for max. P^ we have

ff/
_ ^ x^n

sin (^ -00 sin (^ + ^ - 00 ^
^

/gx

sin (^
J • • \ /

and therefore from (1) P max. itself is

P' = ^yL'\^y^Slz:^ (3)
sin d

447. Geometric Interpretation and Construction.—If in Fig.

496 we draw GF^ making angle S with AD^ C being anj

point on the ground surface BP, we have

CF=L ^^" (^ ~ ^\
sin d

Drop a perpendicular FH from Fio AC, and we shall have

FS=^ (7F. sin (/?+ <^ - 0), = Z .
«in(^-0)sin(/?+cy-0).

sm d

From this it follows that the weight of prism of base^CZ'
and unit height

= ^yL.FE=^yL\'2^^1±l'^^±±:zA. (4)
sm (^

When ^ 6^ (as varies) assumes the position and value AC\
bounding the prism of maximum thrust, Fig. 49Y. Z becomes

= Z'. and 0=0'; and eq. (4) gives the weight of the prism

AC'F'. This weight is seen to be equal to that of the prism

(or wedge) of maximum thru&t ABC ^ by comparing eq. (4)

with eq. (2); that is, AC hisects the area ABCF', and

hence may he determined hy fixing such a point C\ on the

upper profile BD^ as to make the triangular area ACF'

equal to the sectional area of the wedge BCA\ CF' being

drawn at an angle = S with AP.
This holds for any form of ground surface ZZ>, or any
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C is best found graphic-.values of the constants y5, a^ or d.

ally by trial, in dealing with

an irregular profile BD.
Having found AC\ =

L', P' can be found from

(3), or graphically as fol-

lows : (Fig. 49Y) With F'
as a centre and radius =
C'F\ describe an arc cut-

ting AD in J\ and join

C'J'. The weight of prism

with base C'J'F' and unit height will = P' . For that prism

has a weight

Fig. 497.

but

and

= iy.F'J' .C'H'',

yrrp ^ -pTQ? ^ L' sin (/? - (}>')

sin d '

wei

C'H' = L' sin (/? - 00 ;

ight of prism C'J'F= iyZ' '!^^^ ;
= P'

[See eq. (3).]

448. Point of Application of the Resultant Earth Thrust.

—

This thrust (called P' throughout this chapter except in the

present jparagra])h)\% now known in magnitude and direction,

but not in position ; i.e., we must still determine its line of

action, as follows

:

Divide AB into a number of equal parts, «5, 5c, cd^ etc.*

see Fig. 498. Treat ah as a small retaining wall, and find the

magnitude P' of the thrust against it by § MY ; treat ac simi-

larly, thus finding the thrust, P", against it ; then a/7, ae, etc.,

the thrusts against them being found to be P'" ^ P^^, etc. ; and

so on. ISTow the pressure

P' on db is applied nearly at middle of «J,

P" - P' •' " " " Ic,

pin_p„ « « « u ^^^
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and so on. Erect perpendiculars at the middle points of ab,

he, ed, etc., equal respectively to I*',

P" - P\ P" - P", etc., and join the

ends of the perpendiculars. The per-

pendicular through the centre of gravity

of the area so formed (Fig. 498) will

give, on" AB, the required point of ap-

plication of the thrust or earth pressure

on AB. and this, with the direction and

magnitude already found in § 447, will

completely determine the thrust against the wall AB.

449. Special Law of Loading.—If the material to be retained

consists of loose stone, masses of masonry, buildings, or even

moving loads, as in the case of a wharf or roadway, each can

be replaced by the same weight of earth or other material

which will render the bank homogeneous, situated on the same

verticals, and the profile thus reduced can be treated by §§447
and 448.

Should the solid mass extend below the plane of rupture,

AC , and the plane of natural slope, it will become a retaining

wall for the material beyond, if strong enough to act as such

(limiting the profile ABGD of Fig. 496 to the front of the

mass, or to the front and line of rupture for maximum thrust

above it, if it does not reach the surface); if not strong enough,

or if it does not reach below the plane of natural slope, its

presence is better ignored, probably, except that the increased

weight must be considered.

The spandrel wall of an arch may present two of these

special cases; i.e., the profile may be enlarged to include a

moving load, while it may be limited at the back by the other

spandrel.

If the earth profile starts at the front edge of the top of

wall, instead of from the back as at B, Fig. 496, eq. (3) would

only apply to the portion behind AB prolonged, leaving the

part on the wall (top) to be treated as a part of the wall to aid

in resistmg the thrust.

If the wall is stepped in from the footings, or foundation
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courses, probably the weak section will be just above them ; if

stepped at intervals up the back of the wall, the surface of separa-

tion between the wall and filling, if it is plane, will probably

pass through the first step and incline forward as much as pos-

sible without cutting the wall.

450. Straight Earth-profile.—The general case can be simpli=

fied as follows (the earth-profile BD being straight, at angle

= C with vertical, = DET) : Since the triangles ABC and

Fig. 499.

C'AF' are equal, from § 447, and AC is common, therefore

BS=F'H (both being drawn "1 to AC). Draw AE and

B3£ II
to'F'C (i.e., at angle S with AB), cutting BB, pro-

longed, in E. We have

BE EA , CE EA
and

CE EA - CF'' BE EA- BM*

But CF' = BM (since BS = M'F')
;

BE CE
therefore Z^ = ^=^: i.e., BE . BE = CE\

CE BE
which justifies the following construction for locating the de-

sired point C on 5Z>, and thus finding AC ^= L' and the

angle 0': Describe a circle on EB as a diameter, and draw
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BX "1 to BD^ thus fixing X jn the curve. With centre E
describe a circular arc through X, cutting^/) in C\ required

Having A<J' (i.e., L'\ <p' is known ; hence from eq. (3) we
obtain the earth thrust or pressure P'-. or, with F' as centre

and radius = C'F\ describe arc G'J'\ tlien the triangle G'F'J'
is the base of a prism of unity height whose weight == P' (as

in § 447).

Centre of Pressure.—Applying the method of § 448, Fig.

498, to this case, we find that the successive Z"s are propor-

tional to the depths ah, ac^ ad, etc., and that the successive Ph
are proportional [see (3)] to the squares of the depths ; hence

the area in Fig. 498 must be triangular in this case, and the

point of application of the resultant pressure on AB is one

third of AB from A : just as with liquid pressure.

451. Resistance of Retaining Walls.—(Fig. 500.) Knowing
the height of the wall we can find its weight, = G^ , for an as-

sumed thickness, and unity width "] to paper. The resultant

of 6^1 , acting through the centre of gravity of wall, and P\ the

thrust of the embankment, in its proper

line of action, should cut the base A V
within the middle third and make an

angle with the normal (to the base) less

than the angle of friction.

For the straight wall and straight

piii,-'-Gi^%\\ earth-pi-ofile of Fig. 499 and § 450, the

Fig. 500. length L\ = AG\ can be expressed in

terms of the (vertical) height, A, of wall, thus

:

AB h

cos a

2aidL' = AG' = AB.

,". eq. (8) becomes

sin (C — <a^) _ A sin (C, — oc)

sin (C — 4>') cos a ' sin (C — <p')
'

ir
h' sin-(/g - 00 sinXC - a) ^ ^ _J^_ ^ ,g.

cos' a ' sin d sin^C - <P') ^'^cos' a' '^ ^

[J- representing the large fraction for brevity.]
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This equation will require, for a wall of rectangular section,

that the thickness, d^ increase as A, in order that its weight may
increase as A° (i.e., as P') and that its resisting moment may
increase with the overturning moment.

By this equality of moments is meant that Jr a=. 0}>\

where a and h are the respective lever-arms of the two forces

about the front edge of the middle third. {AB is the back of

the wall.) In other words, their resultant will pass through

this point.

The following table is computed on the basis just mentioned,

viz., that the resultant of P' and G shall j>ass through the

front edge of the midde third.

The symbols of eq. (5) and the table are all shown in Fig.

499, except y^ B, and d. y = weight of a cubic foot of earth,

here assumed = f that of masonry (e.g., if earth weighs

100 lbs., masonry is assumed to weigh 150 lbs. per cubic foot)

;

6 = angle which the thrust P' makes with the back of the

wall ; and d = a -\- 0, — 6 in this case as the wall is vertical,

or « = 0. <^ is the proper safe thickness to be given to the

wall, of rectangular section, to prevent overturning, as stated

above ; h is the altitude, and A is the fraction shown in eq. (5).

Whether the wall is safe against sliding on its base, and

whether a safe compression per unit area is exceeded on the

front edge of the base, are matters for separate consideration.

The latter will seldom govern with ordinary retaining walls.

a = 0; i e., wall is vertical; also density of wall = 1 that of the earth.

I. II. III.

i = 90° ^ = 90' ^=/3
e = 90° 0=/S = /3

tan/S /s ^' A d >' A d 4>' A d

1.0 45° 22^° .17 Mfi 26° .18 .22h 45° .71 .SSh
1.5 56i° 28° .39 .Uh 33° .36 .307^ 56° .83 ASh
2.0 63+° 31f° .38 .5\h 38° .33 .367i 63° .89 .517i

4.0 76° 38° .61 M7i 45° .54 .50h 76° .97 .65h
Infinity 90° 45° 1.00 .82h 90° 1.00 .82h 90° 1.00 .82h

In Case I of table, since « = 0, ^ = 90° and C = 90°

;

.-. d = 90°, and hence O'F' of Fig. 499 is "1 to AD, so that
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(GiDce the area of /\ABC' = l\AC'F') cp' must = |/?.

These values, in (5), give

P' = ^yh"" tan' i/? ; i.e., A = tan'' i/3. . (6)

A

In Case II, since C = 90°, ^ = and 6 = j3, .'. d = /3;

and (5) reduces to

^ -^^^ siny5cos>" '•^•'^~^/^cos>'- • ^^^

In Case III, C = /? and ^i> will be || to AD, B being at

^^ infinity. See Fig. 501. Through

' c..^4^# Bdv'dwBB-] to AB, arid BF"
//--^l'//^\\ making angle d with JLD. C is

////"^vsi
"^>, now to be located on BB, so as

|V^^^f^'^'^"''"to n^ake (area of) aABC =
|>\ /irVFl\\\-# (area of) aAG'F' (according

^/> ^|^'^//\\\^'8/W to § 447), the angle (7'i^'^ being
' "

'

'^'
)v^\\ = (J = a:+ ^ ; = ^, in this case,

and hence also = y5. Conceive

Fig. 501, B and F' to be joined.

Kow aAG'F' = aABF" + aBF'F".

But A ABC = aBF'F" (equal bases and altitudes).

Hence A ABC cannot = aACF' unless C is moved out

to infinity / and then 0' becomes = /?, and eq. (5) reduces to

P'= ^yhj" sin fS ; i.e., A = sin /?. (8)

[Increasing a from zero will decrease the thickness d ; i.e.,

inclining the wall inwards will decrease the required thickness,

but diminish the frictional stability at the base, unless the lat-

ter be '1 to AB. The back of the wall is frequently inclined

outwards, making the section a trapezoid, to increase the fric-

tional stability at the base when necessary, as with timber

walls supporting water.]
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452. Practical Considerations. — An examination of the

values of A and d in the table of § 451 will show that in sup-

porting quicksand and many kinds of clay which are almost

fluid under the influence of water, it is important to know
what kind of drainage can be secured, for on that will depend

the thickness of the wall. With well compacted material free

from water-bearing strata, an assumed natural slope of If to 1

(i.e., 1^ hor. to 1 vert.) will be safe ; the actual pressure below

the effect of frost and surface water will be that due to a much
steeper slope on account of cohesion (neglected in this theory).

The thrust from freshly placed material can be reduced by

depositing it in layers sloping back from the wall. If it is not

so placed, however, the natural slope will seldom be flatter

than If to 1 unless reduced by water. In supporting material

which contains water-bearing strata sloping toward the wall

and overlain by strata which are liable to become semi-fluid

and slippery, the thrust may exceed that due to semi-fluid ma-

terial on account of the surcharge. If these strata are under

the wall and cannot be reached by the foundation, or if resist-

ance to sliding cannot be obtained from the material in front

by sheet-piling, no amount of masonry can give security.

Water at the back of the wall will, by freezing, cause the

material to exert an indeflnitely great pressure, besides disinte-

grating the wall itself. If there is danger of its accumulation,

drainage should be provided by a layer of loose stone at the

back leading to "weep-holes" through the wall.

A friction-angle at the back of the wall equal to that of the

filling should always be realized by making the back rough by

steps, or projecting stones or bricks. Its effect on the required

thickness is too great to be economically ignored.

The resistance to slipping at the base can be increased, when

necessary, by inclining the foundation inwards; by stepping

or sloping the back of the wall so as to add to its effective

weight or incline the thrust more nearly to the vertical ; by

sheet-piling in front of the foundation, thus gaining the resist-

ance offered by the piles to lateral motion ; by deeper founda-

tions, gaining the resistance of the earth in front of the wall.
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The coefficient of friction on the base ranges, according to

Trautwine, from 0.20 to 0.30 on wet clay

;

" .50 to .66 " dry earth
;

" .66 to .75 " sand or gravel

;

" .60 on a drj^ wooden platform ; to .75 on a

wet one.

If the wall is partially submerged, the buoyant effort should

be subtracted from G^ , the weight of wall.

453. Results of Experience.—(Trautwine.) In railroad prac-

tice, a vertical wall of rectangular section, sustaining sand,

gravel, or earth, level with the top [p. 682 of Civ. Eng. Pocket

Book] f^nd loosely deposited, as when dumped from carts, cars,

etc., should have a thickness d, as follows

:

If of Cut stone, or of first-class large ranged rubble, in mortar. . . . d= .35A

" good common scabbled mortar-rubble, or brick d — AOh
" well scabbled dry rubble .d= .50h

Where h includes the total height, or about 3 ft. of foundations.

{a) For the best masonry of its class h may be taken from

the top of the foundation in front.

{h) A mixture of sand or earth, with a large proportion of

round boulders or cobbles, will weigh more than the backing

assumed above ; requiring d to be increased from one eighth to

one sixth part.

(c) The wall will be stronger by inclining the back inwards,

especially if of dry masonry, or if the backing is put in place

before the mortar has set.

{d) The back of the wall should be left rough to increase

friction.

(e) Where deep freezing occurs, the back should slope out-

ward for 3 or 4 feet below the top and be left smooth.

if) When a wall is too thin, it will generallj' fail by bulging

outward at about one third the height. The failure is usually

gradual and may take years.

(g) Counterforts, or buttresses at the back of the wall, usually

of rectangular section, may be regarded as a waste of ma-

sonry, although considerably used in Europe; the bond will
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seldom hold tliem to the wall. Buttresses in front add to the

strength, but are uot common, on account of expense.

ill) Land-ties of iron or wood, tying the wall to anchors im-

bedded below the Hue of natural slope, are sometimes used to

increase stability.

(/) Walls with curved cross-sections are not recommended.

454. . Conclusions of Mr. B. Baker.—(" Actual Lateral Pressure

of Earthwork.") Experience has shown that d = 0.25A, with

batter of 1 to 2 inches per foot on face, is sufficient when

backing and foundation are both favorable; also that under no

ordinary conditions of surcharge or heavy backing, with solid

foundation, is it necessary for d to be greater than 0.50A.

Mr. Baker's own rule is to make d = 0.33A at the top of

the footings, with a face batter of \\ inches per foot, in ground

of average character; and, if any material is taken out to form

a face-panel, three fourths of it is put back in the form of a

pilaster. The object of the batter, and of the panel if used, is

to distribute the pressure better on the foundation. All the

walls of the "District Kailway" (London) were designed on

this basis, and there has not been a single instance of settle-

ment, of overturning, or of sliding forward.

455. Experiments with Models.—Accounts of experiments

with apparatus on a small scale, with sand, etc., may be found

in vol. Lxxi of Proceedings of Institution of Civil Engineers,

London, England (p. 350) ; also in vol. n of the " Annales des

Fonts et Ohaussees" for 1885 (p. Y88).

The results of those experiments, and the results of experi-

ence given in §§ 453 and 454, when compared with the table

of p. 581, indicate a fairly close agreement between practice

and theory. This agreement is believed to be close enoui^h

so that the general method of §§ 447 and 451, wnth the table

of p. 5S1, can be relied upon in practice. The greatest value of

this method will, of course, be for cases of exceptional loading.

inclined w^alls, etc., where the results of experience do not

furnish so valuable a guide.

Note.—A recent and valuable book in this connection is Tlie Design

of Walls, Bins, and Grain Elevators, by Milo S. Ketchum. Published

by John Wiley & Sons, New York, 1907.



CHAPTEE ly.

HYDROSTATICS (Co7i<mwcZ)-lMMERSION AND FLOTATIOiM.

456. Jtigid Body Immersed in a Liquid. Buoyant EflFort.—If

any portion of a body of homogeneous liquid at rest be con-

ceived to become rigid without alteration of shape or bulk, it

would evidently still remain at rest ; i.e., its weight, applied at

its centre of gravity, would be balanced by the pressures, on its

bounding surfaces, of the contiguous portions of the liquid

;

hence,

If a rigid hody or solid is immersed in a liquid, hoth heing

at rest, the resultant action ujpon it of the surrounding liquid

{or fluid) is a vertical upward force called the ^^ buoyant

effort,''"' equal in amount to the weight of liquid displaced^

and acting through the centre of gravity of the volume {con-

sidered as homogeneous) of displacement {now occupied hy the

solid). This point is called the centre of huoyancy, and is

sometimes spoken of as the centre of gravity of the displaced

water. If V' = the volume of displacement, and y = heavi-

ness of the liquid, then the

huoyant effort = V'y 4 (1)

(By " volume of displacement" is meant, of course, the volume

of liquid actually displaced when the body is imm_ersed.)

If the weight G' of the solid is not equal to the buoyant

effort, or if its centre of gravity does not lie in the same verti-

cal as the centre of buoyancy, the two forces form an unbal-

anced system and motion begins. But as a consequence of

this very motion the action of the liquid is modified in a man-

ner dependent on the shape and kind of motion of the body.
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Problems in this chapter are restricted to cases of rest, i.e.,

balanced forces.

Suppose G' = Y'y ; then.

If the centre of gravity lies in the same vertical line as the

centre of buoyancy and underneath the latter, the equilibrium

is stable ; i.e., after a slight angular disturbance the body re-

turns to its original position (after several oscillations) ; while

if aboTieWxQ latter, the equilibrium is unstable. If they coin-

cide^ as when the solid is homogeneous (but not hollow), and

of the same heaviness (§ T) as the liquid, the equilibrium is

indifferent, i.e., possible in any position of the body.

The following is interesting in this connection :

In an account of the new British submarine boat " Nautilus,"

a writer in Chambers's Journal remarked [188Y] :
" At each

side of the vessel are four port-holes, into which fit cylinders

two feet in diameter. When these cylinders are projected

outwards, as they can be by suitable gearing, the displacement

of the boat is so much increased that the vessel rises to the

surface; but when the cylinders are withdrawn into their

sockets, it will sink,"

As another case in point, large water-tight canvas " air-bags"

have recently been used for raising sunken ships. They are

sunk in a collapsed state, attached by- divers to the submerged

vessel, and then inflated with air from pumps above, which of

course largely augments their displacement while adding no

appreciable weight.

457. Examples of Immersion.—Fig. 502. At {a) is an ex-

ample of stable equi-

librium, the centre of

buoyancy B being above

the centre of gravity C,

and the buoyant eifort

V'y — G' = the weight

of the solid ; at (a'), con-

versely, we have un-

stable equilibrium, with

V'y still = G'. At {h) the buoyant effort Y'y is. > G', and

Fig. 503.;
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to preserve equilibrium the body is attached by a cord to the

bottom of the vessel. The tension in this cord is

s,= vy-G\ . (1)

At (c) V'y is < G\ and the cord must be attached to a

support above, and its tension is

S,= G'- V'y (2)

If in eq. (2) [(c) in figure] we call 8c the apparent weigJit of

the immersed body, and measure it by a spring- or beam-bal-

ance, v^e may say that

The apparent weight of a solid totally immersed in a liquid

equals its real weight diminished hy that of the amount of

liquid displaced; in other words, the loss of weight = the

weight of displaced liquid.

Example 1.—How great a mass (not hollow) of cast-iron can

be supported in water by a wrought-iron cylinder weighing

140 lbs., if <"he latter contains a vacuous space and displaces

3 cub. feet of water, both bodies being completely immersed ?

[Ft., lb., sec]

The buoyant effort on the cylinder is

FV = 3 X 62.5 = 18Y.5 lbs.,

leaving a residue of 47.5 lbs. upward force to buoy the cast-

iron, whose volume V" is unknown, while its heaviness (§ 7)

is ]/' = 450 lbs. per cub. foot. The direct buoyant effort of

the water on the cast-iron is V"y = [F''X62.5] lbs.,

and the problem requires that this force -|- 4Y.5 lbs. shall

= V^'y" = the weight G'' of the cast-iron

;

.-. y X 62.5 + 4T.5 = V X 450
;

.-. F" = 0.12 cub. ft., while 0.12 X 450= 54 lbs. of cast-iron.

Ans.

Example 2.^ilequired the volume F', and heaviness y\
of a homogeneous solid which weighs 6 lbs. out of water and

4 lbs. when immersed {apparent weight) (ft., lb., sec ).
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From eq. (2), 4 = 6 - F' X 62.5 ; .\ V = 0.032 cub. feet

;

... y' ^Q' ^ Y> = Q^ 0.032 = 187.5 lbs. per cub. ft,

and the ratio of y' to y is 187.5 : 62.5 = 3.0 (abstract num-

ber) ; i.e., the substance of this solid is three times as dense,

or three times as heavy, as water. [The buoyant effort of the

air has been neglected in giving the true weight as 6 lbs.]

458. Specific Gravity.—By specific gravity is meant the ratio

of the heaviness of a given homogeneous substance to that of

a standard homogeneous substance; in other words, the ratio

of the weight of a certain volume of the substance to the

weight .of an equal voluvae oi the standard substance. Dis-

tilled water at the temperature of maximum density (4° Centi-

grade) under a pressure of 14.7 lbs. per sq. inch is sometimes

taken as the standaud substance, more frequently, however, at

62° Fahrenheit (16°.6 Centigrade). Water, then, being the

standard substance, the numerical example last given illustrates

a common method of determining experimentally the specific

gravity of a homogeneous solid substance, the value there ob-

tained being 3. The symbol (t will be used to denote specific

gravity, which is evidently an abstract number. The standard

substance should always be mentioned, and its heaviness ;k;

then the heaviness of a substance whose specific gravity is cr is

y'^^cry^ (1)

and the weight G' of any volume V of the substance may be

written

G' = V'y' = Very (2)

Evidently a knowledge of the value of y' dispenses with the

use of cr, though when the latter can be introduced into prob-

lems involving the buoyant effort of a liquid the criterion as

to whether a homogeneous solid will sink or rise, when im-

mersed in the stewf^arc? liquid, is more easily applied, thus

:

Being immersed, the volume V of the body = that, V, of

displaced liquid. Hence,
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if G' is > FV, i.e., if V'y' is > Y'y^ -or cr > 1, it sinks
;

while if G' is < Y'y^ . . . . . . or cr < 1, it rises;

i.e., according as the weight G' is > or < than the buoyant

effort.

Other methods of determining the specific gravity of solids,

liquids, and gases are given in works on Physics.

459. Equilibrium of Flotation.—In case the weight G' of an

immersed solid is less than the buoyant effort Y'y (where V is

the volume of displacement, and /the heaviness of liquid) the

body rises to the surface, and after a series of oscillations comes

to rest in such a position. Fig. 503, that its centre of gravity C
and the centre of buoyancy B (the new B^ belonging to the

new volume of displacement, which is limited above by the

horizontal plane of the free surface of the liquid) are in the

same vertical (called the axis of flotation, or line of support),

and that the volume of displacement has diminished to such a

new value F, that

Yy=G' (1)

In the figure, F = vol. AWD, below the horizontal plane

AN, and the slightest motion of the body will change theform
of this 'volume, in general (whereas with

complete immersion the volume of dis-

placement remains constant). For stable

equilibrium it is not essential in every

case that C (centre of gravity of body)

should be below B (the centre of buoy-

ancy) as with complete immersion, since if

Fig. 503. the solid is turned, B may change its posi-

tion in the body, as the form of the Tolume AND changes.

There is now no definite relation between the volume of

displacement Fand that of the body, F', unless the latter is

homogeneous^ and then for G' we may write Y'y\ i.e.

Y'y' = Yy (for a homogeneous solid) ; . . (2)

or, the volumes are inversely proj>ortional to the heavinesses.
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The buoyant effort of the air on the portion ANE may be

neglected in most practical cases, as being insignificant.

If the solid is hollow^ the position of its centre of gravity C
may be easily varied (by shifting ballast, e.g.) within certain

limits, but that of the centre of buoyancy B depends only on

the geometrical form of the volume of displacement AND^
below the horizontal plane AN.
Example.—(Ft., lb., sec.) Will a solid weighing G' — 400

lbs., and having a volume T^' =: 8 cub. feet, without hollows

or recesses, float in water? To obtain a buoyant effort of

400 lbs., we need a volume of displacement, see eq. (1), of

Y= Q' 400

62^
only 6.4 cub. ft.

Hence the solid will float with 8 — 6.4, or 1. 6, cub. ft. pro-

jecting above the water level.

Query : A vessel contains water, reaching to its brim, and

algo a piece of ice which floats without touching the vessel.

When the ice melts will the water overflow ?

460. The Hydrometer is a floating instrument for determin-

ing the relative heavinesses of liquids. Fig. 504 shows a sim-

ple form, consisting of a bulb and a cylin-

drical stem of glass, so designed and

weighted as to float upright in all liquids

whose heavinesses it is to compare. Let F
denote the uniform sectional area of the

stem (a circle), and suppose that when float-

ing in water (whose heaviness = y) the

water surface marks a pointA on the stem
;

and that when floating in another liquid,

say petroleum, whose heaviness, = ;^^, we
wish to determine, it floats at a greater

depth, the liquid surface now marking A'

on the stem, a height = x above A. G' is

the same in both experiments ; but while the volume of dis-

placement in water is V, in petroleum it is F4- Fx. There-

fore from eq. (1), § 459,

Fig. 504.
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in the water G' = Vy, ^(1)

and in thepetroleum G' = {V-}- Fx)yp ; . . (2)

from which, knowing G\ F, x, and y, we find Fand ^p, i.e.,

V= — and yp— r,, ^ TP • • • • (3)
y ^ G' -\-Fxy ^ ^

[N.B.—^is best determined bj noting the additional dis-

tance, = I, through which the instrument sinks in water under

an additional load P, not immersed / for then

G'^P^{Y-\-Fl)y, or F=^?^

Example.—[Using the inch, ounce^ and second, in which

system y = 1000 ^ 1728 = 0.5Y8 (§ 409).] With G' = Z

ounces, and F^= 0.10 sq. inch, x being observed, on the

graduated stem, to be 5 inches, we have for the petroleum

3 X 0.578 „ .„. X- ' X.
y^ = --——

—

——— = 0.525 oz. per cubic inch^^ 3 + 0.10 X 5 X 0.578
^

= 56.7 lbs. per cub. foot.

Temperature influences the heaviness of most liquids to

some extent.

In another kind of instrument a scale-pan is fixed to the top

of the stem, and the specific gravity computed from the weight

necessary to be placed on this pan to cause the hydrometer to

sink to the same point in all liquids for which it is used.

461. Depth of Flotation.—If the weight and external shape

of the floating body are known, and the centre of gravity so

situated that the position of flotation is known, the depth of

the lowest point 'below the surface may he determined.
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Case I. Right i^visTn or cylinder with its axis vertical.—
Fig. 505. (For stability in this position,

see § 464a.) Let G' = weight of cylin-

der, i^'^the area of its cross-section (full -^^S
circle), h' its altitude, and h the un- ~^.

known depth of flotation (or di^aught) ; -^^
then from eq. (1), § 426,

G' = Fhr] h ^' •

(1)

Fig. 505.
in which y = heaviness of the liquid.

If the prism (or cylinder) is homo-

geneous (and then C, at the middle of h', is higher than £)
and y' its heaviness, we then have

ly y
. . (2)

in which cr = specific gravity of solid referred to the liquid as

standard. (See § 458.)

Case II. pyramid or cone with axis vertical and vertex

down.—Fig. 506. Let Y' = volume of

whole pyramid (or cone), and V= vol-

ume of displacement. From similar

pyramids,

V
V

But G' =Vy', or, V= G
whence

1

A'

s 1

1 A

^'—1--

~^/n
.zzt--^
-l_ r:=r ttS.-_ _ ^£4^

Fig.506.

h=h^^/'. G'

V'y
(3)
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Case III. Ditto, hut vertex ujp,—Fig. 507. Let the nota-

tion be as before, for Y and Y' . The
part out of water is a pyramid of volume

= Y" =: Y' — Y, and is similar to the

whole pyramid
;

... Y'- Y: Y' v.h'" : h"

Also, Y=
Fig. 507. Y

....=.:,^:^^,;^rjL=f.,

,'., finally, h = A' 1 _ ^1 _ [Q' -- F>] (4)

Case IY. Sphere.—Fig. 508. The volume immersed is

Y = fl^x')d3 = TtfX^rz - z^)dz = Tth' ^ ^^
Z=zO

r —

and hence, since Yy = 6^' ~ weight

of sphere,

s r'
(5)

^^ From which cubic equation h may be

^-^E^^S^^JẐ :̂ -^Ĥ =^ obtained by successive trials and ap-

^^^^^-=-i^S~'—

=

: :=^ proximations.*
^i»- 508. [An exact solution of (5) for the

unknown h is impossible, as it falls under the irreducible case

of Cardan's Rule.]

Case Y. Right cylinder with axis horizontal.—Fig. 509.

lers. Jy] = ^^''^ ^^ '^^- ^^^^ X ^

= {^r^a — ir' sin 2«')?

;

G'

Fig. 509.

hence, since Y
y
G'

lr'\a — h sin 2a:l =— . « e e (6j

* See p. 224 of the Engineering Record for Feb. 22, 1908, for a diagram

to be used in solving this equation.
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From this transcendental equation we can obtain or, by trial,

in radians (see example in § 428), and finally A, since

h = r{l — cos a) (T)

Example 1.—A sphere of 40 inches diameter is observed to

have a depth of flotation A = 9 in. in water. Required its

weight G\ From eq. (5) (inch, lb., sec.) we have

G' = [62.5 ^ 1728];r9^[20 - ^ x 9] = 156.5 lbs.

The sphere may be hollow, e.g., of sheet metal loaded with

shot; constructed in any way, so long as G' and the volume

T^of displacement remain unchanged. But if* the sphere is

homogeneous, its heaviness (§ Y) y' must be

= O' -^Y'=^G' ^ ^7tr' = (156.5) ^ |;r20'

= .00466 lbs. per cubic inch,

and hence, referred to water, its specific gravity is cr = about

0.13.

Example 2.—The right cylinder in Fig. 509 is homogeneous

and 10 inches in diameter, and has a specific gravity (referred

to water) of cr = 0.30. Required the depth of flotation h.

Its heaviness must be y' = cry
; hence its weight

G' = Very = nr^lcry
;

hoflce, from eq, (6),

r'lla — f sin 2ar] = nrHo; .'. a — ^ sin 2ar = ttct

(lEvolving abstract numbers only). Trying a = 60° ( — |;r in

radians), we have

^Tt —i sin 120° = 0.614 ; whereas Ttcr = .9424

For ct = 70°, 1.2217 — i sin 140° = 0.9003

;

For a = 71°, 1.2391 - i sin 142° = 0.9313
;

T^or a = 71° 22', 1.2455 — ^ sin 142° 44' = 0.9428, which ma^

hp considered sufficiently close. ]^ow from eq. (7),

A = (6 in.) (1 - cos 71° 22') = 3.40 in.—J.n«,
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462. Draught of Ships.—In designing a ship, espeeiali}^ it oi

a new naode], the position of the centre of gravity is found by

eq. (3) of § 23 (with weights instead of volumes) ; i.e., the sum
of the products obtained by multiplying the weight of each

portion of the hull and cargo by the distance of its centre of

gravity from a convenient reference-plane (e.g., the horizontal

plane of the keel bottom) is divided by the sum of the weights,

and the quotient is the distance of the centre of gravity of the

whole from the reference-plane.

Similarly, the distance from another reference-plane is de-

termined. These two co-ordinates and the fact that the centre

of gravity lies in the median vertical plane of symmetry of the

ship (assuming a symmetrical arrangement of the framework

.^nd cargo) fix its location. The total weight, 6r', equals, of

*^ourse, the sum of the individual weights just mentioned. The
'Oentre of huoyancy, for any assumed draught and correspond-

ing position of ship, is found by the same method ; but more

simply, since it is the centre of gravity of the imaginary homo-

geneous volume between the water-line plane and the wetted

surface of the hull. This volume (of "displacement") is

divided into an even number (say 4 to 8) of horizontal laminae

of equal thickness, and Simpson's Rule applied to find the vol-

ume (i.e., the Y oi preceding formulae), and also (eq. 3, § 23)

the height of its centre of gravity above the keel. Similarly,

by division into (from 8 to 20) vertical slices, 1 to keel (an

even number and of equal thickness), we find the distance of

the centre of gravity from the bow. Thus the centre of buoy-

ancy is fixed, and the corresponding buoyant effort Yy (tech-

nically called the displacemeni and usuahy expressed in tons')

computed, for any assumed draught of ship (upright). That

position in which the " displacement" = (7' = weight of ship

is the position of equilibrium of the ship when floating up-

right in still water, and the corresponding draught is noted.

As to whether this equilibrium is stable or unstable, the fol-

lowing will show.

In most ships the centre of gravity G is several feet above

the centre of buoyancy, JB, and a foot or more below the water

line.
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After a ship is afloat and its draught actually noted its total

A^eight G\ = Vy^ can be computed, the values of T^for dif-

ferent draughts having been calculated in advance. In this

way the weights of different cargoes can also be measured.

Example.—A ship having a displacement of 5000 tons id

itself 5000 tons in weight, and displaces a volume of salt water

Y= G'-^ y = 10,000,000 lbs. -f- 64 lbs. per cub. tt. = 156250

cub. ft.

463. Angular Stability of Ships.—If a vessel floating upright

were of the peculiar form and position of

Fig. 510 (the water-line section having an

area = zero) its tendency to regain that

position, or depart from it, when sliglitly

inclined an angle from the vertical is due

to the action of the couple now formed by

the equal and parallel forces Vy and G',

which are no longer directly opposed. This

couple is called a righting coujple if it acts

to restore the first position (as in Fig. 511,

where G is lower than B)^ and an

upsetting couple if the reverse, G
above B. In either case the mo-

ment of the couple is

= Yy . BG sin = Yye sin 0, ^= —

^

Fig. 510.

-
^—;.^.^-j.g-=^

Fig. 511.

and the centre qfhuoyancyB does not

change its position in the vessel, since

the water-displacing shape remains

the same; i.e., no new portions of

the vessel are either immersed or

raised out of the water.

But in a vessel of ordinary form, when turned an angle from

the vertical, Fig. 512 (in which ED is a line which is vertical

when the ship is upright), there is a new centre of buoyancy,

B^ , corresponding to the new shape A^NJ) of the displacement-

volume, and the couple to right the vessel (or the reverse)
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consists of the two forces G' at C' and Yy at B^ , and has a

moment (which we may call J/j or

''E tnoment of stability) of a value

(§28)

'-^ M =^ Yy . m sin cp. (1)

!Now conceive put in at B (centre

of buoyancy of the upright posi-

tion) two vertical and opposite

forces, each = Yy = G\ calling

them P and P, (see § 20), Fig. 512.

We can now regard the couple \0-\ Vy'\ as replaced by the

two couples [6r', P] and [Pj, Fk] ; J^or evidently

Fig. 512.

Yy .mCm\ = Yy . BO sin (p -\- Yy . mB sin
;

(§§33 and 34;)

.-. M= Yy BO sin <p-\-Yy mB sin 0. . . (2)

But the couple [_.G', P^ would be the only one to right the

vessel if no new portions of the hull entered the water or

emerged from it, in the inclined position ; hence the other

couple [Pj, Yy^ owes its existence to the emersion of the

wedge AOA^, and the immersion

of the wedge JVOH/, i.e., to the

loss of a buoyant force Q = (vol-

ume A OA^) X y on one side, and the

^ gain of an equal buoyant force on

the other ; therefore this couple

[Pj, Yy'] is the equivalent of the

couple [Q, Q], Fig. 51o, formed by

putting in at the centre of buoyancy

of each of the two wedges a vertical

force

-d/- YG =-Vy- —-—
Fig. 513.

Q = (vol. of wedge) x V = Y^y. (See figure.)
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If a denotes the arm of this couple, we may write

Yy TmB sin 0, [of eq. (2)], = Y^y<^ ; . . (3)

and hence, denoting B(J bj e, we have

M = ± Vye sin -j- V^^ya ; . . . . '4)

the negative sign in which is to be used when is above JS

(as with most ships). 0, the intersection of I^D and AJV,

does not necessarily lie on the new water-line plane A^JV^

.

Example.—If a ship of
(
Vy ==) 3000 tons displacement

with C'4: ft. ahove B (i.e., e = — 4 ft.) is deviated 10° from

the vertical, in salt water, for which angle the wedges A OA^ and

NON^ have each a volume of 4000 cubic feet^ while the hori-

zontal distance a between their centres of buoyancy is 18 feet,

the moment of the acting couple will be, from eq. (4) (ft.-ton-

sec. system, in which y of salt water = 0.032),

Jf=- 3000X4X0.1736+ 4000X0.032X18:^ 220.8 ft. tons,

which being -f- indicates a righting conplo.

464. Remark.—If with, a given ship and cargo this moment
of stability, J/, be computed, by eq. (4), for a number of values

of 0, and the results plotted as ordinates (to scale) of a curve,

being the abscissa, the curve ob-

tained is indicative of the general

stability of the ship. See Fig. 514.

For some value of 0= O.K{as, well

as for = 0) the value of M is

zero, and for > OK, M is nega-

tive, indicating an upsetting cotijple.
'^^^- ^^^•

That is, for = the equilibrium is stable, but for = OK,
unstable ; and Jlf = in both positions. From eq. (4) we see

why, ii Cis> above B, instability does not necessarily follow.

464a. Metacentre ef a Ship.—Keferring again to Fig. 512,

we note that the entire couple \_G', Vy] will be a righting

couple, or an upsetting couple, according as the point m (^the
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intersection of the vertical through B^ , the new cantre of

buoyancy, with BG prolonged) is above or below the centre

of gravity C of the ship. The location of this point ra changes

with <p\ but as (p becomes very small (and ultimately zero) m
ajpproaches a definite position on the line DE, though not oc-

cupying it exactly till = 0. This limiting position of m is

called the Tnetacentre, and accordingly the following may be

stated : A ship floating upright is in stable equilibrium if its

metacentre is above its centre of gravity / and vice versd.

In other words, for a slight inclination from the vertical a

righting, and not an upsetting, couple is called into action, if

m is above C. To find the metacentre, by means of the dis-

tance Bm, we have, from eq. (3),

rnB = ~^^^^-, (5)
Fk sm 0' ^ ^

and wish ultimately to make = 0. 'Eow the moment

( ywY)'^ = the sum of the moments about the horizontal fore-

and-aft water-line axis OL^ Fig. 615, of the buoyant efforts

(pgdFy due to the immersion of the

-„'^ separate vertical elementary

jt prisms of the wedge OLNJ^^^
plus the moments of those lost,

from emersion, in the w^edge

OLA.A. Let OA.LN, be the

new water-line section of the

ship when inclined a small

Fig. 515. angle fI'om the vertical

(0 = NO^N^, and OALN the old water-line. Let z = the

"1 distance of any elementary area dF oi the water-line section

from OL (which is the intersection of the two water-line

planes). Each dF\Q the base of an elementary prism, with

altitude = 02, of the wedge N^OLN (or of wedge A^OLA
when z is negative). The buoyant effort of this prism = (its

vol.) X >^ = yz4>dF, and its moment about OL is (pyz^dF.

Hence the total moment, = Qa, or V^ya, of Fig. 513,

= <Pyfz'dF= yct> X /oi
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of water-line section, in which /qj, denotes the " moment of

inertia'-' (§ 85) of the plane figure OjlLNO about the axis OL.

Hence from (5), putting = sin 0(true when cf) = Oj, we have

mJJ = Iql -J- V^\ and therefore the distance 7/^,6', of the meta-

centre m above (7, the centre of gravity of the ship, Fig. 512, is

^,=h^,=^ 7o.,^water-line sec.) ^ ^^ ^ ^ ^ ^^^

in which e = BC =^ distance from the centre of gravity to the

centre of buoyancy, the negative sign being used when C is

above B ; while V=- whci^j volume of water displaced by the

ship.

We may also write, ir:^m. eqs. (6) and (1), for small values

Mom. of righting couph \= M= Vy sin -~ ±.eL . {1}

or

M=^ V sin cplIoL ± Ve]. . . . , (7)'

cf—
•B-
i

Eqs. (Y) and (7)' will give close approximations for < 10° or

15° with ships of ordinary forms.

Example 1.—A homogeneous right paralleiopiped. of

heaviness y', floats upright as in

Fig. 516. Find the distance
~

mC = hjn for its metacentre in this

position, and whether the equilibrium ^^
is stable. Here the centre of gravity, :£\e

C, being the centre of figure, is of '£:)j^

course above B, the centre of buoy- 3-1

ancy ; hence e is negative. B is the ^^j

centre of gravity of the displacement, ^^^ -" -

and is therefore a distance ^h below

the water-line. We here assume that I is greater than ¥.

From eq. (2), § 461,

--h^,=

h = hy\
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and since CD = \Ti\ and BD — |A, .-. e ~ ^Ji' — h)\

i.e., e = ^h'
L r J

while (§ 90) /oi, of the water-line section AM, = ^'^^
Also,

r

and hence, from eq. (6), we have

Hence if 5'' is > 6^'" ^ fl - ^ V the position in Fig. 516 is

one of stable equilibrium, and vice versa. E.g., if y' = ^yy
y = 12 inches and A' = 6 inches, we have (inch, pound, sec.)

h^ = ^^= J^ [144 - 6 X ^(1 - i)j = 2.5 in.

The equilibrium will be unstable if, with y' = ^y, h' is made
less than 1.225 A'; for, putting m(7 = 0, we obtain h' =.

1.225 A'.

Example 2.—(Ft., lb., sec.) Let Fig. 517 represent the half

water-line section of a loaded ship of G' = Yy = 1010 tons

Fig. 51?.

displacement ; required the height of the metacentre above the

centre of buojancj, i.e., 7i%B = ? (See equation just before eq.

(6).) Now the quantity /ox, , of the water-line section, may,

from symmetry, (see § 93,) be written

JoL = ^f\fdx, (1)
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in which y = the ordinate ~| to the axis OL at any point ; and

this, agaiu, bj Simpson's Kule for approximate integration,

OL being divided into an even nnmber, n. of equal parts, and

ordinates erected (see ligure), may be written

2 OL-0
^^^-3- 3n

+ 2(y/+ 2//+.:.+2/l_2) + 2/l

From which, by numerical substitution (see figure for dimen-

sions ; n = 8),

/oi. = I
.
gi^g [(0.5' + 4(5^+ 12^ + 13'+ T)

+ 2(9= + 14:' + ir)+ 0.5'

or.

/^^ = ^[0.125+4 X 4393 + 2 X 4804+ 0.125]

loL 120801

125
1728 729
2197 2744
343 1331

= 120801 biquad. ft. ; .-. m^ = ±^ =.- ^^^^^_ ^^^^ ' V [2020000^64]
= 3.8 feet.

That is, the metacentre is 3.8 feet above the centre of buoyancy,

and hence, if £C=2 feet, is 1.90 ft. above the centre of

gravity. [See Johnson's Cyclopgedia, article Naval Architec-

465. Metacentre for Longitudinal Stability.—If we consider

the stability of a vessel with respect to pitching, in a manner

similar to that just pursued for rolling, we derive the position

of the metacentre for pitching or for longitudinal stability

—

and this of course occupies a much higher position than that

for rolling^ involving as it does the moment of inertia of the

water-line section about a horizontal gravity axis ~\ to the keel.

"With this one change, eq, (6) holds for this case also. In

large ships the height of this metacentre above the centre of

gravity of tlie ship may be as great as 90 feet.
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Fig. 518.

CHAPTER Y.

HYDROSTATICS {Continued)—QAS'EOVQ FLUIDS.

466,, Thermometers.—The temperature, or " hotness" of

liquids has, within certain limits, but little influence on tlsair

statical behavior, but with gases must always be taken into

account, since the three quantities, tension, temperature, and

volume, of a given mass of gas are connected by a nearly in-

variable law, as will be seen.

An air-thermometer, Fig. 518, consists of a large glass bulb

filled with air, from which projects a line straight tube of

^„_-,,^^ ,
even bore (so that equal lengths

A'''.:\.'.\\
j

j
-V: represent equal volumes). A

small drop of liquid, A, sepa-

rates the internal from the ex-

ternal air, both of which are

at a tension of (say) one at-

mosphere (14.7 lbs. per sq. inch). When the bulb is placed

in melting ice (freezing-point) the drop stands at some point F
in the tube; when in boiling water (boiling under a pressure

of one atmosphere), the drop is found at B, on account of the

expansion of the internal air under the influence of the heat

imparted to it. (The glass also expands, but only about y^-^

as much ; this will be neglected.) The distance FB along the

tube may now be divided into a convenient number of equal

parts called degrees. If into one hundred degrees, it is found

that each degree represents a volume equal to the ytu'^w^

(.00367) part of the total volume occupied by the air at freez-

ing-point ; i.e., the increase of volume from the temperature of

freezing-point to that of the boiling-point of water = 0.36Y of the

volume at freezing, the pressure being the same, and even having

any value whatever (as well as one atmosphere), within ordi-

nary limits, so long as it is the same both at freezing and boil-

604
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ing. It must be understood, however, that by teinjjerature of
toiling is always meant that of water boiling under one at-

mosphere pressure. Another way of stating the above, if one

hundred degrees are used between freezing and boiling, is as

follows : That for each degree increase of temperature the in-

crease of volume is -g^-g of the total volume at freezing ; 2Y3

being the reciprocal of .0036Y.

As it is not always practicable to preserve the pressure con-

stant under all circumstances with an air-thermometer, we use

the common mercurial thermometer for most practical pur-

poses. In this, the tube is sealed at the outer extremity, with

a vacuum above the column of mercury, and its indications

agree very closely with those of the air-thermometer. That

equal absolute increments of volume should imply equal incre-

ments of heat imparted to these thermometric iiuids (under

constant pressure) could not reasonably be asserted without

satisfactory experimental evidence. This, however, is not al-

together wanting, so that we are enabled to say that within a

moderate range of temperature equal increments of heat pro-

duce equal increments of volume in a given mass not only of

atmospheric air, but of the so-called " perfect" or "permanent"

gases, oxygen, nitrogen, hydrogen, etc. (so named before it was

found that they .could be liquefied). This is nearly true for

mercury also, and for alcohol, hut not for water. Alcohol

freezes at — 200° Fahr., and hence is used instead of mercury

as a thermometric substance to measure temperatures below

the freezing-point of the latter.

The scale of a mercurial thermometer is fixed ; but with an

air-thermometer we should have to use a new scale, and in a

new position on the tube, for each value of the pressure.

467. Thermometric Scales.—In the Fahrenheit scale the tube

between freezing and boiling is marked o£E into 180 equal

parts, and the zero placed at 32 of these parts below the freez-

ing point, which is hence -f- 32°, and the boiling-point +212°.
The Centigrade, or Celsius, scale, which is the one chiefiy

used in scientific practice, places its zero at freezing, and 100"

at boiling-point. Hence to reduce
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Fahr. readings to Centigrade, subtract 32° and multiply by -| ;

Cent. " " Fahrenheit, multiply by f and add 32°.

468. Absolute Temperature.—Experiment also shows that if

a mass of air or other perfect gas is confined in a vessel whose

volume is but slightly affected by changes of temperatui'e,

equal increments of temperature (and therefore equal incre-

ments of heat imparted to the gas, according to the preceding

paragraph) produce equal increments of tension (i.e., pressure

per unit area) ; or, as to the amount of the increase, that wlien

the temperature is raised by an amount 1° Centigrade, the ten-

sion is increased ^rs ^^ ^^^ value at freezing-point. Hence,

theoretically, an ideal barometer (containing a liquid unaffected

by changes of temperature) communicating with the confined

gas (whose volume practically remains constant) would by

its indications serve as a thermometer,

Fiff. 519, and the attached scale could be

graduated accordingly. Thus, if the col-

imn stood at A when the temperature

was freezing, A would be marked 0° on

^^ the Centigrade system, and the degree

^ spaces above and below A would each
^^°- si^- = sfs of the height AB, and therefore

the point B (cistern level) to which 'the column would sink if

the gas-tension were zero would be marked — 273° Centi-

grade.

But a zero-pressure, in the Kinetic Theory of Gases (§ 408),

signifies that the gaseous molecules, no longer impinging

against the vessel walls (so that the press. = 0), have become

motionless; and this, in the Mechanical Theory of Heat, or

Tiierinodynarrdcs^ implies that the gas is totally destitute ofheat.

Hence this ideal temperature of — 273° Centigrade, or — 460°

Fahrenheit, is called the Ahsolute Zero of Temperature^ and by

reckoning temperatures from it as a starting-point, our formulae

will be rendered much more simple and compact. Tempera-

ture so reckoned is called ahsolute temperature, and will be

denoted by the letter T. Hence the following rules for re-

duction :



GASES AND VAPORS. 607

Absol. temp. T in Cent, degrees = Ordinary Cent, -j- 273°
;

Absol. temp. T in Fahr. degrees = Ordinary Fahr. \ 460°.

For example, for 20° Cent., T = 293° Abs. Cent.

469. Distinction Between Gases and Vapors.—All known
gases can be converted into liquids by a sufficient reduction oi

temperature or increase of pressure, or both; some, however,

with great difficulty, such as atmospheric air, oxygen, hydro-

gen, nitrogen, etc., these having been but recently (187S) re-

duced to the liquid form. A vapor is a gas near the point of

liquefaction, and does not show that regularity of behavior

under changes of temperature and pressure characteristic of a

gas when at a temperature much above the point of liquefac-

tion. All gases treated in this chapter (except steam) are sup-

posed in a condition far removed from this stage. The fol-

lowing will illustrate the properties of vapors. See Fig. 520.

Let a quantity of liquid, say water, be intro- THfRM.

duced into a closed space, previously vacuous, J:?==^^F=^*/^'

of considerably larger volume than the water, /^"''.'•' '•

\<V
and furnished with a manometer and ther- [[/•.•.'•..•.•.•..i|

mometer. Yapor of water immediately be- ^^^^yj
gins to form in the space above the liquid, and />^^^^
continues to do so until its pi-essure attains a ^<jnii'i/mM)/v>i/>m

definite value dependent on the temperature, ^^^' ^~^'

and not on the ratio of the volume of the vessel and the origi-

nal volume of water ; e.g., if the temperature is 70° Fahren-

heit, the vapor ceases to form when the tension reaches a value

of O.-SG lbs. per sq. inch. If heat be gradually applied to raise

the temperature, more vapor will form (with ebullition ; i.e
,

from the body of the liquid, unless the heat is applied very

slowly), but the tension will not 7'ise .above a fixed value for
each temperature (independent of size of vessel) 80 long as

there is any liquid left. Some of these corresponding values,

for water, are as follows : For a

Fahr. temp. = 70° 100° 150° 212° 220° 287° 300°

Tension (lbs ) ^ q gg q 93 3^9 -^^^^ -^^ ^ 55 q g/^2
persq. in.)

\

= one atm.

At any such stage the vapor is said to be saturated.
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Finally, at some temperature, dependent on the ratio of the

original volume of water to that of the vessel, all of the water

wall have been converted into vapor (i.e., steam); and if the

temperature be still further increased, the tension also increases

and no longer depends on the temperature alone, hut also on

the heaviness of the vapor when the loater disappeared. The
vapor is now said to be superheated, and conforms more in its

properties to perfect gases.

470. Critical Temperature.—From certain experiments there

seems to be reason to believe that at a certain temperature,

called the critical temperature, different for different liquids,

all of the liquid in the vessel (if anv remains, and supposing

the vessel strong enough to resist the pressure) is converted

into vapor, whatever be the size of the vessel. That is, above

the critical temperature the substance is necessarily gaseous,

in the most exclusive sense, incapable of liquefaction by pres-

sure alone ; while below this temperature it is a vapor, and lique-

faction will- begin if, by compression in a cylinder and conse-

quent increase of pressure, the tension can be raised to a value

corresponding, for a state of saturation, to the temperature

(in such a table as that just given for water). For example, if

vapor of water at 220° Fahrenheit and tension of 10 lbs. per

sq. inch (this is superheated steam, since 220° is higher than

the temperature which for saturation corresponds to ^ = 10

lbs. per sq. inch) is compressed slowly (slowly, to avoid change

-of temperature) till the tension rises to 17.2 lbs. per sq. in.,

which (see above table) is the pressure of saturation for a tem-

perature of 220° Fahrenheit for water-vapor, the vapor is satu-

rated, i.e., liquefaction is ready to begin, and during any fur-

ther slow reduction of volume the pressure remains constant

and some of the vapor is liquefied.

By " perfect gases," or gases proper, we may understand,

therefore, those which cannot be liquefied by pressure unac-

companied by great reduction of temperature; i.e., whose
" critical temperatures" are very low. The critical temperature

of ]S^2^, or nitrous oxide gas, is between — 11° and -\- 8° Cen-

tigrade, while that of oxygen is said to be at — 118° Centi-
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grade. [See p. 471, vol. 122 of the Journal of the Iranklin

Institute. For an account of the liquefaction of oxygen, etc.,

see the same periodical, January to June, 18T8.]

471. Law of Charles (and of Gay Lussac).—The mode of gradu-

ation of the air-thermometer may be expressed in the follow-

ing formula, which holds good (for practical purposes) within

the ordinary limits of experiment for a given mass of any

perfect gas, the tension remaining constant

:

Y=Y,-\- 0.00367 Y,t = F„(l + .003670;••(!)

in which F^ denotes the volume o«cupied by the given mass

at freezing-point under the given pressure, Y its volume at

any other temperature t Centigrade under the same pressure,

Now, 273 being the reciprocal of .00367, we may write

Y- Yi^:il±J). ie Z_ Z i
press. ) . .g)^~ ^^ 273 '

'•^•' Y,~ T, ' 'I const, p ^""^

(see § 468 ;) in which T^ = the absolute temperature of freezing-

point, = 273° absolute Centigrade, and T the absolute tem-

perature corresponding to t Centigrade. Eq. (2) is also true

when T and T^, are both expressed in Fahrenheit degrees (from

absolute zero, of course). Accordingly, we may say that, the

pressure remaining the same, the volume of a given mass of

gas varies directly as the absolute temperature.

Since the weight of the given mass of gas is invariable at a

given place on the earth's surface, we may

always use the equation Yy = Y^y^ , (3)

pressure constant or not, and hence (2) may be rewritten

V T— = -=-. . . (press, const.) ; . (4)
Y T^

i.e., if the pressure is constant, the heaviness (and therefore

the specific gravity^ varies inversely as the absolute temperO'

ture.
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Experiment also shows (§468) that if the vohime [and there-^

fore the heaviness, eq. (3)] remains constant, while the tem-

perature varies, tlie tension p will change according to the

following relation, in which ^„ = the tension when the tem=

perature is freezing

:

i>==^o+¥^i?o^
273 -\-t

273
(5)

t denoting the Centigrade temperature

as before, we have

p _ T

Hence transforming.

vol., and .

heav., const. ^ ' (6)

or, the volume and heaviness remaAning constant^ the tension

of a given mass of gas vai'ies directly as the ahsolute tempera-

ture. Tliis is called the Law of Charles (or of Oay Lussac).

472. General Formulae for any Change of State of a Perfect Gas,

—If any two of the three quantities, viz., volume (or heavi-

ness), tension^ and temperature^ are changed, the new value of

the third is determinate trom those of the other two, according

to a relation proved as follows (remember-

ing that henceforth the absolute temperature

only will be used, T, § 468) : Fig. 521.

At A a certain mass of gas at a tension of

j?o, one atmosphere, and absolute tempera-

ture T^ (freezing), occupies a volume V^ .

Let it now be heated to an absolute temp.

= T', without change of tension (expanding

behind a piston, for instance). Its volume will increase to a

value V which from (2) of § 471 will satisfy the relation

A B

V,

C V,

Fig. 531.

Y_

t: CO

(See B io figure.)

Let it now be heated without change of volume to an abso-

lute temperature T {^C in figure). Its volume is still Y, but
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the tension has risen to a value jp^ such that, on comparing B
and G bj eq. (6), we have

jrT' (^)

Combining (Y) and (8), we obtain for any state in which the

tension is_^, volume Y, and absohite temperature T, in

7} I' 7? V 7? r^
[General) . . . -=-^ =.-Li^

j or ^--=- = a constant ; . (9)

or

{General). , , .
V^^^Pj^^ ...... (10)

which, since

{General) . , Vy = V,y, = V„,r^ = VnVn , = . . (H)

is true for any change of state, we may also write

. . > c . (12)[General) . . .
F _ J^o

' yT - y.r:
or

X>m _ JPn

y-m-'-m, yn-'-n
(13)

These equations (9) to (13), inclusive, hold good for any state

of a mass of any perfect gas (most accurately for air). The

subscript refers to the state of one-atmosphere tension and

freezing-point temperature, m and oi to any two states what-

ever (within practical limits)
; y is the heaviness, §§ Y and 409,

and T the absolute temperature, § 468.

If^, y, and T oi equation (9) be treated as variables, and

laid off to scale as co-ordinates parallel to three axes in space,

respectively, the surface so formed of which (9) is the equation

is a hyperbolic paraboloid.

473. Examples.

—

Example 1.—What cubic space will be

occupied by 2 lbs. of hydrogen gas at a tension of two atmos-

pheres and a temperature of 27° Centigrade?
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With the inch-lh.-seo. system we have p^ = 14.7 lbs. per sq.

inch, Y, = [.0056 -^ 1728] lbs.* per cubic inch, and T, = 273°

absolute Centigrade, when the gas is at freezing-poinf at one

atmosphere (i.e., in state suh-zero). In the state mentioned ^V:

the problem, we have jt? = 2 X 14.7 lbs. per sq. in., -

;7^ - 273+ 27 = 300° absolute Centigrade,

while y is required. Hence, from eq. (12),

2 X 14.7 14/r
.

y 300 ~ (.0056 -^ 1728)273
'

0102
.-. y = '——-- lbs. per cub. in. = .0102 lbs. per cub. foot ; and if

^ 1728 ^ ^ '

the total weight, = 6^, = Yy, is to be 2 lbs., we have (ft., lb.,

sec.) F= 2 -^ 0102 = 196 cubic iQet.—Ans.

Example 2.—A mass of air originally at 24° Centigrade

and a tension indicated by a barometric column' of 40 inches

of mercury has been simultaneously reduced to half its

former volume and heated to 100" Centigrade ; required its

tension in this new state, which we call the state n, m being the

original state. Use the inch, lb., sec. We have given, there-

fore, p^ = ff X 14.7 lbs. per sq. inch, T^ = 273 + 24 = 297°

absolute Centigrade, the ratio

Y^\ Vn = 2:l, and T^ = 273+ 100 =373° Abs. Cent.;

while pn is the unknown quantity. From eq. (10), hence,

^, = -^.^-.^^=2xW.f^Xl4.7= 49.221bs.per3q,m,,

which an ordinary steam-gauge would indicate as

(49.22 — 14.7) = 34.52 lbs. per sq. inch.

(That is, if the weather barometer indicated exactly 14.7 lbs.

per sq. inch.)

* See table on p. 517.
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Example 3.—A mass of air, Fig. 522, occupies a rigid closed

vessel at a teuiperature of 15° Centigrade (equal to that of sur-

^
•v«- Vr

Fig. 522.

rounding objects) and a tension

of four atmospheres [state m].

By opening a stop-cock a few

seconds, thus allowing a portion

of the gas to escape quickly, and

then shutting it, the remainder

of the air [now in state ti] is found to have a tension of only

2.5 atmospheres (measured immediately) ; its temperature can-

not be measured immediately (so much time being necessary

to affect a thermometer), and is less than before. To compute

this temperature, T^, we allow the air now in the vessel to

come again to the same temperature as surrounding objects

(15° Centigrade) ; find then the tension to be 2.92 atmospheres.

Call the last state, state ?' (inch, lb., sec). The problem then

stands thus

:

2)m = 4 X 14.7 Pn = 2.5 X 14.7

rm = ? rn = -i

r™ = 388° Abs. Cent.
m _ j principal
" ~~

I
unknown

Pr = 3.92 X 14.7

rr = rn (since Vr= Vn)

Tr = Tm = 388° Abs. Cent.

In states n and r the heaviness is the same ; hence an equa-

tion like (6) of § 4Y1 is applicable, whence

orZ.
2.5 X 14.7

2.92 X 14.7
X 288 = 246° Abs. Cent.

or — 27° Centigrade ; considerably helowfreezing, as a result of

allowing the sudden escape of a portion of the air, and the con-

sequent sudden expansion, and reduction of tension, of the re-

mainder. In this sudden passage from state tn to state n^ the

remainder altered its heaviness (and its volume in inverse ratio)

in the ratio (see eqs. (11) and (10) of § 472)

Yn _ v^ _p^ T^ 2.5X14.7 288
0.73.

Vm Yn i>^' r, 4X14.7 '246

Kow the heaviness in state m (see eq. (12), § 472) was
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^ ^^ ro^o

^

^ X i4.r .0807
^'^ r^ "

^„ 288 1728

lbs. per cub. in. = .306 lbs. per cub. ft.

273

14.7

.306

1728

.-.. y^ = 0.73 X Vm = 0.223 lbs. per cub. ft.,

and also, since Vm = 0.73 Y^ , about -^-q of the original quan-

tity of air in vessel Las escaped.

[II^OTE.—Bj numerous experiments like this, the law of

cooling, when a mass of gas is allowed to expand suddenly (as,

e.g., behind a piston, doing work) has been determined ; and

vice versa, the law of heating under sudden compression' ; see

§ 487.]

474. The Closed Air-manometer.—If a manometer be formed

of a straight tube of glass, of uniform cylindrical bore, which

is partially filled with mercury and then inverted in a cistern

of mercury, a quantity of air having heen left hetween the

mercury and the upper end of the.

txibe, which is closed, the tension of

this confined air (to be computed

from its observed volume and tem-

perature) must be added to that due

to the mercury column, in order to

obtain the tension j?' to be measured.

See Fig. 523. The advantage of this

kind of instrument is, that to meas-

ure great tensions the tube need not

be very long. Let the temperature

Tj of whole instrument, and the tension p^ of the air or gas

in the cistern, be known when the mercury in the tube stands

at the same level as that in the cistern. The tension of the

air in the tube must now be^^ also, its temperature T^ , ?.nd its

volume is V^ = 2^h^ , ^Z^being the sectional area of the bore of

die tube ; see on left of figure. When the instrument is used,

gas of unknown tension j9' is admitted to the cistern, the tem-

perature of the whole instrument being noted (= T), and the

heights A and h" are observed {h-\-h" cannot be put,= A,
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anless the cistern is very large), p' is then computed as fol-

lows (eq. (2), § 413)

:

P'=^h'ym+p; (1)

in which p = the tension of the air in the tube, and y^n ^^6

heaviness of mercury. But from eq. (10), § 472, putting

F, = i^%, and V=Fh,

^. T K T ,^.

^^^^T'Tr'h'T.^ ^^^

Hence finally, from (1) and (2),

h Tp'^h'y^+f.YPt (3)

Since T^^p^^ and A, are fixed constants for each instrument,,

we may, from (3), compute j?' for any observed values of h and

T (N.B. T and T^ are absolute temperatures)^ and construct

a series of tables each of which shall give values of p)' for a

range of values of A, and one special value of T,

Example.—Supposing the fixed constants of a closed air

manometer to be (in inch-lb.-sec. system) p^ = 14.Y (or one

atmosphere), T^ = 285° Abs. Cent, (i.e., 12° Centigrade), and

A, = 3' 4" = 40 inches ; required the tension in the cistern

indicated by k'^ = 25 inches and h = 15 inches, when the

temperature is — 3° Centigrade, or T = 270° Abs. Cent.

For mercury, y^ = [848.7 -^ 1728] (§ 409) (though strictly

it should be specially computed for the temperature, since it

varies about .00002 of itself for each Centigrade degree).

Hence, eq. (3),

lbs. per sq. inch, or nearly 3^ atmospheres [steam-gauge would

read 34.7 lbs. per sq. in.].

475. Ms.riotte's law, (or Boyle's,) Temperature Constant ; i.e..

Isothermal Change.—If a mass of gas be compressed, or al-
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lowed to expand, isothermally, i.e., without change of fcera.

peratare (pricticallj this cannot be done unless the walls ^l the

vessel are conductors of heat, and then the motion must be

slow), eq. (10) of § 472 now becomes (since T^ = T^)

Mariott^s Law^ \ y r) ~ V m
Temjp. constant \

'
^'^^'^- *^^^«

jPn, i' TO

1.605 the tem/perature remaining unchanged^ the tensions are

inversely ^proportional to the volumes^ of a given mass of a

perfect gas ^ or, the product ofvolume hy tension is a constant

quantity. Again, since YmYm = ^nVn for any change of

state,

j Mariott^s Law, \ Pm ^^Vm qj, Pb = ^' Cg\
I Temp, constant )

' ' Pn Vn' Ym Vn'

!.e;, the pressures {or tensions are directly proportional to tJie

{^firstpower of the) heamnesses, if the temperature is the same.

This law, which is very closely followed by all the perfect

gases, was discovered by Boyle in England and Mariotte in

France more than two hundred years ago, but of course is only

a particular case of the general formula, for any change of

state, in § 4:72. It may be verified experimen-

tally in several ways. E.g., in Fig. 524, the

tube OM being closed at the top, while PiV is

open, let mercury be poured in at P until it

reaches the level A'B'. The air in OA' is now
at a tension of one atmosphere. Let more mer-

ciiry be slowly poured in at P, until the aii

confined in has been compressed to a volume

,-]a"' OA" = i of 0A\ and the height B"E' they

measured ; it will be found to be 30 inches ; i.e„,

" ^ ^ the tension of the air in is now two atmoS'

pheres (corresponding to 60 inches of mercury)
Fig. 524. Again, compress the air in to ^ its original

volume (when at one atmosphere), i.e., to volume OA'" =^

^0A% and the mercury height B"'E"' will be 60 inches, show-

ing a tension of three atmospheres in the confined air at (90

II

B

b'

-

/
e'"

E^~

B
II

A

^
—

^^—:=^
N -=^- r=z-
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inches of mercury in a .barometer). It is understood that the

temperature is the same, i.e., that time is given the compressed

air to acquire the temperature of surrounding objects after

being heated by the compression, if sudden.

[Note,—The law of decrease of steam-pressure in a steam=

engine cylinder, after the piston has passed the point of " cut

off " and the confined steam is expanding, does not materially

differ from Mariotte's law, which is often applied to tli© case

of expanding steam ; see § 479.]

While Mariotte's law may be considered exact for practical

purposes, it is only approximately true, the amount of the

deviations being different at different temperatures. Thus,

for decreasing temperatures the product Vp of volume by

tension becomes smaller, with most gases.

Example 1.—If a mass of compressed air expands in a

cylinder behind a piston, having a tension of 60 lbs. per sq.

inch (45.3 by steam-gauge) at the beginning of the expansion,

which is supposed slow (that the temperature may not fall)
;

then when it has doubled in volume its tension will be only

30 lbs. per sq. inch ; when it has tripled in volume its tension

will be only 20 Ibs^ per sq. inch, and so on.

Example 2. Diving-iell.—Fig. 525. If the cylindrical

diving-bell AB is 10 ft. in height, in what

depth, A = ?, of salt water, can it be let down
to the bottom, without allowing the water to

rise in the bell more than a distance 6« = 4 ft. ?

Call the horizontal sectional area, i^. The

mass of air in the bell is constant, at a constant

temperature. Firsts algebraically j at the

surface this mass of air occupied a volume

F^ = Fh" at a tension p^ = 14.T X 144 lbs.

per sq. ft., while at the depth mentioned it is

compressed to a volume Vn= F{h" — a), and

is at a tension p^ —p^+ (A — cC)y^ , in which /^j^^/^/j////^

?/,p = lieavineiBS of salt water. Hence, from st&sss.

-A-=-?

^l°lq
'̂f

^-T • v,,.--:

n,
-t—

^! -^ —1-
—^

—

—f-

'V' ^^ -B ^

V^ Fh"= [i>«» +(A - a)y:\F{h" - «); (^
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h = a 1 1 P-n

{h" — a)y^_

hence, numerically, (ft., lb., sec.,)

14.7 X 144

(4)

A = 4x
(10-4)X 64_

= 26.05 feet.

476. Mixture of Gases.—It is sometimes stated that if a vessel

is occupied by a mixture of gases (between which there is no

chemical action), the tension of the mixture is equal to the sum
of the pressures of each of the component gases present; or,,

more definitely, is equal to the sum of the pressures which the

separate masses of gas would exert on the vessel if each in turn

occupied it alone at the same temperature.

This is a direct consequence of Mariotte's law, and may be

demonstrated as follows

:

Let the actual tension be j?, and the capacity of the vessel V.

Also let y^, V^^ etc., be the volumes actually occupied by the

separate masses of gas, so that

F, + F,+ ...= F; ..... (1)

and ^j5^2? 6tc., the pressures they would individually exert

when occupying the volume V alone at the same tempera-

ture. Then, by Mariotte's law,

^, = y,P ; -Vp. = y,P ; etc. ; ... (2)

whence, by addition, we have

F(i7,+^,+ ...) = (F,+ r,+ ...)^;

i.e., i^=p,+i?,+ (S)

Of course, the same statement applies to any number of

separate parts into which we may imagine a mass of homo-
geneous gas to be divided.

For numerical examples and practical questions in the solu-

tion of which this principle is useful, see p. 239, etc., Ean-

kine's Steam-engine. (Rankine uses 0.365, where 0.367 has

been used here.)
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477. Barometric Levelling.—By measuring with a barometer

tlie tension of the atmosphere at two different levels, simul-

taneously, and on a still day, the two localities not being widely

separated horizontally, we may compute their vertical distance

apart if the temperature of the stratum of air between them

is known, being the same, or nearly so, at both
^^

stations. Since the heaviness of the air is

different in different layers of the vertical

column between the two elevations iVand M^
Fig. .526, we cannot immediately regard the

whole of such a column as a free body (as was

done with a liquid, § 412), but must consider

a horizontal thin lamina, Z, of thickness

= dz and at a distance = z (variable) below

J!/, the level of the upper station, N being

the lower level at a distance, A, from M.
The tension, ^, must increase from M

downwards, since the lower laminae have to support a greater

weight than the upper ; and the heaviness y must also increase,

proportionally toj?, since we assume that all parts of the col-

umn are at the same temperature, thus being able to apply

Mariotte's law. Let the tension and heaviness of the air at

the upper base of the elementary lamina, Z, be jp and y re-

spectively. At the lower base, a distance dz below the upper,

the tension is ji? -f- djp. Let the area of the base of lamina be

F\ then the vertical forces acting on the lamina are Fp^ down-

ward ; its weight yFdz downward ; and F{]) -\- dp) upward.

For its equilibrium .5'(vert. compons.) must = ;

Ml '."•;• r-r.v
:-~

' z

--T--I—i?+cIp

;• }.\ .:• Jr.

Fig. 526.

/. F{p -\-dp)- Fp- Fydz = 0;

i.e., dp = ydz, "

. (1)

which contains three variables. But from Mariotte's law,

§ 4T5, eq. (2), if p^ and y^, refer to the air at iV, we niay

substitute y = —p and obtain, after dividing by ^, to separate

Pn
the variables^ and s.
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Vn
(2)

Summing equations like (2), one for each lamina between

J^ (where J? =-jPm and s = 0) and ir(where^ =^^and^ = A),

we have

.e.,A =^ log.,

Vn

'Jp.

.Pm_
. (3)

which gives A, the difference of level, or altitude, between M
and iV, in terms of the observed tensions p^ and p^^, and of y^ y

the heaviness of the air at H, which may be computed from

eq. (12), § 472, substituting from which we have finally

h=i^.i^. log.e r^' . . (4)

in which the subscript refers to freezing-point and one at-

mosphere tension ; T^, and T^ are absolute temperatures. For

the ratio j?^ : j?^ we may put the equal ratio h^ '. h^ of the

actual barometric heights which measure the tensions. The

lag. e(or I^aperian, or natural, or hyperbolic, log.) = (common

log. to base 10) X 2.30258. From § 409, ;/„ of air = 0.080T6

lbs. per cub. ft., and j?^ = 14.701 lbs. per sq. inch ; T„ = 273°

Abs. Cent.

If the temperatures of the two stations (both in the shade)

arj not equal, a mean temp. = ^{T^-\- T^) may be used for

Tn in eq. (4), for approximate results. Eq. (4) may then be

written -

A (in feet) = 26213^. log.T
-p.

_Pm_
(5)

i^o _The quantity ^ = 26213 ft., just substituted, is called the

height of the homogeneotis atm,osp)here^ i.e., the ideal height

which the atmosphere would have, if incompressible and non-
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expansive like a liquid, in order to exert a pressure of 14.701

lbs. per sq. inch upon its base, being th'*^"gll':*"+ "f a constant

heaviness = .08076 lbs. per cub. foot.

By inversion of eq. (4) we may also write

p.^e^^ ^- =^„, ..... (6)

where e = 2.71828 = the Naperian Base, which is to be raised

to the power whose index is the abstract number— . ^ . A,

and the result multiplied by^^ to obtain ^^.
Example.—Having observed as follows (simultaneously)

:

At lower station iV, h^ = 30.05 in, mercury ; temp. = 77.6° F.

;

"upper " J[/,A„, = 23.66 «
• " « =70.4°F.;

required the altitude h. From these figures we have a mean
absolute temperature of 460° + K'^'^'-^ + 'i'0.4) = 534° Abs.

Fahr, ; hence, from (5),

h = 26213 Xm X 2.30258 X log.
,,

\^ = 6787.9 ft.

(Mt. Guanaxuato, in Mexico, by Baron von Humboldt.)

Strictly, we should take into account the latitude of the place,

since y^ varies with g (see § 76), and also the decrease in the

intensity of gravitation as we proceed farther from the earth's

centre, for the mercury in the barometer weighs less per cubic

inch at the upper station than at the lower.

Tables for use in barometric levelling can be found in Traut-

wine's Pocket-book, and in Searles's Field-book for Railroad

Engineers, as also tables of boiling-points of water under dif-

ferent atmospheric pressures, forming the basis of another

method of determining heights.

478. Adiabatic Change—Poisson's Law.—By an adiahatic

change of state, on the part of a gas, is meant a compression

or expansion in which work is done wpon the gas (in compress-
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ing it) or hy the gas (in expanding against a resistance) when
there is oio trmismission of Jieat between the gas and enclosino

vessel, or surrounding objects, bj conduction or radiation.

This occurs when the volume changes in a vessel of non-con-

ducting material, or when the compression or expansion takes

place so quickly that there is no time for transmission of heat

to or from' the gas.

The experimental facts are, that if a mass of gas in a cylinder

be suddenly compressed to a smaller volume its temperature is

raised, and its tension increased more than the change of vol-

ume would call for by Mariotte's law ; and vice.versd, if a gas

at high tension is allowed to expand in a cylinder and drive a

piston against a resistance, its temperature falls, and its tension

diminishes more rapidly than by Mariotte's law.

Again (see Example 3, § 473), if y^g of the gas in a rigid

vessel, originally at 4 atmos, tension and temperature of

15° Cent., is allowed to escape suddenly through a stop-cock

into the outer air, the remainder, while increasing its volume

in the ratio 100 : 73, is found to have cooled to — 27° Cent.,

and its tension to have fallen to 2.5 atmospheres; whereas, by

Mariotte's law, if the temperature had been kept at 288° Abs.

Cent., the tension would have been lowered to -^^^ of 4, i.e.,

to 2.92 atmospheres only.

The reason for this cooling during sudden expansion is, ac-

cording to the Kinetic Theory of Gases, that since the " sensi-

ble heat" (i.e., that perceived by the thermometer), or ''^ hot-

fiess'^ of a gas depends on the velocity of its incessantly moving

molecules, and that each molecule after impact with a receding'

piston has a less velocity than before, the temperature neces-

sarily falls; and vice versa, w\ie,u an advancing piston com-

presses the gas into a smaller volume.

If, however, a mass of gas expands without doing worh, as

when, in a vessel of two chambers, one a vacuum, the other

full of gas, communication is opened between them, and the

gas allowed to fill both chambers, no cooling is noted in the

mass as a whole (though parts may have been cooled tem-

porarily).

By experiments similar to that in Example 3, § 473, it has
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been found that for air and the '
' perfect gases, " in an

adiabatic change of vohnne [and therefore of heaviness], the

tension varies inversely with the 1.411h power of the volume.

This is called Poisso'n/s Law. That is to say.

Change] ' ' p^ Vn/ Pn \Vj'

and combining this relation with the general eqs. (10) and

(13), § 4:Y2, we have also

Change} ' ' Pn xTn' T^ \pnl'

i.e., the tension varies directly as the 3.41:th po"wer of the

absolute temperature ; also,

Adiahat
\ (IAJTjlT^ or InJlA'''^ f^)

Change] '
' \vJ-\tJ rm~\Tj ' ^^

^

i.e., the volume is inversely, and the heaviness directly, as the

2.44:th power of the absolute temperature.

Here m and n refer to any two adiabatically related states.

Tis the absolute temperature.

Example 1.—Air in a cylinder at 20° Cent, is suddenly

compressed to \ its original volume (and therefore is six times

as dense, i.e., has six times the heaviness, as before). To what

temperature is it heated % Let m be the initial state, and n the

final. From eq. (3) we have

=
(y);

.-. r„=611°Abs. Cent.,
293

or nearly double the absolute temperature of boiling water.

Example 2.—After the air in Example 1 has been given

time to cool again to 20° Cent, (temperature of surrounding

obiects) it is allowed to resume, suddenly, its first volume, i.e.,
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to increase its volume sixfold by expanding beliind a piston.

To what temperature has it cooled? Here r^= 293° Abs.

Cent., the ratio Vm'-yn=h ^^^ ^« is required. Hence,

from (3),

^=Q; .-. T„=293X0.4Y96 = 140.5° Abs. Cent.,

or=— 132,5° Cent., indicating extreme cold.

From these two examples the principle of one kind of ioe-

making apparatus is very evident. As to the work necessary

to compress the air in Example 1, see § 483. It is also evident

why motors using compressed air expansively have to encoun-

ter the difficulty of frozen watery vapor (present in the air to

some extent).

Example 3.
—

"What is the tension of the air in Example 1

(suddenly compressed to ^ its original volume) immediately

after the compression, if the original tension was one atmos-

phere ? That is, with F„ : F^ = 1 : 6, and prn — 14.7 lbs. per

sq. inch, /»« = 2 From eq. (1), (in., lb., sec.,)

p„=14.7x(6)i-*i= 14.rxl2.52 = 184

lbs. per sq. inch ; whereas, if, after compression and without

change of volume, it cools again to 20° Cent., the tension is

only 14.T X 6 = 88.2 lbs. per sq. inch (now using Mariotte's

law).

479. "Work of Expanding Steam following Mariotte's Law.—*
Although gases do not in general follow Mariotte's law in es*

panding behind a piston (without special provision for sup-

plying heat), it is found that the tension of saturated steam

(i.e., saturated at the beginning of the expansion) in a steaui

engine cyhnder, when left to expand after the piston has

passed the point of "
cut-off^^^ diminishes very nearly in

accordance with Mariotte's law, which may therefore be ap
phed in this case to find the work done per stroke, and thence

tile power. In Fig. 627 a horizontal steam-cylinder k



, EXPANDING STEAM„

pikown in which the piston is making its left-to-rigl

The " back- pressure" is con-

stant and = I^q, F being the

area of the piston and ^ the

intensity (i.e., per unit area)

of tiie back or exhaust pres-

sure tin the right side of the

pston 5 while the forward

pressure on the left face of the

pigton = Fjp, in which j? is the

steam-pressure per unit area,

and is different at different

points of the stroke. While the

piston is passing from 0" to

D'\]) is constant, being — ^e, = the boiler-pressure, since the

iteam-port is still open. Between D" and C" ^ however, the

steam being cut off (i.e., the steam-port is closed) at D'\ a dis-

tance a from (?'',^ decreases with Mariotte's law (nearly), and

its value is {Fa -r- Fx)pi, at any point on C"D'\ x being the

distance of the point from 0".

Above the cylinder, conceive to be drawn a diagram in

which an axis OX\q \\ to the cylinder-axis, OY an axis 1 to

the same, while is vertically above the left-hand end of the

cylinder. As the piston moves, let the value of ^ correspond-

ing to each of its positions be laid off, to scale, in the vertical

immediately above the piston, as an ordinate from the axis X.

Make OD' = g- by the same scale, and draw the horizontal

D'C Then the effective work done on the pigton-rod while

it moves through any small distance dx is

dW = force X distance = F\j^— q)dx.

and is proportional to the area of the strip RS, whose width is

*!« and length =^ — 2; so that the effective work of one

strode is

G {p~-q)dx,
f\

(1)
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and is represented graphically by the area A'ARBQ'D'A\
)^Yom. 0" to 3" 'p is constant and =_^6 (while q is constant at

all points), and x varies from to a

;

.-. \w=F{p,-q)Xdx=F^,-q)a, . . (9)

which may ue called the work of entrance, and is represented

by the area of the rectangle A'ADD',
(1

From D" to C'p is variable and, by Mariotte's lav7, = —^j,

;

[w=J^[ap,log.J-]-q{l-a)] ... (3)
L.D" I— ^O' j J

= the worlc of expansion^ adding which to that of entrance,

we ha^e for the total effective worlc of one stroTce

r=i5>,a[l + log.. (i)]-i^^?. ... (4)

By effective work we mean that done upon the piston-rod

,

and thus transmitted to outside machinery. Suppose the

engine to be " double-acting" ; then at the end of the stroke a

communication is made, by motion of the proper valves, be-

tween the space on the left of the piston and the condenser of

the engine ; and also between the right of the piston and the

boiler (that to»the condenser now being closed). On the return

stroke, therefore, the conditions are the same as in the forward

stroke, except that the two sides of the piston have changed

places as regards the pressures acting on them, and thus the

same amount of effective work is done as before.

If n revolutions of the fly-wheel are made per unit of time

(two strokes to each revolution), the effective work done per

imit of time, i.e., ihiQpower of the engine, is

= 2w Tr= 2nFTapSl + log., (^)l - ^H. (5)
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For simplicity the above theory has omitted the considera-

tion of " dearmicej^ that is, the fact that at the point of " cut-

ofE " the mass of steam which is to expand occupies not only

the cylindrical volume Fa, but also the " clearance" or small

space in the steam-passages between the valve and the entrance

of the cylinder, the space between piston and valve which is

never encroached upon by the piston. "Wire-drawing" has

also been disregarded, i.e., the fact that during communication

with the boiler the steam-pressure on the piston is a little less

than boiler-pressure. For these the student should consult

special works, and also for the consideration of water mixed

with the steam, etc. Again, a strict analysis should take into

account the difference in the areas which receive fluid-pressure

on tlie two sides of the piston.

Example 1.—A reciprocating steam-engine makes 120 revo-

lutions per minute, the boiler-pressure U 40 lbs. by the gauge

(i.e.,j?j, = 40-1- 14.7= 54.7 lbs. per sq. inch), the piston area

is i^=: 120 sq. in., the length of stroke 1 = 1Q in., the steam

being "cut off" at J stroke (.*. « =: 4 in., and I '. a = 4.00),

and the exhaust pressure corresponds to a " vacuum of 25

inches" (by which is meant that the pressure of the exhaust

steam will balance 5 inches of mercury), whence q =^ oi

14.7 = 2.45 lbs. per sq. inch. Required the work per stroke,

W, and the corresponding power L.

Since ? : « = 4, we have log., 4 = 2.302 X .60206 = 1.386,

and from eq. (4), {foot, lb., sec ,)

W= m (54.7 X 144) . 1 . [2.386] - i|| (2.45 x 144) . |

= 5165.86 - 392.0 = 4773.868 ft. lbs. of work per ^tiok.

and therefore the power at 2 rev. per sec. (eq. 5) is

Z= 2 X 2 X 4773.87 = 19095.5 ft. lbs. per second.

Hence in horse-powers, which, in ft,,-lb.-8ee. system, =iZT-S50

Power = 19095.5 -^ 550 = 34.7 H. P.

Example 2.—Required the weight of steam consumed per
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second bv the above engine with given data ; assuming with

Weisbach that the heaviness of saturated steam at a definite

pressure (and a corresponding tenvpe7'ature^ §^69) is about.f of

that of air at the same pressure and temperature.

The heaviness of air at 54.7 lbs. per sq. in. tension and

temperature 287° Fahr. (see table, § 469) would be, from sq.,

(12) of § 472 (see also § 409),

£ ^ .0807 X 492
^ 54^ ^ ^ .^^g

'^ T p, 460 + 287 14.7

lbs. per cub. foot, f of which is 0.1237 lbs. per cub. ft. Now
the volume* of steam, of this heaviness, admitted from the

boiler at each stroke is V= Fa = iff .
-i = 0.2777 cub. ft.^

and therefore the weight of steam used per second is

4 X .2777 X 0.1287 = 0.1374 lbs.

Hence, per hour, 0.1374 X 3600 = 494.6 lbs. of feed-watei

tire needed for the boiler.

If, with this same engine,. the steam is used at full boiler

pressure throughout the whole stroke, the power will be

greater, viz. = '^,nFl{pi, ~ q) ~ 33440 ft. lbs. per sec, but

the consumption""" of steam will be four times as great; and

hence in economy of operation it will be only 0.44 as efficient

(nearly).

480. Graphic Hepresentation of any Change of State of a Con«

fined Mass of Gas.—The curve of expansion AB m Fig. 527 is

an equilateral hyperbola, the axes ^and 1^ being its asymp-

totes. If compressed air were used instead of steam its ex-

pansion curve would also be an equilateral hyperbola if its

temperature could be kept from failing during the expansion

(by injecting hot-water spray, e.g.), and then, following

Mariotte's law, we would have, as for steam, (§ 475,) j*? I^= con-

stant, i.Q.^pFx = constant, and therefore poe = constant, M^hich

is the equation of a hyperbola, p being the ordinate and x the

abscissa. This curve (dealing with a perfect gas) is also called

an isothermal, the x and y co-ordinates of its points being pro-

* We here neglect the practical fact that a portion of the fresh steam
entering the cylinder is condensed prematurely, so thai the actual con-

eumption is somewhat greater than as here aerived.
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portional to the volume and tension, respectively, of a mass of

air (or perfect gas) whose temperature is maintained constant.

Hence, in general, if a mass, of gas be confined in a rigid

cylinder of cross-sec-

tion J^' (area), provided

with an air-tight pis-

ton, Fig. 528, its vol-

ume, 2^x, is propor-

tional to the distance

OD = X (of the piston

from the closed end of

the cylinder) taken as

an abscissa, while its

tension jp at the same

instant may be laid off

as an ordinate from D.
Thus a point A is fixed. Describe an equilateral hyperbola

through A, asymptotic to X and Y^ and mark it with the ob-

served temperature (absolute) of the air at this instant. In a

similar way the diagram can be filled up with a great number

of equilateral hyperbolas, or isothermal curves, each for its

own temperature. Any point whatever (i.e., above the critical

temperature) in the plane angular space YOX will indicate by

its co-ordinates a volume and a tension, while the correspond

ing absolute temperature T will be shown by the hyperbols

passing through the point, since these three variables always

satisfy the relation (§ 472)

^=coBst.;i.e.,5^=i^. . . . (ly

Any change of state of the gas in the cylinder may now be

represented by a line in the diagram connecting the two pointa

corresponding to its initial and final states. Thus, a point

moving along the line AB, a portion of the isothermal marked
293° Abs. Cent, represents a motion of the piston from D to

^, and a consequent increase of volume, accompanied by just

sufficient absorption of heat by the gas (from other bodies) to

maintain its temperature at that figure (viz., its temperature at
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A). If the piston move from D to £', without transmission

of heat, i.e., adiabatically (§ 478), tlie tension falls more

rapidly, and a point moving along the line AB' represents the

corresponding continuous change of state. AB' is a portion

of an adiahatic curve, whose equation, from § 478, is

Vk

1.41

1.41.
Fxk

-^J,
or p:ri-4i ^p^xxi-*i= const.

; . (1)

in which p^ and a?^ refer to the point K where this particular

adiabatic curve cuts the isothermal of freezing-point. Evi-

dently an adiabatic may be passed through any point of the

diagram. The mass of gas in the cylinder may change its

state from A to B' by an infinite number of routes, or lines on

the diagram, the adiabatic route, however, being that most likely

to occur for a rapid motion of the piston. For example, we
may cool it without allowing the piston to move (and hence

without altering its volume nor the abscissa x) until the pres-

sure falls to a value J95' = DL = EB\ and this change is rep-

resented by the vertical path from ^ to Z ; and then allow it

to expand, and push the piston from D to E (i.e., do external

work), during which expansion heat is to be supplied at just

such a rate as to keep the tension constant, =Pb' ^ Pli this

latter change corresponding to the horizontal path LB' from

Z to B'.

It is further noticeable that the worh done by the expanding

gas upon the nearface of the piston (or done upon the gas when
compressed) when the space dx is described by the piston, is

= Fpdx, and therefore is proportional to the area pdx of the

small vertical strip lying between the axis X and the line or

route showing the change of state ; whence the total work done

on the near piston-face, being = Ffpdx, is represented by the

area fpdx of the plane figure between the initial and final

ordinates, the axis X and the particular roitte followed be-

tween the initial and final states (N.B. We take no account

here of the pressure on the other side of the piston, the latter

depending on the style of engine). For example, the work

done on the near face of the piston during adiabatic expansion
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from D \o E is represented by the plane figure AB'EDA^
and is measured by its area.

The mathematical relations between the quantities of heat

imparted or rejected by conduction and radiation, and trans-

formed into work, in the various changes of which the con=

fined gas is capable, belong to the subject of Thermodynamics,^

which cannot be entered upon here.

It is now evident how the cycle of changes which a definite

mass of air or gas experiences when used in a hot-air engine,

compressed-air engine, or air-compressor, is rendered more in-

telligible by the aid of such a diagram as Fig. 528 ; but it

must be remembered that during the entrance into, or exit

from, the cylinder, of the mass of gas used in one stroke, the

distance x does not represent its volume, and hence the locus

of the points in the diagram determined by the co-ordinates^

and X during entrance and exit does not indicate changes of

state in the way just explained for the mass when confined in

the cylinder. However, the work done by or upon the gas

during entrance and exit will still be represented by the plane

figure included by that locus (usually a straight horizontal

line, pressure constant) and the axis of X and the terminal

ordinates.

481. Adiabatic Expansion in an Engine using Compressed Air.

—Fig. 529. Let the compressed air at a tension jp^ acd a?^

absolute temperature T^ be supplied

from a reservoir (in which, the loss is

continually made good by an air-com-

pressor). Neglecting the resistance of

the porty its tension and temperature

when behind the piston are still i?^ and

T^ . Let Xn = length of stroke, and o[

let the cut-off (or closing of communi-

jation with the reservoir) be made at

fiome point D where a? = a?^ , the posi-

tion of^ being so chosen (i.e., the ratio

^m ' Xn so computed) that after adia-

batic expansion from D to E the pres-

^are shall have fallen iromj>^ atM {state in) to a value p^ =Pa
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= one atmosphere at N{state ti), at the end of stroke ; so that

when the piston returns the air will be expelled (" exhausted")

at a tension equal to that of the external atmosphere (though

at a low temperature). Hence the back-pressure at all points

either way will be = j)n per unit area of piston, and hence the

total back-pressure = i^/>^, i^ being the piston area.

From to D the forward pressure is constant and =Fj^rn.->

and the effective work, therefore, or work on piston-rod from

Oto D, is

Work of entrance = W = F\_prn —PnJ^mf • • (1)
Lo

represented by the rectangle MMLN' . The cut-off being

made at Z>, the volume of gas now in the cylinder, viz.,

Y^ = Fx^^ is left to expand. Assuming no device adopted

(such as injecting hot-water spray) for preventing the cooling

and rapid decrease of tension during expansion, the latter is

odiabatic, and hence the tension at any point P between M
and H will be

p=Pm[—J''^' . [see§478; V=Fx']; . . (a)

,\ Work of expansion

^ rv= rxp -Pn)dx = Fr^dx - f^jx^ ~ x^\ (2)

and is represented by the area MPNL.

i.e., Ffydx= 2A4:Fp^xJl-(^Y''l. . . (3)

Now substitute (3) in (2) and then add (2) to (1), noting that



OOMPEESSED-AIE ENGINE. 633

F{Pm— I>v)^ra " FfJ^X^ — i»^) = Fp^ 1 -
'^mPm,

which furthermore, since n and m are adiabatically related

[see (a)], can be reduced to

and we have finally

:

'::r;:tr.r"i='^=3.44.„4i-(i=)°"].

.

,.,

But FXjn= V^, and the adiabatic relation holds good,

therefore we may also write

F= 3.447^p^[l-(^)''']; .... (5)

in which F"^ = the volume which the mass of air used per

stroke occupies in the state m, i.e., in the reservoir, where the

tension is^^ and the absolute temperature = T^.

To find the wor/c done per poicnd of air used (or other unit

of weight), we must divide W by the weight G = V^nYm of

the air used per stroke, remembering (eq. (13), § 4^2) that

ymYm = [ ymPmYoT,'] ^ {T^P,).

Work per unit of weight of \^ ^^^ po
[ i ___ (pA^'^^I ^q.

air used in adiahatic working I
' ""ro^oL \Pmf J

The back-pressure j)„ —Pa = one atmosphere.

In (6), Yo = 0.0807 lbs. per cub. it, p, = (14.7 X 144) lbs.

per sq. ft., and T, = 273° Abs. Cent., or 492° Abs. Fahr.
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It is noticeable in (6) that for given tensions jt?^ and p^, the

work per unit of weight of air used \?> proportional to the ab-

solute temperature T^ of the reservoir. The temperature 7^
to which the air has cooled at the end of the stroke is obtained

as in Example 2, §4Y8, and may be far below freezing-point

unless T^ is very high or the ratio of expansion, x^ : x^ , large.

Example.—Let the cylinder of a compressed-air engine have

a section of i^= 108 sq. in. and a stroke a?^ = 15 inches. The
compressed air entering the cylinder is at a tension of 2 atmos.

(i.e., p^ = 29.4 lbs. per sq. in., and p^ -^ Pm. = i)-, and at a

temperature of 27° Cent, (i.e., T^ = 300° Abs. Cent.). Ee-

quired the proper point of cut-off, or cp^ = ? , in order that the

tension may fall to one atmosphere at the end of the stroke

;

also the work per stroke, and the work per pound of air. Use

the foot, pound, and second.

From eq. (a), above, we have

^«»=^n(— )''-=l-25(i)"-^^ = 1.25X.6112 = 0.764ft.,

and hence the volume of air in state m, used per stroke [eq.

(5)] is

7^= i?'x^=lgx0.764 = 0.573 cubic feet;

while the work per stroke is

Tf= 3.44X0.573 X 29.4X144 X[l-(i) 29] = 1S19 ft. lbs.,

and the work obtained from each pound of air, eq. (6),

14 7 X 144
= 3.44x300X

QQ3Qy^^y3 X[l-(i)°-29] = 18040

ft. lbs. per pound of air used.

The temperature to which the air has cooled at the end of

stroke [eq. (2), § 478] is
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Tr,=Tj—) '

=300x(i)-29 = 300X.818= 245°Abs.C.;

i.e., —28° Centigrade.

482. Remarks on the Preceding.—This low temperature ia

objectionable, causing, as it does, the formation and gradual

accumulation of snow, from the watery vapor usually found

in small quantities in the air, and the ultimate blocking of the

ports. By giving a high value to T^^ , however, i.e., by heat-

ing the reservoir, T^ will be correspondingly higher, and also

the worJcpe?' pound of air^ eq. (6). If the cylinder be encased

in a " jacket" of hot water, or if spray of hot water be injected

behind the piston during expansion, the temperatui^e may be

maintained nearly constant, in which event Mariotte's law will

hold for the expansion, and more work will be obtained per

pound of air ; but the point of cut-off must be differently

placed. Thus if, in eq. (4), § 479, we make the back-pressure,

q, equal to the value {Fa — Fl);pb, to which the air

pressure has fallen at the end of the stroke by Mariotte's law,

we have

Worh per stroJce with \ -n, ^ (l\ ^ , f i\ f-,\

isotherm. exj?ans. \
= ^""^^ ^^S- l^j= ^^^^ ^^g- WJ' ^^^

and hence

Work per unit of weight of air, ^ ~ T ^^
1 {^\ f9\

with isothermal expansion \~ "^ y T ^^' \^/' " ^^^

Applying these equations to the data of the example, we
obtain

Work per unit of weight of air with iso-
\ _ r. n^ jt Pa

thermal expansion )

~~
' "y jr '

whereas, with adidbatio expansion, work ) ^ q g^
yi Po

per unit of weight of air is only ) " ^ToTq
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FiQ. 530.

483. Double-acting Air-compressor, with Adiabatic Compres-

sion.—This is the converse of § 481. In Fig. 530 we have the

piston moving from right to left, compressing a mass of air

which at the beginning of the stroke fills the cylinder.- This is

brought about by means of an external

motor (steam-engine or turbine, e.g.)

which exerts a thrust or pull along the

piston-rod, enabling it with the help

of the atmospheric pressure of the

fresh supply of air flowing in behind

it, to first comp7'ess a cylinder-fnll of

air to the tension of the compressed

air in the reservoir, and then, the

port or valve opening at this stage,

to force or deliver it into the reservoir.

Let the temperature and tension of the

cylinder-full of fresh air be Tn^ and

Pny^ , and the tension in the reservoir be Pm . Suppose the

compression adiabatic. As the piston passes from E toward

the left, the air on the left has no escape and is compressed, its

tension and temperature increasing adiabatically until it reaches

a value pm^ = that in reservoir, at which instant, the piston

being at some point D, a valve opens and the further progress

of the piston simply transfers the compressed air into the re-

servoir without further increasing its tension. Throughout

the whole stroke the piston-rod has the help of one atmosphere

pressure on the right face, since a new supply of air is entering

on the right to be compressed in its turn on the return stroke.

The work done from ^to D may be called the work of com^

pression y that from D to 0, the worlc of delivery.

[Sinc'e, here, dx and ^Tr(or increment of work) have cori"

trary signs, we introduce the negative sign as shown.^

TJie work of compression =—J F{p — 2)n^)dx. . . . (Ic)

The worl' of delivery = —J^F{pmi —jpni)dx.
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In these equations only^ and a? are variables. In the sum-

mation indicated in (Ic) jp changes adiabaticallj ; in (l^j? i«

constant = J?ni, as now written.

In the adiabatic compression the air passes from the state w,

to the state m^ (see N^ and M^ in figure).

The summations in these equations being of the same form

as those in equations (1) and (2) of § 481, but with limits in-

verted, we may write immediately,

Workyer8troke=W=ZA^Y^^^A\-{^\ 1, (2)

and

Vor^Vernnitofw<AgU
1 ^g.^^j, J^ri_/?kf"1. (3)

of air com'pressed
J Vo^^oL \Vmx/ J

The value of Tm^ , at the immediate end of the sudden com-

pression, by eq. (2) of § (478), is

Trr.=T^\^) (4)

The temperature of the reservoir being T^ , as in § 481

(usually much less than Tm.^\ the compressed air entering it

cools down gradually to that temperature, T^ , contracting in

volume correspondingly since it remains at the same tension

p,n^. The mechanical equivalent of this heat is lost.

Let us now inquire what is the effioie^icy of the combination

of air-compressor and compressed-air engine, the former sup-

plying air for the latter, both working adiabatically, assuming

that no tension is lost by the compressed air in passing along

the reservoir between, i.e., that j?,„j = j?^ . Also assume (•«

already implied, in fact) that^„j =: p^ = one atmos., and that

the temperature, Tn^^ of the air entering the compressor cyl-

inder is equal to that, T^ , of the reservoir and transmission-

pipe.

To do this we need only find the ratio of the amount of

work obtained from one pound (or other unit of weight) in the

eompressed-air engine to the amount spent in compressing onr

pound of air in the compressor. Calling this ratio 77, the
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efficiency, and dividing eq, (6) of § 481 by eq. (3) of this para-

graph, we have, with substitutions just mentioned,

_ Tm Abs. temp, of outerfree air
^

,^.

Tm^ j ^bs. temp, of air at end''
'

\ of sudden, compression,

or, substituting from eq. (4), and remembering that Tn^ = T„i
,

we have also

.= (|jT. ...... (6)

also, since

we maJ write

_ Tn _ Ab. tem. air leaving eng. cyl. .^^^

Tjn Ab. tem. outer free air.

For practical details of the construction and working of

engines and compressors, and the actual efficiency realized, the

student may consult special works, as they lie somewhat be-

yond the scope of the present work.

Example 1.—In the example of p. 634, the ratio oip^ toj?^

was = ^. Hence, if compressed air is supplied to the reser-

voir under above conditions, the efficiency of the system is,

from eq. (6), ?/ = (i)0-29= 0.816, about 82 per cent.

2? 1
Example 2.—If the ratio of the tensions is as small as ^^ = —

,

the efficiency would be only (|)°-2^= 0.59; i.e., 40 j^er cent of

the energy spent in the compressor is lost in heat.

Example 3.—What horse-power is required in a blowing

engine to furnish 10 lbs. of air per minute at a pressure of

4 atmos., with adiabatic compression, the air being received

by the compressor at one atmosphere tension and 27° Cent,

(ft.-lb.-sec. system). Since 27° C. = 300° Abs. C. = Tn„ we
have, from eq. (4),

Tm, =300(4)0-29= 448.5° Abs. Cent.;

and hence, eq. (3),
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The work per] ^ , , , , „ 14.7 X 144 r, 1^-^^-

, /. =3.44X448.5 ^on^ o^opownd o/ air
J .0807 X 273{-an

= 49060 ft. lbs. per pound of air. Hence 10 lbs. of air will

require 490600 ft. lbs. of work; and if tins is done every

minute we have the req. H.P. =^^°^°°= 14.8 H.P.

Note.—If the compression could be made isothermal, an

approximation to which is obtained by injecting a spray of

cold water, we should have, from eqs. (1) and (2) of § 482

:

Workper ) _ ^ P" ^^^ ( p.n, \ _ 300 X 14.7 X 144

lb. air \ -^-^TX:^-\-^J - .0807X273 ^ ^'^^^

= 39950 ft. lbs. per lb., and the corresponding H. P. = 12.1

;

a saving of about 25 per cent, compared with the former.

The difference was employed in heating the air in the air-com-

pressor with adiabatic compression, and was lost when that

extra heat was dissipated in the reservoir as the air cooled

again. This difference is easily shown graphically by compar-

ing in the same diagram the areas representing the work done

in the two cases.*

484. Hot-air Engines.—Since we have seen that the tension

of air and other gases can be increased by heating, if the vol-

ume be kept the same, a mass of air thus treated can after-

wards be allowed to expand in a working cylinder, and thus

become a means of converting heat 'into work. In Stirling'

a

hot-air engine a definite confined mass of air is used indefinitely

without loss (except that occasional small supplies are needed

to make up for leakage), and is alternately heated and cooled.

A displacement-phmger, or piston, fitting loosely in a bell-like

chamber, is so connected with the piston of the working

cylinder and the fly-wheel, that its forward stroke is made
while the other piston waits at the beginning of its stroke.

In this motion the plunger causes the confined air to pass in a

thin sheet over the top and sides of the furnace dome, thus

greatly increasing its tension. The air then expands behind

the working piston with faiii ng tension and temperature, and,

* See Eng. News, pp. 234 and 397, Oct. and Nov. 1897, for an account
of a " four-.st;ige " compressor and. test of same.
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while tliat piston pauses at the end of its forward stroke, is

again shifted in position, though without change of volume,

by the return stroke of the plunger, in such a way as to pass

through a coil of pipes in which cold water is flowing. This

reduces both its temperature and tension, and hence its resist-

ance to the piston on the return stroke is at first less than at-

mospheric, but is gradual!}^ increased by the compression.

This cycle of changes is repeated indefinitely, and is easily

traced on a diagram like that in Fig. 528, and computations

made accordingly.

A special invention of Stirling's is the " 7'egenerator''^ or box

filled with numerous sheets of wire gauze, in its passage

through which the working air, after expansion, deposits some

of its heat, which it re-absorhs to some extent when, after

further cooling in the " refrigerator" or pipe coil and com-

pression by the return stroke of the piston, it is made to pass

backward through the regenerator to be further heated by the

furnace in readiness for a forward stroke. This feature, how-

ever, has not realized all the expectations of its inventor and

improvers, as to economy of heat and fuel.

In EricssoTi's hot-air engine, of more recent date, the dis-

placement-plunger fits its cylinder air-tight, but valves can be

opened through its edges when moving in one direction, thus

causing it to act temporarily as a loose plunger, or shifter.

The two pistons move simultaneously in the same direction in

the same cylinder, but through different lengths of stroke, so

that the space between them is alternately enlarged and con-

tracted. The working piston also has valves opening through

it for receiving a fresh supply of air into the space between

the two pistons. During the forward stroke a fresh instal-

ment from the outer air enters through the working piston into

the space between it and the other, whose valves are now
closed and which is now expelling from its further face^

through proper valves, the air used in the preceding stroke

;

no work is done in this stroke. On the return stroke this

fresh supply of air is free to expand behind the now retreating

working piston, while its tension is greatly increased by its

being shifted (at least a large portion of it) over the furnace



GAS-ENGINES.
'

641

dome through the valve (now open) of the plunger piston, by

the motion of the latter, which now acts as a loose plunger

The engine is therefore only single-acting, no work being done

in each forward stroke.

During the last thirty years (1878 to 1908) numerous small

hot-air engines have been used for domestic pumping of

water, many of them being of the Stirling type, (though some

of these have borne the Ericsson name, commercially).

485. Internal-Combustion Engines.—In the case of the

Stirling and Ericsson hot-air engines, the heat was derived

from a source outside of the working cyhnder. Another

class is called ^' internal-comhustion " engines, from the fact

that the air used is heated by the combustion of inflammable

gas, or of oil spray or vapor, within the working cylinder

itself. These motors are "gas-engines" and "oil-engines."

486. Gas-engines.—If a mixture of atmospheric air and

illuminating gas (from bituminous coal) or "producer gas"

(made by passing steam over incandescent anthracite coal)

in the proportion of about ten parts of air to one of gas, is

introduced into the working cyhnder and ignited at the

beginning of a stroke, a very sudden rise of temperature

and of pressure occurs; after which the fluid expands, with

diminishing pressure, behind the moving piston, thus doing

work on the latter. On the return stroke the nitrogen and

products of combustion are expelled (more or less com-

pletely) from the cylinder, but no work is done. With most

gas-engines the inflammable charge of air and gas is com-

pressed before ignition; since in that way more power is

obtained from a given size of cylinder, and less heat is lost

to the cylinder walls (which are of necessity kept cool by

a "water-jacket," to avoid decomposition of lubricants).

The ignition is also rendered more certain; an electric spark

being frequently used for this purpose.

In the "Otto Silent Gas-engine " the explosion occurs only

every fourth stroke, and one side of the piston is always open

to the air. The action on the other side of the piston is as

follows: (1) In the forward stroke a fresh supply of explosive

mixture is drawn into the cyhnder at one atmosphere tension.

(2) The next (backward) stroke compresses the mixture into
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about one-fourth of its original bulk, this operation occurring

at the expense of the kinetic energy of the fly-wheel. (3) The
mixture is ignited, the pressure rises to 8 or 10 atmospheres,

and work is done on the piston through the next (forward)

stroke, the tension of the products of combustion having

fallen to about two atmospheres at the end of the stroke.

(4) In the next (backward) stroke the products of combus-

tion are expelled and no work is done.

The "Atkinson Cycle Gas-engine " [no longer manufac-

tured (1908) ; see London Engineer, May, 1887, pp. 361 and

380] also made an explosion every fourth stroke, but the link

work connecting the piston and fly-wheel was of such 'design

that the latter made but one revolution during the four

strokes. Also the length of the expansion or working stroke

was greater than that of the compression stroke and the

products of combustion were completely expelled.

486a. Oil-engines.—The Priestman engine is a prominent

one of this class. The "oils " which may be used are petro-

leum, kerosene, gasoline, alcohol, etc.
;
gasoHne being among

the cheapest, but the most dangerous in storage. For use

in each cycle of four strokes a small quantity of the oil is

first converted into spray, and then into vapor in the "vapor-

izer," a chamber heated sufSciently for vaporizing, but not

so hot as to produce premature ignition. Air charged with

this vapor is drawn into the cylinder during the first stroke

of the cycle and is compressed on the return stroke; while

at the beginning of the third, or working stroke, the vapor

is ignited by an electric spark (or otherwise), and by its

combustion produces a high temperature and pressure in

the air within the cyhnder; the remaining action being as

with the Otto gas-engine just mentioned.

In the Diesel oil-engine, which also has a four-stroke

cycle, a cylinderful of air is compressed in the second stroke

to a pressure of some 500 Ibs./in.^, its temperature being

then so high {from adiahatic compression) that upon the

injection of a small quantity of oil spray the latter is imme-

diately ignited. This engine has a very high thermal efficiency.

The Hornsby-Akroyd oil-engine is somewhat similar to the

Diesel. (See Internal combustion Engines by Profs. Carpenter
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and Diederichs; also Robinson's Gas and Petroleum Engines.

487. Thermal Efficiency of Heat-engines.—According to

the mechanical theory of heat, the combustion of one pound

of good coal, producing as it does some 14,000 heat-units

(British Thermal Units, or "B.T.U.;" see §149) should

furnish (14,000x778= ) 1,089,200 ft.-lbs. of work, if en-

tirely converted into work.

The triple and quadruple expansion steam-engines, and

the more recent steam-turbines of Atlantic steamships,

consume in their furnaces about 1.50 lbs. of coal per hour

for each horse-power of effective work done on their pistons

(or other moving part); (1.3 lbs. of coal per H.P. hour in

exceptional instances). The work equivalent of 1.5 lbs.

of coal per hour is 1.5x14,000x778= 16,340,000 ft.-lbs.

per hour, while the, actual work per hour implied in "one

H.P. per hour" is 33,000x60= 1,980,000 ft.-lbs. per hour.

That is, even these engines utihze only about one-eighth

of the heat of combustion of the fuel.

In the case of the gas-engine, the water jacket (a neces-

sary evil) is a source of much loss of heat and work. Never-

theless, the Atkinson gas-engine was found capable of turn-

ing into work one-fifth of the heat of combustion of the gas

used; that is, it developed a thermal efficiency of 20 per

cent. Small gas-engines are about as economical in this

respect as large steam-engines.

The highest record in this connection is held by the Diesel

oil-engine. In 1902, at Harrogate, England, a commercial

test of a 35 H.P. Diesel engine, using crude petroleum of

19,000 B.T.U. heat of combustion per lb., showed a heat

efficiency of 36 per cent for the power developed in the

cylinder, and 29 per cent for power obtained on the friction

brake. (See p. 885, Robinson's Gas and Petroleurn Engines).

488. "Duty" of Large Steam Pumping-engines.—Previous

to 1891 the form of expressing the degree of economy at-

tained in the use of fuel by the combined furnace, boiler,

and engine, of a steam-pumping engine, was to state the

number of ft.-lbs. of work done in the cylinders for each

100 lbs. of coal used under the boiler; this performance

being called the "duty " of the engine. For example, if
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the duty was 120,000,000, it meant that from each 100 lbs.

of coal 120,000,000 ft. -lbs. of work was done in the cylin-

ders, or 1,200,000 ft. -lbs. of work was obtained from one

pound of coal. This would imply a fuel consumption at

the rate of 1.65 lbs. of coal per hour for each horse-power

(since 33,000x60-^1,200,000=1.65); or a thermal effi-

ciency of 1/9, i.e., 11.1 per cent.

But since there is much variation in the heating quality

of coal, the Am. Soc. of Mech. Enq;r's estabhshed a new
definition in 1891 for ''duty," viz., the number of ft.-lbs. of

work obtained for each million heat-units furnished by the

boiler to the engine. In this way, also, the performance of

the engine is separated from that of the boiler and furnace.

The new unit coincides with the old in case each 100 lbs.

of the coal used imparts 10,000 heat-units to the boiler

(which is quite attainable in the case of good anthracite).

In the E gineering News of Jan. 10, 1907, p. 50, are given

the results of a "duty trial " of a "Snow " high-duty pump-

ing-engine at Mahanoy City, Pa. The duty attained was

141,400,000; i.e., a thermal efficiency of about 16 per cent.

489. Buoyant Effort of the Atmosphere.—In the case of a

body of large bulk but of small specific gravity the buoyant

effort of the air (due to the same cause as that of water, see

§ 456) becomes quite appreciable, and may sometimes be

greater than the weight of the body. This buoyant effort is

equal to the weight of air displaced, i.e., = Vy, where V is

the volume of air displaced, and y its heaviness.

If G^ — total weight of the body producing the displace-

ment, the resultant vertical force is

P=G,-Vy, (1)

and for equilibrium, or suspension in the air, we must have

F = o, i.e.,

0,= Vy (2)

We may therefore find approximately the elevation where

a given 'nUoon will cease to ascend, by determining the heavi-

ne^^ 'i the air at that elevation from eq. (2); then, know-

iTiv ;;v.;)xiinately the temperature of the air at that elevation,



BALLOONS. 645

we may compute its tension p [eq. (13), § 472], and finally,

from eqs. (3), (4), or (5) of § 477, obtain the altitude required.

Example.—The car and other solid parts of a balloon weigh

400 lbs., and the bag contains 12,000 cub. feet of illuminating

gas weighing 0.030 lb. per cub. foot at a tension of one at-

mosphere and temperature of 15° Cent., so that its total

weight =12,000 X 0.030 = 360 lbs.

Hence G^ = 760 lbs. We may also write with sufficient

accuracy : Whole volume of displacement = "F= 12,000 cub. ft.

As the balloon ascends the exterior pressure diminishes, and

the confined gas tends to expand and so in- -^—Q- ^-m
crease the volume of displacement V; but .•.•..•••'•;.'•.

i

'•

this we shall suppose prevented by the .••.'..•;...[••".

strength of the envelope. At the surface •...•..'.•'..•
j

•'•

of the ground (station ?i of Fig. 531; see ;'.•.;.•:;.•..•.•.!•••.

also Fig. 526) let the barometer read 29.6 './.•:••:::
'-..l-y

inches and the temperature be 15° Cent. /fTT^T^/^^T^^̂ ^^^
Then T,, = 288° Abs. Cent., and the heavi- fig. 531.

ness of the air at n is

_ .0807 X 273 W X 14.7
'^"'~

14.7 ' 288 "

(=rJ^.) = .080Txf3.^ = .omibs.pe,.e«b.ft.

At the unknown height A, where the balloon is to come to

vest, i.e., at M^ G^ must = Vy [eq. (2)] ; therefore

''» = F = 12^0^^ = -""^^ ""'• P"'' '"''• **•

'

and if the temperature at M be estimated to be 5° Cent, (or

Tm = 278° Abs. Cent.) (on a calm day the temperature de-

creases about 1° Cent, for each 500 ft. of ascent), we shall

have, from ^- = -^,
Ym,-'- m Yn-'- n

Pn^YnTn^:075^ 288^
Pm YmT^ -0633 '278 ' .

'

and hence, from eq. (5), § 477, with ^{T^+ T^) put for r„,

h = 26213 X Iff X 2.30258 X log.^o 1.206 = 5088 ft.



CHAPTEK YI.

HYDROKINETICS BEGUN—STEADY FLOW OF LIQUIDS
THROUGH PIPES AND ORIFICES.

489a. The subject of Water in Motion presents one of the

most unsatisfactory branches of Applied Mechanics, froni a

mathematical stand-point. The internal eddies, cross-currents,

and general intricacy of motion of the particles among each

other, occurring in a pipe transmitting a fluid, are almost en-

tirely defiant of mathematical expression, though the flow of

water through a circular orifice in a thin plate into the air pre-

sents a simpler case, where the conception of " stream lines" is

probably quite close to the truth. In most practical cases we
are forced to adopt as a basis for mathematical investigation

the simple assumption that the particles move side by side in

such a way that those which at any instant form a lamina

or thin sheet, ~\ to the axis of the pipe or orifice, remain

together as a lamina during the further stages of the flow.

This is the Hypothesis of Flow in Plane Layers, or Laminated

Flow. Experiment is then relied on to make good the discre-

pancies between the indications of the formulae resulting from

this theory and the actual results of practice ; so that the science

of Hydrokinetics is largely one of coefficients determined by

experiment.

490. Experimental Phenomena of a '* Steady Flow."—As pre-

liminary to the analysis on which the formulae of this chapter

are based, and to acquire familiarity with the quantities involved,

it will be advantageous to study the phenomena of the appara

tus represented in Fig. 532. A large tank or reservoir BG is,

connected with another, DE, at a lower level, by means of a

rigid pipe opening under the water-level in each tank. This

646
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pipe has no sharp curves or bends, is of various sectional areas

at different parts, the changes of section being very gradual,

and the highest point iV^ not being more than 30 ft. higher

than jS(7, the surface-level of the upper tank. Let both tanks

-:= A"

r?^

Fig. 532.

be filled with water (or other liquid), which will also rise to H
and to ^in the pipe. Stop the ends L and N^ of the pipe,

and through Jtf, a stop-cock in the highest curve, pour in water

to fill the remainder of the
.
pipe ; then, closing J/, unstop L

and N^

.

The water in the pipe will now begin to acquire movement
from L toward N4, with an accelerating velocity at every

section, but in a very short time the velocity at any sec-

tion (mean velocity) will have reached a maximum value,

at which it remains practically constant, if the reservoir BC
is kept full by a suitable continual influx at A. A "Steady

Flow" is now said to have set in, or a "state of permanency
"

is said to exist; that is, the circumstances of the flow at each

section of the pipe are permanent, or steady.

Even without influx at A, if reservoir BC is very large

compared with the capacity of the pipe the flow will be

essentially steady after the preliminary short period of accel-

eration; (see foot-note on next page).
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By measuring the volume, V, of water discharged at ^ in a

time t, we obtain the volume offlow per unit of time ^ viz.,

« = T' • • «
while the weight offlow per unit of time is

G=Qy, ........ {^)

where y = heaviness (§ Y) of the liquid concerned.

Water being incompressible and the pipe rigid, it follows

that the same volume of water per unit of time must be pass-

ing at each cross-section of the pipe. But this is equal to the

volume of a prism of water having ^, the area of the section,

as a base, and, as an altitude, the mean velocity = v with which

the liquid particles pass through the section. Hence for any

section we have

Q = F^ = constant = ^.». = F,^, , etc.
| fZt^j(] , • (3)

in which the subscripts refer to diflPerent sections. If the flow

were unsteady, e.g., if the .Sevel £C were sinking, this would

be true for a definite instant of time ; but when steady, we
see that it is permanently true; e.g., i^^-y, at any instant = I^^v^

at the same or a7iy other instant, subsequent or previous. In

other words, in a steady flow the velocity at a given section

remairis unchanged with lapse of time,!^

[N.B. We here assume for simplicity that the different

particles of water passing simultaneously through a given sec-

tion (i.e., abreast of each other) have equal velocities, viz., the

velocity which all other particles will assume on reaching this

section. Strictly, however, the particles at the sides are some-

what retarded by friction on the surface of the pipe. This as-

sumption is called \\\q Assumption of Parallel Flow, ox Flow
ill Plane Layers, or Laminated Flow.']

Let us suppose Q to have been found as already prescribed.

We may then, knowing the internal sectional areas at different

parts of the pipe, iV^ , iV^, etc., compute the velocities

* The flow of water in the drive-pipe of ahydraiiKo ram is a familiar instance
of an wnsteady flow. The water in this pipe is permitted to flow with an
accelerated motion for a short time and then suddenly brought to rest ; this
operation being repeated indefinitely.
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v, = Q-^J^,, v,= Q-^F,, etc.,

which the water must have in passing those sections, respec-

tively. It is thus seen that the velocity at any section has no

direct connection with the height or depth of the section from

the plane, JBC, of the upper reservoir surface. The fraction

v' .

-— will be called the height due to the velocity, v, or simply
2^

the velocity-head, for convenience.

JN^ext, as to the value of the internal fluid pressure, j9, per

unit-area (in the water itself and against the side or wall of

pipe) at different sections of the pipe. If the end N'^ of the

pipe were stopped, the problem would be one in Hydrostatics,

and the pressure against the side of the pipe at N^ (also at W^
on same level) would be simply

measured by a water column of height

in which ^„ = one atmosphere, and 5 = 34 ft. = height of an

ideal water barometer, and y = 62.5 lbs. per cubic foot ; and

this would be shown experimentally by screwing into the side

of the pipe at N'^ a small tube open at both ends ; the water

would rise in it to the level BC. That is, a column of water

of height = h^ would be sustained in it, which indicates that

the internal pressure at W^ corresponds to an ideal water col-

umn of a height

But when a steady flow is proceeding, the case being now one

of Ilydrokinetics, we And the column of water sustained at

rest in the small tube (called an open j^i&zomete?') N^S has a

height y, , less than A. , and hence the internal fluid pressure is
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less than it was when there was no flow.* This pressure being

called J?,, the ideal water column measuring it has a height

' y = ^-\-y^ (^)

at N^ , and will be called the pressure-head at the section re-^

ferred to. "We also find experimentally that while the flow is

steady the piezometer-height y (and therefore the pressure-

head l)-\-y) at any section remains unchanged with lapse of

time, as a characteristic of a steady flow.

[For correct indications, the extremity of the piezometer

should have its edges flush with the inner face of the pipe

wall, where it is inserted,]

At iVg , although at the same level as N^ , we find, on in-

serting an open piezometer, TT, that with F^ = F^ (and there-

fore with Vg = v^ 2/3 ^® ^ little less than 3/, ; while if F^ < F^

(so that ^3 > ^^j), 2/3 is not only less than y^ , but the dif-

ference is greater than before. We have therefore found

experimentally that, in a general way, when water is flowing

in a pipe it presses less against the side of the pipe than it did

before the flow was permitted, or (what amounts to the same

thing) the pressure between the transverse laminae is less than

the hydrostatic pressure would be.

In the portion HN^O of the pipe we find the pressure less

than one atmosphere, and consequently a manometer register-

ing pressures from zero upward (and not simply the excess

over one atmosphere, like the Bourdon steam-gauge and the

open piezometer just mentioned) must be employed. At N^y

e.g., we find the pressure

= \ atmos., i.e., —- = IT ft.

y

Even below the level BC, by making the sections quite nar-

row (and consequently the velocities great) the pressure may be

made less than one atmosphere. At the surface BC \\xq pres-

sure is of course just one atmosphere, while that in the jet at

N^^ entering the right-hand tank under water, is necessarily

^^ = 1 atmos. + press, due to col. Ti' of water practically at rest;

* N^ being stopped and L open.
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I.e., -^ = pressure-head at iV« = 5 -f"
^'\

(whereas if N^ were stopped by a diaphragm, the pressn re-

head just on the right of the diaphragm would be 5 -j- A', and

that on the left h -\- h^ .)

Similarly, when a jet enters the atmosphere in parallel fila-

ments its particles are under a pressure of one atmosphere, i.e.,

their pressure-head = 5 = 34 ft. (for water) ; for the air im-

mediately around the jet may be considered as a pipe between

which and the water is exerted a pressure of one atmosphere.

491. Recapitulation and Examples.—We have found experi-

mentally, then, that in a steady flow of liquid through a rigid

pipe there is at each section of the pipe a definite velocity and

pressure which all the liquid particles assume on reaching that

section ; in other words, at each section of the pipe the liquid

velocity and pressure remain constant with progress of time.

Example 1.—If in Fig. 532, the flow having become steady,

the volume of water flowing in 3 nainutes is found on meas-

urement to be 134 cub. feet, the volume per second is, from

eq. (1), § 490,

Q = i|4 =: 0.744 cub. ft. per second.

Example 2.—If the flow in 2 miu. 20 sec. is 386.4 lbs., the

volume of flow per second is [ft., lb., sec. ; eqs. (1) and (2)]

Q = — = '- t = ^^
'

.
-—- = 0.0441 cub. ft. per sec.^ t r 62.5 140

^

Example 3.—In Fig. 532 the height of the open piezometer

at iV^i is 1/^ = 9 feet; what is the internal fluid pressure?

[Use the inch, lb., and sec] The internal pressure is

j}^ =p^-\-y^y = 14.Y+ 108 X ^^ = 18.6 lbs. per sq. inch.

The pressure on the outside of the pipe is, of course, one at-

mosphere, so that the resultant bursting pressure at that point

(iV,) is 3.9 lbs. per sq. in.

Example 4.—The volume of flow per second being .0441
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cub. ft. per sec, as in Example 1, required the velocity at a

section of the (circular) pipe where the diameter is 2 inches.

[Use ft., lb., and sec]

while at another section of the pipe where the diameter is four

inches (double the former) and the sectional area, F^ is there-

fore four times as great, the velocity is ^ of 2.02 = 0.505 ft.

per sec

492. Bernoulli's Theorem for Steady Flow ; without Friction.

—

If the pipe is comparatively short, without sudden bends,

elbows, or abrupt changes of cross-section, the effect of friction

of the liquid particles against the sides of the pipe and against

each other (as when eddies are produced, disturbing the paral-

lelism of flow) is small, and will be neglected in the present

analysis, whose chief object is to establish a formula for steady

flow through a short pipe and through orifices.

An assumption, now to be made, (Aflow in 'plane layers^ or

laminated flow, i.e., flow in laminae "1 to the .axis of the pipe

at every point, may be thus stated : (see Fig. 533, which shows

a steady flow proceeding, through a

pipe CD of indefinite extent.) All the

liquid particles which at any instant

form a small lamina, or sheet, as AJB^

"I to axis of pipe, Iceep company as a

lamina throughout the whole flow.
Fig. 533. The thickness, 6^6'', of this lamina re-

mains constant so long as the pipe is of constant cross-section,

but shortens up (as at C) on passing through a larger section,

and lengthens out (as at D) in a part of the pipe where the

section is smaller (i.e., the sectional area, F, is smaller). The
mass of such a lamina .is Fds'y -^ g [§ 55], its velocity at any

section will be called v (pertaining to that point of the pipe's

axis), the pressure of the lamina just behind it is Fp, upon the

rear face, while the resistance (at the same instant) offered by

its neighbor just ahead is F{p -f- dp) on the front face ; also
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its weight is tbe vertical force Fds'y. Fig. 534 shows, as a

free body, the lamina which at

any in'stant is passing a point

A of the pipe's axis, where the

velocity is v and pressure ^.

Note well the forces acting

;

the pressures of the pipe wall

on the edges of the lamina have

no components in the direction

of V, for the wall is considered

smooth, i.e., those pressures are

"1 to wall ; in other words, no

friction is considered. To this free body apply eq. (7) of § 74,

for any instant of any curvilinear motion of a material point

/9

''dG= Fdsy
Fis. 534.

vdv = {tang, acceleration) X ds, (1)

in which ds ^ a, small portion of the path, and is described in

the time dt. 'Now the tang, accel. = .^(tang. com pons, of the

acting forces) -^ mass of lamina, i.e..

tang. ace. = ^:iZ(£±M±Z>:^^«^. (2)

l^ow. Fig. 535, at a definite instant of time^ conceive the

volume of water in the pipe to be subdivided into a great

number of laminae of equal fnass (which implies equal volumes

Fig. 535.

in the case of a liquid, but not with gaseous fluids), and let the

ds just mentioned for any one lamina be the distance from its

centre to that of the one next ahead ; this mode of subdivision
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makes the ds of any one lamina identical in value with its

thickness ds', i.e.,

.ds = ds' • (3)

"We have also

ds cos (J)=. — dz, or ds' cos (p =^ — dz\ . . (4)

B being the height of the centre of a lamina above any con-

venient horizontal datum plane. Substituting from (2), (3),

and (4) in (1), we derive finally

1 1
— vdv -\

— dp-\-d3 = (5)

The flow being steady, and the subdivision into laminge

being of the nature just stated, each lamina in some small time

dt moves into the position which at the beginning of dt was

filled by the lamina next ahead, and acquires the same velocity,

the same pressures on itsfaces, and the sam,e value of z, that

thefront lamina had at the beginning of dt.

Hence, considering the simultaneous advance made by all

the laminae in this same dt, we may write out an equation like

(5) for each of the laminae between any two cross-sections n and

m of the pipe, thus obtaining an infinite number of equations,

from which by adding corresponding terms, i.e., hy integra-

tion, we obtain

whence, performing the integrations and transposing,

Vm^
i Pms^ _<' _l_Pn_x_^ j 'Ber7WulWs \ .n^

-2^- +y+ ^--2^ +y+ ^- •

'I Theorem f" "W

Denoting by Potential Head the vertical height of any section

of the pipe above a convenient datum level, we may state

Bernoulli's Theorem as follows :

In steady flow without friction, the sum of the velocity-

head, j)ressure-head, and potential head at any section of the

pipe is a constant quantity, heing equal to the sum of the cor-

responding heads at any other section.
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It is noticeable that in eq. (T) eacli of the terms is a liueai

quantity, viz., a height, or head, either actual, such as ^„ and

s^ , or ideal (all the others), and does not bring into account the

absolute size of the pipe, nor even its relative dimensions (v^

and Vn, however, are connected bj the equation of continuity

I^mVrn = -F'n'^n\ ^^^ contains no reference to the volume oi

water flowing per unit of time [Q'] or the shape of the pipe's

axis, "When the pipe is of considerable length compared with

its diameter the friction of the water on the sides of the pipe

cannot be neglected (§ 512).

It must be remembered that Bernoulli's Theorem does not

hold unless the flow is steady, i.e., unless each lamina, in com-

ing into the position just vacated by the one next ahead (of

equal mass), comes also into the exact conditions of velocity

and pressure in which the other was when in that position.

[N.B. This theorem can also be proved by applying to all

the water particles between n and m, as a collection of small

rigid bodies (water being incompressible) the theorem of Work
and Energy for a collection of Rigid Bodies in § 142, eq. (xvi),

taking the respective paths which they describe simultaneously

in a single dt.~\

493. First Application of Bernoulli's Theorem without Friction.

—Fig. 536 shows a large tank from which a vertical pipe of

uniform section leads to another tank and dips below the sur-

face of the water in the latter. Both surfaces are open to the

air. The vessels and pipe being filled with

water, and the lower end m of the pipe un-

stopped, a steady flow is established almost

immediately, the surface BO being very

large compared with F, the area of the {uni-

form) section of the pipe.

Given F, and the heights A„ and A, re-

quired the velocity 'y,„ of the jet at m and

also the pressure, p^i ^^^ ^ (i^^ pips i^ear en-

trance of same), m is in the jet, just clear

of the pipe, and practically in the water-

level, AD. The velocity v^ is unknown, fig. ms.

but the pressure p^, is practically =^a = one atmosphere, since

'.•.
•aih:B ••..•.....::••• cr

*

—

=-^^^;:l.-_=
1

= E^x;f--^

1m
Zlg + ii'i n

1 ii

ii

••air".

1

1A ; m
Dr

;fi^; ®J
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the pressure on the sides of the jet is necessarily the hydro^

static pressure due to a slight depth below the surface AD.

.'. Press.-head at m is^ = ^=^h = ^4: feet. . . (§ 423)
r y

1^0w apply Bernoulli's Theorem to sections m and ?r, taking

a horizontal plane through m as a datum plane for potential

heads, so that z^ = h and z^n, = 0, and we have

2^
1 4- 5 _l_

V. Pn4-^+ A. (1)

But, assuming that the section of the jpijpe is filled at every

point, we must have

6'*M. — Vm

for, in the eq^uation of continuity

F V — F V

if we put F^ = Fn , the pipe being of uniform section, we ob-

tain Vot = ^w • Hence eq. (1) reduces to

Pn_
ŷ
= 5 - A = 34 ft. - A. . (2)

en

^^

nA

Hence the pressure at n. is less than one atmosphere, and if a

small tube communicating with an air-tight receiver full of air

were screwed into a small hole at n, the air in

the receiver would gradually be drawn off until

its tension had fallen to a value jt?,^. [This is the

principle of SjprengeVs air-jpump, mercury, how-

ever, being used instead of water, as for this

heavy liquid h = only 30 inches.]

If h is made > h for water, i.e. > 34 feet (or

> 30 inches for mercury), j)^ would be negative

from eq. (2), which is impossible, showing that

the assumption of full pipe-sections is not borne

out. In this case, h> h, only a portion, mn\
(in length somewhat less than h,) of the tube will be kept full

Fig. 537.
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during the flow (Fig. 537) ; while in the part Kn' vapor of

water, of low tension corresponding to the temperature

(§ 469), will surround an internal jet which does not fill the

pipe. As for the value of ^'„J, Bernoulli's Theorem, applied

to BG and m, in Fig. 536, gives finally -?;„,, = ^'^gh^ .

ExAJviPLE.—If h = 20 feet, Fig. 536, and the liquid is water,

the pressure-head at n is (ft,, lb., sec.)

l^ = b-h =W -^0'= 14 ft.,

r

and therefore

p^=14:X 62.5 = 875 lbs. per sq. ft. = 6.07 lbs. per sq. in.

494. Second Application of Bernoulli's Theorem without Fric-

tion.—Knowing by actual measurement the open piezometer

height y^ at the section ^^ in .

Fig. 538 (so that the pressure- ^ ^^—- — c/"~\]

head, ^ = h -{-y^', at^ ^ is ^^ r^/^^^^^:~
'";'.";''

known) ; knowing also the f*iyjy__-___Trr?^^<-.

vertical distance h^ from n :.'

to m, and the respective •

fig. 538.

cross-sections i^„ and i^ (^ being the sectional area of the

jet, flowing into the air, so that^ = h), required the volume

of flow per sec; i.e., required Q, which

= F^v^ = F^v^. (1)

The pipe is short, with smooth curves, if any, and friction

will therefore be neglected. From Bernoulli's Theorem [eq.

(7), § 492J, taking m as a datum plane for potential heads, we
have

^' + 5 + = ^-l-(2/«+ 5)+ A^. ... (2)

But from (1) we have
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^n — L-^m "^ -*- n\ ^m )

substituting which in (2) we obtain, solving for %

^m — /
- 500000 Kvi

and hence the volume per unit of time becomes known, viz.,

Q = F^v^. ....... (4)

KoTE.—If the cross-section Fn^ of the nozzle, or jet, is > ^

,

v^ becomes imagmarj (unless y^ is negative (i.e.,_^„ < one at-

mos.), and numerically > h„) ; in other words, the assigned

cross-sections are not filled hy the flow.

Example.—If y^ = lY ft. (thus showing the internal fluid

pressure at n to be j?,, = y{yn -\-h) = 1^ atmos.), k^ = 10 ft.,

and the (round) pipe is 4 inches in diameter at n and 3 inches

at the nozzle m, we have from (3) (using ft.-lb.-sec. system of

units in which g = 32.2)

^ 4/2 X32.2(17 + 10) ^ ^^_^ ^^_ ^_

[N.B. Since^ -f-^ is a ratio and therefore an abstract

number, the use of the inch in the ratio will give the same

result as that of the foot.]

Hence, from (4),

Q = F^D^ =: i^T^)' X 50.4 = 2.474 cub. ft. per sec.

495. Orifictss m Thin Plate.—Fig. 539. When efflux takes

place through an orifice in a thin plate, i.e., a sharjp-edged

orifice in the plane wall of a tank, a contracted vein (or " vena
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/SO' ^'m •
••

Fig. 539.

contracta") is formed, the filaments of water not becoming

parallel until reaching a plane, m, ..••.•..-....

parallel to the plane of vessel wall,

which for circular orifices is at a dis-

tance from the interior plane of vessel

wall equal to the radius of the circular

aperture ; and not until reaching this

plane does the internal fluid pres-

sure become equal to that of the sur-

rounding medium (atmosphere, here),

i.e., surrounding the jet. We assume

orifice is small compared with h

horizontal.

The area of the cross-section of the jet at m, called the con-

tracted section^ is found on measurement to be from .60 to .64

of the area of the aperture with most orifices of ordinary

shapes, even with widely different values of the area of aper-

ture and of the height, or head. A, producing the flow. Call-

ing this abstract number [.60 to .64] the Coefficient of Con-

traction, and denoting it by C, we may write

that the width of the

unless the vessel wall is

Frr.= CF,

in which F= area of the oriflce, and F^ = that of the con-

tracted section. C ranges from .60 to .64 with circular orifices,

but may have lower values with some rectangular forms. (See

table in § 503.)

A lamina of particles of water is under atmospheric

pressure at n (the free surface of the water in tank or reser-

voir), while its velocity at 7i is practically zero, i.e. v^—'O

(the surface at B being very large compared with the area of

orifice). It experiences increasing pressure as it slowly de-

scends until in the immediate neighborhood of the orifice,

when its velocity is rapidly accelerated and pressure decreased,

in accordance with Bernoulli's Theorem, and its shape length-

ened out, until finally at m it forms a portion of a filament of

a jet, its pressure is one atmosphere, and its velocity, = v„j,

,

we wish to determine. The course of this lamina we call a
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" stream-line,''^ and Bernoulli's Theorem is applicable to it,

just as it it were enclosed in a frictionless pipe of the same

form. Taking then a datum plane through the centre of m,

we have

2^m

y
= h, Sr>i = 0, and v^= ?;

while

^ also = b, Sn = h, and v^ =
r

Hence Bernoulli's Theorem gives

^9
+ 5+ = + 5+ A;

^9
= A, . . o o o o o

and

v^= i/2^A.

(1)

That is, the velocity of the jet at m is theoretically the same as

that acquired hy a hody falling freely in vacuo through a

height = A = the " head of water." We should therefore ex-

pect that if the jetweredirectedver-

tically upward, as at m, Fig. 540,

a height ~-

would be actually attained. [See

§§ 52 and 53.] Experiment shows

that the height of the jet (at m)
does not materially differ from h if

h is not > 6 or 8 feet. For A > 8 ft., however, the actual height

reached is < A, the difference being not only absolutely but

relatively greater as A is taken greater, since the resistance of

the air is then more and more effective in depressing and

breaking up the stream. (See § 5Y8.)

At m', Fig. 540, we have a jet, under a head = A', directed

Fm. 540.
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at an angle «'„ with the horizontal. Its form is a parabola

(§ 81), and the theoretical height reached is K" = h' sin* a,

(§ 80).

The jet from an orifice in thin plate is very limpid and clear.

From eq. (1), we have theoretically

v^— V'2gh

(an equation we shall always use for efflux into the air through

orifices and shortpipes in the plane wall of a large tank whose

water-surface is very large compared with the orifice, and is

open to the air), but experiment shows that for an " oi'ifice in

thin plate'^ this value is reduced about 3^ by frictiou at the

edges, so that for ordinary practical purposes we may write

-y^ = V^gh = 0.9Y V^gh, .... (2)

in which is called the coefficient of velocity.^

Hence the volume of flow, Q, per time-unit will be

Q = F^'^m = CFcf) V^, on the average = O^F V^gh. (3)

It is to be understood that the flow is steady, and that the

reservoir surface (very large) and the jet are hoth under at-

Tnospheric pressure. 067 is called the coefficient of effiux.

Example 1.—Fig. 539. Required the velocity of efllux,

v^ , at m, and the volume of the flow per second, Q, into the

air, if A = 21 ft. 6 inches, the circular orifice being 2 in. in

diam. ; take C = 0.64. [Ft., lb., and sec]

From eq. (2),

v^ = 0.9Y V2 X 32.3 X 21.5 = 36.1 ft. per sec.

;

hence the discharge is

,Q = F^v^ = 0.64 X t(:j|-)'x 36.1 = 0.504 cnb. ft. per second.

Example 2.—[Weisbach.] Under a head of 3.396 metres

the velocity v^ in the contracted section is found by measure-

* See Engineering News for Sept. 27, 1906, p. 326, for an account of

extensive experiments on flow through orifices. Values of
(f>

as high as

0.99 were obtained.
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merits of the jet-curve to be 7.98 metres per sec, and the dis-

charge proves to be 0.01^25 cub. metres per sec. Required

the coefficient of velocity (0) and that of contraction {C), if

the area of the orifice is 36.3 sq. centimetres.

Use the 7/ietre-kilogra7n-second system of units, in which

g = 9.81 met. per sq. second.

From eq. (2),

= -4^ = ^-^^ = 0.978;
V 2g/i V2 X 9.81 X 3.396

while from (3) we have

F(p V 2gh Fv^ Tww X 7.98 " ' •

and (7, being abstract numbers, are independent of the sys-

tem of concrete units adopted.

ISToTE.—To fir.d the velocity v^ of the jet at the orifice by

measurements of the jet-curve, as mentioned in Example 2,

we may proceed as follows : Since we cannot very readily as-

sure ourselves that the direction of the jet at the orifice is

horizontal, we consider the angle a^ of the parabola (see Fig.

93 and § 80) as unknown, and therefore have two unknowns

to deal with, and obtain the necessary two equations by meas-

uring- the X and y (see page 84) of two points of the jet, re-

membering that if we use the equation (3) of page 84 in its

present form points of the jet below the orifice will have nega-

tive 2/'s. The substitution of these values a?^ , a?^
, y^ , and y^

in equation (3) furnishes two equations between i^onstants, in

which only o'j, and h are unknown. To eliminate «'„, for

1
we write 1 + tan'^ a. « and taking x^ = 2a?, for coUp

cos a'„

venience, we finally obtain

8 y,-2y. ' "V 4(2/. -22/.) '

in which y^ and y^ are the vertical distances of the two points
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cLosen helow the orifice ; that is, we have already made them
negative in eq. (3) of page 84. The h of the preceding equa-

tion simply denotes v„^ -^ 2^, and must not be confused with

that of the last two figures. For accuracy the second point

should be as far from the orifice along the jet as possible.

496. Orifice with Rounded Approach.*— Fig. 541 shows the

general form and proportions of an orifice or mouth-piece in

the use of which contraction does not

take place beyond the edges, the inner ^ . \

surface being one "of revolution," and \\
so shaped that the liquid filaments are :^:-"

parallel on passing the outer edge m\ ~l~-

hence the pressure-head at m is = 5 -".'^

(= 34 ft. for water and 30 inches for -' /'

mercury) in Bernoulli's Theorem, if i ,

efflux takes place into the air. We fig. 541.

have also the sectional area ^^ = J^= that of final edge of

orifice, i.e., the coefficient of contraction, or O, = unity = 1.00,

so that the discharge per time-unit has a volume

Q = F^ii^ = Iv„,.

The tank being large, as in Fig. 540, Bernoulli's Theorem
applied to m and n will give, as before,

Vm= V2gh

as a theoretical result, while practically we write

v^=(pi/^, (1)

and Q = F(pV~2gh (2)

As an average is found to differ little from 0.97 with this

orifice, the same value as for an orifice in thin plate (§ 495).

497. Problems in Efflux Solved by Applying Bernoulli's

Theorem.—In the two preceding paragraphs the pressure-

heads at sections m and n were each = p^-^ y = height of

* Smooth conical nozzles for fire-streams give (p — .97 with h = press.-

head -f- veloc.-head at base of play-pipe ; see p. 833.
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the liquid barometer = J; but in tlie following problems this

will not be the case necessarilj. However, efflux is to take

place through a simple orifice in the side of a large reservoir,

whose upper surface (n) is very lafge, so that v^ may be put

5= zero.

Problem I.—Fig. 542. What is the veic»city of efflux, -y^, at

the orifice m (i.e., at the contracted sec-

tion, if it is an orifice in thin plate)

of a jet of water from a steam-boiler, if

the free surface at 7^ is at a height = h

above m, and the pressure of the steam

over the water is j?„ , the discharge tak-

ing place into the air?

Applying Bernoulli's Theorem to sec-

tion m at the orifice [where the pres-

sure-head is b and velocity-head vj -^ 2^ (unknown)] and to

section n at water-surface (where velocity-head = and pres-

sure-head = j)^^ y), we have, takiag m as a datimi iox poten-

tial heads so that ^^ = and 2^ = A,

Fig. 542.

5^4-5 +
2^

O +^+ A-
y

'Om=\7^9
Pn

S+ A] . . (1)

Example.—Let the steam-gauge read 40 lbs. (and hence

Pn = S4.7 lbs. per sq. inch) and A = 2 ft. 4 in. ; required v^.

Also \i F=^ ^ sq. in., in " thin plate," required the rate of

discharge (volume). The temperature of saturated steam of

the given tension must be 286° Fahr. [see foot of page 607].

The water is practically at the same temperature and hence

of a heaviness, y, of 5Y.7 lbs. per cubic ft. (p. 518).

From eq. (1) above, then, with ft. lb. and sec, noting that

for this case h = [(14.7 X 144) -^ 57.7] feet,

V,n = \/2XS2.2
"54.7 X 144 14.7 X 144 28

+ 12]

= 81.1 ft. per sec.

57.7 57.7

,
theoretically ; but * practically

• Another practical matter in this case is that some of the hot water will
'flash" into steam on relief from the hig-her pressure.
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v^ = 0.97 X 81.1 == 78.6 ft. per sec.

;

so that the discharge begins at the rate of

Q = 0.64 i^y^ = 0.64 x i • tt¥ X 78.6 = 0.174 cub. ft. p. sec.

Problem II.—Fig. 543. "With what velocity, v^ , will wafces

flow into the condenser O of a steam-engine where the tension

of the vapor is p^, < one atmosphere, if

h = the head of water, and the flow takes

place through an orifice in thin plate?

Taking position m in the contracted section

where the filaments are parallel, and the

pressure therefore equal to that of the sur- ^
rounding vapor, viz.,j?^, and. position n in

the (wide) free surface of the water in the

tank, where (at surface) the pressure is one fig. 643.

atmosphere [and /. ^ = 5 = 34 ft.] and velocity practically

zero; we have, applying Bernoulli's Theorem to n and m^ tak-

ing m as a datum level for potential heads (so that s„ — A and

£m = 0),

^9 r

«'«.=y^2^[A + ^-|^], , , . . (1)

and Q = J^m'i>mt . . . * c , (2^

as theoretical results. But practically we must write

^^Hc^^v'^n—p. ^>- —

iiil
— ^

^0.97^2g[h-^h-^^,. . (3)

and Q = FmV.^ — CFv^ 5 (4)

in which ^= area of orifice in thin plate, and €•= coefiicient

of contraction = about 0.62 approximately [see § 495],
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Example.—If in the condenser there is a " vacuum" of 2Y^

inches (meaning that the tension of the vapor would support

2J inches of mercury, in a barometer), so that

Vm = [w X 14.7] lbs. per sq. inch, and A = 13 feet,

while the orifice is |- inch in diameter ; we have, using the ft.,

ib., and sec,

= 0.97a /:2 X 32.2 ;i2+34-AX^;^]

= 51.1 ft. per sec.

(We might also have written, for brevity,

^ = [2i : 30] X 34 = 2.833,

since the pressure-head for one atmos. = 34 feet^ for water.

Hence, for a circular orifice in thin plate, we have the volume

discharged per unit of time,

Q = CFv = 0.62 X
f
(^)'x 51.1 = 0.0431 cub. ft. per see.

497a. Efflux through an Orifice in Terms of the Internal and

External Pressures.—Fig. 544. Let efflux take place through

a small orifice from the plane side of a large tank, in which at

the level of the orifice the hydrostatic pressure was =^p' be-

fore the opening of the orifice, that of the medium surround-

ing the jet being =:p". When a steady flow

is established, after opening the orifice, the

pressure in the water on a level with the ori-

fice will not be materially changed, except in

.

(o) ^T.^-£^ l:;f the immediate rieighhorhood of the orifice [see

]L-| :zp^_r.zii^:^ § 495] ; hence, applying Bernoulli's Theorem

to m in the jet, where the filaments are parallel,

and a point n^ in the body of the liquid and

at the same level as ?/?, and where the particlesFig. 544.

are practically at rest [i.e., -y^ = 0] (hence not too near the
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orifice), we shall have, cancelling out the potential heads which

are equal,

^g'^ y ^^ y'

^^ = 0.9Ya/%
V- y A

. . (1)

(In Fig. 544p would be equal to y^ + hy) Eq. (1) is con-

veniently applied to the jet produced by

a force-pu7np, supposing, for simplicity,

the orifice to be ^Vi the head of thepump-
cylinder, as shown in Fig. 545. Let the

thrust (force) exerted along the piston-

rod be = P, and the area of the piston

he = F'. Then the intensity of internal

pressure produced in the chamber AB
(when the piston moves uniformly) is

y = ^ + ^>.

Fig. 545.

F'

while the external pressure in the air around the jet is simply

Pa (oiie atmos.).

.%^^=0.97^/2<7.^ (1)'

(!N^.B. Of course, at points near the orifice the internal

pressure is < p'\ read ^ 495.)

Example. —'Let the force, or thrust, P, [due i\j steam-pres-

sure on a piston not shown in figure,] be 2000 lbs., and the

diameter of pump-cylinder be c? = 9 inches, the liquid being

salt water (so that ;j/ = 64 lbs. per cubic foot).

Then

F' = \Tt{-^y = 0.442 sq. ft.

and [ft., lb., sec]
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^. = 0.97^^2 X 32.2 X ^j^-q~^ = 65.4 ft. per se«.

If the orifice is well rounded, with a diameter of one inch,

the volume discharged per second is

Q = F^v^, = Fn^ = l^-iy X 65.4 = 0.353 cub. ft. per sec.

To maintain steadily this rate of discharge, the piston must

move at the rate [veloc. = v'^ of

v' ^Q-^F' = .353 -^ |Q']= 0.800 ft. per sec,

and the force P must exert 2ipower (§ 130) of

L=iPv' = 2000 X 0.800 = 1600 ft. lbs. per sec.

= about 3 horse-power (or 3 H. P.).

If the water must be forced from the cylinder through a

})ipe or hose before passing out of a nozzle into the air, the

velocity of efflux will be smaller, on account of
''^
fluid frio-

tioii^^ in the hose, for the same P ; such a problem will be

treated later [§ 513]. Of course, in a pumping-engine, by the

use of several pump-cylinders, and of air-chambers, a practically

steady flow is kept up, notwithstanding the fact that the mo-

tion of each piston is not uniform, and must be reversed at the

end of each stroke.

498. Influence of Density on the Velocity of Efflux in the Last

Problem.—From the equation

Vm = \/^9— P
y

of the preceding paragraph, where j?'' is the external pressure

around the jet, and ji?' the internal pressure at the same level

as the orifice but well back of it, where the liquid is sensibly
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at rest, we notice that for the same difference of pressure

Vjp'~ JP"^ 25Ae velocity of efflux is inversely proportiocial to thi

square root of the heaviness of the liqxiid. Hence, for the

same {p' —p"\ mercury would flow out of the orifice with a

velocity only 0.272 of that of water ; for

1000

Again, assuming that the equation holds good for the flow or

gases (as it does approximately when j?' does not greatly exceed

»"; e.g., by 6 or 8 per cent), the velocity of efliux of atmospheric

air, when at a heaviness of 0.807 lbs. per cub. foot, would be

/
62.5

0807
1/775.3 = 27.8

times as great as for water, with the same p' — p'\ (See

§ 548, etc.)

499. Efflux under Water. Simple Orifice.—Fig. 546. Let \
and Aj be the depths of the (small) ori-

fice below the levels of the " head " and
" tail " waters respectively. Then, using

the formula of § 497a, we liave for the

pressure at n (at same level as m, the

J6t)

p' = {K + h)y,

-.'.aIr.- .

_ J

'.h-:':-"-'--'.'-

_7i,

-^
L^ -f--4 -_'^—n KZ m >

TT .

and for the external pressure, around

the jet at m,

y = (/*.+%;

whence, theoretically,

Fig. 546.

^^m^W^p'—-P' V^g{K-h:)=^V^gh, . (11

where h = difference of level between the surfaces of the two

bodies of water.
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Practically, = cf) \/%jh; (2)

but the value of for efflux under water is somewhat uncer-

tain ; as also that of C, the coefficient of contraction. Weis-

bach sajs that //, = 0(7, is -^-^ part less than for efflux into the

air ; others, that there is no ditference (Trautwine). See also

p. 389 of vol. 6, Jour, of Engin. Associations, where it is

stated that with a circular mouth-piece of 0.37 in. diam., and

of '' Dearly the form of the vena contracta,^^ jx was found to be

.952 for discharge into the air, and .945 for submerged dis-

charge.

500. Efflux from a Small Orifice in a Vessel in Motion.

Case I. WJien the motion is a vertical translation and uni-

formly accelerated.—Fig. 547. Suppose the vessel to move up-

ward with a constant acceleration p.

(See § 49a.) Taking m and n as in the

two preceding paragraphs, we know that

p^ ^p" =1 external pressure = one at-

mos. =Pa (and.*. — = h). As to the

internal pressure at n (same level as tn,

but well back of oriiice), p^ j this is not

equal to {h -{- h)y, because of the acceler-

ated motion, but we may determine it by considering free the

vertical column or prism On of liquid, of cross-section = <fi^,

the vertical forces acting on which are PadF, downward at (?,

PndF upward at n, and its weight, downward, JidFy. All

other pressures are horizontal. For a vertical upward acceler-

ation =j?, the algebraic sum of the vertical components of all

the forces must = mass X vert, accel.,

hydF

f^o-'^o "tl
Gl^4 1

yi

'v„

Fig. 547.

—Pa — hy)

Pn —Pa+ hy

9

P'

'P\

1 j-i^

-Putting p^ and Pa equal to the p' and p" ^ respectively, of

the equation, we have
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of § 497,

-V^^P^^]

Vr„ = j/2{g+^)h. o . . . (2)

It must be remembered that v^ is the velocity of the jet rel~

at'wely to the orifice, which is itself in motion with a variable

velocity. The absolute velocity w^ of the particles of the jet

is found by the construction in § 83, being represented graph-

ically by the diagonal of a parallelogram one of whose sides is

Vra , and the other the velocity g with which the orifice itself is

moving at the instant, as part of the vessel. The jet may
make any angle with the side of the vessel.

On account of the flow the internal pressures of the water

against the vessel are no longer balanced horizontally, and the

latter will swing out of the vertical unless properly constrained.

lip = g = ace. of gravity, -y^ = V 2 V 2gh. If p is nega-

tive and = ^, 'y„j = ; i.e., there is no flow, but both the vessel

and its contents fall freely, without mutual action.

Case II. When the liquid and the vessel hath have a luni-

form rotary inotion about a vertical axis with an angular veloc-

ity = £» (§ 110). Orifice small, so that we may consider the

liquid inside (except near the oriflce) to

be in relative equilibrium. , Suppose the

jet horizontal at m. Fig. 548, and the

radial distance of the orifice from the

axis to be = x. The external pressure

Pm^Pai and the internal [see § 428,

eqs. (3) and (4)] is

Pn=Pa+{K+ ^)y = Va-\-KV "f
QOX

2g
Fig. 548.

hence the velocity of the jet, relatively to the orifice, is (from

^ 497, since p^ and p^ correspond to the jp' and p" of that

^.rticle),

^w,=\J-
{Pn —Prr^ _ V2gk 4- {ooxf
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i.e., v^^. = V2gh, + w'
-, (3j

in which w., = gox, = the (constant) linear velocity of the ori-

fice in its circular path. The absolute velocity w^ of the par-

ticles in the jet close to the orifice is the diagonal formed on

w and 'y,„ (§ 83). Hence by properly placing the orifice in the

casing, Wy^ niay be made small or large, and thus the kinetic

energy carried away in the effluent water be regulated, within

certain limits. Equation (3) will be utilized subsequently in

the theory of Barker's Mill.*

Example.—Let the casing make 100 revol. per min. (whence

00 = [27rl00 -=- 60] radians per sec), /?„ =; 12 feet, and a? = 2

ft. ; then (ft., lb., sec.)

-y^ =J2 X 32.2 X 12 + (?^ll|^^y= 34.8 ft. per sec.

(while, if the casing is not revolving, v^ = V2gh^ = only 27.8

ft. per sec).

If the jet is now directed horizontally and backward, and
also tangentially to the circular path of the centre of the orifice,

its absolute velocity (i.e., relatively to the earth) is

w,n = -y^j — Gox = 34.8 — 20.9 = 13.9 ft. per sec,

and is also horizontal and backwards. If the volume of flow

is ^ = 0.25 cub. feet per sec, the Mnetic energy carried away
with the water per second (§133) is

= iif^.^ =& .
!^ = i^l^ (iM): = 46.8^

^ 2 32.2 2

ft. lbs. per second = 0.085 horse-power.

601. Theoretical EMux through Eectangular Orifices of Con=

siderable Vertical Depth, in a Vertical Plate.—If the orifice is

so large vertically that the velocities of the different filaments

in a vertical plane of the stream are theoi'etically different, hav-

ing different " heads of water," we proceed as follows, taking

into account, also, the velocity of approach^ c, or mean velocity

* See p. 84 of the author's " Hydraulic Motors " (New York, 1905, John
Wiley and Sons).
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(if any appreciable), of the water in the channel approaching

jhe orifice.

Fig. 549 gives a section of the side of the tank and orifice.

Let h = width of the rectangle, the sills of the latter being

horizontal, and a =^h^ — A, , its height. Disregarding con=

traction for the present, the theoretical volume of discharge

per unit of time is equal to the .•;...-.,.^..«^

sum of the volumes like v^dF ;.••.••::>"•:.=.;,• '

(= vj)dm), in which Vy^ = the =^^Ef^Z^^i
velocity of any filament, as m, =— =j^^^'iE:£^-A

in the jet, and bdx = cross-sec- ^^t^^r-^^'^
tion of the small prism which -j^f^^^^C^jT"~1S^}^\j^i

i

\\\u}p

passes through any horizontal —i
]~~

Ja-7Jlr^^^^Z~^^^%
strip of the area of orifice, in a "^j^^^.;^;;^^^' ^ ^Sr^^^ \
unit of time, its altitude being ^^r^W^^^^^A

\

'"^^ ^

v^ . For each strip there is a fig 549.

different x or " head of water," and hence a different velocity.

Now the theoretical discharge (volume) per unit of time is

v^dF\

i.e., Q = 'bX^^dx (ly

But from Bernoulli's Theorem, if h =. & -^ 'ig =^ the velocity-

head at n, the surface of the channel of approach nC.h being

the pressure-head of n, and x its potential head referred to m as

datum (IT.B. This 5 = 34 ft. for water, and must not be con-

fused with the width h of orifice), we have [see § 492, eq. (7)]

.-. Vrn = V2g Vx-\-k; (2)'

and since dx = d{x+ ^), ^ being a constant, we have, from (l)'^

and (2)',

Theoret. Q = l V~2g fix+ k)^d{x -f ^),
'^hi+ k
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or

TJieoret. Q = %h \/^g [{K + ^^ - {K + ^)^]. • (1)

(5 now denotes the width of orifice.) If c is small, the chan-

nel of approach being large, we have

Theoret. Q = %-b V^ {hi -h^) .... (2)

(c being =i Q -^ area of section of nC).

If Aj = 0, i.e., if the orifice becomes a notch in the side, or

an overfall [see Fig 550, which shows the contraction which

actually occurs in all these cases], we have for an overfall *

Theoret.Q = %'bV^g\_{\-\-h)i-'ki].. ... (3)

Note.—Both in (1) and (2) \ and h^ are the vertical depths

.... . • . . -.. •.-, • . .
of the respective sills of the orifice

from the surface of the water

three orfourfeet hack of the plane

of the orifice, where the surface is

comparatively level. This must

be specially attended to in deriv-

Fi»- 550. ing the actual discharge from the

theoretical (see § 503).

If Q were the unknown quantity in eqs. (1) and (3) it would

be necessary to proceed by successive assumptions and ap-

proximations, since Q is really involved in Ic ; for

h =^ and F,c=Q

(where F^ is the sectional area of the channel of approach nC).

With ^ = (or c very small, i.e., F^ very large), eq. (S) re-

duces (for an overfall) to

Theoret.Q = llhJ^K/ .... (3^)

or f as much as if all parts of the orifice had the same head of

water = h^ (as for instance if the orifice were in the horizontal

bottom of a tank in which the water was h^ deep, the orifice

having a width = 5 and length = h^.

* The most satisfactory mathematical treatment of the flow over an overfall

weir is that of Elamant (see p. 96 of his Hydraulique, Taris, 1900, 2d edition).

Its resulting formula is in remarkable accord with experiment, but is not con-
venient for practical use.
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502. Theoretical Efflux tlirough a Triangular Orifice in a Thin

Vertical Plate or Wall. Base Horizontal.—Fig. 551. Let the

channel of approach be so large that the velocity of approach

may be neglected, h^ and J\ = depths of sill and vertex,

which is downward. The analysis differs from that of the

preceding article only in having h-= and the length u, of a

horizontal strip of the orifice, variable ; h being the length of

the base of the triangle. From similar triangles we have

u h„ — X
I.e., u =

c% Theoret. Q = fv,ndF ^= fi}y,;<jcdx =
^

- / v,,J^h^ — x)dx]

and finally, substituting from eq. (2)' of § 501, with i^ = 0,

Fig. 551. Fig. 552.

Theoret. Q = ^J^ (h^ — x)x^dx

= ^|-^[2A./-5AA^+ 3Afl. ... (4)

For a triangular notch as in Fig. 552, this reduces to

Theoret. Q = ^^hK V^. = ~ ^-^ V^gK (5)

i.e.j ^ of the volume that would be discharged per unit of
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time if the triangular orifice with base h and altitude J\ were

cut in the horizontal bottom of a tank under a head of h^.

The measurements of h^ and h are made with reference to the

level surface back of the orifice (see figure) ; for the water-

surface in the plane of the orifice is curved below the level

surface in the tank.

. Prof. Thomson has found by experiment that with

h = 2A2 , the actual discharge = theoret. disch. X 0.595 ; and

with h = 4:J\ , actual := theoret. disch. X 0.620.

503. Actual Discharge through Sharp-edged Rectangular Ori-

fices (sills horizontal) in the vertical side of a tank oi' reservoir.

Case I. Complete and Perfect Contraction.—The actual

volume of water discharged per unit of time is much less than

the theoretical values derived in § 501,

chiefly on account of contraction. By
complete contraction we mean that no

edge of the orifice is flush with the

side or bottom of the reservoir ; and

hj perfect contraction, that the channel

of approach, to whose surface the

heads h^ and h^ are measured, is so

large that the contraction is practically

the same if the channel were of infi-

iG. 553.
jj»^Q extent sideways and downward

from the orifice.

For this case (A, not zero) it is found most convenient to

ose the following practical formula (b = width)

:

Actual Q = f^A\/^9 'K-\- . . (6)

in which (see Fig. 553) a = the height of orifice, h^ = the ver=

tical depth of the upper edge of the orifice below the level of

the reservoir surface, measured afeiofeet hack of the plane of

the orifice, and /*„ is a coefficient of effiux (an abstract number),

dependent on experiment.

With iJ.^ = 0.62 approximate results (within 3 or 4 per cent)

may be obtained from eq. (6) with openings not more than
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18 inches, or less than 1 inch, high ; and not less than 1 inch

wide ; with heads (-^i + q ]
f^^om 1 ft. to 20 or 30 feet.

Example.—What is the actual discharge (volume) per min-

ute through the orifice in Fig. 553, 14 inches wide and 1

foot high, the upper sill being 8 ft. 6 in. below the surface of

still water ? Use eq. (6) with the ft., lb., and sec. as units, and

fji, = 0.62.

Solution

:

Q = 0.62 X 1 X H X V2 X 32.2[8i+-|]= 17.41 cub. ft. per.sec.

while theJlow of weight is

G=Qy = 17.41 X 62.5 = 1088 lbs. per second.

Poncelet and Lesbroi Experiments.—For comparatively ac-

curate results, values of /<„ taken from the following table

(computed from the careful experiments of Poncelet and Les-

bros) may be used for the sizes there given, and, where prac-

ticable, for other sizes by interpolation. To use the table, the

values of h^ , a, and h must be reduced to metres, which can be

done by the reduction-table below ; but in substituting in eq.

(6), if the metre-kilogram-second system of units be used g
must be put = 9.81 metres per square second (see § 51), and Q
will be obtained in cubic metres per second.

Since //„ is an abstract number, once obtained as indicated

above, it does not necessitate any particular system of units in

making substitutions in eq. (6). The ft., lb., and sec. will be

used in subsequent examples.

TABLE FOR REDUCING FEET AND INCHES TO METRES.

Ifoot = 0.30479 metre. 1 inch = 0.0253 metre.

2 feet = 0.60959 u 2 inches = 0.0507

3 " = 0.91438 ii 3 = 0.0761

4 " = 1.21918 metres. 4 = 0.1015

5 " = 1.52397 5 = 0.1268

6 ." = 1.82877 6 = 0.1522

7 " = 2.13H56 7 = 0.1776

8 " = 2.43836 8 = 0.2030

9 " = 2.74315 9 = 0.2283

10 " = 3.04794 10 = 0.2536

11 = 0.2790
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TABLE, FROM PONCELET AND LESBROS.

Values of y«o, for Eq (6), fok Rectangular Orifices in Thin Plate

(Complete and perfect contraction.)

Value of hi.
Fig. 5S3 (in

metres).

b = .20"- b = .20"- b = .20"- b = .20"- b = .20"- b = .20"- b = .60"- b = .60™-

a = .20"- a = .10"- a = .OS"- a - .03"- a = .02"- a = .01"- a - .20"- a= ,02"-

Mo Mo Mo Mo Mo Mo Mo Mo

0.005 0.705
,010 0.607 0.630 0.660 .701 0.644
.015 0.593 .612 .632 .660 .697 .644
.020 0.572 .596 .615 .634 .659 .694 .643
.030 .578 .600 .620 .638 .659 .688 0.593 .642
.040 .583 .603 .623 .640 .658 .683 .595 .642
.050 .585 .605 .625 .640 .658 .679 .597 .641
,060 .587 .607 .627 ,640 .657 .676 .599 .641
.070 .588 .609 .628 .639 .656 .673 .600 .640
.080 .589 .610 .629 .638 .656 .670 .601 .640
.090 .591 .610 .629 .637 .655 .668 .601 .639
.100 .592 .611 .630 .637 .654 .666 .602 .639
,120 .593 .612 .630 .636 .653 .663 .603 .638
.140 .595 .613 .630 .635 .651 .660 .603 .637
.160 .596 .614 .631 .634 .650 .658 .604 .637
.180 .597 .615 .630 .634 .649 .657 .605 .636
.200 .598 .615 .630 .633 .648 .655 .605 .635
.250 .599 .616 .630 .632 .646 .653 .606 .634
.300 .600 .616 .629 .632 .644 .650 .607 .633
.400 .602 .617 .628 .631 .642 .647 .607 .631

.500 .603 .617 .628 .630 .640 .644 .607 .630

.600 .604 .617 .627 .630 .638 .642 .607 .629

.700 .604 .616 .627 .629 .637 .640 .607 .628

.800 .605 .616 .627 .629 .636 .637 .606 .628

.900 .605 .615 .626 .628 .634 .635 .606

.605
.627

1.000 .605 .615 .626 .628 .633 .632 .626

1.100 .604 .614 .625 .627 .631 .629 .604 .626

1.200 .604 .614 .624 .626 .628 .626 .604 .625

1.300 .603 .613 .622 .624 .625 .622 .603 .624
1.400 .603 .612 .621 .622 .622 .618 .603 .624

1.500 .602 .611 .620 .620 .619 .615 .602 .623

1.600 .602 .611 .618 .618 .617 .613 .602 .623

1.700 .602 .610 .617 .616 .615 .612 .602 .622

1.800 .601 .609 .615 .615 .614 .612 .602 .621

1.900 .601 .608 .614 .613 .612 .611 .602 .621

2.000 .601 .607 .613 .612 .612 .611 .602 .620

3.000 .601 .603 .606 .608 .610 .609 .601 .615

Example. — With A, = 4 m. [ = 0.10 met.] , a=S in.

[= 0.20 met.] , 5 = 1 ft. 8 in. [= 51 met.] , required the

(actual) volume discharged per second. See Fig. 553.
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From the foregoing table,

for Aj = 0.10'"-, h = 0.60"^- and a = 0.20"-, we find /i, = .602
" k, = 0.10™-, h = 0.20"^- " a = 0.20"^-, " /i, = .592

diff. = .010

Hence, by interpolation,

for A, = 0.10"^- h = O.Sl*"-, and a — 0.20'"-, we have

At„ = 0.602 - ^ [0.602 - 0.592] = 0.600.

Hence [ft., lb., sec], remembering that //„ is an abstract num-
ber, from eq. (6),

^y = 4.36Q = 0.600 x^xnV2x 32.2(-3-V+ -

cub. ft. per second.

Case II. Incomjplete Contraction.—This name is given to

the cases, like those shown in Fig, 554, where one or more
sides of the orifice have an interior border flush with the sides

or bottom of the (square-cornered) tank.

N^ot only is the general direction of the stream altered, but

the discharge is greater^ on account of the larger size of the

contracted section, since contraction is prevented on those sides

which have a border. It is assumed that the contraction which

does occur (on the other edges) is 'perfect / i.e., the cross-sec-

tion of the tank is large compared with the orifice. According

to the experiments of Bidone and

Weisbach with Poncelet's ori-

fices (i.e., orifices in thin plate

mentioned in the preceding table),

the actual volume discharged per

unit of time is

q^txab^^gi^,^"^ . (7)

Fie. 554.(differing from eq. (6) only in

the coefficient of efilux yu), in which the abstract number // is

found thus: Determine a coefiicient of efliux /;„ as if eq. (6)

were to be used in Case I ; i.e., as if contraction were complett

and perfect ; then write
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M = M.D- + 0.155 7q, ..... (7)'

where n = the ratio of the length of periphery of the orifice

with a border to the whole periphery.

E.g., if the lower sill, only, has a border,

while if the lower sill and both sides have a border,

n = {2a-^h)-T- [2(a+ 5)].

Example.—If h, = S ft. (= 2.43'"-)j ^ = 2 ft. (= 0.60"-),

« = 4 in. (= O.IO"^-), and one side is even with the side of

the tank, and the lower sill even with the.bottom, required the

volume discharged per second. (Sharp-edged orifice, in ver-

tical plane, etc.)

Here for complete and perfect contraction we have, from

Poncelet's tables (Case I), >m^ = 0.608. E'ow n = ii hencec,

frona eq. (7)',

M = 0.608 [1+ 0.155 X i]= 0.6551

;

hence, eq. (7),

Q = 0.656 X2X-^V2X 32.2(8+^.-^)

= 10.23 cub. ft. per sec.

Case III. Imperfect Contraction.—li there is a submerged

channel of approach, symmetrically

placed as regards the orifice, and of

area (cross-section), = G,

"1 G
C^WlA—i^ much larger than that, = i^, of the

-_^r=- ^ ^i^^^-^^^^ orifice (see Fig. 555), the contraction

Z£E^£:/->_^//.'
[

•^•'

j is less than in Case I, and is called

imperfect contraction. Upon his

experiments with Poncelet's orifices.

FiO' S55. with imperfect contraction, Weisbach

bases the foliowiDg formula for the discharge (volume) per

unit of time, viz.,

© = /^«5^/2^(^.+ |)
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(see Pig. 553 fci notation), with, the understanding that the co-

efficient

A«= A«.(1+ /S), (sy

where yw^ '^ ^b© coefficient obtained from the tables of Case I

(as if the contraction were perfect and complete), and ^ an ab

stract number depending on the ratio F i G = mfas follows:

^ = 0.0760 [S'^ - l.( (§r

To shorten computation Weisbach gives the following tabk

for^:
Ex^MPLB.~Iet h,= 4' 9|'' (= 1.46

met.), the dimensions of the orifice

Table A.

width =ib = 8 in. (= OM"^);

height = flj = 5 in. (= 0.126"^)

;

while the ebannel of approach {CJDf

Fig. 555) is one foot square. From
Case I, we have, for the given ^-^

mensions and head,

A«„ = 0.610;

m. ^. m.

.05 .009 .55 .178 1

.10 .019 .60 .208

.15 .030 .65 .241

.20 .043 .70 .378
'

.85 .056 .75 .319

.80 .071 .80 .365

.35 .088 .85 .416

.40 .107 .90 .473

.45 .138 .95 .537

.go .153 1.00 .608

G 144 sq. m.

We find [Table A]

/?= 0.062;

and hence /^ = /i„ (1.062), from eq. (8)'. Therefoi'e, ivom 6^
(8), with ft., lb., and sec,

^= 0.610 X 1.062 X3^.^V2 X 32.2 X 5

= 3.2.2 cub. ft. per sec.

Case IY. Head measured in Moving Water.—See Pigc

556. If the head A, , of the upper sill, cannot be measured to

the level of stiK water, but must be taken to the surface of "x

rfVcvrjol of approach, where the velocity of approach is quite
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appreciable, not only is the contraction imperfect, but

strictly we should use eq. (1) of § 501, in

which the velocity of approach is considered.

Let i^= area of orifice, and G that of the

cross-section of the channel of approach;

then the velocity of approach is c^Q^G^
and k (of above eq.)=c^^2g= Q^-i-2gG^;

but Q itself being unknown, a substitutionof

k in terms of Q in eq. (1), § 501, leads to an

equation of high degree with respect to Q.
Fis. 556.

Q^nahyl'^gihi
a

+ 2
(9)

Practically, therefore, it

is better to write

and determine /z by experiment for different values of the

ratio F^G. Accordingly, Weisbach found, for Poncelet's

orifices, that if /.(q is the coefficient for complete and perfect

contraction from Case I, we have

/i= /io(H-/?0, where ^' = ^Ml{F ^Gf . . (90

hi was measured to the surface one metre back of the plane

of the orifice, and F:G did not exceed 0.50.

504. Actual Discharge of Sharp-edged Overfalls (Overfall'

Weirs; or Rectangular Notches in a Thin Vertical Plate).

Case I. Comjplete and Perfect Contraction {the normal

case), Fig. 557 ; i.e., no edge is flush

with the side or bottom of the

reservoir, whose sectional area is

very large compared with that, hh^.

of the notch. By deptn, h^ , of the

notch, we are to understand the

depth of the sill helow the surface

afewfeet hacJc of the notch where

it is level. In the plane of the

notch the vertical thickness of the stream is only from f to -^
of Aj . Putting, therefore, the velocity of approach = zero,

and hence ^= 0, in eq. (3) of § 501, we have for the

Fig. 557.

Actual Q = >Wol^^a ^2^^ii) • (10)



DISCHARGE OF OVERFALL-WEIRS. 683

(h = width of notch.) wliere j^^ is a coefficient of efflux to be

cletermined bj experiment.

Experiments with overfalls do not agree as well as might be

desired. Those of Poncelet and Lesbros gave the results in

Table C.

Example 1.—With

A, = 1 ft. 4 in. (= .405%

5 = 2 ft. (= O.eO""-),

we have, from Table C, jWo = -^SB,

and (ft., lb., sec.)

Table C.

For 6 = 0.20^ Forfc = 0.60™. !

metres. metres.

h^ fio 7l2 ^•0
1

.01 (5B6 .06 618
!

03 620 08 613 1

03 618 10 609 i

04 610 12 605
06 601 15 600
08 595 30 593
10 592 30 .586
15 589 40 586
20 585 50 586
32 577 60 .585

For appros. results Mn = BO 1

/. ^=.586X1X2xf 1/2x32.2x1

= 9.54 cub. ft. per sec.

Example 2.— What width, J,

must be given to a rectangular notch, for which h^ = 10 in.

issL 0.25'"-), that the discharge maj be ^ = 6 cub. feet per sec?

Since h is unknown, we cannot use the table immediately,

but take pi^ = .600 for a first approximation ; whence, eq, (10),-

(ft., lb., sec.,)

I = 6

0.6 X I X It V2 X 32.2 X |i

= 2.46 ft.

Then, since this width does not much exceed 0.60 metre,

we may take, in Table C, for A^ = 0.25 met., /fj, = .589
;

.589 X I X if V2 X 32.2 X U
= 2.50 ft

Case II. Incomplete Contraction; i.e., hoth ends are flush

with the sides of the tanh, these heing 1 to the plane of the

notch. According to Weisbach, we may write

Q = ^mM, V^gK (11)

in which /^ = 1.041yWo ,
/n^ being obtained from Table C for the

normal case, i.e., Case I. The section of channel of approach

is large compared with that of the notch; if not, see Case IV.
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Case m. Imperfect Contraction; i.e., the velocity of wp.

jproacli is appreciable ; the sectional area G
of the channel of approach not being much
larger than that, F, = lli^ = area of notch.

Fig. 558. h = width, and A^ = depth of

notch (see Case I). Here, instead of using

a formula involving

Tc = d'~<^g = iQ~6J^2g
Fig. 558.

(see eq. (3), § 501), it is more convenient to pufc

as before, with

Q=lf^hh,i/^gh,,

/* = /<o (1 + /?),

(12)

(12)'

Table D.

in which yu^ is for the normal case [Case I] ; and p, according

to ^ eisbach's experiments, may be obtained from the empiri-

cal formula

^ = 1.718 (^y (12)-

[Table D is computed from (12)''.]

(The contraction is complete in this case ; i.e., the ends are

not flush with the sides of the tank.)

Example.—If the water in the channel of ap-

proach has a vertical transverse section of (7 = 9

sq. feet, while the notch is 2 feet wide (i.e.,

h — 2') and 1 foot deep {h^ = 10 (^^ level of

surface of water 3 or 4 ft. back of notch), we
have, from Table C, with h = .60 met. and

A, = 0.30 met.,

M, = 0.586

;

while from Table D, with F\ G — 0.222 (or f),

yS = .005

;

hence (ft.-lb.-sec. system of units), from eq. (12),

F
Q /3.

0.05 .000
.10 .000
.15 .001

.30 .003

.25 .007

.30 .014

.35 .026

.40 .044

.45 .070

.50 .107

^ = I X 0.586 X 1.005 X 2 X 1 X V64.4 X 1.0

= 6.30 cub. ft. per second.
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Case IYo Fig. 559. Lnperfect and incomplete contrac-

tion together I both end-contractions being " suppressed" (by

making the ends flush with the sides of the reservoir, these

sides being vertical and "l to the plane of the notch), and the

channel of approach not being very deep, i.e., having a sec-

tional area G but little larger than that, F^ of notch. F=^ hh^

as before.

Again we write

Q^^^IKV^^,, ..... (13)

with ji computed from

A*=/i„(i+^), (isy

jMe being obtained from Table C ; while

/? = 0.041 + 0.3693 [?S, (la^

an empirical formula based by Weisbach on his own experi-

ments. To save computation, /? may be found from Table E,

founded on eq. (13)''.

Table E.

F
G .00 .05 .10 .15 .20 .35 .30 .35 .40 .45

i

.50

a = .041 .043 .045 .049 .056 .064 .074 .086 .100 .116 .133
\

Example.—Fig. 559. With

and

J = 2 ft. (=0.60 met.)

h^ = \ ft. (=0.30 met.),

Fig. 559.

we have, from Table C, /f„ = 0.586,

But, the ends being flush with the

sides of the reservoir or channel,

and G being = 6 sq. ft. (see figure),

which is not excessively large compared with F =. hh^ = 2 sq.

ft., we have from Table E, with F:G= 0.SS3, /3=.081;

and hence [eq. (13) and (13)'], /.(q being .586 as in last example,
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^ = I X 0.586 X-(l + .081) X 2 X 1 X 1^64.4 X l.C

= 6.78 cub. ft. per sec.

505. Francis' Formula for Overfalls (i.e., rectangular notciies).

—From extensive experiments at Lowell, Mass., in 1851, with

rectangular overfall-weirs, Mr. J. B. Francis deduced the fol-

lowing formula for the volume, Q. of flow per second over

such weirs 10 feet in width, and with h^ varying from 0.6 to

1.6 feet (from sill of notch to level surface of water a few feet

back)

:

^ = |X0.622A,(6-3V^A,)i/2p;, . . (14)

in which h =. width.

This provides for incomplete contraction, as well as for com-

plete and perfect contraction, by making

?^ = 2 for perfect and complete contraction (Fig. 55Y)

;

n = 1 when one end only is flush with side of channel

;

^ = when both ends are flush with sides of channel.

The contraction was considered complete and perfect when

the channel of approach was made as wide as practicable,

= 13.96 feet, the depth being about 5 feet.

Mr. Francis also experimented with submerged or " drowned"

weirs in 1883 ; such a weir being one in which the sill is be-

low the level of the tail-water (i.e., of receiving channel).

505a. The Cippolletti, or Trapezoidal, Weir.—It is evident that in

the rectangular notch of Fig. 559, where the ends are flush with the

vertical walls of the channel of

approach (so that the end-

contractions are "suppressed"),

the discharge, Q, is proportional

to the length, b, of the sill (or

"crest") of the weir; for a

given /ij. To secure a similar

simplicity of relation for a notch

not filling the whole width of

channel, the Italian engineer,

Cippolletti, proposed and used a
symmetrical trapezoidal sharp-

edged notch in a vertical plate,

as shown in Fig. 559a; with
"such an inclination of side edges

that ae and rd were each equal

to 1/4 of es. The theoretical basis of such a slope is as follows:'

Fi®. 559a.
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Writing n for the 0.622 of the Francis formula, eq. (14), we have for

a rectangular notch with perfect and complete contraction (Fig. 557),

Q= l!xh2^2gh2{h-^h2)] .... (14a)

whereas for the case of end contractions suppressed (Fig. 559) and deep

channel of approach, this becomes

Qo= ybh2\/2gh2 (146)

It is therefore evident that the additional discharge obtained in the

latter case is, Q" =j^<J^h2^^2gh2. . . .' . . . (14c)

Now the discharge through the trapezoidal notch in Fig. 559a is made
up of that (Qo) through the rectangle edts, considered as taking place

without end contractions, and that {Q'), through the two triangles aes

and rtd, which may be considered as equivalent to that through a single

triangular notch of width b', =ae+ rd, for which [see Fig. 552, and

eq. (5) on p. 675] we have a discharge

Hence, equating Q' and Q", we derive b'= ^/i2, i.e., ae, =rd, =^ . es as a

proper relation such that the discharge of trapezoidal weir shall be

Q = i bh2V2^, (Me)
that is, that its discharge shall be proportional to the length, b, of sill.

(It is understood that in Fig. 559a that es= /i2, ar being in the horizontal

plane of the surface of quiet water somewhat back from the weir.)

With the foot and second as iinits, and the value /
= .622 of the

Francis formula [eq. (14)], we find ^ji'^2g= 3.33; but the careful ex-

periments of Messrs. Flinn and Dyer, at Holyoke, Mass., in April, 1893

(Transac. Amer. Soc. Civil Engineers, vol. xxxii, p. 9) led them to con-

clude that the equation Q=[sM6)hh'i .... (14/)

{for foot and second), (which is the formula proposed by CippoUetti him-
self), gives results within one per cent of the truth.

In these experinaents the length b of sill ranged from 3 ft. to 9 ft.,

and the head h^ from 0.30 ft. on a 3-ft. sill to 1.25 ft. on a 9-ft. sill. The
channel of approach was 20 ft. wide and about 8 ft. deep below the sill

of each weir. The contraction was therefore "complete" and "perfect."

Since 1881 the CippoUetti weir has been much used in Italy in measur-

ing water for irrigation, and is now used to some extent in the Western
part of the United States for the same purpose.

506. Fteley and Stearns's Experiments at Boston, Mass., in

1877 and 1880.—These may be found in the Transactions of

the American Society of Civil Engineers, vol. xii, and gave

rise to formnlse differing slightly from those of Mr. Francis in

some particulars. In the case of suppressed end-contractions,

like that in Fig. 559, they propose formulae as follows

:

"When depth of notch is not large,

Q(incnb. ft. per sec.) = 3.31 6M+ 0.0076 . (15)

{b and h2 both in feet),
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*'
712, the depth- on the weir, should be measured from the sur-

face of the water above the curvature of the sheet."

'
' Air should have free access to the space under the sheet. '

'

The crest must be horizontal. The formula does not apply to

depths on the weir less than 0.07 feet.

When the depth of notch is quite large, a correction must

be made for velocity of approach, c, thus

:

h2+l-^^\ +0.0076 (16)

(6, h2, and c^-i-'2g, in feet).

The channel should be of uniform rectangular section for

about 20 ft. or more from the weir, to make this correction

properly. If (9 = the cross-section, in sq. ft., of the channel

of approach, c is found approximately by dividing an approxi-

mate value of ^ by 6^^ ; and so on for closer results.

The weir may be of any length, h, from 5 to 19 feet.

506a. Recent Experiments on Overfall-weirs in France.*—In

the Annales des Fonts et Chaussees for October 1888 is an

account of extensive and careful experiments conducted in

1886 and 1887 by M. Bazin on the flow over sharp-edged

overfall-weirs with end-contractions suppressed; i.e., like that

shown in Fig. 559. The widths of the weirs ranged from

0.50 to 2.00 metres, and the depths on the weirs (A^) from

0.05 to 0.60 metre. With p indicating the height of the sill

of the weir from the bottom of the channel of approach, M.
Bazin, as a practical result of the experiments, recommends

the following formula as giving a reasonably accurate value

for the volume of discharge per unit of time

:

Q = ii^'\l+OM[-!^jS']hh.V^,, . . (17)

where the coefficient jn' has a value

>' = '>-'''' +m) • . •
(18)

Eq. (17) is homogeneous, i.e., admits of any system of units.

* A valuable resume of " Weir Experiments, Coefficients, and Forraulas,"

by Robert E. Horton, appeared as " Water-supply and Irrigation Paper,"
No. 150, issued by the IF. S. Geological Survey in 1906.
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Provision was made in these experiments for tlie free en-

trance of air under the sheet (a point of great importance),

wliile the walls of the channel of approach were continued

down-stream, beyond the plane of the weir, to prevent any

lateral expansion of the sheet. The value of jp ranged from

0.20 to 2.00 metres.*

507. Efflux through Short Cylindrical Tubes.—When efflux

takes place through a short cylindrical tube, or " short pipe,'^

at least 2|- times as long as wide,

inserted at right angles in the

plane side of a large reservoir,

the inner corners not rounded

(see Fig. 560), the jet issues

from the tube in parallel fila-

ments and with a sectional area^

F^^ equal to that, F^ of interior

of tube.

To attain this result, however,

the tube must be full of water before the outer end is un-

stopped, and must not be oily ; nor must the head, A, be

greater than about 40 ft. for efflux into the air. Since at m
the filaments are parallel and the pressure-head therefore equal

to h (=: 34 ft. of water, nearly), = that of surrounding medium,

= head due to one atmosphere in this instance ; an application

of Bernoulli's Theorem [eq. (Y), § 492] to positions m and n

would give (precisely as in §§ 454 and 455)

. ...;air;: •• .-;.

^^^^— ~ —
1

1

r

--N^.V

—
. ^>^^^=^^

-=---3^-^^':=?r=£3:i£^^

^fsstl

' ^ 1 . .

•

.•''•'V'^

Fig. 560.

v^ = veloc. at m = ^'^gh

as a theoretical result; but experiment shows that the actual

value of -y^ in this case is

li^ = 0„ i/2gh =0.815 V2gh, (1)

0.815 being an average value for 0„ , the coefficient oj^velocity, for

ordinary purposes. It increases slightly as the head decreases,

* Mr. Eafter's paper, in Vol. 44 (p. 230) of the Trans, Am. Soc. C. E., gives an
account of Bazin's experiments witti weii'S of irregular forms ; as also of similar
experiments made at the Hydraulic Laboratory of the College of Civil Engineer-
ing at Cornell University.
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and is evidently much less than the yalue 0.97 for an orifice in

a thin plate, § 495, or for a rounded mouth-piece as in § 496.

But as the sectional area of the stream where the filaments

are parallel, at ;?^, where v^ = 0.815 V'2iyh, is also equal to that,

Ff of the tube, the coefficient of efflux, /<„ , in the formula

is equal to 0o ? i-s., there is no contraction, or the coefficien't;

of contraction, C , in this case = 1.00.

Hence, for the volume of discharge per unit of time, we
hstNQ practically

^ = 0oi^l/%A = 0.815 i^|/2p: ... (2)

The discharge is therefore about \ greater than through an

orifice of the same diameter in a thin plate under the same

head [compare eq. (3), § 495] ; for although at m the velocity

is less in the present case, the sectional area of the stream is

greater, there being no contraction.

This difference in velocity is due principally to the fact that

the entrance of the tube has square edges, so that the stream

contracts (at m', Fig. 561) to a

section smaller than that of the

tube, and then re-expands to the

full section, F, of tube. The

eddying and accompanying in-

ternal friction caused by this re-

expansion (or "sudden enlarge-

ment" of the stream) is the prin-

cipal resistance which diminishes

the velocity. It is noticeable, also, in ^
this case that the jet is not limpid and

clear, as from thin plate, but troubled

and only translucent (like ground-

glass). The internal pressure in the

stream at mf is found to be less than

one atmosphere, i.e. less than that at m,

as shown experimentally by the suck- fig. 563.

ing in of air wheil a small aperture is made in the tube op

Fig. 561.
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posite 7n'. If the tube itself were so formed internally as to

lit this contracted vein, as in Fig. 562, the eddying would be

diminished and the velocity at m increased, and hence the

volume Q of efflux increased in the same proportion. (See

§ 509a.)

If the tube is less than 2|- times as long as wide, or if the

interior is not wet hy the water {2& when greasy), or if the head

is over 40 or 50 ft. (about), the efflux takes

place as if the tube were not there, Fig. 563,

and we have

v^ = 0.97 V2gh, as in § 495.

Example.—The discharge through a short

pipe 3 inches in diameter, like that in Fig. 560,

is 30 cub. ft. per minute, under a head of

2' 6", reservoir large. Required the coefficient of efflux

;/^ , = 00 , in this case. For variety use the inch-pound-min-

ute system of units, in which g = 32.2 X 12 X 3600 (see Note,

§ 51). >Mo, being an abstract number, will be the same numer-

ically in any system of units.

From eq. (2),

Fig. 563.

Q
00 = >^« = -ZT~^= =

30 X 1Y28

FV2gh
J ^ g, ^2 ^ g^^ x 12 X 60^ X 30

= 0.803.

508. Inclined Short Tubes (Cylindrical).

short tube is inclined at some angle

or < 90° to tlie interior plane of the

reservoir wall, the efflux iis smaller than

when the angle is 90°, as in § 507.

We still use the form of equation

Q = iiF^^ = 4>FV^\ . (3)

but from Weisbach's experiments /i

should be taken from the following table

:

If the

Fie.664.
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TABLE F, COEFFICIENT OF EFFLUX (Inclined Tube).

Fora-= 90°

take jii^ (f>=^ .815

80° 70°

.783

60°

.764

50°

.747

40°

.731

30°

.719

Example.—With A = 12 ft., d = diam. of tube = 4 ins.

and a = 46°, we have for the volume discharged per sec. (ft,

lb., and sec.)

Tt (1
Q = [0.731 +^ (.016)] - y 4/64.4X 12 =1.79 cub.ft.per sec.

The tube must be at least 3 times as long as wide, to be

filled.

509. Conical Diverging, and Converging, Short Tuhes.
—

"With

conical convergent tubes, as at ^, Fig. 565, with inner edges

not rounded, D'Aubuisson and Castel found by experiment

values of the coefficient of velocity, 0, and of that of efflux, /i,

[from which the coefficient of contraction, C= >m -^ 0, may be

Fig. 565.

computed,] for tubes 1.55 centimeters wide at the narrow end,

and 4.0 centimeters long, under a head of A = 3 metres, and

with different angles of convergence. By angle of converg-

ence is meant the angle between the sides CE and DB, Fig.

565. In the following table will be found some values of ^
and founded on these experiments, for use in the formulae

v^ = '^'^gh and Q = jjiFV^igh^

in which ..^denotes the area of the outlet orifice EB,
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Table G (Conical Converging Tubes).

Angle of > 30
iQ,

convergence
IX = .895

(p= .894

8° 10° 20' 13° 30' 19° 30' 30° 49°

.930

.932
.938
.951

.946

.963

.924

.970
.895

.975

.847

.984

Evidently yu is a maximum for 12>^°.

With a conically divergent tube as at J/IZT, having the in-

ternal diameter MO =^ .025 metre, the internal diam. NP
= .032 metre, and the angle between JO^and PO = 4° 50',

"Weisbach found that in the equation Q = piFV'igh (where

F =^ area of outlet section NP) P- should be = 0.553; the

great loss of velocity as compared with S^'-lgh being due to the

eddying in the re-expansion from the contracted section at M
(corners not roimded)^ as occurs also in Fig. 549. The jet

was much troubled and pulsated violently.

When the angle of divergence is too great, or the head h

too large, or if the tube is not wet by the water, efflux with

the tube filled cannot be maintained, the flow then taking

place as in Fig. 563.

Yenturi and Eytelwein experimented with a conically di-

vergent tube (called now " Yen-

turVs tube "), with rounded en-

trance to conform to the shape

of the contracted vein, as in

Fig. 566, having a diameter of

one inch at 7nf (narrowest part),

where the sectional area = F'
= 0.7854 sq. in., and of 1.80

inches at 7n (outlet), where area = F; the length being 8 ins.,

and the angle of convergence 5° 9'.

With Q = /^FV2gh they found u = 0.483.

Hence 2|- times as much water was discharged as would have

flowed out under the same head through an orifice in thin

plate with area = F = the smallest section of the divergent

tube, and 1.9 times as much as through a short pipe of sec-

tion = F'. A similar calculation shows that the velocity at

m' must have been v^' =1.55 \^2gh, and hence that the pres-

sure at m' was much less than one atmosphere.

Fia. 566.
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Mr. J. B. Trancis also experimented with Yenturi's tube

(see " Lowell Hydraulic Experiments''). See also p. 389 of

voL 6 of the Journal of Engineering Societies, for experi-

ments with diverging short tubes discharging under water.

The highest coefficient (/i) obtained by Mr. Francis was 0.782.

509a. New Forms of the Venturi Tube.—The statement made
in § 607, in connection with Fig. 562, was based on purely

theoretic grounds, but has recently (Dec. 1888) been com-

pletely verified by experiments* conducted in the hydraulic

laboratory of the College of Civil Engineering at Cornell

University. Three short tubes of circular section, each 3 in.

in length and 1 in. in internal diameter at both ends, were ex-

perimented with, under heads of 2 ft. and4ft.f Call them A,

B, and C. A was an ordinary straight tube as in Fig. 561;

the longitudinal section of B was like that in Fig. 562, the

narrowest diameter being 0.80 in. [see § 495; (0.8)'^ = 0.64-];

while C was somewhat like that in Fig. 566, being formed

like B up to the narrowest part (diameter 0.80 in.), and then

made conically divergent to the discharging end. The results

of the experiments are given in the following table

:

Name of
Tube. Head.

Number
of Experi-
ments.

Range of Values of m.
Average

Values of ju,.

A
A

B
B

C
C

A = 3 ft.

A = 4 ft.

A = 3 ft.

/t = 4 ft.

/^ == 3 ft.

A = 4 ft.

4
3

5
4

5
4

From 0.804 to 0.833
" 0.819 to 0.833

'* 0.875 to 0.886
" 0.881 to 0.903

" 0.890 to 0.919
" 0.903 to 0.933

0.814
0.831

0.883
0.893

0.901
0.914

The fact that B discharges more than A is very noticeable,

while the superiority of C to B, though evident, is not nearly

so great as that of B to A, showing tiiat in order to increase

the discharge of an (originally) straight tube (by encroaching

on the passage-way) it is of more importance to fill up with

solid substance the space around the contracted vein than to

make the transition from the narrow section to the discharg-

ing end very gradual.

* See Journal of the Franklin Inst., for April, 1889.

t Practically the same co-efficients were obtained later, by Mr. E. M.
Holbrook, with higher heads; up to 18 ft.



*' FLUID FRICTIOlSr." 695

510. " Fluid Friction."—By experimenting witli the flow of

"Water in glass pipes inserted in the side of a tank, Prof. Rey-

nolds of England has found that the flow goes on in parallel

filaments for only a few feet from the entrance of the tube,

and that then the liquid particles begin to intermingle and

cross each other's paths in the most intricate manner. To
render this phenomenon visible, he injected a fine stream of

colored liquid at the inlet of the pipe and observed its further

motion, and found that the greater the velocity the nearer to

the inlet was the point where the breaking up of the parallel-

ism of flow began. The hypothesis of laminated flow is,

nevertheless, the simplest theoretical basis for establishing

practical formulae, and the resistance offered by pipes to the

flow of liquids in them will therefore be attributed to the fric-

tion of the edges of the laminae against the inner surface of

the pipe.*

The amount of this resistance (often called sJcin-fi'iction)

for a given extent of rubbing surface is by experiment found

—

1. To be independent of the pressure between the liquid and

the solid

;

2. To vary nearly with the square of the relative velocity ;

3. To vary directly with the amount of rubbing surface^

4. To vary directly with the heaviness [y, § 409] of the

liquid.

Hence for a given velocity v, a given rubbing surface of

area = S, and a liquid of heaviness y, we may write

v"
Amount of friction (force) = fSy ^r— , (1)

^^

m which / is an abstract number called the coefficient of fluid

friction, to be determined by experiment. For a given liquid,

given character (roughness) of surface, and small range of

velocities it is approximately constant. The object of intro-

ducing the '2g is not only because —— is a familiar and useful

function of -y, but that v^ -^ 2^ is a height^ or distance, and there-

fore the product of S (an area) by v"" -i- 2^ is a volume, and this

volume multiplied by y gives the weight of an ideal prism of

* The resistance is really due both to the friction of the water on the sides of

the pipe and to the friction of the water particles on each other. The assump-
tion that it is due to the former action alone simply affects the mathematical
form of our expressions, without invalidating their accuracy, since the value of

/ is in any case dependent on experiment. See Engineei-ing Npws, July-Dec.

1901, pp. 332 and 476.
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1? .

the liquid; lience 8-^ y is a.force and y must be cm abstract

nurriber and therefore the same in all systems of units, in any

given case or experiment.*

In his experiments at Torquay, England, the late Mr. Fronde

found the following values for/*, the liquid being salt water,

while the rigid surfaces were the two sides of a thin straight:

wooden board ^^ of an inch thick and 19 inches high, coated

or prepared in various ways, and drawn edgewise through the

water at a constant velocity, the total resistance being measured

by a dynamometer.

511. Mr. Froude's Results.—(Condensed.) [The velocity

was the same := 10 ft. per sec. in each of the following cases.

For other velocities the resistance was found to vary nearly as

the square of the velocity, the index of the power varying

from 1.8 to 2.16.]

Table H.

Character of Surface. Value of/ [from eq. (1), § 510].

8 ft. long.

When the

8 ft. long.

board was

20 ft. long. SO ft. long.

Varnish ./=
Parafflne. "

0.0041
.0038
.0030

.0087

.0081

.0090

.0110

0.0032
.0031

.0028

.0063

.0058

.0062

.0071

0.0028
.0027
.0026
.0053
.0048
.0953
.0059

0.0025

Tinfoil 0025
Calico. .

. .0047
Fine Sand .0040
Medium Sand 0049
Coarse Sand

N.T5. These numbers multiplied by 100 also give the mean frictional resistance in
lbs. per sq. foot or area of surface in each case {v = 30' per sec), considering the
heaviness of sea water, 64 lbs. per cubic foot, to cancel the 'i,g — 64.4 ft. per sq. sec. of
eq. (1) of the preceding paragraph.

For use in formulae bearing on flow in pipes, /" is best deter-

mined directly by experiments of that very nature, the results

of which will be given as soon as the proper formulae have been

established.

512. Bernoulli's Theorem for Steady Flow, with Friction.—[The

student will now re-read the first part of § 492, as far as eq.

(1).] Consideringfreeanylaminaof fluid. Fig. 567, (according

to the subdivision of the stream agreed upon in § 492 referred

* For very low velocities, below the range of ordinary engineering

practice, the friction varies more nearly as the prst 'power of the velocity,

instead of the square. See p. 42, etc., of Blaine's Hydraulic Machinery.
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to,) the frictions on the edges are the only additional forces as

compared with the system in Fig.

534. Let w denote the length

of the wetted perimeter of the

base of this lamina (in case of a

pipe running full, as we here

postulate, the wetted perimeter

is of course the whole jperimeter^

but in the case of an open chan'

nel or canal, w is only a portion

of the whole perimeter of the

cross-section). Then, since the

area of rubbing surface at the edge is /S'= wds\ the total fric-

tion for the lamina is [by eq. (1), § 510] =fwy (w* — 2ff)ds',

Hence from vdv = (tan. accel.) X ds, and from (tan. accel.)=
[2(tang. compons. of acting forces)^ -r- (mass of lamina), we

have

J^ — I^p+ dp) -\- Fyds' cos —fwy
'odv = ?l .ds...{a)

Fyds' -V- g

As in § 492, so here, considering the simultaneous advance of

all the laminae lying between any two sections m and n during

the small time dt, putting ds' = ds, and ds' cos (j)=^ — dz (see

Kg. 568), we have, for any one lamina,

--vdv-\--dj>-\-dz=^f^ • ds. (1)
W V

g Y ' ' - "^'^

I^ow conceive an infinite number of equations to be formed

like eq. (1), one for each la- ^
mina between n and m, for the

sanne dt, viz., a dt of such ~^:i^^^.
length that each lamina at the

©nd of dt will occupy the

same position, and acquire the

same values of -y, s, and p,

that the lamina next in front

had at the beginning of the

dt (this is the characteristic of a steady fiovj). Adding up

Fig. 568.
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the corresponding terms of all these equations, we have (te^

membering that for a liquid y is the same in all laminaB)j

ie.j after transposition and writing H for J^-^- w, for brevity,

This is Bernoulli's Theorem for steadyflow of a liquid in

apipe ofsligMly varying sectional area F, and internalperim-

eter w, taking into account no resistances or friction, except

the " skin-friction," or " fluid-friction," of the liquid and sides

of the pipe.

Resistances due to the internal friction of eddying occasioned

by sudden enlargements of the cross-section of the pipe, by

elbows, sharp curves, valve-gates, etc., will be mentioned later.

The negative term on the right in (3) is of course a height or

head (one dimension of length), as all the other terms are such,

and since it is the amount by which the sum of the three heads

(viz.. velocity-head, pressure-head^ and potential head) at w,

the down-stream position, lachs of being equal to the sura of

the corresponding heads at oi, the up-stream position or section,

we may call it the "Loss of Head" due to skin-friction between

n and 7n\ also called friction-head^ or resistance-head, or

height of resistance.

The quantity R =z F -— w = sectional-area -r- wetted-pe

rimeter, is an imaginary distance or length called the Hydravr

tic Mean Radius, or Hydraulic Mean Depth, or simply

hydraulic radius of the section. For a circular pipe of diam-

eter = d.

R = ^7r<7* -^ nd = ^\
while for a pipe of rectangular section,

a and h are lengths of sides of rectangle.
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I
Vv

V^D'^-Vr,

Fig. 569.

§13. Problems involving Friction-lieads ; and Examples oS

Bernoulli's Theorem witli Friction.

Problem I.—Let the portion of pipe between n and to \sk

level, and of uniform cir-

cular section and diameter

= d. The jet at m dis-

charges into the air, and

has the same sectional area,

F=z \7td?^2i'& the pipe; then

the pressure-head at m is

^ = 5 = 34 feet (for

Y
water), and the velocitj-

head at m is = that at ti^ since -y^ = v^ . The height of the

water column in the open piezometer at n is noted, and = y^

(so that the pressure-head at n is— = y„-f"^)j while the

length of pipe from n%Q7rh\^=.l.

Knowing Z, <f, y^ , and ha/oing measured the volume Q^ of

flow, per unit of time, it is required to find theform of tlie

friction-head ami the value off. From

F^'Ora = Qy OP ^Ttd'^Vm = Qy » . • . (1)

Vm becomes known. Also, v^ is known to be = -y^ , and the

velocity at each ds is «^ = -yj^ , since F (sectional area) is con-

stant along the pipe, and Fv =^ Q. The hydraulic radius is

B=^\d', m
the same for all the d^^ between n and m.

Substitating in eq. (3) of § 512, with the horizontal axis ol

the pipe as a datnm for potential heads, we have

%g~ ~ 2g~^ ~ ~ ^ 2^^« '

(a)

e., since / d8 = l = length of pipe from n to m, thefrictior.

/beadfar ajpipe of length = Z, and uniform circular section

^ diO'itnete/r = d^ reduces to th^form
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It?
Friction-head = 4:f-^ ,— : , . . , (4)

•^ d ^g^ • V '

where v = velocity of water in the ^ipe, being in this case

also = Vm and = ««. Hence this friction-head varies directly

as the length and as the square of the velocity, ami w/oersel/y

as the diameter J also directly as the coefficientf.
From (3), then, we derive (for this particular problem)

7 „»

Piesometer-height atn-=.yn-=- 4/-^ • o~> • • W
i.e., the open piezometer-height at?i is equal to the loss of head

(all of which is friction-head here) sustained between n and the

mouth of the pipe. (Pipe horizontal.)

Example.—Required tbe value of/", knowing that <?= 3 in.,

Vn (hy observation) = 10.4 ft., and Q = 0.1960 cub. ft. per

sec., while I = 400 ft. {n to rri). From eq. (1) we findyin ft,-

lb.-sec. system, the velocity in the pipe to be

4^ 4 X 0.1960 , ^ -^
« = ;;S = -~\ = ^^ ^ per sec;

nd ^A
then, using eq. (5), we determiney to be

A, ^9ynd _ 2 X 32.2 Xixm4_^,^^
•^•"1^^"" 4>^400l<^^

"-"^^

Problem II. HydramliG Accumulator.—Fig. 570. jLet ^Si»

area F^ of the piston on the left be quite large compared with

^*S:A!fiai''«^'

Fie. 570.

that of the pipes and nozzle. The cylinder contains a friction-
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weighted piston, producing (so long as its downward slow

motion is uniform) a fluid pressure on its lower face of an

intensity ^„= [.0-{-FnPa\ -^ Fn per ^iiit area (j?a = one

atmos.).

Hence the pressure-head at ;» is

Pn_ G^
4-J, (6)

y Kr
where Q = load on piston.

The jet has a section at m = j^ = that of the small straight

nozzle (no contraction). The junctions of the pipes with each

other, and with the cylinder and nozzle, are all smoothly

rounded ; hence the only losses of head in steady flow between

n and m are the friction-heads in the two long pipes, neglect,

ing that in the short nozzle. These friction-heads will be of

the form in eq. (4), and will involve the velocities v^ and -y,

respectively in these pipes {supposed running full), v, and ?;,

may be unknown at the outset, as here.

Knowing G and all dimensions and heights, we are required

to find the velocity v^ of the jet, flowing into the air, and the

volume of flow, Q, per unit of time, assuming / to be known
and to be the same in both pipes (not strictly true).

Let the lengths and diameters be denoted as in Fig. 570,

their sectional areas F^ and F^ , the unknown velocities in them

v^ and v^ .

From the equation of continuity [eq. (3), § 490], we have

v^ = ?jp!L and «,= ^^. . , (T)

To find v^, we apply Bernoulli's Theorem (with friction),

aq. (3), § 512, taking the down-stream position m in the jet

close to the nozzle, and the up-stream position oi just under the

piston in the cylinder where the velocity v^ is practically noth-

ing. Then with m as datum plane we have

^*+ J.fO = 04-^4-A-4/A.^_4/A.5^. (8)
2<7 Y '^ d, ^q -^ d^ %g ^^
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Apparently (8) contains three unknown quantities, Vm-, Vi,

and V, ; but from eqs. (7) v^ and % can be expressed in terms

of v^ , whence [see also eq. (6)]

% ;i+^4(t)"+'4&)>''"^-^'*^ •
^'^

G

V
;. (10)

i+ ^/i(tJ-^^/i(t)'

and hence we ha^e also

Q^Fjo^, (11)

Example.—If we replace the force G of this problem by
the thrust P exerted along the pump-pist n of a steam fire*

engine, we may treat the foregoing as a close approximation

to the practical problem of such an apparatus, the pipes being

consecutive straight lengths of hose, in which (for the probable

character of the internal surface) we shall take /=.0075 (see

Mr. Freeman's experiments on p. 832). (Strictly, / varies

somewhat with the velocity; see § 517.) Let P= 12000 lbs.,

and the piston-area at n= -F„= 72 sq. in. = | sq. ffc. Also, let

/i= 20 ft., and the dimensions of the hose be as follows:

<ii= 3 in. ^2=2 in., d„(of nozzle) =1 in.;

Zi = 4:00ft., ^2= 500 ft.

"With the foot-pound-second system of units, we now have

[eq. (10)]

2 X 32.2

Vm=

-

_12000_-|

1+ 4 x.oor5[-QVf(l)^
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v1
__ /2 X 32.2 X 404 .

1 4- 0.59 + 5.62

ie^, Vm = 60.0 ft. per sec. If this jet were directed vertically

upward it should theoretically attain a height =— — nearly

§6 feet, but the resistance of the air would reduce this to about

40 or 45 ft.

"We have further, from eq. (1),

Q^^m'Vm = f(^)'x 60.0 = 3.27 cub. ft. per sec.

If there were no resistance in the hose we should have, from

§49T«,

»^= . /2g[-^r~ + a]= 1/2 X 32.2 X 404= 161.3 ft. per sec

513a. Influence of Changes of Temperature.—Poiseuille and Hagen found

that with glass tubes of very small diameters the flow of water was
increased threefold by a rise of temperature from 0° to 45° Cent.; but

with ordinary pipes the diminution of resistance with increase of

temperature is much smaller. Mr. J. G. Mair found the following

differences in the coefficient /, in flow through a brass pipe 25 ft. long

and 1+ in. in diameter:

At velocities, in

ft. per sec, of

At temperatures Fahr. of

56° 90= 160°

6.5 / = .0047 .0042 .0035

4.5 / = .0052 .0044 .0038

With about the same range of temperature, Mr. Mair found that with

a round orifice in thin plate 2^ in. in diameter and also with a rounded

mouth-piece 1^ in. in diameter, each under a head of 1.75 ft., the max-
imum effect of rise of temperature in increasing the flow was only 2

per cent for the latter, and practically nothing for the former. See

pp. 92, 202, 219, of Prof. Unwin's Hydraulics (1907).

514. Loss of Head in Orifices and Short Pipes.—-So long as the

iteady flow between two localities n and m takes pjace in a pipe

haviijg no abrupt enlargement or diminution of section, noi

sharp curves, bends, or elbows, the loss of head may be ascribed

solely to the surface * action (or " skin-friction ") between

water and pipe; but the introduction of any of the above-men-

tioned features occasions eddying and internal disturbance,

and friction (and consequent heat): thereby causing further

j- See foot-note on p. 695.
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deviations from Bernoulli's Theorem; i.e., additional losses

of head, or heights of resistance.

From the analogy of the form of a friction-head in a long

pipe [eq. (4), § 513], we ma\^ assume that any of the above

heights of resistance is proportional to the square of the veloc-

ity, and may therefore always be written in the form

i
Loss of Head due to any \ _ f- v^

/.j^

( cause except sJcinfriction \
~ 2g^

*

in which v is the velocity of the water in the pipe at the sec-

tion where the resistance occurs ; or if, on account of an

abrupt enlargement of the stream-section, there is a correspond-

ing diminution of velocity, then v is always to denote this

diminished velocity (i.e., in the down-stream section). This

velocity v is often an unknown at the outset.

I
C, corresponding to the abstract factor 4/"—-in the height of

CO

resistance due to skin-friction [eq. (4), § 513], is an abstract

number called the Coefficient of Resistance, to be determined

experimentally ; or computed theoretically, where possible.

Roughly speaking, it is independent of the velocity, for a given

fitting, casing, pipe-joint, elbow, bend, valve-gate at a definite

opening, etc., etc.

515. Heights of Resistance (or Losses of Head) Occasioned by

Short Cylindrical Tubes.—^When dealing with short tubes dis-

charging into the air, in § 507, deviations from Bernoulli's

Theorem were made good by using a coefficient of velocity 0,

dependent on experiment. This device answered every pur

pose for the simple circumstances of the case, as well as for

simple orifices. But the great variety of possible designs of a

sorapoucd pipe (with skin-friction, bends, sudden changes of

cross section, etc.) renders it almost impossible, in such a pipC;

to provide for deviations from Bernoulli's Theorem by a single

coefficient of velocity (velocity of jet, that is) for the pipe as a

whole, since new experiments would be needed for each new

design of pipe. Hence the great utility of the conception of

" loss of head," one for each source of resistance.
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If a long pipe issues from the plane side of a reservoir and

the corners of the junction are not rounded [see Fig. 571], we
shall need an exp'ression for

__ ^1 ^j^g Yqsq, of head at the en-

^ trance, ^, as well as that

2^

^^°' ^'^^'

due to the skin-friction in the

pipe. But, whatever the velocity, v, in the pipe proves to

36, influenced as it is both by the entrance loss of head and

the skin-friction head (in applying Bernoulli's Theorem), the

loss of head at ^, viz., Ze 5—? will be just the same as if efflux

took place through enough of the pipe at E to constitute a

''short pipe," discharging into the air, under some head h

"different from h' of Fig. 571) sufficient to produce the same

velocity v. But in that case we should have

^»
«;= r 2prA, or -— = (p^h (1)

2^

(See §§ 507 and 508, <p being the " coefficient of velocity," and
h the head, in the cases mentioned in those articles.)

"We therefore apply Bernoulli's Theorem to the eases of

those articles (see Figs, 560 and 564) in order to determine the

loss of head due to the short pipe and obtain (with m as datum
level for potential heads)

^' + 5+ = + 5+ A-C.|-. ... (2)

Now the « of eq. (2) is equal to the v^ of the figures referred

to. and Ze' is a coefficient of resistance for the short pipe, and

w© now desire its value. Substituting for

'^ L 2.<7 J
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its value 0'A from eq. (1), we have

=^-0^~^- (B)

Hence when a = 90° (i.e., the pipe is ~\ to the inner resei

voir surface), we derive

<p:
1 =

(0.815)'
1 = 0.505 [or = 90°;] . . (4>

and similarly, for other values of a (taking from the table,

§ 508), we compute the following values of Q^ (corners not

rounded) for use in the expression for " loss of head," C^—

:

For a = 90° 80°

.565

70°

.635

60°

,713

50°

.794

40°

.870

30°

.987

From eq. (4) we see that the loss of head at the entrance of

the pipe, corners not rounded, with a = 90", is about one half

(.505) of the height due to the velocity v in that part of the

pipe {v being the same all along the pipe if cylindrical).* The
value of. V itself, Fig. 5Y1, depends on all the features of the

design from reservoir to nozzle. See § 518.

If the corners at .fi'are properly rounded, the entrance loss of

head may practically be done away with; still, if v is quite

small (as it may frequently be, from large losses of head

farther down -stream), the saving thus secured, while helping

to increase v slightly (and thus the saving itself), is insignifi

cant.

516. General Form of Bernoulli's Theorem, considering aE

Losses of Head,

In view of preceding explanations and assumptions, we may

write in a general and final form Bernoulli's Theorem for a

steady flow from an up-stream position n to a down-stream

position m, as follows

:

f all losses of head )

2g
-\-— -\-'Z^ = -^^-{-—-\-Zn~ \ OGCurringijeUoeen V . {B^

r % r n andm
* If the entrance of the pipe has well-rounded corners (see Fig. 541 on p. 663),

the value of ^e is very small; viz., about 0.05.
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Each loss of head (or height of resistance) will be of the form

C ^— (except skin-friction head in long pipes, viz., 4/* -r-^^jy

the V in each case being the velocity, known or unknown, in

that part of the pipe where the resistance occurs (and hence,

IS not necessarily equal to v^ or -y^).

517. The Co-efficient, f, for Friction of Water in Pipes.—

(See eq. (1), § 510).—Experiments have been made by Weis-

bach, Bossut, Prony, Darcy, Lampe, Stearns, Hamilton Smith,,

Fanning, Herschel, WilHams (with Hubbell and Fenkell),,

Marx (with Hoskins and A^^ng), Saph, Schoder, and otherg,

to deternjine / in cyhndrical pipes of various materials

(wood, tin, glass, zinc, lead, brass, cast and wrought iron),

of diameters from | inch to 72 in. In general, the following

conclusions have been reached:

1st. f decreases when the velocity increases ; e.g., in one

case with the

same pipe/" was = .0070 for •« = 2' per sec,

while/" was = .0056 for v = 20' per see.

2dly. f decreases slightly as the diameter increases (other

things being equal);

e.g., in one experimenty was = .0069 in a 3-in. pipe,

while for the same velocity/' was = .0064 in a 6-in. pipe.

3dly. The condition of the interior surface of the pipe

affects the value oif, which is larger with increased roughness

of pipe.

Thus, Darcy found, with 2^ foul iron pipe with 6?=r 10 in,

and veloe. = 3.67 ft, per sec. the value .0113 for/; whereas

Fanning (see p. 238 of his '• Water-supply Engineering"), with

a cement-lined pipe and velocity of 3.74 ft. per sec. and d =
20 inches, obtained/ = .0052.

The Hazen-Williams formula for new cast iron pipes,

presented by its authors as embodying fairly well the results

of experiment, implies the relation

/= (.00590) ^(d-i66r 15), (1)

where d and v denote diameter and mean velocity, respect-

ively, and the foot and second are used as units ; while for

all fairly smooth pipes, including small brass pipes, Drs. Saph

and Schoder have derived
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/= (.00606) ^(d'2Vi4). .... (2)

For use with new cast iron pipes Prof. Unwin recommends
the formula /"= (.00538) ^ (d-i^vos)

; (3)-

and values computed from this will be found to differ but

little from those given herewith on p. 709, which (by per-

mission) is condensed from a more extensive table in Mr.

Fanning's Water Supply Engineering.

Let a general expression for / now be written of the form

/=/o-^((i-7;-) (4)

where the factor /o and the exponents m and n are constant

for a given character of pipe surface. According to Prof.

Unwin's conclusions, from a study of the available experi-

ments, the following average values of these quantities may
be used

:

Kind of Pipe.

Tin plate

Wrought iron

Asphalted iron

Riveted wrought iron

New cast iron

Cleaned cast iron

Incrusted cast iron . .

/n

.00662

.00565

.00635

.00650

.00538

.00608

.01100

.10

.21

.127

.390

.168

.168

.16

.18

.25

.15

.13

.05

.00

.00

Note.—For riveted steel pipe of 3 ft. diameter and over, f is probably much
larger than as indicated for riveted wrought-iron pipe above. See

Engineering News, Dec. 1895, p. 415; also in Jan., etc., 1896, pp. 59, 74,

193, and 393. In some experiments by Mr. Herschel on new riveted steel

pipe, from 36 to 48 in. diameter, values of / were found about double

those of above table for riveted wrought iron. After four years' use some
of these pipes were found to be discharging considerably less than when
new, probably on account of incrustation and deposits.

Example.—Fig. 572. In the steady pumping of crude

petroleum weighing ^ = 55 lbs. per cubic foot, through a six-

inch pipe 30 miles long,

to a station 700 ft. higher

than the pump, it is

found that the pressure

in the pump cylinder at

n, necessary to keep up

a velocity of 4.4 ft. pp"*

sec. in the pipe, is 1000

Required the coefBcienty in the pipe. A.s

Fm. 572,

lbs. per

all los

the latr.

lie friction-liead in the pipe are insignificant,

'i be considered. The velocity-bead at n may
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be pat = ; the jet at m being of the same size as the pipe,

the velocity in the pipe is = -y^ , and theFefore v^ = 4.4 ft. per
sec. Notice that m, the down-stream section, is at a higher

level than ??..

From Bernoulli's Theorem, § 516, we have, with 7i as a

datum level,

_^'_|_J_|_A = 0+^+0 -4/4-—. . . (1)

Using the ft., lb., and sec, we have

h = TOO ft., vj" -^2g = 0.30 ft.,

while

i = iilXjM ^ ^ ^ 1000 X 144 ^ ^gjg
55 ;/ 55

Hence, in eq. (1),

0.30+ 38.5 + 700 = 2618 - 4/.
^^ ^ ^^^^

. Ifcfi.'

.

^ ^ i 64.4

Solving fory, we have f = .00485 (whereas for water, with

1) = 4:A ft. per sec. and d = ^ ft., the table, p. 709, gives

f=.00601.

If the y of the petroleum had been 50 lbs. per cubic foot,

instead of 65, we should have obtained^ = 2880 feet and f

= .0056.

518. Flow through a Long Straight Cylindrical Pipe, including

both friction-head and entrance loss of head (corners not rounded);

reservoir large. Fig. 573,

The jet issues directly

I
from the end of the pipe,

J --I ->; in parallel filaments, into

the air, and therefore
^•-•^ has same section as pi pe

;

Fig. 573. — , , £ ^x. . 1hence, also, y^ of the jet

= 'y in the pipe (which is assumed to be running full), and ift
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therefore the velocity to be used in the loss of head C^— at
2^

the entrance ^(§ 515),

Taking m and n as in figure and applying Bernoulli's

Theorem (§ 4Y4), withm as datum level for the potential heads

3^ and Zn , we have

|:+ J+ = + S+ A-C.|-4/J-J. . (1)

Three different problems may now be solved:

First, required the head h to keep up a flow of given volume

= Q per unit of time in a pipe of given length I and diameter

= d.

From the equation of continuity we have

Q = FmVrn = iTtd'Vrr, ',

4:0
.'. veloG. ofjet, which = veloc. in pipe, = ij^ = —^-. . . (2)

Having found v,^ = v, from (2), we obtain from (1) the re-

quired h, thus

:

h=''
^g

'l + C^+ 4/| (3)

Now Cs=z 0.505 if or = 90° (see § 515), while/ may be

taken from the table, § 517, for the given diameter and com-

puted velocity \y^ = v, found in (2)], if the pipe is clean ; if

not clean, see end of § 517, for slightly tuberculated and for

foul pipes.*

Secondly. Given the head h, and the length I and diameter

d of pipe, required the velocity in the pipe, viz., v, = v^, that

of jet; also the volume delivered per unit of time, Q. Solv^

ing eq. (1) for -y^, we have

/"

v„= / ^V2gh', ... (4)

v/i + c.+4/^

* "Hydraulic Tables," for friction-head of water in pipes, by Prof. G.

8. "Williams and Mr. Allen Hazen (New York, 1905, .John'Wiley & Sons),

cover the cases of pipes in various states of tuberculation, etc.
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whence Q becomes known, since

Q = i7rd'v^, .,...,, (5)

[JSToTE.—The first radical in (4) might for brevity be called

a coefficient of velocity^ 0, for this case. Since the jet has the

same diameter as the pipe, this radical may also be called a

coefficient of effiux.']

Since in (4)
/" depends on the unknown v as well as on the

known d, we must first put/" = .006 for a first approximation

for v^ ; then take a corresponding value for f and substitute

again ; and so on.

Thirdly, knowing the length of pipe and the head A, we
wish to find the proper diameter d for the pipe to deliver a

given volume Q of water per unit of time. JSTow

"'^''-'^J^'
•••••• (6)

which substituted in (1) gives

that iS;

As the radical contains d, we first assume a value for d,

withy=: .006, and substitute in (7). With the approximate

iralue of d thus obtained, we substitute again with a new value

for /based on an approximate v from eq. (6) (with <^ = its

first approximation), and thus a still closer value for d is de-

rived ; and so on. (Trautwine's Pocket-book contains a table

of fifth roots and powers.) If I is quite large, we may put

(i = for a first approximation. In connection with these

examples, see last figure.*

* In Chap. VIII (p. 188) of the Author's " Hydraulic Motors " will be
found additional matter on flow in pipes. In that work are also given fric-

tion-head diagraftis, the use of which saves much computation in solving
problems like those of pp. 713, 714, 731-734 of the present work.
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Example 1.—What head h is necessary to deliver 120 cub.

ft. of water per minute through a clean straight iron pipe 140

ft. long and 6 in. in diameter'^

FrouQ eq. (2), with ft., lb., and sec, we have

V = i;^ = [4 X WJ ^ 7r(i)^= 10.18 ft. per sec.

Now for -y = 10 ft. per sec. and (^ = -^ ft., we find (in table,

§ 51Y) f^-- .00549 ; and hence, from eq. (3),

(lo.isy

2 X 32.2 L
"l _i_ 505 + ^ X -00549 X 140

'

12.23 ft,

of which total head, as we may call it, 1.60 ft. is used in pro-

ducing the velocity 10.18 ft. per sec. (i.e., i)^ -^ 2^ = l.GO ft.),

while 0.808 ft. (
= C^^J is lost at the entrance E (with a —

90°), and 9.82 ft. (friction-head) is lost in skin-friction.

Example 2.—[Data from Weisbach.] Required the de-

livery, Q^ through a straight clean iron pipe 48 ft. long and

2 in. in diameter, with 5 ft. head (= A). ^;, = -y^, being un-

known, we first take/"= .006 and obtain [eq. (4)]

r
^-= /,

, ,n, ,
4X.006X 48^2X32.2X5

V 1+-^^^+

—

-^
—

= 6.18 ft. per sec.

From the table, § 51Y, for -y = 6.2 ft. per sec. and 6? = 2 in.

/= .00638, whence

/ 1 -

^'"~ '
, ,,. ,

4 X .00638 X 48 ^2 >< ^^'2 >^ ^

1 -|- .50o -\V
=; 6.04 ft. per sec,

which is sufficiently close. Then, for the volume per second,

^ =r - d'v^ = l7t{iy6M = 0.1307 cub. ft. per sec
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[Weisbacli's results in this example are

y^ = 6.52 ft. per sec.

and Q = 0.1420 cub. ft. per sec,

but his values for/" are slightly different.]

Example 3.—[Data from Weisbach.] What must be the

diameter of a straight clean iron pipe 100 ft. in length, which

is to deliver ^ = ^ of a cubic foot of water per second under

5 ft. head (= A)?

With/= .006 (approximately), we have from eq. (Y), put-

ting ^ = under the radical for a first trial (ft., lb., sec),

4,0
whence v = -^ == 7 ft. per sec.

For d = 3.6 in. and v = 7 it per sec, we find/= .00601

;

whence, again,

_ e /1.505 X .30 + 4 X .00601 X 100 /4 X |y_^ go^ft

.

Y 2X32.2X 5 • V TT / *

'*

and the corresponding v = 6.06 ft.

For this d and -y we find/"= .00609, whence, finally,

d={ /i:S0^X.3O+ 4x.0O6O9xlOO/2_V „ 3^3 ^^

Y 2 X 32.2 X 5 \7r/

[Weisbach's result is <^ = .318 ft.]

519. Ch6zy's Formula.—If, in the problem of the preceding

paragraph, the pipe is so long, and therefore I : d so great^

that 4:fl -^ d m eq. (3) is very large compared with 1 -}- Cj^j

we may neglect the latter term without appreciable error;

whence eq. (3) reduces to

A = 4/--.^ . • {pwe very long ; ^ig. hl^), . . (8)
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which is known as Chezy's Formula. For example, if I = 1000

ft. and c? = 2 in. = ^ ft., and/a,pprox. = .006, we have 4/— =

144, while 1 -\- C^ for square corners = 1.505 only.

If in (8) we substitute

(8) reduces to

= §r=Q-^lrtd\

. {very long pijpi). . . (9)

80 that for a very long pipe, considering / as approximately-

constant, we may say that to deliver a volume = Q per unit

of time through a pipe of given length = I, the necessary head,

A, is inversely jprojportional to the fifth power of the diameter.

And again, solving (9) for Q, we find that the volume con-

veyed per unit of time is directly proportional to the fifthpower
of the square root of the diameter ; directly proportional to

the square root of the head ; and inversely proportional to the

square root of the length. (Not true for short pipe ; see above

example.)

520. The Hydraulic Qrade=Iine.—The pipe of Fig. 573 is repeated

in Fig. 573a. It has no nozzle and hence the velocity vm of the jet at

m is equal to that, v, in the pipe. If we conceive of the insertion

of a great number of open piezometers, such as PS, along this pipe,

Fig. 573a. Fig. 5736.

the summits of the respective stationary water columns maintained

in them will lie in the straight line Bm. For a very long pipe the point

B is practically in the plane of reservoir surface _and vertically over

the entrance E. This line Bm is called the " Hydraulic Qrade=line

"

or "Hydraulic Gradient." From eq. (3), p. 711, we note that the

total head h is made up of three parts, viz.: vm^-^2g, or velocity head

in jet; l^^(y''-i-2g), or loss of head at entrance; and the friction-head.

hp, in pipe, =(4/Z-T-d)(i)^-f-2gf), which for a very long pipe is practically

equal to h itself (in tliis case of no nozzLeJ. Evidently the vertical drop
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AB={1 + CE)(v'^-^2g). For instance, in example 1 of p. 713, we note

that the vertical distance from A to S is 1.41 ft., while /if= 9.82 ft.

Let us now consider that a conicat nozzle is attached to the end of a

long horizontal pipe whose length is 1200 ft. and diameter 6 in., with

a head of 78 ft., the diameter of the tip of the nozzle (so formed as not

to produce contraction) being 2 in. See Fig. 573&. After a steady

flow has set in, the velocity of the jet is Vm ft. /sec. and that of the water

in the pipe is v, only 1/9 of Vm,; since Q = t(«") '"'^'^'li'o)
'" "^^^

loss of head in the nozzle may be written = 1/20 of Vni^^^g- Application

of Bernoulli's Theorem between points n and m gives rise to

b+h+0 = b+'"J^+ ^

i-+^4- 27+^4- (10)
2g ' 20

With / written= .006 at first, and corrected later, we finally derive

v= 6 ft. /sec. and i;m=54 ft. /sec. Hence Q=1.17 cub. ft. /sec. Fig,

573& shows the hydraulic grade-line, BD, for the 6-in. pipe in this prob-

lem. The vertical drop AB = 1.505iv^^2g) = 0.85 ft., while ;i,i;'=30 ft.

The height of the piezometer column at E', at the base of the conical

nozzle, is 47.1 ft. The velocity of the jet being 54 ft. /sec. with Q= 1.17

cub. ft. /sec, the "kinetic power" of the jet (i.e., kinetic energy of the

mass of water passing per second) is i{Qr^g)vm?, =3308 ft.-lbs. per

second, =6.01 H.P.; so that a "jet motor," or impulse wheel, utilizing

80 per cent of this power would develop 4.8 H.P. (See Hydraulic

Motors by the present writer.) The slope of the hydraulic grade-line

in Fig. 5736 is hp-^l, i.e., 30-^1200 or 1/40; that is, it drops one foot

in each 40 ft. of length of pipe.

If a steady flow is proceeding in a pipe of uniform section it may easily

be shown, by Bernoulli's Theorem, that the vertical distance between
the summits of the open piezometers inserted at any two points is equal

to the loss of head occurring between those two points. Even if the

pipe is not of uniform section between the two points the foregoing is

still true if the sectional areas at the two points Ihemselves are equal.

If any part of the pipe, flowing full, projects above the hydraulic grade-

line, the internal pressure in that part is less than atmospheric, and air

previously dissolved in the water may collect after a time, and air may
also enter through imperfect joints, thus causing the pipe to be only

partly full at such points and seriously altering the conditions of flow.

For example, the pipe shown in Fig. 573c discharges into the air at m
and the por-

tion acb rises

above the hy-
draulic grade-

line Babm.
Air may col-

lect in the

summit c to

such a degree

that finally

only the part Eac of the pipe flows full, while in the portion cbm water flows

through only the lower part of each cross-section, with air above. In
such a case the hydra-ulic grade-line for Ec would rise to position Be.
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621. Bernoulli's Theorem as an Expression of the Conservation

of Energy for the Liq^uid Particles,—In any kind of flow with-

out friction^ steady or not, in rigid imtnovable vessels, the

aggregate potential and kinetic energy of the whole mass of

liquid concerned is necessarily a constant quantity (see §§ 148

and 149), but individual particles (as the particles in the sink-

ing free surface of water in a vessel which is rapidly being

emptied) may be continually losing potential energy, i.e.,

reaching lower and lower levels, without any compensating in-

crease of kinetic energy or of any other kind ; but in a steady

fiow withoutfriction in rigid motionless vessels, we may state

that the stock of energy of a given particle, or small collection

of particles, is constant during the flow, provided we recognize

a third kind of energy which may be called Pressure-energy,

or capacity for doing work by virtue of internal fluid pressure
;

as may be thus explained :

In Fig. 574 let water, with a very slow motion and under a

pressure p (due to the reservoir-head -f- atmosphere-head be-

hind it), be admitted behind a pis-

ton the space beyond which is

vacuous. Let s = length of

stroke, and i^= the area of pis-

^
7 ton. At the end of the stroke,

^^^^£1^^ I ^ ^;^:^ by motion of proper valves, com-

iZ^lJ T^vAc. munication with the reservoir is

^^«-5^^- cut off on the left of the piston

and opened on the right, while the water in the cylinder now on

the left of the piston is put in communication with the vacu-

ous exhaust-chamber. As a consequence the internal pressure

of this water falls to zero (height of cylinder small), and on

the return stroke is simply conveyed out of the cylinder,

neither helping nor hindering the motion. That is, in doing

the work of one stroke, viz.,

W= force X distance =i Fp X s = Fps,

a volume of water F= Fs, weighing Fsy (lbs. or other unit),

has been used, and, in passing through the motor, has experi-

enced no appreciable change in velocity (motion slow), and
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therefore no change in kinetic energy, nor any change of level,

and hence no change in potential energy, hut it has given up
all its pressure. (See § 409 for y)

!N^ow TF, the work obtained by the consumption of a weight

= ^ = Yy of water, may be written

W=Fps = Fsp=Vp = Yy^=a^. . . (1)

Hence a weight of water = G is capable of doing the worh

G X — = (r X head due to pressure p, i.e., = G X pressure-

head, in giving up all its pressurep • or otherwise, while still

having a pressure j!?, a weight G of water possesses an amou7it

of energy, which we may call pressure-energy, of an amount

= ^• — , where y = the heaviness (§ 7) of water, and-^ = a
y

\o y

y
height, or head, measuring the pressure p ; i.e., it equals the

pressure-head.

We may now state Bernoulli's Theorem without friction in

a new form, as follows : Multiplying each term of eq. (7),

§ 451, by Qy, the weight of water flowing per second (or other

time-unit) in the steady flow, we have

Qr^+Qy^ + Qr^m=Qr'^-\-Qy^f+QY^n. (2)

V ^ 1 Qy
But Qy -^ = —^^^'^m = 3 X mass flowing per time-unit X^ ^ g
square of the velocity = the Mnetic energy inherent in the

volume Q of water on passing the section m, due to the veloc-

ity at m. Also, Qy— = the pressure-energy * of the volume

Q at m, due to the pressure at m ; while QyZm = the potential

energy of the volume ^ at m due to its height z^ above the

arbitrary datum plane. Corresponding statements may be

made for the terms on the right-hand side of (2) referring to

the other section, n, of the pipe. Hence (2) may be thus read :

The aggregate amount of energy (of the three kinds mentioned)

resident in the particles of liquid when passing section m is

* This idea of " pressure energy" in connection with water is artificial,

but is of great convenience in dealing with questions of water power ; it is

of use only when the flow is steady. See p. 8 of the Author's '

' Hydraulic
Motors," and p. 66 of BUdne's "Hydraulic Machinery."
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equal to that when passing any other section^ as n / in steady

flow withoutfriction in rigid motionless vessels ^ that is, the

store of energy is coustant.

522. Bernoulli's Theorem with Friction, from the Standpoint of

Energy.—Multiply each term in the equation of § 516 by Qy,
as before, and denote a loss of head or height of resistance due

to any cause by h^ , and we have

zg y

Each term QyK{G.g., Qy ^f
I

due to skin-friction in a

long pipe, and Qy Ci
2^

d ^g

due to loss of head at the reservoir

entrance of a pipe) represents a loss of energy, occurring between

any position n and any other position m down-stream from 7?,

but is really still in existence in the form of heat generated by

the friction of the liquid particles against each other or the

sides of the pipes.

As illustrative of several points in this connection, consider

two short lengths of pipe in

Fig. 575, A and B, one offering

a gradual, the other a sudden,

enlargement of section, but

otherwise identical in dimen-

sions. We suppose them to

occupy places in separate lines

of pipe in each of which a

steady flow with full cross-sec-

tions is proceeding, and so reg-

ulated that the velocity and in-

ternal pressure at n, in A, are

equal respectively to those at n F»tt. 575.

in £. Hence, if vacuum piezometers be inserted at n, the
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smaller section, the water columns maintained in them bj the

internal pressure will be of the same height, — , for botliA

and B. Since at 7?2, the larger section, the sectional area is the

same for both A and B, and since ^^ in ^ = F^ in _5, so that

Q^ = Q^ , hence v„^ in vl = v^i in B and is less than v^^

.

Now in ^ a loss of head occurs (and hence a loss of energy)

between n and m, bat none in A (except slight friction-head);

hence in A we should find as much energy present at m as at

71, only differently distributed among the three kinds, while at

m in B the aggregate energy is less than that at ti in B.

As regards kinetic energy, there has been a loss between n
and ??^ in both A and B (and equal losses), for -y^ is less than

Vn . As to potential energy, there is no change between 71 and

m either in A or B, since n and m are on a fevel. Hence if

the loss of kinetic energy in B is not compensated for by an

equal gain of pressure-energy (as it is in A), the pressure-head

(£3 \ at m in B should be less than that f^] atm in J.. Ex-
\r

h

\y

U

periment shows this to be true, the loss of head being due to

the internal friction in the eddy occasioned by the sudden en-

largement ; the water column at m in B is found to be of a

less height than that at m in A, whereas at 7i they are equal.

(See p. 467 of article " Hydromechanics" in the Ency. Bri-

tannica for Mr. Fronde's experiments.)

In brief, in A the loss of kinetic energy has been made up
in pressure-energy, with no change of potential energy, but in

B there is an actual absolute loss of energy = Qy/i^ , or

= Qyti -^, suffered by the weight Qy of liquid. The value
2^

of C in this case and others will be considered in subsequent

paragraphs.

Similarly, losses of head, and therefore losses of energy,

occur at elbows, sharp bends, and obstructions, causing eddies

and internal friction, the amount of each loss for a given

weight, G, of water bfeing = Gh^ = GC --
; hr = C^ being

the loss of head occasioned by the obstruction (p. 704). It is
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therefore very important in transmitting water through pipes

for purposes of power to use all possible means of preventing

disturbance and eddying among the liquid particles. E.g.,

sharp corners, turns, elbows, abrupt changes of section, should

be avoided in tlie design of the supply-pipe. The amount of

the losses of head, or heights of resistance, due to these various

causes will now be considered (except skin-friction, already

treated). Each such loss of head will be wiTtten in the form

C— , and we are principally concerned with the value of the

abstract number C, oi* coefficient of resistance^ in each case.

The velocity v is the velocity, known or unknown, where the

resistance occurs ', or if the section of pipe changes at this

place, then v = velocity on the down-stream section. The late

Professor Weisbach, of the mining-school of Freiberg, Saxony,

was one of the most noted experimenters in this respect, and

will be frequently quoted.

523. Loss of Head Due to Sudden (i.e., Square-edged) Enlarge-

ment. Borda's Formula.—Fig, 576. An eddy is formed in the

1 angle with consequent loss of energy. Since

l^^^^r each particle of water of weight = G^ , arriving

tY%^s^;^ with the velocity -y^ in the small pipe, may be

I
u)\><:^^-

^
considered to have an impact against the base

Fig. 576. of the intinitely great and more slowly moving

column of water in the large pipe, and, after- the impact,

moves on with the same velocity, v^, as that column, just as

occurs in inelastic direct central impact (§ 60), we may find

the energy lost by this particle on account of the impact by

eq. (1) of § 138, in which, putting M^= G^-r- g, and M^ =
G^-^ g =: mass of infinitely great body of water in the large

pipe, so that M^ = oo
, we have

Energy lost by particle = G^ ^^-i--—^, . , 0^

and the corresponding

Zoss of head — -^-^-

—

—.
•^

2g
'
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which, since F^'g^ = F^v^ , may be written

Loss of head in sudden enlargement
jr -IS

±j._i
^g

That is, the coefficient C for a sudden enlargement is

=(S-

(2)

(3)

Eq.F^ and F^ are the respective sectional areas of the pipes.

(2) is Borda^s Formula.

KoTE.—Practically, the flow cannot always be maintained

with fnll sections. In any case, if we assume the pipes to be

running full (once started so), and on that assumption compute

the internal pressure at F^ , and find it to be zero or negative,

the assumption is incorrect. That is, unless there is some

pressure at F^ the water will not swell out laterally to fill the

large pipe.

Example.—Fig. 57T. In the short tube AB containing a

sudden enlargement, we have given F^ = F^ = 6 sq. inches,

.-.,,,--• J^, = 4 sq. inches, and A = 9 feet. Re-

quired the velocity of the jet at 7n (in

the air, so that j!?^^ -i- y =zh = S4: ft.), if

the only loss of head considered is that

due to the sudden enlargement (skin-

friction neglected, as the tube is short

;

the reservoir entrance has rounded cor-

ners^. Applying Bernoulli's Theorem
to mj as down-stream section, and n in reservoir surface as up-

stream position (datum level at m)^ we have

Fm. 577.

2^ 2^

Bn 1;, here, y, = -w^

;

From eq. (3) we have

•'• ^^ + ^^1^ = '^
° ^^>

C = (!-!)' = 0.25,
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and finally (ft., lb., sec.)

1~
^«. =W ^-^ 1^2 X 32.2 X 9 = 0.895 V2 X 32.2 X 9

= 21.55 ft. per sec.

(The factor 0.895 might be called a coefficient of velocity for

this case.) Hence the volume of flow per second is

' Q = Fr^Vra = tIt X 21.55 = 0.898 cub. ft. per sec.

We have so far assumed that the water fills both parts of the

tube, i.e., that the pressure^!, at F^ , is greater than zero (see

foregoing note). To verify this assumption, we compute p^
by applying Bernoulli's Theorem to the centre of F^ as down-

stream position and datum plane, and n as up-stream position,

with no loss of head between, and obtain

^4_£i4-o = o + & + A-o. . • . . m
"ig y

But since F{0^ = F,v^ , we have

v: = {i)%' = (iYvj,

and hence the pressure-head at F^ (substituting from equations

above) is

and .*.
i?i = f|- of 14.7 = 11.6 lbs. per sq. inch, which is

greater than zero ; hence efflux with the tube full in both parts

can be maintained under 9 ft. head.

If, with Fj^ and F^ as before (and .*. C)? we put p^ = 0, and

solve for A, we obtain h = 42.5 ft. as the maximum head

under which efflux with the large portion full can be secured.

524. Short Pipe, Square-edged Internally.—This case, already
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treated in §§ 507 and 515 (see Fig. 578 ; a repetition of 560),

presents a loss of head due to the sudden enlargement from

the contracted section at in' (whose sec-

tional area may be put = CF, C being

an unknown coefficient, or ratio, of

contraction) to the full section F of

the pipe. From § 515 we know that

the loss of head due to the short pipe

is K = C^^ (for a = 90°), in which
2^

^^ = 0,505 ; while from Borda's For-

F
Fig. 5?8.

mula, § 523, we have also C^ = -^^ — 1 . Equating these,

we find the coefficient of internal contraction at m' to be

C=
1 + ^C^ 1 + ^.505

= 0.584,

or abont 0.60 (compare with (7= .64 for thin-plate contrac-

tion, § 495). It is probably somewhat larger than this (.584),

since a small part of the loss of head, A^, is dne to friction at

the corners and against the sides of the pipe.

By a method similar to that pnrsued in the example of

§ 523, we may show that unless h is less than 40 feet, about,

the tube cannot be kept full, the discharge being as in Fig.

551. If the efflux takes place into a "partial vacuum," this

limiting value of h is still smaller. Weisbach's experiments

confirm these statements (but those in the 0. U. Hyd. LaK
seem to indicate that the limiting value for h in the first case

is about 50 ft.).

525. Diaphragm in a Cylindrical Pipe.—Fig. 579. The dia-

phragm, being of "thin plate,"

let the circular opening in it /^\ z:=£::5.^'lJ>' yjr =^.r—

'

(concentric with the pipe) have 1 ^^ ] ^=^"^^y^^^ir^z'- ^^ '

an area = F^ while the sectional
'^'^'' ~^ -^8 1 -^^ ^^=—^^=^ -~

'^
-'\w-^

area of pipe = F^ . Beyond 7^, the fig. 579.

stream contracts to a section of area = OF= F^ , in enlarging
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Fig. 580c.—Chart, showing rates of flow during twenty-four hours.
The ordinates are gallons per hour.

a
.^

^
Fig. 5806.—Chart Recorder; an

attachment to Register. It re-

cords the rate of flow upon
a sheet of paper. (See above,
in Fig. 580c.)

Fig. 580a.-
—

^The complete meter; consisting of a
Venturi Tube and a Register. They are con-
nected by two pressure-pipes, and the Register is

driven by weights. The narrowest part of Tube is

the "Throat."

THE VENTURI METER.
[To face page 724.

Fig. 580(?.— Mano-
meter; which may
replace the Re-
gister.
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•friYin wMch to jUl the section F^ , of pipe, a loss of head occurs

which bj Borda's Formula, § 523, is

where v^ is the velocity in the pipe {supposedfull). Of course

F^ (or (7^) depends on i^; but since experiments are necessary

in any event, it is just as well to give the values of C itself, as

determined by Weisbach's experiments, viz.

:

For|-=.10 .20 .30 .40 .50 .60 .70 .80 .90 1.00

C = 236. 48. 17.5 7.8 3.7 1.8 .8 .3 .06 0.00

By internal lateral filling, Fig. 580, the change of sectioi

may be made gradual and eddying

prevented ; and then but little loss

of head (and therefore little loss of

energy) occurs, besides the slight

amount due to skin-friction along

this small surface.

Fia. 580.

On p. 467 of the article Hydromechaivics

in the Encyclopcedia Br'itannica may be found an account of

experiments by Mr. Froude, illustrating this fact.

526. "The Venturi Water-meter."—The invention* bearing

this name was made by Mr. Clem.ens Herschel(see Traris. Ain-

Soc. Civ. Engineers, for November 1887), and may be de-

scribed as a portion of pipe in which a gradual narrowing of

section is immediately succeeded by a more gradual enlarge-

ment, as in Fig. 580 ; but the dimensions are more extreme.

During the flow the piezometer-heights are observed at the

three positions r, w, and m (see below), and the rate of dis-

charge may be computed as follows : Referring to Fig. 580,

let us denote by r the (up-stream) position where the narrow-

ing of the pipe begins, and by m that where the enlargement

ends, while n refers to the narrowest section. F^, = F^.

Applying Bernoulli's Theorem to s( ctions r and w, assuming

* See illustration on opp. page of a 60-inch \'enturi Meter tube.



726 MECHANICS OF ENGINEEEING.

no loss of head between, we have, as the principle of the ap-

paratus,

whence, since i^-y^ = Fy^^^i, ->

in which <p represents the first radical factor, should differ

F
but little from unity with -^ small (and such was found to be

the case by experiment). Its theoretical value is constant and

greater than unity. In the actual use of the instrument the

— and -^ are inferred from the observed piezometer-heights

^/^ and y^ (since -^ = ^/r+ ^5 and -^ = y^ -|- 5, ?» being = 34 ft.),

and then the quantity flowing per time-unit computed, from

Q = F^Vn, 'Vn having been obtained from eq. (2). This pro-

cess gives a value of Q about four per cent in excess of the

truth, according to the second set of experiments mentioned

below, if Vn =35 ft. per sec. ; but only one per cent excess with

^)^ = 5 or 6 ft. per sec.

Experiments were made by Mr. Herschel on two meters of

this kind, in each of which F^ was only one nintli of i^ , a

ratio so extreme that the loss of head due to passage through

the instrument is considerable. E.g., with the smaller appara-

tus, in which the diameter at n was 4 in., the loss of head be-

tween r and 771 was 10 or 11 ft., when the velocity through n
was 50 ft. per sec, those at other velocities being roughly pro-

portional to the square of the velocity. In the larger instru-

ment dn was 3 ft., and the loss of head between r and 7n was

much more nearly proportional to the square of the velocity

than in the smaller. (E.g., with -y^ = 34.56 ft. per sec. the

loss of head was 2.07 ft., while with v^ = 16.96 ft. per sec. it



SUDDEN DIMINUTIOlSr OF SECTION OF PIPE. 727

was 0.49 ft.) The angle of divergence was much smaller in

these meters than that in Fig. 580.

527. Sudden Diminution of Cross-section, Square Edges.—Fig.

581. Here, again, the resistance is ^^^^^^
due to the sudden enlargement from _="^^j.^^1^

the contracted section to the full sec- -_-Jz^J ^'

tion F^ of the small pipe, so that in
^~~-'^ ^-

the loss of head, by Borda's formula,

the coefficient

vF n

Vf, 'J 2/

c-f^- lY-f^
V2

^-11 =•a

Fi&. 581.

(1)

(2)

depends on the coefficient of contraction C\ but this latter is

influenced bj the ratio of F^ to ^„, the sectional area of the

larger pipe, C being about .60 when F^ is very large (i.e.,

when the small pipe issues directly from a large reservoir so

that F^ : F^ practically = 0). For other values of this ratio

"Weisbach gives the following table for C, from his own ex-

periments :

For ^2 : -Fo= .10 .20 .30 .40 .50 .60 .70 .80 .90 1.00

C= .624 .632 .643 .659 .681 .712 .755 .813 .892 .1.00

C being found, we compute C from eq. (2) for use in

eq. (1).

528. Elbows.—The internal disturbance caused by an elbow,

Fig. 582 (pipe full, both sides of elbow), occasions a loss of

head

^'=St' . . (1)

Fig. 582. in wliich, according to Weisbach's experi-

ments with tubes 3 centims., i.e. 1.2 in,, in diameter, we may

put
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Fbr a =. 20° 40° 60° 80^ 90° 100° 110° 120° 130° 140°

?= .046 .139 .364 .740 .984 1.26 1.556 1.86 2.16 2.43

computed from the empirical formula
;

C = .9457 sin'^ ^a+ 2.047 sin* \a
;

V is the velocity in pipe ; or as in figure. For larger pipes C

would probably be somewhat smaller ; and vice 'uersd.

If the elbow is immediately succeeded by another in the same
plane and turning the same way, Fig. 583, the

loss of head is not materially increased, since

the eddying takes place chiefly

in the further branch of the

second elbow ; but if it turns

in the reverse direction, Fig.

584, but still in the same

plane, the total loss of head is double that of

one elbow ; while if the plane of the second is "1

to that of the first, the total loss of head is 1^

times that of one alone. (Weisbach.)

Fia. 583.

Fig. 584.

629. Bends in Pipes of Circular Section,—Fig. 585. "Weis-

bach bases the following empirical

formula for C, the coefficient of resist-

ance of a quadrant bend in a pipe

ol circular section, on his own experi-

Fia5S5. ments and some of Dnbuat's, viz.:

C = 0.131 + 1.847 (-]', (1)

for use in

A™
2^' (2)

where a = radius of pipe, r = radius of bend (to centre of

pipe), and v = velocity in pipe ; h^ = loss of head due to

bend.

It is understood that the portion BC of the pipe is kept full

by the flow; which, however, may not be practicable unless
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BCis more than three or four times as long as

wide, and is full at the outset. A semicircular

bend occasions about tlje same loss of haad as a

quadrant bend, bnt two quadrants forming a re-

verse curve in the same plane, Fig. 586, occasion a

double loss. Bj enlarging the pipe at the bend,

or providing internal thin partitions parallel to the

sides, the loss of head may be considerably dimin-

ished. Weisbach gives the following table com- fig. 586.

puted from eq. (1), but does not state the absolute size of the

pipes.

For -=.10
r

.30 .30 .40 .50 .60 .70 .80 .90 1.0

C=.131 .138 .158 .206 .394 .440 .661 .977 1.40 1.98

5 fa. Resistance of Bends in Larger Pipes.—In Vol. xlvii (April,

1902, p. 183) of the Transac. Am. Soc. Civ. Engs. is an account of ex-

periments made by Prof. G. S. Williams and Messrs. Hubbell and Fenkell,

at Detroit, Micli., on the loss of head in 90° bends in pipes of diameters

of 12, 16, and 30 in. In each case the loss of head was measured be-

tween two points, of which one was 100 ft. up-stream and the other

100 ft. down-stream, from the mid-point of the bend; so as to include

the straight parts adjoining the bend, the disturbance due to which

was found to be felt for some distance down-stream from the bend

itself. From the loss of head so measured was deducted the loss that

would occur in a 200 ft. length of straight pipe for the same velocity;

this excess being the loss due to curvature alone. In the case of the

30 in. pipe it was found that when the radius of the bend (i.e., r of Fig.

585) was 60 ft. the excess loss was equal to that under normal condi-

tions in a straight pipe (of same diameter) 180.4 ft. in length. For

values of this radius equal to 40, 25, 15, and 10 ft., the results for the

excess loss were equal to those in straight pipes 123, 105.4, 83, and

34.6 ft. respectively, in length; showing that in this instance the loss

of head diminished with increasing sharpness of curvature (the direct

contrary of Weisbach's results with small pipes).

Mr. A. W. Brightmore's experiments on 90° bends in 3-inch and 4-inch

pipes are described in the Proc. Civ. Engineers, vol. 169 (1907), p. 323.

The radii of the 3-inch bends were equal to 2, 4, 6, 8, 10, 12, and 14

diameters, while those in the 4-inch pipe were 2, 4, 6, 8, and 10 diameters.

"It was found that most of the loss of head due to the bend does not

take place in the bend itself but in the straight pipe following the bend.

Consequently, in measuring the loss of head, a length of straight pipe

sufficient for the flow to become normal again (6.7 ft. for the 3-inch

pipe and 6 ft. for the 4-inch) was included with the bend, and the normal

resistance in a straight pipe equal in length to the bend was subtracted"

to obtain the excess loss due to curvature. The range of velocity was

from 3 to 11 ft. /sec.



730 MECHANICS OF ENGINEERING.

The conclusions reached were: that the excess loss of head due to
curvature for bends of these diameters is a minimum when the radius
is 4 diameters, regardless of the velocity; that it rises to a maximum
for a radius of 6 or 7 diameters and falls again for greater radii- that
the minimum loss referred to is independent of the size of the pipe, but
depends only on velocity and state of internal surface of pipe; and that
the excess loss is very nearly proportional to the square of the velocity.

Putting excess loss of head=l^{v^^2g), there was found:

With r (in diams.) =2 4 6 8 10 14
For 3-inch bends, C= -400 .311 .377 ^.SSS .191 .146

For 4-inch bends, C = -422 .311 .337 .302 .235

529b. Common Pipe-elbows.—Capt. L. F. Bellinger, C.E., of

IT. S. Navy Yard, Brooklyn, N. Y., made a set of experiments in

1887, when a student at Cornell, on the

loss of head occasioned by a common el-

bow (for wrought-iron pipe), whose longi-

tudinal section is shown in Fig. 586a.

The elbow served to connect at right

angles two wrought-iron pipes having an

internal diameter of 0.482 in.

The internal diameter of the short bend

or elbow was f in., and the radius of its curved circular axis

(a quadrant) was f in. Its internal surface was that of an

ordinary rough casting.

The following values for the coefficient C were obtained;

(the velocity v is in feet per sec.)

:

Fio. 586a.

» = 2 4 6 8 10 13 14 16 18 20

c= .633 .649 .670 .697 .734 .782 .845 .929 1.089 1.185

530. Valve-gates and Throttle-valves in Cylindrical Pipes.

—

Adopting, as usual, the form

^-c^. (1)

for the loss of head due to a valve-gate^ Fig. 58T, or for a

Fig. 587. Fio. 588.

throttle^alve, Fig. 588, each in a definite position, Weisbach's
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experiments furnish us with a range of vahjes of C in the case

of these obstacles in a cylindrical pipe 1.6 inches in diameter,

as follows (for meaning of s, d, and (v, see figures, v is

the velocity in the full section of pipe, running full on Ootk

sides.)

Mr. Kuichling's experi-

ments on a 24-inch valve-

gate are described in the

Transac. Am. Soc. Civ. Engs.

for May, 1892 (p. 439); (also

Eng. News, Aug., 1892, p.

117). Mr. Kuichling's values

for c are somewhat different

from Weisbach's, probably

from the greater size of pipe,

and are given in the following

table (from Unwin)

:

Fors^d-O.m 0.60 0.50 0.37 0.25 0.18

C= 0.8 1.6 3.3 8.6 22.7 41.2

631. Examples involving Divers Losses of Head.

—

We here

suppose, as before, that the pipes are full during the flow.

Practically, provision must be made for the escape of the all

which collects at the high points. If this air is at a tension

greater than one atmosphere, automatic air-valves will serve to

provide for its escape ; if less than one atmosphere, an air-

pump can be used, as in the case of a siphon used at the

Kansas City Water Works. (See p. 34:6 of the £^r>

l^ews for November 1887.)

Valve-gate. Throttle-valve.

-

s

d Z a C

5° .24
1.0 .00 10° .52

1 .07
15°

20°
.90

1.54

f .26
25° 2.51
30° 3.91

i .81 35° 6.22
40° 10.8

1 2.06 45° 18.7
50° 32.6

# 5.52 55° 58.8

f 17.00
60° 118.0
65° 256.0

i 97.8 70° 751.

-—^.r ^ «>

Fig. 589.

Example 1.—Fig. 589. What head, = h, will be required

)» ((deliver ^ U. S. gallon (i.e. 231 cubic inches) per second
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through the continuous line of pipe in the figure, containing tw^v

sizes of cylindrical pipe {d^ = 3 in., and d^ = 1 in,), and two

90° elbows in the larger. The flow is into the air at m, the

Jet being 1 in. in diameter, like the pipe. At £1, a = 90", and

the corners are not rounded ; at li^ also, corners not rounded.

Use the ft.-lb.-sec. system of units in which g — 32,2.

Since Q = i gal. = ^ • Yij-^-g = .0668 cub. ft. per sec, and

therefore the velocity of the jet

Vm = %= Q-^ 4>^(iV)' = 12.25 ft. per sec;

hence the velocity in the large pipe is to be v^ = {^Yv^ = 1.36

ft. per sec. From Bernoulli's Theorem, we have, with m as

datam plane,

involving six separate losses of head, for each of which there

is no difficulty in finding the proper C or/, since the velocities

and dimensions are all known, by consulting preceding para-

graphs. (Clean iron pipe.)

From § 515, table, for a = 90° we have . . . Ce = 0.505

" § 517, for 6^„= 3 in., and V, =1.36 ft. per sec,/, = .00725

« « « ^^ = 1 in., and V, ^12.25 " " /= .00613

« § 528 (elbows), for «r = 90° .... Q. =0.984
" § 527, for sudden diminution at K we have

[since ^,-T-i'; = r ^3^ = 0.111, .-. (7 = 0.625] .

= f_J_ - iV = 0.360.
\.625 J

Solving the above equation for h, then, and substituting

above numerical values (in ft.-lb.-scc.-system), we have (noting

that Vjn = -y,, and v^ = ^v^)

sK

=m?l [l+ (iV (.505+ ^ X .00725 X 50
_^ ^ ^ ^^

64.4 L ^ T ^

+ .360+i><^i^^l!
IT -J
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C.e.,

h, = ^^^- [l +(.00623 +.07160+ .0243)+(.360+ 5.8848~];

.-. A = 2.323 X T.3469 = 17.09 H.—Ans.

It is here noticeable how small are the losses of head in the

large pipe, the principal reason of this being that the velocity

in it is so small (v^ = only 1.36 ft. per sec), and that in gen-

eral losses of head depend on the square of the velocity

(nearly).

In other words, the large pipe approximates to being a reser-

voir in itself.

With no resistances a head A = vj' -f- 2^ = 2.32 ft. would be

sufficient.

Example 2.—Fig. 590. With the valve-gate F"half raised

(i.e., s = ^d in Fig. 587), required the volume delivered per

second through the clean pipe here shown. The jet issues

---^80

Fm. 590.

from a short straight pipe, or nozzle (of diameter d, = 1^ in.)

inserted in the end of the larger pipe, with the inner corners

not rounded. Dimensions as in figure. Eadius of each bend

= r = 2 in. The velocity v^ of the jet in the air = velocity

11, in the small pipe ; hence the loss of head at ^is

C^i f ^m

2(7 2^

Kow v^ is unknown, as yet ; but v^ , the velocity in the large

pipe, is ='y^pp ; i.e., «;« = ^^J« . From Bernoulli's The-
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©rem (m as datum level) we obtain, after transposition,

^g 2g 2g ^g -" d,2g 2g

Of the coefficients concerned, y^ alone depends on the un-

known velocitj v^. For the present [first approximation],

put //= .006

From § 515, with a = 00°, C.b = .505

From § 517, valve-gate with s = ^d, ..... Cf = 2.06

From § 529, with a : r = 0.5, Cb = 0.294

While at IC, from § 527, having

(i^,:i^„) = (F: 2^ = ^^ = 0.562;

we find from table, , .' . C = 0.700

and .-. C^=(^- lj'= (0.428)'. . . . i.e., C^ = 0.183

Substituting in eq. (1) above, with v^^ = {r^Yv^^, we have

/ 1

in which the first radical, an abstract number, might be called

a coefficient of velocity, 0, for the whole delivery pipe ; and

), since in this case Q, = F„^v^ = F^v^ , may be

Q = jxF^ V2gA, it may be named a coefficient of effiux, jx.

Hence

V-'
.505 + 2.06 ^ 8 X .294 + 4 X .006x80" + .183

VS>«32.S>c^;

.% «j^= 0.421 V^h = 0.421 4/2 X 32.2 X 25 = 16.89 ft. per set.

(The .421 might be called a coefficient of velocity.) The
volume delivered per second is

Q = \nd*v^ = \nii-J 16.89 = .207 cub. ft. per sec.

(As the section of the jet F^ = F^ , that of the short pipe or

nozzle, we might also say that .421 = ju.=: coefficient of effiiix,

for we may write Q = fxF^ V2gh, whence jj. = .421.)
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532. Siphons.—In Fig. 590a the part HN2O of the pipe is

above the level, BC^ of the surface of the water in the head

reservoir BL, and jet under proper conditions a steady flow

can be maintained with all parts of the pipe full of water, in

eluding ^iVg (7. if the atmosphere exerted no pressure, this

would be impossible; but its average tension of 14.7 lbs. pei

sq. inch is equivalent to an additional depth of nearly 34 feet

of water placed upon BC. With no flow, or a very small

velocity, the pipe may be kept full if iV^ is not more than

33 or 34 feefc above BG\ but the greater v^, the velocity of

flow at iV^2, and the greater and more numerous the losses

of head between L and i\^j, the less must be the height of JSf^

above BC for a steady flow.

The analytical criterion as to whether a flow can be main-

tained or not, supposing the pipe completely fllled at the out-

set, is that the internal pressure must be > at all parts of

the pipe. If on the supposition of a flow through a pipe of

given design the pressure ji? is found < 0, i.e. negative, at any

point [_W^ being the important section for test] the supposition

is inadmissible, and the design must be altered.

For example, Fig. 590a, suppose LN^N^ to be a long pipe of

uniform section (diameter = d^ and length = Z), and that under

the assumption ol filled,

sections we have com-

puted V4,, the velocity of

the jet at A^4; i.e., 2^4 =

^
l\^2gh.

1 + Cl+4/^

To test the snpposition, apply Bernoulli's Theorem to the

snrface jSCand the point iT^ where the pressure isj?, , velocity

vl^^^v^^ since we have supposed a uniform section for whole

pipe), and height above BC=h^. Also, let length of pipe

LNMN^ = L . Whence we have

^'+ A, = +%=5)-fO-C.i^-4/A!^
2^ d 2^

(2)

[BC being datum plane.l
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ing for^ , we have

y

We note, then, that tor jp^ to be > 0,

. . , (^

h^musthe < Z4:feet
^9 '^9 i^)

In the practical working of a siphon it is found that atmos-

pheric air, previously dissolved in the water, gradually collects

at iVjjthe highest point, during the flow and idnallj, if not re-

moved, causes the latter to cease. See reference below.

One device for removing the air consists in first allowing it

to collect in a chamber in communication with the pipe be-

neath. This communication is closed by a stop-cock after the

water in it has been completely displaced by air. Another

stop-cock, above, being now opened, water is poored in to re-

place the air, which now escapes. Then the upper stop=cock is

shut and the lower one opened. The same operation is again

necessary, after some hours.

In Engineering News of Nov. 12, 1887, p. 346, is an account of a

siphon used in connection with the water-works at Kansas City. It

is 1350 ft. long and transmits

water from the river to the

artificial "well" from which

the pumping engines draw
their supply. At the highest

point, which is 16 ft. above

low-water level of the river,

is placed a "vacuum cham-

ber " in which the air collects

under a low tension corre-

sponding to the height, and a

pump is kept constantly at

work to remove the air and
The diameter of the

dips 5 ft. below the

-"^ ^2'

Fig. 590 b.

prevent the "breaking" of the (partial) vacuum
pipe is 24 in., and the extremity in the "well

level of low water. See p. 63 of vol. lix (Dec, 1907) of the Transac.

Am. Soc. Civil Engineers, for Mr. Anthony's paper on air in siphons.

532a. Branching Pipes.*—If the flow of water in a pipe is

caused to divide and pass into two others having a common

* Problems of this kind are best solved by tables or diagrams. See

pp. 197, etc., of the writer's Hydraulic Motors.
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junction with the first, or vice versa ; or if lateral pipes lead

out of a main pipe, the problem presented may be very com-

plicated. As a comparatively simple instance, let us suppose

that a pipe of diameter d and length 7 leads out of a reservoir,

and at its extremity is joined to two others of diameters d^ and

d^ and lengthsZj and l^ respectively, and that the further extrem-

ities of the latter discharge into the air without nozzles under

aeads h^ and A, below the reservoir surface. Call these two

pipes ITos. 1 and 2. See Fig. 5906.

Assuming that all entrances and junctions are smoothly

rounded, so that all loss of head is due to skin-friction, it is re-

quired to find the three velocities of fiow, -y, v^^ and v^^ in the

respective pipes. First applying Bernoulli's Theorem to a

stream-line from the reservoir surface through the main pipe

to the jet at the discharging end of pipe No. 1, we have

2^-^^ ^-^ d'^ -^^'2^' •
• • ^^>

and similarly, dealing with a stream-line through the main

pipe and ifo. 2,

while the equation of continuity for this case is

ikd'v^iTtd.^+ iTtd.X (3)

From these three equations, assuming/' the same in all pipes

as a first approximation, we can find the three velocities (best

by numerical trial, perhaps) ; and then the volume of discharge

of the system per unit of time

Q = i7td'v (4)

533. Time of Emptying Vertical Prismatic Vessels (or Inclined

Prisms if Bottom is Horizontal) under Variable Head.

Case I. Through an orifice or short pipe in the hottom and

opening into the air.—Fig. 591. As the upper free surface,
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of area = F\ sinks, F' remains constant. Let z = head ol

water at any stage of the emptying ; it = s^ at the outset, and

= when the vessel is empty. At any

instant, Q, the rate of discharge (= vol-

ume per time-unit) depends on z and is

/ /
A—

,''
1

^^

j

^
'-''

— _

^^
1

z — ^^

— >--1- —

-

'^
... i O F = ?

Q = },FV^yz, . . . (1)

)! where jx = coefficient of effiux r= (pC =
Fig. 591.

Coefficient of velocity X coefficient of con-

traction [see § 496, eqo (3)]. We here suppose F' so large

compared with F., the area of the orifice, that the free surface

of the water in the vessel does not acquire any notable velocity

at any stage, and that hence the rate of efflux is the same at

any instant, as for "a steady flow with head = z and a zero

velocity in the free surface. }x is considered constant. From

(1) we have

dY= (vol. discharged in time dt) = Qdt — fxF V^gz dt. . (2

But this is also equal to the volume of the horizontal laraina,

F'dzy through which the free surface has sunk in the same

time dt.

__ —F'
... —F'dz=^iAF^'lgzUt\ .% dt = ——=z-Hz. .(3)

"We have written minus F'dz because, dt being an increment,

dz is a decrement. To reduce the depth from z^ (at the start,

time = ^ = zero) to s„, demands a time

Lo ixF^/^gJz, }aI< V^g

whence, by putting z^ = 0, we have the time necessary to

empty the whole prism

_ 2F'zi _ ^F'z, _ 2 X volume of vessel ^ ,g.

~
fxFV2g

~ jxFV^o ~ ^°^^^^^ ^^*® ^^ discharge
'
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that is, to empty the vessel requires douMe the time of dis-

charging the same amount of water if the vessel had been kept

full (at constant head = 2^ = altitude of prism).

To Jill the same vessel through an orifice in the bottom, the

flow through which is supplied from a

body of water of infinite extent hori-

zontally, as with the (single) canal lock

of Fig. 592, will obviously require the

same time as given in eq. (5) above,

since the efiective head z diminishes

from s„ to 0, according to the same law.

Example.—What time will be needed

to empty a parallelopipedical tank (Fig. 591) 4 ft. by 5 ft. in

horizontal section and 6 ft. deep, through a stop-cock in the

bottom whose coeflicient of efflux when fully open is known

to be /f = 0.640, and whose section of discharge is a circle of

diameter =: -^ in. ? From given dimensions i^^' = 4 X 5 = 20

sq. ft., while So = ^ f^- Sence from eq. (5) (ft.-lb.-sec.)

Fig. 593.

time of ]
2 X 20 X 1/6

emptying] 0.64 X ^^tiiif V2 X 32.2

'

13980 seconds
__ Qhours K Qmin. n sec.

Case II. Two communicathigpynsmatic 've,<:iels. Required

the time for the water to come to a common level ON, Fig.

^ 593, efflux taking place through a small

^ '' ° orifice, of area = F, u Jder water. At
any instant the rate of discharge is

r a; —
i o

—-r^ Cz.

Q = }xF'

as before, z = difference of level. ]S^ow

if F' andi^'' are the horizontal sectional

areas of the two prismatic vessels (axes

vertical) we have F'x = F'^y, and hence z, which = £0-\-y,

= x-^{F'~F")x',

Fig. 593.

X =
1+ ^77

and dx =
F'

'

1+ 1^7
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As before, we have

r- F'F" z'^dz— F'dx = }xF V2g zHt, or dt— — -

, ,
„,. —^7^ '

Hence, integrating, the time for the difference of level to

change from z^ to z^

2F'F" zh - zj

F' -^F"' }jiFV¥g'

and by making s„ = in (6), we have the

time of coming to a common ievei = -nn ^jpn ' ~^

(6)

tt^aZ-S:- i^)
2^

F'

1— -rfl—
-P

O .

---- ^
Algebraic Example.—In the double lock in Fig. 594, let

Z' be full, while in F' the water stands at a level MJV the

same as that of the tail-

water. F' and F" are the

horizontal sectional areas of

the prismatic locks. Let

the orifice, 0, between

them, be at a depth = /\

below the initial level FF
of F, and a height = h^

above that, J/i\^,"of F'.

The orifice at 0, area = F, being opened, efflux from F be-

gins into the air, and the level of F' is gradually raised from

MN to OD, while that of F sinks from KF to AB a distance

= a, computed from the relation vol. F'a = vol. F"h^^ and

the time occupied is [eq. (4)]

Fig. 594.

t.=
2F'

fjiFV^g
= iVh,- Vh, — »]• (8)

As soon as is submerged, efflux takes place under water, and

we have an instance of Case 11. Hence the time of reaching

a common level (after submersion of 0) (see eq. Y) is

1 = %F'F' A.

}xF{F'+F")'y 2g

and the total time i^ = t^-\-t^, with a = F^'h^ -r- F'.

(9)
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Case III. Emptying a vertical prismatic

rectangular '•''notch'''' in the side, or over-

fall.—Fig. 595. As before, let even the

initial area (= s/) of the notch be small

compared with the horizontal area F' of

tank. Let z = depth of lower sill of notch

below level of tank surface at any instant,

and b = width of notch. Then, at any in-

stant (see eq. 10, § 504),

through a

Fie. 595.

Rate ofdisch. (vol.) = Q — ^fxjbz V^z = ^fjb V2gsK

,\ vol. of disch. in dt = |yu5 V2g B^dt,

and putting this = — F^dz = vol. of water lost by the tank

in time dt, we have

^^ 3 F' .,

whence

2>u5 V2g

3 F'

2>u5 V2gJzo
'Udz= -l ^'^ -"in'2yM&|/2^U — t

i.a.

n=J^r^__Ll,.. . . (10)
Lo uhV^qLVzr. Vz„J

as the time in which the tank surface sinks from a height z^

above sill to a height z^ above sill. If we inquire the time t'

for the water to sink to the level of the sill of the notch we
put Zn = zero, whence t' = infinity. As explanatory of this

result, note that as z diminishes not only does the velocity of

flow diminish, but the available area of efflux (= zl)) also grows

less, whereas in Cases I and II the orifice of efflux remained

of constant area = F.

Eq. (10) is applicable to the waste-weir of a large reservoir

or pond.

534, Time of Emptying Vessels of Variable Horizontal Sec-

tions.—Considering regular geometrical forms first, let us take
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Fig. 59e.

Case I, Wedge-shaped vessel, edge horizontal and under-

neath, orifice F in the edge, so that

^5 the variable head, is always the

altitude of a triangle similar to the

section ^^C'of the body of water

when efflux begins. At any instant

during the efflux the area, 8^ of

the free surface, variable here,

takes the place of F' in eq. (3) ol

§ 633, whence we have,

Ss-hdz
for any case of 'oariablefree surface^ dt = z=^. . (11)

In the present case S = ul, and from similar triangles

u : s :: h : B^l

whence

and
^ = his -r- 3„

dt-

U

— tlz^dz
,

Lo
z'^dz = \9_^^fJ, .(12)

liFz^ V^gJ^^ }JiFz^ V2g

and hence the time of emptying the whole wedge^ putting

s„ = 0, is

__ 4 i-^^So _ 4 '^ol. of wedge
° ^ uF V'iqz 3 initial rate of discharge

(13)

i.e., |- as long as to discharge the same volume of water under

a constant head = s„ . This is equally true if the ends of the

wedge are oblique, so long as they are parallel.

Case II. Right segment of jjaraholoid of
revolution.—Fig. 597. Axis vertical. Ori-

fice at vertex. Here the variable free surface

has at any instant an area, -=8,-= nu^, u be-

ing the radius of the circle and variable.

From a property of the parabola

i*' :
5' :: s : s„ ; /. 8= nVz — s^^ Fra.sgr.
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saaA hence, from eq. (11),

dt =
IxFz, \f¥g

'

3 jxFz, V2g

whence, putting s^ = 0, we have the time of emptying the

whole vessel

_ 4 Tth^-k^^ _ 4: total vol. ,^..

° 3jjiFV2gSg 3 initial rate of disch/ '

same result as for the wedge, in Case I ; in fact, it applies to

any vessel in which the at'eas of horizontal sections vary

directly with their heights ahove the orifice.

Case III. Any jpyrainid or cone ', vertex down j small ori'

fice in vertex.—Fier. 598. Let area of the ^ ^
base = /iS'o , at upper edge of vessel. At f^^CJ ^^^^^^^
any stage of the flow S = area of base of / T^^T^y i

pyramid of water. From similar pyra- s^^^^^^ ^»

mids ^^^ t I

and [eq. (11)]

R 1

So fxFV^g

whence (s^= 0) the time of emptying the whole vessel is

__ 6 Total volume .. .

' " 6 initial i^ate of disch.

Case IY. Sphere.—Similarly, we may show that to empty
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a sphere, of radius = r, througli a small orifice, of area = F^

in lowest part, the necessary time is

1 = 1" 7cr 8 Vol.

15 uFVgr ^ init. rate of disoh.

635. Time of Emptying an Obelisk-shaped Vessel.—(An obe-

lisk may be defined as a solid of six plane faces, two of which

are rectangles in parallel planes and with sides respectively

parallel, the others trapezoids; a frustum of a pyramid is a

particular case.)

A volume of this shape is of common occurrence; see Fig.

599. Let the altitude = A, the two rectangular faces being

horizontal, with dimensions as in figure. By drawing through

F, G, and H right lines par-

^ ~~~~~
allel to EC, to cut the upper

base, we form a rectangle

KLMG equal to the lower

base. Produce ML to P and

KL to N, and join PG and

NG. We have now sub-

divided the solid into a paral-

lelopiped KLMG- EHGF,
a pyramid PBNL - G, and

two wedges, viz. APLK-HG and LNDM-FG, with

their edges horizontal ; and may obtain the time necessary to

empty the whole obelisk-volume by adding the times which

would be necessary to empty the individual component vol-

umes, separately, through the same orifice or pipe in the bot-

tom plane EG. These have been already determined in the

preceding paragraphs. The dimensions of each component

volume may be expressed in terms of those of the obelisk, and

all have a common altitude = h.

Assuming the orifice to be in the bottom, or else that the

discharging end of the pipe, if such is used, is in the plane of

the bottom EG, we have as follows, F being the area of dis-

charge

:

Fig. 599.
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Time to empty the pai'allelopijyed] ^ __?^A_ rr
separately would he {Case /, § 533) )

' ' '
~
uF V^q

Time to empty the two
) o7,/7 i \ \ i ri. i \

wedges separately W, = - .
^A^ ~ ^') + ^A^ ~ ^) ^^/r- ,„-,

For the pyramid} ^ _2 (^ — ^Q (^ — ^i) , ,^
{Case III, § 534) f

" ' * '^ " 5
' ^FV^ Vh.

. . {^)

Hence to emptj the whole reservoir we have

i.e.,

t = [SU+ 83,^, + 2U, + 2hJ] - ^ ^^ . . . (4)

Example.—Let a reservoir of above form, and with h = 50 ft.,

1=60 ft., h, = 10 ft., I, = 20 ft., and depth of water h = 16

ft., be emptied through a straight iron pipe, horizontal, and

leaving the side of the reservoir dose to the bottom, at an angle

a = 36° with the inner plane of side. The pipe is 80 ft. long

and 4 inches in internal diameter; and of clean surface. The

jet issues directly from this pipe into the air, and hence

F= l7t{^y sq. feet. To find ju, the " coefficient of efflux"

{= 0, the coefiacient of velocity in this case, since there is no

contraction at discharge orifice), we use eq. (4) (the first radical)

of § 518, withy approx. = .006, and obtain

(ISr.B. Since the velocity in the pipe diminishes from a

value

V = .361 V2g X 16 = 11.6 ft. per sec.

at the beginning of the flow to v = zero at the close, /"= .006

is a reasonably . approximate average with which to compute

the average above ; see § 517.
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Hence from eq. (4) of this paragraph (ft.-lb.-sec. system)

_ [3 X 50 X 60 4- 8 X 10 X 20+2(50 X 20+10 X 60)]2 VT&

15x0.361X^(i)V2x32.2

8 hrs. 5 min.
|
^'<^^^^^J

the ^rath.
""' ^^ ""^

t =

= 29110 sec. =

536. Time of Emptying Reservoirs of Irregular Shape. Simp-

son's Rule.—From eq, (11), § 534, we have, for the time in

which the free surface of water in a vessel of any shape what-

ever sinks through a vertical distance =6?s,

at = , whence time
j^FV^g

— / Sz-Hz, . . (1)

where S is the variable area of the free surface at any in-

stant, and z the head of water at the same instant, efflux

proceeding through a small orifice (or extremity of pipe) of

area ^ F. li 8 can be expressed in terms of s, we can in-

tegrate eq. (1) (i.e., provided that Sz-^ has a known anti-

derivative) ; but if not, the vessel or reservoir being irregular

in form, as in Fig. 600 (which shows a pond whose bottom

has been accurately surveyed, so that we know the value of S
for any stage of the emptying), we can still get an approximate

solution by using Simpson's

Rule for approximate inte-

gration. Accordingly, if we
inquire the time in which

the surface will sink from

to the entrance Fot the pipe

in Fig. 600 (any point oi ; at

E, or short of that), we
divide the vertical distance

from to n (4 in this figure) into an even number of equal

parts, and from the known form of the pond compute the area

aS' corresponding to each point of division, calling them S^, S^,

etc. Then th§ required time is approximately

Fig. 600.
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^n — 1

747

n.— 1

*4 71—2 "^Jl .J

Example.—Fig. 600. Suppose we have a pipe ^vi of the

same design as in the example of § 535, and an initial head of

^0 = 16 ft., so that the same value of pt, = .361, may be used.

Let Zn — s„ = 8 feet, and divide this interval (of 8 ft.) into

four equal vertical spaces of 2 ft. each. If at the respective

points of division we find from a previous survey that S\, =
400000 sq. ft., S, = 320000 sq. ft., S, = 270000 sq. ft., S, =
210000 sq. ft., and S, = 180000 sq. ft. ; while n = 4, // ^ .361,

and the area ^= kT^HT = .0873 sq. ft., we obtain (ft., lb., sec.)

16-
Lo 0.361 X .0873 V2 X 32.2 X 3 X 4:

"400000
, 4 X 320000

L 1/16 4/14

2 X 270000 , 4 X 210000
, 180000n

4/12 4/10 Vs _

= 2444000 sec.

= 28<^- 6^- 53™- 20^

The volume discharged, V, may also be found by Simpson's

Kule, thus : Since each infinitely small horizontal lamina has

a volume

dV=

or, approximately.

Sds,
n PO

^0

v= 'S'n ^n
S,Jr^S,-{-'2S, + 4.S,-{-...+Sn

_o Sn

Hence with n = 4 we have (ft., lb., sec.)

16 — 8r-^^^nA I A \
320000,

, o vy o^onAA400000 + 4
j I 210000 f + ^ >< 270000

M) 3X4 +

+ 180000 = 2,160,000 cub. ft.
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537. Volume of Irregular Reservoir Determined by Observing-

Progress of Emptying.—Transforming eq. (11), § 534, we have

8dz = — piFV^jzUt.

But Sdz is the infinitely small volume dV oi water lost bj
t!]^ reservoir in the time dt^ so that the volume of the reser-

voir between the initial and final (0 and n) positions of the

horizontal free surface (at beginning and end of the time t^

may be written

L-O

Y^fxFV^g z^dt. (1)

This can be integrated approximately by Simpson's Eule, if

the whole thne of emptying, = z;^, be divided into an even

.:-:..-.-:.. number of equal

parts, and the values

^„ , Sj , 02 , etc., of the

head of water noted

at these equal inter-

vols of time (not of

vertical height). The
corresponding sur-

face planes will not

Whence for the particular case

FiQ. 601.

be equidistant, in general,

when 71 = 4 (see Fig. 601)

y = ^^^y{i^:~^^ [^0^+ 4: (3.4

+

^^)+ 2a,*

+

^n- • • (2)
-0 O X 4:

537a. Time of Change of Surface-level of Reservoir when In

fiow Exists as well as Outflow.—Solutions of problems of this

nature involve somewhat more extended mathematics than

the foregoing. Eesults andformulse applicable to a number
of such cases Avill be found on pp. 147-1 55 of Mr. Horton's

monograph mentioned in the foot-note of p. 688. Cases of

both constant and variable inflow are treated in that paper.

Sfte also Engineering News of Nov. 14, 1901, pjD, 362, 363

;

and Dec. 5, 1901, p. 431.
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HYDROKINETICS (CowfoVi^ec?)—STEADY FLOW OF WATER IN
OPEN CHANNELS.

538. Nomenclature.—Fig. 602. When water flows in an

open channel, as in rivers, canals, mill-races, water-courses,

ditches, etc., the bed

and banks being rigid,

the upper surface is

free to conform in

shape to the dynamic

conditions of each case,

which therefore regu-

late to that extent the

shape of the cross-sec-

tion- ^

In the vertical trans- ^'®- ^^

verse section AC m figure, the line AC is "called the air-profile

(usually to be considered horizontal and straight), while the

line ABC, or profile of the bed and banks, is called the wetted

perimeter. It is evident that the ratio of the wetted perimeter

to the whole perimeter, though never < -J,
varies with the

form of the transverse section.

In a longitudinal section of the stream, JEFGH, the angle

made by a surface filament ^T^ with the horizontal is called

the slope, and is measured by the ratio s = h : I, where I is the

length of a portion of the filament and h = thefiall, or vertical

distance between the two ends of that length. The angle be-

tween the horizontal and the line HG along the bottom is not

necessarily equal to that of the surface, unless the portion of

the stream forms a prism ; i.e., the slope of the bed does not

necessarily = 5 = that of surface.

Examples.—The old Croton Aqueduct has a slope of 1.10

ft. per mile; i.e., s = .000208. The new aqueduct (for !N^ew

749
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York) has a slope s = .000132, with a larger transverse section,

Eor large sluggish rivers s is much smaller,

539. Velocity Measurements.— Yarions instruments and

methods may be employed for this object, some of which are

the following

:

Surface-floats are small balls, or pieces of wood, etc., so

colored and weighted as to be readily seen, and still but little

affected by the wind. These are allowed to float with the cur-

rent in different parts of the width of the stream, and the sur-

face velocity c in each experiment computed from c ^^l -^ t,

where I is the distance described between parallel transverse

alignments (or actual ropes where possible), whose distance

apart is measured on the bank, iand t = the time occupied.

Douhle-floats. Two balls (or small kegs) of same bulk and

condition of surface, one lighter, the other heavier than water,

,/-:; /^ . a^'G united by a slender chain, their

weights being so adjusted that the

light ball, without projecting notably

above the surface, buoys the other

ball at any assigned depth. Fig. 603.

It is assumed that the combination

moves with a velocity c', equal to the

arithmetic mean of the surface veloc-

ity c„ of the stream and that, c, of the water filaments at the

depth of the lower ball, which latter, c, is generally less than

Cj . That is, we have

Fig. 603.

c' =z ^{c^ -j- G) and ,-. c = 2c' — c. (1)

Hence, g„ having been previously obtained, eq. (1) gives the

velocity g at any depth of the lower ball, c' being observed.

T\iQ floating stafl' is a hollow cylindrical rod, of adjustable

length, weighted to float upright with the top just visible. Its

observed velocity is assumed to be an average of the velocities

of all the filaments lying between the ends of the rod.

Woltinann^s Mill / or Tachometer / or Ourrent-7neter, Fig.

604, consists of a small wheel with inclined floats (or of a small



FxG. 604a.—The Buff and Buff Current Meter. Held at the end
of a pole. 5-inch wheel.

[To face page 750.
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Fig. 604.

"screw-propeller" wheel S) held with its plane 1 to the car

rent, which causes it to re-

volve at a speed nearly pro-

portional to the velocity, g,

of the water passing it.

By a screw-gearing W on

the shaft, connection is

made with a counting ap-

paratus to record the num-

ber of revolutions. Some-

times a vane i> is attached,

to compel the wheel to face

the current. It is either

held at the extremity of a pole; or suspended by a weighted

cable, for work in deep water. In some types the counting

device is actuated by electric connection with the revolving

wheel, and hence may be placed in a boat or on shore. With
the screw-gearing, a cord and spring are used for throwing

in and out of gear.

On the opposite sheet are shown four varieties of current

meter: the Buff and Buff meter, for attachment to a pole;

the Haskell meter; the Ritchie-Haskell direction-current

meter (see below) ; and the Price meter. This last resembles

the anemometer of p. 824.

A special form of this instrument has been recently in-

vented, called the Ritchie-Haskell Direction-current Meter,

possessing the following special features: "This meter registers

electrically on dials in boat ........

from which used, the dii'eGtion

and velocity^ simultaneously,

of any current. Can be used

in river, harbor, or ocean cur-

rents."

Bitot'' s Tube * consists in

principle of a vertical tube

open above, while its lower

end, also open, is bent hori-

zontally up-stream; seeA in

figure.

-•^r
''•:--''

=
s

;'• /')'-

z-^-iri= ^^=
= —

^^^S --^-^13i 3m^=

Fig. 605.

After the oscillations have ceased, the water in the

* A description of Mr. W. M. White's extensive experiments with this

instrument will be found in the Journal of the Assoc, of Engineering Societies

for Aug. 1901, p. 35 (Vol. xxvii. No. 3).
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tube remains stationary with its free surface a Leiglit, li\

above that of the stream, on account of the continuous im-

pact oj£ the current against the lower end of the column.

By the addition of another vertical tube (see B in figure)

with the face of its lower (open) end parallel to the current

(so that the water-level in it is the same as that of the cur-

rent), both tubes being provided with stop- cocks, we may,

after closing the stop-cocks, lift the apparatus into a boat

and read off the height Ji' at leisure. We may also cause

both columns of water to mount, through flexible tubes,

into convenient tubes in the boat by putting the upper ends

of both tubes in communication with a receiver of rarefied

air, and thus watch the oscillations and obtain a more
accurate value of h'. As to a theoretical relation between

the velocity c, of the current and the height h' , we have,

[from eq. (7a), p. 804], writing k' for I-hVT, {k' to be found

by experiment)

c = k'\/2^' (1)

The form and position of the "static opening," m, may
be such as to cause (by ''suction") the water level in the

corresponding tube to stand lower than that of the outside

surface; thus affecting the observed h'. This opening is

frequently made in the side- of the tube, or of a thin casing.

Hence each instrument requires a separate rating, for k'.

Mr. W. M. White's experiments show, in case the " impact

tube" is used alone (see A, Fig. 605) that so long as it is a

solid of revolution with its axis exactly on a line of the cur-

rent, the form of the "impact opening," or point, is imma-

terial, and that the value of k' is practically 1.00, (with c

ranging from 3 to 15 ft. per sec); but that when the "static

tube" is used {B, Fig. 605) ¥ may be considerably less

than 1.00. (See also the experiments of Profs. Boyd and

Judd, Engineering News, Mar., 1904, p. 318.)

The Bitot tube is also used for measuring the velocity

of water in free jets, and flowing under pressure in pipes

(see p. 833). In closed pipes conditions are more complicated

than in an open channel, and the instrument itself forms

more of an obstruction.
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Rating of current meters.—The relation between the velocity c in ft. per
second, of the current, and the revolutions per second, n, made by the
wheel, is usually taken as c= c^+ b .n, where Cq is the value of c below
which the wheel (through friction) does not turn at all, and b is another
constant. The determination of these two constants by experiments
is called the "rating" of the meter and is usually accomplished by
moving it uniformly through still water; the instrument being sup-

ported from the bow of a boat which is towed over the course, or from
the overhanging arm of a truck moved along the edge of a canal. The
total time t, total distance s, and total number of revolutions N, made
by the wheel, are recorded. Then c=^s^t and n= N-^t.

If a number of such experiments or "runs" have been made, cover-

ing a fair range of velocities, the most probable values of the two con-

stants, Cq and b, may be found (according to the theory of "least

squares"),by the following formulae, where m denotes the number of

"runs:"

_
mI(nc)-I(n)I{c)

,
I (c) I (n')- 1(n)I(nc)

ml{n')-[l{n)f ' ^ » m2 (n') ~[I (n)f '

Example.—In the table below are placed the data of a set of eight

test runs for a current meter, over a course of 200 ft. length; and also

the other quantities needed for computing b and Cq from the above formulae.

No.
N

Total
Revs.

«= Total
time (sec.)

c

ft. /sec.

n
revs. /sec.

nc nJ

1 118 396.25 0.505 0.298 0.150 0.088
2 158 214.75 0.931 0.736 0.685 0.542
3 170 143.75 1.391 1.183 1.645 1.390
4 177 79.00 2.532 2.241 5.672 5.022
5 180 58.00 3.448 3.104 10.702 9.635
6 184 41.50 4.819 4.434 21.367 19.660
7 187 33.00 6.061 5.667 34.343 32.115
8 187 27.50 7.273 6.800 49.455 46 . 240

Sums

.

26.960 24.463 124.019 114.701

Also [2'(n)P = 598.41

8X124.019-24.463X26.960 332.35

and

8X114.701-598.41 319.21

26.960X114.701 - 24.463X124.019 58.40

1.042,

= 0.183
" 8X114.701-598.41 319.2

For this meter, therefore, we have c= 0.183 + 1.042tc for the inter-

pretation of its indications when in actual service; and it is seen that

the wheel makes about one revolution for each foot of current move-

ment.

540. Velocities in Different Parts of a Transverse Section.

—

The results of velocity-measurements made by many experi-

menters do not agree in supporting any very definite relation

between the greatest surface velocity (<?„ max.) of a transverse
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section and the velocities at other points of the section, but

establish a few general propositions :

1st. In anj vertical line the velocity is a maximum quite

near the surface, and diminishes from that point both toward

the bottom and toward the surface.

2d. In any transverse horizontal line the velocity is a maxi-

mum near the middle of the stream, diminishing toward the

banks.

3d. The mean velocity = v, of the whole transverse section,

i.e., the velocity which must be multiplied by the area, I^, of

the section, to obtain the volume delivered per unit of time,

Q-Fv, (1)

is about 83 per cent of the maximum surface velocity (co max.

)

observed when tlie air is still, for fairly smooth channels of

regular forms, i.e.

?;= 0.83X(comax.); (2)

but the ratio diminishes with increasing roughness and greater

irregularity of shape. According to "Wagner we may use the

following for rivers, as a means of rough gauging,

2; = O.Y05x(comax.) + 0.003x(comax.)2. . (2a)

In the survey of .the Mississippi River by Humphreys and

Abbot, 18G1, it was found that the law of variation of the

velocity in any given vertical line could be fairly well repre-

sented by the ordinates of a parabola (Fig. 607) with its axis

,--^:-.:'.;;^.;^-i'/:^::f^x<.-^ horizontal and its vertex at a distance d^

3.|'^?'_£li^'_\"
^^^l^= below the surface according to the follow-

-f^\- ~\~_\ ^>\~= ing relation, y^' being a number dependent

^1' ~
i

'

2J -=^\

'Sr-^ on the force of the wind (from for no

— 1-~
I

»j' =^ wind to 10 for a hurricane) :

Z^i^i^/'^S 6^, = [0.31Y±0.06/'']^; . . (3)

~
I

—— */__~ where d is the total depth, and the double

^^^^m^ sign is to be taken + for an up stream, -
Fig. 607. for a dowu-strcam, wind. Tlie following

relations were also based on the results of the survey :

(putting, for brevity, B = 1.69 -=- |/c?+ 1.5,) . (^)
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C = Ca, — VBv
'z — d^

IT (5)

^m = fCd. +K + ^ (i^o - |Cd), . .

and

Cid = Cm-\--h ^''^•

. . (6)

. . (7)

{These equations are not of homogeneousform^ but call for

the/bo^ and second as units.)

In (5), (6), and (7),

c = velocity at any depth s below the surface
;

c^ = mean velocity in the vertical curve

;

Ca, = max. " " " "

C|(j = " at mid-depth

;

c^ = velocity at bottom
;

V = mean velocity of the whole transverse section.

Flow under Ice.—In current observations made for the TJ. S. Govern-

ment in 1897 by Assistant Engineer E. E. Haskell, C.E., (now Director

of the College of Civil Engineering at Cornell University) on a section

of the St. Mary's River (near Sault Ste. Marie, Michigan) when frozen

over, it was found that in the mean vertical curve of the whole section

(mean of 22 curves; involving 220 separate velocity-observations) the

maximum velocity was 1.250 (occurring at 0.4 the depth from surface)

and the mean, v, 1.087, ft. /sec. The velocity at mid-depth, Cq.s, in

this mean curve was 1.232 ft. /sec, and the ratio v^c^.^ was 0.882.

The friction due to the ice was found to be very nearly 31 per cent of

that due to the bottom. (See report of the Chief of Engineers of U. S.

Army for 1897, Part 6, p. 4100.)

541. Gauging a Stream or River.*—^Where the relation (eq. (2),

§ 540) V = .83 (<?omax.) is not considered accurate enough for

substitution in ^ = jFv to obtain the volume of disci large (or

delivery) ^ of a stream per time-unit, the transverse section

may be divided into a nninber of subdivisions as in Fig. 608,

of widths a,, a^, etc., and

mean depths d^, d.^, etc.,

and the respective mean

velocities, Cj , c^ , etc., com-

puted from measurements fig. 608.

with current-meters ; whence we may write

Q = a,d,c,-'ira,d,o,-{-a,d^o,-{- etc. ... (7)

* A valuable book in this connection is River Discharge, by J. C. Hoyt
and N. C. Grover, (John Wiley & Sons, New York, 1907) ; as also Water
Supply Paper, No. 56, of the U. S. Geol. Surv., Washington, D. C.^

* -a-t >
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With a small stream or ditch, however, we may erect a ver-

tical boarding, and allow

the water to flow through a

rectangular notch or over-

fall, Fig. 609, and after the

head surface has become

permanent, measure h^

(depth of sill below the

level surface somewhat

back of boards), and h

(width) and use the formu-

lae of § 504; see examplesFig.

in that article.

543. Uniform Motion in an Open Channel.—We shall now
consider a straight stream of indefinite length in which the

flow is steady^ i.e., a state of perTnanency exists, as distin-

guished from a freshet or a wave. That is, the flow is steady

when the water assumes fixed values of mean velocity v. and

sectional area F, on passing a given point of the bed or bank
;

and the

Eq. of continuity . . Q = Fv = F^v^ = F^i\ = constant . . (1)

holds good whether those sections are equal or not.

By uniform motion is meant that (the section of the bed

and banks being of constant size and shape) the slope of the

bed, the quantity of water (volume = Q) flowing per time-

unit, and the extent of the wetted perimeter, are so adjusted

to each other that the mean velocity of flow is the same in all

transverse sections, and consequently the area and shape of the

transverse section is the same at all points ; and the slope of

the surface = that of the bed. We may therefore consider,

for simplicity, that we have to deal with a prism of water of

indefinite length sliding down an inclined rough bed of con-

stant slope and moving with uniform velocity (viz., the mean
velocity v common to all the sections) ; that is, there is no ac-

celeration. Let Fig. 610 show, free, a portion of this prism,

of length = I, and having its bases 1 to the bed and surface.
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*S^ hydrostatic pressures at the two ends balance each other

from the identity of conditions. The only other forces having

LL-i-jr-,

FiQ. 610.

components parallel to the bed and surface are the weight

G = Fly of the prism (where y = heaviness of water) making

An angle = 5 (= slope) with a normal to the surface, and the

friction between the water and the bed which is parallel to the

surface. The amount of this friction for the prism in question

may be expressed as in § 510, viz.:

P=fric.=f8y^=fwly^, ... (2)

in which 8 = wl = rubbing surface (area) = wetted perimeter,

Wj X length (see § 538), and /"an abstract number. Since the

mass of water in Fig. ,610 is supposed to be in relative equili-

brium, we may apply to it the laws of motion of a rigid body,

and since the motion is a uniform translation (§ 109) the com-

j^onents, parallel to the surface, of all the forces must balance.

.*. G sin s must = P =friG. ; .•. Fly y =.fwly -—

;

Jphence

or

^=/^-f

'

(^)

in which F-^w \b called B, the hydraulic mean dejpth, or

hydraulic radius. (3) is sometimes expressed by saying that
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the whole fall, or head, A, is (in uniform motion) absorbed in

friction-head. Also, since the slope s = h-rrljwe have

V = v = A VEs, (4)

which is of the same form as Chezy's formula in § 519 for a

very long straight pipe (the slope s of the actual surface in this

case corresponding to the slope along piezometer-summits in

that of a closed pipe). In (4) the coefficient A = V2g -^f is

not, like/", an abstract number, but its numerical value depends

on the system of units employed.*

542a. Experiments on the Flow of Water in Open Channels.

—

Those of Darcy and Bazin, begun in 1855 and published in

1865 (" Recherches Hydrauliques"), were very carefully con-

ducted with open conduits of a variety of shapes, sizes, slopes,

and character of surface. In most of these a uniform flow was

secured before the taking of measurements. The velocities

ranged between from about 0.5 to 8 or 10 ft. per second, the

hydraulic radii from 0.03 to 3.0 ft., with deliveries as high as

182 cub. ft. per second. For example, the following results

were obtained in the canals of Marseilles and Oraponne, the

quantity A being for the foot and second. The sections were

nearly all rectangular. See eq. (4) above.

No. (cub. ft.

R. s.

abs.
V.

(ft. per
A.

(foot and Character of the masonry

per sec.) (ft.) numb. sec) sec.)

1 183.73 1.504 .0037 10.26 137.1 Tery smooth.
2 143.74 1.774 .00084 5.55 125. Quite "
3 43.93 .708 .029 11.23 78.4
4 43.93 .615 .060 13.93 73.5 Hammered stone.

5 43.93 .881 .0121 7.58 73.5 Rather rough.
6 43.93 .835 .014 8.36 77.3
7 167.68 2.871 . 00043 3.54 73.3 Mud and vegetation.

[In Experiment !N"o. 1 the flow had not fully reached a state

of permanency.]

Fteley and Stearns's experiments on the Sudbury conduit at

Boston, Mass. {Trans. A. 8. O. E., '83), from 18Y8 to 1880, are

also valuable. This open channel was of brick masonry with

* Values of this coeflBcient A, for the English foot and second as units,

may be obtained from diagrams in the Appendix of the Author's "Hydraulic
Motors." They are based on Kutter's Formula (see next paragraph).
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good mortar joints, and about 9 ft. wide; the depths of water

ranging from 1.5 to 4.5 ft. With plaster of pure cement on

the bed in one of the experiments the high value of ^ = 153.6

was reached (foot and second), with v = 2.805 ft. per second,

R = 2.111 ft., .9 = .0001580, and Q = 87.17 cu. ft. per second.

Captain Cunningham, in his experiments on the Ganges

Canal at Roorkee, India, in 1881, found A to range from 48

to 130 (foot and second).

Humphreys and Abbot's experiments on the Mississippi

River and branches (see § 540), with values of i? = from 2 or

3 ft. to 72 ft., furnish values oi A = from 53 to 167 (foot and

second).

542b. I^utter's Formula.—The experiments upon which

Weisbach based his deductions for/", the coefficient of fluid

friction, were scanty and on too small a scale to warrant gener-

al conclusions. That author considered that / depended only

on the velocity, disregarding altogether the degree of rough-

ness of the bed, and gave a table of values in accordance with

that view, these values ranging from .0075 for 15 ft. per sec.

to .0109 for 0.4 ft. per sec; but in 1869 Messrs. Kutter and

Ganguillet, having a much wider range of experimental data

at command, including those of Darcy and Bazin, and those

obtained on the Mississippi River, evolved a formula, known
as JTuttef'^s Formula^ for the uniform motion of water in open

channels, which is claimed to harmonize in a fairly satisfactory

manner the chief results of the best experiments in that direc-

tion. They make the coefficient A in eq. (4) (or rather the

factor contained in A^ a function of R. s, and also n an

abstract number, or coefficient of roughness, depending on the

nature of the surface of the bed and banks ; viz.,

V in

ft.

per

sec.

4L6 + l:^ + :5^

i+(«.6 + £2pi)
VR[mii.)Xs,..{b)

s I 4/^(infeej)_

wnich is Kutter^s Formula.* The bracket is the A of (4).

* A book of "Diagrams of Mean Velocity based on Eutier's Formula," by
tlie present writer (New York, J. Wiley & Sons, 1902), obviates the necessity

of numerical substitution in Kutter's formula for all v'r!<^tical purposes
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That is, comparing (5) with (4), we have /*a function of n,

H, and s, as follows

:

f=
1 + r^^ _.00281

n

S

n

VJi in ft.

5 181 1

'^^^^
1

.00035

n s

• (6)

From (6) it appears that f decreases with an increasing H,
as has been also noted in the case of closed pipes (§ 51Y) ; that

it increases with increasing roughness of surface ; and that it

is somewhat dependent on the slope. Values of n may be

taken as follows: •

.009 for well planed timber evenly laid;

.010; plaster in pure cement; glazed surfaces in good order;

.011; plaster in cement with one-third sand; iron and cement pipes in

good order and well laid

;

.012; unplaned timber, evenly laid and continuous.

.013; ashlar masonry and well laid brick work;* also the above cate-

gories when not in good condition nor well laid;

.015; "canvas lining on frames"; brick-work of rough surface; foul

iron pipes; badly jointed cement pipes;

.017; rubble in plaster or cement in good order; inferior brick-work;

tuberculated iron pipes; very fine and rammed gravel;

.020; canals in very firm gravel; rubble in inferior condition; earth of

even surface;

.025; canals and rivers in perfect order and regimen and perfectly free

from stones and weeds
; f

.030; canals and rivers in earth in moderately good order and regimen,

having stones and weeds occasionally;

.035; canals and rivers in bad order and regimen, overgrown with vege-

tation, and strewn with stones and detritus.

Kutter's formula finds wide acceptance among engineers.

To save computation, values of A (for the English foot and

second) may be taken from the following table. The slopes

.010, .001, .0004, .0002, and .00005 are indicated as 10,

1, .4, .2, and .05, ( = 1000s); and may be read "fall of 10 ft.

per thousand ft," etc. Ordinary rules of interpolation

apply ; but it must he remembered that for any slope greater

than .010 the value of A is practically the same as for that

slope (s = .010; or 10 ft. per thousand ft.)

* For ordinary brick sewers Mr. R. F. Hartford claims that n=.014
gives good results. See Jour. Eng. Societies for '84-'85, p. 220.

t See Engineering News for Feb. 1, 1908, p. 122, for experiments with an
open channel; giving n= 0.025.
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TABLE* OF KUTTER'S COEFFICIENT A. [See eqs. (4) and (5).]

1000 S

Values of n
R

in ft.

.009 .010 .011 .012 .013 .015 .017 .020 .025 .030

10 129 114 100 90 81 67 57 46 33 27
1 128 113 99 . 88 80 66 56 45 33 27

0.2 .4 125 110 97 87 78 64 54 43 32 26
.2 120 105 93 83 74 61 52 42 30 25

^ .05 100 87 78 68 62 52 43 35 26 22

^10 143 126 111 99 90 76 64 52 39 32
1 142 124 110 98 89 75 63 51 38 31

0.3 .4 138 121 107 96 87 73 62 50 37 30
.2 133 116 103 92 83 69 59 48 36 28

, .05 113 98 88 78 71 58 51 41 31 25

'10 163 144 129 116 105 89 77 63 49 39
1 162 142 128 115 104 88 76 62 48 38

0.6 .4 158 140 125 113 102 87 75 61 47 37
.2 154 137 123 110 100 84 73 59 45 36
.05 139 122 110 98 89 76 65 53 41 33

rio 176 156 141 128 117 99 86 72 56 45
1 175 155 140 127 116 99 86 71 56 45

1.0 .4 173 154 138 125 115 98 84 70 55 44
.2 170 151 136 123 112 96 83 68 53 43
.05 157 140 126 113 104 89 77 63 48 39

rio 192 172 155 142 130 113 99 83 66 54
1 190 172 155 142 130 112 98 83 66 54

2.0 ^ .4 189 170 154 141 129 111 97 83 65 53
.2 188 169 153 139 128 110 96 82 64 53
.05 183 164 148 135 124 107 93 79 62 51

rio 204 184 167 153 142 123 109 93 75 63
1 204 184 168 153 142 123 109 93 75 63

4.0 .4 204 184 168 154 143 124 110 94 76 63
.2 205 185 169 154 143 124 110 94 76 64
.05 208 187 171 157 145 126 112 95 77 64

rio 210 190 173 159 148 129 115 98 81 67
1 211 190 174 160 148 129 115 98 82 67

6.0
i

.4 212 192 175 161 149 130 116 99 82 68

.2 213 193 176 162 151 132 117 100 83 69

.05 220 200 183 168 156 138 122 105 86 72

rio 215 194 178 163 151 133 118 102 83 71
1 216 195 178 164 152 1.33 119 103 84 72

8.0 < .4 217 196 179 165 153 134 120 104 85 73
;2 218 198 181 167 155 136 122 105 86 74
.05 228 206 190 175 164 145 129 112 92 78

rio 220 198 183 168 156 137 123 107 88 76
1 220 199 183 169 157 1.38 124 108 89 77

12. .4 222 201 185 171 158 139 126 109 90 78
.2 225 204 188 173 161 143 128 111 92 80
.05 240 217 200 185 174 154 139 121 100 86

* See also foot-notes, pp. 758 and 759.
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Example 1.—A canal 1000 ft. long of the trapezoidal sec-

tion in Fig. 611 is required to deliver 300 cubic ft. of water

, per second with the water 8 ft. deep at all

^A^^==l==iy" sections (i.e., with uniform motion), the

A—__?.=rA slope of the bank beinaj such that for a depth

s\v\\\\\\\\\^ ^^ ^ ^^' ^^^ width of the water surface (or

Fig. 611. length of air-profile) will be 20 ft.; and the

coefficient for roughness being n = .020. What is the neces-

sary slope to be given to the bed (slope of bed = that of sur-

face, here) (ft., lb., sec.) ?

The maan velocity

V ~ Q -^ F= SOO -^ ^ (20 -\- 8)8 = 2.67 ft. per sec.

[So ^hat the surface velocity of mid-channel in any section

would probcbly be (<?„mai) = '^ -J- 0.83 = 3.21 ft. per sec. (ea.

(2), § .540).]

The wetted perimeter

w = 8-\-2V8'-\-Q' = 28 ft.,

sind therefo?*} the mean hj^dranlic depth

= E = F-^ w = 112^28 = ^ ft.

Although the slope is unknown we see from the table

that A must be about 94. From eq. (4), b = v'^^(A?U)\

i.e.,

'

(2.67)2

or 0.2 ft. fall per thousand ft. length. This result needs no

revision, since the table gives A = 94 for s = 0.0002.

Example 2.—Find the radius, r, of an open channel of

semi-circular section (diameter horizontal) running full,

which shall carry, with uniform motion, 80 cub. ft. of water

per sec; having a fall of 0.5 ft. in each 1000 ft. of length

and lined with well-laid brickwork (n = .013).

Here we find R = (^Ttr^) -r- {jir) = ^r, and v, = Q ^ F,

= 80 ^ (iTtr^) = (50.92) -^ r^ ; substituting which in

v = A\/Rs, we have, after squaring,

r5 = 10,372,000 ^A2 .....'. (7)



UNIFORM MOTION IN OPEN CHANNEL. 763

Now, A (which depends on R, =^r, but in such a com-

plicated way that it is best to solve hy trial) probably lies

between 50 and 150. Take the round number, 100, for

the first trial. With A = 100, r5 = 1,037.2; or r = 4.01, and

i^ = 2.0ft.

For R = 2.0 ft. and slope of .0005, with n = .013, we find

from the table, A = 129; and hence, for a second approxi-

mation, may write, from eq. (7), r5 = 10,372,000 ^(129)2,

which =623.0; i.e., r = 3.62; and R = 1.81, ft. With this

second R the table shows 126 for A, which in eq. (7) gives,

finally, r = 3.66 ft.; and this is sufficiently close, since fur-

ther revision produces no practical change.

Example 3.—If the bed of a creek falls 20 inches every

1500 ft. of length, what volume of water must be flowing to

maintain a uniform mean depth of 4:|- ft., the corresponding

surface-width being 40 ft., and wetted perimeter 46 ft, ? The

bed is " in moderately good order and regimen ;" use Kutter's

Formula, putting n = 0.030 (ft. and sec).

First we have

Vm = W^(40 X H) -^ (46 X ^) = .066,

while VBJK) =1.98, and the slope = s =^^ 1500=.00111

;

hence

[

1.811 .00281
jtl.D-t-

^^g^ ^.OOlllj
V =

X 0.066
104.43 X .066

r,, ^ ,
.0028110.030 1.6685 '

^ + L^^-^+:ooiirJT98"

or

V = 4.13 ft. per sec.

Hence, also,

Q = Fv = 4:0 XHX 4.13 = 743.4 cub. ft. per sec.

Or, using the table on p. 761, we find (for E = 3.92 ft.,

g= 00111, p.nd n = .030) the value 63 for A; whence v,

= A\/Rs, =4.15 ft./sec; and this, of course, is a much

more rapid procedure than the above.
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Example 3.—The desired transverse water-section of a canal

is given in Fig. 612. The slope is to be

3 ft. in 1600 ; i.e., s = 3 -^ 1600 ; or, for

I — 1600 ft., A = 3 ft. What must be the

velocity (mean) of each section, for a xmi-

form motion / the corresponding volume

delivered per sec, Q^ = Fv^ = ? ; assuming that the character

of the surface warrants the value n = .030 ?

Knowing the slope 5, = 3 -=- 1600 ; and the hydraulic radius

B,=F-^w, = Y9.28 sq. ft. ^ 24.67 ft., = 3.215 feet; with

n = .030 we substitute directly in eq. (5), obtaining v = 4.67

ft. per sec. ; whence Q = Fv = 370 cub. ft. per sec.

More hriefly, we find by interpolation in the table of

p. 761, A = 59.4; and hence, by eq. (4), v = 4.61 ft. /sec.

(By the use of the diagrams mentioned at foot of p. 759

the value of v is obtained by simple inspection of a dia-

gram; R and s being the "arguments.")

543. Hydraulic Mean Depth for a Minimuin Frictional Resist-

ance.—We note, from eq. (3), § 542, that if an open channel

of given length I and sectional area F is to deliver a given

volume, Q, per time^unit with uniform motion, so that the

common mean velocity v of all sections (= Q -^ F) is also a

given quantity, the necessary fall = A, or slope s ^ h -^ I, is.

seen to be inversely proportional to H, the hydraulic mean

depth of the section, = {F -^ w), = sectional area -f- wetted

perimeter.

For k to be as small as possible, we may design the form of

transverse section, so as to make i? as large as possible ; i.e.,

to make the wetted perimeter a minimum for a given F; for

in this way a minimum of frictional contact, or area of rub-

bing surface, is obtained for a prism of water of given sectional

area i^and given length I.

In a closed pipe running full the wetted perimeter is the

whole perimeter; and if the given sectional area is shaped in

the form of a circle, the wetted perimeter, = w,is a, minimum
(and i? a maximum). If the full pipe must have a polygonal

shape of n sides, then the regular polygon of n sides will pro-

vide a minimum w. *

Whence it follows that if the pipe or channel is running
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Fig. 613.

half full, and thus becomes an open channel^ the semicircle,

of all curvilinear water pro-

-l ^ files, gives a mimmnm w.

Also, of all trapezoidal pro-

files with banks at 60° with

the horizontal the half of a

regular hexagon givss a

minimum w. Among all

rectangular sections the half

square gives a minimum w
;

and of all half octagons the half of a regular octagon gives a

minimum w (and max. R) for a given F. See Fig. 613 for

all these.

The egg-shaped outline, Fig. 614-, small end down, is fre-

quently given to sewers in which it is important that the

different velocities of the water at dif-

ferent stages (depths) of flow (depend-

ing on the volume of liquid passing per

unit-time) should not vary widely from

each other. The lower portion A£G,
providing for the lowest stage of flow

AB,\q nearly semicircular, and thus in-

duces a velocity of flow (the slope being

constant at all stages) which does not

differ extremely from that occurring

when the water flows at its highest

stage DE^ although this latter velocity is the greater; the

reason being that ABC from its advantageous form has a

hydraulic radius, R, larger in proportion to its sectional area,

F, than DCE.
That is, F -^ w for ABC\q more nearly equal to F-^ to for

DEC than if DEC were a semicircle, and the velocity at the

fewest stage may still be sufficiently great to prevent the de-

posit of sediment. See § 575.

544. Trapezoid of Eixed Side-slope.—For large artificial water-

courses and canals the trapezoid, or three-sided water-profile

(symmetrical), is customary, and the inclination of the bank,

Fig. 614.



766 MECHANICS or engineerhstg.

or angle 6 with the horizontal, Fig. 615, is often determined

^ /^ ^^ ^^^® nature of the material
'%l^^IZ^^l~'̂ J"^_^l &̂ composing it, to guard against

washouts, caving in, etc. We
'5^

J
are therefore concerned with the

^ MM^^^^^^ ^ following problem : Given the

^^<^- ^'^- a?'ea, F, of the transverse section^

and the angle 6^ required the value of the dejpth x (or of upper

width 0, or of lower width y, both of which are functions of x)

to inake the hydraulic mean depth, H =^ F -^ w,a maximum^
ov w -^ F a ininhmirrh. F\s, constant.

From the figure we have

and

whence

w = AB + ^BC = 2/+ 2a?cosec. 0, , , , (1)

F= yx -\~
x"" cot. 0;

y = -.{F-x'cot.e), ... c ... (2)
X

substituting which in (1) and dividing by F^ noting that

« /, J. /. 2 — cos (9 ,

2 cosec. — cot-. & =—-.

—-— , we have
sm 6

W 1 1,2— cos d ,a\

F R X ^ F^\\k ^ '

For a minimum w we put

^W ^ . 1 . 2-cos^ ^

sc' ^ F&inO

(^ • \ I / ^si
.*» X (tor max. or mm. ^« ) = ± a / -^

Y 2-(
sin d

cos B'

The + sign makes the second derivative positive, and hence

»r a miuo w or max. It we have

a? (call it a?0 = a;' = — -, ... (4)^
4/2 - cos ^ ^

^
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while the corresponding values for the other dimensions are

and

F
y' = --— aj' cot.

X

F
z' —y' -\- 2a?' cot. e—±^^x' cot. 9,

(5)

(6)

For the corresponding hydraulic mean depth R' [see (3)],

i.e.j the max. R, we have

1 , 2 — cos6' , 2 ,^,ir'-— ;, . . . (7)R' x' ' i^sin 6

R':=^'
Fsm

2 — cos ^

'

. . (8)

Equations (4), (5),~ ... (8) hold good, then, for the trapezoi-

dal section of least frictional resistance for a given angle 0.

(It may be proved that the two sloping sides and the

bottom, of this trapezoid, are all tangent to the semicircle,

of radius = x', described with its center in the middle of the

upper base DC; see p. 217, Hydraulic Motors.)

The following values of the angle d should not be exceeded (Unwin)

:

For banks of planks or masonry, 90°

" " " masonry or brick walls, 63° 20'

" " " stone pitching, 45°

23° 60'

" loose earth
-I

21° 48'

; or horiz. to 1 vert

; or 0.5 " to 1
"

or 1 " to 1
"

; or 2 " to 1
"

; or 2.5 " to 1
"

; or 3 " to 1
"

Example.—Required the dimensions of the trapezoidal

section of minimum frictional resistance for ^=45°, which

with h = 6 in. fall in every 1200 feet, and n = .025, is to

deliver Q = 360 cub. ft. of water per sec, with uniform

motion.

Here we have s = 1-^1200 = .000416; Q = 360; ^ = 45°;

and n = .025; and must find x', y' , and z'. For simphcity,

let j^o denote -^F; then, from Q = Fv, we have

Fov =Sm; (9)

and from eq.^, R'^^lS.lOFo; (10)

while ?; =A Vj^'s gives v^ = A'^s^R'^ ; i.e.,

v4 = o.0000001725A4i^'2 (H)
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Eliminating R' and F from (11), by aid of (9) and (10),

we find i^o^ = 71,000,000 -^A4 (12)

We must now solve by trial, since A depends on the un-

known R'. With the round number 100 for A, for first

trial, we obtain i^o^ = 0.710, i.e., i^p - 0.9338 sq. ft.; for

which [see eq. (10)], R' would be = Vl3.7X 0.9338 = 3.57 ft.

The table on p. 761 gives (for R' = 3.57 ft., n = .025, and

s = .000416) the value 74 for A, which on being placed in

eq. (12) furnishes a second approximation for Fq, viz.:

Fo = 1.188 sq. ft.; and from this, again, we find R' =4.03 ft.

from eq. (10), and a value of 76 for A from the table. With

76 for A, in eq. (12), we have finally (without need of

further revision) R'=4.00 ft.; and hence a:' = 8 ft., ?/' = 6.54,

and 2' = 22.54 ft. [eqs. (5) and (6)]. [By the use of dia-

grams (see foot p. 759) a much briefer solution is possible.]

545. Variable Motion.—If a steady flow of water of a de-

livery Q, = I^v, — constant, takes place in a straight open

channel the slope of whose bed has not the proper value to

maintain a " uniform motion,''^ then " variable motion'''' ensues

(the flow is still steady, however); i.e., although the mean
velocity in any one transverse section remains fixed (with lapse

of time), this velocity has different values for different sections;

but as the eq. of continuity,

Q=zFv = F{o^ = F^v, , etc.,

«till holds (since the flow is steady), the different sections

have different areas. If,

Fig. 616, a stream of

water flows down an

inclined trough without

friction, the relation

between the velocities

Vq and -y, at any two
Fig. 616. sectious and 1 will be

i;he same as for a material point sliding down a guide without

friction (see § 79, latter part), viz. :

2g
~ 2a^^ ' m
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an equation of heads (really a case of Bernoulli's Theorem,

§ 492). But, considering friction on the bed, we must sub-

l V
'

tract the meanfriction-headf -^^ . -^ [see eqs. (3) and (3'),

§ 542] lost between and 1 ; this friction-head may also be
7 3

written thus: f -^-^ ; and therefore eq. (1) becomes

which is the formula for variable motion • and in it I is the

length of the section considered, which should be taken short

enough to consider the surface straight between the end-sec-

tions, and the latter should differ but slightly in area. The
subscript m may be taken as referring to the section midway
between the ends, so that v^ = ^{v^^ -\- v,"). The wetted pe-

rimeter w^ = ^{w, -j- w^, and ^^ = ^{I^^+ ^i)* Hence eq.

(2) becomes

'^-2^"2^+ -^IT'^I 2^' • •
^^>

and again, by putting v^= Q-r- F^, v,= Q-irF^, we may

write

rl 11 fl{w,+ w;) (l 1 \1Q\
IF,' F,''^2' F,-\-F, \F;'^F,yj2g''^ '

whence

Q= ,
^^

(6)
/I 1,1 /^K + ^0 r 1

,
11

y F," Fy2' F,-\-F, 'iFy F,'\

From eq. (4), having given the desired shapes, areas, etc., of

the end-sections and the volume of water, Q, to be carried per

nnit of time, we may compute the necessary fall, A, of the eur-

icacC; in length = Z; while from eq. (5), having observed in an

actual water-course the values of the sectional areas F^ and ^,5

the wetted perimeters w^ and ««, , the length, = 4 of the pofc-
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tion considered, we may calculate Q and thus gauge the stream

approximately, without making any velocity measurements.

As to the value of/", we compute it from eq. (6), § 54:2b,

using for R a mean between the values of the hydraulic radii

of the end-sections.

546. Bends in an Open Channel.—According to Humphreys
Abbot's researches on the Mississippi River the loss of

due to a bend may be put

(1)

in which v must be mft. jper sec, and 6, the angle ABC, Fig.

617, must be in ^-measure, i.e. in radians.

The section F must be greater than 100

sq. ft., and the slope s less than .0008. v

is the mean velocity of the water. Hence

if a bend occurred in a portion of a

stream of length I, eq. (3) of § 542 be-

comes

Pig. 617.

while eq. (2) of § 545 for variable motion would then become

2^ 2^^

(t) and d as above.) (For " radian" see p. 544.)

547. Equations for Variable Motion, introducing the DepthSo

—Fig. 618. The slope of the bed being sin a (or simply or,

9r meas.), while that of the surface is

different, viz.,

. sin /? = 5 = A -T- ^,

we may write

Pig. 6ia
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in which d^ and d^ are the depths at the end-sections of the

portion considered (steady flow with variable motion). With

these substitutions in eq. (4), § 545, we have, solving for I,

d-d -(^-l-\^

fw^ (1 ^\Q' .

'
' ' ' \ )

From which, knowing the slope of the bed and the shape

and size of the end-sections, also the discharge Q, we may
compute the length or distance, I, between two sections whose

depths differ by an assigned amount {d„ — d^). But we can-

not compute the change of deptn for an assigned length I from

(6). However, if the width h of the stream is constant^ and

the same at all depths ; i.e., if all sections are rectangles hav-

ing a common width ; eq. (6) may be much simplified by intro-

ducing some approximations, as follows : We may put

1 \\Q' _ F; - F,' Q' _ (F. - FXK + F,-^ <
f: F:J2g f:f: 2^

d: 2g
'

und, similarly,

F: '2g

approx.
_2{d,~d:) v:

d. '2g'

w^ (1 iw ^ w^{f:+f,\ v:
+-^J^ =

F,+F\F: ' F,^)2g {F, + F,)F; 2g

which approx. = ^-A\

Hence by substitution in eq. (6) we have

{d,-d,)[l-^-.^/-l
y_ L d, 2gJ

'^-TT^~ Sin or

d,b 2g

fO

547a. Backwater.*—Let us suppose that a s*^eady flow has

been proceeding with uniform motion (i.e., the surface parallel

* The subject of backwater is more fully treated in the author's

"Hydraulic Motors," pp. 226-239.
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to the bed) in an open channel of indefinite extent, and that a

vertical wall is now set up across the stream. The water rises

and flows over the edge of the wall, or weir, and after a time

a steady flow is again established. The depth, y^, of the water

close to the weir on the up-stream side is greater than d^ , the

original depth. We now have " variable motion " above the

weir, and at any distance x up-stream from the weir the new
depth 2/ is greater than d^. Tliis increase of depth is called

backwater, and, though decreasing up-stream, may be percep-

tible several miles above the weir. Let s be the slope of the.

original uniform motion (and also of present bed), and -y the

velocity of the original uniform motion, and let A;=--.

Then, if the section of the stream is a shallow rectangle of

constant width, we have the following relation (Kankine) :

1
a? = —

s

where is a function of —-, as per following table :

2/o-y+ «-2^•)(0-0„) (1)

For ^ = 1.0

4> = ca

1.10

.680

1.20

.480

1.30

.376

1.40

.304

1.50

.255

1.60

.218

1.70

.189

Fori- =1.80
da

0= .166

1.90

.147

2.00

.132

2.20

.107

2.40

.089

2.60

.076

2.80

.065

3.0

.056

0„ is found from ^-,' precisely as from ^, by use of the table.

With this table and eq. (1), therefore, we can find a?, the dis-

tance ("amplitude of backwater") from the weir of the point

where any assigned depth y (or " height of backwater," y— d^
will be found.

For example. Prof. Bowser cites the case from D'Aubuis-

soTi's Hydraulics of the river Weser in Germany, where the

erection of a weir increased the depth at the weir from 2.5 ft.

to 10 ft., the fiow having been originally "uniform" for 10

miles. Three miles above the dam the increase {y — d^ of

depth was 1.25 ft., and even at four miles it was 75 ft.
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KINETICS OF GASEOUS FLUIDS.

548. Steady Flow of a Gas.—[N.B. The student should now
review § 492 up to eq. (5).] The differential equation from
which Bernoulli's Theorem was derived for any liquid, with-

outfriction, was [eq. (5), § 492]

- 1 1
• - vdv -\-dz-\— dp=zO^ (A)

and is equally applicable to the steady flow of a gaseous fluid,

but with this difference in subsequent work, that the heaviness,

y (§ ^)-) of the gas passing different sections of the pipe or

stream-line is, or iriay be, different (though always the same at

a given point or section, since the flow is steady). For the

present we neglect friction and consider the flow from a large

receiver, where the great body of the gas is practically at rest,

through an orifice in a thin plate, or a short nozzle with a

rounded entrance.

In the steady flow of a gas, since y is different at different

points, the equation of continuity takes the form

Flow of lueightper time-rmit = F^v^y^ — F^v^y^ = etc. ; . {a)

i.e., the weight of gas passing any section, of area F, per unit

of time, is the same as for any other section, or Fvy = con-

stant, y being the heaviness at the section, and v the velocity.

549. Flow through an Orifice—Remarks.—In Fig. 619 we
have a large rigid receiver containing gas at some tension, j9„

higher than that, p^, of the (still) outside air (or gas), and at

some absolute temperature Tn, and of some heaviness y,^; that

is, in a state n. The small orifice of area F being opened, the

gas begins to escape, and if the receiver is very large, or if the

supply is continually kept up (by a blowing-engine, e.g.), after

773
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Fig. 619.

a very short time the flow becomes steady. Let nm represent

any stream-line (§ 495) of the flow. According to the ideal

subdivision of this stream-line into

laminae of equal mass or weight (not

equal volume, necessarily) in estab-

lishing eq. (A) for any one lamina,

each lamina in the lapse of time dt

moves into the position just vacated

by the lamina next in front, and

assumes precisely the same velocity^

'pressure^ and volume {and there-

fore heaviness) as that front one had at the beginning of the

dt. In its progress toward the orifice it expands in volume,

its tension diminishes, while its velocity, insensible at n^ is

gradually accelerated on account of the pressure from behind

always being greater than that in front, until at m, in the

" throaV of the jet, the velocity has become -y^, the pressure

(i.e., tension) has fallen to a value jprn,-, and the heaviness has

changed to y^.^. The temperature T^ (absolute) is less than

T^, since the expansion has been rapid, and does not depend

on the temperature of the outside air or gas into which efflux

takes place, though, of course, after the effluent gas is once

free from the orifice it may change its temperature in time.

We assume the pressure j!?^ (in throat of jet) to be equal to

that of the outside medium (as was done with flow of water),

so long as that outside tension is greater than .52Tj?„; but if it

is less than .527 p>n aud is even zero (a vacuum), experiment

seems to show that j?„i remains equal to 0.527 of the interior

tension p^: probably on account of the expansion of the

effluent gas beyond the throat, Fig. 620, so

that although the tension in the outer edge,

at «, of the jet is equal to that of the outside

medium, the tension at m is greater because

of the centripetal and centrifugal forces devel-

oped in the curved filaments between a and

(See § 553.)

550. Flow through an Orifice; Heaviness assumed Constant

during Flow. The Water Formula.—If the inner tension j5„ ex-

FiG. 620.

m
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ceeds cne outer, ^^, but slightly, we may assume that, like

water, the gas remains of the same heaviness during flow.

Then, for the simultaneous advance made by all the laminae or

a stream-line, Fig. 619, in the time dt^ we may conceive an

equation like eq. (-4) written out for each lamina between n
and Wj and corresponding terms added ; i.e.,

{For orifices) .... -^X'^dv
-\-
Jjz ^ J^ y^^' ' ^^^

In ^;'ei]eral, y is different in the different lamina, but in the

present case it is assumed to be the same in all; hence, with

m as datura level and li =:; vertical distance from n to m, we
have, ham. eq. {B\

'^—^ + 0^A4-^ — ^ = 0. . . . (1)
2g ^g y y

But we may put v„ = ; while A, even if several feet, is

small compared with-^— — . E.g., with t?,,^ = 15 lbs. per
y y

sq. in. and p^, = 16 lbs. per sq. in., we have for atmospheric

air at freezing temperature, with ;-= (16 -^ 14,7 ) X .0807= .0880^

lbs. /cub. ft.,

&_P==l^><Mf_l^><111.1636 ft.

J y .0880 .08«0

Hence, putting v^ = and A == in eq. (1), we have

'o-J JPn
—Pm i Waterformula

',
for small

\ /on

2r;
~

y^ '
' '

\ difference ofpressures^ only. \
'

' ' ^ '

The interior absolute temperature T^ being known, the y^

(interior heaviness) may be obtained from yn =Pnyo^o ~^ ^npo

(§ 472), and the volume of flow per unit of time then obtained

(fir.?t solving (2) for v^^) is

Vni "~ -^mVm j \y)

where Fm is the sectional area of the jet at m. If the mouth-

piece or orifice has well-rounded interior edges, as in Fig. 641,
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its pectional area ^may be taken as the area F^. But if it is

an orifice in "thin plate," putting the coefficient of contraction

^-. O^ 0.60, we have

F^=GF= 0.60 F', and Q„, = 0.60 Fv^,, . . (4)

This volume, ^„j, is that occupied by the flow per time-unit

when in state m, and we have assumed that x^ = /n j hence

th.i weight offlow per time-unit is

G^ = QmYm — F^'o^y^ = F^v,,,y^. . . .
•

(5)

Example.—In the testing of a blowing-engine it is found

capable of maintaining a pressure of 16 lbs. per sq. inch in a

large receiver, from whose side a blast is steadily escaping

through a "tbin plate" orifice (circular) having an area ^=4
sq. inches. The interior temperature is 30° Cent, and the out-

side tension 15 lbs. per sq. in.

Required the discharge of air per second, both volume and

weight: The data are : j?^ = 18 lbs. per sq. in., T„ = 303°

Abs. Cent., J^= 4 sq. inches, and j9^ = 15 lbs. per sq. in. Use

ft.-lb.-sec. system.

First, the heaviness in the receiver is

r.-^- Sra=^- fix.0807 = .079 lbs. per cub. ft.

Then, from eq. (2),

L Vn-Vr. |
2X32.2[144X16-144X151^-=\2y--— =^( 0:079

= 342.6
feet

J^
^ U.Wit; I per sec.

(97 per cent of this would be more correct on account of

friction.)

.-. Q^=i^mV^= .6i^^^= i|-T!iX342.6 = 5.71 cub. ft. per sec.

at a tension of 15 lbs. per sq. in., and of heaviness (by

hypothesis) = .079 lbs. per cub. ft. Hence weight

=(?= 5.71 X.079= 0.461 lbs. per sec.
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The theoretical power of the air-compressor or blowing-en-

gine to maintain this steady flow can be computed as in Exam-
ple 3, § 483.

651. Flow through an Orifice on the Basis of Mariotte's Lawj
or Isothermal Efiliix.^—Since in .reality the gas expands during

flow through an orifice, and hence changes its heaviness (Fig.

619), we approximate more nearly to the truth in assuming

this change of density to follow Mariotte's law, i.Co, that the

heaviness varies directly as the pressure, and thus imply that

the temperature remains unchanged during the flow. We
again integrate the terms of eq. (j5), but take care to note that,

now, y is variable (i.e., different in different laminae at the

same instant), and hence express it in terms of the variable p
(from eq. (2), § 475), thus

:

r = (rnH-i?„)i?.

_ Therefore the term / -^ of eq. {B) becomes

and, integrating all the terms of eq. {B), neglecting h, and caU-

ing Vn zero, we have

'^ _. Pn
I

Pn j eflux hy Mariotte's \ ^(^\

2g
~

Yn Pm
' ' '

\ -^^^ through orifice f

'

As before, ^n = ^f • ^^ n > and the flow of volume per time-
-^ n Pa

unit at m is

wliile if the orifice is in thin plate, F^ may be put = .60 i^,

and the

weight of the flow per time-unit = G — F^v^y^. . (4)

If the mouth-piece is rounded, F^ = F= area of exit orifice

of mouth-piece.
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Example.—Applying eq. (2) to the data of the example in

§ 550, where yn was found to be .079 lbs. per cub. ft., we
have [ft., lbs., sec]

In ym

=^2X32.2x^^^^X2.3025xlogio[^] .

= 348.7

ft. p. sec.

• •• Q^= i^^Vrn = 0.60 X^IjX 348.7 = 5.81 cub. ft. per sec.

Since the heaviness at m is, from Mariotte's law,

V 15
rm=— rn = T^ of .079, i.e., rm= .0741 lbs. per cub. ft.,

hence the weight of the discharge is

G = QmYm = 5.81 X .0741 = 0.430 lbs. per sec,

or about 4^ per cent less than that given by the "water for-

mula." If the difference between the inner and outer ten-

sions had been less, the discrepancy between the results of

the two methods would have been smaller.

552. Adiabatic Efflux from an Orifice.—It is most logical to

assume that the expansion of the gas approaching the orifice,

being rapid, is adiabatic (§ 478). Hence especially when the

difference btween the inner and outer tensions is considerable)

it is more accurate to assume y to vary according to Poisson's

Law, eq. (1), p. 623; i.e., (p-pj = (r-^rJ^'^^; in inte-

grating eq. (B) of p. 775. Then the term

I
— Wlll=-^ p -'!Hp= [p^-29-p„-29J

t/n / In Jn In
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ana eq. {B), neglecting h as before, and with v^ = 0, becomes

(See Fig. 619)

'w-=——~ 1
1 "~

( )
• iAdiabaticflow; orifice?) . (1)

Having observed jp^ and T^ in the reservoir, we compute

y^ = ^^° ° (from § 472). The gas at m,, just leaving the

oritice, having expanded adiabatically from the state n to the

state m, has cooled to a temperature T„i (absolute) found thus

(§ 478),

T^ = TJ^
, (2)

and is of a heaviness

r.-rn(^)'7 (3)

and the flow per second occupies a volume (immediately on

exit)

and weighs

^ = F^'^mYm ' ...... (5)

Example 1.—Let the interior conditions in the large reser-

voir of Fig. 619 be as follows {state n) : p^ = 22^ lbs. per sq.

in., and T^ = 294° Abs. Cent, (i.e., 21° Cent); while ex-

ternally the tension is 15 lbs. per sq. inch, which may be taken

as being ^ p^ = tension at m, the throat of jet. The opening

is a circular orifice in " thin plate" and of one inch diameter.

Required the weight of the discharge per second [ft., lb., sec;

^^ = 32.2].

22 5X144 273
First, Tn=

-^2^xl4:4:
' 294

^•^^^^^^•-'--'^^ ^^^' P^^ ^^^' ^*-

Then, from (1),

42X32.2X3.44X22.5X144 ^^=\ qJY5
[!-(§) -29] = 833 ft. per sec.



780 MECHANICS OF ENGINEERING.

Now F = i7r(l)2 _ ,00546 sq. ft.

.-. Q^ = Ci^v^ = .60Fv^ = 0.60 X.00546X833 = 2.73

cub. ft. per sec, at a temperature of [eq. (2)]

Trn = 294 (f )
-29 = 261° Abs. Cent. = - 12° Cent.*

and of a heaviness [eq. (3)]

r,^
= 0.115(f)-7i = 0.0862 lbs. per cub. ft.,

so that the weight of flow per sec.

=G = Q^rm = 2.73 X.0862 = .235 lbs. per sec.

Example 2.—Let us treat the example already solved by the

two preceding approximate methods (§§ 550 and 551) by the

present more accurate equation of adiabatic flow, eq. (1).

The data were (Fig. 619)

:

'Pn =16 lbs. per sq. in.; 7'„ = 303° Abs. Cent.;

p^ = 15 '' " "
; and F = 4 sq. inches

[F being the area of orifice], yn was found = .079 lbs. per

cub. ft. in § 550; hence, from eq. (1),

,/2x 32.2X3.44X18X144 ,^ is
Vm=\

079
[l-(l6)] = 348.5 ft. per sec.

From (4),

Qm-F^v„, = .6Fvm=-.QX^XM8.5 = 5.Sl cub. ft. per sec;

and since at m it is of a heaviness

rm= -079
(fj--!

= .0755 lbs. per cub. ft.,

we have weight of flow per sec.

= (? = Qmrm = 5.81 X.0755 = 0.439 lbs. per sec

* By the impact of the effluent air on the outside air, with extinction of

velocity, the temperature rises again.
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Comparing the three methods for this problem, we see that

By the" ivater formula," . . . (r = 0.451 lbs. per sec.

" isothermal formula, . . G^ = 0.430 " ''

" adiabatic formula, . . G = 0.439 " "

553. Practical Notes. Theoretical Maximum Flow of

Weight.—If in the equations of § 552 we write for brevity

Pm-^Pn= ^ we derive, by substitution from (1) and (3)

in (5),

Weight of flow

perunitof time j
-e-<3™r»=J»V6:8%S^l-r^»]ix-. (1)

This function of x is of such a form as to be a maximum for

:C=(p^-Pn) = (.830)3-44 = .527; ... (2)

i.e., theoretically, if the state n inside the reservoir remains

the same, while the outside tension (considered= p^ of jet,

Fig. 619) is made to assume lower and lower values (so that

^'i—Vm^Vni diminishes in the same ratio), the maximum flow

of weight per unit of time will occur when p^= .527p^, a

little more than half the inside tension.

Prof. Cotterill says (p. 544 of his " Applied Mechanics")

:

" The diminution of the theoretical discharge on diminution

of the external pressure below the limit just now given is an

anomaly which had always been considered as requiring ex-

planation, and M. St. Tenant had already suggested that it

could not actually occur. In 1866 Mr. R. D. Napier showed

by experiment that the weight of steam of given pressure dis-

charged from an orifice really is independent of the pressure

of the medium into which efflux takes place ^
; and in 1872

Mr. Wilson confirmed this result by experiments on the reac-

tion of steam issuing from an orifice."

" The explanation lies in the fact that the pressure in the

* When the difference between internal and external pressures is great,-'

should be added.
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centre of the contracted jet is not the same as that of the sur-

rounding medium. The jet after passing the contracted sec-

tion suddenly expands, and the change of direction of the fluid

particles gives rise to centrifugal forces" which cause the pres-

sures to be greater in the centre of the contracted section than

at the circumference ; see Fig. 620.

Prof. Cotterill then advises the assumption that j?^=.527^„
(for air and perfect gases) as the mean tension in the jet at m
(Fig. 619), whenever the outside medium is at a tension less

than .h'^ilj)^. He also says, "Contraction and friction must

be allowed for by the use of a coefficient of discharge the

value of which, however, is more variable than that of the

corresponding coefficient for an incompressible fluid. Little is

certainly known on this point." See §§ 549 and 554.

For air the velocity of this maximumflow of weight is

Vel. of max. G = 997 a /^1 ft. per sec, . (3)

where T^ = abs. temp, in reservoir, and T^ = that of freezing

point. Rankine's Applied Mechanics ( p. 584) mentions ex-

periments of Drs. Joule and Thomson, in which the circular

orifices were in a thin plate of copper and of diameters 0.029

in., 0.053 in., and 0.084 in., while the outside tension was

about one half of that inside. The results were 84 per cent

of those demanded by theory, a discrepancy due mainly, as

Rankine says, to the fact that the actual area of the orifice was

used in computation instead of the contracted section; i.e., con-

traction was neglected.

554. Coefficients of Efflux by Experiment. For Orifices and

Short Pipes. Small Difference of Tensions.—Since the discharge

through an orifice or short pipe from a reservoir is affected

not only by contraction, but by slight friction at the edges,

even with a rounded entrance, the theoretical results for the

volume and weight of flow per unit of time in preceding para-

graphs should be multiplied both by a coefficient of velocity

and one for contraction C, as in the case of water ; i.e., by a

coefficient of ejflux ju, = cf)C. (Of course, when there is no
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contraction, G =. 1.00, and then /« = as with a well-rounded

mouth-piece, for instance, Fig. 541, and with short pipes.)

Hence for practical results, with orifices and short pipes, we
should write for the weight offlow per unit of tivrifo

Vn
(1)

(from the equations of § 552 for adiabatic flow, as most acca-

rate; j?^ -^Jpn ™a.y range from \ to l^OO). F ^=^ area of orifice,

or of discharging end of mouth-piece or short pipe. ;/„ =
heaviness of air in reservoir and =: T^p^y^ ~- T^p^, eq. (13) of

§ 437 ; and fx = the experimental coeflScient of efflux.

From his own experiments* and those of Koch, D'Aubuis-

8on, and others, Weisbach recommends the following mean
values of /< for various mouthpieces, when p^ is not more than

\ larger than jv^ (i.e., about 17 fo larger), for use in eq. (1):

1. For an orifice in a thin plate, ....... /^=0.56

2. For a short cylindrical pipe(innercorners not rounded),yM=0.75

3. For a well-rounded mouth-piece (like that in Fig. 541), yu=0.98

4:, For a short conical convergent pipe (angle about 6°), /i=0.92

Example,—(Data from Weisbacli's Mechanics.) "If the

Bum of the areas of two conical tuyeres of a blovring-machine

J8 i''^ 3 sq. inches, the temperature in the reservoir 15° Cent.,

the height of the attached (open) mercury manometer (see

Fig. 464) 8 inches, and the height of the barometer In the eX'

temal air 29 inches," we have (ft., lb., sec.)

^=r:-JL_=??; r, = 288° Aba. Cent.

;

p^ 29+ 3 32 **
'

Pn ^ (ft) 1*-^ X 144 lbs. per sq. ft.

;

y^= |||.|f X 0.0807 = 0.0816 lbs. per cnb. ft,

while F=^ sq. ft. and (see above) ^= .92 ; hence G=

•^2(i|^)(g)-
V64.4 X 3.44(|) X 14.7 X 144 X .0816[1 - (g)'^^]

;

* See also tlie Engineerii g Record of Oct. 1901, p. 409, where an account

is given of experiments on tlie flow of air through orifices made at the

Mass. Inst, of Technology. EHegner's researches are referred to by Ruehl-

mann in his nydromecJianik
. p. 675.
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i.e., (t = .606 lbs. per second; wliicli will occupy a volume

Vo=-G^ro=G-^. 0807= 7.51 cub. ft.

at one atmosphere tension and freezing-point temperature,

while at a temperature of ^^= 288° Abs. Cent, and tension of

Pot= 3u
of o^^® atmosphere" (i.e., in the state in which it was

on entering the blowing-engine) it occupied a volume

7= ||-gx7.51==8.20 cub. ft.

(This last is Weisbach's result, very nearly, obtained by an

approximate formula.

)

>r Orifices and Short Pipes for a

targe Difierenee of Tension.—-For values > ^ and < 2, of the

ratio Pji : p^, of internal to external tension, "Weisbaeh's ex-

periments with circular orifices in thinplate, of diameters (= d)

from OA inches to 0.8 inches, gave the following results

:

Pn'.pm =
ir <Z= .4*"-; /u =

1.05
.55

.56

1.09
.59

.57

1.40
.69

.64

1.65
.73

.68

1.90
.76

3.00
.78

.73

Whence it appears that /j. increases somewhat with the ratio of

Pn to Pra > ^"^ dccreascs slightly for increasing size of oriiice.

With short cylindrical pijpes, internal edges not rounded^

and three times as long as wide, Weisbach obtained /* as

follows

:

Pn-Pm __ 1.05 1.10 1.30 1.40 1.70 1.74
diam. = .4''^- /« = .73 .77 .83

" ~ .6™- IJ- = 81 .83

M = .83

"When the inner edges of the 0.4 in, pipe were slightly

founded, }x was found = 0.93 ; while a well-rounded mouth-

piece of the form shown in Fig. 641 gave a value fx — from

.965 to .968, for p^ : p^ ranging from 1.25 to 2.00. These

values of fi are for use in eq. (1), above.

556. To find the Discharge when the Intemal Pressure la

measured in a Small Reservoir or Pipe, not ninch larger than th«
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Orifice.-- -Fig. 621. If the internal pressure p^, and tempera,

ture Tnt must be measured in i ^ li

small reservoir or pipe, n^ whose AffU It

sectional area t\ is not verj large — —^^^r^~^^-l^ -^-

corapared with that of the oritice, -^^^^^^^Z^![n^^-^^^n
F, (or of the jet. F^ ,) the velocity ~' ' —\?7^^sss=g^

Vn, at n (velocity of approach) can- fig. esi.

not be put = zero. Hence, in applying eq. {B\ § 550, to the

successive laminse between n and m^ and integrating, we shaiJ

have, ior odiahatiG steadyflow.

vj v^ 3.4423,'^hm • • • •
^^>

25^ 2sr r

instead of eq. (1) of § 552. But from the equation of continuity

for steady flow of gases [eq. (a) of § 548], F,{Vr,rn =F v^Tm)

hence v^ = -^^
""^

'^n?, while for an adiabatic change from n
" n In

to 711, — ={i-^j
; whence by substitution in (1), solving for

Vm, we have

4
. 3.44j9,
^9 -^—

v^=^- Vn

^^_(FA'(vA'-''
^^ n' \Pn

As before, from §§ 472 and 478,

(2)

_'Pn^Q fO\
Tn — ^ m ' To \^)

VO -L n

and rm=(—^) Tn (4)

Having, observed pn, Pm, and Tn, then, and knowing the

area F of the orifice, we may compute ;-„, 7-^, and i;^, and

finally the

Weight offlow per time-unit =G = nFvjnTm, • • • (5)
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taking fA from § 554 or 555, In eq. (2) it must be remembered

that for an orifice in " thin plate," F^, is the sectional area of

the contracted vein, and = CF', where C may be put = •— .

Example.—If the diameter of AB, Fig. 621, is 3|- inches.

and that of the orifice, well rounded, = 2 in. ; if p^ = 1-j^ at-

mospheres = if X 14.7 X 144 lbs. per sq. ft., while Pm = -^oi

an atmos., so i;hat ^^ = i^, and T^ = 283° Abs. Cent.,—lO'

,Pn

quired the discharge per second, using the ft., lb., and sec

From eq. (3),

;/^ = i|.||| X 0.080T « .08433 lbs. per cub. ft,";

whence (eq. (4))

^^ = (li)-7i^^= .0749 lbs. per cub. ft."

Then, from eq. (2),v =

^l

64.4X3.44X15.925X144/^

Mm
= 547.3 ft. per sec;

I-©-") -[/i-(S)^©^-"]

.-. G = 0.98|(^T547.3X.0749 = .876 lbs. per sec.

567. Transmission of Compressed Air; through very Long

Level Pipes. Steady Flow.

Case I. Whe?i the difference between the tensions in the

reservoirs at the ends of the pipe is small.—Fig. 622. Uodef

\9^« \,
* * •*«• *••'• .*

:^7^:-.
"J i.'' •

.-/...•.•-.- • '.v.-,-.

U 1-

Fig. 682.

>\

these circumstances it is simpler to employ the form of fornmla

that would be obtained for a liquid by applying Bernouiii*8

Theorem, taking into account the " loss of head " occasioned
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by the friction on the sides of the pipe. Since the pipe is

very long, and the change of pressure small, the mean velocity

in the pipe, -y', assumed to be nearly the same at all points

along the pipe, will not be large ; hence the difference be-

tween the velocity-heads at n and m will be neglected ; a cer-

tain mean heaviness y' will be assigned to all the gas in the

pipe, as if a liquid.

Applying Bernoulli's Theorem, with friction, § 516, to the

ends of the pipe, n and m, we have (as for a liquid)

<+ A,+ o =|+ ^»+ 0-4/|-g.. . (1)

Putting (as above mentioned) 'oj —• v^ = 0, we have, more
simply,

,

/ " '^ d'2g ^'

The value of f as coefficient of friction for air in long

'pipes is found to be somewhat smaller than for water ; see next

paragraph.

558. Transmission of Compressed Air.* Experiments in the St.

Gothard Tunnel, 1878.—[See p. 96 of Yol. 24 (Feb. '81), Yan
^Nostrand's Engineering Magazine.] In these experiments,

the temperature and pressure of the flowing gas (air) were ob-

served at each end of a long portion of the pipe whieli delivered

the compressed air to the boring-machines three miles distant

from the tunnel's mouth. The portion considered was selected

at a distance from the entrance of the tunnel, to eliminate the

fluctuating influence of the weather on the temperature of the

flowing air. A steadyflow being secured by proper regulation

of the compressors and distributing tubes, observations were

made of the internal pressure {p\ internal temperature {T), as

well as the external, at each end of the portion of pipe con-

sidered, and also at intermediate points ; also of the weight

of flow per second G ^= QoYoi measured at the compressors

under standard conditions (0° Cent, and one atmos. tension).

Then knowing the p and T at any section of the pipe, the

* For experiments at Paris in 1891 see Proc. Inst. Civ. Engineers, vol,

105, p. 180; and Engineering News of Dec. 1889, p. 556. See also foot-note

on next page.
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heaviness y of the air passing that section can be computed

and the velocity v= G -ir Fy, F beingrfrom^- =
L n i?o TA
the sectional area at that point. Hence the nteoM velocity v\^

and the mean heaviness y\ can be computed for this portion

of the pipe whose diameter = d and length = I. In the ex-

periments cited it was found that at points not too near the

tunnel-mouth the temperature inside the pipe was always

about 3° Cent, lower than that of the tunnel. The values of

yin the different experiments were then computed from eq.

(2) of the last paragraph ; i.e.,

Y
(2)

all the other quantities having been either directly observed,

or computed from observed quantities.

THE ST. GOTHARD EXPERIMENTS.

[Concrete quantities reduced to English uniU^

No.
I

(feet.)

d

(ft.)

V
(lbs. cub.

ft.)

Atmospheres. Pn-Pm
lbs. sq. in.

V
ft. per sec.

mean
temp.
Cent.

*

Pn Pm

1

2
3
4
5
6

15093
15093
7 5093
1713
1713
1713

f
1

0.4058
0.3209
.2803
.3765

.3009

.3641

5.60
4.35
3.84
5.24
4.13
3.65

5.34
4.13
3.65
5.00
4.06
3.54

5.39
3.23
3.79
3.53
1.03
1.54

19.33
16.30
15.55
37.13
30.83
39.34

21°

31°

31°

26.5
36.5
36.5

.0035

.0038

.0041

.0045

.0034(?)

.0045

In the article referred to (Yan l^ostrand's Mag.) y is not

computed. The writer contents himself with showing that

Weisbach's values (based on experiments with small pipes and

high velocities) are much too great for the pipes in use in the

tunnel.*

"With small tubes an inch or less in diameter Weisbach

found, for a velocity of about 80 ft. per second,/ =.0060;

for still higher velocities/ was smaller, approximately, in ao*

eordance with the relation

f- .0542

'^v' (in ft. per sec.)

* See -also experiments described in Engineering News, Nov. 3, 1904, p.

387. In that article the quantity called / is the/ of this chapter divided

by 64.4.
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On p, 3T0, vol. XXIV, Yan ISTostrand's Mag., Prof. Robinson

of Ohio mentions other experiments with large long pipes.

From the St. Gothard experiments a value oif= .004 may
be inferred for approximate results with pipes from 3 to 8 in.

m diameter.

Example.—It is required to transmit, in steady flow, a supply

of {r = 6.456 lbs. of atmospheric air per second through a pipe

30000 ft. in length (nearly six miles) from a reservoir where

the tension is 60 atmos. to another where it is 5.8 atmos., the

mean temperature in the pipe being 80° Fahr., = 24° Cent,

(i.e. = 29Y° Abs. Cent.). Required the proper diameter of

pipe ; 6? = ? The value /"= .00425 will be used, and the ft.-

Ib.-sec. system of units. The mean volume passing per second

in the pipe is

Q'=(?-^r' (3)

The mean velocity may thus be written :
-y' = -^
/_^'_ Q'

iTtd'
(^)

The mean heaviness of the flowing air, computed for a mean

tension of 5.9 atmospheres, is, by § 472,

^ -llTi^ • Wi ^ -^^^^ = ^-^^^ ^'''' P"" ^"^- ^*-

'

and hence, see eq. (3),

at tension of 5.9 atmos., and temperature 29Y° Abs. Cent.

Now, from eq. (2),

JPn— Vm _ 4/ l_

y' 2g' d'

whence

d" . (5)
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and hence, numerically,

6 / 4 X .00425 X 0.^31 X 30000 X (14.74)' _
.,
qq.

V (•'^854y[14.7 X 144(6.00 - 5.80)]2 X 32.2 ~ •^•^^^e®^-

559. (Case II of § 557) Long Pipe, with Considerable Differ-

ence of Pressure at Extremities of the Pipe. Flow Steady.—Fig.

623. If the difference between the end-tensions is compara-

tively great, we can no longer deal with the whole of the air

r A:

Fig. 623.

in the pipe at once, as regards ascribing to it a mean velocity

and mean tension, but tnust consider the separate lamincBy

such as AB{2k short length of the air-stream) to which we may
apply eq. (2) of § 55 \ A and B corresponding to the n and

m of Fig. 622. Since the^„— ^^, Z, y', and v' of § 557

correspond to the —djp^ ds, y, and v of the present case (short

section or lamina), we may write

(1)

But if ^ = weight of flow per unit of time, we have at any

section, Fvy = G (equation of continuity) ; i.e., v = G -^ Fy^
whence by substitution in eq. (1) we have

dp _^ G'ds
I.e. ydp

^gF'd
ds. (2)

Eq. (2) contains three variables, y^ p, and s (= distance of

lamina from n'^. As to the dependence of the heaviness y on

the tension j!? in different laminae, experiment shows that in most

cases a uniform temperature is found to exist all along the

pipe, if properly buried, or shaded from the sun ; the loss of

heat by adiabatic expansion being in great part made up by

the heat generated by the friction against the walls of the
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pipe. This is due to the small loss of tension per unit of

length of pipe as compared with that occurring in a short dis-

charge pipe or nozzle. Hence we may treat the flow as iso-

thermaL and write j? -=- y =y^^/-^- y^^, (§ 4T5, Mariotte's Law).

Hence ;k = ^-^^, which substituted in eq. (2) enables us to

- f"p^^=\M^3\P'- • • •
(^)

Performing the integration, noting that at n' p=^j[>n>, s = 0,

and at m'p ^ JPm> ^"^^ s ^ I, we have

ir-T) ' — r> >n — ^'^^' — ^ -^
isothermal flow ) ,..

-^l_Pn' I>m \ ^gd' p-"' y^,' '

\ in loug pipes )
• • W

It is here assumed that the tension at the entrance of the pipe

is practically equal to that in the head reservoir, and that at

the end {vi') to that of the receiving reservoir; which is not

strictly true, especially when the corners are not rounded. It

will be remembered also that in establishing eq. (2) of § 557

(the basis of the present paragraph), the "inertia" of the gas

was neglected; i.e., the change of velocity in passing along

the pipe. Hence eq. (4) should not be applied to cases where

the pipe is so short, or the diilerence of end-tensions so great,

as to create a considerable difference between the velocities at

the two ends of the pipe. (8ee Addendum on p. 797.)

Example.—A well or reservoir supplies natural gas at a ten-

sion of pn' = 30 lbs. per sq. inch. Its heaviness ^t 0° Cent,

and one atmosphere tension is .0484 lbs. per cub. foot. In

piping this gas along a level to a town two miles distant, a

single four-inch pipe is to be employed, and the tension in the

receiving reservoir (by proper regulation of the gas distributed

from it) is to be kept equal to 16 lbs. per sq. in. (which would

sustain a column of water about 2 ft. in height in an open

water manometer, Fig. 4 65).
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The mean temperature in the pipe being 1Y° Cent., required

the amount (weight) of gas delivered per second, supposing

leakage to be prevented (formerly a difficult matter in practice).

Solve (4) for G, and we have

First, from § 472, with T^, = T^, = 290° Abs. Cent., we
compute

&'=£.. ^' = 114x144
_
290 ^

r„, r. T. .0484 273

Hence with/" = .005,

_ , ,, y /32.2 X A[(30 X 144)--(16 X 144-)^
T Vi^; Y 4X.005 X 10560 X 46454

= 0.337 lbs. per sec.

(For compressed atmospheric air, under like conditions, we
would have G = 0.430 lbs. per second.)

Of course the proper choice of the coefficient,/ has an im-

portant influence on the result.

From the above result {G = 0.337 lbs. per second) we can

compute the volume occupied by this quantity of gas in the

receiving reservoir, using the relation ^^/ = —

.

/to'

The heaviness y^^' of the gas in the receiving reservoir is

most easily found from the relation -^^ = —', which holds
Ym' Yn'

good since the flow is isothermal. I.e., ^^-^ = 46454 ft.;

/to'

whence y^i = 0.049 lbs. per cubic foot, p^> being 16 X 144

lbs. per sq. ft.

Hence

Q^r = = -^ = 6.794 cub. ft. per sec.

Ym' U.U4ry
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It should be said that the pressure at the up-stream end of

the pipe depends upon the rate of flow allowed to take place.

With no flow permitted, the pressure in the tube of a gas-

well has in some ("ases reached the high figure of 500 or 600

lbs. per sq. in,

560. Rate of Decrease of Pressure along a Long Pipe.—Con-

sidering further the case of the last paragraph, that of a

straight, long, level pipe of uniform diameter, delivering gas

from a storage reservoir into a receiving reservoir, we note

that if in eq. (4) we retain jy,„' to indicate the tension in the

receiving reservoir, but let jp^i denote in turn the tension at

points iti the pipe successively further and further (a distance

xc) from the receiving reservoir mf ^ we may write x for I and

obtain the equation (between two variables, jp^' and x)

Vn^ —Pm^ = Const. Xos (6)

This can be used to bring out an interesting relation men-

tioned by a writer in the Engineering News of July ]887

(p. 71), viz., the fact that in the parts of the pipe more distant

from the receiving end, in\ tlie distance along the pipe in

which a given loss of pressure occurs is much greater than

near the receiving end.

To make a numerical illustration, let us suppose tlat the

pipe is of such size, in connection with other circumstances,

that the tension j:>^/ at A. a distance x == six miles from in\ is

two atmospheres, the tension in the receiving reservoir being

one atmosphere ; that is, that the loss of tension between A
and ml is one atmosphere. If we express tensions in atmos-

pheres and distances in miles, we have for the value of the

constant in eq. (6), for this case.

Const. = (4 — 1) -^ 6 = I ; {for assumed units.) . . (7)

Islow let Pn' = the tension at B^ a point 18 miles from m',

and we have, from eqs. (6) and (7), the tension at ^ = 3.16

atmospheres. Proceeding in this manner, the following set of

values is obtained

:
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Point.

F
E
B

B
A
m'

Total distance L
Distance be-

from m" itween consecu-fromm.
tive points.

Tension at
point.

Loss of ten-
sion in eacli in-

terval.

126 mi]
90 '

60 •

86 '

18 '

6 '

'

es. 86 miles.

60 "

34 "
18 "

12 "
6 "

8.00 aim.
6.78 "
5.56 "
4.35 "

3.16 "
2.00 "
1.00 "

1.22 atm.
1.22 "

1.21 "
1.19 "
1.16 "
1.00 "

If the distances and tensions in the second and fourth

columns be plotted as abscissae and ordinates of a curve, the

latter is a parabola with its axis following the axis of the pipe

;

its vertex is not at mf, however.

561. Long Pipe of Variable Diameter.—Another way of stat-

ing the fact mentioned in the last paragraph is as follows : At
the up-stream end of the pipe of uniform diameter the gas is

of much greater density than at the other extremity (the

heaviness is directly as the tension, the temperature being as-

sumed the same throughout the pipe), and the velocity of its

motion is smaller than at the discharging end (in the same

ratio). It is true that the frictional resistance per unit of

iengtli of pipe varies directly as the heaviness [eq. (1), § 510],

but also true that it varies as the sqiiare of the velocity ; so

that, for instance, if the pressure at a point A is double that

at B in the pipe of constant diameter, it implies that the

heaviness and velocity at A are double and half, respectively,

those at B, and thus the gas at A is subjected to only half the

frictional resisting force per foot of length as compared with

that at B. Hence the relatively small diminution, per unit of

length, in the tension at the up-stream end in the example of

the last paragraph.

In the pipe of uniform diameter, as we have seen, the greater

part of the length is subjected to a comparatively high ten-

sion, and is thus under a greater liability to loss by leakage

than if the decrease of tension were more uniform. The
total ^^hoojp-tension^'' (§ 426) in a unit length of pipe, also, is

proportional to the gas tension,* and thinner walls might be

employed for the down-stream portions of the pipe if the gas

* Or, rather, to its excess over that of external air.
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tension in those portions could be made smaller than as shown

in the preceding example.

To secure a more rapid fall of pressure at the up-stream end

of the pipe, and at the same time provide for the same delivery

of gas as with a pipe of uniform diameter throughout, a pipe

of variable diameter may be employed, that diameter being

considerably snialler at the inlet than that of the uniform pipe

but progressively enlarging down-stream. This will require

the diameters of portions near the discharging end to be larger

than in the unifoi-m pipe, and if the same thickness of metal

were necessary throughout, there would be no saving of metal,

but rather the reverse, as will be seen ; but the diminished

thickness made practicable in those parts from a less total hoop

tension than in the corresponding parts of the uniform pipe

more than compensates for the extra metal due to increased

circumference, aside from the diminished liability to leakage,

which is of equal importance.

A simple numerical example will illustrate the foregoing.

The pipe being circular, we may replace i^by ^nd' in equation

(4), and finally derive, G being given,

d = Const. X
I

.JP^
' Jftn' —

'=a I

—_Pn' J/m' _
. . (8)

Let A be the head reservoir, and m' the receiving reservoir,

and B a point half-way between. At A the tension is 10 at-

mospheres ; at m', 2 atmospheres. For transmitting a given

weight of gas per unit-time, through a pipe of constant diam-

ter throughout, that diameter must be (tensions in atmospheres

;

2/^„ being the length), by eq. (8),

CZ„i(.0208)i = 0.46 Cl,^. . (8),d = Cli
2

.100 - 4

If we substitute for the pipe mentioned, another having a con-

stant diameter d^ from A to B, where we wish the tension to

be 5 atmospheres, and a different constant diameter d, from B
to m', we derive similarly

d. = CLi
100 - 25

= 0.42 CU
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and

d^ = CVi
1

.25 -4 0.54 Cl^

It is now to be noted that the sum of d^ and d^ is slightly

greater than the double oi d \ so that if the same thickness of

metal were used in both designs the compound pipe would
require a little more material than the uniform pipe; but,

from the reasoning given at the beginning of this paragraph,

that thickness may be made considerably less in the down-
stream part of the compound pipe, and thus economy secured.

[In case of a cessation of the flow, the gas tension in the
whole pipe might rise to an equality with that of the head-
reservoir were it not for the insertion, at intervals, of auto-
matic regulators, each of which prevents the increase of ten-

sion on its down-stream side above a fixed value. To provide
for changes of length duo to i'lse and tall of temperature, the

pipe is laid with slight undulations.]

It is a noteworthy t eoretical deduction that a given pipe of

variable diameter connecting two reservoirs of gas at specified

pressures will deliver the same weight of gas as before, if
turned end for end. This follows from equation (3)', § 559.

With d variable, (3)^ becomes (with F =^ ^rrd")

l{-I>dp)=G^G"l |; i.e., (?= = i^^J-..
. (9)

tJn' fy

{C" is a constant.)

But /, —is evidently the same in value if the pipe be

turned end for end. In commenting on this circnmstance, we
should remember (see § 559 ) that the loss of pressure along the

pipe is ascribed entirely to friGtional resistance, and in no de-

gree to changes of velocity (inertia).

On p. 73 of the Engineering Nexos of July 1887 are given

the following dimensions of a compound pipe in actual use,

and delivering natural gas. The pressure in the head-reservoir

is 319 lbs. per sq. in.; that in the receiving reservoir, 65. For

2.84 miles from the head-reservoir the diameter of the pipe is
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8 in.; throughout the next 2.75 miles, 10 in.; while in the

remaining 3.84- miles the diameter is 12 in. At the two

points of junction the pressures are stated to be 185 and 132

lbs. per sq. in., respectively, during the flow of gas under the

conditions mentioned.

561a. Values of the Coefficient of Fluid Friction for Natural

Gas.—In the Ohio Report on Economic Geology for 1888 may
be found an article by Prof. S. W. Robinson of the University

of that State describing a series of interesting experiments

made by him on the flow of natural gas from orifices and

through pipes.* By the insertion of Pitot tubes approximate

measurements were made of the velocity of the stream of gas

in a pipe. The following are some of the results of these ex-

periments, j9j — ^a representing the loss of pressure (in lbs. per

sq. inch) per mile of pipe-length, and /"the coefficient of fluid

friction, in experiments with a six-inch pipe

:

Pi -Pi 1.00 1.50 3.25 2.50 5.75 6.25

f 0.0025 0.0037 0.0052 0.0059 0.0070 0.0060

In the flow under observation Prof. Robinson concluded

that / could be taken as approximately proportional to the

fourth root of the cube of the velocity of flow ; though calling

attention to the fact that very reliable results could hardly be

expected under the circumstances.

561b. [Addendum to § 559.] Isothermal Flow in a level pipe,

with consideration of Inertia.—In eq. (1) of p. 697 neglect dz,,

^\xt w -^F= 4: -^ d, and divide through by v\ In the second

term put G' ^ Fy' for v' and then p {y„, -^Pm) ^or y. We
now find the variables separated, and on integration for steady

flow obtain (after putting v^-^v^= Fy,^ -^ Fy^ = Pm -^Pn)>

1
fPn\ g{Pn—Pm) ^" Vm __ "¥}_

M^J- 2
•^•^-~ d'

fNotation as in § 557 with Q = FvyA,

* More recent experiments with the Pitot Tube, in measuring ths

velocity of gases in pipes, have been made in Chicago by Messrs. Dreffein

and McBurney. See Engineering News of Dec. 21, 1905, p. 660.



CHAPTEK IX.

IMPULSE AND RESISTANCE OF FLUIDS.

bt)2. The so-called " Eeaction" of a Jet of "Water flowing from

a Vesse.",—In Fig. 624, if a frictionless but water-tight ping B
be inserted in an orifice in the

vertical side of a vessel mounted

on wheels, the resultant action of

the water on the rigid vessel (as a

whole) consists of its weight G,

and a force P' = FJiy (in which

\~^' F= the area of orifice) which is

the excess of the horizontal hydro-

static pressures on the vessel wall

toward the right ( i| to paper) over

those toward the left, since the

pressure P, = Fhy, exerted on the plug is felt by the post C,

and not by the vessel. Hence the post D receives a pressure

Fig. 624.

P' = Fhy. (1)

Let the plug B be removed. A steady flow is then set up
through the orifice, and now the pressure against the post P is

%FJiy (as will be proved in the next paragraph) ; for not only

is the pressure Fhy lacking on the left, because of the orifice,

but the sum of all the horizontal components ( || to paper) of

the pressures of the liquid filaments against the vessel wall

around the orifice is less than its value before the flow began,

by an amount Fhy. A resistance R = '^Fhy being provided,

nnd the post removed, a slow uniform motion may be main-

iftined toward the right, the working force being ^Fhy = P"
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Fig. 625.

(see Fig. 625 ; B is not shown). If an insufficient resistance

be furnished before removing the post D,
the vessel will begin to move toward the

right with an acceleration, which will

disturb the surface of the water and

change the value of the horizontal force.

This force

P" =: 2i#^ ... (2)

is called the " reaction'^ of the water-jet

;

y is the heaviness of the liquid (§ 7).

Of course, as the flow goes on, the

water level sinks and the '• reaction" diminishes accordingly^

Looked upon as a motor, the vessel may be considered to be a

piston-less and valve-less water-pressure engine, carrying its

own reservoir with it.

In Case II of § 500 we have already had a treatment of the

" Reaction-wheel " or " Barker's mill," w^hich is a practical

machine operating on this principle, and will be again con-

sidered in " Hydraulic Motors." *

563. " Eeaction" of a Liquid Jet on the Vessel from which it

Issues.—Instead of slrowing that the pressures on the vessel

close to the orifice are less than they were when there was no

flow by an amount Fhy (a rather lengthy demonstration),

another method will be given, of greater simplicity but some-

what fanciful.

If a man standing on the rear platform of a car is to take np
in succession, from a basket on the car, a number of balls of

equal mass = M, and project each one in turn horizontally

backward with an acceleration =^, he can accomplish this

only by exerting against each ball a pressure = Mjy, and in the

opposite direction against the car an equal pressure = MjJ. If

this action is kept up continuously the car is subjected to a

constant and continuous forward force of P" = Mp.
Similarly, the backward projection of the jet of water in the

case of the vessel at rest must occasion a forward force against

the vessel of a value dependent on the fact that in each small

interval of time M a small mass A3f oi liquid has its velocity

changed from zero to a backward velocity of v = V'igh ; that

* Hydraulic Motors ;

Wiley & Sons.

with related subjects. New York, 1905, John
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is, has been projected with a mean acceleration of j? =
so that the forward force against the vessel is

F" = mass X ace. = ^-^ (3)

If ^ = the volume of water discharged per unit time, then

^M = -^ Jt, and since also Q = Fv = FV2gh, eq. (3) be-

comes ''Feaction"ofJet = F" = 2Fhy. ... (4)

(A similar proof, resulting in the same value for F", is

easily made if the vessel has a uniform motion with water sur-

face horizontal.)

If the orifice is in " thin plate," we understand by F the

area of the contractedj section. Practically, we have z)=0 '^'igh

(§ 495), and hence (4) reduces to

F" = ^(t>"Fhy (5)

Weisbach mentions the experiments of Mr. Peter Ewart of

Manchester, England, as giving the result F" = 1.7SFhy

with a well-rounded orifice as in Fig. 625. He also found

=: .94 for the same orifice, so that by eq. (4) we should have

F'' =- %2^yFhy = \niFhy.

"With an orifice in thin plate Mr. Ewart found F" —
1.14:Fhy. As for a result from eq. (4), we must put, for F^

the area of the contracted section .QiF (§ 495), which, with

= .96, gives

F" = 2{My.64.Fhy = 1.18Fhy. . . . (6)

Evidently both results agree well with experiment.

Experiments made by Prof. J. B. Webb at the Stevens

Institute (see Journal of the Franklin Inst., Jan. '88, p. 35)

also confirm the foregoing results. In these experiments the

vessel was suspended on springs and the jet directly down-

ward, so that the "reaction" consisted of a diminution of the

tension of the springs during the flow.

564. Impulse of a Jet of Water on a Fixed Curved Vane (with

Borders).—The jet passes tangentially upon the vane. Fig.
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626. B is the stationary nozzle from which a jet of water of

cross-section F (area) and velocity = c impinges tangentially

upon the vane, which has

plane borders, parallel to

paper, to prevent the lat-

eral eicape of the jet.

The curve of the vane is

not circular necessarily.

The vane being smooth,

the velocity of the water

in its curved path remains

= c at ail points a.ong

the curve. Conceive the

curve divided into a great

num.ber of small lengths each = ds, and subtending some
angle = d<p from its own centre of curvature, it? radius of

curvature being = r (different for different ds^s), which makes

some angle = (p v.'ith the axis I'' (
"1 to original straight jet

J5A), At any instant of time tliere is an arc of water AD in

contact with the vane, exerting pressure upon it. The pres-

sure dP of any ds of the vane against the small mass of water

Fds . y -^ g then in contact with it is the " deviating" or " cen-

tripetal " force accountable for its motion in a curve of radius

= r. and hence must have a value

Fig. 626.

dP Fyds

9
(§T6) (1)

The opposite and equal of this force is the dP shown in

Fig. 626, and is the impulse or pressure of this small mass

against the vane. Its ^-component is dX = dP sin ip. By
making <p vary from to a^ and adding up the corresponding

values of dX\ we obtain the sum of the X-components of the

small pressures exerted simultaneously against the vane by the

9j!"c of water then in contact with it ; i.e., noting that d-^=rd(J).

l^yc

'^=0 -" ij

_ Iy(f i^}^._ ^^^j^ _ Fyd"

^ -Jo
[sin <P¥^ = ^

—«os0;
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hence the X-imjpuUe ) _ ^K^i.^^, ^j^ ^[1 _ cos a\ (2)againstjixed vane ) g ^
ff

-I'v-'

in which Q =z I^g = volume of water which passes through the

nozzle (and also = that passing over the vane, in this case) per

unit of time, and a = angle between the direction of the

stream leaving the vane (i.e., at D) and its original direction

{BA of the jet) ; i.e., a = total angle of deviation. Similarly,

the sura of the J^-components of the dPh of Fig. 626 may be

shown to be

Y-im^ulse onfixed vame = / dP . cos = ^^ sin ar...(2)''

Hence the resultant imj>ulse on thvi vane is a force

P" = VX^+T^ = 9ll ^§!(r_ cos a), . . (3)

and makes such an angle a', Fig. ^^7^, with the direction £A,
that

tan or = -TT^T = sm a

X 1 — COS (

«•••*• (4)

Fig. 627.

That is, tana'=cot. ia, or a' =90° -Jo:; and the force

P" bisects the angle between the original (BA), and the final

direction of the jet. For example, if a = 70°, a' = 55°; while

if a = 180°, Fig. 628, we have a'=0° and hence P" is parallel

to BA, its value being (see eq. (3)),

P"=2Qr-.
9
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565. Impulse of a Jet or a Fixed Solid of E,evolutioE whose
Axis is Parallel to the Jet.-—If the

curved vane, with borders, of the pre-

ceding paragraph be replaced by a b

solid of revolution. Fig. 629, with its iT^^S
axis in line of the jet, the resultant

pressure of the jet upon it will simply

be the sum of the X-components (i.e., ,.„.„,,.,„^

= to JdA) 01 the pressures on all ele- Fia. eao,

ments of the surface at a given instant ; i.e.,

X^P"^ Qr -(1 - cos a);
g

(5)

while the components 1 to X, all directed toward the axis of

the solid, neutralize each other. For a fixed plate^ then, Fig.

630, at right angles to the jet, we have for the force, or " im-

pulse" (with a = 90°),

P'' =-Qr^-^o'^G=±^r = 2F^r' ' (6)

The experiments of Bidone, made in

1838, confirm the truth of eq. (6) quite

closely, as do also those of two students of

the University of Pennsylvania at Phila-

delphia (see Jour, of the Frank. Inst, for Oct. '87, p. 258).

We may apply eq. (6) to the

theory of Pitoes Tube (§ 539),

Fig. 631, assuming the current

to act like a jet, with a= 90°.

The water in the tube is at rest,

and its section at A. (of area=i^)

may be treated as a flat vertical

plate receiving not only the

hydrostatic pressure Fxy^ due

to the depth x below the sur- fig. esi.

face, but a continuous impulse P" = F&y -~- g [see eq. (6)].*

* This implies that the sectional area F ot the "equivalent isolated jet"
is equal to that of tlie extremity of tube and that a is 90°, an assumption
which, though simple, is largely conjectural.
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Hence, we write, for the equilibrium of the "plate" A,

Fxr + '-=Fxr + Fhy; i.e., h' = {2.0)^. . (7)

But the assumed size of the "equivalent isolated jet" and

of the angle a (see foot-note, p. 803) are both probably much
too large; so that, for the factor 2.0 of eq. (7), we substi-

tute some smaller number, or coefficient, k; and hence write

. 2g
(7a)

as a theoretical relation holding good for the Pitot Tube.

The value of k can only be determined by experiment.

Pitot found k = 1.5 when the point of the tube was made
flaring hke a funnel; while Darcy, desiring that the end

of the tube should occasion but

little disturbance in the current

itself, made the extremity small and

t conically convergent.* The latter found

k practically = 1.00.

For other practical details see p. 750.

If the solid of revolution is made cup-

shaped, as in Fiii;. 632, we have (as in

Fig. 628) a = 180°, and therefore, from

eq. (5),Fig. 632.

P'' = 2^r- ='^ =W-V. (8)

Example.—Fig. 632. If c = 30 ft. per sec. and the jet

(cylindrical) has a diameter of 1 inch, the liquid being water,

so that y = 62.5 lbs. per cub. ft., we have [ft., lb., sec]

the impulse (force) = P" =
2f(^y9Q0X62.5

32:2
= 19.05 lbs.

Experiment would probably show a smaller result.

* See p. 833 for Mr. Freeman's Experiments.
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Fig. 633.

566. Impulse of a Liquid Jet upon a Moving Vane having

Lateral Borders and Moving in the Direction of the Jet.—Fig.

633. The vane has a motion of translation (§ 108) in the

same direction as the jet. Call this the axis X. It is moving

with a velocity v away from the jet (or, if toward the jet, v

is negative). We con-

sider V constant, its ac-

celeration being prevented

bj a proper resistance

(such as a weight = G)

to balance the X-com-

ponents of the arc-pres-

sures. Before coming in

contact with the vane,

which it does tangentiallj

(to avoid sudden devia-

tion), the absolute velocity

(§ 83) of the water in the

jet = (3, while its velocity

relatively to the vane at A is = c — i; ; and it will now be

proved that the relative velocity along the vane is constant.

See Fig. 634. Let v = the velocity of the vane (of each

point of it, since its motion is one of translation), and u = the

velocity of a water particle (or small mass of water of length

= ds) relatively to the point of the vane which it is passing.

Then %o^ the absolute velocity of the small mass, is the diago-

nal formed on xi and v. Neglecting friction, the only actual

force acting on the mass is P^ the pressure of the vane against

it, and this is normal to the curve. Now an imaginary system

of forces, equivalent to this actual system of one force P^ i.e.,

capable of producing the same motion in the mass, may be

conceived of, consisting of the individual forces which would

produce, separately, the separate motions of which the actual

motion of this small mass M is compounded. These com-

ponent motions are as follows :

1. A horizontal uniform motion of constant velocity = -y

;

and

2. A motion in the arc of a circle of radius = r and with a
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velocity = u, which we shall consider variable until proved

otherwise.

Motion 1 is of such a nature as to call for noforce (by New-
ton's tirst law of motion), while motion 2 could be maintained

bj a system of two forces, one normal, P^, = -, and the

other tangential, P^ = Jf —— [see eq. (5), p. Y6]. This imagi-

nary system of forces is shown at (IL), Fig. 634, and is equiv-

(II.) /

V
Fig. 634.

alent to the actual system at (I.). Therefore ^(tang. com-

pons..) in (I.) should be equal to '2 (tang, compons.) in (II.)

;

whence we have

P, = 0; i.e., J/| = 0; or | = 0; . . (1)

i.e., ti is constant along the vane and is equal to c — -y at every

point. (The weight of the mass has been neglected since the

height of the vane is small.) In Fig. 631 the symbol u\ has

been used instead of c, and the point corresponds to A in

Fig. 633.

[N.B. If the motion of the vane were rotary^ about an axis

1 to AB (or to 6'), this relative velocity would be different at

different points. See p. 59 of Hydraulic Motors. If the

radius of motion of the point A, however, is quite large com-

pared with the projection oi AD upon this radius, the relative

velocity is approximately = c — v at all parts of the vane,

and will be taken =c— y in treating the " Hurdy gurdy" in

§561]
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By putting 2 (normal compons.) of (I.) = 2 (normal com-

pons.) in (II.) we have

P = P.; i.e., P = Jfg: = ^(^ - ^)'
; ... (2}

so that to find the sura of the JT-components of the pressures

exerted against the vane simultaneously by all the small masses

of water in contact with it at any instant, the analysis differs

from that in § 564 only in replacing the o of that article by

the {c — v) of this. Therefore

2(Xp.^».^) = p. =
J:(«

-«)[!- cos „], . (3)

(where a is the angle of total deviation, relatively to vane, of

the stream leaving the vane, from its original direction), and

is seen to be proportional to the square of the relative velocity,

i^is the sectional area of jet, and y the heaviness (§ 7) of the

liquid. The J^-component (or P^ of the resultant impulse

is counteracted by the support EF^ Fig. 633. Hence, /br a

imifonn 7)iotion to he maintained, with a given velocity = v^

the weight G must be made = P^ of eq. (3). (We here

neglect friction and suppose the jet to preserve a practically

horizontal direction for an indefinite distance before meeting

the vane. If this uniform motion is to be toward the jet, v

will 1)6 negative in eq. (3), making ^^.(and .*. G) larger than

for a positive v of same numerical value.

As to the doing of woi-lc [§§ 128, etc.], or exchange of

energy, between the two bodies, jet and vane, during a uni-

form motion away from the jet, Pg, exerts 2kpower of

FvL = P^v = —^ {g — vfv\l — cos or], . , . (4)

in which L denotes the number of units of work done per unit

of time hyPa,', i.e., t\\Q power (§ 130) exerted by /*«,.

If -y is negative, call it — v', and we have the

Power expended ) d , Fy / , /xs /n n /»
7 ^ ' ^t = Pa^v = —^ (c + v)v\l ~ cos a\. . (op
by vane -upon jet

)

*
a *
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Of course, practically, we are more concerned with eq. (4)

than with (5). The power L in (4) is a maximum for v =^\c\

but in practice, since a single moving vane or float cannot

utilize the water of the jet as fast as it flows from the nozzle,

let us conceive of a succession of vanes coming into position

consecutively in front of the jet, all having the same velocity

-y ; then the portion of jet intercepted between two vanes is at

liberty to finish its work on the front vane, while additional

work is being done on the hinder one ; i.e., the water will be

utilized as fast as it issues from the nozzle.

With such a series of vcmes, then, we may put Q\ = J9cy

the volume of flow per unit of time from the nozzle, in place

of J^\g — v) = the volume of flow per unit of time over the

vane, in eq. (4) ; whence

Power exerted on
series of vanes

= L'=
g

[1 — cos a^G — v^v. . (6)

Making v variable, and putting dL'-^dv=^Q^ whence 0—2^=0,
we find that for v = |^c, L', the power, is a maximnm. As-

suming different values for or, we find that for a = 180°, i.e.,

by the use of a semicircular vane, or of a hemispherical cup,

Fig. 635, with a point in middle, 1 — cos or is a max., = 2

;

whence, with v = ^c, we have, as the

maximitm power,

_Qy G^_Ml, ( «=180°, ) ,^
^max.- ^ '2"" 2 '|'y=4c; \"^^f

in which M' denotes the mass of the flow

y per unit of time from the stationary

\°J] nozzle. 'Now is the entire hinetio
2i

energy furnished per unit of time by the

jet ; hence the motor of Fig. 635 {series

Fig. 635. of cups) has a theoretical efficiency of

unity, utilizing all the kinetic energy of the water. If this is

true, the absolute velocity of the particles of liquid where they

leave the cup, or vane, should be zero, which is seen to be true,
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AS follows : At^ or H
.,
the velocity of the particles rela-

tively to the vane is — (? — -y = what it was at 4, and hence

G C
is ^ c — — = -- ; hence at H the absolute velocity \% w=^'

G C
(rel. veloc. — toward left)— (veloc. — of vane toward right) = ;

Q.E.D. For t; > or < ^g this efficiency will not be attained.

567 The California "Hurdy-gurdy;" or Pelton Wheel. —The
efficiency of unity in the series of cups just mentioned is in

practice reduced to 80 or 85 per cent from friction and lateral

escape of water. The

Pelton wheel or Cali-

fornia '' Hurdy-gur-

dy," shown (in prin-

ciple only) in Fig. 636,

is designed to utilize

the n)echanical rela-

tion just presented,

and yields results con-

firming the above the-

ory, viz., that with the

linear velocity of the Fig. 636.

cup-centres regulated to equal — , and with a = 180°, the effi-

ciency approaches unity or 100 per cent. Each cup has a pro-

jecting sharp edge or rib along the middle, to split the jet ; se*>

Fig. 635. (See also p. TO, Hydraulic Motors.)

This wheel was invented to utilize small jets of very great

velocities (c) in regions just deserted by " hydraulic mining"

operators. Although g is great, still, by giving a large value

to r, the radius of the wheel, the making of -y = - does not
2

jQecessifcate an inconveniently great speed of rotation (i.e.,

revolutions per unit of time). The plane of the wheel may
be in any convenient position.

In the London Engineer of May '84, p. 397, is given an ac-

count of a test* made of a " Hurdy-gurdy," in which the motoi

* See p. 834 for further details of this test and a perspective view of wheel
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showed an efficiency of 8Y per cent. The diameter of the

wheel was onlj 6 ft., that of the jet 1.89 iD., and the head of

the supply reservoir 386 ft., the water being transmitted

through a pipe of 22 inches diameter and 6900 ft. in length.

107 H. P. was developed by the wheel.

Example.—If the jet in Fig. 636 has a velocity c = 60 ft.

per second, and is delivered through a 2-inch nozzle, the total

power due to the kinetic energy of the water is (ft., lb., sec.)

Q'!..-=— .-(-?-)'x60x62.5xiX3500=4566.9
g 2 32.2 4V12/ ^

and if, by making the velocity of the cups =

ft. lbs.

p. sec,

30 ft. per

sec, 85 per cent of this power can be utilized, the iDower of

the wheel at this most advantageous velocity is

Z = .85 X 4566.9 = 3881 ft. lbs. per sec. = Y.05 horse-power

[since 3881 ^ 550 = Y.05] (§ 132). For a cup-velocity of 30

ft. per sec, if we make the radius, r, = 10 feet, the angular

velocity of the wheel will be (i9 = 'y-7-r=3,0 radians per

sec. (for radian see Example in § 428 ; for angula'" velocity,

§ 110), which nearly = tt, thus implying nearly a half-revolu-

tion per sec.

568. Oblique Impact of a Jet on a Moving Plate having

no Border.—The plate

has a motion of trans-

lation with a uniform

veloc = iJ in a direc-

tion parallel to jet,

whose velocity is ^ p.

At the filaments of

liquid are deviated, so

that in leaving the plate

their particles are aiv

'W07777mmm^77fim777/M/777mMmmm^^?;7MF/ found in the moving

Fig. 637. plane BB' of the plate

surface, but the respective absolute velocities of these particles
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depend on the location of the point of the plate where they

leave it, being found by forming a diagonal on the relative

veioc. G — v and the velocity v of the pJate. For example, at

B the absolute velocity of a liquid particle is

10 = BE = Vv' + (c — vf + 2v{G — v) cos a,

while at B' it is

w' = B'E' — Vv'+ (c — vj — 2v{G — v) cos a
;

but evidently the component ~\ to plate (the other component

being parallel) of the absolute velocities of all particles leaving

the plate, is the same and = v sin a. The skin-friction of the

liquid on the plate being neglected, the resultant impulse of

the jet against the plate must be fiormal- to its surface, and its

amount, i^, is most readily found as follows

:

Denoting by JM the mass of the liquid passing over the

plate in a short time /It, resolve the absolute velocities of all

the liquid particles, before and after deviation, into com-

ponents ~I to the plate (call this direction Y) and || to the

plate. Before meeting the plate the particles composing JM
have a velocity in the direction of Y oi Cy = c sin a ; on leav-

ing the plate a velocity in direction of Y of v sin a : they have

therefore lost an amount of velocity in direction of jT =
(g — v) sin (x in time /It ; i.e., they have suffered an average

retardation (or negative acceleration) in a I^-direction of

( neo:. aecelera- ] (g — v) sin a ,^.A= Ition II
to r f

=
Jt

• •••(!)

Hence the resistance in direction of J^(i.e., the equal and op-

posite of P in figure) must be

£*Y = Tonsi&& X I^-accel. = —— {g— ^) sin or ; . . (2)

and therefore, since =M = -^ = mass of liquid passing
Jt g
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over the plate per unit of time (not that issuing from nozzle),

we have

sure on plate \ a 9

in which J^= sectional area of jet before meeting plate.

[JST.B. Since eq. (3) can also be written I^ = Mcsma —
Mv sin a, and Mc sin a may be called the 1^-momentuni before

contact, while Ifv sin a is the 1^-momentum after contact (of

the mass passing over plate per unit of time), this method may
be said to be founded on the principle of momentuTn which is

nothing more than the relation that the accelerating force in

any direction = mass X acceleration in that direction ; e.g.^

P, = Mf, ; Py = Mpy ; see § 74.]

If we resolve P, Fig. 637, into two components, one, P',
\\

to the direction of motion {v and c), and the other, P'', ~\ to

the same, we have

P' = P8ma = ^{c-v)sm''a, , ... (4)

and

Or

{Q = F{c — v) = volume passing over the plate per unit of

time.) The force P" does no work, while the former, P\
does an amount of work P'v per unit of time ; i.e., exerts a

power (one plate)

:=L = P'v = Sy(G-v)v&m^a. ... (6)
9

If, instead of a single plate, a series of plates, forming a

regular succession, is employed, then, as in a previous paragraph,

we may replace Q, = F{c — v), by Q' = Fc, obtaining as the

Power exerted hy jet ) ri Fey , % . , /m
on series of plates ) g ^ 7c/oxu «. . ^.^
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For V and a = 90° we have

Z\
1 Fey c' _ 1 M'&
2 a 2 ~ 2

. 2
. (8)

Fi&. 638.

= only half the kinetic energy (per time-nnit) of the jet.

569. Rigid Plates Moving in a Fluid, Totally Submerged,

Fluid Moving against a Fixed Plate. Impulse and Resistance.

—

If a thin flat rigid plate have a motion of uniform translation

with velocity = v tlirough a fluid

which completely surrounds it, Fig.

638, a resistance is encountered (which

must be overcome by an equal and op-

posite force, not shown in figure, to

preserve the uniform motion) consist-

ing of a normal component N^ 1 to

plate, and a (small) tangential com-

ponent, or skill-friction, T,
i|

to plate.

Unless the angle rv, between the surface of plate and the direc-

tion of motion 6* ... -y, is very small, i.e. unless the plate is

moving nearly edgewise through the fluid, N is usually much
greater than T. The skin-resistance between a solid and a fluid

has already been spoken of in § 510.

"When the plate and fluid are at rest the pressures on both

sides are normal and balance each other, being ordinary static

fluid pressures. When motion is in progress, however, the

normal pressures on the front surface are increased by the

components, normal to plate, of the centrifugal forces of the

curved filaments (such as AB) or "stream-lines," while on

the back surface, D, the fl.uid does not close in fast enough to

produce a pressure equal to that (even) of rest. In fact, if the

moticv is sufficiently rapid, and the fluid is inelastic (a liquid),

a vacuum may he maintained hehind the plate, in which case

there is evidently no pressure on that side of the plate.

Whatever pressure exists on the back acts, of course, to

diminish the resultant resistance. The water on turning the

sharp corners of the plate is broken up into eddies forming a
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" wake" behind. From the accompaniment of these eddies,

the resistance in this case (at least the componentN normal to

plate) is said to be due to "" eddy-makingf though logically

we should say, rather, that the body does not derive the assist-

ance (or negative resistance) from behind which it would ob-

tain if eddies were not formed ; i.e., if the fluid could close in

behind in smooth curved stream-lines symmetrical with those

in front.

The heat corresponding to the change of temperature pro-

duced in the portion of fluid acted on, by the skin-friction

and by the mutual friction of the particles in the eddies, is the

equivalent of the work done (or energy spent) by the motive

force in maintaining the uniform motion (§ 149). (Joule's

experiments to determine the Mechanical Equivalent of Heat

were made with paddles moving in water.)

If the fluid is sea-water^ the results of Col. Beaufoy's ex-

periments are applicable, viz.:

The resistance^ jper squarefoot of area, sustained hy a sub-

7)ierged plate momng normally to itself [i.e., a = 90°] in sea-

water with a velocity of v ^= V) ft. per second is 112 Tbs. He
also asserts that/br other velocities the resistance varies as the

square of the velocity. This latter fact we would be led to

suspect from the results obtained in § 568 for the impulse of

jets; also in §565 [see eq. (6)]. Also, that when the plate

moved obliquely to its normal (as in Fig. 638) the resistance

was nearly equal to ifhe resistance.^ at same velocity., when

oc = 90°) X {the sine of the angle a) ', also, that the depth of

submersion had no injltie7ice on the resistance.

Confining our attention to a plate moving nor-

mally to itself Fig. 639, let F= area of plate,

y = heaviness (§ 409) of the fluid, v = the uni-

form velocity of plate, and ^ = the acceleration

of gravity (=32.2 for the foot and second

;

= 9.81 for the metre and second). Then from

the analogy of eq. (6), § 565, where velocity c of

the jet against a stationary plate corresponds to

the velocity v of the plate in the present cas©

moving through a fluid at rest, we may write

Fig. 639.
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Resistance offluid \ _ p _ ^j^
'^'^ \v normal

)

r^.

to momng jplate \
~

,

~ ^ ^ 2g' ' ' '

( to plate \
' ' ' ^^

And similarly for the impulse of an indefinite stream offluid
against a fixed jplate ( 1 to velocity of stream), v being the

velocity of the current,

Impulse of current \ _ p _ ^r-p
'^^ \v normal ) .^\

upon fixed plate )
~ ""'=' ^^ ' ' '

\ ^o plate \
' ' °^^y

The 2^ is introduced simply for convenience; since, having

V given, we may easily tind v"^ -=- 2^ from a table of velocity-

heads; and also (a ground of greater importance) since the co-

efficients C and C' which depend on experiment are evidently

ahstract numbers in the present form of these equations (for

R and P are forces, and Fy'v" -^ 2^ is the weight (force) of

an ideal prism of fluid ; hence C and Q' must be abstract

numbers.)

From Col. Beaufoy's experiments (see above), we have for

sea-water [ft., lb., sec], putting R = 112 lbs., P= 1 sq. ft.,

y = Q4: lbs. per cub. ft., and -y = 10 ft. per second,

2X32.2X112 ^-^
1.0 X 64 X 10' *

Hence in eq. (1) for sea-water, we may put C = 1'13 (with

y = Q4: lbs. per cub. ft.).

From the experiments of Dubuat and Thibault, Weisbach

computes that for the plate of Fig. 639, moving through either

water or air, C = 1-25 for eq. (1), in which the y for air must

be computed from § 473 ; while for the impulse of water or

air or. fixed plates he obtains C,' = 1.86 for use in eq. (2). It

is hardly reasonable to suppose that C and C,' should not be

identical in value, and Prof. Unwin thinks that the difference

in the numbers just given must be due to errors of experi-

ment,* The latter value, C' = 1.86, agrees well with equation

(6) below. For great velocities C and Q' are greater for air

than for water, since air, being compressible, is of greater

heaviness in front of the plate than would be computed for

* Flamant thinks that this difference is due to the fact tliat the relative

conditions are not identical in the two cases; since when a current of liquid
impinges against a stationary plate there is much intricacy of internal motion
among the particles of fluid, to which there is nothing to correspond when
a plate is moved through stationary liquid.
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tbe given temperature and barometric height for use in eqs.

(1) and (2)

The experiments of Borda in 1763 led to the formula

P = [0.0031 + O.OOOS^c'jSv' .... (3)

for the total pressure upon a plate moving through the air

in a direction "] to its own surface. P is the pressure in

pounds, G the length of the contour of the plate in feet, and jS

its surface in square, feet, while v is the velocity in miles per

hour. Adopting the same form of formula, Hagen found,

from experiments in 18Y3, the relation

P= [0.002894+ 0.00014c]xSV ... (4)

for the same case of fluid I'esistance.

Hagen's experiments were conducted with great care, but

like Borda's were made with a "whirling machine," in which

the plate was caused to revolve in a horizontal circle of only

7 or 8 feet radius at the end of a horizontal bar rotating about

a vertical axis. Hagen's plates ranged from 4 to 40 sq. in. in

area, and the velocities from 1 to 4 miles per hour.

The last result was quite closely confirmed by Mr. H. Allen

Hazen at Washington in JSTovember 1886, the experiments

being made with a whirling machine and plates of from 16 to

576 sq. in. area. (See the Americcm Journal of Science, Oct.

1887, p. 245.)

In Thibault's experiments plates of areas 1.16 and 1.531 sq,

ft. were exposed to direct wind-pressure, giving the formula

P = 0.00475.^^= » • (5)

Recent experiments in France (see R. R. and Eng. Journal^

Fe^ . '87), where flat boards were hung from the side of a rail-

way train run at different velocities, gave the formula

P = 0.00535^^' (6J

The highest velocity was 44 miles per hour. The magnitude

of the area did not seemingly affect the relation given.* More
* Langley found P = 0.00327*Sv^. See also Irminger's experiments

i-^ngineering News, Feb. 1895, p. 109).
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extended and elaborate experiments are needed in this field,

those involving a motion of translation being considered the

better, rather than with whirling machines, in which " centrif-

ugal action"" must have a disturbing influence.*

The notation and units for eqs. (4), (5), and (6) are the same

as those gir^n for (3).

It maj be of interest to note that if equation (3) of § 568 be

considered applicable to this case of the pressure of an un-

limited stream of fluid against a plate placed at right-angles to

the current, with F put equal to the area of the plate, we ob-

tain, after reduction to the units prescribed above for the pre-

ceding equations and putting a = 90°,

P=0.0053^'y' (T)

The value y = 0.0807 lbs. per cub. ft. has been used in the

substitution, corresponding to a temperature of freezing and

a barometric height of 30 inches. At higher temperatures,

of course, y would be less, unless with very high barometer.

568a. Example.—Supposing each blade of the paddle-wheel

of a steamer to have an area of 6 sq. ft., and that when in the

lowest position its velocity [relatively to the water, not to the

vessel] is 5 ft. per second ; what resistance is it overcoming in

salt water ?

From eq. (1) of § 569, with C = 1-13 and y = %4t lbs. per

cubic foot, we have (ft., lb., sec.)

1.13X6X64X25^
2 X 32.2

If on the average there may be considered to be three pad-

dlea always overcoming this resistance on each side of the

boat, then the work lost (work of •' slip''') in overcoming these

resistances per second (i.e., power lost) is

Z, = [6 X 169.4] lbs. X 5 ft. per sec. = 5082 ft.-lbs. per sea

or 9.24 Horse Power (since 5082 -^ 550 = 9.24).

* See Capt. Bixby's article on p. 175 et seq. of the Engineering News.
March 1895.
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If. further, the velocity of the boat is uniform and = 20 ft.

per sec, the resistance of the water to the progress of the boat

at this speed being 6 X 169.4, i.e. 1016.4 lbs., the power ex-

pended in actual propulsion is

Z, = 1016.4 X 20 = 20328 ft.-lbs. per sec.

Hence the power expended in both ways (usefully in propul-

sion, uselessly in "slip") is

L, + L, = 25410 ft.-lbs. per sec. = 46.2 H. P.

Of this, 9.24 H. P., or about 20 per cent, is lost in " slip."

570. Wind-pressure

on the surface of a

roof inclined at an

angle = a with the

horizontal, i.e., with

the direction of the

wind, is usually esti-

mated according to

the empirical formulaFig. 640.

(Hutton's)

p=p' [sin a] [i-84cosa-
1]^ (1)

in which ^' = pressure of wind per unit area against a vertical

surface ( 1 to wind), and p = that against the inclined plane

{and normal to it) at the same velocity. For a value of

p' =: 40 lbs. per square foot (as a maximum), we have the

following values iorp, computed from (1)

:

For a = 5" 10° 15° 30° 25° 30°

26.5

35°

30.1

40°

33.4

45°

36.1

50°

38.1

55°

39.6

60°

40.p={lhs. sq. ft.) 5.

2

9.6 14 18.3 22.5

Duchemln's formula for the normal pressure per unit-area is

_p=y.4M!Lf_, (2)^ ^ 1 + sin' a ^ ^
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with the same notation as above. Some experimenters in

London tested this latter formula by measuring the pressure

on a metal plate supported in front of the blast-pipe of a blow-

ing engine; the results were as follows:

a = 15° 20° 60° ,0°

p by experiment = (in lbs. per sq. ft.) 1.65 2.05 3.01 3.31

By Duchemin's formula p = 1.60 2.02 3.27 3.31

The scale of the Smithsonian Institution at Washington for

the estisiation and description of the velocity and pressure of

the wind is as follows :

Grade.
Velocity iu

miles per hour.
Pressure per
sq. foot in lbs.

Name.

0.00 Calm.
1 2 0.02 Very light breeze.

2 4 0.08 Gentle breeze.

3 12 0.75 Fresh wind.
4 25 3.00 Strong wind.
5 35 6 High wind.

6 45 10 Gale.

7 60 18 Strong gale.

8 75 Violent gale.

9 90 Hurricane.
10 100 Most violent hurricane.

571. Mechanics of the Sail-boat.—The action of the wind on a

sail will be understood from the following. Let Fig. 641

represent tbe boat in horizontal projection and OS the sail, O
beino; the mast. For

simplicity we consider

the sail to be a plane

and to remain vertical.

At this instant the boat

is moving in the direc-

tion M£ of its fore-and-

aft line with a velocity

= c, the wind having a velocity of the direction and magni-

tude represented by iv (purposely taken at an angle < 90° with

the direction of motion of the boat). We are now to inquire

the nature of the action of the wind on the boat, and whether

Fig. 641.
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in the present position its tendency is to accelerate, or retard,

the motion of the boat. If we form a parallelogram of which

w is the diagonal and c one side, then the other side OK^ mak-

ing some angle a with BM^ will be the velocity v of the wind

relaiirely to the hoat (and sail), and upon this (and not upon w)

depends the action on the sail. The sail, being so placed that

the angle 6 is smaller than a, will experience pressure from

the wind ; that is, from the impact of the particles of air which

strike the surface and glance along it. Tnis pressure, P, is

normal to the sail (considered smooth), and evidently, for the

position of the parts in the figure, the component of P along

MB points in the same direction as c, and hence if that com-

ponent is greater than the water-resistance to the boat at this

velocity, c will be accelerated; if less, c will be retarded.

Any change in c, of course, gives a different form to the

parallelogram of velocities, and thus the relative velocity v

and the pressure P, for a given position of the sail, will both

change. [The component oi P ~\ to MB tends, of course, to

cause the boat to move laterally, but the great resistance to

such movement at even a \evy slight lateral velocity will make
the resulting motion insignificant.]

As G increases, a diminishes, for a given amount and position

of w ; and the sail must be drawn nearer to the line MB, i.e.

B must be made to decrease, to derive a wind-pressure having

a forward fore-and-aft component ; and that component be-

comes smaller and smaller. But if the craft is an ice-boat, this

small component may still be of sufficient magnitude to exceed

the resistance and continue the acceleration of c until g is

larger than w ; i.e., the boat may be caused to go as fast as, or

faster than, the wind, and still be receiving from the latter a

forward pressure which exceeds the resistance. And it is

plain that there is nothing in the geometry of the figure to

preclude such a relation (i.e., c > i«, with B <, a and > 0).

5/2. Ji^esistance of Still Water to Moving Bodies, Completely

Immersed.—This resistance depends on the shape, position, and

velocity of the moving body, and also upon the roughness of

its surface. If it is pomted at both ends (Fig. 642) with its
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Fig 642.

A ; so that the resistance

axis parallel to the velocity, v, of its xinifornn motion, the

streamlines on closing to-

gether smoothly at the hinder —; -V-VIll

extremity, or stern, B^ exert

normal pressures against the

surface of the portion CD...B

whose longitudinal compo-

nents approximately balance

the corresponding components

of the normal pressures on CD
R^ which must be overcome to maintain the uniform velocity

V, is mainly due to the " skin-frictioti)' alone, distributed along

the external surface of the body ; the resultant of these resist-

ances is a force R acting in the line ^^ of symmetry (sup-

posing the body symmetrical about the direction of motion).

If, however. Fig. 643, the stern, E..B..F h too bluff,

eddies are formed round the corners

^and F, and the pressure on the

surface F . . . F is much less than

in Fig. 642; i.e., the water pres-

sure from behind is less than the

backward (longitudinal) pressures

from in front, and thus the resultant

resistance B is due partly to skin-

friction and partly to "eddy-making" (§ 569).

[Note.—The diminished pressure on FF is analogous to the

loss of pressure of water (flowing in a pipe) after passing a nar-

row section the enlarsjement

from which to the original

section is sudden. E.g., Fig.

644, supposing the yelocity v

and pressure p (per unit-ai'ea)

to be the same respectively

at A and A\ in the two

pipes shown, with diameter

AZ = WK=A'Z' = W'K'
;

then the pressure at M is

equal to that at A (disregarding skin-friction), whereas that at

Fig. 643.

=^- /^rszjr^^1^- ii:

---i^
zzrz^ -_ V

L K

A
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> ^ w'

-;-:J^^^ 1 -•^^' '-"---"
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Fig. 644.
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that at M is considerably less than that at A' on account

of the head lost in the sudden enlargement. (See also Fig.

575.)]

It is therefore evident that hluffness of stern may he a large

factor in the production of resistance.

In any case experiment shows that for a given body sym-

metrical about an axis and moving through a fluid (not only

water, but any fluid) in the direction of its axis with a uni-

form velocity = -WjWe may write approximately the resistance

M = {resistance at vel. v) = Q2^y
^9

(1)

As in preceding paragraphs, -F= area of the greatest section,

"I to axis, of the external surface of body (not of the sub-

stance; i.e., the sectional area of the circumscribing cylinder

(cylinder in the most general sense) with elements parallel

to the axis of the body, y = the heaviness (§ 409) of the

fluid, and v = velocity of motion ; while C is an abstract

number dependent on experiment.

According to Weisbach, who cites different experimenters,

we can put for spheres, moving in water, C = about 0.55

;

for cannon-balls moving in water, C = .467.

According to Robins and Hutton, for spheres in mV, we
have

For 1) in mets. )

per sec. )
^ 5 25 100 200 300 400 500] -Sc.

C = .59 .63 .67 .71 .77 88 .99 1.04

For musket-balls in the air, Piobert found

C = 0.451 (1 -\- 0.0023 X veloc. in metres per sec).

From Dubuat's experiments, for the resistance of water to

a right prism moving erudwise and of length = Z,

For {I : VF) = 1 2 3

C = 1.25 1.26 1.31 1.33

For a circular cylinder moving perpendicularly to its axis

Borda claimed that C is one-half as much as for the circum-
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scribing right parallelepiped moving with four faces parallel

to direction of motion.

Example.—The resistance of the air at a temperature of

freezing and tension of one atmosphere to a musket-ball ^ inch

in diameter when moving with r velocity of 328 ft. per sec

1,3 thus determined by Piobert's formula, above

:

^,' = 0.451(1 + .0023 X 100) ^ 0.554

;

hence, from eq. (1),

E = 0.554 X ~ (^Sx .0807 X ^|f??= 0.1018 lbs.
4 \12/ 64.4

572a. Deviation of a Spinning Ball from a Vertical Plane m
Still Air.—It is a well-known fact in base-ball playing that if a

rapid spinning motion is given to the ball about a vertical axis

as well as a forward motion of translation, its path will not

remain in its initial vertical plane, but curve out of that plane

toward the side on which the absolute velocity of an external

point of the ball's surface is least. Thus, if the ball is thrown

from llTorth to South, with a spin of such character as to ap-

pear '' clock-wise^'' seen from above, the ball will curve toward

the West, out of the vertical plane in which it started.

This could not occur if the surface of the ball were perfectly

smooth (there being also no adhesion between that surface and

the air particles), and is due to the fact that the cushion of com-

pressed air which the ball piles up in front during its progress,

and whicn would occupy a symmetrical position with respect

to the direction of motion of the centre of the ball if there

were no motion of rotation of the kind indicated, is now piled

up somewhat on the East of the centre (in example above),

crerting cf :;stantly more obstruction on that side than on the

right ; the cause of this is that the absolute velocity of the sur-

face-points, at the same level as the centre of ball, is greatest,

and the friction greatest, at the instant when they are passing-

through their extreme Easterly positions; since then that

velocity is the sum of the linear velocity of translation and

that of rotation ; whereas, in the position diametrically oppo«
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site, on the West side, the absolute velocity is the difference ;

hence the greater accumulation of compressed air on the left

(in the case above imagined, ball thrown from ]!^orth to South,

etc.).

573. Robinson's Cup-anemometer.—This instrument, named

after Dr. T. R. Robinson of Armagh, Ireland, consists of four

hemispherical cups set at equal intervals in a circle, all facing

in the same direction round the circle, and so mounted on a

light but rigid framework as to be capable of rotating witt

but little friction about a vertical axis. When in a current oi

air (or other fluid) the apparatus begins to rotate with an ac-

celerated velocity on account of the pressure against the open

mouth of a cup on one side being greater than the resistance

met by the back of the cup diametrically opposite. Very soon,

however, the motion becomes practically uniform, the cup-

centre having a constant linear velocity v" the ratio of which

to the velocHy, v', of the wind at the same instant must be

found in some way, in order to deduce the value of the latter

from the observed amount of the former in the practical use

of the instrument. After sixteen experiments made by Dr.

Robinson on stationary cups exposed to winds of varying in-

tensities, from a gentle breeze to a hard gale, the conclusion

was reached by him that with a given wind- velocity the total

pressure on a cup with concave surface presented to the wind

was very nearly four times as great as that exerted when the

convex side was presented, whatever the velocity (see vol.

XXII of Transao. Irish Royal Acad., Part /, p. 163).

Assuming this ratio to be exactly 4.0 and neglecting axle-

friction, we have the data for obtaining an approximate value

of m, the ratio of v' to the observed -y", when the instrument is

in use. The influence of the wind on those cups the planes of

whose mouths are for the instant !| to its direction will also be

neglected.

If, then, Fig. 645, we write the imptdse on a cup when the

iiollow is presented to the wind [§ 572, eq. (1)]

P. = ZnFr''^, (1)
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and the resistance when the convex side is presented

P. = z.Fr^, ... (2}

•we may also put

In (1) and (2) v and v^ are relative velocities.

Regarding only the two cups A and B,

whose centres at a definite instant are mov- -

ing in lines parallel to the direction of the _«l>

wind, it is evident that the motion of the

cups does not become uniform until the rel-

ative velocity v' — v" of the wind and cup

A (retreating before the wind) has become

so small, and the relative velocity v' 4- v"'

with which B advances to meet the air-

particles has become so great, that the im-

pulse of the wind on A eqtials the resist-

ance encountered by B\ i.e., these forces,

Pj^ and Pel niust be equal, having equal

lever-arms about the axis. Hence, for uniform rotary m

i^'-v'y _^ov'+v'j.

otion,

. . (4)

i.e. [see eq. (3)],

V -1
V + 1 ; 4:(m~tf^{m-^l)\ .

Solving the quadratic for 'm, we obtain

m = 3.00. . (6)

That is, the velocity of the wind is about three times that of

the cup-centre.

574. Experiments with Robinson's Cup-anemometei. -The
ratio 3.00 just obtained is the one in common use in connec-

tion with this instrum^ent in America. Experiments by Mr.
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Hazen at Washington in 1886 {Am. Jour. Science, Oct. '87,

p. 248) were made on a special type devised bj Lieut. Gibbon.

The anemometer was mounted on a whirh'ng machine at the

end of a 16-ft. horizontal arm, and values for m obtained, with

velocities up to 12 miles per hour, from 2.84 to 3.06 ; average

2.94. The cups were 4 in. in diameter and the distance of their

centres from the axis 6.72 in., these dimensions being those

usually adopted in America. This instrument was nearly new
and was well lubricated.

Dr. Robinson himself made an extensive series of experi-

ments, with instruments of various sizes, of which an account

may be found in the Philos. Transac. for 1878, p. 797 (see

also the volume for 1880, p. 1055). Cups of 4 in. and also of

9 in. were employed, placed first at 24 and then at 12 in. from

the axis. The cup-centres revolved in a (moving) vertical

plane perpendicular to the horizontal arm of a whirling-

machine ; this arm, however, was only 9 ft. long. A friction-

brake was attached to the axis of the instrument for testing the

effect of increased friction on the value of m. At high speeds

of 30 to 40 miles per hour (i.e., the speed of the centre of the

instrument in its horizontal circle, representing an equal speed

of wind for an instrument in actual use with axis stationary)

the effect of friction was relatively less than at low velocities.

That is, at high speeds vdth considerable friction the value of

m was nearly the same as with little friction at low speeds.

With the large 9 in. cups at a distance of either 24 or 12 in.

from the axis the value of m at 30 miles per hour ranged

generally from 2.3 to 2.6, with little or much frict'on ; while

with the minimum friction m rose slowly to about 2.9 as the

velocity diminished to 10 miles per hour. At 5 miles per

hour with minimum friction m was 3.5 for the 24 in. instru-

ment and about 5.0 for the 12 in. The effect of considerable

friction at low speeds was to increase m, making it as high as

B or 10 in some cases. With the 4 in.-cups no value was ob-

tained for m less than 3.3. On the whole, Dr. Robinson con-

cluded i:hat m is more likely to have a constant value at all

Telocities the larger the cups, the longer the arms, and the less

the friction, of the anemometer. But few straight-line experi-
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ments have been made with the cup-anemometer, the most
noteworthy being mentioned on p. 308 of the Engineering
News for October 1887. The instrument was placed on the

front of the locomotive of a train running between Baltimore

and Washington on a calm day. The actual distance is 40
miles between the two cities, while from the indications of the

anemometer, assuming m = 3.00, it would have been in one trip

46 miles and in another 47. The velocity of the train was 20

miles per hour in one case and 40 in the other.

575 Other Anemometers.—Both Biram's and Castello's ane-

mometers consist of a wheel furnished with radiating vanes

set obliquely to the axis of the wheel, forming a small "wind-
mill," somewhat resembling the current-meter for water shown
in Fig. 604 ; having six or eight blades, however. The wheel

revolves with but little friction, and is held in the current of

air with its axis parallel to the direction of the latter, and very

quickly assumes a steady motion of rotation. The number of

revolutions in an observed time is read from a dial. The in-

struments must be rated by experiment, and are used chiefly

in measuring the velocity of the currents of air in the galleries

of mines, of draughts of air in flues and ventilating shafts, etc.

To quote from vol. v of the Report of the Geological Sur-

vey of Ohio, p. 370 :
" Approximate measurements (of the

velocity of air) are made by miners by flashing gunpowder,

and noting with a watch the speed with which the smoke

moves along the air-way of the mine. A lighted lamp is

sometimes used, the miner moving along the air-gallery, and

keeping the light in a perfectly perpendicular position, noting

the time required to pass to a given point."

Another kind makes use of the principle of Bitot's Tube

(p. 751), and consists of a U-tube partially filled with water,

one end of the tube being vertical and open, while the other

turns horizontally, and is enlarged into a wide funnel, whose

mouth receives the impulse of the current of air ; the differ-

ence of level of the water in the two parts of the U is a meas-

ure of the velocity.
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576. Resistance of Ships.*—We shall first suppose the ship to

te towed at a uniform speed ; i.e., to be without means of self-

propulsion (under water). This being the case, it is found that

at moderate velocities (under six miles per hour), the ship

heing of "/tM>" form (i.e., the' hull tapering both at bow and

stern, under water) the resistance in still water is almost wholly

due to skin-friction^ "eddy-making" (see § 569) being done

away with largely by avoiding a bluff stern.

When the velocity is greater than about six miles an hour

the resistance is much larger than would be accounted for by

skin-friction alone, and is found to be connected with the sur-

face-disturbance or waves produced by the motion of the hull

in (originally) still water. The recent experiments of Mr,

Froude and his son at Torquay, England, with paodels, in a tank

300 feet long, have led to important rules (see Mr. White's

Naval Architectxtre and "Hydromechanics" in the Ency.

Britann ) of so proportioning not only the total length of a

ship of given displacement, bat the length of the entrance (for-

ward taperin<j part of hull) and length of run (hinder tapering

part of hull), as to secure a minimum '''"wave-making resist-

ance^'' as this source of resistance is called.

To quote from Mr. White (p. 460 of his Naval Architecture,

London, 1882): ''Summing up the foregoing remarks, it

appears

:

" (1) Thsit friction al resistance, depending upon the area of

the immersed surface of a ship, its degree of roughness, its

length, and (about) the square of its speed, is not sensibly

affected by the forms and proportions of ships; unless there

be some unwonted singularity of form, or want of fairness.

For moderate sjpeeds this element of resistance is by far the

most important ; for high speeds it also occu]Mes an important

position—from 50 to 60 per cent of the whole resistance,

probably, in a very large number of classes, when the bottoms

are clean ; and a larger percentage when the bottoms become

foul.

" (2) That eddy-m,aking resistance is usually small, except m
special cases, and amounts to 8 or 10 per cent of the frictionaJ

* Not in canals, but in water of indefinite width and depth.
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resistance. A defective form of stern causes largely increased

eddy-making.
" (3) That wave-maJclng resistance is the element of the

total resistance which is most influenced by the forms and pro-

portions of ships. Its ratio to the frictional resistance, as well

as its absolute magnitude, depend on many circumstances ; the

most important being the forms and lengths of the entrance

and run, in relation to the intended full speed of the ship.

For every ship there is a limit of speed beyond which each

small increase in speed is attended by a disproportionate in-

crease in resistance ; and this limit is fixed by the lengths of

the entrance and run—the ' wave-making features ' of a ship.

"The sum of these three elements constitutes the total re-

sistance offered by the water to the motion of a ship towed

through it, or propelled by sails ; in a steamship there is an

' augment ' of resistance due to the action of the propel-

lers."

In the case of a steamship driven by a screw propeller, this

augment to the resistance varies from 20 to 45 per cent of the

" tow-rope resistance," on account of the presence and action

of the propeller itself ; since its action relieves the stern of

some of \hQforward hydrostatic pressure of the water closing

in around it. Still, if the screw is placed far back of the stern,

the augment is very much diminished ; but such a position in-

volves risks of various kinds and is rarely adopted.

We may compute approximately the resistance of the water

to a ship propelled by steam at a uniform velocity -y, in the

following manner : Let L denote the power developed in the

engine cylinder ; whence, allowing 10 per cent of L for engine

friction, and 15 per cent for " work of slip" of the propeller-

blade, we have remaining 0.75Z, as expended in overcoming

the resistance R through a distance = v each unit of time ; i.e.,

(ipprox.), 0.75Z = JRv (1)

Example.—If 3000 indicated H. P. (§ 132) is exerted by the

engines of a steamer at a uniform speed of 15 miles per hour
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(= 22 ft. per sec), we have (with abo.ve allowances for slip and

engine friction) [foot-ll>.-sec.]

I X 3000 X 550 = ^ X 22 ; /. R = 56250 lbs.

Further, since M varies (roughly) as the square of the veloc-

ity, and can therefore be written H, = (Const.) X 'y^ we have

from (1)

L-= a constant X v^ ...... (2)

as a roughly approximate relation between the speed and the

power necessary to maintain it uniformly. In view of eq. (3)

involving the ouhe of the velocity as it does, we can understand

why a large increase of power is necessary to secure a propor,

tionally small increase of speed.

577. " Transporting Power," or Scouring Action, of a Current,

—The capacity or power of a current of water in an open

chanTiel to carry along with it loose particles, sand, gravel,

pebbles, etc., lying upon its bed was investigated experiment

tally by Dubuat about a century ago, though on a rather small

scale. His resulrs are as follows :

The velocity of current must be at least

0.25 ft. per sec, to transport silt

;

0.50 " " " loam;

1.00 " « " sand;

2.00 " " " gravel;

3.5 " " " pebbles 1 in. in diam.;

4,0 " " " broken stone

;

5.0 '^ " " chalk, soft shale.

When a current holds "silt,'' (i.e., fine clay, sand, or mud)

in suspension, the latter may be deposited if conditions of

velocity, or of depth, change. According to Kennedy's

observations on certain canals in India, silt will be de-

posited if the velocity falls below a certain critical value,

different for different depths of stream. Some of these values,

with the corresponding depths are here given (Bellasis,

Hydraulics, p. 179)

:

Ford= 12 3 4 5 6 7 8 9 10 ft.

v =M 1.3 1.7 2.04 2.35 2.64 2.92 3.18 3.43 3.67 ft./sec.

In case the particles move in filaments or stream-lines

parallel to the axis of the stream the statement is sometimes

made that the "transporting power" varies as the sixth power
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Fia. 646.

of the velocity of the current, hy which is meant, more defi-

nitely, the following: Fig. Q4:Q. Conceive a row of cubes (or

other solids geometri-

cally similar to each

other) of many sizes,

all of the same heavi-

ness (§ 7), and simi-

larly situated, to be

placed on the horizon-

tal bottom of a trough

and there exposed to

a current of water,

being completely im-

mersed. Suppose the coefficient of friction between the cubes

and the trough-bottom to be the same for all. Then, as the

current is given greater and greater velocity ^), the impulse

P^ (corresponding to a particular velocity 'y,„) against some

one, m, of the cubes, will be just sufficient to move it, and at

some higher velocity v^ the impulse P^ against some larger

cube, n, will be just sufficient to move it, in turn. We are to

prove that P^^ • Pn • • '^m • '^n-

Since, when a cube barely begins to move, the impulse is

equal to the friction on its base^ and the frictions under the

cubes (when motion is impending) are proportional to their

volumes (see above), we have therefore

P
(*>

Also, the impulses on the cubes, whatever the velocity, are pro-

portional to the face areas and to the squares of the velocities

(nearly ; see § 572) ; hence

JBVom (1) and

P^ '^m ^m

Pn <^n

(2) we have

Le., —

(2)

"4> (8)
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while from (3) and (2) we have, finally,

Thus we see m a general way why it is that if the velocity

of a stream is doubled its transporting power is increased

abaut sixty-four-fold ; i.e., it can now impel along the bottom

pebbles that are sixty-four times as heavy as the heaviest which

it could move before (of same shape and heaviness).

Though rocks are generally from two to three times as

heavy as water, their loss of weight under water causes them to

encounter less friction on tlie bottom than ii not Immersed.

578. Recent Experiments with Fire-hose, Nozzles, etc. (Ad-

dendum to § 520.)—The very full and careful investigations of

Mr. J. R. Freeman^ hydraulic engineer of Boston, Mass., in this

line (see Transac. A. S. C. E., Nov. 1889) furnish the following

results: By taking piezometer readings at the ends of a portion

of fire-hose conducting a steady flow of water, the values of loss

of pressure due to fluid frictiou per 100 feet of length could be

computed ; a careful measurement being also made of the

diameter of the hose and of the volume of water transmitted iu

an observed time. The table here given presents results applica-

ble to hose of exactly 2.5 inches diameter, for a delivery of water

at the rate of 240 gallons per minute (that is, for a velocity in

the hose of 15.68 ft. per sec). (The value of / has been com-

puted by the writer.)

Sample. Desci-iption.

Loss of pressure,
per 100 ft. of

length, in lbs. per
sq. in.

Coefficient/.
CSee § 520.)

Velocity of
water in
hose.

L
K

I
E

C

Unlined linen hose
Woven cotton, rubber-lined,
"Mill Hose"

Kx ' cotton, rubber-lined, hose.
Ditto, but interstices between

''^reads well filled

Wo^fen cotton, rubber-lined,
hose. So well filled with the
rubber that the inner surface
remained smooth under pres-
sure

33.2

25.5
19.4

16.0

14,1

0.01045

0.00802
0.00610

0.00503

0.00443

15.68

15.68
15.68

15.68

15.68

It was found that with other rates of flow the friction-head

varied nearly as the square of the velocity. The great importance

of a smooth interior o^ hose is well shown by this table.

A short section of each kind of hose was filled with liquid

plaster underjjressure. After the setting of the plaster the hose

was removed and photographs taken of the cast, thus conveying

a definite idea of the degree of roughness of interior of hose.
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As to nozzles, it was found that the plain conical nozzle gave

the best results, jets from the ring-nozzles being slightly inferior

in range.

By means of a very delicate form of Pitot's tube measurementi

were made of the velocity in different parts of the section of jets,

aear the nozzle, with the interesting result that in "about two-

thirds the whole distance from centre to circumference the ve-

locity remains the same as at centre," and that at -J inch from

th" wall of most of the orifices the velocity was only 5fo less than

at centre of jet. With a jet from a 5-foot length of brass tubing

1-g inch in diameter and used as a nozzle the velocity fell off

rapidly for filaments further from the- centre; e.g., at half the

distance from centre to circumference the velocity was 90fo of

that at the centre, and at the outside edge QOfo. Most of the

nozzles ranged from 1 in. to 1^ in. in diameter of orifice.

By using these velocity measurements to "gauge" the flow it

was found that the relation h' = — was quite closely borne out

(within Ifc) (see eq. (7V', p. 804). The point of the Pitot tube

was conically convergent, its extremity being 0.0 17 in. in external

diameter and containing an orifice of 0.006 in. diameter. A
minute passage-way led from the orifice to a Bourdon gauge.

Based on his experiments, Mr. Freeman gives tables for the

maximum vertical height, V, and also the maximum horizontal

range, II, of "good effect ive fire-streams " delivered from smooth
conical nozzles of various sizes and with different piezometer

pressures p (in lbs. p. sq. in. above atmosphere) at the base of

play-pipe, the gauge being at same level as nozzle. (The dis-

tances reached by the extreme drops are very mucn greater with

the high pressures. V and H are in feet.)

The following is a brief synopsis of this table, d is the internal

diameter of the extremity of nozzle. The maximum horizontal

range was obtained at an angle of elevation of about 32°.

Forp = 10 20 40 60 80 100

V H V H V H V H V H V H
d = % in.

d = % "
17 ft. 19 33 29 60 44 72 54 79 62 m 88
18 21 34 .S3 62 49 77 61 85 70 90 76

d = 1
" 18 21 35 37 64 55 79 67 89 76 96 83

d = 116
'*

1 18 22 36 38 65 59 83 73 92 81 99 89
d = m "

d = 192
"

19 22 37 40 67 63 85 76 95 85 101 93
20 23 88 42 69 66 87 79 97 88 103 96
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579. Addendum on the Pelton Water-wheel.—The annexed cut and
additional details of the test alluded to on p. 810 are taken from cii ••alais

of the manufacturers, of San Frauciso, Cal.

The water was measured over an iron weir J" thick and 3.042 feet long
without end contraction.

The depth was measured by a Boyden hook gauge reading to .001", and
was .4146 foot. The quantity of water discharged was found to be 2.819
cubic feet per second—Fteley's formula. The head lost by friction in pipe
was 1.8 feet, reducing the effective head to 384.7 feet.

The work done was measured by a Prony brake bearing vertically down
upon a platform scale and which showed a weight of 200 pounds upon the
scale-beam when the brake gear was suspended by a cord from a point im-
mediately above the wheel-shaft. This made a constant minus correction
of 200 pounds. The friction pulley had a face of 12", and being kept wet
by a Jet of clear cold water, it developed very little heat and ran without
much jumping. Thirteen tests were made showing very uniform results,

the first four of which were as follows

:

Tests.
Weight shown by

scale
Net weight
(—200 lbs.)

Rev. wheel-shaft
per min.

1
2
3
4

665
665
660
660

G = 465
4fi5

460
460

M = 254J
255
256

256f

Totals 1022

Means 255i

Gm = 118343
118575
117760
117990

472667

118167

The arm of the Prony brake was 4.775 feet from centre of wheel-shaft to
point of contact on scale and hence described a circ?e with a circumference
of 30 feet. The work done per minute was therefore Ou{2tr) — (118167
X 30) or 3,545,000 foot-pounds, equal to 107.4 horse-power. The theoret-
ical power of the water was (2.819 x 60 x 384.7 x 62.4) or 4>0S0,35? foot-
pounds. The useful effect was therefore 87.3 per cent.
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Note.—^This appendix contains addenda and tables, and also several

pages from a former edition of the book. In these last the numbering of

the articles and of the figures has been left unchanged.

48a. Addendum to § 55. Mass.—In Phtsics, the fundamental units ar«
those of

Space, involving a unit of length (and thence of area and volume)

;

Time, " a unit of time, usually the second ;

Mass, " a unit of mass, which (by Government decree) may be the
quantity of matter in a specitied piece of platinum, or specified volume of water,
etc. (a beam-balance being used to determine equal quantities of mass) ; while

FoKCE involves a derived unit, being measured by its effect in accelerating
the velocity of a moving mass, since it is proportional both to the mass and the
acceleration. The unit force (called absolute unit) is the force necessary to pro-
duce unit acceleration in a unit of mass; so that to produce an acceleration =^ in

a mass = m requires a force = i''= nip, and the force thus obtained is in absolute
units. This is called the dynamic measure of a force.

Uxample.—In the C.G.S. system of units, required the constant force necessary
to cause a mass of 400 grams to gain 200 velocity units in 2 sec ; i.e.,^ = 100
centims. per sec, per sec. From F= mp we have

i^= 400 X 100 = 40000 abs. units of force (or dynes, in C.G.S. system).

In the ft.-lb.-sec. system the absolute unit is called apoundal.

In Mechanics of Engineering, however, it is more convenient to regard the
fundamental units to be those of

Space, as ft., metre, etc., area and volume corresponding;
Time, as seconds, hours, etc.

;

Force, as lbs., grams, kilograms, tons, etc., indicated by a spring balance;
while for

Mass we assume a derived unit, a mode of measuring it being developed as
follows

:

If by experiment (block on smooth table, for instance) we find that a constant
force P(lbs., tons, kilos.) will maintain an acceleration =p in the rectilinear

motion (in line of force) of a body whose weight (by previous trial with a spring
balance) is O (lbs. , tons, or other unit) ; and if in a second experiment, by allow-
ing the force O to act on the same body in vacuo, a free vertical fall with acceliBra-

tion =g is, the result,—we find that the proportion (Newton's 2d Law) P:Q::p:g
Gr

Is verified. This may be written P= — . p, and may then be read: Force = mass

X acceleration, if we call the quotient G-s-g the Mass of the body whose weight
(by spring balance) is = G at a locality where the acceleration of gravity = g ; for
this quotient will be the same at all localities on the earth's surface.
JEzample (same as above).—If a body whose weight O = 400 grams (force) is to

have its velocity increased, in 2 sec. , from 300 centims. per sec. to 500 centims.
per sec, at a uniform rate, we must provide a constant force

= 40.77 grams; or .040 kilos.

This is called the gravitation measure of a force. Hence it is evident that to r.

duce absolute units (called dynes and poxmdals) in the C.G.S. and ft.-lb.-sec.

systems, respectively) to ordinary practical units of force (lbs., tons, kilos., etc.,

of a spring balance), we divide by the value of g proper to the system of units em-
ployed : and vice versd.

835
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(Addendum to § 49a of page 49.) Numerical Example.—A set of light

screens is set up at intervals of 100 feet apart in the horizontal path of a

cannon-bal], with the object of determining its velocity, and also the rate of

change (or negative acceleration) of that velocity, as due to the resistance

of the air.

By electrical connection the time of passing each screen is noted, and

the intervals of time are given in this diagram for four of the screens,

A, B, G, and D.

.100'.

,0.0631 sec.

....100'....

.0.0633 sec.

.100'.

.0.0643 sec.

^ 1 ^ 3 C 3 D
From these data it is required to compute, as nearly as the circumstances

allow, the velocity and acceleration (negative) of the ball at various points

(the ball moves from left to right).

Solution.—In passing from Aio B the ball has an average velocity of

1610 ft. per second, obtained by dividing the distance of 100 feet by the

time of passage, 0.0631 second. Similarly we find the average velocity

between B and G to be 1583 ft. per second, and that between Cand I) to

be 1554 ft. per second.

As the velocity is not changing very rapidly, we may claim that the ball

actually possesses the velocity Vi = 1610 ft. per second at the point 1, mid-

way between A and B, or very near that point ; and similarly the velocity

«2 = 1583 ft. per second at point 3, midway between B and G ; and

Vs = 1554 ft. per second at point 3, midway between G and I).

Hence the total gain of velocity from 1 to 3 is 1583-1610 = — 38 ft. per

second; and the time in which this gain is made is one half of the 1631

second plus one half of the 0.0633 second, i.e., 0.0636 second. Therefore

an approximate value for the average acceleration between points 1 and 2

is found by dividing the — 38 ft. per second gain in velocity by the

time 0.0636 second occupied in acquiring the gain. This gives — 447 ft.

per second per second average acceleration for portion 1. . .3 of path, and
since screen B lies at the middle of this portion, the actual acceleration of

the ball's motion as it passes the screen B is very nearly equal to this, viz.:

— 447 ft. per second per second (or " ft. per square second ")-

By a similar process the student may compute the acceleration at screen

G. Of course the reason why these results are merely approximate is that

the spaces and times concerned, though relatively small , are not infinitesimal.

[A recent English writer calls a unit of velocity a "speed;" and a unit

of acceleration, a "Tiurr3i*"i
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TABLE OF HYPERBOLIC SINES AND COSINES (See p. 48).

r—

u cosh >_ sinh u u cosh u sinh M

0.00 1.0000

0.05 1.0013 0.0500 2.05 3.9484 3.8196
.10 1.0050 .1002 2.10 4 . 1443 4,0219
.15 1.0112 .1506 2.15 4.3507 4 2342
.20 1.0201 .2013 2.20 4 , 5679 4,4571
.25 1.0314 .2526 2.25 4.7966 4.6912

0.30 1.0453 0.3045 2.30 5.0372 4.9369
.35 1.0619 .3572 2 35 5.2905 5.1952
.40 1 0811 .4108 2.40 5.5569 5.4662
.45 1 . 1030 .4653 2.45 5.8373 5.7510
.50 1 . 1276 .5211 2.50 6.1323 6.0502

0.55 1.1551 0.5782 2.55 6.4426 6.3645
.60 1 . 1855 .6367 2.60 6.7690 6.6947'

.65 1.2188 .6967 2.65 7 1123 7.0417

.70 1.2552 .7586 2.70 7.4735 7.4063

.75 1.2947 .8223 2.75 7.8533 7.7894

80 1.3374 0.8881 2.80 8.2527 8 1919

.85 1.3835 0.9561 2.85 8 6728 8.6150

.90 1.4331 1.0265 2.90 9.1146 9.0596

.95 1.4862 1.0995 2.95 9 5791 9,5268
1.00 1.5431 1.1752 3.00 10.0677 10.0179

1.05 1.6038 1.2539 3.05 10.5814 10.5340
1.10 1.6685 1.3356 3.10 11 1215 11.0765

1.15 1.7374 1.4208 3.15 11.6895 11.6466
1.20 1.8107 . 1.5097 3.20 12.2866 12 2459

1.25 1.8884 1 6019 3.25 12.9146 12.8758

1.30 1.9709 1.6984 3.30 13 5748 13.5379

1.35 2.0583 1.7991 3.35 14.2689 14.2338
1.40 2.1509 1.9043 3.40 14.9987 14.9654

1.45 2.2488 2.0143 3.45 15 7661 15.7343

1.50 2.3524 2 . 1293 3.50 16 5728 16.5426

1.55 2.4619 2.2496 3.55 17.4210 17.3923

1.60 2.5775 2.3757 3.60 18 3128 18.2855
1.65 2.6995 2.5075 3.65 19 2503 19 2243

1.70 2.8283 2.6456 3.70 20.2360 20.2113
1.75 2.9642 2.7904 3.75 21 2723 21.2488

1.80 3.1075 2.9422 3.80 22.3618 22.3394

1.85 3.2583 3.1013 3.85 23.5072 23.4859

1.90 3.4177 3.2682 3.90 24.7113 24.6911

1.95 3.5855 3.4432 3.95 25.9773 25.9581

2.00 3.7622 3.6269 4.00 27.3082 27.2899
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J.+ ^J

266. The Four x-Derivatives of the Ordinate of the Elastic Curve

—If y = func. (a?) is the equation of the elastic curve for

any portion of a loaded beam, on which portion the load

per unit of length of the beam is, w — either zero, (Fig.

234:) or = constant, (Fig. 235), or = a continuous func. {x)

(as in the last §), we may prove, as fol-

lows, that w = the cc-derivative of the

^ shear. Fig. 269. Let i^ and N' be two
—» consecutive cross-sections of a loaded

beam, and let the block between them,

^^ bearing its portion, wdx, of a distributed

load, be considered free. The elastic

forces consist of the two stress-couples

(tensions and compressions) and the two

shears, j/and J •\- dJ, dJheing the shear-increment conse-

quent upon X receiving its increment dx. By putting

2'(vert. components) = we have

Fig. 269.

J-\-dJ-—wdx—t^^O .'. w= dJ
dx

Q. K D. But J" itself = d3I -^ dx, (§ 240) and
M = \d?y ~r dx^] EL By substitution, then, we have th©

following relations

:

?/=func.(x)= ordinate at any point of the elastic curve (1)

dy^
dx
^=z a = slope at any point of the elastic curve (2>

d'^yEI ~j^~ M = ordinate (to scale) of the moment curve (3)
dx

^ d^oj .,1 T f the ordinate (to scale) ) ,.^

^^S " * '

1 of *1^^ «lie^^ diagram \
' '

^^>
do^

Elp= w =
the load per unit of length "i

of beam = ordinate (to scale) >-

of a curve of loading.
)

(5)

If, then, the equation of the elastic curve (the neutral line

of the beam itself ; a reality, and not artificial like th©
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other curves spoken of) is given ; we may by successive

differentiation, for a prismatic and homogeneous beam so

that both E and / are constant, find the other four quan-

tities mentioned.

As to the convei-se process, (i.e. having given w as a

function of x, to find expressions for J, M and y as func-

tions of x) this is more difficult, since in taking the

a7-anti-derivative, an unknown constant must be added and

determined. The problem just treated in § 264, however,

offers a very simple case since to is the same function of

X, along the ivJiole beam, and there is therefore but one elas-

tic curve to be determined.

We .•. begin, numbering backward, with

XTT- d*y T
f
since w = ybx, see ) ,- v

'dx^
~ ^ ( last § and Fig. 268 j

* ' • V0«>

[K. B.—This derivative (dJ-i-dx) is negative since dJ&nd
dx have contrary signs.]

A (sJiear=)II/^=„ r b ^-^Const
dor 2

But writing out this equation for x=0, i.e. for the point

0, where the shear=^o> we have ^o"" -{- Const. .: Const.—

Eq, and hence write

A-gain taking the a:-anti-derivative of both sides

(Moment =) E I ^^=—yh—-\-BoX+{Const.=0) . (3a)

[At 0, a;=0 also M, .-. Const. =0]. Again,

At 0, where x=0 dy -^dx=aQ=ih.e unknown slope of the

Elastic line at 0, and hence C'=EI a^

.\EI^=-rbtA-B,^-\-EI a^ . . , (2a)
aa? 24 2
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Passing now to y itself, and remembering that at 0, botn
y and x are zero, so that the constant, if added, would==
aero, we obtain (inserting the value of Bq from last §)

^^y^-r^^-^r^V—-^- Ela^x . (la)

the equation of the elastic curve. This, however, contains
the unknown constant «^«=the slope at 0. To determine

«o write out eq. (la) for the point B, Fig. 268, where x is

known to be equal to I, and ^ to be = zero, solve for a,
,

and insert its value both in (la) and (2a). To find the

point of max. y (i.e., of greatest deflection) in the elastic

curve, write the slope, i.e. dy -^ dx, = zero [see eq. 2a] and
solve for x ; four values will be obtained, of which the one

lying between and I is obviously the one to be taken.

This value of x substituted in (la) will give the maximum
deflection. The location of this maximum deflection is

neither at the centre of action of the load ( a?= ^ I \

nor at the section of max. moment [x =1-^^/^.)

The qualities of the left hand members of equations (1)

to (5) should be carefully noted. E. g., in the inch-pound-

second system of units we should have :

1. y (a, linear quantity) = (so many) inches.

2. dy-i-dx (an abstract number) = (so many) abstract

units.

3. Jf (a moment) = (so many) inch-pounds.

4. e7^(a shear, i.e., force) = (so many) pounds.

6. w (force per linear unit)= (so many) pounds per run-

jiing inch of beam's length.

As to the quantities E, and I, individually, E is pounds

per sq. in., and /has four linear dimensions, i.e. (so irany)

bi-qnadratic inches.
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287. Cantilevers of Uniform Strength.—Beams built in at

one end, horizontally, and projecting from the wall with-

out support at the other, should have the forms given be-

low, for the given cases of loading, if all cross-sections are

to be Rectangular and the weight of beam neglected. Sides

of sections horizontal and vertical. Also, the sections are

symmetrical about the axis of the piece, h and h are the

dimensions at the wall. 1= length. No proofs given.

Fig. 390.

Width constant.

Vertical outline
parabolic. Single

end load.

^ Fig. 290, (a). {VzvfH'AWj (1)

Height constant.
-|

Single end load. I „. ^^^ ,,^ , , ^ , ,t\* .v

Horizontal outline ^'g- 290. (*> (%^)H%VPi (^)

triangular. J

\30

Constant ratio of-,

height V to width u.

Both outlines cu- ^^'^- ^^^- (^>-

bic parabolas.

{}4vf={y,hf'l . (3)

X
{y,uf={y,bf^ .(3y
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Uniform L o a d. "i

Widtli constant. _. ^^^ , . , , n , ,,x^ ,.»

Vertical outline tri- r
^'S" ^^^- <''> (>^'')=(>^*)7 •

(*)

angular. J

Uniform Load."
Height constant.

Horiz. outline is

two parabolasmeet-

ing at (yertex)

witli geomet. axes

II
to wall.

Fig. 291,(5). 5^««=(>^% • '(5)

X
{}iu)^={%hy -1, (6)

Uniform L o a d . -|

Both outlines semi-

cub i c parabolas.
J-

Fig. 291, (c).

Sections similar! /t/^,\3_/t/7.as ^ /av
rectangles. J

(%^) -(%K} P (6)

289.—Beams and cantilevers of circular cross-sections

may be dealt with similarly, and the proper longitudinal

outline given, to constitute them *' bodies of uniform

strength." As a consequence of tlie possession of this

property, with loading and mode of support of specified

character, the following may be stated ; that to find the

equation of safe loading any cross-section tvhatever may he

employed. This refers to tension and compression. As
regards the shearing stresses in different parts of the beam
the condition of " uniform strength " is not necessarily ob-

tained at the same time with that for normal stress in the

outer fibres.

DEFLECTION OF BEAMS OF UNIFORM
STRENGTH.

290. Case of § 283, the double wedge, but symmetrical,

1.6., li=lo=^l, Fig. 292. Here we shall find the use of the
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Fig. 293.

EI
form — (of fclie three forms for the moment of the stress

couple, see eqs. (5), (6) and (7), §§ 229 and 231) of the most
direct service in determining the form of the elastic curve

OB, which is symmetrical, and has a common tangent at

B, with the curve BC. First to find the radius of curva-

ture, p, at any section n, we have for the free body nO,

2'(moms.„=0), whence

FI

P

( TTOTYl P'O J 7/

+y^Fx^O ;
but

I ^3) g 283 j
^= ^^^ ^^^ T=%uh^

E
we have Yj,

- ul?= ) [P -T and .*. p=
I
.§ (1)

from which all variables have disappeared in the right

hand member; i.e., ,o is constant, the same at all points of

the elastic curve, hence the latter is the arc of a circle,

having a horizontal tangent at Bo

To find the deflection, d, at B, consider Fig. 292, (b\

where d=KB, and the full circle ol radias BR=p is

drawn.

The triangle KOB is similar to TOB,
Sind.: KB I OB :: OB : YB
But 0B=}41, KB=d and YB=2p

Pf
'bh^E ^^

.'. d= o, > and o'. , from eq. (1), d=
2p

From eq. (4) §233 we note that for a beam of the same

material but prismatic (parallelopipedical in this case,)

having the same dimensions, b and h, at all sections as at

1 PI?
the middle, deflects an amount =jq yrj-
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load P in the middle of the span. Hence the tapering

beam of the present § has only ^ the stiffness of the pris"

matic beam, for the same h, h, I, E, and P.

291. Case of § 281 (Parabolic Body), With l^ =lo, i.e., Symmet-

rical.—Fig. 293,(a). Bequired the equation of the neutral

Fig. S93.

line OB. For the free body nO, i'(moms.n)=0 gives us

m -y2Px (1/

Fig. 293, (6), shows simply the geometrical relations of the

problem, position of origin, axes, etc. OnB is the neutral

line or elastic curv^* whose equation, and greatest ordinate

d, are required. (The right hand member of eq. (1)" is made
negative because d^y-^dx^ is negative, the curve being con-

cave to the axis Xin this, the first quadrant.)

Now if the beam were prismatic, /, the " moment of in-

ertia " of the cross-section would be constant, i.e., the same

for all values of x, and we might proceed by taking the x-

anti-derivative of each member of (1)" and add a constant j

but it is variable and is

hi 3

'' {'My

hence (1)" becomes

- {%iy

(fromeq. 3, §281, putting «o= ^2)

^
x^'-

'y-
dx?

y2Px . (ly

To put this into the form Const. X^ =func. of (x), we need
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3

only divide tlirougli by a5^ ,,(and for brevity denote

1 Ehh\-^ {}4l)r by A) and obtain

^w=->^^^"* • • • • ^1)

We can now take the cc-anti-derivative of each member, and
have

^^=_^P(2^+>^)+(7 .... (2/

To determine the constant C, we utilize the fact that at B,

where x=)4lt the slope dy-i-dx is zero, since the tangent

line is there horizontal, whence from (2)'

0=—F^±+G .'.C=P^.

.\ (2/ becomes A ^ =P[-^>^?-a; ^] (2>
Q/00

Ay=Pi^l.x—%xh+lG'=0-] . . . (3)

((7'=0 since for x=0, y=0). We may now find the deflec-

tion d (Fig. 293(6)) by writing 03= i^Zand 2/ =c^, whence, after

restoring the value of the constant A,

'^=>^m? • • . w
PF

and is twice as great [being=2. —rr-l* ^s if the erirder

* 3ee § 233, putting /=^ 5A in eq. (4).

were parallelopipedical. In other words, the present girder

is only half as stiff as the prismatic one.

292. Special Problem. (I.) The symmetrical beam,in Fig.

294 is of rectangular cross-section and constant width= 5,
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but the heiglit is constant only over the extreme quartei

spans, being =^i=^7i, i. e., half the height h at mid-span.

Thft convergence of the two truncated wedges forming the

middle quarters of the beam is such that the prolongations

Fig. 294.

of the upper and lower surfaces luovM meet over the swpports

(as should be the case to make h='2hi). Neglecting the

weight of the beam, and placing a single load in middle, it

is required to find the equation for safe loading ; also the

equations of the four elastic curves ; and finally the deflec-

tion.

The solutions of this and the following problem are left

to the student, as exercises. Of course the beam here

given is not one of uniform strength.

293. Special Problem. (II). Fig. 295. Eequired the man-
ner in which the width of the beam must vary, the height

being constant, cross-sections rectangular, weight of beam

Fig. 295.

neglected, to be a beam of uniform strength, if the load is

uniformly distributed ?
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Note.—The following five pages originally formed the concluding part of

"the chapter on " Arch-ribs" of this book; and gives a graphic treatment

of straight girders considered as a particular case of curved beams (or

arch ribs).

HORIZONTAL STRAIGHT GIRDERS.

389. Ends 5'ree to Turn.—This corresponds to an arch-

rib with hinged ends, but it must be understood that there

is no hindrance to horizontal motion. (Fig. 439.) In

Fig 439.

treating a straight beam, slightly bent under vertical forcer

4)nLy (as in this case with no horizontal constraint), as a
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particular case of an arch-rib, it is evident that since the
pole distance must be zero, the special equil. polygon will

have all its segments vertical, and the corresponding forco
diagram reduces to a single vertical line (the load line).

The first and last segments must pass through A and B
(points of no moment) respectively, but being vertical will

not intersect F^ and P2 ; i.e., the remainder of the special

equilibrium polygon lies at an in^nite distance above the
span AB. Hence the actual spec, equil. pol. is useless.

Hoivever. knowing that the shear, J, and the moment
M (of stress couple) are the only quantities pertaining to

any section m (Fig. 439) which we wish to determine (since

there is no thrust along the beam), and knowing that an

imaginary force H', applied horizontally at each end of the

beam, would have no influence in determining the shear

and moment at m as due to the new system of forces, we
may therefore obtain the shears and moments graphically

from this neio system (viz.: the loads Pj, etc., the vertical

reactions Fand V,„ and the two equal and opposite i^"'s).

[Evidently, since H'' has no moment about the neutral

axis (or gravity axis here), of m, the moment at m will be

unaffected by it ; and since H" has no component ~\ to the

beam at m, the shear at m is the same in the new system

of forces, as in the old, before the introduction of the

if's.]

Hence, lay off the load-line 1 . . 2. . 3, Fig. 439, and con-

struct an equil. polyg. which shall pass through A and B
and have any convenient arbitrary Zf" (forco) as a pole

distance. This is done by first determining n on the load-

line, using the auxiliary polygon A'a'B', to a pole 0' (arbi-

trary), and drawing O'n' \\ to A'B'. Taking 0'' on a hori-

zontal through n, making 0''n'=H", we complete the

force diagram, and equil. pol. AaB. Then, z being the ver-

ticalintercept heiy^Q&a. TYi dsndi the equil. polygon, we h.ive:

Moiiient at m^=M=H"z {ox— H'z' also), and shear at m, or

/,^2 . . n', i.e., = projection of the proper ray R2, or

0"
. . 2, upon the vertical thrcugh m. Similarly we ob-

tain iff and J at any other sect: r n for the given load. (See
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§ § 329, 337 and 367). The moment of inertia need not be

constant in this case.

390. Straight Horizontal Prismatic Girder of Fixed Ends at Same

Level.—No horizontal constraint, hence no thrust. I con-

stant. Ends at same level, with end-tangents horizontal.

We may consider the whole beam free (cutting close to the

walls) putting in the unknown upward shears J^ and o^^

and the two stress couples of unknown moments Jfl and

M,, at these end sections. Also, as in § 388, an arbitrary

H" horizontal and in line of beam at each extremity. Now
(See Fig. 33) the couple at and the force H" are equiv-

alent to a single horizontal H" at an unknown vertical dis-

tance c below ; similarly at the right hand end. The
special polygon FG is to be determined for this new sys-

tem, since the moment and shear will be the same at any

section under this new system as under the real system.

The conditions for determining it are as follows : Since

the end-tangents are fixed, IMAs={) ,*. I^^z^s=0 and since
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O's displacement relatively to B'a tangent is zero we liave

IMxJs^O .: IN"sx/:ls=0 .'. IxzJs=0. See §374, Hence
for Equal ^s's, l'(z)=0 and l\xz)=0. Now for any pole 0'"

draw an equil. pol. F'"G"' and in it (by § 377; see Note)

locate v"'m"' so as to make 2'(3'")=0 and l{x%"'^=^.

Draw verticals through the intersections E'" and L"\ to

determine E and L on the beam, these are the points of

inflection (i.e., of zero moment), and are points in the re-

quired special polygon FG.

Draw 0'"%''
li
to v'"m"' to fix n". Take a pole 0" on

the horizontal through n'\ making \)'':af'^H" (arbitrary),

draw the force diagram 0" 1234 and a corresponding

equilibrium polygon beginning at E. It should cut L,

and will fulfil the two requirments 2'^(2)=0 and 2'^(a;2!)=0,

with reference to the axis of the beam O'B'. The moment of

the stress-couple at any section m will be M=^H"z, and the

shear J = the projection of the " proper ray " of the force

diagram 0" . . 1, 2, etc., upon the vertical (not in the trial

diagram 0'".
. 1, 2, etc.). As far as the moment is concern-

ed the trial polygon F'" G'" will serve as well as the special

polygon FG ; i.e., M=H"'z'" as well as H"z, R'" being the

pole-distance of 0'"
; but for the shear we must use the

rays of the final and not the trial diagram.

The peculiarity of this treatment of straight beams,

considered as a particular case of curved beams, consists

in the substitution of an imaginary system of forces in-

volving the two equal and opposite, and arbitrary H's, for

the real system in which there is no horizontal force and

consequently no " special equilibrium polygon," and thus

determining all that is desired, i.e., the moment and shear

at any section.

In the polygon FG the student will recognize the " mo-
ment-diagram " of the problems in Chaps. Ill and IV.

He will also see why the shear is proportional to the

slope —— of the moment curve in those chapters. For
ax

example, the " slope " of the second segment of the poly-

gon FG, that segment being || to 0" 2, is
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tang, of angle 20''w"=2%"-=-0'V'=shear -^ H"

and similarly for any other segment ; i.e., tlie tangent ol

the inclination of the " moment curve," or line, is propor-

tional to the shear.

It is also interesting to notice with the present problem

of a straight beam, that in the conditions

I{zJs)=0 and I{zAs)x=Q,

J)r locating the polygon FG^ each ds is "| tc its s, and

jhat consequently each z^s is the area of a small vertical

strip of area between the beam and the polygon; and

[z/ls)x is the " moment" of this strip of area, about 0' the

origin of x. Hence these conditions imply
; first, that the

area EWL between the polygon and the axis of the beam

on one side is equal to that (0'-P^+i^-S'6r) on the other

side, and, secondly, that the centre of gravity of EWL lies

in the same vertical as that of O'-F-E'and LB' G combined.

Another way of stating the same thing is, that, if we join

FG, the area of the trapezoid FO'B' G is equal to that of the

figure FEWLG, and tlieir centres of gravity lie in the same
vertical. A corresponding statement may be made (if we join

F'"G'") for the trapezoid F"'v'"m"'G'"' and figure
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N 1 2 3 4 5 6 7 8 9 Dif.

10 0000 0043 0086 0128 0170 0212 0253 0394 0334 0374 42

11 0414 0453 0492 0531 0569 0607 0645 0682 0719 0755 38

12 0792 0828 0864 0899 0934 0969 1004 1088 1073 1106 35

13 1139 1173 1206 1239 1271 1303 1335 1367 1399 1430 33

14 1461 1492 1523 1553 1584 1614 1644 1673 1703 1733 30

15 1761 1790 1818 1847 1875 1903 1931 1959 1987 3014 38
16 2041 2068 2095 2123 2148 2175 2201 2227 3353 3279 26

17 2804 2330 2355 2380 2405 2430 2455 2480 3504 3539 25
18 2553 2577 2601 2625 2648 2672 2695 3718 3743 3765 24
19 2788 2810 2833 2856 2878 2900 2923 3945 2967 3989 22

20 3010 3032 3054 3075 3096 3118 3139 3160 3181 3301 21

21 3222 3243 3263 3284 3304 8324 3345 3365 3385 3404 20
22 3424 3444 3464 3483 3502 8522 3541 3560 3579 3598 19
23 3617 3636 3655 3674 3692 3711 3729 3747 3766 3784 19

24 3802 3820 3838 3856 3874 3892 8909 3937 3945 3963 18

25 3979 3997 4014 4031 4048 4065 4082 4099 4116 4133 17

26 4150 4166 4183 4200 4216 4232 4349 4365 4381 4398 16

27 4314 4330 4346 4862 4878 4393 4409 4435 4440 4456 16

28 4472 4487 4502 4518 4533 4548 4564 4579 4594 4609 15
29 4624 4639 4654 4669 4683 4698 4713 4738 4743 4757 15

30 4771 4786 4800 4814 4829 4843 4857 4871 4886 4900 14
31 4914 4928 4942 4955 4969 4983 4997 5011 5034 5038 14
32 5051 5065 5079 5092 5105 5119 5132 5145 5159 5173^ 13
33 5185 5198 5211 5224 5237 5250 5363 5376 5289 5303 13
34 5315 5328 5340 5353 5366 5378 5391 5403 5416 5438 13

35 5441 5453 5465 5478 5490 5502 5514 5537 5589 5551 13

36 5563 5575 5587 5599 5611 5623 5635 5647 5658 5670 13
37 5682 5694 5705 5717 5729 5740 5752 5763 5775 5786 12
38 5798 5809 5821 5832 5843 5855 5866 5877 5888 5899 11

39 5911 5922 5933 5944 5955 5966 5977 5988 5999 6010 11

40 6021 6031 6042 6053 6064 6075 6085 6096 6107 6117 11
41 6128 6138 6149 6160 6170 6180 6191 6301 6313 6333 10
42 6232 6243 6253 6263 6274 6284 6294 6304 6314 6325 10
43 6335 6345 6355 6365 6375 6385 6395 6405 6415 6425 10
44 6435 6444 6454 6464 6474 6484 6493 6503 6513 6522 10

45 6532 6542 6551 6561 6571 6580 6590 6599 6609 6618 10
46 6628 6637 6646 6656 6665 6675 6684 6693 6703 6712 9
47 6721 6730 6739 6749 6758 6767 6776 6785 6794 6803 9
48 6812 6821 6830 6839 6848 6857 6866 6875 6884 6893 9

49 6902 6911 6920 6928 6937 6946 6955 6964 6973 6981 9

50 6990 6998 7007 7016 7024 7033 7043 7050 7059 7067 9
51 7076 7084 7093 7101 7110 7118 7136 7135 7143 7152 9
52 7160 7168 7177 7185 7193 7202 7210 7318 7336 7235 8
53 7243 7251 7259 7267 7275 7284 7393 7300 7308 7316 8
54 7324 7332 7340 7348 7356 7364 7372 7380 7388 7396 8

N . B,—Naperian log == Briggs' log X 2.303.

Base of Naperian syste in = e = 2.71838.
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N 1 2 3 4 5 6 7 8 9 Dif.

55 7404 7412 7419 7437 7435 7443 7451 7459 7466 7474 8
56 7483 7490 7497 7505 7513 7530 7538 7536 7543 7551 8
57 7559 7566 7574 7583 7589 7597 7604 7613 7619 7637 8
58 7634 7642 7649 7657 7664 7673 7679 7686 7694 7701 7
59 7709 7716 7723 7731 7738 7745 7753 7760 7767 7774 7

60 7783 7789 7796 7803 7810 7818 7835 7833 7839 7846 7
61 7853 7860 7868 7875 7883 7889 7896 7903 7910 7917 7
62 7934 7931 7938 7945 7953 7959 7966 7973 7980 7987 7

63 7993 8000 8007 8014 8031 8028 8035 8041 8048 8055 7
64 8063 8069 8075 8083 8089 8096 8103 8109 8116 8132 7

65 8139 8136 8142 8149 8156 8162 8169 8176 8183 8189 7

66 8195 8302 8309 8315 8332 8228 8335 8341 8348 8254 7
67 8361 8367 8374 8280 8287 8293 8399 8306 8313 8319 6

68 8325 8331 8338 8344 8351 8357 8363 8370 8376 8382 6

69 8388 8395 8401 8407 8414 8420 8436 8433 8439 8445 6

70 8451 8457 8463 8470 8476 8483 8488 8494 8500 8506 6

71 8513 8519 8535 8531 8537 8543 8549 8555 8561 8567 6

73 8573 8579 8585 8591 8597 8603 8609 8615 8631 8627 6

73 8633 8639 8645 8651 8657 8663 8669 8675 8681 8686 6

74 8692 8698 8704 8710 8716 8733 8737 8733 8739 8745 6

75 8751 8756 8763 8768 8774 8779 8785 8791 8797 8802 6

76 8808. 8814 8830 8825 8831 8837 8843 8848 8854 8859 6

77 8865 8871 8876 8882 8887 8893 8899 8904 8910 8915 6

78 8921 8937 8933 8938 8943 8949 8954 8960 8965 8971 6

79 8976 8983 8987 8993 8998 9004 9009 9015 9030 9035 5

80 9031 9036 9043 9047 9053 9058 9063 9069 9074 9079 5
81 9085 9090 9096 9101 9106 9113 9117 9133 9138 9133 5

83 9138 9143 9149 9154 9159 9165 9170 9175 9180 9186 5

83 9191 9196 9301 9206 9212 9317 9333 9337 9333 9338 5

84 9243 9248 9353 9358 9263 9369 9374 9379 9384 9389 5

85 9394 9399 9304 9309 9315 9330 9335 9330 9335 9340 5

86 9345 9350 9355 9360 9365 9370 9375 9380 9385 9390 5
87 9395 9400 9405 9410 9415 9430 9435 9430 9435 9440 5

88 9445 9450 9455 9460 9465 9469 9474 9479 9484 9489 5

89 9494 9499 9504 9509 9513 9518 9533 9538 9533 9538 5

90 9543 9547 9553 9557 9562 9566 9571 9576 9581 9586 5
91 9590 9595 9600 9605 9609 9614 9619 9634 9638 9633 5
92 9638 9643 9647 9653 9657 9661 9666 9671 9675 9680 5

93 9685 9689 9694 9699 9703 9708 9713 9717 9733 9727 5

94 9731 9736 9741 9745 9750 9754 9759 9763 9768 9773 5

95 9777 9783 9786 9791 9795 9800 9805 9809 9814 9818 5

96 9833 9837 9833 9836 9841 9845 9850 9854 9859 9863 4
97 9868 9872 9877 9881 9886 9890 9894 9899 9903 9908 4

98 9912 9917 9931 9936 9930 9934 9939 9943 9948 9953 4
99 9956 9961 9965 9969 9974 9978 9983 9987 9991 9996 4

K B.— N'aperian log == Briggs' log X 3.303.

Base of Naperian Sys em = e = 2.71838.



854 APPENDIX.

Trigonometric Ratios (Natural); including ''arc" by which is meant
"radians," or "7r-measure, " or " circular measure ; " e.g., arc 100° = 1.745<i293,

ion ^c= 180 of ?^-

arc
de-
gree sin cosec tan cotan sec cos

infin. infin. 1.0000 1.0000 90 1.5708

0.0175 1 0.0175 57.299 0.0175 57.290 i.OOOl 0.9998 89 1.5533
.0349 2 .0349 28.654 .0349 28.636 1.0006 .9994 88 1.5359
.0524 3 .0523 19.107 .0524 19.081 1.0014 .9986 87 1.5184
.0698 4 .0698 14.336 .0699 14.301 1.0024 .9976 86 1.5010
.0873 5 .0872 11.474 .0875 11.430 1.0038 .9962 85 1.4835

0.1047 6 0.1045 9.5668 0.1051 9.5144 1.0055 0.9945 84 1.4661
.1222 7 .1219 8.2055 .1228 8.1443 1.0075 .9925 83 1.4486
.1396 8 .1392 7.1853 .1405 7.1154 1.0098 .9903 82 1.4312
.1571 9 .1564 6.3925 .1584 6.3138 1.0125 .9877 81 1.4137

.1745 10 .1736 5.7588 .1763 5.6713 1.0154 .9848 80 1.3963

0.1920 11 0.1908 5.2408 0.1944 5.1446 1.0187 0.9816 79 1.3788
.2094 12 .2079 4.8097 .2126 4.7046 1.0223 .9781 78 1.3614
.2269 13 .2250 4.4454 .2309 4.3315 1.0263 .9744 77 1.3439

.2443 14 .2419 4.1336 .2493 4.0108 1.0306 .9703 76 1.3264

.2618 15 .2588 3.8637 .2679 3.7321 1.0353 .9659 75 1.3090

0.2793 16
17

0.2756 3.6280 0.2867 3.4874 1.0403 0.9613 74 1.2915

.2967 .2924 3.4203 .3057 3.2709 1.0457 .9563 73 1.2741

.3142 18 ..3090 3.2361 .3249 3.0777 1.0515 .9511 72 1.2566

.3316 19 .3256 3.0716 .3443 2.9042 1.0576 .9455 71 1.2392

.3491 20 .3420 2.9238 .3640 2.7475 1.0642 .9397 70 1.2217

0.3665 21 0.3584 2.7904 0.3839 2.6051 1.0712 0.9336 69 1.2043

.3840 22 .3746 2.6695 .4040 2.4751 1.0785 .9272 68 1.1868

.4014 23 .3907 2.5593 .4245 2.3559 1.0864 .9205 67 1.1694

.4189 24 .4067 2.4586 .4452 2.2460 1.0946 .9135 66 1.1519

.4363 25 .4226 2.3662 .4663 2.1445 1.1034 .9063 65 1.1345

0.4538 26 0.4384 2.2812 0.4877 2.0503 1.1126 0.8988 64 1.1170

.4712 27 .4540 2.2027 .5095 1.9626 1.1223 .8910 63 1.0996

.4887 28 .4695 2.1301 .5317 1.8807 1.1326 .8829 62 1.0821

.5061 29 .4848 2.0627 .5543 1.8040 1.1434 .8746 61 1.0646

.5236 30 .5000 2.0000 .5774 1.7321 1.1547 .8660 60 1.0472

0.5411 31 0.5150 1.9416 0.6009 1.6643 1.1666 0.8572 59 1.0297

.5585 32 .5299 1.8871 .6249 1.6003 1.1792 .8480 58 1.0123

.5760 33 .5446 1.8361 .6494 1.5399 1.1924 .8387 57 0.994S

.5934 34 .5592 1.7883 .6745 1.4826 1.2062 .8290 56 0.9774

.6109 35 .5736 1.7435 .7002 1.4281 1.2208 .8192 55 0.9599

0.6283 36 0.5878 1.7013 0.7265 1.3764 1.2361 0.8090 54 0.9425

.6458 37 .6018 1.6616 .7536 1.3270 1.2521 .7986 53 0.9250

.6632 38 .6157 1.6243 .7813 1.2799 1.2690 .7880 52 0.9076

.6807 39 .6293 1.5890 .8098 1.2349 1.2868 .7771 51 0.8901

.6981 40 .6428 1.5557 .8391 1.1918 1.3054 .7660 50 0.8727

0.7156 41 0.6561 1.5243 0.8693 1.1504 1.3250 0.7547 49 0.8552

7330 42 .6691 1.4945 .9004 1.1106 1.3456 .7431 48 0.8378

7505 43 .6820 1.4663 .9325 1.0724 1.3673 .7314 47 0.8203

.7679 44 .6947 1.4396 .9657 1.0355 1.3902 .7193 46 0.8028

.7854 45 .7071 1.4142 1.0000 1.0000 1.4142 .7071 45 0.7854

cos sec cotan tan cosec sin de- arc
1 gree
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PAGE
Aberration of Light 90
Absolute Velocity 89
Abutment-Line 414
Abutments of Arches 430, 435
Acceleration, Angular 109
Acceleration, Linear 49
Acceleration, Normal 75, 77
Acceleration ofGravity . . 51, 160, 179
Acceleration, Tangential .... 74, 80
Action and Reaction 1, 53
Angular, or Rotary Motion . . . 109
Angular Velocity 109
Anti-Derivative 253, 254,

256, 257, 322, 328, 839. 845
Anti-Resultant ... . 402
vVnti^tress Resultant 411
Apparent Weight 78, 79
Arches, Linear 386, 396
Arches of Masonry 421, 437
Arch-Ribs 438, 483
Arch-Ribs, Classification of . . . 458
Arch-Rib of Three Hinges. 458, 460
Arch-Rib of Hinged Ends,

440, 458, 461
Arch-Rib ofFixedEnds . 439,459,465
Arch Truss, or Braced Arch . . . 478
Autographic Testing Machine. 240
Beams, Rectangular, Compar-

ative Strength and Stiffness

272, 273, 277
Belting, Pressure of 181
Belting, Slip of 182
Bent Lever with Friction .... 173
Boat-Rowing 160
Bow's Notation 407
Box-Girder 275, 292
Braced Arch 438, 478
Brake, Pony 158
Brakes, Railroad 190
Bridges, Arch 430
Bridge-Pier 141
Bridge, Suspension 46
Bridge Truss, Warren 35
Buckling of Web-Plates 383
Built Beams, designing Sec-

tions of 295
Built Columns 378

PAGE
Burr, Prof., Citations from.224, 229
Butt-Joint 226
Cantilevers 260, 276, 841
Cantilever, Oblique 352, 354
Catenary, Common 46
Catenary, Inverted 387
Catenary, Transformed . , .... 395
Cast Iron 220, 279
Centre of Gravity, 18, 19, etc. . . 336
Centre of Oscillation 119
Centre of PercussioH of Rod . . 113
Centrifugal Action 125
Centrifugal Force 77, 78
Centripetal Force 77, 78, 79
Centrobaric Method 24
Cheval-Vapeur 136
Circle as Elastic Curve 262, 368
Circular Arc as Linear Arch . . 391
Clinometers, Torsion 241
Closing Line 414
Coblenz, Bridge at 459, 478
Columns, Long 360
Composition of Forces. .4, 8, 31, 38
Compression of Short Blocks . . 218
Concrete-Steel Beams 339
Concurrent Forces 6, 8, 397
Cone of Friction 168
Conical Pendulum 78
Connecting-Rod 59, 69, 70
Conservation of Energy 156
Conservation of Momentum . . 66
Continuous Girders, by Analy-

sis 320-332
Continuous Girders, by Geo-

metric Method 485-506
Copying-Press 71
Cords, Flexible 42
Cords, Rigidity of 192
Couples .'

27, 30
Cover-Plates 226
Crane 357
Crank-Shaft, Strength of 314
Creeping of Belts 186
Crushing, Modulus of 219, 424
Curvilinear Motion 72
Cylinder, Thick Hollow 509
Dangerous Section 262, 332

xvii
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PAGE
Dash-Pot 158
Deck-Beam 275
Deflections, (Flexure) . 252-262, 488
Derived Quantities 2
Deviating Force 77
Diagrams, Strain 209, 241
Displacement of Point of Arch
Rib 447

Dove-Tail Joint 269
Duchayla's Proof of the Paral-

lelogram of Forces 4
Dynamometers 157, 158, 159
Eddy, Prof., Graphic Methods,

(See Preface) 426
Elastic Curve a Circle .... 262, 368
Elastic Curves, . .245, 252-262, 362
Elastic Curves, the Four x-De-

rivatives of 838
Elasticity-Line 241
Elasticity, Modulus of 203, 227
Elastic Limit

_. _. 202
Elevation of Outer Rail on Rail-

road Curves 78
Ellipse of Inertia 94
Ellipse of Stress 205
Ellipsoid of Inertia 104
Elliptical Beam 338
Elongation of Wrought-Iron
Rod 207

Elongation Theory of Safety. . 508
Energy 137
Energy, Conservation of 156
Energy, Kinetic . .137, 144, 147, 150
Energy, Potential 155
Equations, Homogeneous .... 2
Equator, Apparent Weight at

the 78
Equilibrium 4, 33, 39
Equilibrium Polygon 401, 450
Equilibrium Polygon Through

Three Points 418,419
Equivalent Systems. . . .7, 105, 145
Exaggeration of Vertical Di-

mensions in Arch-Ribs 470
Examples in Flexure 280-284
Examples in Shearing .... 231, 232
Examples in Tension and
Compression 222, 223

Examples in Torsion 241-243
Experiments of an English

Railroad Commission 314
Experiments of Prof. Lanza . . 280
Experiments on Building Stone 424
Experiments on Columns 366
Extrados 421
Euler's Formula for Columns . . 364
Factor of Safety 223
Falling of Bodies 51

PAGE
Fatigue of Metals 224
Flexural Stiffness 250
Flexure 244-386
Flexure and Torsion Combined. 314
Flexure, Beams of Uniform

Strength 335
Flexure, Common Theory .... 244
Flexure, Eccentric Load. . . 256, 301
Flexure, Elastic Curves in,

245, 251, 252-262
Flexure, Examples in 280-284
Flexure, Geometrical Treat-
ment 485

Flexure, Moving Loads 298
Flexure, Non-Prismatic Beams,

332, 335
Flexure of Long Columns .... 363
Flexure of Prismatic Beams
Under Oblique Forces 352

Flexure of Reinforced Concrete
Beams 3C;.

Flexure, Safe Loads in 262-284
Flexure, Safe Stress in 279
Flexure, Shearing Stress in,

284-295
Flexure, Special Problems in,

29^-319
Flexure, Strength in 249
Flexure, the Elastic Forces . . . 246
Flexure, the "Moment" 249
Flexure, the "Shear" 248
Flexure, Uniform Load. .258, 267,

302, 305, 307, 324, 329, 340
Flow of Solids 212
Fly-Wheel 121, 151
Fly-Wheel, Stresses in. . . .126, 127
Force 1

Force Diagram 400
Force Polygons 397
Forces, Concurrent 6, 8
Forces, Distributed 197
Forces, Non-Concurrent 6, 31
Forces, Parallel 13
Forces, Parallelogram of 4
Forces, Varieties of 7
TTppp Axes 1 29
Free-Body Method, the. . . . .11, 105
Friction 164-194, 422, 423
Frictional Gearing 172
Friction of Journals 192
Friction Axle 175
Friction Brake 158
Friction, Cone of 168
Friction in Machinery 191
Friction, Sliding 164-168
Friction of Pivots 179
Friction, Rolling 186
Friction-Wheels 177
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XIX

Friction, Work Spent in 149
General Properties of Mate-

rials 204
Governor Ball 78
Graphic Representations of Uni-

formally Accelerated Motion. 57
Graphic Treatment of Arch ... 431
Gravity, Acceleration of, 51, 79, 160
Gravity, Centre of 18, 336, 453
Gravity-Vertical 453
Graphical Statics, Elements of,

397-420
Graphical Statics of Vertical

Forces 412-420
Guide Curve 83
Gyroscope 132
Harmonic Motion 58, 81, 117
Heat Energy 156
Heaviness, Table, Etc 3
Height Due to Velocity 52, 84
Homogeneous Equations 2
Hooke's Law 201, 203, 207
Hooks, Strength of 356
Horizontal Straight Girders by

Graphics 847
Horse-Power 136, 239, 242
Hyperbolic Functions 47, 837
I-Beam 275, 292, 295
Ice-Boat, Speed of 90
Impact 63
Impact, Loss of Energy in . . . 141
Inclined Beam 354
Inclined Plane,|83, 135, 151, 166, 169
Indicator 159
Inertia 53
Inertia of Piston-Rod 59
Instantaneous Rotation, Axis

of 112
Intrados 421
Isochronal Axes 120
Isotropes 204
Kinetic Energy. .137, 144, 147, 150
Kinetics, Definition 4
Kinetics of a Rigid Body 105
Kinetics of a Material Point . . 49
Knot, Fixed 43
Knot, Slip 43
Lanza, Experiments of Prof. . . 280
Lateral Contraction 211, 229
Lateral Security of Girders, 280, 298
Lever 18, 71
Lever, Bent, with Friction . 173, 174

Linear Arches . . .386-396, 417, 425
Live Loads 298, 430
Load-Line 413
Locomotive on Arch 430
Locomotive on Girder 298
Locomotive, Parallel-Rod of . . 131

PA<5E
Mass 2, 53
Material Point 3
Mechanical Equivalent of Heat 156
Mechanics, Definition of 1
Mechanics, Divisions of 4
Middle Third 423
Modulus of Elasticity 203, 227
Modulus of Resilience 213
Modulus of Rupture (Flexure) . 278
Modulus of Tenacity 212
Modulus, Young's 204
Moduli of Compression 219
Moment-Area 491
Moment of a Force 14
Moment-Diagram 263
Moment of Flexure . . 248, 348, 351
Moment of Inertia 91
Moment of Inertia by Graphics 454
Moment of Inertia of Box-

Girder 276
Moment of Inertia of Built
Beam 296

Moment of Inertia of Built
Column 375

Moment of Inertia of Plane
Figures 91-98, 249, 274

Moment of Inertia of Rigid
Bodies 98, 103

Moment of Inertia of Truss . . . 478
Moment of Torsion 236
Momentum 66
Mortar 422
Motion, Curvilinear 72
Motion, Rectilinear 50
Motion, Rotary 107
Moving Loads (Flexure) 298
Naperian Base 183, 357, 387
Naperian Lorarithms 47
Navier's Principle 422, 436
Neutral Axis .... 245, 247, 347, 355
Neutral Line (see Elastic Cxirve).

Newton's Laws 1, 53-

Non-Concurrent Forces in a
Plane 31, 399

Non-Concurrent Forces in Space 37
Normal Acceleration 75, 76, 77
Normal Moment Diagram .... 494
Normal Stress 200
Oblique Section of Rod ia Ten-

sion 200
Parabola as Linear Arch 391
Parabolic Cord 45
Parabolic Working-Beam. .336, 844
Parallel Forces 13
Parallel-Rod of Locomotive = . 131
Parallelogram of Forces 4
Parallelogram of Motions 72
Parallelogram of Velocities ... 72
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rendulum, Compound 118
Pendulum, Conical 78
Pendulum, Cycloidal 80
-Pendulum, Simple Circular. , . 81
Phoenix Columns^ 374
Pier Reactions 404
Piers of Arches 430, 435
Pile-Driving 140
Pillars (see Columns).
"Pin-and-Square" Columns . . 361
Planet, Velocity of 82
Plates 310
Poisson's Ratio 507
Polar Moment of Inertia . . .97, 238
Pole (in Graphics) 401
Pole-Distance 416, 417
Practical Notes 223
Potential Energy 155
Power 134
Power of Motors 153, 157, 158
Power, Transmission of, by

Belting 184
Power, Transmission of, by

Shafts 238, 318
Principal Axes 104, 129
Projectile in Vacuo 83, 84-87
Prony Friction Brake 158
Pulley 43, 103
Punching Rivet Holes 229
Quantity, Kinds of 1

Quantities, Derived , 2
Radius of Curvature . 75, 76, 250, 843
Radius of Gyration,

91, 92, 115, 313, 372
Rankine's Formula for Col-
umns 369

Rays of Force Diagram 401
Reaction 1, 18, 36, 53, 404
Reduced Load-Contour 429
Regulation of Machines 153
Reinforced Concrete Beams . . . 339
Relative and Absolute Veloci-

ties 89
Resilience . .204, 213, 237, 251, 313
Resultant of Parallel Forces, 13, 15
Resultant of Two or More

Forces 4, 6
Rigid Body 4
Rigidity of Ropes 192
Riveting of Built Beams 292
Rivets and Riveted Plates, 225, 292
Rod in Tension 198, 200
Rolling Friction 186
Rolling Motion 130
Roof Truss 37, 405
Rotary Motion 68, 107, 129
Rotation and Translation Com-

bined 130, 150

Rupture 202
Safe Limit in Stress 202
Safe Loads in Flexure 262, 284
St. Louis Bridge 459, 467, 478
Schiele's "Anti-Friction" Pivots 181
Set, Permanent, 202, 209, 208, 241
Shafts 233-239
Shafts, Non-Circular 239
Shear Diagram (Flexure) 265
Shearing 225-232
Shearing Distortion 227
Shear, Distribution of in Flex-

ure 287
Shearing Forces 7, 225
Shearing Stress,

7, 200, 201, 225, 234, 284
Shear, the First x-Derivative

of Moment (Flexure) 264
Skidding 190
Slip (of Oar, etc.) 161
Slope (in Flexure) 253
Soffit 421
Spandrel 421
Special Equilibrium Polygon,

409, 424, 440
Specific Gravity 3
Sphere, Thick Hollow 513
Statics, Definition of 4
Statics, Graphical 397-420
Statics of a Material Point ... 8
Statics of a Rigid Body 27
Statics of Flexible Cords 42
Steam Engine Problems,

59, 61, 69, 70, 121, 131, 151
Steam Hammer 138
Stiffening of Web-Plates 383
Stone, Strength of 221, 424
Stress Diagrams for Arch-

Ribs 471
Stresses .due to Rib Shorten-

ing 476
Strain Diagrams 209, 241
Strains, two kinds only 196
Stress 197, 198
Stress and Strain, Relation
Between 201

Stress-Couple 253, 348
Stress, Normal and Shearing . . 200
Strength of Materials 195
Stretching of a Prism Under

its Own Weight 215
"Sudden" Application of a
Load 214, 255

Summation of Products by
Graphics 451

Suspension Bridge 46
Table for Flexure 279
Table for Shearing 228
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Tables for Tension and Com-
pression 221

Tackle 43
Temperature Stresses, 217, 222, 473
Tenacity, Moduli of 212
Testing Machine, Autographic . 240
Theorem of Three Moments . . . 497
Thrust (in Flexure) 348, 350
Torsion 233-243
Torsion, Angle of 233
Torsion Clinometers 241
Torsion, Helix Angle in 233
Torsion, Moment of 236
Torsional Resilience . 237
Torsional Stiffness 236
Torsional Strength 235
Tractrix, The 181
Transformed Catenary 395
Transmission of Power by

Belting 184
Transmission of Power by

Shafting 238, 318
Translation, Motion of,

68, 107, 133, 137
Uniformly Accelerated Motion,

54, 107
Uniform Motion 48, 107, 129

Uniform Strength, Beams of . . 335
Uniform Strength, Solid of, in

Tension 216
Units, Proper Use. . . .see § 6, p. 2
Velocity, Absolute 89
Velocity, Angular 109
Velocity, Linear 49
Velocity, Relative 89
Virtual Moment 67
Virtual Velocities 67
Voussoir 386, 421
Warren Bridge Truss 35
Water, Jets of 87
Web of I-Beani 274
Web of I-Beam, Buckling of . . 383
Web of I-Beam, Shear in 290
Wedge, with Friction 171
Weight 2, 3, 7, 79
Weight, Apparent 78, 79
Wind, and Sail-Boat 89, 90
Work 133, 134, etc.

Work and Energy in Machines,
146, 147, etc.

Working-Beam 336, 344
Working Strength 202
Yield-Point 210
Young's Modulus , , . . 204
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PAGE
Absolute Temperature 606
Absolute Zero 606
Accumulator, Hydraulic 700
Adiabatic Change, 621, 629, 631, 636
Adiabatic Expansion in Com-

presed-air Engine 631
Adiabatic Flow of Gases from

an Orifice 778
Air Collecting in Water-pipes,

731, 736
Air, Compressed, Transmission

of 786-790
Air-compressor 636
Air-profile 749
Air-pump, Sprengel's 656
Air-thermometer 604
Amplitude of Backwater 772
Anemometer, Biram's 827
Anemometer, Castello's 827
Anemometer, Robinson's . .824, 826
Angle of Repose 572
Angular Stability of Ships .... 597
Atkinson Gas-engine 642, 643
Atmosphere as a Unit Pressure 519
Augment of Resistance of Screw

Propeller 829
Backwater 771
Ball, Spinning, Deviation from

Vertical Plane 823
Balloon 644
Barker's Mill 672
Barometers 530
Barometric Levelling 619
Bazin, Experiments 688
Beaufoy's Experiments 814
Bellinger, Capt., Experiments

with Elbows 729
Bends, Loss of Head due to . . 728
Bends in Open Channels 770
Bent Tube, Liquids in 529
Bernoulli's Theorem and the

Conservation of Energy .... 717
Bernoulli's Theorem for Gases, 773
Bernoulli's Theorem, General
Form 706

Bernoulli's Theorem, Steady
Flow without Friction . .652, 654

PAGE
Bernoulli's Theorem with Fric-

tion 696
Bidone, Experiments on Jets . . 803
Blowing-engine, Test 776
Borda's Formula 722
Bourdon Steam-gauge 532
Boyle's Law 615
Bramah Press 526
Branching Pipes 736
Buoyant Effort 586
Buoyant Effort of the Atmos-

phere 644
Canal Lock, Time of Fillhig, 739,740
Centigrade Scale 605
Centre of Buoyancy 586
Centre of Pressure 546
Change of State of Gas 610
Chezy's Formula 714
Chezy's Formula for Open

Channels 758
Church and Fteley, Report on

Quaker Bridge Dam,558, 563, 564
Clearance 627
Closed Air-manometer 614r

Coal Consumption 643
Coal, Heat of Combustion .... 643
Coefficient of Contraction .... 659
Coefficients of Efflux,

661, 676, 712, 734, 738, 784
Coefficient of Fluid Friction, 707, 797
Coefficient of Resistance 704
Coefficient of Roughness . . 759, 760
Coefficient of Velocity,

661, 689, 704, 712, 723, 734
Collapse of Tubes 538
Communicating Prismatic Ves-

sels 739
Complete and Perfect Contrac-

tion 676
Component of Fluid Pressure . 525
Compressed-air Engine 631
Compressed Air, Transmission

of 786
Compressibility of Water 516
Conical Short Tubes 692
Conservation of Energy and

Bernoulli's Theorem 717

xxii
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Contraction 659
Contraction, Perfect 676
Cooling in Sudden Expansion

of Gas 622
Critical Temperature of a Va-

por 608
Croton Aqueduct, Slope 749
Cunningham, Experiments on

the River Ganges 759
Cup-anemometer 824, 826
Cups, Impulse of Jet on . . . 804, 808
Current, Transporting Power of, 830
Current-meters 750
Curved Dams 562
Cylinders, Thin Hollow,

Strength 538
Dams, High Masonry 562
Darcy, Experiments with Pi-

tot's Tube 804
Darcy and Bazin, Experiments

with Open Channels 758
Decrease of Tension of Gas

along a Pipe 793
Depth of Flotation 592
Deviation of Spinning Ball
from Vertical Plane 823

Diaphragm in a Pipe, Loss of

Head 724
Diesel Oil-engine 642, 643
Differential Manometer 533
Displacement of a Ship 596
Divergent Tubes, Flow through 692
Dividing Surface of Two Fluids 528
Diving-bell 617
Double Floats 750
Draught of Ships 596
Dubuat's Experiments,

707, 815, 822, 830
Duchemin's Formula for Wind-

pressure 818
Duty of Pumping-engines .... 644
Earth Pressure 572
Earthwork Dam 566
Eddy-making Resistance . . 814, 828
Efficiency 637, 642
Efflux of Gases 773-797
Efflux from Steam-boiler 664
Efflux from Vessel in Motion . . 670
Efflux into Condenser 665
Efflux under Water 669
Egg-shaped Section for Sewers . 765
Elastic Fluids 516
Elbows, Loss of Head due to,727,729
Emptying Vessels, Time of, 737-746
Engine, Gas- 641
Engine, Hot-air 639
Engine, Oil- 641

Engine, Steam- 624

Enlargement, Sudden, in Pipe . 721
Equal Transmission of Fluid

Pressure 524
Equation of Continuity,

648, 737, 756
Equation of Continuity for

Gases 773
Equation of Continuity for
Open Channels 756

Equilibrium of Flotation 590
Ericsson's Hot-air Engine .... 640
Ewart's Experiments on Jets . 800
Expanding Steam 625
Fahrenheit Scale 605
Fairbairn's Experiments on

Collapse of Tubes 538
Fanning, Table of Coefficients

of Fluid Friction 709
Feet and Meters, Table 677
Fire-engine Hose, Friction in. . 832
Fire-streams 833
Floating Staff 750
Flood-gate 553
Flotation 590
Flow in Plane Layers 648, 652
Flow in Open Channels 749
Flow of Gas in Pipes 786, 790
Fluid Friction 695, 797, 828
Fluid Friction, Coefficient for

Natural Gas 797
Fluid Pressure, Equal Trans-

mission of 524
Force-pump 667
Francis' Formula for Overfalls . 687
Free Surface of Liquid at Rest . 528
Free Surface a Paraboloid .... 544
Fresh Water, Heaviness, Table 518
Friction-head in Open Chan-

nels 757
Friction-head in Pipes 699
Friction, Fluid 695, 797, 828
Froude's Experiments on Fluid

Friction 696
Froude's Experiments on Grad-

ual Enlargement in Pipes . . . 725
Froude's Experiments with

Piezometers 720
Fteley and Steam's Experi-

ments on Overfalls 687
Fteley and Steam's Ex-^eri-

ments with Open Channels . . 758
Gas and Vapor 607
Gas-engines 641
Gaseous Fluids 604-645
Gas, Flow through Orifices . 773-784
Gas, Flow through Short Pipes 784
Gas, Illuminating 517, 533
Gas, Natural, Flow in Pipes, 786, 790
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Gas, steady Flow 773
Gas, Velocity of Approach . . . 784
Gases, Definition 515
Gauging of Streams 755
Gay-L,ussac's Law 609
Gradual Enlargement in Pipe . 725
Granular Materials 725
Graphic Representation of

Change of State of Gas .... 628
Haskell's Current-meter 751
Head of Water 530
Heat-engines, Efficiency 642
Heaviness of Fluids 517
Heaviness of Fresh Water at

Different Temperatures .... 518
Height Due to Velocity 649
Height of the Homogeneous
Atmosphere 320

Herschel's Venturi Water-
meter 726

High Masonry Dams 562
Hoop-tension 537
Hose, Rubber-lined and Un-

lined, Linen ; Friction in . . . 832
Hot-air Engines 639
Humphreys and Abbot's Sur-
vey of the Mississippi River,

754, 759
Hurdy-gurdy, California 809
Hutton's Formula for Wind-

pressure 818
Hydraulic Grade-line 715
Hydraulic Mean Depth,

698, 757, 764
Hydraulic Press 526
Hydraulic Radius 698
Hydraulic Radius for Minimum

Friction 764
Hydraulics, Definition 518
Hydrokinetics 518, 646-832
Hydrometers 591
Hydrostatic Pressure 522
Hydrostatics, Definition 518
Ice-making Machine 624
Illuminating Gas 517
Immersion of Rigid Bodies . . 586
Imperfect Contraction .... 680, 684
Impulse and Resistance of

Fluids 797-832
Impulse of Jet on Vanes . . 801, 805
Inclined Short Tubes, Efflux

through 691
Incomplete Contraction . . . 679, 684
Inelastic Fluids 516
Irregular Shape, Emptying of

Vessels of 746
Isothermal Change .. .615, 629, 639
isothermal Expansion . . . .624, 635

Isothermal Flow of Gas in

Pipes 790
Isothermal Flow of Gases

through Orifices 777
Jacket of Hot Water 635
Jet from Force-pump 667
Jets, Impulse of 800, 803, 810
Jets of Water 660, 662, 833
Joule, Experiment on Flow of

Gas 782
Kansas City Water-works; Si-

phon 731, 736
Kinetic Energy 672, 718
Kinetic Energy of Jet . ... 672, 808
Kinetic Theory of Gases

516, 606, 622
Kinetics of Gaseous Fluids, 773, 797
Kutter's Formula 759
Kutter's Hydraulic Tables ... 761
Laminated Flow 648, 652
Land-ties 585
Law of Charles 609
Levelling, Barometric 619
Liquefaction of Oxygen 609
Liquid, Definition 515
Long Pipes, Flow of Water

through 710-716
Loss of Head 698, 703, 721, etc.

Loss of Head due to Bends . . . 728
Loss of Head due to Elbows,

727, 729
Loss of Head due to Throttle-

valves 730
Loss of Head due to Valve-

gates 730
Manometer, Differential 533
Manometers 530
Mariotte's Law 615, 777
Mechanics of the Sail-boat . . . 819
Mendelejeff's Device for Spec-

ula 544
Metacentre of a Ship 599
Metres and Feet, Table 677
Mill, Barker's ' 672
Minimum Frictional Resistance

in Open Channel 764, 766
Mississippi River, Hydraulic

Survey 754, 759,770
Mixture of Gases 618
Momentum, Principle of 812
Moving Pistons 524
Moving Vane, Impulse of Jet on 805
Napier on Flow of Steam .... 781
Natural Gas, Flow in Pipes, 791, 797
Natural Slope, of Earth 573
Non-planar Pistons 526
Notch, Rectangular, Efflux

from 683,741
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Obelisk-shaped Vessel ; Time of

Emptying 744
Oblique Impact of Jet on Plate, 810
Oil-engines, 641, 642
Open Channels, Flow in .. .749-797
Orifices in Thin Plate 658, 773
Otto Gas-engine 641, 643
Overfall, Emptying Reservoir
through -. 741

Overfall Weirs . .677, 683, 688, 756
Overfall Weirs, Actual Dis-

charge 683
Paddle-wheel of a Steamer . . . 817
Paraboloid as Free Surface . . . 544
Paraboloidal Vessel 742
Parallelopipedical Reservoir
Walls 555

Pelton Wheel or Hurdy-gurdy . 809
Perfect Fluid, Definition 515
Permanent Gases 605, 608
Petroleum-engine 641
Petroleum Pumping 708
Piezometer 649, 657, 700
Pipes, of Various Surfaces .... 708
Pipes, Foul 707
Pipes, Riveted Steel 708
Pipes, Thickness of, for

Strength 538
Piston Pressures 523
Pistons, Moving 524
Pistons, Non-planar 526
Pitot's Tube . . . .751, 797, 804, 827
Plate between Two Levels of

Water 568, 569
Plates, Impulse of Jets on,

801, 805, 810
Plates, Moving in a Fluid .... 813
Plates, Resistance in Sea-water 814
Pneumatics, Definition 518
Poisson's Law 621
Poncelet's Experiments with

Overfalls 677
Power Required to Propel

Ships 830
Pressure, Centre of 546
Pressure-energy 717
Pressure-head 650
Pressure on Bottom of a Vessel 545
Pressure on Curved Surfaces . . 569
Pressure on Sluice-gates 551

Pressure per Unit-area 519
Principle of Momentum 812
Pyramidal Vessel, Emptying of 743

Quaker Bridge Dam, Proposed 564

Radian, Definition 544
Reaction of a Water-jet 798
Rectangular Orifices 672, 676
Refrigerator of Hot-air Engine 640

Regenerator of Hot-air Engine 640"

Relative Equilibrium of a
Liquid 540

Reservoir of Irregular Shape,
Emptying of . 746

Reservoir Walls 554-567
Resistance, Eddy-making. .814, 828
Resistance, Wave-making .... 828
Resistance of Fluid to Moving

Bodies 820
Resistance of Fluid to Moving

Plates 814
Resistance of Ships 828
Resistance of Still Water to
Moving Solids 820-

Retaining Walls 572-580
Righting Couple, of Floating
Body 597

Ritchie-Haskell Direction Cur-
rent-meter 750

Rivers, Flow in 749
Robinson, Prof., Experiments
on Flow of Natural Gas .... 797

Robinson's Anemometer. . 824, 826
Rounded Orifice 663
Safety-valves 534
Sail-boat, Mechanics of the . . . 819
Sail-boat Moving Faster than

the Wind 820
Saturated Steam, Heaviness . .

628'

Saturated Vapor 607
Scouring Action of a Current . . 830'

Screw Propeller, Augment of. . 829
Sewers, Flow in 761, 765
Ships, Resistance of 828
Ships, Stability of 597, 599-

Short Cylindrical Pipes, Efflux
through 689, 704

Short Pipe, Minimum Head for

Full Discharge 724
Short Pipes 722, 723
Simpson's Rule 603, 747, 748
Siphons 735
Skin-friction 695, 828
"Slip" 829
Slope, in Open Channels 749
Smithsonian Scale of Wind-

pressures 819
Solid of Revolution, Impulse of

Jet on 803
Specific Gravity 589
Sprengel's Air-pump 656
St. Gothard Tunnel, Experi-
ments in 787

Stability of Rectangular Wall . 554
Stability of Ships 597
State of Permanency of Flow . 647
Steady Flow, Definition 647
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Steady Flow, Experimental
Phenomena 646

Steady Flow of Gas 773
Steam, Expanding 624
Steam, Flow of 781
Steam, Saturated, Heaviness of 628
Steam-engine, Examples 627
Steam-gauge, Bourdon 532
Stirling's Hot-air Engine 639
Stream-line 658
Sudbury Conduit, Experiments,

758, 762
Sudden Diminution of Section

in a Pipe 727
Sudden Enlargement of Section

in a Pipe 721
Surface Floats 750
Survey, Hydraulic, of Missis-

sippi River 754, 759
Tachometer 750
Temperature, Absolute 606
Temperature, Influence on
Flow of Water 703

Tension of Gas 519
Thermodynamics 606
Thermometers 604
Thickness of Pipes 538
Thickness of Pipe for Natural

Gas 796
Thin Hollow Cvlinders 535
Thin Plate, Orifices in 658
Throttle-valves, Loss of Head
due to 730

Time of Emptying Vessels of

Various Forms 737-746
Transmission of Compressed

Air 786, 790
Transporting Power of a Cur-

rent 830
Trapezoidal Section for Open

Channel 765
Trapezoidal Wall, Stability of . 559
Trapezoidal Weir 686
Triangular Orifices 675
Triangular Wall, Stability .... 561
Uniform Motion in Open Chan-

nel 756
Uniform Rotation of Liquid . . 542
Uniform Translation of Liquid . 540
Upsetting Couple 599
Vacuum-chamber in Siphon . . 736

Valve-gates, Loss of Head due
to 730

Vanes, Impulse of Jets on. 801, 805
Vapors 516, 607
Variable Diameter, Long Pipe

of 794
Variable Motion in Open Chan-

nels 768
Velocities in Section of River . 754
Velocity of Efflux as related to

Density 668
Velocity-head 649
Velocity Measurements in Open

Channel 750
Vena Contracta 659
Venturi's Tube 693
Venturi Tube, New Forms . . . 694
Venturi Water-meter 725
Volume of Reservoir Found by

Observing Time of Emptying 748
Water, Compressibility of ... . 516
Water-formula for Flow of

Gases 774
Water, Heaviness, at Different
- Temperatures 518
Water in Motion 646
Water-meter, Venturi 725
Water-ram 530, 538
Wave-making Resistance 828
Webb, Prof., Experiments on

the Reaction of Jets 800
Wedge of Maximum Thrust . . 573
Wedge-shaped Vessel, Time of

Emptying 742
Weirs, Overfall

677, 683, 688, 756, 772
Weisbach's Experiments,

,

682, 685, 686, 691, 707, 721, 804
Weisbach's Experiments with

Elbows and Bends 727, 728
Weser, River, Backwater in . . 772
Wetted Perimeter 697, 749
Whirling Machine 816, 826
Wind-pressure 818
Wind-pressure, Smithsonian

Scale of 819
Woltmann's Mill 750
Work of Compressed-air En-

gine 631
Work of Expanding Steam . . . 624
Work of Jet on a Vane 807
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Siebert and Biggin's Modern Stone-cutting and Masonry Svo,

Snow's Principal Species of Wood Svo,

Towne's Locks and Builders' Hardware iSmo, mor.

Wait's Engineering and Architectural Jurisprudence Svo,

Sheep,

Law of Contracts Svo,

Law of Operations Preliminary to Construction in Engineering and Archi-

tecture Svo,

Sheep,

Wilson's Air Conditioning i2mo,
Worcester and Atkinson's Small Hospitals, Establishment and Maintenance,

Suggestions for Hospital Architecture, with Plans for a Small Hospital.

i2mo, I 25

ARMY AND NAVY.

Semadou's Smokeless Powder, Nitro-cellulose. and the Theory of the Cellulose

Molecule i2mo, 2 50
Chase's Art of Pattern Making i2mo, 2 50

Screw Propellers and Marine Propulsion Svo, 3 00

Cloke's Gunner's Examiner Svo, i 50
Craig's Azimuth 4to, 3 50
Crehore and Squier's Polarizing Photo-chronograph Svo, 3 00
* Davis's Elements of Law Svo, 2 50
* Treatise on the Military Law of United States Svo, 7 00

Sheep, 7 50
De Brack's Cavalry Outpost Duties. (Carr.) 24mo, mor. 2 00
* Dudley's Military Law and the Procedure of Courts-martial. . . Large i2mo, 2 50
Durand's Resistance and Propulsion of Ships , Svo, 5 00
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* Dyer's Handbook of Light Artillery i2mo, 3 00
Eissler's Modern High Explosives 8vo, 4 oo
* Fiebeger's Text-book on Field Fortification Large i2mo, 2 00
Hamilton and Bond's The Gunner's Catechism i8mo, i 00
* Hoff's Elementary Naval Tactics 8vo, i 50
Ingalls's Handbook of Problems in Direct Fire 8vo, 4 00
* Lissak's Ordnance and Gunnery 8vo, 6 00
* Ludlow's Logarithmic and Trigonometric Tables 8vo, i 00
* Lyons's Treatise on Electromagnetic Phenomena. Vols. I. and II. .Svo, each, 6 00
* Mahan's Permanent Fortifications. (Mercur.) Svo, half mor, 7 50
Manual for Courts-martial i6mo, mor. 1 50
* Mercur's Attack of Fortified Places i2mo, 2 00
* Elements of the Art of War 8vo, 4 00

Metcalf's Cost of Manufactures—And the Administratioo of Workshops. .8vo, s 00
* Ordnance and Gunnery. 2 vols Text i2mo, Plates atlas form 5 00
Nixon's Adjutants' Manual 24mo, 1. 00

Peabody's Naval Architecture 8vo, 7 50
* Phelps's Practical Marine Surveying Svo, 2 50
Powell's Army Officer's Examiner i2mo, 4 00

Sharpe's Art of Subsisting Armies in War iSmo, mor. i 50
* Tupes and Poole's Manual of Bayonet Exercises and Musketry Fencing.

24mo, leather, 50
* Weaver's Military Explosives Svo, 3 00
WoodhuU's Notes on Military Hygiene lOmo, 1 50

ASSAYING.

Betts's Lead Refining by Electrolysis Svo, 4 00

Fletcher's Practical Instructions in Quantitative Assaying with the Blowpipe.

i6mo, mor i 50
Furman's Manual of Practical Assaying Svo, 3 00

Lodge's Notes on Assaying and Metallurgical Laboratory Experiments. . . .Svo, 3 00

Low's Technical Methods of Ore Analysis Svo, 3 00

Miller's Cyanide Process i2mo, i 00

Manual of Assaying i2mo, i 00

Minet's Production of Aluminum and its Industrial Use. (Waldo.) i2mo, 2 50

O'Driscoll's Notes on the Treatment of Gold Ores Svo, 2 00

Ricketts and Miller's Notes on Assaying Svo, 3 00

Robine and Lenglen's Cyanide Industry. (Le Clerc.) Svo, 4 00

Ulke's Modern Electrolytic Copper Refining Svo, 3 00

Wilson's Chlorination Process i2mo, i 50

Cyanide Processes i2mo, i 50

ASTRONOMY.

Comstock's Field Astronomy for Engineers Svo, 2 50

Craig's Azimuth 4*0, 3 So

Crandall's Text-book on Geodesy and Least Squares Svo, 3 00

Doolittle's Treatise on Practical Astronomy Svo, 4 00

Gore's Elements of Geodesy 8vo, 2 50

Hayford's Text-book of Geodetic Astronomy Svo, 3 00

Merriman's Elements of Precise Surveying and Geodesy Svo, 2 50

* Michie and Harlow's Practical Astronomy Svo, 3 00

Rust's Ex-meridian Altitude, Azimuth and Star-Finding Tables. (In Press.)

* White's Elements of Theoretical and Descriptive Astronomy i2mo, 2 00

3



CHEMISTRY.

Abderhalden's Physiological Chemistry in Thirty Lectures. (Eall and Defren).

(In Press.)

* Abegg's Theory of Electrolytic Dissociation, (von Ende.) i2nio, i 25
Adriance's Laboratory Calculations and Specific Gravity Tables i2mo, i 25
Alexeyeff's General Principles of Organic Syntheses. (Matthews.) 8vo, 3 00
Allen's Tables for Iron Analysis 8vo, 3 00
Arnold's Compendium of Chemistry. (Mandel.) Large i2mo, 3 50
Association of State and National Food and Dairy Departments, Hartford

Meeting, 1906 8vo, ? oa
Jamestown Meeting. 1907 8vo, 3 00

Austen's Notes for Chemical Students i2mo, i sa
Baskerville's Chemical Elements. (In Preparation).

Bernadou's Smokeless Powder.—Nitro-cellulose, and Theory of the Cellulose
Molecule i2ino,

* Blanchard's Synthetic Inorganic Chemistry. i2mo,
* Browning's Introduction to the Rarer Elements 8vo,

Brush and Penfield's Manual of Determinative Mineralogy 8vo,
* Claassen's Beet-sugar Manufacture. (Hall and Rolfe.) 8vo,

Classen's Quantitative Chemical Analysis by Electrolysis. (Boltwood.). .8vo,

Cohn's Indicators and Test-papers i2mo.
Tests and Reagents 8vo,

* Danneel's Electrochemistry. (Merriam.) i2mo,
Duhem's Thermodynamics and Chemistry. (Burgess.) 8vo,

Eakle's Mineral Tables for the Determination of Minerals by their Physical

Properties 8vo,

Eissler's Modern High Explosives 8vo,

Effront's Enzymes and their Applications. (Prescott.) Svo,

Erdmann's Introduction to Chemical Preparations. (Dunlap.) i2mo,
* Fischer's Physiology of Alimentation Large l2mo,

Fletcher's Practical Instructions in Quantitative Assaying with the Blowpipe.
i2mo, mor. i 50

Fowler's Sev/age Works Analyses i2mo, 2 00
Fresenius's Manual of Qualitative Chemical Analysis. (Wells.) Svo, 5 00

Manual of Qualitative Chemical Analysis. Part I. Descriptive. (Wells.) Svo, 3 00
Quantitative Chemical Analysis. (Cohn.) 2 vols 8vo, 12 50

When Sold Separately, Vol. I, $6. Vol. II, $8.

Fuertes's Water and Public Health i2mo, i 50
Furman's Manual of Practical Assaying Svo, 3 00
* Getman's Exercises in Physical Chemistry 12010, 2 00
Gill's Gas and Fuel Analysis for Engineers i2mo3 i 25
* Gooch and Browning's Outlines of Qualitative Chemical Analysis.

Large i2mo, i 25
Grotenfelt's Principles of Modern Dairy Practice. (WoU.) i2mo, 2 00
Groth's Introduction to Chemical Crystallography (Marshall) i2mo, i 25
Hammarsten's Text-book of Physiological Chemistry. (Mandel.) Svo, 4 00
Hanausek's Microscopy of Technical Products. (Winton.) svo, S 00
* Haskins and Macleod's Organic Chemistry i2mo, 2 00

Helm's Principles of Mathematical Chemistry. (Morgan.) i2mo, 1 50
Hering's Ready Reference Tables (Conversion Factors) i6mo, mor. 2 50
* Herrick's Denatured or Industrial Alcohol Svo, 4 00

Hinds's Inorganic Chemistry Svo, 3 00
* Laboratory Manual for Students i2mo, 1 00
* Holleman's Laboratory Manual of Organic Chemistry for Beginners.

(Walker.) i2mo, i 00

Text-book of Inorganic Chemistry. (Cooper.) Svo, 2 50
Text-book of Organic Chemistry. (Walker and Mott.) Svo, 2 50

Holley and Ladd's Analysis of Mixed Paints, Color Pigments, and Varnishes.

Large i2mo 2 50
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Hopkins's Oil-chemists' Handbook 8vo, 3 00

Iddings's Rock Minerals 8vo, 5 00

Jackson's Directions for Laboratory Work in Physiological Chemistry. .8vo, 1 25

Johannsen's Determination of Rock-forming Minerals in Tiiin Sections. . .8vo, 4 00

jCeep's Cast Iron 8vo, 2 so

Ladd's Manual of Quantitative Chemical Analysis i2mo, i 00

i/andauer's Spectrum Analysis. (Tingle.) 8vo, 3 00
* liAngworthy and Austen's Occurrence of Aluminium in Vegetable Prod-

ucts, Animal Products, and Natural Waters 8vo, 2 00

Lassar-Cohn's Application of Some General Reactions to Investigations in

Organic Chemistry. (Tingle.) i2mo, i 00

Leach's Inspection and Analysis of Food with Special Reference to State

Control 8vo,

Lob's Electrochemistry of Organic Compounds. (Lorenz.) 8vo,

Lodge's Notes on Assaying and Metallurgical Laboratory Experiments. .. .8vo,

Low's Technical Method of Ore Analysis 8vo,

Lunge's Techno-chemical Analysis. (Cohn.) lamo
* McKay and Larsen's Principles and Practice of Butter-making 8vo,

Maire's Modem Pigments and their Vehicles i2mo,

Mandel's Handbook for Bio-chemical Laboratory i2mo,
* Martin's Laboratory Guide to Qualitative Analysis with the Blowpipe. . i2mo,

Mason's Examination of Water. (Chemical and Bacteriological.). . . .i2mo,

Water-supply. (Considered Principally from a Sanitary Standpoint.)

8vo,

Matthews's The Textile Fibres. 2d Edition, Rewritten 8vo,

Meyer's Determination of Radicles in Carbon Compounds. (Tingle.). .i2mo, i oa
Miller's Cyanide Process i2mo, i 00

Manual of Assaying i2mo, i 00

Minet's Production of Aluminum and its Industrial Use. (Waldo.). ... i2mo, 2 50'

Mixter's Elementary Text-book of Chemistry i2mo, i 50'

Morgan's Elements of Physical Chemistry i2mo, 3 cat

Outline of the Theory of Solutions and its Results i2mo, i 00
* Physical Chemistry for Electrical Engineers i2mo, i 50

Morse's Calculations used in Cane-sugar Factories. i6mo, mor. i 50
* Muir's History of Chemical Theories and Laws 8vo, 4 00

Mullikan's General Method for the Identification of Pure Organic Compounds.

Vol. I Large 8vo, 5 00

O'DriscoU's Notes on the Treatment of Gold Ores 8vo, 2 00

Ostwald's Conversations on Chemistry. Part One. (Ramsey.) i2mo, i 50
" " " " Part Two. (TurnbuU.) i2mo, 2 00

* Palmer's Practical Test Book of Chemistry i2mo, i 00
* Pauli's Physical Chemistry in the Service of Medicine. (Fischer.) . . . . i2mo, i 25
* Penfield's Notes on Determinative Mineralogy and Record of Mineral Tests.

8vo, paper, 50

Tables of Minerals, Including the Use of Minerals and Statistics of

Domestic Production 8vo, 1 00

Pictet's Alkaloids and their Chemical Constitution. (Biddle.) 870, 5 00

Poole's Calorific Power of Fuels 8vo, 3 00

Prescott and Winslow's Elements of Water Bacteriology, with Special Refer-

ence to Sanitary Water Analysis i2Tno, i 50
* Reisig's Guide to Piece-dyeing 8vo, 2s 00

Richards and Woodman's Air, Water, and Food from a Sanitary Standpoint..8vo , 2 00
Ricketts and Miller's Notes on Assaying 8vo, 3 00
Rideal's Disinfection and the Preservation of Food 8vo, 4 00

Sewage and the Bacterial Purification of Sewage 8vo, 4 00
Riggs's Elementary Manual for the Chemical Laboratory 8vo, i 25
Robine and Lenglen's Cyanide Industry. (Le Clerc.) 8vo, 4 00
Ruddiman's Incompatibilities in Prescriptions 8vo, 2 00

Whys in Pharmacy l2mo, i 00
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Ruer's Elements of Metallography. (Mathewson). (In Preparation.')

Sabin's Industrial and Artistic Technology of Paints and Varnish 8vo

,

3 00
Salkowski's Physiological and Pathological Chemistry. (Orndorff.) 8vo, 2 50
Schimpf's Essentials of Volumetric Analysis i2mo, i 25
* Qualitative Chemical Analysis 8vo, i 25

Text-book of Volumetric Analysis i2mo, 2 50
Smith's Lecture Notes on Chemistry for Dental Students . .8vo, 2 50
Spencer's Handbook for Cane Sugar Manufacturers i6mo, mor. 3 00

Handbook for Chemists of Beet-sugar Houses i6mo, mor. 3 00
Stockbridge's Rocks and Soils 8vo, 2 50
* Tillman's Descriptive General Chemistry 8vo, 3 00
* Elementary Lessons in Heat 8vo, 1 50
Treadwell's Qualitative Analysis. (Hall.) . .8vo, 3 00

Quantitative Analysis. (Hall.) 8vo, 4 00
Turneaure and Russell's Public Water-supplies 8vo, 5 00

Van Deventer's Physical Chemistry for Beginners. (Boltwood.) i2mo, 1 50

Venable's Methods and Devices for Bacterial Treatment of Sewage 8vo , 3 00

Ward and Whipple's Freshwater Biology. (In Press,)

Ware's Beet-sugar Manufacture and Refining. Vol. I Small 8vo, 4 00
" " Vol.11 SmallSvo, 5 co

Washington's Manual of the Chemical Analysis of Rocks .8vo, 2 00
* Weaver's Military Explosives Svo, 3 00
Wells's Laboratory Guide in Qualitative Chemical Analysis Svo, 1 50

Short Course in Inorganic Qualitative Chemical Analysis for Engineering

Students i2mo, 1 50

Text-book of Chemical Arithmetic i2mo, i 2s
Whipple's Microscopy of Drinking-water 8vo, 3 50
Wilson's Chlorination Process . i2mo 1 53

Cyanide Processes i2mo i 50

Winton's Microscopy of Vegetable Foods . . Svo 7 so

CIVIL ENGINEERING.

BRIDGES AND ROOFS. HYDRAULICS. MATERIALS OF ENGINEER-
ING. RAILWAY ENGINEERING.

Baker's Engineers' Stirveying Instruments i2mo, 3 00

Bixby's Graphical Computing Table Paper 19^^X24! inches. 25

Breed and Hosmer's Principles and Practice of Surveying Svo, 3 00
* Burr's Ancient and Modern Engineering and*the Isthmian Canal Svo, 3 50

Comstock's Field Astronomy for Engineers Svo, 2 50
* Corthell's Allowable Pressures on Deep Foundations i2mo, 125
Crandall's Text-book on Geodesy and Least Squares Svo, 3 00

Davis's Elevation and Stadia Tables Svo, i 00

Elliott's Engineering for Land Drainage ; i2mo, i 50

Practical Farm Drainage i2mo, i 00

*Fiebeger's Treatise on Civil Engineering Svo, 5 00

Flemer's Phototopographic Methods and Instruments Svo, 5 00

Folwell's Sewerage. (Designing and Maintenance.) Svo, 3 00

Freitag's Architectural Engineering Svo, 3 50

French and Ives's Stereotomy Svo, 2 50

Goodhue's Municipal Improvements i2mo, i 50

Gore's Elements of Geodesy 8vo, 2 50

* Hauch and Rice's Tables of Quantities for Preliminary Estimates, l2mo, i 25

Hayford's Text-book of Geodetic Astronomy Svo, 3 00

Bering's Ready Reference Tables (Conversion Factors) i6mo, mor. 2 so

Howe's Retaining Walls for Earth i2mo, i 25



* Ives's Adjustments of the Engineer's Transit and Level i6mo, Bds. 25
Ives and Hilts's Problems in Surveying i6mo, mor. i 50
Johnson's (J. B.) Theory and Practice of Surveying Small 8vo, 4 00

Johnson's (L. J.) Statics by Algebraic and Graphic Methods 8vo, 2 00
Kinnicutt, Winslow and Pratt's Purification of Sewage. (In Preparation).

Laplace's Philosophical Essay on Probabilities. (Truscott and Emory.)

i2mo, 2 00
Mahan's Descriptive Geometry 8vo, i 50

Treatise on Civil Engineering. (1873.) (Wood.) 8vo, 5 00

Merriman's Elements of Precise Surveying and Geodesy 8vo, 2 50
Merriman and Brooks's Handbook for Surveyors i6mo, mor. 2 00
Morrison's Elements of Highviray Engineering. (In Press.)

Nugent's Plane Surveying 8vo, 3 50
Ogden's Sewer Design ; i2mo, 2 00

Parsons's Disposal of Municipal Refuse 8vo, 2 00
Patten's Treatise on Civil Engineering 8vo, half leather, 7 50
Reed's Topographical Drawing and Sketching 4to, 5 00

Rideal's Sewage and the Bacterial Purification of Sewage 8vo, 4 00

Riemer's Shaft-sinking under Difficult Conditions. (Corning and Peele.) . .8vo, 3 00

Siebert and Biggin's Modern Stone-cutting and Masonry 8vo, i 50

Smith's Manual of Topographical Drawing. (McMillan.) 8vo, 2 50
Soper's Air and Ventilation of Subways. (In Press.)

Tracy's Plane surveying l6mo, mor. 3 00
* Trautwine's Civil Engineer's Pocket-book i6mo, mor. 5 00

Venable's Garbage Crematories in America ' 8vo, 2 00

Methods and Devices for Bacterial Treatment of Sewage.. . 8vo, 3 00

Wait's Engineering and Architectural Jurisprudence ,8vo, 6 00

Sheep, 6 50

Law of Contracts 8vo, 3 00

Law of Operations Preliminary to Construction in Engineering and Archi-

tecture 8vo, 5 00

Sheep, 5 '50

Warren's Stereotomy—Problems in Stone-cutting 8vo, 2 50

* Waterbury's Vest-Pocket Hand-book of Mathematics for Engineers.

2s- X 5s inches, mor. 1 00

Webb's Problems in the Use and Adjustment of Engineering Instruments.

i6mo, mor. i 25

Wilson's Topographic Surveying 8vo, 3 50

BRIDGES AND ROOFS.

Boiler's Practical Treatise on the Construction of Iron Highway Bridges. .8vo, 2 00

Burr and Falk's Design and Construction of Metallic Bridges 8vo, 5 00

Influence Lines for Bridge and Roof Computations .8vo, 3 00

Du Bois's Mechanics of Engineering. Vol. II Small 4to, 10 00

Foster's Treatise on Wooden Trestle Bridges , 4to, 5 00

Fowler's Ordinary Foundations 8vo, 3 50

French and Ives's Stereotomy 8vo, 2 50

Greene's Arches in Wood, Iron, and Stone 8vo, 2 50

Bridge Trusses 8vo, 2 50

Roof Trusses 8vo, i 25

Grimm's Secondary Stresses in Bridge Trasses 8vo, 2 50

Heller's Stresses in Structures and the Accompanyin Deformations 8vo,

Howe's Design of Simple Roof-trusses in Wood and Steel 8vo, 2 00

Symmetrical Masonry Arches 8vo, 2 50

Treatise on Arches 8vo, 4 00

Johnson, Bryan, and Turneaure's Theory and Practice in the Designing of

Modern Framed Structures Small 4to, 10 00
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Merriman and Jacoby's Text-book on Roofs and Bridges

:

Part I. Stresses in Simple Trusses 8vo, 2 50
Part II. Graphic Statics 8vo, 2 50

Part III. Bridge Design 8vo, 2 50

Part IV. Higher Structures Svo, 2 50
Morison's Memphis Bridge Oblong 4to, 10 00

Sondericker's Graphic Statics, with Applications to Trusses, Beams, and Arches.

Svo, 2 00

Waddell's De Pontibus, Pocket-book for Bridge Engineers i6mo, mor, 2 00
* Specifications for Steel Bridges i2mo, 50

Waddell and Harrington's Bridge Engineering. (In Preparation.)

Wright's Designing of Draw-spans. Two parts in one volume Svo, 3 50

HYDRAULICS.

Barnes's Ice Formation Svo, 3 00

Bazin's Experiments upon the Contraction of the Liquid Vein Issuing from
an Orifice. (Trautwine.) Svo, 2 00

Bovey's Treatise on Hydraulics Svo, 5 00

Church's Diagrams of Mean Velocity of Water in Open Channels.

Oblong 4to, paper, i 50
Hydraulic Motors Svo, 2 00

Mechanics of Engineering Svo, 6 00

Coffin's Graphical Solution of Hydraulic Problems. i6mo, morocco, 2 50
Flather's Dynamometers, and the Measurement of Power i2mo, 3 00

Folwell's Water-supply Engineering Svo, 4 00

Frizell's Water-power Svo, 5 00

Fuertes's Water and Public Health i2mo, i 50
Water-filtration Works i2mo, 2 50

Ganguillet and Kutter's General Formula for the Uniform Flow of Water in

Rivers and Other Channels. (Hering and Trautwine.) Svo, 4 00

Hazen's Clean Water and Hov7 to Get It Large i2mo, i 5o

Filtration of Public Water-supplies Svo, 3 00

Hazlehurst's Towers and Tanks for Water-works Svo, 2 50
Herschel's 115 Experiments on the Carrying Capacity of Large, Riveted, Metal

Conduits Svo, 2 00
Hoyt and Grover's River Discharge Svo, 2 00

Hubbard and Kiersted's Water-works Management and Maintenance Svo, 4 00
* Lyndon's Development and Electrical Distribution of Water Power. . . .Svo, 3 00

Mason's Water-supply. (Considered Principally from a Sanitary Standpoint.)

Svo, 4 00

Merriman's Treatise on Hydraulics Svo, 5 00
* Michie's Elements of Analytical Mechanics Svo, 4 00

Molitor's Hydraulics of Rivers, Weirs and Sluices. (In Press.)

Schuyler's Reservoirs for Irrigation, Water-power, and Domestic Water-
supply Large Svo, S 00

* Thomas and Watt's Improvement of Rivers 4to, 6 00

Turneaure and Russell's Public Water-supplies Svo, s 00

Wegmann's Design and Construction of Dams. 5th Ed., enlarged 4to, 6 00

Water-supply of the City of New York from 1658 to 1895 4to, 10 00

Whipple's Value of Pure Water Large i2mo, i 00

Williams and Hazen's Hydraulic Tables Svo, i 50

Wilson's Irrigation Engineering Small Svo, 4 00

Wolff's Windmill as a Prime Mover Svo, 3 00

Wood's Elements of Analytical Mechanics Svo, 3 00

Turbines Svo, 2 50



MATERIALS OF ENGINEERING.
Baker's Roads and Pavements 8vo, 5 00

Treatise on Masonry Construction 8vo, 5 00
Birkmire's) Architectural Iron and Steel 8vo, 3 50

Compound Riveted Girders as Applied in Buildings 8vo, 2 00
Black's United States Public Works Oblong 4to, 5 00
Bleininger's Manufacture of Hydraulic Cement. (In Preparation.)

* Bovey's Strength of Materials and Theory of Structures 8vo, 7 50
Burr's Elasticity and Resistance of the Materials of Engineering 8vo, 7 50
Byrne's Highway Construction 8vo, 5 00

Inspection of the Materials and Workmanship Employed in Construction.

i6mo, 3 00

Church's Mechanics of Engineering 8vo, 6 00

Du Bois's Mechanics of Engineering.

Vol. I. Kinematics, Statics, Kinetics Small 4to, 7 50
Vol. II. The Stresses in Framed Structures, Strength of Materials and
Theory of Flexures Small 4to, 10 00

Eckel's Cements, Limes, and Plasters 8vo, 6 00

Stone and Clay Products used in Engineering. (In Preparation.)

Fowler's Ordinary Foundations 8vo, 3 50

Graves's Forest Mensuration 8vo, 4 00

Green's Principles of Americaii Forestry lamo, i tJo

* Greene's Structural Mechanics 8vo, 2 50
Holly and Ladd's Analysis of Mixed Paints, Color Pigments and Varnishes

Large i2mo, 2 50

Johnson's Materials of Construction Large 8vo, 6 00

Xeep's Cast Iron 8vo, 2 50

Kidder's Architects and Builders' Pocket-book i6mo, 5 00

Lanza's Applied Mechanics Svo, 7 50

Maire's Modern Pigments and their Vehicles . i2mo, 2 00

Martens's Handbook on Testing Materials. (Henning.) 2 vols Svo, 7 50

Maurer's Technical Mechanics '. Svo, 4 00

Merrill's Stones for Building and Decoration Svo, 5 00

Merriman's Mechanics of Materials Svo, 5 00

* Strength of Materials i2mo, i 00

Metcalf's Steel. A Manual for Steel-users i2mo, 2 00

Patten's Practical Treatise on Foundations Svo, s 00

Sice's Concrete Block Manufacture . . Svo, 2 00

Richardson's Modern Asphalt Pavements. ... Svo, 3 00

Richey's Handbook for Superintendents of Co "tr cion i6mo, mor., 400
* Ries's Clays: Their Occurrence, Properties, ana Jses Svo, s 00

Sabin's Industrial and Artistic Technology of Paints acd Varnish Svo, 3 00

*Schwarz's Longleaf Pine in Virgin Forest,., i2mo, i 25

Snow's Principal Species of Wood Svo, 3 50

Spalding's Hydraulic Cement ' i2mo, 2 00

Text-book on Roads and Pavements i2mo, 2 00

Taylor and Thompson's Treatise on Concrete, Plain and Reinforced Svo, 5 00

Thurston's Materials of Engineering. In Three Parts Svo, S 00

Part I. Non-metallic Materials of Engineering and Metallurgy Svo, 2 00

Part II. Iron and Steel 8vo, 3 50

Part III. A Treatise on Brasses, Bronzes, and Other Alloys and their

Constituents 8vo, 2 50

Tillson's Street Pavements and Paving Materials Svo, 4 00

Tumeaure and Maurer's Principles of Reinforced Concrete Construction.. Svo, 3 00

Wood's (De V.) Treatise on the Resistance of Materials, and an Appendix on

the Preservation of Timber Svo, 2 00

Wood's (M. P.) Rustless Coatings: Corrosion and Electrolysis of Iron and

Steel 8vo, 4 00



RAILWAY ENGINEERING.

Andrews's Handbook for Street Railway Engineers 3x5 incites, mor. i 25
Berg's Buildings and Structures of American Railroads 4to, 5 00

Brooks's Handbook of Street Railroad Location i6mo, mor, i 50

Butt's Civil Engineer's Field-book i6mo, mor. 2 50

Crandall's Railway and Other Earthwork Tables . 8vo, i 50

Transition Curve i6mo, mor. i 50
* Crockett's Methods for Earthwork Computations 8vo, i 50

Dawson's "Engineering" and Electric Traction Pocket-book i6mo, mor. 5 00

Dredge's History of the Pennsylvania Railroad: (1879) Paper, 5 00

Fisher's Table of Cubic Yards Cardboard, 25
Godwin's Railroad Engineers' Field-book and Explorers' Guide. . . i6mo, mor. 2 50
Hudson's Tables for Calculating the Cubic Contents of Excavations and Em-

bankments 8vo, I 00

Ives and Hilts's Problems in Surveying, Railroad Surveying and Geodesy

i6mo, mor. i 50
Molitor and Beard's Manual for Resident Engineers i6mo, i 00

Nagle's Field Manual for Railroad Engineers. . . i6mo, mor. 3 00

Philbrick's Field Manual for Engineers. i6mo, mor. 3 00

Raymond's Railroad Engineering. 3 volumes.

Vol. I. Railroad Field Geometry. (In Preparation.)

Vol. II. Elements of Railroad Engineering 8vo, 3 50
Vol III, Railroad Engineer's Field Book. (In Preparation.)

Searles's Field Engineering i6mo, mor. 3 00

Railroad Spiral i6mo, mor. i 50
Taylor's Prismoidal Formulae and Earthwork. .• Svo, i 50
*Trautwine's Field Practice of Laying Out Circular Curves for Railroads.

i2mo. mor, 2 50
* Method of Calculating the Cubic Contents of Excavations and Embank-

ments by the Aid of Diagrams 8vo, 2 00

Webb's Economics of Railroad Construction Large i2mo, 2 50
Railroad Construction i6nio, mor. 5 00

Wellington's Economic Theory of the Location of Railways Small Svo, 5 00

DRAWING.

Barr's Kinematics of Machinery Svo, 2 50
* Bartlett's Mechanical Drawing 8vo, 3 00
* " " " Abridged Ed Svo, i 50

Coolidge's Manual of Drawing Svo, paper, i 00

Coolidge and Freeman's Elements of General Drafting for Mechanical Engi-

neers Oblong 4to, 2 so

Durley's Kinematics of Machines Svo, 4 00

Emch's Introduction to Projective Geometry and its Applications Svo, 2 50
Hill's Text-book on Shades and Shadows, and Perspective Svo, 2 00

Jamison's Advanced Mechanical Drawing Svo, 2 00

Elements of Mechanical Drawing Svo, 2 50
Jones's Machine Design:

Part I. Kinematics of Machinery Svo, i 50
Part II. Form, Strength, and Proportions of Parts Svo, 3 00

MacCord's Elements of Descriptive Geometry Svo, 3 oc
Kinematics ; or. Practical Mechanism Svo, 5 00

Mechanical Drawing 4to, 4 00
Velocity Diagrams Svo, i 50

McLeod's Descriptive Geometry Large i2mo, i 5c
* Mahan's Descriptive Geometry and Stone-cutting Svo, i 50

Industrial Drawing. (Thompson.) Svo, 3 50
10



Moyer's Descriptive Geotnetry . . 8vo, 2 00
Reed's Topographical Drawing and Sketching 4to, 5 00
Raid's Course in Mechanical Drawing 8vo, 2 00

Text-book of Mechanical Drawing and Elementary Machine Design. 8vo, 3 00
Robinson's Principles of Mechanism Svo, 3 00
Schwamb and Merrill's Elements of Mechanism Svo, 3 00
Smith's (R. S.) Manual of Topographical Drawing. (McMillan.) Svo, 2 50
Smith (A. W.) and Marx's Machine Design Svo, 3 00
* Titsworth's Elements of Mechanical Drawing Oblong Svo, i 25
Warren's Drafting Instruments and Operations i2mo, 1 25

Elements of Descriptive Geometry, Shadows, and Perspective Svo, 3 50
Elements of Machine Construction and Drawing Svo, 7 50
Elements of Plane and Solid Free-hand Geometrical Drawing. . . . i .2mo, 1 00
General Problems of Shades and Shadows Svo, 3 00
Manual of Elementary Problems in the Linear Perspective of Form and

Shadow i2mo, i 00
Manual of Elementary Projection Drawing i2mo, i 50
Plane Problems in Elementary Geometry i2mo, i 25
Problems, Theorems, and Examples in Descriptive Geometry Svo, 2 50

Weisbach's Kinematics and Power of Transmission. (Hermann and
Klein.) Svo, 5 00

Wilson's (H. M.) Topographic Surveying Svo, 3 50
Wilson's (V. T.) Free-hand Lettering ? Svo, i 00

Free-hand Perspective Svo, 2 50
Woolf's Elementary Course in Descriptive Geometry Large Svo, 3 00

ELECTRICITY AND PHYSICS.

* Abegg's Theory of Electrolytic Dissociation, (von Ende.) i2mo,
Andrews's Hand-Book for Street Railway Engineering ... .3X5 inches, mor.,
Anthony and Brackett's Text-book of Physics. (Magie.) Large i2mo,
Anthony's Lecture-notes on the Theory of Electrical Measurements. . . . i2mo,
Benjamin's History of Electricity Svo,

Voltaic Cell ' Svo,

Betts's Lead Refining and Electrolysis Svo,

Classen's Quantitative Chemical Analysis by Electrolysis. (Boltwood.).Svo,
* CoUins's Manual of Wireless Telegraphy i2mo,

Mor. 2 00

Crehore and Squier's Polarizing Photo-chronograph Svo, 3 00

* Danneel's Electrochemistry. (Merriam.). .' i2mo, i 25
Dawson's "Engineering" and Electric Traction Pocket-book i6mo, mor 5 oa

Dolezalek's Theory of the Lead Accumulator (Storage Battery), (von Ende.)

i2mo, 2 50
Duhem's Thermodynamics and Chemistry. (Burgess.) Svo, 4 00

Flather's Dynamometers, and the Measurement of Power i2mo, 3 co

Gilbert's De Magnete. (Mottelay.) Svo, 2 so
* Hanchett's Alternating Currents x2mo, r 00

Bering's Ready Reference Tables (Conversion Factors') i6mo, mor. 2 50

Hobart and Ellis's High-speed Dynamo Electric Machinery. (In Press.)

Holman's Precision of Measurements Svo, 2 00

Telescopic Mirror-scale Method, Adjustments, and Tests. .. .Large Svo, 75
* Karapetoff' s Experimental Electrical Engineering Svo, 6 00

Kinzbrunner's Testing of Continuous-current Machines Svo, 2 00

Landauer's Spectrum Analysis. (Tingle.) Svo, 3 00

Le Chatelier's High-temperature Measurements. (Boudouard—Burgess.) i2mo, 3 00

Lob's Electrochemistry of Organic Compounds. (Lorenz.) Svo, 3 00
* Lirndon's Development and Electrical Distribntion of Water Power . . . .Svo, 3 00

* Lyons'3 Treatise on Electromagnetic Phenomena. Vols. I. and II. Svo, each, 6 00
* Michie's Elements of Wave Motion Relating to Sound and Light Svo, 4 00
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^Morgan's Outline of the Theory of Solution and its Results lamo, i oo
* Physical Chemistry for Electrical Engineers i2nio, i 50
Niaudet's Elementary Treatise on Electric Batteries. (Fishback) .... i2mo. 3 50
* Norrls's Introduction to the Study of Electrical Engineering 8vo, 2 50
* Parshall and Hobart's Electric Machine Design 4to, half morocco, 12 50
Reagan's Locomotives: Simple, Compound, and Electric. New Edition.

Large i2mo, 3 50
* Rosenberg's Electrical Engineering. (Haldane Gee—Kinzbrunner.). . .8vo, 2 00
Ryan, Norris, and Hoxie's Electrical Machinery. Vol. 1 8vo, 2 50
Sohapper's Laboratory Guide for Students in Physical Chemistry i2mo, i 00
Thurston's Stationary Steam-engines 8vo, 2 50
* Tillman's Elementary Lessons in Heat 8vo, i 50
Tory and Pitcher's Manual of Laboratory Physics Large i2mo, 2 00
Ulke's Modern Electrolytic Copper Refining Svo, 3 00

LAW.
* Davis's Elements of Law Svo, 2 50
* Treatise on the Military Law of United States Svo, 7 00
* Sheep, 7 50
^ Dudley's Military Law and the Procedure of Courts-martial . . . .Large i2mo, 2 50
Manual for Courts-martial i6mo, mor. i 50
Wait's Engineering and Architectural Jurisprudence Svo, 6 00

Sheep, 6 50
Law of Contracts Svo, 3 00
Law of Operations Preliminary to Construction in Engineering and Archi-

tecture Svo 5 00

Sheep, 5 50

MATHEMATICS.
Baker's Elliptic Functions Svo, i 50
Briggs's Elements of Plane Analytic Geometry. (Bocher) i2mo, i 00
^Buchanan's Plane and Spherical Trigonometry Svo, i 00
Byerley's Harmonic Functions Svo, i 00
Chandler's Elements of the Infinitesimal Calculus i2mo, 2 00

Compton's Manual of Logarithmic Computations i2mo, i 50
Davis's Introduction to the Logic of Algebra Svo, i 50
* Dickson's College Algebra Large i2mo, i 50
* Introduction to the Theory of Algebraic Equations Large i2mo, i 25
Emch's Introduction to Projective Geometry and its Applications Svo, 2 50
Fiske's Functions of a Complex Variable Svo, i 00
Halsted's Elementary Synthetic Geometry Svo, i 50

Elements of Geometry Svo, i 75
* Rational Geometry i2mo, i 50
Hyde's Grassmann's Space Analysis Svo, i 00
* Jonnson's (.J B.) Three-place Logarithmic Tables: Vest-pocket size, paper, 15

100 copies, S 00
* Mounted on heavy cardboard, SXio inches, 25

10 copies, 2 00

Johnson's (W. W.) Abridged Editions of Differential and Integral Calculus
Large i2mo, i vol. 2 50

Curve Tracing in Cartesian Co-ordinates i2mo, i 00

Differential Equations Svo, i 00

Elementary Treatise "u Differential Calculus. (In Press.)

Jilementary Treatise on the Integral Calculus Large i2mo> i 50
=* Theoretical Mechanics i2mo, 3 00

Theory of Errors and the Method of Least Squares i2mo, i 50

Treatise on Differential Calculus Large i2mo, 3 00

Treatise on the Integral Calculus Large i2mo, 3 00

Treatise on Ordinary and Partial Differential Equations. . Large i2mo, 3 50
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laplace's Philosophical Essay on Probabilities. (Truscott and Emory. )-i2mo, 2 00
* Ludlow and Bass's Elements of Trigonometry and Logarithmic and Other

Tables 8vo, 3 00

Trigonometry and Tables published separately Each, 2 00

* Ludlow's Logarithmic and Trigonometric Tables 8vo, i 00

Macfarlane's Vector Analysis and Quaternions 8vo, i 00

McMahon's Hyperbolic Functions 8vo, i 00

Manning's IrrationalNumbers and their Representation bySequences and Series

i2mo, I 25
Mathematical Monographs. Edited by Mansfield Merriman and Robert

S. Woodward Octavo, each i 00

No. I. History of Modern Mathematics, by David Eugene Smith.

No. 2. Synthetic Projective Geometry, by George Bruce Halsted.

No. 3. Determinants, by Laenas Gifford Weld. No. 4. Hyper-

bolic Functions, by James McMahon. Ko, S- Harmonic Func-

tions, by William E. Byerly. No. 6. Grassmann's Space Analysis,

by Edward W. Hyde. No. 7. Probability and Theory of Errors,

by Robert S. Woodward. No. 8. Vector Analysis and Quaternions,

by Alexander Macfarlane. No. 9. Differential Equations, by
William Woolsey Johnson. No. 10. The Solution of Equations,

by Mansfield Merriman. No. 11. Functions of a Complex Variable,

by Thomas S. Fiske.

Maurer's Technical Mechanics 8vo, 4 00

Metifman's Method of Least Squares 8vo, 2 00

Solution of Equations 8vo, 1 00

ilice and Johnson's Differential and Integral Calculus. 2 vols, in one.
Large i2mo, 1 50

Elementary Treatise on the Differential Calculus Large i2mo, 3 00

Smith's History of Modern Mathematics 8vo, i 00
* Veblen and Lennes's Introduct'on to the Real Infinitesimal Analysis of One

Variable 8vo, 2 00
* Waterbury's Vest Pocket Hand-Book of Mathematics for Engine- rs.

2s XSs inches, mor., 1 00

"Weld's Determinations 8vo, 1 00

Wood's Elements of Co-ordinate Geometry 8vo, 2 00

Woodward's Probability and Theory of Errors 8vo, i 00

MECHANICAL ENGINEERING.

MATERIALS OF ENGINEERING, STEAM-ENGINES AND BOILERS.

Bacon's Forge Practice i2mo, i 50

Baldwin's Steam Heating for Buildings i2mo, 2 50
Bair's Kinematics of Machinery 8vo, 2 50
* Bartlett's Mechanical Drawing 8vo, 3 00
* " " " Abridged Ed 8vo, i 50
Benjamin's Wrinkles and Recipes i2mo, 2 00
* Burr's Ancient and Modern Engineering and the Isthmian Canal 8vo, 3 50
Carpenter's Experimental Engineering 8vo, 6 00

Heating and Ventilating Buildings 8vo, 4 00

Clerk's Gas and Oil Engine Large i2mo, 4 00

Compton's First Lessons in Metal Working i2mo, i 50
Compton and De Groodt's Speed Lathe 12mo, i 50
Coolidge's Manual of Drawing 8vo, paper, i 00
Coolidge and Freeman's Elements of General Drafting for Mechanical En-

gineers Oblong 4to, 2 50
Cromwell's Treatise on Belts and Pulleys i2mo, 1 50

Treatise on Toothed Gearing i2mo, 1 50
Durley's Kinematics of Machines Svo, 4 00
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Flather's Dynamometers and the Measurement of Power i2mo, 3 00
Rope Driving i2mo, 2 oo

Gill's Gas and Fuel Analysis for Engineers .,.,..., i2nio, i 25
Goss'i Lncomotive Sparks 8vo, 2 00
Hall's Car Lubrication i2nio, i 00
Hering's Ready Reference Tables (Conversion Factors) i6mo,- mor., 2 50
Hobart and Elds's High Speed Dynamo Electric Machinery. (In Press.)

Button's Gas Engine .
. 8vo, 5 00

Jamison's Advanced Mechanical Drawing 8vo, 2 00
Elements of Mechanical Drawing Bvo, 2 50

Jones's Machine Design;

Part I. Kinematics of Machinery 8vo, i 50
Part II. Form, Strength, and Proportions of Parts 8vo, 3 00

Kent's Mechanical Engineers' Pocket-book i6mo, mor , 5 00
Kerr's Power and Power Transmission 8vo, 2 00
Leonard's Machine Shop Tools and Methods] Svo, 4 00
* Lorenz's Modern Refrigerating Machinery. (Pope, Haven, and Dean.) . . 8vo, 4 00
MacCord's Kinematics; or. Practical Mechanism ; Svo, 5 00

Mechanical Drawing 4to, 4 00
Velocity Diagrams Svo, i 50

MacFarland's Standard Reduction Factors for Gases Svo, i 50
Mahan's Industrial Drawing. '(Thompson.) Svo, 3 50
* Parshall and^obart's Electric Machine Design Small 4to, half leather, 12 So
Peele's Compressed Air Plant for Mines. (In Press.)

Poole's Calorific Power of Fuels Svo, 3 00
* Porter's Engineering Reminiscences, 1855 to 1882 Svo, 3 00

Reid's Course in Mechanical Drawing Svo, 2 oo
Text-boolc of Mechanical Drawing and Elementary Machine Design. Svo, 3 00

Richard's Compressed Air i2mo, i 50
Robinson's Principles of Mechanism Svo, 3 00

Schwamb and Merrill's Elements of Mechanism Svo, 3 00
Smith's (O.) Press-working of Metals Svo, 3 00

Smith (A. W.) and Marx's Machine Design Svo, 3 00

Thurston's Animal as a Machine and Prime Motor, and the Laws of Energetics.

i2mo, I 00

Treatise on Friction and Lost Work in Machinery and Mill Work... Svo, 3 00

Tillson's Complete Automobile Instructor i6mo, i 50
mor., 2 00

* Titsworth's Elements of Mechanical Drawing Oblong Svo, i 25
Warren's Elements of Machine Construction and Drawing Svo, 7 50
* Waterbury's Vest Pocket Hand Book of Mathematics for Engineers.

2s X5I inches, mor., i 00

Weisbach's Kinematics and the Power of Transmission. (Herrmann

—

Klein.) ^ Svo, 5 o&
Machinery of Transmission and Governors. (Herrmann—Klein.). .8vc, 5 00

Wolff's Windmill as a Prime Mover Svo, 3 00

Wood's Turbines Svo, 2 50

MATERIALS OF ENGINEERING.

* Bovey's Strength of Materials and Theory of Structures Svo, 7 50
Burr's Elasticity and Resistance of the Materials of Engineering Svo, 7 50
Church's Mechanics of Engineering Svo, 6 00
* Greene's Structural Mechanics Svo, 2 50
Holley and Ladd's Analysis of Mixed Paints, Color Pigments, and Varnishes.

Large i2mo, 2 50
Johnson's Materials of Construction Svo, 6 00

Keep's Cast Iron §vo, 2 50
Lanza's Applied Mechaoic$ 8vo, 7 50
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Maire's Modern Pigments and their Vehicles i2mo, 2 00

Martens 's Handbook on Testing Materials. (Henning.) 8vo, 7 50
Maurer's Technical Mechanics 8vo, 4 00

Merriman's Mechanics of Materials 8vo, 5 00
* Strength of Materials i2iao, i 00

Metcalf's Steel. A Manual for Steel-users i2mo, 2 00

Sabin's Industrial and Artistic Technology of Paints and Varnish 8vo, 3 00
Smith's Materials of Machines i2mo, 1 00

Thurston's Materials of Engineering 3 vols., 8vo, 8 00

Part I. Non-metallic Materials of Engineering, see Civil Engineering,

page 9.

Part II. Iron and Steel 8vo, 3 50
Part III. A Treatise on Brasses, Bronzes, and Other Alloys and their

Constituents 8vo, 2 50
Wood's (De V.) Elements of Analytical Mechanics 8vo, 3 00

Treatise on the Resistance of Materials and an Appendix on the

Preservation of Tjmber 8vo, 2 00
Wood's (M. P.) Rustless Coatings: Corrosion and Electrolysis of Iron and

Steel 8vo

,

4 00

STEAM-ENGINES AND BOILERS.

Berry's Temperature-entropy Diagram i2mo, i 25
Carnot's Reflections on the Motive Power of Heat. (Thurston.) i2mo, i 50
Chase's Art of Pattern Making i2mo, 2 50

Creighton's Steam-engine and other Heat-motors
, Svo, 500

Dawson's "Engineering" and Electric Traction Pocket-book. . . .i6mo, mor., 5 00

Ford's Boiler Making for Boiler Makers i8mo, i 00

Goss's Locomotive Performance .... 8vo, 5 00

Hemenway's Indicator Practice and Steam-engine Economy i2mo, 2 00

Button's Heat and Heat-engines Svo, 5 00

Mechanical Engineering of Power Plants Svo, 5 00
Kent's Steam boiler Economy Svo, 4 00
Kneass's Practice and Theory of the Injector Svo, i 50
MacCord's Slide-valves -Svo, 2 00
Meyer's Modern Locomotive Construction 4to, 10 00
Moyer's Steam Turbines. (In Press.)

Peabody's Manual of the Steam-engine Indicator i2mo. i 50
Tables of the Properties of Saturated Steam and Other Vapors. 8vo, i 00
Thermodynamics of the Steam-engine and Other Heat-engines Svo, 5 00
Valve-gears for Steam-engines Svo, 2 50

Peabody and Miller's Steam-boilers Svo, 4 00

Pray's Twenty Years with the Indicator Large Svo, 2 50
Pupin's Thermodynamics of Reversible Cycles in Gases and Saturated Vapors.

(Osterberg.) i2mo, i 2g
Reagan's Locomotives: Simple, Compound, and Electric. New Edition.

Large i2mo, 3 50
Sinclair's Locomotive Engine Running and Management i2mo, 2 00

Smart's Handbook of Engineering Laboratory Practice i2mo, 2 50
Snow's Steam-boiler Practice Svo, 3 00

Spangler's Notes on Thermodynamics i2ino, i 00
Valve-gears Svo, 2 50

Spangler, Greene, and Marshall's Elements of Steam-engineering Svo, 3 00

Thomas's Steam-turbines Svo, 4 00
Thurston's Handbook of Engine and Boiler Trials, and the Use of the Indi-

cator and the Prony Brake Svo, 5 00
Handy Tables Svo, i 50
Manual of Steam-boilers, their Designs, Construction, and Operation..Svo, 5 00
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Thurston's Manual of the Steam-engine 2 vols., 8vo, 10 00

Part I. History, Structure, and Theory 8vo, 6 00
Part II. Design, Construction, and Operation 8vo, 6 00

Stationary Steam-engines Svo, 2 50

Steam-boiler Explosions in Theory and in Practice 12mo, i 50

Wehrenfenning's Analysis and Softening of Boiler Feed-water (Patterson) Svo, 4 00

Weisbach's Heat, Steam, and Steam-engines. (Du Bois.) Svo, 5 00

Whitham's Steam-engine Design Svo, 5 00

Wood's Thermodynamics, Heat Motors, and Refrigerating Machines. . .Svo, 4 00

MECHANICS PURE AND APPLIED.

Church's Mechanics of Engineering Svo, 6 00
Notes and Examples in Mechanics Svo, 2 00

Dana's Text-book of Elementary Mechanics for Colleges and Schools. .i2mo, i 50

Du Bois's Elementary Principles of Mechanics

:

Vol. I. Kinematics Svo, 3 50
Vol. II. Statics Svo, 4 00

Mechanics of Engineering. Vol. I Small 4to, 7 50
Vol. II Small 4to, 10 00

* Greene's Structural Mechanics Svo, 2 50

James's Kinematics of a Point and the Rational Mechanics of a Particle.
Large 12mo, 2 00

* Johnson's (W. W.) Theoretical Mechanics 12mo, 3 00

Lanza's Applied Mechanics Svo, 7 50
* Martin's Text Book on Mechanics, Vol. I, Statics 12mo, i 25
* Vol. 2, Kinematics and Kinetics . .i2mo, l 50

Maurer's Technical Mechanics Svo, 4 00
* Merriman's Elements of Mechanics 12mo, i 00

Mechanics of Materials Svo, 5 00

* Michie's Elements of Analytical Mechanics Svo, 4 00

Robinson's Principles of Mechanism Svo, 3 00

Sanborn's Mechanics Problems Large 12mo, i 50

Schwamb and Merrill's Elements of Mechanism Svo, 3 00

Wood's Elements of Analytical Mechanics Svo, 3 00

Principles of Elementary Mechanics • 12mo, i 25

MEDICAL.

Abderhalden's Physiological Chemistry in Thirty Lectures. (Hall and Defren).
(In Press).

von Behring's Suppression of Tuberculosis. (Bolduan.) i2mo, i 00

* Bolduan's Immune Sera i2mo, i 50

Davenport's Statistical Methods with Special Reference to Biological Varia-
tions i6mo, mor., i 50

Ehrlich's Collected Studies on Immunity. (Bolduan.) Svo, 6 00

* Fischer's Physiology of Ahmentation Large i2mo, cloth, 2 00

de Fursac's Manual of Psychiatry. (Rosanoff and Collins.) Large i2mo, 2 50

Hammarsten's Text-book on Physiological Chemistry. (Mandel.) Svo, 4 00

Jackson's Directions for Laboratory Work in Physiological Chemistry. ..Svo, i 25

Lassar-Cohn's Practical Urinary Analysis. (Lorenz.) i2mo, i 00

Mandel's Hand Book for the Bio-Chemical Laboratory , . . i2mo, I 50
* Pauli's Physical Chemistry in the Service of Medicine. (Fischer.) .... i2mo, i 25
* Pozzi-Escot's Toxins and Venoms and their Antibodies. (Cohn.) i2mo, i 00

Rostoski's Serum Diagnosis. (Bolduan.) i2mo, i 00

Ruddiman's Incompatibilities in Prescriptions Svo, 2 00

Whys in Pharmacy i2mo, i 00

Salkowski's Physiological and Pathological Chemistry. (Orndorff.) Svo, 2 50
* Satterlee's Outlines of Human Embryology i2mo, i 25

Smith's Lecture Notes on Chemistry for Dental Students ijvo, 2 SJ

16



Steel's Treatise on the Diseases of the Dog 8vo, 3 so»
* Whipple's Typhoid Fever Large i2mo, 3 00
WoodhuU's Notes on MiUtary Hygiene i6mo, i 50
* Personal Hygiene i2mo, i 00
Worcester and Atkinson's Small Hospitals Establishment and Maintenance,

and Suggestions for Hospital Architecture, with Plans for a Small
Hospital i2mo, i 25

METALLURGY.
Betts's Lead Refining by Electrolysis 8vo. 4 00
Holland's Encyclopedia of Founding and Dictionary of Foundry Terms Used

in the Practice of Moulding l2mo, 3 00
Iron Founder 12mo. 2 50

Supplement 12mo, 2 50
Douglas's Untechnical Addresses on Technical Subjects i2mo, i 00
Goesel's Minerals and Metals: A Reference Book , . . . . i6mo, mor. 3 00
* Iles's Lead-smelting 12mo, 2 50
Keep's Cast Iron 8vo, 2 50
Le Chatelier's High-temperature Measurements. (Boudouard—Burgess.) 12mo, 3 00

Metcalf's SteeL A Manual for Steel-users 12mo, 2 00

Miller's Cyanide Process 12mo i 00

Minet's Production of Aluminum and its Industrial Use. (Waldo.). . . . l2mo, 2 50
Robine and Lenglen's Cyanide Industry. (Le Clerc.) 8vo, 4 00

Ruer's Elements of Metallography. (Mathewson). (In Press.)

Smith's Materials of Machines 12mo, i 00

Thurston's Materials of Engineering. In Three Parts 8vo, 8 00
part I. Non-metallic Materials of Engineering, see Civil Engineering,

page 9.

Part II. Iron and Steel 8vo, 3 50
Part III. A Treatise on Brasses, Bronzes, and Other Alloys and their

Constituents 8vo, 2 50

Ulke's Modern Electrolytic Copper Refining 8vo, 3 00

West's American Foundry Practice i2mo, 2 50

Moulders Text Book 12mo, 2 50

Wilson's Chlorination Process 12mo, r so

Cyanide Processes 12mo, 1 50

MINERALOGY.
Barringer's Description of Minerals of Commercial Value. Oblong, morocco, 2 50

Boyd's Resources of Southwest Virginia 8vo 3 00

Boyd's Map of Southwest Virginia Pocket-book form. 2 00
* Browning's Introduction to the Rarer Elements 8vo, i 50

Brush's Manual of Determinative Mineralogy. (Penfield.) 8vo, 4 OO'

Butler's Pocket Hand-Book of Minerals 16mo, mor. 3 00

Chester's Catalogue of Minerals 8vo, paper, i 00

Cloth, I 25
Crane's Gold and Silver. (In Press.)

Dana's First Appendix to Dana's New " System of Mineralogy. ."
. . Large 8vo, i 00

Manual of Mineralogy and Petrography i2mo 2 no

Minerals and How to Study Them i2mo, r 50

System of Mineralogy Large 8vo, half leather, r2 50

Text-book of Mineralogy 8vo, 4 00

Douglas's Untechnical Addresses on Technical Subjects i2mo, i 00

Eakle's Mineral Tables 8vo, i 25.

Stone and Clay Products Used in Engineering. (In Preparation).

Egleston's Catalogue of Minerals and Synonyms 8vo, 2 50

Goesel's Minerals and Metals : A Reference Book i6mo. mor. 3 00

Groth's Introduction to Chemical Crystallography f Marshall) i2mo, 1 25
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* Iddings's Rock Minerals 8vo, 5 00
Johannsen's Determination of Rock-forming Minerals in Thin Sections 8vo, 4 00
* Martin's Laboratory Guide to Qualitative Analysis vvitii the Blowpipe, izmo, 60

Merrill's Non-metallic Minerals: Their Occurrence and Uses 8vo, 4 00
Stones for Building and Decoration 8vo, 500

* Penfield's Notes on Determinative Mineralogy and Record of Mineral Tests.
8vo, paper, 50

Tables of Minerals, Including the Use of Minerals and Statistics of

Domestic Production 8vo, i 00

Pirsson's Rocks and Rock Minerals. (In Press.)

* Richards's Synopsis of Mineral Characters i2mo, mor, 125
* Ries's Clays: Their Occurrence, Properties, and Uses 8vo, 5 00
* Tillman's Text-book of Important Minerals and Rocks 8vo, 2 00

MINING.

* Beard's Mine Gases and Explosions Large i2mo, 3 00
Boyd's Map of Southwest Virginia Pocket-book formj 2 00

Resources of Southwest Virginia 8vo, 3 00

Crane's Gold and Silver. (In Press.)

Douglas's Untefchnical Addresses on Technical Subjects i2mo, I 00
Eissler's Modern High Explosives. '. . 8vd 4 00

Goesel's Minerals and Metals : A Reference Book. . i6mo, mor. 3 00

II Iseng's Manual of Mining 8vo, 5 00
* Iles's Lead-smelting i2mo, 2 50

Miller's Cyanide Process i2mo, i 00

O'DriscoU's Notes on the Treatment of Gold Ores Svo, 2 00

Peele's Compressed Air Plant for Mines. (In Press.

)

Riemer ' s Shaft Sinking Under Difficult Conditions . (Coming and Peele) . . . Svo

,

300
Robine and Lenglen's Cyanide Industry. (Le Clerc.) Svo, 4 00

* Weaver's Military Explosives 8vo, 3 00

Wilson's Chlorinati'on Process izmo, i 50

Cyanide Processes i2mo, i 50

Hydraulic and Placer Mining. 2d edition, rewritten limo, 2 50

Treatise on Practical and Theoretical Mine Ventilation T2mo, I 25

SANITARY SCIENCE.

Association of State and National Food and Dairy Departments, Hartford Meeting,

1906 Svo, 3 00

Jamestown Meeting, 1907 Svo, 3 00

* Bashore's Outlines of Practical Sanitation 12mo, i 25

Sanitation of a Country House 12mo, 1 00

Sanitation of Recreation Camps and Parks 12mo, i 00

FolweU's Sewerage. (Designing, Construction, and Maintenance.) Svo, 3 00

Water-supply Engineering Svo, 4 00

Fowler's Sewage Works Analyses 12mo, 2 00

Fuertes's Water-filtration Works 12mo, 2 50

Water and Public Health 12mo, i 50

Gerhard's Guide to Sanitary House-inspection 16mo, i 00

* Modem Baths and Bath Houses Svo, 3 00

Sanitation of Public Buildings 12mo, i 50

Hazen's Clean Water and How to Get It Large 12mo, i 50

Filtration of Public Water-supplies Svo, 3 00

Kinnicut, Winslow and Pratt's Purification of Sewage. (In Press.)

Leach's Inspection and Analysis of Food with Special Reference to State

Control Svo, 7 00

Mason's Examination of Water. (Chemical and Bacteriological) 12mo, i 25

Water-supply. (Considered principally from a Sanitary Standpoint) . . Svo, 4 00
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* Merriman's Elements of Sanitary Engineering 8vo, 2 00
Ogden's Sewer Design l2mo, 2 00
Parsons's Disposal of Municipal Refuse 8vo, 2 00
Prescott and Winslow's Elements of Water Bacteriology, with Special Refer-

ence to Sanitary Water Analysis 12mo, i 50
* Price's Handbook on Sanitation 12mo, i 50
Richards's Cost of Food. A Study in Dietaries 12mo, i 00

Cost of Living as Modified by Sanitary Science 12mo, i 00
Cost of Shelter 12mo, i 00

* Richards and Williams's Dietary Computer 8vo, i 50
Richards and Woodman's Air, Water, and Food from a Sanitary Stand-

point 8vo, 2 00

Rideal's Disinfection and the Preservation of Food 8vo, 4 00

Sewage and Bacterial Purification of Sewage 8vo, 4 00

Soper's Air and Ventilation of Subways. (In Press.)

Turneaure and Russell's Public Water-supplies 8vo, 5 00

Venable's Garbage Crematories in America 8vo, 2 00

Method and Devices for Bacterial Treatment of Sewage 8vo, 3 00

Ward and Whipple's Freshwater Biology. (In Press.

)

Whipple's Microscopy of Drinking-water Svo, 3 So
* Typhod Fever Large 12mo, 3 00

Value of Pure Water Large l2mo, i 00
Winton's Microscopy of Vegetable Foods 8vo, 7 50

MISCELLANEOUS.

Emmons's Geological Guide-book of the Rocky Mountain Excursion of the

International Congress of Geologists Large Svo,

Ferrel's Popular Treatise on the Winds 8vo,

Fitzgerald's Boston Machinist i8mo,

Gannett's Statistical Abstract of the World 24mo,

Haines's American Railway Management 12mo,
* Hanusek's The Microscopy of Technical Products. (Winton^ Svo,

Ricketts's History of Rensselaer Polytechnic Institute 1824-1894.

Large i2mo,
Rotherham's Emphasized New Testament , Large Svo,

Standage's Decoration of Wood, Glass, Metal, etc 12mo,

Thome's Structural and Physiological Botany. (Bennett) 16mo,

Westermaier's Compendium of General Botany. (Schneider) Svo,

Winslow's Elements of Applied Microscopy 12mo,

HEBREW AND CHALDEE TEXT-BOOKS.

Green's Elementary Hebrew Grammar i2mo, 1 25
Gesenius's Hebrew and Chaldee Lexicon to the Old Testament Scriptures.

(Tregelles.) Small 4to, half morocco, 5 00

19

I 50

4 00

I 03

75
2 50

5 00

3 00

2 00
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