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PREFACE.

THE same general design has been kept in view in the prep-
aration of the following work as in the preceding pages on

Solids, viz. : to combine clearness and consistency in the setting
forth and illustration of theoretical principles ;

to provide nu-

merous and fully-lettered diagrams, in which in most cases the

notation of the accompanying text can be apprehended at a

glance ;
and to invite close attention to the proper use of systems

of units in numerical examples, the latter being introduced very

copiously and with detailed explanations.

Advantage has been taken of the results of the most reeent

experimental investigations in Hydraulics in assigning values of

the numerous coefficients necessary in this science. The re-

searches of Messrs. Fteley and Stearns in 1880 and of M. Bazin

in 1887 on the flow of water over weirs, and of Mr. Clemens
Herschel in testing his invention the "Venturi Water-meter/'
are instances in point ;

as also some late experiments on the

transmission of compressed air and of natural gas.

Though space has forbidden dealing at any great length with

the action of fluid motors, 'sufficient matter is given in treating
of the mode of working of steam, gas, and hot-air engines, air-

compressors, and pumping-engines, together with numerical ex-

amples, to be of considerable advantage, it is thought, to students

not making a specialty of mechanical engineering.

Special acknowledgment is due to Col. J. T. Fanning, the

well-known author of "
Hydraulic and Water-supply Engineer-

ing," for his consent to the use of an abridgment of the table of

coefficients for friction of water in pipes, given in that work ;

and to Prof. C. L. Crandall, of this university, for permission to

incorporate the chapter on Retaining-walls.

References to original research in the Hydraulic Laboratory of

the Civil Engineering Department at this institution will be

found on pp. 694 and 729.

CORNELL UNIVERSITY, ITHACA, N. Y., May 1889.
i
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PART IV.

HYDRAULICS.

CHAPTEK I.

DEFINITIONS FLUID PRESSURE HYDROSTATICS BEGUN.

406. A Perfect Fluid is a substance the particles of which

are capable of moving upon each other with the greatest free

dom, absolutely without friction, and are destitute of mutual

attraction. In other words, the stress between any two con-

tiguous portions of a perfect fluid is always one of compression
and normal to the dividing surface at every point ; i.e., no

shear or tangential action can exist on any imaginary cutting

plane.

Hence if a perfect fluid is contained in a vessel of rigid ma-

terial the pressure experienced by the walls of the vessel is

normal to the surface of contact at all points.

For the practical purposes of Engineering, water, alcohol,

mercury, air, steam, and all gases may be treated as perfect

fluids within certain limits of temperature.

407. Liquids and Gases. A fluid a definite mass of which

occupies a definite volume at a given temperature, and is in-

capable both of expanding into a larger volume and of being

compressed into a smaller -volume at that temperature, is called

a Liquid, of which water, mercury, etc., are common examples ;

whereas a Gas is a fluid a mass of which is capable of almost

indefinite expansion or compression, according as the space

within the confining vessel is made larger or smaller, and al-

ways tends to fill the vessel, which must therefore be closed in

every direction to prevent its escape.
515
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Liquids are sometimes called inelastic fluids, and gases
elastic fluids.

408. Remarks. Though practically we may treat all liquids

as incompressible, experiment shows them to be compressible
to a slight extent. Thus, a cubic inch of water under a pres-

sure of 15 Ibs. on each of its six faces loses only fifty millionths

(0.000050) of its original volume, while remaining at the same

temperature; if the temperature be sufficiently raised, how-

ever, its bulk will remain unchanged (provided the initial tem-

perature is over 40 Fahr.). Conversely, by heating a liquid in

a rigid vessel completely filled by it, a great bursting pressure

may be produced. The slight cohesion existing between the

particles of most liquids is too insignificant to be considered in

the present connection.

The property of indefinite expansion, on the part of gases,

by which a confined mass of gas can continue to fill a confined

space which is progressively enlarging, and exert pressure

against its walls, is satisfactorily explained by the " Kinetic

Theory of Gases," according to which the gaseous particles are

perfectly elastic and in continual motion, impinging against
each other and the confining walls. Nevertheless, for prac-
tical purposes, we may consider a gas as a continuous sub-

stance.

Although by the abstraction of heat, or the application of

great pressure, or both, all known gases may be reduced to

liquids (some being even solidified); and although by con-

verse processes (imparting heat and diminishing the pressure)

liquids may be transformed into gases, the range of tempera-
ture and pressure in all problems to be considered in this work
is supposed kept within such limits that no extreme changes of

state, of this character, take place. A gas approaching the

point of liquefaction is called a Vapor.
Between the solid and the liquid state we find all grades of

intermediate conditions of matter. For example, some sub-

stances are described as soft and plastic solids, as soft putty,
moist earth, pitch, fresh mortar, etc.; and others as viscous and

sluggish liquids, as molasses and glycerine. In sufficient bulk,



DEFINITIONS FLUID PRESSURE HYDROSTATICS. 517

however, the latter may still be considered as perfect fluids.

Even water is slightly viscous.

409, Heaviness of Fluids. The weight of a cubic unit of a

homogeneous fluid will be called its heaviness, or rate of

weight (see 7), and is a measure of its density. Denoting it

by y, and the volume of a definite portion of the fluid by V,

we have, for the weight of that portion,

G= Vy. (1)

This, like the great majority of equations used or derived in

this work, is of homogeneousform ( 6), i.e., admits of any sys-

tem of units. E.g., in the metre-kilogram-second system, if y
is given in kilos, per cubic metre, V must be expressed in

cubic metres, and G will be obtained in kilos.; and similarly

in any other system. The quality of y, = G -f- F, is evidently

one dimension of force divided by three dimensions of length.

In the following table, in the case of gases, the temperature
and pressure are mentioned at which they have the given

heaviness, since under other conditions the heaviness would be

different
;
in the case of liquids, however, for ordinary pur-

poses the effect of a change of temperature may be neglected

(within certain limits).

HEAVINESS OF VARIOUS FLUIDS.*

[In ft. Ib. sec. system; y = weight in Ibs. of a cubic foot.]

Liquids.
J At temp, of melting ice; and 14.7

1 Ibs. per sq. in. tension.

Freshwater, y= 62.5

Sea water 64.0

Mercury 848. 7

Alcohol 49.3

Crude Petroleum, about 55.0

(N.B. A cubic inch of water

weighs 0.036034 Ibs.; and a cubic
foot 1000 av. oz.)

Atmospheric Air 0. 08076

Oxygen 0.0892

Nitrogen 0.07'86

Hydrogen 0.0056

Illuminating ) from 0.0300

Gas, fto 0.0400
Natural Gas, about 0.0500

* See Trautwine's Civ. Engineer's Pocket Book for an extended table

p. 380, edition of 1885.
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For use in problems where needed, values for the heaviness

of pure fresh water are given in the following table (from

Rossetti) for temperatures ranging from freezing to boiling ;

as also the relative density, that at the temperature of maxi-

mum density, 39.3 Fahr. being taken as unity. The temper-
atures are Fahr., and y is in Ibs. per cubic foot.

Temp.
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[Rankine's nomenclature has been adopted in the present
work. Some recent writers use the term Hydromechanics for

mechanics of fluids, subdividing it into Hydrostatics and

Hydrokinetics, as above
; they also use the term Dynamics to

embrace both of the two divisions called Statics and Dynamics

by Rankine, which by them are called Statics and Kinetics re-

spectively. Though unusual, perhaps, the term Hydraulics is

here used to cover the applied Mechanics of Fluids as well as

of Liquids.]

Before treating separately of liquids and gases, a few para-

graphs will be presented applicable to both kinds of fluids.

411. Pressure per Unit Area, or Intensity of Pressure. As in

180 in dealing with solids, so here with fluids we indicate the

pressure per unit area between two contiguous portions of

fluid, or between a fluid and the wall of the containing vessel,

by p, so that if dP is the total pressure on a small area dF,
we have

>- ........

as the pressure per unit area, or intensity of pressure (often,

though ambiguously, called the tension in speaking of a gas)

on the small surface dF. If pressure of the same intensity
exists over a finite plane surface of area = F, the total pres-

sure on that surface is

P = fpdF=pfdF= Fp, ]P [
. (2)"= >.

(!N".B. For brevity the single word "
pressure" will some-

times be used, instead of intensity of pressure, where no am-

biguity can arise.) Thus, it is found that, under ordinary con-

ditions at the sea level, the atmosphere exerts a normal pressure

(normal, because fluid pressure) on all surfaces, of an intensity

of about p 14.7 Ibs. per sq. inch (= 2116. Ibs. per sq. ft.).

This intensity of pressure is called one atmosphere. For ex-
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ample, the total atmospheric pressure on a surface of 100 sq.

in. is [inch, lb., sec.]

P = Fp = 100 X 14.7 = 1470 Ibs. (= 0.735 tons.)

The quality of p is evidently one dimension of force divid-

ed by two dimensions of length.

412. Hydrostatic Pressure; per Unit Area, in the Interior of a

Fluid at Rest. In a body of fluid of uniform heaviness, at

rest, it is required to find the mutual pressure per unit area be-

tween the portions of fluid on opposite sides of any imaginary

cutting plane. As customary, we shall consider portions of

the fluid as free bodies, by supplying the forces exerted on

them by all contiguous portions (of fluid or vessel wall), also-

those of the earth (their weights), and then apply the condi-

tions of equilibrium.

First) cutting plane horizontal. Fig. 451 shows a body of

homogeneous fluid confined in a rigid

vessel closed at the top with a small air-

tight but frictionless piston (a horizontal

disk) of weight = G and exposed to at-

mospheric pressure ( ^?a per unit area)

on its upper face. Let the area of piston-

face be = F. Then for the equilibrium
of the piston the total pressure between

its under surface and the fluid at must

be
FIG. 451.

and hence the intensity of this pressure is

(1)

It is now required to find the intensity,^, of fluid pressure

between the portions of fluid contiguous to the horizontal cut-

ting plane BC&i a vertical distance = h vertically below the pis-

ton O. In Fig. 452 we have as a free body the right parallelo-
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olliil

piped OBC oi Fig. 451 with vertical sides (two ||
to paper and

four ~] to it). The pressures acting on its six faces are normal

to them respectively, and the weight of the prism is vol.

Xy = Fhy, supposing y to have the same value at all parts of

the column (which is practically true for any height of liquid

and for a small height of gas). Since the ^-^ ^n

prism is in equilibrium under the forces

shown in the figure, and would still be so

were it to become rigid, we may put ( 36)

.2 (vert, compons.) = and hence obtain

Fp-Fp.- Fhy = 0. . . (2)
J

(In the figure the pressures on the ver-

tical faces ||
to paper have no vertical com-

ponents, and hence are not drawn.) From FIG. 453.

(2) we have

P =P + (3)

(hy, being the weight of a column of homogeneous fluid of unity
cross-section and height A, would be the total pressure on the

base of such a column, if at rest and with no pressure on the

upper base, and hence might be called intensity due to iveigfit.)

Secondly, cutting plane oblique. Fig. 453. Consider free

an infinitely small right triangular prism bed, whose bases are

|| to the. paper, while the three side

faces (rectangles), having areas = dF,
dF^ ,

and dF^ ,
are respectively hori-

zontal, vertical, and oblique ;
let angle

cbd = a. The surface be is a portion
of the plane BC of Fig. 452. Given

p (= intensity of pressure on dF) and

a, required^, the intensity of pressure
on the oblique face bd, of area dJF

1

^

[N. B. The prism is taken very small

in order that the intensity of pressure may be considered con-

stant over any one face
;
and also that the weight of the prism

may be neglected, since it involves the volume (three dimen-



522 MECHANICS OF ENGINEERING.

sions) of the prism, while the total face pressures involve only

two, and is hence a differential of a higher order.]

From 2 (vert, compons.) = we shall have

pdF= ;
but dF'--f- dFt

= cos a
;

which is independent of the angle a.

Hence, the intensity of fluid pressure at a given point is

the same on all imaginary cutting planes containing the

point. This is the most important property of a fluid, and is

true whether the liquid is at rest or has any kind of motion ;

for, in case of rectilinear accelerated motion, e.g., although the

sum of the force-components in the direction of the accelera-

tion does not in general = 0, but mass X ace., still, the

mass of the body in question is = weight -v- <?,
and therefore

the term mass X ace. is a differential of a higher order than

the other terms of the equation, and hence the same result

follows as when there is no motion (or uniform rectilinear

motion).

413. The Intensity of Pressure is Equal at all Points of any
Horizontal Plane in a body of homogeneous fluid at rest. If

we consider a right prism of the fluid in Fig. 451, of small

vertical thickness, its axis lying in any horizontal plane BC,
its bases will be vertical and of equal area dF. The pressures

on its sides, being normal to them, and hence to the axis, have

no components ||
to the axis. The weight of the prism also

has no horizontal component. Hence from 2 (hor. comps.

|| to axis)
= 0, we have,p l

and p3 being the pressure-intensi-

ties at the two bases,

P,dF-p3dF=0; .:p=p., .... (1)

which proves the statement at the head of this article.

It is now plain, from this and the preceding article, that

the pressure-intensity p at any point in a homogeneous fluid

at rest is equal to that at any higher point, plus the weight
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ofa column of the fluid of section unity and of altitude

(A) vertical distance between the points.

(2)

whether they are in the same vertical or not, and whatever be

the shape of the containing
vessel (or pipes), provided the

fluid is continuous between

the two points; for, Fig. 454,

by considering a series of

small prisms, alternately ver-

tical and horizontal, obcde, we
know that

Fia.454.

Pa

hence, finally, by addition we have

(in which h = k
1

A
2).

"

If, therefore, upon a small piston at 0, of area = FQ ,
a force

P be exerted, and an inelastic fluid (liquid) completely fills the

vessel, then, for equilibrium, the force to be exerted upon the pis-

ton at e, viz., Pe ,
is thus computed : For equilibrium of fluid

pe =p -f hy ;
and for equil. of piston <?,pv

= P -hF
; also,

(3)

From (3) we learn that if the pistons are at the same level

(h = 0) the total pressures on their inner faces are directly

proportional to their areas.

If the fluid is gaseous (2) and (3) are practically correct if

h is not > 100 feet (for, gas being compressible, the lower

strata are generally more dense than the upper), but in (3) the

pistons must be fixed, and Pe and PQ refer solely to the in-

terior pressures.
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Again, if A is small or p very great, the term hy may be

omitted altogether in eqs. (2) and (3) (especially with gases,

since for them y (heaviness) is usually small), and we then

have, from (2),

P=P.\ (4)

being the algebraic form of the statement: A lody of fluid
at rest transmits pressure with equal intensity in every direc-

tion and to all of its parts. [Principle of "Equal Transmis-

sion of Pressure."]

414. Moving Pistons. If the fluid in Fig. 454 is inelastic

and the vessel walls rigid, the motion of one piston (o) through
a distance s causes the other to move through a distance se de-

termined by the relation Fs Fese (since the volumes de-

scribed by them must be equal, as liquids are incompressible) ;

but on account of the inertia of the liquid, and friction on the

vessel walls, equations (2) and (3) no longer hold exactly, still

are approximately true if the motion is very slow and the

vessel short, as with the cylinder of a water-pressure engine.

But if the fluid is compressible and elastic (gases and vapors ;

steam, or air) and hence of small density, the effect of inertia

and friction is not appreciable in short wide vessels like the

cylinders of steam- and air-engines, and those of air-compres-
sors

;
and eqs. (2) and (3) still hold, practically, even with high

piston-speeds. For exam pie, in the space AB,
Fig. 455, between the piston and cylinder-head
of a steam-engine (piston moving toward the

right) the intensity of pressure, J9, of the

steam against the moving piston B is prac-
FIG. 455. tically equal to that against the cylinder-head

A at the same instant.

415. An Important Distinction between gases and liquids

(i.e., between elastic and inelastic fluids) consists in this :

A liquid can exert pressure against the walls of the contain-

ing vessel only by its weight, or (when contined on all sides)

by transmitted pressure coming from without (due to piston

pressure, atmospheric pressure, etc.); whereas
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A gas, confined, as it must be, on all sides to prevent dif-

fusion, exerts pressure on the vessel not only by its weight,

but by its elasticity or tendency to expand. If pressure from

without is also applied, the gas is compressed and Exerts a still

greater pressure on the vessel walls.

\ I

416. Component, of Pressure, in a Given Direction, Let

ABCD, whose area = dF, be a small element of
\a surface,

plane or curved, and j9 the intensity of

fluid pressure upon this element, then

the total pressure upon it \$>pdF, and is

of course normal to it. Let A'B'CD be

the projection of the element dF upon c\^ /\\fe--''*
a plane CDM. making an angle a with

the element, and let it be required to

find the value of the component ofpdF
in a direction normal to this last plane (the other component

being understood to be ||
to the same plane). We shall have <

Compon. ofpdF ~\ to CDM= pdFcos a =p(dFiOQ). (1)"'

But dF . cos a = area A'B'CD, the projection of

the plane CDM.

.*. Compon. "1 toplane CDM =p X (project. ofdFon CDM]\

i.e., the component offluidpressure (on an element of a sur-

face) in a given direction (the other component being "I to

the first) isfound ly multiplying the intensity of the pressure

ty the area of the projection of the element upon a plane ~\ to

the given direction, v

It is seen, as an example of this, that if the fluid pressures

on the elements of the inner surface of one hemisphere of a

hollow sphere containing a gas are resolved into components 1

and
||
to the plane of the circular base of the hemisphere, the

sum of the former components simply 7rr*p, where r is the

radius of the sphere, and^> the intensity of the fluid pressure ;

for, from the foregoing, the sum of these components is just

the same as the total pressure would be, having an intensityp>
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on a great circle of the sphere, the area, m?, of this circle being
the sum of the areas of the projections, upon this circle as a

base, of all the elements of the hemispherical surface. (Weight
of fluid neglected.)

A similar statement may be made as to the pressures on

e inner curved surface of a right cylinder.

417. Non-planar Pistons. From the foregoing it follows that

I/ >fehe sum of the components ||
to the piston-rod, of the fluid

i/ pressures upon the piston at A, Fig. 457, is just the same as at

B, if the cylinders are of equal size and the steam, or air, is at

the same tension. For the sum of the projections of all the

elements of the curved surface of A upon a plane ~| to the

piston-rod is always =: nr* = area of section of cylinder-bore.

SP
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^(moms. about 2V) = for the equilibrium of the lever;

whence [ft., lb., sec.]

po x i _ 40 X 3 - 3 X 2 = 0. /. P = 126 Ibs.
*

FIG. 458.

But, denoting atmospheric pressure by pa ,
and that of the

water against the piston by p (per unit area), we may also

write

Solving for p ,
we have, putting pa 14.7 X 144 Ibs. per

eq. ft,

r
1

= 126 -f- (^M + 14.7 X 144 = 25236 Ibs. per sq. ft.

Hence at e the press, per unit area, from 409, and (2), 413, is

pe =pn -f- hy = 25236 + 3 X 62.5 = 25423 Ibs. per sq. ft.

= 175.6 Ibs. per sq. inch or 11.9 atmospheres, and the total

upward pressure at e on base of plunger is

n^pe
=

7t(*-y x 25423 = 31194 Ibs,

or almost 16 tons (of 2000 Ibs. each). The co repressive force

upon the block or bale, C, = P less the weight of the plunger
and total atmos. pressure on a circle of 15 in. diameter.
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419. The Dividing Surface of Two Fluids (which do not mix) in

Contact, and at Rest, is a Horizontal Plane. For, Fig. 459, sup-

posing any two points e and O of this sur-

face to be at different levels (the pressure

at being _> ,
that at epe ,

and the heavi-

nesses of the two fluids yl
and y^ respec-

tively), we would have, from a considera-

tion of the two elementary prisms eb and

bO (vertical and horizontal), the relation

.

FIG. 459.-

while from the prisms ec and cO, the relation

These equations are conflicting, hence the aoove supposition

is absurd. Therefore the proposition is true.

For stable equilibrium, evidently, the heavier fluid must oc-

cupy the lowest position in the vessel, and if there are several

fluids (which do not mix), they will arrange
themselves vertically, in the order of their den-

sities, the heaviest at the bottom, Fig. 460. On
account of the property called diffusion the par-

ticles of two gases placed in contact soon inter-

mingle and form a uniform mixture. This fact

gives strong support to the " Kinetic Theory of

Gases" ( 408).
FIG. 460.

420. Free Surface of a Liquid at Rest. The surface (of a

liquid) not in contact with the walls of the containing vessel

is called a free surface, and is necessarily

horizontal (from 419) when the liquid is at

rest. Fig. 461. (A gas, from its tendency
to indefinite expansion, is incapable of hav-

ing a free surface.) This is true even if the

space above the liquid is vacuous, for if the

surface were inclined or curved, points in the

body of the liquid and in the same horizon-

tal plane would have different heights (or
"
heads") of liquid

FIG. 461.



TWO LIQUIDS IN BENT TUBE. 529

between them and the surface, producing different intensities

of pressure in the plane, which is contrary to 413.

When large bodies of liquid like the ocean are considered,

gravity can no longer be regarded as acting in parallel lines
;

consequently the free surface of the liquid is curved, being ~|

to the direction of (apparent) gravity at all points. For ordi-

nary engineering purposes (except in Geodesy) the free surface

of water at rest is a horizontal plane.

421. Two Liquids (which do not mix) at Rest in a Bent Tube

open at Both Ends to the Air, Fig. 460
;
water and mercury, for

instance. Let their heavinesses be Yl

and YI respectively. The pressure at e

may be written ( 413) either

or

according as we refer it to the water

column or the mercury column and

their respective free surfaces where the

pressure JPO, =^oa
= pa atmos. press.

e is the surface of contact of the two liquids. Hence we have

i.e., the heights of thefree surfaces of the two liquids above the

surface of contact are inversely proportional to their respec-

tive heavinesses.

EXAMPLE. If the pressure at e = 2 atmospheres ( 396) we
shall have from (1) (inch-lb.-sec. system of units)

h^ =pe pa = 2x 14.7 14.7 14.7 Ibs. per sq. inch.

.-. A2 must = 14.7 -r- [848.7 + 1728] = 30 inches

(since, for mercury, yz
= 848.7 Ibs. per cub. ft.). Hence,

from (3),

KY* 30 X [848.7 -*- 1728]
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i.e., for equilibrium, and thatpe may = 2 atmospheres, h
t
and

Aa (of mercury and water) must be 30 in. and 34 feet respec-

tively.

422. City Water-pipes. If h = vertical distance of a point

B of a water-pipe below the free surface of reservoir, and the

water be at rest, the pressure on the inner surface of the pipe

at B (per unit of area) is

p =p + hy ;
and here j? =pa = atmos. press.

EXAMPLE. If h = 200 ft. (using the inch, lb., and second)

p = 14.7 + [200 X 12] [62.5 + 1728] = 101.5 Ibs. per sq. in.

The term hy, alone, = 86.8 Ibs. per sq. inch, is spoken of as the

hydrostatic pressure due to 200 feet height, or *\Head," of

water. (See Trautwine's Pocket Book for a table of hydro-

static pressures for various depths.)

If, however, the water \&flowing through the pipe, the pres-

sure against the interior wall becomes less (a problem of Hy-

drodynamics to be treated subsequently), while if that motion

is suddenly checked, the pressure becomes momentarily much

greater than the hydrostatic. This shock is called "water-

ram" and "
water-hammer," and may be as great as 200 to 300

Ibs. per sq. inch.

423. Barometers and Manometers for Fluid Pressure. If a

tube, closed at one end, is filled with water, and the other ex-

tremity is temporarily stopped and afterwards

opened under water, the closed end being then

a (vertical) height = h above the surface of

the water, it is required to find the intensity,

p ,
of fluid pressure at the top of the tube, sup-

posing it to remain filled with water. Fig.
463. At E inside the tube the pressure is

14.7 Ibs. per sq. inch, the same as that outside

at the same level
( 413) ; hence, from pE =p
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EXAMPLE. Let h = 10 feet (with inch-lb.-sec. system) ;
then

p = 14.7 120 X [62.5 -j- 1728] = 10.4 Ibs. per sq. inch,

or about of an atmosphere. If now we inquire the value

of h to makep = zero, we putpE hy = and obtain h =
408 inches, = 34 ft., which is called the height of the water-

barometer. Hence, Fig. 463$, ordinary atmospheric pressure

will not sustain a column of water higher than 34 feet. If

mercury is used instead of water the height supported by one

atmosphere is

I = 14.7 -=-
[848.7 -f- 1728] = 30 inches,

= 76 centims. (about), and the tube is of more manageable

proportions than with water, aside from the ad-

vantage that no vapor of mercury forms above

the liquid at ordinary temperatures [In fact, the

water-barometer height b = 34 feet has only a

theoretical existence since at ordinary tempera-
tures (40 to 80 Fahr.) vapor of water would

form above the column and depress it by from

0.30 to 1.09 ft.]. Such an apparatus is called a

Barometer
',
and is used not only for measuring

the varying tension of the atmosphere (from 14.5

to 15 Ibs. per sq. inch, according to the weather and height
above sea-level), but also that of any body of gas. Thus, Fig.

464, the gas in D is put in communication with

the space above the mercury in the cistern at

(7; and we have p hy, where y = heav. of

mercury, and JP is the pressure on the liquid in

the cistern. For delicate measurements an at-

tached thermometer is also used, as the heavi-

ness Y varies slightly with the temperature.
If the vertical distance CD is small, the ten-

sion in C is considered the same as in D.

For gas-tensions greater than one atmosphere,
the tube may be left open at the top, forming an open ma-

FIG. 463a.

FIG. 464.
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nometer, Fig. 465. In this case, the tension of the gas above

the mercury in the cistern is

(i)

FIG. 465.

in which ~b is the height of mercury (about 30

in.) to which the tension of the atmosphere above

the mercury column is equivalent.

EXAMPLE. If h 51 inches, Fig. 465, we
have (ft., lb., sec.)

p = [4.25 ft. + 2.5 ft.] 848.7 = 5728 Ibs. per sq. foot

= 39.7 Ibs. per sq. inch = 2.7 atmospheres.

Anotherform of the open manometer consists of a U tube,

Fig. 464, the atmosphere having access to one branch, the gas

to be examined, to the other, while the

mercury lies in the curve. As before, we
have

(2)

tnwherepa = atmos. tension, and b as above.

The tension of a gas is sometimes spoken
of as measured by so many inches of mer-

cury. For example, a tension of 22.05 FIG. 466.

Ibs. .per sq. inch (1J atmos.) is measured by 45 inches of mer-

cury -in a vacuum manometer (i.e., a common barometer),

Fig. 464. "With the open manometer this tension (1 atmos.)

would be indicated by 15 inches of actual mercury, Figs. 465

and 466. An ordinary steam-gauge indicates the 'excess of

tension over one atmosphere ;
thus " 40 Ibs. of steam" implies

a tension of 40+ 14.7 = 54.7 Ibs. per sq. in.

The Bourdon steam-gauge in common use consists of a

curved elastic metal tube of flattened or elliptical section

(with the long axis ~] to the plane of the tube), and has one

end fixed. The movement of the other end, which is free and
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closed, by proper mechanical connection gives motion to the

pointer of a dial. This movement is caused by any change of

tension in the steam or gas admitted, through the fixed end, toO * O
the interior of the tube. As the tension increases the ellip-

tical section becomes less flat, i.e., more nearly circular, caus-

ing the two ends of the tube to separate more, widely, i.e., the

free end moves away from the fixed end
;
and vice versa.

Such gauges, however, are not always reliable. They are

graduated by comparison with mercury manometers; and

should be tested from time to time in the same way.

424. Tension of Illuminating Gas. This is often spoken of as

measured by inches of water (from 1 to 3 inches usually).

Strictly it should be stated that this

water-height measures the excess of

its tension over that of the atmos-

phere. Thus, in Fig. 466, water

being used instead of mercury, h =
say 2 inches, while b = 408 inches.

This difference of tension may be

largely affected by a change in the

barometer due to the weather/or by
a difference in altitude, as the follow-

ing example will illustrate :

EXAMPLE. Supposing the gas at rest, and the tension at the

gasometer A, Fig. 467, to be "two inches of water," required
the water-column h" (in open tube) that the gas will support
in the pipe at B, 120 feet (vertically) above the gasometer.
Let the temperature be freezing (nearly), and the outside air at

a tension of 14.7 Ibs. per sq. inch
;
the heaviness of the gas at

this temperature being 0.036 Ibs. per cubic foot. For the

small difference of 120 ft. we may treat both the atmosphere
and the gas as liquids, that is, of constant density throughout
the vertical column, and therefore apply the principles of

413
;
with the following result :

The tension of the outside air at JS
y supposed to be at the

same temperature as at A, will sustain a water-column less

than the 408 inches at A by an amount corresponding to the

FIG. 467.
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120 feet of air between, of the heaviness .0807 Ibs. per cub.

ft. 120 feet of air weighing .0807 Ibs. per cub. ft. will balance

0.154 ft. of water weighing 62.5 Ibs. per cubic ft., i.e., 1.85

inches of water. Now the tension of the gas at B is also less

than its tension at J., but the difference is not so great as with

the outside air, for the 120 ft. of gas is lighter than the 120 ft.

of air. Since 120 ft. of gas weighing 0.036 Ibs. per cubic ft.

will balance 0.0691 ft., or 0.83 inches, of water, therefore the

difference between the tensions of the two fluids at B is greater
than at A by (1.85 0.83 =

) 1.02. inches; or, at B the total

difference is 2.00 + 1.02 = 3.02 inches.v

Hence if a small aperture is made in the pipe at B the gas
will flow out with greater velocity than at A. At Ithaca,

!N. Y., where the University buildings are 400 ft. above the

gas-works, this phenomenon is very marked.

"When the difference of level is great the decrease of tension

as we proceed upward in the atmosphere, even with constant

temperature, does not follow the simple law of 413; see

477.

For velocity of flow of gases through orifices, see 548, etc.

425. Safety-valves. Fig. 468. Kequired the proper weight
G to be hung at the extremity of the horizontal lever ABY

with fulcrum at B, that the flat

disk-valve E shall not be forced

upward by the steam pressure, p' ,

until the latter reaches a given
value p. Let the weight of

the arm be 6r, ,
its centre of grav-

ity being at
7,

a distance = o

from B
;

the other horizontal distances are marked in the

figure.
1

Suppose the valve on the point of rising ; then the forces

acting on the lever are the fulcrum-reaction at B, the weights
G and G

l ,
and the two fluid-pressures on the disk, viz. : Fpa

(atmospheric) downward, and Fp (steam) upward. Hence,
from ^(moms. B)

=
0,

Gb + G,c + Fpaa - Fpa = 0. ... (1)
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Solving, we have

(2)

EXAMPLE. With a = 2 inches, = 2 feet, c = 1 foot

G
l
= 4 Ibs.,j9

= 6 atmos., and diam. of disk = 1 inch; with

the foot and pound,

Xm X 144 - 1 X 14.7 X 144] -4

.-. G = 2.81 Ibs.

[Notice the cancelling of the 144; for F(p p^) is pounds,

being one dimension of force, if the pound is selected as the

unit of force, whether the inch or foot is used in both fac-

tors.] Hence when the steam pressure has risen to 6 atmos.

(= 88.2 Ibs. per square inch) (corresponding to 73.5 Ibs. persq.
in. by steam-gauge) the valve will open if G = 2.81 Ibs., or be

on the point of opening.

426. Proper Thickness of Thin Hollow Cylinders (i.e,, Pipes
and Tubes) to Resist Bursting by Fluid Pressure.

CASE I. /Stresses in the cross-section due to End Pressure;

Fig. 469. Let AB be the circular cap clos-

ing the end of a cylindrical tube containing
fluid at a tension = p. Let r = internal

radius of the tube or pipe. Then considering
the cap free, neglecting its weight, we have

three sets of
||

forces in equilibrium (see

II in figure), viz.: the iuternal fluid pres-
sure = 7tr*p-, the external fluid pressure
= nr*pa ;

while the total stress (tensile) on
the small ring, whose area now exposed is

2nrt (nearly), is = <

^nrtp l ,
where t is the thickness of the pipe,

and j^ the tensile stress per unit area induced by the end-pres-
sures (fluid).
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For equilibrium, therefore, we may put ^(hor. comps.) = ;

i
= 0;

..... (1)
_ r(p -pa)

Pi ^

(Strictly, the two circular areas sustaining the fluid pressures

are different in area, but to consider them equal occasions but

a small error.)

Eq. (1) also gives the tension in the central section of a thin

hollow sphere, under bursting pressure.

CASE II. Stresses in the longitudinal section ofpipe, due to

radialfluidpressures.* Consider free the half (semi-circular)

of any length I of the pipe, be-

tween two cross-sections. Take an

axis X (as in Fig. 470) "| to the

longitudinal section which has been

made. Let pz
denote the tensile

stress (per unit area) produced in

the narrow rectangles exposed at A
and B (those in the half-ring edges,

having no X components, are not

drawn in the figure). On the in-

ternal curved surface the fluid pres-

sure is considered of equal intensity
=

^> at all points (practically true even with liquids, if 2r is

small compared with the head of water producing p). The
fluid pressure on any dF or elementary area of the internal

curved surface is = pdF. Its X component (see 416) is

obtained by multiplying^? by the projection of dF on the ver-

tical plane ABC, and since p is the same for all the dF'& of

the curved surface, the sum of all the X components of the in-

ternal fluid pressures must = p multiplied by the area of rect-

angle ABCD, = %rlp ; and similarly theX components of the

FIG. 470.

*
Analytically this problem is identical with that of the smooth cord on

a smooth cylinder, 169, and is seen to give the same result.
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v

external atmos. pressures = %rlpa (nearly). The tensile stresses

( ||
to X) are equal to 2%3 ;

hence for equilibrium, ^2X

gives

3 %rlp+ 2rlpa = ;

This tensile stress, called hoop tension,p^, opposing rupture by

longitudinal tearing, is seen to be double the tensile stress^

induced, under the same circumstances, on the annular cross'

section in Case I. Hence eq. (2), and not eq. (1), should be

used to determine a safe value for the thickness of metal, ,
or

any other one unknown quantity involved in the equation.

For safety against rupture, we must put pz T'
',

a safe

tensile stress per unit area for the material of the pipe or tube

(see 195 and 203) ;

(For a thin hollow sphere, t may be computed from eq. (1) ;

that is, need be only half as great as with the cylinder, other

things being equal.)

EXAMPLE. A pipe of twenty inches internal diameter is to

contain water at rest under a head of 340 feet
; required the

proper thickness, if of cast-iron.

340 feet of water measures 10 atmospheres, so that the in

ternal fluid pressure is 11 atmospheres ;
but the external pres-

surepa being one atmos., we must write (inch, lb., sec.)

(ppa)
= 10 X 14.Y = 147.0 Ibs. per sq. in., and r = 10 in.,

while ( 203) we may put T' = J of 9000 = 4500 Ibs. per sq.

in.
;
whence

t =
,

= 0.326 inches.
4500
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But to insure safety in handling pipes and imperviousness to

the .water, a somewhat greater thickness is adopted in practice

than given by the above theory.

Thus, Weisbach recommends (as proved experimentally also)

for

Pipes of sheet iron, t = [0.00172 rA + 0.12"

"0.00476 rA + 0.34T

U00296 rA + 0.16
=

"0.01014 rA + 0.21

"0.00484 rA + 0.16
=

u ..

cast t =
copper t =

" " lead t =
I " " zinc t =

inches
;

in which t = thickness in inches, r = radius in inches, and A
= excess of internal over external fluid pressure (i.e., p pa)

expressed in atmospheres.

For instance, for the example just given, we should have

(cast-iron)

t .00476 X 10 X 10+ 0.34 = 0.816 inches.

If the pipe is subject to " water-ram" ( 422) the strength
should be much greater. To provide against

"
water-ram,"

Mr. J. T. Fanning, on p. 453 of his "
Hydraulic and "Water-

supply Engineering," advises adding 230 feet to the static

head in computing the thickness of cast-iron pipes.

For thick hollow cylinders see Rankine's Applied Mechan-

ics, p. 290, and Cotterill's Applied Mechanics, p. 403.

427. Collapsing of Tubes under Fluid Pressure. (Cylindrical

boiler-flues, for example.) If the external exceeds the internal

fluid pressure, and the thickness of metal is small compared
with the diameter, the slightest deformation of the tube or

pipe gives the external pressure greater capability to produce
a further change of form, and hence possibly a final collapse ;

just as with long columns
( 303) a slight bending gives great

advantage to the terminal forces. Hence the theory of 426

is inapplicable. According to Sir Wm. Fairbairn's experi-

ments (1858) a thin wrought-iron cylindrical (circular) tube

will not collapse until the excess of external over internal

pressure is
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j?(in Ibs. per sq. in.)
= 9672000

1~.
. . (1) . . (not homog.)

(t, I, and d must all be expressed in the same linear unit.)

Here t = thickness of the wall of the tube, d its diameter, and

Z its length ;
the ends being understood to be so supported aa

to preclude a local collapse.

EXAMPLE. With I = 10 ft. = 120 inches, d = 4 in., and t =
J$ inch, we have

p = 9672000
P-j^-

-5- (120 X 4)1 = 201.5 Ibs. per sq. inch.

For safety, % of this, viz. 40 Ibs. per sq. inch, should not be

exceeded
; e.g., with 14.7 Ibs. internal and 54.7 Ibs. external.
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CHAPTEE II.

HYDROSTATICS (Continued) PRESSURE OF LIQUIDS IN TANKt
AND RESERVOIRS.

428. Body of Liquid in Motion, but in Relative Equilibrium.

By relative equilibrium it is meant that the particles are not

changing their relative positions, i.e., are not moving among
each other. On account of this relative equilibrium the fol-

lowing problems are placed in the present chapter, instead of

under the head of Hydrodynamics, where they strictly belong.
As relative equilibrium is an essential property of rigid bodies,

we may apply the equations of motion of rigid bodies to bodies

of liquid in relative equilibrium.

CASE I. All the particles moving in parallel right lines

with equal velocities ; at any given instant (i.e., a motion of

translation.) If the common velocity is constant we have a

uniform translation, and all the forces acting on any one par-

ticle are balanced, as if it were not moving at all (according to

Newton's Laws, 54); hence the relations of internal pressure,

free surface, etc., are the same as if the liquid were at rest.

Thus, Fig. 471, if the liquid in the moving tank is at rest rel-

v atively to the tank at a given instant, with

its free surface horizontal, and the motion

of the tank be one of translation with a uni-

form velocity, the liquid will remain in this

condition of relative rest, as the motion
FIQ. 471.

proceeds.
But if the velocity of the tank is accelerated with a constant

acceleration =p (this symbol must not be confused with p
for pressure), the free surface will begin to oscillate, and finally

come to relative equilibrium at some angle a with the horizon-

tal, which is thus found, when the motion is horizontal. See

Fig. 472, in which the position and value of of are the same,

whether the motion is uniformly accelerated from left to right
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FIG. 472.

or uniformly retarded from right to left. Let be the lowest

point of the free surface, and Ob a _v n *.? -

small prism of the liquid with its

axis horizontal, and of length = %
;

nb is a vertical prism of length = *~T~

3, and extending from the extremity
of Ob to the free surface. The

pressure at both and n is pa =
atmos. pres. Let the area of cross-

section of both prisms be = dF.

Now since Ob is being accelerated in direction ^(horizont.),
the difference between the forces on its two ends, i.e., its ^Xy

must = its mass X accel, ( 109).

.\pbdF padF= [xdF. y-?-g]p. . . . (1)'

(y = heaviness of liquid ; pb = press, at b) ;
and since the ver-

tical prism nb has no vertical acceleration, the -^(vert. com-

pons.) for it must = 0.

s.pbdF-padF-zdF.y=Q (2)

From (1) and (2),

ffiy
~

. p frf\

V "T
Hence On is a right line, and therefore

tan a. or , =^
g

(4)

[Another, and perhaps more direct, method of deriving this

result is to consider free a small particle of the liquid lying in.

the surface. The forces acting on this particle are two : the

first its weight = dG ; and the second the resultant action of

its immediate neighbor-particles. Now this latter force (point-

ing obliquely upward) must be normal to the free surface of

the liquid, and therefore must make the unknown angle a with

the vertical. Since the particle has at this instant a rectilinear

accelerated motion in a horizontal direction, the resultant of the

two forces mentioned must be horizontal and have a value =
mass X acceleration. That is, the diagonal formed on the two
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forces must be horizontal and have the value mentioned, =
(dG -r- g)p ;

while from the nature of the figure (let the stu-

dent make the diagram for himself) it must also = dG tan a.

-, ,dG tan a = .p ; or, tan a = .

g 9
Q. E. D.I '

If the translation were vertical, and the acceleration upward
[i.e., if the vessel had a uniformly accelerated upward motion

or a uniformly retarded downward motion], the free surface

would be horizontal, but the pressure at a depth = h below the

surface instead ofp =pa -\-hy would be obtained as follows :

Considering free a small vertical prism of height = h with

upper base in the free surface, and putting ^(vert. compons.)
= mass X acceleration, we have

dF.p - dF.pa
- hdF. y =

MF' y
. p;

(5)

If the acceleration is downward (not the velocity necessarily)

we makep negative in (5). If the vessel falls freely,p = g
and .'.p =pa ,

in all parts of the liquid.

Query : Supposep downward and > g.

CASE II. Uniform Rotation about a VerticalAxis. If the

narrow vessel in Fig. 473, open at top and containing a liquid,

be kept rotating at a uniform angu-
lar velocity GO (see 110) about a

vertical axis Z, the liquid after some

oscillations will be brought (by fric-

tion) to relative equilibrium (rotat-

ing about Z, as if rigid). Required
the form of the free surface (evi-

dently a surface of revolution) at

each point of which we know

P=Pa-
Let be the intersection of the

axis Zwith the surface, and n any point in the surface
;

1) being

Fio. 473.
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a point vertically under n and in same horizontal plane as 0.

Every point of the small right prism nb (of altitude z and

sectional area dF) is describing a horizontal circle about 2, and

has therefore no vertiacl acceleration. Hence for this prism,

free, we have 2Z = 0; i.e.,

dF.pb
- dF.pa

- zdF. y = ..... (1)

Now the horizontal right prism Ob (call the direction ... 5,

X) is rotating uniformly about a vertical axis through one ex-

tremity, as if it were a rigid body. Hence the forces acting

on it must be equivalent to a single horizontal force, (*?Mp,

(1220*) coinciding in direction with X. [M= mass of prism
= its weight

-=-
<?,

and p = distance of its centre of gravity

from
;
here p = \x = % length of prism]. Hence the

xdF
of the forces acting on the prism Ob must = ca

a

tS

But the forces acting on the two ends of this prism are their

own JT components, while the lateral pressures and the weights
of its particles have no X compons. ;

JT? JTT . /nx
.:dF.pa -dF.pb =---L. . . (2)

From (1) and (2) we have

where v = cox = linear velocity of the point n in its circular

path.

[As in Case I, we may obtain the same result by considering
a single surface-particle free, and would derive for the resultant

force acting upon it the value dG tan a in a horizontal direc-

tion and intersecting the axis of rotation. But here a is dif-

ferent for particles at different distances from the axis, tan a
dz

being the of the curve On. As the particle is moving uni-

formly in a circle the resultant force must point toward the
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centre of the circle, i.e., horizontally, and have a value -,
g x

where x is the radius of the circle [ 74, eq. (5)] ;

7 /~i , w \ji \ uz/*/ 1 CtZ GO
/. dCr tan a = - J

: or tan a, = --
,
=

;

^ x dx g'

fo; or,s = -.|

2

. . Q.E.D.

Hence any vertical section of the free surface through the

axis of rotation Z is a parabola, with its axis vertical and vertex

at
; i.e., the free surface is a paraboloid of revolution, with

Z as its axis. Since cox is the linear velocity v of the point
b in its circular path, z = "height due to velocity" v [ 52],

EXAMPLE. If the vessel in Fig. 473 makes 100 revol. per

minute, required the ordinate z at a horizontal distance of x =
4 inches from the axis (ft.-lb.-sec. system). The angular veloc-

ity co = [2?r 100 -f- 60] radians per sec. [1ST. B. A radian =
the angular space of which 3.1415926 . . . make a half-revol.,

or angle of 180]. With x = -J ft. and g 32.2,

'-2i ---r3J^A = ft. = 2

and the pressure at b (Fig. 471) is (now use inch, lb., sec.)

f9 K

J X - - 14.781 Ibs. per sq. in.

Prof. Mendelejeff of Russia has recently utilized the fact an-

nounced as the result of this problem, for forming perfectly

true paraboloidal surfaces of plaster of Paris, to receive by

galvanic process a deposit of metal, and thus produce specula

of exact figure for reflecting telescopes. The vessel contain-

ing the liquid plaster is kept rotating about a vertical axis

at the proper uniform speed, and the plaster assumes the de-

sired shape before solidifying. A fusible alloy, melted, may
also be placed in the vessel, instead of liquid plaster.
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REMARK. If the vessel is quite full and closed on top, ex-

except at 0' where it communicates

by a stationary pipe with a reser-

voir, Fig. 474, the free surface

cannot be formed, but the pres-

sure at any point in the water is

just the same during uniform rota-

tion, as if a free surface were formed

with vertex at
;

See figure for A and 2. (In subse-

quent paragraphs of this chapter
the liquid will be at rest.)

FIG. 474.

428a. Pressure on the Bottom of a Vessel containing Liquid at

Best. If the bottom of the vessel is plane and horizontal, the

intensity of pressure upon it is the same at all points, being

FIG. 475. FIG. 476.

p=pa -{-hy (Figs. 475 and 476), and the pressures on the ele-

ments of the surface form a set of parallel (vertical) forces.

This is true even if the side of the vessel overhangs, Fig. 476,

the resultant fluid pressure on the bottom in both cases being

= Fp-Fpa = Fhy. (1)

(Atmospheric pressure is supposed to act under the bottom.)
It is further evident that if the bottom is a rigid homogeneous

plate and has no support at its edges, it may be supported at a
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single point (Fig. 477), which in this case (horizontal plate)
is its centre of gravity. This point is called

the Centre of Pressure, or the point of appli-
cation of the resultant of all the fluid pressures

acting on the plate. The present case is such

that these pressures reduce to a single result-

ant, but this is not always practicable.

EXAMPLE. In Fig. 476 (cylindrical vessel

FIG. 477.
containing water), given h = 20 ft., h^ =

15 ft., r
l
= 2 ft., ?\ = 4 ft., required the pressure on the bot-

tom, the vertical tension in the cylindrical wall CA, and the

hoop tension ( 426) at C. (Ft., lb., sec.) Press, on bottom =
Fhy = nrfhy = ?rl6 X 20 X 62.5 = 62857 Ibs.

;
while the

upward pull on CA =

(TTT*
-

Ttr^h.y = ar(16
-

4)15 X 62.5 = 35357 Ibs.

If the vertical wall is t = -fa inch thick at C this tension will

be borne by a ring-shaped cross-section of area = %nr (nearly)
= 2;r48 X TV = 30.17 sq. inches, giving (35357 -f- 30.17) =
about 1200 Ibs. per sq. inch tensile stress (vertical).

The hoop tension at C is horizontal and is

p" = r
t(p pa)

-=- t (see 426), wherep pa X h,y ;

48 X 15 X 12 X (62.5 + 1728)
S.p" = _--: 2 3125 Ibs. per scyin,

TO" ^^*

(using the inch and pound).

429. Centre of Pressure. In subsequent work in this chapter,
since the atmosphere has access both to the free surface of

liquid and to the outside of the vessel walls, and pa would can-

cel out in finding the resultant fluid pressure on any elemen-

tary area dF of those walls, we shall write :

The resultant fluid pressure on any dF of the vessel wall is

normal to its surface and is dP =pdF= zydF, in which z

is the vertical distance of the element below the free surface

of the liquid (i.e., z = the " head of water"). If the surface

pressed on is plane, these elementary pressures form a system
of parallel forces, and may be replaced by a single resultant
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(if the plate is rigid) which will equal their sum, and whose

point of application, called the Centre of Pressure, may be

located by the equations of 22, put into calculus form.

If the surface is curved the elementary pressures form a sys

tern of forces in space, and hence ( 38) cannot in general be

reduced to a single resultant, but to two, the point of applica-

tion of one of which is arbitrary (viz., the arbitrary origin,

38).

Of course, the object of replacing a set of fluid pressures by
a single resultant is for convenience in examining the equi-

librium, or stability, of a rigid body the forces acting on which

include these fluid pressures. As to their effect in distorting

the rigid body, the fluid pressures must be considered in their

true positions (see example in 264), and cannot be replaced

by a resultant.

430. Resultant Liquid Pressure on a Plane Surface forming
1

Part of a Vessel Wall. Co-ordinates of the Centre of Pressure.

Fig. 478. Let AB be a portion (of any shape) of a plane
surface at any angle with the

horizontal, sustaining liquid

pressure. Prolong the plane

of AB till it intersects the free

surface of the liquid. Take

this intersection as an axis Y,
O being any point on Y. The

axis X, "1 to Yj lies in the

given plane. Let a = angle

between the plane and the free

surface. Then x and y are the

co-ordinates of any elementary FIG. 478.

area dF of the surface, referred to Xand Y. z = the " head

of water," below the free surface, of any dF. The pressures

are parallel.

The normal pressure on any dF = zydF\ hence the sum of

these, = their resultant,

(1)
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in which 2 = the u mean 2," i.e., the z of the centre of gravity

G of the plane figure AB, and F= total area of AB \Fz

fzdF, from eq. (4), 23]. y = heaviness of liquid (see 409).

That is, the total liquidpressure on a plane figure is equal
to tlie weight of an imaginary prism of the liquid having a

base = area of the given figure and an altitude = vertical

depth of the centre of gravity of the figure below the surface

of the liquid. For example, if the figure is a rectangle with

one base (length &) in the surface, and lying in a vertical

plane,

P = lh. \hy =

Evidently, if the altitude be increased, P varies as its square.

From (1) it is evident that the total pressure does not de-

pend on the horizontal extent of the water in the reservoir.

Now let xc and yc denote the co-ordinates, in plane YOX,
of the centre of pressure, C, orpoint of application of the re-

sultant pressure P, and apply the principle that the sum of

the moments of each of several parallel forces, about an axis 1

to them, is equal to the moment of their resultant about the

same axis [ 22]. First taking OY as an axis of moments,
and then OX, we have

Pxc
=

f*(zydF}x,
and Pyc

-=
f*(zydF}y.

. (2)

But P = Fzy Fx(v& a)y, and the z of any dF= % sin a.

Hence eqs. (2) become (after cancelling the constant, y sin a)__ T _-- - _
,
ana yc . . (6 )

Fx

in which IY = the " mom. of inertia" of the plane figure re-

ferred to Y (see 85). [K B. The centre of pressure as

thus found is identical with the centre of oscillation ( 117)

and the centre of percussion [ 113] of a thin homogeneous

plate, referred to axes JTand Y, Y being the axie of suspen-

sion.]

Evidently, if the plane figure is vertical a = 90, x z for
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all dF's, and x = z. It is also noteworthy that the position

of the centre of pressure is independent of a.

NOTE. Since the pressures on the equal dF's lying in any
horizontal strip of the plane figure form a set of equal parallel

forces equally spaced along the strip, and are therefore equiva-

lent to their sum applied in the middle of the strip, it follows

that for rectangles and triangles with horizontal bases, the

centre of pressure must lie on the straight line on which the

middles of all horizontal strips are situated.

431. Centre of Pressure of Rectangles and Triangles with Bases

Horizontal. Since all the dF's of one horizontal strip have

the same x, we may take the area of the strip K

for dF in the summation fx*dF. Hence for

the rectangle AB, Fig 479, we have from eq.

-KC=
b^dx

^2. A'- A*.
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Also, since the centre of pressure must lie on the line AB join-

ing the vertex to the middle of base (see note, 430), we easily

determine its position.

Evidently for h
l
= 0, i.e., when the vertex is in the surface,

Jj> r / xc
= |Aa . Similarly, for a triangle with

_v*i base horizontal and vertex down, Fig. 481,

we find that

(3)

If the base is in the surface, A
1
= and

FIG. 48i. (3) reduces to xc
=

|7i2
.

It is to be noticed that in the case of the triangle the value

of xc is the same whatever be its shape, so long as h
l
and A

2

remain unchanged and the base is horizontal. If the base is

not horizontal, we may easily, by one horizontal line, divide

the triangle into two triangles whose bases are horizontal and

whose combined areas make up the area of the first. The re-

sultant pressure on each of the component triangles is easily

found by the foregoing principles, as also its point of applica-

tion. The resultant of the two parallel forces so determined

will act at some point on the line joining the centres of pres-

sures of the component triangles, this point being easily found

by the method of moments, while the amount of this final re-

sultant pressure is the sum of its two components, since the

latter are parallel. An instance of this procedure will be

given in Example 3 of 433. Similarly, the rectangle of Fig.
479 may be distorted into an oblique parallelogram with hori-

zontal bases without affecting the value of xc ,
nor the amount

of resultant pressure, so long as h
l
and A

2
remain unchanged.

432. Centre of Pressure of Circle. Fig. 482. It will lie on

the vertical diameter. Let r = radius. From eq. (3),

Fx F

(See eq. (4), 88, and also 91.)

F:o. 482. x
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FIG. 483.

433. Examples. It will be noticed that although the total

pressure on the plane figure depends for its value upon the

head, a, of the centre of gravity, its point of application is al-

ways lower than the centre of gravity.

EXAMPLE 1. If 6 ft. of a vertical sluice-gate, 4 ft. wide,

Fig. 483, is below the water-surface, the total

water pressure against it is (ft, lb., sec.
; eq.

(1),430)

P = Fzy = 6 X 4 X 3 X 62.5 = 4500 Ibs.,

and (so far as the pressures on the vertical

posts on which the gate slides are concerned)
is equivalent to a single horizontal force of

that value applied at a distance xc
= f of

6 = 4 ft. below the surface
( 431).

EXAMPLE 2. To (begin to) lift the gate in Fig. 483, the

gate itself weighing 200 Ibs., and the coefficient of friction

between the gate and posts being/"= 0.40 (abstract numb.) (see

156), we must employ an upward vertical force at least

= P' = 200 + 0.40 X 4500 = 2000 Ibs.

EXAMPLE 3. It is required to find the resultant hydro-
static pressure on the trapezoid in Fig. 483& with the dimen-

sions there given and its bases horizontal
;
also its point of ap-

plication, i.e., the centre of pressure of

r~;
the plane figure in the position there

A B c D shown. From symmetry the C. of P. will

be in the middle vertical of the figure,

as also that of the rectangle B CFE, and

that of the two triangles ABE and

CDF taken together (conceived to be

shifted horizontally so that CF and

BE coincide on the middle vertical,

thus forming a single triangle of 5 ft. base, and having the

same total pressure and C. of P. as the two actual triangles

taken together). Let P
l
= the total pressure, and a?/ refer to

the C, of P., for the rectangle ;
P9 and a?/, for the 5 ft. tri-

EF- 5'

FIG. 4S3a.
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angle; h
t
= 4 ft. and A

2
= 10 ft. being the same for both.

Then from eq. (1), 430, we have (with the ft., lb., and sec.)

P
l

= 30 X 1y = and f
= i X 6 X 5 X 6y = 90r;

while from eqs. (1) and (3) of 431 we have also (respectively)

7.438 feet;
2 1000 64

3 100 - 16

2 936

3'~84~

-V, 9* ~
2"

80 100 228

8+10 2X18
= 6.333 feet.

The total pressure on the trapezoid, being the resultant of

P
l
and P

2 ,
has an amount = P

1 + P2 (since they are parallel),

and has a lever-arm scc about the axis OY to be found by the

principle of moments, as follows :

PV+ />/ _ (210 X 7.438 + 90 X 6.33)x
\ + P, ~(210 + "^-- = T*. =

The total hydrostatic pressure on the trapezoid is (for fresh

water)
P = P, +P2

= [210+ 90] 62.5 = 18T50 Ibs.

EXAMPLE 4. Required the horizontal force P', Fig. 484, to

be applied at N (with a leverage of a' = 30 inches about the

fulcrum M) necessary to (begin

to) lift the circular disk AB of

radius r = 10 in., covering an

opening of equal size. NMAB
is a single rigid lever weighing
#/ = 210 Ibs. The centre of

gravity, G, of disk, being a ver-

tical distance ~z = O'G 40

inches from the surface, is 50

inches (viz., the sum of OM=
k = 20" and MG = 30") from

axis Y
; i.e., x = 50 inches.

The centre of gravity of the

whole lever is a horizontal distance J
7

,
= 12 inches, from M.

FIG. 484.
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For impending lifting we must have, for equilibrium of the

lever,

-k); . . . . (1)

where P = total water pressure on circular disk, and xc =
OC. From eq. (1), 430, (using inch, lb., and sec.,)

P = fzy = 7tr*zy
= arlOO X 40 X -ss" = 454.6 Ibs.

1728

From 432, xc
= OC = x +~ = 50 + 1

. = 50.5 in.
4 2; 4:

= ~ [210 X 12 + 454.6 x 30.5] = 546 Ibs.
30

434. Example of Flood-gate. Fig. 485. Supposing the rigid

double gate AD, 8 ft. in total width, to

have four hinges ;
two at 0, and two at/

1 ft. from top and bottom of water chan- "^=j-'=i-='1 ,

nel
; required the pressures upon them, FT

taking dimensions from the figure (ft., \

lb., sec.).

Wat. press. = P Fzy
= 72 X 4J- X 62.5 = 20250

pounds, and its point of application (cent, of press.) is a dis-

tance xc
= f of 9' 6' from O ( 431). Considering the

whole gate free and taking moments about 0, we shall have

(press, at f)xT = 20250 x 5
;

.-. press, at /= 14464 Ibs.

(half on each hinge at/), and

/. press, at e = P press, at/= 5875 Ibs.

(half coming on eacli hinge).
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If the two gates do not form a single rigid body, and hence

are not in the same plane when closed, a wedge-like or toggle-

joint action is induced, producing much greater thrusts against
the hinges, and each of these thrusts is not ~| to the plane of

the corresponding gate. Such a case forms a good exercise

for the student.

435. Stability of a Vertical Rectangular Wall against Water

Pressure on One Side. Fig. 486. All dimensions are shown in

the figure, except I, which is the length
of wall ~] to paper. Supposing the wall

to be a single rigid block, its weight G'

Vh'ly' (y' being its heaviness
( 7),

and I its length). Given the water

depth A, required the proper width

b
f

for stability. For proper security :

First, the resultant of G' and the

Fl - 4g6. water-pressure P must fall within the

base BD (or, which amounts to the same thing), the moment
of G about D, the outer toe of the wall, must be numerically

greater than that of P
;
and

Secondly, P must be less than the sliding friction/Vjr' (see

156) on the base BD.

Thirdly, the maximum pressure per unit of area on the

base must not exceed a safe value (compare 348).

NowJ3 = Fzy = Til y = h*ly (y heaviness of water) ;

2 2

and xc -fA.

Hence for stability against tipping about D,

P^h must oe < G'^b' ; i.e., \tfly < ^b'*h'ly' ;
. (1)

while, as to sliding on the base,

i.e., $h*ly <fb'h'ly
f
. . . (2)

As for values of the coefficient of friction,/", on the base of

wall, Mr. Fanning quotes the following among others, from

various authorities :
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u a

a u

a u

a a

For point-dressed granite on dry clay, f 0.51
" " " moist clay, 0.33
" " "

gravel, 0.58
" " " smooth concrete, 0.62
" " u similar granite, O.TO

. For dressed hard limestone on like limestone, 0.38
" 4> " "

brickwork, 0.60

For common bricks on common bricks, 0.64

To satisfactorily investigate the third condition requires the

detail of the next paragraph.

436, Parallelopipedical Reservoir Walls. More Detailed and

Exact Solution. If (1) in the last paragraph were an exact

equality, instead of an inequality,

the resultant R of P and Gf

would pass through the corner

J9, tipping would be impending,
and the pressure per unit area at

D would be theoretically infinite.

To avoid this we wish the wall

to be wide enough that the re-

sultant 7?, Fig. 487, may cut

BD in such a point, E' ,
as to cause the pressure per unit area,

pm ,
at D to have a definite safe value (for the pressure pm at

D, or quite near _Z>, will evidently be greater than elsewhere

on BD
; i.e., it is the maximum pressure to be found on BD).

This may be done by the principles of 346 and 362.

First, assume that R cuts BD outside of the 'middle third;

i.e., that

VE !

,
= nb', > #'(<" n > |) ;

FIG. 487.

where n denotes the ratio of the distance of E' from the mid-

dle of the base to the whole width, >',
of base. Then the pres-

sure (per unit area) on small equal elements of the base BD
(see 346) may be considered to vary as the ordinates of a

triangle MND (the vertex M being within the distance BD),
and E~D will = \MD ; i.e.,
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The mean pressure per unit area, on

and hence the maximum pressure (viz., at D\ being double

the mean, is

pm = iff' -=-
[8J7(i

-
n)] ;

. . . . (0)

and ifpm is to equal ^'(see 201 and 203), a safe value for the

crushing resistance, per unit area, of the material, we shall

have

&7(i -n)C
f = \G' = ty'k'ly',

i 2 hy' Vs itfan (1)

To find &', knowing w,, we put the ^(moms.) of the G r and P
at E, about E',=- zero (for the only other forces acting on

the wall are the pressures of the foundation against it, along
MD

;
and since the resultant of these latter passes through E\

the sum of their moments about E' is already zero) ; i.e.,

QW -pk = o or nbnh'l=

Having obtained 5
r

,
we must also ascertain if P is <fG-', the

friction
; i.e., ifP is < fb'h'ly'. If not, &' must be still further

increased. (Or, graphically, the resultant of G f and P must

not make an angle > 0, the angle of friction, with the ver-

tical.

If n, computed from (1), should prove to be < ,
our first

assumption is wrong, and we therefore assume n < ^, and pro-
ceed thus :

Secondly, n being < (see 346 and 362), we have a
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trapezoid of pressures, instead of a triangle, on BD. Let the

pressure per unit area at D be pm (the maximum on base).

The whole base now receives pressure, the mean pressure (per
unit area) being = G-' -5- [5'Z] ;

and therefore, from 362,
Case I, we have

;
..... (Oa)

and since, here, G' = Vh'ly'',
we may write

pm = (Qn + 1)Ay.

For safety as to crushing resistance we put

6(n + l)hy = C'; whence n =
| ["^-7

- ll . . (la)

Having found n from eq. (la), we determine the proper
width of base I' from eq. (2), in case the assumption n < -J-

is

verified.

EXAMPLE. In Fig. 486, let h f = 12 ft., h = 10 ft., while

the masonry weighs (y
1

=) 150 Ibs. per cub. ft. Supposing
it desirable to bring no greater compressive stress than 100 Ibs.

per sq. inch (= 14400 Ibs. per sq. ft.) on the cement of the

joints, we put C' 14400, using the ft.-lb.-sec. system of units.

Assuming n > -J-,
we use eq. (1), and obtain

_ 1 _ 2 12 X 150
_ _5_~

2
"

3
'

14:400
" ~

12'

which is > -J- ;
hence the assumption is confirmed, also the

propriety of using eq. (1) rather than (la).

Passing to eq. (2), we have

But, as regards frictional stability, we find that, wiibf= 0.30,,

a low value, and V = 3.7ft. (ft., lb., sec.),
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P_ h*ly __100 X 62.5_ = 15.
f

~fbWl?
""
2X0.3 X 3.7 X 12 X 150

~

which is greater than unity, showing the friction to be insuf-

ficient to prevent sliding (with /=0.30); a greater width

must therefore be chosen, for frictional stability.

If we make n =
-J-, i.e., make R cut the base at the outer

edge of middle third ( 362), we have, from eq. (2),

/ = iox
62 '5X]
X 12 X 150

and the pressure at D is now of course well within the safe

limit
;
while as regards friction we find

P -r-fG' = 0.92, < unity,

and therefore the wall is safe in this respect also.

With a width of base = 3.7 feet first obtained, the portion

MD, Fig. 487, of the base which receives pressure [according
to Navier's theory ( 346)] would be only 0.92 feet in length,

or about one sixth of the base, the portion BM tending to

open, and perhaps actually suffering tension, if capable (i.e., if

cemented to a rock foundation), in which case these tensions

should properly be taken into account, as with beams ( 295),

thus modifying the results.

It has been considered safe by some designers of high

masonry dams, to neglect these possible tensile resistances, as

has just been done in deriving ~b' =. 3.7 feet
;
but others, in

view of the more or less uncertain and speculative character of

Navier's theory, when applied to the very wide bases of such

structures, prefer, in using the theory (as the best available),

to keep the resultant pressure within the middle third at the

base (and also at all horizontal beds above the base), and thus

avoid the chances of tensile stresses.

This latter plan is supported by Messrs. Church and Fteley,

as engineers of the proposed Quaker Bridge Dam in connec-

tion with the New Croton Aqueduct of New York City, in

iheir report of 1887. See 438.
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437. Wall of Trapezoidal Profile. Water-face Vertical-

Economy of material is favored by using a trapezoidal profile,,

Fig. 488. With this form the

stability may be investigated in

a corresponding manner. The

portion of wall above each

horizontal bed should be ex-

amined similarly. The weight
G' acts through the centre of

gravity of the whole mass.

Detail. Let Fig. 488 show

the vertical cross-section of a

trapezoidal wall, with notation

for dimensions as indicated
;
the

portion considered having a length = I, ~] to the paper. Let

y = heaviness of water, y' that of the masonry (assumed homo-

geneous), with n as in 436.

Fora triangle ofpressure, MD, on the base, i.e., withn > -J,

or resultant falling outside the middle third (neglecting pos-

sibility of tensile stresses on left of M\ if the intensity of

pressure j9TO at D is to C' ( 203), we put, as in 436,

FIG. 488.

-
n\ C' = .e. =

whence

For a trapezoid ofpressure, i.e. with n <
-J-,

or the resultant

of P and G' falling within the middle third, we have, as be-

fore ( 362, Case I),

~
whence

n = - i
n =
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From the geometry of the figure, having joined the middles

of the two bases, we have

{ 26, Prob. 6), and, by similar triangles, OT : KV ::gO:h
r

,

whence

The lines of action of
' and P meet at E, and their result-

ant cuts the base in some point E'. The sum of their moments
about E' should be zero, i.e., P . h G f

. 'OE'\ that is, (see

eq. (a) above, and eq. (1), 430,)

i.e., cancelling,

+ V') (2)'

Hence we have two equations for finding two unknowns
viz.: (l)'and (2)' when n > -J- ;

and (la)
7 and (2)

r when /i < -J-.

For dams of small height (less than 40 ft., say), if we im-

mediately put n = -J-,
thus restricting the resultant pressure to

the edge of middle third, and solve (2)
7

for J
7

,
1)" being as-

sumed of some proper value for a coping, foot-walk, or road-

way, while h' may be taken enough greater than h to provide

against the greatest height of waves, from 2.5 to 6 ft., the

value of pm at D will probably be < C'. In any case, for a

value of n =, or <, we put pm for <7'in equation (la)
7

and

solve forpm ,
to determine if it is no greater than C' .

Mr. Fanning recommends the following values for C' (in Us.
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per sq.foof) with coursed rubble masonry laid in strong mor-

tar:

For Limestone. Sandstone. Granite. Brick.

O = 50,000 50,000 60,000 35,000

of )

in >
ft.

f

152 132 154 120
Ibs. per cub."

As tofrictional resistance, P must be <fG'\ i.e.,

If the base is cemented to a rock foundation with good
material and workmanship throughout, Messrs. Church and

Fteley (see 436) consider that the wall may be treated as

amply safe against sliding on the base (or any horizontal bed),

provided the other two conditions of safety are already satis-

fied.

438, Triangular Wall with Vertical Water-face. Making
l>" = in the preceding article, the trapezoid becomes a right

triangle, and the equations reduce to the following :

and

l-}forn<k ... (la/
7

(pm not to exceed C' in any case) ; while to determine the

breadth of base, b', after n is computed [or assumed, for small

height of wall], we have from eq. (2)
r

, (for n < ,)

(2a)"

Also, for frictional stability,

tftly must be < \fh
l

l
t

ly
f..... (3)"



562 MECHANICS OF ENGINEERING.

439. High Masonry Dams. Although the principle of the

arch may be utilized for vertical stone dikes of small height

(30 to 50 feet) and small span, for

greater heights and spans the

formula for hoop tension, 426 (or

rather, here,
"
hoop compression"),

on the vertical radial joints of the

horizontal arch rings, Fig. 489, calls

for so great a radial thickness of

joint in the lower courses, that

straight dikes (or "gravity dams")
are usually built instead, even

where firm rock abutments are available laterally.

For example, at a depth of 100 feet, where the hydrostatic

pressure is hy = 100 X 62.5 = 6250 Ibs. per sq. ft., if we as-

sume for the voussoirs a (radial, horizontal) thickness = 4 ft.,

with a (horizontal) radius of curvature r = 100 feet, we shall

find a compression between their vertical radial faces of
(ft.,

lb., sec.)

100 X6250

or 1085 Ibs. per sq. inch ;
far too great for safety, even if there

were no danger of collapse, the dike being short. If now the

thickness is increased, in order to distribute the pressure over

a greater surface, we are met by the fact that the formula for
"
hoop compression" is no longer strictly applicable, the law of

distribution of pressure becoming very uncertain; and even

supposing a uniform distribution over the joint, the thickness

demanded for proper safety against crushing is greater than

for a straight dam (" gravity dam"} at a very moderate depth
below the water surface, unless the radius of curvature of arch

can be made small. But the smaller the radius the more does

the darn encroach on the storage capacity of the reservoir, while

in no case, of course, can it be made smaller than half the span.

Another point is, that as masonry is not destitute of elas-

ticity, the longer the span the more unlikely is it that the

parts of the arch will "
close up" properly, and develop the
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abutment reactions when the water is first admitted to the

reservoir
;
which should occur if it is to act as an arch instead

of bj gravity resistance.

For these reasons the engineers of the proposed Quaker

Bridge Dam reported unfavorably to the plan of a curved de-

sign for that structure, and recommended that a straight dam

be built. See reference in 436. According to their designs

this dam is to be 258 feet in height (which exceeds by about 90

feet the height of any dam previously built), about 1400 feet

in length at the top, and 216 feet in width at the lowest

point of base, joining the bed-rock.

More recently, however (1888), a board of experts, specially

appointed for the purpose, having examined a number of dif-

ferent plans, have reported favorably to the adoption of a

jcurved form for the dam, as offering greater resistance under

extraordinary circumstances (impact of ice-floes, earthquakes,

etc.), on account of its arched form (though resisting by

gravity action under usual conditions) than a straight struc-

ture
;
and also as more pleasing in appearance.

Fig. 490 shows the profile of a straight high masonry darn

as designed at the present day. Assuming a width l>" = from

6 to 22 feet at the top, and a sufficient h" (see figure) to ex-

ceed the maximum height of waves, the up-stream outline

ACM is made nearly vertical and perhaps somewhat concave,

while the down-stream profile BDN, by computation or

graphical trial, or both, is so formed that when the reservoir is

full the resultant R, of the weight
G of the portion AECD of ma-

sonry above each horizontal bed, as 1
^j

(7Z>, and the hydrostatic pressureP
on the corresponding up-stream face

AC, shall cut the bed CD in such a

point E' as not to cause too great

compression pm at the outer edge D
(not over 85 Ibs. per sq. inch accord-

ing to M. Krantz in " Keservoir FIG. 490.

Walls"), pm being computed by one of the equations [(0) and

(Oa) of 1 436]
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For E' outside the middle third ) 26r
\

<Y)
.

(]_)""
and neglecting tension ) . 3.CD.l(%)n

For E' inside middle third 1 . .pm = ^n + 1^
; (la)'"

> CD. I

where I = length of wall 1 to paper, usually taken = one foot,

or one inch, according to the unit of length adopted ;
for n,

see 436.

Nor, when the reservoir is empty and the water pressure

lacking, must the weight G resting on each bed, as CD, cut

the bed in a point E" so near the edge C as to produce exces-

sive pressure there (computed as above). The figure shows

the general form of profile resulting from these conditions.

The masonry should be of such a character, by irregular bond-

ing in every direction, as to make the wall if possible a mono-

lith. For more detail see next paragraph.

440. Quaker Bridge Dam (on the New Croton Aqueduct).

Attempts, by strict analysis, to determine the equation of the

curve BN, AM being assumed straight, so as to bring the

point E' at the outer edge of the middle third of its joint, or

to make the pressure at D constant below a definite joint, have

failed, up to the present time; but approximate and tentative

methods are in use which serve all practical purposes. As an

illustration the method set forth in the report on the Quaker

Bridge Dam will be briefly outlined
;
this method confines E'

to the middle third.

The width AB I" is taken 22' for a roadway, and h" =
7 ft. The profile is made a vertical rectangle from A down
to a depth of 33 ft. below the water surface (reservoirfull).

Combining the weight of this rectangle of masonry with the

corresponding water pressure (for a length of wall = one foot),

we find the resultant pressure conies a little within the outer

edge of the middle third of the base of the rectangle, while

pm is of course small.

The rectangular form of profile might be continued below

this horizontal joint, as far as complying with the middle
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third requirement, and the limitation of pressure-intensity, are

concerned
; but, not to make the widening of the joints too

abrupt in a lower position where it would be absolutely re-

quired, a beginning is made at the joint just mentioned by

forming a trapezoid between it and a joint 11 ft. farther down,

making the lower base of the latter of some trial width, which

can be altered when the results to which it gives rise become

evident. Having computed the weight of this trapezoid and

constructed its line of action through the centre of gravity of

the trapezoid, the value of the resultant G of this weight and

that of the rectangle is found (by principle of moments or by
an equilibrium polygon) in amount and position, and combined

with the water pressure of the corresponding 44 ft. of water to

form the force _Z?, whose point of intersection with the new

joint or bed (lower base of trapezoid) is noted and the value of

pm computed. These should both be somewhat nearer their

limits than in the preceding joint. If not, a different width

should be chosen, and changed again, if necessary, until satis-

factory. Similarly, another layer, 11 ft. in height and of

trapezoidal form, is added below and treated in the same way ;

and so on until in the joint at a depth of 66 ft. from the

water surface a width is found where the point E' is very
close upon its limiting position, whilepm is quite a little under

the limit set for the upper joints of the dam, 8 tons per square
foot. For the next three 11 ft. trapezoidal layers the chief

governing element is the middle-third requirement, E' being

kept quite close to the limit, while the increase of pm to 7.95

tons per sq. ft. is unobjectionable; also, we begin to move
the left-hand edge to the left of the vertical, so that when the

reservoir is empty the point E" shall not be too near the up-
stream edge C.

Down to a depth of about 200 ft. the value ofpm is allowed

to increase to 10.48 tons per sq. ft., while the position of E r

gradually retreats from the edge of its limit. Beyond 200 ft.

depth, to prevent a rapid increase of width and consequent
extreme flattening of the down-stream curve, pm is allowed

to mount rapidly to 16.63 tons per sq. ft. (=231 Ibs. per

sq. in.), which value it reaches at the point ^Tof the base of
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the dam, which has a width = 216 ft., and is 258 feet below

the water surface when the reservoir is full.

The heaviness of the masonry is taken as y
f = 156.25 Ibs.

per cubic foot, just f of y = 62.5 Ibs. per cub. foot, the heavi-

ness taken for water. *,

When the reservoir is empty, we have the weight G of the

superincumbent mass resting on any bed CD, and applied

through the point E" ;
the pressure per unit area at C can

then be computed by eq. (lfl)'", 439, n being the quotient of

(faCD CE") -r- Cl) for this purpose. In the present case

we find E" to be within middle third at all joints, and the

pressures at C to be under the limit.

For further details the reader is referred to the report itself

(reprinted in Engineering News, January, 1888, p. 20). The

graphic results were checked by computation, Wegmann's
method, applied to each trapezoid in turn.

441. Earthwork Dam, of Trapezoidal Section. Fig. 491. It is

. & ^ required to find the conditions of sta-

bility of the straight earthwork dam

ABDE, whose length I, L to

paper, as regards sliding horizontally

on the plane AE\ i.e., its frictional

stability. With the dimensions of

the figure, y and y' being the heavi-

FIG. 49i. nesses of the water and earth respec-

tively (see 7), we have

Weight of dam = G, = vol. X / = lh$ + ^(a, + c)]y'. (1)

Eesultant water press.
= P = Fzy = OA X I X %hy. . (2)

Horiz. comp. of P = II= P sin a

= [OA sin a]\Uy - %tfly. .* . . (3)

From (3) it is evident that the horizontal component of P is

just the same, viz., = hi . %hy, as the water pressure would be

on a vertical rectangle equal to the vertical projection of OA
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and with its centre of gravity at the same depth (JA). Com-

pare 416. Also,

Vert. comp. of P = V= P cos a

= [OA cos a]%kly =*%akly, ... (4)

and is the same as the water pressure on the horizontal projec-

tion of OA if placed at a depth = O'G = %h.

For stability against sliding, the horizontal component of P
must be less than the friction due to the total vertical pressure

on the plane AE, viz., G 1 + F; hence if/"is the coefficient of

friction on AE, we must haveH<f \_Gl -f- "F], i.e. (see above),

However, if the water leak under the dam on the surface AE,
so as to exert an upward hydrostatic pressure

(to make an extreme supposition,) the friction will be only

=/[#,+ v- v'i

and (5) will be replaced by

//</[, + F--F']...... (6)

Experiment shows (Weisbach) that with y=0.33 computa-
tions made from (6) (treated as a bare equality) give satisfactory

results.

EXAMPLE. (Ft., lb., sec.) With /= 0.33, h = 20 ft., h, =
22 ft., a = 24 ft., a, 26.4 ft., and c = 30 ft., we have, mak-

ing (6) an equality, with y' %y,

.2)2+J (24x20) -(26.4+ b+ 30)20];

whence, solving for J, the width of top, b = 10.3 feet.
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M Oi

442. Liquid Pressure on Both Sides of a Gate or Rigid Plate.

The sluice-gate AB, for example, Fig. 492, receives a pressure,

PI ,
from the " head-water" M, and

an opposing pressure Pa from the

"tail-water" N. Since these two

-^^rTr^z^y- horizontal forces are not in the same
; line, though parallel, their resultant

ft, which = P1
P

2 ,
acts horizon-

="
tally in the same plane, but at a dis-

FIG. 493. tance below (?,
= u, which we may

find by placing the moment of It about O
l , equal to the alge-

braic sum of those of P
l
and P

9 about .

(1)

(7, and (73 are the respective centres of pressure of the surfaces

O^B and OJ3, and u = distance of E from
1 , while A = dif-

ference of level between head and tail waters. If the surfaces

O^ and OJE> are both rectangular,

EXAMPLE. Let the dimensions be as in Fig. 493, both sur-

A faces under pressure being rect-

..,. te. angular and 8 ft. wide. Then (ft.,

or
( 430)., sec.) R = P

l

= [12X8X6 8X8X

= 20000 Ibs. =10 tons;

while from ex. (2)

Q!

FIG. 493.

= [12X8X6X8-8X8X 4(9i)]62.5

20000

That is, u = 6.93 feet, which locates C. Hence the pressure
of the gate upon its hinges or other support is the same (aside
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from its own weight), provided it is rigid, as if the single
horizontal force R 10 tons acted at the point (7, 2.93 ft. be-

low the level of the tail-water surface.

443. If the plate, or gate, is entirely below the tail-water

surface, the resultant pressure is applied in the centre of gravity
of the plate. Proof as follows : Conceive the surface to be

divided into a great number of small equal areas, each = dF\
then, the head of water of any dF being = x

t
on the head-

water side, and = a?
2
on the tail-water side, the resultant pres-

sure on the dF is ydF(xl
a?

a) =yhdJ t̂
in which h is the

difference of level between head and tail water. That is, the

resultant pressures on the equal dF's are equal, and hence

form a system of equal parallel forces distributed over the plate

in the same manner as the weights of the corresponding por-

tions of the plate ;
therefore their single resultant acts through

the centre of gravity of the plate ; Q. E. D. This single re-

sultant =fyhdF= yhfdF= Fhy.
EXAMPLE. Fig. 494. The resultant pressure on a circular

disk ab of radius = 8 inches, (in

the vertical partition OK,} which

has its centre of gravity 3 ft.

below the tail-water surface, with

h = 2 ft, is (ft., lb., sec.)

= Fhy = 7tr*hy

= * 8' x

and is applied through the centre
=j*/_

of gravity of the circle. Eoi- 'ffiw////////////w^^^

dently R is the same for any

depth below the tail-water surface, so long as h 2 ft.

the student find a graphic proof of this statement.]

[Let

444. Liquid Pressure on Curved Surfaces. If the rigid surface

is curved, the pressures on the individual dJFy

&, or elements of

area, do not form a system of parallel forces, and the single re-

sultant (if one is obtainable) is not equal to their sum. In
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FIG. 495.

general, the system is not equivalent to a single force, but can

always be reduced to two forces ( 38) the point of application

of one of which is arbitrary (the arbitrary origin of 38) and

its amount = V(2X)* + (2 Y)* + (2Z)\
A single Example will be given ;

that of a thin rigid shell

having the shape of the curved surface of a right cone, Fig.

495, its altitude being h and radius of base = r. It has no

bottom, is placed on a smooth horizontal table, vertex up, and

is filled with water through a small hole in the apex 0, which is

left open (to admit atmospheric

pressure). What load, besides its

own wejght O-'
',
must be placed

upon it to prevent the water from

lifting it and escaping under the

edge A ? The pressure on each

dF of the inner curved surface is

is normal to the surface.
.

Its vertical cornpon. is zydffSLn ot,

and horizontal compon. = zydF cos a. The dF's have all

the same #, but different z's (or heads of water). The lifting

tendency of the water on the thin shell is due to the vertical

components forming a system of
|| forces, while the horizon-

tal components, radiating symmetrically from the axis of the

cone, neutralize each other. Hence the resultant lifting force

is

V= J(vert. comps.) = y sin afzdF-=. y sin a Fz
; (1)

whereF= total area of curved surface, and z = the "head of

water" of its centre of gravity. Eq. (1) may also be written

thus:

V=yF~z; . . . '. . . . (2)

in which Fb = 7^ sin a = area of the circular base = area of

the projection of the curved surface upon a plane ~| to the

vertical, i.e., upon a horizontal plane. Hence we may write

(8)

since z = %h, being the z of the centre of gravity of the curved
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surface and not that of the base, y heaviness of water. If

G-' weight of the shell and is < "F, an additional load of

V G' will be needed to prevent the lifting. If the shell has

a bottom of weight = G" ^ forming a base for the cone and

rigidly attached to it, we find that the vertical forces acting on

the whole rigid body, base and all, are: V upward; G' and

G" downward; and the liquid pressure on the base, viz.,

V = nr*hy ( 428&) also downward. Hence the resultant

vertical force to be counteracted by the table is downward, and

= G' + G" + V -
F, which = G' + G" + Ixr'hr 5 W

i.e., the total weight of the rigid vessel and the water in it, as

we know, of course, in advance.



CHAPTEK III.

EARTH PRESSURE AND RETAINING WALLS.

. This chapter was outlined and written mainly by
Prof. C. L. Crandall, and is here incorporated with his permis-
sion. The theory of earth pressure is arranged from Bau-

meister.]

445. Angle of Repose. Granular materials, like dry sand,.

loose earth, soil, gravel, pease, shot, etc., on account of the

friction between the component grains, occupy an intermediate

position between liquids and large rigid bodies. When heaped

up, the side of the mass cannot be made to stand at an inclina-

tion with the horizontal greater than a definite angle called the

angle of natural slope, or angle of repose, different for each

material
;
so that if the side of the mass is to be retained per-

manently at some greater angle, a Retaining Wall (or
" Revet-

ment Wall" in military parlance) becomes necessary to sup-

port it. If the material is somewhat moist it may be made to

stand alone at an inclination greater than that of the natural

slope, on account of the cohesion thus produced, but only as

long as the degree of moisture remains
;
while if much water

is present, it assumes the consistency of mud and may require
a much thicker wall, if it is to be supported laterally, than if

dry.

In dealing with earth to be supported by a retaining wall,

we consider the former to have lost any original cohesion

which may have existed among its particles, or that it will

eventually lose it through the action of the weather
;
and hence

treat it as a granular material.

A few approximate values of the angle of natural slope are

572
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given below, being taken from Fanning, p. 345
;
see reference

on p. 538 of this work.

MATERIAL.
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2d. A downward sliding of the mass ABC' along the back

face AB of the wall. That is, the resultant pressure P' of

the wall against the mass BA C' at this instant makes an angle
y
I \ EARTH SURFACE . Ĥ

IA

S (= complement of angle of friction between the earth and

wall) with the plane AB and on the upper side. The weight
of the wedge of earth BAC' will be called &', and we desire

to find the pressure P' against the wall.

LetBAC be a wedge^(of the earth-mass), in which AC makes

any angle with Af, and suppose it. to be on the point of

moving down and forcing out the wall; thus encountering
friction both on the plane A C and the plane AB. Then the

forces acting on it are three, acting in known directions
; viz. :

G, its own weight, vertical
; N^ the resultant pressure of the

earth below it, making an angle fi with AC on upper side
;

and P, the resultant pressure of the wall, at angle 6 with AB
(see Fig. 496 for positions of JV and P). If now we express
the force P in terras of and other quantities, and find that

value 0', of 0, for which P is a maximum, we thereby deter-

mine the "wedge of maximum thrust" ABC'A
;
while this

maximum thrust, P', is the force which the wall must be de-

signed to withstand. [If the wall is overturned, the earth

will sink with it until this part of its surface gradually as-

sumes the natural slope.]

Let Gr = weight of prism of base ABC, and altitude = unity

~1 to paper; then G = y X area ABC, where y = " heavi-

ness" = wgt. per cub. unit, of earth. Now P, G, and N
balance; therefore, in triangle abc, if ab and ac are drawn

j|
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and G and .^respectively, be is = and
|| to P; and from

Trigonometry we have

p _ ^in[/?-0] m

'

in which tf stands for a + 0, for brevity, being the angle
whichP makes with the vertical. N makes an angle = ft

with the vertical.

The value, 0', of 0, which makes P a maximum is found

by placing = 0. From eq. (1), remembering that G is a

function of 0, and that f3 and $ are constants, we have

sin(/3+
S-<f>)j_-sin(/3-(!>)

- G cos (|3
-

</>)~|
-fsin(|3 -

<f>) cos (j3+ 8 - <)

dtfT

~
sln2 [j8 -f 6 -

<f>]

For P to be a maximum we must put

numerator of above (#}

To find a geometrical equivalent of
,
denote AC by Z,

and draw AE, making an angle = d<p with AC. Now the

area ACI'= 37 X %(fE=(L + dL)^Ld(f> = %Z?d(j) . . .

(neglecting infinitesimal of 2d order). Now

dG = y X area J.CI X unity ;
/. -=-- = i/Z

2

;
/. (a) becomes

sin(/3 + d 0)^Z
3

sin(/? 0) sin (/?+ (J 0)^cos(^ 0)

+ # sin (/? 0) cos (/?+ d 0) = ;

i.e., G =
sin (ft 0) sin (ft+ 0)_

sin (/? -f d 0) cos (/? 0) cos (yff+ d 0) sin (/? 0)

- ./



576 MECHANICS OF ENGINEERING.

when P is a maximum
;
and hence, calling G-' and 0' and Z'

the values of 6r, 0, and Z, for max. P, we have

in (ft
-

, (2)

and therefore from (1) P max. itself is

447. Geometric Interpretation and Construction. If in Fig.

496 we draw CF^ making angle d with AD, C being any

point on the ground surface JBD, we have

sn

Drop a perpendicular FH from F to A C, and we shall have

= CF. sin (ft+ S - <f\ = L .
(fi

From this it follows that the weight of prism of base ACF
and unit height

When AC (as varies) assumes the position and value AC
',

bounding the prism of maximum thrust, Fig. 497, Z becomes

= Zr

,
and = r

;
and eq. (4) gives the weight of the prism

AC F r
. This weight is seen to be equal to that of the prism

(or wedge) of maximum thrust ABC', by comparing eq. (4)

with eq. (2); that is, AC' Usects the area ABC'F', and

hence may be determined by fixing such a point <7', on the

upper profile BD, as to make the triangular area AC'F'

equal to the sectional area of the wedge BC'A ;
C'F' being

drawn at an angle = d with AD.
This holds for any form of ground surface BD, or any
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values of the constants /?, a, or 6. C f

is best found graphic-

ally by trial, in dealing with

an irregular profile BD.

Having found AC ',
=

Z', P' can be found from

(3), or graphically as fol-

lows : (Fig. 497) With F'
as a centre and radius =
C'F') describe an arc cut-

ting AD in J', and join

C'J'. The weight of prism
FIG. 497.

with base CltL'F' and unit height will = P'. For that prism
has a weight

;
but

sin

but

and

sind

'.#' = Z' sin 08
-

.-. weight of prism C'J'F= yL'

[See eq. (3).]

sin o

448. Point of Application of the Resultant Earth Thrust.

This thrust (called P f

throughout this chapter except in the

present paragraph) is now known in magnitude and direction,

but not in position ; i.e., we must still determine its line of

action, as follows :

Divide AB into a number of equal parts, ab, ~bc, cd, etc.;

see Fig. 498. Treat ab as a small retaining wall, and find the

magnitude P' of the thrust against it by 447
;
treat ac simi-

larly, thus finding the thrust, P" ^ against it
;
then ad, ae, etc.,

the thrusts against them being found to be P"
', P^, etc.

;
and

so on. Now the pressure

P' on ab is applied nearly at middle of ob,

P" - P' "
Ic,
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and so on. Erect perpendiculars at tlie middle points of cib,

Ic, cd, etc., equal respectively to P\
P" - P f

,
P'" - P", etc., and join the

ends of the perpendiculars. The per-

pendicular through the centre of gravity

of the area so formed (Fig. 498) will

give, on AB, the required point of ap-

plication of the thrust or earth pressure
on AB, and this, with the direction and

FIG. 498.
magnitude already found in 447, will

completely determine the thrust against the wall AB.

449. Special Law of Loading. If the material to be retained

consists of loose stone, masses of masonry, buildings, or even

moving loads, as in the case of a wharf or roadway, each can

be replaced by the same weight of earth or other material

which will render the bank homogeneous, situated on the same

verticals, and the profile thus reduced can be treated by 447
and 448.

Should the solid mass extend below the plane of rupture,

AC', and the plane of natural slope, it will become a retaining
wall for Ihe material beyond, if strong enough to act as such

(limiting the profile ABCD of Fig. 496 to the front of the

mass, or to the front and line of rupture for maximum thrust

above it, if it does not reach the surface); if not strong enough,
or if it does not reach below the plane of natural slope, it&

presence is better ignored, probably, except that the increased

weight must be considered.

The spandrel wall of an arch may present two of these

special cases
; i.e., the profile may be enlarged to include a

moving load, while it may be limited at the back by the other

spandrel.

If the earth profile starts at the front edge of the top of

wall, instead of from the back as at B, Fig. 496, eq. (3) would

only apply to the portion behind AB prolonged, leaving the

part on the wall (top) to be treated as a part of the wall to aid

in resisting the thrust.

If the wall is stepped in from the footings, or foundation
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courses, probably the weak section will be just above them
;

if

stepped at intervals up the back of the wall, the surface of separa-

tion between the wall and filling, if it is plane, will probably

pass through the first step and incline forward as much as pos-

sible without cutting the wall.

450. Straight Earth-profile, The general case can be simpli-

fied as follows (the earth-profile BD being straight, at angle
= with vertical, = DET) : Since the triangles'ABC' and

C'AF' are equal, from 447, and AC' is common, therefore

BS=F'H (both being drawn 1 to AC'). Draw AE and

BM ||
to F'C' (i.e., at angle d with AD\ cutting DB, pro-

longed, in E. We have

DE EA , CHE EA
,
and

G'E EA - G'F' BE EA-

But C'F' = BM (since BS = H'F 1

) ;

therefore = ~; i.e., DE . BE= C'E\
C'E BE

which justifies the following construction for locating the de-

sired point C' on BD, and thus finding AC' L' and the

angle <f>'\ Describe a circle on ED as a diameter, and draw
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BX ~l to BD, thus fixing X in the curve. With centre E
describe a circular arc through X, cuttingBD in C', required.

Having AC' (i.e., L'\ 0' is known
; hence from eq. (3) we

obtain the earth thrust or pressure P'\ or, with F 1

as centre

and radius = C'F', describe arc C'J'\ then the triangle C'F'J'
is the base of a prism of unity height whose weight = P' (as

in 447).

Centre of Pressure. Applying the method of 448, Fig.

498, to this case, we find that the successive L' 's are propor-
tional to the depths ab, ac, ad, etc., and that the successive P'B

are proportional [see (3)] to the squares of the depths ;
hence

the area in Fig. 498 must be triangular in this case, and the

point of application of the resultant pressure on AB is one

third of AB from A : just as with liquid pressure.

451. Resistance of Retaining Walls. (Fig. 500.) Knowing
the height of the wall we can find its weight, = G

l ,
for an as-

sumed thickness, and unity width ~| to paper. The resultant

of Cr
1 , acting through the centre of gravity of wall, and P\ the

thrust of the embankment, in its proper
line of action, should cut the base A V
within the middle third and make an

angle with the normal (to the base) less

than the angle of friction.

For the straight wall and straight

earth-profile of Fig. 499 and 450, the

FIG. 500. length Z', = A C
',
can be expressed in

terms of the (vertical) height, A, of wall, thus :

' = AC' = B{n (C
~

g) sin (C
~ a

- .

sin (C )
cos a sin

( )

.-. eq. (3) becomes

P' = lr Jt- Bin(/?-0Qsin*(C-) K
^r

cos
2 a

'

sin d sin
2

(C
- 00 cos

a a

[A representing the large fraction for brevity.]
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This equation will require, for a wall of rectangular section,

that the thickness, d, increase as A, in order that its weight may
increase as A3

(i.e., as P f

) and that its resisting moment may-
increase with the overturning moment.

By this equality of moments is meant that P'a = Gfi ;

where a and b are the respective lever-arms of the two forces

about the front edge of the middle third. (AB is the back of

the wall.) In other words, their resultant will pass through
this point.

The following table is computed on the basis just mentioned,

viz., that the resultant of P' and G- shall pass through the

front edge of the midde third.

The wall is vertical, i.e., a is = 0, and is of rectangular sec-

tion
;
and we further suppose that the heaviness of the earth is

two thirds that of the masonry of the wall
;
d is tne proper

safe thickness to be given to the wall on the basis spoken of, h

being its altitude. Whether the wall is safe against sliding on

its base, and whether a safe compression per unit area is ex-

ceeded on the front edge of the base, are matters for separate

consideration. See Figs. 499 and 500, and the foregoing text,

for the meaning of all symbols employed. The above assump-
tion as to the relative densities of wall and earth is realized if

the wall is of first-quality masonry weighing 150 Ibs. per cubic

foot, supporting earth of 100 Ibs. per cubic foot. Note that

d a+ 8
; i.e., d 8 for this table.

a = 0; i.e., wall is vertical; also density of wall = f that of the earth.
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(since the area of &ABC' = &AC fF f

) 0' must = fyff.

These values, in (5), give

P' = %yh* tan
2

%ft ; i.e., A = tan
2

\ft. . . . (6)

In Case II, since C = 90, a = and 8 = ft, .-. 3 = ft ;

and (5) reduces to

;in
2

(ft (f>'\
. . sin

2

(ft
r

) ,^.

In Case III, C = /? and will be
||

to J.Z>, Z> being at

infinity. See Fig. 501. Through

FIG. SOL

BI1 1 to u4Z>, and BF"
e d with ^LI>. C' is

to be located on BD, so as

tQ make (area of) &ABC' =
(area of

) A AC'f" (according
to 447), the angle C'F'A being
= <$ = a+ Q\ = 0, in this case,

and hence also = ft. Conceive

B and F '

to be joined.

Now 'F' = &ABF" +

But &ABC' = kBF'F" (equal bases and altitudes).

Hence A ABC' cannot = i^AC'F' unless C f
is moved out

to infinity ; and then 0' becomes ytf,
and eq. (5) reduces to

P'= ^ytf sin ft ; i.e., A = sin ft. (8)

[Increasing from zero will decrease the thickness d ; i.e.,

inclining the wall inwards will decrease the required thickness,

but diminish the frictional stability at the base, unless the lat-

ter be "1 to AB. The back of the wall is frequently inclined

outwards, making the section a trapezoid, to increase the fric-

tional stability at the base when necessary, as with timber

walls supporting water.]
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452. Practical Considerations. An examination of the

values of A and d in the table of 451 will show that in sup-

porting quicksand and many kinds of clay which are almost

fluid under the influence of water, it is important to know
what kind of drainage can be secured, for on that will depend
the thickness of the wall. With well compacted material free

from water-bearing strata, an assumed natural slope of If to 1

(i.e., If hor. to 1 vert.) will be safe
;
the actual pressure below

the effect of frost and surface water will be that due to a much

steeper slope on account of cohesion (neglected in this theory).

The thrust from freshly placed material can be reduced by

depositing it in layers sloping back from the wall. If it is not

so placed, however, the natural slope will seldom be flatter

than If to 1 unless reduced by water. In supporting material

which contains water-bearing strata sloping toward the wall

and overlain by strata which are liable to become semi-fluid

and slippery, the thrust may exceed that due to semi-fluid ma-

terial on account of the surcharge. If these strata are under

the wall and cannot be reached by the foundation, or if resist-

ance to sliding cannot be obtained from the material in front

by sheet-piling, no amount of masonry can give security.

Water at the back of the wall will, by freezing, cause the

material to exert an indefinitely great pressure, besides disinte-

grating the wall itself. If there is danger of its accumulation,

drainage should be provided by a layer of loose stone at the

back leading to "weep-holes" through the wall.

A friction-angle at the back of the wall equal to that of the

filling should always be realized by making the back rough by

steps, or projecting stones or bricks. Its effect on the required
thickness is too great to be economically ignored.

The resistance to slipping at the base can be increased, when

necessary, by inclining the foundation inwards; by stepping
or sloping the back of the wall so as to add to its effective

weight or incline the thrust more nearly to the vertical; by

sheet-piling in front of the foundation, thus gaining the resist-

ance offered by the piles to lateral motion
; by deeper founda-

tions, gaining the resistance of the earth in front of the wall.
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The coefficient of friction on the base ranges, according to

Trautwine, from 0.20 to 0.30 on wet clay ;

" .50 to .66 "
dry earth;

" .66 to .75
" sand or gravel ;

" .60 on a dry wooden platform ;
to .75 on a

wet one.

If the wall is partially submerged, the buoyant effort should

be subtracted from G
1 ,

the weight of wall.

453. Eesults of Experience. (Trautwine.) In railroad prac-

tice, a vertical wall of rectangular section, sustaining sand,

gravel, or earth, level with the top [p. 682 of Civ. Eng. Pocket

Book] and loosely deposited, as when dumped from carts, carsr

etc., should have a thickness d, as follows :

If of cut stone, or of first-class large ranged rubble, in mortar. . . . d = . 35&
"

good common scabbled mortar-rubble, or brick d AOh
" well scabbled dry rubble d = .5Qh

Where h includes the total height, or about 3 ft. of foundations.

(a) For the best masonry of its class h may be taken from

the top of the foundation in front.

(5) A mixture of sand or earth, with a large proportion of

round boulders or cobbles, will weigh more than the backing
assumed above

; requiring d to be increased from one eighth to

one sixth part.

(<?)
The wall will be stronger by inclining the back inwards,

especially if of dry masonry, or if the backing is put in place

before the mortar has set.

(d) The back of the wall should be left rough to increase

friction.

(e) Where deep freezing occurs, the back should slope out-

ward for 3 or 4 feet below the top and be left smooth.

(/) When a wall is too thin, it will generally fail by bulging
outward at about one third the height. The failure is usually

gradual and may take years.

(g) Counterforts, or buttresses at the back of the wall, usually

of rectangular section, may be regarded as a waste of ma-

sonry, although considerably used in Europe ;
the bond will
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seldom hold them to the wall. Buttresses in front add to the

strength, but are not common, on account of expense.

(A) Land-ties of iron or wood, tying the wall to anchors im-

bedded below the line of natural slope, are sometimes used to

increase stability.

(i) Walls with curved cross-sections are not recommended.

454. Conclusions of Mr. B. Baker. (" Actual Lateral Pressure

of Earthwork.") Experience has shown that d = 0.25A, with

batter of 1 to 2 inches per foot on face, is sufficient when

backing and foundation are both favorable
;
also that under no

ordinary conditions of surcharge or heavy backing, with solid

foundation, is it necessary for d to be greater than 0.50A.

Mr. Baker's own rule is to make d = 0.33A at the top of

the footings, with a face batter of If inches per foot, in ground
of average character

; and, if any material is taken out to form

a face-panel, three fourths of it is put back in the form of a

pilaster. The object of the batter, and of the panel if used, is

to distribute the pressure better on the foundation. All the

walls of the " District Railway" (London) were designed on

this basis, and there has not been a single instance of settle-

ment, of overturning, or of sliding forward.

455. Experiments with Models. Accounts of experiments
with apparatus on a small scale, with sand, etc., may be found

in vol. LXXI of Proceedings of Institution of Civil Engineers,

London, England (p. 350) ;
also in vol. n of the " Annales des

Ponts et Chaussees" for 1885 (p. 788).



CHAPTEE IY.

HYDROSTATICS (Continued) IMMERSION AND FLOTATION.

456. Rigid Body Immersed in a Liquid. Buoyant Effort. If

any portion of a body of homogeneous liquid at rest be con-

ceived to become rigid without alteration of shape or bulk, it

would evidently still remain at rest
; i.e., its weight, applied at

its centre of gravity, would be balanced by the pressures, on its

bounding surfaces, of the contiguous portions of the liquid ;

hence,

If a rigid body or solid is immersed in a liquid, ~boih ~being

at rest, the resultant action upon it of the surrounding liquid

(or fluid) is a vertical upward force called the "buoyant

effort" equal in amount to the weight of liquid displaced,

and acting through the centre of gravity of the volume (con-

sidered as homogeneous) of displacement (now occupied by the

solid). This point is called the centre of buoyancy, and is

sometimes spoken of as the centre of gravity of the displaced
water. If V = the volume of displacement, and y = heavi-

ness of the liquid, then the

buoyant effort
== V'y (1)

(By
" volume of displacement" is meant, of course, the volume

of liquid actually displaced when the body is immersed.)
If the weight G

1

of the solid is not equal to the buoyant

effort, or if its centre of gravity does not lie in the same verti-

cal as the centre of buoyancy, the two forces form an unbal-

anced system and motion begins. But as a consequence of

this very motion the action of the liquid is modified in a man-

ner dependent on the shape and kind of motion of the body.
586
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Problems in this chapter are restricted to cases of rest, i.e.,

balanced forces.

Suppose G' V'y ; then,

If the centre of gravity lies in the same vertical line as the

centre of buoyancy and underneath the latter, the equilibrium
is stable ; i.e., after a slight angular disturbance the body re-

turns to its original position (after several oscillations) ;
while

if above the latter, the equilibrium is unstable. If they coin-

cide, as when the solid is homogeneous (but not hollow), and

of the same heaviness ( 7) as the liquid, the equilibrium is

indifferent, i.e., possible in any position of the body.
The following is interesting in this connection :

In an account of the new British submarine boat "
JSTautilus,"

a writer in Chambers*8 Journal remarked [1887] : "At each

side of the vessel are four port-holes, into which fit cylinders

two feet in diameter. When these cylinders are projected

outwards, as they can be by suitable gearing, the displacement
of the boat is so much increased that the vessel rises to the

surface; but when the cylinders are withdrawn into their

sockets, it will sink."

As another case in point, large water-tight canvas "air-bags"

have recently been used for raising sunken ships. They are

sunk in a collapsed state, attached by divers to the submerged

vessel, and then inflated with air from pumps above, which of

course largely augments their displacement while adding no

appreciable weight.

457. Examples of Immersion. Fig. 502. At (a) is an ex-

ample of stable equi-

librium, the centre of

buoyancy B being above

the centre of gravity (7,

and the buoyant effort

V'y G' = the weight
of the solid

;
at (a'\ con-

versely, we have un-

stable equilibrium, with

V'y still = G'. At (1) the buoyant effort V'y is > G', and

FIG. 502.]
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to preserve equilibrium the body is attached by a cord to the

bottom of the vessel. The tension in this cord is

%>= V fy-G f

(1)

At (c) V'y is < G\ and the cord must be attached to a

support above, and its tension is

SC =G'- V'y. . ...... v (2)

If in eq. (2) [(<?)
in figure] we call Sc the apparent weight of

the immersed body, and measure it by a spring- or beam-bal-

ance, we may say that

The apparent weight of a solid totally immersed in a liquid

equals its real weight diminished by that of the amount of

liquid displaced / in other words, the loss of weight the

weight of displaced liquid.

EXAMPLE 1. How great a mass (not hollow) of cast-iron can

be supported in water by a wrought-iron cylinder weighing
140 Ibs., if the latter contains a vacuous space and displaces

3 cub. feet of water, both bodies being completely immersed ?

[Ft., lb., sec.]

The buoyant effort on the cylinder is

V'y = 3 X 62.5 = 187.5 Ibs.,

leaving a residue of 47.5 Ibs. upward force to buoy the cast-

iron, whose volume V" is unknown, while its heaviness
( 7)

is y" = 450 Ibs. per cub. foot. The direct buoyant effort of

the water on the cast-iron is V"y [F"X62.5] Ibs.,

and the problem requires that this force + 47.5 Ibs. shall

= V'y" = the weight G" of the cast-iron
;

.-. V" X 62.5 + 47.5 = V" X 450
;

/. V" 0.12 cub. ft., while 0.12 X 450= 54 Ibs. of cast-iron.

Ans.

EXAMPLE 2. Required the volume V, and heaviness y'9

of a homogeneous solid which weighs 6 Ibs. out of water and

4 Ibs. when immersed (apparent weight) (ft., lb., sec.).
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From eq. (2), 4 = 6 - V X 62.5
;

.-. V 0.032 cub., feet
;

.... y
> = (}' + V = 6 -=- 0.032 = 187.5 Ibs. per cub. ft.,

and the ratio of y' to y is 187.5 : 62.5 = 3.0 (abstract num-

ber) ; i.e., the substance of this solid is three times as dense,

or three times as heavy, as water. [The buoyant effort of the

air has been neglected in giving the true weight as 6 Ibs.]

458. Specific Gravity. By specific gravity is meant the ratio

of the heaviness of a given homogeneous substance to that of

a standard homogeneous substance
;
in other words, the ratio

of the weight of a certain volume of the substance to the

weight of an equal volume of the standard substance. Dis-

tilled water at the temperature of maximum density (4 Centi-

grade) under a pressure of 147 Ibs. per sq. inch is sometimes

taken as the standard substance, more frequently, however, at

62 Fahrenheit (16.6 Centigrade). Water, then, being the

standard substance, the numerical example last given illustrates

a common method of determining experimentally the specific

gravity of a homogeneous solid substance, the value there ob-

tained being 3. The symbol cr will be used to denote specific

gravity, which is evidently an abstract number. The standard

substance should always be mentioned, and its heaviness y ;

then the heaviness of a substance whose specific gravity is cr is

(i)

and the weight G' of any volume V of the substance may be

written

G1 = Vy = V'<ry. ...... (2)

Evidently a knowledge of the value of y' dispenses with the

use of cr, though when the latter can be introduced into prob-

lems involving the buoyant effort of a liquid the criterion as

to whether a homogeneous solid will sink or rise, when im-

mersed in the standard liquid, is more easily applied, thus :

Being immersed, the volume V of the body = that, F, of

displaced liquid. Hence,
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if G' is > V'y, i.e., if V'y' is > V'y, or a- > 1, it sinks
;

while if G-' is < V'y, ...... or tr < 1, it rises
;

i.e., according as the weight G' is > or < than the buoyant
effort.

Other methods of determining the specific gravity of solids,

liquids, and gases are given in works on Physics.

45"9. Equilibrium of Flotation. In case the weight G' of an

immersed solid is less than the buoyant effort V'y (where V is

the volume of displacement, and /the heaviness of liquid) the

body rises to the surface, and after a series of oscillations comes

to rest in such a position, Fig. 503, that its centre of gravity C
and the centre of buoyancy B (the new B, belonging to the

new volume of displacement, which is limited above by the

horizontal plane of the free surface of the liquid) are in the

same vertical (called the axis of flotation, or line of support),

and that the volume of displacement has diminished to such a

new value V, that

Vy=G'........ (1)

In the figure, V vol. AND, below the horizontal plane

AN, and the slightest motion of the body will change theform
of this volume, in general (whereas with

complete immersion the volume of dis-

placement remains constant). For stable

equilibrium it is not essential in every
case that C (centre of gravity of body)
should be below B (the centre of buoy-

ancy) as with complete immersion, since if

FIG. 503.

"

the solid is turned, B may change its posi-

tion in the body, as the form of the volume AND changes.

There is now no definite relation between the volume of

displacement Fand that of the body, V, unless the latter is

homogeneous, and then for G' we may write V'y', i.e.

V'y' = Vy (for a homogeneous solid) ;
. . (2)

or, the volumes are inversely proportional to the heavinesses.
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The buoyant effort of the air on the portion ANE may be

neglected in most practical cases, as being insignificant.

If the solid is hollow, the position of its centre of gravity C
may be easily varied (by shifting ballast, e.g.) within certain

limits, but that of the centre of buoyancy J3 depends only on

the geometrical form of the volume of displacement AND,
below the horizontal plane AN.
EXAMPLE. (Ft., lb., sec.) Will a solid weighing G 400

Ibs., and having a volume V = 8 cub. feet, without hollows

or recesses, float in water? To obtain a buoyant effort of

400 Ibs., we need a volume of displacement, see eq. (1), of

G' 400^ = = ^ *
= only 6.4 cub. ft.

!-* WATFR-

Hence the solid will float with 8 6.4, or 1.6, cub. ft. pro-

jecting above the water level.

Query : A vessel contains water, reaching to its brim, and

also a piece of ice which floats without touching the vessel.

When the ice melts will the water overflow 2

460. The Hydrometer is a floating instrument for determin-

ing the relative heavinesses of liquids. Fig. 504 shows a sim-

ple form, consisting of a bulb and a cylin-

drical stem of glass, so designed and

weighted as to float upright in all liquids

whose heavinesses it is to compare. Let F
denote the uniform sectional area of the

stem (a circle), and suppose that when float-

ing in water (whose heaviness = y) the

water surface marks a pointA on the stem
;

and that when floating in another liquid,

say petroleum, whose heaviness, = yp ,
we

wish to determine, it floats at a greater

depth, the liquid surface now marking A
on the stem, a height x above A. G' is

the same in both experiments ;
but while the volume of dis-

placement in water is F, in petroleum it is V -f- Fx. There-

fore from eq. (1), 459,

FIG. 504.
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in the water G Vy, '. .... (1)

and in the petroleum G =
( V+ Fx)yp ;

. . (2)

from which, knowing G', F, x, and y, we find Fand yp , i.e.,

(3)

[N.B. jPis best determined by noting the additional dis-

tance, = I, through which the instrument sinks in water under

an additional load P, not immersed ; for then

EXAMPLE. [Using the inch, ounce, and second, in which

system y = 1000 -=- 1728 = 0.578 ( 409).] With ' = 3

ounces, and F= 0.10 sq. inch, x being observed, on the

graduated stem, to be 5 inches, we have for the petroleum

3 X 0.578

3+ 0.10X5X0.578
= 56.7 Ibs. per cub. foot.

Temperature influences the heaviness of most liquids to

some extent.

In another kind of instrument a scale-pan is fixed to the top
of the stem, and the specific gravity computed from the weight

necessary to be placed on this pan to cause the hydrometer to

sink to the same point in all liquids for which it is used.

461, Depth of Flotation. If the weight and external shape
of the floating body are known, and the centre of gravity so

situated that the position of flotation is known, the depth of
the lowest point below the surface may be determined.
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CASE I. Eight prism or cylinder with its axis vertical.

Fig. 505. (For stability in this position,

see 464#.) Let G' = weight of cylin-

der, j^the area of its cross-section (full

circle), hf
its altitude, and h the un-

known depth of flotation (or draught) ;

then from eq. (1), 426,

9LV
in which y heaviness of the liquid.

If the prism (or cylinder) is homo-

geneous (and then (7, at the middle of h
',

is higher than

and y its heaviness, we then have

FIG. 505.

. . . . (2)

in which cr = specific gravity of solid referred to the liquid as

standard. (See 458.)

CASE II. Pyramid or cone with axis vertical and vertex

down. Fig. 506. Let V = volume of

whole pyramid (or cone), and V= vol-

ume of displacement. From similar ~~f"

pyramids,

/Tr

But O' = Vy\ or, V= ;
whence FIG. 506.

(3)
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CASE III. Ditto, ~but vertex up. Fig. 50Y. Let the nota-

tion be as before, for V and V. The

part out of water is a pyramid of volume
= V" = V V, and is similar to the

whole pyramid ;

V- Y: Y' :: A"
3

: h'
9
.

FIG. 507.

===^
Also,

.-., finally, h =
A'pL

-
j/1

-
[#' -f-

F>]~|.
... (4)

CASE IY. /Sphere. Fig. 508. The volume immersed is

Y =

and hence, since Yy = Gf = weight
of sphere,

nW Gf

Ttrh = .

3 y (5)

From which cubic equation h may be

^Ji*Hz: obtained by successive trials and ap-

FlG- m - [An exact solution of (5) for the

unknown h is impossible, as it falls under the irreducible case

of Cardan's Rule.]

CASE Y. Right cylinder with axis horizontal. Fig. 509.

Ier, J of seg. Aj)B\ X

Fia.509.
hence, since F=

,

r

- sin 2a = .
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Prom this transcendental equation we can obtain <*, by trial,

in radians (see example in 428), and finally A, since

h = r(l cos a).

'

(7)

EXAMPLE 1. A sphere of 40 inches diameter is observed to

have a depth of flotation h = 9 in. in water. Required its

weight G' . From eq. (5) (inch, lb., sec.) we have

G' = [62.5 + 1728]7r9
2

[20
-

-J X 9] = 156.5 Ibs.

The sphere may be hollow, e.g., of sheet metal loaded with

shot
;
constructed in any way, so long as G' and the volume

T^of displacement remain unchanged. But if the sphere is

homogeneous, its heaviness ( 7) y' must be

= G' -f- V = G 1

-f- f-Trr

3 = (156.5) -f- ftf20
3

= .00466 Ibs. per cubic inch,

and hence, referred to water, its specific gravity is <r = about

0.13.

EXAMPLE 2. The right cylinder in Fig. 509 is homogeneous
and 10 inches in diameter, and has a specific gravity (referred

to water) of <r = 0.30. Required the depth of flotation A.

Its heaviness must be y
f = cry ;

hence its weight

G' = Very = nrHay ;

hence, from eq, (6),

r*l\_a f sin 2#] = nr'lo', .'. OL \ sin 2 = nv

(involving abstract numbers only). Trying a 60
(
=

\tt in

radians), we have

\n % sin 120 = 0.614
;
whereas no- = .9424

For a = 70, 1.2217 - i sin 140 = 0.9003
;

For a = 71, 1.2391 - i sin 142 = 0.9313
;

For a = 71 22
r

,
1.2455 -J-

sin 142 44r = 0.9428, which may
be considered sufficiently close. Now from eq. (7),

h = (5 in.) (1 cos 71 22') = 3.40 iu.Ans.
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462. Draught of Ships. In designing a ship, especially if of

a new model, the position of the centre of gravity is found by

eq. (3) of 23 (with weights instead of volumes) ; i.e., the sum

of the products obtained by multiplying the weight of each

portion of the hull and cargo by the distance of its centre of

gravity from a convenient reference-plane (e.g., the horizontal

plane of the keel bottom) is divided by the sum of the weights,

and the quotient is the distance of the centre of gravity of the

whole from the reference-plane.

Similarly, the distance from another reference-plane is de-

termined. These two co-ordinates and the fact that the centre

of gravity lies in the median vertical plane of symmetry of the

ship (assuming a symmetrical arrangement of the framework

and cargo) fix its location. The total weight, G', equals, of

course, the sum of the individual weights just mentioned. The

centre of buoyancy, for any assumed draught and correspond-

ing position of ship, is found by the same method; but more

simply, since it is the centre of gravity of the imaginary homo-

geneous volume between the water-line plane and the wetted

surface of the hull. This volume (of "displacement") is

divided into an even number (say 4 to 8) of horizontal laminae

of equal thickness, and Simpson's Rule applied to find the vol-

ume (i.e., the V of preceding formulae), and also (eq. 3, 23)

the height of its centre of gravity above the keel. Similarly,

by division into (from 8 to 20) vertical slices, ~I to keel (an

even number and of equal thickness), we find the distance of

the centre of gravity from the bow. Thus the centre of buoy-

ancy is fixed, and the corresponding buoyant effort Vy (tech-

nically called the displacement and usually expressed in tons)

computed, for any assumed draught of ship (upright). That

position in which the "
displacement" = G' = weight of ship

is the position of equilibrium of the ship when floating up-

right in still water, and the corresponding draught is noted.

As to whether this equilibrium is stable or unstable, the fol-

lowing will show.

In most ships the centre of gravity C is several feet above

the centre of buoyancy, B, and a foot or more below the water

line.
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After a ship is afloat and its draught actually noted its total

weight G', = Vy, can be computed, the values of Ffor dif-

ferent draughts having been calculated in advance. In this

way the weights of different cargoes can also be measured.

EXAMPLE. A ship having a displacement of 5000 tons is

itself 5000 tons in weight, and displaces a volume of salt water

F= #'-5- y = 10,000,000 Ibs. H- 64 Ibs. per cub. ft. = 156250

cub. ft.

463. Angular Stability of Ships. If a vessel floating upright
were of the peculiar form and position of

Fig. 510 (the water-line section having an

area = zero) its tendency to regain that

position, or depart from it, when slightly
inclined an angle from the vertical is due

to the action of the couple now formed by
the equal and parallel forces Vy and G'

,

which are no longer directly opposed. This

couple is called a righting couple if it acts

to restore the first position (as in Fig. 511,
where C is lower than _#), and an

upsetting couple if the reverse, C
above B. In either case the mo-

ment of the couple is

= Vy . BC sin =. Vye sin 0, t

and the centre of buoyancyB does not

change its position in the vessel, since

the water-displacing shape remains

the same
; i.e., no new portions of

the vessel are either immersed or

raised out of the water.

But in a vessel of ordinary form, when turned an angle from

the vertical, Fig. 512 (in which ED is a line which is vertical

when the ship is upright), there is a new centre of buoyancy,
B

l , corresponding to the new shape A^NX
D of the displacement-

volume, and the couple to right the vessel (or the reverse)

FIG. 510.

FIG. 511.
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consists of the two forces G' at C and Vy at JS, ,
and has a

moment (which we may call J/, or

/E moment of stability) of a value

(28)

4= M=Vy.

FIG. 512.

(1)

^Lzrz Now conceive put in at B (centre

of buoyancy of the upright posi-

tion) two vertical and opposite

forces, each = Vy = G\ calling

them P and P
l (see 20), Fig. 512.

We can now regard the couple \_G\ Vy] as replaced by the

two couples \G', P] and [JP,, Vy\\ for evidently

Vy . mC sin = Vy . BC sin -f- Vy . mJ3 sin
;

(33 and 34;)

.-. M = Vy JtUsin + Vy^nB sin 0. . . (2)

But the couple [#', P] would be the only one to right the

vessel if no new portions of the hull entered the water or

emerged from it, in the inclined position; hence the other

couple [JP15 Vy] owes its existence to the emersion of the

wedge AOA^ and the immersion

of the wedge NON^\ i.e., to the

loss of a buoyant force Q = (vol-

umeA OAJ X y on one side, and the

gain of an equal buoyant force on

the other; therefore this couple

[jP,, Vy] is the equivalent of the

couple [Q, Q], Fig. 51L, formed by

putting in at the centre of buoyancy
of each of the two wedges a vertical

force
Fio. 513.

Q = (vol. of wedge) X r = Vwy. (See figure.)
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If a denotes the arm of this couple, we may write

Vy . mB sin 0, [of eq. (2)],
= Vwya ;

. . (3)

and hence, denoting .Z?(7by e, we have

M= Vyesiu + Vwya; . ..'.'. (4)

the negative sign in which is to be used when C is above B
(as with most ships). 0, the intersection of ED and AN,
does not necessarily lie on the new water-line plane A l

N
l

.

EXAMPLE. If a ship of ( Vy =) 3000 tons displacement
with C 4 ft. above B (i.e., e = 4 ft.) is deviated 10 from

the vertical, in salt water, for which angle the wedgesA OA l
and

NON^ have each a volume of 4000 cubic feet, while the hori-

zontal distance a between their centres of buoyancy is 18 feet,

the moment of the acting couple will be, from eq. (4) (ft.-ton-

sec. system, in which y of salt water = 0.032),

M = 3000X 4X 0.1736 + 4000 X 0.032 X 18 = 220.8 ft. tons,

which being -|- indicates a righting couple.

464. Remark. If with a given ship and cargo this moment
of stability, _3/, be computed, by eq. (4), for a number of values

of 0, and the results plotted as ordinates (to scale) of a curve,

being the abscissa, the curve ob-

tained is indicative of the general

stability of the ship. See Fig. 514.

For some value of 0= OK (as well

as for =
0) the value of M is

zero, and for > OK, M is nega-
~^~"

-w\j

tive, indicating an upsetting couple.
FlG - 514 -

That is, for 0=0 the equilibrium is stable, but for = OK,
unstable ; andM = in both positions. From eq. (4) we see

why, if C is above JE>, instability does not necessarily follow.

464a. Metacentre of a Ship. Eeferring again to Fig. 512,

we note that the entire couple [#', Vy] will be a righting

couple, or an upsetting couple, according as the point m (the
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intersection of the vertical through B l ,
the new centre of

buoyancy, with BC prolonged) is above or below the centre

of gravity C of the ship. The location of this point m changes
with

;
but as becomes very small (and ultimately zero) m

approaches a definite position on the line DE, though not oc-

cupying it exactly till = 0. This limiting position of m is

called the metacentre, and accordingly the following may be

stated : A ship floating iipright is in stable equilibrium if its

metacentre is above its centre of gravity ; and vice versa.

In other words, for a slight inclination from the vertical a

righting, and not an upsetting, couple is called into action, if

m is above C. To find the metacentre, by means of the dis-

tance Bin, we have, from eq. (3),

-,
Vy sm (5)

and wish ultimately to make = 0. Now the moment

( Vwy)db = the sum of the moments about the horizontal fore-

and-aft water-line axis OL, Fig. 515, of the buoyant efforts

due to the immersion of the

separate vertical elementary

prisms of the wedge OLN^N,
plus the moments of those lost,

from emersion, in the wedge
.,. ___ OLA.A. Let OA.LN, be the

new water-line section of the

ship when inclined a small

FIG. sis. angle from the vertical

(0 = NO,N^ and OALN the old water-line. Let 2 = the

"1 distance of any elementary area dF oi the water-line section

from OL (which is the intersection of the two water-line

planes). Each dF is the base of an elementary prism, with

altitude = (f>z, of the wedge N^OLN (or of wedge A^OLA
when z is negative). The buoyant effort of this prism = (its

vol.) X y = yz<f>dF, and its moment about OL is

Hence the total moment, = Qa, or Vwya, of Fig. 505,

= 70 X IOL
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of water-line section, in which IOL denotes the " moment of

inertia" ( 85) of the plane figure OALNO about the axis OL.
Hence from (5), putting = sin (true when =

0), we have

mB = IOL -T- V\ and therefore the distance mC\ of the meta-

centre m above (7, the centre of gravity of the ship, Fig. 512, is

~~n -L IOL (of water-line sec.) . f~
mC, = Am ,

= Z* --_--1 e
,
... (6)

in which e = BC= distance from the centre of gravity to the

centre of buoyancy, the negative sign being used when C is

above B\ while V= whole volume of water displaced by the

ship.

We may also write, from eqs. (6) and (1), for small values

Mom. of righting couple =M= Vy sin -~ e
,

. (7)

or

M=ysm 0[/0i Ve]..... (7)'

Eqs. (7) and (7)' will give close approximations for < 10 or

15 with ships of ordinary forms.

EXAMPLE 1. A homogeneous right parallelepiped, of

heaviness y
r

,
floats upright as in

Fig. 516. Find the distance

mC= hm for its metacentre in this A ^ \
M f\

position, and whether the equilibrium -^
is stable. Here the centre of gravity,

=

C, being the centre of figure, is of ;

course above B, the centre of buoy- i>z

ancy ;
hence e is negative. B is the =^

centre of gravity of the displacement,

and is therefore a distance ^h below

the water-line. We here assume that I is greater than

From eq. (2), 461,

B--"-

DJ,
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and since CD = %h', and BD %h, .', e = i(A'' A);

.e. =

while ( 90) IOL ,
of the water-line section AN, = -%

Also,

and hence, from eq. (6), we have

Hence if V is > 6A/a
fl V the position in Fig. 516 is

r v 7 y

one of stable equilibrium, and vice versa. E.g., if y
f = Jy,

#' = 12 inches and A 7 = 6 inches, we have (inch, pound, sec.)

hm = ^C = jf [144
- 6 X = 2.5 in.

The equilibrium will be unstable if, with y' =. %y, b' is made

less than 1.225 ti'; for, putting mC = Q, we obtain J
r =

1.225 A'.

EXAMPLE 2. (Ft., lb., sec.) Let Fig. 517 represent the half
water-line section of a loaded ship of G' = Vy = 1010 tons

FIG. 517.

displacement; required the height of the metacentre above the

centre of buoyancy, i.e., mB 2 (See equation just before eq.

(6).) Now the quantity /OL ,
of the water-line section, may,

from symmetry, (see 93,) be written

IL = (1)
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in which y = the ordinate 1 to the axis OL at any point; and

this, again, by Simpson's Rule for approximate integration,

OL being divided into an even number, n, of equal parts, and

ordinates erected (see figure), may be written

/ -?. fr-
L

3
*

3n

From which, by numerical substitution (see figure for dimen-

sions
;
n = 8),

125
1728 729

or
' 2197 2744

343 1331

IOL = W>.125 +4 X 4393 + 2 X 4804+ 0.125]

. = 120801 biquad. ft,, = =
= 3.8 feet.

That is, the metacentre is 3.8 feet above the centre of buoyancy,
and hence, if J3C=2 feet, is 1.90 ft. above the centre of

gravity. [See Johnson's Cyclopaedia, article Naval Architec-

ture.'}

465. Metacentre for Longitudinal Stability. If we consider

the stability of a vessel with respect to pitching, in a manner

similar to that just pursued for rolling, we derive the position

of the metacentre for pitching or for longitudinal stability

and this of course occupies a much higher position than that

for rolling, involving as it does the moment of inertia of the

water-line section about a horizontal gravity axis ~| to the keel.

"With this one change, eq. (6) holds for this case also. In

large ships the height of this metacentre above the centre of

gravity of the ship may be as groat as 90 feet.



CHAPTER Y.

HYDROSTATICS (Continued) GASEOUS FLUIDS.

466. Thermometers. The temperature, or " liotness" of

liquids has, within certain limits, but little influence on their

statical behavior, but with gases must always be taken into

account, since the three quantities, tension, temperature, and

volume, of a given mass of gas are connected by a nearly in-

variable law, as will be seen.

An air-thermometer, Fig. 518, consists of a large glass bulb

filled with air, from which projects a fine straight tube of

even bore (so that equal lengths

represent equal volumes). A
small drop of liquid, A, sepa-

rates the internal from the ex-

ternal air, both of which are

at a tension of (say) one at-

mosphere (14.7 Ibs. per sq. inch). When the bulb is placed
in melting ice (freezing-point) the drop stands at some point F
in the tube

;
when in boiling water (boiling under a pressure

of one atmosphere), the drop is found at B, on account of the

expansion of the internal air under the influence of the heat

imparted to it. (The glass also expands, but only about
-3-^5-

as much
;
this will be neglected.) The distance FB along the

tube may now be divided into a convenient number of equal

parts called degrees. If into one hundred degrees, it is found

that each degree represents a volume equal to the -n^VW
(.00367) part of the total volume occupied by the air at freez-

ing-point ; i.e., the increase of volume from the temperature of

freezing-point to that of the boiling-point of water= 0.367 of the

volume at freezing, thepressure being the same, and even having

any value whatever (as well as one atmosphere), within ordi-

nary limits, so long as it is the same both at freezing and boil-

604
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ing. It must be understood, however, that by temjjerature of
boiling is always meant that of water boiling under one at-

mosphere pressure. Another way of stating the above, if one

hundred degrees are used between freezing and boiling, is as

follows : That for each degree increase of temperature the in-

crease of volume is ^fj of the total volume at freezing ; 273

being the reciprocal of .00367.

As it is not always practicable to preserve the pressure con-

stant under all circumstances with an air-thermometer, we use

the common mercurial thermometer for most practical pur-

poses. In this, the tube is sealed at the outer extremity, with

a vacuum above the column of mercury, and its indications

agree very closely with those of the air-thermometer. That

equal absolute increments of volume should imply equal incre-

ments of heat imparted to these thermometric fluids (under
constant pressure) could not reasonably be asserted without

satisfactory experimental evidence. This, however, is not al-

together wanting, so that we are enabled to say that within a

moderate range of temperature equal increments of heat pro-

duce equal increments of volume in a given mass not only of

atmospheric air, but of the so-called "perfect" or "permanent"

gases, oxygen, nitrogen, hydrogen, etc. (so named before it was

found that they could be liquefied). This is nearly true for

mercury also, and for alcohol, but notfor water. Alcohol has

never been frozen, and hence is used instead of mercury as a

thermometric substance to measure temperatures below the

freezing-point of the latter.

The scale of a mercurial thermometer is fixed
;
but with an

air-thermometer we should have to use a new scale, and in a

new position on the tube, for each value of the pressure.

467, Thermometric Scales. In the Fahrenheit scale the tube

between freezing and boiling is marked off into 180 equal

parts, and the zero placed at 32 of these parts below the freez-

ing point, which is hence -f- 32, and the boiling-point + 212.

The Centigrade, or Celsius, scale, which is the one chiefly

used in scientific practice, places its zero at freezing, and 100

at boiling-point. Hence to reduce
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Fahr. readings to Centigrade, subtract 32 and multiply by -J ;

Cent. " "
Fahrenheit, multiply by and add 32.

468. Absolute Temperature. Experiment also shows that if

a mass of air or other perfect gas is confined in a vessel whose

volume is but slightly affected by changes of temperature,

equal increments of temperature (and therefore equal incre-

ments of heat imparted to the gas, according to the preceding

paragraph) produce equal increments of tension (i.e., pressure

per unit area) ; or, as to the amount of the increase, that when
the temperature is raised by an amount 1 Centigrade, the ten-

sion is increased
^-|-

of its value at freezing-point. Hence,

theoretically, an ideal barometer (containing a liquid unaffected

by changes of temperature) communicating with the confined

gas (whose volume practically remains constant) would by
its indications serve as a thermometer,

Fig. 519, and the attached scale could be

graduated accordingly. Thus, if the col-

umn stood at A when the temperature
was freezing, A would be marked on

the Centigrade system, and the degree

spaces above and below A would each
FIG. 519. _

^i_^ Q foe height AB, and therefore

the point B (cistern level) to which the column would sink if

the gas-tension were zero would be marked 273 Centi-

grade.

But a zero-pressure, in the Kinetic Theory of Gases ( 408),

signifies that the gaseous molecules, no longer impinging

against the vessel walls (so that the press.
=

0), have become

motionless; and this, in the Mechanical Theory of Heat, or

Thermodynamics, implies that thegas is totally destitute ofheat.

Hence this ideal temperature of 273 Centigrade, or 460

Fahrenheit, is called the Absolute Zero of Temperature, and by

reckoning temperatures from it as a starting-point, our formulas

will be rendered much more simple and compact. Tempera-
ture so reckoned is called absolute temperature, and will be

denoted by the letter T. Hence the following rules for re-

duction :
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Absol. temp. T in Cent, degrees = Ordinary Cent. + 273
;

Absol. temp. T in Fahr. degrees = Ordinary Fahr. -f- 460.

For example, for 20 Cent., T = 293 Abs. Cent.

469. Distinction Between Gases and Vapors. All known

gases can be converted into liquids by a sufficient reduction of

temperature or increase of pressure, or both
; some, however,

with great difficulty, such as atmospheric air, oxygen, hydro-

gen, nitrogen, etc., these having been but recently (1878) re-

duced to the liquid form. A vapor is a gas near the point of

liquefaction, and does not show that regularity of behavior

under changes of temperature and pressure characteristic of a

gas when at a temperature much above the point of liquefac-

tion. All gases treated in this chapter (except steam) are sup-

posed in a condition far removed from this stage. The fol-

lowing will illustrate the properties of vapors. See Fig. 520.

Let a quantity of liquid, say water, be intro- THERM .

duced into a closed space, previously vacuous,

of considerably larger volume than the water,

and furnished with a manometer and ther-

mometer. Vapor of water immediately be-

gins to form in the space above the liquid, and

continues to do so until its pressure attains a

definite value dependent on the temperature,
and not on the ratio of the volume of the vessel and the origi-

nal volume of water
; e.g., if the temperature is 70 Fahren-

heit, the vapor ceases to form when the tension reaches a value

of 0.36 Ibs. per sq. inch. If heat be gradually applied to raise

the temperature, more vapor will form (with ebullition
; i.e.,

from the body of the liquid, unless the heat is applied very

slowly), but the tension will not rise above a fixed value for
each temperature (independent of size of vessel) so long as

there is any liquid left. Some of these corresponding values,

for water, are as follows : For a

Fahr. temp. = 70 100 150 212 220 287 300

Tension (Ibs ) = Q 36 Q 93 3 6g m n 2 5
persq. in.) j = one atm.

At any such stage the vapor is said to be saturated.
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Finally, at some temperature, dependent on the ratio of the

original volume of water to that of the vessel, all of the water

will have been converted into vapor (i.e., steam); and if the

temperature be still further increased, the tension also increases

and no longer depends on the temperature alone, but also on

the heaviness of the vapor when the water disappeared. The

vapor is now said to be superheated, and conforms more in its

properties to perfect gases.

470. Critical Temperature. From certain experiments there

seems to be reason to believe that at a certain temperature,
called the critical temperature, different for different liquids,

all of the liquid in the vessel (if any remains, and supposing
the vessel strong enough to resist the pressure) is converted

into vapor, whatever be the size of the vessel. That is, above

the critical temperature the substance is necessarily gaseous,
in the most exclusive sense, incapable of liquefaction by pres-

sure alone
;
while below this temperature it is a vapor, and lique-

faction will begin if, by compression in a cylinder and conse-

quent increase of pressure, the tension can be raised to a value

corresponding, for a state of saturation, to the temperature

(in such a table as that just given for water). For example, if

vapor of water at 220 Fahrenheit and tension of 10 Ibs. per

sq. inch (this is superheated steam, since 220 is higher than

the temperature which for saturation corresponds to p 10

Ibs. per sq. inch) is compressed slowly (slowly, to avoid change
of temperature) till the tension rises to 17.2 Ibs. per sq. in.,

which (see above table) is the pressure of saturation for a tem-

perature of 220 Fahrenheit for water-vapor, the vapor is satu-

rated, i.e., liquefaction is ready to begin, and during any fur-

ther slow reduction of volume the pressure remains constant

and some of the vapor is liquefied.

By
"
perfect gases," or gases proper, we may understand,

therefore, those which cannot be liquefied by pressure unac-

companied by great reduction of temperature; i.e., whose
"

critical temperatures" are very low. The critical temperature
of NO

2 ,
or nitrous oxide gas, is between 11 and + 8 Cen-

tigrade, while that of oxygen is said to be at 118 Centi-
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grade. [See p. 471, vol. 122 of the Journal of the franklin

Institute. For an account of the liquefaction of oxygen, etc.,

see the same periodical, January to June, 1878.]

471. Law of Charles (and of Gay Lussac). The mode of gradu-
ation of the air-thermometer may be expressed in the follow-

ing formula, which holds good (for practical purposes) within

the ordinary limits of experiment for a given mass of any
perfect gas, the tension remaining constant :

y=Y,+ 0.00367 V t = F (l + .00367*);..(!)

in which ~F denotes the volume occupied by the given mass

at freezing-point under the given pressure, Y its volume at

any other temperature t Centigrade under the same pressure.

Now, 273 being the reciprocal of .00367, we may write

(273+Q. F.. T
< press. ).

(2)y
273

'

'T;~ro

'

1 const, f'

(see 468
;)
in which T = the absolute temperature of freezing-

point, = 273 absolute Centigrade, and T the absolute tem-

perature corresponding to t Centigrade. Eq. (2) is also true

when T and T are both expressed in Fahrenheit degrees (from
absolute zero, of course). Accordingly, we may say that, the

pressure remaining the same, the volume of a given mass of

gas varies directly as the absolute temperature.
Since the weight of the given mass of gas is invariable at a

given place on the earth's surface, we may

always use the equation Yy = Yy , (3)

pressure constant or not, and hence (2) may be rewritten

^ = -... (press, const.) ;
. (4)

Y ^o

i.e., if the pressure is constant, the heaviness (and therefore

the specific gravity} varies inversely as the absolute tempera-

ture.
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Experiment also shows ( 468) that if the volume [and there-

fore the heaviness, eq. (3)] remains constant, while the tem-

perature varies, the tension p will change according to the

following relation, in which pQ
= the tension when the tem-

perature is freezing :

(5)

t denoting the Centigrade temperature.

as before, we have

Hence transforming,

J> _ T^ j vol.,
' '

and

( heav., const. (6)

or, the volume and heaviness remaining constant, the tension

of a given mass of gas varies directly as the absolute tempera-
ture. This is called the Law of Charles (or of Gay Lussac).

472. General Formulae for any Change of State of a Perfect Gas.

If any two of the three quantities, viz., volume (or heavi-

ness), tension, and temperature, are changed, the new value of

the third is determinate from those of the other two, according
to a relation proved as follows (remember-

ing that henceforth the absolute temperature

only will be used, T, 468) : Fig. 521.

At A a certain mass of gas at a tension of

j? ,
one atmosphere, and absolute tempera-

ture T (freezing), occupies a volume V .

Let it now be heated to an absolute temp.
= T', without change of tension (expanding

behind a piston, for instance). Its volume will increase to a

value "F which from (2) of 471 will satisfy the relation

FIG. 521.

Z - r]L
V ~~ T *

v o *
(7)

(See B in figure.)

Let it now be heated without change of volume to an abso-

lute temperature T (C in figure). Its volume is still V, but
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the tension has risen to a value p, such that, on comparing B
and C by eq. (6), we have

Combining (7) and (8), we obtain for any state in which the

tension is _p, volume V, and absolute temperature T, in

(General) . . . %-=- =
^7fr

-
5

or ^=- = a constant
;

. (9)

or

(General) .... -*^L

w ^n n
, (10)

which, since

(General). . Vy =-- V,y, = Vmym = VnYn ,
. . . (11)

is true for any change of state, we may also write

(General) . . .

J

. -= = -=%r, (12)

or

P P* n Q\

ymTm -ynTn
-

These equations (9) to (13), inclusive, hold good for any state

of a mass of any perfect gas (most accurately for air). The

subscript refers to the state of one-atmosphere tension and

freezing-point temperature, in and n to any two states what-

ever (within practical limits) ; y is the heaviness, 7 and 409,

and 77

the absolute temperature, 468.

If j?, T
7

",
and T oi equation (9) be treated as variables, and

laid off to scale as co-ordinates parallel to three axes in space,

respectively, the surface so formed of which (9) is the equation
is a hyperbolic paraboloid.

473. Examples. EXAMPLE 1. What cubic space will be

occupied by 2 Ibs. of hydrogen gas at a tension of two atmos-

pheres and a temperature of 27 Centigrade?
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With the inch-lb.-sec. system we have p = 14.7 lbs. per sq.

inch, y.
= [.0056 -f- 1728] Ibs. per cubic inch, and T = 273

absolute Centigrade, when the gas is at freezing-point at one

atmosphere (i.e., in state sub-zero). In the state mentioned in

the problem, we havej? = 2 X 14.7 Ibs. per sq. in.,

T 273+ 27 = 300 absolute Centigrade,

while y is required. Hence, from eq. (12),

2 X 14.7 = 14.7

Y 300
~

(.0056 -r- 1728)273
'

/. Y =
'

Ibs. per cub. in. = .0102 Ibs. per cub. foot
;
and if

17-28

the total weight, = 6r,
= Vy, is to be 2 Ibs., we have (ft., lb.,

sec.) V 2 -f-.0102 = 196 cubic feet. Ans.

EXAMPLE 2. A mass of air originally at 24 Centigrade
and a tension indicated by a barometric column of 40 inches

of mercury has been simultaneously reduced to half its

former volume and heated to 100 Centigrade ; required its

tension in this new state, which we call the state n, in being the

original state. Use the inch, lb., sec. "We have given, there-

fore, pm =nx 14 -7 lbs - Per sq- incll
>
T = 2?3+ 24 = 29?

absolute Centigrade, the ratio

Vm : Vn = 2 : 1, and Tn = 273 + 100 =373 Abs. Cent.;

whilepn is the unknown quantity. From eq. (10), hence,

pn =^ . ^- .pm = 2 Xm f* X 14.7= 49.22 Ibs. per sq. in.,
* n -*-m

which an ordinary steam-gauge would indicate as

(49.22
-

14.7) = 34.52 lbs. per sq. inch.

(That is, if the weather barometer indicated exactly 14.7 lbs.

per sq. inch.)
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EXAMPLE 3. A mass of air, Fig. 522, occupies a rigid closed

vessel at a temperature of 15 Centigrade (equal to that of sur-

rounding objects) and a tension

of four atmospheres [state m~\.

By opening a stop-cock a few

seconds, thus allowing a portion
of the gas to escape quickly, and

then shutting it, the remainder FIG. 522.

of the air [now in state ri\ is found to have a tension of only
2.5 atmospheres (measured immediately) ;

its temperature can-

not be measured immediately (so much time being necessary

to affect a thermometer), and is less than before. To compute
this temperature, Tn ,

we allow the air now in the vessel to

come again to the same temperature as surrounding objects

(15 Centigrade) ;
find then the tension to be 2.92 atmospheres.

Call the last state, state r (inch, lb., sec.). The problem then

stands thus :

pm = 4 x 14.7

rm = ?

Tm = 288 Abs. Cent.

pn = 2.5 X 14.7

princip
unknown

n _
y j principal

Pr = 2.92 X 14.7

yr = yn (since Vr = Vn)

Tr = Tm = 288 Abs. Cent.

In states n and r the heaviness is the same
;
hence an equa*

tion like (6) of 471 is applicable, whence

or 27 Centigrade ; considerably belowfreezing, as a result of

allowing the sudden escape of a portion of the air, and the con-

sequent sudden expansion, and reduction of tension, of the re-

mainder. In this sudden passage from state m to state n, the

remainder altered its heaviness (and its volume in inverse ratio)

in the ratio (see eqs. (11) and (10) of 472)

* m
~Tn

2.5 X 14.7 288

4 X 14.7
*

246

ISTow the heaviness in state m (see eq. (12), 472) was
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V -
7m

14.7 .0807 273 .306

p. 288 1728 14.7 1728

Ibs. per cub. in. = .306 Ibs. per cub. ft.

.-. yn = 0.73 X ym = 0.223 Ibs. per cub. ft.,

and also, since Vm = 0.73 T^, about T
2
T
7
F of the original quan-

tity of air in vessel has escaped.

[JSToxE. By numerous experiments like this, the law of

cooling, when a mass of gas is allowed to expand suddenly (as,

e.g., behind a piston, doing work) has been determined
;
and

vice versa, the law of heating under sudden compression ;
see

T'

it]

aL

474. The Closed Air-manometer. If a manometer be formed

of a straight tube of glass, of uniform cylindrical bore, which

is partially filled with mercury and then inverted in a cistern

of mercury, a quantity of air having been left between the

mercury and the upper end of the

tube, which is closed, the tension of

this confined air (to be computed
from its observed volume and tem-

perature) must be added to that due

to the mercury column, in order to

obtain the tension^' to be measured.

See Fig. 523. The advantage of this

kind of instrument is, that to meas-

ure great tensions the tube need not

be very long. Let the temperature
T7

,
of whole instrument, and the tension p 1

of the air or gas
in the cistern, be known when the mercury in the tube stands

at the same level as that in the cistern. The tension of the

air in the tube must now be p, also, its temperature T7

, ,
and its.

volume is V
1
= Fh^ ,

F being the sectional area of the bore of

the tube
;
see on left of figure. "When the instrument is used,

gas of unknown tension p' is admitted to the cistern, the tem-

perature of the whole instrument being noted (= T\ and the

heights h and h" are observed (h -f- h" cannot be put = //.,

FIG. 523.
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unless the cistern is very large), p' is then computed as fol-

lows (eq. (2), 413) :

(i)

in which p = the tension of the air in the tube, and ym the

heaviness of mercury. But from eq. (10), 472, putting

7, T h, T
f^T'-T^-ST

Hence finally, from (1) and (2),

(3)

Since T7

, ,p l ,
and h

l
are fixed constants for each instrument,

we may, from (3), computep
1
for any observed values of h and

T(N".B. T and T
t
are absolute temperatures), and construct

a series of tables each of which shall give values of p' for a

range of values of A, and one special value of T.

EXAMPLE. Supposing the fixed constants of a closed air-

manometer to be (in inch-lb.-sec. system) p^ 14.7 (or one

atmosphere), T, = 285 Abs. Cent, (i.e., 12 Centigrade), and

Aj 3' 4" = 40 inches
; required the tension in the cistern

indicated by h" 25 inches and k 15 inches, when the

temperature is 3 Centigrade, or T = 270 Abs. Cent.

For mercury, ym = [848.7
-=-

1728] ( 409) (though strictly

it should be specially computed for the temperature, since it

varies about .00002 of itself for each Centigrade degree).

Hence, eq. (3),

Ibs. per sq. inch, or nearly 3J atmospheres [steam-gauge would

read 34.7 Ibs. per sq. in.].

475. Marietta's Law, (or Boyle's,) Temperature Constant ; i.e.,

Isothermal Change. If a mass of gas be compressed, or al-
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lowed to expand, isothermally, i.e., without change of tern,

perature (practically this cannot be done unless the walls of the

vessel are conductors of heat, and then the motion must be

slow), eq. (10) of 472 now becomes (since Tm = Tn)

( MariottJs Law, ) TT - v <n nr^ Y^ n\
I Temp, constant f

VnPn >

pn

"
Vm '

i.e., the temperature remaining unchanged, the tensions are

inversely proportional to the volumes, of a given mass of a

perfect gas ; or, the product ofvolume by tension is a constant

quantity. Again, since Vmym Vnyn for any change of

state,

( .MariottJs Law, ) Pm_Ym Qr Pm __ Pn .
/2\

[ Temp, constant
j pn

~

yn
'

ym yn
'

i.e., the pressures (or tensions are directly proportional to the

(firstpower of the) heavinesses, if the temperature is the same.

This law, which is very closely followed by all the perfect

gases, was discovered by Boyle in England and Mariotte in

France more than two hundred years ago, but of course is only
a particular case of the general formula, for any change of

state, in 472. It may be verified experimen-
p ' '

tally in several ways. E.g., in Fig. 524, the

tube M being closed at the top, while PN is

open, let mercury be poured in at P until it

reaches the level A 'B '. The air in OA is now
at a tension of one atmosphere. Let more mer-

cury be slowly poured in at P, until the air

confined in has been compressed to a volume

OA" = i of OA, and the height B"E" then

measured
;

it will be found to be 30 inches
; i.e.,

the tension of the air in O is now two atmos-

pheres (corresponding to 60 inches of mercury).
FIG. 524.

Again, compress the air in O to \ its original

volume (when at one atmosphere), i.e., to volume OA'" =
\OA', and the mercury height B'"E"' will be 60 inches, show-

ing a tension of three atmospheres in the confined air at (90
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inches of mercury in a barometer). It is understood that the

temperature is the same, i.e., that time is given the compressed
air to acquire the temperature of surrounding objects after

being heated by the compression, if sudden.

[NOTE. The law of decrease of steam-pressure in a steam-

engine cylinder, after the piston has passed the point of " cut-

off
" and the confined steam is expanding, does not materially

differ from Mariotte's law, which is often applied to the case

of expanding steam
;
see 479.]

While Mariotte's law may be considered exact for practical

purposes, it is only approximately true, the amount of the

deviations being different at different temperatures. Thus,

for decreasing temperatures the product Vp of volume by
tension becomes smaller, with most gases.

EXAMPLE 1. If a mass of compressed air expands in a

cylinder behind a piston, having a tension of 60 Ibs. per sq.

inch (45.3 by steam-gauge) at the beginning of the expansion,

which is supposed slow (that the temperature may not fall) ;

then when it has doubled in volume its tension will be only

30 Ibs. per sq. inch
;
when it has tripled in volume its tension

will be only 20 Ibs. per sq. inch, and so on.

EXAMPLE 2. Diving-bell. Fig. 525. If the cylindrical

diving-bell AB is 10 ft. in height, in what

depth, h =
?, of salt water, can it be let down

to the bottom, without allowing the water to

rise in the bell more than a distance a = 4 ft. ?

Call the horizontal sectional area, F. The

mass of air in the bell is constant, at a constant

temperature. First, algebraically ; at the

surface this mass of air occupied a volume

Vm = FTi" at a tension pm = 14.Y X 144 Ibs.

per sq. ft., while at the depth mentioned it is

compressed to a volume Vn = F(h" a\ and

is at a tension pn =pm+ (h a)yw ,
in which

yw = heaviness of salt water. Hence, from

eq. (1),

XT--

Vm-

-d); . . (3)
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hence, numerically, (ft.. lb., sec.,)

476. Mixture of Gases. It is sometimes stated that if a vessel

is occupied by a mixture of gases (between which there is no

chemical action), the tension of the mixture is equal to the sum
of the pressures of each of the component gases present ; or,

more definitely, is equal to the sum of the pressures which the

separate masses of gas would exert on the vessel if each in turn

occupied it alone at the same temperature.
This is a direct consequence of Mariotte's law, and may be

demonstrated as follows :

Let the actual tension be p, and the capacity of the vessel V.

Also let Fj ,
F2 , etc., be the volumes actually occupied by the

separate masses of gas, so that

V
t + V,+ . . . = V; ..... (1)

and Pupt, etc., the pressures they would individually exert

when occupying the volume V alone at the same tempera-
ture. Then, by Mariotte's law,

Vp t
=VlP -, Vpt =V#; etc.; ... (2)

whence, by addition, we have

...) = (Vi + F2 +...f;

i.e., 1> =?,+!>, -Jr.--.. . .... (3)

Of course, the same statement applies to any number of

separate parts into which we may imagine a mass of homo-

geneous gas to be divided.

For numerical examples and practical questions in the solu-

tion of which this principle is useful, see p. 239, etc., Ran-

kine's Steam-engine. (Rankine uses 0.365, where 0.367 has

been used here.)
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477. Barometric Levelling. By measuring with a barometer

the tension of the atmosphere at two different levels, simul-

taneously, and on a still day, the two localities not being widely

separated horizontally, we may compute their vertical distance

apart if the temperature of the stratum of air between them
is known, being the same, or nearly so, at both m
stations. Since the heaviness of the air is

different in different layers of the vertical :

column between the two elevations J^and M, ':

Fig. 526, we cannot immediately regard the

whole of such a column as a free body (as was .. ILr:y;
<P+#P

done with a liquid, 412), but must consider
''

a horizontal thin lamina, Z, of thickness .'

' "

dz and at a distance =z (variable) below

Jf, the level of the upper station, N being
the lower level at a distance, A, from M.
The tension, p, must increase from M

downwards, since the lower laminae have to support a greater

weight than the upper ;
and the heaviness y must also increase,

proportionally to JP, since we assume that all parts of the col-

umn are at the same temperature, thus being able to apply
Mariotte's law. Let the tension and heaviness of the air at

the upper base of the elementary lamina, Z, be p and y re-

spectively. At the lower base, a distance dz below the upper,

the tension is^> -f- dp. Let the area of the base of lamina be

F; then the vertical forces acting on the lamina are Fp, down-

ward
;

its weight yFdz downward
;
and F(p + dp) upward.

For its equilibrium ^(vert. compons.) must =
;

/. F(p + dp)
- Fp - Fydz = 0;

i.e., dp = ydz, (1)

which contains three variables. But from Mariotte's law,

475, eq. (2), if pn and yn refer to the air at N, we may

substitute y=^p and obtain, after dividing by p, to separate
Pn

the variables/* and 2,
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:*;*. (2)
Yn P

Summing equations like (2), one for each lamina between

M (wherep =pm and s = 0) and N(wherep =j}n &ndz = h\
we have

= /V

which gives A, the difference of level, or altitude, betweenM
and N, in terms of the observed tensions pn and^?TO ,

and of yn ,

the heaviness of the air at ^V, which may be computed from

eq. (12), 472, substituting from which we have finally

in which the subscript refers to freezing-point and one at-

mosphere tension
;
Tn and T are absolute temperatures. For

the ratiopn : pm we may put the equal ratio hn : hm of the

actual barometric heights which measure the tensions. The

log. e (or Naperian, or natural, or hyperbolic, log.) (common
log. to base 10) X 2.30258. From 394, y of air 0.0807ft

Ibs. per cub. ft., and^ = 14.701 Ibs. per sq. inch
;
T = 273

Abs. Cent.

If the temperature of the two stations (both in the shade)

are not equal, a mean temp. = %(Tm-{- Tn ) may be used for

Tn in eq. (4), for approximate results. Eq. (4) may then be

written

... (5)

The quantity
^ = 26213 ft., just substituted, is called the

Yo

height of the homogeneous atmosphere, i.e., the ideal height

which the atmosphere would have, if incompressible and non-
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expansive like a liquid, in order to exert a pressure of 14.701

Ibs. per sq. inch upon its base, being throughout of a constant

heaviness = .08076 Ibs. per cub. foot.

By inversion of eq. (4) we may also write

.r.'

rj

(6)

where e = 2.71828 = the Naperian Base, which is to be raised
rri

to the power whose index is the abstract number . -
.
A

Po Tn
a,nd the result multiplied by j?OT to obtainpn .

EXAMPLE. Having observed as follows (simultaneously) :

At lower station jV, hn = 30.05 in. mercury ; temp. = 77.6 F.
;

"upper M,hm = 23.26" "' = 70.4F.;

required the altitude h. From these figures we have a mean
absolute temperature of 460 + (77.6 + 70.4) = 534 Abs.

Fahr.
; hence, from (5),

h = 26213 X Hi X 2.30258 X log. 10
= 6787.9 ft.

(Mt. Guanaxuato, in Mexico, by Baron von Humboldt.)

Strictly, we should take into account the latitude of the place,

since y varies with g (see 76), and also the decrease in the

intensity of gravitation as we proceed farther from the earth's

centre, for the mercury in the barometer weighs less per cubic

inch at the upper station than at the lower.

Tables for use in barometric levelling can be found in Traut-

wine's Pocket-book, and in Searles's Field-book for Railroad

Engineers, as also tables of boiling-points of water under dif-

ferent atmospheric pressures, forming the basis of another

method of determining heights.

478. Adiabatic Change Poisson's Law. By an adiabatic

change of state, on the part of a gas, is meant a compression

or expansion in which work is done upon the gas (in compress-
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ing it) or by the gas (in expanding against a resistance) when
there is no transmission of heat between the gas and enclosing

vessel, or surrounding objects, by conduction or radiation.

This occurs when the volume changes in a vessel of non-con-

ducting material, or when the compression or expansion takes

place so quickly that there is no time for transmission of heat

to or from the gas.

The experimental facts are, that if a mass of gas in a cylinder

be suddenly compressed to a smaller volume its temperature is

raised, and its tension increased more than the change of vol-

ume would call for by Mariotte's law
;
and vice versa, if a gas

at high tension is allowed to expand in a cylinder and drive a

piston against a resistance, its temperature falls, and its tension

diminishes more rapidly than by Mariotte's law.

Again (see Example 3, 473), if -$fc of the gas in a rigid

vessel, originally at 4 atmos. tension and temperature of

15 Cent., is allowed to escape suddenly through a stop-cock

into the outer air, the remainder, while increasing its volume

in the ratio 100 : 73, is found to have cooled to 27 Cent.,

and its tension to have fallen to 2.5 atmospheres; whereas, by
Mariotte's law, if the temperature had been kept at 288 Abs.

Cent., the tension would have been lowered to y7^ of 4, i.e.,

to 2.92 atmospheres only.

The reason for this cooling during sudden expansion is, ac-

cording to the Kinetic Theory of Gases, that since the "
sensi-

ble heat" (i.e., that perceived by the thermometer), or "
hot-

ness" of a, gas depends on the velocity of its incessantly moving
molecules, and that each molecule after impact with a receding

piston has a less velocity than before, the temperature neces-

sarily falls; and vice versa, when an advancing piston com-

presses the gas into a smaller volume.

If, however, a mass of gas expands without doing work, as

when, in a vessel of two chambers, one a vacuum, the other

full of gas, communication is opened between them, and the

gas allowed to fill both chambers, no cooling is noted in the

mass as a whole (though parts may have been cooled tem-

porarily).

By experiments similar to that in Example 3, 473, it has
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been found that for air and the "
perfect gases," in an adiabatic

change of volume [and therefore of heaviness], the tension

varies inversely with the 1.41th power of the volume. This.

is called Poissorfs Law. For ordinary purposes (as Weisbach

suggests) we may use f instead of 1.41, and hence write

Adiabat.
\ Pm _ f7m\* _ pm _ (

Vn \*

Change]
~

(*/'
' T =W' ' '

and combining this relation with the general eqs. (10) and (13),

472, we have also

Adiabat. ) Pm _ I T^
Change ]

'

pn

"
\~Tn)

>

i.e., the tension varies directly as the cube of the absolute tem-

perature; also,

Adiabat. ) / KA _ (Tn \
a

yn _ iTn \\

Change] fe$^W' \Ej'

i.e., the volume is inversely, and the heaviness directly, as the

square of the absolute temperature.
Here m and n refer to any two adiabatically related states.

T is the absolute temperature.
EXAMPLE 1. Air in a cylinder at 20 Cent, is suddenly

compressed to
-J-

its original volume (and therefore is six times

as dense, i.e., has six times the heaviness, as before). To what

temperature is it heated ? Let m be the initial state, and n the

final. From eq. (3) we have

= 718 Abe. Cent,

or nearly double the absolute temperature of boiling water.

EXAMPLE 2. After the air in Example 1 has been given

time to cool again to 20 Cent, (temperature of surrounding

objects) it is allowed to resume, suddenly, its first volume, i.e.,



624 MECHANICS OF ENGINEERING.

to increase its volume sixfold by expanding behind a piston.

To what temperature has it cooled ? Here Tm 293 Abs.

Cent., the ratio Vm I Vn = ,
and Tn is required. Hence,

from (3),

' = 293 ^ v~*~= 119<5 Abs -

or = 154 Cent., indicating extreme cold.

From these two examples the principle of one kind of ice-

making apparatus is very evident. As to the work necessary

to compress the air in Example 1, see 483. It is also evident

why motors using compressed air expansively have to encoun-

ter the difficulty of frozen watery vapor (present in the air to

some extent).

EXAMPLE 3. What is the tension of the air in Example 1

(suddenly compressed to
-J-

its original volume) immediately
after the compression, if the original tension was one atmos-

phere? That is, with Vn : Vm = 1 : 6, and j?w = 14.7 Ibs. per

sq. inch, pn = 2 From eq. (1), (in., lb., sec.,)

pn = 14.7 X 6* = 14.7 V2l6 = 216

Ibs. per sq. inch
; whereas, if, after compression and without

change of volume, it cools again to 20 Cent., the tension is

only 14.7 X 6 = 88.2 Ibs. per sq. inch (now using Mariotte's

law).

479. Work of Expanding Steam following Mariotte's Law.

Although gases do not in general follow Mariotte's law in ex-

panding behind a piston (without special provision for sup-

plying heat), it is found that the tension of saturated steam

(i.e., saturated at the beginning of the expansion) in a steam-

engine cylinder, when left to expand after the piston has

passed the point of "
cut-af" diminishes very nearly in

accordance with Mariotte's law, which may therefore be ap-

plied in this case to find the work done per stroke, and thence

the power. In Fig. 527 a horizontal steam-cylinder is
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I-

shown in which the piston is making its left-to-right stroke.

The "
back-pressure" is con-

stant and = Fq, F being the

area of the piston and q the

intensity (i.e., per unit area)

of the back or exhaust pres-

sure on the right side of the

piston ;
while the forward

pressure on the left face of the

piston = Fp, in whichp is the

steam-pressure per unit area,

and is different at different

points of the stroke. While the

piston is passing from O" to

D",p is constant, being pb = the boiler-pressure, since the

steam-port is still open. Between D" and C"
, however, the

steam being cut off (i.e., the steam-port is closed) at D"
,
a dis-

tance a from 0'
',p decreases with Mariotte's law (nearly), and

its value is (Fa -r- Fx)pb at any point on C"Dfl

',
x being the

distance of the point from 0" .

Above the cylinder, conceive to be drawn a diagram in

which an axis OX\
\\

to the cylinder-axis, OY an axis 1 to

the same, while is vertically above the left-hand end of the

cylinder. As the piston moves, let the value of p correspond-

ing to each of its positions be laid off, to scale, in the vertical

immediately above the piston, as an ordinate from the axis X.

Make OD' = q by the same scale, and draw the horizontal

D'C'. Then the effective work done on the piston-rod while

it moves through any small distance dx is

dW= force X distance = F(p q)dx,

and is proportional to the area of the strip RS, whose width is

dx and length =p q ;
so that the effective work of one

stroke is

--q)dx, . . . (1)
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and is represented graphically by the area A'ARBC'D'A'*
From 0" to D" p is constant and =pb (while q is constant at

all points), and x varies from to a
;

q)a, . . (2)

which may be called the work of entrance, and is represented

by the area of the rectangle A'ADD'.

From D" to Q "
p is variable and, by Mariotte's law, = pb ;

.,- q(l-a) ... (3)

= the work of expansion, adding which to that of entrance,
we have for the total effective work of one stroke

By effective work we mean that done upon the piston-rod
and thus transmitted to outside machinery. Suppose the

engine to be "
double-acting" ;

then at the end of the stroke a

communication is made, by motion of the proper valves, be-

tween the space on the left of the piston and the condenser of

the engine ;
and also between the right of the piston and the

boiler (that to the condenser now being closed). On the return

stroke, therefore, the conditions are the same as in the forward

stroke, except that the two sides of the piston have changed

places as regards the pressures acting on them, and thus the

same amount of effective work is done as before.

If n revolutions of the fly-wheel are made per unit of time

(two strokes to each revolution), the effective work done per
unit of time, i.e., the power of the engine, is

Z = 2nW= ZnF
[ap^l + log.. (1)1

-
ql^.

. (5)
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For simplicity the above theory has omitted the considera-

tion of " clearance" that is, the fact that at the point of " cut-

off
" the mass of steam which is to expand occupies not only

the cylindrical volume Fa, but also the " clearance" or small

space in the steam-passages between the valve and the entrance

of the cylinder, the space between piston and valve which is

never encroached upon by the piston.
"
Wire-drawing" has

also been disregarded, i.e., the fact that during communication

with the boiler the steam-pressure on the piston is a little less

than boiler-pressure. For these the student should consult

special works, and also for the consideration of water mixed

with the steam, etc. Again, a strict analysis should take into

account the difference in the areas which receive fluid-pressure

on the two sides of the piston.

EXAMPLE 1. A reciprocating steam-engine makes 120 revo-

lutions per minute, the boiler-pressure is 40 Ibs. by the gauge

(i.e.,^>&
= 40 -f- 14.7= 54.7 Ibs. per sq. inch), the piston area

is F= 120 sq. in., the length of stroke I = 16 in., the steam

being "cut off" at J stroke (/. a = 4 in., and I : a = 4.00),

and the exhaust pressure corresponds to a " vacuum of 25

inches" (by which is meant that the pressure of the exhaust

steam will balance 5 inches of mercury), whence q -f$ of

14.7 = 2.45 Ibs. per sq. inch. Required the work per stroke,

W, and the corresponding power Z.

Since I : a = 4, we have log. e 4 = 2.302 X .60206 = 1.386,

and from eq. (4), (foot, lb., sec.,)

W= | (54.7 X 144) .
j.

. [2.386]
-

-fjf (2.45 X 144) . f

= 5165.86 - 392.0 = 4773.868 ft. Ibs. of work per stroke,

and therefore the power at 2 rev. per sec. (eq. 5) is

Z = 2 X 2 X 4773.87 = 19095.5 ft. Ibs. per second.

Hence in horse-powers, which, in ft.,-lb.-sec. system, = Z-i-550,

Power = 19095.5 -5- 550 = 34.7 H. P.

EXAMPLE 2. Required the weight of steam consumed per
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second by the above engine with given data
; assuming with

Weisbach that the heaviness of saturated steam at a definite

pressure (and a corresponding temperature, 469) is about f of

that of air at the same pressure and temperature.

The heaviness of air at 54.7 Ibs. per sq. in. tension and

temperature 287 Fahr. (see table, 469) would be, from eq.

(12) of 472 (see also 409),

_yj\ j> 0807X493 64.7

T '

po
460+ 287 '14.7

Ibs. per cub. foot, f of which is 0.1237 Ibs. per cub. ft. Now
the volume of steam, of this heaviness, admitted from the

boiler at each stroke is V= Fa = |f . = 0.2777 cub. ft.
?

and therefore the weight of steam used per second is

4 X .2777 X 0.1237 = 0.1374 Ibs.

Hence, per hour, 0.1374 X 3600 = 494.6 Ibs. of feed-water

are needed for the boiler.

If, with this same engine, the steam is used at full boiler

pressure throughout the whole stroke, the power will be

greater, viz. = %nFl(pb q) 33440 ft. Ibs. per sec., but

the consumption of steam will be four times as great; and

hence in economy of operation it will be only 0.44 as efficient

(nearly).

480. Graphic Representation of any Change of State of a Con-

fined Mass of Gas. The curve of expansion AB in Fig. 527 is

an equilateral hyperbola, the axes JTand Y being its asymp-
totes. If compressed air were used instead of steam its ex-

pansion curve would also be an equilateral hyperbola if its

temperature could be kept from falling during the expansion

(by injecting hot-water spray, e.g.), and then, following
Mariotte's law, we would have, as for steam, ( 475,)p V= con-

stant, i.z.,pFx = constant, and therefore px = constant, which

is the equation of a hyperbola, p being the ordinate and x the

abscissa. This curve (dealing with a perfect gas) is also called

an isothermal, the x and y co-ordinates of its points being pro-
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X

portional to the volume and tension, respectively, of a mass of

air (or perfect gas) whose temperature is maintained constant.

Hence, in general, if a mass of gas be confined in a rigid

cylinder of cross-sec-

tionF (area), provided
with an air-tight pis-

ton, Fig. 528, its vol-

ume, Fx, is propor-
tional to the distance

OD =-- x (of the piston

from the closed end of

the cylinder) taken as

an abscissa, while its o

tension p at the same

instant may be laid off

as an ordinate from D.
Thus a point A is fixed. Describe an equilateral hyperbola

through A, asymptotic to X and I7

,
and mark it with the ob-

served temperature (absolute) of the air at this instant. In a

similar way the diagram can be filled up with a great number

of equilateral hyperbolas, or isothermal curves, each for its

own temperature. Any point whatever (i.e., above the critical

temperature) in the plane angular space YOX will indicate by
its co-ordinates a volume and a tension, while the correspond-

ing absolute temperature T will be shown by the hyperbola

passing through the point, since these three variables always

satisfy the relation ( 472)

528.

pV . pFx
-Zj,-

= const.
; i.e.,^- . . . . (1)'

Any change of state of the gas in the cylinder may now be

represented by a line in the diagram connecting the two points

corresponding to its initial and final states. Thus, a point

moving along the line AB, a portion of the isothermal marked

293 Abs. Cent, represents a motion of the piston from D to

E, and a consequent increase of volume, accompanied by just

sufficient absorption of heat by the gas (from other bodies) to

maintain its temperature at that figure (viz., its temperature at
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A). If the piston move from D to E, without transmission

of heat, i.e., adiabatically ( 478), the tension falls more

rapidly, and a point moving along the line AB 1

represents the

corresponding continuous change of state. AB' is a portion
of an adiabatic curve, whose equation, from 478, is

iL
=

[llfj
'

r 1** =#***? = <**&.; 00

in whichpK and XK refer to the point K where this particular

adiabatic curve cuts the isothermal of freezing-point. Evi-

dently an adiabatic may be passed through any point of the

diagram. The mass of gas in the cylinder may change its

state from A to B' by an infinite number of routes, or lines on

the diagram, the adiabatic route, however, being that most likely

to occur for a rapid motion of the piston. For example, we

may cool it without allowing the piston to move (and hence

without altering its volume Xor the abscissa x) until the pres-

sure falls to a valuepB > = DL = EB\ and this change is rep-

resented by the vertical path from A to L
;
and then allow it

to expand, and push the piston from D to E (i.e., do external

work), during which expansion heat is to be supplied at just

such a rate as to keep the tension constant, ^=pp> =PLI this

latter change corresponding to the horizontal path LB' from

L to B f

.

It is further noticeable that the work done by the expanding

gas upon the nearface of the piston (or done upon the gas when

compressed) when the space dx is described by the piston, is

= Fpdx, and therefore is proportional to the area pdx of the

small vertical strip lying between the axis X and the line or

route showing the change of state
;
whence the total work done

on the near piston-face, being = Ffpdx, is represented by the

area fpdx of the plane figure between the initial and final

ordinates, the axis X and the particular route followed be-

tween the initial and final states (K.B. We take no account

here of the pressure on the other side of the piston, the latter

depending on the style of engine). For example, the work

done on the near face of the piston during adiabatic expansion
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from D to E is represented by the plane figure AB'EDA,
and is measured by its area.

The mathematical relations between the quantities of heat

imparted or rejected by conduction and radiation, and trans-

formed into work, in the various changes of which the con-

fined gas is capable, belong to the subject of Thermodynamics,
which cannot be entered upon here.

It is now evident how the cycle of changes which a definite

mass of air or gas experiences when used in a hot-air engine,

compressed-air engine, or air-compressor, is rendered more in-

telligible by the aid of such a diagram as Fig. 528
;
but it

must be remembered that during the entrance into, or exit

from, the cylinder, of the mass of gas used in one stroke, the

distance x does not represent its volume, and hence the locus

of the points in the diagram determined by the co-ordinatesp
and x during entrance and exit does not indicate changes of

state in the way just explained for the mass when confined in

the cylinder. However, the work done by or upon the gas

during entrance and exit will still be represented by the plane

figure included by that locus (usually a straight horizontal

line, pressure constant) and the axis of X and the terminal

ordinates.

481. Adiabatic Expansion in an Engine using Compressed Air.

Fig. 529. Let the compressed air at a tension pm and an

absolute temperature Tm be supplied
from a reservoir (in which the loss is

continually made good by an air-corn-

pressor). Neglecting the resistance of

the port, its tension and temperature
when behind the piston are still pm and

Tm . Let xn = length of stroke, and o

let the cut-off (or closing of communi-

cation with the reservoir) be made at

some point D where x xm ,
the posi-

tion of D being so chosen (i.e., the

ratios? : xn so computed) that after adia-
,

,
. . - T\ j. TV A* FIG. 529.

batic expansion from D to E the pres-

sure shall have fallen fromjpm atM (state m) to a valuepn =
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= one atmosphere at JV(state n\ at the end of stroke
;
so that

when the piston returns the air will be expelled ("exhausted")
at a tension equal to that of the external atmosphere (though
at a low temperature). Hence the back-pressure at all points

either way will be =pn per unit area of piston, and hence the

total back-pressure = Fpn ,
F being the piston area.

From to D the forward pressure is constant and = Fpn .

and the effective work, therefore, or work on piston-rod from

O to D, is

W = F[pm Pn\m) *
(1).

represented by the rectangle M'MLN'. The cut-off being
made at D, the volume of gas now in the cylinder, viz.,

Ym = Fxm ,
is left to expand. Assuming no device adopted

(such as injecting hot-water spray) for preventing the cooling
and rapid decrease of tension during expansion, the latter is-

adiabatic, and hence the tension at any point P between M
and N will be

P=pm * . [see 478; V=JM]; . . (ay

.: Work of expansion

-pn}dx = Ff*pdx
- Fpn(xn

- O, (2)
m

I

and is represented by the area MPNL.

i /I \t

Now substitute (3) in (2) and then add (2) to (1), noting that
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which furthermore, since n and m are adiabatically related

[see (0)], can be reduced to

and we have finally :

Total work onpiston- \ ^ Q ^ I", /ajw\*~|
rodper stroke

\

~~ = 8J^
[ ^ J'

*

But Fxm = Vm ,
and the adiabatic relation holds good,

e

therefore we may also write

TT= 3 FMJt>l-?; .... (5)

in which Vm = the volume which the mass of air used per
stroke occupies in the state m, i.e., in the reservoir, where the

tension is^?m and the absolute temperature = Tm .

To find the work doneperpound of air used (or other unit

of weight), we must divide W by the weight G = Vmym of

the air used per stroke, remembering (eq. (13), 472) that

Vmym = [Vpmy.T.] * (Tmp.).

Work per unit of weight of\_ T p, H _(Pn^
r

\ /g\
air used in adiabatic working \

' m
yo T\_ \pm ) J

The back-pressurepn =pa = one atmosphere.
In (6) y = .0807 Ibs. per cub. foot, p 14.7 Ibs. per sq

inch, and T = 273 Abs. Cent, or 492 Abs. Fahr.
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It is noticeable in (6) that for given tensionspm and pn) the

work per unit of weight of air used is proportional to the ab-

solute temperature Tm of the reservoir. The temperature Tm
to which the air has cooled at the end of the stroke is obtained

as in Example 2, 478, and may be far below freezing-point

unless Tm is very high or the ratio of expansion, xm : xn , large.

EXAMPLE. Let the cylinder of a compressed-air engine have

a section of F= 108 sq. in. and a stroke xn = 15 inches. The

compressed air entering the cylinder is at a tension of 2 atmos.

(i.e., pm = 29.4 Ibs. per sq. in., and pn --pm = -J),
and at a

temperature of 27 Cent, (i.e., Tm = 300 Abs. Cent.). Ke-

quired the proper point of cut-off, or a?m = ?
,
in order that the

tension may fall to one atmosphere at the end of the stroke ;

also the work per stroke, and the work per pound of air. Use

the/002, pound, and second.

From eq. (a), above, we have

m =xn f^ = 1*354 / T = 0.7875 ft. = 9.45 inches,W V 4

and hence the volume of air in state m, used per stroke [eq.

(5)] is

Vm = Fxm = |f| X 0.7875 = 0.5906 cubic feet
;

while the work per stroke is

W= 3 X 0.5906 X 29.4 X 144 X [1
-

(i)* ]
= 1545 ft. Ibs.,

and the work obtained from each pound of air, eq. (6),

ft. Ibs. per pound of air used.

The temperature to which the air has cooled at the end of

stroke [eq. (2), 478] is
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Tn = Tm : &- = 300 X V i = 300 X .794 = 238 Abs. C. ;

i.e., 35 Centigrade.

482. Remarks on the Preceding. This low temperature is

objectionable, causing, as it does, the formation and gradual
accumulation of snow, from the watery vapor usually found

in small quantities in the air, and the ultimate blocking of the

ports. By giving a high value to Tm , however, i.e., by heat-

ing the reservoir, Tn will be correspondingly higher, and also

the workper pound of air, eq. (6). If the cylinder be encased

in a "
jacket" of hot water, or if spray of hot water be injected

behind the piston during expansion, the temperature may be

maintained nearly constant, in which event Mariotte's law will

hold for the expansion, and more work will be obtained per

pound of air; but the point of cut-off must be differently

placed. Thus if, in eq. (4), 479, we make the back-pressure,

which = (Fa -s- Fl)pb , equal to the value to which the air-

pressure has fallen at the end of the stroke by Mariotte's law,

we have

Workper stroke with 1 __ c* i (l\_ Y 1 (^\ C[\
isotherm, expans. f

~~ â b &' \a/~ b^b '

\^"/>
v

and hence

Work per unit of weight of air, \ _ j, p i
/_

\ ,~

with isothermal expansion )

m
y T ^'* v/

Applying these equations to the data of the example, we

obtain

Work per unit of weight of air with iso- \ _ Q go y
1 P .

thermal expansion )

" m
y,T\

'

whereas, with adidbatic expansion, work I _ Q gg T7 P
per unit of weight of air is only }

"

"V ^V
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483. Double-acting Air-compressor, with Adiabatic Compres-

sion. This is the converse of 481. In Fig. 530 we have the

piston moving from right to left, compressing a mass of air

which at the beginning of the stroke fills the cylinder. This is

brought about by means of an external

motor (steam-engine or turbine, e.g.)

which exerts a thrust or pull along the

piston-rod, enabling it with the help
of the atmospheric pressure of the

fresh supply of air flowing in behind
x

it, to first compress a cylinder-full of

air to the tension of the compressed

p air in the reservoir, and then, the

Lj port or valve opening at this stage,

to force or deliver it into the reservoir.

Let the temperature and tension of the

cylinder-full of fresh air be TUl
and

pni ,
and the tension in the reservoir be pmi . Suppose the

compression adiabatic. As the piston passes from E toward

the left, the air on the left has no escape and is compressed, its

tension and temperature increasing adiabatically until it reaches

a value pmi = that in reservoir, at which instant, the piston

being at some point D, a valve opens and the further progress

of the piston simply transfers the compressed air into the re-

servoir without further increasing its tension. Throughout
the whole stroke the piston-rod has the help of one atmosphere

pressure on the right face, since a new supply of air is entering

on the right to be compressed in its turn on the return stroke.

The work done from E to D may be called the work of com-

pression that from D to 0, the work of delivery.

[Since, here, dx and dW(or increment of work) have con-

trary signs, we introduce the negative sign as shown.]

rD
The work of compression = JEF(p pn^)dx. . . . (Ic)

The work of delivery = Pm.pn^dx. . . (Id)
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In these equations only^> and x are variables. In the sum-

mation indicated in
(1<?) p changes adiabatically ;

in (l.d)p is

constant =pmi as now written.

In the adiabatic compression the air passes from the state n^

to the state m^ (see JV, and M
l
in figure).

The summations in these equations being of the same form

as those in equations (1) and (2) of 481, but with limits in-

verted, we may write immediately,

Workper stroke = W= 3 FJ>TOI |~1 ( Y~| ' (2)
\prnj J

and

Work per unit ofweight ) _. 077 PO
F-, _(PnL \*~] /o\

o/" o*> compressed j

"
mi
^ j

7

[_ \pm I

The value of T7

^ ,
at the immediate end of the sudden com-

pression, by eq. (2) of (478), is

(4)

The temperature of the reservoir being Tm ,
as in 481

(usually much less than Tmi ),
the compressed air entering it

cools down gradually to that temperature, Tm , contracting in

volume correspondingly since it remains at the same tension

pmi . The mechanical equivalent of this heat is lost.

Let us now inquire what is the efficiency of the combination

of air-compressor and compressed-air engine, the former sup-

plying air for the latter, both working adiabatically, assuming
that no tension is lost by the compressed air in passing along
the reservoir between, i.e., that pmi

=pm . Also assume (as

already implied, in fact) that j?Wl =pn = one atmos., and that

the temperature, Tn^ of the air entering the compressor cyl-

inder is equal to that, Tm ,
of the reservoir and transmission-

pipe.

To do this we need only find the ratio of the amount of

work obtained from one pound (or other unit of weight) in the

compressed-air engine to the amount spent in compressing one

pound of air in the compressor. Calling this ratio t?,
the
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efficiency, and dividing eq. (6) of 481 by eq. (3) of this para-

graph, we have, with substitutions just mentioned,

_ Tm _ Abs. temp, of outerfree air ,__ _

ofsudden compression,

Tmi ( Abs. temp, of air at end

( ofsudd

or, substituting from eq. (4), and remembering that Tni
= T

we have also

(6)

also, since

T^ ...
-* m

we may write

_ Tn __ Ab. tern, air leaving eng. cyl. ,^
Tm Ab. tern, outer free air.

For practical details of the construction and working of

engines and compressors, and the actual efficiency realized, the

student may consult special works, as they lie somewhat be-

yond the scope of the present work.

EXAMPLE 1. In the example of 445, the ratio ofpm topn

was . Hence, if compressed air is supplied to the reser-

voir under above conditions, the efficiency of the system is,

from eq. (6), 77
= V^ 0.794, about 80 per cent.

7} 1
EXAMPLE 2. If the ratio of the tensions is as small as =

,

Pm 6

the efficiency would be only (-J-)*
= 0.55

; i.e., 45 per cent of

the energy spent in the compressor is lost in heat.

EXAMPLE 3. What horse-power is required in a blowing

engine to furnish 10 Ibs. of air per minute at a pressure of

4 atmos., with adiabatic compression, the air being received

by the compressor at one atmosphere tension and 27 Cent,

(ft.-lb.-sec. system). Since 27 C. = 300 Abs. C. = Tni ,
we

have, from eq. (4),

Tmi
= 300 (f)

= 477 Abs. Cent.
;

and hence, eq. (3),
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1 4 7 v 1 44 F /I Yin

TteworJcperpound of air = 3X 477^^ ^[l
-
g)

= 50870 ft. Ibs. per pound of air. Hence 10 Ibs. of air will

require 508700 ft. Ibs. of work
;
and if this is done every min-

ute we have the req. H. P. = *ff- = 15A H ' R
NOTE. If the compression could be made isothermal, an

approximation to which is obtained by injecting a spray of

cold water, we would have, from eqs. (1) and (2) of 482 :

Workper \_ T p , / #, \ 300 X 14.7 X 144

II. air \

-T^f10g ' e

fc)
=

.0807 X 273
X l^

= 39950 ft. Ibs. per lb., and the corresponding H. P. = 12.1
;

a saving of about 25 per cent, compared with the former.

The difference was employed in heating the air in the air-com-

pressor with adiabatic compression, and was lost when that

extra heat was dissipated in the reservoir as the air cooled

again. This difference is easily shown graphically by compar-

ing in the same diagram the areas representing the work done

in the two cases.

484. Hot-air Engines. Since we have seen that the tension

of air and other gases can be increased by heating, if the vol-

ume be kept the same, a mass of air thus treated can after-

wards be allowed to expand in a working cylinder, and thus

become a means of converting heat into work. In Stirling^
hot-air engine a definite confined mass of air is used indefinitely

without loss (except that occasional small supplies are needed

to make up for leakage), and is alternately heated and cooled.

A displacement-plunger, or piston, fitting loosely in a bell-like

chamber, is so connected with the piston of the working

cylinder and the fly-wheel, that its forward stroke is made
while the other piston waits at the beginning of its stroke.

In this motion the plunger causes the confined air to pass in a

thin sheet over the top and sides of the furnace dome, thus

greatly increasing its tension. The air then expands behind

the working piston with falling tension and temperature, and,



640 MECHANICS OF ENGINEERING.

while that piston pauses at the end of its forward stroke, is

again shifted in position, though without change of volume,

by the return stroke of the plunger, in such a way as to pass

through a coil of pipes in which cold water is flowing. This

reduces both its temperature and tension, and hence its resist-

ance to the piston on the return stroke is at first less than at-

mospheric, but is gradually increased by the compression.
This cycle of changes is repeated indefinitely, and is easily

traced on a diagram like that in Fig. 528, and computations
made accordingly.

A special invention of Stirling's is the "
regenerator" or box

filled with numerous sheets of wire gauze, in its passage

through which the working air, after expansion, deposits some

of its heat, which it re-absorbs to some extent when, after

further cooling in the "
refrigerator" or pipe coil and com-

pression by the return stroke of the piston, it is made to pass

backward through the regenerator to be further heated by the

furnace in readiness for a forward stroke. This feature, how-

ever, has not realized all the expectations of its inventor and

improvers, as to economy of heat and fuel.

In Ericsson?s hot-air engine, of more recent date, the dis-

placement-plunger fits its cylinder air-tight, but valves can be

opened through its edges when moving in one direction, thus

causing it to act temporarily as a loose plunger, or shifter.

The two pistons move simultaneously in the same direction in

the same cylinder, but through different lengths of stroke, so

that the space between them is alternately enlarged and con-

tracted. The working piston also has valves opening through
it for receiving a fresh supply of air into the space between

the two pistons. During the forward stroke a fresh instal-

ment from the outer air enters through the working piston into

the space between it and the other, whose valves are now
closed and which is now expelling from its further face,

through proper valves, the air used in the preceding stroke
;

no work is done in this stroke. On the return stroke this

fresh supply of air is free to expand behind the now retreating

working piston, while its tension is greatly increased by its

being shifted (at least a large portion of it) over the furnace
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dome through the valves (now open) of the plunger piston, by
the motion of the latter, which now acts as a loose plunger.

The engine is therefore only single-acting, no work being done

in each forward stroke. For further details, see Goodeve's

and Rankine's works on the steam-engine; also the article

" Hot-air Engine" in Johnson's Cyclopedia by Fres. Barnard,

and Rontgen's Thermodynamics.

485. Brayton's Petroleum-engine. Although a more recent

invention than the gas-engines to be mentioned presently, this

motor is more closely related to hot-air engines than the latter.

By a slow combustion of petroleum vapor the gaseous products

of combustion, while under considerable tension, are enabled

to follow up a piston with a sustained pressure, being left to

expand through the latter part of the stroke. Thus we have

the furnace and working cylinder combined in one. The

gradual combustion is accomplished by making use of the

principle of the Davy safety-lamp that flame will not spread

through layers of wire gauze of proper fineness.

486. Gas-engines. We again have the furnace and working

cylinder in one in a "
gas-engine" where illuminating gas and

atmospheric air are introduced into the working cylinder in

proper proportions (about ten parts of air to one of gas, by

weight) to form an explosive mixture of more or less violence and

exploded at a certain point of the stroke, causing a very sudden

rise of temperature and tension', after which the mass expands
behind the piston with falling pressure. On the return stroke

the products of combustion are expelled, and no work done,

these engines being single-acting. In some forms the mixture

is compressed before explosion, since it has been found that

under this treatment a mixture containing a larger proportion

of air to gas can be made to ignite, and that then the resulting

pressure is more gradual and sustained, like that of steam or of

the mixture in the Brayton engine. That is, the effect is

analogous to that of "
slow-burning powder" in a gun.

In the " Otto Silent Gas-engine" the explosion occurs only

every fourth stroke, and one side of the piston is always open
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to the air. The action on the other side of the piston is as

follows : (1) In the forward stroke a fresh supply of explosive
mixture is drawn into the cylinder at one atmosphere tension.

(2) The next (backward) stroke compresses the mixture into

about one fourth of its original bulk, this operation occurring
at the expense of the kinetic energy of the fly-wheel. (3) The

mixture is ignited, the pressure rises to 6 or 7 atmospheres,

and work is done on the piston through the next (forward)

stroke, the tension of the products of combustion having
fallen to one atmosphere (nearly) at the end of the stroke.

(4) In the next (backward) stroke the products of combus-

tion are expelled arid no work is done.

The Atkinson "
Cycle Gas-engine," an English invention of

recent .date (see the London Engineer for May 1887
; pp. 361

and 380) also makes an explosion every fourth stroke, but the

link work connecting the piston and fly-wheel is of such de-

sign that the latter makes but one revolution during the four

strokes. Also the length of the expansion or working stroke

is greater than that of the compression stroke and the products
of combustion are completely expelled. Consequently the effi-

ciency of this motor is at present greater than that of any other

gas-engine. See 487.

One of the most simple gas-engines is made by the Economic

Motor Company of New York. The piston has no packing,

being a long plunger ground to fit the cylinder accurately and

kept well lubricated. As with most gas-engines the cylinder is

encased in a water-jacket to prevent excessive heating of the

working parts and consequent decomposition of the lubricant.

For further details on these motors, see Kankine's " Steam-

engine," Clark's "Gas-engines" in Yan Nostrand's Science

Series, and article
"
Gas-engine" in Johnson's Cyclopaedia ;

also

Prof. Thurston's report on Mechanical Engineering at the

Vienna Exhibition of 1873, and proceedings of the "
Society

of Engineers" (England) for 1881.

487. Efficiency of Heat-engines. According to the mechan-

ical theory of heat, the combustion of one pound of coal, pro-
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ducing, as it does, about 14,000 heat-units (British Thermal
units

;
see 149, Mechanics) should furnish

14,000 X 772 = 10,808,000 ft. Ibs. of work,

if entirely converted into work. Let us see how nearly this is

accomplished in the performance of the most recent and

economical marine engines of the present day, viz., the triple

expansion engines of some Atlantic steamers, which are claimed

to have consumed per hour only 1.25 Ibs. of coal for each

measured
(
u indicated ") horse-power of effective work done in

their cylinders. The work-equivalent of 1.25 Ibs. of coal per
hour is

1.25 X 14,000 X 772 = 13,510,000 ft. Ibs. per hour;

while the actual work per hour implied in " one H. P. per

hour" is

33000 X 60 = 1,980,000 ft. Ibs. per hour.

That is, the engines utilize only one seventh of the heat of com-

bustion of the fuel.

According to Prof. Thurston, this is a rather extravagant
claim (1.25), the actual consumption having probably been 1.4

Ibs. of coal per H. P. per hour.

The ordinary compound marine engine is stated to use as

little as 2.00 Ibs. per hour for each H. P.

Most of the heat not utilized is dissipated in the condenser.

Similarly, the water-jacket, a necessary evil in the operation

of the gas-engine, is a source of great loss of heat and work.

Still, Mr. Wm. Anderson in his recent work,
" Conversion of

Heat into Work" (London, 1887), mentions a motor of this

class as having converted into work
-J-

of the heat of combus-

tion [an Otto "Silent Gas-engine," tested at the Stevens

Institute, Hoboken, 1ST. J.,in 1883] ;
while Prof. Unwin found

the Atkinson engine (see last paragraph) capable of returning

(in the cylinder) fully -^
of the heat-equivalent of the gas con-

sumed. [This latter result was confirmed in Philadelphia in

Jan. 1889 by Prof. Barr, under direction of Prof. Thurston.]
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488. Duty of Pumping-engines. Another way (often used

in speaking of the performance of pumping-enginesj of ex-

pressing the degree of economy attained in the use of fuel by
the combined furnace, boiler, and engine is to give the num-

ber of foot-pounds of work obtained from each 100 Ibs. of coal

consumed in the furnace, calling it the "
duty" of the engine.

For example, by a duty of 99,000,000 ft. Ibs. it is meant that

from each pound of coal 990,000 ft. Ibs. of work are obtained.

From this we gather that, since one horse-power consists of

33,000 X 60 = 1,980,000 ft. Ibs. per hour, the engine men-

tioned must use each hour

1,980,000 -f- 990,000 = 2 Ibs. of coal for each H. P. developed ;

which is as low a figure as that attained by the marine engines
last quoted.

489. Buoyant Effort of the Atmosphere, In the case of a

body of large bulk but of small specific gravity the buoyant
effort of the air (due to the same cause as that of water, see

456) becomes quite appreciable, and may sometimes be

greater than the weight of the body. This buoyant effort is

equal to the weight of air displaced, i.e.,
= Yy, where Y is

the volume of air displaced, and y its heaviness.

If G
l

total weight of the body producing the displace-

ment, the resultant vertical force is

(i)

and for equilibrium, or suspension in the air, we must Lave

P = 0, i.e.,

G,= Yy........ (2)

We may therefore find approximately the elevation where

a given balloon will cease to ascend, by determining the heavi-

ness y of the air at that elevation from eq. (2) ; then, know-

ing approximately the temperature of the air at that elevation,

we may compute its tension p [eq. (13), 472], and finally,

from eqs. (3), (4), or (5) of 477, obtain the altitude required.

EXAMPLE. The car and other solid parts of a balloon weigh
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400 Ibs., and the bag contains 12,000 cub. feet of illuminating

gas weighing 0.030 Ib. per cub. foot at a tension of one at-

mosphere and temperature of 15 Cent., so that its total

weight =12,000 X 0.030 = 360 Ibs.

Hence G-
l
= 760 Ibs. We may also write with sufficient

accuracy : Whole volume of displacement =V= 12,000 cub. ft.

As the balloon ascends the exterior pressure diminishes, and

the confined gas tends to expand and so in- -M-O_
'

^
crease the volume of displacement V\ but --- ''

this we shall suppose prevented by the

strength of the envelope. At the surface

of the ground (station n of Fig. 531 ; see

also Fig. 526) let the barometer read 29.6

inches and the temperature be 15 Cent.

Then Tn = 288 Abs. Cent., and the heavi- FIG. 531.

ness of the air at n is

.0807 X 273 2.M X 14.7

14.7 288

273 29.6

'm-ir-* 1

At the unknown height 7i, where the balloon is to come to

rest, i.e., at J/~, G l
must = Vy [eq. (2)] ;

therefore

G
l

760 Ibs.

ym = y-
=
p^r- r-sr- = -0633 lbs - Per cub.

and if the temperature at M be estimated to be 5 Cent, (or

Tm 278 Abs. Cent.) (on a calm day the temperature de-

creases about 1 Cent, for each 500 ft. of ascent), we shall

_. 388

m . -0633
'

278
~

and hence, from eq. (5), 477, with |(7
T

m+ Tn) put for TK ,

h = 26213 X Iff X 2.30258 X log.,, 1.206 = 5088 ft.
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CHAPTER Vt

HYDRODYNAMICS BEGUN STEADY FLOW OF LIQUIDS
THROUGH PIPES AND ORIFICES.

489a. The subject of Water in Motion presents one of the

most unsatisfactory branches of Applied Mechanics, from a

mathematical stand-point. The internal eddies, cross-currents,

and general intricacy of motion of the particles among each

other, occurring in a pipe transmitting a fluid, are almost en-

tirely defiant of mathematical expression, though the flow of

water through a circular orifice in a thin plate into the air pre-

sents a simpler case, where the conception of " stream lines" is

probably quite close to the truth. In most practical cases we
are forced to adopt as a basis for mathematical investigation

the simple assumption that the particles move side by side in

such a way that those which at any instant form a lamina

or thin sheet, ~| to the axis of the pipe or orifice, remain

together as a lamina during the further stages of the flow.

This is the Hypothesis of Flow in Plane Layers, or Laminated

Flow. Experiment is then relied on to make good the discre-

pancies between the indications of the formulae resulting from

this theory and the actual results of practice ;
so that the science

of Hydrodynamics is largely one of coefficients determined by

experiment.
"
7

490. Experimental Phenomena of a "
Steady Flow." As pre-

liminary to the analysis on which the formulae of this chapter
are based, and to acquire familiarity with the quantities involved,

it will be advantageous to study the phenomena of the appara-

tus represented in Fig. 532. A large tank or reservoir I>O is

connected with another, DE, at a lower level, by means of a

rigid pipe opening under the water-level in each tank. This

64G
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pipe lias no sharp curves or bends, is of various sectional areas

at different parts, the changes of section being very gradual,

and the highest point N^ not being more than 30 ft. higher
than EC) the surface-level of the upper tank. Let both tanks

FIG. 532.

be filled with water (or other liquid), which will also rise to H
and to ./Tin the pipe. Stop the ends L and N of the pipe,

and through J/, a stop-cock in the highest curve, pour in water

to fill the remainder of the pipe ; then, closing M, unstop L
and NI . I

If the dimensions are not extreme (and subsequent formulae

will furnish the means of testing/ such points) the water will

now begin to flow from the upper tank into the lower, and

all parts of the pipe will continue full of water as the flow

goes on.

Further, suppose the upper tank so large that its surface-

level sinks very slowly / or that an influx at A continually

makes good the efflux at E; then the flow is said to be a Steady

Flow
; or, a state of permanency is said to exist

; i.e., the cir-

cumstances of the flow at each section of the pipe are per-

manent, or steady.
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By measuring the volume, V, of water discharged at E in a

time t
y
we obtain the volume offlow per unit of time, viz.,

while the weight offlow per unit of time is

G = QY, :
..... (2)

where y = heaviness
( 7) of the liquid concerned.

Water being incompressible and the pipe rigid, it follows

that the same volume of water per unit of time must be pass-

ing at each cross-section of the pipe. But this is equal to the

volume of a prism of water having F, the area of the section^

as a base, and, as an altitude, the mean velocity = v with which

the liquid particles pass through the section. Hence for any
section we have

,
. (3)

in which the subscripts refer to different sections. If the flow

were unsteady, e.g., if the level BC were sinking, this would

be true for a definite instant of time
;
but when steady, we

see that it is permanently true; e.g.,Fl
v

l
at any instant = Fjp^

at the same or any other instant, subsequent or previous. In

other words, in a steady flow the velocity at a given section

remains unchanged with lapse of time.

[N.B. "We here assume for simplicity that the different

particles of water passing simultaneously through a given sec-

tion (i.e., abreast of each other) have equal velocities, viz., the

velocity which all other particles will assume on reaching this

section. Strictly, however, the particles at the sides are some-

what retarded by friction on the surface of the pipe. This as-

sumption is called the Assumption of Parallel Flow, or Flow
in Plane Layers, or Laminated FlowJ]

Let us suppose Q to have been found as already prescribed.

We may then, knowing the internal sectional areas at different

parts of the pipe, -ZT, ,
JVa , etc., compute the velocities
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Vi=Q + F>, v,= Q + F*> etc.,
( a?

which the water must have in passing those sections, respec-

tively. It is thus seen that the velocity at any section has no

direct connection with the height or depth of the section from

the plane, EC, of the upper reservoir surface. The fraction

- will be called the height due to the velocity, v, or simply
*y
the velocity-head, for convenience.

Next, as to the value of the internal fluid pressure', p, per
unit-area (in the water itself and against the side or wall of

pipe) at different sections of the pipe. If the end N of the

pipe were stopped, the problem would be one in Hydrostatics,
and the pressure against the side of the pipe at JVj (also at Nz

on same level) would be simply

measured by a water column of height

in whichpa = one atmosphere, and Z> = 34 ft. = height of an

ideal water barometer, and y = 62.5 Ibs. per cubic foot
;
and

this would be shown experimentally by screwing into the side

of the pipe at j~, a small tube open /
at both ends

;
the water

would rise in it to the level EC. That is, a column of water

of height h
l
would be sustained in it, which indicates that

the internal pressure at N
l corresponds to an ideal water col-

umn of a height

But when a steady flow is proceeding, the case being now one

of Hydrodynamics, we find the column of water sustained at

rest in the small tube (called an open piezometer) Nfi has a

height f/ 1 ,
less than 7^ ,

and hence the internal fluid pressure is
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less than it was when there was no flow. This pressure being

called^, ,
the ideal water column measuring it has a height

at N
l ,

and will be called the pressure-head at the section re-

ferred to. We also find experteeTfCa11j~iffiat while the flow is

steady the piezometer-height y (and therefore the pressure-

head b -\- y) at any section remains unchanged with lapse of

time, as a characteristic of a steady flow.

[For correct indications, the extremity of the piezometer
should have its edges flush with the inner face of the pipe

wall, where it is inserted.]

At ^3, although at the same level as JV19 we find, on in-

serting an open piezometer, TF, that with Fz
= F

l (and there-

fore with v
3
= v^ yz

is a little less than ?/, ;
while if F

9 < Fv

(so that v
a > ^j), y3

is not only less than y, ,
but the dif-

ference is greater than before. We have therefore found

experimentally that, in a general way, when water is flowing
in a pipe it presses less against the side of the pipe than it did

before the flow was permitted, or (what amounts to the same

thing) the pressure between the transverse laminae is less than

the hydrostatic pressure would be.

In the portion HNZ
of the pipe we find the pressure less

than one atmosphere, and consequently a manometer register-

ing pressures from zero upward (and not simply the excess

over one atmosphere, like the Bourdon steam-gauge and the

open piezometer just mentioned) must be employed. At N^ ,

e.g., we find the pressure

= J atmos., i.e.,
^ = 17 ft.

Even below the level BC, by making the sections quite nar-

row (and consequently the velocities great) the pressure may be

made less than one atmosphere. At the surface BC the pres-

sure is of course just one atmosphere, while that in the jet at

N^ , entering the right-hand tank under water, is necessarily

p4
= 1 atmos. -|- press, due to col. h f

of water practically at rest
;



STEADY FLOW OF LIQUIDS. 651

i.e., pressure-bead at J\\ = I -f- A';

(whereas if N^ were stopped by a diaphragm, tbe pressure-
bead just on tbe right of tbe diaphragm would be ~b -f- A', and

that on the left + A
4 .)

Similarly, when a jet enters the atmosphere in parallel fila-

ments its particles are under a pressure of one atmosphere, i.e.,

their pressure-head = 1) = 34 ft. (for water) ;
for the air im-

mediately around the jet may be considered as a pipe between

which and the water is exerted a pressure of one atmosphere.

491. Recapitulation and Examples. We have found experi-

mentally, then, that in a steady flow of liquid through a rigid

pipe there is at each section of the pipe a definite velocity and

pressure which all the liquid particles assume on reaching that

section
;
in other words, at each section of the pipe the liquid

velocity and pressure remain constant with progress of time.

EXAMPLE 1. If in Fig. 532, the flow having become steady,

the volume of water flowing in 3 minutes is found on meas-

urement to be 134 cub. feet, the volume per second is, from

<3q. (1), 490,

Q ||4.
= 0.744 cub. ft. per second.

EXAMPLE 2. If the flow in 2 min. 20 sec. is 386.4 Ibs., the

volume of flow per second is [ft., lb., sec.
; eqs. (1) and (2)]

V G 386.4 1
Q =; --r- 1 =- .

--- = 0.0441 cub. ft. per sec.
t y 62.5 140

EXAMPLE 3. In Fig. 532 the height of the open piezometer
at N

l
is y l

= 9 feet
;
what is the internal fluid pressure ?

[Use the inch, lb., and sec.] The internal pressure is

Pi =pa+ y^ 14.Y+ 108 X -&& = 18.6 Ibs. per sq. inch.

The pressure on the outside of the pipe is, of course, one at-

mosphere, so that the resultant bursting pressure at that point

is 3.9 Ibs. per sq. in.

EXAMPLE 4. The volume of flow per second being .0441
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cub. ft. per sec., as in Example 1, required the velocity at a

section of the (circular) pipe where the diameter is 2 inches.

[Use ft, lb., and sec.]

O 0.^
2 persec>;

while at another section of the pipe where the diameter is four

inches (double the former) and the sectional area, F, is there-

fore four times as great, the velocity is \ of 2.02 = 0.505 ft.

per sec.

492. Bernoulli's Theorem for Steady Flow; without Friction.

If the pipe is comparatively short, without sudden bends,

elbows, or abrupt changes of cross-section, the effect of friction

of the liquid particles against the sides of the pipe and against

each other (as when eddies are produced, disturbing the paral-

lelism of flow) is small, and will be neglected in the present

analysis, whose chief object is to establish a formula for steady
flow through a short pipe and through orifices.

An assumption, now to be made, oiflow in plane layers, or

laminatedflow, i.e., flow in laminae ~| to the axis of the pipe
at every point, may be thus stated : (see Fig. 533, which shows

a steady flow proceeding, through a

pipe CD of indefinite extent.) All the

liquid particles which at any instant

form a small lamina, or sheet, as AB
y

~1 to axis of pipe, keep company as a
lamina throughout the whole flow.

FIG. 533. The thickness, ds', of this lamina re-

mains constant so long as the pipe is of constant cross-section,

but shortens up (as at C) on passing through a larger section,

and lengthens out (as at D) in a part of the pipe where the

section is smaller (i.e., the sectional area, F, is smaller). The
mass of such a lamina is Fds'y -r- g [ 55], its velocity at any
section will be called v (pertaining to that point of the pipe's

axis), the pressure of the lamina just behind it is Fp, upon the

rear face, while the resistance (at the same instant) offered by
its neighbor just ahead is F(p -\- dp) on the front face

;
also
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its weight is the vertical force Fds'y. Fig. 534 shows, as a

free body, the lamina which at

any instant is passing a point
A of the pipe's axis, where the

velocity is v and pressure jp.

Note well the forces acting ;

the pressures of the pipe wall

on the edges of the lamina have

no components in the direction

of v, for the wall is considered

smooth, i.e., those pressures are

1 to wall; in other words, -no FIG. 534.

friction is considered. To this free body apply eq. (7) of 74,
for any instant of any curvilinear motion of a material point

vdv (tang, acceleration) X ds, . . . . (1)'

in which ds = a small portion of the path, and is described in

the time dt. Now the tang, accel. = J(tang. compons. of the

acting forces) -f- mass of lamina, i.e.,

tang. ace. = *
-=-

g
(2)

Now, Fig. 535, at a definite instant of time, conceive the

volume of water in the pipe to be subdivided into a great
number of laminae of equal mass (which implies equal volumes

FIG. 535.

in the case of a liquid, but not with gaseous fluids), and let the

ds just mentioned for any one lamina be the distance from its

centre to that of the one next ahead
;
this mode of subdivision
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makes the ds of any one lamina identical in value with its

thickness ds'
, i.e.,

have also

ds cos </>
= dz] or ds' cos = da

;
. . (4)

z being the height of the centre of a lamina above any con-

venient horizontal datum plane. Substituting from (2), (3),

and (4) in (1), we derive finally

vdv + ^dp + dz = 0. . (5V
7

9 >
The flow being steady, and the subdivision into laminae

being of the nature just stated, each lamina in some small time

dt moves into the position which at the beginning of dt was

filled by the lamina next ahead, and acquires the same velocity,

the same pressures on itsfaces, and the same value of z, that

thefront lamina had at the beginning of dt.

Hence, considering the simultaneous advance made by all

the laminae in this same dt, we may write out an equation like

(5) for each of the laminae between any two cross-sections n and

m of the pipe, thus obtaining an infinite number of equations,

from which by adding corresponding terms, i.e., by integra-

tion, we obtain

whence, performing the integrations and transposing,

vm
*

Pm\, _ vn
, Pn , , ( Bernoullis

\ m
~2g~'~y~

m
~"ty "y~"~

n *

'( Theorem \

'

Denoting by Potential Head the vertical height of any section

of the pipe above a convenient datum level, we may state

Bernoulli's Theorem as follows :

In steady flow without friction, the sum of the velocity-

head, pressure-head, and potential head at any section of the

pipe is a constant quantity, being equal to the sum of the cor-

responding heads at any other section.
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It is noticeable that in eq. (7) each of the terms is a linear

quantity, viz., a height, or head, either actual, such as zn and

zm ,
or ideal (all the others), and does not bring into account the

absolute size of the pipe, nor even its relative dimensions (vm
and vn , however, are connected by the equation of continuity
Fmvm Fnvn\ and contains no reference to the volume of

water flowing per unit of time \_Q] or the shape of the pipe's

axis. "When the pipe is of considerable length compared with

its diameter the friction of the water on the sides of the pipe
cannot be neglected ( 512).

It must be remembered that Bernoulli's Theorem does not

hold unless the flow is steady^ i.e., unless each lamina, in com-

ing into the position just vacated by the one next ahead (of

equal mass), conies also into the exact conditions of velocity
and pressure in which the other was when in that position.

[N.B. This theorem can also be proved by applying to all

the water particles between n and m, as a collection of small

rigid bodies (water being incompressible) the theorem of Work
and Energy for a collection of Rigid Bodies in 142, eq. (xvi),

taking the respective paths which they describe simultaneously
in a single dt.~\

493. First Application of Bernoulli's Theorem without Friction.

Fig. 536 shows a large tank from which a vertical pipe of

uniform section leads to another tank and dips below the sur-

face of the water in the latter. Both surfaces are open to the

air. The vessels and pipe being filled with

water, and the lower end m of the pipe un-

stopped, a steady flow is established almost

immediately, the surface BC being very

large compared with F, the area of the (uni-

form) section of the pipe. ,

Given F, and the heights h
Q and A, re-

quired the velocity vm of the jet at m and

also the pressure, pn ,
at n (in pipe near en-

trance of same), m is in the jet, just clear

of the pipe, and practically in the water-

level, AD. The velocity vm is unknown,
but the pressurepm is practically =pa = one atmosphere, since

FIG. 536.
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the pressure on the sides of the jet is necessarily the hydro-
static pressure due to a slight depth below the surface AD.

.*. Press.-head at m is = = I = 34 feet. . . '( 423)
y y

Now apply Bernoulli's Theorem to sections m and n, taking
a horizontal plane through m as a datum plane for potential

heads, so that zn = h and zm = 0, and we have

(1)

But, assuming that the section of the pipe is filled at every

point, we must have

for, in the equation of continuity

j7 v __ 2? v

if we put Fm = Fn ,
the pipe being of uniform section, we ob-

tain vm = vn Hence eq. (1) reduces to

2 = b - h = 34 ft. - h.

y
(2)

Hence the pressure at n is less than one atmosphere, and if a

small tube communicating with an air-tight receiver full of air

were screwed into a small hole at n, the air in

the receiver would gradually be drawn off until

its tension had fallen to a valuepn . [This is the

principle of SprengeVs air-pump, mercury, how-

ever, being used instead of water, as for this

heavy liquid & = only 30 inches.]

If h is made > & for water, i.e. > 34 feet (or

> 30 inches for mercury), pn would be negative
from eq. (2), which is impossible, showing that

the assumption of full pipe-sections is not borne

out. In this case, h > &, only a portion, mri
',

(in length somewhat less than &,) of the tube will be kept full

FIG. 537.
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during the flow (Fig. 537); while in the part AV vapor of

water, of low tension corresponding to the temperature

{ 469), will surround an internal jet which does not fill the

pipe. As for the value of vm ,
Bernoulli's Theorem, applied

to BC and w, in Fig. 536, gives finally vm = V%gh .

EXAMPLE. If h = 20 feet, Fig. 536, and the liquid is water,

the pressure-head at n is (ft., lb., sec.)

* = b - h = 34' - 20' = 14 ft.,

r

and therefore

pn =14x 62.5 = 875 Ibs. per sq. ft. = 6.07 Ibs. per sq. in.

494. Second Application of Bernoulli's Theorem without Fric-

tion. Knowing by actual measurement the open piezometer

height yn at the section n in

Fig. 538 (so that the pressure-
B ^-

head, = I -f- yn ,
at n is

r
known) ; knowing also the

vertical distance hn from n
to m, and the respective

cross-sections Fn and m̂ (Fm being the sectional area of the

jet, flowing into the air, so that =
&), required the volume

of flow per sec.; i.e., required Q, which

= Fnvn = Fmvm . (1}
4

n n m m \ /

The pipe is short, with smooth curves, -if any, and friction

will therefore be neglected. From Bernoulli's Theorem [eq.

(7), 492J, taking m as a datum plane for potential heads, we
have

But from (1) we have
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substituting which in (2) we obtain, solving for vr

and hence the volume per unit of time becomes known, viz.>

Q = Fmvm . ...... ''. (4)

. If the cross-section Fm of the nozzle, or jet, is > Fn /

vm becomes imaginary (unless yn is negative (i.e., pn < one at-

mos.), and numerically > hn ) ;
in other words, the assigned

cross-sections are not filled by the flow.

EXAMPLE. If yn 17 ft. (thus showing the internal fluid

pressure at n to be pn = y(yn + ft)
=

1-J- atmos.), An = 10 ft.,

and the (round) pipe is 4 inches in diameter at n and 3 inches

at the nozzle m, we have from (3) (using ft.-lb.-sec. system of

units in which g 32.2)

4/2x32.2(17- L0)_ =^

[N.B. Since Fm -r- 7^ is a ratio and therefore an abstract

number, the use of the inch in the ratio will give the same

result as that of the foot.]

Hence, from (4),

Q = Fmvm = %7c(-fzJ X 50.4 = 2.474 cub. ft. per sec.

495. Orifices in Thin Plate, Fig. 539. When efflux takes

place through an orifice in a thin plate, i.e., a sharp-edged

orifice in the plane wall of a tank, a contracted vein (or
" vena
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contracta") is formed, the filaments of water not becoming

parallel until reaching a plane, w,

parallel to the plane of vessel wall,

which for circular orifices is at a dis-

tance from the interior plane of vessel

wall equal .to the radius of the circular

aperture ;
and not until reaching this

plane does the internal fluid pres-

sure become equal to that of the sur-

rounding medium (atmosphere, here),
FlG- 539 -

i.e., surrounding the jet. We assume that the" width of the

orifice is small compared with A, unless the vessel wall is

horizontal.

The area of the cross-section of the jet at m, called the con-

tracted section, is found on measurement to be from .60 to .64

of the area of the aperture with most orifices of ordinary

shapes, even with widely different values of the area of aper-

ture and of the height, or head, A, producing the flow. Call-

ing this abstract number [.60 to .64] the Coefficient of Con-

traction, and denoting it by C, we may write

Fm =GF,

in which. F= area of the orifice, and Fm = that of the con-

tracted section. C ranges from .60 to .64 with circular*orifices,

but may have lower values with some rectangular forms. (See
table in 503.)

A lamina of particles of water is under atmospheric

pressure at n (the free surface of the water in tank or reser-

voir), while its velocity at n is practically zero, i.e. vn =
(the surface at B being very large compared with the area of

orifice). It experiences increasing pressure as it slowly de-

scends until in the immediate neighborhood of the orifice,

when its velocity is rapidly accelerated and pressure decreased,

in accordance with Bernoulli's Theorem, and its shape length-

ened out, until finally at m it forms a portion of a filament of

a jet, its pressure is one atmosphere, and its velocity, = vm ,

we wish to determine. The course of this lamina we call a
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" stream-line" and Bernoulli's Theorem is applicable to it,

just as if it were enclosed in a frictionless pipe of the same

form. Taking then a datum plane through the centre of m,
we have

while

= 0, and i>w =?;

- also =b, zn = h, . and vn = 0.

Hence Bernoulli's Theorem gives

(1)

and

That is, ^0 velocity of the jet at m is theoretically the same as

that acquired ~by a body falling freely in vacuo through a

height =h= the " head of water." We should therefore ex-

pect that if the jet were directly ver-

tically upward, as at m, Fig. 540,

a height
j! _

would be actually attained. [See
52 and 53.] Experiment shows

that the height of the jet (at m)
does not materially differ from h if

h is not > 6 or 8 feet. For h > 8 ft., however, the actual height
reached is < A, the difference being not only absolutely but

relatively greater as h is taken greater, since the resistance of

the air is then more and more effective in depressing and

breaking up the stream.

At m', Fig. 540, we have a jet, under a head = A', directed

FIG. 540.
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at an angle <* with the horizontal. Its form is a parabola

( 81), and the theoretical height reached is h" = ti sin
a a

( 80)-
_

The jet from an orifice in thin plate is very limpid and clear.

From eq. (1), we have theoretically

vm =

(an equation we shall always use for efflux into the air through

orifices and shortpipes in the plane wall of a large tank whose

water-surface is very large compared with the orifice, and is

open to the air), but experiment shows that for an "
orifice in

thin plate" this value is reduced about 3$ by friction at the

edges, so that for ordinary practical purposes we may write

vm = (f>V~fyh = Q.WV'fyh, .... (2)

in which is called the coefficient of velocity.

Hence the volume of flow, Q, per time-unit will be

~ Q = Fmvm = CF(f> Vfyh, on the average = Q.^FVltyh. (3)

" e

It is to be understood that the flow is steady, and that the

reservoir surface (very large) and the jet are both under at-

mospheric pressure. 0(7 is called the coefficient of efffax*

EXAMPLE 1. Fig. 539. Required the velocity of efflux,

vm ,
at m, and the volume of the flow per second, Q, into the

air, if h = 21 ft. 6 inches, the circular orifice being 2 in. in

diam.
;
take C= 0.64. [Ft., lb., and sec.]

From eq. (2),

vm = 0.97 1/2 X 32.3 X 21.5 = 36.1 ft. per sec.
;

hence the discharge is

Q =Fmvm = 0.64 X fu|j X 36.1 = 0.504 cub. ft. per second.

EXAMPLE 2. [Weisbach.] Under a head of 3.396 metres

the velocity vm in the contracted section is found by measure-
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ments of the jet-curve to be 7.98 metres per sec., and the dis-

charge proves to be 0.01825 cub. metres per sec. Required
the coefficient of velocity (0) and that of contraction ((7), if

the area of the orifice is 36.3 sq. centimetres.

Use the metre-Jcilogram-second system of units, in which

g 9.81 met. per sq. second.

From eq. (2),

V 2g/i V2 X 9.81 + 3.396

while from (3) we have

xv vis vi^ v/-LO^O s^ s*t*.^O= %_ = -~- = = = 0.631.

F<t> V %y/i
^vm ttfiftr X 7.98

and (7, being abstract numbers, are independent of the sys-

tem of concrete units adopted.

NOTE. To find the velocity vm of the jet at the orifice by
measurements of the jet-curve, as mentioned in Example 2,

we may proceed as follows : Since we cannot very readily as-

sure ourselves that the direction of the jet at the orifice is

horizontal, we consider the angle a
a
of the parabola (see Fig.

93 and 80) as unknown, and therefore have two unknowns

to deal with, and obtain the necessary two equations by meas-

uring the x and y (see page 84) of two points of the jet, re-

membering that if we use the equation (3) of page 84 in its

present form points of the jet below the orifice will have nega-

tive 2/'s. The substitution of these values x
l ,

o?
2 , y l ,

and ?/2

in equation (3) furnishes two equations between constants, in

which only a and A are unknown. To eliminate or
, for

we write 1 4- tan
3 a

,
and taking a?

2
= %x

l
for COIL-

COS a

venience, we finally obtain

h^-.^-^- ^V~^ '
aTld "'* Vm ~\/ Q~ >

in which y l
and y2

are the vertical distances of the two points
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chosen "below the orifice
;
that is, we have already made them

negative in eq. (3) of page 84. The h of the preceding equa-

tion simply denotes vm
*

-r- 2^, and must not be confused with

that of the last two figures. For accuracy the second point

should be as far from the orifice along the jet as possible.

496, Orifice with Bounded Approach. Fig. 541 shows the

general form and proportions of an orifice or mouth-piece in

the use of which contraction does not

take place beyond the edges, the inner

surface being one u of revolution," and

so shaped that the liquid filaments are

parallel on passing the outer edge m;
hence the pressure-head at m is = b

(= 34 ft. for water and 30 inches for

mercury) in Bernoulli's Theorem, if

efflux takes place into the air. We
have also the sectional area Fm F= that of final edge of

orifice, i.e., the coefficient of contraction, or (7,
= unity = 1.00,

so that the discharge per time-unit has a volume

\ ^*1
Q _ TT v _ jfv*& * m um <* "m* \4f

*' n '

The tank being large, as in Fig. 540, Bernoulli's Theorem

applied to m and n will give, as before,

FlG - 541 -

v=
as a theoretical result, while practically we write

and

(1)

As an average is found to differ little from 0.97 with this

orifice, the same value as for an orifice in thin plate ( 495).

497. Problems in Efflux Solved by Applying Bernoulli's

Theorem. In the two preceding paragraphs the pressure-

heads at sections m and n were each =jpa -f- y = height of
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the liquid barometer = b
;
but in the following problems this

will not be the case necessarily. However, efflux is to take

place through a simple orifice in the side of a large reservoir,

whose upper surface (n) is very large, so that vn may be put
= zero.

Problem I. Fig. 542. What is the velocity of efflux, vm ,
at

the orifice m (i.e., at the contracted sec-

tion, if it is an orifice in thin plate)

of a jet of water from a steam-boiler, if

the free surface at n is at a height = h

above m, and the pressure of the steam

over the water is pn ,
the discharge tak-

ing place into the air?

Applying Bernoulli's Theorem to sec-

Fio.648. tion m at the orifice [where the pres-

sure-head is ~b and velocity-head vm
*

-f- 2g (unknown)] and to

section n at water-surface (where velocity-head = and pres-

sure-head =pn
- y\ we have, taking m as a datum for poten-

tial heads so that zm and zn k<

(i>
v

EXAMPLE. Let the steam-gauge read 40 Ibs. (and hence

pn = 54.7 Ibs. per sq. inch) and A = 2 ft. 4 in.
; required vm .

Also if J^= 2 sq. in., in thin plate, the volume of discharge

per sec. = Q = ? For variety, use the inch-lb.-second system
of units, in which g 386.4 inches per sq. second, while

I = 408 inches, and the heaviness of water, y, [62.5 -f- 1728]
Ibs. per cubic inch. Hence, from eq. (1),

vm = A /2 X 386.4F- n^-j:^ - 408 + 28~]= J
935 '3 i

y L62.5 H- 1728 J ( per sec.

in.

theoretically ;
but practically
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vm = 935.3 X 0.97 = 907 in. per sec.,

so that the rate of discharge (volume) is

Q = 0.64 F<om = 0.64 X 2 X 907 = 1160.96 cub. in. per sec.

Problem II. Fig. 543. "With what velocity, vm ,
will water

flow into the condenser C of a steam-engine where the tension

of the vapor is pm9 < one atmosphere, if

h = the head of water, and the flow takes

place through an orifice in thin plate?

Taking position m in the contracted section

where the filaments are parallel, and the

pressure therefore equal to that of the sur-

rounding vapor, viz.,j?TO ,
and position n in

the (wide) free surface of the water in the

tank, where (at surface) the pressure is one FIG. 543.

atmosphere [and /. ^ = I = 34 ft.] and velocity practically

zero
;
we have, applying Bernoulli's Theorem to n and m, tak-

ing m as a datum level for potential heads (so that zn = h and

-si. . . a>
V

and

as theoretical results. But practically we must write

and

in which JP= area of orifice in thin plate, and C= coefficient

of contraction about 0.62 approximately [see 495].
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EXAMPLE. If in the condenser there is a "vacuum" of 2TJ
inches (meaning that the tension of the vapor would support

2^- inches of mercury, in a barometer), so that

Pm = [|f X 14.7] Ibs. per sq. inch, and Ji 12 feet,

while the orifice is inch in diameter
;
we have, using the ft.,

lb., and sec.,

X 32.2
X

= 51.1 ft. per sec. v

(We might also have written, for brevity,

^ =
[2J- : 30] X 34 = 2.833,

since the pressure-head for one atmos. = 34 feet, for water.

Hence, for a circular orifice in thin plate, we have the volume

discharged per unit of time,

Q = CFv = 0.62 X ?fJsV-X 51.1 = 0.0431 cub. ft. per sec.
4: \1^'

497. Efflux through an Orifice in Terms of the Internal and

External Pressures. Fig. 544. Let efflux take place through
a small orifice from the plane side of a large tank, in which at

the level of the orifice the hydrostatic pressure was =p' be-

fore the opening of the orifice, that of the medium surround-

ing the jet being =p". "When a steady flow

is established, after opening the orifice, the

pressure in the water on a level with the ori-

fice will not be materially changed, except in

tE.||::f
the immediate neighborhood of the orifice [see

^Srlj 495] ; hence, applying Bernoulli's Theorem
'

to m in the jet, where the filaments are parallel,

and a point ^, in the body of the liquid and

at the same level as wi, and where the particlesFIG. 544.

are practically at rest [i.e., vn = 0] (hence not too near the



FORCE-PUMP. 667

orifice), we shall have, cancelling out the potential heads which

are equal,

T. . . . (I/

(In Fig. 544 p' would be equal to pa -\- hy.) Eq. (1) is con-

veniently applied to the jet produced by
a force-pump, supposing, for simplicity,

the orifice to be in the head of thepump-
cylinder, as shown in Fig. 545. Let the

thrust (force) exerted along the piston-

rod be = P, and the area of the piston

be = F' . Then the intensity of internal

pressure produced in the chamber AB
(when the piston moves uniformly) is

P

FIG. 545.

while the external pressure in the air around the jet is simply

pa (one atmos.).

Tto (1)'

(KB. Of course, at points near the orifice the internal

pressure is < p'\ read 495.)

EXAMPLE. Let the force, or thrust, P, [due to steam-pres-

sure on a piston not shown in figure,] be 2000 Ibs., and the

diameter of pump-cylinder be d = 9 inches, the liquid being
salt water (so that y 64 Ibs. per cubic foot).

Then

Fr = **(&)' = 0.442 sq. ft.,

and [ft., lb., sec.]
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vm =
0.97^/2

X 32.2 x gjj^ - 65.4 ft. per sec.

If the orifice is well rounded, with a diameter of one inch,

the volume discharged per second is

Q = Fmvm = Fvm = (i)*X
65.4 = 0.353 cub. ft. per sec.

To maintain steadily this rate of discharge, the piston must

move at the rate [veloc. = v'~\ of

v'=Q + F' = .353 -T- ~ = 0.806 ft. per sec.,

and the force P must exert a,power ( 130) of

L = Pv f = 2000 X 0.816 = 1632 ft. Ibs. per sec.

= about 3 horse-power (or 3 H. P.).

If the water must be forced from the cylinder through a

pipe or hose before passing out of a nozzle into the air, the

velocity of efflux will be smaller, on account of "fluid fric-

tion" in the hose, for the same P\ such a problem will be

treated later [ 513]. Of course, in a pumping-engine, by the

iise of several pump-cylinders, and of air-chambers, a practically

steady flow is kept up, notwithstanding the fact that the mo-

tion of each piston is not uniform, and must be reversed at the

end of each stroke.

498. Influence of Density on the Velocity of Efflux in the Last

Problem. From the equation

of the preceding paragraph, wherep" is the external pressure

around the jet, and p' the internal pressure at the same level

as the orifice but well back of it, where the liquid is sensibly
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at rest, we notice that for the same difference of pressure

[p'p
rr
\ the velocity of efflux is inversely proportional to the

square root of the heaviness of the liquid. Hence, for the

same (p
f

p"\ mercury would flow out of the orifice with a

velocity only 0.272 of that of water
;
for

:5 = / 1
. 272

:8

"
V 13.5 1000'

Again, assuming that the equation holds good for the flow of

gases (as it does approximately when^' does not greatly exceed

p"; e.g., by 6 or 8 per cent), the velocity of efflux of atmospheric

air, when at a heaviness of 0.807 Ibs. per cub. foot, would be

times as great as for water, with the same p' p". (See

548, etc.)

rl:ViR-

499. Efflux under Water. Simple Orifice. Fig. 546. Let

and A2 be the depths of the (small) ori-

fice below the levels of the " head " and
"
tail

" waters respectively. Then, using
the formula of 457, we have for the

pressure at n (at same level as m, the

jet)

FIG. 546.
and for the external pressure, around

the jet at m,

whence, theoretically,

where h = difference of level between the surfaces of the two

bodies of water.
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Practically, vm = (2)

but the value of for efflux under water is somewhat uncer-

tain
;
as also that of C, the coefficient of contraction. Weis-

bach says that /*,
= 06

Y

,
is

-^-g- part less than for efflux into the

air
; others, that there is no difference (Trautwine). See also

p. 389 of vol. 6, Jour, of Engin. Associations, where it is

stated that with a circular mouth-piece of 0.37 in. diam., and

of "
nearly the form of the vena contracta" p was found to be

.952 for discharge into the air, and .945 for submerged dis-

charge.

500. Efflux from a Small Orifice in a Vessel in Motion.

CASE I. When the motion is a vertical translation and uni-

formly accelerated. Fig. 547. Suppose the vessel to move up-

ward with a constant acceleration p.

(See 49a.) Taking m and n as in the

two preceding paragraphs, we know that

pm =p" = external pressure one at-

FIG. 547.

mos. =pa (and /. & J). As to the

internal pressure at n (same level as m,
but well back of orifice), pn ,

this is not

equal to (b+ h)y, because of the acceler-

ated motion, but we may determine it by considering free the

vertical column or prism On of liquid, of cross-section = dF,
the vertical forces acting on which are padF, downward at 0,

pndF upward at n, and its weight, downward, lidFy. All

other pressures are horizontal. For a vertical upward acceler-

ation =p, the algebraic sum of the vertical components of all

the forces must = mass X vert, accel.,

i.e.,

whence

(1)

Putting pn and pa equal to the p' and j9
r/

, respectively, of

the equation, we have
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of 497,

(2)

It must be remembered that vm is the velocity of the jet rel-

atively to the orifice, which is itself in motion with a variable

velocity. The absolute velocity wm of the particles of the jet
is found by the construction in 83, being represented graph-

ically by the diagonal of a parallelogram one of whose sides is

vm ,
and the other the velocity c with which the orifice itself is

moving at the instant, as part of the vessel. The jet may
make any angle with the side of the vessel.

On account of the flow the internal pressures of the water

against the vessel are no longer balanced horizontally, and the

latter will swing out of the vertical unless properly constrained.

Ifp g = acc. of gravity, vm = V 2 V 2gh.
v If p is nega-

tive and = g, vm ; i.e., there is no flow, but both the vessel

and its contents fall freely, without mutual action.

CASE II. When the liquid and the vessel both have a uni-

form rotary motion about a vertical axis with an angular veloc-

ity
= GO

( 110). Orifice small, so that we may consider the

liquid inside (except near the orifice) to

be in relative equilibrium. Suppose the

jet horizontal at m, Fig. 548, and the

radial distance of the orifice from the

axis to be = x. The external pressure

pm = pa ,
and the internal [see 428,

eqs. (3) and (4)] is

G0V

FIG. 548.

hence the velocity of the jet, relatively to the orifice, is (from

497, since pn and pm correspond to the p
f and p" of that

article),

Apn~Pm}_
<*)',
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(3)

in which w, = cox,
= the (constant) linear velocity of the ori-

fice in its circular path. The absolute velocity wm of the par-
ticles in the jet close to the orifice is the diagonal formed on

w and vm ( 83)/ Hence by properly placing the orifice in the

casing, wm may be made small or large', and thus the kinetic

energy carried away in the effluent water be regulated, within

certain limits. Equation (3) will be utilized subsequently in

the theory of Barker's Mill.

EXAMPLE. Let the casing make 100 revol. per min. (whence
G? = [2?rlOO -r- 60] radians per sec.), A = 12 feet, and x = 2

ft.
;
then (ft., lb., sec.)

Vm = % X 32.2 X 12 + = 34.8 ft per sec.

(while, if the casing is not revolving, vm = V2gh = only 27.8

ft. per sec.).

If the jet is now directed horizontally and backward, and

also tangentially to the circular path of the centre of the orifice,

its absolute velocity (i.e., relatively to the earth) is

wm = vm cox= 34.8 20.9 = 13.9 ft. per sec.,

and is also horizontal and backwards. If the volume of flow

is Q = 0.25 cub. feet per sec., the kinetic energy earned away
with the water per second ( 133) is

ft. Ibs. per second = 0.085 horse-power.

501. Theoretical Efflux through Rectangular Orifices of Con-

siderable Vertical Depth, in a Vertical Plate. If the orifice is

so large vertically that the velocities of the different filaments

in a vertical plane of the stream are theoretically different, hav-

ing different " heads of water," we proceed as follows, taking
into account, also, the velocity of approach, c, or mean velocity
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(if any appreciable), of the water in the channel approaching
the orifice.

Fig. 549 gives a section of the side of the tank and orifice.

Let b = width of the rectangle, the sills of the latter being

horizontal^ and a = A2 A, ,
its height. Disregarding con-

traction for the present, the theoretical volume of discharge

per unit of time is equal to the

sum of the volumes like v^dF
( vjbdx), in which vm = the

velocity of any filament, as m,
in the jet, and bdx = cross-sec-

tion of the small prism which

passes through any horizontal

strip of the area of orifice, in a

unit of time, its altitude being
vm . For each strip there is a FIG. 549.

different x or " head of water," and hence a different velocity.

Now the theoretical discharge (volume) per unit of time is

/>*=/-

Q = sum of the volumes of the elem. prisms =J vmc

*dx.

But from Bernoulli's Theorem, if "k c* -^- 2g = the velocity-

head at 7i, the surface of the channel of approach nC,b being
the pressure-head of n, and x its potential head referred to m as

datum (!N~.B. This 5 = 34 ft. for water, and must not be con-

fused with the width 5 of orifice), we have [see 492, eq. (7)]

(2)'

and since dx = d(x+ Tc\ Jc being a constant, we have, from (1)'

and (2)',

Theoret. O = bV~
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or

Theoret. Q = &VTg [(A,+ ty - & + *)] - (I/

(b now denotes the width of orifice.) If c is small, the chan-

nel of approach being large, we have

Theoret. Q = $> Vty (hf hf) ...... (2)*'

(c being = Q -f- area of section of nC).
v

If A
x
= 0, i.e., if the orifice becomes a notch in the side, or

an overfall [s.ee Fig. 550, which shows the contraction which

actually occurs in all these cases], we have for an overfall

Theoret. Q=& 2g\_(h,+ &)1
- #J (3)

NOTE. Both in (1) and (2) h, and A
2 are the vertical depths.

... . .. . .-. -.v .
^ the respective sills of the orifice

from the surface of the water

three orfourfeet ~back of the plane

of the orifice, where the surface is

comparatively level. This must

be specially attended to in deriv-

Fl - 55 -

ing the actual discharge from the

theoretical (see 503).

If Q were the unknown quantity in eqs. (1) and (3) it would

be necessary to proceed by successive assumptions and ap-

proximations, since Q is really involved in &
;
for

and
~

(where F^ is the sectional area of the channel of approach nC\
With Tc = (or c very small, i.e., Fn very large), eq. (3) re-

duces (for an overfall) to

Theoret. Q = |5A2 Vfyh, , ...... (3J)
'

or $ as much as if all parts of the orifice had the same head of

water = A2 (as for instance if the orifice were in the horizontal

bottom of a tank in which the water was A
2 deep, the orifice

having a width = b and length = A
a).
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502, Theoretical Efflux through a Triangular Orifice in a Thin

Vertical Plate or Wall. Base Horizontal. Fig. 551. Let the

channel of approach be so large that the velocity of approach

may be neglected, h^ and A
2
= depths of sill and vertex,

which is downward. The analysis- differs from that of the

preceding article only in having k = and the length u, of a

horizontal strip of the orifice, variable
;
5 being the length of

the base of the triangle. From similar triangles we have

x
-(A,-*).

/. Theoret. Q = fvmdF=fvmudx=

and finally, substituting from eq. (2)' of 501, with Jc = 0,

FIG. 551.

Theoret. Q =

FIG. 552.

For a triangular notch as in Fig. 552, this reduces to

Thewet. =
15 2

(5)'

i.e., ^ of the volume that would be discharged per unit of
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time if the triangular orifice witli base b and altitude A
2 were

cut in the horizontal bottom of a tank under a head of h
t

The measurements of ^
2 and b are made with reference to the

level surface back of the orifice (see figure) ;
for the water-

surface in the plane of the orifice is curved below the level

surface in the tank.

Prof. Thomson has found by experiment that with

1) = 2A
2 ,

the actual discharge theoret. disch. X 0.595
;
and

with I = 4A
2 ,

actual = theoret. disch. X 0.620.

503. Actual Discharge through Sharp-edged Rectangular Ori-

fices (sills horizontal) in the vertical side of a tank or reservoir.

CASE I. Complete and Perfect Contraction. The actual

volume of water discharged per unit of time is much less than

the theoretical values derived in 501,

chiefly on account of contraction. By
complete contraction we mean that no

edge of the orifice is flush with the

side or bottom of the reservoir
;
and

by perfect contraction, that the channel

of approach, to whose surface the

heads h
l
and 7*

2 are measured, is so

large that the contraction is practically

the same if the channel were of infi-

nite extent sideways and downward
from the orifice.

For this case (A, not zero) it is found most convenient to

use the following practical formula (b
= width) :

Actual Q = / +

in which (see Fig. 553) a = the height of orifice, h l
= the ver-

tical depth of the upper edge of the orifice below the level of

the reservoir surface, measured afewfeet back of the plane of
the orifice, and /* is a coefficient of efflux (an abstract number),

dependent on experiment.
With /i

= 0.62 approximate results (within 3 or 4 per cent)

may be obtained from eq. (6) with openings not more than
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18 inches, or less than 1 inch, high ;
and not less than 1 inch

wide; with heads
(h, + -\ from 1 ft. to 20 or 30 feet.

EXAMPLE. What is the actual discharge (volume) per min-

ute through the orifice in Fig. 553, 14 inches wide and 1

foot high, the upper sill being 8 ft. 6 in. below the surface of

still water ? Use eq. (6) with the ft., lb., and sec. as units, and

/*
= 0.62.

Solution :

Q = 0.62 X 1 XH X V2 X 32.2[8J+^]m 17.41 cub. ft. per. sec.

while theflow of weight is

G = Qy = 17.41 X 62.5 = 1088 Ibs. per second.

Poncelet and Lesbros* Experiments. For comparatively ac-

curate results, values of // taken from the following table

(computed from the careful experiments of Poncelet and Les-

bros) may be used for the sizes there given, and, where prac-

ticable, for other sizes by interpolation. To use the table, the

values of A
t , #, and b must be reduced to metres, which can be

done by the reduction-table below
;
but in substituting in eq.

(6), if the metre-kilogram-second system of units be used g
must be put = 9.81 metres per square second (see 51), and Q
will be obtained in cubic metres per second.

Since /* is an abstract number, once obtained as indicated

above, it does not necessitate any particular system of units in

making substitutions in eq. (6). The ft., lb., and sec. will be

used in subsequent examples.

TABLE FOR REDUCING FEET AND INCHES TO METRES.

1
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TABLE, FROM PONCELET AND LESBROS.

VALUES OF //<>, FOR EQ. (6), FOR RECTANGULAR ORIFICES IN THIN PLATE.

(Complete and perfect contraction.)

Value of HH
Fig. 553 (in

metres).
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From the foregoing table,

for h, = 0.10m
-,

I = 0.60m - and a = 0.20m
-,
we find /*

= .602
"

h, = 0.10-, I = 0.20m- " a = 0.20m
-,

"
/*.
= .592

diff. = ."ulO

Hence, by interpolation,

for h, = 0.10m - J = 0.51m
-,
and a = 0.20m

-,
we have

V = 0.602 - A [-602 - 0.592] = 0.600.
v

Hence [ft., lb., sec.], remembering that /* is an abstract num-

ber, from eq. (6),

Q = 0.600 X X - 4.36

cub. ft. per second.

CASE II. Incomplete Contraction. This name is given to

the cases, like those shown in Fig. 554, where one or more

sides of the orifice have an interior border flush with the sides

or bottom of the (square-cornered) tank.

Not only is the general direction of the stream altered, but

the discharge is greater, on account of the larger size of the

contracted section, since contraction is prevented on those sides

which have a border. It is assumed that the contraction which

does occur (on the other edges) is perfect / i.e., the cross-sec-

tion of the tank is large, compared with the orifice. According
to the experiments of Bidone and

Weisbach with Poncelet's ori-

fices (i.e., orifices in thin plate

mentioned in the preceding table),

the actual volume discharged per
unit of time is

(7)

FIG. 554.
(differing from eq. (6) only in

the coefficient of efflux /*),
in which the abstract number >w is

found thus : Determine a coefficient of efflux ja as if eq. (6)

were to be used in Case I
; i.e., as if contraction were complete

and perfect ;
then write
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/ = /![! + 0.155 ], (7)'

where n = the ratio of the length of periphery of the orifice

with a border to the whole periphery.

E.g., if the lower sill, only, has a border,

while if the lower sill and both sides have a border,

w = (20+ &)-*- [2(0+ &)].

EXAMPLE. If h, = 8 ft. (= 2.43m
-),

I = 2 ft. (= 0.60m
-),

a = 4 in. (= 0.10m
-),

and one side is even with the side of

the tank, and the lower sill even with the bottom, required the

volume discharged per second. (Sharp-edged orifice, in ver-

tical plane, etc.)

Here for complete and perfect contraction we have, from

Poncelet's tables (Case I), /i = 0.608. Now n = i; hence,,

from eq. (7)',

= 0.608 [1+ 0.155 X i]= 0.6551 ;

hence, eq. (7),

Q = 0.655 X 2 X A V2x32.2(8+i.A)

= 10.23 cub. ft. per sec.

CASE III. Imperfect Contraction. If there is a submerged
channel of approach, symmetrically

placed as regards the orifice, and of

an area (cross-section),
= Gr

9
not

much larger than that, = F, of the

orifice (see Fig. 555), the contraction

is less than in Case I, and is called

imperfect contraction. Upon his

experiments with Poncelet's orifices,

with imperfect contraction, Weisbach.

bases the following formula for the discharge (volume) per
unit of time, viz.,

(8)

Fl - 555-
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(see Fig. 553 for notation), with the understanding that the co-

efficient

...... (8)'

where /< IB the coefficient obtained from the tables of Case I

(as if the contraction were perfect and complete), and ft an ab-

stract number depending on the ratio F : G = ra, as follows :

= 0.0760 [9-- 1.00].

TABLE A.

To shorten computation Weisbach gives the following table

for/?:

EXAMPLE. Let h, = V 9J-" (= 1.46

met.), the dimensions of the orifice

being

width = b = 8 in. (= 0.20m
-);

height = a = 5 in. (= 0.126m
-) ;

while the channel of approach (CD,

Fig. 555) is one foot square. From
Case I, we have, for the given di-

mensions and head,

m.
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appreciable, not only is the contraction imperfect, but

strictly we should use eq. (1) of 501, in

which the velocity of approach is considered.

Let F= area of orifice, and G that of the

cross-section of the channel of approach ;

then the velocity of approach is c = Q -f- G,

and ~k (of above eq.)
= c

2

-f- 2^ = Q' -f- 2^
2

;

but Q itself being unknown, a substitution of

~k in terms of Q in eq. (1), 501, leads to an

equation of high degree with respect to Q.

Practically, therefore, it is better to write

(9)

and determine fit by experiment for different values of the

ratio F-- G. Accordingly, "Weisbach found, for Poncelet's

orifices, that if j* is the coefficient for complete and perfect

contraction from Case I, we have

l = /i.(l + /8')....... (9)'

ft' being an abstract number, and being thus related tof-T- G,

= 0.641 (9)"

h^ was measured to the surface one metre back of the plane of

the orifice, and F : G did not exceed 0.50.

Weisbach gives the following table computed from eq. (9)" :

TABLE B. EXAMPLE. A rectangular water-trough 4 ft.

wide is dammed up with a vertical board in

which is a rectangular orifice, as in Fig. 556, of

width b = 2 ft. (= 0.60 met.), and height a = 6

in. (= 0.15 met.) ;
and when the water-level be-

hind the board has ceased rising (i.e., when the

flow has become steady), we find that h
1
= 2 ft.,

and the depth behind in the trough to be 3 ft.

Kequired Q.
Since F: G = l sq. ft. -r- 12 sq. ft. = .0833,

we find (Table B) ft' 0.005
;
and ^ being = 0.612 from Pon-

celet's tables, Case I, we have finally, from eq. (9),

F-t-G.
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Q = 0.612(1.005) 2 xi V2 X 32.2 X 2.25

= 7.41 cub. f-t. per second.

504. Actual Discharge of Sharp-edged Overfalls (Overfall-

weirs; or Rectangular Notches in a Thin Vertical Plate),

CASE I. Complete and Perfect Contraction (the normal

case), Fig. 557
; i.e., no edge is flush

with the side or bottom of the

reservoir, whose sectional area is

very large compared with that, &A3 ,

of the notch. By depth, A
2 ,

of the

notch, we are to understand the

depth of the sill Mow the surface
afewfeet back of the notch where

it is level. In the plane of the

notch the vertical thickness of the stream is only from J to
-^j-

of A
2 . Putting, therefore, the velocity of approach = zero,

and hence k = 0, in eq. (3) of 501, we have for the

FIG. 557.

Actual Q = ^ |JA2 1/2</A2 ,
. . . ... (10)

(b = width of notch,) where // is a coefficient of efflux to be

determined by experiment.

Experiments with overfalls do not agree as well as might be

desired. Those of Poncelet and Lesbros gave the results in

Table C.

EXAMPLE 1. With

A
2
= 1 ft. 4 in. (= .405m

-),

I 2 ft. (= 0.60m
-),

we have, from Table C, /* = .586,

and (ft., lb., sec.)

TABLE C.

4/2X32.2XI

9.54 cub. ft. per sec.

EXAMPLE 2. What width, 5,

must be given to a rectangular notch, for which 7i
2
= 10 in.

(= 0.25m
-),

that the discharge may be Q = 6 enb. feet per sec.?

For 6 =
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Since b is unknown, we cannot use the table immediately,,
but take //

= .600 for a first approximation ; whence, eq. (10),

(ft., lb., sec.,)

o = 6

0.6 X 1 X if t/2 X 32.2 X
= 2.46 ft.

Then, since this width does not much exceed 0.60 metre,

we may take, in Table C, for Aa
= 0.25 met., /* = .589 ;

I = 6

.589 X I X X 32.2 X
= 2.50 ft.

CASE II. Incomplete Contraction' i.e., both ends are flush

with the sides of the tank, these being ~\ to the plane of the

notch. According to "Weisbach, we may write

. , . . iH* (11)

in which / = 1.041/ , /i being obtained from Table C for the

normal case, i.e., Case I. The section of channel of approach
is large compared with that of the notch

;
if not, see Case IV.

CASE III. Imperfect Contraction i.e., the velocity of ap-

proach is appreciable ; the sectional area G
of the channel of approach not being much

larger than that, F, = Ma
= area of notch.

Fig. 558. b = width, and Aa
= depth of

notch (see Case I). Here, instead of using
a formula involving

k = c
2

-T- 2^ = [Q 4- ay 4- 2^
FIG. 558.

(see eq. (3), 501), it is more convenient to put

as before, with

(12)

(12)'

in which ^ is for the normal case [Case I] ;
and /?, according
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to Weisbach's experiments, may be obtained from the empiri-

cal formula

(12)'

[Table D is computed from (12)".]

(The contraction is complete in this case
;

not flush with the sides of the tank.)

EXAMPLE. If the water in the channel of ap-

proach has a vertical transverse section of G = 9

sq. feet, while the notch is 2 feet wide (i.e.,

5 = 2') and 1 foot deep (A2
=

1') (to level of

surface of water 3 or 4 ft. back of notch), we

have, from Table C, with ~b = .60 met. and

A
2
= 0.30 met.,

/*.
= 0.586

;

while from Table D, withF : G = 0.222 (or f),

the ends are

TABLE D.

F
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ft
= 0.041 + 0.3693 g, .... (13)"

an empirical formula based by Weisbach on his own experi-

ments. To save computation, ft may be found from Table E,

founded on eq. (13)".

TABLE E.

F
G~
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. . (14)

in which l> = width.

This provides for incomplete contraction, as well as for com-

plete and perfect contraction, by making

n = 2 for perfect and complete contraction (Fig. 557) ;

n = 1 when one end only is flush with side of channel
;

n = when both ends are flush with sides of channel.

The contraction was considered complete and perfect when
the channel of approach was made as wide as practicable,
= 13.96 feet, the depth being about 5 feet.

Mr. Francis also experimented with submerged or " drowned"

weirs in 1883
;
such a weir being one in which the sill is be-

low the level of the tail-water (i.e., of receiving channel).

506. Fteley and Stearns' s Experiments at Boston, Mass., in 1877

and 1880. These may be found in the Transactions of the

American Society of Civil Engineers, vol. xii, and gave rise

to formulae differing slightly from those of Mr. Francis in

some particulars. In the case of suppressed end-contractions^

like that in Fig. 559, they propose formulae as follows :

When depth of notch is not large,

Q (in cub. ft. per sec.)
= 3.31 IhJ + 0.007 ~b . (15)

(b and A
2 both infeet\

"A
2 ,

the depth on the weir, should be measured from the sur-

face of the water above the curvature of the sheet."
" Air should have free access to the space under the sheet."

The crest must be horizontal. The formula does not apply to

depths on the weir less than 0.07 feet.

When the depth of notch is quite large, a correction must

be made for velocity of approach, <?,
thus :

Q (in cub. ft. per sec.)
= 3.31

&[\+ 1.5
|^-T+

0.007 b (16)

(b and A
2 both infeet).
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The channel should be of uniform rectangular section for

about 20 ft. or more from the weir, to make this correction

properly. If G = the cross-section, in sq. ft., of the channel

of approach, c is found approximately by dividing an approxi-

mate value of Q by G ;
and so on for closer results.

The weir may be of any length, 5, from 5 to 19 feet.

506a. Recent Experiments on Overfall-weirs in France. In

the Annales des Ponts et Chaussees for October 1888 is an

account of extensive and careful experiments conducted in

1886 and 1887 by M. Bazin on the flow over sharp-edged
overfall-weirs with end-contractions suppressed ; i.e., like that

shown in Fig. 559. The widths of the weirs ranged from

0.50 to 2.00 metres, and the depths on the weirs (A2) from

0.05 to 0.60 metre. With p indicating the height of the sill

of the weir from the bottom of the channel of approach, M.

Bazin, as a practical result of the experiments, recommends

the following formula as giving a reasonably accurate value

for the volume of discharge per unit of time :

. (IT)

where the coefficient // has a value

Eq. (17) is homogeneous, i.e., admits of any system of units.

Provision was made in these experiments for the free en-

trance of air under the sheet (a point of great importance),

while the walls of the channel of approach were continued

down-stream, beyond the plane of the weir, to prevent any
lateral expansion of the sheet. The value of p ranged from

0.20 to 2.00 metres.

Herr Bitter von Wex in his "
Hydrodynamik

"
(Leipsic,

1888) derives formulae for weirs, in the establishing of which

some rather peculiar views in the Mechanics of Fluids are

advanced.
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Formulae and tables for discharge through orifices or over

weirs of some forms not given here may be found in the

works of Weisbach, Rankine, and Trautwine.

Mr. Hamilton Smith, a rioted American hydraulic engineer,

has recently published
"
Hydraulics," a valuable compilation

and resume of the most trustworthy experiments in all fields

of hydraulics (New York, 1886: John Wiley & Sons).

507. Efflux through Short Cylindrical Tubes, When efflux

takes place through a short cylindrical tube, or " short pipe,"

at least 2^ times as long as wide,

inserted at right angles in the

plane side of a large reservoir,

the inner corners not rounded

(see Fig. 560), the jet issues

from the tube in parallel fila-

ments and with a sectional area
?

Fm , equal to that, F, of interior

of tube.

To attain this result, however,
'

Fl - 56 -

the tube must be full of water before the outer end is un-

stopped, and must not be oily ;
nor must the head, A, be

greater than about 40 ft. for efflux into the air. Since at m
the filaments are parallel and the pressure-head therefore equal

to b (= 34 ft. of water, nearly), = that of surrounding medium,
= head due to one atmosphere in this instance

;
an application

of Bernoulli's Theorem [eq. (7), 492] to positions m and n

would give (precisely as in 454 and 455)

.'!::*

ft;.'

1

v = veloc. at m =

as a theoretical result
;
but experiment shows that the actual

value of vm in this case is

= 0.815 (1)

0.815 being an average value for
,
the coefficient ofvelocity, for

ordinary purposes. It increases slightly as the head decreases,
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and is evidently muck less than the value 0.97 for an orifice in

a thin plate, 495, or for a rounded mouth-piece as in 496.

But as the sectional area of the stream where the filaments

are parallel, at m, where vm 0.815 V2yA, is also equal to that,

F, of the tube, the coefficient of efflux, ju ,
in the formula

is equal to
; i.e., there is no contraction, or the coefficient

of contraction, C, in this case = 1.00.

Hence, for the volume of discharge per unit of time, we
have practically

'

^_. . (2)

The discharge is therefore about greater than through an

orifice of the same diameter in a thin plate under the same

head [compare eq. (3), 495] ;
for although at m the velocity

is less in the present case, the sectional area of the stream is

greater, there being no contraction.

This difference in velocity is due principally to the fact that

the entrance of the tube has square edges, so that the stream

contracts (at ra', Fig. 561) to a

section smaller than that of the

tube, and then re-expands to the

full section, F, of tube. The

eddying and accompanying in-

ternal friction caused by this re-

expansion (or "sudden enlarge-

ment" of the stream) is the prin-

cipal resistance which diminishes
FIG. 561.

the velocity. It is noticeable, also, in

this case that the jet is not limpid and

clear, as from thin plate, but troubled

and only translucent (like ground-

glass). The internal pressure in the

stream at m' is found to be less than

one atmosphere, i.e. less than that at m,
as shown experimentally by the suck-

ing in
v
of air when a small aperture is made in the tube op-

Fm. 562.



INCLINED SHORT PIPES. 691

posite m' . If the tube itself were so formed internally as to

tit this contracted vein, as in Fig. 562, the eddying would be

diminished and the velocity at in increased, and hence the

volume Q of efflux increased in the same proportion. (See

509a.)

If the tube is less than 2J- times as long as wide, or if the

interior is not wet ~by the water (as when greasy), or if the head

is over 40 or 50 ft. (about), the efflux takes

place as if the tube were not there, Fig. 563,

and we have

vm = 0.97 Vfyh, as in 495.

EXAMPLE. The discharge through a short

pipe 3 inches in diameter, like that in Fig. 560,

is 30 cub. ft. per minute, under a head of

2' 6", reservoir large. Required the coefficient of efflux

// ,
==

,
in this case. For variety use the inch-pound-mirt,-

ute system of units, in which g 32.2 X 12 X 3600 (see Note,

51). /* , being an abstract number, will be the same numer-

ically in any system of units.

From eq. (2),

30 X 1728

x 32 ! 2 x 32.2 X 12 X 60
a X 30

= 0.803.

508. Inclined Short Tubes (Cylindrical). Fig. 564. If the

short tube is inclined at some angle
a < 90 to the interior plane of the

reservoir wall, the efflux is smaller than

when the angle is 90, as in 507.

We still use the form of equation

Q = fji

but from Weisbach's experiments p FIG. 564.

should be taken from the following table:
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TABLE F, COEFFICIENT OF EFFLUX (INCLINED TUBE).

For cr = 90
take j.i

= = .815
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TABLE G (CONICAL CONVERGING TUBES).

Angle of ) _ go 1Q
,

convergence f
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Mr. J. B. Francis also experimented with Yenturi's tube

(see
" Lowell Hydraulic Experiments"). See also p. 389 of

vol. 6 of the Journal of Engineering Societies, for experi-

ments with diverging short tubes discharging under water.

The highest coefficient (yw) obtained by Mr. Francis was 0.782.

509a. New Forms of the Venturi Tube. The statement made

in 507, in connection with Fig. 562, was based on purely
theoretic grounds, but has recently (Dec. 1888) been com-

pletely verified by experiments* conducted in the hydraulic

laboratory of the Civil Engineering Department at Cornell

University. Three short tubes of circular section, each 3 in.

in length and 1 in. in internal diameter at both ends, were ex-

perimented with, under heads of 2 ft. and 4 ft. Call them A,

B, and C. A was an ordinary straight tube as in Fig. 561
;

the longitudinal section of B was like that in Fig. 562, the

narrowest diameter being 0.80 in. [see 495
; (0.8)

2 = 0.64] ;

while C was somewhat like that in Fig. 566, being formed

like B up to the narrowest part (diameter 0.80 in.), and then

made conically divergent to the discharging end. The results

of the experiments are given in the following table :

Name of
Tube.

A
A



" FLUID FRICTION."

510. " Fluid Friction." By experimenting with the flow of

water in glass pipes inserted in the side of a tank, Prof. Rey-
nolds of England has found that the flow goes on in parallel

filaments for only a few feet from the entrance of the tube,

and that then the liquid particles begin to intermingle and

cross each other's paths in the most intricate manner. To
render this phenomenon visible, he injected a fine stream of

colored liquid at the inlet of the pipe and observed its further

motion, and found that the greater the velocity the nearer to

the inlet was the point where the breaking up of the parallel-

ism of flow began. The hypothesis of laminated flow is,

nevertheless, the simplest theoretical basis for establishing

practical formulae, and the resistance offered by pipes to the

flow of liquids in them will therefore be attributed to the fric-

tion of the edges of the laminse against the inner surface of

the pipe.

The amount of this resistance (often called skin-friction)

for a given extent of rubbing surface is by experiment found

1. To be independent of the pressure between the liquid and

the solid
;

2. To vary nearly with the square of the relative velocity ;

3. To vary directly with the amount of rubbing surface;

4. To vary directly with the heaviness [y, 409] of the

liquid.

Hence for a given velocity v, a given rubbing surface of

area = S
9
and a liquid of heaviness y, we may write

v*
Amount of friction (force)

= fSy ^ , (1)
*&>

in which/ is an abstract number called the coefficient of fluid

friction, to be determined by experiment. For a given liquid,

given character (roughness) of surface, and small range of

velocities it is approximately constant. The object of intro-

ducing the 2^ is not only because is a familiar and useful

y

function of v, but that v* -f- 2^ is a height, or distance, and there-

fore the product of S (an area) by v* -r- 2g is a volume, and this

volume multiplied by y gives the weight of an ideal prism of
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the liquid ;
hence S - - y is &force and f must be an abstract

Zg
number and therefore the same in all systems of units, in any

given case or experiment.
In his experiments at Torquay, England, the late Mr. Froude

found the following values for/", the liquid being salt water,
while the rigid surfaces were the two sides of a thin straight
wooden board -f$ of an inch thick and 19 inches high, coated

or prepared in various ways, and drawn edgewise through the

water at a constant velocity, the total resistance being measured

by a dynamometer.

511. Mr. Froude' s Results. (Condensed.) [The velocity was

the same = 10 ft. per sec. in each of the following cases. For
other velocities the resistance was found to vary nearly as the

square of the velocity, the index of the power varying from
1.8 to 2.16.]

TABLE H.

Character of Surface.
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to,) the frictions on the edges are the only additional forces as

compared with the system in Fig.

534. Let w denote the length
of the wetted perimeter of the

base of this lamina (in case of a

pipe running full, as we here

postulate, the wetted perimeter
is of course the whole perimeter^
but in the case of an open chan"

nel or canal, w is only a portion
of the whole perimeter of the

cross-section). Then, since the

area of rubbing surface at the edge is S wdsf

,
the total fric-

tion for the lamina is [by eq. (1), 510] =fwy (v* -r- %g)ds'.

Hence from vdv = (tan. accel.) X ds, and from (tan. accel.)

[^"(tang. compons. of acting forces)] -f- (mass of lamina), we
have

v*

Fp F(p -\- dp) -f- Fyds' cos fwy ds
f

vdv = ^ j-. .ds...(a)

Fyds' -^ g

As. in 492, so here, considering the simultaneous advance of

all the laminae lying between any two sections m and n during
the small time dt, putting ds' = ds, and ds

f
cos = dz (see

Fig. 568), we have, for any one lamina,

vdv, -\ dp -\-dz-
g Y

(1)''fi
1 *

9,
-/. ^J

Now conceive an infinite number of equations to be formed

like eq. (1), one for each la-

mina between n and m, for the

same dt, viz., a dt of such

length that each lamina at the

end of dt will occupy the

same position, and acquire the

same values of v, z, and p,

that the lamina next in front

had at the beginning of the FIG. 568.

dt (this is the characteristic of a steady flow). Adding up
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the corresponding terms of all these equations, we have (re-

membering that for a liquid y is the same in all laminae),

1 f*m 1 f*m (*m -f f*m <?/? /1 / vdv+ - / dp+ / dz = - i- . / ~v\ls
;

. (2)
''

qJn yt/n
* ' Jn

^y
Un J-T

i.e., after transposition and writing It for F-- w, for brevity,

This is Bernoulli's Theorem for steady flow of a liquid in

apipe ofslightly varying sectional area F, andinternalperim-
eter w, taking into account no resistances or friction, except
the "

skin-friction," or u
fluid-friction," of the liquid and sides

of the pipe.

Resistances due to the internal friction of eddying occasioned

by sudden enlargements of the cross-section of the pipe, by
elbows, sharp curves, valve-gates, etc., will be mentioned later.

The negative term on the right in (3) is of course a height or

head (one dimension of length), as all the other terms are such,

and since it is the amount by which the sum of the three heads

(viz., velocity-head, pressure-head, and potential head) at m,
the down-stream position, lacks of being equal to the sum of

the corresponding heads at n^ the up-stream position or section,

we may call it the "Loss of Head" due to skin-friction between

n and m\ also called friction-head, or resistance-head, or

height of resistance.

The quantity R = F ~- w = sectional-area -^ wetted-pe

rimeter, is an imaginary distance or length called the Hydrau-
lic Mean Radius, or Hydraulic Mean Depth, or simply

hydraulic radius of the section. For a circular pipe of diam-

eter = J

while for a pipe of rectangular section,

r>_ rib
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Friction-head = 4:f-^ . -; .... (4)
c d ty

where v = velocity of water in the pipe, being in this case

also = vm and = vn . Hence this friction-head varies directly

as the length and as the square of the velocity, and inversely

as the diameter also directly as the coefficient/.

From (3), then, we derive (for this particular problem)

Piezometer-height at n yn = 4/ .
;

. . (5)

i.e., the open piezometer-height at n is equal to the loss of head

(all of which is friction-head here) sustained between n and the

mouth of the pipe. (Pipe horizontal.)

EXAMPLE. Required the value of/*, knowing that d 3 in.,

yn (by observation) = 10.4 ft., and Q = 0.1960 cub. ft. per

sec., while I = 400 ft. (n to m). From eq. (1) we find, in ft.-

Ib.-sec. system, the velocity in the pipe to be

4$ 4 X 0.1960
v =^ = -%r - = 4.0 ft. per sec.;

then, using eq. (5), we determinef to be

- tgynd _ 2 X 32.2 X \ X 10.4
-
~4hT Tx wo x 4~

PROBLEM II. Hydraulic Accumulator. Fig. 570. Let the

area Fn of the piston on the left be quite large compared with

ffif

FIG. 570.

that of the pipes and nozzle. The cylinder contains a friction-
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less weighted piston, producing (so long as its downward slow

motion is uniform) a fluid pressure on its lower face of an

intensity pn = [G- -{-Fnpa\ -f- Fn per unit area (pa one

atmos.).

Hence the pressure-head at n is

(6)

where G = load on piston.

The jet has a section at m = Fm = that of the small straight

nozzle (no contraction). The junctions of the pipes with each

other, and with the cylinder and nozzle, are all smoothly
rounded

;
hence the only losses of head in steady flow between

n and m are the friction-heads in the two long pipes, neglect-

ing that in the short nozzle. These friction-heads will be of

the form in eq. (4), and will involve the velocities v
t
and v^

respectively in these pipes' (supposed running full).
io

l
and v9

may be unknown at the outset, as here.

Knowing G and all dimensions and heights, we are required
to find the velocity vm of the jet, flowing into the air, and the

volume of flow, Q, per unit of time, assuming f to be known
and to be the same in both pipes (not strictly true).

Let the lengths and diameters be denoted as in Fig. 570,

their sectional areas F^ and F9 ,
the unknown velocities in them

v
t
and v

t .

From the equation of continuity [eq. (3), 490], we have

and .= . ... (7)
"**

To find vm i
we apply Bernoulli's Theorem (with friction),

eq. (3), 512, taking the down-stream position m in the jet

close to the nozzle, and the up-stream position n just under the

piston in the cylinder where the velocity vn is practically noth-

ing. Then with m as datum plane we have

= + +A-V .-V .. (8)
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Apparently (8) contains three unknown quantities, vm ,
v

l ,

and v
3 ;

but from eqs. (7) v, and v9
can be expressed in terms

of vm ,
whence [see also eq. (6)]

or, finally,

;
- . (io)

and hence we have also

Q =FA (11)

EXAMPLE. If we replace the force G of this problem by
the thrust P exerted along the pump-piston of a steam fire-

engine, we may treat the foregoing as a close approximation
to the practical problem of such an apparatus, the pipes being
consecutive straight lengths of hose, in which (for the probable
values of v

l
and v^) we may takey= .0075 (see '^ire-streams,"

by Geo. Ellis, Springfield, Mass.). (Strictly,f varies somewhat

with the velocity; see 517.) Let P= 12000 Ibs., and the

piston-area at n = Fn 72 sq. in. = J sq. ft. Also, let h = 20

ft., and the dimensions of the hose be as follows :

d
t
= 3 in., d^ = 2 in., dn (of nozzle) = 1 in.

;

^ = 400 ft., lt = 500 ft.

"With the foot-pound-second system of units, we now have

[eq. (10)]

+4X
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__ /2 X 32.2 X 404 .

0.59+ 5.62

i.e., vm = 60.0 ft. per sec. If this jet were directed vertically

v 2

upward it should theoretically attain a height -^- = nearly

56 feet, but the resistance of the air would reduce this to about.

40 or 45 ft.

We have further, from eq. (1),

Q =Fmvm = x 60.0 = 3.27 cub. ft. per,sec.

If there were no resistance in the hose we should have, from;

497,

vm =* /
y

+ A = V2 X 32.2 x 404 = 161.3 ft. per sec..

513a. Influence of Changes of Temperature. Although Poi-

seuille and Hagen found that with glass tubes of very small

diameter the flow of water was increased threefold by a rise of

temperature from to 45 Cent., it is unlikely that with com-

mon pipes the rate of flow is appreciably affected by the ordi-

nary fluctuations of temperature; at any rate, experiments of

sufficient precision are wanting, as regards such an influence.

See Mr. Hamilton Smith's "
Hydraulics," p. 16, where lie

says :

u
Changes by variation in T (temperature) will probably

only be appreciable with small orifices, or with very low heads.

for orifices or weirs."

514. Loss of Head in Orifices and Short Pipes. So long as the

steady flow between two localities n and m takes place in a pipe

having no abrupt enlargement or diminution of section, nor

sharp curves, bends, or elbows, the loss of head may be ascribed

solely to the surface action (or
"
skin-friction") between water

and pipe ;
but the introduction of any of the above-mentioned

features occasions eddying and internal disturbance, and fric-

tion (and consequent heat) ; thereby causing further deviations
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from Bernoulli's Theorem
; i.e., additional losses of head, or

heights of resistance.

From the analogy of the form of a friction-head in a long

pipe [eq. (4), 513], we may assume that any of the above

heights of resistance is proportional to the square of the veloc-

ity, and may therefore always be written in the form

j
Loss of Head due to any \

. v* ^
(
cause except skin-friction f

~

2#~
J * '

in which v is the velocity of the water in the pipe at the sec-

tion where the resistance occurs
;

or if, on account of an

abrupt enlargement of the stream-section, there is a correspond-

ing diminution of velocity, then v is always- to denote this

diminished velocity (i.e., in the down-stream section). This

velocity v is often an unknown at the outset.

C, corresponding to the abstract factor 4/ - in the height of
ct

resistance due to skin-friction [eq. (4), 513], is an abstract

number called the Coefficient of Resistance, to be determined

experimentally ;
or computed theoretically, where possible.

Roughly speaking, it is- independent of the velocity, for a given

fitting, casing, pipe-joint, elbow, bend, valve-gate at a definite

opening, etc., etc.

515. Heights of Resistance (or Losses of Head) Occasioned by
Short Cylindrical Tubes. When dealing with short tubes dis-

charging into the air, in 507, deviations from Bernoulli's

Theorem were made good by using a coefficient of velocity 0,

dependent on experiment. This device answered every pur-

pose for the simple circumstances of the case, as well as for

simple orifices. But the great variety of possible designs of a

compound pipe (with skin-friction, bends, sudden changes of

cross-section, etc.) renders it almost impossible, in such a pipe,

to provide for deviations from Bernoulli's Theorem by a single

coeificient of velocity (velocity of jet, that is) for the pipe as a

whole, since new experiments would be needed for each new

design of pipe. Hence the great utility of the conception of
"
loss of head," one for each source of resistance.
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If a long pipe issues from the plane side of a reservoir and

the corners of the junction are not rounded [see Fig. 571], we
shall need an expression for

--,
*' the loss of head at the en-

a ft trance, E, as well as that

'2

Fia 571 ' due to the skin-friction in the

pipe. But, whatever the velocity, v, in the pipe is going to

be, influenced as it is both by the entrance loss of head and

the skin-friction head (in applying Bernoulli's Theorem), the

/y

loss of head at E, viz., E ,
will be just the same as if efflux

2g
took place through enough of the pipe at E to constitute a
" short pipe," discharging into the air, under some head h

(different from h' of Fig. 571) sufficient to produce the same

velocity v. But in that case we should have

(1)

(See 507 and 508, being the "
coefficient of velocity," and

h the head, in the cases mentioned in those articles.)

We therefore apply Bernoulli's Theorem to the cases of

those articles (see Figs. 560 and 564:) in order to determine the

loss of head due to the short pipe, and obtain (with m as datum
level for potential heads)

(2)

Now the v of eq. (2) is equal to the vm of the figures referred

to
?
and # is a coefficient of resistance for the short pipe, and

we now desire its value. Substituting for
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its value
2A from eq. (1), we have

1

(3)

Hence when a = 90 (i.e., the pipe is ~] to the inner reser-

voir surface), we derive

and similarly, for other values of a (taking from the table,

508), we compute the following values of E (corners not

rounded) for use in the expression for "
loss of head," E :

For a = 90
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Each loss of head (or height of resistance) will be of the form

v* I v*
. (except skin-friction head in long pipes, viz., 4/ -

i(J (JL +-t(J

the v in each case being the velocity, known or unknown, in

that part of the pipe where the resistance occurs (and hence

is not necessarily equal to vm or vn).

517. The Coefficient,/, for Friction of Water in Pipes. See

eq. (1), 510. Experiments have been made by Weisbach,

Eytelwein, Darcy, Bossut, Prony, Dubuat, Fanning, and oth-

ers, to determine / in cylindrical pipes of various materials

(tin, glass, zinc, lead, brass, cast and wrought iron) of diameters

from J inch up to 36 inches. In general, the following deduc-

tions may be made from these experiments :

1st. / decreases when the velocity increases
; e.g.,

in one

case with the

same pipe/ was .0070 for v = 2' per sec.,

while/ was = .0056 for v = 20' per sec.

2dly. / decreases slightly as the diameter increases (other

things being equal);

e.g., in one experiment/ was = .0069 in a 3-in. pipe,

while for the same velocity/ was .0064 in a 6-in. pipe.

3dly. The condition of the interior surface of the pipe
affects the value of/, which is larger with increased roughness
of pipe.

Thus, Darcy found, with afoul iron pipe with d = 10 in.

and veloc. = 3.67 ft. per sec., the value .0113 for/; whereas

Fanning (see p. 238 of his "
Water-supply Engineering"), with

a cement-lined pipe and velocity of 3.74 ft. per sec. and d =
20 inches, obtained/ = .0052.

Weisbach, finding the first relation very prominent, pro-

posed the formula

.00429

/= 0.00359 + , ..
=====

Vv (in ft. per sec.)

when the velocities are great, while Darcy, taking into account

both the 1st and 2d relations above, writes (see p. 585, Ran-

kine's Applied Mechanics)
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/= .0043 [~1 -I--*---1
L ~ '-9 X di&in. in ftJ

ft. per sec.
_ is x diam. in

i
ft.J

For practical purposes, Mr. J. T. Fanning has recommended,
and arranged in an extensive table (pp. 242-246 of his book

just mentioned), values of f for clean iron pipe, of diameters

from J inch to 96 inches, and for velocities of 0.1 ft. to 20 ft.

per second. Of this the table opposite is an abridgment, in-

serted with Mr. Fanning's permission, for use in solving nu-

merical problems.
In obtaining/ for slightly tuberculated and for foul pipes,

the recommendations of Mr. Fanning seem to justify the fol-

lowing rules :

For slightly tuberculated pipes of diams. = j- ft.

and forfoul pipes of same size

we should add 23$

1ft.

34$
60$

2ft.

16$
38$

4ft.

13$
25$

of the/* for clean pipes, to itself. For example, if/ = .007

for a certain ^-ft. pipe when clean, with velocity = 0.64 ft. per

sec., we have/= .007 X 1.72 = .01204 when it is foul.

For first approximations a mean value of f = .006 may be

employed, since in some problems sufficient data may not be

known in advance to enable us to take/ from the table.

EXAMPLE.- Fig. 572. In the steady pumping of crude

petroleum weighing y = 55 Ibs. per cubic foot, through a six-

inch pipe 30 miles long,
to a station 700 ft. higher
than the pump, it is

found that the pressure
in the pump cylinder at

n, necessary to keep up
a velocity of 4.4 ft. per
sec. in the pipe, is 1000

Ibs. per sq. inch. Kequired the coefficient f in the pipe. As
all losses except the friction-head in the pipe are insignificant,
the latter only will be considered. The velocity-head at n may
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be put = ;
the jet at m being of the same size as the piper

the velocity in the pipe is =vm ,
and therefore vm = 4.4 ft. per

sec. Notice that m, the down-stream section, is at a higher
level than n.

From Bernoulli's Theorem, 516, we have, with n as a

datum level,

Using the ft., lb., and sec., we have

h = 700 ft., vm
2 + 2g = 0.30 ft.,

while

1000
and

. =_

55 y 55

Hence, in eq. (1),

30 X 5280 (4.4)
-0.30+ 38.5+ 700 = 2618 - 4/.

64.4

Solving for/*, we have f = .00485 (whereas for water, with

v = 4A ft. per sec. and d=% ft., the table, p. 146, gives

/=.00601.

If the y of the petroleum had been 50 Ibs. per cubic foot,

instead of 55, we would have obtained ? = 2880 feet and f
Y

= .0056.

518. Flow through a Long Straight Cylindrical Pipe, including
both friction-head and entrance loss of head (corners not rounded);

reservoir large. Fig. 573.

The jet issues directly

I from the end of the pipe,
! in parallel filaments, into*
| A 7

therefore

.-"..v Ijas same section as pipe;

hence, also, vm of the jet

E

FIG. 573.

= v in the pipe (which is assumed to be running full), and is
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therefore the velocity to be used in the loss of head C# - at

the entrance ^( 515).

Taking m and n as in figure and applying Bernoulli's

Theorem
( 474), withm as datum level for the potential heads

zm and zn ,
we have

-< . (1)

Three different problems may now be solved :

First, required the head li to keep up a flow of given volume
= Q per unit of time in a pipe of given length I and diameter

= d.

From the equation of continuity we have

Q = Fmvm = %nd*vm ;

4:0
.'. veloc. ofjet, which = veloc. in pipe, = vm = ~. . . (2)

Having found vm = v, from (2), we obtain from (1) the re-

quired A, thus :

Now G, = 0.505 if a = 90 (see 515), while / may be

taken from the table, 517, for the given diameter and com-

puted velocity [vm = i>, found in (2)], if the pipe is clean ; if

not clean, see end of 517, for slightly tuberculated and for

foul pipes.

Secondly. Given the head A, and the length I and diameter

d of pipe, required the velocity in the pipe, viz., v, = vm ,
that

of jet ;
also the volume delivered per unit of time, Q. Solv-

ing eq. (1) for vm ,
we have

d
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whence Q becomes known, since

(5)

[NOTE. The first radical in (4) might for brevity be called

a coefficient of velocity, 0, for this case. Since the jet has the

same diameter as the pipe, this radical may also be called a

coefficient of efflux.'}

Since in (4)f depends on the unknown v as well as on the

known d, we must first put/" .006 for a first approximation
for vm ;

then take a corresponding value for f and substitute

again ;
and so on.

Thirdly, knowing the length of pipe and the head h, we
wish to find the proper diameter d for the pipe to deliver a

given volume Q of water per unit of time. Now

which substituted in (1) gives

that is,

As the radical contains d, we first assume a value for d,

with/* .006, and substitute in (7). With the approximate
value of d thus obtained, we substitute again with a new value

for f based on an approximate v from eq. (6) (with d its

first approximation), and thus a still closer value for d is de-

rived
;
and so on. (Trautwine's Pocket-book contains a table

of fifth roots and powers.) If I is quite large, we may put
d = for a first approximation. In connection with these

examples, see last figure.
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EXAMPLE 1. What head h is necessary to deliver 120 cub.

ft. of water per minute through a clean straight iron pipe 140

ft. long and 6 in. in diameter ?

From eq. (2), with ft., lb., and sec., we have

v = vm = [4 X W] * *(*)'= 10 -18 ft - Per sec.

Now for v = 10 ft. per sec. and d = % ft., we find (in table,

517) /= .00549
;
and hence, from eq. (3),

+ = 12-23 ft,

of which total head, as we may call it, 1.60 ft. is used in pro-

ducing the velocity 10.18 ft. per sec. (i.e., vm
* --

2g = 1.60 ft.),

while 0.808 ft. ( = dz^M is lost at the entrance ^(with a =

90), and 9.82 ft. (friction-head) is lost in skin-friction.

EXAMPLE 2. [Data from Weisbach.] Required the de-

livery, Q, through a straight clean iron pipe 48 ft. long and

2 in. in diameter, with 5 ft. head (= fi). V, = vm , being un-

known, we first takey= .006 and obtain [eq. (4)]

Vm= I . . _ . 4x.006X48^
1 _L. .505 -f

= 6.18 ft. per sec.

From the table, 5IT, for v = 6.2 ft. per sec. and d = 2 in.,

/= .00638, whence

/

Vi+^5+*
x-T x4sV

^ 7T

= 6.04 ft. per sec.,

which is sufficiently close. Then, for the volume per second,

Q = - d*vm J7r(^)
2
6.04 = 0.1307 cub. ft. per sec.

4
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[Weisbach's results in this example are

vm = 6.52 ft. per sec.

and Q 0.1420 cub. ft. per sec.,

but his values for/" are slightly different.]

EXAMPLE 3. [Data from Weisbach.] What must be the

diameter of a straight clean iron pipe 100 ft. in length, which

is to deliver Q = \ of a cubic foot of water per second under

5ft. head (= A) I

With/^ .006 (approximately), we have from eq. (7), put-

ting d under the radical for a first trial (ft., lb., sec.),

4:0
whence v = -~ = 7 ft. per sec.

net*

For d = 3.6 in. and v = 7 ft. per sec., we find/= .00601
;

whence, again,

-, 5 /1.505 x .30 + 4 X .00601 X 100 /4 X JV n OCM* .=
V~ 2 x 32.2 X 5 ";rTv

=

and the corresponding v = 6.06 ft.

For this d and v we find/= .00609, whence, finally,

d= . 7005 x .30+ 4x .00609 x 100 /2V
ft _

y 2 X 32.2 X 5 \nl

[Weisbach's result is d .318 ft]

519. Ch6zy's Formula. If, in the problem of the preceding
paragraph, the pipe is so long, and therefore I : d so great,
that 4/1 -r- d in eq. (3) is very large compared with 1 + C#,
we may neglect the latter term without appreciable error;
whence eq. (3) reduces to

ig. 573), . . (8)
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which is known as Chezy's Formula. For example, if Z = 100

ft. and d 2 in. = \ ft, and/approx. = .006, we have A/ -7-
=

144, while 1 + C# for square corners = 1.505 only.

If in (8) we substitute

(8) reduces to

.A = _- /.|L . . . (very long pipe):, .... (9)
7t 01 Ag

so that for a very long pipe, consideringf as approximately

constant, we may say that to deliver a volume Q per unit

of time through a pipe of given length = I, the necessary head,

h, is inversely proportional to theffth power of the diameter.

And again, solving (9) for Q, we find that the volume con-

veyed per unit of time is directly proportional to the jift/ipower
of the square root of the diameter directly proportional to

the square root of the head / and inversely proportional to the

square root of the length. (Not true for short pipe ;
see above

example.)
If we conceive of the insertion of a great number of piezom-

eters along the long straight pipe, of uniform section, now
under consideration, the summits of the respective water

columns maintained in them will lie in a straight line joining
the discharging (into the air) end of the pipe with a point in

the reservoir surface vertically over the inlet extremity (prac-

tically so), and the "
slope" of this line (called the Hydraulic

Grade Line or Gradient), i.e., the tangent (or sine
;
the angle

is so small, generally) of the angle which it makes with the

horizontal is =
,
and may be denoted by s. Putting also

^d R = the hydraulic radius of the section of the pipe, and

vm = v = velocity in pipe, we may transform eq. (8) into

or, v = A(By, . . . (9)
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which is the form by which Mr. Hamilton Smith (see 506)

interprets all the experiments quoted by him on long pipes.

As to notation, however, he uses n for A, and r for H. With
the foot and second as units, the quantity A (not an abstract

number) varies approximately between 60 and 140. For a

given A we easily find the correspondingf from the relation

2#
y= -^ . If the pipe discharges under water, h the differ-

ence of elevation of the two reservoirs. If the pipe is not

horizontal, the use of the length of its horizontal projection

instead of its actual length in the relation s = occasions an
i

error, but it is in most cases insignificant.

Similarly, if a steady flow is going on in a long pipe of uni-

form section, at the extremities of any portion of which we
have measured the piezometer heights (or computed them

from the readings of steam or pressure gauges), we may apply

eq. (9), putting for A the difference of level of the piezometer

summits, and for I the length of the pipe between them.

520. Coefficient f in Fire-engine Hose. Mr. Geo. A. Ellis,

C.E., in his little book on "
Fire-streams," describing experi-

ments made in Springfield, Mass., gives a graphic comparison

(p. 45 of his book) of the friction-heads occurring in rubber

hose, in leather hose, and in clean iron pipe, each of 2j- in.

diameter, with various velocities; on which the following state-

merits may be based : That for the given size of hose and

pipe (d = 2j- in.) the coefficient f for the leather and rubber

hose respectively may be obtained approximately by adding to

./for clean iron pipe (and a given velocity) the per cent of

itself shown in the accompanying table.

EXAMPLE. For a clean iron pipe

2^ in. diam., for a velocity = 10 ft.

per sec., we have, from 517, f=
.00593. Hence for a leather hose of

the same diameter, we have, for v =
10 ft. per sec.,

Velocity
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521. Bernoulli's Theorem as an Expression of the Conservation

of Energy for the Liquid Particles. In any kind of flow with-

out friction^ steady or not, in rigid immovable vessels, the

aggregate potential and kinetic energy of the whole mass of

liquid concerned is necessarily a constant quantity (see 148

and 149), but individual particles (as the particles in the sink-

ing free surface of water in a vessel which is rapidly being

emptied) may be continually losing potential energy, i.e.,

reaching lower and lower levels, without any compensating in-

crease of kinetic energy or of any other kind
;
but in a steady

flow withoutfriction in rigid motionless vessels, we may state

that the stock of energy of a given particle, or small collection

of particles, is constant during the flow, provided we recognize
a third kind of energy which may be called Pressure-energy,

or capacity for doing work by virtue of internal fluid pressure ;

as may be thus explained :

In Fig. 574 let water, with a very slow motion and under a

pressure p (due to the reservoir-head -f- atmosphere-head be-

hind it), be admitted behind a pis-

ton the space beyond which is

vacuous. Let s = length of

I stroke, and F= the area of pis-

ton. At the end of the stroke,
f

^*s^ by motion of proper valves, com-

7/
VAC - munication with the reservoir is

FIG- 574 '

cut off on the left of the piston

and opened on the right, while the water in the cylinder now on

the left of the piston is put in 'communication with the vacu-

ous exhaust-chamber. As a consequence the internal pressure

of this water falls to zero (height of cylinder small), and on

the return stroke is simply conveyed out of the cylinder,

neither helping nor hindering the motion. That is, in doing
the work of one stroke, viz.,

W= force X distance = Fp X s Fps,

a volume of water V =. Fs, weighing Fsy (Ibs. or other unit)r

has been used, and, in passing through the motor, has experi-

enced* no appreciable change in velocity (motion slow), and
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therefore no change in kinetic energy, nor any change of level,

and hence no change in potential energy, but it has given up
all its pressure. (See 409 for y.)

Now TF, the work obtained by the consumption of a weight
G = Vy of water, may be written

. . (1)

Hence a weight of water = G is capable of doing the work

G x = G X head due to pressure p, i.e., G x pressure-

head, in giving up all its pressurep or otherwise, while still

having a pressure^, a weight G of water possesses an amount

of energy, which we may call pressure-energy, of an amount

=# ,
where y = the heaviness

( 7) of water, and - a

height, or head, measuring the pressure p ; i.e., it equals the

pressure-head.

We may now state Bernoulli's Theorem without friction in

a new form, as follows : Multiplying each term of eq. (7),

451, by Qy, the weight of water flowing per second (or other

time-unit) in the steady flow, we have

But Qy = -~^-Vm = i X mass flowing per time unit X
%g 2 9

square of the velocity = the kinetic energy inherent in the

volume Q of water on passing the section m, due to the veloc-

ity at m. Also, Qy = the pressure-energy of the volume

Q at m, due to the pressure at m
;
while Qyzm = t\iQ potential

energy of the volume Q at m due to its height zm above the

arbitrary datum plane. Corresponding statements may be

made for the terms on the right-hand side of (2) referring to

the other section, ??, of the pipe. Hence (2) may be thus read :

The aggregate amount of energy (of the three kinds mentioned)
resident in the particles of liquid when passing section in is
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equal to that when passing any other section, as n ; in steady

flow withoutfriction in rigid motionless vessels ; that is, the

store of energy is constant.

522. Bernoulli's Theorem with Friction, from the Standpoint of

Energy. Multiply each term in the equation of 516 by Qy,,
as before, and denote a loss of head or height of resistance due

to any cause by hr ,
and we have

<H r>= Qrlr+Qy-
n

2g y

Each term Qyhr (Q.g., Qy 4/ -,
due to skin-friction in a

ff

long pipe, and Qy C^^
due to loss of head at the reservoir

entrance of a pipe) represents a loss of energy, occurring between

any position n and any other position m down-stream from %
but is really still in existence in the form of heat generated by
the friction of the liquid particles against each other or the

sides of the pipes.

As illustrative of several points in this connection, consider

two short lengths of pipe in

Fig. 575, A and B, one offering
a gradual, the other a sudden,

enlargement of section, but

otherwise identical in dimen-

sions. We suppose them to

occupy places in separate lines

of pipe in each of which a

steady flow with full cross-sec-

tions is proceeding, and so reg-

ulated that the velocity and in-

ternal pressure at n, in A, are

equal respectively to those at n FIG. 575.

in B. Hence, if vacuum piezometers be inserted at n, the-
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smaller section, the water columns maintained in them by the

T)

internal pressure will be of the same height, ,
for both A

and B. Since at m, the larger section, the sectional area is the

same for both A and B, and since Fn in A =*Fn in J5, so that

QA = QB> hence vm in A = vm in B and is less than vn .

Now in B a loss of head occurs (and hence a loss of energy)
between n and ra, but none in A (except slight friction-head);

hence in A we should find as much energy present at m as at

n
y only differently distributed among the three kinds, while at

m in B the aggregate energy is less than that at n in B.

As regards kinetic energy, there has been a loss between n

and m in both A and B (and equal losses), for vm is less than

vn . As to potential energy, there is no change between n and

m either in A or B, since n and m are on a level. Hence if

the loss of kinetic energy in B is not compensated for by an

equal gain of pressure-energy (as it is in A\ the pressure-head

(~\ at m in B should be less than that (S=\ at rain A. Ex-
\ri* \y IA

periment shows this to be true, the loss of head being due to

the internal friction in the eddy occasioned by the sudden en-

largement ;
the water column at m in B is found to be of a

less height than that at m in A, whereas at n they are equal.

(See p. 467 of article "
Hydromechanics" in the Ency. Bri-

tannica for Mr. Froude's experiments.)
In brief, in A the loss of kinetic energy has been made up

in pressure-energy, with no change of potential energy, but in

B there is an actual absolute loss of energy = Qyhr ,
or

v
a

= Qy -^-, suffered by the weight Qy of liquid. The value

?
of C in this case and others will be considered in subsequent

paragraphs.

Similarly, losses of head, and therefore losses of energy,
occur at elbows, sharp bends, and obstructions, causing eddies

and internal friction, the amount of each loss for a given

weight, 6r, of water being = Ghr
= GC,~ ;

Ar = C being
/ t/

the loss of head occasioned by the obstruction
( 474). It is
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therefore very important in transmitting water through pipes
for purposes of power to use all possible means of preventing
disturbance and eddying among the liquid particles. E.g.,

sharp corners, turns, elbows, abrupt changes of section, should

be avoided in the design of the supply-pipe. The amount of

the losses of head, or heights of resistance, due to these various

causes will now be considered (except skin-friction, already

treated). Each such loss of head will be written in the form
/y

2

C ,
and we are principally concerned with the value of the

o

abstract number
,
or coefficient of resistance

,
in each case.

The velocity v is the velocity, known or unknown, where the

resistance occurs y or if the section of pipe changes at this

place, then v = velocity on the down-stream section. The late

Professor "Weisbach, of the mining-school of Freiberg, Saxony,
was one of the most noted experimenters in this respect, and

will be frequently quoted.

523. Loss of Head Due to Sudden (i.e., Square-edged) Enlarge-

ment. Borda's Formula. Fig. 576. An eddy is formed in the

t angle with consequent loss of energy. Since

eacn particle of water of weight = G
l , arriving

with the velocity v
l
in the small pipe, may be

t considered to have an impact against the base

. 576. of the infinitely great and more slowly moving
column of water in the large pipe, and, after the impact,

moves on with the same velocity, -ya ,
as that column, just as

occurs in inelastic direct central impact ( 60), we may find

the energy lost by this particle on account of the impact by

eq. (1) of 138, in which, putting Ml
=

6r, -f- <?,
and M^ =

Gz -f- g = mass of infinitely great body of water in the large

pipe, so that M^ oo
,
we have

Energy lost by particle
= G

1

^ 7 ^-, . . (1)
2g

and the corresponding

Loss of head = -^-L --,
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which, since F
1
v

1
= JF[vt , may be written

\~F ~~l
3 v 8

Loss of head in sudden enlargement f 1 L.

That is, the coefficient C for a sudden enlargement is

(2)

. . . . . . (3)

F
l
and Fa are the respective sectional areas of the pipes. Eq.

(2) is Bordtis Formula.

NOTE. Practically, the flow cannot always be maintained

with full sections. In any case, if we assume the pipes to be

running full (once started so), and on that assumption compute
the internal pressure at F

1 ,
and find it to be zero or negative,

the assumption is incorrect. That is, unless there is some

pressure at F
l
the water will not swell out laterally to fill the

large pipe.

EXAMPLE. Fig. 577. In the short tube AB containing a

sudden enlargement, we have given F9
Fm 6 sq. inches,

FI = 4 sq. inches, and h 9 feet. Re-

quired the velocity of the jet at m (in

the air, so t\ia.tpm -f- y = 1} 34 ft.), if

the only loss of head considered is that

due to the sudden enlargement (skin-

friction neglected, as the tube is short
;

the reservoir entrance has rounded cor-

ners). Applying Bernoulli's Theorem
to m as down-stream section, and n in reservoir surface as up-
stream position (datum level at w), we have

FIO. 577.

But, here, v, = vm ;

From eq. (3) we have

(5)

C = (*
-

I)
1 = 0.25,
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and finally (ft., lb., sec.)

v*=\ r 1/2 X 32.2 X 9 = 0.895 V2X 32.2x9W 1.^5

= 21.55 ft. per sec.

(The factor 0.895 might be called a coefficient of velocity for

this case.) Hence the volume of flow per second is

Q = Fmvm = -

ThX 21.55 = 0.898 cub. ft. per sec.

We have so far assumed that the water fills both parts of the

tube, i.e., that the pressure J915 at F^ ,
is greater than zero (see

foregoing note). To verify this assumption, we compute p^

by applying Bernoulli's Theorem to the centre of F^ as down-

stream position and datum plane, and n as up-stream position,

with no loss of head between, and obtain

j
+7 +

= + ft + A -- - - (6>

But since Fp^ = F^v^ ,
we have

< = (*)v - a)x,

and hence the pressure-head at F, (substituting from equations

above) is

and /. pi = ||- of 14.7 = 11.6 Ibs. per sq. inch, which is

greater than zero
;
hence efflux with the tube full in both parts

can be maintained under 9 ft. head.

If, with F
l
and F^ as before (and .'. C), we put p, = 0, and

solve for
7i, we obtain h = 42.5 ft. as the maximum head

under which efflux with the large portion full can be secured.

524. Short Pipe, Square-edged Internally. This case, already
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treated in 507 and 515 (see Fig. 578 ;
a repetition of 560),

presents a loss of head due to the sudden enlargement from

the contracted section at m f

(whose sec-

* tional area may be put CF, C being
i an unknown coefficient, or ratio, of

j contraction) to the full section F of

:'_l:r the pipe. From 515 we know that

^j=^=. the loss of head due to the short pipe

is hr = CJT^ (for a = 90), in which

FIG. 578. CE = 0.505
;
while from Borda's For-

mula, 523, we have also E = ^ 1 . Equating these,

we find the coefficient of internal contraction at m f

to be

C=- -= =---- = 0.584,

or about 0.60 (compare with C= .64 for thin-plate contrac-

tion, 497). It is probably somewhat larger than this (.584),

since a small part of the loss of head, Ar ,
is due to friction at

the corners and against the sides of the pipe.

By a method similar to that pursued in the example of

523, we may show that unless h is less than 40 feet, about,

the tube cannot be kept full, the discharge being as in Fig.

551. If the efflux takes place into a "
partial vacuum," this

limiting value of h is still smaller. "Weisbach's experiments
confirm these statements (but those in the C. U. Hyd. Lab.

seem to indicate that the limiting value for h in the first case

is about 50 ft.).

525. Diaphragm in a Cylindrical Pipe. Fig. 579. The dia-

phragm being of "thin plate," ,

let the circular opening in it

(concentric with the pipe) have

an area = F, while the sectional

area of pipe =F9 . Beyond F,the FIG. 579.

stream contracts to a section of area = CF F
l ,

in enlarging
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-from which to fill the section F^ ,
of pipe, a loss of head occurs

which by Borda's Formula, 523, is

F1

-- * 1--
where v

2
is the velocity in the pipe (supposedfull). Of course

F
l (or OF) depends on F\ but since experiments are necessary

in any event, it is just as well to give the values of itself, as

determined by Weisbach's experiments, viz. :

For~- = .10
#1
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no loss of head between, we have, as the principle of the ap-

paratus,

.

whence, since Frvr
= Fnvn ,

in which represents the first radical factor. should differ

F
but little from unity with - small (and such was found to be

/V
the case by experiment). Its theoretical value is constant and

greater than unity. In the actual use of the instrument the

and & are inferred from the observed piezometer-heights

yr and yn (since
& = yr+ 1, and^ = yn+ &, 5 being = 34 ft.),

and then the quantity flowing per time-unit computed, from

Q Fnvn ,
vn having been obtained from eq. (2). This pro-

cess gives a value of Q about four per cent in excess of the

truth, according to the second set of experiments mentioned

below, if vn =35 ft. per sec.
;
but only one per cent excess with

vn = 5 or 6 ft. per sec.

Experiments were made by Mr. Herschel on two meters of

this kind, in each of which Fn was only one ninth of Fr ,
a

ratio so extreme that the loss of head due to passage through
the instrument is considerable. E.g., with the smaller appara-

tus, in which the diameter at n was 4 in., the loss of head be-

tween r and in was 10 or 11 ft., when the velocity through n
was 50 ft. per sec., those at other velocities being roughly pro-

portional to the square of the velocity. In the larger instru-

ment dn was 3 ft., and the loss of head between r and m was

much more nearly proportional to the square of the velocity

than in the smaller. (E.g., with vn = 34.56 ft. per sec. the

loss of head was 2.07 ft., while with vn = 16.96 ft. per sec. it
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was 0.49 ft.) The angle of divergence was much smaller in

these meters than that in Fig. 580.

527. Sudden Diminution of Cross-section, Square Edges. Fig.
581. Here, again, the resistance is

^

due to the sudden enlargement from =^ f^^\^_ _____^
the contracted section to the full sec- -^.-J^&j
tion F^ of the small pipe, so that in ^~~~-^3
the loss of head, by Borda's formula, FIG. 581.

the coefficient

depends on the coefficient of contraction C\ but this latter is

influenced by the ratio of F^ to F
,
the sectional area of the

larger pipe, C being about .60 when F is very large (i.e.,

when the small pipe issues directly from a large reservoir so

that Fz : F practically
=

0). For other values of this ratio

TVeisbach gives the following table for (7, from his own ex-

periments :

For F* : F = .10
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For a - 20
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It is understood that the portion EC of the pipe is kept full

by the flow
; which, however, may not be practicable unless

BG\ more than three or four times as long as

wide, and is full at the outset. A semicircular

bend occasions about the same loss of head as a

quadrant bend, but two quadrants forming a re-

verse curve in the same plane, Fig. 586, occasion a

double loss. By enlarging the pipe at the bend,

or providing internal thin partitions parallel to the

sides, the loss of head may be considerably dimin-

ished. Weisbach gives the following table com- FIG. 586.

puted from eq. (1), but does not state the absolute size of the

pipes.

For -=.10
r
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mentioned, forming a total length of 14 feet, and the total loss

of head again determined through the same range of velocities.

By subtraction, the loss of head due to the elbow was then

easily found for each velocity, and assuming the form

(1)

for the loss of head, C was computed in each case.

From Fig. 586a it is seen that the stream meets with a sud-

den enlargement and a sudden diminution, of section, as well

as with the short bend
;
so that the disturbance is of a rather

complex nature.

The principal results of Prof. Bellinger's experiments, after

the adjustment of the observed quantities by
"
least squares,"

were found capable of being represented fairly well by the

formula

C = 0.621 + [2
W -

1] X 0.0376, .. .

'

. (2)

where n = [veloc. in pipe in ft. per sec.] -r- 5. The following
table was computed from eq. (2) (where v is in ft. per second) :

V =
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experiments furnish us with a range of values of C in the case

of these obstacles in a cylindrical pipe 1.6 inches in diameter,

:as follows (for meaning of s, d, and a, see figures, v is

the velocity in the full section of pipe, running full on both

.sides.)

Valve-gate.
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through the continuous line of pipe in the figure, containing two
sizes of cylindrical pipe (d = 3 in., and d2

= 1 in.), and two
90 elbows in the larger. The flow is into the air at ra, the

jet being 1 in. in diameter, like the pipe. At E, a = 90, and
the corners are not rounded

;
at JT, also, corners not rounded.

Use the ft.-lb.-sec. system of units in which g = 32.2.

Since Q = % gal.
=

j- T
2
TyB

= .0668 cub. ft. per sec., and
therefore the velocity of the jet

vm = v, = Q -f- i?^)
2 = 12.25 ft. per sec.;

hence the velocity in the large pipe is to be v =
(-i-)X

= 1.36

ft. per sec. From Bernoulli's Theorem, we have, with m as

datum plane,

involving six separate losses of head, for each of which there

is no difficulty in finding the proper or/*, since the velocities

and dimensions are all known, by consulting preceding para-

graphs. (Clean iron pipe.)

From 515, table, for a = 90 we have . ./' ,. C^ = 0.505
" 51Vor<=3in.,and^ =1.36ft.persec.,/ =: -00725
" " "

d, = l in., and v9 -=12.25 " " /2
= .00613

* 528 (elbows), for = 90 .... Cel =0.984
"

527, for sudden diminution at K we have

[since F^ +F = I
2 ~ 3

2 = 0.111, /. (7 = 0.625]

Solving the above equation for A, then, and substituting

above numerical values (in ft.-lb.-scc.-system), we have (noting

that vm '= v and v = ^2)

(.606+

9^A ,

4 X.00613X201..360 -|
--- U
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i.e.,

h = ^1^ [
1 +(.00623 +.07160+ .0243)+(.360+5.8848~];

t)4:.4: L_

.-. h = 2.323 X 7.3469 = 17.09 ft.Ans.

It is here noticeable how small are the losses of head in the

large pipe, the principal reason of this being that the velocity

in it is so small (v = only 1.36 ft. per sec.), and that in gen-
eral losses of head depend on the square of the velocity

(nearly).

In other words, the large pipe approximates to being a reser-

voir in itself.

With no resistances a head h = OT

a -~
2g = 2.32 ft. would be

sufficient.

EXAMPLE 2. Fig. 590. "With the valve-gate Thalf raised

(i.e., 8 = %d in Fig. 587), required the volume delivered per
second through the clean pipe here shown. The jet issues

FIG. 590.

from a short straight pipe, or nozzle (of diameter d^ = 1 in.)

inserted in the end of the larger pipe, with the inner corners

not rounded. Dimensions as in figure. Hadius of each bend

= r = 2 in. The velocity vm of the jet in the air = velocity
i>2 in the small pipe ;

hence the loss of head at

Now vm is unknown, as yet ;
but V

Q ,
the velocity in the large

pipe, is = vm ntF]>
i -e

-J
v =A 1

"*- From Bernoulli's The-
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orem (m as datum level) we obtain, after transposition,

Of the coefficients concerned,f alone depends on the un-

known velocity v . For the present [first approximation],

put / = .006

From 515, with a = 90, . ....... CE = .505

From 517, valve-gate with s = %d, CF = 2.06

From 529, with a:r = 0.5, CB = 0.294

While at K, from 527, having

(F, : F )
=

(f)
2

: 2
2 = -& = 0.562;

we find from table, . . . , . .

'

. . . . C = 0.700

and .-.

c*=(J_-l)
2

=(0.428)
2

. . . . i.e., *= 0.183

Substituting in eq. (1) above, with v* =
(TV)

2

^m
2

>
we have

'

-,

in which the first radical, an abstract number, might be called

a coefficient of velocity, 0, for the whole delivery pipe ;
and

also, since in this case Q, = Fmvm = Fjvz , may be written

Q = }JiF^ V^g/iy it may be named a coefficient of efflux, p.

Hence

V2 x 32.2 x 25:

A vm= 0.421 i/2^A = 0.421 ^2 X 32.2 X 25 = 16.89 ft. per sec,

(The .421 might be called a coefficient of velocity.) The
volume delivered per second is

Q = \nd; vm = i?r(A)
3 16 -89 = -2 7 cu^. ft. per sec.

(As the section of the jet Fm F^ ,
that of the short pipe or

nozzle, we might also say that .421 = /*
=

coefficient of efflux,

for we may write Q = pF^ V'2gh, whence /* .421.)
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532. Siphons. In Fig. 532, 490, the portion HNJ) is

above the level, BC> of the surface of the water in the head

reservoir BL, and yet under proper conditions a steady flow

can be maintained with all parts of the pipe full of water, in-

cluding HJV^O. If the atmosphere exerted no pressure, this

would be impossible ;
but its average tension of 14.7 Ibs. per

sq. inch is equivalent to an additional depth of nearly 34 feet

of water placed upon BC. With no flow, or a very small

velocity, the pipe may be kept full if JV
Z
is not more than

33 or 34 feet above BC\ but the greater -y
a ,

the velocity of

flow at NI, and the greater and more numerous the losses

of head between L and N^ the less must be the height of N^
above BC for a steady flow.

The analytical criterion as to whether a flow can be main-

tained or not, supposing the pipe completely filled at the out-

set, is that the internal pressure must be > at all parts of

the pipe. If on the supposition of a flow through a pipe of

given design the pressure^? is found < 0, i.e. negative, at any

point \N^ being the important section for test] the supposition
is inadmissible, and the design must be altered.

For example, Fig. 532, suppose LN^N^ to be a long pipe of

uniform section (diameter = d, and length = Z),
and that under

the assumption of filled sections we have computed i>
4 ,
the

velocity of the jet at 4̂ ; i.e.,

To test the supposition, apply Bernoulli's Theorem to the

surface BC and the point N^ where the pressure is ^>2 , velocity

ya(= -y since we have supposed a uniform section for whole

pipe), and height above BC=h^. Also, let length of pipe
= Z

a . Whence we have

[BC being datum, plane.]
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Solving for
,
we have

!'
= 34 feet -

[A,
+
g- (l

+ Cji+ 4/|].
. . (3)

We note, then, that for j?a to be < 0,

---^f 1-.. (4)

In the practical working of a siphon it is found that atmos-

pheric air, previously dissolved in the water, gradually collects

at N^ ,
the highest point, during the flow and finally, if not re-

moved, causes the latter to cease. See reference below.

One device for removing the air consists in first allowing it

to collect in a chamber in communication with the pipe be-

neath. This communication is closed by a stop-cock after the

water in it has been completely displaced by air. Another

stop-cock, above, being now opened, water is poured in to re-

place the air, which now escapes. Then the upper stop-cock is

shut and the lower one opened. The same operation is again

necessary, after some hours.

On p. 346 of the Engineering News of November 1887 may
be found an account of a siphon which has been employed since

1875 in connection with the water-works at Kansas City. It

is 1350 ft. long, and transmits water from the river to the

artificial
" well

" from which the pumping engines draw their

supply. At the highest point, which is 16 ft. above low-water

level of the river, is placed a " vacuum chamber "
in which the

air collects under a low tension corresponding to the height,

and a pump is kept constantly at work to remove the air and

prevent the "
breaking" of the (partial) vacuum. The diam-

eter of the pipe is 24 in., and the extremity in the " well
"
dips

5 ft. below the level of low water. See Trautwine's Pocket-

book, for an account of Maj. Crozet's Siphon.

532a. Branching Pipes. If the flow of water in a pipe is

caused to divide and pass into two others having a common
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junction with the first, or vice versa
;
or if lateral pipes lead

out of a main pipe, the problem presented may be very com-

plicated. As a comparatively simple instance, let us suppose
that a pipe of diameter d and length I leads out of a reservoir,

and at its extremity is joined to two others of diameters d
l
and

d^ and lengths l
t
and Z2 respectively, and that the further extrem-

ities of the latter discharge into the air without nozzles under

heads A
x
and A

2
below the reservoir surface. Call these two

pipes Nos. 1 and 2. That is, the system forms a Y in plan.

Assuming that all entrances and junctions are smoothly

rounded, so that all loss of head is due to skin-friction, it is re-

quired to iind the three velocities of flow, v, v l9 and va ,
in the

respective pipes. First applying Bernoulli's Theorem to a

stream-line from the reservoir surface through the main pipe
to the jet at the discharging end of pipe No. 1, we have

and similarly, dealing with a stream-line through

pipe and No. 2,

while the equation of continuity for this case is

. .... (3)

From these three equations, assuming/' the same in all pipes

as a first approximation, we can find the three velocities (best

by numerical trial, perhaps) ;
and then the volume of discharge

of the system per unit of time

(4)

533. Time of Emptying Vertical Prismatic Vessels (or Inclined

Prisms if Bottom is Horizontal) under Variable Head.

CASE I. Through an orifice or short pipe in the bottom and

opening into the air. Fig. 591. As the upper free surface,
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of area = F', sinks, F' remains constant. Let z = head of

water at any stage of the emptying ;
it = 2 at the outset, and

= when the vessel is empty. At any
<a

=
I ? ^
^

1 o F ;=

instant, Q, the rafe of discharge (= vol-

ume per time-unit) depends on s and is

-

... (i)

)j where /*
= coefficient of efflux

=
<p C=

FIG. 591.
coefficient of velocity X coefficient of con-

traction [see 495, eq. (3)]. "We here suppose 7^ so large

compared with F, the area of the orifice, that the free surface

of the water in the vessel does not acquire any notable velocity

at any stage, and that hence the rate of efflux is the same at

any instant, as for a steady flow with head = z and a zero

velocity in the free surface. ^ is considered constant. From

(1) we have

dV= (vol. discharged in time dt) = Qdt = pFVz dt. . (2

But this is also equal to the volume of the horizontal lamina
r

F'dz, through which the free surface has sunk in the same

time dt.

F'
.-. dt = ^ ,

z~Wz. . (3)

We have written minus F'dz because, dt being an increment,

dz is a decrement. To reduce the depth from Z
Q (at the start,

time = t = zero) to zn ,
demands a time

F' Czn1=-- \

pFV*gJ*t

whence, by putting zn = 0, we have the time necessary to

empty the whole prism

p
LO

_ %F'z*
%F'ZS__

2 X volume of vessel
.
(g" ~

Zz
"~

initial rate of discharge
'
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that is, to empty the vessel requires double the time of dis-

charging the same amount of water if the vessel had been kept
full (at constant head = z = altitude of prism).

To fill the same vessel through an orifice in the bottom, the

flow through which is supplied from a

body of water of infinite extent hori-

zontally, as with the (single) canal lock

of Fig. 592, will obviously require the

same time as given in eq. (5) above,

since the effective head z diminishes

from Z
Q
to 0, according to the same law.

EXAMPLE. What time will be needed

to empty a parallelopipedical tank (Fig. 591) 4 ft. by 5 ft. in

horizontal section and 6 ft. deep, through a stop-cock in the

bottom whose coefficient of efflux when fully open is known
to be

}Ji
= 0.640, and whose section of discharge is a circle of

diameter -J in. ? From given dimensions F' = 4 X 5 = 20

sq. ft., while z = 6 ft. Hence from eq. (5) (ft.-lb.-sec.)

J^44s^S^

FIG. 592.

time of \

emptying )
0.64 X

2 X 20 X
X 323=1 =

13620 seconds
ghours ^min. Q sec.

CASE II. Two communicatingprismatic vessels. Required
the time for the water to come to a common level ON, Yig.

^ 593, efflux taking place through a small

orifice, of area = F, under water. At

any instant the rate of discharge is
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As before, we have

,
or dt= ; '

F'dx =
F'+F '

Hence, integrating, the time for the difference of level to

change from 2 to zn

F'+F
and by making zn in (6), we have the

C) Tfl Tf' f
-\ /~y~

time of coming to a common level =
p,*-,, ~~p\/ ir~' CO

ALGEBEAIC EXAMPLE. In the double lock in Fig. 594, let

L1
be full, while in L" the water stands at a level MN the

same as that of the tail-

F
" ^ water. F' and F" are the

horizontal sectional areas of

the prismatic locks. Let

the orifice, 0, between

them, be at a depth = 7i,

below the initial level KK
of L

',
and a height = A

a

above that, MN, of L" .

The orifice at 0, area = F, being opened, efflux from L' be-

gins into the air, and the level of L" is gradually raised from

MN to OD, while that of L' sinks from J^S
1

to AB a distance

=
a, computed from the relation vol. F'a = vol. F' !

li^, and

the time occupied is [eq. (4)]

FIG. 594.

(8)

As soon as is submerged, efflux takes place under water, and

we have an instance of Case II. Hence the time of reaching
a common level (after submersion of 0) (see eq. 7) is

and the total time is = t, + t. ,
with a =
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through a,CASE III. Emptying a vertical prismatic

rectangular "notch" in the side, or over-

fall. Fig. 595. As before, let even the

initial area (= zjb) of the notch be small

compared with the horizontal area F' of

tank. Let z = depth of lower sill of notch

below level of tank surface at any instant,

and b = width of notch. Then, at any in-

stant (see eq. 10, 504),

Rate ofdisch. (vol.)
= Q = \p

.-. vol. of disch. in dt =

and putting this = F'dz = vol. of water lost by the tank

in time dt, we have

FIG. 595.

3 F'
dt= - z~

whence

pi

LO

3 F, pl 4= --- -
;

U - 1

i.e.,

Vz

as the time in which the tank surface sinks from a height 5r

above sill to a height zn above sill. If we inquire the time t
f

for the water to sink to the level of the sill of the notch we

put zn = zero, whence t' = infinity. As explanatory of this

result, note that as z diminishes not only does the velocity of

flow diminish, but the available area of efflux (= zb) also grows

less, whereas in Cases I and II the orifice of efflux remained

of constant area = F.

Eq. (10) is applicable to the waste-weir of a large reservoir

or pond.

534. Time of Emptying Vessels of Variable Horizontal Sec-

tions. Considering regular geometrical forms first, let us take
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CASE I. Wedge-shaped vessel, edge horizontal and under-

neath, orifice F in the edge, so that

z, the variable head, is always the

altitude of a triangle similar to the

section ABC'of the body of water

when efflux begins. At any instant

during the efflux the area, 8, of

the free surface, variable here,

takes the place of Ff
in eq. (3) of

533, whence we have,

for any case of variablefree surface, dt =

In the present case S = ul, and from similar triangles

u : z :: b : z
;

whence

(11)

and
- Mz*dz

.~= 5

t
U

[*.-/|,.(18)

and hence the time of emptying the whole wedge, putting

zn = 0, is

%blz _ 4 Vol. of wedge_ 4

initial rate of discharge
(13)

jtFVZgz.

i.e., f as long as to discharge the same volume of water under

a constant head = z . This is equally true if the ends of the

wedge are oblique, so long as they are parallel.

CASE II. Right segment of paraboloid of
revolution. Fig. 597. Axis vertical. Ori-

fice at vertex. Here the variable free surface

has at any instant an area, = S, = TTU\ u be-

ing the radius of the circle and variable.

From a property of the parabola
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and hence, from eq. (11),

,,dt=

743

whence, putting zn = 0, we have the time of emptying the

whole vessel

total vol. ,_, .,

initial rateof disch

same result as for the wedge, in Case I
;
in fact, it applies to

any vessel in which the areas of horizontal sections vary

directly with their heights above the orifice.

CASE III. Anypyramid or cone vertex down ; small ori-

fice in vertex. Fig. 598. Let area of the

base $
,
at upper edge of vessel. At

any stage of the flow S = area of base of

pyramid of water. From similar pyra-

mids

So

FIG. 598.

and [eq. (11)]

whence (zn = 0) the time of emptying the whole vessel is

_ 6 Total volume
,^ ^

5 initial rate of disch*

CASE IV. Sphere. Similarly, we may show that to empty
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a sphere, of radius =
/', through a small orifice, of area

in lowest part, the necessary time is

TIT

15

8 -Vol.

5 init. rate of disch.

535. Time of Emptying an Obelisk-shaped Vessel. (An obe-

lisk may be defined as a solid of six plane faces, two of which

are rectangles in parallel planes and with sides respectively

parallel, the others trapezoids ; a frustum of a pyramid is a

particular case.)

A volume of this shape is of common occurrence; see Fig.

599. Let the altitude = A, the two rectangular faces being

horizontal, with dimensions as in figure. By drawing through

F, G, and II right lines par-

allel to EC, to cut the upper

base, we form a rectangle

KLMC equal to the lower

base. Produce ML to P and

KL to N, and join PG and

NG. We have now sub-

divided the solid into a paral-

lelepiped KLMC - EHGF,
a pyramid PBNL - G, and

two wedges, viz. APLR-HG and LNDM-FG, with

their edges horizontal
;
and may obtain the time necessary to

empty the whole obelisk-volume by adding the times which

would be necessary to empty the individual component vol-

umes, separately, through the same orifice or pipe in the bot-

tom plane EG. These have been already determined in the

preceding paragraphs. The dimensions of each component
volume may be expressed in terms of those of the obelisk, and

all have a common altitude = h.

Assuming the orifice to be in the bottom, or else that the

discharging end of the pipe, if such is used, is in the plane of
the bottom EG^ we have as follows, F being the area of di&-

charge :

FIG. 599.
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Time to empty the parallelopiped }
^
_ 2^ .-=- .

separately would be (Case /, 533) )

*

FV

Time to empty the two
) 07/7 7x17/7, * \

wedges separately K = - W ~
'J + ***

~
*i) >rr /ox''

For thepyramid } f _2 (I ^) @ &,) /7
-

(Case III, 534) f

'

^-5*

Hence to empty the whole reservoir we have

.e.,

. . (4)

EXAMPLE. Let a reservoir of above form, and with & = 50 ft.,

I = 60 ft., 5j
= 10 ft., I,

= 20 ft., and depth of water h = 16

ft., be emptied through a straight iron pipe, horizontal, and

leaving the side of the reservoir close to the bottom, at an angle
a =. 36 with the inner plane of side. The pipe is 80 ft. long
and 4 inches in internal diameter

;
and of clean surface. The

jet issues directly from this pipe into the air, and hence

F=\n($f sq. feet To find /<, the "coefficient of efflux"

(= 0, the coefficient of velocity in this case, since there is no

contraction at discharge orifice), we use eq. (4) (the first radical)

of 518, withf approx. = .006, and obtain

V
(N.B. Since the velocity in the pipe diminishes from a

value

v = .361 4/20r X 16 = 11.6 ft. per sec.

at the beginning of the flow to v = zero at the close,f = .006

is a reasonably approximate average with which to compute
the average above

;
see 517.
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Hence from eq. (4) of this paragraph (ft.-lb.-sec. system)

_ [3 X 50 X 60 + 8 X 10 X 20+ 2(50 X 20+20 X 60)]2

15 X 0.361xVax 32.2

= 31630 sec. = 8 hrs. 47 min. 10 sec. i
*ro >l

ZJ1

^** r

( 3$ of the truth.

536. Time of Emptying Reservoirs of Irregular Shape, Simp-
son's Rule. From eq. (11), 534, we have, for the time in

which the free surface of water in a vessel of any shape what-

ever sinks through a vertical distance =d&
9

dt =- -^--, whence \ time =-- / Sz~*dz, . . (1)

^F^g
' U = ,

o lifVSgJ^

where S is the variable area of the free surface at any in-

stant, and z the head of water at the same instant, efflux

proceeding through a small orifice (or extremity of pipe) of

area =. F. If. S can be expressed in terms of z, we can in-

tegrate eq. (1) (i.e., provided that Sz~l has a known anti-

derivative); but if not, the vessel or reservoir being irregular

in form, as in Fig. 600 (which shows a pond whose bottom

has been accurately surveyed, so that we know the value of S
for any stage of the emptying), we can still get an approximate

solution by using Simpson's
Rule for approximate inte-

gration. Accordingly, if we

inquire the time in which

the surface will sink from

to the entrance Eoi the pipe
in Fig. 600 (any point n

;
at

E. or short of that), we
divide the vertical distance

from to n (4 in this figure) into an even number of equal

parts, and from the known form of the pond compute the area

$ corresponding to each point of division, calling them $, $,,

etc. Then the required time is approximately
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*
i

4 r+-
600. Suppose we have a pipe Em of the

same design as in the example of 535, and an initial head of

2 = 16 ft., so that the same value of /*,
= .361, may be used.

Let zn z = 8 feet, and divide this interval (of 8 ft.) into

four equal vertical spaces of 2 ft. each. If at the respective

points of division we find from a previous survey that $Q
=

400000 sq. ft., S, = 320000 sq. ft., #, = 270000 sq. ft., &, =
210000 sq. ft., and 4

= 180000 sq. ft.
;
while n = 4, p .361,

and the area F= i^)
2 = .0873 sq. ft., we obtain (ft.,lb., sec.)

G_
_16-8

ptOOOOO
4 X 320000

~
0.361 X.0873 I/2^<~32^X 3X4 L ylg"

"

2 X 270000 4 X 210000 ISOOOOn = 2444000 sec.
"

^8" J= 28d - 6h ' 53m'

volume discharged, T
7

', may also be found by Simpson's

Rule, thus : Since each infinitely small horizontal lamina has

a volume

or, approximately,

4S $S IS

Hence with n = 4 we have (ft., lb., sec.)

+ 180000~|
= 2,160,000 cub. ft.
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537. Volume of Irregular Reservoir Determined by Observing

Progress of Emptying. Transforming eq. (11), 534, we have

But Sdz is the infinitely small volume d V oi water lost by
the reservoir in the time di, so that the volume of the reser-

voir between the initial and final (0 and n) positions of the

horizontal free surface (at beginning and end of the time tn)

may be written

(1)\=

This can be integrated approximately by Simpson's Eule, if

the whole time of emptying, = tn ,
be divided into an even

number of equal
n parts, and the values

^o 5
s

i > z* 5
etc

->
f the

head of water noted

at these equal inter-

vals of time (not of

vertical height). The

corresponding sur-

face planes will not

Whence for the particular case

FIG.

be equidistant, in general,

when n = 4 (see Fig. 601)

J
4*]'

' '
(
2>



CHAPTEE VII.

HYDRODYNAMICS (Continued) STEADY FLOW OF WATER IN
OPEN CHANNELS.

538. Nomenclature, Fig. 602. When water flows in an

open channel, as in rivers, canals, mill-races, water-courses,

ditches, etc., the bed

and banks being rigid,

the upper surface is

free to conform in

shape to the dynamic
conditions of each case,

which therefore regu-
late to that extent the

shape of the cross-sec-

tion.

In the vertical trans- FlG - 602>

verse section A C in figure, the line AC is called the air-profile

(usually to be considered horizontal and straight), while the

line ABC, or profile of the bed and banks, is called the ivetted

perimeter. It is evident that the ratio of the wetted perimeter
to the whole perimeter, though never < -J,

varies with the

form of the transverse section.

In a longitudinal section of the stream, EFGH, the angle

made by a surface filament EF with the horizontal is called

the slope, and is measured by the ratio s = h : I, where I is the

length of a portion of the filament and h = thefall, or vertical

distance between the two ends of that length. The angle be-

tween the horizontal and the line HG along the bottom is not

necessarily equal to that of the surface, unless the portion of

the stream forms a prism ; i.e., the slope of the bed does not

necessarily = s = that of surface.

EXAMPLES. The old Croton Aqueduct has a slope of 1.10

ft. per mile; i.e., s .000208. The new aqueduct (for New
749
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York) has a slope * = .000132, with a larger transverse section.

For large sluggish rivers s is much smaller.

539. Velocity Measurements. Various instruments and

methods may be employed for this object, some of which are

the following :

Surface-floats are small balls, or pieces of wood, etc., so

colored and weighted as to be readily seen, and still but little

affected by the wind. These are allowed to float with the cur-

rent in different parts of the width of the stream, and the sur-

face velocity c in each experiment computed from c =. I -=-
#,

where I is the distance described between parallel transverse

alignments (or actual ropes where possible), whose distance

-apart is measured on the bank, and t = the time occupied.

Double-floats. Two balls (or small kegs) of same bulk and

condition of surface, one lighter, the other heavier than water,

are united by a slender chain, their

weights being so adjusted that the

light ball, without projecting notably
above the surface, buoys the other

ball at any assigned depth. Fig. 603.

It is assumed that the combination

^^^^w/wm^^m moves with a velocity c', equal to the

FIG. 603. arithmetic mean of the surface veloc-

ity c of the stream and that, c, of the water filaments at the

depth of the lower ball, which latter, <?,
is generally less than

<? . That is, we have

c'=%(cQ + e) a d '

c = 2c' c
9

. . . . (1)

Hence, C having been previously obtained, eq. (1) gives the

velocity c at any depth of the lower ball, c' being observed.

Thefloating staff is a hollow cylindrical rod, of adjustable

length, weighted to float upright with the top just visible. Its

observed velocity is assumed to be an average of the velocities

of- all the filaments lying between the ends of the rod.

Woltmann's Mill ; or Tachometer ; or Current-meter, Fig.

604, consists of a small wheel with inclined floats (or of a small
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FIG. 604.

"
screw-propeller" wheel S) held with its plane ~j to the cur-

rent, which causes it to re-

volve at a speed nearly pro-

portional to the velocity, c,

of the water passing it.

By a screw-gearing W oil

the shaft, connection is

made with a counting ap-

paratus to record the num-

ber of revolutions. Some-

times a vane B is attached,.

to compel the wheel to face

the current. It is either

held at the extremity of a pole or, by being adjustable along
a vertical staff fixed in the bed, may be set at any desired depth
below the surface. It is usually so designed as to be thrown

in and out of gear by a cord and spring, that the time of mak-

ing the indicated number of revolutions may be exactly noted.

By experiments in currents of known velocities a table or

formula can be constructed by which to interpret the indica-

tions of any one instrument
; i.e., to find the velocity c of the

current corresponding to an observed number of revolutions,

per minute.

A peculiar form of this instrument has been recently in-

vented, called the Ritcliie-Haskell Direction-current Meter,
for which the following is claimed: u This meter registers

electrically on dials in boat
'

<
xV..-. -.-.."',..',-.

from which used, the direction ..^
and velocity, simultaneously, '.--

of any current. Can be used
,':'-^ ;

~-

in river, harbor, or ocean cur- fi|
rents/'

Pitofs Tube consists in prin- ^EEr

ciple of a vertical tube open =
above, while its lower end, also

open, is bent horizontally up-
~

stream; seeA in figure. After

the oscillations have ceased, the water in the tube remains
FIG. 605.
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stationary with its free surface a height, A', above that of the

stream, on account of the continuous impact of the current

against the lower end of the column. By the addition of

another vertical tube (see B in figure) with the face of its

lower (open) end parallel to the current (so that the water-

level in it is the same as that of the current), both tubes being

provided with stop-cocks, we may, after closing the stop-

cocks, lift the apparatus into a boat and read off the height Ji'

at leisure. We may also cause both columns of water to

mount, through flexible tubes, into convenient tubes in the

boat by putting the upper ends of both tubes in communica-

tion with a receiver of rarefied air, and thus watch the oscilla-

tions and obtain a more accurate value of h'. [See Van Nos-

trand's Mag. for Mar. '78, p. 255.] Theoretically (see 565),

the thickness of the walls of the tube at the lower end being

considerable, we have

c = VgK (1)

as a relation between c, the velocity of the particles impinging
on the lower end, and the static height h' ( 565). Eq. (1) is

verified fairly well by Weisbach's experiments with fine in-

struments, used with velocities of from 0.32 to 1.24: meters

per second. Weisbach found

c = 3.54 Vh f

(In meters) met. per sec.,

whereas eq. (1) gives

c= 3.133 Vh' (in meters) met. per sec.

In the instruments used by Weisbach the end of the tube

turning up-stream was probably straight ; i.e., neither flaring

nor conically convergent. A change in this respect alters the

relation between c and h
'; see 565 for Pitot's and Darcy's

results.

Pitot's Tube, though simple, is not so accurate as the ta-

chometer.



CURRENT-METERS. 753

The Hydrometric Pendulum, a rather uncertain instrument,
is readily understood from Fig. 606. The side AB, of the

quadrant ABC, being held vertical, the

plane of the quadrant is made parallel to

the current. The angle 6 between the

cord and the vertical depends on G, the

effective weight (i.e., actual weight dimin-

ished by the buoyant effort) of the ball

(heavier than water), and the amount of jP,

the impulse or horizontal pressure of the

current against the latter, since the cord

will take the direction of the resultant 72,
FlG> 606<

for equilibrium.

Now P (see 572) for a ball of given size and character of

surface varies (nearly) as the square of the velocity ; i.e., if P f

is the impulse on a given stationary ball, when the velocity of

the current == c
1

',
then for any other velocity c we have

P impulse c* (2)
c

P
From this and the relation tan = ^ we derive

Cr

^^tantf (3)

With a given instrument and a specified system of units, the

numerical value of the first radical may be determined as a

single quantity, by experimenting with a known velocity and

the value of 6 then indicated, and may then, as a constant fac-

tor, be employed in (3) for finding the value of c for any ob-

served value of
;
but the same units must be used as before.

540. Velocities in Different Parts of a Transverse Section.

The results of velocity-measurements made by many experi-

menters do not agree in supporting any very definite relation

between the greatest surface velocity (c max.)
of a transverse
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section and the velocities at other points of the section, but

establish a few general propositions :

1st. In any vertical line the velocity is a maximum quite
near the surface, and diminishes from that point both toward

the bottom and toward the surface.

2d. In any transverse horizontal line the velocity is a maxi-

mum near the middle of the stream, diminishing toward the

banks.

3d. The mean velocity v, of the whole transverse section,

i.e., the velocity which must be multiplied by the area, F, of

the section, to obtain the volume delivered per unit of time,

Q = Fv, . . . .' .~r. ,- (1)

is about 83 per cent of the maximum surface velocity (c max.)
observed when the air is still

; i.e.,

v = 0.83 X (0.

Of eight experimenters cited by Prof. Bowser, only one gives

a value (= 0.62) differing more than .05 from .83, while others

obtained the values .82, .78, .82, .80, .82, .83.

In the survey of the Mississippi River by Humphreys and

Abbot, 1861, it was found that the law of variation of the

velocity in any given vertical line could be fairly well repre-

sented by the ordinates of a parabola (Fig. 607) with its axis

.*'.: ".^.:\ :/>.v .;';: ::.:*, horizontal and its vertex at a distance d
l

~'i -=V- -t^'-" -i== below the surface according to the follow-
X. I

i
_\ ,

'

I
-I

I ,^~^\~ E ing relation,f being a number dependent
^- . T '

,. i 1 # f" j 1 T / (* r\. (*

_i_Y ~
>\ cdr-~ on the force of the wind (from for no

'

f=L wind to 10 for a hurricane) :

= [0.31T0.06/"]rf; . . (3)

=- where d is the total depth, and the double

sign is to be taken -j- for an up-stream,
FIG. 607. for a down-stream, wind. The following

relations were also based on the results of the survey :

(putting, for brevity, B = 1.69 -r- Yd+ 1.5,) . (4)
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/- .7x2

-vm?-=^\, (5)

and

c^ = cm+ -fy^v. .-..:*' . . (7)

(These equations are not of homogeneousform, but call for

the foot and second as units.)

In (4), (5), and (6),

c = velocity at any depth & below the surface
;

cm = mean velocity in the vertical curve
;

c
dl
= max. " " "

Cfa = " at mid-depth ;

cd = velocity at bottom
;

v = mean velocity of the whole transverse section.

It was also found that the parameter of the parabola varied

inversely as the square root of the mean velocity cm of curve.

In general the bottom velocity (<?d) is somewhat more than \
the maximum velocity (cdl )

in the same vertical. In the Mis-

sissippi the velocity at mid-depth in any vertical was found to

be very nearly .96 of the surface velocity in the same vertical
;

this fact is important, as it simplifies the approximate gauging
of a stream.

541. Gauging a Stream or River. Where the relation (eq. (2),

540) v .83 (<? max.)
is not considered accurate enough for

substitution in Q Fv to obtain the volume of discharge (or

delivery) Q of a stream per time-unit, the transverse section

may be divided into a number of subdivisions as in Fig. 608,

of widths a, , ,, etc., and

mean depths dl9 <7
a , etc.,

and the respective mean

velocities, c
1 ,

<?2 , etc., com-

puted from measurements

with current-meters ;
whence we may write

Q = a,d,c, + a t
d

t
c
t + a,d,cz + etc. ... (7)
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With a small stream or ditch, however, we may erect a ver-

tical boarding, and allow

the water to flow through a

rectangular notch or over-

fall, Fig. 609, and after the

head surface

permanent,

has become

measure A
2

(depth
* of sill below the

level surface somewhat

back of boards), and b

(width) and use the formu-

lae of 504; see examples
FIG. 609.

in that article.

542. Uniform Motion in an Open Channel. We shall now

consider a straight stream of indefinite length in which the

flow is steady, i.e., a state of permanency exists, as distin-

guished from a freshet or a wave. That is, the flow is steady

when the water assumes flxed values of mean velocity v, and

sectional area F, on passing a given point of the bed or bank
;

and the

Eq. of continuity . . Q = Fv = JF
J

v F
l
v

l
= constant . . (1)

holds good whether those sections are equal or not.

By uniform motion is meant that (the section of the bed

and banks being of constant size and shape) the slope of the

bed, the quantity of water (volume = Q) flowing per time-

unit, and the extent of the wetted perimeter, are so adjusted
to each other that the mean velocity of flow is the same in all

transverse sections, and consequently the area and shape of the

transverse section is the same at all points ;
and the slope of

the surface that of the bed. We may therefore consider,

for simplicity, that we have to deal with a prism of water of

indefinite length sliding down an inclined rough bed of con-

stant slope and moving with uniform, velocity (viz., the mean

velocity v common to all the sections) ;
that is, there is no ac-

celeration. Let Fig. 610 show, free, a portion of this prism,

of length = Z, and having its bases 1 to the bed and surface.
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The hydrostatic pressures at the two ends balance each other

from the identity of conditions. The only other forces having

jU-4-JL

FIG. 610.

components parallel to the bed and surface are the weight

G = Fly of the prism (where y = heaviness of water) making
an angle = s

(
= slope) with a normal to the surface, and the

friction between the water and the bed which is parallel to the

surface. The amount of this friction for the prism in question

may be expressed as in 510, viz.:

=fwly^ 9

in which S = wl = rubbing surface (area)
= wetted perimeter,

w, X length (see 538), and /"an abstract number. Since the

mass of water in Fig. 610 is supposed to be in relative equili-

brium, we may apply to it the laws of motion of a rigid body,

and since the motion is a uniform translation ( 109) the com-

ponents, parallel to the surface, of all the forces must balance.

h tf
.'. G sin s must = P = fric. ;

/. Fly =fwly ;

i 2g
whence

or

in which F'-t-w is called 7?, the hydraulic mean depth, or

hydraulic radius. (3) is sometimes expressed by saying that
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the whole fall, or head, ^, is (in uniform motion) absorbed in

friction-head. Also, since the slope s = h -f- 1, we have

v = J'*LVs; or,
=

(*>

which is of the same form as Chezy's formula in 519 for a

very long straight pipe (the slope s of the actual surface in this

case corresponding to the slope along piezometer-summits in

that of a closed pipe). In (4) the coefficient A = V%g -s-f is

not, like/", an abstract number, but its numerical value depends
on the system of units employed.

542a. Experiments on the Flow of Water in Open Channels.

Those of Darcy and Bazin, begun in 1855 and published in

1865 (" Recherches Hydrauliques"), were very carefully con-

ducted with open conduits of a variety of shapes, sizes, slopes,

and character of surface. In most of these a uniform flow was

secured before the taking of measurements. The velocities

ranged between from about 0.5 to 8 or 10 ft. per second, the

hydraulic radii from 0.03 to 3.0 ft., with deliveries as high as

182 cub. ft. per second. For example, the following results

were obtained in the canals of Marseilles and Craponne, the

quantity A being for the foot and second. The sections were

nearly all rectangular. See eq. (4) above.

No.
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good mortar joints, and about 9 ft. wide
;
the depths of water

ranging from 1.5 to 4.5 ft. With plaster of pure cement on

the bed in one of the experiments the high value of A = 153.6

was reached (foot and second), with v = 2.805 ft. per second,

R = 2.111 ft., s = .0001580, and Q = 87.17 cu. ft. per second.

Captain Cunningham, in his experiments on the Ganges
Canal at Roorkee, India, in 1881, found A to range from 48

to 130 (foot and second).

Humphreys and Abbot's experiments on the Mississippi

River and branches (see 540), with values of R = from 2 or

3 ft. to 72 ft., furnish values of A = from 53 to 167 (foot and

second).

542b. Kutter's Formula. The experiments upon which

Weisbach based his deductions for/*, the coefficient of fluid

friction, were scanty and on too small a scale to warrant gener-

al conclusions. That author considered that/* depended only
on the velocity, disregarding altogether the degree of rough-
ness of the bed, and gave a table of values in accordance with

that view, these values ranging from .0075 for 15 ft. per sec.

to .0109 for 0.4 ft. per sec.
;
but in 1869 Messrs. Kutter and

Ganguillet, having a much wider range of experimental data

at command, including those of Darcy and Bazin, and those

obtained on the Mississippi River, evolved a formula, known
as Gutter's Formula, for the uniform motion of water in open

channels, which is claimed to harmonize in a fairly satisfactory

manner the chief results of the best experiments in that direc-

tion. They make the coefficient A in eq. (4) (or rather the

factor contained in A) a function of JR, $, and also n an

J
abstract number, or coefficient of roughness, depending on the

nature of the surface of the bed and banks
; viz.,

*un
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That is, comparing (5) with (4), we have /a function of

It, and s, as follows :

^

n

. . . (6)

From (6) it appears that f decreases with an increasing j??,

as has been also noted in the case of closed pipes ( -517) ;
that

it increases with increasing roughness of surface
;
and that it

is somewhat dependent on the slope. The makers of the

formula give the following values for n.

Values of n. n =

.009 for well-planed timber bed
;

.010 for plaster in pure cement
;

.011 for plaster in cement with \ sand
;

.012 for unplaned timber
;

.013 for ashlar and brickwork
;

*

.015 for canvas lining on frames
;

.017 for rubble
;

.020 for canals in very firm gravel ;

.025 for rivers and canals in perfect order and regimen, and

perfectly free from stones and weeds
;

.030 for rivers and canals in moderately good order and regi-

men, having stones and weeds occasionally ;

.035 for rivers and canals in bad order and regimen, overgrown
with, vegetation and strewn with stones or detritus of

any sort.

Kutter's Formula is claimed to apply to all kinds and sizes of

watercourses, from large rivers to sewers and ditches
;
for uni-

form motion. If 4/7? is the unknown quantity, Kutter's For-

mula leads to a quadratic equation ;
if s the slope, to a cubic.

Hence, to save computation, tables have been prepared, some

of which will be found in vol. 28 of Yan Nostrand's Magazine

* For ordinary brick sewers Mr. R. F. Hartford claims that n = .014

gives good results. See Jour. Eng. Societies for '84- '85, p. 220.
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(pp. 135 and 393) (sewers), and in Jackson's works on Hydrau-
lics (rivers).

The following table will give the student an idea of the

variation of the coefficient A, = --, of eq. (4), or large
t/

bracket of eq. (5), with different hydraulic radii, slopes, and

values of ?&, according to Kutter's Formula
;
from R = ft.,

for a small ditch or sluice-way (or a wide and shallow stream),

to R 15 ft., for a river or canal of considerable size. Under

each value of R are given two values of A
;
one for a slope of

s' .001, and the other for s" = .00005. All these values of

A imply the use of the foot and second.

These values of A have been scaled by the writer from a

diagram given in Jackson's translation of Kutter's "
Hydraulic

Tables^ and are therefore only approximate. The corre-

sponding values of /*,
the coefficient of fluid friction, can be

computed fromf= ^ .

n

0.010
0.015
0.020
0.025
0.030
0.035
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To quote from a letter of Mr. I. A. Shaler of the Aqueduct
Corps of Engineers,

" Mr. Fteley states that the cleanliness of

the conduit (Sudbury) had much to do in affecting the flow.

He found the flow to be increased by 7 or 8 per cent in a por-
tion which had been washed with a thin wash of Portland

cement."

EXAMPLE 1. A canal 1000 ft. long of the trapezoidal sec-

tion in Fig. 611 is required to deliver 300 cubic ft. of water

per second with the water 8 ft. deep at all

sections (i.e., with uniform motion), the

slope of the bank being such that for a depth
of 8 ft. the width of the water surface (or

length of air-profile) will be 20 ft.; and the

coefficient for roughness being n .020. What is the neces-

sary slope to be given to the bed (slope of bed = that of sur-

face, here) (ft., lb., sec.) \

The mean velocity

v = Q + F= 300 -f- i (20+ 8) 8 = 2.6T ft. per sec.

[So that the surface velocity of mid-channel in any section

would probably be
(<?omax.)

v -r- 0.83 = 3.21 ft. per sec. (eq.

(2), 540).]

The wetted perimeter

w = 8 + 2 1/8' + 6
2 = 28 ft.,

and therefore the mean hydraulic depth

= E = F+ w = 112 -f- 28 = 4 ft.

To obtain a first approximation for the slope, we may use

the value/'= .00795 given by Weisbach for a velocity of 2.67

ft. per sec., and obtain, from (3),

__ .00795 X 1000 X 28 (2.67)* _ ,
,

112 X 2 X 32.2

i.e., s = 7i-irl = .000221.
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With this value for the slope and 7?.= 4 ft. (see above), we
then have, from eq. (6) (putting n = .020),

.00281 \ .020

.020 .000221

= .0071,

with which value off we now obtain

h = 0.200 feet
; i.e., slope = s = .00020.

EXAMPLE 2. If the bed of a creek falls 20 inches every
1500 ft. of length, what volume of water must be flowing to

maintain a uniform mean depth of 4^ ft., the corresponding
surface-width being 40 ft., and wetted perimeter 46 ft. ? The
bed is

" in moderately good order and regimen ;" use Kutter's

Formula, putting n = 0.030 (ft. and sec.).

First we have

X
-^-(46

X

while VIZ (ft.) =1.98, and the slope = s = f-f -j- 1500=.00111
;

hence

or

104.43 X .066

1.6685

Hence, also,

1

.OOlllJ 1.98

v = 4.13 ft. per sec.

= ^3.4 cub. ft. per sec.

[N.B. Weisbach works this same example by eq. (3) with a

value of/taken from his own table, his result being v = 6.1
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ft. per sec., which would probably be attained in practice only

by making the bed and banks smoother than as given.]
EXAMPLE 3. The desired transverse water-section of a canal

is given in Fig. 612. The slope is to be

3 ft. in 1600
; i.e., s 3 -h 1600

; or, for

I 1600 ft., h 3 ft. What must be the

velocity (mean) of each section, for a uni-

form motion the corresponding volume

delivered per sec., Q, Fv, = ?
; assuming that the character

of the surface warrants the value n .030 2

Knowing the slope s
9
= 3 ~ 1600

;
and the hydraulic radius

R, = F-+- w, = 79.28 sq. ft. H- 24.67 ft.,
= 3.215 feet

;
with

n = .030 we substitute directly in eq. (5), obtaining v 4.67

ft. per sec.
;
whence Q = Fv 370 cub. ft. per sec.

543. Hydraulic Mean Depth for a Minimum Frictional Resist-

ance. We note, from eq. (3), 542, that if an open channel

of given length I and sectional area F is to deliver a given

volume, Q, per time-unit with uniform motion, so that the

common mean velocity v of all sections (= Q -+- F) is also a

given quantity, the necessary fall A, or slope s h -~-
I, is

seen to be inversely proportional to ./?, the hydraulic mean

depth of the section, = (F -- w\ sectional area -f- wetted

perimeter.

For h to be as small as possible, we may design the form of

transverse section, so as to make R as large as possible ; i.e.,

to make the wetted perimeter a minimum for a given F', for

in this way a minimum of frictional contact, or area of rub-

bing surface, is obtained for a prism of water of given sectional

area J^and given length I.

In a closed pipe running full the wetted perimeter is the

whole perimeter ;
and if the given sectional area is shaped in

the form of a circle, the wetted perimeter, = 10, is a minimum

(and R a maximum). If the full pipe must have a polygonal

shape of n sides, then the regular polygon of n sides will pro-

vide a minimum w.

Whence it follows that if the pipe or channel is running
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half full, and thus becomes an open channel, the semicircle,

of all curvilinear water pro-

files, gives a minimum w.

Also, of all trapezoidal pro-

files with banks at 60 with

the horizontal the half of a

regular hexagon gives a

minimum w. Among all

rectangular sections the half
FIG 613.

square gives a minimum w
;

and of all half octagons the half of a regular octagon gives a

minimum w (and max. H) for a given F. See Fig. 613 for

all these.

The egg-shaped outline, Fig. 614, small end down, is fre-

quently given to sewers in which it is important that the

different velocities of the water at dif-

ferent stages (depths) of flow (depend-

ing on the volume of liquid passing per

unit-time) should not vary widely from

each other. The lower portion ABC,
providing for the lowest stage of flow

AB, is nearly semicircular, and thus in-

duces a velocity of flow (the slope being
constant at all stages) which does not

differ extremely from that occurring
when the water flows at its highest

stage DE, although this latter velocity is the greater; the

reason being that ABC from its advantageous form has a

hydraulic radius, R, larger in proportion to its sectional area,

F, than DCE.
That is, F -r- w for ABC is more nearly equal toF -^ w for

DEC than if DEC were a semicircle, and the velocity at the

lowest stage may still be sufficiently great to prevent the de-

posit of sediment. See 575.

544. Trapezoid of Fixed Side-slope. For large artificial water-

courses and canals the trapezoid, or three-sided water-profile

(symmetrical), is customary, and the inclination of the bank,

FIG. 614.
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or angle 6 with the horizontal, Fig. 615, is often determined

by the nature of the material

composing it, to guard against

washouts, caving in, etc. We
are therefore concerned with the

mKZttZZiSSZi'f
following problem : Given the

FlG - 615 -

area, F, of the transverse section,

and the angle 0, required the value of the depth x (or of upper
width z, or of lower width y, both of which are functions of x)

to make the hydraulic mean depth, R F -f- w, a maximum,
or w -r- F a minimum... F is constant.

From the figure we have

w = AB + 1BC = y + Zx cosec. 6, . . . (1)

and

F= yx 4- a?
2
cot.

;

whence

y = -.(F x* cot. 0), (2)x

substituting which in (1) and dividing by F, noting that

2 cosec. 9 cot. =
sin B
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while the corresponding values for the other dimensions are

y' = -^- oj' cot. # ......... (5)
ilC

and

s'=y' + 2x'cot. &= + %' cot. 0. . . . (6)
vu

For the corresponding hydraulic mean depth R' [see (3)],

i.e., the max. R, we have

1 .2 0080 ,_ 2
'

x' Fsm x"

f*o (8>

Equations (4), (5), ... (8) hold good, then, for the trapezoi-

dal section of least frictional resistance for a given angle 6.

PKOBLEM. Required the dimensions of the trapezoidal sec-

tion of minimum frictional resistance for 6 = 45, which with

k = 6 inches fall in every 1200 feet ( Z) is required to de-

liver Q = 360 cub. ft. of water per minute with uniform
motion.

Here we have given, with uniform motion, A, Z, and Qr

with the requirement that the section shall be trapezoidal, with

6 = 45, and of minimum frictional resistance. The following

equations are available :

Eq. of continuity . . . Q = Fv, ...... (1
;

)

Eq. (8) preceding, for con- )
7?' A / s^

dition of least resistance
j

2 y 2 cos 6
. (2'Y

There are three unknown quantities, v, F, and R' . Solve
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(I/) for v
;

solve (2') for R'\ substitute their values in (3') ;

whence

h I/sin

! cos#
.(4')

Since/"cannot be exactly computed in advance, for want of

knowing the value of R, we calculate it approximately [eq. (6)>

542b] for an assumed value of R, insert it in the above

equation (4/), and thus find an approximate value of F\ and

then, from (8), a corresponding value of R, from which a new
value of /"can be computed. Thus after one or two trials a

satisfactory adjustment of dimensions can be secured.

545. Variable Motion. If a steady flow of water of a de-

livery Q, = Fv, = constant, takes place in a straight open
channel the slope of whose bed has not the proper value to

maintain a "
uniform motion" then " variable motion" ensues

(the flow is still steady, however); i.e., although the mean

velocity in any one transverse section remains fixed (with lapse

of time), this velocity has different values for different sections
;

but as the eq. of continuity,

etc.,

still holds (since the flow is steady), the different sections

have different areas. If,

Fig. 616, a stream of

water flows down an

inclined trough without

friction, the relation

between the velocities

v and v
l

at any two
FIG. 616. sections and 1 will be

the same as for a material point sliding down a guide without

friction (see 79, latter part), viz. :

(1)
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an equation of heads (really a case of Bernoulli's Theorem,

492). But, considering friction on the bed, we must sub-

tract the meanfriction-head f -=--- [see eqs. (3) and (3'),H 2<7

542] lost between and 1
;

this friction-head may also be
7 2

written thus : f - ~-
;
and therefore eq. (1) becomes

which is the formula for variable motion ; and in it I is the

length of the section considered, which should be taken short

enough to consider the surface straight between the end-sec-

tions, and the latter should differ but slightly in area. The

subscript m may be taken as referring to the section midway
between the ends, so that vm

2 =
j-(i>

2

-f- v*). The wetted pe-
rimeter wm = i(w.+ w,), and Fm = %(FQ + F^. Hence eq.

(2) becomes

* _ , ,. ,o\B
SF ""%" ~^+*r ~^~

and again, by putting v Q -=- F
Q , v, Q -=- F, ,

we may
write

F
whence

,

*

n

From eq. (4), having given the desired shapes, areas, etc., of

the end-sections and the volume of water, Q, to be carried per
unit of time, we may compute the necessary fall, A, of the sur-

face, in length = I
;
while from eq. (5), having observed in an

actual water-course the values of the sectional areasF
Q
and JF

1

l
,

the wetted perimeters w and w
l ,

the length, = I, of the por-
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tion considered, we may calculate Q and thus gauge the stream

approximately, without making any velocity measurements.

As to the value of f, we compute it from eq. (6), 542b,

using for R a mean between the values of the hydraulic radii

of the end-sections.

546. Bends in an Open Channel. According to Humphreys
and Abbot's researches on the Mississippi Kiver the loss of

head due to a bend may be put

,

^"536 IT' (1)

in which v must be inft. per sec., and #, the angle ABC, Fig.

617, must be in 7r-measure, i.e. in radians.

The section ^must be greater than 100

sq. ft., and the slope s less than .0008. v

is the mean velocity of the water. Hence
if a bend occurred in a portion of a

stream of length I, q. (3) of 542 be-

comes

FIG. 617.

6

while eq. (2) of 545 for variable motion would then become

= -^- -\-h --^rr- -^TT-I
- (ft- and sec.). . (3)

2# 2# J1
'

m Qg Ooo 7t

(v and d as above.) (For
" radian" see p. 544.)

547. Equations for Variable Motion, introducing the Depths.

Fig. 618. The slope of the bed being sin a (or simply ^,

Trmeas.), while that of the surface is

different, viz.,

sin fi
= s = h -4- /,

we may write

h = d -f- 1 sin a d
l ,

FIG. 618.
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in which d and d
l
are the depths at the end-sections of the

portion considered (steady flow with variable motion). With

these substitutions in eq. (4), 545, we have, solving for Z,

From which, knowing the slope of the bed and the shape

and size of the end-sections, also the discharge Q, we may
compute the length or distance, Z, between two sections whose

depths differ by an assigned amount (d d^. But we can-

not compute the change of depth for an assigned length Z from

(6). However, if the width b of the stream is constant, and

the same at all depths ; i.e., if all sections are rectangles hav-

ing a common width
; eq. (6) may be much simplified by intro-

ducing some approximations, as follows : We may put

> '

F?

._
'

and, similarly,

wm

^ 1 m n

which approx. = ~-
d b Zg

Hence by substitution in eq. (6) we have

547a. Backwater. Let us suppose that a steady flow las

been proceeding with uniform motion (i.e., the surface parallel
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to the bed) in an open channel of indefinite extent, and that a

vertical wall is now set up across the stream. The water rises

and flows over the edge of the wall, or weir, and after a time

a steady flow is again established. The depth, y ,
of the water

close to the weir on the up-stream side is greater than d
,
the

original depth. "We now have " variable motion " above the

weir, and at any distance x up-stream from the weir the new

depth y is greater than d . This increase of depth is called

backwater, and, though decreasing up-stream, may be percep-
tible several miles above the weir. Let s be the slope of the

original uniform motion (and also of present bed), and v the

v*

velocity of the original uniform motion, and let ~k = .

y

Then, if the section of the stream is a shallow rectangle of

constant width, we have the following relation (Rankine) :

0.)],

where is a function of
-,

as per following table :

For = 1 .

d
<p = GO



CHAPTER YIII.

DYNAMICS OF GASEOUS FLUIDS.

548. Steady Flow of a Gas. [KB. The student should now
review 492 up to eq. (5).] The differential equation from
which Bernoulli's Theorem was derived for any liquid, with-

outfriction, was [eq. (5), 492]

l

r vdv + ds+ -d
jp = 0, ..... (A)

/ /

and is equally applicable to the steady flow of a gaseous fluid,

but with this difference in subsequent work, that the heaviness,

y ( A f the gas passing different sections of the pipe or

stream-line is, or may be, different (though always the same at

a given point or section, since the flow is steady). For the

present we neglect friction and consider the flow from a large

receiver, where the great body of the gas is practically at rest,

through an orifice in a thin plate, or a short nozzle with a

rounded entrance.

In the steady flow of a gas, since y is different at different

points, the equation of continuity takes the form

Flow of weightper time-unit = F
l
v

1y 1
= F^v^y^ = etc.

;
. (a)

i.e., the weight of gas passing any section, of area F, per unit

of time, is the same as for any other section, or Fvy = con-

stant, y being the heaviness at the section, and v the velocity.

549. Flow through an Orifice Remarks. In Fig. 619 we
have a large rigid receiver containing gas at some tension,pn ,

higher than that, pm ,
of the (still) outside air (or gas), and at

some absolute temperature Tn ,
and of some heaviness yn \

that ,

is, in a state n. The small orifice of area F being opened, the

gas begins to escape, and if the receiver is very large, or if the

supply is continually kept up (by a blowing-engine, e.g.), after

773
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STILL.
. AIR. .

FIG. 619.

a very short time the flow becomes steady. Let nm represent

any stream-line ( 495) of the flow. According to the ideal

subdivision of this stream-line into
JT ^ ;_ .,,

laminae of equal mass or weight (not

equal volume, necessarily) in estab-

lishing eq. (A) for any one lamina,

each lamina in the lapse of time dt

moves into the position just vacated

by the lamina next in front, and

assumes precisely the same velocity,

pressure, and volume (and there-

fore heaviness] as that front one had at the beginning of the

dt. In its progress toward the orifice it expands in volume,

its tension diminishes, while its velocity, insensible at n, is

gradually accelerated on account of the pressure from behind

always being greater than that in front, until at m, in the
" throat" of the jet, the velocity has become vm ,

the pressure

(i.e., tension) has fallen to a value pm ,
and the heaviness has

changed to ym . The temperature Tm (absolute) is less than

Tn ,
since the expansion has been rapid, and does not depend

on the temperature of the outside air or gas into which efflux

takes place, though, of course, after the effluent gas is once

free from the orifice it may change its temperature in time.

We assume the pressure ^>m (in throat of jet) to be equal to

that of the outside medium (as was done with flow of water),

so long as that outside tension is greater than .527^TC ;
but if it

is less than .527 pn and is even zero (a vacuum), experiment
seems to show thatpm remains equal to 0.527 of the interior

tension pn \ probably on account of the expansion of the

effluent gas beyond the throat, Fig. 620, so

,///, that although the tension in the outer edge,

^" at a, of the jet is equal to that of the outside

medium, the tension at m is greater because

of the centripetal and centrifugal forces devel-

FIO. 620. oped in the curved filaments between a and

m. (See 553.)

550. Flow through an Orifice; Heaviness assumed Constant

during Flow, The Water Formula. If the inner tension pn ex-
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ceeds the outer, pm ,
but slightly, we may assume that, like

water, the gas remains of the same heaviness during flow.

Then, for the simultaneous advance made by all the laminae of

a stream-line, Fig. 619, in the time dt, we may conceive an

equation like eq. (A) written out for each lamina between n
and w, and corresponding terms added

; i.e.,

{For orifices) . .

- fvdv + fdz+ /**& = <>. . (B)
qjn

'

t//i ' Jn y

In general, y is different in the.different laminae, but in the

present case it is assumed to be the same in all
; hence, with

m as datum level and h vertical distance from n to w, we

have, from. eq. (B),

^ _ V^_ , Q _ h
, Pm _ Pn = Q

.

.. fy *g r r

But we may put vn ;
while A, even if several feet, is

small compared with . E.g., with pm ^ 15 Ibs. per

sq. in. and pn = 16 Ibs. per sq. in., we have for atmospheric
air at freezing temperature

y y

Hence, putting vn and h = in eq. (1), we have

^m _ Pn Pm ( Waterformula ; for small
\ /^

2g yn \ difference ofpressures, only. \

The interior absolute temperature Tn being known, the yn

(interior heaviness) may be obtained from yn =pny*TQ
-r- Tnp

( 472), and the volume of flow per unit of time then obtained

(first solving (2) for vm)
is

(3)

where Fm is the sectional area of the jet at m. If the mouth-

piece or orifice has well-rounded interior edges, as in Fig. 541,
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its sectional area F may be taken as the area Fm . But if it is

an orifice in "thin plate," putting the coefficient of contraction

= C 0.60, we have

Fm = CF= 0.60 F-, and Qm = 0.60 Fvm . . (4)

This volume, Qm ,
is that occupied by the flow per time-unit

when in state m, and we have assumed that ym = yn ;
hence

the weight offlow per time-unit is

O = Qmym = FmvmY^ = Fmvm7n . . . . (5)

EXAMPLE. In the testing of a blowing-engine it is found

capable of maintaining a pressure of 18 Ibs. per sq. inch in a

large receiver, from whose side a blast is steadily escaping

through a " thin plate" orifice (circular) having an area F= 4

sq. inches. The interior temperature is 20 Cent, and the out-

side tension 15 Ibs. per sq. in.

Required the discharge of air per second, both volume and

weight. The data are: pn = lS Ibs. per sq. in., Tn = %93

Abs. Cent.,F= 4 sq. inches, andpm = 15 Ibs. per sq. in. Use
ft.-lb.-sec. system.

First, the heaviness in the receiver is

Then, from eq. (2),

/o Pnpm_ /2X32.2[144X18144X15]_J 555.3
vm \ / ^9

'~
\ A AQn ) feet

V Yn V 0<089
I per sec.

(97 per cent of this would be more correct on account of fric-

tion.)

.-. Qm=F'mvm=.6JFvm = TViirX 555.3 = 9.24 cub. ft. per sec.

at a tension of 15 Ibs. per sq. in., and of heaviness (by hypoth-

esis)
= .089 Ibs. per cub. ft. Hence weight

= G = 9.24 X .089 = .82 Ibs. per sec.
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The theoretical power of the air-compressor or blowing-en-

gine to maintain this steady flow can be computed as in Exam-

ple 3, 483.

551. Flow through an Orifice on the Basis of Mariotte's Law
;

or Isothermal Efflux. Since in reality the gas expands during
flow through an orifice, and hence changes its heaviness (Fig.

619), we approximate more nearly to the truth in assuming
this change of density to follow Mariotte's law, i.e., that the

heaviness varies directly as the pressure, and thus imply that

the temperature remains unchanged during the flow. We
again integrate the terms of eq. (B\ but take care to note that,

now, y is variable (i.e., different in different laminae at the

same instant), and hence express it in terms of the variable p
(from eq. (2), 475), thus :

Therefore the termy of eq. (_Z?) becomes

and, integrating all the terms of eq. (B\ neglecting A, and call-

ing vn zero, we have

*V* _ Pn
i

Pn ( efflux ly Mariotte's )
/2\

%g

~

Yn Pm
' '

\ Law through orifice )

'

T 7)

As before, yn ^f y ,
and the flow of volume per time-

*n Po
unit at m is

Qm = Fmvm ;
....... (3)

while if the orifice is in thin plate, Fm may be put = .60 F^
and the

weight of the flow per time-unit G = FmVmY.' '(*)

If the mouth-piece is rounded, Fm F= area of exit orifice

of mouth-piece.
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EXAMPLE. Applying eq. (2) to the data of the example in

550, where yn was found to be .089 Ibs. per cub. ft., we have

[ft., lb., sec.]

P

% Qm = Fmvm = 0.60 X Tf X 584.7 = 9.745 cub. ft. per sec.

Since the heaviness at m is, from Mariotte's law,

ym = SOL Yn = ff of .089, i.e., ym = .0741 Ibs. per cub. ft.,

Pn

hence the weight of the discharge is

G = QmYm = 9.745 X .0741 = 0.722 Ibs. per sec.,

or about 12 per cent less than that given by the " water for-

mula." If the difference between the inner and outer tensions

had been less, the discrepancy between the results of the two

methods would not have been so marked.

552. Adiabatic Efflux from an Orifice. It is most logical to

assume that the expansion of the gas approaching the orifice,

being rapid, is adiabatic ( 478). Hence (especially when the

difference between the inner and outer tensions is considerable)

it is more accurate to assume y as varying according to Pois-

son's Law, eq. (1), 478
; i.e., y = [yn +pn*]p*, in integrat-

ing eq. (B). Then the term

.

PJ '
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and eq. (^), neglecting h as before, and with vn = 0, becomes

(See Fig. 619)

L = l - "
- (Adiabaticflow; orifice.) . (1)

"9 y^ L- \Pn' -J

Having observed ^>n and 7^ in the reservoir, we compute
/y~7

yn P^
Q

(from 472). The gas at m, jnst leaving the

*nj^

orifice, having expanded adiabatically from the state n to the

state m, has cooled to a temperature Tm (absolute) found thus

(

and is of a heaviness

and the flow per second occupies a volume (immediately on

exit)

and weighs
G = Fj>mYm....... (5)

EXAMPLE 1. Let the interior conditions in the large reser-

voir of Fig. 619 be as follows (state n) : pn 22
-J-

Ibs. per sq.

in., and Tn = 294 Abs. Cent, (i.e., 21 Cent.) ;
while ex-

ternally the tension is 15 Ibs. per sq. inch, which may be taken

as being = pm tension at m, the throat of jet. The opening
is a circular orifice in " thin plate" and of one inch diameter.

Required the weight of the discharge per second [ft., lb., sec.;

g = 32.2].

First, r.
= . X .0807 = 0.114 Ibs. per cub. ft.

Then, from (1),

Vm = /^n-MH A
V r* L w -

t _ ff] = 8M ft . per sec .
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Now F= \n(-^= .00546 sq. ft.

/. Qm = CFvm = 60 Fvn = 0.60 X .00546 X 844 = 2.765

cub. ft. per sec., at a temperature of

Tm = 294Vf= 257 Abs. Cent. = - 16 Cent,

and of a heaviness

ym = 0.114 V(f7= 0.085 Ibs. per cub. ft.,

so that the weight of flow per sec.

= O = Qmym = 2.765 X .085 = .235 Ibs. per sec.

EXAMPLE 2. Let us treat the example already solved by the

two preceding approximate methods ( 550 and 551) by the

present more accurate equation of adiabatic flow, eq. (1).

The data were (Fig. 619) :

pn = 18 Ibs. per sq. in.
;
Tn = 293 Abs. Cent.

;

pm = 15 " " "
;
and F 4 sq. inches

[/'"being the area of orifice]. yn was found = .089 Ibs. per
cub. ft. in 550

; hence, from eq. (1),

18X144

From (4),

Qm =Fmvm=.6Fvm=.eXr^X^^ = 9.603 cub. ft. per sec.;

and since at m it is of a heaviness

Ym = .089V(3y = .0788 Ibs. per cub. ft,

we have weight of flow per sec.

= G = QmYm = 9.603 X .0788 = 0.756 Ibs. per sec.
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Comparing the three methods for this problem, we see that

By the " waterformula? . . . 0.82 Ibs. per sec.
" isothermalformula, . . G = 0.722 " "

" adiabaticformula, . . G = 0.756 u u

553. Practical Notes. Theoretical Maximum Flow of Weight.
If in the equations of 552 we write for brevitypm--pn=x

we derive, by substitution from (1) and (3) in (5),

Weight of flow) n n T? */~5 r-i m i

per unit of time
\

= G=Qr=F Vfypnyn [l-afl-a*. . (1)

This function of x is of such a form as to be a maximum for

= (j?-^n)=(|.)
s

=.512; .... (2)

i.e., theoretically, if the state n inside the reservoir remains

the same, while the outside tension (considered =pm of jet,

Fig. 619) is made to assume lower and lower values (so that

a?, pm -pn ,
diminishes in the same ratio), the maximum flow

of weight per unit of time will occur when pm = .512 pn ,
a

little more than half the inside tension. (With the more ac-

curate value 1.41 (1.408), instead of f, see 478, we should

obtain .527 instead of .512 for dry air; see 549.)

Prof. Cotterill says (p. 544 of his "
Applied Mechanics") :

" The diminution of the theoretical discharge on diminution

of the external pressure below the limit just now given is an

anomaly which had always been considered as requiring ex-

planation, and M. St. Tenant had already suggested that it

could not actually occur. In 1866 Mr. R. D. Napier showed

by experiment that the weight of steam of given pressure dis-

charged from an orifice really is independent of the pressure

of the medium into which efflux takes place
*

;
and in 1872

Mr. Wilson confirmed this result by experiments on the reac-

tion of steam issuing from an orifice."

" The explanation lies in the fact that the pressure in the

* When the difference between internal and external pressures is great,

should be added.
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centre of the contracted jet is not the same as that of the sur-

rounding medium. The jet after passing the contracted sec-

tion suddenly expands, and the change of direction of the fluid

particles gives rise to centrifugal forces" which cause the pres-

sures to be greater in the centre of the contracted section than

at the circumference
;
see Fig. 620.

Prof. Cotter-ill then advises the assumption ttmt^w=.527pn
(for air and perfect gases) as the mean tension in the jet at in

(Fig. 619), whenever the outside medium is at a tension less

than .527j?n . He also says,
u Contraction and friction must

be allowed for by the use of a coefficient of discharge the

value of which, however, is more variable than that of the

corresponding coefficient for an incompressible fluid. Little is

certainly known on this point." See 549 and 554.

For air the velocity of this maximumflow of weight is

r /7M
Vd. of max. G = 997 A /~ ft. per sec., .

v -*
o

'

(3)

where Tn abs. temp, in reservoir, and TQ
= that of freezing

point. Rankine's Applied Mechanics ( p. 584) mentions ex-

periments of Drs. Joule and Thomson, in which the circular

orifices were in a thin plate of copper and of diameters 0.029

in., 0.053 in., and 0.084 in., while the outside tension was

about one half of that inside. The results were 84 per cent

of those demanded by theory, a discrepancy due mainly, as

Rankine says, to the fact that the actual area of the orifice was

used in computation instead of the contracted section; i.e., con-

traction was neglected.

554. Coefficients of Efflux by Experiment. For Orifices and

Short Pipes. Small Difference of Tensions. Since the discharge

through an orifice or short pipe from a reservoir is affected

not only by contraction, but by slight friction at the edges,

oven with a rounded entrance, the theoretical results for the

volume and weight of flow per unit of time in preceding para-

graphs should be multiplied both by a coefficient of velocity

and one for contraction (7, as in the case of water
; i.e., by a

coefficient of efflux /*,
= 0(7. (Of course, when there is no
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contraction, C= 1.00, and then ju
= as with a well-rounded

mouth-piece, for instance, Fig. 541, and with short pipes.)

Hence for practical results, with orifices and short pipes, we
should write for the weight offlow per unit of time

Pnl V \Pn

(from the equations of 552 for adiabatic flow, as most accu-

rate
; pm -T-pn may range from \ to 1.00). F= area of orifice,.

or of discharging end of mouth-piece or short pipe. yn =
heaviness of air in reservoir and Tpny -=- Tnp , eq. (13) of

437
;
and /*

= the experimental coefficient of efflux.

From his own experiments and those of Koch, D'Aubuis-

son, and others, "Weisbach recommends the following mean

values of ^ for various mouthpieces, when pn is not more than

J larger thanpm (i.e., about 17 % larger), for use in eq, (1) :

1. For an orifice in a thin plate, ....... /*=0.56
2. Forashortcylindricalpipe(innercornersnotrounded),/f==0.75
3. For a well-rounded mouth-piece (like that in Fig. 541), /*=0.98
4. For a short conical convergent pipe (angle about 6), /^=0.92

EXAMPLE. (Data from Weisbach's Mechanics.) "If the

sum of the areas of two conical tuyeres of a blowing-machine
is F =. 3 sq. inches, the temperature in the reservoir 15 Cent.,

the height of the attached (open) mercury manometer (see

Fig. 464) 3 inches, and the height of the barometer in the ex-

ternal air 29 inches," we have (ft., lb., sec.)

Ab, Cent.;

Pn - (H) 14.7 X 144 Ibs. per sq. ft.
;

yn = |||.ff X 0.0807 = 0.0816 Ibs. per cub. ft,

while F= yf^ sq. ft. and (see above) //
= 0.92

;
hence

O = 0.92 X T|T (ff)* V2 X 32.2 X 3X If X 14.7 X 144 X .0816 [1
- ff"fl;
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i.e.. G .6076 Ibs. per second
;
which will oc'jupy a volume

y
%
= a -T- y = & -5-. -0807 = 7.59 cub. ft.

at one atmosphere tension and freezing-point temperature;
while at a temperature of Tn = 288 Abs. Cent, and tension of

pm J-9.
of one atmosphere (i.e., in the state in which it was

on entering the blowing-engine) it occupied a volume

v= iff-H X 7.59 = 8.24 cub. ft.

(This last is Weisbach's result, obtained by an approximate

formula.)

555. Coefficients of Efflux for Orifices and Short Pipes for a

Large Difference of Tension. For values > -J
and < 2, of the

ratio pn : pm ,
of internal to external tension, Weisbach's ex-

periments with circular orifices in thinplate, of diameters (= d)
from 0.4 inches to 0.8 inches, gave the following results :

Pn : Pm
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Orifice. Fig. 621. If the internal pressure pn ,
and tempera-

ture jTn ,
must be measured in a

small reservoir or pipe, n, whose

sectional area Fn is not very large \

=

compared with that of the orifice,
-

F, (or of the jet, Fm ,) the velocity

vn at n (velocity of approach) can- FIG. 621.

not be put = zero. Hence, in applying eq. (E\ 550, to the

successive laminae between n and m, and integrating, we shall

have, for adiabatic steady flow,

instead of eq. (1) of 552. But from the equation of continuity

for steady flow of gases [eq. (a) of 548], Fnvnyn Fmvmym ;

F V 2

hence v^ ^ vm\ while for an adiabatic change from n
-CnYn

to m, = \~\ ;
whence by substitution in (1), solving for

vm ,
we have

\
As before, from 472 and 478,

i __
f^V^ 1ww

(2)

*.= frr-y. (3)

j^o * n

* rm=(*r]r. W
\Pnl

Having observed pn , pm ,
and Tn , tnjn, and knowing the

area F of the orifice, we may compute yn , ym ,
and vm ,

and

finally the

Weight offlow per time-unit = G = f^Fvmym ^
. . (5)
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taking /* from 554 or 555. In eq. (2) it must be remembered
that for an orifice in " thin plate," Fm is the sectional area of

the contracted vein, and = CF\ where C may be put = .

CM

EXAMPLE. If the diameter of AB, Fig. 621, is 3 inches^

and that of the orifice, well rounded, = 2 in.
;

if pn = 1^ at-

mospheres i= i
J- x 14.7 X 144 Ibs. per sq. ft., while pm = -^ of

an atmos., so that^ = |, and Tn = 283 Abs. Cent., re-

Pn
quired the discharge per second, using the ft., lb., and sec.

From eq. (3),

Yn = If -fit X 0.0807 = .08433 Ibs. per cub. ft.
;

'whence (eq. (4))

Ym (fi-)i/n = .07544 Ibs. per cub. ft.

Then, from eq. (2),

= 558.1 ft. per sec.
;

/. G = 0.98 558.1 X .07544 = .9003 Ibs. per sec.
4V6/

557. Transmission of Compressed Air; through very Long
Level Pipes. Steady Flow.

CASE I. When the difference between the tensions in the

reservoirs at the ends of the pipe is small. Fig. 622. Under

FIG. 622.

these circumstances it is simpler to employ the form of formula

that would be obtained for a liquid by applying Bernoulli's

Theorem, taking into account the "
loss of head "

occasioned
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by the friction on the sides of the pipe. Since the pipe is

very long, and the change of pressure small, the mean velocity

in the pipe, v', assumed to be nearly the same at all points

along the pipe, will not be large ;
hence the difference be-

tween the velocity-heads at n and m will be neglected ;
a cer-

tain mean heaviness y
f

will be assigned to all the gas in the

pipe, as if a liquid.

Applying Bernoulli's Theorem, with friction, 516, to the

ends of the pipe, n and m, we have (as for a liquid)

^.^, =^+^ + 0- 4/1^-. (1)W^? fy r
f J

<*fy

Putting (as above mentioned) vm
* vn

*

0, we have, more

simply,

The value of f as coefficient of friction for air in long

pipes is found to be somewhat smaller than for water
;
see next

paragraph.

558. Transmission of Compressed Air. Experiments in the St.

Gothard Tunnel, 1878. [See p. 96 of Yol. 24 (Feb. '81), Yan
Nostrand's Engineering Magazine.] In these experiments,
the temperature and pressure of the flowing gas (air) were ob-

served at each end of a long portion of the pipe which delivered

the compressed air to the boring-machines three miles distant

from the tunnel's mouth. The portion considered was selected

at a distance from the entrance of the tunnel, to eliminate the

fluctuating influence of the weather on the temperature of the

flowing air. A steadyflow being secured by proper regulation

of the compressors and distributing tubes, observations were

made of the internal pressure (p\ internal temperature (T), as

well as the external, at each end of the portion of pipe con-

sidered, and also at intermediate points ;
also of the weight

of flow per second G = Q y ,
measured at the compressors

under standard conditions (0 Cent, and one atmos. tension).

Then knowing the p and T at any section of the pipe, tha
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heaviness y of the air passing that section can be computed
r y T> T ~\
from - = - . - and the velocity v = G -=-

Fy, F being
L Yo Po -L

'

the sectional area at that point. Hence the mean velocity v',

and the mean heaviness 7', can be computed for this portion
of the pipe whose diameter = d and length I. In the ex-

periments cited it was found that at points not too near the

tunnel-mouth the temperature inside the pipe was always
about 3 Cent, lower than that of the tunnel. The values of

/in the different experiments were then computed from eq.

(2) of the last paragraph ; i.e.,

>n Pm _
Y'

7 ./a

all the other quantities having been either directly observed,

or computed from observed quantities.

THE ST. GOTHARD EXPERIMENTS.

[Concrete quantities reduced to English units.]

No.
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On p. 370, vol. xxiv, Yan Nostrand's Mag., Prof. Kobinson

of Ohio mentions other experiments with large long pipes.

From the St. Gothard experiments a value off= .004 may
be inferred for approximate results with pipes from 3 to 8 in.

in diameter.

EXAMPLE. It is required to transmit, in steady flow, a supply

of G 6.456 Ibs. of atmospheric air per second through a pipe

30000 ft. in length (nearly six miles) from a reservoir where

the tension is 6.0 atmos. to another where it is 5.8 atmos., the

mean temperature in the pipe being 80 Fahr., = 24 Cent.

(i.e. 297 Abs. Cent.). Kequired the proper diameter of

pipe ;
d = ? The value. /= .00425 will be used, and the ft-

Ib.-sec. system of units. The mean volume passing per second

in the pipe is

<X=Q*Y'........ (3)

Q> Q>
The mean velocity may thus be written : v f = -~ = -

;
. (4)

The mean heaviness of the flowing air, computed for a mean

tension of 5.9 atmospheres, is, by 472,

r'=-~ X .0807 = 0.431 Ibs. per cub. ft.
;

and hence, see eq. (3),

at tension of 5.9 atmos., and temperature 297 Abs. Cent.

Now, from eq. (2),

whence

J/ y'l~
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and hence, numerically,

5 / 4 X .00425 X 0.431 X 30000 X (14.74)
a

~
Y (.7854)*[14.7 X 144(6.00

-
5.80)]2 X 32.2

~

559. (Case II of g 557) Long Pipe, with Considerable Differ-

ence of Pressure at Extremities of the Pipe. Flow Steady. Fig.

623. If the difference between the end-tensions is compara-

tively great, we can no longer deal with the whole of the air

2
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pipe. This is due to the small loss of tension per unit of

length of pipe as compared with that occurring in a short dis-

charge pipe or nozzle. Hence we may treat the flow as iso-

t/iermal, and writep -^- y 2}n'^- Yn' ( 4^5, Mariotte's Law).

Hence y ^>, which substituted in eq. (2) enables us to
Pn'

write: T
-pdp = ;

Performing the integration, noting that at n r

p =pn>,
s 0,

and at m f

p =pm > and s = I, we have

ir. _ > ,n - ^fl & Pn> j
isothermalflow \

,..

*UV pm \

-tyd'jr*"^,' (
in longpipes ]

It is here assumed that the tension at the entrance of the pipe
is practically equal to that in the head reservoir, and that at

the end (ra') to that of the receiving reservoir; which is not

strictly true, especially when the corners are not rounded. It

will be remembered also that in establishing eq. (2) of 556

(the basis of the present paragraph), the "inertia" of the gas
was neglected ; i.e., the change of velocity in passing along
the pipe. Hence eq. (4) should not be applied to cases where

the pipe is so short, or the difference of end-tensions so great,

as to create a considerable difference between the velocities at

the two ends of the pipe.

EXAMPLE. A well or reservoir supplies natural gas at a ten-

sion of pn > = 30 Ibs. per sq. inch. Its heaviness at Cent,

and one atmosphere tension is .0484 Ibs. per cub. foot. In

piping this gas along a level to a town two miles distant, a

single four-inch pipe is to be employed, and the tension in the

receiving reservoir (by proper regulation of the gas distributed

from it) is to be kept equal to 16 Ibs. per sq. in. (which would

sustain a column of water about 2 ft. in height in an open
water manometer, Fig. 465).
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The mean temperature in the pipe being 17 Cent., required
the amount (weight) of gas delivered per second, supposing

leakage to be prevented (formerly a difficult matter in practice).

Solve (4) for G, and we have

First, from 472, with Tn, = Tm, = 290 Abs. Cent., we

compute

273

Hence with/ .005,

x -30 x
4X.005 X 10560 x 46454:

= 0.337 Ibs. per sec.

(For compressed atmospheric air, under like conditions, we
would have G = 0.430 Ibs. per second.)

Of course the proper choice of the coefficient/" has an im-

portant influence on the result.

From the above result (G = 0.337 Ibs. per second) we can

compute the volume occupied by this quantity of gas in the

fi-

receiving reservoir, using the relation Qm = .

Ym!

The heaviness ym> of the gas in the receiving reservoir is

most easily found from the relation -^ = -^ .which holds
Ym' Yn>

good since the flow is isothermal. I.e., &2*'= 46454 ft.;
Ym'

whence ym> = 0.049 Ibs. per cubic foot, pm> being 16 X 144

Ibs. per sq. ft.

Hence
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It should be said that the pressure at the up-stream end of

the pipe depends upon the rate of flow allowed to take place.

With no flow permitted, the pressure in the tube of a gas-

well has in some cases reached the high figure of 500 or 600

Ibs. per sq. in. .

560. Rate of Decrease of Pressure along a Long Pipe, Con-

sidering further the case of the last paragraph, that of a

straight, long, level pipe of uniform diameter, delivering gas
from a storage reservoir into a receiving reservoir, we note

that if in eq. (4) we retain pm > to indicate the tension in the

receiving reservoir, but let pn> denote in turn the tension at

points in the pipe successively further and further (a distance

x] from the receiving reservoir w', we may write x for I and

obtain the equation (between two variables,pn> and x)

Pn? Pn/ = Const. X . (6)

This can be used to bring out an interesting relation men-

tioned by a writer in the Engineering News of July 1887

(p. 71), viz., the fact that in the parts of the pipe more distant

from the receiving end, m', the distance along the pipe in

which a given loss of pressure occurs is much greater than

near the receiving end.

To make a numerical illustration, let us suppose that the

pipe is of such size, in connection with other circumstances,

that the tensionpn> at A, a distance x = six miles from m', is

two atmospheres, the tension in the receiving reservoir being
one atmosphere ;

that is, that the loss of tension between A
and m! is one atmosphere. If we express tensions in atmos-

pheres and distances in miles, we have for the value of the

constant in eq. (6), for this case,

Const. = (4 1) -4- 6 f ; (for assumed units.} . . (7)

Now letpn > = the tension at B, a point 18 miles from m',

and we have, from eqs. (6) and (7), the tension at B 3.1 f>

atmospheres. Proceeding in this manner, the following set of

values is obtained :
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Point.
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tension in those portions could be made smaller than as shown
in the preceding example.
To secure a more rapid fall of pressure at the up-stream end

of the pipe, and at the same time provide for the same delivery

of gas as with a pipe of uniform diameter throughout, a pipe
of variable diameter may be employed, that diameter being

considerably smaller at the inlet than that of the uniform pipe
but progressively enlarging down-stream. This will require
the diameters of portions near the discharging end to be larger

than in the uniform pipe, and if the same thickness of metal

were necessary throughout, there would be no saving of metal,

but rather the reverse, as will be seen
;
but the diminished

thickness made practicable in those parts from a less total hoop
tension than in the corresponding parts of the uniform pipe
more than compensates for the extra metal due to increased

circumference, aside from the diminished liability to leakage,

which is of equal importance.
A simple numerical example will illustrate the foregoing.

The pipe being circular, we may replace F by ^nd* in equation

{4), and finally derive, G being given,

i 7 li

- (8)

Let A be the head reservoir, and m f

the receiving reservoir,

and B a point half-way between. At A the tension is 10 at-

mospheres ;
at m', 2 atmospheres. For transmitting a given

weight of gas per unit-time, through a pipe of constant diam-

ter throughout, that diameter must be (tensions in atmospheres ;

2/ being the length), by eq. (8),

d = 67!
*= -0208 * = -46 - 8

If we substitute for the pipe mentioned, another having a con-

stant diameter d
l
from A to B, where we wish the tension to

be 5 atmospheres, and a different constant diameter d%
from B

to m', we derive similarly

100 1-
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and

It is now to be noted that the sum of d
1
and d^ is slightly

greater than the double of d
;
so that if the same thickness of

metal were used in both designs the 'compound pipe would

require a little more material than the uniform pipe; but,

from the reasoning given at the beginning of this paragraph,
that thickness may be made considerably less in the down-

stream part of the compound pipe, and thus economy secured.

[In case of a cessation of the flow, the gas tension in the

whole pipe might rise to an equality with that of the head-

reservoir were it not for the insertion, at intervals, of auto-

matic regulators, each of which prevents the decrease of ten-

sion on its down-stream side below a fixed value. To provide
for changes of length due to rise and fall of temperature, the

pipe is laid with slight undulations.]

It is a noteworthy theoretical deduction that a given pipe of

variable diameter connecting two reservoirs of gas at specified

pressures will deliver the same weight of gas as before, if
turned end for end. This follows from equation (3)', 559.

With d variable, (3)' becomes (with F \ittf)

S*

,***'

,

-. . (9)

''**-?'
(C" is a constant.)

f*
m '

ds
But Jn ,

-'- is evidently the same in value if the pipe be

turned end for end. In commenting on this circumstance, we
should remember (see 559) that the loss of pressure along the

pipe is ascribed entirely tofrictional resistance, and in no de-

gree to changes of velocity (inertia).

On p. 73 of the Engineering News of July 1887 are given

the following dimensions of a compound pipe in actual use,

and delivering natural gas. The pressure in the head-reservoir

is 319 Ibs. per sq. in.; that in the receiving reservoir, 65. For

2.84 miles from the head-reservoir the diameter of the pipe is
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8 in.
; throughout the next 2.75 miles, 10 in.*, while in the

remaining 3.84 miles the diameter is 12 in. At the two

points of junction the pressures are stated to be 185 and 132

Ibs. per sq. in., respectively, during the flow of gas under the

conditions mentioned.

561a. Values of the Coefficient of Fluid Friction for Natural

Gas. In the Ohio Keport on Economic Geology for 1888 may
be found an article by Prof. S. W. Robinson of the University
of that State describing a series of interesting experiments
made by him on the flow of natural gas from orifices and

through pipes. By the insertion of Pitot tubes approximate
measurements were made of the velocity of the stream of gas/ C5

in a pipe. The following are some of the results of these ex-

periments,p 1 p^ representing the loss of pressure (in Ibs. per

sq. inch) per mile of pipe-length, and/the coefficient of fluid

friction, in experiments with a six-inch pipe :

Pi -Pi



CHAPTEK IX.

IMPULSE AND RESISTANCE OF FLUIDS.

562. The so-called "Reaction" of a Jet of Water flowing from

a Vessel. In Fig. 624, if a frictionless but water-tight plug B
be inserted in an orifice in the

vertical side of a vessel mounted

on wheels, the resultant action of

the water on the rigid vessel (as a

whole) consists of its weight 6r,

and a force P' Fhy (in which

F= the area of orifice) which is

the excess of the horizontal hydro-
static pressures on the vessel wall

toward the right ( ||
to paper) over

those toward the left, since the

pressure P, = Fhy, exerted on the plug is felt by the post (7,

and not by the vessel. Hence the post D receives a pressure

P' = Fhy. (1)

Let the plug B be removed. A steady flow is then set up

through the orifice, and now the pressure against the post D is

2Fhy (as will be proved in the next paragraph) ;
for not only

is the pressure Fhy lacking on the left, because of the orifice,

but the sura of all the horizontal components ( ||
to paper) of.

the pressures of the liquid filaments against the vessel wall

around the orifice is less than its value before the flow began,

by an amount Fhy. A resistance R = %Fhy being provided,
and the post removed, a slow uniform motion may be main-

tained toward the right, the working force being %Fhy = P"
798
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FIG. 625.

(see Fig. 625
;
R is not shown). If an insufficient resistance

be furnished before removing the post D, .... .... ^

the vessel will begin to move toward the

right with an acceleration, which will

disturb the surface of the water and

change the value of the horizontal force.

This force

is called the " reaction'* of the water-jet ;

y is the heaviness of the liquid ( 7).

Of course, as the flow goes on, the

water level sinks and the ' reaction" diminishes accordingly.

Looked upon as a motor, the vessel may be considered to be a

piston-less and valve-less water-pressure engine, carrying its

own reservoir with it.

In Case II of 500 we have already had a treatment of the
" Reaction-wheel " or " Barker's mill," which is a practical

machine operating on this principle, an.d will be again con-

sidered in "Notes on Hydraulic Motors."

563. " Reaction" of a Liquid Jet on the Vessel from which it

Issues. Instead of showing that the pressures on the vessel

close to the orifice are less than they were when there was no

flow by an amount Fhy (a rather lengthy demonstration),

another method will be given, of greater simplicity but some-

what fanciful.

If a man standing on the rear platform of a car is to take up
in succession, from a basket on the car, a number of balls of

equal mass M, and project each one in turn horizontally

backward with an acceleration p, he can accomplish this

only by exerting against each ball a pressure = Mp, and in the

opposite direction against the car an equal pressure = -Mp. If

this action is kept up continuously the car is subjected to a

constant and continuous forward force of P" Mp.
Similarly, the backward projection of the jet of water in the

case of the vessel at rest must occasion a forward force against

the vessel of a value dependent on the fact that in each small

interval of time At a small mass AM of liquid has its velocity

changed from zero to a backward velocity of v = V%gh ;
that
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is, has been projected with a mean acceleration of p =
so that the forward force against the vessel is

P" = mass X ace. = --..... (3)At

If Q = the volume of water discharged per unit time, then

Ov
AM. = -

At, and since also Q Fv FV%gh, eq. (3) be-

/ &/i^

comes "Reaction" ofjet = P" %Fhy. . . . (4)

(A similar proof, resulting in the same value for P"
,

is

easily made if the vessel has a uniform motion with water sur-

face horizontal.)

If the orifice is in " thin plate," we understand by F the

area of the contracted section. Practically, we have v= V%g"h>

( 495), and hence (3) reduces to

P" = %<pFhy. . .)' ..I.... (5)

Weisbach mentions the experiments of Mr. Peter Ewart of

Manchester, England, as giving the result P" = \.1SFliy
with a well-rounded orifice as in Fig. 625. He also found

<t>
= .94 for the same orifice, so that by eq. (4) we should have

P" = ^(MJFhy = \MFhy.
With an orifice in thin plate Mr. Ewart found P"

"L.^Fhy. As for a result from eq. (4), we must put, for F\
the area of the contracted section .647^ ( 495), which, with

= .96, gives

P" = 2(.96)
2

. Fhy = LlSFhy. ... . (6)

Evidently both results agree well with experiment.

Experiments made by Prof. J. B. Webb at the Stevens

Institute (see Journal of the Franklin Inst., Jan. '88, p. 35)

also confirm the foregoing results. In these experiments the

vessel was suspended on springs and the jet directly down-

ward, so that the "reaction" consisted of a diminution of the

tension of the springs during the flow.

564. Impulse of a Jet of Water on a Fixed Curved Vane (with

Borders). The jet passes tangentially upon the vane. Fig.
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626. B is the stationary nozzle from which a jet of water of

cross-section F (area) and velocity = c impinges tangentially

upon the vane, which has

plane borders, parallel to

paper, to prevent the lat-

eral escape of the jet.

The curve of the vane is

not circular necessarily.

The vane being smooth,
the velocity of the water

in its curved path remains

x <

FIG. 626.

c at ail points a^ong
the curve. Conceive the

curve divided into a great
number of small lengths

dP

each = ds, and subtending some

angle = d<p from its own centre of curvature, its radius of

curvature being = r (different for different
<fo's), which makes

some angle = with the axis I^(~| to original straight jet

J3A). At any instant of time there is an arc of water AD in

contact with the vane, exerting pressure upon it. The pres-

sure dP of any ds of the vane against the small mass of water

Fds . y -r- g then in contact with it is the "
deviating" or " cen-

tripetal
" force accountable for its motion in a curve of radius

r, and hence must have a value

(76) (1)

The opposite and equal of this force is the dP shown in

Fig. 614, and is the impulse or pressure of this small mass

against the vane. Its ^-component is dX = dP sin 0. By
making vary from to <*, and adding up the corresponding
values of dX

t
we obtain the sum of the ^"-components of the

small pressures exerted simultaneously against the vane by the

arc of water then in contact with it
; i.e., noting that ds=rd&

/* = /

/. / dX I dP . sin =
v ^
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hence the X-impulse ) Fye n -. Qyc ri
., /0,

, /? T
-^

}
= 1 cos a= 1 cos a L (2)

againstfixed vane
) ^, ^

in which Q = Fc = volume of water which passes through the

nozzle (and also = that passing over the vane, in this case) per
unit of time, and a angle between the direction of the

stream leaving the vane (i.e., at D) and its original direction

(BA of the jet) ; i.e., a total angle of deviation. Similarly,

the sum of the ^-components of the dP's of Fig. 626 may be

shown to be

/* Q<vcY-impulse on fixed vane = JQ
dP . cos = 1 sin or...(2)

/

Hence the resultant impulse on the vane is a force

P" = Y 2 =
;,

. . (3>

and makes such an angle <*', Fig. 627, with the direction

that

,
Y sin a

tan &' = ---= -
.X 1 cos a

FIG. 62 FIG. 628.

For example, if OL = 90, then a? = 45; while if a = 180,

Fig. 628, we have a' =
; i.e., P" is parallel to the jet

and its value is
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565. Impulse of a Jet on a Fixed Solid of Revolution whose

Axis is Parallel to the Jet. If the

curved vane, with borders, of the pre-

ceding paragraph be replaced by a

solid of revolution, Fig. 629, with its

axis in line of the jet, the resultant

pressure of the jet upon it will simply
be the sum of the X-components (i.e.,

= to BA) of the pressures on all ele-

ments of the surface at a given instant
; i.e.,

FIG. 629.

(5)

while the components 1 to X, all directed toward the axis of

the solid, neutralize each other. For a fixed plate, then, Fig.

630, at right angles to the jet, we have for the force, or " im-

pulse" (with a = 90),

The experiments of Bidone, made in

1838, confirm the truth of eq. (6) quite

closely, as do also those of two students of

FIG. 630.
-

the University of Pennsylvania at Phila-

delphia (see Jour, of the Frank. Inst. for Oct. '87, p. 258).

Eq.(6) is applicable to the theo-

ry of Pitot's Tube (see 539),

Fig. 631, if we consider the edge
of the tube plane and quite wide.

'.'.:'.' :-''
:

'

:
.'-.'-.

:

-:': V.B'-

The water in the tube is at rest,

and its section at A (of area F)
may be treated as a flat vertical

plate receiving not only the

hydrostatic pressure Fxy, due

to the depth x below the sur- - FIG. 63i.

face, but a continuous impulse P" Fc*y -f- g [see eq. (6)].
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For the equilibrium of the end A, of the stationary column

AD, we most have, therefore,

Fxy + 'n i.e, A' = (2.0). .(7)

The relation in equation (7) corresponds reasonably well

with the results of Weisbaeh's experiments with the instru-

ment mentioned in 539. Pitot himself, on trial of an in-

strument in which the edges of the tube at A were made flar-

ing or conically divergent, like a funnel, found

(7)'

while Darcy, desirous that the end of the tube should occasion

as little disturbance as possible in the surrounding stream,

made the extremity small and conically

convergent. The latter obtained the

relation

h' = almost exactly (1.0) . . (7)"
i/

(See 539.)

If the solid of revolution is made cup-

shaped, as in Fig. 632, we have (as in

Fig. 628) a 180, and therefore, from

eq. (5),

'

FIG. 632.

EXAMPLE. Fig. 632. If c = 30 ft. per sec. and the jet

(cylindrical) has a diameter of 1 inch, the liquid being water,

so that y = 62.5 Ibs. per cub. ft., we have [ft., lb., sec.]

the impulse (force)
= P" =

32.2
= 19.05 Ibs.

Experiment would probably show a smaller result.
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o -

FIG. 633.

566. Impulse of a Liquid Jet upon a Moving Vane having
Lateral Borders and Moving in the Direction of the Jet. Fig.

633. The vane has a motion of translation ( 108) in the

same direction as the jet. Call this the axis X. It is moving
with a velocity v away from the jet (or, if toward the jet, v

is negative). "We con-

sider v constant, its ac-

celeration being prevented

by a proper resistance

(such as a weight = G)
to balance the ^-com-

ponents of the arc-pres-

sures. Before coming in

contact with the vane,

which it does tangentially

(to avoid sudden devia-

tion), the absolute velocity

( 83) of the water in the

jet = <?,
while its velocity

relatively to the vane at A is = c v\ and it will now be

proved that the relative velocity along the vane is constant.

See Fig. 634. Let v the velocity of the vane (of each

point of it, since its motion is one of translation), and u = the

velocity of a water particle (or small mass of water of length
= ds) relatively to the point of the vane which it is passing.

Then w, the absolute velocity of the small mass, is the diago-

nal formed on u and v. Neglecting friction, the only actual

force acting on the mass is P, the pressure of the vane against

it, and this is normal to the curve. Now an imaginary system
of forces, equivalent to this actual system of one force P, i.e.,

capable of producing the same motion in the mass, may be

conceived of, consisting of the individual forces which would

produce, separately, the separate motions of which the actual

motion of this small mass M is compounded. These com-

ponent motions are as follows :

1. A horizontal uniform motion of constant velocity =u;
and

2. A motion in the arc of a circle of radius = r and with a
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velocity = u, which we shall consider variable until proved
otherwise.

Motion 1 is of such a nature as to call for noforce (by New-
ton's tirst law of motion), while motion 2 could be maintained

li/T 2

by a system of two forces, one normal, Pn ,
= -

,
and the

other tangential, Pt M [see eq. (5), p. 76]. This imagi-
d-t

nary system of forces is shown at (II.), Fig. 634, and is equiv-

(i.)

FIG. C34.

alent to the actual system at (I.). Therefore 2 (tang, com-

pons.) in (I.) should be equal to 2 (tang, compons.) in (II.) ;

whence we have

Pt
= 0; i.e., M^ =

0', or ~ = 0; . . (1)
ctt dt

i.e., u is constant along the vane and is equal to c v at every

point. (The weight of the mass has been neglected since the

height of the vane is small.) In Fig. 634 the symbol w has

been used instead of c, and the point corresponds to A in

Fig. 633.

[N.B. If the motion of the vane were rotary, about an axis

"I to AB (or to c\ this relative velocity would be different at

different points. See Notes on Hydraulic Motors. If the

radius of motion of the point A, however, is quite large com-

pared with the projection of AD upon this radius, the relative

velocity is approximately = c v at all parts of the vane,

and will be taken = c v in treating the "
Hurdy-gurdy" in

567.]
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By putting ^(normal corapons.) of (I.)
= 2 (normal com-

pons.) in (II.) we have

p _. P . p _ M - -
* *

n , i.e., r -JXL-- --
,

. . . (Z)

so that to find the sura of the ^-components of the pressures

exerted against the vane simultaneously by all the small masses

of water in contact with it at any instant, the analysis differs

from that in 564 only in replacing the c of that article by
the (c v) of this. Therefore

2(X-pressures) = PX = ^
(c ^)

2

[1 cos a], . (3)
t/

(where a is the angle of total deviation, relatively to vane, of

the stream leaving the vane, from its original direction), and

is seen to be proportional to the square of the relative velocity.

F\ the sectional area of jet, and y the heaviness
( T) of the

liquid. The Z"-component (or PY)
of the resultant impulse

is counteracted by the support EF, Fig. 633. Hence,for a

uniform motion to be maintained, with a given velocity = v,

the weight G must be made = Px of eq. (3). (We here

neglect friction and suppose the jet to preserve a practically

horizontal direction for an indefinite distance before meeting
the vane. If this uniform motion is to be toward the jet, v

will be negative in eq. (3), making Px (and .*. G) larger than

for a positive v of same numerical value.

As to the doing of work [ 128, etc.], or exchange of

energy, between the two bodies, jet and vane, during a uni-

form motion away from the jet, Px exerts apower of

-vMl-cosa], . . . (4)

in which Z denotes the number of units of work done per unit

of time by Px \ i.e., the power ( 130) exerted by Px .

If v is negative, call it v\ and we have the

Power expended ) D / Fy , .

/VI /ri n /KN

% vane upon jet \

= P v :

~f (' + ")" t1
~ CO8 ] (5)
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Of course, practically, we are more concerned with eq. (4)

than with (5). The power L in (4) is a maximum for v = -Jc;

but in practice, since a single moving vane or float cannot

utilize the water of the jet as fast as it flows from the nozzle,

let us conceive of a succession of vanes coming into position

consecutively in front of tlie jet, all having the same velocity

v
;
then the portion of jet intercepted between two vanes is at

liberty to finish its work on the front vane, while additional

work is being done on the hinder one
; i.e., the water will be,

utilized as fast as it issues from the nozzle.

"With such a series of vanes, then, we may put Q', = Fc,

the volume of flow per unit of time from the nozzle, in place

of f(c _ v
)

the volume of flow per unit of time over the

vane, in eq. (4) ;
whence

Power exerted on \ _
series of vanes

j

jt-L
[i
_ cos a~\(c v)v.

i/

Making v variable, and putting dL
f

-^-dv=O
y
whence c 20=0,.

we find that for v = \c, L
'

,
the power, is a maximum. As-

suming different values for a, we find that for a = 180, i.e.,

by the use of a semicircular vane, or of a hemispherical cup,

Fig. 635, with a point in middle, 1 cos a is a max., = 2
;

whence, with v = %c, we have, as the-

maximum power,

T f

7 4^ max.
'

in whichM '
denotes the mass of the flow

per unit of time from the stationary

nozzle. Now is the entire 'kinetic

energy furnished per unit of time by the

jet ;
hence the motor of Fig. 635 (series

FIG. 635. of cups) has a theoretical efficiency of

unity, utilizing all the kinetic energy of the water. If this is

true, the absolute velocity of the particles of liquid where they

leave the cup, or vane, should be zero, which is seen to be true,,
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as follows : At H, or H
',
the velocity of the particles rela-

tively to the vane is = c v = what it was at A, and hence
s* s*

is = 'c =
;

hence at H the absolute velocity is w =
/% /*

(rel. veloc. toward left) (veloc. of vane toward right) = ;
2 2

Q.E.D. For v > or < \c this efficiency will not be attained.

567. The California "
Hurdy-gurdy ;" or Pelton Wheel, The

efficiency of unity in the series of cups just mentioned is in

practice reduced to 80 or 85 per cent from friction and lateral

escape of water. The
Pelton wheel or Cali-

fornia "
Hurdy-gur-

dy," shown (in prin-

ciple only) in Fig. 636,

is designed to utilize

the mechanical rela-

tion just presented,
and yields results con- TQis^Ms
firming the above the-

' ^
ory, viz., that with the

linear velocity of the FIG. 636.

s*

cup-centres regulated to equal ,
and with a = 180, the effi-

2

ciency approaches unity or 100 per cent. Each cup has a pro-

jecting sharp edge or rib along the middle, to split the jet ;
see

Fig. 635.

This wheel was invented to utilize small jets of very great

velocities (c) in regions just deserted by
"
hydraulic mining"

operators. Although c is great, still, by giving a large value
s*

to r, the radius of the wheel, the making of v = - does not
2

necessitate an inconveniently great speed of rotation (i.e.,

revolutions per unit of time). The plane of the wheel may
be in any convenient position.

In the London Engineer of May '84, p. 397, is given an ac-

count of a test made of a "
Hurdy-gurdy," in which the motor
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showed an efficiency of 87 per cent. The diameter of the

wheel was only 6 ft., that of the jet 1.89 in., and the head of

the supply reservoir 386 ft., the water being transmitted

through a pipe of 22 inches diameter and 6900 ft. in length.

107 H. P. was developed by the wheel.

EXAMPLE.- If the jet in Fig. 636 has a velocity c = 60 ft.

per second, and is delivered through a 2-inch nozzle, the total

power due to the kinetic energy of the water is (ft., lb., sec.)

t/

and if, by making the velocity of the cups = - = 30 ft. per

sec., 85 per cent of this power can be utilized, the DO^ver of

the wheel at this most advantageous velocity is

L = .85 X 4566.9 = 3881 ft. Ibs. per sec. = 7.05 horse-power

[since 3881 -r- 550 = 7.05] ( 132). For a cup-velocity of 30

ft. per sec., if we make the radius, ?, = 10 feet, the angular

velocity of the wheel will be GO = v -z- r = 3.0 radians per
sec. (for radian see Example in 428

;
for angular velocity,

110), which nearly = ?r, thus implying nearly a half-revolu-

tion per sec.

568. Oblique Impact of a Jet on a Moving Plate having
no Border. The plate

has a motion of trans-

lation with a uniform
D veloc. v in a direc-

tion parallel to jet,

whose velocity is = c.

At the filaments of

liquid are deviated, so

that in leaving the plate

their particles are all

found in the moving

plane BB' of the plate

surface, but the respective absolute velocities of these particles

FIG. 637.
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depend on the location of the point of the plate where they
leave it, being found by forming a diagonal on the relative

veloc. c v and the velocity v of the plate. For example, at

B the absolute velocity of a liquid particle is

w = BE = Vv*+ (o v)* + 2v(c v) cos a,

while at B' it is

w' = B'E' 1/V+ (c v)'* Zv(c v) cos a
;

but evidently the component 1 to plate (the other component

being parallel) of the absolute velocities of all particles leaving
the plate, is the same and = v sin a. The skin-friction of the

liquid on the plate being neglected, the resultant impulse of

the jet against the plate must be normal to its surface, and its

amount, jP, is most readily found as follows :

Denoting by AM the mass of the liquid passing over the

plate in a short time At, resolve the absolute velocities of all

the liquid particles, before and after deviation, into com-

ponents 1 to the plate (call this direction Y) and
||

to the

plate. Before meeting the plate the particles composing AM
have a velocity in the direction of Y of cv

= c sin a
;
on leav-

ing the plate a velocity in direction of Y of v sin a : they have

therefore lost an amount of velocity in direction of Y =
(c v) sin a in time At

; i.e., they have suffered an average
retardation (or negative acceleration) in a Indirection of

( neg. accelera- ) _ (c v) sin a ,_

*V? :

jtiou ||
to Y

f

:

~~ZT

Hence the resistance in direction of Y(i.e., the equal and op-

posite of P in figure) must be

PY = mass X I^-accel. = (c v) sin a
;

. . (2)
At

and therefore, since =M= - = mass of liquid passing
At g
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over the plate per unit of time (not that issuing from nozzle),

we have

Impulse orpres- ) =p= Qy
(c
_ v)^ a=^r (c

_vy sin (3)sure on plate j g
^

g
^

in which F= sectional area of jet before meeting plate.

[N.B. Since eq. (3) can also be written P =. Me sin a
Mv sin or, and Me sin a may be called the I^-momentum before

contact, while Mv sin a is the JT-momentum after contact (of

the mass passing over plate per unit of time), this method may
be said to be founded on the principle of momentum which is

nothing more than the relation that the accelerating force in

any direction = mass X acceleration in that direction
; e.g.,,

Px = Mpx ;
Py
= Mpy ', see74.]

If we resolve P, Fig. 637, into two components, one, P', \\

to the direction of motion (v and
<?),

and the other, P' 1

', ~| to

the same, we have

and

P"= P cos a = 52-
(e v) sin a cos a. . . (5)

($ = T^c v) volume passing over the plate per unit of

time.) The force P" does no work, while the former, P'^

does an amount of work P'v per unit of time
; i.e., exerts a

power (one plate)

= L P'v = Q^(c v)v sin
3
a. (6)

ff

If, instead of a single plate, a series of plates, forming a

regular succession, is employed, then, as in a previous paragraph,
we may replace Q, = F(c v\ by Q

f = Fc, obtaining as the

Power exerted ly jet ) = z/ = ^V (
_

}

. _
<?7i ^/^^ ofplates \ g

^
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For v = G- and a = 90 we have
2

= i^yfL = i^v ,fto o"o o * * * * *
\ /

= only half the kinetic energy (per time-unit) of the jet.

569. Rigid Plates Moving in a Fluid, Totally Submerged.
Fluid Moving against a Fixed Plate. Impulse and Resistance.

If a thin flat rigid plate have a motion of uniform translation

with velocity = v through a fluid

which completely surrounds it, Fig.
"- -

638, a resistance is encountered (which ^^
must be overcome by an equal and op-

-

posite force, not shown in figure, to

preserve the uniform motion) consist-

ing of a normal component JV, 1 to

plate, and a (small) tangential com-

ponent, or skin-friction, T^ \\
to plate.

FIG. ess.

Unless the angle a, between the surface of plate and the direc-

tion of motion O ...
-y,

is very small, i.e. unless the plate i&

moving nearly edgewise through the fluid, N is usually much

greater than T. The skin-resistance between a solid and a fluid

has already been spoken of in 510.

When the plate and fluid are at rest the pressures on both

sides are normal and balance each other, being ordinary static

fluid pressures. When motion is in progress, however, the

normal pressures on the front surface are increased by the

components, normal to plate, of the centrifugal forces of the

curved filaments (such as AB) or "stream-lines," while on

the back surface, D, the fluid does not close in fast enough to

produce a pressure equal to* that (even) of rest. In fact, if the

motion is sufficiently rapid, and the fluid is inelastic (a liquid),

a vacuum may be maintained behind the plate, in which case

there is evidently no pressure on that side of the plate.

Whatever pressure exists on the back acts, of course, to-

diminish the resultant resistance. The water on turning the

sharp corners of the plate is broken up into eddies forming a,
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" wake" behind. From the accompaniment of these eddies,

the resistance in this case (at least the componentN normal to

plate) is said to be due to "eddy-making /" though logically

Ave should say, rather, that the body does not derive the assist-

ance (or negative resistance) from behind which it would ob-

tain if eddies were not formed
; i.e., if the fluid could close in

behind in smooth curved stream-lines symmetrical with those

in front.

The heat corresponding to the change of temperature pro-

duced in the portion of fluid acted on, by the skin-friction

and by the mutual friction of the particles in the eddies, is the

equivalent of the work done (or energy spent) by the motive

force in maintaining the uniform motion
( 149). (Joule's

experiments to determine the Mechanical Equivalent of Heat

were made with paddles moving in water.)

If the fluid is sea-water, the results of Col. Beaufoy's ex-

periments are applicable, viz.:

The resistance, per squarefoot of area, sustained by a sub-

merged plate moving normally to itself [i.e., a = 90] in sea-

water with a velocity of v = 10 ft. per second is 112 Ibs. He
also asserts fchatjftw other velocities the resistance varies as the

square of the velocity. This latter fact we would be led to

suspect from the results obtained in 568 for the impulse of

jets; also in 565 [see eq. (6)]. Also, that when the plate

moved obliquely to its normal (as in Fig. 638) the resistance

was nearly equal to (the resistance, at same velocity, when

a = 90) X (the sine of the angle a} ; also, that the depth of
submersion had no influence on the resistance.

Confining our attention to a plate moving nor-

mally to itself, Fig. 639, let F= area of plate,

y = heaviness
( 409) of the fluid, v the uni-

form velocity of plate, and g = the acceleration

of gravity (= 32.2 for the foot and second
;

= 9.81 for the metre and second). Then from

the analogy of eq. (6), 565, where velocity c of

the jet against a stationary plate corresponds to

FIG. 639. the velocity v of the plate in the present case

moving through a fluid at rest, we may write
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Resistance offluid \ _ T>_ ^p ^
\
v normal )

,^
to moving plate }

~ ~ ^ ?
'

%g
' '

(
to plate j

* * " W

And similarly for the impulse of an indefinite stream offluid

against a fixed plate ( ~| to velocity of stream), v being the

velocity of the current,

Impulse of current } __ p r'//
7 ^

j
^ normal

) /o\

upon fixed plate )

~ ^ ^
2^~

' ' '

(
to plate f

*
V*

*

The 2g is introduced simply for convenience
; since, having

v given, we may easily find v* -=-
%g from a table of velocity-

heads
;
and also (a ground of greater importance) since the co-

efficients and C' which depend on experiment are evidently

abstract numbers in the present form of these equations (for

It and P are forces, and Fyv* -r- %g is the weight (force) of

an ideal prism of fluid
;

hence C and C,' must be abstract

numbers.)
From Col. Beaufoy's experiments (see above), we have for

sea-water [ft., lb., sec.], putting R = 112 Ibs., F= 1 sq. ft.,,

y = 64 Ibs. per cub. ft., and v = 10 ft. per second,

2 X 32.2 X 112 = 3"

1.0 X 64 X 10
2

Hence in eq. (1) for sea-water, we may put C = 1.13 (with

y = 64 Ibs. per cub. ft.).

From the experiments of Dubuat and Thibault, "Weisbach

computes that for the plate of Fig. 639, moving through either

water or air, C = 1-25 for eq. (1), in which the y for air must

be computed from 437
;
while for the impulse of water or

air on fixed plates he obtains C' 1.86 for use in eq. (2). It

is hardly reasonable to suppose that C and C' should not be

identical in value, and Prof. Unwin thinks that the difference

in the numbers just given must be due to errors of experi-

ment. The latter value, C' = 1-86, agrees well with equation

(6) below. For great velocities C and C' are greater for air

than for water, since air, being compressible, is of greater

heaviness in front of the plate than would be computed for
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the given temperature and barometric height for use in eqs.

(1) and (2)

The experiments of Borda in 1763 led to the formula

P= [0.0031 + 0.00035tf]#y
a .... (3)

for the total pressure upon a plate moving through the air

in a direction l to its own surface. P is the pressure in

pounds, c the length of the contour of the plate in feet, and S
its surface in square, feet, while v is the velocity in miles per

hour. Adopting the same form of formula, Hagen found,

from experiments in 18T3, the relation

P= [0.002894 -t-0.00014]xSV ... (4)

for the same case of fluid resistance.

Hagen's experiments were conducted with great care, but

like Borda's were made with a "whirling machine," in which

the plate was caused to revolve in a horizontal circle of only

7 or 8 feet radius at the end of a. horizontal bar rotating about

a vertical axis. Hagen's plates ranged from 4 to 40 sq. in. in

area, and the velocities from 1 to 4 miles per hour.

The last result was quite closely confirmed by Mr. H. Allen

Hazen at Washington in November 1886, the experiments

being made with a whirling machine and plates of from 16 to

576 sq. in. area. (See the American Journal of Science, Oct.

1887, p. 245.)

In Thibault's experiments plates of areas 1.16 and 1.531 sq.

ft. were exposed to direct wind-pressure, giving the formula

P = 0.00475#y
3

(5)

Recent experiments in France (see R. R. and Eng. Journal,

Feb. J

87), where flat boards were hung from the side of a rail-

way train run at different velocities, gave the formula

P = 0.00535/V (6)

The highest velocity was 44 miles per hour. The magnitude
of the area did not seemingly affect the relation given. More



PLATES IN FLUIDS. 817

extended and elaborate experiments are needed in this field,

those involving a motion of translation being considered the

better, rather than with whirling machines, in which "centrif-

ugal action" must have a disturbing influence.

The notation and units for eqs. (4), (5), and (6) are the same

as those given for (3).

It may be of interest to note that if equation (3) of 568 be

considered applicable to this case of the pressure of. an un-

limited stream of fluid against a plate placed at right-angles to

the current, with T^put equal to the area of the plate, we ob-

tain, after reduction to the units prescribed above for the pre-

ceding equations and putting a = 90,

P = 0.0053$y
2.......

(T)

The value y = 0.0807 Ibs. per cub. ft. has been used in the

substitution, corresponding to a temperature of freezing and

a barometric height of 30 inches. At higher temperatures,
of course, y would be less, unless with very high barometer.

569a. Example. Supposing each blade of the paddle-wheel
of a steamer to have an area of 6 sq. ft., and that when in the

lowest position its velocity [relatively to the water, not to the

vessel] is 5 ft. per second
;
what resistance is it overcoming in

salt water ?

From eq. (1) of 569, with C = 1.13 and y = 64 Ibs. per
cubic foot, we have (ft., lb., sec.)

If on the average there may be considered to be three pad-
dles always overcoming this resistance on each side of the

boat, then the work lost (work of "
slip"} in overcoming these

resistances per second (i.e., power lost) is

Z, = [6 X 169.4] Ibs. X 5 ft. per sec. = 5082 ft.-lbs. per sec.

or 9.24 Horse Power (since 5082 -5- 550 = 9.24).
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If, further, the velocity of the boat is uniform and = 20 ft

per sec., the resistance of the water to the progress of the boat

at this speed being 6 X 169.4, i.e. 1016.4 Ibs., the power ex-

pended in actual propulsion is

Z
2
= 1016.4 X 20 = 20328 ft.-lbs. per sec.

Hence the power expended in both ways (usefully in propul-

sion, uselessly in "slip") is

t
= 25410 ft-lbs. per sec. = 46.2 H. P.

Of this, 9.24 H. P., or about 20 per cent, is lost in "
slip."

570. Wind-pressure

on the surface of a

roof inclined at an

angle = a with the

horizontal, i.e., with

the direction of the

wind, is usually esti-

mated according to

the empirical formulaFIG. 640.

(Button's)

pp' [sin a]
[1-84 cos a - 1]

? (1)

in which p' = pressure of wind per unit area against a vertical

surface ( ~| to wind), and p that against the inclined plane

(and normal to it) at the same velocity. For a value of

p' = 40 Ibs. per square foot (as a maximum), we have the

following values for JP, computed from (1) :

For a = 5
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with the same notation as above. Some experimenters in

London tested this latter formula by measuring the pressure
on a metal plate supported in front of the blast-pipe of a blow-

ing engine ;
the results were as follows :

a =
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in the present petition its tendency is to accelerate, or retard,

the motion of the boat. If we form a parallelogram of which

w is the diagonal and c one side, then the other -side OK, mak-

ing some angle a with BM, will be the velocity v of the wind

relatively to the boat (and sail), and upon this (and not upon w)

depends the action on the sail. The sail, being so placed that

the angle is smaller than a, will experience pressure from

the wind
;
that is, from the impact of the particles of air which

strike the surface and glance along it. This pressure, P, is

normal to the sail (considered smooth), and evidently, for the

position of the parts in the figure, the component of P along
MB points in the same direction as

<?,
and hence if that com-

ponent is greater than the water-resistance to the boat at this

velocity, c will be accelerated; if less, c will be retarded.

Any change in c, of course, gives a different form to the

parallelogram of velocities, and thus the relative velocity v

and the pressure P, for a given position of the sail, will both

change. [The component of P ~] to MB tends, of course, to

cause the boat to move laterally, but the great resistance to

such movement at even a very slight lateral velocity will make
the resulting motion insignificant.]

As c increases, a diminishes, for a given amount and position

of w
;
and the sail must be drawn nearer to the line MB, i.e.

6 must be made to decrease, to derive a wind-pressure having
ft forward fore-and-aft component ;

and that component be-

comes smaller and smaller. But if the craft is an ice-boat, this

small component may still be of sufficient magnitude to exceed

the resistance and continue the acceleration of c until c is

larger than w
; i.e., the boat may be caused to go as fast as, or

faster than, the wind, and still be receiving from the latter a

forward pressure which exceeds the resistance. And it is

plain that there is nothing in the geometry of the figure to

preclude such a relation (i.e., c > w, with 6 < a and > 0).

572. Resistance of Still Water to Moving Bodies, Completely

Immersed. This resistance depends on the shape, position, and

velocity of the moving body, and also upon the roughness of

its surface. If it is pointed at both ends (Fig. 642) with its
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FIG. 642.

axis parallel to the velocity, v, of its uniform motion, the

stream lines on closing tor

gether smoothly at the hinder

extremity, or stern, B^ exert

normal pressures against the

surface of the portion CD...B

whose longitudinal compo-
nents approximately balance

the corresponding components
of the normal pressures on CD . . . A

;
so that the resistance

R, which must be overcome to maintain the uniform velocity

^, is mainly due to the "
skin-friction" alone, distributed along

the external surface of the body ;
the resultant of these resist-

ances is a force R acting in the line AB of symmetry (sup-

posing the body symmetrical about the direction of motion).

If, however, Fig. 643, the stern, E..B..F\* too bluff,

. eddies are formed round the corners

^and Fj and the pressure on the

surface E . . . F is much less than

in Fig. 642; i.e., the water pres-

sure from behind is less than the

backward (longitudinal) pressures

from in front, and thus the resultant

resistance R is due partly to skin-

friction and partly to "
eddy-making" ( 569).

[NOTE. The diminished pressure on EF\& analogous to the

loss of pressure of water (flowing in a pipe) after passing a nar-

row section the enlargement
from which to the original

section is sudden. E.g., Fig.

644, supposing the velocity v

and pressure p (per unit-area)

to be the same respectively
at A and A\ in the two

pipes shown, with diameter

AL = WK=A fL f = WK'
;

then the pressure at M is FrG . 644.

equal to that at A (disregarding skin-friction), whereas that at

FIG. 643.
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'

M'
is considerably less than that at A f on account of the head

lost in the sudden enlargement. . (See also Fig. 575.)]

It is therefore evident that Ihiffness of stern increases the

resistance much more than Huffness of bow.

In any case experiment shows that for a given body sym-
metrical about an axis and moving through a fluid (not only

water, but any fluid) in the direction of its axis with a uni-

form velocity = v, we may write approximately the resistance

= (resistance at vel. v)
=

As in preceding paragraphs, F= area of the greatest section,

"I to axis, of the external surface of body (not of the sub-

stance) ; i.e., the sectional area of the circumscribing cylinder

(cylinder in the most general sense) with elements parallel to

the axis of the body, y ==. the heaviness ( 409) of the fluid,

and v = velocity of motion
;
while is an abstract number

dependent on experiment.

According to Weisbach, who cites different experimenters,
we can put for spheres, moving in water, = about 0.55

;
for

cannon-balls moving in water, = .467.

According to Robins and Hutton, for spheres in air, we
have

For in mets. ) ..

per sec.
j"
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scribing right parallelepiped moving with four faces parallel

to direction of motion.

EXAMPLE. The resistance of the air at a temperature of

freezing and tension of one atmosphere to a musket-ball \ inch

in diameter when moving with a velocity of 328 ft. per sec.

is thus determined by Piobert's formula, above :

C = 0.451(1 + .0023 X 100) = 0.554
;

hence, from eq. (1),

R = 0.554 X X -0807 X = al018 lbs '

572a. Deviation of a Spinning Ball from a Vertical Plane in

Still Air. It is a well-known fact in base-ball playing that if a

rapid spinning motion is given to the ball about a vertical axis

as well as a forward motion of translation, its path will not

remain in its initial vertical plane, but curve out of that plane
toward the side on which the absolute velocity of an external

point of the ball's surface is least. Thus, if the ball is thrown

from North to South, with a spin of such character as to ap-

pear
" clock-wise" seen from above, the ball will curve toward

the West, out of the vertical plane in which it started.

This could not occur if the surface of the ball were perfectly
smooth (there being also no adhesion between that surface and
the air particles), and is due to the fact that the cushion of com-

pressed air which the ball piles up in front during its progress,

and which would occupy a symmetrical position with respect
to the direction of motion of the centre of the ball if there

were no motion of rotation of the kind indicated, is now piled

up somewhat on the East of the centre (in example above),

creating constantly more obstruction on that side than on the

right ;
the cause of this is that the absolute velocity of the sur-

face-points, at the same level as the centre of ball, is greatest,

and the friction greatest, at the instant when they are passing

through their extreme Easterly positions; since then that

velocity is the sum of the linear velocity of translation and

that of rotation
; whereas, in the position diametrically oppo-
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site, on the West side, the absolute velocity is the difference ;

hence the greater accumulation of compressed air on the left

(in the case above imagined, ball thrown from North to South,

etc.).

573. Robinson's Cup-anemometer. This instrument, named
after Dr. T. R. Robinson of Armagh, Ireland, consists of four

hemispherical cups set at equal intervals in a circle, all facing
in the same direction round the circle, and so mounted on a

light but rigid framework as to be capable of rotating with

but little friction about a vertical axis. When in a current of

air (or other fluid) the apparatus begins to rotate with an ac-

celerated velocity on account of the pressure against the open
mouth of a cup on one side being greater than the resistance

met by the back of the cup diametrically opposite. Yery soon,,

however, the motion becomes practically uniform, the cnp-
centre having a constant linear velocity v" the ratio of which

to the velocity, v', of the wind at the same instant must be

found in some way, in order to deduce the value of the latter

from the observed amount of the former in the practical use

of the instrument. After sixteen experiments made by Dr.

Robinson on stationary cups exposed to winds of varying in-

tensities, from a gentle breeze to a hard gale, the conclusion

was reached by him that with a given wind- velocity the total

pressure on a cup with concave surface presented to the wind
was very nearly four times as great as that exerted when the

convex side was presented, whatever the velocity (see vol.

xxu of Transac. Irish Royal Acad., Pa?^t /, p. 163).

Assuming this ratio to be exactly 4.0 and neglecting axle-

friction, we have the data for obtaining an approximate value

of m, the ratio of v
f

to the observed v", when the instrument is

in use. The influence of the wind on those cups the planes of

whose mouths are for the instant
||
to its direction will also be

neglected.

If, then, Fig. 645, we write the impulse on a cup when the

hollow is presented to the wind [ 572, eq. (1)]

'"
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and the resistance when the convex side is presented

825

we may also put
(3)

In (1) and (2) v, and v9
are relative velocities.

^Regarding only the two cups A and B,

whose centres at a definite instant are mov-

ing in lines parallel to the direction of the

wind, it is evident that the motion of the

cups does not become uniform until the rel- > v

ative velocity v' v" of the wind and cup
A (retreating before the wind) has become

so small, and the relative velocity v' 4- v"

with which B advances to meet the air-

particles has become so great, that the im-

pulse of the wind on A equals the resist-

ance encountered by B; i.e., these forces,

Ph and Pc ,
must be equal, having equal

lever-arms about the axis. Hence, for uniform rotary motion,

i.e. [see eq. (3)],

4 ~ * '= or

Solving the quadratic for m, we obtain

TW = 3.00........ (6)

That is, the velocity of the wind is about three times that of

the cup-centre.

574. Experiments with Robinson's Cup-anemometer. The

ratio 3.00 just obtained is the one in common use in connec-

tion with this instrument in America. Experiments by Mr.



826 MECHANICS OF ENGINEERING.

Hazen at Washington in 1886 (Am. Jour. Science, Oct. '87,

p. 248) were made on a special type devised by Lieut. Gibbon.

The anemometer was mounted on a whirling machine at the

end of a 16-ft. horizontal arm, and values for m obtained, with

velocities up to 12 miles per hour, from 2.84 to 3.06
; average

2.94. The cups were 4 in. in diameter and the distance of their

centres from the axis 6.72 in., these dimensions being those

usually adopted in America. This instrument was nearly new
and was well lubricated.

Dr. Robinson himself made an extensive series of experi-

ments, with instruments of various sizes, of which an account

may be found in the Philos. Transac. for 1878, p. 797 (see

also the volume for 1880, p. 1055). Cups of 4 in. and also of

9 in. were employed, placed first at 24 and then at 12 in. from

the axis. The cup-centres revolved in a (moving) vertical

plane perpendicular to the horizontal arm of a whirling-

machine
;
this arm, however, was only 9 ft. long. A friction-

brake was attached to the axis of the instrument for testing the

effect of increased friction on the value of in. At high speeds

of 30 to 40 miles per hour (i.e., the speed of the centre of the

instrument in its horizontal circle, representing an equal speed
of wind for an instrument in actual use with axis stationary)

the effect of friction was relatively less than at low velocities.

That is, at high speeds with considerable friction the value of

m was nearly the same as with little friction at low speeds.

With the large 9 in. cups at a distance of either 24 or 12 in.

from the axis the value of m at 30 miles per hour ranged

generally from 2.3 to 2.6, with little or much friction
;
while

with the minimum friction m rose slowly to about 2.9 as the

velocity diminished to 10 miles per hour. At 5 miles per
hour with minimum friction m was 3.5 for the 24 in. instru-

ment and about 5.0 for the 12 in. The effect of considerable

friction at low speeds was to increase m, making it as high as

8 or 10 in some cases. With the 4 in.-cups no value was ob-

tained for m less than 3.3. On the whole, Dr. Robinson con-

cluded that m is more likely to have a constant value at all

velocities the larger the cups, the longer the arms, and the less

the friction, of the anemometer. But few straight-line experi-
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ments have been made with the cup-anemometer, the most

noteworthy being mentioned on p. 308 of the Engineering
News for October 188T. The instrument was placed on the

front of the locomotive of a train running between- Baltimore

and Washington on a calm day. The actual distance is 40

miles between the two cities, while from the indications of the

anemometer, assuming m = 3.00, it would have been in one trip

46 miles and in another 47. The velocity of the train was 20

miles per hour in one case and 40 in the other.

575 Other Anemometers. Both Biram's and Castello's ane-

mometers consist of a wheel furnished with radiating vanes

set obliquely to the axis of the wheel, forming a small "wind-

mill," somewhat resembling the current-meter for water shown

in Fig. 604
; having six or eight blades, however. The wheel

revolves with but little friction, and is held in the current of

air with its axis parallel to the direction of the latter, and very

quickly assumes a steady motion of rotation. The number of

revolutions in an observed time is read from a dial. The in-

struments must be rated by experiment, and are used chiefly

in measuring the velocity of the currents of air in the galleries

of mines, of draughts of air in flues and ventilating shafts, etc.

To quote from vol. v of the Keport of the Geological Sur-

vey of Ohio, p. 370: "Approximate measurements (of the

velocity of air) are made by miners by flashing gunpowder,
and noting with a watch the speed with which the smoke

moves along the air-way of the mine. A lighted lamp is

sometimes used, the miner moving along the air-gallery, and

keeping the light in a perfectly perpendicular position, noting

the time required to pass to a given point."

Another kind makes use of the principle of Pitot's Tube

(p. 751), and consists of a U -tube partially filled with water,

one end of the tube being vertical and open, while the other

turns horizontally, and is enlarged into a wide funnel, whose

mouth receives the impulse of the current of air
;
the differ-

ence of level of the water in the two parts of the U is a meas-

ure of the velocity.
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576. Resistance of Ships. We shall first suppose the ship to

be towed at a uniform speed ; i.e., to be without means of self-

propulsion (under water). This being the case, it is found that

at moderate velocities (under six miles per hour), the ship

being of "fair" form (i.e., the hull tapering both at bow and

stern, under water) the resistance in still water is almost wholly
due to skin-friction, "eddy-making" (see 569) being done

away with largely by avoiding a bluff stern.

When the velocity is greater than about six miles an hour

the resistance is much larger than would be accounted for by
skin-friction alone, and is found to be connected with the sur-

face-disturbance or waves produced by the motion of the hull

in (originally) still water. The recent experiments of Mr.

Froude and his son at Torquay, England, with models, in a tank

300 feet long, have led to important rules (see Mr. White's

Naval Architecture and "Hydromechanics" in the Ency.

Britann.} of so proportioning not only the total length of a

ship of given displacement, but the length of the entrance (for-

ward tapering part of hull) and length of run (hinder tapering

part of hull), as to secure a minimum "wave-making resist-

ance" as this source of resistance is called.

To quote from Mr. White (p. 460 of his Naval Architecture,

London, 1882): "Summing up the foregoing remarks, it

appears :

"
(1) That/rictional resistance, depending upon the area of

the immersed surface of a ship, its degree of roughness, its

length, and (about) the square of its speed, is not sensibly

affected by the forms and proportions of ships ;
unless there

be some unwonted singularity of form, or want of fairness.

For moderate speeds this element of resistance is by far the

most important ;
for high speeds it also occupies an important

position from 50 to 60 per cent of the whole resistance,

probably, in a very large number of classes, when the bottoms

are clean and a larger percentage when the bottoms become

foul.

"
(2) That eddy-maldng resistance is usually small, except in

special cases, and amounts to 8 or 10 per cent of the frictional
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resistance. A defective form of stern causes largely increased

eddy-making.
"

(3) That wave-making resistance is the element of the

total resistance which is most influenced by the forms and pro-

portions of ships. Its ratio to the frictional resistance, as well

as its absolute magnitude, depend on many circumstances
;
the

most important being the forms and lengths of the entrance

and run, in relation to the intended full speed of the ship.

For every ship there is a limit of speed beyond which each

small increase in speed is attended by a disproportionate in-

crease in resistance
;
and this limit is fixed by the lengths of

the entrance and run the 4

wave-making features
'

of a ship.
" The sum of these three elements constitutes the total re-

sistance offered by the water to the motion of a ship towed

through it, or propelled by sails
;
in a steamship there is an

'

augment
'

of resistance due to the action of the propel-

lers."

In the case of a steamship driven by a screw propeller, this

augment to the resistance varies from 20 to 45 per cent of the
"
tow-rope resistance," on account of the presence and action

of the propeller itself
;
since its action relieves the stern of

some of theforward hydrostatic pressure of the water closing
in around it. Still, if the screw is placed far back of the stern,

the augment is very much diminished
;
but such a position in-

volves risks of various kinds and is rarely adopted.
We may compute approximately the resistance of the water

to a ship propelled by steam at a uniform velocity -y,
in the

following manner : Let L denote the power developed in the

engine cylinder ; whence, allowing 10 per cent of L for engine

friction, and 15 per cent for " work of slip" of the propeller-

blade, we have remaining 0.75Z, as expended in overcoming
the resistance R through a distance = v each unit of time

; i.e.,

(approx.) 0.75Z = 7fo (1)

EXAMPLE. If 3000 indicated H. P. ( 132) is exerted by the

engines of a steamer at a uniform speed of 15 miles per hour
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(= 22 ft. per sec.), we have (with above allowances for slip and

engine friction) [foot-lb.-sec.]

| X 3000 X 550 = E X 22
;

.-. R = 56250 Ibs.

Further, since J2 varies (roughly) as the square of the veloc-

ity, and can therefore be written It = (Const.) X 'y
2

,
we have

from (1)
L = a constant X v

s

(2)

as a roughly approximate relation between the speed and the

power necessary to maintain it uniformly. In view of eq. (3)

involving the cube of the velocity as it does, we can understand

why a large increase of power is necessary to secure a propor-

tionally small increase of speed.

577. "
Transporting Power," or Scouring Action, of a Current.

The capacity or power of a current of water in an open
channel to carry along with it loose particles, sand, gravel,

pebbles, etc., lying upon its bed was investigated experimen-

tally by Dubuat about a century ago, though on a rather small

scale. His results are as follows :

The velocity of current must be at least

0.25 ft. per sec., to transport silt
;

0.50 "
loam;

1.00 " "
sand;

2.00 " "
gravel;

3.5 "
pebbles 1 in. in diam.;

4.0 " " " broken stone :

5.0 "
chalk, soft shale.

However, more modern writers call attention to the fact

that in some instances beds of sand are left undisturbed by
currents of greater velocity than that above indicated for sand,

and explain this fact on the theory that the water-particles

may not move parallel to the bed, but in cycloids, approxi-

mately, like the points in the rim of a rolling wheel, so as to

have little or no scouring action on the bed in those cases.

In case the particles move in filaments or stream-lines

parallel to the axis of the stream the statement is sometimes

made that the
"
transporting power" varies as the sixth power
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FIG. 646.

of the velocity of the current, by which is meant, more defi-

nitely, the following : Fig. 646. Conceive a row of cubes (or
other solids geometri-

cally similar to each

other) of many sizes,

all of the same heavi-

ness ( 7), and simi-

larly situated, to be

placed on the horizon-

tal bottom of a trough
and there exposed to

a current of water,
***

being completely im-

mersed. Suppose the coefficient of friction between the cubes

and the trough-bottom to be the same for all. Then, as the

current is given greater and greater velocity v, the impulse
Pm (corresponding to a particular velocity vm) against some

one, m, of the cubes, will be just sufficient to move it, and at

some higher velocity vn the impulse Pn against some larger

cube, n, will be just sufficient to move it,
in turn. "We are to

prove that Pm : Pn :: vm
6

: vn\

Since, when a cube barely begins to move, the impulse is

equal to the friction on its base, and the frictions under the

cubes (when motion is impending) are proportional to their

volumes (see above), we have therefore

(i)

Also, the impulses on the cubes, whatever the velocity, are pro-

portional to the face areas and to the squares of the velocities

(nearly ;
see 572) ;

hence

Pn ft.X'
.... (2)

From (1) and (2) we have

= ^; (3)
'w "**
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while from (3) and (2) we have, finally,

Pm :Pn :: Vjn
6 :^c

(4)

Thus we see in a general way why it is that if the velocity
of a stream is doubled its transporting power is increased

about sixty-four-fold ; i.e., it can now impel along the bottom

pebbles that are sixty-four times as heavy as the heaviest which

it could move before (of same shape and heaviness).

Though rocks are generally from two to three times as

heavy as water, their loss of weight under water causes them to

encounter less friction on the bottom than if not immersed.
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