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PREFACE

This book is intended to serve as an introduction to the study

of the mechanical aspects of construction. Such a study must
inevitably deal with both fact and theory. In conducting their

classes in the theory of construction, the authors have felt that

the student should acquire his facts as a natural accretion around

a core of theory and that empirical and experimental methods

should form as small a part as possible of his early training.

Therefore, little of an empirical nature appears in this book.

Likewise no emphasis has been placed on the study of the

physical properties of materials, for this subject should be

developed in a separate course which includes some actual

contact with the materials themselves and with the methods

used in making scientific determinations of their properties.

It has not seemed advisable to present very much in the way
of tabulated data though a few tables are included in the Ap-
pendix. Many good handbooks are available and it has been

assumed that this book will be supplemented by a reference

book substantially equivalent to those published by the steel

manufacturers.

For reasons more fully explained in § 84, no attempt has been

made to select topics and problems from the very latest develop-

ments in structural practice. The attempt has rather been to

select such examples as afford a good opportunity for the study

of some general principle. For example the flitched beam

(§ 208) is well nigh obsolete, but the principle involved in its

design leads directly to the study of reinforced concrete. Again

it is quite possible that, with the development of welding, riveted

joints may become more or less rare, but as an illustration of

certain principles well worthy of study the riveted joint will

remain the more important form.

The student is assumed to have an elementary knowledge of

physics and of mathematics, including the integral calculus.

The attempt has been to present each idea as required by the

nature of the subject itself rather than to fit the treatment to

students who are insufficiently piepared, on the one hand, or on
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the other, to make the whole field an exercising ground for the

higher mathematics.

Since structural work makes severe demands on the imagina-

tion and the ability to ''see" solutions, the visual appeal has

been emphasized whenever possible. Also physical concepts

have been given preference over mathematical processes, graph-

ical methods being used quite freely. Nevertheless, in the

treatment of such subjects as the deformations of beams and

unsymmetrical bending, well known graphical or partly graphical

methods have been omitted and attention has been confined to

developing the fundamental concepts on which such methods
are based.

In preparing the illustrations the attempt has been made to

keep them in scale wherever possible. In the study of such a

subject as deformation, some exaggeration is positively necessary;

but in other cases, notably in shear and moment diagrams, the

actual scales have been followed closely in order to cultivate

the sense of proportion and a keenness of observation that comes
from a careful training in this respect.

In Chapters XX to XXV several subjects have been touched

upon in a most rudimentary fashion. Each subject might well

be the basis of a whole book. The idea has been to rouse interest

and excite curiosity rather than to offer solutions.

In presenting such a subject, material is necessarily gathered

from many sources. Among the books most used for reference

are: ''The Mechanics of Engineering" by Professor I. P. Church,

"Mechanics of Materials" by Professor Mansfield Merriman

and "Applied Mechanics" by Professors C. E. Fuller and

W. A. Johnson. Members of the various Faculties of the

University have been generously helpful with suggestions, advice

and encouragement. Special acknowledgment is due to Pro-

fessor C. F. Craig of the Department of Mathematics for con-

structive criticism of the most helpful sort. The illustrations

of materials tested to destruction were taken from test made in

the laboratories of the College of Engineering under the direction

of Professors E. N. Burrows, A. C. Davis, and H. H. Schofield.

Other acknowledgments are made throughout the text.

George Young, Jr.

H. E. Baxter.
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MECHANICS OF MATERIALS

CHAPTER I

INTRODUCTION

1. Purpose and Scope. The structural problem consists in

selecting and combining material to serve some human end, at a

minimum expenditure of natural resources and human effort.

If the complete structure fails to serve its purpose or if, in

building it, more labor or more material has been expended

than was necessary, there has been an irreparable economic loss.

Thus the design of structures involves two problems: what to

build, and how to build it. The first problem has to do with

needs to be satisfied and conditions to be met; such as the size,

shape, and general disposition of rooms in the case of a building,

and grades, clearances, loads to be carried, and circulation in

the case of a bridge. Such considerations fix the broad general

conception of what the structure is to be. The second problem

has to do with the means by which the desired ends may be

achieved, the materials to be used, and the size, shape, and

disposition of the individual members.

These two problems are necessarily coexistent and inter-

dependent. The size and disposition of rooms frequently depend

on economical column spacings. The number of piers in a bridge

may depend on the relative cost of foundation and superstructure.

Again the architectural treatment or even the fundamental

elements of the plan may be fixed with reference to the limitations

of materials which are easily available. Special materials and

processes may have to be evolved to meet definite needs. Every

structure represents more or less of a struggle to reconcile what

is wanted with how it may be accomplished. Thus the designer

cannot safely neglect the structural problem, nor should the

engineer allow purely structural considerations to hamper the

usefulness, suitability, or character of the structure.

1
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The purpose of the following chapters is to lay the foundation

for the study of only one of these problems. It will be assumed

that definite results are to be accomplished, and an answer will

be sought as to how best to fulfill the requirements. If a beam
or column is to be designed, the load to be carried and the

material to be used will be specified, and a suitable size and

shape will be determined. However, while we shall be con-

cerned solely with the problem of how to do something, the

student should not forget its relation to and its dependence upon
the other problem of what, in the broader sense, is to be accom-

plished.

2. Elements of Structural Engineering. The elements which

enter into the problem of structural engineering are (1) the loads

which a structure or any part of it is to carry, (2) the materials

of which it is to be made, and (3) the size, shape, and disposition

of the various members.

The determination of the loads will be taken up only in its

most rudimentary form. In practice it is a very simple subject,

but it depends mainly on experience, statistics, and local con-

ditions. This book will deal more especially with the principles

of statics, and with the mechanics of materials, leaving the other

questions mentioned above to be taken up in a later course in

structural design.

The selection of materials which will be appropriate and
economical for use in a given structure involves a detailed

knowledge of the physical characteristics and properties of each

possible material as well as a broad general acquaintance with

market conditions. This is a lifelong study, since the sources of

supply, the processes of manufacture, and the comparative costs

are constantly changing.

The study of the characteristics of materials has been con-

ducted intensively in the past few decades. There is now a vast

amount of literature, both standard and periodical. The testing

of materials can fairly be classed as a separate science which is

well estabhshed and is being carried forward in numerous labora-

tories.
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While the sources of information regarding materials are plenti-

ful, it is probably impossible for a satisfactory knowledge of

materials to be acquired merely through reading. Some direct

contact with materials, both in the laboratory and in the field,

should form part of the training of every person intrusted with

their selection. The subject of materials will be discussed in

this book only in so far as it is necessary to give point to the

problems discussed.

When the loading of a structure has been determined and

the material to be used has been selected, it remains to fix the

size, shape, and disposition of its parts. It is this problem

that is to be investigated in the following chapters. The results

of experimental engineering on the one hand and the principles

of mechanics on the other are brought to bear on the problem

through processes which are chiefly mathematical.

3. Methods of Structural Engineering. Principles may be

combined, elaborated, or even evolved by purely mental proc-

esses. Facts are established through the senses, by observation

and by experiment. The methods of structural engineering

spring from the above considerations.

A. The rational method consists in obtaining results by purely

mental processes, reasoning from established facts to their logical

conclusions. This is what is done in each of the branches of math-

ematics, which is a wholly rational science.

B. The experimental method is the one by which most of the

facts of science are established. It consists in the observation

of actual happenings and the classification of the determined

results. Thus the acceleration due to gravity can be established

only by experiment; but once the law is thus established, it may
be extended and applied to wholly new cases by the rational

method.

C. The empirical method consists in the study of precedents,

and in following traditions with only such slight and cautious

departures as may be dictated by time and circumstance.

The solution of any important structural problem will involve,

to some extent, each of these methods. Applied sciences have,
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in general, grown from the empirical, through the experimental,

to a rational stage. The great structures of antiquity were

built with a very meagre scientific knowledge concerning the

mechanical and structural principles involved. Therefore prog-

ress was slow and halting. The developments during the Mid-

dle Ages and the Renaissance were, in essence, slow and

cautious experiments. It is only in comparatively recent times

that rational methods have been made possible by the body of

fact and experience accumulated in the past and by the develop-

ment of science in general. The rapid progress and dependable

conclusions of the present day are due solely to the application

of the rational method to the problem in hand.

Where the necessary facts are well established, the rational

method is far the best and most reliable. But when the facts are

at all obscure or confused, it is necessary to check the results of

the rational method by experimental determinations. Some
important structural problems, notably the design of columns,

still are, and will perhaps remain, dependent on experimental

data for their solution. Other problems, particularly those in-

volved in masonry construction, depend largely, if not wholly,

on empirical solutions. However, most of the important struc-

tural problems admit of solutions which are largely rational.

It is important that the student keep these methods and the

distinction between them clearly in mind. Empirical methods
are to be avoided whenever possible, but often rational and
empirical methods must be combined. It is wise to keep clearly

in mind which processes rest on a solid rational basis and which

depend on the less trustworthy empirical knowledge.

4. Calculations. A. Quantities. In the problems that fol-

low the quantities dealt with are chiefly those of force and space,

and in English speaking countries they are measured usually in

pounds and inches, though often such units as tons and feet

may be used. Time is dealt with to a limited extent.

With the exception of abstract numbers, each quantity has

two characteristics: one qualitative, the other quantitative.

Thus the expression four feet contains the two ideas, one (four)

quantitative, the other (feet) qualitative,
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When dealing with such quantities one should keep in mind

the rule of arithmetic, that only quantities that are alike quali-

tatively (of the same denomination) may be added or subtracted.

However, like or unlike quantities may be multiplied or divided.

Such an operation consists in multiplying or dividing the quanti-

tative and qualitative parts separately. The resulting quantity

will be a derived one, unlike either of its factors, but partaking

of- the nature of each. Thus 4 ft. X 4 ft. = 16 sq. ft.*; 5

miles -^ 4 hours = 1.25 miles per hour;t and 100 pounds -^ 10

sq. ft. = 10 pounds per sq. ft.

J

B. Type of Problem. The problems that are to be solved

are very similar to those of simple algebra and trigonometry.

Certain quantities are known, others unknown; and there is a

law (or laws) which governs their relations. It is then only a

question of stating the known relations, in the form of equations,

and solving these equations for the unknowns.

The student is warned that in some of the problems data is

furnished which is entirely unnecessary to the solution. In other

problems necessary data is omitted, and perhaps no definite solu-

tion is possible. This is in agreement with working conditions.

One of the important points in structural designing is to sift the

available data, separating the necessary from the unnecessary.

Moreover the kind of knowledge that is valuable is the kind

which cannot be shaken from its foundations by a few curiously

stated problems.

C. Degree of Accuracy. The degree of accuracy required

in structural computations is, relatively, not great. Experi-

mental determinations of strength, modulus of elasticity, and

similar quantities can rarely be made definite to more than two

significant § figures. The loads to be carried must be estimated

* Sometimes written IGD' or 16 ft.2

. , , , . , ^ miles
t May be written, 1.25 •

hour

t May be written, 10 lbs. /D' or 10 lbs./ft.2 or #/n'.
§ In a number which begins or terminates with a group of ciphers, these ciphers

are not significant figures. Thus each of the numbers 973,000,000 and 0.00973
is a number of three significant figures. Moreover, if each of these numbers is

written as an approximation of a number of four or more significant figures, there

is the same degree of accuracy in each.



6 MECHANICS OF MATERIALS

rather than definitely determined. Therefore computations em-

ploying these quantities are usually indefinite beyond the third

significant figure.

Slide-rule computations can easily be made accurate to within

a fraction of one percent; and are, therefore, sufficiently accurate.

If, on the whole, the degree of accuracy in any computation

is as great as that of the data on which it is based, the result

will be satisfactory.

D. Analysis. Much confusion and loss of time can be

avoided, and useful habits can be formed, by careful attention

to the analysis of conditions and to methods of procedure.

Before any figures are set down the conditions of the problem

should be completely visualized. In nearly every case a diagram

or sketch will be useful. Next the known and unknown quan-

tities should be clearly recognized and the laws which connect

them should be determined. Before proceeding with the solu-

tion, it is wise to form a mental estimate of the probable result,

both quantitatively and qualitatively. When all this has been

done, and not until then, may the actual computations be

performed with profit, and with a reasonable assurance of success.

E. Presentation. Ordinarily too little attention is paid to

the way in which computations are set down on paper. Slovenly

methods of presentation usually indicate or lead to slovenly

mental processes. The habit of performing parts of computa-

tions on any scrap of paper that may be at hand is a thoroughly

bad one. Good habits will be formed if a notebook is kept in

which all problems are set down in a clear and concise manner.

Begin with a diagram which will record and clarify all given data.

Then proceed to the solution which should be arranged according

to a carefully considered and sequential scheme. The computa-

tions should show every operation, including even the extended

multiplications, divisions, etc., unless a slide rule is used.

F. Checks. When a result has been obtained it should always

be checked by comparison with some known condition taken

preferably from every-day experience. Thus if a computation

shows that the strength of a Y^' rope is 50 lbs., while we know
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from experience that it will easily support the weight of a man,

there is reason to suspect an error in the figures.

By forecasting the results of each computation before any

figures are set down, and by applying the check of reasonable-

ness after results are obtained, the student will go far toward

developing good judgment, which is, in many ways, more impor-

tant than accurate knowledge or facility.

G. The Slide Rule. The student should begin at once to

use a slide rule for performing routine computations. Until

some facility is attained, the operation will prove more laborious

than the ordinary extended computations; but after a little

practice it will be found that computations can be performed

much more quickly, and the mind, relieved of the burden of

routine, will carry more easily the essence of the problem.

5. Historical Note. While literature is full of references to

the remarkable scientific achievements of the ancients and of the

mediaeval builders, the simplest facts of history show that their

results must have been obtained by purely empirical processes.

The simplest laws of statics were being formulated while Brunell-

eschi (1420-1464) was building his famous dome on the Duomo
in Florence.

The first accurate knowledge of the elasticity of materials

dates from the announcement of Hooke's law, in 1678. It was

not until early in the nineteenth century that the modulus of

elasticity was introduced into scientific determinations. From
this time on development was rapid. By 1850 machinery and

methods for testing materials had been developed, and some

progress had been made in accumulating data.

The development of the steel industry, which is practically

confined to the past fifty years, has encouraged and even neces-

sitated a remarkable growth in our knowledge and our equipment

for handling structural problems.

PROBLEMS

Note. Before starting work on the problems and frequently thereafter, the

student should refer to Chapter I and particularly to § 4. A notebook,

carefully prepared and kept corrected to date, is of the utmost importance.
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The results obtained in a certain problem will be frequently used as data in a

problem which follows.

1. In each of the following expressions, determine the resulting quantity in both

the qualitative and the quantitative sense.

(a) (10' X 4" X SOr X 8")^/=^ (&) g^
(c) (10' ^ 8 sec.) ^ 4 sec. (d) 9 lbs. -^ 6"

(e)
^"^ ^ '^

(/) (8' X 8' X 25')i/3

2 hrs.

(g) (8' - 4 sec.)i/2 (A) 9 tons -^ (6' X 8')

2. In each of the following expressions, determine the resulting quantity in

both the qualitative and the quantitative sense.

(a) 9 meters X 6 ft. (b) (8 lbs. X 6') ^ 12 sec.

(c) (8 tons X 500 miles) -^ 24 hrs. (d) (12" X 6' X 3" X 10')i/2

(e) (8' - 4") (24 lbs.) (/) 25 tons -^ (6" X 12')

(g) (8" - 5 sec.) (6" - 3") (h) (24 X 6' X 8' X l)"^



CHAPTER II

FORCE, MOTION AND EQUILIBRIUM

6. Introduction. The essence of a machine is motion. The

essence of a structure is rest. Each of them must fulfill its

purpose by exerting or resisting force.

Mechanics, which deals with the action of forces on bodies,

is the fundamental science of either mechanical or structural

engineering. It has two main divisions:

(1) Dynamics, which treats of forces producing motion and is

of primary importance to the mechanical engineer.

(2) Statics, which treats of bodies at rest under the action of

forces, and which is of primary importance to the structural

engineer.

We are so accustomed to the apparent quiescence and im-

mutableness of structures that we are apt to forget that every

structure maintains itself only by constant opposition to the

forces which tend to bring it down. Gravity, wind, change in

temperature, applied loads; some or all of these are constantly

at work. It is the problem of the structural engineer so to

design his structure that at all times it may resist these forces

and hence maintain its static quality.

It follows that statics will be our chief concern. Occasionally,

however, there is a case, usually that of moving loads, which

involves dynamics. Moreover, since rest (a state of rest) has

no significance except in contrast to motion, we must start our

study of statics by considering motion and the laws which

govern motion. (Also see Chap. XXIII.)

7. Laws of Motion. The following laws of motion are essen-

tially the same as those first stated by Sir Isaac Newton. They

are generalizations from experience and observation, and they

depend for their validity principally upon the fact that human
experience cannot be quoted to the contrary.

9
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(1) Every body continues in its state of rest or of motion in a

straight line, except in so far as it is made to change that state by

external forces.

It is a matter of common experience that it takes force to move

a body which is at rest. The converse proposition, namely,

that every body at rest tends to remain at rest if it is not acted

upon by some force, may be taken as axiomatic.

That all moving bodies tend to move in a straight line is

witnessed by such familiar examples as the skidding of a motor

car, the flying of mud from a revolving wheel, etc. In general

this first law can find ample verification in common experience.

(2) A body acted upon by a force receives an acceleration in the di-

rection of the force which is proportional to the force and inversely

proportional to the mass of the body.

If a body is already moving at a uniform velocity, the applica-

tion of a force will tend to increase this velocity if the force acts

in the direction of motion, or to decrease the velocity if the force

acts contrary to the direction of motion (i.e., the force gives to

the body a positive or negative acceleration).

The action of the force of gravity as applied to falling bodies

is a familiar illustration of this fact. Its action is continuous

and the resulting velocity increases constantly, being 32.2 feet

per second at the end of the first second, 64.4 feet per second

at the end of the second second, etc. The rate of increase of

velocity (the acceleration) in this case is 32.2 feet per second

per second. In the case of a body thrown upward the accelera-

tion tends to reduce the velocity, being — 32.2 feet per second

per second.

The behavior of the balls in billiards, tennis, or baseball, or

of a hockey puck, is a common illustration of the working of

this law.

(3) The change of motion produced by two or more forces acting

on a body will be the same whether the forces act simultaneously or

in turn, provided each force acts for the same length of time in

both cases.

This principle is frequently illustrated by the physical experi-

ment in which two bodies, one dropped vertically and the other
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projected horizontally from the same point, are found to reach

the same horizontal surface in the same length of time. Also,

if the block A in Fig. 1 is acted upon by a force Y, giving it a

velocity which will move it from A to C in a given time, and then

by a force Z which will move it from C to B in the same length

of time, the simultaneous application of Y and Z will give it a

velocit}^ which will move it directly from A to B in the same

length of time as each of the former motions.

(A'.

r I X

Fig. 1 Fig. 2

(4) Any action {force) of one body on another is accompanied

by an equal and opposite reaction of the second on the first.

The recoil of a gun is the reaction to the force acting on the

projectile. A further illustration is given by the familiar physical

experiment illustrated in Fig. 2. Two elastic balls, alike in all

respects, are suspended from cords so that they just touch one

another. Now let the ball A be swung into the position A' and

then allowed to swing back till it strikes B. If there is no loss

due to friction or irnperfect elasticity, the ball A will be stopped

at A, and B will swing to B' which is at the same height as A'.

In this case the action of A is transferred to B and causes B to

move. The reaction of B on ^ causes A to stop.*

8. Reactions. In the cases quoted in § 7 (4), action and

reaction are essentially the same except that one is in the nature

of a cause; the other being an effect.

In the class of problems with which we are chiefly concerned

* The definition of force, as given in The Mechanics of Engineering by I. P.
Church, is as follows: "A force is one of a pair of equal, opposite and simultaneous
actions between two bodies by which the state of their motions is altered or a
change of form in the bodies themselves is effected."
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there is an important distinction between a force and the accom-

panying reaction. Therefore the word reaction will come to be

used in a somewhat special sense which can be illustrated by the

following cases.

Any object lying on a table is acted upon by the force of

gravity. It would move unless some force were resisting the

force of gravity. The table reacts to the load and prevents

motion. The end of a beam or truss resting on a wall produces

a pressure on the wall due to the force of gravity. The wall

reacts and supports the load. In each case the force is active

while the reaction is a passive resistance set up by the force.

In the case of the beam resting on the wall, the removal of the

wall from under the beam allows the force of gravity to come

into play and the beam falls. The removal of the beam from

the wall produces no visible effect on the wall.

For the purposes of this book we may then recognize a reaction

as the passive resistance set up in one body by the action of

another body on it.

9. Force Characteristics. Every force has three character-

istics: (a) its amount, (6) its direction, and (c) its point of applica-

tion. These characteristics and the effect of each in producing

motion are well illustrated when a cue strikes a billiard ball.

The ball will move away from the cue: (a) at a definite speed,

(b) in a definite direction, and (c) with or without a definite spin-

ning motion. These characteristics of motion will be controlled

by (a) the force of the stroke, (6) the direction of the stroke,

and (c) the point where the stroke is applied to the ball.

For the present we will deal only with problems involving the

amount and the direction of forces and the consequent motion

of translation (i.e., motion which transfers a body from one point

to another along a straight line). The point of application of

forces and the consequent spinning or rotative motion (rotation)

produced are considered in Chapter V.

The amount of a force is measured by comparison with the

force of gravity acting on a known body, and is expressed in

pounds, tons, grams, etc. Thus a force of 10 lbs. is ten times

as great as the force of gravity acting on a 1-lb. weight.
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The direction of a force is measured by reference to arbitrarily

chosen axes (usually rectangular). Thus a force is said to act

vertically, or horizontally, or at 45° to the vertical, etc. In

Fig. 3 the force C is a force of 50 lbs.

acting at 6° to the horizontal. It should SV'
be noted, however, that the angle 6 alone /"^

does not indicate whether the force is ^ *^ ^—^*--

directed upward and to the right or down- po'

ward and to the left. There is also needed 3^

an arrow to show in what sense the force ^m 3

acts along the line. From this point of

view the arrow really indicates whether the force is a force of

+ 50 lbs., or — 50 lbs., acting in a direction which is given by
the line.

10. Classification of Forces. For the sake of simplifying the

study of the relations and effects of forces, it will be found

convenient to establish definite groupings based on the relations

between the lines along which the forces act.

When all the forces in a given problem act along lines that lie

in the same plane (as in Fig. 1), the forces are said to be coplanar

forces. Again, when all the lines of action meet at a common
point (as in Fig. 13), the forces are said to be concurrent. Under

the opposite conditions forces are classed as non-coplanar and

non-concurrent. These classifications are independent. Thus

we may have a set of forces which are coplanar and non-

concurrent, or non-coplanar and concurrent, etc.

For the present we shall deal only with concurrent coplanar

forces, leaving the other cases for later study.

11. Equilibrium. Any body which is at rest under the action

of forces is said to be in equilibrium. In our study of statics,

equilibrium is the normal condition, since it is the proper con-

dition for the parts of a structure.

12. Methods. Two general methods are available for handling

problems dealing with forces.

The Analytic Method uses the abstract processes of algebra

and trigonometry, applied to the laws of motion and equilibrium.
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The Graphic Method makes use of lines to represent forces and

partakes more of the character of geometry. The fundamental

principle of the graphic method lies in the fact that a straight

line has three characteristics: length, direction, and position;

and these may be used to represent the three force characteristics:

amount, direction, and point of application. The graphic method

is, for most people, so much the easier to understand and to

apply, particularly in the simple problems which are first taken

up, that there is a tendency to neglect the other method of solu-

tion. However, cases will constantly arise where the analytic

method is much less laborious as well as simpler.*

It is necessary for the student to comprehend thoroughly both

of the above methods so that he may make an intelligent selec-

tion, suited to the cases that arise. In fact the usual solutions

for many problems are partly analytical and partly graphical.

PROBLEMS

Note. In the following problems, let air resistance be neglected.

1. How far will a freely falling body drop in 12 seconds?

2. A stone is dropped from a bridge 200 ft. high. How long will it be in falling?

3. A bullet is shot vertically upward with a velocity of 500 ft. per sec. How
far will it rise?

4. A bullet is shot vertically upward with a velocity of 500 ft. per sec. from

the top of a building 500 ft. high. It rises then falls to the ground. If

sound travels 1100 ft. per second, how long after the shot is fired will the

bullet be heard striking the ground by an observer on top of the building?

5. A bullet is shot horizontally from the above building with a velocity of 500

ft. per sec. How far from the base of the building will it strike the

ground?

6. In problem 5 what kind of a curve will the bullet follow?

7. A boat is rowed directly across a stream which is 400 yds. wdde. The rate

of rowing is 4 miles per hour. The current has a velocity of 2 mi. per

hr. to midstream and then 6 mi. per hr. to the opposite bank, (a)

What will be the time of crossing? (6) How far downstream will the

boat land?

8. A boat is rowed directly across a stream which is 400 yds. wide. It lands

150 yds. downstream from the starting point, at the end of 5 min.

(a) What (in miles per hour) is the velocity of the current? (6) What

is the rate of rowing? (c) What is the velocity of the boat?

9. In problem 8, if the stream velocity is zero at the start, increasing uniformly

to 6 mi. per hr. at opposite bank, what will be the path of the boat and

how far downstream will it land?

* For a more complete discussion of the graphic method, see §§ 247—249.



CHAPTER III

CONCURRENT COPLANAR FORCES

13. Introduction. Since the lines of action of concurrent

forces meet at a common point, all such forces have the same

point of application. Thus one of the possible causes of com-

plexity of relationship is eliminated. Consequently the problems

arising from the relations of concurrent forces are quite simple

and the solutions are direct. Just as plane geometry is more

simple than solid, because of there being two dimensions with

which to deal instead of three, so in problems dealing with forces,

the simpler solutions are found where the number of possible

variables is least.

14. The Fundamental Relations. A common experiment which

shows the fundamental relations between concurrent forces is

shown in Fig. 4. Three spring balances are rigged to a ring and

two of them are fastened also to nails in the table top. Now
any pull at X will set up other pulls at Y and Z. These pulls

are concurrent forces since their lines of action meet at the ring

and the relations that are found to exist between them are char-

acteristic of concurrent forces in general.

As a matter of fact, if any pull is exerted at X, Fig. 4, and the

resulting pulls on Y and Z are noted, the three readings will

15
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always be found to bear a definite relationship to one another.

This relationship is expressed in Fig. 4 by the parallelogram

ahcd which is laid out with its sides parallel to Z and Y and its

diagonal of such a length as will represent (at some definite scale)

the pull on X. The lengths of the sides of the parallelogram

(ad, ab) are then found to be equal (at the same scale as before)

to the pulls on Z and Y.

Here we have a case of three concurrent forces in equilibrium.

Obviously if any one of the forces is removed, the other two will

cause the ring to move. Hence any one of the forces can be

regarded as holding the other two in equilibrium. Such a force

is said to be the equilibrant of the other two. A force which is

equal and opposite to the equilibrant would produce the same

result as the other two. Such a force is said to be the resultant

of the two forces. Thus an equilibrant (sometimes called an

anti-resultant) and a resultant are equal and opposite forces

whose characteristics can be determined by a principle known

as the parallelogram of forces and which is illustrated by the

above experiment. This principle may be stated:

When two forces act at a point, the resultant force can

be represented as to amount and direction by the diagonal

of a parallelogram, the sides of which are parallel to and

proportional to the two original forces.

b9-
./.A

^o

<^o^

(Y^^

30*

B

A special case occurs when the

two given forces act in the same

straight line, either in the same

or in opposite directions. The

solution is obviously a simple

matter of addition or subtrac-

tion.

Figure 5 shows the general

relationship between two forces,

their resultant and the anti-

resultant or equilibrant. The

forces A and B have as their resultant the force C whose amount

and direction are determined from the parallelogram oxijz. Now

A'-

5°x^Anti- resultant
/

30

B'

(Equilibrant)

Fig. 5
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the two forces A and B can be considered as those forces which

will have the same effect as C. When so considered they are

called the components of C; the force A being the component

in a horizontal direction while B is the component in a vertical

direction. Thus if the component forces A and B act together

on the body, their effect will be the same as if C acted alone.

Components in directions other than those used in this case

could as readily be determined by a similar procedure.

15. Applications. Let a force of 10 lbs., acting at an angle

of 30° from the vertical, be given and let it be required to deter-

mine its horizontal and vertical components. * Let the given force

be represented by A5 and let the given angle be

represented by ^ = 30°, Fig. 6. Then its compo- ^

nents are represented by AC and CB. Solving

the triangle, we find

AB = 10 = BC -^ (sin d) = 2BC,

BC = 5 lbs.

AB = 10 = AC ^ (cos 6) = AC -i- 0.866,

AC = 8.66 lbs. Fig. 6

The same result could have been obtained by laying out the

triangle at scale and determining AC and BC by measurement.

Since the given force acts from A toward B, its components

must act from A toward C and from C toward B, as shown by

the arrows.

Figure 7 shows a pole set in the ground. A rope

fastened to its top produces a pull A which is in-

clined at the angle 6 to the pole. This force has a

component B in a horizontal direction which tends

to bend the pole and a component C in a vertical

direction which produces compression in the pole.

If values are assigned to A and 6, the values

of B and C can be determined as in the preceding

case.

* Hereafter H and V will be used as abbreviations for horizontal and vertical

when used in qualifying the components of a force.
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Next let it be required to find the resultant of two forces

which act at angles other than right angles, as in Fig. 8A. The

solution varies from the above only in that the trigonometric

solutions for irregular triangles are used instead of those for

right triangles. Thus let the forces C and D and the angle

between them be given, as shown in the figure, and let the

amount and direction of the resultant be required.

Draw the parallelogram oefg with its sides parallel to the

given directions of C and D, as in Fig. SB. We know that

og = 60 lbs., gf = 30 lbs., and (since eog = 60°) ogf = 120°.

Then we have

(1) fh = of sin ^ = 30 sin 120° = 25.99,

(2) oh = of cos ^ = 60 + 30 cos 120° = 75.

Then by division we get

1

1
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/i = <^o

Fig. 9

Fig. 9, the resultant of

any two can be found

by the method of § 15.

The resultant thus found

can then be combined

with the third force to

get the resultant of the

three given forces. Thus

in Fig. 9B, D is the resul-

tant of A and B. By
combining D and C as

in Fig. 9C, we get R, which is the resultant of A, B, and C.

(2) Summation of components. Let each of the forces in Fig.

9 be replaced by its H and V components, as shown in Fig. 10.

Let all V components acting upward be called positive and those

acting downward negative. Let all H components acting toward

the right be called positive and those acting toward the left

negative. Now by summation there is found a resultant H
component of + 104 lbs. and a resultant V component of + 13

lbs. The resultant of the three given forces is then the force R

shown in the figure. Its amount is '\ 13 -f 104" = 104.9 lbs.

Q"" -/5« and its inclination toward the

horizontal is the angle whose

tangent is 13/104, or 7° 10'.
8'

+ 26' + 28'

A = 50
B' ^23"^

R^ = /04-

FiG. 10

B. Graphic Solution. If the forces in Fig. 9 are laid off at

scale and end to end, as in Fig. 11, the direction and amount of

the resultant is given by a line drawn from the point of beginning

X to the end of the last force y. In laying out the forces, care

must be taken to see that the arrows on the forces read con-

tinuously from X to y, never reversing directions. This merely

means that a proper graphic summation is performed.
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The nature of each of the above solutions is such that it can

be extended readily to cover any number of given forces. It

is evident also that if three or more forces are in equilibrium, any

one of the forces is the anti-resultant of all the others.

PROBLEMS

Note. In the following problems, prepare an analytic and a graphic

solution for each.

1. A surveyor starts from a bench mark and runs north 37° east, 1750 ft.; from

there he runs west 10° south, 500 ft.; and from there south 25° west,

1000 ft. What is the distance and direction from the last point to the

starting point? (Work this by computing component distances.)

2. Refer to Fig. 7. If ^ = 100 lbs., what are the values of C and B when 6 has

each of the following values: 10°; 30°; 45°; 90°; 135°; 180°; 315°?

3. A horse draws a wagon weighing 3000 lbs. up a 20°.slope. What force must

he exert?

4. In Fig. 4, if the angle a = 80° and acb = 20°, what will be the readings of Z
and Y when that on X is 70 lbs.?

5. In Fig. 4, the readings are Z = 80 lbs., Y = 100 lbs.,

Z = 50 lbs., what are the angles?

6. In Fig. 4, if the angle h = 75°, and the reading on

Z is 50 lbs. and on Y 100 lbs., find the reading

on X and the angles a and c.

7. Find the resultant of the forces in Fig. 12 by the

successive combination method.

8. Repeat problem 7 using the summation of components method.

9. Draw a curve to show the variation in the horizontal and vertical com-

ponents of a force of 100 lbs., as the direction of that force varies from

horizontal to vertical.

17. Conditions of Equilibrium. Since the parts of almost any

structure are at rest and should remain so under all conditions,

it is very important that the student should understand thor-

oughly the conditions under which equilibrium may exist. More-

over, he should have them so formulated that they will remain in

his mind and be available for constant use.

A. Analytic Method. From § 16 it can be seen that

equilibrium may not exist except when the sum of the H
components of all the forces acting on the body is zero and the

sum of the V components of all the forces is also zero.

It will be noted that this involves two separate summations

and each must be equal to zero. Thus in Fig. 13 A + 5
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= + 45 lbs. — 45 lbs. = 0, but evidently there is a resultant

of these two forces. If now C is added to the system, A + C
= + 45 — 45 = 0. There is now no resultant V component;

but B is unbalanced, and it is only when D is added, so that the

summations become separately equal to zero, that equihbrium

obtains.

The conditions which are necessary and sufficient to produce and

maintain equilibrium with only concurrent coplanar forces acting,

are:

1. The sum of the H components of all the forces involved must be

zero.

2. The sum of the V components of all the forces involved must be

zero.

These statements may be abbreviated into the form

(1) XH=0,

(2) XV = 0.*

B. Graphic Method. If the forces in Fig. 13 are laid off at

scale joining continuously, and each in the direction indicated

by the arrow on it (as shown in Fig. 14), a closed polygon is the

result. Moreover the same thing is bound to occur whenever a

system of concurrent co-

planar forces is in equilib- '

rium. For in that case, since .

the summation of compo- 7^":? *\)'

nents must be zero, as shown

above, a broken line repre- /\

senting all the forces is bound t. .« t- .^^ Fig. 13 Fig. 14
to end up at the point of

beginning. This is independent of the number of forces or of

their amounts and directions.

A broken line laid off as described above, and which represents

all the forces in a problem, is called the load line or the force line.

The sufficient and necessary condition for equilibrium of con-

* The character S stands for a summation, i.e., for an algebraic addition of all

like quantities which enter into the problem.

1

1
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current coplanar forces in a graphic solution is, then, that the

load line must be a closed polygon. This statement is the

graphic equivalent of equations 1 and 2 in (A).

18. Application. In Fig. 15A is shown a ring carrying a load

of W lbs. and hanging on a cord. A force H is applied hori-

zontally to the ring and causes it to swing out from the vertical.

If H and W are constant, the ring will come to rest in some

position, indicated by the (unknown) angle 6. Let it be required

to determine d in terms of H and W.
When at rest the ring is in equilibrium under the action of

three forces, H, W and the pull in the cord P; as in Fig. 15B.

The components of P are P sin d and P cos 6 as shown. Now if

equilibrium exists, XH = and 27 = (§ 17); hence we have

H - P sin 6 = 0,

Pcosd -W = 0,

H = P sin e,

W = P cos d.

Now by dividing (1) by (2), we get

Psin d

P cos e

—- , or tan 6
H
W

From this relation 6 may be determined when H and W are

known. After 6 has been thus determined, P can be found from

equation (1) or (2), or from the relation P^ = H^ -{- W^.

An alternative solution, by the graphic method, is shown in

Fig. 15C. The two known forces H and W are laid off at scale.

Since the force P must be in equilibrium with H and W, it must

be represented by the line P which closes the load line (§ 17).

Therefore in Fig. 15A the string will come to rest in a position

parallel to the line P in Fig. 15C and the angle 6, Fig. 15C, is

the required angle.

Let the student now assume the force W as 1 lb., and deter-

mine how large H must be for several values of d between 0°

and 90°.
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19. Summary—Concurrent Coplanar Forces. The problem of

§ 18 might be stated so that W and 6 are known and H is

required, or in other ways; but the principle of the solution

would remain the same.

In any problem in concurrent coplanar forces, each force has

two characteristics: amount and direction.* In § 17, two equa-

tions are established, based on the two conditions of equilibrium.

These equations can be made to determine two unknown quanti-

ties and only two. Thus one force may be determined in amount

and direction, or two in direction only, or two in amount only,

or one in amount and one in direction.

PROBLEMS
1. Find the equilibrant of the forces in Fig. 16.

2. Find the resultant of the forces in Fig. 17. Use the graphic method.

Then make new sohition changing the order in which the forces are set

down.

3. See Fig. 15A. Find 6 when W = SI lbs. and i/ = 46 lbs.

4. See Fig. 15^1. Find H when W = 100 lbs. and d = 46°.

5. See Fig. 15^. Find W when H = 1 \h. and d = 5°.

^

V.

6. See Fig. 15A. Let TF = 1 lb. What pull, H, will cause d to become 89°?

Note. Problems 7 to 10 shall be solved graphically. Scale, 1" = 20 lbs.

^ 7. Find the direction of a force of 80 lbs. and that of another force of 62 lbs.

which maybeused to equilibrate the forces in Fig. 18.

y 8. What forces acting on the lines X and Y, Fig. 19, will

equilibrate the other forces?

9. Find the directions of two forces, one of 40 lbs. and the

other of 60 lbs., that will equilibrate those shown
in Fig. 20.

10. Find the direction and amount of an inclined force

R and the amount of a horizontal force S which
will equilibrate the forces shown in Fig. 16.

* Since the point of application is common to all forces in such a problem it has
no influence on the problem.



CHAPTER IV

FORCES AND STRESSES

20. Introduction.—Definitions. When a heavy weight is

placed on a rope, as in Fig. 21, the rope becomes longer and

thinner, while the strands can be seen to adjust themselves to

their work. This change of shape is the visible evidence of a

changing internal condition in the rope. This condition is due

to the application of the load and is said to be a condition of

stress. If the load is increased, the internal

stress becomes more severe. This increase of

4 stress will continue with an increasing load, up

I
to the limit set by the strength of the rope.

"^ When the load becomes too great, the rope can

1^ no longer resist, because the internal stress

/^ ^becomes greater than the material can bear.

V ) In that case the rope breaks and motion

^T ensues because the internal stresses no longer

Fig. 21 balance the external forces. That is to say

2V is no longer zero (§ 17).

From the preceding discussion the distinction between force

and stress becomes clear. A force is external. A stress is the

internal resistance set up by an (external) force.

In the case of most materials commonly used in construction,

such changes in size and shape of parts under the action of

external forces (loads) are not visible; but it has been amply

proven by careful experiments that they do take place. The
study of the effects of loading in producing changes in size and

shape of structural parts will form the basis of future work.

For the present it is sufficient to note the existence of this internal

resistance to external force, which is commonly called stress,

and to determine its amount without dealing with its effects.

21. Character and Amount of Stress. Stresses are measured

in the same terms as forces, i.e., in pounds, tons, grams, etc.

24



FORCES AND STRESSES 25

Stresses are analogous to reactions (§8), in that they are not

active forces but rather passive resistances called into play by

the action of some external force.

When the line of action of an external force coincides with

the axis of the supporting member (Figs. 21 to 24), the internal

stresses are called simple axial stresses. In such a case, when
the force tends to pull the supporting member apart, the member
is said to be in tension, the stresses being called tensile stresses

(Figs. 21 to 23). When the load tends to crush the member
together, the stresses are those of compression (Fig. 24).

Besides these simple axial stresses of tension and compression

we will have occasion to notice the case where equal and opposite

forces act in adjoining planes. This case is called shear and is

illustrated in Fig. 151 (compare to the action of a pair of shears).

When the planes in which oppositely directed forces act are not

adjacent as above (Fig. 85) or when the lines of action do not

coincide with the axis of the member (Fig. 332), bending stresses

are set up.

For the present our attention will be confined to the case of

simple axial stresses of tension and compression, the cases of

bending, shear, and combined stresses being taken up later.

22. Simple Axial Stress. It will be recognized that if any

structure is in equilibrium as a whole, each and every part

must be in equilibrium.* In Fig. 22A is shown a weight sus-

pended on a chain and at B the same chain is shown, the action

of the weight and the reaction of the hook having been repre-

sented by arrows. Here equilibrium exists; the chain as a whole

being under the action of two equal and opposite forces. The
lowest link is in equilibrium under the action of the weight and
the reaction of the next higher link. Similarly every link is in

equilibrium under the same equal and opposite forces, as shown
at larger scale in Fig. 22C.

In Fig. 23 is shown a steel eyebar loaded and in equiUbrium

as a whole and in all its parts. If part 1 is conceived to be

* This is true only when the presence of movable parts is taken as indicating
the difference between a machine and a structure.
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separated from part 2 (as in Fig. 235), and if arrows are used

to indicate the forces which must be acting on this part, there

is found a downward force of 500 lbs. at the bottom which in

the unseparated bar must evidently be balanced (since equi-

(o)
3

2

B--

B C
Fig. 22

A B
Fig. 23

librium prevails) by an equal upward force at B-B. This latter

is the stress in the bar. Figure 23B shows part 2 and the stress

which acts in the bar and which holds it in equilibrium.

It should be particularly noted that the arrows are here used

to indicate the action of the adjacent part on the part under

consideration. Thus in part 2 the arrow at A-A indicates the

(upward) reaction of the pin (transferred through 3) ; while the

arrow at B-B indicates the (downward) pull of the load acting

through 1. Part 1 pulls downward on 2 while 2 pulls upward

on 1. Pulling or tensile stresses are then indicated wherever

the arrow thus determined acts, away from a section cut through

a body under stress.

Figure 24 shows a steel column similarly treated. It will be

noted that the compressive stresses here dealt with must be

indicated /by arrows pointing toward the section.

In every case the direction of the stress arrow is determined

from that of the force arrow.

What precedes may be summed up as follows:
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(a) A stress is an internal resistance to an external force.

(h) In the case of simple axial stresses, the amount of the stress

on any section through a body is equal to that

of the applied force.

(c) The character of the stress (whether ten-

sion or compression) is determined by the direc-

tion of the applied force.

23. Free-Body Method. The principles of

§§ 21-22 may be used to determine the internal

stresses in any structure whose members are

subject to simple axial stress only,* the loads

and reactions being known. The general

method used is to conceive one part of the

structure to be cut away from the adjoining

parts and moved to a free position in space.

* A body which is subjected to simple axial stress only is sometimes called a
two-force piece. A chain or ca>)le is, by its very construction, necessarily a two-
force piece. An eyebar (Figs. 23 and 51) which receives its loads and reactions
from pins through the eyes is also a two-force piece. Thus a truss or other frame
composed wholly of pinned connections, and which is loaded only at the joints, will

be stressed in all of its members, either in tension or compression, as each member
is a two-force piece (Fig. 40). Small trusses and frames which are not so con-
nected, but are fastened together with more or less stiffness in the joints, (Fig. 36)
are commonly treated as if they were composed of two-force pieces. The compu-
tations are thus much simplified and the errors introduced are small. In general,
and unless otherwise stated, problems dealing with framed structures will be
treated, hereafter, as if all members were two-force pieces.
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Thus in Fig. 25A the timbers AB and BC support the 1000 lbs.

load and it is required to find the stresses set up in the timbers

by the load. Imagine the timbers to have been cut along the

planes D-D and E-E and the part thus freed to be moved to B.

The free body is not in equilibrium since it is acted upon

by a single force, viz., the 1000 lbs. load. However, in its

original position as a part of the structure in Fig. 25A, it was in

equilibrium. Therefore there must have been acting on the cut

sections {D-D and E-E) such stresses as could hold the 1000 lbs.

load in equilibrium. When the upper part is cut loose and made

a free body, these stresses become external forces, acting on the

free body and holding it in equilibrium as shown by the arrows

in Fig. 25C. This last drawing shows a body which may be in

equilibrium and which will be if the forces X and Y are properly

determined. These forces are simple axial stresses in the timbers

and their directions are therefore known. Their amounts may
then be determined as described in § 18 and as shown in Fig.

25Z). The arrows on these forces, as determined by Fig. 25Z),

when applied to the free body. Fig. 25B, act toward the cut sec-

tions and hence indicate compressive stresses.

We now know that the free body. Fig. 25B, will be in equi-

librium if compressive stresses of 732 lbs. and 896 lbs. are present

in the timbers of Fig. 25A, and we therefore conclude that when

the timbers are carrying the load of 1000 lbs., they will be sub-

jected to stresses of these amounts.

A further application of this method is given in Fig. 26A.

Let it be required to find the stresses in the cords. In Fig. 26B,

the ring is shown as a free body under the action of a downward

force of 100 lbs. and the supporting pulls of the strings. These

three forces are in equilibrium and are known in direction while

one of them is also known in amount. In Fig. 26C, the line ab

is drawn to represent the 100 lbs. load. This line, together with

lines parallel to the other two forces, must form a closed polygon

(§ 17). Therefore the fines ac and be are drawn parallel to the

forces concerned and the triangle thus formed is solved either by

the analytic or by the graphic method (§18). The arrows on
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the lines be and ca are determined by that of the known force ah;

they must be such as to read continuously and in the same

direction : a to 6, 6 to c, and c to a. When these are transferred

to the free body, they act away from the cut sections and hence

indicate tension.

Had the lines representing the stresses in the ropes been laid

off from ab in a different order, the force triangle ahd would have

been constructed and its solution would have given the same

results.

24. Summary. The free-body method for determining stresses

is perhaps the most useful single idea in the study of statics.

No satisfactory progress can be made until it is thoroughly

mastered. Therefore the following summary may prove useful.

(1) If any part of a structure is cut away from the rest and

made free, the stresses within the original structure become forces

acting on the cut sections of the free body.

(2) These forces form a system in equilibrium.

(3) If there is at least one known force and not more than two

unknowns, the amounts of the unknowns may be determined

as in § 18.

(4) The arrows on the lines representing the unknown forces

will be determined from that on the known force.

(5) The forces on the free body having been determined on the

assumption that equilibrium exists, it is evident that in the
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structure from which the free body was cut these forces exist as

stresses on the cut sections.

25. A Derrick. Let it be required to determine the character

and amount of stresses in each member of the derrick shown in

Fig. 27A. For the purposes of this computation the derrick

has been made of eyebars and therefore all members are two-

force pieces, as explained in the note on page 27.

#



FORCES AND STRESSES 31

It is now possible to cut loose the top-stay, back-stay, and

mast as a free body, as shown in Fig. 27E. Note that the stress

in the top-stay is the 577 lbs. of tension determined in the previous

solution. Since it is tension it must act away from the cut section^

as shown.* With this known force as the initial line, the force

diagram, Fig. 27F, is drawn and the stresses in mast and back-

stay are determined as shown in Fig. 27G.

PROBLEMS

1. Find the stresses in the eyebar frame shown in Fig. 28.

2. Find the stresses on the blocks W, X, Y, Z, Fig. 29.

Fig. 28 Fig. 29

Fig. 30

T
>^

Fig. 33

* Students are frequently confused to find this arrow pointing in the opposite

direction from the one in Fig. 27D, which represents the same stress. A review of

§§ 21-22 should clear up this point.
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3. Find the stresses in the members of the frame in Fig. 30.

4. Find the stresses in the members of the frame in Fig. 31.

5. Find the stresses in the members of the frame in Fig. 32.

6. Three equal cylinders are contained within a box as shown in Fig. 33.

Each cylinder is 3'0" in diameter and 4'0" long and weighs 100 lbs.

What is the direction and amount of the pressure on the sides and
bottom of the box? Neglect friction.

7. In Problem 6, let the box be 7'Q" wide, inside. Graphic solution.

8. A wheel 3'0" in diameter stands in a vertical plane and carries a vertical

load of 500 lbs. on its axle. What horizontal force, applied to the

axle, is needed to start the wheel over a block 6" high?

26. Space and Force Diagrams. In the preceding example,

Figs. 27 Ay B, D, E, and G are space diagrams. They represent

the derrick or some part of it at a scale of feet and inches. Where
forces are shown on these diagrams no attempt is made to indicate

them at scale but only to indicate their presence and direction,

the amounts being in figures. On the other hand, Figs. 27

C

and 27 F are force diagrams drawn at a scale of pounds and indi-

cating the forces at scale in their relative amounts and directions

but without regard to position.

Students frequently attempt to combine force and space dia-

grams into one drawing. This inevitably leads to confusion

and error. A little thought will make it evident that two kinds of

diagrams are necessary to the solution of such a problem, and Lhat

this necessity lies in the nature of the quantities involved in the

problem.

27. A Truss.* Let it be required to find the stresses in the

various members of the truss in Fig. 34A, produced by the given

loads.

If the peak joint is cut loose and shown free, as in Fig. 345,

it will be seen that we have one known and three unknown

forces in the problem. Hence no solution is possible, as pointed

out in §§19 and 24. The same state of affairs would be found

if either of the joints marked X or F were tried. Therefore the

solution must start with one of the end joints.

The end joint is shown as a free body in Fig. 34(7. The known

* In this solution the truss is assumed to be so connected that its members are

^ two-force pieces as explained in the note on page 27,
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1000' 1000'

1500 isoc^

c
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external force is the reaction of 1500 lbs. acting upward. This

force is made the initial line in the force diagram, Fig. 34i), in

which the stresses in the two truss members are determined as

1500 lbs. tension and 2100 lbs. compression.

Figure 34j^ shows the next higher joint as a free body under

the action of the given load of 1000 lbs. and the stress of 2100

lbs. compression just determined. These are used as the initial

lines of the stress diagram, Fig. 34F, which in turn yields the

stresses in two more members.

Passing next to the peak joint, we can find the stress in the

vertical by means of a diagram like Fig. 34G. The stresses thus

found are recorded on Fig. 34i?. This is a space diagram and

not a force diagram.

28. Summary. The preceding illustrations give a good idea

of the application of the free-body method (§ 23) to the deter-

mination of the stresses in the various parts of a loaded structure.

If these illustrations are fully understood and visuaHzed, a good

foundation will have been laid for future work. There are a few

general considerations which are worth restating as a summary.

(a) When a f-ramed structure is composed of straight members,

so joined as to be free to turn at the joints, and when each load

on the structure is applied at a joint, the members of the structure

will be under simple axial stress. (Two-force pieces.)

(2) In such a case the stresses in the structure can be deter-

mined by the free-body method.

(3) Each joint in such a structure presents a typical problem

in concurrent coplanar forces.

(4) The method for the solution consists in taking each joint

in succession as a free body and solving for the stresses in the

members which meet at that joint.

(5) The solution must be started at some joint where an

external force (either a load or a reaction) is known, and where

not more than two members are cut in taking the free body.

(See (8) -below.)

(6) In determining the character of the stresses at any joint,

the clue is given by the direction of the external force.
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(7) One joint having been solved, the stresses so determined

become known forces acting on the succeeding joints.

(8) If there is no joint in the structure where one known force

and only two unknown stresses occur, the stresses cannot be

determined by the methods of statics. Such a structure is

called statically indeterminate. (See § 40.)

PROBLEMS

Note. In the following problems, use a graphic solution. When the

stress in a member has been found, it is convenient to record it on the corre-

sponding line of the space diagram as shown in Fig. 37. To indicate character

of stress use C for compression and T for tension.

^

Fig. 35 Fig. 36

1. Find the character and amount of the stresses in the members of the derrick

shown in Fig. 35.

2. If the load on the derrick in problem 1 acts upward, and the amount of the

load is 500 lbs., what will be the character and amount of the stresses?

Fig. 37 Fig. 38

3. If the load on the derrick in problem 1 acts downward and to the right, at

45° to the horizontal, what will be the character and amount of the

stresses?

^ 4. Find the stresses in the different members of the truss in Fig. 36 (scale

1" = 400 lbs.).
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If the span of the above truss is doubled, but the pitch and loading remain

the same, what will be the stresses?

If the loading and span are as in problem 4, but the pitch is 45°, what will

be the stresses?

If each load on the truss in problem 4 is doubled, what will be the stresses?

What loads (3 equal loads) will produce the stresses shown in Fig. 37?

Determine the stresses in the members of the derrick, Fig. 38.

10. What is the amount and character of the stress in each member of the

frame in Fig. 39?

11. In problem 10, let the 500 lbs. force be applied at a, while still acting

toward the right.

12. In problem 10, let a bar be inserted between b and c.

Fig. 39 Fig. 40

13. Four pins are set in a wall at the corners of a 4'0" square. The sides of

the square are horizontal and vertical. A rope 20'0" long is looped

around and below the pins and carries a load of 1,000 lbs. suspended

at its center. Determine the stresses in various parts of the rope and

the resultant pressure on each pin. Neglect friction.

vl4. Determine the stresses in each member of the frame. Fig. 40.

15. In problem 14, remove the rod leading to the anchorage and insert a bar

along the dotted line.



CHAPTER V

NON-CONCURRENT COPLANAR FORCES

29. Translation and Rotation. When a body moves so that

each point of it changes its position by motion along a straight

line, the motion of the entire body is one of translation. This

is the kind of motion that has been frequently mentioned in the

preceding chapters as resulting from the action of concurrent

coplanar forces.

When a wheel turns on a fixed axle, the wheel as a whole does

not move, but every point on the wheel is moving with respect

to the axle. In this case the wheel is said to have a motion of

rotation. Obviously, a body may have motions of translation

and rotation simultaneously; as in the case of the wheels of a

moving car.

In Fig. 41, we have a case where no motion of translation

is possible (since 2/7 = and 2F = 0) but evidently there

will be a motion of rotation. We must then look for some new

condition of equilibrium to govern such cases. The conditions

of equilibrium for concurrent coplanar forces (§17) take into

account the amounts and directions of the forces concerned,

but they are not concerned

so
with the position of the

forces, since all forces in -*

—

such a problem have a com-
-p^^ ^^

40*

mon point of application.

We may therefore expect that for non-concurrent forces the

necessary third condition for equilibrium will have to do with the

position (point of application) of the forces.

Most of the problems that occur in connection with structures

involve forces in a single plane. Those that involve forces in

more than one plane can usually be solved as a series of coplanar

solutions. Therefore all the problems of this chapter deal with

coplanar forces only. Some mention of non-coplanar forces is

made in Chapter XXIV.
37
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30. Moment of a Force. Figure 42A shows a steelyard, which

illu^rates the principles sought. The heavy weight X hangs

nearer the support and is balanced by a smaller one F at a greater

distance. In Fig. 425 the beam of the steelyard is shown as a

free body. Unless the vertical force through the support is

equal to X -\- Y, motion of translation, in a vertical sense, will

occur. Moreover, equilibrium can exist when and only when

Xb = Ya; i.e., when one force times its lever arm is equal to the

other force times its lever arm. This is the well-known law of

the lever. It is so much a matter of common experience and

can be verified so easily by simple experiments that it requires

no proof.

-Force

Fig. 42

The result of multiplying a force by a distance is a compound

quantity called the moment of the force. Moments are expressed

in the same terms as their

component parts (pound-

feet, pound-inches, ton-

inches, etc.).

A moment may be pos-

itive or negative. Those

producing (or tending to

produce) rotation in a

clockwise direction about

a center (as Ya, Fig. 42B)

are called positive.* Those

producing counter-clock-

wise rotation are called

* Figure 43 shows the conventional system of signs for force and distance. The
sign of the resulting moment is given by combining the signs of its component force

and distance as in algebraic multiplication.

K-r

-f-Force

Fig. 43
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negative. When the lever arm of the force is zero, i.e., when its

line of action passes through the center of rotation, its moment

is of course zero. (See F, Fig. 43.)

31. Lever Arm. The example used in § 30 is a special case,

since all forces are vertical. In order to establish a perfectly

general definition for a moment let us take such a case as shown

in Fig. 44.

It is evident that the tendency of the force X to produce

rotation about o is less than it would be if the same force were

vertical. In order to determine the true moment, let X be

resolved into its H and V components. Since these components

are, by definition, forces that produce the same effect as the orig-

inal force, the total moment of the components about the center

must be the same as the moment of X about the same center.

The components of X are X sin 6 and X cos 6, as shown;

and the lever arms of the components are h and zero respectively.

Hence the total moment of rotation due to the two components

is (X sin d)h + (X cos ^)0 = (X sin e)h. Now if a perpendicular

is dropped from o to the line of action of X, its length will be

h sin B. If this perpendicular is used as the lever arm, the

moment of X about o is X sin 6 b, which agrees with the moment
of the components. Therefore we may say that the moment of

any force is found by multiplying the force by the perpendicular

distance from its line of action to the center of rotation.

W T

XcosO

TXcoTe

A cV—a^

Fig. 44

Wi-Xs/nO

Fig. 45

32. Conditions of Equilibrium. Figure 45 shows the beam
and loadings of Fig. 44, as a free body. Let it be assumed that

TF is a force that will keep the beam in equilibrium. Also let the

reaction of the support and the force X be replaced by arrows
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representing their H and V components. For equilibrium of

translation there must be a vertical upward reaction oi W -\- X
sin d and a horizontal, leftward reaction of X cos d. The center

of rotation is not now so easy to locate, but a little reflection will

show that if the body is in equilibrium there is no tendency to

rotate about any point. Hence if any point is chosen as a center

of rotation (or better as a center of moments) , the resulting summa-

tion of moments must give zero.

For example, let the point m (any point) be chosen as a center

of moments. The moment equation now becomes:

2 moments (about 7n) = (Wc) + (X sin d){a -\- b -\- c)

+ (X cos e)d - {W + X sin d){a + c) - (X cos e)d.

Simplifying this expression, we find

2 moments (about m) = Xb sin — Wa.

From the principles of §§ 30-31, Wa = Xb sin d. Hence we have

2 moments (about m) = 0.

That is to say, if any system of forces is in equilibrium, the

sum of the moments of all the forces, using any point in the plane

of forces, as a center of moments, is zero.*

This establishes the third condition for equilibrium of non-

concurrent coplanar forces, forecast in § 29. When this condi-

tion is satisfied, no motion of rotation can occur. Likewise, if

no motion of translation is to occur, the conditions of equilibrium

for that case (§17) must also be fulfilled.

We summarize what precedes in the statement that if non-

concurrent coplanar forces are in equilibrium each of the equa-

tions

XH = 0, 27 = 0, 2M =

must be satisfied separately.

In § 19 it was shown that in the case of concurrent forces

two and only two unknown quantities can be determined from

the two conditions of equilibrium which apply to that case.

* Let the student draw a figure similar to Fig. 45 and prove the above proposition

without replacing the force X by its components.
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In the same way, in the case of non-concurrent forces, the three

conditions of equilibrium lead to three equations from which

three and only three unknowns may be determined.

Sometimes a solution is possible when there are apparently

more than three unknown quantities. But in such a case there

is some condition unrelated to the laws of equilibrium which

may be used to establish the necessary equations (§35).

33. Reactions. By means of the preceding laws of equilibrium

we now may determine the reactions due to the loading of a

structure or of any structural part. Figure 46 shows a ship's

crane, carrying a load L. Let it be required

to find the supporting forces (reactions),

which must be furnished by the two decks.

The upper deck, because of the way it

is constructed, can furnish only horizontal

support; hence all the vertical reaction

must be furnished by the lower deck. It

is evident that the upper and lower decks

must each furnish a horizontal reaction

to prevent rotation. Let these three un-

knowns be X, Y, and Z as shown in the

figure. Then we have

27 = 0, or L + Z = 0,

2/f = 0, or 7 + X = 0,

and, taking moments about m as a center,

2M = 0, or Lh ^ Za - Xc

Solving these equations, we find

Z = - L,

7= -X,

Yd = 0.

X = L{a + h)

ic + d)

These results give the amounts of the unknown reactions in terms

of the known load and known distances.
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34. Choice of a Center of Moments. By a judicious choice of

a center of moments, the algebraic work often may be materially

shortened. In the above example, if the center had been taken

at 71 two forces (Z and 1^ would have passed through the center

of moments. The moments of these forces would then be zero,

and they would disappear from the equation. Then the equa-

tion could be written immediately in the form

L{a + 6) - Xic + d) = 0,

from which we find at once the value of X.

L{a + h)X
{c + d)

In order to test out this matter let the student assign a definite

value for L, and definite values for the various distances, and

then try using the points n, o, p, and a as centers of moments.

After working this problem through, it will be seen that the

value of Z might have been stated by inspection, since Z and

L are the only V forces in the problem.

PROBLEMS

1. In Fig. 42, if Y weighs 14 oz., the distance a = 36" and b = 2|", what is the

weight of X and what is the pull on the nail n?

2. In Fig. 42, if a = 36", b = 5", and the nail n can support 150 lbs., how great

may be the weights X and 7?

3. In Fig. 44, if X is 100 lbs. and d is 30° while a = 12" and b = 36", how large

must W be to maintain equilibrium?

. 4. In problem 3, what will be the amount and direction of the reaction at o ?

5. Find the amount, direction, and point of application for a single force that

will hold the bar in Fig. 47 in equilibrium.

J 6. Find the amount and direction of the reaction in Fig. 48. Take a as

6'0".

7. What would be the result in problem 6 if a = 4.09 ft.?

/ooy \200

60' 75

Fig. 47 Fig. 48
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35. Reactions of a Derrick. Another problem in the deter-

mination of reactions by means of moments, and one which

varies somewhat from the former in detail, is shown in Fig. 49.

Fig. 49

Let it be required to find the reactions at the foot of the mast

and back-stay. Evidently each reaction will have a V and an

H component, as shown by W, X, Y, and Z. None of the values

can be stated by inspection, and, since the problem involves four

unknown quantities, it could not be solved (§ 32) if it were not

for the fact that the direction of the resultant of Z and Y is known

to coincide with the back-stay. This fact will yield the neces-

sary fourth equation. Hence we can now state the equations

X + 7 + 1000 =

Z +W =0
12X + 22000 =
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the right. Therefore the pull at o must be downward and to

the left and the thrust at c must be upward and to the right.

Fig. 50

From these considerations we have,

taking a center at o: 12Z = 22000,

'' " " " c: 127 = 10000,

-^ = tan 40°.

From these equations, X = 1833; F = 833; Z = 992, and

(since Z = W) W = 992. Each of these results is positive in

the direction assumed.

Had one or more of these

results been negative, it

would have indicated that

the sense assumed for that

force was incorrect.

We might have solved

this problem in a still dif-

ferent manner by starting

from the end of the boom,

solving for the stresses in

boom and top-stay, and

then passing on to the top

of the mast and down to

the reactions after the

Fig. 51 manner of § 25.
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36. Stresses determined by means of Moments. The moment
equation is sometimes very useful in finding stresses as well as

reactions. Thus in Fig. 51A, let it be required to find the internal

stresses in the bars as well as the reactions of the supports, all di-

mensions being known. Take the right-hand portion as a free

body (Fig. 515), substituting an arrow for the stress in the left-

hand member. Now taking the right-hand pin as a center, we see

that the moment of the right-hand reaction will be zero, and that

the moment equation may be written in the form

whence we find

Xh sin d - Wa = 0,

WaX =
h sin d

The left reaction is found to be equal to X since the bar is a two-

force piece. (See Fig. 51C.) Let the student now find the

stress in the right-hand bar.

A

1000

'77777777777,

15

B
Fig. 52

Another case illustrating the same method is shown in Fig.

52A (compare with Fig. 49). Let it be required to find the

stresses in the boom and top-stay, using the method of moments.

Pass a cutting plane (AA), so that it cuts both the members at

some known convenient section. Take the portion to the right

of the plane as a free body (Fig. 52B). Now taking a center of

moments at o, we find that the moment of the load is 1000

lbs. X 5' = 5000 Ibs.-ft. (clockwise). The (unknown) stress x

in the top-stay must produce an equal and opposite moment.
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Hence we have

Qx = 5000, or 833.

Let the student determine to what extent these computations

would have been changed if another cutting plane had been

used. Also determine the stresses in the back-stay and in the

vertical mast by the same method.

37. Transmissibility of Force. The ball shown in Fig. 21 is

supported by the upward pull in the cord balancing the force of

gravity. So long as this pull acts in the same line with the

force of gravity, it does not matter (so far as the

equilibrium of the ball is concerned) at what point

on the cord the supporting nail is placed, nor to

what part of the ball (top, center, or bottom) the

cord is attached. For that matter it would

amount to the same thing if the support were

furnished from below, as by a post. The neces-

sary condition is that the supporting force act in

the same line with the force of gravity, but it is

immaterial at just what point in that line the sup-

porting force acts.

Again, in Fig. 53, the body might be hung from a or 6 or from

any point on the line ac, and it would take exactly the same

position. That is, in so far as equi-

librium alone is concerned, it does not

matter at what point on the line of

action of the applied force the support

occurs. Of course the stresses in the

supporting bar will vary, but for the

present we are concerned only with ex-

ternal forces.

In order to generalize these facts, let Fig. 54 represent any

body acted upon at the point d, by any force F, which is incHned

at any angle d to the horizontal. Let o be any point chosen as

a center of moments. The effect of F in producing motion of

translation will be measured by its components, F sin d (vertical)

Fig. 53

Fig. 54
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and F cos d (horizontal), and its effect in producing rotation

about is measured by its moment, Fz.

Now let F be moved from d to h. It is evident that neither

its components nor its moment about o is changed in the slightest;

hence the motion produced will be the same as before. More-

over, if the point c or a, or any other point in the line ac and

outside the body, be considered as rigidly connected to the body,

the force might be transferred to that point and still produce

the same kind of motion as in the first instance.

This discussion justifies the statement that any force acting

on a body produces the same effect no matter where, in its line of

action, it is considered as applied to the body or the body extended.

This principle is known as the principle of transmissibility of

force.

PROBLEMS

1. Determine the stresses and reactions in Fig. 55, using the method of

moments.

2. How will the stresses and reactions of problem 1 vary:

(a) if the ring takes successively the positions 1 to 6.

Jb / 2 J 4 5' e

Fig. 55

(6) if the ring stays on the line ah while the cords are lengthened,

(c) if the ring stays on the line ah while the cords are shortened.

3. Find the distances V and W and the amounts X and Y so that equilibrium

may exist in Fig. 56.

90"

X
Fig. 58

4. In problem 3 change the 60 lbs. force to a downward force and solve as

before.



48 MECHANICS OF MATERIALS

5. In Fig. 57: A force of 30 lbs. (direction unknown) acts at Y. A force, Z,

of 20 lbs. acts vertically upward (point of application unknown). The
amount of A' ife unknown. Determine these three unknowns so that

the bar is in equilibrium. (A solution partly analytic and partly

graphic is suggested).

6. Determine the reactions in Fig. 58.

/oooo

36
Roller^t

Fig. 59 Fig. 60

7. Determine the reactions in Fig. 59 (analytic solution).

8. Determine the reactions for the derrick in Fig. 38 by the method of moments.

Also determine the stresses in the members by ths same means.

9. Determine the reactions and stresses for the derrick shown in Fig. 35, using

method of moments.

10. Find the direction and amount of the reactions at a and 6 in Fig. 60.

38. Resultant. If any system of non-concurrent coplanar

forces is not in equilibrium, the resultant may be found by

means of the principle of § 37. In Fig. 61A is shown a retaining

wall acted upon by the

forces A, B, and C (non-

concurrent). A and B are

concurrent and have a re-

B sultant equal to R, Fig. 61B,

which must act through m,

Fig. 61A.

The forces R and C can

now be combined into the

resultant R' ^ which must act

through n. Notice that the

direction and amount of the

resultant is found on the force diagram, while its point of appli-

cation is found on the space diagram.

Since any system of non-concurrent coplanar forces can thus

Space diagram.

Fig.

Force diagram.

61
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Force diagram

be reduced to separate systems of concurrent forces and the

resultants of these can be combined again, the preceding method

will suffice for all problems of this nature unless the forces them-

selves or their resultants are parallel. This case will be taken

up later.

Note. The preceding articles give the general principles for the solution

of problems involving non-concurrent coplanar forces. The articles which

follow will take up some important special cases.

39. Equilibrium of Three Forces. Three forces cannot be in

equilibrium unless they are concurrent. For any two of them

would have a resultant (as R,

Fig. 61). This resultant and

the third force will also have a

resultant, R' , unless R is equal

and opposite to the third force

and acts in the same line with

it. In the latter case the three

original forces are concurrent.*

This principle can frequently

be used to advantage, as in the

following example. In Fig. 62,

let a beam be considered as

resting on the ground and against a frictionlessf vertical wall,

and carrying the load shown. Let it be required to determine

the amount of X and the amount and direction of F.

Here we have a body acted upon by three forces. The direc-

tion of the load and of X being known, their point of intersection

m can be found. Since the three forces must pass through one

point, that point must be m and therefore Y must act in the

direction nm. Now let a force diagram be laid out to scale, as

at B. The 100 lbs. load is first drawn. Then a line to represent

* An apparent exception to this principle is in the case of three parallel forces.

If, however, parallel lines are thought of as meeting at an infinite distance, the ex-

ception disappears.

t Friction is the resistance to the motion of one surface over another with which
it is in contact. (See also § 241.) It is, therefore, a force whose direction is the

same as that of the surface in which it occurs. Hence, when surfaces are frictionless,

the pressure between them must of necessity be normal to the surfaces. In this

problem this consideration fixes the direction of the force X as horizontal.

. ////////////
OPQCe dia_qram.

Fig. 62
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Xj horizontally. Finally the triangle is closed by a line parallel

to mn, Fig. 62A. The amounts of the forces X and Y can now

be scaled from Fig. 62B. This problem can also be solved

analytically, by the method of moments. Let the student

prepare such a solution.

40. Statically Indeterminate Cases. In § 19 we have seen

that in the case of concurrent forces not more than two unknown'

quantities can be determined from the laws of statics. Similarly

in § 32 we found that not more than three unknowns can be

determined in a case of non-concurrent forces.

There are cases which arise con-

stantly where there are three, four, or

more unknowns. Such cases are stat-

ically indeterminate. That is, they

cannot be solved by means of the laws

of statics. The following examples

will illustrate the point.

A. Concurrent Forces. In Fig.

63 is shown the diagram of a roof truss.

No matter what joint is taken as a free body, at least three

members with unknown stresses are

Fig. 63

found. Hence, no statical solution

is possible since the problem is one

100'

/5

of concurrent forces. (Compare

with § 19.)

B. Non-concurrent

r^^ IS

Z\

occur in two typical

Y

Fig. 64

Forces.
These cases

forms.

(1) Wholly indeterminate cases. In

Fig. 64 is shown a beam resting on

three supports. There are only two

equations for the determination of the

reactions, since no horizontal forces

are present. Therefore the problem is

indeterminate.

In Fig. 65 is a case in which the reactions may have both

r(°)T_

Fig. 65



NON-CONCURRENT COPLANAR FORCES 51

horizontal and vertical components, and each component is an

unknown; therefore the reactions are indeterminate. Similarly

the internal stresses are indeterminate, since no joint exists at

which one known and not over two unknown forces are present.

If the strut A is removed, the problems of reactions and stresses

become determinate.

(2) Partially determinate cases. In Fig. 66 is shown a roof

truss, acted upon by the wind load W. Let it be required to find

^/^ Space diagram.

A
Fig. 66

the reactions. Each reaction is unknown as to its amount and

direction. There are thus four unknown quantities, as in the

previous case. The truss is a body acted upon by three forces,

i?, R\ and W . These three forces must meet at a point (§ 39).

One possible solution based on this fact is shown by the solid

^Ton5

Fig. 67

lines on the space and force diagrams. But other solutions, as

shown by the dotted and broken lines, are possible. There is

nothing to determine which solution is the correct one. But it

will be noticed that, on the force diagram, all of the lines repre-

senting reactions intersect on the same horizontal line. This
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means that the V components of the reactions are the same for

any possible solution and are determinate although the H com-

ponents are indeterminate.

An analytic solution of the same case shows the same thing.

Let the student, using the data of Fig. 67, compute the V com-

ponents of the reactions and show that the H components are

indeterminate, by an analytic process.

C. Other Solutions. Some statically indeterminate cases

can be solved by methods involving the stiffness of materials

and other more advanced principles. In some cases reasonably

accurate solutions may be found by making certain reasonable

assumptions, as in § 261.

Fig. 68 Fig. 69

But any problem involving more than two (in the case of con-

current forces) or three (in the case of non-concurrent forces)

unknown quantities, whether these be amounts, directions, or

points of appKcation, is statically indeterminate.

S'l

P.

I-

^00*

.45'

40'

PROBLEMS

Fig. 70

1. Find the stress in the lower chord of the truss

in Fig. 36 by the method of moments.

2. Suppose the wall in Fig. 68 is frictionless.

How much friction must be developed on

the floor to support the load?

3. In problem 2 let the friction possible to be de-

veloped on the floor be 30 lbs. What
weight may be carried?

4. What is the thrust on the walls in Fig. 69?

5. Find the reactions of the hinges in Fig. 70.

Check by graphic method.
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6. In Fig. 62 assume the wall to exert friction. Solve for the reactions.

7. In Fig. 67 assume the right-hand wall to be frictionless. Solve for the
reactions (analytic solution). Check results graphically by a diagram,
similar to Fig. 66.

8. Draw a diagram illustrating a statically indeterminate case.

41. Parallel Forces. In the study of concurrent forces (§ 19

and footnote), we saw that since one of the force characteristics

(point of appHcation) is common to all the forces concerned, only

two conditions of equihbrium can be estabhshed; but that these

are sufficient to determine any two unknown quantities.

In the case of parallel forces much the same condition exists.

All the forces have a common direction. Hence no component

perpendicular to this direction can exist, either in the forces

themselves or in the resultant or equilibrant of the forces.

Therefore only two equations can be set up, one based on the

summation of amounts of the i/^

forces and the other on their mo- 1
._

ments. This means of course that -Iq ' np

only two unknown quantities can J\ °
\

^
y

be determined.
^1 . , • Fig. 71
The case of a beam carrymg a

vertical load (Fig. 71) will illustrate the matter. Since the load

is vertical there is nothing to set up K components in the reac-

tions. Therefore the reactions will be vertical but of unknown
amounts. If A, &, and c are known, we have the equations

(1)
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Substituting this in (2), we find

X = - a(
b + cy

4^:

d

In the preceding case the amounts of the two reactions were

found. The problem may occur in other forms, as indicated in

1^
Fig. 72, where X and y represent

the unknown quantities. In each

1 ^ case the above method will suffice.

The introduction of more known

forces and distances changes neither

the principle involved nor the

method of solution. Thus, in Fig.

73, taking moments about X, we

Xr~y-^ c \A may find the value of X and Y

Fig. 72 from the equations

X + I^ = 100 + 200 + 400,

207 = 1200 + 6000 - 400.

Solving these equations, we find Y = 340, X = 360.

/oo

3

\. B

Tx 7
Fig. 73 Fig. 74

When parallel forces that are not actually vertical are involved,

the same principles hold true. Figure 74 shows a roof truss

acted upon by the wind. It is commonly assumedf that the

* Very often the sense ( § 9) of the unknown forces can be determined by in-

spection. Thns, in Fig. 71, we can say that X and Y must act in the opposite sense

to A. It is then immaterial whether we write the equation in the form X {- Y + A
= or in the form A = — X — Y, or A = X -\- Y, provided only that in the latter

case we realize that it is the arrows on the figure (which have already been deter-

mined by inspection) which really indicate the sense of forces. When the sense of

the unknown cannot be determined by inspection, the shorter form cannot be used.

Hereafter either form may be used in the text.

t It will be remembered (§ 40) that this case is statically indeterminate. When
it arises in practice, however, this assumption is commonly made as being a reason-

ably close approximation (§ 261).
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reactions in such a case are parallel to the load. Then we have

(1) X+Y = A,

(2) Y(c + b) = Ab.

Solving these equations we find

X =

and therefore

Ac

X
Y

Y = Ah

That is to say, the reactions are in-

versely proportional to their distances

from the load. This principle often

makes it possible to solve such a prob-

lem by inspection. (See Fig. 75.)

/oo'

P7
70" 30"*

Fig. 75

mo'

700
20

720*^

100

42. Reactions of a Beam by Composition. In determining

beam reactions it is sometimes advantageous for us to treat each

load separately, determining the reac-

tions due to each alone and then

combining the results by addition.

Thus in Fig. 76 the reactions due to

each load separately can be deter-

mined by inspection. The total re-

actions are found by simple addition

The case shown in Fig. 77 furnishes

5'-

FiG. 76

300
80

380*"

1^0'^.

JoVff.
^oYft

of the component parts,

an illustration of a more

complex case in which the

load can be divided into

(a) a uniformly distrib-

uted load of 100 lbs., (6)

a uniformly increasing

load whose total amount

is 150 lbs., and (c) a con-

centrated load. The com-

ponent and total reactions can be determined by inspection as

^
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shown in the drawing. Of course such a solution cannot al-

ways be used to advantage. It will depend on the amounts of

the loads and distances involved as well as the total number of

quantities in the problem. Occasionally such a method is useful

as a check on a computation performed in a different manner.

43. Resultant of Parallel Forces. The principles of § 41 not

only give the solution for cases where two reactions are to be

found but also they can be ap-

/4 L c '\B plied to finding a single reac-

1

1

. Zl tion due to two or more forces

f ^ '[x or to any problem of a similar

Fig. 78 nature.

Applying the above principles,

the conditions in Fig. 78 give, for equilibrium, the equations

X = A + B, (XV = 0),

Xy = Be, (2M = 0, center at A).

The solution of these equations will give the reaction X in amount

and position. (It will be noticed that this figure is the same as

Fig. 71 turned upside down.) Here we have determined the

amount and position of the anti-resultant of A and B. Now the

resultant of A and B must be equal and opposite to, and act in

the same line as, X.

Hence, to find the resultant of parallel forces, we need only

use the preceding principles, remembering that the resultant

acts in a direction opposite to that of the anti-resultant.

/op ^cp

^'

=S28

€0O SO

t1
Fig. 79

Thus to find the resultant of the forces in Fig. 79, we have

Resultant = 100 + 300 + 600 + 50 = 1050, (27 = 0),

and, taking moments about the left hand force,
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10502/ = (100 X 0) + (300 X 3) + (600 X 7) + (50 X 9),

(SM = 0);

whence y = 5.28.

44, General Expression for Position of Resultant. In the

discussion of center of gravity, it will be convenient to have a

general expression for the position of the resultant of parallel

forces. Moreover it will tend to fix the ideas of § 41 if they are

made perfectly general.

For this purpose let A, B, C, etc., be any set of parallel forces

and a, 6, c, etc., be the distances of these forces from some (arbi-

trary) center of moments. Now the amount of the resultant of

these forces is evidently A -\- B -\- C -\- etc. Let z be the (un-

known) distance from the center of moments to the resultant.

Then the moment of the resultant is equal to the sum of the

moments of the forces, i.e.,*

(A + B + C + etc.)z = Aa + Bh + Cc + etc.,

^ Aa + Bh -t Cc -\- etc.

A+5 + C + etc. '

which may be written in the formf

2 (force X distance)

2 force

* Notice that the value of z thus found is necessarily expressed in terms of dis-

^, , ^. . . ^, r r
distance X force

tance since the fraction is in the form of
;:

•

force

t Most students are inclined to regard such an expression as a formula to be re-

tained by a sheer feat of memory. If, on the other hand, one should come to regard
it as a condensed representation of the perfectly logical and necessary relations

which exist between a certain set of physical quantities, he would eliminate at once
both the tiresome effort and the large chance of error that always accompanies a
pure feat of memory.

For example, in the above expression, z represents a sort of weighted average
distance of forces, measured from an arbitrary center. Obviously any such
quantity must be affected by the amount and the position of every force in the
problem. Moreover the amount of the resultant is influenced only by the amounts
of the forces. Again the moment of the resultant must be the same as the moment
of the forces, about any point. That is,

z(Z force) = 2 (force X distance)

which is identical with the expression above. After a little study of such an ex-

pression one can get to "feel" both the reasons behind it and its inevitableness.

Then forgetting becomes impossible.
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1222 2222

Fig. 80

45. Structure Containing Multi-force Pieces. The structures

so far noticed are all composed of two-force pieces. (Footnote,

page 27.) In Fig. 80 is shown a der-

rick in which the members A and B
are two-force pieces while C is a

three-force piece and D is acted upon

by four forces.

In such a case the stresses in the

two-force pieces can be determined

by moments as in § 36. The reac-

tions can be determined by the same

means (§ 35). Let the student check the amounts of the stresses

and reactions shown in the drawing.

The forces acting on C and D are, in whole or in part, directed

transversely to the axis of the member. Such forces produce

bending, a phenomenon which is much more complex Mian

tension or compression and which is discussed in Chapters XIII

to XXII.
PROBLEMS

1. A beam 12' long carries a load of 1440 lbs. at 3' 8" from the left end.

Determine the reactions.

2. In Fig. 72A and B, find X and Y in terms oi A, B, and c.

1500

Fig. 81

3. Find the reactions in Fig. 81. Neglect weight of beam.

SOO" 75" 250" 86" 7/3"

2-^6

Fig. 82

4. Find the reactions in Fig. 82. Neglect weight of beam.
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5. In Fig. 73, evidently each load has its influence in determining the reactions.

Compute the reactions due to each load as if acting alone. Add these

and check mth results on page 54.

50" lOOO" zoo'* 750^ 80"

y-3'l- ^'-l S i— 5-1- <7- -

Fig. 83

6. Determine the reactions in Fig. 83. Neglect weight of beam.

7. Determine the reactions in Fig. 84. Neglect weight of beam.

8. Determine the reactions in Fig. 85. Neglect weight of beam.

9. Determine the resultant in Fig. 86.

47<?^ /^OO'^

— 5- 7^-^4-
I

8'-

IT"
Fig. 84

70"

1500' 2000 "^ SCO'

Y-^- ^-r.

Fig. 85

200" 600" 1200" /OO"^^. -l^n ^^a 200 600" iZQO" ,00

Fig. 86 Fig. 87

200' 76'

10^ 50'

\2i\2\-4-\-^'-^

Fig. 88

: ^

Fig. 89

300** J00^ 400^

\

Fig. 90

X Y

10. Determine the resultant in Fig. 87. Compare with Jftj^jT'^ |^,

Fig. 79.
"^ '

11. Find the resultant in Fig. 88.

12. Find the resultant in Fig. 90.

13. Find the equilibrant in Fig. 89.

14. What forces X and F, Fig. 91, will balance the given

load?

Fig. 91

15'
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Fig. 92

15. What weight W, Fig. 92, can hi supported by the given load?

. 16. Find the amount and direction of the reaction in Fig. 93. Also the stress

in the stay rod A.

•y 17. Determine the reactions and the stress in each two-force piece in Fig. 94-

800'^

300

•^7^7777777777777.

Fig. 93

'y777Jj>A^/7/7^r.

Fig. 94

^

18. Repeat problem 17, using Fig. 95.

19. Repeat problem 17, using Fig. 96.



CHAPTER VI

CENTER OF GRAVITY

46. Physical Significance. In the problems thus far studied,

the various bodies and structures used have been considered as

weightless, though it is evident that in any real case the results

would be affected more or less by the weights thus neglected

=ir

Fig. 97 Fig. 98

and that in many cases the weight of a structure itself may be of

prime importance in determining the actual stresses which are

present. It will be the purpose of this chapter to develop

principles by the use of which the force of gravity acting on a

body or the parts of a structure may be expressed by an arrow

or arrows in the same way as has been done heretofore in the

case of the arbitrarily selected forces which have been used.

Figures 97 and 98 show sections through two wall copings.

We instinctively recognize that the stone A, Fig. 97, is in a

precarious position, while in Fig. 98 the corresponding stone is

securely balanced on the wall. While we recognize these facts

quite readily, it is not always so easy to see clearly the reasons

for them. Each particle of the stone is acted upon by a force

(gravity) and all such forces acting on a given stone constitute

a set of parallel forces which will of course have a resultant.

This resultant may be expressed as a single vertical force G.

When the position of this resultant is such that a reaction R
61
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Fig. 99

(Fig. 98) can be offered by the lower courses, the stone may be

supported on the wall.

It will be noticed that in the above discussion the sole matter

of importance is the position of the resultant force. The con-

clusions arrived at would be the same whether the force G be

large or small. Furthermore the position of G would

be relatively the same if the stones were made either

larger or smaller while keeping the same proportions.

It follows then that the matter of prime importance

in locating G is the distribution of the weight of the

stone.

The same principle is encountered when one raises

a chair. If we lift straight up on the back as indi-

cated by Fj Fig. 99, the resultant force of gravity G will cause

the chair to rotate until it assumes the position shown in Fig.

100. Here the forces F and G act in the same straight

line and can produce equilibrium. In this case if the

position of the force G can be determined, it will be

possible to foretell just how the chair will hang at

rest when suspended from any given point.

Wherever the problem of balance is encountered,

whether it be in a juggler's trick or in the arrange-

ments for hoisting bulky loads, this question of the

position of the resultant force of gravity* is the essence of the

problem.

Since the problem outlined above is one of position and since

position is a space relation, it follows that the whole matter has

a strong geometric character. The matter of symmetry about

one, two, or three planes becomes of prime importance and, in

general, the geometric properties of the bodies dealt with often

contain the key to the whole situation.

47. General Principles. In order to establish the principles

governing the position of the resultant force of gravity let us

consider the simplest case as shown in Fig. 101: a timber sup-

ported by a rope around its center. Conceive of the timber as

Fig. 100

* The resultant force of gravity is sometimes called the resultant weight.
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composed of a number of elementary particles each acted upon

by gravity and giving rise to a force dW, as shown. Now
evidently the sum of the forces will be J'^ydW* and will be equal

to the weight of the timber (call it W). The upward pull of the

rope must equal this amount, since SF = 0. j,,*

Moreover each elementary force dW sets up a | ^^

moment of rotation about c equal to z dW. But ... 1-^ f
t

since for each such positive moment there is an X *</iv

equal negative moment caused by a force dW Fig. 101

symmetrically placed on the other side of c, it

is evident that J*z dW = 0, when the origin for z is taken in the

plane X.

Now let the timber in Fig. 101 be rotated in the plane of the

paper about c, through an angle 6. The lever arm decreases,

but the same decrease applies to the symmetrically placed par-

ticles on the opposite side of c, so that J^z dW remains equal

to zero. We can then say that the timber will remain at rest in

» » any position so long as it is supported by a force

i^ J_, equal to its weight W and which acts vertically in

X and through c.

If now we take the two views of the timber

shown in Fig. 102, precisely the same considerations

as before will lead to precisely the same conclu-

sions with regard to planes Y and Z. The three

i

z
F 102 planes X, Y, and Z intersect at the geometric cen-

ter c of the timber, and from the above we can say

that if the timber is supported from the point c it will remain

in equilibrium in any position in which it is once placed because

j^ z dW = in every such case. Moreover since the timber can

be supported from c without rotation, it follows that the re-

sultant force of gravity acts through c.

* The symbol Jw^ ^^ '^'^ ^® employed to indicate that the integration is to be

carried out for the entire weight W of the problem under discussion. In this

symbol, B and dW both will ordinarily be expressed in terms of another variable

of integration at a later stage of the solution. When this is done, the result will

appear in the more familiar form of the integral between limits, as for instance,

jjr^x dx, page 72. A similar symbol will be employed in the cases of areas, volumes

etc.
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In the case of an unsymmetric body it can also be shown

that there is a point through which the resultant force of gravity

acts.* If this point is used as a point of support, the body will

remain at rest no matter in what position it is first placed.

This point about which a body may be balanced in any position

and which is the point of application of the resultant force of

gravity is called the center of gravity of the body.

In the case of symmetric bodies, the center of gravity lies

at the geometric center. In the case of unsymmetric bodies,

its location may be determined as shown in the following sections.

Sometimes the center of gravity is a point in space related to

but not a part of the body itself, as in the case of the chair in Fig.

100, or in the case of a bowl. But in every case where there is

one or more planes of symmetry, the center of gravity will lie in

that plane or those planes.

48. Two Axes of Symmetry. A. Method of Addition. Since

the body shown in Figs. 103 and 104 is symmetric about two axes,

we can say by inspection that its center of gravity Hes in the line

kL Ar
w

fEElKiz
W

Fig. 103 Fig. 104

xy. Moreover since each of its parts A and B is symmetric, the

resultant weights of these parts can be located by inspection.

Let these weights be W and W, as shown in Fig. 104, and let Y

be any plane of reference, chosen arbitrarily. Now the forces

W and W constitute a set of parallel forces and their resultant

can be determined as in §§ 41-43. Thus if R is the resultant

* Proof of this statement may be found in any more extended treatise on me-

chanics.
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of W and W\ and z is the unknown distance of R from F, we

have

(1)

(2)

R = W + W',

Rz = Wa + W'h.

Now substituting the value of R as given by equation (1) in

equation (2), we find

whence

(TF + W')z = Wa + W%

Wa + W'b
z = W + W'

which gives the location of the center of gravity in terms of

known amounts. Compare with §§ 43-44.

B. Method OF SuBTRAC- ^-^-'^

TiON. Let the body shown

in Fig. 105 be conceived

as a parallelopiped 10'' X
8" X I", minus two holes

each 6'' X 3" X l". Let

the body weigh J lb. per

cu. in., and let it be re-

quired to locate the center

of gravity with reference to the left-hand face.

The weight of the entire solid (including dotted parts) is

Fig. 105

I—
/8

(1 X 10 X 8 X J) = 40 lbs., which acts down-

ward at 4" from the left face. The weight of

Zl the material cut out by the holes will be

^ ^""^ - 2[6 X 3 X 1 X (i)] = - 18 lbs.,

Fig. 106

acting at 5'' from the left face. Let these

forces be shown in elevation as in Fig. 106, X being taken as

a plane of reference. Since the effect of the holes is negative

with respect to the solid part, the force of 18 lbs. is indicated as

acting upward. The moment produced by these weights about
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X can be determined as (40 X 4) - (18 X 5) = 70 lbs. ins. The

resultant weight is evidently 40 — 18 = 22 lbs., and it must be

at such a distance from X that its moment will equal that just

determined. Calling this distance x* we have

22a; = 70, or 3.18''.

Note. At this point the student should assign a different set of dimensions

to a solid similar to that in Fig. 103 and proceed to find its center of gravity,

first by addition and then by subtraction. Of course the results should check.

PROBLEMS

Note. Weights of materials when needed may be determined from Table

I in the appendix.

1. Figure 107 represents a block of stone weighing 130 lbs. per cu. ft. Find its

center of gravity (a) by addition, (5) by subtraction.

Fig. 107 Fig. 108

T r

1
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5. Find the center of gravity of a plate of wrought iron, 12" X 12" X f", with

a hole 2" in diameter, the center of which is 3" from the center of the

plate and on one of its diagonals.

6. Let the hole in the plate in problem 5 be plugged with lead. Find the

center of gravity.

49. One Axis of Symmetry. Let the angle bar shown in Fig.

Ill be homogeneous and weigh J lb. per cu. in. Let it be

required to find the center of gravity. For that purpose, let

the bar be divided into two parts as indicated by the shading

on the end elevation. Since the bar is symmetric about the

plane Z, the center of gravity is known to lie in this plane.

\X

^-A

m

\z

iz

B
Fig. Ill

y

\^y [=5.8)-\

i^^^^

Turning now to view A it will be possible to locate a plane X
in which the center of gravity must lie by using either of methods

of § 48. The weights involved are

Vertical leg: 8'' X \" X VI" X \ lb. per cu. in. = 24 lbs.

Horizontal leg: 6'' X 2" X \2" X i lb. per cu. in. = 36 lbs.

Entire angle bar 60 lbs.

Now taking a center of moments at m we find that these weights

produce the following moments:

Vertical leg: 24 lbs. X \" = 12 lbs. ins.

Horizontal leg: 36 lbs. X ^" = 144 lbs. ins.

156 lbs. ins.

This moment is the same as that of the entire weight (60 lbs.)

acting in the plane X, whose distance x from m is to be deter-

mined. Equating the moments, we find
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(1) 156 = 60x, or x = 2.6''.

The center of gravity of the bar is now located as lying in plane

X and in plane Z. It will therefore be in their line of inter-

section, which is shown in view C as the line ah. In order to

determine which point on ah is the center of gravity, we will

turn the angle bar as shown in view C and determine a plane Y
which must contain the center of gravity, using the same method

as above and computing moments about n, as follows:

Horizontal leg: 24 lbs. X 4" = 96 lbs. ins.

Vertical leg: 36 lbs. X 1" = 252 lbs. ins.

Entire angle 348 lbs. ins.

(2) 60^ = 348, or y = 5.8".

This computation finally locates the point c as the center of

gravity of the bar. The above computation could have been as

well performed by method B, § 48. The student should note

that the length of the prism (12") and the heaviness of the

material (| lb. per cu. in.) enter as factors on both sides of equa-

tions (1) and (2) above. In solving the equations these factors

cancel out. The meaning of this evidently is that the position

of the center of gravity as determined by planes X and Y does

not depend on the length of the prism nor on the heaviness of the

material. It would therefore have been possible to get our

results if those terms had been omitted from the computations.

We would then have been dealing with areas instead of weights;

but since these areas are proportional to the weights involved,

the results would have remained the same. It will be good

practice for the student now to assume a figure similar to Fig. Ill,

but with different dimensions, and find its center of gravity

without using lengths or heaviness, and to make the computa-

tions by the subtraction method.

50. No Axis of Symmetry. Let it be required to find the

center of gravity of the non-homogeneous block shown in Fig.

112. The weights of various parts of the block are as follows:
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^ = 10X6X2X 80= 9600 lbs.

B = 3X6X1X100= 1800 lbs.

C= 3X4X5X120= 7200 lbs.

Total 18,600 lbs.

Three equations of moment are required to locate the center of

gravity, each corresponding to one of the positions of the block

as shown in the elevation drawings:

E

B
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view B; center of moments at m

(9600 X 5) + (1800 X 1|) + (7200 X U) = 18,600x,

X = 3.3',

view C; center of moments at n

(9600 X 3) + (1800 X 3) + (7200 X 4) = 18,600^,

y = 3.4^

view D; center of moments at p

(7200 X 2i) + (1800 X 5|) + (9600 X 7) = 18,600^,

z = 5.1'.

PROBLEMS

1. Find the center of gravity of the flitched timber in Fig. 113.

2. In Fig. 113, let the channels B and C be removed. Find the center of

gravity. See a handbook for the details of the steel channel sections.

/-/^ channels io">3o
10'^10

1
1^-

Fig. 113

Fig. 114 Fig. 115 Fig. 116

3. Find the center of gravity of the solid in Fig. 114.

4. Find the center of gravity of the solid in Fig. 115.

5. Find the center of gravity of the solid in Fig. 116. Let A weigh \ lb. per

~ cii. in., let B weigh \ lb. per cu. in., and let C weigh \ lb. per cu. in.
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51. Various Solids. In each of the cases studied it has been

possible to divide the body into parts, each of which is wholly

symmetric, and the methods used have been made to depend

on this fact. Many cases arise where this is not possible. Some

solutions for such cases are indicated below.

A. By Integration. In many regular homogeneous solids,

particularly those determined by curved surfaces, the center of

gravity can be determined readily by integration. The general

type of solution in such cases is as follows:

Let V be the volume of the solid and let dV he any elementary

part of that volume at the distance x from an arbitrarily chosen

plane of reference. Also let x be the distance of the center of

gravity of the volume from the same plane of reference. Then,

from §§43 and 47, Vx ^ JvxdV. The solution normally hinges

on selecting an elementary slice in such a way as to make it

readily possible to express its volume in terms

of X.

As an example of the above let it be required

to find the distance of the center of gravity of a

hemisphere from its flat face, Fig. 117. Let the

origin be at o. Let the volume be V and let dV
be chosen as a thin section parallel to the plane

Z-Z, r being the radius of the sphere. Now
V = f-Trr^; dV = volume of elementary slice

= Ty^ dx. Substituting these values in the gen-

eral expression of the previous paragraph, we have

Fig. 117

(1) f Trr^x = j irxif dx.

We also have the relation

x"^ -\- y- = r^, or 2/^

Substituting this in (1), we get

^Tvr^x = j TTX dx{r- — x-)

2 _ ^2^



72 MECHANICS OF MATERIALS

and, since x may vary between r and o, we have

r^x =
J^^

r~x dx — j^ x^ dxy2 ;v,3/vV

4'

Fig. 118

This single example will suffice to show the general method of

this type of solution. Many other cases are to be found worked

out in more extended treatises, and the results of

such computations are to be found in many hand-

books.

B. By Approximation. Sometimes a curved sur-

face may be approximated by surfaces of simpler

form. For instance the hemisphere of Fig. 117

might be approximated by parallelopipeds or cylin-

ders, as shown in Fig. 118. The center of gravity

could then be found by § 48. The degree of ac-

curacy in the result would depend upon the closeness with which

the true shape is approximated by the shapes assumed in the

calculations.

C. By Trial. The center of gravity of a very irregular body

is often most readily determined by trial. The body may be

suspended in several positions and vertical planes passed through

the point of support for each position. These planes will inter-

sect, and the point of intersection is the center of gravity of the

body. The degree of accuracy attainable in this manner depends

largely upon the facilities available and the care with which

measurements are made.

PROBLEMS

1. Find, by integration, the center of gravity of a square pyramid.

2. Find, by integration, the center of gravity of a cone whose base is 6" in

diameter and whose altitude is 12".

3. Outline a method for finding the center of gravity of a frustum of a cone or

pyramid.

52. Areas. At first it seems absurd to speak of the center of

gravity of an area since an area has no weight and cannot be
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affected by gravity. However, if we consider the center of

gravity of an homogeneous prism, as presented in § 49 (par-

ticularly the concluding paragraphs), it will be evident that the

position of the center of gravity, as shown on view C, Fig. Ill,

is in no way influenced by any factor except the size and the

shape of the area. Moreover, if the prism is considered to vary

in length, approaching an area as its Hmit, the center of gravity

of the prism approaches the point c as its limit. This point c

is called the center of gravity of the area. It is as much a

property of the area as is the length, periphery, or any other

property.

In § 47 it was shown that in the case of any solid, J^z dW =
when the origin for z is taken through the center of gravity of the

solid. It will be evident that in the case of an area the same

principle holds good and that J^a zdA^ when the origin for z

is taken through the center of gravity of the area.

The method of determining

the center of gravity of an

area is identical in principle

with that of § 49. The com-

putations are the same except

the terms length and heavi-

ness are omitted, the areas

being used as if they were

weights. A few typical so-

lutions are given below.

A. By Addition. The area shown in Fig. 119 is divided into

parts, marked A, B, and C for convenience. Taking the center

of moments at n, we find

r^ ^-\

I

8 X^:

h.€"J

Center

Gravity

m
B

Fig. 119

(A)

{B)

(C)
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(A)

(B)

(C)

Area Lever Arm Moment

5X2 = 10 X 2i = 25,

4 X li = 6 X 2J = 16.5,

2 X 3i = 7 X If = 12.25,

2Sy '53.75,

y = 2.337 = 2.4'

B. By Subtraction. Figure 120 gives the following:

Lever
Area Arm Moment

4X8 = 32X4= 128,

- 7r(1.5)2 = - 7.07 X 2 = - 14.14,

24.93X =

X =
113.86,

4.56". Fig. 120

C. By Integration. It is not always possible to divide an

area into parts, whoso centers of gravity can be determined by

inspection, as was done in A and

B, above. In such case, if the out-

lines of the area are regular, so as

to establish mathematical relations,

the center of gravity may be deter-

mined by integration.

The principle of all such vsolutions

is the same, though the detail of the

operation will vary considerably

with the area in question. For the

purpose of illustration, let us take the simple case of the triangle

shown in Fig. 121.

If the figure has a line of symmetry, the center of gravity will

lie on that line. In the case in hand the median line, mn, is such

a line. After the Hne of symmetry (if any) is noted, the figure

is placed in some convenient relation to a pair of coordinate

axes. In this case, the vertex is touching and the base is parallel

to the y axis. Next the figure is divided into elementary strips

of area of convenient shape. In this case strips parallel to the

base are chosen (shown shaded in the figure). Now let dA be

Fig. 121
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the area of any such strip distant x from the y axis. The moment

of this strip about the y axis will then be xdA, and the total

moment for the entire figure will be J^xdA. Now if A is the

area of the triangle and x is the distance of the center of gravity

from the y axis, the principles of §§ 44-47 give the equation

(1) Ax = f^xdA.

This is the general form from which all such computations for

center of gravity start. It is now necessary to establish a value

for dA which can be expressed in terms of x.

From the figure we have

(2) dA = h dx,

and from similar triangles

b X , c
- = -

, or = -X.
c a a

Substituting this in (2), we find

dA = -X dx:
a

and substituting now in (1), we have

Ax = \ -x"^ dx.

Now X may have all values between o and a. Inserting these

limits and expressing A in terms of c and a, we have

_ Tc
~

Jo ^
-xax =

I -xHx.

Now evaluating the integral, we obtain

\cax = \ca^, or x = \i
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D. By Approximation. The area in Fig. 122 could be

approximated by a number of rectangles as shown and the

center of gravity located by computations as

in A, above.

E. By Trial. Cut from a thin stiff sheet

an area of the required shape. Let it hang

freely from any selected point and, while so

Fig 122
suspended, draw a vertical line through the

point of support. Choose a second point of

support and draw a 'second vertical line through it. The point

where the two lines so determined intersect is the center of

gravity. It will usually be wise to check this point by drawing

a third line in the same manner; this should check with those

previously drawn.

The center of gravity of a triangle can be located by purely

geometric means. A line from a vertex to the center of the

opposite side (i.e., a median) is a Hne of symmetry. All three

such lines meet at a point, which is the center of gravity and

which lies at the third point of each median line (as proved

above). See Fig. 123.

53. Static Moment. The quantity fAxdA, used in equation

(1), § 52, is known as the static moment of the area. It repre-

sents the product of an area multiplied by its distance from a

chosen axis. When the area used is a finite one, the distance of

the area from the axis {x) is measured from the center of gravity

of the area. Thus the static moment of an area may be said to

be the area times its average distance from an axis. The axis may

be chosen arbitrarily.

In § 51, the expression yi/ x dFis the static moment of a volume.

Its significance can be easily apprehended from the explanation

given in the preceding paragraph. In the case of a volume the

distance x is measured from a plane of reference instead of a line.

The term static moment implies a force acting on a lever

arm and hence it is not logically applicable to an area any more

than is center of gravity (§52). However, it is commonly used

in the manner explained above.
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54. Summary. From the preceding paragraphs (§§ 44-53),

the student should have become famihar with the principles

governing the determination of center

of gravity. However, it may be well to

point out that every solution is essen-

tially an integrating process dependent

on the principle of § 44. When the case

in hand involves a body or an area that

can be divided easily into symmetric Fig. 123. Center of grav-

components, the computation is simpli-

fied, as has been illustrated frequently;

but in these cases as well as in the

others, the underlying principle is to be

found in the equation

Vx fyXdV,

ity of a triangle.

ad = db

be = ec

cf =fa

as developed in § 51.

Fig. 124. Center of gravity of a

trapezoid

ae = eb

df=fc
ag = dc

ch = ab

Fig. 125. Center of grav-

ity of a quadrilateral

bf = ed

ah = hf

hg = \hc

Centers of gravity of many solids and areas have been worked

out and the results of such computations are available in books

of reference. Figures 123-125 illustrate graphic solutions for

centers of gravity that will be found useful.

PROBLEMS
1. Find the center of gravity of ths area, Fig. 126.

2. Derive the values of x and y, Fig. 127.
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3. Find the center of gravity of the area, Fig. 128.

4. Find the center of gravity of the area, Fig. 129.

5. Find the center of gravity of the area, Fig. 130. (Use handbook.)

6

I I I-l

i

i

l2i-J*«^'

Fig. 126

•j/i-J-o-

'J]

I

Fig. 127 Fig. 128

6. Test the result of problem 4 experimentally. Work at full size.

7. Derive a formula for the center of gravity of (a) a trapezoid; let the

altitude be h and let the greater base be B while the lesser base is 6;

(6) a hollow half circle; let the outer diameter be D and the inner

diameter d.

8. Derive, by in^gration, the center of gravity of a semi-circle.

/A

2iA
10

1

K- 4—

H



CHAPTER VII

UNIT STRESSES

55. General. If a cable such as is shown in Fig. 131, composed

of 100 separate wires, is made to sustain a load of 10,000 lbs.,

each wire will have to withstand on the average a stress of 100

lbs. If there were more wires, the individual stress ::.::.:..:- :^:^:l:2.^

would be less. All materials of construction may
be considered to be made up, somewhat like a ca-

ble, of small individual fibers each carrying its pro-

portion of the total stress on the piece of which it is a

part.* Where there are many of these fibers (i.e.,

when the area of the cross section is large) the stress

on each is small, and vice versa. The average stress

per fiber evidently will be found by dividing the to-

tal stress by the number of fibers. For the purpose

of standardization and ease of computation we

usually work with these elementary fibers in a whole-

sale way, that is, as many as are needed to make up

one square inch of cross section are dealt with at

once, and the resultant stress per fiber (fiber stress) is ex-

pressed not in terms of pounds per fiber but as pounds per

square inch of cross section. Thus if a bar 2'' X 2" carries a

load of 10,000 lbs., the fiber stress is 10,000 lbs. divided by 4

sq. in. = 2500 lbs. per sq. in. This result is sometimes called

the fiber stress, or the unit stress (i.e., stress per unit of area of

cross section), or the intensity of stress. It is most frequently

expressed in Ibs./sq. in., but other units such as Ibs./sq. ft. and

tons/sq. ft. are sometimes used.

56. Axial Loads. The materials of construction usually occur

in forms that have distinct axes of symmetry. The longest axial

* The student should not get the impression that the materials of construction
are in general actually fibrous in their make-up. The fiber idea is merely a con-
venient concept.

79
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line is designated as the longitudinal axis (or sometimes merely

as "the axis"). A section taken perpendicular to such an axis is

called the cross section. When a load is placed on any structural

member in such a way that its line of action coincides with an

axis of the member, as in Fig. 23, the load is called an axial load,

and, if the material is homogeneous, the resulting stresses are

uniformly distributed over the cross section, as shown in Fig. 132.

The amount of such unit stress is

determined by simple division, as

illustrated in the previous article.

—-

]

^^^tl.

dA

Fig. 132 Fig. 133

If the cross section of any structural member is unsymmetric,

a uniform stress distribution will result from a load acting along

the member in a Hne that cuts each cross section at its center of

gravity.*

* If proof of this statement is required, let the case shown in Fig. 133 be con-

sidered. Let the unit stress be the same over the entire section and let the position

of the resultant load be required. Let A be the area of the section, R the amount
of the resultant load, x the distance of K from an arbitrary center of moments o,

dA an elementary area distant x from o and let S be the unit stress on dA (repre-

sented by one of the arrows in Fig. 133). Then

S, dA = The total stress on an elementary area.

SS> dA = The total stress on the section.

y<Sx dA = The moment of the stress on the section, about o.

From SM = 0;

Rx =
I Sx dA = S j X dA (since <S is a constant)

;

-S^^Sa X dA.

But RjS = A (by definition) ; then

Ax = j X dA.
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We may then conclude:

(1) Any load which is applied along the center of gravity of the

cross section of a homogeneous bar will cause uniformly distributed

stresses throughout the bar, and vice versa.

(2) The uniform unit stress produced by such a load is found by

dividing the load by the area of the cross section.

57. Stresses due to Own Weight. If a bar such as that shown

in Fig. 134A is suspended from a pin, it will be subject to tensile

stresses due to its own weight. The unit stresses involved

evidently will be zero at the bottom and a maxi-

mum (equal to the weight of the bar divided by

its cross-sectional area) at the top. Evidently

these stresses will increase uniformly from zero

at c to a maximum at d. This variation is rep-

resented graphically in Fig. 134B.

If the area of the bar is a sq. in., and its heavi-

ness (weight per unit volume) is b Ibs./cu. in.,

the stress at any point distant x from the lower

end will be abx lbs., and the unit stress at the

same point will be bx Ibs./sq. in.

If such a bar carries a load of P lbs. at its lower

end, the unit stress at the section x will be

(5).
V-

A B

Fig. 134

(P/a + bx)^ Ibs./sq. in.

Actual cases where the weight of a member causes an important

tensile stress in the member itself will be few. A very long

elevator cable might be a case in point.

In compression, the stresses in high walls or piers are fre-

quently due in large part to their own weight.

58. Pier Uniformly Stressed. From the preceding article we

may infer that in a pier of uniform section the bottom is under a

greater unit stress than the top owing to the weight of material

from which the pier is built.

From § 52 we know that this is the condition which is fulfilled when x represents

the distance from the center of moments to the center of gravity of the section.

Therefore, if a load acting on a bar is to produce uniformly distributed unit stress

on the cross section, it must act at the center of gravity of the section.
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Fig. 135

It is evident that if the section at the bottom is properly

increased the unit stresses at top and bottom may be made equal.

Moreover, if just the proper form is used,

the unit stress at all heights may be kept

the same. It is a matter of some interest to

determine the theoretical shape of a pier

that is uniformly stressed, for while one would

seldom or never be justified in building such a

shape, it may be more or less closely approx-

imated. Again the study of this problem

will lead up to others of more immediate im-

portance.

Let the pier be everywhere square in sec-

tion and let its elevation be shown by Fig.

135.* We can now proceed to determine

the nature of the curve bounding the sides. Let the central

load be P and the area of the top be a^. Let the heaviness of the

material in the pier be h and let the uniform unit stress be s.

This unit stress s = Pja^', and it will be the same on every

section of the pier. Choose any elementary section of the pier,

as shown shaded in the figure. Now the unit stress at the top

of this section is Pla^ and at the bottom of the section it must

be the same. Therefore the difference in the areas at top and

bottom must be just sufficient to support the weight of the slice

between at the specified unit stress. Putting this in actual

figures, we find

Area of top of section = {2xY = ^x^.

Increase in this area at bottom = d(4a:-) = 8x dx.

Weight of section of pier = {2xyh dy = ix-h dy.

Therefore

^x~h dy

Pla?
= ^xdXf or

2P ,

dy = ——dx.
d-hx

* At this point the student should assure himself that the outline will actually

be a curve of some sort and prove it to himself before proceeding.
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Integrating this and determining the constant from the fact

that X = a/2 when y = 0, we get

2P, 2x

a^h a

This equation shows the character of the curved outline. Figure

136 is drawn approximately to scale to show a case where actual

values have been chosen for P, a, and h, and the computations

worked through.

59. Net Sections. As a chain is no stronger than its weakest

link, so a structural member is no stronger than its smallest

section. Thus the strength of a threaded bolt is not based on

the full sectional area, but rather upon the area at the root of

1^30 Tons

-7.9

Fig. 136

^—-b M B

Fig. 137

the thread. (See table of screw threads in any handbook.)

Again if holes are cut in a member for any purpose, the reduced

section limits the strength of the whole piece. In Fig. 137A

an angle shelf is bolted to a steel plate. The holes punched out

for the bolts reduce the section which before punching was equal

to ht. The reduced section cut through the holes is shown in

Fig. 137B. Its area is t{h - 2d).
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12 3^56

-1.57 2.76

Stress Scale in'fhousands of lbs. per sq. in.

P'^409 lbs

IG 10 20

Thickness ofplate .39'

30

Fig. 138A. Graphical illustration of test results on a plate, half of which is

shown. Tension was applied by means of bars through the holes at either end^

Note compression behind hole and tension elsewhere in varying amount.

(D. Riihl; Zeitschrift V.D.I., vol. 64, p. 549).

Fig. 138B. Relative amounts of stress across the minimum sections of

rectangular bars under tension. (E. Preuss; Zeitschrift V.D.L, vol. 57,

p. 664).

If holes are "staggered" (as shown at section nopq, in Fig.

137A), manifestly the plate will be stronger than when the holes

are opposite, as at section aa. The maximum strength of the
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punched plate would be given by such a section as mn. The

distance mq should, if possible, be such as will make the section

nopq (which passes through two holes) at least equal to mn (which

passes through a single hole). See the footnote on page 131.

When the area of a bar is suddenly changed at a given section,

as in cutting a thread on a rod or in punching a hole in a plate,

the unit stresses at that section are not uniformly distributed

even though they may be uniform on the sections above and

below the one which is reduced. The stresses tend to become

concentrated at the edges of the cut, as shown in Fig. 1385.

Ordinarily this concentration of stress at a reduced section is

considered as being cared for by the factor of safety, but in

important computations or when precise results are demanded,

it should be allowed for. This matter is treated quite fully in

some of the more extended texts.

60. Unit Strength. It is a matter of common experience that

a small steel wire is stronger than a much thicker rope, or if of

equal thickness the wire will carry the greater load, i.e., the

material of which it is made has a greater unit strength. In

order to design structural parts economically and safely, it is

necessary that we know the relative and also the absolute strength

of the various materials that may be used. In order to deter-

mine these amounts many tests have been made, so that plenty

of data is available. The unit stress which will just break a

given material is called its ultimate strength.

The results of such experiments are not by any means precise.

A considerable variation is found between the ultimate strengths

of pieces of material that are apparently alike. Thus any tables,

such as those in the handbooks or in the appendix of this book,

should be regarded as giving average values rather than precise

ones.

The strength of a given material may vary widely under dif-

ferent kinds of stress. This fact is especially well illustrated in

such materials as wood, concrete, and cast iron. Again if the

material has a definite grain, as in wood, its strength may depend

on the direction of the applied forces, relatively to the grain of
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the material. These questions are more fully discussed in

Chapter IX.

61. Factor of Safety. In designing a structure no piece of

material is ever proportioned to carry a stress equal to its

full ultimate strength. For instance, a bar of steel 1" square

may have an ultimate strength of 64,000 lbs., in tension, but,

ordinarily, it would not be designed to carry more than 16,000 lbs.

In such a case the factor (4) which exists between the load (or

unit stress) for which the structure is designed and the ultimate

possible load (or unit stress) is called the factor of safety.

The use of a factor of safety is necessitated by a number of

considerations from which the element of uncertainty cannot be

eliminated. A structure can be designed to carry a definite

load, but the designer cannot guard against overloading due to

carelessness or ignorance. Individual pieces of material vary

more or less in structure and hence in strength. Average

strength values are used in design, but the weakest piece must be

able to carry its load. Much of the data in regard to strength

of materials is based on tests of small-sized specimens. Large

pieces do not always develop a proportionate strength.

Some materials are much more uniform in quality and hence

more dependable than others. Such materials can be used with

relatively small factors of safety.* Another matter that has

much to do with the use of a factor of safety is the phenomenon

known as the fatigue of materials which is treated in § 85.

All or any of the above considerations are apt to enter into the

determination of the factor of safety in any given case and some-

times the question of the permanency of the structure also enters.

In a temporary building smaller factors may be used. Where

unusual conditions favoring deterioration are present and a

* The following is quoted from Circular 295 of the U. S. Department of Agri-

culture, dealing with stresses on timber:

"The belief that a timber with a so-called 'factor of safety' of 3 or 4 will carry

three or four times the load for which it is designed is erroneous and has caused

many failures through overloading of structures. The application of a load which
would produce three times the working stresses given in this circular would be ex-

pected to cause the immediate failure of some of the timbers, and the ultimate

failure of 75 per cent of them. The application of loads which would produce
stresses only one and oue-half times the working stresses would be expected to

cause occasional failures if the loads were left on for any great length of time."
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permanent structure is desired, factors are larger. Quiescent

loads admit of the lowest factors of safety. If the loads are such

as to produce vibration or shocks, the factors of safety are in-

creased or other means taken to insure safety.

The determination of factors of safety is a matter requiring

mature judgment and a thorough understanding of the materials

and loads to be used and the results which are to be attained.

The smallest factor commonly used is 2, while factors of 3, 4, 5,

and 6 are common; sometimes factors as high as ten to twenty

are deemed necessary.

Table II in the Appendix gives some factors of safety that may

be used in discussing the problems in this text. Especial atten-

tion is called to the note accompanying the Table and to the

footnote on page 95.

The use of formal factors of safety is generally being super-

ceded by the adoption of working unit stresses, as explained in

§ 62 and as set forth in Table I in the Appendix.

62. Working Unit Stress. Where many calculations are

made for a given class of work and for the same material, the

factor of safety is, of course, the same for all. In such cases it is

usual in the beginning to divide the ultimate strength by the

appropriate factor of safety and thus derive a quantity called

the working stress, which is then used throughout all the

calculations. In such a case the ultimate strength and the factor

of safety no longer appear, their place being taken by this derived

quantity.

Illustration of ultimate and working unit stresses for different

materials may be found in the various handbooks and in the tables

in the Appendix.

Much structural designing is done in accordance with speci-

fications or ordinances which fix the allowable or working unit

stresses. Municipal building codes are not always the best pos-

sible guides for practice but the working unit stresses ordinarily

have at least the advantage of being conservative.

PROBLEMS

Note. For strengths of various materials see Table I in the Appendix.
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In Fig. 2G.4 if the sui)p()rts arc of steel wire whose diameter is 0.134",

what is the unit stress on each? What is the factor of safety?

What size of bearing plates are required under the ends of the beam shown
in Fig. 139.

In Fig. 38, the back-stay is made of a |" diameter wrought iron rod

(threaded). Is it safe under the load shown? Refer to a handbook for

areas of threaded rods.

What is the unit compressive stress in each of the two end blocks shown in

Fig. 140?

See Fig. 141. What are the necessary dimensions of the surface of contact

between the various parts as determined by compressive strength

—

earth being able to carry 4 tons per sq. ft.?
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\Common brick masonry —
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Fig. 139

220 tons

|!| \i Steel column.

C.I. base.

'

Granite

Concrete.

W^
Eartti.

Fig. 141

Fig. 140

Fig. 142

6. What is the greatest safe load on the upper post in Fig. 142J. and in Fig.

• 1425. The posts and beams are of wood.

7. Let the block shown in Fig. 1 10 be of timber with the grain running length-

wise of the block, (a) Let compressive forces of 25,000 lbs. be applied

to the 5" X 8" ends. What is the factor of safety? (6) What is the

safe load in compression if the forces are applied to the 8" X 16" faces

of the block?

8. How high may a pier of brick masonry be built before it will crush under its

own w^eight?

9. Draw a curve to show the variation in unit stress in a right circular cone

resting on its base.

10. Draw a curve to show the variation in unit stress in a right circular cone

hanging from its apex.

11. A pier of stone masonry in the form of a truncated pjTamid is 8' X 8'

square at the top and 75' high. If it is to carry its full safe load on the

top face, how large must it be at the bottom?

.-^
tJ^ 1^0 >^.^
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CHAPTER VIII

STRESS AND DEFORMATION

63. Introduction. The deformation of materials under streps

is such a commonplace of daily life that its significance is often

missed. The stretching of a rubber band, the springiness in the

turf, the swaying of trees in a wind; these and a thousand other

facts of daily life are accepted as the natural and everyday

course of events. Yet most people are not so ready to accept

the fact that all structures subjected to wind sway as do the

trees, though to a lesser extent. They accept as natural the

bending of a steel fishing rod, but they do not so readily conceive

that a large column reacts in the same way.

As a matter of fact all materials, when subjected to stress, are

more or less deformed. Painstaking investigation shows that,

while the actual deformations may be small, such materials as

steel and iron and even stone and concrete have quite definite

elastic properties. They stretch under tension and shorten under

compression. Increase in length is accompanied by a decrease

in cross-sectional dimensions, while a shortening of length is

accompanied by an increase of section. This lateral deformation

is treated more fully in § 77. For the present the term deforma-

tion will be applied only to changes in length due to tensile or

compressive stresses. When the stress is removed, the material

returns (more or less) to its original shape. It is well to note that,

technically, the quahty of elasticity in a piece of material is

judged not by how much it will deform, but by its ability to

recover its original shape when stress is removed. However the

actual amount of deformation is often of the greatest importance

as there is a direct relation between it and the unit stresses which

accompany it, as will be shown in what follows.

64. Testing. In gathering data as to the strength and elas-

ticity of materials, many operations must be performed. Many
89
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minute measurements must be made and many observations

recorded in the course of a single test. Moreover, it is highly

important that these measurements and observations be made in

such a manner as to eliminate, in so far as possible, those errors

and inaccuracies that always

accompany human effort and

which are known as the per-

sonal equation.

The most obvious way of

meeting the above difficulties

is the employment of machin-

ery, in so far as possible.

These machines have been de-

veloped in great numbers and

variety to meet widely differ-

ing conditions. Machines to

Pjq J43 produce tension, compression,

shear, bending, torsion, etc.

in amounts varying from a few pounds up to several million

pounds have been developed. Also measuring devices, accurate

to 1/10,000'', have been made in many different forms.*

A few of the many types of apparatus in general use are shown

in Figs. 143 to 145. The elements common to nearly all such

machines are well shown in Fig. 143 which is an Olsen hand power

machine used primarily for testing cast iron bars in bending.

Power is applied through the hand wheel. The right reaction

is carried to a series of levers and finally weighed on the scales

at the top. The quadrant at the left measures the deflection.

Figure 144 shows a Riehle 200,000 lbs. screw power machine

for tension or compression tests. This machine is typical of a

large variety of machines varjdng from 10,000 lbs. to 1,000,000

lbs. capacity. Power is supplied from any convenient source to

a train of gears in the casing A, and these in turn operate the

vertical screws B. The movable cross head, C, is actuated by

the screws and may be made to travel either up or down. For

*With some types, deformations can be measured accurately to 0.00002 in.
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tension tests, the specimen is inserted between the top head D
and the cross head C. For compression tests the specimen is

inserted between C and the weighing table E. In either event

the load comes on the weighing table E, which is mounted on the

-^&^^«»!-

Fig. 144.

short ends of a train of levers which finally leads to the scale beam

on which the load imposed on the specimen is weighed. The

vertical levers on the gear casing are for shifting the gears so the

power may be applied at any one of several rates, as desired.

Various automatic and autographic devices may be added to

keep the beam balanced during a test and to record the results.

This type of machine can usually be adapted to cross bending and

shear tests by the use of some simple additional parts.

Figure 145 illustrates the Olsen 10,000,000 lbs. machine which

was built for the Bureau of Standards. This is the largest

machine in use at the present time and was built primarily for
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experimental work on full size specimens. The machinery above

the movable head is used merely to adjust the head on the speci-

mens. The power is applied

hydraulically by machinery lo-

cated below the floor and not

shown in the illustration. The

apparatus at the right controls

both the application and the

weighing of the load so that a

single person can control both

operations.

In making a series of tests

with such apparatus countless

details arise which demand

careful attention. The size and

shape of the test piece, its plac-

ing in the machine, the rate at

which stress is applied; where

and when measurements are to

Fig. 145.

be taken; these and many other details have an important bear-

ing on the ultimate meaning and value of the results obtained.

Moreover it is important that the results of experimentation by

different investigators be fairly comparable. Hence, they should

have been arrived at by similar methods. These considerations

have given rise to an elaborate technique in testing. The
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American Society for Testing Materials is the outcome of an

attempt to simplify and standardize this technique. Through

its efforts and those of similar societies abroad, much has been

accomplished. Today one can almost say that the testing of

materials is a distinct science with a voluminous literature, a well-

developed technique, thoroughly equipped and widely distributed

laboratories and national and international correlating societies.

Obviously a designing engineer or architect can hardly hope

to master the intricacies of so special a field. But he must know

enough of its methods and its vocabulary to enable him to use its

literature and its conclusions with ease and precision.

65. The Fundamental Relation. When a piece of elastic

material is tested, the deformations which result from various



94 MECHANICS OF MATERIALS

This ratio may be expressed by a curve. Figure 146A shows a

curve drawn to represent no definite material but rather to illus-

trate the typical features of all such curves. The striking features

are: the straight sloping line at the start, the short horizontal

part, just following, and the uncertain character of the remainder.

It should be noticed that the same curve (but one drawn at

different scales) would result from the use of total stresses and

total elongations. Which method of representation is used in

any given case is a matter of convenience only.

Table V in the Appendix gives the observations made during

a typical test of steel and cast iron bars, in tension.

It will be found worth while to plot these results in the form

of a curve similar to Fig. 146A.

66. Elastic Limit. It may be stated that, in general, all

elastic materials which are under stress will return, upon removal

of the loads, to their former length. This statement, however,

is found to be true only when the unit stresses involved are less

than a certain limit. Beyond this limit, the elasticity (i.e., the

ability to resume its original shape) of the material is impaired.

This is shown by the permanent deformation (set) which is

found to result from these high stresses. This occurrence of

permanent " set " marks, then, the limit of elasticity or elastic

limit of the material.

At the same unit stress which marks the elastic limit (as deter-

mined by permanent set) there occurs also a change in the con-

stant ratio between unit stress and unit deformation.* Deforma-

tions increase at a more rapid rate than applied loads. This fact

is shown by the plotted curve (Fig. 146) leaving its constant

direction and bending more rapidly toward the right at the point

marked ''elastic limit." The uncertain character of the curve

beyond this point would seem to indicate, and investigations

prove, that to all intents and purposes the elastic limit marks

same terms. Thus, if a bar of wrought iron 23' 0" long is stretched 0.138" by a

given load, the unit elongation is 0.138" ^ (23 X 12)" = 0.0005. This quantity

it will be noted is neither inches, feet nor pounds. It is a ratio; the ratio between

original length and total deformation.
* More detailed texts show this statement to be only approximately correct.
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incipient failure. This being the case, it will be apparent at once

that the elastic limit is of great significance to the designer as

marking the limit beyond which no part of any structure should

ever be stressed.* The elastic limit might be expressed either in

terms of unit deformation or the unit stress at which it occurs.

The latter, however, is the accepted way, elastic limits being

always stated in pounds per square inch.

'^ 67. The Yield Point. When ductile materials are tested at a

stress slightly greater than the elastic limit, there comes a time

when there is a sudden yielding or slipping as indicated by the

horizontal portion of the curve in Fig. 146A. A relatively large

deformation occurs without any increase in the load. This

yielding is only momentary, however, and the material, having

become adjusted, can again take up and hold an increased load.

In order to understand the significance of the yield point, the

conditions of an actual test must be visualized. As the machine

increases the load on the test piece, the operator keeps the scale

beam in constant balance by running the poise on the scale beam

outward. The increase of load and the movement of the poise

are carefully synchronized to maintain the balance of the scale

beam. When the sudden yielding of the specimen occurs, as

above described, the scale beam drops and this automatically

releases the load, or some part of it. During this period the test

heads of the machine are moving and producing deformation

but no additional stress. The unit stress at which this action

occurs is called the yield point. Soon the scale beam rises again,

indicating that the yielding is over and the operation continues

as before.

In one sense the yield point is of no significance to the designer,

since it lies above the elastic limit, while the stresses used in

design are below the elastic limit. However, the yield point is

relatively close to the elastic limit, and is much more easily deter-

mined in commercial testing. Therefore, there is a tendency to

confuse the two, both in nomenclature and in the actual values

quoted.

* Because of this it is usual to take the elastic limit into account when fixing

factors of safety. (§ 78.)
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The curve shown in Fig. 146i^, is typical for non-ductile

materials. The elastic limit is poorly defined and the yield

point is non-existant.

68. The Ultimate Strength. Beyond the elastic limit, as before

noted, the behavior of the material is altogether uncertain. No
generalities can be stated as to the amounts of deformation or
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69. Stress-Deformation Curves. It should be noticed par-

ticularly that the curves in Fig. 146 do not apply to any known

material. Figures 147 to 149 give stress-deformation curves for

a number of different materials. It will be noted that ductile

materials (steel is a good example) show all the characteristics of

the typical curve Fig. 146 A, while the brittle materials, such as

cast iron, concrete, etc., have curves which follow the form of Fig.

146 B. In some of these latter the elastic limit is very indefinite.

In none of them is there a clear-cut yield point. Often the

curve terminates very abruptly, and in some cases the straight

portion at the beginning is very short, the line being curved

practically throughout its length.

70. The Modulus of Elasticity. The form of a typical stress-

deformation curve reveals the fact that, at all unit stresses less than

the elastic limit, there is a constant ratio between unit stress and

the resultant unit deformation. This ratio is different for each

different material and is called the modulus of elasticity of the

material.

These facts may be expressed by the equation

Unit Stress ,t i i r -r^i ^- -^= Modulus of Elasticity,
Unit Deformation

or, in abbreviated form.

(1) TTT = ^•
P/A

q!L

In which q represents the total deformation.

It will be seen that when a large unit stress produces a small

unit deformation, i.e., when the material has a great resistance

to deformation, the value of E is large,, and vice versa. Putting

this in another way, the modulus of elasticity of a material is a

measure of its stiffness. Or again, referring to Fig. 146 A, the

modulus of elasticity is expressed by the slope of the straight part

of the stress-deformation curve, and is equal to the tangent of

the angle d.

For an absolutely brittle material, E = ^ = tan 90°,

For an absolutely ductile material, E = = tan 0°.
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By assigning to each term in the left side of equation (1) its value

in pounds, inches or square inches, it will be evident that E is

expressed in pounds per square inch. This will be better under-

stood if we imagine a case in which the deformation q is equal to the

original length L. In such a case the denominator of the left

side of equation (1) becomes unity and E is seen to be equal to

the unit stress. In other words, E is that unit stress which would

produce, in a given material, a deformation equal to its original

length. Of course no structural material would allow of such

deformations. The idea is a purely fanciful one, but it does

shed light on the general character and significance of modulus

of elasticity.

The modulus of elasticity for most materials of construction

is about the same whether determined from tensile or compressive

tests, except in the case of the more brittle materials. Modulus

of elasticity for shear is discussed in § 72. Average values for E
are given in Table I in the Appendix.

The student should particularly note that the ratio which is

called E holds good only at stresses less than the elastic limit, since

it is only in such a case that the ratio of stress to deformation is

a constant quantity. No problem involving greater stresses can

be solved by using the above relations. On the other hand, when

the stresses involved are within the elastic limit, equation (1)

can be used in any one of several ways.

As an example, suppose a piece of material 12' 0'' long and

1" X 1" in cross section is found to elongate 0.0767'' under a

load of 16,000 lbs., and it is required to find the modulus of

elasticity of the material. Then we have

16,000 lbs.

1" X 1"
E =

Q Q^^^,,
= 30,000,000 Ibs./sq. in.

144"

Again, suppose that the material of a bar is known to have its

E = 30,000,000 Ibs./sq. in., that its length is 12', and that its

area of cross-section is 1 sq. in. It is required to know the pull X,
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which will produce an elongation of 0.0767''. Then the same

relation gives

X
r X r
0.0767''

30,000,000 Ibs./sq. in., and X = 16,000 lbs.

144'

Similarly, if any four of the quantities in equation (1) are known,

the fifth may be determined.

To sum up the whole matter, the modulus of elasticity is the

direct measure of the stiffness of a material. For* any given

material, £* is a constant quantity for all cases of stress within the

elastic limit. It is expressed in pounds per square inch, and its

numerical value for structural materials runs up into the millions.

On the stress-deformation curve for any material, E is shown by

the inclination of the straight line part.

PROBLEMS

v/ 1. A piece of material 1" X 2" and 12' 0" long elongates 0.006" under a load

of 2000 lbs. What is its modulus of elasticity?

2. (a) What will be the elongation of a bar of steel 18' 0" long and U" in

diameter, under a load of 40,000 lbs.? (h) If the load is 65,000 lbs.?

3. What unit stress will shorten a block of bronze, 2" X 2" and 6" long, by one

ten-thousandth of its length?

4. How much load will cause 0.006" elongation in a bar of aluminum, 9' 2"

long and 2" X h" in cross section?

5. A wrought iron rod 1" in diameter and 208' 0" long is fitted with a standard

turnbuckle and thread. Supposing the ends of the rods to be fastened

to rigid supports and the turnbuckle in the center screwed up to produce

a tension of 500 lbs. in the rod. How much additional stress will be

caused by the next half turn of the turnbuckle. (See handbook for de-

tails of turnbuckle and threading of rod.)

6. A load is to be supported as in Fig. 31. Each wire is of wrought iron,

f" in diameter, (a) How much load will be required to lower the

ring 1^"? (h) How much load will be required to lower the ring i"?

7. An elevator plunger is of steel, 6" in diameter outside and 5i" inside. It is

250' long. ^Yhsit is the difference in its length when suspended and

when resting on its lower end. The weight of the car is taken up by

counter weights.

* Certain exceptions are found in this statement. In the case of concrete and

other brittle materials the stress-deformation curve is a curved line almost from the

beginning (Fig. 149). In such a case the E is evidently a variable, being different

for each different unit stress.
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/ 8. If a bar of a given material is 1" in diameter and 8' 0" long, and if the

elongation of this bar under a load of 15,000 lbs. is found to be 0.05",

how much elongation will be produced in a bar of the same material

which is 2" in diameter, 12' 0" long, and carrying a load of 30,000 lbs.

9. A steel bar 50' 0" long is suspended from one end and hangs vertically but

carries no load except its own weight. WTiat is the total elongation?

10. A round tapered steel rod is 2'' in diameter at one end, 1" in diameter at the

other end, and 20' long. What will be the elongation under a tensile

load of 15,000 lbs.?

11. From the data given in Table V in the Appendix, deduce the elastic

limit, ultimate strength, and modulus of elasticity for each case.

71. Shearing Stress. Forces producing tension or compres-

sion act in the same straight line and in opposite directions.

When applied axially (§ 56), they produce stresses which are

uniformly distributed over a section at right angles to the direction

of the forces. The case of coplanar forces, oppositely directed

but not in the same straight line, is more complex. It may occur

in one of two cases as follows: (A) the oppositely directed forces

may be well separated, (B) they may be adjacent.

Case A is illustrated

by such an arrangement

as is shown in Fig. 72.

In such a case the mem-
ber carrying the load is

a beam and bends in a

manner familiar to all.

The stresses involved

are discussed in Chap-

ters XIII-XVIII.

Case B is illustrated by the ordinary fish-plate timber splice

shown in Fig. 150. In detail y the forces A and C, being oppo-

sitely directed to B, tend to slide the blocks D and E along the

main timber. This action causes stress on the two shaded areas.

Again, the same kind of stress

occurs when a hole is punched in

a plate, as shown in Fig. 151.

When the punch descends, it

causes stress due to oppositely

directed forces on each side of the

Defa//

Elevaiion,

Fig.

Secfion

151
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periphery of the plug which is punched out of the plate. Such

stress is called shearing stress. Notice that shearing stresses

occur on areas extending parallel to the direction of the forces.

Obviously there can be no sharp division between cases A
and B above. ''Well separated" and ''adjacent" are words that

have no precise meaning. But in general, when the distance

between the oppositely directed forces is small in comparison

with the dimensions of the material under stress, the stresses

are shearing rather than bending and may be considered as

uniformly distributed over the areas receiving the stress.

Let it be required to determine the force required to punch a

hole f in diameter in a plate J'' thick, the ultimate shearing

strength of the metal in the plate being 40,000 Ibs./sq. in.

The sheared area is f X 3.1416 X i = 1.178 sq. in. and the

force required is 40,000 Ibs./sq. in. X 1.178 sq. in. = 47,120 lbs.

72. Shearing Deformation. Bodies subject to shearing stresses

deform quite differently from those under tension or compression,

the deformations being angular rather than

linear. Figure 152A represents a block

held in a clamp and acted upon by the

^v>vi '^^ force F. Shearing stresses exist on any
'4^////////////////^^ horizontal plane passed through the block.

)

* P' k—J^ The top section of the block transmits

I

/ : / the force F to the section below by

\j \ reason of shearing resistance on the
''

' ^^^— plane AA. And each section in turn
i^iG. 152

transmits to the one below until the

reaction is obtained on the clamp.

The deformation produced on each plane is the same, but it

accumulates toward the top, as shown in Fig. 1525. Such

deformation is measured by the ratio between the horizontal

displacement aa' and the vertical height ad] that is, it is the

tangent of the angle ada' . It gives rise to a shearing modulus

of elasticity, a full treatment of which may be found in more

extended texts.

Since the shearing modulus is rarely used in structural work,

the subject will not be developed further in this book.
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PROBLEMS ^ ^

^ 1. What is the unit stress on the pins a and 6, Fig. 32? The pins are of cast

iron, 2" in diameter.

2. If the pins s' and s", Fig. 92, are each 1" in diameter, what is the unit stres.s

on each?
\

y3. What force is required to punch a hole \\" in diameter in a wrought iron

plate \" thick? P . S' 3.:—

4. A very thin punch will fail in compression before it can be forced through a

very thick plate. Derive an expression to show the thickest plate that

can be penetrated by a given punch of circular cross section,

y 5. What is the thickest plate of wrought iron that can be punched by a steel

punch \" in diameter; the punch bemg of a steel which has a crushing

strength of 120,000 lbs. per sq. in.?

73. Shear at Right Angles to Applied Forces. The forces

shown as acting on the block in Fig. 152B would produce a

clockwise rotation. It is therefore evident that the clamp in

Fig. 152A must exert not only an horizontal r
reaction but also a counter-clockwise mo-

ment as shown by the free body in Fig. 153.

The forces G which produce this moment F
are a part of the necessary reaction to the '<?

force F. Their amount is found by equa-

ting the moments of the two pairs about some point as o.

Then

(1) Fa = Gh,

Now it is evident that the forces G produce a shear on the block

in a vertical sense. In order to determine the relative intensities

of the two shears, let the thickness of the block, perpendicular to

the paper, be c; let the intensity of the horizontal shear be S

and that of the vertical shear be S'. Then

F = She, and G = S'ac.

Substituting these values for F and G in equation (1), we find

Sahc = S'hac, or S = S\

Hence the intensities of the shears are equal.

If now we think of Fig. 153, not as a large body but as an

elementary part of any body subjected to shearing stress, the

same demonstration would hold good. Thus it is evident that
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whenever a body is subjected to shearing forces, two sets of

shearing stresses, equal in intensity and acting at 90° to one

another, are set up throughout the body.

74. Tension and Compression Accompanying Shear. Let Fig.

154A represent the side elevation of a rectangular prism cut from

the body shown in Fig. 152. Let the arrows shown represent

shearing stresses on the faces of the prism. By § 73, these

stresses must occur together and their intensities must be equal.

The effect of the shearing stresses, whether considered together

/L oi' separately, is to deform the parallelo-

piped into the form shown in Fig. 1545.

During this deformation the diagonal ge

/r has been lengthened and df shortened.

It will now be shown that these deforma-

tions indicate the presence of tensile and

B compressive stresses which accompany

the shear.

Let the parallelopiped be cut by a diag-

j onal plane and one part shown as a free

body as in Fig. 154C Let S represent

C the intensity of the shearing stresses on

the faces de and dg and let c represent the

Fig 154 depth of the parallelopiped (perpendicu-

lar to the paper). Then F = hcS and

G i= acS. Now the stresses which hold the body in equilibrium

may be resolved into the normal stress H and the tangential

stress J. The amounts of H and J may be found by resolving

F and G into components normal and parallel to ge. We have

r

^^

H = F sine + G cos 6,

= She sin 9 + Sac cos 0,

= 2Shc sin d;

J = G sine + F cos 6,

= Sac sin 6 + Sbc cos d,

= Scm.

Now if each of these expressions is divided by the area over which

the respective stresses are distributed, we get

Unit Stress due to H = 2S sin d cos 6 = S sin 2d,

Unit Stress due to J = S.
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If we examine the first expression, we see that it becomes a

maximum when 26 = 90°, that is when 6 = 45°, and that under

that condition the unit stress due to H is equal to S.

The second expression has the same value for all values of d.

Moreover if we had taken our free body by cutting . a plane

through the diagonal df, we would have found the normal stress

on the section to be the same in amount but of opposite sign.

The above discussion, taken in connection with § 73, may be

summed up as follows. When a body is subjected to shearing

forces only, shearing stresses are set up on every plane passed

through the body and perpendicular to the plane of the shearing

forces (i.e., perpendicular to the paper in Fig. 154). The shear-

ing stresses on all such planes are equal in intensity. There are

also present tensile and compressive stresses which act normal to

such planes and which reach a maximum intensity (equal to the

shearing stresses) on planes at 45° to the direc-

tion of the shearing forces.

Thus if there were a material whose ten-

sile or compressive strength were less than

its shearing strength, and if shearing forces

were applied, failure might result on a plane

at 45° to the forces and be due to this tension

or compression which accompanies the shear.

(See § 78 for an illustration of this case, and

§ 200 for an extension of this principle.)

75. Shear accompanying Tension or Com-

pression. This case is analogous to that in

§ 74. Let the bar shown in Fig. 155A be

subjected to tension as shown. The load

produces a unit stress on a normal section equal to P/A. Now
let a plane be passed through the bar, making an angle with its

axis. If now one end of the bar be taken as a free body, as in

Fig. 1555, it is seen that normal and tangential stresses are re-

quired for equilibrium, as shown.

The shearing stress Pt has the value P cos d and is distributed

over an area equal to A /sin 6. Thus the shearing unit stress is
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1 P IP
.

"^
-- sin ^ cos ^ = - — sin 26.
A 2A

An examination of the expression for shearing unit stress shows

that its value is zero when B = 90° or 0° and a maximum, equal

to one half of P/A, when Q = 45°. Thus it is seen that in any-

material subject to tension or compression whose shearing

strength is less than i of its tensile or compressive strength,

failure in shear on a 45°* plane may be expected. (See § 78).

In a manner similar to the above, the unit stress due to Pn

may be shown to be {PiA) sin^ 6. This value is a maximum

when B = 90°, i.e., danger of failure is greatest on the cross

section, as might be supposed.

PROBLEMS

1. A stick of timber, 6" X 6" and 10' 0" long, carries a tensile stress of 25,000

lbs. At one point in its length the grain is at 45° to the axis of the

timber. What is the shearing unit stress parallel to the grain at that

point?

2. A cube, 2" on each side, has compressive forces of 500 lbs. acting on the

horizontal faces. There are also tensile forces of equal amount on the

right and left vertical faces. What is the unit shearing stress on the

planes, whose traces form the diagonals of the front face?

3. A rectangular block 2" X 3" X 6" is under the action of two forces of 500

lbs. each. These forces act along the 6" diameters of the 2" X 6" faces

and are oppositely directed. There is a second pair of forces acting along

the 3" diameters of the 2" X 3" faces. The block is in equilibrium, (a)

Determine the amounts of the second pair of forces. (6) Determine

the unit shearing stress on a plane passed parallel to the 2" X 6" faces

and midway between them, (c) Determine the normal and shearing

unit stresses on each of the planes whose traces form the diagonals of the

3" X 6" faces.

4. A steel bolt, 1" in diameter and 12" long, is subjected to a tension of 5000

lbs. What is the maximum unit stress in tension and in shear?

5. A brick pier is 16" X 16" in cross section and 6' 0" high. It carries a

central load of 30,000 lbs. What is the maximum unit shearing stress

in the pier?

* In practice this statement is modified by friction which develops on the plane

of rupture.



CHAPTER IX

MATERIALS

76. Introduction. It is impossible, in a text of this kind, to

treat completely the qualities of the materials of construction.

There are many standard works devoted exclusively to this

subject. But it is the purpose of this chapter to summarize

the matter sufficiently to illuminate the study of that which is our

chief concern, viz., the distribution of stresses and deformations

in loaded structures and the proportioning of their parts in order

to resist the stresses, and to minimize the deformations.

It will not be possible to show the composition and methods of

manufacture nor the means and methods by which the qualities

of materials are tested, measured, and correlated. It must

suffice to point out that the testing of materials for each separate •

quality has a special technique involving usually distinct appa-

ratus and procedure as to each step; from, the taking of the

specimen to the final observations. An exact knowledge of all

of the detail of these operations is not essential to the structural

designer. But it is essential that he should know the main

elements of the composition, manufacture, and testing of ma-

terials; that he also should be familiar with the general character-

istics of the usual materials and have easily available the infor-

mation concerning those that are more rarely used. This of

course implies the study of much more voluminous material than

is presented here.

77. Elasticity. The general notions concerning the elasticity

of Materials are given in Chapter VIII. There we have seen how

stress is the cause of deformation: that a lengthening under

tensile forces is accompanied by a reduction of cross section and a

shortening under compression by an increase in section. It may

be worth while, however, to point out how the ideas of §§ 74 and

75 aid in understanding^ the true significance of this bilateral

change in size due toistress.

107
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Consider a piece of material under compressive stress. From

§ 75 we know that the compression is accornpanied by shearing

stresses which are greatest on planes at 45° to the axis. And from

§ 73 we know that these shearing stresses

\ occur in pairs in directions at 90° to one an-

_ ^^vv T- other. Conceive further an elementary cube

''~~'4\y^~^ cut from the body in Fig. 156A and shown

enlarged in Fig. 156J5. On its faces the

shearing stresses which accompany com-

pression are shown. These produce a re-

sultant tension as shown by TT (§ 74), which

O

acts in a direction perpendicular to the axis
A B
p ira of the piece and which explains the increase

in sectional area that accompanies the short-

ening in length. It will be shown also in § 78 that these tensile

stresses often influence largely the manner of failure in compression.

The quality of elasticity (§§ 63-70) is present in most of the

materials of construction to a greater or less degree when they are

not stressed above the elastic limit (§ 66). Some of the metals,

particularly those that are manufactured by a rolling process, like

structural steel, are almost perfectly elastic. The stress-defor-

mation diagram (Fig. 147) starts with a nearly straight line and

the elastic limit and particularly the yield point (§ 67) are

well defined. On the other hand, such metals as cast iron and

most of the earthy materials like concrete, brick, stone, etc., have

poor elastic qualities. Not only is the amount of deformation

small but the elastic limit is poorly defined or non-existent.

Often, in these materials, the stress-deformation curve is not a

straight line (Fig. 149), and a permanent set is observed under

small stresses.

If a body is permanently deformed under small stresses, it is

called plastic. Lead, for example, when under stress starts a

flow of metal under small loads. Certain grades of copper and

other alloys are markedly plastic. Moreover some of the more

elastic materials, like steel, become somewhat plastic under high

stresses (§ 78) or high temperatures.
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A body which cannot change its shape without rupture is called

brittle. Cast iron, most of the masonry materials, and glass are

the best examples, though none of them is perfectly brittle. The

quality of brittleness is the reverse of plasticity.

Ductility is the quality possessed by some metals which makes

it possible to draw them into wires or hammer them into sheets.

During such a process the materials must undergo large defor-

mations without failure. This quality is often confused with

plasticity. It is in fact analogous. A material which is plastic

under high stress, and is also tough, is ductile.

Gold is perhaps the most ductile material, as witnessed by the

very thin leaf used for gilding. Soft copper sheets are sufficiently

ductile to permit the stamping out of high relief ornament.

Certain grades of iron are easily drawn into wire. This process

of cold drawing and working often adds to the strength or raises

the elastic limit of the material so treated.

78. Strength. The quality of strength is perhaps the most

important to the Structural Engineer. It is apparently unrelated

to the other qualities possessed by a material, though in a general

sort of way heaviness and hardness, particularly the former, are

considered as indications of superior strength. However, even

the most superficial consideration shows, from actual cases, that

there are plenty of contradictions to even so guarded a statement.

The strength of a given material may vary widely depending

on the kind of stress. Thus cast iron, stone, etc., are much
stronger in compression than in tension, while with wood the

reverse is true. Again the strength of a material which is

definitely stratified or which has a definite grain, as in the case of

some kinds of stone, and all kinds of timber, may vary widely,

depending on the direction of the stress, relatively to the direction

of the stratification. For instance, the ultimate strength of

timber in tension is forty or fifty times as great when the forces

act along the grain as it is when they act perpendicular to it.

Materials which are at all plastic under high stresses show

markedly different phenomena of failure than those that are

more brittle. When a ductile material is stressed nearly to the



110 MECHANICS OF MATERIALS

breaking point in tension, there is a marked reduction in area and

finally a break which usually occurs in the form of a cup and

cone. This form of break is shown in Fig. 157 which is taken

Fig. 157

from test pieces of medium steel. The cup and cone are formed

approximately at an angle of 45° to the axis of the piece, as

described in § 75.

If the ultimate tensile unit stress for the material is less than

twice the ultimate shearing unit stress, the break will be at right

angles to the axis. This form of break is shown in Fig. 158

which is taken from a piece of cast iron tested in tension.

Fig. 158

Failure in compression is a very different phenomenon from

failure in tension. Since the material is being forced together

lengthwise, the only possible failure that can occur is in a sidewise

sense. If the sides of a cube could be supported so as to abso-

lutely prevent bulging, the ends could carry any load whatever

in compression. In §§ 74 and 77 we have seen that compressive

stresses produce shear on inclined planes and tension in a direction

normal to that of the compression. These facts are well il-

lustrated in Figs. 159-161. Figure 159A shows typical com-

pression failures in a piece of red oak. Here the failure is due to

shear, the exact angle of the plane of failure varying with the

characteristics of the individual piece. Figure 1595 shows a
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piece of red oak in which failure has started on each of two planes,

oppositely inclined to the axis. Figure 160 shows the typical

failures in a concrete cylinder. The break occurs in a roughly

Si!i«!

B
Fig. 159

conical form due to shearing on inclined planes. Figure 161

shows typical failures in a cement cube and cylinder. In each

case the double conical form of failure, due to shear and transverse

tension, is quite evident.

Fig. 160

Ductile materials cannot be said to have any definite ultimate

strength in compression. Failure occurs, due to a gradual flow

of the metal. Figure 162A shows a cylindrical specimen of lead,

before and after it was tested in compression. The change in

texture is due to the cold working which the metal undergoes
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during compression. Figure 1Q2B shows the end and side views

of a piece of steel pipe tested in compression. The piece has been

Fig. 161

distorted quite beyond recognition as a pipe but if put to a

further test would show considerable strength in compression.

i
A

B

Fig. 162

In such cases, it is obviously impossible to set any definite

ultimate strength in compression. On the other hand, there is a
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definite elastic limit in compression which, in the case of wrought

iron and steel, is practically the same as the elastic limit in

tension.

In the case of huilt up steel columns the ultimate strength in

pounds per square inch corresponds closely to the elastic limit for

the material, as determined from small specimens (§ 183—B).

When a piece of material is so loaded in compression that the

loaded area is considerably less than the entire cross-sectional

area, the ultimate unit strength of the loaded part is considerably

greater than when the load covers the entire section. This is

explained readily by the fact that the unloaded part of the piece

forms a restraining casing around the stressed part, thus pre-

venting, to some extent, the sidewise movement that constitutes

failure in compression. Strength values determined in this

fashion are called bearing strength in order to distinguish them

from the compressive strength. The amount by which the

bearing exceeds the compressive strength varies with the per-

centage of the entire surface which is loaded as well as with the

material, but general practice seems to allow about 25 per cent,

increase when only 50 per cent, of the cross section is loaded.

In judging of the strength value of a material it is not wise to

consider the ultimate strength alone. The elastic limit is quite

as important, and the relation between the two quantities is

widely different in different materials. Consequently in de-

termining a factor of safety both the ultimate strength and

elastic limit must be considered, as well as the uniformity of the

material.

79. Hardness. Hardness is a property quite distinct from

strength. There are a number of recognized tests for hardness

which depend either on the resistance of the material to scratching

or to indentation under a blow. These tests are less well

standardized than those for other qualities.

Hardness may (with caution)* be taken as an indication of the

resistance a material will afford against abrasion; which is of

great importance in paving materials and in other places where

* Rubber is a notable exception.
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wear may be expected. There are special tests for abrasion

which should always be used where this factor is of prime im-

portance.

With the same reservations as above, hardness may be taken to

indicate the possible resistance to weathering.

80. Weathering. The tendency of a material to disintegrate

on exposure to the weather is due to a number of causes. Water

and the gases present in the atmosphere, with or without the

help of sunlight, set up chemical reactions that may cause a

change in color or even complete disintegration. Soluble salts in

one material will often attack another material when dissolved.

The electrolytic action that is set up between certain metals when

brought in contact in the presence of moisture and the familiar

rusting of irons are other examples.

A wholly different set of actions are those due to purely physical

causes. The abrasion of rain and hail, the sliding and falling of

snow and ice, and above all, the changes in size due to changes in

temperature or moisture content, are, except perhaps for rusting,

the most destructive forces to be encountered. Any material

which absorbs much water is apt to suffer when the water freezes

and, in expanding, tends to split the material.

The rotting of timbers in air, which is due to a fungus growth,

and the destructive attack of various insects and borers on both

timber and concrete, are cases of destructive action in a third

distinct class.

81. Expansion. Nearly * all materials expand with a rise in

temperature and contract as they cool off. Careful investigation

has shown that the amount of this change in size is proportional

to the change in temperature and also to the size of the piece.

It takes place equally in all directions.

For each material there is a number (called the coefficient of

linear expansion) which expresses the change in length (or

breadth or thickness), per degree of change in temperature, per

unit of length (or breadth or thickness). These coefficients are

* Water at temperatures between 32° and 39° F. is a notable exception.
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quite small decimals. Some reference books quote the coefficient

as for 100° change in temperature. Every table of coefficients

therefore should state clearly whether it is made up for the

Centigrade or the Fahrenheit scale of temperature, and for how

many degrees of change according to that scale. (See Table I,

Appendix.) Coefficients of surface expansion and of volumetric

expansion are also sometimes quoted but are not important for

the work in hand. If needed they can be derived from the

coefficient of linear expansion.

The question of expansion and contraction becomes very

important when materials having different coefficients are used

together. The stresses set up in such cases are discussed in § 244.

It is interesting to note that materials so widely different in all

other respects as are steel and concrete have practically the same

coefficient of expansion. Were it not so, the use of reinforced

concrete in construction could not have developed as it has.

82. Weight. The weights of materials are of great importance

when dead loads are to be determined. Very full information on

weights of materials is contained in all handbooks. It is im-

portant for the structural designer to know the weight per unit

of volume of some of the more important materials. It is not

worth while however to attempt to memorize such data but

rather to gradually absorb it by use. The weight of water

(which is usually taken as 62^ Ibs./cu. ft.) is one of the funda-

mental facts of nature and should be memorized, as it forms a

sort of key fact from which other weights may be judged, and

around which other facts will accumulate naturally in the mind.

(See Table I.)

83. Aesthetic Qualities. The aesthetic qualities of materials

form a subject concerning which there is practically no literature.

Matters of color, scale, texture, and assemblage might however be

made the basis of an extended treatise, for no one can hope to

handle materials satisfactorily unless he adds to a knowledge of

scientific tests an educated aesthetic appreciation.

84. Cost.—Availability. The questions of the cost of materials

and of the available stock sizes and shapes are matters that vary
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so much from time to time and from place to place as to have very

little significance for the student. The practitioner perforce

must keep posted on these facts as a necessary part of his

equipment, but for the student they are merely an added and

largely meaningless complexity. The above is not intended to

imply that the student should disregard economy of design in so

far as the principles are evident and universal. The fundamental

principles of structural design are safety and economy. The

student who fails to recognize this has missed the spirit of the

entire matter. But any attempt to study prices and stocks at

this stage of his development is not only useless but unwise.

85. Fatigue. It long has been known that when a piece of

material is subjected to repeated loadings, failure may occur even

though the unit stress at no time reaches the ultimate strength of

the material as determined in the usual manner.

60000

50000

^40000

i
/ ?. 3 ^

Repetitions in millions.

Fig. 163. Wohler's Fatigue Tests on iron axles, under repeated bendings

from zero to the stress indicated.

Experiments on this subject thus far have been largely confined

to steel. Even in that restricted field, it cannot be said that the

phenomenon has been explained fully. It is therefore impossible

to make any statements that will apply to all materials, nor to do

much more than to summarize observed facts.

From results thus far obtained it appears that:

(1) Failure may be caused by repeated loadings which cause

unit stresses less than the ultimate strength of the material.
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(2) With stresses varying from zero to a maximum, failure can be

caused by stresses less than the elastic limit if loading is

repeated sufficiently often (several millions of times).

The greater the maximum load, the less will be the number

of repetitions required to produce failure.

(3) With stresses varying from tension to compression, the

destructive effect is greater than for either kind of stress

varying from zero to a maximum.

The curve in Fig. 163 gives some concrete idea of the effects of

repeated stress.

86. Steel. Steel is available in many shapes and qualities.

Most of the steel used for structural purposes is rolled from hot

ingots into bars, plates, and shapes of various weights and grades.

The shapes and grades most generally useful have been de-

termined by repeated trials, based on theoretical considerations.

In Chapters XVI and XIX the theoretical principles governing

the shapes of beams and columns are given. Other shapes, such

as angles, channels and zee-bars, are based more on convenience in

fabrication than on theoretical principles of strength. Famili-

arity with the various shapes is best acquired in practice and from

the various handbooks.

Steel may be had also in the form of castings, either in stock

patterns or in forms made specially for a given purpose. Steel

castings if properly manufactured have about the same strength

as rolled steel, but they are somewhat more brittle.

The material from which steel shapes are rolled is made in a

number of grades. These grades differ from one another

principally in variations in the quantity of the elements other

than iron which are present in the steel; chiefly carbon, phos-

phorus and sulphur. The amounts of these elements which may

be present and still give a steel adaptable to a given purpose have

been worked out and standardized in such a way that the various

grades have come to be known by the names of the purposes to

which they are adapted, such as structural steel, rivet steel,

boiler steel, etc.

Structural steel is a medium grade as to hardness and strength.
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Its ultimate strength in tension or compression is about 60,000

Ibs./sq. in., as contrasted to 50,000 Ibs./sq. in., for rivet steels, and

200,000 Ibs./sq. in., for cable wires. The yield point of structural

steel is about one half of the ultimate strength, with the elastic

limit somewhat lower. What is commercially known as high

elastic limit steel is produced by cold working. In this class of

material the ultimate strength is greater than for steel of the

same composition that has not been cold rolled, and the yield

point is nearly as high as the ultimate strength.

The modulus of elasticity is about the same for all grades of

steel and is uniform at all stresses below the elastic limit,—about

30,000,000 Ibs./sq. in.

Under high stress steel is quite plastic; the ultimate elongation

of an 8" piece adjoining the fracture of s^ test bar will average

about 2", the decrease in area at the break being around 40 per

cent.

Ordinary commercial steel is about the most uniform and

reliable material in common use, except in the one item of its

tendency to rust. When exposure to rusting conditions is not

unduly severe, factors of safety for steel may be kept fairly

low.

87. Cast Iron. Cast iron is produced by running the hot metal

into sand moulds. The metal has a larger carbon content than

steel, and as a result iron castings are more brittle than steel. .

There are several recognized grades of castings with tensile

strengths varying from 12,000 Ibs./sq. in. to 35,000 Ibs./sq. in.;

and compressive strengths between 35,000 Ibs./sq. in. and 150,000

Ibs./sq. in.

The elastic properties of cast iron are imperfect. The stress

deformation curves in both tension and compression are more or

less curved even at low stresses, and there is no definite elastic

limit or yield point (Fig. 148).

Cast iron may be considered as a distinctly brittle material.

Tension failures occur on a plane normal to the line of stress, and

there is no visible reduction of area before failure. Compression

failures occur on planes about 35° from the vertical.
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From the structural point of view cast iron has two distinct

uses. One is for incidental features, particularly when moulded

or ornamental work is desired. Such features include stairs,

elevator enclosures, frames for doors and windows, etc. The

other use is for important structural members which carry

compressive stress, as columns and base plates.

In either case cast iron is economical when a large number of

identical parts is required, as the unit cost of the pattern is then

small. However, for members carrying much stress, the use of

cast iron is being discontinued in favor of steel, since its brittle

quality makes it somewhat unreliable and there is a number of

characteristic defects that may occur in a casting and which may
remain unrecognized even after a very painstaking inspection.

The great advantages of cast iron over rolled steel are its

superior rust-resisting qualities, the possibility of moulding it

into any reasonable form, and, in certain cases, its cost.

88. Timber. The physical characteristics of timber vary in so

many ways and over so wide a range as to be fairly bewildering.

First comes a large number of species, such as oak, pine, maple,

etc. Then under each of these may be half a dozen or more distinct

varieties. Then, taking any given variety of a given species, the

qualities of a timber will vary with the rate of growth (due to

climate, exposure, soil, etc.) of the tree, and with the part of the

tree from which the timber is cut. Again, the strength and other

qualities of any given piece of timber are dependent to a large

extent on the moisture content and upon the direction, relative

to the grain, in which the stresses occur. Lastly, the presence of

various natural defects, such as knots, shakes, etc., has a large

effect on the strength and other qualities.

Thus (quoting from a large number of tests by the Forest

Products Laboratory) the ultimate bending strength may vary

from that of basswood (4,500 Ibs./sq. in.) to hickory (12,700

Ibs./sq. in.). Within the pine family this same quality varies

from 4,700 Ibs./sq. in. for sugar pine to 8,600 Ibs./sq. in. for long

leaf yellow pine. The rate of growth and position in the tree may,

either of them, effect a variation of 20 per cent, above or below
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average strength values. The presence of moisture to the extent

of 20 per cent, of the dry weight may decrease the strength by as

much as 40 per cent. The strength under different kinds of

stress of long leaf yellow pine is about 17,000 Ibs./sq. in. in tension

parallel to the grain and 300 Ibs./sq. in. in tension across the

grain, with intermediate values for other kinds of stress. The
effects of knots etc., may cause a variation of 30 per cent., more

or less, either way from the average values.

It will be seen from the above that the determination of

working strengths for timber is a matter requiring great care and

experience, and that careful inspection is necessary unless large

factors of safety are used.

The elastic properties of timber are neither as marked as in

steel nor as deficient as in cast iron. The stress deformation

diagram is generally straight at the beginning. There is a

recognizable elastic limit at perhaps one-half of the ultimate

strength, but there is usually no definite yield point. The

modulus of elasticity will vary between 800,000 and 1,800,000

Ibs./sq. in.

Timber is remarkably strong in proportion to its weight.

This fact, taken with the ease with which it can be cut to size,

assembled and worked into various shapes, makes it extremely

valuable for many purposes, especially as a finishing material and

for temporary structures, forms, etc. In these latter cases the

ease of wrecking and the large salvage value in the timber itself

are distinct advantages. On the other hand timber burns freely

and is subject to decay. When exposed to the weather it must

be kept painted. These qualities, together with the increasing

cost of the timber itself and the labor expended on it, are at

present tending to eliminate timber as a structural material for

permanent buildings.

The great variation in the qualities of all wood products due to

such natural defects as knots, shakes, etc., has seriously hampered

the efficient use of timber for structural work. The selection,

naming, and means for identifying the various grades of lumber

has been so haphazard that one could never be certain of obtaining
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timber of a reasonably good and consistent quality. Hence

factors of safety have been kept high to cover this point. But

through the combined efforts of the lumber manufacturers and

the government Forest Service, grading rules are now being

worked out which give promise of better conditions in this

respect.

89. Brick and Stone. Brick and stone may be classed among

the brittle materials. There is the same absence of well-defined

elastic qualities as in cast iron. The ultimate compressive

strength of individual bricks will vary between 500 Ibs./sq. in. and

10,000 Ibs./sq. in. while different stones will give values between

5,000 Ibs./sq. in. and 25,000 Ibs./sq. in. The tensile and shearing

strengths are small, unreliable, and not well established. The

modulus of elasticity for brick will vary between 1,000,000 and

3,000,000 pounds per square inch; and for stone between

2,000,000 and 8,000,000 Ibs./sq. in.

The compressive strength of brick or stone masonry is much

less than is that of the individual parts of which it is composed.

This is d"ue largely to the lack of uniformity throughout the mass.

Because of inequalities in the mortar beds and the roughness of

the individual pieces, stresses are apt to become localized and

hence more destructive. Again a tight bearing may cause a

brick or a piece of stone within the mass of the masonry to act as

a beam rather than in compression. In such a case the low

tensile strength is the initial cause of failure.

Heaviness, resistance to abrasion, and a low percentage of

absorption of water are the best general guides to quality in these

materials.

90. Concrete. Concrete, being a mixture of cement, sand, and

a coarse aggregate with water, and being usually made on the job

where careful supervision of plant and labor is difficult, is perhaps

the subject of greater variation and greater abuses than any of the

other materials. Each of the elements (five in all, including

labor) may vary both as to quantity and quality. Again the

conditions of pouring, and of curing, and the forms in which it is

poured all have a vital effect on the quality of the product.
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Well-made concrete at the age of 28 days should show a

compressive strength of 2,000 Ibs./sq. in.; a tensile strength of

about tV as much, and a shearing strength of about i of the

compressive strength.

The elastic qualities of concrete are ill defined, being much the

same as brick, stone, and cast iron (Fig. 149).

Curiously enough concrete has about the same coefficient of

expansion as steel. This makes it possible to cast the concrete

around steel bars, making what is known as reinforced concrete.

When concrete has become thoroughly set around a steel bar it

is very difficult to withdraw the bar. This is due to a sort of

adhesion called bond.

Bond is due in part to adhesion in the ordinary sense and in

part to the fact that the steel bar, not being perfectly smooth and

straight, is enmeshed in the concrete. The ultimate bond strength

between ordinary commercial steel bars and a good grade of

concrete may be taken at about 400 pounds per square inch of

surface of the bar in contact with the concrete. This means that

a round bar embedded in concrete a distance of about 40 di-

ameters will develop a bond strength equal to the tensile strength

of the bar.



CHAPTER X

INVESTIGATION, SAFE LOAD, AND DESIGN

91. Introduction. Most of the problems that arise in struc-

tural engineering occur in one of three forms.

(1) To determine the degree of security (factor of safety) that

exists in a structure of known material and dimensions (or in

some part of such a structure), under the action of a given load or

loads. This operation is sometimes called " investigation/'

(2) To determine the safe load on a structure of known

material and dimensions. In such a case the factor of safety may
be given or it may have to be assumed. In practice it often

happens that building laws or design specifications fix the working

unit stresses. This amounts to the same thing as fixing a factor

of safety.

(3) To design a structure, i.e., to determine the material and

the size and shape of the parts. There are a number of variations

to this problem. The material may or may not be given. The

working unit stresses also may or may not be given. Again the

loading may be given or merely the conditions of operation. In

its most general form this problem makes the greatest call on the

ingenuity and resource of the student. In that form, nothing is

given except the general dimensions and purpose of the structure.

Materials, loads, factors of safety, all must be the natural

outgrowth of size and purpose.

92. Investigation. The size, shape, and material composing

the structure or part, as well as the load placed upon it, are known,

and it is required to determine (1) the existing factor of safety and

(2) the sufficiency of that factor for the purposes in hand.

As an example let it be required to investigate the safety of a

Y' diameter steel rod supporting a quiescent load of 5,000 lbs.

The area of the cross section is 0.1963 sq. in. The actual unit

stress is then 5,000 -J- 0.1963 = 25,600 lbs. per sq. in. The

123
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factor of safety is 60,000 ^ 25,600 = 2.34. By referring to

Table II, it is seen that this may hardly be considered as satis-

factory for most purposes.

93. Safe Load. Let it be required to find the safe load on the

rod mentioned above. The ultimate strength is 60,000 X 0.1963

= 11,750 lbs. Let a factor of safety of 4 be taken as adequate.

Then the safe load is 11,750 ^ 4 = 2,940 lbs.

94. Design. Let it be required to design a thin support to

carry, from above, a load of 5,000 lbs. The requirement of a

thin support, carrying a load in tension, indicates the choice of a

material of great tensile strength. Let us choose steel. Using a

factor of safety of 4, the working strength is 60,000 -^ 4

= 15,000 lbs. per sq. in. The required cross-sectional area is

then 5,000 -^ 15,000 = 0.333 sq. in. This corresponds to a

diameter of 0.652''. The nearest commercial size over the

required area is a round rod of \\" diameter.

95. Calculations. Problems of the type outhned above make

a continual call on the judgment as well as the facility of the

student. At this point a review of §§ 2-4 may be found worth

while. No set of rules governing the approach and attack on a

problem can be given. Each person has to work out his own

methods, and in evaluating those methods the test of reason-

ableness is about the ultimate test.

PROBLEMS

1. If the pier shown in Fig. 136 is of stone masonry, what is the factor of

safety?

2. A cast iron base plate (similar to Fig. 141) is 2' 0" X 2' 0" at its lower face.

It rests on a concrete pier which is 4' 0" X 4' 0" on its upper face.

What is the safe load?

3. A wrought iron rod, \\" in diameter and 14' 0" long, has a hole \" in

diameter and 4' 0" long extending along the longitudinal axis of the rod

from its lower end. Near the lower end a hole \'' in diameter is bored

through the rod, perpendicular to the longitudinal axis and intersecting

it. Near the upper end of the rod a square hole is cut through in a

similar manner. This hole is \" on each side; a diagonal of the square

being vertical. What is the safe tensile load on the rod?
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^4:. The block in Fig. 164 is made of brass. Investigate the safety of the block.

5. If the pins supporting the shear legs in Fig. 32 are of cast iron, I" in di-

ameter, and the structure is intended for hoisting loads, what load may-

be safely hoisted? Assume that the other parts are stronger than the

pins and that the pins project toward j'ou from a solid casting.

6. Design a pin for Fig. 32 so that the structure may safely lift a load of

10,000 lbs.

y 7. Figure 165 represents a bolt head and washer carrying a load. Determine

the necessary dimensions for (1) the diameter of the rod; (2) the height

"^i'J^Cosr iron All limbers

Fig. 164

^

\tlood

- Wrought iron

25000"

Fia. 165

Fig. 167 Fig. 168

of bolt head "A "; (3) diameter of the washer. Let the factor of safety

be 4 on the basis of the ultimate strength.

V 8. Determine the factors of safety in the various parts of the frame shown in

Fig. 166.

9. What is the safe load W, in Fig. 167?

10. How great a load may the timber in Fig. 168 carry with safety?

96. General Principles of Riveted Joints. The study of the

stresses in a riveted joint makes an excellent application of the

principles of investigation, safe load, and design to parts which

are in tension, compression, and shear.
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Figure 169 illustrates the simplest case of riveting. The

member 1-1, carrying the tensile load XX, is discontinuous at c.

In order to spUce the two parts of 1-1 the plates 2-2 are placed

over the joint c, matching holes having been provided previously

X
-A A-

\C-^mB B^. IcI

X^

c

D

a__ X
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97. Stresses in a Riveted Joint. In Fig. 169^, C, and D, the

action of the forces X tends to separate the pieces 1-1. As the

pieces 1-1 tend to move apart, they produce pressure on the backs

of the rivets, as shown by the arrows A, Fig. 169£^. The rivets in

turn press against the plates 2-2, as shown by the arrows B; these

opposite pressures on plates 2-2 produce tension in them. The
reactions to these pressures are shown by the arrows C (repre-

senting the pressure of 2-2 on the rivets) and D (representing the

pressure of the rivets on 1-1); the forces acting on the rivets (A and

C) are shown dotted; those acting on the plates (B and D) are

shown solid.

One of the rivets is shown as a free body in Fig. 169i^. This

rivet, being short in comparison to its diameter (§71), is

subject to shearing stresses on the planes E and F. Also it is

subject to compression on the semi-cylindrical surfaces shown

shaded.

One of the main plates 1 is shown free in Fig. 169(r. The

forces D and X produce tension on the minimum section GG.

Also the force D produces compression on the semi-cylindrical

surface of the rivet hole. Again the force D tends to push out the

strip of metal behind it (shown dotted), causing shearing stresses

along the sections H and I.

One of the sphce plates 2 is shown in Fig. 1Q9H. It is under

the same kinds of stress as 1 ; tension on JJ; compression on the

sides of the rivet holes and shear on K and L.

It will be well to note that, because of the way the rivet fills the

holes and the way the heads cover the metal surrounding the

holes, the compressive stresses set up where the rivets bear

against the sides of the holes will classify as bearing stresses

(§ 78) rather than compressive stresses. Figures 170 to 173 are

from photographs of riveted joints which have been tested to

destruction.* These illustrations are taken from a series of

joints which were designed to have equal strengths in tension,

compression, and shear. Hence, quite naturally, each of the

* These photographs were taken from a series of tests made in the laboratories

of the College of Engineering at Cornell University under the direction of Professors

E. N. Burrows and H. H. Schofield.
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typical forms of failure is found in the series and in some cases

failure in two or more ways can be recognized in the same joint.

.> %l|.^v

Fig. 170 Fig. 171

PHBBH
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45,000 Ibs./sq. in. in shear, and 80,000 Ibs./sq. in. in bearing

(§ 97). Let it be required to investigate the joint.

too00

Fig. 174

Shearing of the rivet will occur, if at all, on the areas a; and the

unit stress developed will be

10,000 -^ 2[3.1416 X (I)-] = 11,320 Ibs./sq. in.,

and the factor of safety will be

45,000 -^ 11,320 = 4 (about).

Shearing of the plate will occur, if at all, on the areas h (in the

cover plate) or c (in the main plates). There are four areas h

and two areas c on each side of the joint, but since the thickness

of each cover plate is half that of the main plates, the- total area

in either case is the same. Since these areas come tangent to the

rivet holes, there is some chance that failure might occur along a

diagonal line from some part of the surface e to the hole. Conse-

quently the length of these surfaces is taken as only IJ'', to be on

the safe side. The unit stress developed on the areas h (or c) will

be

10,000 -^ 4(i X 1|) = 8,888 Ibs./sq. in.,

and the factor of safety will be

45,000 -^ 8,888 = 5 +.

Tension on the plates will cause failure, if at all, on the section d.

The cover plates having, together, the same thickness as the
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main plates, the unit stresses in all will be the same and equal to

10,000 ^ i(4 - i) = 6,400 Ibs./sq. in.,*

and the factor of safety will be

60,000 -^ 6,400 = 9.4.

Bearing will occur on the semi-cylindrical areas forming

contact between the rivet shank and the plates. These areas are

the same whether figured for the cover plates or the main plates.

Pressure between convex and concave surfaces doubtless gives

rise to different deformation and hence to a different distribution

of stress than is the case when plane surfaces are pressed together.

But the exact manner in which these stresses act has not been

satisfactorily determined. However repeated tests show that the

effect produced is the same as would be produced if the applied

force acted on a plane surface equal in area to the projection of the

cylindrical surface on a plane. That is, the surface in contact

between the rivet and the plate is treated as if it were a plane

surface as long as the diameter of the rivet and as wide as the

thickness of the plate.

With this in mind one can now investigate the bearing on the

joint as follows:

10,000 -^ 2(} X I) = 26,666 Ibs./sq. in.,

and the factor of safety will be

80,000 ^ 26,666 = 3.

The degree of security of this joint is evidently limited by its

bearing strength, and the factor of safety of the joint is 3.

99. Safe Load. Let it be required to determine the safe load

on the joint shown in Fig. 175. Let the ultimate strength of the

metal be the same as in § 98 and let a factor of safety be 4. The

* The hole usually made to receive a f rivet is xt" in diameter. These holes

are usually punched and the punching injures the metal immediately around the

hole. Therefore it is usual in figuring net areas to deduct |" more than the diameter
of the rivet from the gross width of the plate.
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shearing strength o£ thp rivets is
*

4 X 2 X 0.3068 X ^^^ = 27,600 lbs.

131

Fig. 175

The shearing strength^f the plates is determined by that of the

main plates, which am-^thinner than the combined cover plates:

4 X 2 X 0.5625 X 1.1875 f X ^^^ = 60,100 lbs.

* For such computations as these it will generally be found better to convert all

fractions into their decimal equivalents.

tThe length of this shearing surface is figured as indicated by C (Fig. 175).
The shearing surfaces between the rivets are longer; but on the assumption that all

four rivets will carry equal loads, the safety of the entire joint is predicated on the
shorter surfaces.

As a matter of fact the distances between rivets and from any rivet to the edge
of a plate are usually determined from rules which are intended primarily to care
for stresses developed in punching the holes and for the clearances demanded by
punching and riveting machinery.

Fig. 176

Like all empirical rules, the rules for rivet spacing vary somewhat. In Fig.
176 the principal rules are illustrated. When d = diameter of the rivet, then the
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The tensile strength of the joint will be determined by the

section of the main plates taken through AA. The tensile stress

developed on this section of the main plates is twice that on

section BB. The reverse is true in the cover plates. We find

0.5625 X (5 - 2(0.75)) X ^^^ = 29,500,*

and the hearing strength is

4(0.5625 X 0.625) X^^ = 28,100 lbs.

The safe load on the joint is seen to be limited by the shearing

strength of the rivets and to be equal to 27,600 lbs.

100. Design. Let it be required to design a joint similar to

Fig. 175, to carry a load of 40,000 lbs., using the unit stresses

given in § 98, and a factor of safety of 4. The problem admits of

many solutions as the size and the number of rivets employed are

interdependent. It is usual to start by choosing a definite

diameter for the rivets. This choice ordinarily depends on the

general character of the work of which the riveted joint is a

detail. Let us assume that f" rivets will be appropriate and

proceed to determine the other details on that basis.

The shearing strength of one rivet is then

2 ^
3.1416 X (0.625)^ ^ 45^ ^

4 4

and the number of rivets required on each side of the joint will

be 40,000 -^ 6,900 = 5 +, or 6 rivets. The thickness of the plates

should be sufficient so that the bearing strength of each rivet is

at least equal to its shearing strength. In this case let t = the

pitch p = about 3d. The distance to a rolled edge c' = about l^d; and to a
sheared edge e = about Iff/. The maximum thickness of the plates t = d.

When rivets are staggered, f -\- g~h. For boiler work the standard rule is that

f + g must be 20% greater than h.

When the above rules are followed the shearing resistance behind or between
rivet holes will exceed the bearing strength of the rivet (Let the student check this).

Hereafter these spacing rules will be followed and the computation of these shearing
stresses will be omitted.

* See footnote, page 130.
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thickness of the main plates. Then we have

6,900 = ?^^ X 0.625^, or t = 0.55'

Since the cover plates must each take one half as much stress as

the main plates, either in bearing or in tension, their thickness

should be one half of the above, or 0.275''. The minimum net

width of plates required to give sufficient tensile strength is

40,000 ^(M X 0.55) = 4.85".

The gross width of the plates will depend on the way the rivets

are arranged. If we use two rivets in the width of the plate, as

in Fig. 175, the gross width

is 4.85 + 2(0.75)* = 6.35". As

a final detail the above

decimal results should be con-

verted into the equal or next

greater fractions, since this class

-!p---9 ^<^(^cp) (p)

i ! >
i Si i i

€z

Va'f-2'4 z'-^ff'^^'^^'Mr

ir Riveis

Fig. 177

of work is usually executed in "t^^'J?!.-

fractional measurements. This

joint is shown in Fig. 177.

A different arrangement for the same joint is shown in Fig. 178.

In this joint the full 40,000 lbs. of stress is carried on the main

plates at section AA, where

only one rivet hole is to be de-

ducted. Hence this plate could

be made J" narrower than the

one in Fig. 177, except for the

fact that the punching rules

^i^- I'^S require more width for the riv-

ets in the back row. The cover plates carry the full stress on

section CC, and hence would need to be thickened slightly.

Where long main plates carrying large stresses are to be spUced,

this arrangement is often very serviceable.

* See footnote, p. 130.

\A \B \C
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101. Other Types of Riveted Joints. In Fig. 179A is shown a

simple lapped joint. In this case the rivets tend to shear on one

/zx

4>c:^-^^
Fig. 179

plane only and are said to act

J ^ ^ in single shear. The rivets in

Fig. 169 are in double shear.

A lapped joint is less desirable

]—^ B than a butt joint (Fig. 169), in

that the forces are out of line

and tend to bend the plates so

as to bring the forces in line, as shown in Fig. 179i5. This bend-

ing of the plates also brings tensile stresses on the rivet heads.

Such joints are sometimes de-

signed with smaller working

stresses than are ordinarily

used for joints where the load-

ing is not eccentric.

Figure 180 shows two typical

structural connections. In (a)

the rivets c are in double shear

and d in single shear. The

bearing strength is determined

by the thickness of the angles,

Fig. 180

-e---i-

o ofe
--O'

-e

r>, nti r\
K^ KJ) KJ

{Rivets

A

r^ o

^'H'lvets

B

16 f

7^

Fig. 181

or by the webs of the beams, whichever happens to be thinner.

At (6) is shown a typical hanger connection with rivets in single

shear. Figures 181A and 1815 show other types of riveting

commonly used in boiler work. In such work the joints are
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usually very long, and it is important to devise a joint which

decreases the tensile strength of the unpunched plate as little

as possible. The efficiency of such a joint is measured by the

tensile strength of the joint divided by that of the unpunched

plate, expressed as a percentage. In figuring the strength of

such a joint, it is usual to deal with a unit width, based on the

rivet spacings.

PROBLEMS

Note. When not otherwise specified, the riveted joints in the following

problems will be assumed to be of steel.

1. What is the safe load on the riveted joint shown in Fig. 182A? '

2. Investigate the riveted joint shown in Fig. 182J5 for a tensile stress of

25,000 lbs. Side elevation same for both A and B.



CHAPTER XI

UNIFORMLY VARYING FORCES AND STRESSES

102. Introduction. If all the loads which come on a structure

were concentrated at definite points or were uniformly spread over

definite areas, and if all members could be placed so that the

loads would produce simple axial stresses (§ 56), the design of

structural parts would be a comparatively simple matter. But,

in reality, many cases occur in which the loads are variable or

eccentric or the resultant stresses are not uniformly distributed

over the cross sections, or both.

Such problems occur in many forms, some of which admit of

fairly simple solutions, while in others the solutions are more

complex. In every case, the laws of equihbrium (§ 32) and the

free body method (§ 23) furnish the basis of attack on the

problem, though the form of the equations set up and the mathe-

matical solutions needed may vary considerably.

One such problem in a slightly disguised form already has been

noticed (§52—C). In that case the elementary area strips are

treated as uniformly varying forces. In this chapter we shall

take up some typical problems of this class, and, having solved

them, we shall deduce a general principle for all such cases.

Fig. 183

103. Reactions of Beams with Uniformly Varying Loads. A.

Beam with Rectangular Plan. Let the beam shown in Fig.

183 be made of a material having a heaviness of g lbs. per cu. in.

136
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Let the weight of the beam be W lbs. and let the (unknown)

moment of this weight, taken about i^i be expressed by M. Let

it be required to determine the reactions (Ri and R2) due to the

weight of the beam. From the relation XV = we get

(1) Ri + R2 = W,

and, taking moments about i^i, from ZM = we get

(2) R2L = M.

These two relations furnish the basis for the solution. In order

to get a definite value for M in equation (2) above, let an ele-

mentary strip of the beam be chosen, as shown in the figure, at

the distance z from Ri. Let the plan area of the strip be dA.

Its volume is xdA, and its weight is gx dA. The moment of the

weight of the strip (about Ri as a center) is then zgxdA. There-

fore the moment of the entire weight of the beam is
*

(3) M = f zgxdA.

Now from similar triangles, we have

x : h = z : L, or x = z~ '

Substituting this value of x in equation (3), we get

(4) The moment of the varying load = I zgz — dA = g ~ ( z^ dA.
Ja J^ ^ Ja

Now from equations (2) and (4), we have

(5) R2L = g^^ Cz'dA.

But dA = hdz'j substituting this value in equation (5), we find

(6) R2L = hgy fz'^dz.
^Ja

In this equation z may have any value from zero to L; and when

* See footnote, p. 63.
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the above expression is made definite and integrated for these

limits, we obtain

R2L

whence

(7)

L3

R2 = \bhgL.

The weight of the beam W as used in equation (1) can be ex-

pressed by \hhgL. Therefore equation (1) may be written in the

form

(8) Ri + R2 = ihhgL.

Substituting the value of R2 from (7) in (8), we get

Ri = ihhgL.

In other words Ri = one third of the weight of the beam, or

B. Beam with Semi-Circular Plan. Figure 184 represents

a semi-circular plate supporting a load which varies uniformly

from zero at AB to 150 lbs. per sq. ft. at C. Let it be required

to determine the support-

ing reactions.

From symmetry and the

conditions of equilibrium,

we have

total load,

(1) A=B,

(2) A + B+C

(3) IOC = moment of total

load about e-e.

Let an elementary strip of the plate be chosen, as shown by dA.

The pressure per sq. ft. on this area is to 150 lbs. (the pressure

per sq. ft. at C) as x is to h. But from similar triangles

(4)
z

10

* This solution is practically a repetition of the one in § 52—C. It can be very

much simplified by using the known position of the center of gravity of a triangle.
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Therefore, the pressure per sq. ft. on dA = 150(xlh) = 15z.

Then the total pressure on dA = 15zdA, and the moment of this

pressure, about e-e, = 15z^ dA. From this it follows that the

entire load will produce a moment, about e~e, which can be

expressed as

(5) Cl5z^dA.

Now we further know that dA = 2i/ dz. Also, from the properties

of a circle, we have

z^ + y2 = 100, or y = (100 - z'Y'^,

whence
dA = 2(100 - z'^y^'^dz.

Substituting this value in equation (5), we find that the moment

M of the entire load is

Jf*io
rio

I 2^2(100 - z'^y'dz = 30 ^2(100 - ^2)1/2^^.

*^o

Evaluating this, we have

M = 30r| V(100'^^^+^(^^VlOO"^^+ lOOsin-i^'jT'

When this is evaluated, the moment is found to be 58,900 lbs. ft.

Using this value in equation (3), we get the value of the reaction

C as 5,890 lbs.

The reactions A and B may now be determined. First let

us determine the entire load on the plate. The load on the

elementary strip is 15zdA as shown above. Also dA = 2y dz,

and y = (100 — z^y^, all as shown above. Therefore the load

on the elementary strip is

(15;s) (2(100 - z'^y^z) = 30^(100, - z'^^^dz.

The entire load on the plate is then

Jo
30^(100 - z^y^dz.

Evaluating this expression, we find that the entire load is 10,000
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lbs. Then, from equations (1) and (2), it can be shown that

A = B = 2,055 lbs.

104. Hydraulic Pressure on a Valve Plate. In Fig. 185 is

shown a dam with rectangular opening at the bottom blocked by
a single hinged valve. Let it be required to find the force P
required to keep the valve closed.

Let dA be an elementary strip of area on the face of the valve,

and let x be the intensity of the water pressure on this strip.

From the law of hydraulic pressure illustrated in Fig. 185C;

X = 62.5(3 + z). Then the total pressure on the elementary

strip is 62.5(3 + z)dA. The moment of this pressure about the

hinge will then be

(1) ^62.5(3 + z)dA.

But dA = 2dz. Substituting this in (1), we find

Moment of pressure on elementary strip = 1252:(3 + z)dz.

(2) Total moment of pressure on valve = 125 I (3^ + z~)dz,

Jo

= 2,812 lb. ft.

Now the moment of P about the same center = 2.5P. Hence

2.5P = 2,812, or P = 1,125 lbs.
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105. Eccentric Load on Rectangular Block.* Figure 186 shows

a short blocks rectangular in plan and resting on a plane surface

M — M. It carries a load P which is on one axis of the top

surface but not on the other.* In such a case, the stresses on any

f/ei/at/on\ m-
V77777> TTTW

Sz'S,

h—^
-7^ 77
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same center. In order to evaluate the latter moment, choose an

elementary strip of the plan dA, as shown. The unit stress on

this strip is x. Therefore the total force acting on dA isxdA, and

its moment about o is zx dA. Then it follows that the moment of

the forces acting on the entire base is J^^zxdA. Since this must

be equal to the moment of the load about the same center, we have

zxdA.
'A

(2) Pe=J

From similar triangles, we have

{x - si) : (s2 - si) = (z + ~j : (d).

Solving this for x, we find

Sl -\- S2 . Z , .

Putting this value for x in equation (2), we get

(3) Pe=J(^!l±J}zdA+?l^z^dAy

But, dA = hdz; therefore

= - (si + S2)
I

z dz -{- - (s2 - Si) I z'- dz.

Now z may have values between + d/2 and — d/2. By inte-

grating and imposing these limits, we get

(4) Pe = («.-sOg-

Using equations (1) and (4) and solving for si and S2, we get
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These results will be discussed more fully in Chapters XX and

XXII.

106. Summary. In the problems presented in §§ 103-105, the

same elements constantly recur. Uniformly varying forces are

producing a moment which must be evaluated in order to reach

the solution. This moment is expressed as some function of

fA^^dA. (See equation (4), § 103A; equation (5), § 103B;

equation (2), § 104.) It will be noted that the laborious part of

these solutions arises in the evaluation of this integral. In the

next chapter we will develop a means for solving such problems

with greater ease, but the essence of all solutions must be much

the same as of those in §§ 103-105.

PROBLEMS

1. What are the reactions in Fig. 187A?

2. A beam, 12" X 12" and 10' long, is made of material which varies uniformly

in heaviness from at one end to 100 lbs. per cu, ft. at the other end.

What end reactions will be required to support it?

lOo"per cuff. . .

Fig. 187

3. What are the reactions in Fig. 187B, (a) if the material weighs 100 lbs. per

cu. ft., (6) if the heaviness of the material varies uniformly from at the

left end to 100 lbs. per cu. ft. at the right?

4. What are the reactions in Fig. 187C?
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CHAPTER XII

MOMENT OF INERTIA

1/ ^^,,rrr
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X : z = S'z : c and x = — z.
c

Then the moment of the load on the elementary area becomes

-z'dA
c

and the moment of the entire load is

f-z'^dA.*
JA c

In this expression 82/0 is a constant and can thereforie be put out-

side the sign of integration. Then we have:

So r
(1) The moment of the load (about 1-1) = — I z- dA.

^ JA

In this expression 82/0 represents the slope of the line ob, i.e., the

rate of variation of the loading while 7a 2" dA represents the effect

of the size and shape of the area. If the axis 1-1 were chosen

either nearer to or farther from the given area, the values of each

of these quantities

— and I z~ dAI
would be affected thereby but the essential form of the result

would not be altered.

Thus there are three distinct quantities which affect the values

in equation (1) above:

(1) The rate of variation of the loading.

(2) The position of the axis about which moments are figured.

(3) The size and shape of the area.

The diagram given below is intended to express visually the way
in which these quantities are related.

From the above discussion and from the summary in § 106 it

should be evident: (1) That J^^^z- dA is a quantity that will inevi-

tably occur in the discussion of such problems. (2) That its

* See footnote, page 63.
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amount in any given problem is dependent on the size and shape

of the area and the position of the axis of rotation; and on

The Load
rate of variation

r

The moment

of uniformly

varying forces

distributed

over a given

area /(moment of inertia)

nothing else. (3) that it is, therefore, a property of an area;

just 2u?> Xj^xdA, the static moment (§ 53), is a property of an area.

(4) That it will be convenient to give it a name and work out some

standard cases for reference.

This property of an area (Xi;s-dA) is called its moment of in-

ertia. It has already been pointed out (§§ 52 and 53) that the

terms ''Center of Gravity" and ''Static Moment" when applied

to an area cannot be regarded as having the same literal signifi-

cance as when they are applied to bodies having definite weight.

In the same way, moment of inertia is more nearly descriptive

when applied to a solid than when applied to an area which, from

its very nature, can have neither moment nor inertia. But

while the term cannot be said to be accurately descriptive, it has,

nevertheless, been given a very definite meaning even when
applied to an area. In a purely mathematical sense the moment
of inertia of an area may be described as the limit of the sum of

the products obtained by multiplying each elementary area

(composing the given area) by the square of its distance from an

axis. This hmit has for its value the definite integral as used

above.

In a physical sense the moment of inertia of an area may be

conceived of as being a factor which indicates the influence of the

area itself in determining the total rotating moment of uniformly

varying forces applied over the area. The nearest related
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quantity is static moment which merely involves the distance

from the axis, rather than its square.

108. Units of Measurement. Since the moment of inertia of

an area is the sum of products each of which consists of an area

and a distance squared, it is evident that it is made up of four

linear units. If the linear unit used is the inch, moment of

inertia will be expressed as (inches)^. Such quantities are some-

times called ''biquadratic inches"; though "inches to the fourth

power" is perhaps the more usual term.

No real area can have a negative moment of inertia; for the

distance element (which can have negative values) enters as its

second power (z~) and dA itself is positive.

109. Effect of Size and Shape. If the areas in Figs. 190D and

190E are the same size as that in Fig. 190C, and if they are

similarly loaded, it is evident that the rotating moments in the

three cases would vary widely. The proportion of elementary

areas with large lever arms, in Fig. 1901), is much less than in Fig.

190C. Hence the moment of inertia of the area is less as is also

the moment of the varying forces. The reverse is true in Fig.

190^.

Thus it is easy to foresee that the moment of inertia of an area

will be large when the area is large; when it contains a large

proportion of elementary areas as far from the axis as possible, or

when the axis is chosen far from the center of gravity of the area;

and it will be small under the opposite conditions.

1 10. Methods of Computation. The determination of moment
of inertia is essentially an integrating operation (compare with

§ 54). But once the values are worked out for the typical

geometrical figures, the results so obtained can be combined, and

the axes transferred by ordinary operations of addition, sub-

traction, and multiplication. In the five sections following the

moments of inertia of a few typical figures are derived and

methods are set up for combining them. The properties of

various other shapes may be found listed in the standard books of

reference. With these materials at his disposal the student

should be able to solve all ordinary problems.
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Hereafter the symbol / will be used to designate moment of

inertia.

111. Moment of Inertia for a Rectangle: Axis through Center.

Let it be required to find / for a rectangle of known size and shape,

using an axis through its center, as shown

in Fig. 191. Choose an elementary strip

(shown shaded in the figure) at a distance

z from the axis and of width dz. Its area -

is 6 dz and the / for the entire area will be

X^z'^h dz, between the hmits + (i/2 and

- dl2 (by definition. See §107). Putting

the constant h outside the integral sign, this

becomes:

J-d 2

z'dz^h
l+d/2

-d/2

and when this expression is evaluated it becomes

hd^

12
*

This expression gives the I for a rectangle in terms of its breadth

and length and can be used to simplify the computations in such a

case as equations, § 105, in which hd^ll2 could have been substi-

tuted for J^Z" dA, thereby materially shortening the solution.

112. Moment of Inertia of a Circle: Axis

through the Center. Refer to Fig. 192.

Let the elementary strip of area be chosen as

shown shaded in the figure and let its area

be expressed by dA. Then by definition

(see § 107), the / of the circle is given by

the equationFig. 192

(1) X z^dA.

The area of the strip chosen is
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(2) . dA =2y dz

and from the properties of a circle z^ -\- y- = r~, which may be

transformed to read y = (r^ — z-y^'\ Now substituting this

value of y in equation (2),

dA = 2(r2 - z'^y^'dz,

and substituting this value of dA in (1),

I = f 2z'(r'~ - z^Y'Hz.

Integrating this:

/ = 2 r - - (r^ - ^2)3/2 j^ ^ f^^,,2 _ ^2)1/2 j^ ^2 sin-^
^
^jl ',

PROBLEMS

1. Find the moment of inertia, referred to the base, of a triangle whose base is

6 and whose altitude is h.

2. In problem 1, let the axis of reference be parallel to the base and through the

center of gravity.

3. Find the moment of inertia of a circle referred to a tangent line.

4. Find the moment of inertia of an eUipse referred to its minor axis. Let the

minor axis be ai and the major axis a.

5. Find the moment of inertia of a rectangle referred to its shorter side.

113. Transfer of Axes. From the discussions in §§ 107-109,

it is evident that moment of inertia is an important factor in

comparing the effect of different distributions of area. This is

especially true in connection with the design of beam sections. In

Fig. 241 is shown a typical plate girder section, composed of plates

and angles. In order to determine the strength of the girder it is

necessary (as will be shown in Chapter XIII) to determine the

moment of inertia of the section. The moment of inertia of each

part, referred to an axis through its center of gravity, is known

(§111). These must be transformed so that all are referred to

the same axis. It thus becomes necessary to provide a means

whereby the axis can be freely shifted. In this article we will
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deal only with the transfer of axes from an axis through the center

of gravity of an area to an axis parallel to

the first. Transfer of axes through an

angle is treated in § 223.

In Fig. 193, let / be the moment of in-

ertia of the area, referred to the gravity

axis 1-1, let A be its area and let the mo-

ment of inertia (7o) about the axis 2-2

be required. The elementary area dA is

distant {?i + z) from the new axis and the I about the new axis

is then-:

h= ( (n + zYdA = \ nHA + f 2nz dA + { zHA
JA JA JA JA

= n2 j dA + 2n f zdA + f z'^dA.
JA JA JA

But since Sa^A is the total area and since J^^zdA is when the

axis of z is through the center of gravity (§52), then the above ex-

pression becomes

7o = An'- -\- I z'^dA = An" + I.I
If the dA had been chosen to the left of the gravity axis, the

result would have been the same. Another way of arriving at

the same result is to consider the fact that in moving the axis we

have added to the average z an amount called n, and this addition

has affected a total area of A. Then, since moment of inertia is

area times distance squared, the additional moment of inertia is

An^ and the total moment of inertia about the new axis is I

+ An\
From the above it is plain (since An^ cannot be negative) that

the moment of inertia about a gravity axis is less than that about

any parallel axis.

114. Irregular Shapes—By Addition. Moments of inertia of

irregular shapes may be found by processes of addition and
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subtraction, identical in principle with those used in finding

centers of gravity.

Let it be required to find the / for the area in Fig. 194 referred

to the axis X-X. Divide the angle into two strips, 6'' X 1" and
4" X 1". Then the I for the first strip, re-

ferred to axis 1-1, isf

L !- ' 1X6X6X6— = 18.

X
Fig. 194

Transferring this to axis X-X, we get 18

+ (6 X 1)(3)2 = 72. Similarly the I for

the 1 X 4'' strip about axis 2-2 is

4X1X1X1 1

12 ~
3

'

and transferring this to axis X-X, we get \ + (4 X 1)(2)" = la-

Adding these two items we get I for the angle to be 73 J (ins.)''

referred to the axis X-X.

115. Irregular Shapes—By Subtraction. It was pointed out in

§ 108 that 1 cannot be negative. Nevertheless, it is sometimes

convenient to consider that a hole has a negative 7. In what

follows a negative I indicates in reality something not present in

the area first considered.

Thus in Fig. 194, let us consider a positive area 6'' X 5'' and

then subtract an area b" X 4". The / for the first area about its

gravity axis will be

5X6X6X6
12

90;

and transferring to X-X, this becomes 90 + (6 X 5)(3)2 = 360.

For the second area, the I about its gravity axis is

4X5X5X5 ^^,

12
= ^^-

and transferring this to X-X, we get 41f + (4 X 5)(3i)2 = 286|.

Subtracting the second from the first we get 73 J (ins.)^ as before.
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116. Summary. The following summary may be found useful

in clarifying and generalizing the ideas developed in §§ 107-115.

(1) Moment of inertia is a property of an area {f^z^ dA). § 107.

(2) It is expressed in linear units to the fourth power; usually as

(inches) ^ § 108.

(3) It cannot have negative values. § 108.

(4) It may be computed with reference to any axis.

(5) It may be transferred from a gravity axis to any parallel

axis. § 113.

(6) It is less when referred to a gravity axis than when referred

to any parallel axis. § 113.

(7) Moments of inertia may be added and subtracted when (and

only when) all are computed with reference to the same
axis.

(8) Moments of inertia are large when either the area is large or

when it is so disposed that a large proportion of its elements

are remote from the axis. § 109.

(9) Further general principles are given in § 228.

PROBLEMS

1. Determine the moment of inertia of a square whose side is d, referred to a

diagonal.

2. Determine the moment of inertia of the trapezoid in Fig. 195, referred to

EF.

3. Deteimine the moment of inertia of the trapezoid in Fig. 196, referred to

GE.
4. Determine the moment of inertia of a rectangle 12" X 16", referred to one v

of the 12" sides.

5. Determine the moment of inertia of an equilateral triangle 6" on a side, \J
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9. Determine the moment of inertia of the area, Fig. 130, referred to a

horizontal axis through the center of gravity.

10. Determine the moments of inertia of the I section, Fig. 347, referred to

each of the axes of symmetry.

11. Determine the moment of inertia of the section, Fig. 197A, referred to axis

1-1 (through the center of gravity), and also to axis 2-2.

12. Determine the moments of inertia of the beam section. Fig. 260, referred

to each of the axes of symmetry.

13. Determine the moment of inertia of the beam section, Fig. 240, about a

horizontal axis through its center of gravity.

Fig. 197 B

14. Determine the moment of inertia of the plate girder section. Fig. 241,

referred to a horizontal axis through the center of gravity.

15. Determine the moments of inertia of the column section. Fig. 1975, about,

each of the axes of symmetry. ^

~ ^^. + AdL"

s



CHAPTER XIII

BEAMS—TOTAL STRESSES

117. Introduction. The word beam is commonly used in two

quite different senses. In one sense it is applied to materials

worked into a given size and shape. Thus a piece of timber, say

6'' X 8'' X 12' 0'', is called a wooden beam; or a steel member

with an I shaped section and 8' 0'' long is called a steel beam,

—

regardless of how the material is used, or whether it is in use at all.

In another sense, the word beam is used to indicate any structural

member of some considerable length, resting in an approximately

horizontal position on its supports and carrying loads which are

substantially vertical. In the following chapters we will use the

word beam to denote any structural member which is stressed by

the action of coplanar forces oppositely directed, and which are

not near to one another. (Compare with § 41.) Such forces

tend to bend the member on which they act rather than to

elongate or shorten it. The concept of a beam then will have

to do with its function rather than with its shape or position.

Primarily it is a member which resists bending.

Common experience tells us that when a piece of material is

bent, its deformed shape is a curve. We may expect to find that

the stresses which produce

this complex deformation are

complex themselves. Never-

theless the solution for such

cases will be found to proceed

along familiar lines. First of

all the relation between load-

ing and reactions is studied

by means of the laws of equi-

librium (§ 32) and then the

stresses resulting from the action of the external forces are de-

termined by means of the free body method (§ 23).

155

uh

i
1 1
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A classification of beams which is in common use is based on

the way in which the beam is supported. When the beam merely

rests on two supports (Fig. 198, upper), it is called a simple beam.

When it projects from a single support, as when built into a wall

or pier (Fig. 198, middle), it is called a cantilever. If one or both

ends of a simple beam project beyond a support (Fig. 198, lower),

the beam is an overhanging beam. Besides these there are

continuous beams and restrained beams, which are defined and

explained in Chapter XVIII.

118. General Ideas.—Forces and Stresses. The laws of

equilibrium (§ 32) form the basis of the study of beam stresses.

If the beam is in equihbrium, there is a static relation between

the loads and reactions (§41). By means of this relation the

reactions due to a given set of loads ordinarily can be determined.*

Since the correct determination of reactions is the starting

point for the entire study of beam stresses, the student should

make sure, before proceeding further, that he has a thorough

mastery of this subject.

The most general sort of an idea of the stresses in a beam may

be found by reference to Figs. 199 and 200. In Fig. 199 the

Fig. 199 Fig. 200

load P tends to depress the hinge and tighten the chain. It will

be recognized that this beam will collapse at once if it is turned

upside down. This indicates that the stresses in such a beam are

compressive at the top and tensile at the bottom. Any one who

* For the exceptional eases see Chapter XVIII.
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has used a saw has verified these statements from his own

experience.

Figure 200 shows a beam composed of dove-tailed blocks.

Such a member can carry tension or compression; but if called

upon to act as a beam, it will fail by a vertical slipping in the dove-

tailed joints. If the joints
w

I-

r
\A

Fig. 201

/?.

were lightly glued, failure

when it occurred would be

due to shearing along the

glued surfaces.
/^

In all but the rarest cases

the tensile, compressive, and

shearing stresses noticed above

occur on every section cut through a beam. The method of

study to be followed involves treating the tensile and compres-

sive stresses together (Chapter XIV) and the shearing stresses

quite separately (Chapter XV). Hence it is highly important

W

V
Fig. 202

•b-x-A

that from the start the

student keep the tendency

to rotate (Fig. 199) quite

distinct and separate in his

mind from the tendency

to move vertically (Fig.

200). Confusion on this

point is the beginning of most of the difficulties encountered in

the study of beam stresses.

Figure 201 shows a loaded beam and the resulting reactions. If

a part of this beam is taken as a free body (Fig. 202), the external

forces are not in equilibrium. Since Ri is less than W , the

summation of the vertical forces is not zero, nor is the summation

of the moments about o equal to zero. This shows that there

must be stresses acting on the cut section to balance the external

forces.

In Fig. 203A, stresses have been indicated on the cut section to

balance the external forces on the left-hand portion of the beam.

Here Ri-\- & may equal TF. Also (taking o as a center) the
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moment of C and T (counterclockwise) may balance the moment

of W and R (clockwise). Again C may be equal to T. In this

event it can be seen that it is possible for all three of the con-

ditions of equilibrium to be fulfilled. Similarly in Fig. 2035 the

stresses *S', C, and T' balance the upward and counterclockwise

tendencies of the external force R2.

\w
^ c c'

T r
a—-^^x-A

A Fig. 203

n
S'— b-x-

B

R.

The stresses S and *S' can be shown to be equal. Also the

stresses C and C and T and T can be proved equal by simple

equations based on the conditions of equihbrium. (Let the

student work out these proofs.) Hence S and S' consitute a

shear on the cut section, while C and T and C and T' constitute a

moment which resists the tendency to rotate.

J
w

m^

X—

S = Resisting shear

^^\^Resisting

T f\Aoment

Fig. 204

In Fig. 204, the left portion of the beam is shown with the

external forces and internal stresses. The tendency of the

external forces to produce vertical motion is called the vertical

shear. The corresponding stress (S) is the resisting shear. The

tendency of the external forces to produce rotation is called the

bending moment, and the internal resistance to rotation (the

moment of C and T about 0) is called the resisting moment.

In the cases treated in §§ 119-124, and in general in the

demonstrations and problems which follow, the weight of the

beam itself is not considered unless that fact is specially men-

tioned.
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119. Variation in Moment and Shear. It should be noted

particularly that the terms resisting shear and resisting moment^

defined above, refer to total stresses. For the determination of.

safe load, for design or for investigation of beams (§91), it is

necessary that these total stresses be transformed into unit

stresses, so that their amounts can be compared to the safe unit

stresses for the various materials. These problems are worked

out in Chapters XIV and XV. Before taking up these problems,

it will be necessary to study the relation between various types of

loading and the total bending moments and shears, which result

from such loads.

Let the beam shown in Fig. 201 be imagined to be cut by a

section farther to the right than the section AA. Evidently

the bending moment will not be the same as before since the

lever arms of the forces producing the moment are changed.

Again if the new section is taken to the left of the load,

the vertical shear will be different from that shown in Fig. 204.

In general a given system of loads and reactions produces shear

and bending moment on all sections cut through a beam; but

the amounts of each will vary from section to section. The

balance of this chapter will be devoted to the study of these

variations. In such a study it is usual to draw curves which

show the length of the beam along a horizontal line, while the

amount of the shear or moment is represented as the ordinate of

a curve measured from this line. (See Figs. 215-217.)

In order to make such diagrams with speed, accuracy, and

confidence, three things (and three only) are needed: first, an

accurate knowledge of what shear or moment really is; second, a

liberal use of the free body method ; third, a consistent refusal to

think of shear when moment is being discussed, and vice versa.*

120. Shear Diagrams. The vertical shear (usually referred to

as ^Hhe shear '^) is the tendency of one part of a loaded beam to rise or

fall with respect to another part.

This tendency to rise or fall is due to the action on the beam

* As the student proceeds with the study of shear and moment diagrams, it will

be wise for him to review this paragraph frequently.
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of all the forces, both loads and reactions. Therefore the first

step in such a problem is usually to determine the reactions due

to a given loading system. In § 118 it was shown that the shear

on a given section is the same whether it is computed from a free

body taken to the left or to the right of the section. In what

follows the free body to the left of the section will usually be

considered.

For example, in Fig. 205A is shown a beam with loads and

reactions. Let a section be cut to the right of the left support

(as at S) and the left part of the beam be shown as a free body, as

B

1200^ 600^

'J'

nio'

m mo

B

m
dIO n

-90

1200"

^ T
—

^

/ooo'

i
1090

B

1090

/200** 600^ ,,

17/0'

D E
Fig. 205

in C. The free body, under the action of the reaction, tends to

move upward.* This tendency is measured by the amount of

the reaction, 1,710 lbs. Moreover, if our section had been taken

anywhere between the reaction and the first load, the same

condition would have been found. Thus the shear on any

section between these Hmits is the same and is equal to 1,710 lbs.

In B the line BB is used as a zero or base line. From a point on

* In the beam itself, of course, the reaction has no tendency to actually push
the beam bodily upward. But we are here considering the effect of an indicated
upward force on a free body. Or again, the part of the beam to the left of 5 does
actually tend to move upward with respect to the part to the right of S. See the
definition of shear at the beginning of this article.
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this line directly below *S let a perpendicular be erected which, at

some scale, represents 1,710 lbs. This hne represents the shear

on the section *S. We can now draw the line mm to represent the

shear on every section between the reaction and the 1,200 lbs.

load.

Now let a section be taken at S' . The resulting free body is

shown in D. Its tendency to move upward is 1,710 — 1,200

= 510 lbs. This is the amount of shear for any section between

the two loads, as shown by nn, in J5. A section cut at S" gives

the free body shown in E. This body tends to move downward.

Therefore the shear diagram for this section falls below the base

line, as shown by pp in B. The rest of the diagram is self-

evident.

When the free body at the left of the section tends to move
upward, the shear is called positive. We have indicated that

condition by an ordinate drawn upward from the base line.

Negative shear is then indicated when the free body tends to

move downward. This distinction is purely arbitrary.

In Fig. 206 is shown a beam with a uniformly distributed load.

A section cut 1' 0'' from the left support gives the free body shown

in C Its tendency to move upward is wLl2 ~ w. A section cut

2' 0" from the left would show a shear of ivL/2 — 2w; and a

section cut x feet from the left support would show a shear of

wL/2 — wx. Evidently the shear changes uniformly and can be

represented by a diagram like B. In this diagram the line mm
representing the variation in shear is that line whose equation,

referred to as an origin, is

(1) y =— - WX,

In Fig! 207 is shown a beam with distributed load which varies

from lbs. /ft. at the left end to w lbs. /ft. at the right. A section

cut at a distance x from the left end gives the free body shown

in C. The total load on the section is

w „— x^ A
2L

V
I
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and the shear is
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is small, the slope of the shear line is small. Where the rate

of loading is intense, the shear line is steep.

That this is a necessary relation can be shown by differenti-

ation. For instance, take the two equations for shear in the

preceding article:

(1) y =— - wx

and

(2) y = T-2L^'-

Differentiating with respect to x, we find

a.^-^

dy
and

dx dLx

In each case dij/dx is seen to be equal to the intensity of the

loading. In other words the slope of the shear diagram is governed

by the intensity of the loading. It is sometimes found difficult

to understand how the above principle applies to such a case as

that in Fig. 205. The application becomes evident at once when

i iiiMmiiiiiiiirrm

Fig. 208

it is remembered that in no real case are either loads or reactions

concentrated at a point but they are distributed over definite

distances. Thus in Fig. 208 is shown a beam with loads and

reactions thus distributed. The form of the shear diagram and

its correspondence to the above principle are both at once

evident. However, the form of the shear diagram shown in Fig.

2055 is simpler and is the usual form for concentrated loadings.



164 MECHANICS OF MATERIALS

Let the student show that even in such a diagram the general

relations of intensity and slope hold good.

PROBLEMS

Note. In each of the following problems show the amount of the shear at

each point of sudden change and locate the section of zero shear accurately.

^1. Draw the shear diagram for the beam in

.
, r^^^g^"^ — Fig. 82, neglecting the weight of the

?
]

'
] ! r^ beam.

Fig. 209 foot. Draw the shear diagram.

3. Let the beam in Fig. 209 weigh 200 lbs.

per foot. Draw the shear diagram.

4. Draw the shear diagram for the beam in Fig. 83.

V 5. Draw the shear diagram for the beam in Problem 11, § 106, using the results

obtained in that problem.

6. Write the equations for the lines bounding the shear diagram in the case of a

beam w^hose span is L and which is loaded with a uniformly distributed

load of w lbs. per ft. and a concentrated load of P lbs., distant j from

the left reaction.

7. Write equations like those in Problem 6 for a beam uniformly loaded on the

left half of the span only.

J
8. Write equations like those in Problem 6 for a beam 20' 0" long which carries

a distributed load of 100 lbs. per foot on the 6' nearest the left support

and a load of 50 lbs. per foot on the balance of the beam.

122. Bending Moment Diagrams. Bending moment is the

tendency of one part of a loaded beam to rotate about the section which

separates that part from the rest of the beam. It is the resultant

moment given by all the loads and reactions which occur on the

part of the beam which is considered as free. The forces are the

same as those which produce shear. But now instead of looking

for a tendency toward vertical displacement, we are looking for a

tendency toward rotation. (See Fig. 210A.)

In Fig. 210C is a free body cut by the section A which is 1' 0"

from the left reaction. This free body tends to rotate about the

cut section, in a clockwise direction, under the action of the

reaction. The moment (taken about the cut section) is 1,710 lbs.

ft. If the section had been cut two feet from the reaction, the
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moment would have been 1,710 X 2 = 3,420 lbs. ft., etc.* Now
lUrn to Fig. 210D. Here the free body (cut by the section A') is

mo"" 600 1000'

1710''

B

T"-
1710'

1090

1200''

1710''

Fig. 210

r Positive
1

acted upon by the reaction and one load. The rotating moment

is (1,710 X 4) - (1,200 X 1) = 5,640 lbs. ft. Let the student

check out the other values on the

bending moment diagram. Bend-

ing moment is considered to be

positive when it tends to produce

compression in the top of the

beam; in other words, when the

curve taken on by the bent beam

is concave upwards. (See Fig.

211.)

In Fig. 212 is shown a beam

carrying a uniformly distributed load. In C a free body cut by

the section A at a: ft. from the left end is seen to be under the up-

* In studying bending moment students are frequently confused by the fact that

when a free body is cut close to a reaction, often no part of the load appears on it,

and hence the load does not appear in the computations for bending moment;
nevertheless it is obviously the controlling factor in the situation. It should be

noted that the amount and position of the load control the reaction and, through

the reaction, they control the bending moment.

NeQoiive -*** Positive -

Fig. 211

Negative
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ward action of the reaction and the downward action of that part

of the load between the section and the reaction. The momer c

^^ p̂er ft

Fig. 212

of the reaction (taken about the cut section) is {wLl2)x, clock-

wise, and that of the load is wx{xl2), counterclockwise. The

resultant moment M is given by the equation

wL wx^M=-^x-~.

Considerations of symmetry alone show that this equation must

have its maximum value when x = L/2, and that for that value of

X the bending moment is wL^jS. The same results could have

been attained by the usual method of the differential calculus.

In Fig. 213 the free body in C is under the upward action of the

reaction which produces a clockwise moment of (wL/6)x. The

counterclockwise moment is due to the load wx^l{2L)y whose

center of gravity is distant x/S from the cut section. This

moment is

(WX^ \ X wx^

'2l)s^~QL

The resultant moment about the section is
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(1) M = wL w
6L

a:"*.

This is the equation of the bending moment curve shown in B.

The point of maximum moment can be located by differentiating

(2) — ^rrx'.

A }
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PROBLEMS

Note. In each of the following problems show the amount of the bending

moment at each point of sudden change, also the position and amount of each

maximum value.

1-5. Draw the bending moment diagrams for each of the cases cited in Prob-

lems 1 to 5, following § 121.

6-8. Write the equations for bending moment corresponding to the shear

equations in Problems 6 to 8, following § 121.

123. Relation Between Shear and Bending Moment. The
relation that exists between the loading and the shear was

developed in § 121. We
/^i

shall now show that there

R
-H*

—

x-(Q+b)—

-

is a similar relation be-

tween shear and bending

moment.

Let the diagram, Fig.
A

j^iQ 214 214j represent a free body

cut from the left end of a

beam, loaded in any manner. The right-hand part of the beam
is not needed and is not shown. The vertical shear at the sec-

tion AA is

(1) Y = R - wx - P - P^,

The bending moment at the same section is

M = Rx — wx^ — P(x - a) — Pi(x - a — h)

(2) =nx-^ -Px-\-Pa- P,x + P,a + P,b.

Differentiating (2) with respect to x, we find

(3) ^ = R-wx- P - Pi.
ax

This expression is the slope of the bending moment curve; i.e., it

is the rate of change of the bending moment at the section AA.

It will be noted that the right-hand sides of equations (1) and (3)

are identical. And these equations would be identical if the
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section AA were chosen so as to include either more or less loads

between it and the reaction. We may conclude therefore that

the shear at any section through a beam measures the rate of change of

cT
2 I fe

1^ J/76
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V = dM/dx, where V represents the shear and M the bending

moment at any section of a beam, distant x from the end.

This relation can be written in the form Vdx = dM and from

this it follows that

I

Vdx =
\

Xi Jxi

X2

dM.

If now it is recalled that f Vdx can be interpreted as the area

under the shear curve and f dM as the total change in bending

moment between any two points, it will be seen that the area of

the shear diagram between two 'points is the difference between the

moments at these points.* Thus, in Fig. 215, the area of the shear

diagram between the section AA and the center of the beam is

P/2 lbs. XL/4 ft. = PL/8 lbs. ft. The difference between the bend-

ing moments at these two sections is the same amount, PL/8. Let

the student apply this principle to determine the maximum

moment in Fig. 215. Figures 216 and 217 show two other cases

of shear and bending moment diagrams prepared to illustrate

the above principle.

125. Shear and Moment in Cantilever Beams. In general, the

determination of shears and moments in cantilever beams is

carried on in the same manner as in

^ 1 I the cases already discussed. In the

matter of the reactions, however, some

further explanation may be worth

I

while.

-* The reactions of a cantilever beam

may occur as localized forces, as

pj^ 218
shown in Fig. 21SA. In that case the

reactions may be determined and the

shear and bending moment diagrams may be drawn precisely as

for simple beams. But when the reactions occur in the form of

distributed forces, as shown in Fig. 21SB, the case is somewhat

* Provided we interpret J^ydx as the algebraic sum of the areas between a curve

and the x axis, where by algebraic sum we mean that those areas above the axis

are positive and those below are negative.

^^
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different. In the first place, the law governing the distribution

of the forces composing the reactions must be known or as-

sumed. When this has been done, the solution can proceed as

outlined below.

In Fig. 219 is shown a cantilever beam which is built into its

support to a depth of 1' 8''. The load tends to rotate the beam

downward about some point, as o. Let it be assumed that the

unit pressures composing the reaction vary uniformly from zero

at to a maximum at either side, as shown. Let x and ?/ be the

unknown pressure per linear inch. We can then construct four

equations to determine w^ x, y, and z, as follows

:

The average upward reaction is {x — y)/2 pounds per inch. The
total upward reaction is then 20 (a: — y)/2. Therefore, from the

relation 2F = 0, we find

(1) 10(a; -y) = 200.

Taking moments about a center at c, which is in line with the

center of gravity of the upward reaction, we find from the relation

SM = 0,

yw

2
(2) (|.+|.) = 200(l8+|)

From the geometric relations involved, we have

w + z = 20",(3)

and

(4)
X _ z

y w
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Solving these equations we get a; = 94 lbs. per inch, 1/ = 74 lbs.

per inch, z = 11.2", and w = 8.8''. The complete shear and

bending moment diagrams are as shown in Fig. 220. The

I
32S A

Y I

J/?ear 1

dendin^Moment

Fig. 220

dotted Hnes to the left of the vertical line AB (Figs. 219 and 220)

show the loading as assumed on this part of the beam, and the

shears and moments which result from that assumed distribu-

tion of the reactions. As a matter of fact, the actual distribu-

tion of the reactions in any given case will depend on the elastic

properties of the materials and it practically is indeterminate.

In drawing shear and moment diagrams for cantilever beams,

it is usual to omit the part at the supported end, as shown in

Case 3 of Table III in the Appendix.

PROBLEMS
Note. Draw the shear and bending moment diagrams for the following

cases. In each case determine the amomit of the shear and of the bending

moment at each point of sudden change as well as the position of the zero shear

and the amount of the maximum bending moment.

(1) Fig. 73. (2) Fig. 221.

(4) Fig. 223. (5) Fig. 224.

(7) Fig. 226(a). (8) Fig. 226(6).

(10) Fig. 227. (11) Fig. 228.

(3) Fig. 222.

(6) Fig. 225.

(9) Fig. 226(c).

(12) Problem 11, §106.

I
VJt ofbeam zs*"/)

\

200'400"

\Wt.ofbeom 25^/
'^ [

-w/i. 10- .k-5-

Fig. 221 Fig. 222
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1200-/' eoov'

h-j-H3- 14-
100

6000" 6000"

Fig. 223

I
3000/')

I

_] ^^^^ 1

J 1

120*"

(a)

^h^-h^-+

—

10—»*24 IQ -

Fig. 224

/200

1 r^;

/C?-

90' 200' 70'

j
?i7(?'' <9a?* 1000" 400'zooo" soo" 'f—-5'—\-3'-^—'l

'

• t -y-^

f
t T 11 f ,

R\ 4
re;

Fig. 225

/(?^

Fig. 226

1000"

,' 7TS
;

^ T-'
1^5—1. id ^h-J^/^" 9 *+•—

8

^'2>

Fig. 227

126. Shears and Moments by

Addition. In § 42, it was shown

that reactions can be determined

by the addition of the component

reactions due to each load sep-

arately. The same thing can be

done with bending moments and

shears. In Fig. 229 is shown a

case in point. The shear diagram

for the load F only is shown by the dot and dash line. That due

to the distributed load only is shown by the dotted line, and

the final diagram, which is composed from those two, is shown

by the solid hne. The bending moment diagrams for the in-

dividual loads, and that for the combined loads, are constructed

similarly. A more complex case is shown in Fig. 270.

127. Beam with Uniform Moment. In all cases of bending so

far treated, the loads and reactions have been vertical. One

100

Fig. 228
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special case remains to be noticed. If a beam is acted upon by

longitudinal forces, oppositely directed but not axial, as in Fig.

2S0A, bending will result. If a free body (Fig. 2305) is cut

Y//////////////7??77>^'y//////////\

ŵ lbs, per ft.

2'^ Z

^.^

^ Concentrated load

Uniform load -4

Combined loads

Shears

hi tVy

Concentrated load

A^t ^.'

^.''
wL V wx'

--X-

Uniform load

Combined loads

Bending Momenta

Fig. 229

by any section through the beam, as ^A, the tendency to turn

about that section is given by Pa. There is no vertical shear on

the section. It is thus evident that in such a case we have a zero

shear and a uniform moment throughout the beam. (Compare

with § 123.)

128. Various Cases of Loading. The student should be

familiar with the relations existing between loading, shear, and

bending moment, as given in §§ 121 and 123. This famiharity

should include not only a recognition of the correctness of the

demonstrations, but also a visual recognition of the necessary

relations between the corresponding curves.
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Table III in the Appendix gives the curves for a number of

typical cases of loading. Let the student go over a number of

these cases carefully, making sure that he understands how the

P-

"\

-P

^
P-.

B

R;«uu

Fig. 230

V
^^M.

^x^
shape of one curve controls the one below it and is controlled by
the one above it, and how the ordinates and slopes and the zero

and maximum points relate to one another. As the result of

such a study, he should be able, given a loading, shear, or moment
curve, to produce the other curves in that series.

PROBLEMS

Note. In each of the following cases a loading, shear, or bending moment
diagram is given. Draw the other two diagrams which correspond to the one

given.

Y

^fiit



CHAPTER XIV

BEAMS—UNIT STRESSES IN BENDING

129. Introduction. In the preceding chapter, the effects of

beam loading in producing bending moment and shear were

studied. Means were found for measuring each effect, and the

relations existing between loading and shear, and between shear

and bending moment, were established. It was also shown

(§ 118) that the bending moment and shear produced by loading

are resisted by stresses (the resisting shear and the resisting

moment) within the beam and that these stresses, in total amount,

are equal to the external forces. These statements presuppose

that the beam is capable of carrying the imposed load.

Consider a beam under a loading which is slowly being in-

creased. The bending moment increases with the load and calls

for an increasing resisting moment to be built up within the

beam. This resisting moment is composed of stresses of tension

and compression (§ 118) and the maximum that can be developed

within a given beam will be reached when the unit stress in

tension or compression exceeds the unit strength of the material.

It is proposed, in this chapter, to develop the relations between

the total stresses and the unit stresses, which result. We will

then have a means for investigating, designing, or determining

the safe load in beam problems.*

Let Fig. 237A represent an unloaded beam. When the load P
is applied the beam is bent as in Fig. 237B, the top face becomes

shorter (due to compressive stresses within the beam, as shown

in § 118), and the bottom face becomes longer (due to tensile

stresses). Moreover if we consider any thin horizontal slice

(shown shaded), it is evident that it cannot be either very much
shorter or longer than the one above or below it without pro-

* It should be remembered (§ 118) that we intend to deal with the stresses

due to bending only. The stresses due to shear will be separately analyzed in

Chapter XV.

176
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ducing a horizontal crack in the bent beam. We may conclude,

therefore, that the stresses on any given cross section, A'A', vary

gradually from compression to tension and that the law of this

variation must be understood before definite values for the

greatest unit stress present in a given case can be determined.

A
A

B

Fig. 237

130. Maintenance of Plane Sections.—Variation in Unit

Stress. The theory of beam stresses is a rational one but it is

dependent on experiment in two particulars, as stated below.

A. Maintenance of Plane Sections. Repeated observa-

tions have shown that when loads are not excessive, any plane

cross section passed through an unloaded beam remains a plane

after bending has taken place. Thus in Fig. 237A, the plane

section AA on the unloaded beam becomes the plane section A'A'

on the bent beam. In Fig. 237C, the relation between the two
planes is shown at larger scale. Here the distances c and t

represent the deformation of the top and bottom fibers of the

beam, due to bending. The deformation of any other fiber is

represented by some distance between the planes, measured

parallel to c and t. This in effect is the same as to say that the

change in the deformation of adjoining fibers and consequently

the change in unit stress is gradual and uniform.
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B. Relation of Moduli of Elasticity. The ordinary ma-

terials of construction have the same modulus of elasticity in

tension and in compression (see § 70 and Table I). From this

it follows that equal deformations indicate equal unit stresses

whether in tension or compression.

C. Variation in Unit Stress. Since deformation is propor-

tional to the unit stress which produces it (§ 65), it follows from

A and B above, that (1) the unit stresses set up in bending vary

uniformly from a maximum compression on one face of the

beam through zero to a maximum tension on the other face,

and (2) that the unit stress on any fiber of the beam is propor-

tional to the distance of that fiber from the surface on which

the stress is zero.

It should be noted particularly that this law of variation is

based on the proportionality between stress and deformation,

and that therefore it will hold good only in cases where the unit

stresses set up do not exceed the elastic limit of the material

(§ 66).

131. Symmetric and Unsymmetric Bending. When the

forces producing bending lie in a plane which is also a plane

of symmetry of the beam itself (as in Fig. 238), the bending is

said to be symmetric* When the external forces are in some

plane which is not a plane of symmetry for the beam itself, the

bending is unsymmetric (Fig. 397).

The ordinary theory of bending, which will be developed in

this chapter and in Chapters XV to XVIII, treats only of the

case of symmetric bending. The general theory of bending,

which is treated in Chapter XXII, includes any type of loading,

with symmetric bending as a special case.

132. Limits of the Theory. The general theory of bending is

not applicable to cases in which the unit stresses exceed the elastic

limit of the material nor when the material used has a different

modulus of elasticity in tension than in compression (§ 130).

The ordinary theory of bending is further limited to cases of

symmetric bending (§ 131).

* A slightly different definition of symmetric bending is given in § 229.
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Fortunately these limitations are not serious. No designing

of structures is done for unit stresses that exceed the elastic limit

of the material, and the usual materials actually do have the same

modulus of elasticity in tension as in compression. On the other

hand, it is important to keep these limitations in mind when one

comes to consider the phenomena of rupture (§ 137).

Again, most of the cases that arise in practice are cases of

symmetric bending. Therefore the ordinary theory which fol-

lows is usually sufficient. Unsymmetric bending is treated in

Chapter XXII.

133. Recapitulation for the Ordinary Theory of Bending.

Before starting to develop the equations for unit stresses it will

be convenient to review the results thus far obtained, and to

arrange them for future reference.

(1) The resisting shear = The vertical shear (§ 118).

(2) The resisting moment = The bending moment (§ 118).

(3) The sum of the tensile stresses = The sum of compressive

stresses (§ 118).

(4) The unit stress on a cross section varies uniformly from a

maximum in compression to a maximum in tension (§ 130).

(5) The ordinary theory is limited in application as indicated

in § 132.

(6) In order to make possible the investigation or design of

beams, equations are needed which express numerically

the relations between the essential factors in the problem.

These factors are : (a) The amount and distribution of the

load and the span, which determine the shear and bending

moment, and (5) the material and the size and shape of

the cross section of the beam (see page 185), which deter-

mine the resistance of a given beam to shear or bending.

We shall now proceed to develop the necessary equations,

bending and shear being treated quite separately.

134. Unit Stress.—Bending. Let Fig. 238 represent a side view

and cross section of one end of a loaded beam, taken as a free

body in the same manner as in Fig. 203. Let the cross section
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be considered as representing any symmetric shape. In the

discussion which follows, no values are to be used which depend

on any special size or shape of cross section. Let the surface of

no stress, called the neutral surface^ be represented by AA,

though its position is not yet determined. Let the tensile and

compressive unit stresses on the section be represented by the

i- V-T--

i

Fig. 238

da

arrows shown. According to the principles stated above, these

arrows are longest when farthest from the neutral surface and

vary proportionally to their distances from that surface. Let s

represent the largest of these unit stresses, let dA be an elementary

area or fiber of the cross section distant z from the neutral

surface, and let Si represent the unit stress on that fiber. From

similar triangles, we have

(1) s : Si c : z, or SZ = Si,C.

Hence the unit stress Si on a fiber distant z from the neutral

surface is

z

c

and the total stress on a fiber distant z from the neutral surface is

(2) zdA.

The total compressive stress on the section, above AA, is

(3)
cJc

zdA.
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and the total tensile stress on the section, below AA, is

(4)
If/'^'^-

Substituting the values found in (3) and (4) in equation (3) of

§ 133, we find

I zdA = -
j zdA.

This means that J^z dA for the area above the axis AA is equal

numerically to J'z dA for the area below the same axis. But

since z is negative for all values below the axis, it follows that

J*z dA for the entire section must be zero. Now from § 52 we

know that J^j^zdA =0 if and only if the axis from which z is

measured passes through the center of gravity. Therefore, we

can conclude that the neutral surface of a simple beam passes

through the center of gravity of the section, provided the case

falls within the limitations cited in § 132.

We have now definitely fixed the position of the neutral surface,

and we are in a position to attempt an evaluation of the unit

stresses. In order to do so let us recall equation (2) of § 133

and attempt to set up a value for the resisting moment of a beam

in terms of s. From (2) just above, the total stress on fiber

distant z from neutral surface is

-zdA.
c

It follows that the moment of the stress on the same fiber referred

to the neutral surface is

z-zdA,
c

and that the total moment of all stresses on the cross section,

referred to the neutral surface, is

X -z'dA.
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In this last expression, observe that (a) sjc is a constant and may
be placed outside the sign of integration, and {b) the total

expression merely evaluates the resisting moment of the beam

(§§ 118 and 129). We may then re-write the expression in the

form

Resisting Moment = -
\ z-dA,

or, by the definition of moment of inertia, § 107,

(5) Resisting Moment = -/.
c

But from (2), § 133,

Resisting Moment = Bending Moment.

Hence

(6) Bending Moment = -1.
c

In the above equations s is the unit stress in the outermost fiber

of the beam which is distant c from the neutral surface. This

is the maximum unit stress which occurs anywhere on the section,

and hence is usually the controlling factor in design or investiga-

tion. However, it is sometimes desirable to determine the unit

stress on some other part of the cross section such as dA, Fig. 238.

In that case, the relations in equation (1), § 134, may be used.

This gives sz = Sic or s = Siicjz). Now substituting this value

of s in equation (6) above, we get,

(7) Bending Moment =-1.
z

This is a general equation for determining the bending unit stress

in any fiber of a loaded beam.

135. Significance of the Equations. Equation (6), § 134, ex-

presses the relation between the loading on a beam and the unit

stress caused by that load. The elements entering into this

relation are (1) the load and (2) the beam, with the span as an

element common to the load and the beam. If we take the
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definite case of a load uniformly distributed over the beam, the

bending moment becomes TFL/8 (§ 122) and equation (6) be-

comes TFL/8 = s{I/c). The diagram given below is intended to

bring out the relations between these factors more clearly.

Load Span

amount—
distribution-

WL

Beam
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136. Applications of the Equation. A. Design of Wooden
Beam. Let it be required to design a wooden beam to span

16' 0" and carry a uniformly distributed load of 12,000 lbs.

The bending moment of the load is

8

The beam to be used must have a resisting moment equal to the

bending moment when the maximum unit stress in the beam is

not greater than the allowable unit stress, say 1,000 lbs. per sq. in.

Then
I

Then from equation (2), § 133

RM = 1,000-.
c
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which, in this case, should not exceed 716,800 lb. ins.; then

30TF = 716,800 and W = 23,890 lbs., which is the required safe

load.

C. Investigation. Again suppose that a circular steel beam
4'' in diameter and 10' 0'' long carries a load of 2,000 lbs. con-

centrated at the center of the span. Is it safe? Here

_,^ 2,000 X 10 X 12 ar^r.nr.^u •BM = — = 60,000 lb. ms.

*7 = TT— = 12.56, and - = 6.28.
64 c

Then 60,000 = 6.28s and s = 9,550 Ibs./sq. in. This, being less

than 16,000 lbs. per sq. in., is a safe unit stress for steel.

D. Investigation. — Irregular Sec-

TiON. Let Fig. 239 represent the cross sec- i tfti

tion of a cast iron beam which is used to I

,
]•

a 6- 7

carry a uniformly distributed load of 20

^A?l

Neutral
Si

000 lbs. on a span of 10' 0". The safety

of the beam is to be investigated.

From § 52 the center of gravity of the .^^ ^^_

section is found to be as shown in the

drawing. Then from § 114, the / for the section about an axis

through the center of gravity is computed. It is found to be

141 (in.)^. The bending moment of the load is

20,000 X 10 X 12 ^_ _ _ _^ ., .— = 300,000 lb. ins.

The maximum unit stress on the outermost fiber at the top of

the section can now be found from the equation

141
300,000 = s^ ,

6.7

s = 14,250 lbs. per sq. in., compression.

The maximum unit stress on the outermost fiber at the bottom of

* See § 112 or a table of moments of inertia.
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the section is given by

141
300,000 = s'—

,

s' = 4,900 lbs. per sq. in., tension.

Each of these unit stresses is less than the allowable for the

material (Table I). Therefore the beam can be considered as

safe. However, it may be noted that the actual unit stress in

tension is about 98 per cent, of the allowable stress, while that

in compression is 89 per cent, of the allowable stress. Thus the

beam is stronger on the compression side than on the tensile

side. • By a proper readjustment of the section, the strength

could be made the same for both sides.

From equation (7), § 134, it is evident that the unit stress at

any point on the cross section is proportional to the distance of

that point from the neutral surface. Thus in the above beam

the unit stress at the joining of the flange and web is found

from the relation

141
300,000 = s" —- , s" = 2,770 lbs. per sq. in.,

or, by proportion, from the equation (4,900/2.3) X 1.3 = 2,770.

PROBLEMS

Note. In all of the problems dealing with beams, let the weights of the

beams be neglected, except when otherwise specified. When details con-

cerning steel shapes are needed, consult a handbook.

1. A wooden beam 2" broad and 12" deep spans 15' 0" and carries a uniformly

distributed load of 2,560 lbs. What is the maximum unit stress in the

beam?

2. In Problem 1, what is the unit stress at a point 4' 0" from the left end and 3"

above the neutral surface?

3. What load could the beam in Problem 1 safely carry if turned so that the 2"

dimension is the depth of the beam?

4. Design a wooden beam to carry a central load of 3,000 lbs. on a span of 8' 0".

5. A simple beam of concrete is 12" X 12" in cross section and carries its own

weight only. What is its length if the maximum tensile unit stress due

to bending is just equal to the safe unit stress?

6. What is the size of a steel I beam that can safely carry the load shown in

Fig. 224?

7. How large a steel I beam is required to carry the load shown in Fig. 209?



BEAMS—UNIT STRESSES IN BENDING 187

J 8. Investigate the security of the

beam shown in Fig. 240. tfj.-i,, ^^^^^ ^^^^

The material is cast iron.

9. A 12" X 31 lbs. I beam, 16'

long, carries a distributed

load which varies uniformly ^^'^^^^ '̂'^̂
l' ^^^^ '^^^ beam.

from zero at one end to a Pj^^ 240
maximum at the other end.

What is the total safe load?

10. A 10" X 25 lbs. I beam, 17' 0" long, rests on two supports which are 12' 0"

apart, and projects 5' 0" beyond one support. What is the safe

uniformly distributed load?

11. Design a wooden beam to carry a total load of 1,500 lbs. on a span of 12' 0".

The load is a distributed load varying uniformly from zero at each end
to a maximum at the center.

12. A bar of aluminum is 36" long and its cross section is a triangle whose base

is 2" and whose altitude is 3". The apex of the triangle points down-
ward. It is to act as a simple beam and carry a concentrated load at the

center of the span. What is the greatest load that can be safely carried?

y 13. A Tee beam of cast iron has a section similar to Fig. 239. The horizontal

flange is 9" wide and the vertical stem is 8" high. The metal in flange

and stem is 1" thick. The beam carries a uniformly distributed load of

5,000 lbs. on a span of 8' 0". What are the maximum unit stresses in

tension and in compression?

,, 14. Design a steel beam to carry a load of 3,000 lbs.

/« o" concentrated at the center of a 12' 0" span.
"3 15. Design a timber beam to serve the same pur-

'•^« pose as in Problem 14.

^ 16. Investigate the safety of a steel beam whose
^ '9^^ /?A77eJ section is like Fig. 241 and which carries a

^'^'y load of 1 20,000 lbs. on a span of 30' 0". The
intensity of the loading varies uniformly

241 from zero pounds per foot at the right to a

maximum at the left.

17. Given a beam whose cross section is like Fig. 197A, carrying a uniformly

distributed load of 100,000 lbs. Determine the maximum unit stress.

18. Given a, beam whose cross section is like that shown in Fig. 1975, and a span

of 24' 0". Let the load vary uniformly from zero pounds per foot at

each end to a maximum at the center. What is the total safe load?

137. Ultimate Bending Strength.—Modulus of Rupture. In

§ 135 the equation M = s(7/c) is developed to express the relation

between the loading on a beam and the unit stress produced by

that load, in the outermost fiber of the beam. But in developing

this relation, use was made of the proportionality between stress

and deformation, and this proportionality exists only when the
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stresses involved are less than the elastic limit of the material.

Therefore, this equation may not be used to determine the unit

stresses produced by loads which cause failure. Consider a beam

on which the loads are gradually increasing. Let the left-hand

r-^'-

_ /-Neuiralsurface

part be shown by Fig. 242. At first the stresses are small and

are distributed in the usual manner, as shown in A. As the load

increases, the stresses increase, as shown in B, as long as the

maximum unit stress s is within the elastic limit of the material.

But when the elastic limit is exceeded, on the outermost fiber,

the deformations 0/ that fiber are greater in proportion to the

unit stress than those on a fiber close to the neutral surface

(§ 66). Hence the stress diagram must change its form to

something like that shown in C Here, s is the unit stress

on the fiber which is -stressed just to its elastic limit. Such

a diagram will be symmetric about the neutral surface only in

case the elastic limits of the material in tension and compression

are equal and the beam section itself is symmetric about the

same axis.

Now let us assume a beam with a symmetric section and

made from some material having the same modulus of elasticity

in tension and compression but a much higher elastic limit in

compression than in tension. The stress distribution will be as

shown in D. Here let s' be the elastic limit in tension while s

is below the elastic limit in compression. From equation (3),

§ 133, we know that the areas of the stress distribution diagrams

above and below the neutral surface must be equal. It follows

that in the case assumed the neutral surface must be above the

center of the section. That is, that c' > c.
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It is thus apparent that under increasing loads (1) the form of

the stress distribution diagram begins to change as soon as the

elastic limit of the material is exceeded, and (2) if the section is

unsymmetric in shape or strength, the neutral surface recedes

from the weaker side as the unit stresses increase toward failure.

While it is well recognized that these changes in stress distri-

bution do occur, it is nevertheless common practice to deter-

mine what is known as the modulus of rupture by the use of

equation (1), § 135. A beam is tested to destruction under

known loads. The known loads, the span, and the section

modulus are then inserted in the equation, and a value for s is

worked out. This is the unit stress which would exist in the

outermost fiber of the beam if the stress distribution diagram

remained constant throughout the test. This value is a wholly

fictitious one, but it has been found useful inasmuch as it has

been found to be fairly consistent when derived from experiments

on beams of a similar material, size, and shape.

Thus the modulus of rupture is a quantity which has no theoret-

ical value but, when properly used, it is a useful measure of the

ultimate strength of a beam. Its value is found to lie somewhere

between the ultimate tensile and ultimate compressive strengths

of the material. The values given in Table I under the heading

*' Bending" are derived in this manner.

138. Stress Distribution Diagrams. From equation (7), § 134,

we find that the intensity of the unit stress Si at any point in a

beam is Si = Mz/L From this expression it is clear that in a

beam of constant cross section Si varies with both M and z. It

will have maximum values along the top or bottom face of the

beam and at sections of maximum moment. It will be zero

along the neutral surface and at sections of zero moment.

Figure 250A is an approximate graphic representation of the

variation of bending stress intensity throughout a beam of rec-

tangular cross section, carrying a uniformly distributed load. In

§ 201 is a similar diagram to show the distribution of bending

stress when combined with shearing stress.
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4^

PROBLEMS

What are the relative strengths of a pipe 4" in diameter outside and 3^" in

diameter inside, and a solid shaft 4" in diameter? In each case the

material is steel and it is used as a simple beam 8' 0" long to carry a

uniformly distributed load.

AVhat are the relative strengths of an 8" X IVi lbs. I beam and a 10" X 12"

wooden beam if each beam is 12' 0" long and is to carry a uniformly

distributed load?

How much uniformly distributed load can be placed on a 24" X 100 lbs. I

beam 18' 0" long: (a) when the web of the beam is placed in a vertical

plane? (6) When the w^eb is horizontal?

How great a central load must be added to the loads on the beam in

Fig. 240, in order to cause failure?

The modulus of rupture for a given material is 3,000 lbs. per sq. in. A beam
4" X 8" and 9' 0" long is mads of this material. Two equal loads occur

at 3' 0" and 6' 0" from the left end. How great may each load be if a

factor of safety of 6 is to be allowed?

6. W^hat is the probable breaking load

on a steel beam whose crossG/rc/er

Girder

24-

Fig. 243

•x-o
Col.

T

^CqL

section is like Fig. 197B and

w^hose span is 16' 0"? The load

is to be concentrated at the cen-

ter,

7. A 20" X 65 lbs. I beam, 20' 0"

long, has a plate 7" X f" riv-

eted to each flange. If no de-

duction is made for rivet holes,

by what percentage is the

strength of the plain I beam increased, when the plates are added to

the section?

8. In Problem 7, if the rivets used are |" rivets and two rivet holes are

deducted from the area of the tension flange only, what is the percentage

of added strength due to the plates?

9. A floor is to be built, supported on walls which are 12' 0" apart. Wooden

beams, 2" wude and 16" on centers, are to be used. The flooring is to

be of 2" planks and the ceiling is to be of plaster, f" thick. This floor

must support, in addition to its own weight, a load of 50 lbs. per sq. ft.

Design the beams.

10. Figure 243 shows a plan of a typical bay in a steel floor system. Similar

bays surround it on all sides. The floor is intended to carry a total

(dead and Hve) load of 250 Ibs./sq. ft. What are the necessary sizes

of I beams for girders and beams? The beams marked "a;" rest di-

rectly on the columns.

11. In Problem 10, if the beam spacing is changed from 6' 0" to 8' 0", so that

there are but two beams between the beams marked "x", w411 there be

more or less steel required to support the floor? And how much?



CHAPTER XV

BEAMS—UNIT STRESS IN SHEAR

139. Introduction. In § 118 and especially in Fig. 200, the

existence of vertical shear on a beam section was demonstrated.

It is now necessary to determine how this shear is distributed

over the cross section of a beam and to set up an equation to

determine the unit shearing stresses throughout the section. In

§ 73 it was shown that whenever a shear exists in one direction,

there is another of equal intensity and at right angles to the first.

Thus if at any spot in a beam there is a vertical shear (as shown

in § 118), then there must also be a horizontal shear (as shown

in § 73). That such shear does exist can be easily perceived.

Consider the beam shown

A
I

=1 in Fig. 244A, divided by im-

aginary horizontal planes as

Fig. 244

shown. Now imagine that

these are actual cuts, offering

no resistance to horizontal

motion. As the beam de-

flects under its load, it will take on the shape shown in Fig.

2445, a shape which is familiar to anyone who has noted a pile

of planks acting as a beam. The shape shown in Fig. 2445
can result from that in 244A only by a horizontal slipping.

If a solid beam does not take on the shape shown in B, it is due

to its resistance to horizontal shearing stresses along the planes.

Another way of approaching the subject is shown in Fig. 245.

Let A represent a beam loaded in any manner. Now let the

shaded section be cut out and shown as a free body (at an en-

larged scale) in B. The bending moment at section AA is less

than at BB; therefore s' < s and XH is not zero unless some
stress H is present on the horizontal cut surface. If such a stress

is applied, it will be seen that all of the conditions of equilibrium

may be fulfilled; and not otherwise. On the other hand, if

191
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s = s' (that is, if there is no change of moment between AA and

BB), neither V nor V nor H can be present and still have equi-

librium. Thus it is seen that shear always accompanies a change

in moment and is not present otherwise. The same idea is stated

in different terms in § 123. In § 140 we will develop an expres-

A\ \3

-T\
—

A\ ^B

Fig. 245

sion for the shearing unit stresses by working chiefly with the

horizontal shear. It should be remembered, however, that the

intensities of the horizontal and vertical shears are equal and so

the expression to be evolved will apply to either.

140. Unit Stress.—Shear. In Fig. 245A let the entire part

of the beam between the planes AA and BB be cut out as a free

rA1-/M'jc

-\/^-M'

body and shown (at an enlarged scale) in Fig. 246A. Let M
be the resisting moment on plane BB and M' be that on AA.

From the positions of the two planes, M > M' . Therefore the

unit stresses on the right of the free body are greater than those

on the left, as shown. Now from equation (1), § 135, the unit

stresses on the outermost fibers on the two sides are Mcjl and
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M'c/I. The shear is represented by the vertical arrows and its

amount is V. Now let all the horizontal forces on the left of

the free body be subtracted from those on the right and a new

free body (Fig. 246B) be drawn. The moment stresses on this

free body represent the stresses due to the change in moment
between the two sections, i.e., M — M'. Taking a center of

moments at o, we find M — M' = Vx, whence

M _ M'
(1) V = — '

X

This equation merely restates the fact that the shear is

equal to the rate of change of the bending moment (see § 123).

Now let a free body be cut from the one in Fig. 2465 by a

horizontal plane near the top face. Let this new free body be

shown (at enlarged scale) in Fig. 246C The unit stresses on the

right-hand face vary from {M - M')c/I to {M - M')z/L The

average unit stress will be

(*4^)C-f')
This unit stress is distributed over the area B; so that the total

force acting horizontally on the free body is

i'-^wy
This force tends to slide the free body horizontally. If sliding

of this part does not occur in the beam, it must be because of resist-

ance to sliding on the surface C, whose area is xt. Hence, if Sh

denotes the average unit horizontal shearing stress on the area C,

(2) s. ^ ^ A 2 )
.

In this expression, \^{c -}- z) /2']B is recognized as the static moment

(§ 53) of that part of the cross-sectional area of the beam which

lies above the plane on which the unit shear is being determined,

referred to the neutral surface. Let us call this quantity Ms.

The rest of equation (2) can be simplified by substituting V for

its equivalent value, as found in equation (1).
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When these substitutions are made, equation (2) becomes

(3) . SH=J^M.,

which gives the value of the horizontal (or vertical)* shearing

unit stress at any point in a beam. Since (3) is derived by the

use of (1), § 135, it is subject to the same limitations (§ 132).

141. Analysis of the Equation. Equation (3), § 140, easily

can become a mere set of letters, leading to no real physical con-

cepts, in which event it is worthless or worse. This condition

may be avoided perhaps by going back to Fig. 246, and analyzing

the equation in the light of the physical conditions there shown.

The first fact of importance to be noted is that the shearing

stresses are due to the difference between the moment stresses on

any two vertical sections. Thus in Fig. 246(7, the unit stress

on the area C is equal to the force on the area B divided by the

area C. Moreover the force on the area B depends on the average

intensity of the moment stress and on the size of the area B.

These relations may be expressed thus:

Unit shearing stress I _ | The average moment stress on B times

on the area C
J [

the area B, divided by the area C.

Equation (3), § 140, results from giving definite values to this

simple statement. Let us take each member of (3) separately.

A. As to Ms. The symbol Ms stands for the static moment
(referred to the neutral surface) of the area of that part of the

section which lies above (or below) f the point on the section at

which the required shearing stress occurs (§ 53). Its value will

vary from zero (for a section taken at the top or bottom face of

the beam) to a maximum when the section is taken at the neutral

surface. Therefore the shearing unit stresses vary similarly.

B. As to V. Evidently the shearing unit stress should vary

directly with the total shear, being generally large at sections

near to the reactions.

*See §139.

t Let the student prove that the static moment (referred to an axis through the
center of gravity) of that part of an area which lies above a given point is equal
numerically to that below the same point.
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C. As to I. Since the moment stresses vary inversely with

the / of the entire section (equation (1), § 135) and since the mo-

ment and shearing stresses are interdependent, it is but natural

to expect to find I in the denominator of our equation.

D. As to t. Reference to Fig. 246C will show that the total

push is distributed over an area C which varies with t. Hence

the unit stresses naturally vary inversely as t.

E. As to units. Let the student shov/ that the right-hand

side of the equation is expressed in pounds per square inch.

142. Application of the Equation. (1) Let it be required to

find the shearing unit stress in a beam 6'' X 8'' and 14' 0'' long,

carrying a uniform load of 500 lbs. /ft., at a point 3' 0'' from the

reaction and at the neutral surface. The total shear at the given

section is (500 X 14) /2 - (500)3 = 2,000 lbs. The I for the beam

is 6 X 8 X 8 X 8/12 = 256 (in.)^ At the neutral surface Ms is

6 X 4 X 2 = 48 (in.)l

The thickness of the beam is 6''. Therefore

2,000

256 X 6
48 = 62.5 Ibs./sq. in.

In the above problem, at a point midway between the neutral

surface and the top face Sh = 46.9 Ibs./sq. in.

m//////iooo^perffy////////A

^2-U/1

16

Fig. 247

,.| \ j
ISurface

(2) Let it be required to find the shearing unit stress in the

beam shown in Fig. 247.

A. On the line of intersection of the neutral surface with
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plane AA. The value of Ma can be conveniently figured below

the neutral surface.

Sh =
6.000

18 X (27)-^

36
X

_ / 12 X 18 \
>< g ^ 33 ibg^gq ^^^

B. On the line of intersection of planes AA and BBj

6,000 (4 X 6)
Sh =

18 X (27)-

36

X 14 = 25.6 Ibs./sq. in.

X4

C. In the case of an I beam (Fig. 254), the shearing unit stress

may be determined as above by dividing the section into rec-

tangles and triangles and neglecting the small curved fillets.

A more detailed discussion of this case is given in § 204.

143. Stress Distribution Diagrams. From the above examples

as well as from § 141, it is evident that the intensity of shearing

unit stress varies widely at

different heights on any given

cross section. But since for

any height whatever on a

given section the total shear

and the total I are constant,

it is clear that the relative in-

tensity of stress at various

heights is determined by Ms/t

(see equation (3), § 140). In the case of a rectangular cross

section (Fig. 248) the intensity of the shearing unit stress on the

plane AA (relatively to its intensity on some higher or lower

plane) is therefore given by the expression

Fig. 248

(hy)

s (relative) = (M). yd _y^
2 2

This is the equation of a parabola. From this equation, the

shearing unit stress has the value zero when y is zero and is a

maximum when y = d/2, as shown in Fig. 248.
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The absolute intensity of the maximum shearing stress on a

rectangular section can easily be determined by direct substitu-

tion in equation (3), § 140. It is s« (Max.) = 3V/i2hd).

8 --

^

3J7

r

Fig. 249

In the case of an I section, Fig. 249, the stress distribution

diagram was derived by actual computation. Let the student

check the values. The relative stress intensities at a given

height on various vertical sections through a beam will vary

with the total shear on the section. Figure 250B is an attempt

A. Bending Moment

B. Shear

Fig. 250. Variation in Unit Stresses throughout a Beam of Rectangular

Cross Section, carrying a Uniformly Distributed Load

to show the distribution of stress intensity as it varies both

longitudinally and transversely in a rectangular beam carrying

a uniformly distributed load. This diagram shows the intensity

of shearing stress only. In § 201, Chapter XX is a diagram

illustrating the combined effect of shear and bending stress.
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PROBLEMS

1. A 2" X 12" wooden beam, 12' 0" long, carries a central load of 1,000 lbs.

What is the factor of safety in shear?

2. A wooden beam, 4" X 10" and 10' 0" long, carries a uniformly distributed

load of 3,500 lbs. What is the shearing unit stress at a point 3' 6" from

one support and 3" above the neutral surface?

3. A beam whose cross section is a triangle with a base of 2" and an altitude of

3" is used to carry a central load on a span of 36". Let the apex of the

triangular section point downward. If the allowable unit stress in

shear is 3,000 lbs. per sq. in., what is the safe load as determined by the

shearing resistance?

4. Investigate the beam in Problem 13, § 136, for shear.

5. What is the maximum shearing unit stress in the beam in Fig. 240?

6. Draw a diagram to show how the shearing unit stress varies from top to

bottom on any cross section cut through each of the following beams:

(a) a beam whose cross section is rectangular; (b) triangular; (c) an I

shape similar to Fig. 347; (d) an angle shape similar to Fig. 194.

7. A wooden beam 6" X 6" and 6' 0" long is loaded to its full safe load in

bending. What is the factor of safety in shear?

8. Given a steel beam whose section is like Fig. 347 and which spans 8' 0".

Let it carry two loads each of which is 100,000 lbs. and placed 2' 0"

from a support. What is the factor of safety in shear?

9. In Problem 8, what is the shearing unit

200O" 6000*' 500^ stress at a point near the end of the

I I \ beam and just below the junction of

L
'

^
"

, , —ri web and flange? Also at a point near
^•3-*—5 *** '^ *^ p ^^® end of the beam and just above
'w ^ the junction of web and flange?

Fig. 251 lo. A 24" X 80 lb. I beam, 7' 0" long, car-

ries a uniformly distributed load of

240,000 lbs. Draw a diagram showing the intensity of the shearing

unit stress throughout a section cut close to one support.

11. A wooden beam 16" X 16" is used to carry the loads shown in Fig. 251.

What are the maximum unit stresses in bending and in shear?

12. A beam is made up of two pieces of timber, 2" X 2" and 6' 0" long, glued

together. It carries a concentrated load of 200 lbs. at its center.

What is the maximum stress p^r square inch on the glued joint? The
joint lies in a horizontal plane.

%



CHAPTER XVI

BEAMS—CHARACTERISTIC SHAPES AND RELATIONS

144. Introduction. The beams used in structural work are

mostly of wood, steel, cast iron, or reinforced concrete. Wooden

beams are sawed from logs. Steel beams are formed by passing

heated billets through rollers which give the required shape.

Both of these processes produce beams of uniform cross section

throughout the length. Because of this fact and the ease with

which beams of uniform cross section can be fitted together and

incorporated in a structure, a very large proportion of all the

beams used in structural work are simple prisms. On the other

hand, cast iron and concrete are moulded into shape and, as a

matter of manufacture, it is much less difficult to vary the

section.

In Chapters XIV and XV we have seen how the bending mo-

ment and shear vary along the length of a beam and how the

resisting stresses vary on a given cross section. Economy of

material alone would dictate the forming of beams in such a

manner as to produce unit stresses equal to the working strength

of the material on the outermost fiber of every cross section,

and so to dispose the area that as few fibers as possible occur

near the neutral surface. In a general sort of way this would

give a beam, deeper in the center than at the ends (lengthwise)

and wider at the top and bottom faces than toward the center

(of the cross section). In most cases the labor of producing

such a beam is excessive and more than offsets any possible

economy of material. But occasionally there are conditions

which justify a considerable variation from the simple forms

ordinarily used. Where loads or spans are so large as to call

for sizes in excess of the largest standard rolled section, the

problem becomes a special one and important economies may
be effected by careful design. Again when a material, such as

cast iron, has widely differing strengths in tension and com-

199
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having to do with manufacture, transport, erection, and fire

resistance.

B. Beam of Uniform Strength. In the case of a cantilever

beam with a load concentrated at the end (Fig. 252A), the

bending moment at any section A varies with x. Since the re-

sisting moment of the rectangular section varies with hd^, it will

be evident that in a beam whose h varies with x while fZ is a con-

stant, there will be constant relation between the bending mo-

ment and the resisting moment, i.e., the unit stress on the outer-

most fiber is the same for any section. Such a beam (Fig. 252B)

is called a beam of uniform strength. The constant relation

between bending and resisting moments may be secured by

varying other factors, as shown in Figs. 252C, Z>, and E.

In the above cases, the strength in shear is not considered.

The shear at the end of the beam would call for a modification

of shape somewhat as shown in Fig. 252i^.

C. Strongest Beam that can be cut from

A Log. This problem requires us to find that

rectangle which, being inscribed in a circle of a

given size, has the maximum possible value of

hd''. From Fig. 253, d? = D^ - h\ We then

need to find that proportion of h and d which
-p^^ 253

will give to the expression 6(1)^ — 6^) a maxi-

mum value. By the usual process of the differential calculus

this is found to occur when

6 = Z) V| and d = 2)Vf = V2 6 = L416.

D. Relation of Span and Depth. In very long beams, a

small load produces a large moment and a small shear. In

very short beams, a large load produces a large shear and a small

moment. It is evident that at some span, the shear and moment

are equally important.

Let us take the case of a rectangular beam carrying a uniformly

distributed load. Let the allowable fiber stress in bending be

s and in shear Ss. Then the bending moment is TFL/8, and the

resisting moment is shd'^j^. From these two values, the allow-
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able load, as determined by bending, is found to be ishd^/iSL).

Again from equation (1), § 143, the allowable load, as determined

by shear, is found to be 4iSshd/S. In the critical case above

mentioned these two loads are equal; this gives

4 sbd" 4 , J

or

(1) L = -d,
Ss

which is the ratio of depth to span at which the degree of security

is the same in bending and in shear. Other ratios can easily be

worked out for other conditions of loading.

PROBLEMS

Note. In problems 1-6, let bending moment only be considered.

1. Draw four different simple beams of uniform strength to carry a load

concentrated at the center.

2. Draw two different simple beams of uniform strength to carry a uniformly

distributed load.

3. A wooden beam is to be used as a cantilever 5' 0" long and is to carry a

uniformly distributed load of 1,200 lbs. Design a beam of uniform

strength for this purpose.

4. Two posts are 11' 0" apart. A wooden beam 21' 0" long spans between the

posts and overhangs 5' 0" on each side. The beam is 4" broad and

carries a uniformly distributed load of 6,300 lbs. Design a beam of

uniform strength for this purpose.

5. A wooden beam spans 14' 0" l^etween supports. At 4' 0" from the left is a

concentrated load of 1,000 lbs. and 5' 0" from that load is another of

1,800 lbs. Design a beam of uniform strength for this service.

6. Design a beam of rectangular cross section and uniform strength to span 10

0" and carry a load which varies from zero at one end to 1,000 lbs. per ft.

at the other end.

7. A certain wood has a safe bending strength of 1,000 lbs. per sq. in. and a

safe shearing strength of 70 lbs. per sq. in. At what span will a 6" X 6"

beam of the above wood which is loaded to its full load in bending be

also stressed to its full capacity in shear?

8. What is the greatest safe load that may be placed on an 8" X 12" timber

beam?

146. Rolled Sections. A rolled beam is, from the method of

manufacture, necessarily of a constant cross section. But this
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Flange

Web

Fig. 254

section can easily be given a wide variety of shapes. The shape

most commonly used for beams is the I section shown in Fig.

254. These sections are rolled in a variety of depths and several

weights for each depth as listed in any of the various handbooks.

The precise details, such as slope of flanges, radii

of fillets, etc., have been determined by the proc-

esses of manufacture, ease in fabrication, and

other such considerations, but the general form is

the result of an attempt to so dispose the metal as

to give a high resistance to bending. Hence the

large concentration of metal in the flanges to in-

crease the moment of inertia of the section. The

web is kept as thin as possible while still retain-

ing enough metal to give satisfactory shear resist-

ance between the flanges (see § 143). Other rolled sections may
be used as beams, but if so it is done as a matter of convenience

rather than because of their efficiency in carrying load.

147. Unsymmetric Sections. In a symmetric cross section, the

unit stresses on the uppermost and lowermost fibers are equal.

Hence this form of section is well adapted to a material such

as steel, which has about the same unit strengths in tension and

in compression.

In the case of a material like wood, which has a greater strength

in tension than in compression, the upper side of a symmetric

section will fail first. In a stone or a plain

concrete beam of symmetric section, the

reverse is true. For such materials, then,

it would seem that some form of section

^^Neutral that would place a greater amount of ma-

/^ ^Uf^l<^ce terial on the weak side of the neutral sur-

face would prove advantageous. One form

of beam section, designed to meet this con-

dition, is the Tee section shown in Fig.

255. Here the neutral surface is well

down toward the bottom and, in a beam of this section, the

greatest unit stress on the compressive side would be nearly

9.33

IZ \

3.66

v]l//A///>///////A
IZ"—

Fig. 255
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three timeg as large as that on the tensile side (equation (7),

§ 134). This fact would indicate the use of such sections for

materials stronger in compression than in tension. As a matter

of fact, cast iron is frequently used in this form. On the other

hand, such materials as wood and stone cannot readily be

worked to such shapes and so are more commonly seen with

rectangular sections even though there is a loss of strength per

unit of material. In the case of reinforced concrete beams the

visible sections are usually symmetric, but the lack of strength

on the tensile side is made up by introducing a stronger mate-

rial (steel), as shown in Fig. 378. This produces the same

effect as spreading out the area on the lower side (Fig. 369).

This case is more fully covered in §§ 210-216.

148. Plate Girders. For very great spans or loads, it is usual

to build up steel girders formed of various sections united by

riveting. In such a case it is possible to approximate a beam
of uniform strength quite closely. A typical form of plate

girder is shown in Fig. 256. The flanges are increased in area

Fig. 257

toward the center, thus providing for the bending stresses.

The web is stiffened toward the supports, thus providing for the

heavier shear which occurs there. The riveting which unites

the various parts must transmit horizontal shear and conse-

quently is more closely spaced near to the supports.
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Another form of girder is shown in Fig. 257. In this case the

depth is varied rather than the flange area. This form is fre-

quently used for travehng cranes.

PROBLEMS

1. What are the relative strengths of the lightest and the heaviest 18" I beams

listed in the handbooks?

2. Given an 18" X 55 lb. I beam and a beam of solid steel, 6" X 18", what

are their relative strengths per pound of metal?

3. Two plates each 6" X h" are to be riveted to a 12" X 3U lb. I beam.

Rivet holes are not to be considered. By what percentage will the

strength of the plain beam be increased (a) if the plates are riveted to

the flanges, (6) if they are riveted each side of the center of the web?

4. What are the relative strengths per pound of metal of a 4" X 4" X i" T
beam (flange horizontal and stem pointing up) and a 6" X 12j lb. I

beam?

5. What are the relative strengths of a 4" X 4" X h" T beam (flange hori-

zontal and stem pointing up) when made of steel and when made of cast

iron?

Note. The modulus of rupture for cast iron as given in Table I was

derived from experiments on small beams of rectangular section and therefore

should not be used in this problem (§ 137\ The ultimate strengths in

tension and compression should be used.

6. What are the relative strengths of the cast iron T beam in Problem 5, when

the stem points up and when it points down?

J
r

I

10-

Fig. 258

.•:-*

«'i>i

Sfc.mm

Fig. 259
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Fig. 260

20 ^
7. How much uniformly distributed load may be safely carried on a cast iron

beam 9' 0" long? The section of the beam is like Fig. 258. (See note,

to Problem 5.)
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8. How much uniformly distributed load may be placed on two 15" X 42 lb. I

beams: (a) when placed side by side; (6) when superimposed and
riveted together as shown in Fig. 259? The span in each case is 25' 0".

9. Figure 260 shows a riveted beam girder: (a) AA'hat is the maximum bend-
ing unit stress? (6) How many rivets are needed in the space Al

10. What is the safe uniformly distributed load on the plate girder shown in

Fig. 241, as determined by bending on a span cf 30'?

11. Draw a typical girder, similar to Fig. 257, to carry two symmetrical
concentrated loads at the third points of the span.



Fig. 261

CHAPTER XVII

BEAMS—DEFORMATION

149. Introduction. The deformations produced in a beam are

principally those due to the bending moment.* Compressive

stresses shorten the upper fibers of the beam while the tensile

stresses elongate the lower fibers. Due to these different changes

in length in different parts, the beam is forced into a curved shape,

as noted in § 117.

In Fig. 261 is shown a beam, deformed by the load W. The

top fiber aa is shorter, and the bottom 66 is longer than before

bending occurred, while u/

the neutral surface cc re- ^^^^̂ ZMy/////Z'^7^^̂ ^^^^
mains at its original length , P~^-^~"-^-—~ "If-j^ —-" "^^^ A

L. The end planes ah
j

^ ""
J

tip inward as necessitated

by these conditions, and

the center of the beam is depressed below the level of the sup-

ports. The amount of this depression y is called the deflection.

A careful study of the phenomena of deflection is important,

since in many cases excessive deflection is very undesirable.

For instance, when shafting must be kept ahgned or when

ceilings of plaster or similar materials are to be carried, excessive

deflection can cause serious trouble even in a case where ample

strength is provided. Again, from the theoretical standpoint,

the study of beam deformations is most important as it leads

directly to the solution of many statically indeterminate problems

such as beams on three or more supports, stresses in columns,

etc.

* The shearing stresses which are present in a beam produce a small amount of

deflection. Extended works on strength of materials give methods for its evaluation.

But, except in very deep and short beams, the amount of deflection due to shear is

so small a percentage of the total deflection that it may be neglected. Therefore

the following discussion is concerned onb^ with deformations due to bending moment
stresses.

207
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Since it is the bending stresses that produce the deformations,

and the deformations finally produce the deflection, it is natural

to expect that in any expression for deflection there wiU be

found about the same factors as in the expression for strength

in bending. This is actually the case. The general form of the

expression for deflection is

y = a, function of -—- •

Jill

In this expression L and W represent the effect of span and

loading, / represents the moment of inertia of the section as de-

termined by its size and shape, and E represents the stiffness of

the material of which the beam is made.

The curve formed by the neutral surface of a beam is called

the elastic curve (as shown by cc, Fig. 261). In developing an

expression for deflection, frequent use will be made of (1), § 135.

Therefore the limitations governing that equation (§ 132) will

apply equally to all results obtained for deflections.

150. General Form of the Elastic Curve. Let ahcd, Fig. 262A,

represent a beam and let it be divided into small equal divisions

by planes normal to its longitudinal axis, as g-h, i-j, etc. Let

ef be the neutral surface.

Now let forces P be applied so as to subject the beam to a

bending moment equal to Pr. This bending moment is the

same on every cross section of the beam (§ 127) and wifl produce

equal deformations in each of the small sections, a, g, h, c; g, h,

j, i; etc. (The deformations inthe figure are greatly exaggerated.)

From the principle of the maintenance of plane sections

(§ 130), the deformed shape of section k, I, n, m is seen to be the

trapezoidal shape k', V, n', m'; and this same change of shape

takes place in each of the small sections comprising the beam

because in each section it is the result of the action of the same

bending moment. It is evident then that the beam will take the

form of a regular polygon, composed of the equal trapezoids

A, B, C, D, Fig. 262B. Here again the deformations are greatly

exaggerated. If now the number of the sections considered is.
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allowed to increase indefinitely, the broken line ef approaches a

circular curve which is the elastic curve of the beam.

C

P
9

P
m

^k'rri\

r\i
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r

B
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'J <^ K^ />, T t IT A

Fig. 262

It should be particularly noted that the angles 4> <^> and 6,

Fig. 2625, define the slo'pe of the elastic curve through sections

C, B, and A, respectively. Now the difference between these

slopes which occurs in one section (the rate of change of the slope)
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is represented by any of the angles 7, 8, or 9. Since we are

dealing with a regular polygon, these angles are equal and the

absolute size of any angle depends directly on the bending

moment which causes the deformation.

Moreover, the equality of the angles 7, 8, and 9 indicates that

in this case the elastic curve is a circle. Thus a uniform bending

moment is seen to produce a circular form in the elastic curve.

Let us now pass to a case where the bending moment varies,

being greatest at the center, and zero at the ends, as in Fig. 262C

In this case the center sections will suffer the greatest deforma-

tions, and the end sections the least. The elastic curve will

have no curvature at the ends and a comparatively large curva-

ture at the middle. The radius of curvature at the center will be

op; at the next section qr, etc., until at the end, it is infinite.

The slope of the elastic curve, as defined by the angles 13-14-

15, is seen to increase toward the end, but the rate of increase,

as shown by the angles 10, 11, 12, diminishes (as the moment

diminishes) toward the end. This principle is the fundamental

one governing the deformation of beams. Putting it in a

slightly different way, we may say that it is the bending stresses

that produce the change in the shape of the elementary slices

from rectangular to trapezoidal (Fig. 262A). When the change

in any elementary slice is great, the change in the slope of the

elastic curve, at that slice, will be great. Thus it is seen at once

that the amount of the bending moment governs the rate of change

of the slope of the elastic curve.

15L Form of the Elastic Curve.—By Inspection. The prin-

ciple developed in § 150 may be used to determine, by inspection,

the general character of the elastic curve for any given loading.

In Fig. 263A, a simple beam is shown with a load concentrated

at its center. The bending moment diagram is shown in B.

Now let the line aa in C be taken as a base from which to draw

a curve whose ordinates will display the variation in the slope of

the elastic curve Z).* From symmetry we know that the elastic

curve will be horizontal (no slope) at the center. Therefore our

* That is, each ordinate of curve C gives the amount of the slope of curve D at

the corresponding al^scissa. The curve C, taken as a whole, shows the variation in

the slope of curve U.
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curve will pass through h. Moreover the rate of change of the

7j ordinate at this point (as shown by the bending moment,

§ 150) will be a maximum; indicating a steep slope to the curve

in question. At the ends our curve will be horizontal, as the

J

Aj/»i<

fief^e^t^o /^t-^'

ch' SLcpc

D

Fig. 263

pIC

bending moment is zero. But we know that the elastic curve

itself must have a maximum slope at the ends (Fig. 262C) and

that the slope at the left is opposite in sense to that at the right.

These considerations produce the slope curve as shown in C.

Now let the line cc in D be used as a base line to draw the elastic

curve itself. As shown by its slope curve, it is horizontal at the

center, steepest at the ends, and changes curvature more rapidly

as it nears the center.* The radii of curvature increase from the

center towards the ends (Fig. 262C).

* The full significance of this initial slope at the ends of the beam will perhaps

not be apparent until we reach the discussion concerning the "constant of integra-

tion" in § 154, where its value is definitely determined. However for the present

it is possible to see, from purely physical considerations, that the slope of the elastic

curve does have its maximum value at the support.
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Obviously any such attempt to trace out slope and deflection

curves must be subject to limitations and cannot give quanti-

f
V//////////////////^^^

5

Fig. 264

^

tative results. However, before starting to develop definite

values for deflections it will be worth while for the student to

trace out similar curves for the cases of loading shown in Fig. 264.

PROBLEMS

Draw by inspection the general form of the slope curve and the elastic curve in

each of the following cases:

(1) Simple beam with two unsymmetric concentrated loads.

(2) Simple beam with uniformly varying load.

(3) Cantilever beam with concentrated loads at end and center.

V (4) Beam overhanging both ends and with uniformly distributed load.

152. General Equation of the Elastic Curve. Our object is

now to work out an equation for the elastic curve so that we can

evaluate the departure of the curve from a straight line (the

deflection of the beam) in definite, measurable terms.

In Fig. 265, let wxyz represent a

portion of a bent beam, whose neu-

tral surface is ej. Let ghk2 be a

small part of the beam included be-

tween two plane sections which, be-

fore the beam was bent, were

parallel. Moreover let nm be con-

ceived to represent so small a part

of the neutral surface that the curve

between these points can be re-

garded as a circular curve of radius

r, and that the distance nm can be' regarded, without sensible

error, as being of the same length along the curve or along a

straight line between the planes go, jo, before bending took place.
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Now let qp (parallel to kj) represent the position of gh before

bending occurred. Then evidently qg represents the deforma-

tion t which has taken place in the outermost fibers whose

original length was I.

Now if s denotes the unit stress on the outermost fibers and

E denotes the modulus of elasticity of the material, then

(1) E = or
E
s

But the triangles mno and gqm are similar; hence

(2)
mn

or
r_l
c ~~t

Now substituting the value of l/t from (2) in (1), we find

r E
(3) - = T. or

Ec

s

Now taking the expression for stress due to bending (§ 135)

s = Mc/I, and substituting this value of s in (3), we get

(4)
El
M '

or
EI

This expression is a direct relation between the radius of curva-

ture of the elastic curve of a beam at any point of its length and

the bending moment at

Y Ia =r^J<-
the same section.

Before proceeding

further let the student

check up on the following

queries with regard to

equation (4):

(a) In what units will each side be expressed?

(6) Why does each factor occur where it does?

(c) Does it check with the principles laid down in § 150?

Fig. 266
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Our next problem is seen by reference to Fig. 266. Here the

point p is on the elastic curve of a bent beam. Let OX, OF be

coordinate axes for the elastic curve. Then the point p is the

point (x, 7j); y is the deflection of the beam at the point p; and r

is the radius of curvature of tlie elastic curve at p. Now from

the calculus we know for any curve that

1 dx^
(5)

r

(-(2)7
But the curves with which we are concerned are very fiat and

hence dyjdx (the slope of the curve at the point xy) is small com-

pared with unity. Hence it is assumed that the powers of dyjdx

can be neglected without sensible error. Then (5) becomes

I _d^
^ ^

r dx^

Equating the values of 1/r in (4) and (6), we have

^ _M_
^^^

dx''
~ EI

'

This is the general equation of the elastic curve of any beam.

153. Significance of the Equation. When a curve is expressed

by an equation between x and y, dyjdx is the slope of the curve

at the point xy. The rate of change of the slope is

d'^yd_(d_y\

dx \ dx Jdx \ dx J dx"

Thus equation (7), § 152, is seen to express the same principle

that was developed in § 150, viz., that the bending moment

measures the rate of change of the slope of the elastic curve.

In most beams the material and the cross section are constant

throughout the length. In what follows it will be assumed that

this is the case.* On the other hand, M is usually expressible

* Special means for handling the deflection of beams of variable cross section

may be devised if / is expressible as a function of x.
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as a function of x. Therefore equation (7)

sidered as in the form

'm = *>
dx

It is then evident that one integration will ^

i.e., the slope of the elastic curve, and that

will give the equation of the elastic curve

equation the values of y (the deflection) can

given values of x. Now for convenience let the !^

dyjdx be expressed by v. Then equation (7), § i

(8) — = —7 , or Eldu = Mdx,
^ ^ dx EI

Now integrating this equation, we get

(9) EIv = fMdx,

which is the equation for a curve whose ordinates express the

slope of the elastic curve. Substituting dy/dx for its value v,

we obtain ^t 'J ^^ t'

Integrating this expression, we get »^a t-r ^^ » •^ T e *? ^ i t f A^ c

,

(10) Ely = f Elvdx, )'^. f

'

which is the equation of the elastic curve itself. From this equa-

tion, values for the deflection may be obtained.

154. Application of the General Equation. In order to deter-

mine the deflection of a beam of uniform material and cross

section, it is evident from what

precedes that we must know E and

I and that we must be able to ex-

press M i^ terms of x. Then by

equation (9) above we can derive _ ^^„^ ^ ^
. Fig. 267

the slope curve, and by equation

(10) we can get the required deflection.

As an example, take a cantilever beam loaded at the end
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it be required to find the deflection at the

lates are (x, y), the origin being taken at 0.

Ung moment is negative (§ 122), and its

— x). Inserting this value in equation (9),

slope of the elastic curve at the point a is

- P{L - x)dx = - P C {L - x)dx

ng expression, the constant of integration C is the

elastic curve at the support, as discussed in § 151.

the slope has the value zero when x is zero. There-

0, and the above equation becomes

.1) ,
EIv = - P(-!)

which gives the slope of the elastic curve at a. Let the student

assure himself that, in the above equation, v is actually a mere

ratio.

To determine the deflection at the point a, take the value of

EIv in equation (11) and substitute it in equation (10), § 153.

We find

Ely
.J-_.(.._|!).,

= _P(^--|),C..

To determine C , we know that ?/ = when a; = 0. Therefore

C = 0, and the preceding equation becomes

'-m-DEI

From the physical limitations of the problem, we can see that the

greatest values for slope and deflection occur at the end of the

beam, where x = L. By substitution in (11) and (12) these

values are found to be

PU PU
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155. Further Applications. The following cases are worked

out in the same order as that in § 154, but in a condensed form.

Their chief use is to give opportunity for comparison and to

bring out the significance of the constant of integration.

A. Cantilever beam. Uniformly distributed load of w lb. per ft.

(Fig. 268A). The bending moment at a section distant x from

the support (see Fig. 2685) is

M = — w(L — x)
(L-x) -> xY,

'

f
(L - xydx = -~(ux- Lx^ +t\-^c.

But V = when x = 0. Therefore C = 0, and (see Fig. 268C)

EI.= -I

EIv = w Ux — Lx^ +
)

Again

Ely = -'^ Cfux - Lx^ + ^\dx

_ w(Ux^ Lx^ x'^X

~
~2V"2 3~ 12/

w 'per ft^

y////////^/////////^:^////.

+ C'.

But ?/ = when x = 0. Therefore

C = 0, and (see Fig. 268D)

y = w f£ Lx'
+

x\\

2EI\ 2 3 ' 12/

The greatest slope and deflection

occur at the end of the beam where

X = L; their values are
Fig. 268

V max = —

y max =

6EI

SEI

QEI
'

WU
SEI
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B. Simple beam. Load concentrated at the center (Fig. 263).

The bending moment, slope, and deflection curves have different

equations on the two sides of the center. We will develop those

for the left half, the right half being symmetric with the left.

Taking the origin for the slope curve at the left support, we

have M = (P/2).t, and

/p p r p-xdx=- 1 xdx = jX^-\- C.

Here v = when x = Lj2; hence C = — PL"J 16, and

Eh

For the deflection we have
-K--:)

./,=/i;(«=-¥)-=f(r-f).c.
Here y = when a: = 0; hence C = 0, and

P
^ ~

4:EI

/ x^ LH \

The greatest slope is at the support; the greatest deflection at the

center; their values are

PL^

PL'

C. Simple beam with uni-

form moment. Let Fig. 269

represent a simple beam

bent by forces producing a

uniform moment equal to

^'^- 2^^ M. Then the slope of the

elastic curve at any point xy is given by

EIv = f Mdx = Mx + C.

r^



^
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In this case z; = when x = L/2. Therefore C

L
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tion (8), § 153, we saw that the moment governs the rate of

change of the slope of the elastic curve. Obviously the slope

governs the rate of change of the ordinates of the elastic curve

(the deflection).

Again, when such a set of relations prevail, the ordinate on any

curve is determined by the area under the curve next above it.*

In studying these relations as shown by the curves in Table

III, due allowance must be made for the fact that reactions are,

in effect, a part of the loading, and give to the shear an initial

value, which corresponds to the constant of integration. More-

over, in the slope curve we have a definite slope in the beam at

the left reaction; this also is the constant of integration, as was

pointed out in § 154 and in the footnote on page 211. In both

of these cases the area under the curve above corresponds to the

ordinate, measured from the dotted line. The position of this line

is fixed by the constant of integration which determines the initial

value of the ordinate for the curve.

These curves and the relations between them deserve to be

studied carefully, until the student can sense the relations visually

and can readily account for the way in which powers of x ascend as

we pass from the load curve to the deflection curve and also how
the powers of x ascend from the simpler cases of loading to the

more complex cases.

157. Fundamental Form for Maximum Deflection. In re-

viewing the curves in Table III, one cannot avoid noting that in

cases where the loading is regular the value of the maximum
deflection occurs as a fraction of WL^I(EI). This fact was fore-

cast in § 149 from consideration of the physical factors entering

the problem. Hence the following fundamental form for an

expression giving maximum deflection in cases of regular loading

is

where / is a multiplicative constant. This expression can be

* As pointed out in the footnote, page 170, areas above the axis are r^arded
as positive and those below are regarded as negative.
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related to the physical factors, load, span, and beam, by means

of the following diagram (compare § 149).

The

Physical Factors

distribution

— am

I

Max. Deflection
WL^<-
eT size and

shape of the

cross section

iDUtion<—I y

h- The Load
ount < 1

I

V

—The Span

stiffness of

the material

The Beam

158. Application of the Special Equations. A. Standard

Cases. For the usual case of distributed and concentrated

loading, the equations heretofore developed together with the

cases listed in Table III furnish a simple method of determining

deflections. A straight substitution of values in the equations

will suffice. It may be worth while, however, to point out that

when E is expressed in pounds per square inch and I in inches to

the fourth power, the load must be expressed in "pounds and the

span in inches. This will give the deflection in inches, which

is usual.

B. Simple Combinations. Slopes and deflections can be

established by combination in the same manner as outlined for

shears and moments in § 126. Thus when a loading can be

analyzed into two or more standard cases, the values of the slope

and deflection can be computed for each case and combined.

If maximum values only are required and the point at which

these values occur can be determined by inspection, direct com-

putation and addition will be most satisfactory. If the entire

curve is wanted or if the point of maximum deflection cannot be

located by inspection, probably it will be best to draw the com-

ponent curves at scale and add their ordinates together by use

of dividers. When carefully executed on a large scale this
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60 lbs. ^
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From this equation the curve shown by the dotted line, Fig. 270,

is established. By an exactly similar process, the broken line

curve can be drawn for the 60 lb. load at the left. The total

deflection is given by the solid line.

In general the equations set up for partial distributed loads

merge into those for concentrated and for distributed loads as

the partial load covers a lesser or greater part of the entire span.

D. Deflections by Approximation. Since the allowable

deflection in any case (see E below) is largely a matter of indi-

vidual judgment, great precision in the results of computations

is not ordinarily demanded. Therefore, it is sometimes possible

to arrive at satisfactory conclusions by well-considered approxi-

mations.

Thus, in the case worked out in C above, the maximum deflec-

tion is obviously greater than it would be if the load of the lesser

intensity were continued all across the span. Also it is less than

if the greater intensity were continued across. As a matter of

fact an average between these two will come very close to the

actual maximum deflection.

E. Allowable Deflections. As to what constitutes an

allowable deflection, no rule can be stated. Everything depends

on the particular case and that means on an individual judgment

of the case. The only rule in general use seems to be that, for

the sake of preventing the cracking of plastered ceihngs, it is

not desirable to allow deflections which exceed 1/360 of the span.

159. Other Methods for Determining Deflections. The deter-

mination of deflections by the methods given in the preceding

articles is, in practice, subject to sharp limitations. When
loading systems become complex, the elastic curve is a composite

of several distinct curves, each having its own equation. There

may be several real constants of integration to be dealt with.

In such a case, the formulas become long and involved, running

into the higher powers of x. (See cases 11, 12, 15, 17, Table III.)

Again, when actual cases are dealt with, the numbers to be

handled often run well into the millions, and the whole computa-

tion becomes very cumbersome and laborious.
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For these reasons, other methods of finding deflections have

been devised. Those methods are given in many standard texts.

For the accurate solution of complex cases or of cases in which

many computations are to be made, they will be found useful.

However, the principles covered in the preceding articles are

necessary to a proper understanding of such methods. For an

occasional computation of a relatively simple case, the methods

given above are satisfactory.

160. Summary. Before we leave the subject of deflections,

it is w^orth while to summarize a few of the results obtained

and the limitations imposed in this chapter.

A. Results.

(1) A complete set of relations between load, shear, moment,

slope, and deflection.

(2) A set of values for maximum deflection which take the

general form given in the diagram in § 157.

B. Limitations. The results obtained are limited by the

following assumptions made in the derivations.

(1) That the unit stresses involved are less than the elastic

limit. (§ 149.)

(2) That the curvature of the elastic curve is very slight.

(§ 152.)

(3) That the material and cross section of the beam are con-

stant throughout its length. (§ 153.)

Of these limitations, (3) is the only serious one in the design of

structures. For cases in which the I is variable, special methods

are worked out in more extended texts.

PROBLEMS

1. What is the maximum deflection of a timber beam, 8" X 10" X 15' 0", and

which carries a uniformly distributed load of 4,000 lbs.?

2. What is the deflection of a 24" X 100 lb. I beam 18' 0" long and which

carries its full safe load concentrated at the center?

3. What will be the deflection of the beam in Problem 2 if the load is increased

to 125,000 lbs.?

4. A bar of brass 1" deep and 2" wide spans between two supports 5' 0" apart

and projects 1' 8" beyond each support. It carries a load of 50 lbs. on

each end. What is the deflection upward at the middle and the radius

of curvature?
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5. A 6" X 12j lb. I beam rests on two supports which are 8' 0" apart and

carries a load of 4,000 lbs. concentrated at its center. Draw curves

showing slope and deflection throughout the span giving amounts at

the ends and center of the beam.

6. Let the beam in Problem 4 have its loads replaced by a single load of 50 lbs.

at the center of the span. What will be the upward deflection of the

ends of the beam?

7. A wooden beam 4" wide and 6" deep spans 8' 0" and carries a uniformly

distributed load which causes a deflection of |". What is the maximum
bending, unit stress?

8. A piece of wood 1" deep and 2" wide spans 3' 4" and carries a uniformly

distributed load of 50 lbs. Draw the load, shear, moment, slope, and

elastic curves, and a curve showing how the radius of curvature varies

from end to end.

9. A 7" X 15 lb. I beam is used as a cantilever 5' 6" long. It carries a

uniformly distributed load of 1,000 lbs. and a load concentrated at the

end of 500 lbs. What is the deflection of the end?

10. In Problem 9 let the beam be extended to 3' 0" beyond the concentrated

load. The extension carries no load. What is the deflection of the

end?

11. If the beam in Fig. 251 is a 12" X 31§ lb. I beam, what is the maximum
deflection and where does it occur? (See Fig. ,270, Graphic Solution

suggested.)

12. What is the maximum deflection in a 2" X 6" simple wooden beam 10' 0"

long when it is loaded to its full safe load in bending?

/ 13. A wooden cantilever beam is 10' 0" long and 4" X 6" in section. A load

of 100 lbs. at the end produces a deflection of |". What is the modulus

of elasticity of the wood?



CHAPTER XVIII

BENDING UNDER RESTRAINT

161. Introduction. Tlie discussion of stresses and deflections

in beams given in Chapters XIII to XVII assumes that the beam

is free to deform naturally, as shown in Fig. 261, § 149. In such

a case, the end planes of the beam are tilted from the vertical

and the elastic curve, over the support, has a definite slope.

(Footnote, page 211.)

In certain cases which arise in practice this condition does not

exist, on account of the manner in which the beam is fastened

to its supports. When a beam is so fastened at the ends that the

end planes must remain in one position, regardless of this tendency

to tilt, the ends are said to be fixed in position or restrained.

i Fixation or restraint can be

^^ 1 accomplished in a number of

j^~;
—
-^ ways. Two of these ways are

/^ shown in Fig. 271. In (A) one

end of the beam is built into a

wall, which holds the end of

the beam in a fixed position.

In (B) the beam is fastened to

heavy columns which keep the

Fig. 271 ends of the beam vertical. In

either case the important fact

is that one or both of the planes forming the ends of the beam

are fixed or restrairied in a vertical position. Therefore the elas-

tic curve of the beam must be horizontal at the restrained end

or ends, as shown by the dot and dash fines. Fig. 271.

Another common case of restrained bending is shown in Fig.

272A. A single beam is shown resting on three supports. If

these supports carried two simple beams, the beams would deform

as shown in Fig. 272B. But if the material of which the beams

are made is continuous over the support, the two end planes,

226

^
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a and a', must have the same indination at the support; i.e.,

the elastic curve must be a continuous curve as shown by the

dotted Hne in Fig. 272A. In
| |

this case, each beam serves to j-- \. -,^_ J^ A

fix or restrain the adjoining

beam. A similar case arises

whenever a single beam rests on

any number of supports greater
-p^^ 272

than two.

In each of the cases outlined above, it is clear that the form

of the elastic curve is quite different from that of an unrestrained

beam and from that fact we may infer that the shears and

bending moments are also of different amounts and are differently

distributed. The purpose of this chapter is to develop the

principles governing the determination of the shears, bending

moments, and reactions in such cases. When these are known,

the operations of investigation and design can be carried out

just as in Chapters XIV and XV.
It is important to note that, in the two cases illustrated in

Fig. 271, the elastic curve is always horizontal at the support

unless the restraint imposed is incomplete. In practice, complete

restraint seldom can be attained owing to the deformation of the

supports themselves. This question will be considered further

in § 167. For the purposes of the present discussion we shall

use the word fixed to indicate complete restraint. In such a

case, the end planes of the beam are vertical and the elastic curve

is horizontal at the fixed end.

In the case shown in Fig. 272, the restraint imposed at the

center support will be complete if the loads and spans are sym-

metrical; otherwise the end planes of the adjoining parts will

have a common angle of inclination other than vertical and the

elastic curve will have a definite slope over the support.

162. General Phenomena of Restrained Bending. In order

to study the problems of restrained bending, let us take a beam

free to deform naturally under a load, as shown in Fig. 273A.

Now imagine that strong arms projecting upward are fastened to
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Fig. 273

Hie end planes. Next let equal and opposite horizontal forces

be applied to the arms, as shown in B. These forces will gradu-

ally push the ends of the beam into a vertical position and will

hold them there so long as the forces are maintained at a sufficient

amount. We now have a case of bending under complete restraint.

It is evident that the arms

must be pulling on the top of

the beam (causing tensile

stress at a), and pushing^ on

the bottom (causing compres-

sive stresses at 6); in other

words, they are producing a neg-

ative bending moment (§ 122)

at the ends of the beam. The

elastic curve of the beam must

change to meet the new condi-

tions. It must be horizontal

over the support and convex

upward throughout so much
of the beam as is in the tension at the top surface. But near

the center of the beam the load P causes the beam to take on a

curvature which is convex downward. In such a case (see Fig.

273C) the restrained beam is analogous to two cantilever beams

of length z, supporting on their ends a simple beam of length y.

Now let us take a case where restraint is appHed to one end

only, as in Fig. 274. As the plane of the left end of the beam
is forced toward the vertical by the force F, the load P will be

slightly raised; the reaction Rv will be lessened and the reaction

R2 will be increased. This case is analogous to the cantilever

supporting one end of a simple beam. Obviously a continuous

beam (Fig. 272) is merely a collection of cases similar to the

preceding, except that the restraint imposed is more or less

complete, depending on the loadings and on the spans.

163. The Problem is Statically Indeterminate. In Fig. 274A,

let us assume that the load and the span are known, and that the

reactions are required. Take a center of moments at R2. Evi-
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dently the amount of Ri depends on the moment of F about R2.

Thus the problem is seen to be statically indeterminate until

the moment required to produce restraint is known. But, from

the very definition of restraint,

this moment is dependent on

the elastic properties of the

beam. Again, let us attempt to

determine the bending moment

at the section AA, Fig. 274A.

It will be seen that this is im-

possible until the amounts of the

reactions are known. These in turn depend on the moment of

F. We can now draw the following conclusions concerning the

determination of shears, bending moments, and reactions in

cases of restrained bending.

(1) The problem is statically indeterminate.

(2) Its solution depends on determining the moment required

to produce restraint.

(3) This solution must take account of the elastic properties

of the beam and particularly it must take account of the shape

of the elastic curve.

164. Limitations. As pointed out above, the stresses and

reactions which accompany restrained bending depend on the

elastic properties of the beam as well as on the applied forces;

therefore the solutions are necessarily more complex than those

for simple beams. In order to keep them as simple as possible,

the following assumptions are made.

(1) That in all cases the supports of the beams are on the same

level. (See also § 174.)

(2) That by fixation we mean the application of forces that will

maintain the end plane or planes of the beam in a vertical

position and, as a consequence, will force the elastic curve

to be horizontal over the support or supports.

(3) That the general theories of bending stresses and deflections,

as developed in Chapters XIV and XVII, apply to this
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case, and that therefore the hmitations on those theories

(§§ 132 and 160) also apply.

(4) That the material and the cross section of the beam are

constant throughout its length (§§ 153 and 160).

In more extended texts, solutions are worked out for cases

where the supports are at different levels, and also for cases of

beams of variable cross section.

165. Beams Fixed at One End. A. The General Prin-

ciple. Let the beam shown in Fig. 275 be fixed at the left end

and simply supported at the right end. If the support R be

removed, the beam becomes an ordinary cantilever beam, and

the deflection at the right end, due to the load P, can be deter-

mined by methods like those used in Chapter XVII. (See also

Table III.) Next let the load P be removed and some (unknown)

force R be applied (upward) at the right end. This will cause

^

P

a—
/?

VI
w lbs,per ft -

>,

L

Fig. 275 Fig. 276

an upward deflection which can be expressed in terms of the

unknown force R (§ 154). In the beam as shown these two

forces are acting and the resultant deflection of the right end is

zero. This principle forms the basis of the following solutions.

B. Load Uniformly Distributed. Let the beam be as

shown in Fig. 276. Treating this beam as a cantilever of length

L (see § 155) , the deflection of the right end is

WU

The deflection (upward), due to i? (§ 154), is

RU
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Therefore, since the actual deflection is zero,

SEI 3EI ' 8
'

We can now proceed to determine the shear diagram in the

usual manner, working from the right. Thus, at the section AA,

distant x from the right end, the shear is

V = ^wL — ivx.

In this equation V = when x = (3/8) L, and when x = L,

V = — {5/S)wL, or — (5/8) IF. Similarly, the moment at the

section AA is

3wLx wx^M =
8 2

From this equation we find that the maximum positive moment,

which occurs when x = (3/8)L, is 9wL'^/l2S; or 9irL/128; the

maximum negative moment (when x = L) is — wL'^/S or

— TFL/8, and that the moment is zero when x = 3L/4, as well

as when x = 0. The slope and deflection diagrams for this case

are given in Table III. They can be worked out in a manner

similar to that of § 154.

C. Concentrated Load. Let the beam be as shown in Fig.

275. The general procedure is the same as in B, above. The
deflection of the right end, treating the beam as a cantilever

(see Table III), is

_ P¥(2h + 3a) _ P¥(3L - h)
^

QEI QEI

The (upward) deflection due to -R is

y = -

Therefore

3EI= 6EI - "^ R=-hKSL-h).
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The shear at the fixed end is

V = P R=£-,(SaL^-a').

The bending moment at any point distant x from the right

support (when a; > a) is

M = Rx - P(x - a).

The bending moment at the restrained end then becomes

M' = RL - P{L - a)

2U
[3L(L

P_

2L2
a{U

ay - (L ay] - P{L - a)

The position of the load

which will cause the great-

est moment at the re-

strained end can now be

determined. Let a be con-

1
sidered as variable, then

dM' SPa^ P

Fig. 277

da 2U 2

Now putting this equal to

zero and solving for a, we

find

a = 0.577L.

Similarly, it can be shown

that the position for maxi-

mum positive moment is

a = 0.375L. The slope

and deflection diagrams

for this case are given in

Table III. They can be

derived in a manner sim-

ilar to that of § 154.
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D. Combined Loading. When a restrained beam carries a

loading which is partly distributed and partly concentrated, as

in Fig. 277, a general solution, while possible, becomes very

complex, and hardly worth while. It is much simpler to treat

each load separately, as in B and C above, making a separate

shear diagram and a bending-moment diagram for each. The

combined effect of the loads then can be found by combining

these diagrams as in § 158, and as shown in Fig. 277.

Another way of solving this case is to find, separately, the

reaction at the right due to the uniform load, and that due to the

concentrated load, as in B and C above. Then combine these

into one and, by the free-body method, compute the shears and

bending moments, starting at the free end of the beam.

PROBLEMS

1. A beam 12' 0" long is fixed at one end and supported at the other. It

carries a load of 1,000 lbs. at the center of the span. Determine the

maximum shear, the maximum positive and negative bending moments,

and the point of contraflexure.

2. Determine the amounts and positions of the maximum bending moments
and the maximum shear in a beam 12' 0" long, fixed at one end, and
carrying a load of 1,000 lbs. per ft. as well as a concentrated load of

5,000 lbs. at 4' 0" from the fixed end.

3. Determine the amounts and positions of the maximum shear and maximum
bending moment in a beam 12' 0" long and fixed at one end. There is a

uniformly distributed load of 1,000 lbs. per foot extending from the

fixed end to ^dthin 5' 0" of the other end. There is also a load of 500

lbs. per ft. on the rest of the beam. (Refer to Table III, cases 3 and 5.)

4. Draw the shear, bending moment, slope and deflection diagrams for a beam
fixed at one end, carrying a concentrated load of 1,000 lbs. at the center

of a span of 12' 0". Let the slope and deflection diagrams be given in

terms of EIv and Ely.

5. Draw the same four diagrams as in Problem 4 for a beam 12' 0" long and
loaded with a distributed load which varies from 100 lbs. per ft. at the

fixed end to zero at the supported end.

6. Determine the position and amount of the maximum deflection in Problem
1. Let the beam be of wood, 3" X 6" in cross section.

166. Beams Fixed at Both Ends. A. The General Prin-

ciple. In Fig. 273B, let the part of the beam to the left of

section AA be cut loose and shown as a free body in Fig. 278. The

reaction R is the same as would occur in a simple beam since the
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forces F have no vertical components. Let o be taken as a

center of moments. Then evidently the bending moment on

the section AA is Rx — Fm. But

^ j
Rx IS the same moment that would

pj occur in a simple beam, and Fm is

-7"| the moment of restraint. Thus the

^ resultant moment is merely theJJeuf Surf-j. o

R
X-

—^ moment that would exist on a

simple beam minus the moment due

/ii to restraint. Or, if we let M repre-

pj^ 278
^^^^ ^^^ moment due to any loading

on a simple beam, and M' represent

the moment due to restraint, the resultant moment, in general,

will be M - M'.

Since it is the resultant moment that produces the deformations

of elementary sKces through the beam (§ 150), it is evident that

the slope and the deflection of the elastic curve will be those due

to a moment of M — M' . In the case of a simple beam with a

given loading, the slope and the deflection due to the moment M
can be determined by the methods given in Chapters XIII and

XVII. Also the slope and deflection due to any unknown
moment can be expressed in terms of that moment (§§ 152-160).

By adding the two expressions thus found, we can get an expres-

sion (involving the unknown moment of restraint) for the total

slope or deflection throughout a restrained beam. But the slope

or deflection (or both) of such a beam will have definitely fixed

values at certain points. Thus, in Fig. 273B, the slope of the

elastic curve over the support is zero. These facts enable us to

write an equation between the known slope or deflection and its

value expressed in terms of the unknown moment of restraint.

When this equation is solved, the moment of restraint is known
and a complete solution for the shear, moment, slope, and

deflection is possible.

B. Uniformly Distributed Load. In the following solution,

the moment and slope which occur in a simple beam with similar

loading are denoted by the usual characters, M and v. The
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corresponding quantities which would result from the restraining

moment alone are indicated by the same characters primed.

The final resultant moment and slope (obtained by adding the

two above) are indicated by a double prime.

In Fig. 279A is shown a beam fixed at both ends and uniformly

loaded. Let it be cut free by planes passed close to the supports.

The free body is shown in Fig.

2795. At each end there exists

on the cut section a shear of W/2,

and an unknown restraining mom-
ent which is indicated as M\
The slope of the elastic curve

at the left end due to the given

loading acting on a simple beam

(Table III) would be

^
w lbs, perft.

g^^^^^^^
A

M'

A

Jk^

M'

Fig. 279

V =
2iEI

The slope at the same point due to the restraining moment M'
acting alone (Table III, or § 155C) would be •

, _ M'L
^ 2EI

'

Now the actual slope of the curve at the end is zero; therefore

FL2 . M'L
24:EI ^ 2EI

v" = 0,

(2)
12

or
12

Now taking a section at a distance x from the left support, we

find that the bending moment is

(3)
12 ^ 2

"^ 2L

By substituting L/2 for x in the above equation we find the

value of M" at the center of the beam to be ii;L2/24 or IF'L/24.
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Similarly by putting- M'^ = we find that the inflection point is

at a distance 0.2114L from the left end.

The slopes and deflections can be determined in a similar

manner by adding the effect of the load acting on a simple beam

to that of the restraining moment whose value is now known.

The values are given in Table III.

C. Concentrated Load. In this case the elastic curve is

made up of two separate curves: one for the part to the left of the

load, the other for the part to the right of the load. These curves

have a common slope and a common deflection where they meet,

under the load. Moreover, the slopes and deflections are zero

at either end of the beam. These conditions are the basis for the

solution.

In Fig. 280A the loading diagram is shown. In Fig. 2805 the

beam is shown as a free body cut by planes passed near the sup-

^ ports. The unknown shears and

moments (V", V", M" , M'") are

indicated by arrows. The mom-
ent, slope, and deflection through-

out the left-hand part of the beam

B CI \

^—

1

13 will be indicated by the usual

symbols M, v, and y; those for the

right-hand part by M', v', and y'.

For the left-hand part of the

beam, let a free body be cut by

the plane AA, at a distance x from the left support; then

(4) M = M" + V"x.

Substituting and integ ating (§ 153), we find

1
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Integrating again (§ 153), we get

But 2/ = when x = 0. Therefore Ci = 0, and

M'V . V"x^
(7) Ely =

6

For the right-hand part of the beam, take a section at BE.

The bending moment, figured from the left, is

(8) W = M" + V'x' - P{x' - a).

Substituting and integrating, we find

EIv' = M"x' + V"^ - ^ (^' - «)' + C2.

But the ^slopes v and v' are equal when x =^ x' = a. Therefore

C2 = 0, and

(9) Elv' = M"x' + V"^ - C (^' ~ ^)'-

Integrating again, we find

But, the deflections y and if are equal when x = x' = a. There-

fore Cz = 0, and

(10) Ely^ ='^ + L^ _ £ (x' - ay.

Now v^ = when x' = L] also L — a= h. Therefore, from (9),

2M" P
(11) r' = -t^ + L.^h\

Li Li"
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Also i/ = when x' = L, and L — a

(12)

h. Therefore, from (10),

2 6 6

Substituting the value of V" from (11) in (12), we obtain

=
M^ PL^

-^-

M"U
(Lb"- - ¥),

(13) M"=-5!(L-6)^-^^
Substituting this value in equation (11), we have

P¥
(14) V"

^ 200 p̂er ft.

-2

1000

{b + 3a).

i

/O

WMfi^^^,^-4

With the values of M''

and V" thus found, the

values for the moment at

any point on the beam can

be found by substitution in

equation (4) or (8). The

slope can be found from (6)

or (9) and the deflection

from (7) or (10). The

principal values are given

in Table III.

D. Combined Load.

As pointed out in § 165D,

a general solution for this

case is hardly worth while.

A specific case is shown in

Fig. 281. Let it be re-

quired to determine the

shear and bending moment diagrams. The shear at each end

due to the uniform load, as given on page 235, is

^"" X '' = 1,500 lbs.

Fig. 281
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The shear at the left end due to the concentrated load is

determined from equation (14) above, and is, approximately,

1,000 X 25

3,375
(5 + 30) = 260 lbs.

Thus the total shear at the left end is 1,760 lbs. The

bending moment at the left end due to the uniformly distributed

load alone, as given in equation (2) on page 235, is

- ^0° >:'' X '' = - 3,750 lbs. ft.

The bending moment at the same section due to the concentrated

load, as given in equation (13) on page 238, is

- 1,000 X 10 X 25
, ,,, ,, ,^— = - 1,111 lbs. ft.

Thus the total moment at the left end is — 4,861 lbs. ft. The

bending moment at a point distant 3' from the left end is

(1,760 X 3) - (4,861) - (200 X 3 X li) = - 481 lbs. ft.

The complete diagrams are given in Fig. 281.

167. Effects of Restraint. A comparison between the bending

moments for beams with fixed ends and those for simple beams

with the corresponding spans and loadings (see Table III) will

show that the maximum bending moment for a beam with fixed

ends is, in general, less than that for a simple beam. Deflections

follow the same rule. This is equivalent to saying that the effect

of restraint is to increase both the strength and the stiffness of a

given beam. Or again, a beam which is restrained may be made

smaller than one which is not restrained. It should be noted

however that this increase in strength and stiffness, as deter-

mined in §§ 165 and 166, does not occur unless the supports do

actually furnish an absolute restraint. Except under very favor-

able circumstances, this condition does not exist, since the

deformations of the supports are usually sufficient to allow some

motion of the ends of the beam.
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While it is true that conditions of absolute restraint are rare,

the values already worked out are not worthless, for the true

bending moments and deflections of any partly restrained beam

will be found somewhere between those for a beam with fixed

ends, as herein determined, and those for a simple beam.

PROBLEMS

1. A beam 12' 0" long is fixed at both ends. It carries a load of 1,000 lbs. at

the center of the span. Determine the maximum shear, maximum
positive and negative moments, and points of contraflexure.

2. A beam 12' 0" long is fixed at both ends. It carries a uniform load of 1,000

lbs. per foot and a concentrated load of 5,000 lbs. at 4' 0" from the left

end. Find the maximum shear and the maximum positive and negative

moments; also the points of contraflexure.

3. Draw the shear, moment, slope and deflection diagrams for a beam 12' 0"

long, fixed at both ends and carrying a uniform load of 1,000 lbs. per

foot. Derive the equations of each curve and the amounts of all

critical values. Let the slope and deflection be given in terms of EIv

and Ely.

4. Derive the shear, moment, slope, and deflection diagrams for a beam fixed at

both ends and carrj-ing a load which varies from w lbs. per foot at the

left end to zero at the right.

5. If the beam in Problem 1 is a wooden beam, 2" X 10" in section, determine

the maximum deflection.

6. If the beam in Problem 2 is a 10" X 25 lb. I beam, determine the amount
and position of the maximum deflection.

168. Continuous Beams. It has been shown already (§ 161)

that when a single beam rests on more than two supports, the

continuity of the beam over the interior supports constitutes a

restraint which is of the same general nature as in the cases of

restrained bending worked out in §§ 162-167.

In reinforced concrete work the continuity of beams over their

supports is a natural outgrowth of the way in which the work is

done best. In other materials, the continuity of beams is not so

general, but it is by no means rare.

The added strength and stiffness that result from the restraint

imposed by continuity (§ 167) are factors making for economy

in design.

When a series of separate beams rests on a series of supports

as shown in Fig. 282, the loads cause deflection and the elastic
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curve of each beam takes the form characteristic of the loading

on that beam. But if the same loads are carried on a single

continuous beam, the elastic curve is forced to take on a different

character, and corresponding changes take place in the distribu-

tion of bending moments and shears (Fig. 283). Imagine the

two adjacent non-continuous beams in Fig. 284 to be deflected

by the applied loads as shown. Now imagine strong arms

attached to the ends as shown at a and h. Next let the forces

X and Y be applied to the arms, forcing them together. This

operation will put tension on the tops of the beams where the

arms are fastened and compression on the bottoms, i.e., it will

set up a negative bending moment in the ends of the beams.

The beams then will take on the form shown by the dotted

lines. This, in effect, is what happens in every beam that is

continuous over more than two supports. Continuity over

supports is merely a special case of restrained bending. The

Fig. 282 Fig. 283

X-^.^^

F=

Fig. 284

analogy to a series of cantilever and simple beams which was

pointed out in § 162 applies also to continuous beams. A con-

tinuous beam may have any number of supports greater than two.

169. General Principles for the Solutions. The case of a con-

tinuous beam is a statically indeterminate one, since there are at

least three reactions (§40). However, the fact of the continuity

of the beam over the supports furnishes the basis of a solution

depending on the elastic qualities of the beam; for, if the beam
is continuous, so is also its elastic curve. This fact supphes the

needed equations, as shown in § 170.
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Let Fig. 285 represent two adjoining spans cut from a con-

tinuous beam of any larger number of spans. In this solution,

it is necessary to use two
'^5' adjoining spans since we

Vs
propose to use the fact

of continuity over the

support between them

in the solution. These

spans are under the action of the loading and the three reac-

tions, and also the shears, Fi-Ks, and the moments, Mi-Mz,

which exist on the cut sections at either end. The effects of all

loads which may be on the spans to the left of Ri will appear in

the moment Mi and in the shear Vi] and similarly at the right

oiR,.

If the cut section at the left is taken close to the support, any

variation in F] (caused by a variation in the loading on the spans

to the left) will cause a change in the reaction Ri but will not

otherwise affect the shears, moments, or deflections throughout

the two spans. On the other hand, any variation in Mi will

affect the moments and deflections in both spans as well as the

amount of the reaction i?2.* Similarly, at the right, the effect

of all the loading to the right of R^ will be transmitted over the

support by the moment M3. It is thus evident that in our solu-

tion (1) we must deal with at least two adjacent spans in order

to introduce the element of continuity, (2) not more than two

spans will be necessary

M,
'C

V//////A

V.

)C
'ZR V3

R..

since the effect of all other

loadings will be found in

the moments over the sup-

ports, (3) the moments

over the supports must

hold the key to the final

solution.

* If this is not clear at first, imagine the moment Mi to be largely increased.

Because of the stiffness of the beam, this will tend to raise the load W and lighten

the reaction R^i. Also the curvature of the beam over /?2 will be changed, indicating

a change in the moment over the support which will then affect the moment and

curvature throughout the second span.

Fig. 286
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The above considerations will become more evident if both

spans are cut loose close to the reactions, and the unknown shears

and moments are indicated as shown in Fig. 286. Since there is

no appreciable distance cut out over the center support, the

unknown moments on the two spans are equal and are so indi-

cated. There are then seven unknown quantities, four shears

and three moments. We have at our disposal the two conditions

of equihbrium, ZV = and '^M = 0. These applied to both

spans will yield four equations. The continuity of the elastic

curve over the support R2 yields another, leaving two more to be

found. This is all that can be ^accomplished with the two spans

and it results in giving one equation with three unknown quanti-

ties. These three quantities usually may be chosen so that they

are the three unknown moments. But, though they remain

unknown at this stage, the equation establishes the relation

between them; and this relation holds for amj two spans in a

beam, continuous over any number of supports.

Now, assuming that we have such an equation, turn to Fig.

287 and let us imagine that we apply it to the first and second

spans at the left; then to the second and third and so on. It is

evident that in a beam of n spans, this

process will yield n — 2 equations. The < K.Jk.^J-^-,.^^^-^ ^
two missing equations usually are sup- Ym. 287

plied by known conditions concerning

the moment over the end supports, as explained in § 170. When
these equations are solved, all of the unknown moments over

the supports will become known. Then, taking each span as

a free body, we can determine the reactions and the shears.

The equation of relation between the moments over any three

adjoining supports is known as the three-moment equation. It

evidently will be different for each different type of loading or

span relation. In the following article the three-moment equa-

tion is developed for two typical cases.

170. Evaluations for Uniform Loading. A. Derivation of

Three-moment Equation. Let Fig. 288 represent two adjacent

spans of a continuous beam, taken as a free body, the notation
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to be used being shown on the drawing. Let the unknown

moments over the supports be Mi, M2, and M3. Now let a

portion of the right-hand span be cut loose, and shown as free

wrj,,^r;J))')7r77^:^///Av////77M

R,
^Lr

Fig. 288 Fig. 289

body in Fig. 289. The unknown shear and moment at the left

are indicated by M2 and Y i\ and these, together with the dis-

tributed load of Wi pounds per foot, constitute the loading of

the free body.

The moment on the right-hand section, which is at a distance

X ft. from the left end, is

(15) ilf. Ml + V'.x -
W2X'

Let X be taken equal to L2. Then Mx becomes the moment at

the right support, or M3. Then, from equation (15), we have

(16)

(17)

Ms = M2

rr M,

V0L2
'2-L/2

M2
,
IV2L2

Turning to a consideration of the slope of the elastic curve in the

beam, we get, by § 153, for the span shown in Fig. 289,

EIv -f Mxdx.

Substituting the value of Mx from equation (15), and integrating,

we find

(18) EIv

Then, by § 153, we have

(19) Ely = C Elvdx =

M2X + V2j-^+C.

,, x^ , ,, a;** W2X'
+ Cx + C.
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But we know that the deflection y is zero when x is zero. There-

fore C = 0. Also y = when x = L2. From this we can show

by use of equation (19) that

2 6 24

Substituting this value of C in (18), we get

^ ^ 2 6 2 6 24

Taking the value of F2 as given in equation (17), and substitut-

ing it in equation (20), we find—('-|;-t) + "-(I;-|)

+ W2
1

— — -^
I

V 4 6 24 y'

(21)

which gives the value of the slope of the elastic curve in the right-

hand span in terms of the unknown moments. Obviously an

equation for the slope of the elastic curve in the left-hand span

will be the same except for a change in the subscripts on the

values for moment, span, and loading. Thus, for the left span,

letting X be measured from the left support as before, we find

(22)

-^ -«'{'- 1- 'jhHir'j)

V 4 6 24 y'

which is the slope of the elastic curve in the left span.

Now the elastic curve of the beam over the center support is

continuous. Therefore the slope values given in equations (21)

and (22) are the same at the point over the support, i.e., when
X =- Li in equation (22) and when x = in equation (21).

Making these substitutions for x and equating the results, we
find
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= »,(!). M.(§)...,(H>

or

(23) MiLi + 2M2(Li + L,) + M3L2 = -^ -^

,

which is the equation of relation between the three unknown

moments over the supports (the three-moment equation), for

the case of uniform load-

" 5'—

4

/O' 4

—

—^^- '^ ^5"^

^^ '

B. A Numerical Ap-

plication. Let the con-

/^^ /?2 /?^ /P^ /p^ tinuous beam with dis-

jTjQ 290 tributed loadings as

shown in Fig. 290 be

given and let it be required to draw the shear and bending mo-

ment diagrams. The moments over the supports will be indi-

cated by Mi to M5. The shears at the right and left of any

support will be indicated by Vir, Vol, Vsr, Vzl, etc.

If the beam is merely supported (not restrained) at the two

outermost supports, the moments over these supports, Mi and

ikfs, will be zero. Applying the three-moment equation derived

in the previous paragraph to the first and second spans on the

left of the beam, we get

+ 2M.(18)+M,(10) =-«!-?««,
or

(24) I8M2 + 5M3 = - 31,400 lbs. ft.

Applying the same equation to the two middle spans, we find

200(10)^ 150(15)^
M2(10) + 2Af3(25) + M4(15) =

or

(25) 2M2 + IOM3 + 3M4 = - 35,312 lbs. ft.

4
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Applying it to the two spans on the right, we get

Ms{15) + 2^4(20) + =

247

150(15)-'^ 50(5)^

4 ~T~
or

(26) SMs + 8M4 = - 25,625 lbs. ft.

Eliminating M4 between equations (25) and (26), we have

(27) I6M2 + 7IM3 = - 205,625 lbs. ft.

Then, eliminating M2 between equations (24) and (27), we get

Mz= - 2,674 lbs. ft.

and, substituting this value in equation (24),

Tlf 2 = - 1,002 ibs. ft.

and finally, from equation (26),

M, = - 2,200 lbs. ft.

Now let the left-hand span be taken as a free body, the cutting

V„ S2S''

800*

R,

K
-8-

Fig. 291

.^2000f/

-

—

10-

Fig. 292

plane being passed just to the left of Ri, as shown in Fig. 29

L

Taking a center of moments at 0, we may write

M2 = - 1,002 lbs. ft. = 8/^1 - 4(800), or Ri = 275 lbs.

Then, from the equation 2F = 0, we find

V<,L = 800 - 275 = 525.

Taking the second span as a free body (Fig. 292), we find

Mz= - 2,674 lbs. ft. = - 10(525) - 2,000(5) - 1,002 + 10/^2,

R2 = 1,358 lbs.
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Then since F^l + Vi/? = R2, V2R = 833. Continuing this process

through the two remaining spans, we get

VsL = 1,167

VsR = 1,156

V,L = 1,094

V^R = 565

R, = 2,323,

R, = 1,659,

R, = - 315.

The complete shear diagram and bending-moment diagram for

this case are given in Fig. 293. Let the student check these

f
27s

loolbs/ff. V)
200/b5/ff

I50lb5/ft.^^^^^^^

-1002 Ni„,i/ Bending Moment
-267^'i -2200

Fig. 293

diagrams with respect to the points of zero shear and the amounts

of the maximum positive bending moments.

PROBLEMS

1. Draw the shear and bending moment diagrams for a continuous beam which

rests on three supports (each span = L) and which carries a uniformly

distributed load. Show the amounts of the reactions, shears, and
moments and locate the points of contraflexure. (Compare with the

case of a beam fixed at one end.)
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2. Work out Problem 1 for the case of four supports.

3. Determine the shears, bending moments, reactions, and points of contra-

flexure throughout the continuous beam shown in Fig. 294.

^Wj^)
y/////////////////////////////////A

12 10

Fig. 294

100*/' -^ ^ #/ f(oV'~s-

P15 10 3
Fig. 295

looY'

^^^^W^^^^^ >>^>^^^^^^i

I -12- 16-

Fig. 296

\/4. Determine the same quantities as in Problem 3, for the case shown in Fig.

295.

5. If the loads in Problem 4 are to be carried on steel beams, will it require less

metal if the beam is continuous or if several separate beams are used?

6. Determine the same quantities as in Problem 3, for the case shown in Fig.
'^

296.

171. Concentrated Loadings. Let Fig. 297 represent two

adjacent spans in a continuous beam with concentrated loadings.

Let the unknown shears

3

—Or

e

Lt
R,

I

P.

z

4-

Fig. 297

and moments be denoted

as in the previous article.

The derivation of the

three-moment equation is

similar to that in § 170,

but more involved. Equa-

tions for the shear, mo-

ment, slope, and deflection are written for each part of each span.

The connecting principle is that the slope in span 2 is equal to

that in span 1 when both equations are made to refer to a point

over Ri. The resulting equation of relation for this case is

MiLi -f- 2M^{U + U) + MzU
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r^

R.

L

Oo

L

Fig. 298

This equation may be

made to apply to the case

of several loads in each

span by simple summa-

tion of the effects of the

loads, taken separately.

172. Partial Distributed Loads^ For the case shown in Fig.

298, the equation of relation is obtained in a similar manner to

the two cases above. It is

W\Cxa\
MiLi + 2il/2(Li + Lo) + M3L2 =

in which Wi and Wi represent the load per linear unit.

173. Equal Spans and Loadings. When the spans of a con-

tinuous beam are all equal and each span is uniformly loaded,
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the shears and the bending moments can be conveniently tabu-

lated for reference. Such a table is given in Figs. 299 and 300.

Uniform loading is the usual condition in structural design.

1 2
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of the beam will slowly transfer the load to the outside supports

until at last all of the load will be carried on R\ and R?,. In such

a case, the beam becomes a simple beam of the span Li + Li

and the bending moments and shears are very much increased.

A similar thing occurs if

R2 is raised above R\ and

R^. Hence, if a beam is to
R '/? R .

'
' ^ ^ be designed as a continuous

^'^•^^^ beam with the reduced

bending moments that result from continuity, it is important

that the designer be well assured that there is no possibility of

settlement in any of the supports,

175. Bending Moments Used in Design. The loading in any

structure consists of the following elements: (a) The weight

of the structure itself, called the dead load. This load is

always in place and is present throughout the structure. (6)

All loading other than that due to the weight of the structure

itself, called the live load. This is usually present in varying

amounts in different parts of the structure, and varies from

time to time, and from place to place.

The usual procedure is to design a structure to carry the

dead load plus an estimated live load uniformly distributed

throughout the structure. When only simple beams are used,

this procedure is satisfactory; but when continuous beams are

used, the maximum moments and shears do not occur under a

full live load. In general, the maximum moments occur when

each alternate span is fully loaded and those between are without

live load.

It is obvious that in an actual building, the placing of the live

load cannot be accurately foreseen. It therefore becomes neces-

sary to estimate what is apt to be the maximum moment pro-

duced by loading. In reinforced concrete practice, this subject

has received much attention.

The following summary gives the amount of the maximum
bending moments which are commonly assumed to be a proper

basis of design.
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(a) For continuous beams of several spans, and with the out-

side ends restrained, the maximum positive moment at the center

and the maximum negative moment over the supports is taken at

WL/IO for the end span and WLj 12 for interior spans.

(6) For beams continuous over two spans only, the maximum
positive moment is taken at TFL/10 and the maximum negative

moment is taken at WL/8.

PROBLEMS

Determine the reactions, shears, bending moments, and points of contraflexure

in the following cases of continuous beams,

(1) Two equal spans with equal concentrated loads at the centers of the

spans.

1 1 1 i

10- 16- 16-

10-

16-

FiG. 302

100

i

Fig. 303

200* 300*

j,— Q'
1

_ s' 1 /O- ^
Fig. 304

(2) Three spans, as in Problem 1.

v(3) Fig. 302.

(4) Fig. 303.

^ (5) Fig. 304.

m

4J



CHAPTER XIX

COLUMNS

176. Introduction. The support shown in Fig. 24 will be

recognized as a column, while that in Fig. 185 is called .a pier,

and that in Fig. 186 is called a hearing block. The function of

each of them is to carry a load producing compression. The

distinction between them lies in the proportion between length

and cross section. Commonly, the term column or strut is

applied to a more or less slender member which stands in a vertical

position and carries a load from above. But in this discussion

the term is applied to any relatively slender member stressed in

compression, regardless of its position.

The compressive or crushing strength of a material, as ordi-

narily quoted, is determined from experiments on relatively short

thick specimens. If these experiments are repeated on long

thin pieces of the same material, a remarkable falling off in unit

strength is noted. For example, take an ordinary yard stick

measuring ll" X t&" and made of spruce. Its ultimate strength

in compression, if computed from ordinary compressive strength

data, would be

IF' X ^" X 4,800 Ibs./sq. in. = 1,000 lbs. approx.

But a load of about 10 lbs. would be found to be as much as the

yard stick could actually carry in compression.

This large discrepancy can easily be accounted for if we note

what happens to the long thin piece as the load is gradually

applied. Under very light loads the piece remains straight (as

in Fig. 305A) but soon it begins to bend. If the load which first

produces bending* (as P' , Fig. 3055) is left constant, the piece

will support it indefinitely and the deflection y produced by

bending also will remain fixed.

But if the load P' is increased to P" (Fig. 305C), the bending

stresses (due to the moment P'y, Fig. 3055) increase, and in turn

* Called the critical load.

254
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B C
Fig. 305

produce a greater lever arm y' (Fig. 305C).

The total moment producing bending stress is

now P''y', which will go on increasing the lever

arm, and thereby its moment, until failure soon

follows.

Moreover, even though the critical load P'

is not increased, experience and theory alike

show that the slightest application of hori-

zontal force, or even a slight and accidental

jarring is enough to destroy the unstable

condition of equilibrium, since this increases

the lever arm of the load and finally results in failure. The

critical load is then, to all intents and purposes, the ultimate load.

The distinction between a column and a compression piece

lies in the tendency of the column to bend under axial loads.

This tendency to bend varies in a general way with the pro-

portion between the length of the column and the least dimension

of its cross section. When this proportion is large (the case of a

very slender column), the tendency to bend is large, and failure,

when it occurs, is due almost wholly to bending. When this

proportion is small (as in the case of a short block), the tendency

to bend is negligible, and failure is due to crushing only. For

intermediate cases (most columns in actual use come in this

class) failure is due to a combination of crushing and bending

in an indeterminate proportion.

177. Causes of Bending in Columns. There are four main

causes for the bending which occurs or tends to occur in a loaded

column. They are all concerned with the necessary inaccuracies

of even the best of workmanship. Theoretically, a column

might be made

(1) perfectly straight and of uniform cross section,

(2) with ends perfectly formed and aligned,

(3) of perfectly homogeneous material,

(4) loaded exactly along the axis.

Such a column would be an ideal column and would not tend to

bend. But no real column can be made to these specifications.
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Therefore, all real columns do tend to bend, since unavoidable

imperfections tend to cause unequal stress distribution on the

various cross sections. These stresses in turn result in unequal

deformations. The natural result of unequal deformation is to

cause a curvature which indicates the presence of bending stresses.

An ideal column would fail by crushing, at a unit stress deter-

mined by the ultimate compressive strength of the material.

A real column fails by bending or by a combination of bending

and crushing. The actual maximum unit stress which occurs in

such a case is not readily determined ((1) p. 269) but it is clear

that the average unit stress PjA will be less than the crushing

strength of the materials by some amount which will depend on

how great a tendency toward bending is present in a given case.

It should be particularly noted that the presence of bending

stress is due to accidental variations from ideal conditions. Since

these variations are accidental, it is impossible to tell to what

extent and in what proportion any one of them influences a given

case.

Furthermore, it is not possible to determine to what extent

failure in a given case is due to bending or to crushing except in

the cases of very long columns or short blocks. From these

considerations, it follows that any attempt to construct a rational

column formula for any except very long columns (in which case

the failure is due to bending only) is useless, and that our knowl-

edge of the strength of columns must be obtained very largely

from results of experiments.

178. Classification of Columns. A. Type of Failure. The

considerations outlined in the previous paragraph and a study

of actual cases leads to a classification of compression members

based on the manner of failure. We have seen that long slender

columns fail by bending; that short stocky pieces fail by crushing;

and that for intermediate cases failure is due to a combination of

bending and compression. But since the very terms long and

short, slender and stocky, are relative, and merge insensibly one

into another, we must not expect that any such classification will

or can be definite, nor that one type of failure can be infalHbly
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distinguished from another except in the extreme cases. There

must be then a certain arbitrary element in any such classifica-

tion. Moreover it should be understood that the words long and

short, when applied to columns, do not refer to actual lengths but

rather to length relative to cross-sectional dimension.

General practice seems to set up the following approximate

classifications.

Short blocks or piers. These vary from a cube to a prism about

15 diameters high.

The shorter lengths are strictly short blocks and they fail by
crushing (or more strictly speaking by shear, see § 78). The
longer lengths, sometimes called piers, posts, or struts, show a

somewhat smaller unit strength than the short blocks.

Columns. These vary in length from 15 to say 40 or 50

diameters. They fail from a combined crushing and bending.

Their unit strength varies quite definitely relatively to their

proportions and becomes less as the column becomes more slender.

Long columns. These are over say 45 diameters in length and

fail in bending. Their unit strength is quite small in comparison

with that of a short block and becomes less as the slenderness

increases.

We have here a condition not before encountered as the unit

strength varies with the proportions of the piece. Figure 306

o
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Fig. 306

Results of tests on If" X If" spruce struts. Each dot represents the

average of five tests. (From U. S. Bureau of Standards; T. P. 152.)
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has been condensed from a bulletin of the Bureau of Standards

to show how tiie Unit strength of a If X W spruce strut

Varies witk its length.

Bs Shape of End Beiarings, We have seen how the amount

o( bending which occurs influences the unit strength of a column.

But the tendency of a column to bend may be influenced, not

only by its slenderness, but also by the form of the ends. Thus

in Fig. 307 is shown a diagrammatic representation of four types

of end conditions. In A the ends are definitely fixed so that the

tangent to the elastic

curve produced by the

bending of the column is

vertical. In B the ends

of the column are spher-

ical. In (7 is a combina-

tion of cases A and B.

Evidently the rounded

ends will allow bending

to occur more freely than

the fixed ends. Conse-

quently the strength of

the column in B will be

less than that in A, with an intermediate value for the column in

C. This phenomenon is exactly parallel to the strengthening and

stiffening of a beam which occurs when its ends are restrained,

which is explained in § 167.

Figure 307D shows a "flat" end condition. Here the ends are

merely cut square and inserted between the bearings without

any attempt at fastening. This gives about the same resistance

to bending as the case shown in Fig. 307C.

In practice fully rounded or absolutely fixed ends are encoun-

tered rarely, if at all. Deformation of the supports usually will

prevent absolute fixation (compare with § 161) and friction will

prevent absolute freedom in turning. However, these cases are

important to the theory of columns as they fix definite limits to

the possibilities.

In Fig. 308 are shown some common types of column ends

Fig. 307
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encountered in practice. The flat end (Fig. 3085) is the most

usual case. The ends of the column are cut square but no par-

ticular attempt is made to prevent movement. The effectiveness

of a flat end in preventing rotation obviously depends on the

Fig. 308

size of the bearing in relation to the cross section of the column^

and on the accuracy with which the plane of the column end is

fitted to that of the bearing. In the case of long columns, flat

ends show by test about the same strength as round ends, while in

the case of a short column, flat ends show nearly as great strength

as flxed ends (see curves C and D, Fig. 309). A fuller discussion

of the effect of end conditions will be found in § 181.

^0

5 40

30
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179. Characteristic Shapes. The resistance of a piece of ma-

terial to crushing (so long as the load is concentric) is determined

solely by its material and the cross-sectional area (§ 56). Re-

sistance to bending, however, depends not only on the material

and size of the cross section, but also quite largely on the shape

of the section (§ 135). We may expect therefore that in a column

(because of its tendency to bend) the shape as well as the size

of the cross section will be important.

A beam usually tends to bend in a definite direction; therefore

its ideal shape is so disposed as to have a large moment of inertia

about an axis perpendicular to that direction. On the other

hand, the bending of a column (since it originates in accidental

causes) is apt to take place in any direction. Hence the ideal

cross section for a column is a circle, since a circle has the same

moment of inertia about any axis passing through its center.

Again, since resistance to bending depends on moment of inertia,

and since material near the axis does not contribute largely to

moment of inertia, it will be evident that a hollow circle is about

the ideal column cross section. Figure 310 shows characteristic

column sections in three different materials. It will be seen at

once that they are all more or less successful attempts to equalize

the moment of inertia about all axes and to avoid material placed

close to, the center.

\p IP

M
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by the load P. If the top half is taken as a free body, as in Fig.

3115, it will be seen to be under a bending moment Py, as well

as a direct stress P. But if we cut the top quarter free, the bend-

ing is seen to be less (since y is less at that section), and it would

be found to decrease as the section is cut closer to the top (or

bottom) end. But the end section (as well as all other —

^

sections) must carry the direct load P, and hence must

be large enough to resist crushing due to P. The
other sections must be large enough to resist this crush-

ing as well as the bending which develops at that sec-

tion. Hence the ideal shape for a column with rounded

ends will resemble Fig. 312, the cross section being a hol-

low circle.* !_/

As a matter of fact, with the relatively short columns
-p 310

and low unit stresses in general use, actual deflections

from a straight line do not occur. Hence it is not usual to use

such shapes in ordinary practice, but they are sometimes seen in

derrick booms, aeroplane struts, etc.

180. Column Formulas. In order to understand modern
column formulas thoroughly, it is worth while to know some-

thing of the history of their development. The first column

theory of importance was developed by Euler in 1757. At this

time experimental investigations were sharply limited by a lack

of suitable equipment. Hence Euler proceeded along rational

lines after making certain assumptions. He assumed a column

to fail by bending only,t and, working on that assumption, pro-

duced a formula which stands today as a proper solution for

columns that do fail by bending, i.e., for very long columns

(see § 176).

But when Euler's formula was put to an experimental test, it

was found that, while it agreed with test results for long columns

(which do fail in bending), for the shorter columns (which actually

fail in part by crushing), it indicated too high an allowable load.

* In the case of a column with fixed ends the moment is as great at the ends
as at the center. Therefore the end section should not have a reduced area,

t For a more complete statement of Euler's assumptions, see § 181.
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This led to an attempt to correct Euler's formula by the insertion

of certain arbitrary constants designed to make the amended

formulas agree with experimental results (see § 183). As time

went on and experimental methods were improved, it became

more and more clear that in the ordinary cases, the crushing

effect was so intermixed with the bending, and the causes of

bending were so indeterminate that the wisest thing was to

abandon the attempt to reach a rational solution and to frankly

accept the experimental method. This has led to the modern

formulas which are nothing more than the equations of curves

determined by experimental means. (See § 184.)

Thus we have three classes of column formulas.*

(1) Euler^s formula. This is a rational solution for the case

of long columns only. It gives the ultimate strength of the

column and is applicable to columns of any material (§ 181).

(2) Modifications of Euler's formula. These are intended to

extend Euler's formula to the case of columns that fail partly

by crushing. They use Euler's formula as a basis and modify

it by inserting a constant term determined by experiment (§ 183).

(3) Modern working formulas. These are based almost entirely

on results of tests and are stated in terms of the working unit

stress instead of the ultimate stress. They are different for each

material and are applicable only to columns having certain pro-

portions of length to cross section (§ 184).

181. Euler's Theory for Long Columns. Euler's theory is

based on the following assumptions.

(1) That the column is a ''long" column, as defined in § 178;

hence its failure is due to bending in so large a degree that the

direct compressive stress produced by the load may be neglected

without sensible error.

(2) That the unit stress in the column does not exceed the

elastic limit of the material, (as determined by tests on short

blocks), and that therefore the theory of deformations due to

* In more extended books on strength of materials can be found the secant

formula, which is an attempt to develop a rational formula that can be generally

applied. It is not, however, of sufficient importance, either in its theory or in

practice, to justify its inclusion here as forming a fourth class.
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bending may be employed. It will be shown later (see note,

p. 278) that this assumption is a reasonable one.

(3) That the curvature of the column is slight, and that the

cross section is constant throughout the length. This assump-

tion is also necessary if the theory of defor-

mations due to bending is to be used.

A. The General Theory for Columns

WITH Round Ends. Let the column be

loaded with its critical load (§ 176). If

the column is a real column, this, load will

produce a slight bending as shown (much

exaggerated) in Fig. 313A. If the column

were an ideal one (§ 177), it would not bend,

but the application of the least horizontal

force or even a slight jar would cause

bending to occur. In either event we may
assume the column to be bent under the

action of the load P, and to remain so while the load remains

fixed. Any increase of the load will now cause failure, as shown

in § 176. It is required to determine this critical load P, which

can be taken as the ultimate load.

Let Fig. 3135 show the elastic curve of the column, referred to

an origin of coordinates at o. The axis of y is taken horizontally

so that our nomenclature will agree with that of Fig. 286 and

§ 152. The end of the column being round, our elastic curve is a

simple curve, bending in the same direction throughout. For a

definite column of length L, there will be a definite critical load P,

and this load will produce a constant deflection a of the upper

end of the column (where P is applied), away from the X axis

(§ 176).

We may now write the equation of the elastic curve of the

column (§ 152) in the form

d'y
(1) M = P(a - y) = EI

dx'

Multiplying each side of equation (1) by 2{dyldx), we get
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ax ax ax \ ax J

Integrating this expression, remembering that dy/dx = for

2/
= 0, we find

From this, we obtain

P ^la' - (a - yy

'

and, by a second integration, we find

(2) .= .V?--(^^>
the constant of integration being zero since x = for y = 0.

The upper sign is used for the upper half of the curve (Fig. 313),

and the lower sign for the lower half.

Equation (2) is the equation of the elastic curve of the column.

It holds good for all points on the curve. At the upper end of

the column, x is approximately* equal to L/2, and y is equal to a.

Substituting these values in (2), we have

L jEI _!,„, [EItt
- = ^-cosM0) = Vp2'

(3) P=^'
This gives the least value of P which will bend the column and

keep it bent; in other words, it is the critical load.

In handling problems dealing with columns, it is more con-

venient to deal with unit stresses than with total loads. For

this reason, equation (3) is usually changed in form by dividing

through by the area A of cross section. This gives

P EI it'' tt'-E TT^E
(4) A AU IJ / L Y

* By assumption (3), page 263.
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In this expression, the quantity VZ/A is the factor which expresses

the effect of the size and shape of the cross section (§ 179) just

as the section modulus (§ 135) measures the value of a beam

section. For convenience, it is given the special name radius

of gyration (see § 182), and the special notation r. Using this

notation, equation (4) reduces to the form

(5)
'" '"

' (^y

This is Euler^s formula for long columns with round ends. There

are several points in connection with this expression that should

be noted.

(1) The quantity PJA is not the actual maximum unit stress

in the column; it is merely the total load divided by the cross-

sectional area, i.e., a sort of average unit stress. The actual

maximum unit stress is due to bending and cannot be derived

from equation (3).

(2) The quantity (a) which was used to express the total

deflection has vanished. Therefore P/A, as given in (5), may be

regarded as that unit stress which will hold the column at any

small deflection at which it may be set. It is therefore the aver-

age unit stress due to the critical load.

(3) The material of which the column is made enters this

expression by way of E. Thus it is the stiffness and not the

strength of the material that is important. This of course is

because the whole theory had to do with the initial deformation

which leads to failure.

(4) The dimensions of the column are represented by L/r.

This expression is a relation between length and cross section,

called the slenderness ratio. Both L and r are usually expressed

in inches. They must always be expressed in the same units.

Every column tends to bend in a direction perpendicular to

that axis about which the I is least. Therefore the r (which is

derived from 7), which enters the formula and which measures,
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in part, the resistance of the column to bending, should be the

least r for the section (see also § 226), since this r gives the least P.

B. Fixed Ends. The form of the elastic curve of a long

-/> column with round ends is shown in Fig. 314A.

\

In Fig. 3145 is a column with fixed ends.

The form of this curve resembles in a general

way that for a beam with fixed ends. At the

points of inflection h and c, there is no mo-

ment and no shear. The thrust P is the only-

force acting, as shown in Fig. 314C There-

fore, the part he is in the same condition of

stress as a round-ended column. Also the

part ah is in the same condition of stress as

one half of he. Hence the length ah ihc

Fig. 314 lad. This means that the ultimate strength

of a column with fixed ends is the same as

that of a round-ended column of one half the length. Therefore,

if we substitute JL for L in equation (5), we will have the

ultimate unit strength of a column with fixed ends, thus

(6)
P
A

47r2^

m
C. Fixed and Round Ends. From considerations similar to

those in B, we can arrive at the following expression to cover this

case:

P _ (9/4) TT^^

A(7) m
D. Flat Ends. There is no theoretical consideration that has

led to a definite evaluation for the strength of a column with

ends cut flat but not fixed (the ordinary condition in structural

work). As shown by tests, the strength for flat ends approaches

that for round ends, in the case of long columns. In the case of

short columns, the strength for flat ends approaches that for

fixed ends (Fig. 309 and § 178B).
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E. General Form of Euler's Formula.

often written in the form

267

Euler's formula is

(8)
P
A

mr^E

{-^J

In this form n stands for a number which depends on the condi-

tion of the ends. In the following table the value of n for flat

ends is one commonly used though it has no theoretical basis, as

explained in D above. The other values are taken from equa-

tions 5, 6, and 7.

Values of n in Euler's Formula

Round
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/-6

I

-\--\-/ /-A-U^
r
'4.4

i

182. Radius of Gyration. As

y\ noted on page 265, radius of gyra-

tion is a quantity which measures

the effectiveness of a column sec-

2 tion in the same manner that the

. -^ section modulus 7/c measures the

effectiveness of a beam section.

Mathematically, radius of gyra-
FiG. 315

tion can be expressed in the form

^g
It is a quantity quite similar to moment of inertia, in that it

comes into existence merely as a convenient way of expressing

a frequently recurring relationship between other quantities.

Since the value of r is derived from that of /, it is obvious that

r must be a quantity which is always related to an axis.

While radius of gyration is ordinarily large when the moment
of inertia is large, this does not always hold good. By reference

to a handbook, we find the 1 for a VI" X 31.5 lb. I beam to be

215.8''' and r is 4.83''. For the 12" X 55 lb. I beam, 1 = 321"'

and r = 4.45". Thus as I increases, r decreases. This happens

because of the fact that in this case the area increases faster than

the value of 7.

If we take any area, such as the square in Fig. 315A, and

imagine all of that area concentrated at two points equi-distant

from the axis 1-1, as in B, and further impose the condition that

I must be the same in A and B, then r is the radius of gyration

of the square. For we have

in a: -^ ^
I

^^^^;

in5:
^'=f/-<^^=^it + l]

= Ar^,

since r is constant. But we have specified that I = I'. Then

Ar^ = I,

whence
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'4
Obviously the same device could be employed in connection with

any area and thus we see that the radius of gyration of any area

is that distance from any given axis at which an entire area

might be concentrated and have the moment of inertia remain the

same as for the area itself.

The radius of gyration used in column formulas is usually the

least radius of gyration for the given section (see page 266 and

§ 187).
PROBLEMS

1. What is the radius of gyration of a circle, about an axis through its center?

2. What is the radius of gyration of a hollow square, about an axis parallel to

one of the sides and passing through the center? State the result in

terms of the outside and inside diameters d and di.

3. In Problem 2, let the axis pass diagonally through the center.

4. Determine the radius of gyration of the I section, Fig. 347, about each of the

axes of symmetry.

5. Find the radius of gyration of the section. Fig. 197A, about each of the given

axes {1-1 passes through the center of gravity).

6. What is the radius of gyration of the section shown in Fig. 130 about each of

two rectangular axes passing through the center of gravity, one axis

being parallel to the back of the channel?

7. Plot the curve of Euler's formula for timber columns with round ends and

another for fixed ends. Let E = 1,000,000 lbs. per sq. in. Use 8"

X 10 i" cross section paper. Let the values of P/A vary between and

6,000 lbs. per sq. in. and let those of L/r vary between and 400.

8. What is the safe load on a timber column 6" X 6" in cross section and 14' 0"

long? Round ends.

9. What, according to Euler's formula, is the safe load on a timber column

6" X 6" and 6' 0" long? Fixed ends.

10. Investigate the safety of a 6" X 23 lb. H beam, 36' 0" long, when acting as

a column with round ends and carrying a load of 25,000 lbs.

11. What is the safe load on a steel pipe whose diameters are 4" outside and

3§" inside, when acting as a column with fixed ends and which is 20' 0"

long? Factor of safety 8.

12. What are the relative strengths of a wooden column 4" X 4" and another

4" X 6" if each is 20' 0" long and has flat ends?

13. What are the relative strengths of an 8" X 34 lb. H beam and a 12" X 35

lb. I beam when used as long columns?

183. Modifications of Euler's Formula. As pointed out above,

Euler's formula does not give results that agree with tests, except

'-"h-
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in the case of long columns (Fig. 309). This fact has led to many

attempts to produce a rational formula that would agree with

test results through a wide range of slenderness ratios. Three

such formulas are given below.

A. The Gordon or Rankine Formula. This is a partly

rational formula as follows:

P
A

S

1 + iW
in which PjA is the average ultimate unit strength of a column,

S is the ultimate crushing strength of the material, and <^ is a

constant designed to make the formula fit the results of experi-

ments and which varies for each different material and each

different end condition.

This formula is intended to apply to the entire range of

values of L/r. When the values of are well chosen it does,

roughly, carry out this intent but the values quoted for by

various writers are quite unsatisfactory in many respects and

the formula is not much used. The values for
(f)
given in Merri-

man, Mechanics of Materials, are as follows

:

IMaterial
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limited by the yield point of the materials. This conclusion has

since been supported by numerous independent tests on steel
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The point of tangency between this curve and Euler's curve

marks the limit of validity for each formula. Since this formula

gives ultimate stress, a factor of safety must be applied to permit

its use in design.

C. The Straight Line Formula. The following formula was

worked out by T. H. Johnson from test results. It has the

advantage of simplicity, and it is perhaps as accurate as any.

^ - S

in which P/A is the average ultimate unit stress on the column,

Su is the ultimate compressive strength of the material, and

•g:

60000
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V

P
A

The value of n in these expressions is the same as in Euler's

formula, page 267.

The point of tangency between this line and Euler's curve

marks the limit of validity for each formula. This formula gives

the ultimate unit stress on a column of any material and for

any specified end condition. If it is desired to apply any given

factor of safety, this can be done graphically, as shown in Fig. 318

by the dash line. The equation of this line then becomes a

working strength formula with its limit of validity at c.

Note. The limit of validity for Euler's formula as given in either B or C
above is less than the elastic limit. Therefore assumption (2), § 181, is seen to

be justified.

PROBLEMS

1. What is the ultimate load on a 10" X 10" timber column with flat ends and
18' 0" long, as determined by each of the formulas of §§ 183B and

183C?
2. What load can be carried safely on a 5" X 18.7 lb. H beam acting as a

column 10' 0" long with flat ends? Factor of safety to be 3. Use the

parabolic formula.

3. Solve Problem 2 using the straight line formula.

4. Derive a straight line formula for a steel whose ultimate strength is 45,000

lbs. per sq. in. and whose E is 29,000,000 lbs. per sq. in. Let the

formula be arranged to show the working unit stress on a column with

flat ends, allowing a factor of safety of 3.

5. What is the limit of validity for the formula derived in Problem 4?

6. Derive a parabolic formula for a timber whose yield point in compression is

2,800 lbs. per sq. in. and whose E is 1,300,000 lbs. per sq. in. Let it

show the working unit stress on a column with flat ends when a factor

of safety of 3 is allowed.

7. What is the limit of validity of the formula derived in Problem 6?

8. Derive a straight line formula for flat end columns made of cast iron having

an ultimate strength of 50,000 lbs. per sq. in. and an E of 15,000,000 lbs.

per sq. in. Allow for a factor of safety of 8.

9. Show a complete derivation for the values of ^ and of the coordinates of the

point of tangency for Johnson's straight line formula, as given in

§ 183C.

10. Show a complete derivation for the values of <f> and of the coordinates of

the point of tangency for Johnson's parabolic formula as given in

§ 183B.
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184. Results of Tests. In Fig. 309 we have had occasion to

show some curves which give the results of tests on steel columns.

It should not be assumed that any set of tests covering a con-

siderable number of cases will give results that can be repre-

sented fully by a smooth curve. When a number of pieces of

any given slenderness ratio are tested, each piece will show a some-

what different strength from the others.
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30000
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narily more convenient to use an equation stated in terms of an

allowable unit stress. Therefore working formulas are stated in

that manner.

The three formulas discussed in § 183 as well as all those that

follow can be conceived as being in one fundamental form, viz.,

r The ultimate (or 1

-I safe) unit stress y =

I on a column J

The approximate

ultimate (or safe)

unit crushing >

strength of the

material

r

or

K't)'

in which is a factor which, in the investigator's judgment, is

best adapted to make the equation fit the known facts.

Working formulas are based almost entirely on tests and their

limits of validity usually are clearly stated. The shorter columns

{L/r between and about 50) seem to have a fairly uniform

strength, as indicated by the horizontal lines at the left of two of

the curves in Fig. 316. Most engineers hesitate to design columns

with L[r greater than about 150. This is not because more

slender columns cannot carry a proper load but because, when

columns are very slender, a small horizontal force produces large

bending stresses, so that such columns are very susceptible to

accidental damage. It is therefore usual to limit the use of a

given formula, as shown by the stopping of the curves C and D in

Fig. 316. Working formulas for steel, timber, and cast iron are

discussed below.

A. For Steel Columns. The following formulas fc^ the

allowable unit stress on steel columns with flat ends are in general

use:

(1) * The American Bridge Company's formula:

- = 19,000
A

100^
r

This formula is limited in application to values of L/r between 60

and 120. For values less than 60 use 13,000 lbs. per sq. in. as the

allowable unit stress (see Fig. 316). The specifications of which
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this formula is a part do not allow the design of main compression

members having slenderness ratios higher than 120. But

secondary members may be designed for ratios of Ljr between 120

and 200, by use of the formula:

^= 13,000 - 50-.
A r

(2) American Railway Engineering and Maintenance of Way
Association formula:

^ = 16,000 - 70-.
A r

This formula is limited to values of Lfr between 30 and 150.

For values less than 30 use 14,000 lbs. per sq. in. as the allowable

unit stress (see Fig. 316).

(3) The New York Building Law formula:

? = 15,200 - 58 - .

A r

This formula is limited to values of L/r less than 120 (see Fig.

316).

(4) Gordon^ s formula with factor of safety:

P _ 12,500

A
1 +

36,000r2

(5) Philadelphia Building Law formula:

P ^ 16,250

ll,000r2

This formula is limited to values of L/r less than 140.

From Fig. 316 it will be seen that all these formulas fall quite

close together through the usual range of values of L/r, that is,

between about 50 and 150. At present the straight line formulas

are most used, as being simpler and quite as reliable as the more
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complex forms. In all these formulas, of course, r stands for the

least radius of gyration, as explained on page 269.

B. Foil Timber Columns. Wooden columns are usually

round or rectangular in section. Therefore it is possible to

express r in terms of the diameter or least side. It is thus possible

to state the formulas in simpler terms than those used for steel.

The formula proposed by the American Railway Engineering and

Maintenance of Way Association is

•f-('-4).
where S is the allowable crushing unit stress on the material and

D is the least side of a rectangular section or the diameter of a

circular section. This formula is limited to values of LfD

between 15 and 30.

C. Cast Iron Columns. These are usually made with hollow

circular or rectangular sections. The formulas are usually stated

in terms of Ljr though sometimes the LjD form is used.

The Chicago building law gives the formula

*P L
=- = 10,000 - 60- •

A r

This is limited to values of L/r less than 70.

186. Use of Working Formulas. In using the various formulas

found in books of reference, a number of points should be kept in

mind.

1. End conditions. Most of the formulas are written for

columns with flat ends though this is not always the case,

particularly with the Euler, Gordon, and Rankine formulas.

2. Limits. Most of the modern formulas are frankly empirical,

based on a definite set of tests. Therefore, they are appHcable

only to columns having a slenderness ratio that falls within the

scope of the tests. Every column formula should have its hmits

of validity stated as a part of the formula, but unfortunately this

is often neglected.
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3. Radius of gyration. Every column tends to bend in a

direction perpendicular to that axis about which the radius of

gyration is least. Therefore, the r which appears in the formula

should be the least possible r for the section concerned. (For

an exception to this, see § 188.)

4. Length. The length of a column is counted as the greatest

length between points of lateral support. It is stated in the

same terms as r, usually in inches. (See also § 188.)

5. Loading. In all of the formulas, it is assumed that the

loading is concentric: i.e., that there is no definite or determinable

eccentricity, but only such as is accidental (§ 177, page 254).

For the treatment of definitely eccentric loads, see § 194.

6. Choice of formula. There are so many working formulas in

current use that the beginner is at a loss to make a choice. In

many cases, the work to be done is governed by building laws or

design specifications. For the problems in this book, the formulas

given in § 185 and marked with an asterisk may be used.

The following illustrations are given for steel columns with flat

ends.

A. Investigation. (1) Given an 8'' X 34 lb. H beam, 14'

0" long, acting as a column and carrying a load of 90,000 lbs.

Is it safe?

By reference to a handbook, the section is found to have a least

radius of gyration of 1.87'' and an area of 10 sq. in. Therefore,

the slenderness ratio is (14 X 12) -t- 1.87 = 90. This is within the

limits of the American Bridge Company formula, which can

be used. The allowable unit stress on this column as given by

that formula is 19,000 - (100 X 90) = 10,000 lbs. per sq.

in. The allowable total load is 10,000 lbs. per sq. in. X 10 sq.

in. = 100,000 lbs. This shows the column is safe.

(2) Given a 6" X 23.8 lb. H beam acting as a column 20' 0"

long and loaded with 35,000 lbs. Is it safe? Theleastr= 1.45" and

the area = 7.00 sq. in. The slenderness ratio is (20 X 12) -^ 1.45

= 166. This is beyond the limits of most column formulas.

But if there is little danger of accidental damage (§ 185), the

American Bridge Company formula for secondary members may
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be used. The allowable unit stress is 13,000 - 50(166) = 4,700

lbs. per sq. in. The allowable total load is 4,700 X 7 = 32,900

lbs., which is less than the given load. Consequently, the column

is unsafe.

(3) Given a 5" X 18.7 lb. H beam acting as a column 25' 0"

long and loaded with 10,000 lbs. Is it safe? The least r = 1.20"

;

A = 5.50 sq. in.; L/r = 250. This is beyond the limit of any

accepted working formula, but under exceptional conditions (see

2 above) Euler's formula may be used. For a steel column with

flat ends and L/r = 250, this formula becomes

P 2^^2(29,000,000) ,,.„„ ,,

I = ^

(250)-
= ^^'^^^ ^^'' P"' '^- ^^"

which is the ultimate unit stress. The ultimate load is 11,400

X 55 = 62,700 lbs. The factor of safety should depend on the

conditions of the special case, say 8.* Hence the allowable load

is about 8,000 lbs. The column is unsafe for 10,000 lbs. load and

a factor of safety of 8.

B. Safe Load. The application of column formulas to the

determination of the safe load does not involve any principle not

noticed above.

C. Design. In the case of design the loading, length, and

material usually are given and the cross section is to be de-

termined. Therefore, the ordinary column formula will contain

two unknowns (A and r) and cannot lead to a solution unless

these unknowns can be reduced to common terms. In the case

of solid square or circular sections (such as are usual for wooden

columns) this can be done. But in the case of steel shapes it

cannot be done. Therefore, we are forced to use the method of

trial and error. This means that a section is assumed and the

case investigated as in (A) above. If it does not prove satis-

factory, another section is chosen, using the results of the first

computation as a guide. This process is repeated until a satis-

factory section is found.

* Because very long columns are peculiarly susceptible to accidental damage

(§ 185), factors of safety for such cases should be especially generous.
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Let it be required to design a steel column 7' 0'' long and to

carry 60,000 lbs. Moreover, let it be required that the column be

made from an I beam and that the column be designed by use of

the American Bridge Company formula.

From the limits of vaHdity of the formula, we know that our

unit stress must be between 13,000 lbs. per sq. in. and 7,000 lbs.

per sq. in. Therefore, the area of our section must be between

60,000/13,000 = 4.6 sq. in. and 60,000/7,000 = 8.5 sq. in. roughly.

From a table of elements of beam sections, it is evident that our

column will not be smaller than a 7" I nor larger than a 12'' I.

Let us choose an 8'' X 18 lb. I as a trial size.

The least r = 0.84"; A = 5.33''; Ljr = 100, and P/A = 19,000

- (100) (100) = 9,000 lbs. per sq. in. Therefore, the allowable

load = 9,000 X 5.33 = 48,000 lbs., which is insufficient. If we
make one more computation, using a slightly larger section, the

result should be found.

187. Built-up Sections. Steel sections are not manufactured

in sizes large enough to serve for heavily loaded columns. There-

fore, it is common practice to connect two or u

more pieces by means of plates or lattice bars, ^{u^==J--^^--^j«..

as shown in Figs. 310 and 320. The plates or

bars are riveted to the main members and cause

the separate sections to act as one; i.e., the

separate parts are prevented from bending inde-

pendently in a direction perpendicular to the

axis about which their radii of gyration are

least.

Thus in Fig. 320 is a column built up of two
10" X 15 lb. channels, latticed together. The

strength of the column is determined by the

radius of gyration of the two sections (consid-

ered as one) about axis 1-1 or 2-2, whichever is

least. It is usual to make the distance x such

that the two moments of inertia (and therefore

the two radii of gyration) are equal. Lattice

bars are not counted as an effective part of the section. In the

<sy ! .(f-s?

-;r-

2
^

^-^Ijoffice bans

Fig. 320 Built

up column com-

posed of two 10"x

15 lb. channels

latticed together.
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given case, the distance x is determined as follows:

I about axis 1-1 = 2 X 66.9 = 133.8,

/ about axis 2-^ = 2(2.3 + 4.46((a:/2) + 0.64)2).

Equating these two values and solving, x is found to be about 6 in.

188. Braced Columns. The length of a column is taken as

the distance between supports which furnish effective bracing

against sidewise deflection. In multiple-

story skeleton-framed buildings, L is

taken as the d stance between floors; as

the floors furnish the requisite bracing.

Sometimes a column is braced in one

direction only. Thus in Fig. 321, the

column is braced by two struts in the

plane of the paper, and hence is free to

deflect throughout its length in only one

direction, viz., perpendicular to the axis

1-1. In the other direction it is free to

deflect through the length L2 in either

direction, but it would naturally deflect

perpendicular to axis 2-2. In such a case, the slenderness ratio

is either Li/ri for axis 1-1 or L2/r2 for axis 2-2j whichever is

greatest.

189. Relation of Working Formulas to Euler's Formula. In

§§ 185 and 186 it was shown that it is the usual practice to limit

the application of working formulas to columns having ratios of

L/r below or between certain values. If the conditions warrant

it, in a given case (§ 186), it may become desirable to design a

column whose L/r is greater than the limit set by a given formula.

In that event it is desirable to extend the working formula by a

curve derived from Euler's formula by applying a factor of

safety. In order that this may be done with no break in the

continuity of the formulas, it is necessary to have the curve

derived from Euler's curve come tangent to that of the working

formula. But since Euler's curve is for ultimate strengths, and
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since the factor of safety used in a given working formula is

rarely stated, it becomes necessary to determine the factor of

safety in each case.
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In equation (2)

f=- 50.
ax

If the two curves are to be tangent, these slopes are equal;

that is,

- 2?nr-E _3 .^x^ = — 50.

J

Hence

(3) ^ = 25^'-

Substituting this value in (1), we find

y = 2bx.

But (1) and (2) give the same y. Hence

13,000 - 50x = 25a:,

x = 173 (about).

Then, from (3), using this value of x, we have

rnr^E _ (2i)7r^(29,000,000)
•^ ~

25a;^
~

25(173)=^

= 5.5 (about).

These relations are illustrated in Fig. 322.

Note. In all of the formulas developed and quoted in this chapter, we

have assumed that the loads are concentric or nearly so. That is to say, that

there is no definitely determinable eccentricity. For definitely eccentric

loading, the treatment outlined in § 194 should be used.

PROBLEMS

Note. In the following problems let all columns have flat ends.

1. What is the safe load on a timber column 6" X 6" and 10' 0" long?

2. (a) What is the safe load on a 10" X 25 lb. I beam acting as a column

20' 0" long? (6) If the above column were 9' 0" long, what would be

the safe load? (c) If the above column were 15' 0" long, what would be

the safe load?

3. Investigate the safety of a cast iron column, 10" in diameter outside and 8"

inside, and 14' 0" long, when carrying a load of 100,000 lbs.

4. Investigate the safety of a timber column, 8" X 8" and 14' 0" long, when

carrying a load of 50,000 lbs.
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5- Investigate the safety of a timber column, 6" X 8" and 11' 0" long, carrying

a load of 23,000 lbs.

6. What is the safe load on a cast iron column 8" X 10" outside and 6^" X 8^"

inside; length 12' 0" ?

7. What is the safe load on a timber column 6" X 6" and 30' 0" long? Let the

factor of safety be 5.

8. If the column in Problem 7 is 18' 0" long, what is the safe load?

9. Design a steel column 14' 0" long to carry a load of 73,000 lbs.

10. Design a timber column 12' 0" long to carry a load of 50,000 lbs.

11. Design a steel column 20' 0" long to carry a load of 30,000 lbs.

12. Design a wooden column 20' 0" long to carry a load of 8,000 lbs.

13. A column is to be built up of two 15" X 37.5 lb. I beams latticed together

as in Fig. 320; at what distance on centers should they be placed?

14. A column is to be built up of two 15" X 40 lb. channels and solid plates f

"

thick in the place of latticing. What should be the width of the plates

(approximately) ?

15. If the column in Problem 14 is 20' 0" long, what is the safe load?

16. Investigate a steel column whose section is like Fig. 1975. It is 20' 0" long

and carries a load of 250,000 lbs.

17. a. What is the safe load on an 8" X 34 lb. H beam column 15' 0" long?

6. How much would its strength be increased by riveting an 8" X f" plate

to each flange?

c. If one of the above plates only is used?

d. If a plate 6" X h" is riveted to each side of the web?

18. A working formula for flat end steel columns is given as P/A = 15,000

- 60 (L/r). The E for this steel is 29,000,000 lbs. per sq. in. What is

the limit of validity of the formula?

19. Determine the factor of safety included in the formula for timber columns

given in § 185.
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ECCENTRIC LOADS AND COMBINED STRESSES
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190. Introduction. In the preceding chapters the subject

matter has been selected from the simplest possible cases of the

particular subject which is being discussed. Thus in deahng

with stresses of tension and compression, we have considered only

those cases in which the load acts along the axis of the member.

Again in the study of beams we have treated only of symmetric

bending (§ 131) and further we have made no attempt to discover

what might be the combined effect of bending and shearing

stresses (§ 118 and footnote on page 176).

The subject has been treated in

this manner for two reasons: (1)

Most of the cases arising in prac-

tice are of the simple symmetric

type. (2) The principles can be

clarified more easily by a study of

the less complex cases.

On the other hand, cases of un-

symmetric loadings and combined

stresses are by no means rare. Ec-

centric loading on columns (Fig.

323), roof purlins (Fig. 336), and

eccentrically loaded foundations (Fig. 189) are a few cases in

point. The treatment of eccentric loading given in this chapter

is confined to cases in which the section under stress is sym-

metric about at least one axis. The reason for this lies in the

fact that such cases can be treated by use of the ordinary the-

ory of bending (§ 131) only.

If the student does not intend to follow up the general theory

of bending (Chapter XXII), the following cases will enable him

to solve a large part of the cases that arise in practice. It is well

to recognize, however, that these are but special cases of the

286
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Fig. 323
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general theory, and are treated separately here merely because it

can be readily done and for the convenience of those who may
wish to stop short of the general case.

Throughout the following discussions the stresses on any cross

section will be treated as varying uniformly. This is in line with

results already quoted in §§ 105 and 130.

191. General Theory of Combined Stresses. The general

principle used in the following solutions is that of separating a

complex loading into simple component loadings, solving for the

unit stresses due to each one, and combining these by algebraic

addition. Thus, Fig. 324A shows a bar under axial tension due

to the load P and bending due to the load P\

^[
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This simple theory is the basis of combined stresses. It is

sufficient for most cases, though it can be shown to be in error in

the case of members that suffer important deformations. This

case is noted in § 197.

The cases that arise divide themselves according to the loading

and the type of cross section on which it acts. In the following

articles of this chapter, we will discuss various common cases of

direct loading and of direct and transverse loading in combi-

nation. The sections used in this chapter are all of them

symmetric about at least one axis. The general case, using a

wholly unsymmetric section, is given in Chapter XXII.

192. Eccentric Loading on a Short Block. Load on one axis

of the section. A solution for one case of eccentric loading is

given in § 105. The solution there presented was chosen rather

for the purpose of developing the idea of moment of inertia than

with reference to this specific problem. That idea having been

he^

P

-y777777Zr777777777. J
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A. Tension Possible. Let Fig. 325A represent a short block

carrying the load P on one axis of the cross section. This load

produces in the block two distinct tendencies toward motion:

(1) a tendency to move downward (translation), equal to P; and

(2) a tendency to rotate (moment), equal to Pe. The first

tendency (taken alone) is indicated in Fig. 3255 and produces

uniformly distributed stresses of PjA. The moment Pe, taken

by itself, is represented by the couple shown in Fig. 325C. This

moment would set up a resisting moment as shown. The stresses,

determined by § 134, are given by the equations

I Pec
Moment = Pe = s —

,
or s = ——

,

c I

T^ , I , Pec'
Pe = s —. or s = —— .

c I

The actual stresses due to the loading shown in Fig. 325A are

obtained by adding the component stresses in B and C. The

summation is shown in D, where

(1)

(2)

For the case of a section symmetric about two axes, this ex-

pression could be written in the form

(3) ^=I±—

'

in which s represents the unit stress at either edge of the section,

depending on whether the + or the — sign is used. Obviously

the unit stress caused by an eccentric load will depend on (1)

the amount and position of the load, and (2) the size and shape of

the cross section on which the load occurs. These physical

factors are expressed in equation (3) above. The following

diagram is intended to bring out these physical relations more

Sl
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clearly. From an examination of equation (3) it becomes evident

that as e increases s\ increases and S2 decreases. Therefore, there

is a critical value of e = IjAc that will cause &'2 to become zero.

If e has a value less than this critical value, s^ is compression.

If e is greater than this critical value, ^'2 is tension.

>.Load,

The Unit Stress

Si or $2

depends upon

amount ^^^
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h
P

previous case so long as the load lies at the edge of or within the

middle third of the axis line; then the conditions of the previous

case are unchanged. But when the load Hes

outside the middle third, if the joint cannot

offer tensile resistance, the diagram of stresses

becomes like Fig. 326. Here the stress dia-

gram is always a triangle with its center of

gravity under the load. The average unit stress

is s/2, and it is distributed over an area hz.

Hence ZV = gives rise to the equation

— o't-

Fig. 326

(6) i^-P;

and since the center of gravity of the stress triangle lies under the

load, we may write

Solving (7) for z^ we get

Zd - 6e
z = •

.

Substituting this value in (6) and reducing, we find

4P

Zhd{'-!)
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/////,

Let the student work out the values of .s and z for the special

positions of the load and interpret the results.

C. General Remarks. Case A above was

treated as for forces p oducing compressive

stresses. Precisely the same analysis, merely

employing a change of sense throughout,

would serve when the forces produce tensile

stresses. Fig. 327.

Equation (3), page 289, is valid for all values of e. That is to

say, the load P may occur anywhere on the axis, either within the

limits of the block or on an extension, as shown in Fig. 328.

Fig. 328

193. Eccentric Loading on a Short Block. Load not on an

axis of the section. This case will be treated only for such sections

as are symmetric about two

axes. The general case is

given in Chapter XXII.

The effect of the load P,

Fig. 329, can be resolved

into three components, fol-

lowing the principles of

§ 192. (1) The effect of

translation. This is equal

to P and, taken by itself,

would produce a compres-

sive unit stress of P/A uni-

formly distributed over the section.

(2) A tendency to rotate about the axis 1-1. This moment is

equal to Pa and would produce a uniformly varying unit stress

which has a value of zb Paci/h, at the edges of the block lettered

dd' and ee'.

(3) A tendency to rotate about axis 2-2. This is equal to Pb

and produces a unit stress of =b Pbc^lli^ on the edges lettered de'

and d'e.

The maximum unit stress will evidently occur at the corner

lettered d', and will be equal to

Fig. 329
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P Pa£i PhC2

A^ I, U '

The minimum unit stress will occur at e' , and will be equal to

P _ Paci _ Pbc2Ah h '

The unit stress at d will be equal to

P Paci _ Pbc2

A'^ h h '

and that at e will be equal to

P _ Paci Pbc2

A I, L, '

194. Eccentric Loading on Columns. Load on an axis of

symmetry of the section."^ If the column is long or the eccentricity

of the load is great, so that appreciable deformation from a

straight line will occur under loading, the principle given in § 197

will govern. But in most actual cases, the deformations can be

neglected. In that event, the unit stresses set up by the load

will be the same as in §§ 192A. The allowable unit stresses,

however, should be determined from an accepted column formula.

PROBLEMS

1. A right circular cylinder, 6" in diameter, stands vertically on a base. The
joint between the cylinder and the base can carry tensile stress. The
top of the cylinder carries a load of 5,000 lbs., concentrated 1" off the

center of the cross section. Determine the greatest and the least unit

stress on the joint.

2. Figure 330 shows the plan of a rectangular bear- i 'r-^. i-2'-i

ing block. Determine the maximum and
minimum unit stress under the block due to

a load of 5,000 lbs. concentrated at a. The
joint between the block and its base can re-

sist tensile stress. Fig. 330

3. In Problem 2, let the load be at h.

4. Solve Problems 2 and 3, assuming that the joint cannot offer tensile re-

sistance. In each case determine the line of zero stress on the joint.

* For the case of an unsymmetric section, see § 232A.

78
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5. Let the block in Problem 2 carry a load of 6,000 lbs. at c. (a) Let the joint

be able to carry tension, (6) let the joint be unable to carry tension.

6. Let the block in Problem 2 carry a load of 6,000 lbs. at d and let the joint be

able to carry tension, (a) Determine the unit stress at each of the four

corners of the block, (h) Determine the line of zero stress on the joint.

7. A rectangular block 6" X 16" in plan carries two loads applied in the middle

of the width of the top face. The load P is 2" from the center while Pi

is 3" from the center. Compute the ratio between P and Pi so that the

unit stress on the base may be uniform.

8. A tensile load of 50,000 lbs. is applied to the web of a 6" X 12i lb. I beam.

The point of application of the load is 1 j" above the center of the web.

What is the maximum and the minimum unit stress?

9. (a) Where must the load in Problem 8 be applied so that the minimum
stress on an outermost fiber is zero? (6) What, then, is the maximum
unit stress on any part of the section?

10. What are the maximum and minimum unit pressures under the foundation

shown in Fig. 189?

11. Investigate the column in Fig. 331.

12. Investigate the column in Fig. 323.

13. Investigate the column in Fig. 332A.

/Z'

20000'*

10000'

Wr4^

^ timber.

-4



ECCENTRIC LOADS, COMBINED STRESSES 295

Let Fig. 333A represent a beam loaded at its center with the

load P. This load can be reduced to two component loads in the

planes of the principal axes of

the section, represented by Pi

and P2, Fig. 333P. Then the

unit stress along the edges ah

and a'h', due to P, will be found

from the equation

PiL

4 Ci

or Si =
PiLci

4 7i

and the unit stress along the

edges aa' and hh' will be

B

P2L

4 C2
or S2

P0LC2

4 h

The maximum and minimum stresses are found by combination,

as in § 191.

196. Purlins. A good illustration of the principle of § 194 is

furnished by a roof purlin. The I beam A in Fig. 334 illustrates

the function of a purlin. It covers the span between main

S760

supports of a roof (trusses in this case) and runs parallel to the

eaves. It carries other members which run transversely to it»
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As a definite case, consider the construction shown in Fig.

334A. The roof is assumed to extend indefinitely above and

below the part shown in the figure. The members A are purlins,

supported on the walls B and carrying the rafters C. Let the

weight of the roof construction be 20 lbs. per sq. ft., the possible

snow load 20 lbs. per sq. ft., and the wind load (which is taken as

a rule as being perpendicular to the roof) 25 lbs. per sq. ft.

These loads are shown and resolved into components perpen-

dicular and parallel to the roof plane in Fig. 334B.

Let the purlin be 8'' X 10'' in cross section, as shown in Fig.

334C Each purlin will carry 12 X 8 = 96 sq. ft. of roof and its

component loadings will then be 96 X 60 = 5,760 lbs. (perpen-

dicular) and 96 X 20 = 1,920 lbs. (parallel), as shown in Fig.

334(7. Each of these is uniformly distributed over the length of

the purlin. The bending moments are

Perpendicular:

5,760 X 12 X 12

8

Parallel

:

1,920 X 12 X 12

103,700 lbs. ins.

34,560 lbs. ins.

The unit stresses are found from the equations

Perpendicular:

8(10)=

Parallel

103,680 =
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PROBLEMS

1 An 8" X 12" timber, 14' 0" long, is set with its 12" sides making an angle

of 30° with the vertical. It carries a uniformly distributed load of 4,000

lbs. which acts vertically. Determine (1) the maximum unit stresses

in bending, (2) the line of

zero stress on the cross sec-

tion at the center of the

length, (3) the line of zero

stress on the cross section

4' 0" from one end of the

timber.

2. A 6" X 121 lb. I beam, 8' 0"

long, is placed with its

web vertical. It carries a

vertical concentrated load

of 1,000 lbs. at the center

of the span and a uni-

formly distributed hori-

zontal thrust of 100 lbs.

Dead hod 20%

Snow " 20%' \

Wind " 25%' \

IZ'*3I.5

Fig. 335 Fig. 336

per foot of its length. Draw a diagram showing how the bending

stresses vary along the length of the most stressed fibers and determine

the maximum bending unit stress in the beam.

3. What is the safe load on the timber in Problem 1?

4. Two 8" X 18 lb. I beams placed side by side project from a building as

horizontal cantilevers 6' 0" long. The webs are vertical and 8" apart.

A wedge block 9" wide is driven between the webs at the outer end of

the cantilever and a load of 3,500 lbs. is suspended from it. Investigate

the safety of the beams.

5. Investigate the stresses in the purHns in Fig. 336. The tie rods cause the

purlin to become a continuous beam of three spans as against forces

parallel to the roof plane.

6. Investigate the stresses in the beams B, Fig. 335.
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197. Bending and Direct Stress. By direct stress we mean
stress acting directly along the member; tension or compression.

Not infrequently direct stress occurs in a member which also is

subjected to bending. Thus the pole in Fig. 93 is under both bend-

ing and compression due to the vertical loads and also due to the

pull on the back-stay. A similar action occurs in truss members
which carry tension or compression due to the external loading

and bending due to their own weight.

Figure 337A may be taken as a diagrammatic representation of a

simple case of bending and direct stress. Let the left-hand end of

the member be cut loose,

A\ \ as shown in Fig. 337B.

A-*
1 "I

—^ In order to maintain

I

U
I

equiUbrium, we must

find on the cut section

M (a) a shear iS, equal to

^

—

^P' R) (6) a direct stress P'

,

equal to P; and (c) a

resisting moment M,

YiG^ 337 equal to Rx. The shear

ma}^ be treated sepa-

rately as in the case of ordinary bending, but the stress due to P'

and that due to M, having the same directions, can be com-

bined just as in §§ 190-195. In general, there are three solutions,

depending on whether the deflection due to bending is considered

or not (§ 194).

(1) Deflection neglected. The maximum and minimum unit

stresses can be determined by simple combination, just as in

§§ 192-193.

(2) Deflection considered. In Fig. 338A is shown an eye bar

carrying the direct load P and under bending due to the loads P'

and P" . The deflection y due to bending is shown greatly

exaggerated. Because of this deflection, there is a (negative)

bending moment of — Py in addition to the momentM due to the

weight of the bar and the applied loads.

The unit stresses due to the various loadings are shown in Fig.

\^
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338. In C is the uniform distribution of stress due to direct

tensile loading and equal to P/A. In D the maximum unit stress

is Mcll due to the weight of the bar and the loads P' and P''.

In E are shown the stresses due to the force P acting with the

lever arm y. The maximum is Pyc/I. The maximum unit

stress may be either at the top or bottom fiber and is obtained by

algebraic addition.

In working out actual values for this case, it is important to

choose the section AA so that the values obtained are the

maximum possible. Also, the determination of the deflection y

leads to the following two possible solutions.

(a) An approximate solution. In this case the deflection y is

made to depend on the weight of the bar and the applied loads

only. It can, therefore, be determined quite easily in most cases

from the values given in Table III. The examples worked out in

§ 198 are treated in this manner.

(6) An exact solution. The solution outlined in (a) above

neglects the fact that the actual deflection y depends not only on

the transverse loading, but also on the moment — Py. Such a

solution can be worked out by means of the general equation of

the elastic curve (§ 152), but this will not be attempted here. It

can be found in more extended texts. The actual differences

between the approximate and the exact solutions will naturally

depend on the particular case. The stiffer the member and the

smaller the loadings, the less will be the differences.
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198. Illustrative Problems. A steel eyebar 2'' X 10" and
25' 0'' long, similar to Fig. 338, carries an axial tensile load of

200,000 lbs. Let it be required to find the maximum and

minimum unit stresses due to the axial load and the weight of the

bar. The 10'' side is vertical.

(a) Deflection neglected. The weight of the eyebar is

f, 7 X 25 X 490 = 1,701 lbs.
144

The B. M. due to the weight is

\ X 1,700 X (25 X 12) = 63,793 lbs. ins.
8

The unit stress due to this moment is

63,790X12X5 ^ „, . ,,= 1,914 lbs. per sq. m.
2 X 10 X 10 X 10 ^ ^

The unit stress due to direct load is

200,000 ^ (2 X 10) = 10,000 lbs. per sq. in.

The maximum and minimum unit stresses will occur at the

center section where the bending is greatest. They will be:

on the bottom fiber: 10,000 + 1,914 = 11,914 lbs. per sq. in.

on the top fiber: 10,000 - 1,914 = 8,086 lbs. per sq. in.

(or, within limits of the approximation, 11,920 on bottom fibre

and 8,090 on top fibre).

(6) Deflection considered (approximate solution). Deflection

due to the weight of the bar (assuming 10" side vertical) is

5

384
X 1,700 X (300)^ ^ ( 29,000,000 X ^ ^^^^^^'

)
= 0.124".

The moment due to the weight of the bar is (see

above) 63,790 lbs. ins.

The moment due to the direct load is;

200,000 X 0.124 = 24,800

The total moment is 38,990 lbs. ins.
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The unit stress due to the total moment is

38,990 X 12 X 5 ^ ^_ ,,

2X10X10X10 = '''^^ ^^'' P"' '^- ^^-

The unit stress due to direct load is: 10,000 lbs. per sq. in.

(see above).

Thus the maximum and minimum stresses will be

on the bottom fiber: 10,000 + 1,170 = 11,170 lbs. per sq. in.

on the top fiber: 10,000 - 1,170 = 8,830 lbs. per sq. in.

(or, 11,170 and 8,830 respectively for the bottom and top fibres)

(c) Exact solution. By the exact solution, the unit stress due

to the moment would be found to be 1,134 lbs. per sq. in. and the

maximum and minimum unit stresses would be determined as

11,134 lbs. per sq. in. and 8,866 lbs. per sq. in.

In the above examples, the more exact solutions show the

smaller unit stress. If the axial load had been compressive, the

exact solutions would have given the larger stresses.

(d) Compression and bending. When axial compression is

combined with bending, the solution is exactly like the preceding

ones except that the stresses combine differently, due to the

difference in sense of the axial force.

If the member is long enough to class as a column, the allowable

unit stress should be determined from a column formula.

199. Rafters. The principle of § 198 is useful in solving for the

stresses in an ordinary rafter. In Fig. 339A is shown a pair of raft-

ers, each of which carries a concentrated load ofW lbs. at its center.

Below is shown one of the pair of rafters as a free body. The ver-

tical component of the reaction is W. The joint between the raft-

ers is assumed to be frictionless. Then the reaction from the

adjoining rafter will be horizontal. Let it be R. Then the H
component of the wall reaction is the same. Taking a center of

moments at o, the positive moment of the load is TFL/2. The
negative moment, of R is RL tan </>. Then

WL WRL tan </>, and R
2 2 tan (^
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In Fig. 339B are shown also the load and the reactions resolved

into components perpendicular and parallel to the rafter. It can

i^^ ^ Co/nponen/5 of l/\/.

Fig. 339

now be seen that the rafter is subjected to bending due to a

central load of W cos </>, on a span of L/cos <^. The bending

moment of this load is

W cos </)

\ cos (f) J
or

4

If the rafter has a rectangular cross section and the breadth is

6 and depth c?, then the stress due to bending is found from the

equation

4 c 6

whence we have

(8) s =
SWL
2hd'

The compressive stress, due to direct loading, in the top half of

the rafter (the part above the load) is less than in the bottom

half, the latter being

W ( ^ . ^ ,

cos \
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and the compressive unit stress is

<" s(^""*-^iS-:)'

The maximum unit stress would then be found by adding (8) and

(9) above.

It will be noted that in (9) above the term cos 0/tan (and

hence the whole expression) is very large for small values of <^,

also that the whole expression becomes W/hd when = 90°.

For the usual slopes of roofs, the whole quantity will vary between

3WI2hd at about 25° to about W/bd at 60°. It will also be

noted that the bending stress does not depend upon the slope, but

is the same as it would be in a simple beam of span L.

To make the above equations applicable to beams of sections

other than rectangular, substitute I/c for bd-/Q in (8) and sub-

stitute area for bd in (9). Sometimes a rafter is fastened to

purlins, as shown in Fig. 335. In that case, the directions of the

reactions will be determined by the way in which the fastening is

made, whether at one or both ends, but the principles of combined

stress will serve for the solution.

PROBLEMS

1. If the beam in Fig. 340 is a 3" X 5.5 lb. I beam and the 800 lb. forces are

applied axially, what are the maximum unit stresses as determined by

each of the methods (a) and (6) of

§198?

2. Repeat Problem 1, changing the 800 lb. foo'*^

forces to compression.

3. If the beam in Fig. 340 is a 6" X 6" tim-

ber, how much uniformly distributed Fig. 340

load can be added before the safe

load on the beam is reached? Use approximate method.

4. In Problem 1, what would be the maximum unit stress if the tensile forces

were applied at the top of the beam?

5. In Fig. 340, where should the tensile forces be applied in order to make the

maximum stress in the beam as small as possible?

6. In Fig. 339, let W = 500 lbs., <j> = 30° and L = 10' 0". Let the rafters be

2" X 10" timbers. Determine the maximum unit stress on the rafters

and the thrust on the walls.

7. Investigate the stresses in the rafters in Fig. 336.

8. Investigate the stresses in the rafters C, Fig. 334. Let the rafters be 1^"

wide, 5" deep, and spaced 2' 6" apart. The live and dead loads are to

be taken as in § 196. Let the rafters be fastened at the top end only.
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200. Direct Stress and Shear. In §§74 and 75 it was shown

that forces which produce tensile or compressive stresses in a body

also produce shearing stresses, and vice versa. But in those cases

the forces were simple tensile, compressive, or shearing forces.

We will now discuss the case where both tensile and shearing

forces are present.

Let Fig. 341A represent such a case, and let Fig. 3415 represent

a small parallelepiped cut from the block and having the di-

mensions a, h, and c as shown and a thickness (perpendicular to the

^/^^

^^^

^ A
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By a similar process, it can be shown that

(11) Sp = ist sin 2</) + Ss cos 20.

From these expressions, we see that if we choose our elementary

parallelepiped in one proportion (thus giving a definite value)

we get one set of values. Another proportion gives a different

set of values. This evidently means that the stresses set up by
direct and shearing forces are different on planes cutting the

piece at different angles. There is one plane on which these

stresses have maximum values. By differentiating equation (10)

with respect to </> and placing the derivative equal to zero, we

find that s„ is a maximum when

(12) tan 20 = - —̂ •

St

Substituting this value of </> in equation (10), we get

(13) maximum value for §„ = J^/ =b Ail -^ )
-^^ l' + Ss'.

By a similar process it can be shown that Sp is a maximum when

St
tan 20

2ss

and

(14) maximum value for Sp = ^j( ^ V-f Ss^.

In equation (13) the minus sign is to be used when the direct

force is compressive.

In equations 10-14 above, if we let St approach zero we are, in

effect, changing our case to that of shear, uncombined with

direct stress. If this is done, equation (12) gives = 45° and

equation (13) gives Sn(max) = Ss. This is equivalent to saying

that when no tensile or compressive forces are acting the maxi-

mum normal stresses occur on planes at 45° to the horizontal and

are equal in intensity to the shearing stresses as already shown in

§§ 74 and 75.
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PROBLEMS

1. Within a solid object there exists a horizontal tensile stress of 750 lbs. per sq.

in. and vertical and horizontal shearing stresses of 500 lbs. per sq. in.

Find the direction and magnitude of the maximum shearing stresses.

2. In Problem 1, find the unit shearing stress on planes making 20° and 30°

with the horizontal.

3. What is the direction and the amount of the maximum tensile stress in

Problem 1?

4. A bolt I" in diameter carries a tensile load of 2,000 lbs. and a shear of 3,000

lbs. Find the direction and intensities of the maximum tensile and
shearing stresses.

201. Combined Stresses in Rectangular Beams. The unit

stress due to bending which occurs in any part of a beam can be

determined by use of equation

(7), § 134. The unit shearing

~ stress can be determined by

equation (3), § 140. Heretofore,

we have treated these stresses

N^ separately, although they occur
^ simultaneously and actually pro-

duce resultant stresses which

are different in amount and

direction from the component bending and shearing stresses.

These differences, under certain circumstances, may become im-

portant in determining the safety of a given beam.

In Fig. 342^ is shown the left end of a loaded beam. The

bending moment stresses (as heretofore determined) are shown at

M. The vertical shearing stresses are indicated at S. It should

be remembered (though the drawing cannot show this fact) that

the intensity of the shearing stress is greatest where the intensity

of the bending stress is least and vice versa. Now evidently the

resultant stresses on the section will vary from horizontal at the

outermost fibers to vertical at the neutral surface, as shown

diagrammatically in Fig. Si2B. It will be shown later that the

horizontal shearing stresses also influence the resultants, but

the principle that the resultant stresses may vary in amount and

in direction, from those already studied, is made clear by the

figure.

Fig. 342
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The principle of § 200 and the equations there developed

furnish the basis for determining the variations in resultant

stress, but the complete solution of a definite case is necessarily a

^ of\ beam.

-— Equal compression due h bending momenh
• tension « » -

Fig. 343

long and tedious process. The purpose of this article is not

especially to follow through some definite case in detail, but to

furnish a visual concept of the variations which occur and to

draw some conclusions which will be helpful in actual designs.

For this purpose Figs. 343, 344, 345 have been prepared.

They are all based on a rectangular beam 2" X 20" in section,

and 100" long, carrying a uniformly distributed load of 100 lbs.

^ of^beom.

Equal shearing siresses.

Fig. 344

per inch. Figure 343 shows the variation in bending moment

stresses. The curves drawn on the beam are lines of equal

stress; i.e., the line marked ah passes through all points at which
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the bending moment stresses are 500 lbs. per sq. in. in com-

pression. Figure 344 is a similar diagram showing lines of equal

unit shearing stress. It should be remembered that in the case

of shear there is a vertical and a horizontal shear of equal in-

tensity (§§ 73 and 139). The diagram expresses either the H or

the y unit shearing stress.

We can now proceed to determine resultant stresses. Let the

point marked "a" be chosen. At this point the tensile unit

stress due to bending is 135 lbs. per sq. in., and the unit stress due

to horizontal (or vertical) shear is 126 lbs. per sq. in.

\ « » •

!

\ » » »
j

\ ^ '
^ *

!

Fig. 345 I

By equation (12), § 200, the inclination of the maximum re-

sultant stress is given by the equation tan 20 = — (2 X 126) /135

= — 1.88, which gives = — 31° or 59°. The plane inclined

at 59° is the one on which the resultant tension occurs while on

the other is found the maximum compression. Then from

equation (13), the maximum unit tensile stress is

^'(
135 \

2 ;
Sn (max.) =i(135)+ A ( ^ I + (126)^ = 210 lbs. per sq. in.

The unit compressive stress at this same point, found by using

the minus sign in equation (13), is 75 lbs. per sq. in. and is

inclined at 90° to the tensile stress.

A series of such computations has been made for various points

on the beam shown in Figs. 343 and 344. The results are shown

in Fig. 345. Here the resultant stresses are shown by the
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lengths and inclinations of the arrows. Only the resultant

tensile stresses in the left-hand half of the beam are shown. By
turning the diagram upside down the compressive stresses in the

right-hand half will appear. From this diagram the way the

resultant tensile stresses change in amount and direction can

Diredion ofmaximum compression.

tension.

Fig. 346

easily be seen. Figure 346 has been drawn to show the full beam

and the variation in direction only of the resultant tensile and

compressive stresses. The curves in this figure form two sets

which, at a point of intersection, are at right angles to each other.

This agrees with the critical values of found in connection with

equations (12) and (13) of § 200.

Diagonal stresses of tension, compression, and shear occur in

all beams, as shown above. Ordinarily they are not important,

since the horizontal stresses determined in the usual manner

(§§ 134 and 140) are actually the maximum values. But in

certain special cases the diagonal stresses become important.

(1) In the case of beams with thin webs (see § 204).

(2) In the case of reinforced-concrete beams. In testing such

beams, cracks frequently develop as shown in Fig. 346. These

result from the diagonal tensile stresses and, in a general way, the

cracks run normal to the lines of stress. The placing of rein-

forcing rods near the ends of the beam is vitally affected by the

diagonal tension.

(3) In the case of wooden beams. In tables giving the strength

of wood, it is not unusual to see the longitudinal shearing strength

of beams listed at a smaller value than the strength in shear

parallel to the grain, for the same material. This is due partly

to the serious effect of the usual defects in the timber, such as
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shakes and checks, and partly to the fact that wood is very weak

in tension across the grain, and hence the diagonal tension is very

apt to be a serious factor, particularly if the timber is cross

grained. These complex factors are all expressed in a lowered

working unit stress.

PROBLEMS

1. A wooden beam is 10" X 12" and 10' 0" long. It carries a uniformly

distributed load of 10,000 lbs. Find the amount and direction of the

maximum unit stresses in tension, compression, and shear at points

which are taken on sections 2' 0" from the end and 2' 0" from the center

and at distances of 4" and 2" from the neutral surface.

202. Beams with Thin Webs. Plate girders and I beams are

shaped specially to resist bending stresses with a minimum

expenditure of metal. The shapes in use vary in detail, but in

general they provide large concentrations of metal in the flanges

(to resist bending moments) and deep thin webs which connect

the flanges and transmit the shear. Typical shapes are shown in

Figs. 254 and 256.

It is obviously impossible to make any shape that will be

equally economical whether called upon to resist large bending

moments and small shears (as in a beam with long span and

relatively light load) or to resist smaller bending moments and

large shears (as in a short beam with a relatively heavy load).

The I beam shapes in common use are compromises intended to

meet the usual run of conditions. Therefore, in extreme cases of

span or load, special attention must be given to the actual maxi-

mum stresses that may arise through the combined effects of

bending, shear, and the localization of stress due to concentrated

loadings on the flanges or web.

In general, it may be said that failures of beams with thin

webs occur in one of the following ways:

(1) For beams of ordinary spans. Failure comes by a gradual

sagging. For this case the ordinary theory of bending (§ 134)

furnishes a satisfactory solution.

(2) For beams of long spans. The top flange of the beam,

being in compression, acts somewhat like a column and the
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beam may fail by a sidewise buckling of the top flange, (See

§ 203B.)

(3) For short spans. Failure usually is due to shearing,

either as the direct result of excessive shearing stresses or in-

directly through a combination of shearing and compressive

stresses. (See § 204B.)

(4) By localized stresses. Where heavy concentrations of

loading occur. (See §§ 204C, 204D.)

While the usual theory of bending is well supported by experi-

mental evidence, the cases outlined in 2, 3, and 4, above, have not

received the attention they deserve.* Moreover, the combined

stresses involved are necessarily very complex. As a result, the

treatment of these cases involves many assumptions and the

formulas in use are very largely empirical.

Note. In the following articles, the commonly used assumptions and the

resulting formulas will be discussed in a general and very condensed fashion.*

For the sake of shortening the discussions, a simplified beam section (Fig. 347)

will be used. This section omits the curved fillets and sloped flanges usual in I

beam sections, but retains the heavy flange and light web section typical of all

beams in the class under discussion.

203. Flange Stresses on Beams with Thin Webs.* A. Dis-

tribution OF Resisting Moment. The theory of bending

given in Chapter XIV shows how the bending stresses are dis-

tributed on any beam section. The equations there derived

hold good for beams with thin webs. But for beams with very

large sections it is sometimes desirable to use a shorter, approxi-

mate method in computations. This is based on the fact that

the flanges of such a beam furnish by far the greater part of the

resisting moment.

Figure 348 shows the distribution of bending stress on a beam

with a cross section hke Fig. 347. The unit stresses on the flange

vary from s to Si and are distributed over a large area. The unit

stresses on the weh vary from Si to zero and the average value is

* The most important tests available are published in the Bulletin of the
University of Illinois Engineering Experiment Station, Nos. 68 and 86.

A very good general discussion of these phenomena is given in Hool & Kinne,

Structural Members and Connections.
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So, being distributed over the thin web section. Moreover the

flange stresses have a much larger lever arm from the neutral

surface than the web stresses. It thus becomes evident that the

flange stresses make up by far the larger part of the resisting

moment. The approximate rule (quoted later) used in figuring

the resisting moment of plate girders is based on this fact.

^/0S84*/°"-^
h-6-,5'^

T/^fe i-'Flange

Area = 22""

C .Web '

Fig. 347

72ZA

X^PTTTTTi

Fig. 348 Fig. 349

To illustrate the point let us take a beam whose section is like

Fig. 347, loaded with 100,000 lbs., uniformly distributed on a

span of 10' 0". The maximum bending moment is 1,500,000 lbs.

ins. and the unit stress in the outermost fiber of the central

section is found from

(15) 1,500,000
1417.3

10
10,584 lbs. per sq. in.

The unit stress at the joining of the flange and the web is

10,584 X ^ = 9,526 lbs. per sq. in.

These unit stresses are shown at scale in Fig. 349. The total

stress on one flange is

4(10,584 + 9,526) X 6i X 1 = 65,358 lbs.

The total stress on one half of the web is

(9,526 -^ 2) X (9 X 0.5) = 21,433 lbs.

The resisting moment of the flange stress is found by multipljang

the total stress in one flange by the distance from the neutral

surface to the center of gravity of the stresses, and then doubling
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the result to account for both flanges. In this case the center

of gravity of the flange stresses is at 9.5087'' from the neutral

surface. The resisting moment of the flange stress is then

65,358 X 9.5087 X 2 = 1,243,000 lbs. ins.

and the resisting moment of the web stress is

21,433 X 6 X 2 = 257,100 lbs. ins.

In this case, the web actually contributes about one-fifth of the

entire resisting moment.

In plate girders, the flanges are proportionately heavier and

they carry a larger percentage of the moment stresses. It

is a common rule in designing such girders to assume that

the flanges take all of the moment
and that the moment stresses are dis- ^^^za

tributed uniformly over the flanges.

This rule, applied to the beam in _
question, would give a distribution

of stress such as is shown in Fig.

350. Here the resultant stresses in ezz2zzz2 I

^—
1|
» j-

the flanges are shown by the arrows ^ ocn

C and T and the distance between

the centers of grmity of the flanges is L (sometimes called the

lever arm of the stress couple). The resisting moment is either

CL or TL (since C = T). Using the same case as above and
solving for the unit stress on this basis,

I
'

-—L

1,500,000 = 19C; C - 78,950 lbs.,

78,950 -^ (6.5 X i) = 12,150 lbs. per sq. in.,

which is the unit stress on the outermost fiber. This is about 20

percent, in excess of the exact solution (given by equation (15)),

but in girders with heavier flanges the discrepancy is less.

B. For Long Spans. The top flange of a beam is under

compressive stresses which vary in intensity with the bending

moment. When the beam is long, these stresses cause the flange

to act somewhat as a column. If the flange has no sidewise
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support, it is apt to buckle and cause the failure of the beam.

Where effective lateral support is provided at intervals, the

distance between supports becomes the critical factor, as in a

braced column.

The column action set up in the flange is not the same of

course as in a free standing column. The web restrains the

flange in a vertical direction, and the loading occurs throughout

the length, causing stresses which vary throughout the length.

Therefore, the ordinary column formulas cannot be applied

directly, but are modified according to the judgment of the de-

signer and to correspond with whatever test results are available.

The general principle followed in all formulas used to control

flange buckling is, however, the same as that used in column

formulas. The unit stress allowable for short pieces is reduced

by a factor which depends on the width of the flange.

The formula given in the specifications of the American Bridge

Company is as follows:

So = 19,000 - 300 ^

,

where Sc is the maximum allowable compressive unit stress in the

top flange of a beam in pounds per square inch, L is the un-

supported flange length in inches, and h is the width of the

flange in inches. This formula is restricted to values of Ljh

between 10 and 40. It is evidently based on the column formula

used in the same specifications, viz., Sc = 19,000 — 100 L/r

(p. 280). In transforming this formula, the flange is supposed

to have a radius of gyration of J of its width, which is approxi-

mately what it would be if the flange were a rectangle. This

formula makes reductions which are rather more severe than

others in common use.

PROBLEMS

1. The plate girder section shown in Fig. 241 is used to carry a uniforraly

distributed load of 130,000 lbs. on a span of 30' 0". What is the

maximum bending unit stress as figured by the approximate method of

§ 203A and by the exact method?
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2. If the approximate method of § 203A be applied to figuring the resisting

moment of a 24" X 80 lb. I beam, what percentage of error will be

involved?

3. What is the safe uniformly distributed load on a 12" X 31 1 lb. I beam

which is 15' 0" long and without lateral support for the top flange?

4. What size I beam is required to carry a uniformly distributed load of 6,000

lbs. on a span of 14' 0", the top flange being unsupported?

5. What is the relative capacity of an 8" X 34 lb. H beam as against two

8" X 17i lb. I beams in carrying a uniformly distributed load on a

span of 14' 0", the top flange being unsupported?

6. If the plate girder in Problem 1 is unsupported laterally, what is the safe

load concentrated at the center?

204. Web Stresses in Beams with Thin Webs.* A. General

Considerations. The beam shown in Fig. 347, loaded with

100,000 lbs., uniformly distributed on a span of 10' 0'', will be

used as a basis of discussion. According to the general theory

of bending, the shearing

V//^>^/A

Fig. 351

unit stresses will be dis- ^z^^^

tributed over the section

of greatest shear, as shown

in Fig. 351. Let the stu-

dent check the indicated

unit stresses.

It is evident from the

diagram that the web car-

ries by far the larger part of the shear. A common rule for the

designing of beam webs is to assume that the web takes all of

the shear, and that the unit stresses are uniformly distributed

over it. In this case, the height of the web is taken as the full

depth of the beam.

Applied to the case in hand this rule gives

50,000 -^ (20 X i) = 5,000 lbs. per sq. in.

as the average shearing unit stress on the beam web. This is about

13 per cent, less than the true value shown in the figure. The as-

sumed stress distribution is indicated by the dotted lines in Fig. 351.

The discrepancy between the maximum unit stress given by this

* See note, p. 311.
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assumption and the real stress determined from § 140 will vary

with the proportions of the beam in question. For the standard

I beams, the true solution gives results which are from 11 per cent,

to 23 per cent, greater than those given by the assumed distri-

bution. It is common practice to make allowance for this fact

by lowering the allowable unit stress when the rule is used. One

rule in common use keeps the allowable stress for steel down to

10,000 lbs. per sq. in. instead of the usual 12,000 lbs. per sq. in.

Such a rule is valuable for quick approximations and for

ordinary routine work, but for close designing and with sections

not like the standard ones, the method of § 140 should be

followed. (See also D below.)

B. Diagonal Buckling of the Web. In § 201, it was shown

that the moment and shearing stresses combine to form diagonal

stresses of tension and compression, and in Fig. 345, the diagonal

tensile stresses were shown separately. These stresses were seen

Fig. 352 •

to be especially dangerous for beams made of materials like wood

and concrete that have low tensile strength. The diagonal

stresses of compression are especially dangerous to beams with

thin webs, since they set up column action which tends to buckle

the thin webs.

Figure 352 is drawn to show the resultant compressive stresses

found by combining the moment and shearing stresses in a beam

whose section is hke Fig. 347 and which carries a concentrated

load of 60,000 lbs. at the center of a span of 120''. The equations

of § 200 were used in determining the stresses and directions.
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In this drawing the arrows show both the direction and amount of

the resultant compressive stress at the various points. Near the

center the directions change rapidly, due to the rapidly changing

shear, and this method of representation becomes inadequate to

express the facts. For this reason the arrows at the center

section have been curved to indicate the change from an inclined

to a horizontal direction. An examination of Fig. 352 will show

that throughout the greater part of the web large compressive

stresses are present. On any diagonal strip (see dotted lines in

Fig. 352), the compressive stresses vary somewhat; but in

general they produce unit stresses that may become excessive

when the strip is viewed as a column of length L and of a least

diameter equal to the web thickness.

However, the strip of web does not act precisely like a column

because it is joined to strips which adjoin it and also it is acted

upon by the diagonal tension which tends to prevent buckling.

Experience shows that failures due to web buckling are easily

possible for short, heavily-loaded beams.

No complete rational analysis of this phenomenon has been

made, but several formulas for testing the safety of thin webs are

in common use.

All of these formulas are based on about the same concept.

The maximum shearing stresses, which occur at the neutral

surface, combine to produce diagonal compression at 45° to the

horizontal. The unit stress due to this diagonal compression at

the neutral surface is equal to the shearing unit stress at the

same point (§ 200). The diagonal web strip (Fig. 352) is then

viewed as a free column under a unit stress throughout equal to

the shearing unit stress at the neutral surface. Its safety is then

tested by some accepted column formula.

This concept involves several rather generous approximations.

However, it has proved its usefulness in practice and the results

check fairly well with the available test data.

One formula, proposed by C. R. Young, is as follows*: Let the

safe average shearing unit stress (see A, above) be Sa] let the

*See Hool and Kinne, Structural Members and Connections.
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height of the beam web measured between fillets be h and let the

thickness of the web be t. Then

h h
For ratios of - between and 60: Ss = 15,000 — 150 -,

t I

For ratios of - between 60 and 115: s« = 10,200 - 70 -»

C. Vertical Buckling of the Web. When a thin webbed

beam carries a heavily concentrated load, that load sets up local

stresses which, when combined with the bending and shearing

1

--±r
\B
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A ' B
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r
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shown free in Fig. 353C. The effect of the shear on the bottom

half is represented by the arrows ee^ and is assumed as uniformly

distributed. It is evident that the web of this beam is under a

very complex set of stresses, and that the tendency to buckle is

similar to that in a column. In the lower part of the beam, the

tendency to buckle is somewhat neutralized by the tensile stresses

due to bending. The same tendency to buckle is present (in the

reverse sense) at reactions; and wherever heavily concentrated

loads occur. In Fig. 353(7, the web is then a column of length

d/2 with a cross section of at sq. in., carrying a load of P lbs.

The formulas used by the American Bridge Company to cover

this case are as follows: *

Safe interior load = 2fbtl ai -{- ~\

,

Safe end reaction = fbtl a -{- -]•

In these formulas, t is the thickness of the web, d is the depth of

the beam, a is the distance over which an end reaction is distrib-

uted, ai is one half of the distance over which an interior load is

distributed, and ft is the allowable compressive unit stress as

fixed by the web section. This stress is determined from the

expression ft = 19,000 — 17S(d/t), which is merely a transfor-

mation of the American Bridge Company column formula.

Here the factor c//4 is apparently an arbitrary one intended to

make the formula correspond with the tests.

Figure 353D shows a beam which has been tested to failure by

a load concentrated near one end.

D. Fillets. An examination of Fig. 352 will show that the

unit stress which occurs at the junction of the flange and web may
exceed the unit stress on the outermost fiber in the same vertical

plane. This will be true only for beams with short spans and

heavy loading, in which case large moment stresses are combined

with large shearing stresses. It indicates, however, that in such

cases these possible maximum stresses must be considered. The

* These formulas are based on unpublished tests.
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fillets on the standard I beams tend to reduce these maximum

stresses, and they also serve a useful purpose in manufacture.

PROBLEMS

1. (a) WTiat is the minimum span on which a 20" X 65 lb. I beam may be

used to carry its full safe load in bending? Use the approximate

method of § 204A.

2. Repeat Problem 1, using a 20" X 100 lb. beam.

3. What is the degree of accuracy of the rule in § 204A, in the case of a 15"

X 42 lb. I beam?

4. What is the greatest uniformly distributed load that may be carried on a

24" X 100 lb. I section, (o) as determined by shearing unit stress,

computed accurately, (b) as determined by the approximate rule, § 204A,

(c) as determined by diagonal web buckling?

5. "WTiat is the greatest total shear that

may be carried on the plate girder

section shown in Fig. 241? Use the

methods of § 204.

6. What is the greatest safe end reaction on

a 15" X 42 lb. I beam which has bear-

ings which extend 4" along the length

of the beam?

7. How much load may be safely concentrated

on a space 6" long at the center of a

12" X 3U lb. I beam?

8. If the section. Fig. 347, is that of a steel

beam, what length of end reaction is

needed to develop its full strength?

9. If the section, Fig. 347, is to be used for a

steel beam, 15' 0" long, carrying a con-

centrated load at the center of the

span, what must be the length of the

end and center bearings to allow the

greatest possible load?

A 20" X 65 lb. I beam carries a load of 60,000 lbs. at the center of a span

of 10' 0". The load has a bearing on the beam which extends 6" along

the beam and the bearings at the reactions are 4" long. Investigate the

safety of the beam.

11. Investigate the safety of the construction shown in Fig. 354.

205. Eccentric Riveted Connections. In the fabrication of

steel work, it frequently becomes necessary to design connections

which are loaded eccentrically. Two principal cases will be

noted.
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(1) When the moment due to eccentricity is in the plane of the

connection. This case is illustrated in Figs. 355 and 356. In

Fig. 355A, the load P tends

to rotate the bracket in a ^1
|

/O \' ^ ^ |

clock-wise direction. This

moment tends to deform the

rivets and to rotate the line

of holes CC to some new po-

sition T>D. If we assume '

^|

that the deformations follow x Fig^ 355 ^
the law of the maintenance

of plane sections (§ 130) which applies to bending moments in

beams, the line DD will be a straight line and the deformation of

any given rivet (and hence the unit stress on that rivet) will be

proportional to its distance from o.

Now take the bracket as a free body. Fig. 3555. In order to

prevent translation (downward) the rivet group must offer a

resistance (upward) equal to P. This can be assumed to be

divided equally among the group, as shown by the vertical

arrows; then V = P/n, where n is the number of rivets in the

group.

The moment Fe is resisted by the component stresses on the

rivets indicated by m' . If we let M equal the moment stress

on a rivet at \" from o, the stress on any rivet distant z from o,

as noted above, will be m' = Mz\ and the counterclockwise

resisting moment exerted by that rivet will be Mz^. The entire

resisting moment of the group will then be SM^-, and it must

equal Fe.

The center of rotation o lies at the center of gravity of the

group of rivets.* We, therefore, can investigate the stresses in

such a group by computing the moment stress and the direct

stress on each rivet and finding the resultant of the two.

Thus in the group shown in Fig. 356A, the direct stress on each

rivet is 12,000 -^ 8 = 1,500 lbs. In order to determine the moment

* If proof of this is necessary, let the student consider the principle of least work

(§ 238) in connection with the fact that moment of inertia {fzHA) is least about

a gravity axis (§116 (6)).
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stress, the group is laid out at large scale (Fig. 356B) and the dis-

tances of the rivets 1 and 2 from o are scaled. Now if M represents

the moment stress on a (hypothetical) rivet at 1" distance from o,

then the moment stress on rivet 1 is 6.66M and the moment of

/Z(JO0'

Z850

1900

Fig. 356

5250

4620

4820

8)5250

this stress is (6.66)^^ = 44.3ilf . Similarly for rivet 2, the moment

is 31.8M; and of the whole group {i:Mz^) is 4(44.3M + 31.8M)

= 304.4ikf. This must equal the moment of the load; therefore

304.4M= 12,000X15, whence il/=591 lbs. ins., which is the moment

of the stress on a (hypothetical) rivet, 1" from o. The stress on

this rivet would be 591 -^ 1 = 591 lbs. The moment stress on

rivet 1 is then 6.66 X 591 = 3,940 lbs. and on rivet 2 it is 5.64

X 5.91 = 3,335 lbs., each rounded off to the next larger five

pounds.

The moment stress, the direct stress and their resultant on

each rivet are shown in the combined stress diagram in Fig.

3565, that for rivet 1 being

emphasized. If all the rivets

in the group are of the same

size, the one with the greatest

stress controls the safety of the

group.

(2) When the moment of eccen-

tricity is in a plane perpendicular

to that of the connection. Let

Fig. 357A show such a case. The

principle of a combined direct shear and rotating moment is the

same as before, except that in this case the moment sets up

w
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tensile and compressive stresses instead of shearing stresses.

If we take the center of the group as the center of rotation, the

resisting moment will be built up as shown in Fig. 3575, and the

stresses can be computed as in the case (1) above. But the

bracket bears against the face of the support (along the line AB),

and so the compressive stresses will be distributed over the

surface of contact rather than concentrated in the rivets. This

will tend to make the center of rotation move downward (as in

Fig. 357C). It is sometimes assumed that the center of rotation,

in extreme cases, will move downward to the bottom rivet in the

connection. For any assumed center of rotation, the vertical

shearing stresses and the tensile stresses can be computed. In

this case, the stresses are in different planes and cannot be added.

It is usual to design the joint for either shear or tension and use

the larger result.

The use of rivets in tension is to be avoided wherever possible,

as the tensile strength of the heads is considered unreliable.

Bolts are preferable for such uses.

PROBLEMS

1. The standard beam connection for a 15" X 42 lb. I beam carries a shear of

20,000 lbs. What is the maximum shearing unit stress on the riveting?

2. What is the greatest shearing unit stress in the connection shown in Fig, 358?

1000"

\^r/vet5

(in 5/ngfe shear).

Fig. 358

6000''

i bolh ^



CHAPTER XXI

COMBINED MATERIALS

206. Introduction. In structural practice it is frequently

desirable to use two or more materials in combination to carry-

loads. When the different materials are superimposed in the

line of stress, as in the column base in Fig. 141, no difficulty is

introduced into the design, and the problem may be handled as in

Chapters VIII to XI. But when the materials occur side by

side in the line of stress, as in a reinforced-concrete column or in a

beam, as illustrated in the cases outlined below, a different

principle of stress distribution is involved, and it requires special

treatment.

In practice such combinations are usually of wood and steel, or

concrete and steel, though other combinations are of course

possible. The principles developed below may be used for any

such cases.

It is well to note that the theory here presented is based on the

assumption that the two materials which are used in combination

V///////////.
are so thoroughly fastened together that they must

deform equally under load. To what extent this

condition can be realized or is realized in any given

case is often debatable. In the case of reinforced

concrete, the natural bond between the materials

is quite effective and definite,* but when bolts must

be used as in combining wood and steel, the num-

T^\ ber required and their placing and effectiveness is

/ '^ \ less certain. The same uncertainty is present, of

-p oQi course, in the results of the computations of stress

distribution.

207. General Principle. Let the bar in Fig. 361 be composed

of two materials, as shown, thoroughly fastened together (§ 206)

* Experimental results show that at failure the bond between concrete and steel

varies from 200 to 750 pounds per square inch of surface in contact. For good con-

crete and plain round steel bars 80 lbs, per sq. in. is a fair working stress. (See § 90.)

324
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so that their deformations due to the load W will be equal.

Then of course the unit deformations are equal, and it follows

directly that the unit stresses in the two materials are pro-

portional to their moduli of elasticity.* This is merely another

way of saying that the stiffer of two materials offers the greater

resistance to deformation.

As an illustration of the application of this principle, let it be

required to find the part of the total load carried by each of the

parts of the bar in Fig. 362, as well as

the unit stress in each. Let x be unit

stress in A. Then 20a:/12 is unit

stress in B and 18a:/12 is unit stress in

C. Then the total stresses are 3x,

90a;/12 and 27x/12, respectively. The

sum of these must equal the load;

hence
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the unit stress in C is
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and that we wish to determine whether the unit stresses set up

are within the working values. In this case, the deformations

take the form of beam deflections (Chapter XVII) and the part

of the total load carried by each material can be determined by

working backward from the equation for deflection.

For example, assuming a beam with a cross section like that

in Fig. 363, let L denote the span, w the load per foot (uniformly

distributed), Ei and /i the moduli of elasticity and the moment of

inertia of the steel, and E2 and 1 2. the corresponding quantities for

timber. Also let x be the partial load carried by the steel, and y

that carried by the timber.

Now the deflection of the steel is equal to deflection of the

timber, i.e.,
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Now let the unit stress in the steel be Si, and in the timber S2,

then

7,436 X 20 X 12

and
8

2,564 X 20 X 12

8
= §2

,

1 X 12 X 12 X 12
"'

6 X 12

10 X 12 X 12 X 12

whence

Si = 9,295 lbs. per sq. in.

6 X 12

= 320.5 lbs. per sq. in.

Note that these stresses are in proportion to the respective

moduli of elasticity (§ 207). Frequently steel channels are used

instead of plates, but the principle of the solution remains the

same.

Case II. When the timber and steel are combined as in Fig.

364, a different form of solution is necessary. Let us suppose the

beam in question to have a span of 15' 0" and a

^^J^^^cf load of 8^000 lbs., uniformly distributed, and let

it be required to investigate the combination.

Since the upper face of the steel plate and the

lower face of the timber are assumed to deform

equally, the unit stress in the steel at that sur-

face will be twenty-nine times as great as that

in the wood. This is equivalent to saying that the

steel takes twenty-nine times as much stress as an equal amount
of wood similarly placed, and that the actual section shown in

Fig. 364 will act the same as a section made entirely of wood and

h /o"-—

1

^ i"*/o"jfee/

Fig. 364

Fig. 365

shaped like Fig. 365. This figure shows what is sometimes called

the transformed section, equivalent to the actual composite

section. In such a case, the neutral axis can be located by
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finding the center of gravity of this transformed section. The

moment of inertia about the center of gravity can be found next

and the problem solved as for any beam with an unsymmetric

cross section (see § 136), due regard being paid to the fact that

in the actual section (Fig. 364) the unit stresses in the steel will

be twenty-nine times as great as those determined for the flange

of the transformed section (Fig. 365).

If the beam in Fig. 364 is used to span 12' 0", carrying a

distributed load of 8,000 lbs., the unit stress in the steel at

its top face will be 2,150 lbs. per sq. in. and at its bottom face will

be 4,175 lbs. per sq. in.; while the stresses in the timber will be

668 lbs. per sq. in. at the top and 74 lbs. per sq. in. at the bottom.

Let the student check these figures.

Note. The preceding cases are selected because they form a good demon-

stration of the theory of combined materials rather than for their practical

aspects. In practice, it is not possible to unite steel and timber so that they

will deform absolutely in unison, particularly when they are placed as in Case

II above.

PROBLEMS

1. A fiitched beam, 14' 0" long, is made from an 8" X 12" timber with a

\" X 12" steel plate bolted to each side. Find the safe uniformly

distributed load on the beam and the part of the load carried by each

material.

2. Using the same plates and timber as in Problem 1, let the 12" face of the

timber be placed horizontally while the plates remain vertical and

centered on the timber. What is the safe uniformly distributed load

on the beam?

3. Using the same timber as in Problem 1, let the depth of the plates be

changed (width remaining the same) so that each material shall be

stressed to its full safe working stress. What is the safe load, uniformly

distributed, for the new design?

4. A timber, 8" X 12" and 18' 0" long, has a 12" X 20-| lb. channel bolted to

each side. How much load, concentrated at the center, may be safely

supported by the fiitched beam?
5. Using the same beam as in Problem 4, find the maximum unit stress in each

material when the beam is loaded with 20,000 lbs., uniformly distributed.

6. Let the timber in Problem 2 be placed so that the 12" sides are horizontal.

How much load may be uniformly distributed over the span with safety?

7. A fiitched beam is made of a 10" X 12" timber with a 10" X h" steel plate

bolted to the top and bottom faces. What isthe resisting moment of

the section, based on working unit stresses?



330 MECHANICS OF MATERIALS

8. An 8" X 8" timber beam has two I" X 6" ste^l plates bolted to opposite

faces of the timber. Is it stronger when the plates are horizontal or

vertical; and by how much?
9. A 10" X 12" timber, 15' 0" long, has an 8" X 2" steel plate bolted to

the top face. What is the safe uniformly distributed load on the

beam?

209. Reinforced-Concrete Columns. There are two general

types of reinforcement for concrete columns. (See Fig. 366.)

In one the steel is in the form of bars

placed longitudinally in the column.

In the other, the steel, in the form

of bands, small bars, or wires, is

placed around the outside, hori-

zontally or spirally. When vertical

bars are used, it is usual in practice

to tie them together transversely in

order to keep them properly placed.

When transverse or spiral reinforce-

ment is used, longitudinal spacing

bars are found useful. Thus it is

seldom that either of the typical

forms of reinforcement is used alone.

The theories covering the two cases

are quite distinct, however, and they

will be taken up separately, as if each type of reinforcement were

used alone.

(a) Longitudinal bars. A typical cross section of a reinforced-

concrete column is shown in Fig. 367. The bars usually are

placed near the outside face of the column so as
roncreie imq

to add as much as possible to the resistance of the fu"^
column in bending, but enough concrete is placed

•J-
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diameter, corresponding to a short column,* and not to design

any columns of a greater slenderness ratio, unless they are

justified by experimental results. Data on long concrete columns

may be accumulated which may justify the designing of more
slender columns than are now commonly used. But for the

present, the principles here given can be applied to all columns up
to a length of fifteen diameters. Thus the column in Fig. 367

should not be designed for a length over 12J ft. and for that or

any shorter length its strength would be determined as follows.

If the modulus of elasticity of the concrete is 2,000,000 lbs.

per sq. in. and that of the steel is 30,000,000, the actual unit

stress in the steel will always be fifteen times that in the concrete

(§ 207). Then when the concrete is stressed to its working

strength (450 lbs. per sq. in.), the steel will be stressed to 6,750

lbs. per sq. in. and the working load on the section in Fig. 367 is

4 X 6,750 = 27,000 lbs.

96 X 450 = 43,200 lbs.

Total 70,200 lbs.

It should be noted that in this case the steel cannot be stressed

to its safe working strength without overstressing the concrete.

Such use of a material might be considered uneconomical except

for the fact that the steel makes a reinforced column much more
tough (as against shock, bending moment, etc.) and much more
reliable than a plain concrete column and so justifies the use of

much higher working stresses on the concrete than would
otherwise be advisable.

The preceding theory is not concerned with the position of the

steel in the section and would apply equally well if the steel were

placed centrally. Usually the outer 1|" or 2" of concrete is not

* See Revort of the Joint Committee on Standard Specifications for Concrete and
Reinforced Concrete. This committee consists of representatives from the Amer-
ican Society of Civil Engineers, The American Society for Testing Materials, The
American Railway Engineering Association, The American Concrete Institute and
The Portland Cement Association. The committee has published various progress
reports between 1909 and 1921. The latest report can be obtained through any
of the societies. The report for 1921 is published in full in Hool and Kinnes'
" Reinforced Concrete and Masonry Structures."
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figured as contributing to the strength of the column on the

theory that it might become disintegrated by fire.

(5) Spiral reinforcement. Reinforcement which incloses the

column within horizontal or spiral bands functions quite

differently. The concrete under compression tends to ex-

pand laterally (to burst). (See § 78.) This lateral motion is

prevented by the steel bands which are thus put in tension.

Failure of such a column occurs when the bands, becoming

overstressed, undergo so much elongation that the concrete

escapes laterally. Manifestly, this type of reinforcement is most

effective for columns of a circular cross section.

The design of such columns is based almost wholly on experi-

mental results and the consequent rules of practice which are

given in texts on reinforced concrete design. A very useful form

of column which depends on this principle is made by filling a

light iron or steel pipe with concrete.

PROBLEMS

1. A reinforced concrete column is 16" square and contains reinforcing rods

whose aggregate cross section is 5 sq. in. What is the safe load provided

1
1" is allowed all around for fireproofing?

2. A piece of steel pipe, 6" in diameter outside and 5h" inside, is filled with

concrete and used as a column. If this column carries a concentric

load of 30,000 lbs., what is the compressive unit stress in each material?

3. What is the safe load on the column in Problem 2?

4. A reinforced concrete column is 14" X 14" with four steel rods each j" in

diameter. It carries a load of 95,000 lbs. What is the unit stress in

each material?

5. Design a square reinforced concrete column to carry a load of 96,000 lbs.

Let the cross section of the column be made up of 2 per cent, steel and

98 per cent, concrete. Allow 1 h" all around for fireproofing.

6. Design a reinforced concrete column with a circular cross section, 2 per cent.

of the cross section being steel. The load is 62 tons. Allow U" for

fireproofing.

210. Reinforced-Concrete Beams. The study of reinforced-

concrete beams is a very complex one, because of the large number

of variables entering into the problem. The literature of the

subject has developed a well-recognized set of symbols for these
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quantities, given below.* These symbols will be used for this

discussion in place of those in the appendix.

The controlling factors in the design of reinforced-concrete

beams are the physical properties of the two materials. For

the purposes of this discussion, we will use the values given

below, t A glance at these values shows that an unreinforced-

concrete beam would be very weak on the tension side. Since

steel is relatively expensive and very strong in tension, it is

ordinarily used only on the tension side of the beam, as in Fig.

368. t Such a beam carrying a very light load (so light that on

the tensile side the concrete is

I Neuf.5urf.\

\
I

>

—

'

stressed below its ultimate

strength in tension) would

act like the flitched beam
in Fig. 364. Its transformed

section (page 328) would look Fig. 368 Fig. 369

like Fig. 369, the neutral

surface being below the center of the depth, as shown, and

the distribution of stress on the cross section would be as in

* A Area of steel.

h Breadth of beam.
C Total compressive stress on concrete.

d Depth of beam, to center of steel.

eg Elongation of steel due to /«.

Be vShortening of concrete due to /c.

Es Modulus of elasticity, steel.

Ec Modulus of elasticity, concrete.

fs Unit stress in steel.

fc Unit stress in concrete,

j Ratio of lever arm of stress couple to d.

k Ratio of depth of neutral axis to d.

M Bending or resisting moment, in general.

Mc Resisting moment, determined by concrete.

Ms Resisting moment, determined by steel.

n Modulus of elasticity ratio, EJEc.

p Steel ratio, A/{bd).

T Total tension in steel.

V Total vertical shear.

V

.

Unit vertical or horizontal shear.

t Modvilus of elasticity, concrete: 2,000,000 lbs. per sq. in.

Modulus of elasticity, steel: 30,000,000 lbs. per sq. in.

Tension Compression
Ultimate strength, concrete: 200 2,000

Working strength, concrete: 20 600
Working strength, steel: 15,000 15,000

f In some special cases, it is deisrable to place reinforcement both at the top

and bottom of a beam.
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Fig. 370. As the load on the beam is increased, the unit stresses

increase; and very soon the ultimate strength of the concrete in

tension is reached (about 200 lbs. per sq. in.). Now (since

EslEc = 15) the unit stress in the steel is 15 X 200 = 3,000 lbs.

^ Neutral surface.

_

J
Fig. 370 Fig. 371

per sq. in., which is very low for the steel.* If the loading is

continued, the concrete must fail in tension, causing cracks which

extend upward from the lower face of the beam, as shown in Fig.

346. During this time, the neutral surface must be moving

upward, and the new stress distribution diagram is as in Fig. 371.

i

Fig. 372
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It will be obvious from a glance at Figs. 370-372 and from the

preceding paragraph that any determinations of the strength of

such a beam must depend upon our knowing where the neutral

surface lies in any given case. In fact, this is the key to the

entire problem. The fact of the maintenance of plane sections

during bending holds good for reinforced-concrete beams as well

as for homogeneous beams; and in general the same limitations

apply to this whole discussion as to the previous one (§ 132).

In Fig. 373, let AA represent a plane section before bending,

and let A'A' represent the same section after the load has been

applied. There is then a linear compression of ah in the extreme

fiber of the concrete and an elongation of cd in the steel. The

neutral surface is at NN. Now let us suppose that the amount

of steel in the beam is increased, all other factors remaining the

same. Obviously the deformation cd will decrease to some

amount, cc; the plane section will take the position A"A", and

the neutral surface will be at N'N'. Again going back to the

conditions which give the section A'A', let the steel merely

become stiffer, i.e., with a greater modulus of elasticity (all

other factors remaining the same); again the deformation cd

will decrease and the neutral sur-

face NN will fall. Similarly one

could show that starting with any

assumed conditions, if the relative

amount of steel to concrete or the

relative stiffness of steel to concrete

is changed, then the neutral surface

is changed. Relatively more steel

or stiffer steel will lower the neutral surface, and vice versa. It

appears then that the location of the neutral surface will even-

tually depend on the relative quantities and qualities of the

materials emploj^ed; and that k can be expressed in terms of p
and n.

Let Fig. 374 represent a section cut from a beam under stress.

The loads, reactions, and shearing stresses are omitted because

they do not affect the present problem. Let AA represent a

Fig. 374
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plane section, before bending, and let A'A' represent the same

section after bending. From similar triangles, we have

Qs _ d — kd

Qc kd
(3)

But the deformations Qs and qc are proportional to the unit

stresses which produce them, and inversely proportional to

the moduli of elasticity of the materials. Therefore we may
write

Qs _ Ecfs _ ^fs^

Qc Esfc~ nfc
(4)

Substituting this value in equation (3), we find

d — kd
(5)

111
nfc kd

Solving this equation first for /c, then for /s, we have

fsk
(6)

(7) fs =

nil - k)
'

nfcjl - k)

k

Turning to Fig. 375, let C represent the total resultant com-

I pression on the section, and let T
-jKcf represent the resultant tension.

Then, since ZH must be 0,

(8) T = C,

and we also know thatFig. 375

(9)

(10)

T = Af„

C = ^bkdfc-

Substituting these values in equation (8), we find

(11) Af, = ibMU
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Substituting the value for/s from equation (7) in equation (11), we

get

But, by definition,

hence

An{l -k) _
^ bd

^'

A

k^ = 2pn(l - k).

Solving this for k, we have

(12) k = \2pn + V^^ ~ P^j

which gives the location of the neutral surface when the relative

quantity p and the relative quality n of the materials are known.

Curves {2) in Fig. 376 are drawn to exhibit the relations of k, p,

and n, through the values commonly found in practice.

If we take a center of moments on the line of T, Fig. 375, the

resisting moment of the beam is seen to be Cjd, if the center is

taken on C, the resisting moment is Tjd. In these expressions,

jd is the lever arm of the stress couple (compare § 203), and its

value is seen to depend on that of k as in the following equations

:

/1QX { jd = d - \kd,
^^^^

I j=l-\k.

The curves 1, Fig. 376, display values of j through the range of

ordinary practice.

In any beam the bending moment of the loads is equaled by the

resisting moment in the beam. In this case this gives rise to the

relation

M = Cjd = Tjd,

in which M can stand for either the bending moment or the

resisting moment. Substituting the values of C and T from

equations (9) and (10), we find
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Ratio of Reinforcement

.002 .00^ .006 .006 .010 .01Z .Ol'f .016 .018 .010
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(14) M = \jkhd%,

(15) M = Afsjd.

These equations give the relation which exists between an

external bending moment and the unit stress in the concrete or in

the steel. They may be used precisely like equation (1), § 135.

211. Investigation. An Example. Let the beam in Fig. 377

be placed on a span of 16' 0'' and carry a uniformly distributed

load of 10,000 lbs. In order to determine the unit
L, JO* u

stresses in the concrete and in the steel we may r-^

write (see note, p. 333) I

n = 15,

A = 3 X 0.3068 = 0.9204, ^

'''''
0.00511.

' 12 X 15

Using these values in equation (12) (or curve ^, Fig. 376), we find

k = 0.3223,

and from equation (13) (or curve 1, Fig. 376), we have

j = 0.8925.

Then, from equation (14), we find

10,000 X 16 X 12 ^ , ^ ^ g^2 X 0.322 X 12 X 15^/,,
8

fc = 619 lbs. per sq. in.;

and similarly, from equation (15):

fs = 19,500 lbs. per sq. in.

From the above, and by reference to the diagrams on p. 338, it is

seen that once the theory governing the location of the neutral

surface is mastered, the investigation of such a beam becomes a

very simple matter.

If we examine the preceding results, however, we see that the

steel is badly overstressed, while the concrete is working close to
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the allowable stress. This evidently means that the beam needs

more steel to make it work most advantageously: it is under-

reinforced. Now let us substitute three 1" round bars for the

f" round bars in the above problem. Then

n = 15, A = S X 0.7854 = 2.3562,

2.3562 ^^_^
^ = m05 = '''''>

Jc = 0.46, j = 0.847,

fc = 457 lbs. per sq. in.,

fs = 8,032 lbs. per sq. in.

In this case neither material is stressed to its safe strength, but

the concrete is working at about three-fourths of its safe stress,

while the steel is stressed to but little over one-half its safe stress.

That is, the beam is over-reinforced.

212. Safe Load. Let it be required to find the full safe load for

the second beam in the previous paragraph. The values of n,

A, p, k, and J are as before. Now equation (14), § 210, will stand

for the resisting moment if we substitute the working strength of

concrete for /c. This gives

M = i X 0.847 X 0.46 X 12 X 15 X 15 X 600

= 315,430 lbs. ins.,

which is the resisting moment of the beam, as determined hy the

strength of the concrete. Again, from equation (15), we have

M = 2.356 X 15,000 X 0.893 X 15 = 473,375 lbs. ins.,

which is the resisting moment as determined hy the strength of the

steel.

Evidently the resisting moment of the beam is the lesser of these

values and the safe uniformly-distributed load for the given

span is the value of W given by the equation

315,430 =ILX_^2ii2_
8

whence
W = 13,143 lbs.
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PROBLEMS

Note : In the following problems the depth of the beam is to be construed
to mean the depth to the center of the steel. See d, Fig. 374.
1. A reinforced-concrete beam is 20" wide and 40" deep (to the center of the

steel). Its remforcement has an aggregate cross-sectional area of 7^
sq. in. The span is 16' 0" and the load is 8,000 lbs. per ft. What are

the unit stresses in steel and concrete?

2. A reinforced concrete beam is 12" X 24" and has 1 1 sq. in. of reinforcement.

The span is 18' 0" and the load is 25,000 lbs., uniformly distributed.

What are the unit stresses in steel and concrete?

3. A reinforced concrete slab spans 8' 0". It is reinforced with 0.42 sq. in. of

steel per foot of width and the depth of the slab is 4". The live load is

100 lbs. per sq. ft. of slab. What are the unit stresses in the steel and
in the concrete?

4. WTiat is the safe load, concentrated at the center, on a reinforced concrete

beam whose span is 16' 0" and whose cross section is 12" wide and 20"

deep with 2\ sq. in. of steel reinforcement?

5. If the beam in Problem 4 has 1.35 sq. in, of reinforcement, what is the safe

load?

6. If the beam in Problem 4 has 1.8 sq. in. of reinforcement, what is the safe

load?

7. If the beam in Problem 1 is made of a concrete whose modulus of elasticity-

is 2,500,000 and a steel whose modulus of elasticity is 30,000,000, what

will be the unit stress in each material?

8. If the beam in Problem 4 is made of concrete and steel having a ratio of

modulus of elasticity of 13 and safe working strengths of 450 and

13,500 lbs. per sq. in., what is the safe load?

213. Critical Steel Ratio. In §§ 211 and 212, we have con-

sidered two beams, one under-reinforced, the other over-

reinforced. Evidently, by choosing the proper amount of

reinforcement (somewhere between the two amounts already

tested) it is possible to produce a beam whose resisting moment is

the same whether determined by the strength of the concrete or

by the strength of the steel. Moreover such a beam has, in

general, an economical design, since in that case each material

is working to its full capacity. In order to fix the percentage of

steel which will give such a result, we can take equations (14) and

(15) (§ 210), put one equal to the other, and solve for Al{hd).

This gives

(16) hJ^hd^Sc = Afsjd,
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(17) - = —^ »

Solving equation (5) (§ 210) for k, we get

k =

Substituting this value of k in equation (17), we find

(18) i^,
= P =

bd Jsf^, f.

K-;i)
This expression gives the relative quantities of the materials (p)

in terms of their relative qualities {n and fs/fc). When the

qualities are known and the quantities are adjusted according to

(18), the two resisting moments will be equal, by (16). This is

the economical condition we set out to establish.

Curve 3, Fig. 376, exhibits the values satisfying this equation

through the usual range.

214. Design. Logically the first step in the design of a rein-

forced-concrete beam is to select the materials to be used, i.e., to

determine the qualities so that we may start with known values

for the working stresses and moduli of elasticity. For the

materials in most common use, the ratio n of moduli of elasticity

is about fifteen, and the ratio of working stresses (fs/fc) is about

twenty-five. This establishes our point of attack on the problem.

From equation (18) (or curve 3), we can establish our critical

steel ratio as 0.0075 = p. We will then make that ratio a

condition of the design. It follows, by equations (12) and (13)

(or by curves 2 and 1) , that k = ^ and j = |. We have thus

established the location of the neutral surface and the lever-arm

of the stress couple for any series of problems, provided we use

materials corresponding to the above ratios (15 and 25) and

provided further that we make it a condition of the design that we

will use I per cent, of steel reinforcement in the beam.



COMBINED MATERIALS 343

Now let it be required to design a beam (using materials as

above) to carry a distributed load of 10,000 lbs. on a span of

16' 0''. The bending moment is

10,000 X 16 X 12 o^nnnn n •— = 240,000 lbs. ms.
8

Then, from equation (14) (§ 210), we have

240,000 = iXiXlXhd^X 600,

whence h(P = 2,438. Any values of h and d which satisfy the

above equation will serve our purpose.* If we choose 15" for d,

then b = 10'' (about). Now the area of the steel must be 0.0075

of that of the concrete. Therefore

= 0.0075, A = 1.125 sq. in.
15 X 10

This quantity of steel can be supplied by using three bars, each f"

diameter. Moreover these bars can be arranged ,, ^2" h

in a beam 10" wide to give proper clearances. [

Two inches of additional width may well be in- '

«

eluded as fire protection.! Our design then stands

as in Fig. 378.

-.1-

/^ 14 (JM
In the above design, equation (15) could have

^iq 378

been used in place of equation (14), since either

one gives the resisting moment of the beam. Let the student

carry the same design through using equation (15).

215. Summary.—Bending on Rectangular Beams. The vari-

ous equations developed in §§ 210-214 give the means for

investigating or designing rectangular beams of reinforced

concrete, in so far as the bending stresses are concerned. Because

of the large number of variables involved, it requires a number of

equations to state the relations which govern the determination

of stresses or the design of the beam. It is sometimes difficult at

* Compare with design of wooden beams, § 136A.

t The matters of clearances, fire protection, etc., cannot be treated here. Prac-

tice has set definite rules governing these points, which can be found in any book
on reinforced-concrete design.
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first to see the process as a whole because of the large number of

parts. Therefore the following diagrams have been prepared,

not with the thought of presenting an easy way of making blind

substitution, but as a visual aid to comprehending the operation

as a whole, showing all the variables, their significance, and their

interrelations as they enter into investigation or design.

GIVEN

The

Beam

Quantities '

Qualities

Steel

Concrete

Steel

(s

Concrete Ec

k-,

The
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PROBLEMS

1. Design a reinforced-concrete beam to carry a total load of 12,000 lbs. on a

span of 15' 0". Let ths breadth of the beam be 12".

2. A reinforced-concrete slab spans 12' 0". It carries a load of 600 lbs. per

sq. ft. besides its own weight. Determine the depth and amount of

reinforcement required.

3. A reinforced-concrete beam is to span 19' 0" and carry a load of 1,000 lbs.

per ft. in addition to its own weight. It is to be 12" wide. Determine

the depth and amount of reinforcement.

4. A certain concrete has a modulus of elasticity of 1,800,000 and safe compres-

sive strength of 400 lbs. per sq. in. A certain steel has a modulus of

elasticity of 25,000,000 and a safe tensile strength of 13,000 lbs. per sq.

in. Design a beam to be made of these materials to span 18' 0" and

carry a concentrated load at the center of 8,000 lbs.

5. Using the materials in Pro}:)lem 4, design a slab to span 5' 0" and carry a live

load of 150 lbs. per sq. ft.

216. Shear. The principles used in § 140 to develop the

shearing unit stress in a homogeneous beam hold equally good

for reinforced concrete. In Fig. 379, a section cut from a rein-

Fig. 379

—
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T — T'
(19) V = ^-—L .

ox

Again in Fig. 379, taking a center of moments at a, we find

(20) Vx = {T - r)jd.

Substituting the value oi T - T' from (19) in (20), we have

V
hjd

This expression gives the value of the unit shearing stress in

beams reinforced with horizontal rods only. Because of the

diagonal tension (see §§ 200-201), it is usual to hmit shearing

stresses determined as above to values between 0.02 and 0.03 of

the ultimate compressive strength of the concrete.

When a satisfactory beam cannot be designed for shear as

above, it is usual to introduce vertical or inclined steel especially

to take care of the diagonal tensile stresses. For a full treatment

of shear reinforcement, the student should refer to some text

which deals solely with reinforced-concrete design.

PROBLEMS

1. What is the maximum shearing unit stress on the concrete of the beam in

Problem 1, § 212?

2. If the beam in Problem 1, § 212, is not specially reinforced to take care of the

shear, what is the safe load on the beam as determined by shear?

3. In the beam in Problem 1, § 212, what is the maximum unit stress tending to

break the bond between the concrete and the steel reinforcement?



CHAPTER XXII

UNSYMMETRIC BENDING

217. Introduction. The ordinary theory of bending, which was

discussed in Chapters XIV to XVIII and XX, appHes only to

cases of symmetric bending, as defined in § 131.

When the forces producing bending he in a plane which is not

a plane of symmetry of the beam itself, the case is said to be one

of unsymmetric bending, and the ordinary theory does not apply.

This will become more clear by reference to Fig. 382A, which

represents a Z bar bent by terminal couples which lie in a vertical

plane. Let the part of the bar to the right of A-A be taken as

Fig. 382

a free body, as shown on an enlarged scale in Fig. S82B. Here

the plane Q is the plane of the bending moment. If this case be

treated by the ordinary theory of bending, the neutral surface

is the horizontal plane S and the resultant stresses in tension and

compression are as shown by the arrows T and C. Then the

plane of the resisting moment is the plane R. But obviously if

there is to be equilibrium, the bending moment and the resisting

moment must lie in the same plane. As a matter of fact in such

347
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a case, equilibrium is maintained by a shifting of the neutral

surface to some such position as U) the resultant compression C
moving to the right and the resultant tension T to the left until

they lie in Q.

In such a case, it is evident that the moment of inertia of the

section referred to the neutral surface U is quite different from

that referred to ^, and also that the distance of the outermost

fiber is different. In other words the section modulus I/c for the

given beam is very different when referred to the different planes

under discussion. In fact, in every case of unsymmetric bending,

the real value of Ijc depends not only on the size and shape of the

section but also on the position of the plane of the external

moment.

218. Components of the Resisting Moment. In order to study

this question more closely, let us consider the bar shown in Fig.

383^. The cross section of the bar is shown (enlarged) in Fig.

3835. Here the axis YY is the trace of the plane of the external

Fig. 383

moment on the cross section. Let us now assume, for the

purpose of discussion, that XZ, which passes through the center

of gravity of the cross section o, and which is perpendicular to

YY, is the neutral surface of the bar.

The distribution of the unit stresses on the cross section is as

shown in Fig. 383C. Let us further assume that the resultant

tension T and compression C act at the points t and c, which are

described by coordinates as shown. Then the resultant external
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moment M produced by the forces in Fig. 383A, is

M = Tyt + Cyc

But the forces T and C also produce a moment about YY which

must be zero if the resisting moment is to he in the same plane

as the bending moment, i.e., in the plane YY. It is necessary

therefore to find the conditions which will make this resultant

moment assume the zero value.

Let s be the unit stress at any point (x, y), and let S] be the

unit stress on an elementary area distant one unit from the

neutral surface, which is (assumed to be) in XX. Then s = s^y,

the total stress on the elementary area is siy dA, and the moment

of this stress about the axis FF is Sixy dA. Hence the total

moment of all the stress on the section, about the axis YY is

y^ Sixy dA. This expression is zero when y^ xy dA is zero.

We can therefore say that if XX is the neutral surface of the

beam (Fig. 383B), Xi ^U dA for the section must be zero. This is

an illustration of the general principle that the neutral surface of a

section will he perpendicular to the plane of the external moment if,

and only if, y^ xy dA for the section (one axis of reference being in

the plane of the moment) is zero.

This quantity, Xj^xy dA is called the product of inertia.'' It

will be shown later that the product of inertia is zero for any /

section which is symmetric about at least one axis (§220A). It v^

then becomes evident that the ordinary theory of bending

applies to such sections and that for the other cases some means

must be found to locate the neutral surface. It will be found

that in general the neutral surface, for unsymmetric sections, is

inclined at an angle other than 90° from the plane of the external

moment. But in order to determine this angle, we must first

establish certain principles regarding the moment of inertia and

the product of inertia. We shall develop these principles in

§§ 219-228. The general question of unsymmetric bending is

resumed in § 229 at the point where we leave it here.

* This quantity has no physical significance and the name is chosen in quite an

arbitrary fashion (p. 147).
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219. Product of Inertia. The product of inertia of an area has

been defined in § 218 as Sa^U dA for the given area referred to a

pair of fixed axes. In order to get the significance of this ex-

pression, let us consider the area and the axes shown in Fig. 384.

Let the elementary strip of area dA (shown shaded) be chosen

and let x and y be the coordinates of the center of gravity of the

strip. Now it is evident that the static moment (§53) of this

strip, about the Y axis, is x dA and that xy dA will then represent

Fig. 384

-A

this static moment times y. Therefore, the product of inertia of

an area Xi ^V dA can be regarded as the static moment of the

whole area, figured about either axis, times the distance of its

center of gravity from the other axis; since this argument can be

restated with x and y interchanged. This approach to the

problem will be used in the following solutions. Hereafter the

symbol K will be used to denote product of inertia.

220. Product of Inertia.—Simple Geometric Figures. A.

Any Figure Symmetric about one of the Axes. Let Fig.

385 represent any figure which is symmetric about one of the axes

of coordinates (in this case YY). It is evident that for any
element whose K is {-\-x)ydA, there is another whose K is

( - x)y dA. The same would have been true if the figure had had

its axis of symmetry on the XX axis of coordinates. Therefore

the K for the entire figure is zero.
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B. Rectangle.—Origin at Corner. Using Fig. 386, let

dA be the strip shown shaded. Then dA = hdy, the static

moment of dA, about YY, is (bdy)(bl2) = (6-/2)dz/, and

K f ydij area X

Fig. 386

C. Right Triangle.

mentary strip as shown.

Fig. 387 Fig. 388

Using Fig. 387, let us choose the ele-

From similar triangles, h' = h{d — y)ld.

Then the static moment of the strip about FF is

6-

2d
- {d - yydy

and

K
Jo 2d}

{d yyydy = ^= area X —

In case3 B and C, it may be interesting to note that the form of

the answer shows that either dimension of the figure may be

chosen as the base.

D. A Semi-circle. Refer ing to Fig. 388, we see that the

elementary area is dA = mdy. The static moment of this area

about FF is m'^dy/2 and

K -I ydy.

But from the equation of a circle referred to o, we have

m^ = 2ry — ?/-. Then

•2r 2^^

Jo
ydy =

\3 8;jo

2r^

3
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PROBLEMS

1. Find, by integration, the product of inertia of the rectangle in Fig. 386,

referred to the upper and left-hand edges.

2. Find, by integration, the product of inertia of the triangle in Fig. 387,

referred to H and V axes which intersect at the apex of the triangle.

3. Find, by integration, the product of inertia of a circle which is tangent to

both of the axes of coordinates.

Y^ Y- 221. Transfer between Parallel

XxT^cf/^ Axes. Let Fig. 389 represent an

1 r i—^7-

1

area whose center of gravity is at

I ] \ '"i
'

j
c and whose product of inertia,

I y, y \^ I

\ / with respect to the axes through c,

E^^
^j

^

^^ ^- ^^^ ^^ ^^ required to find

-.! |_. \1L the product of inertia K^ with re-

\y |X spect to the axes XiXi and Y\Y\.

Fig. 389 Then we have

K =
I
xydA, Ki = I xiijidA,

Ja Ja

But Xi = X -{- Xo and y\ = y -\- yo', hence

Ki = I {x + xo){y + yo)dA
Ja

= I {xy -{- xyo + xoy + Xoyo)dA.

But Xo and ?/o are constants; therefore

Ki =
j
xy dA -\- yo j X dA + Xo

( y dA -{- Xoyo I dA

.

Ja Ja Ja Ja

Since c is the center of gravity of the area, J^^xdA and J^^ydA
are zero (§ 52). Therefore

Ki =
I
xydA + Xoyo I dA^

Ja Ja

(1) Ki = K + XoyoA.

Compare this result with that of § 113.
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Y\

-.9l-k^L0B-\

-\-3-S\ ^ .[ ]

In the preceding equation, the values of x^ and y^ may be inter-

changed without affecting the results. This evidently means

that, if the value of K for a given figure is transferred from one

pair of axes to a second pair, there will be a third pair of axes

about which K will be the same as for

the second; and that the second and

third pair are symmetrically placed

with regard to the first.

222. Use of Transfer Formula. Let

it be required to find the product of

inertia of the angle section shown in

Fig. 390, referred to the axes XX and

YY . Dividing the area into rectangles

as shown, and using equation (1), §221,

for each rectangle, we have

fl-

/

Fig. 390

For A: K, = + (- 0.66)(- 0.84)(2.5) = 1.386

For B\ Ki = + (+ 1.08)(+ 1.41)(1.5) = 2.284

For the whole angle. Xi = 3.670'''

PROBLEMS

1. Find the product oi inertia of the section shown in Fig. 249, referred to U
and Y axes through the center of gravity.

2. Repeat Problem 1 using Fig. 126

3. Repeat Problem 1 using Fig. 129.

4. Repeat Problem 1 using Fig. 119.

5. Repeat Problem 1 using Fig. 130.

6. In Problem 4, let the axes intersect at n.

223. Transfer between Inclined Axes.—Moment of Inertia and

Product of Inertia. Let Fig. 391A represent any area. Let

Ix and ly be the moments of inertia-with respect to the X and Y
axes, respectively. Let K be the product of inertia with respect

to the X and Y axes, and let /x, ly^ and K be known. Let it be

required to find Z^i, /^i, and K\, all of which are referred to the

Xi and Fi axes and are unknown. The origin o is common to

the two sets of axes.

Let dA be an elementary area whose coordinates with respect
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to the two sets of axes are shown. The relations between the

two sets of coordinates (see Fig. 3915) arc

(2)

(3)

Xi = X COS a + ?/ sin a,

iji = y COS a — a; sin a.

Furthermore, by definition (§§ 107 and 219), we have

Ix, =
I

yi^dA,
JA

ly^ = I Xl-dAy

Ki = I XiyidA.

Substituting the values for Xi and yi derived in (2) and (3);

we tind

I^i =
I

{y cos a — a: sin a)-dA

= cos- a
I
y-dA — 2 cos a sin a

|
xy dA + sin- a I X'dA,

JA JA *J A

or

(4) Jxi = Ix cos^ a -\- ly sin^ a — 2/v cos a sin a.

By the same method we could show that

(5) ly^ = ly cos- a -\- Ix sin- a + 2/v cos a sin a,
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and that

(6) *Ki = cos a sin a{I^ — ly) + (cos^ a — sin^ a)K.

By use of the trigonometric relations

2 1 + cos 2q: . . 1 — cos 2a
C0S2 a =

, sin2 a =
,

2 COS q: sin a = sin 2a, cos^ a — sin^ a = cos 2a,

equations (4) to (6) can be transformed to the following forms

which are sometimes more convenient:

(7) L, = ^-^4^ + ^^-^' cos 2a -K sin 2a,

(8) Iv, = ^^^ - ^^^" cos 2a + K sin 2a,

(9) Ki = ^'~ ^"
sin 2a + K cos 2a.

From (4) and (5), or from (7) and (8), by addition, it follows that

(10) /x, + ly, = h + I,.

This statement is independent of the value of a.

If the moment of inertia and the product of inertia of a given

area referred to a given pair of rectangular axes are known, these

equations will enable us to find the moment and product of inertia

with respect to any other axes having the same origin as the first.

Thus by successive use of the equations in §§ 113, 221, and 223,

we can transfer the axes for either / or K, at will. In the above

discussion a is positive when measured from XX in a counter-

clockwise direction.

PROBLEMS

1. Find the moment of inertia of a 10" X 25 lb. I beam about each of a pair

of rectangular gravity axes inclined at 30° to the plane of the web.

* For the special case when the transfer is being made from the principal axes

(§ 224), we know (§ 227) that K = 0. Therefore, for that case, the above equations

(4) and (5) become

(11) Li = Ix cos2 a + ly sin2 a,

(12) /,;j = ly cos2 a + h sin2 a.
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2. Find the moment of inertia of a 12" X 16" rectangle about each of a pair

of rectangular axes passing through a corner of the figure and making

angles of 45° with its sides.

3. (a) Find the moment of inertia of the trapezoid, Fig. 195, referred to an

axis passing through the lower left corner and making an angle of 30°

with EF. (6) Repeat using an angle of — 30°.

4. Determine the moment of inertia of the section, Fig. 197^, referred to an

axis passing through the intersection of 1-1 and 2-2 (center of gravity),

and making an angle of 20° with 1-1.

224. Principal Axes. Equations (4) and (5), § 223, show that

the moment of inertia varies with the angle a, Fig. 391A. Evi-

dently some value of a will render /^^ a maximum. Let us as-

sume that for a given area and a given origin, Ix and ly are

known, and that we wish to find the position of the axes, having

the same origin as the first, and for one of which / is a. maximum.

The required position can be expressed in terms of the angle

between the axes, i.e., in terms of a, Fig. 391. Equation (7),

§ 223, gives

/ = l±±_li _^ IfJzJlcos 2a- K sin 2a.
2 2

Using the ordinary process of the calculus to determine a maxi-

mum, we find

^= - 2(
^'^~ ^A sm2a - 2K cos 2a

da \ 2 )

(13) = - {Ix - ly) sin 2a - 2K cos 2a,

Putting this equal to zero, we have

{ly - h) sin 2a = 2K cos 2q;,

whence
2K

(14) tan 2a = -•

When a satisfies equation (14), h^ is a maximum or a minimum.

It should be noted that every value of the tangent corresponds

to two angles differing by 180°. Thus the above equation will

result in two values of 2a and these give rise to two values of a

which differ by 90°. One of these values corresponds to the
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maximum value of Ix^, the other to the minimum value, and,

at the same times, ly^ is a minimum or a maximum. From the

above, it becomes clear that, with any given point as an origin,

there is a pair of rectangular axes about one of which 7 is a

maximum and about the other it is a minimum. Such axes are

called -the principal axes. \ The origin most frequently used is the

center of gravity of the section, since the neutral surface of a

beam passes through the center of gravity.*
( Unless otherwise

specially noted, the term principal axes will hereafter imply an

origin at the center of gravity of the section.

In order to designate principal axes clearly, we shall hereafter

use X', Y' to designate the principal axes and Ix', ly', and K' to

designate the moments of inertia and the product of inertia

when referred to principal axes. In this case, as in § 223, a

positive value of a indicates that the angle is measured in a

counterclockwise direction from the axes about which / is known.

225. Principal Axes for an Angle. Let it be required to find

the principal axes, with the center of gravity as the origin, for the

angle in Fig. 392. From a handbook,

Ix = 10.0, ly = 4.0, and from § 222, y.

K = 3.67. From equation (14), § 224,

tan 2a = 2(3.67) = - 1.2234-10

From a table of trigonometric functions,

we have, approximately,

2a = - 50° 50', or

° 25', or

129° 10',

64° 35'.
Y'/

t^
Y

/N

'r^-^^

6^35

25 25

i\ya = - 25'

These axes are shown dotted in the Fig. 392

figure, and are principal axes passing

through the center of gravity of the angle section. The mo-
ments of inertia with respect to these axes may now be found

by use of equations (4) and (5), § 223, using the value

« = — 25° 25'. Equation (4) will give the moment of inertia

about the axis X'X'. The value is found to be 11.75"^ and

*For certain exceptions see §§208-210.



358 MECHANICS OF MATERIALS

this is the greatest / for any axis through the center of gravity.

Using the same value of a, equation (5) will give the moment of

inertia about the Y'Y' axis, which is found to be 2.25''\ This

is the least possible value.

226. Least Radius of Gyration. Because of its importance in

the design of columns (§§ 182 and 186—3) the least radius of

gyration of an area is often required. It is easily derived as soon

as the principal axes of the section have been determined, as

outlined in § 224.

For the angle section in Fig. 392, we have the principal mo-

ments of inertia (see §225) as 11.75''^ and 2.25^^while the

area is 4.0 sq. in. The least r will then be V2.25/4 = 0.75'',

figured about the axis Y'Y\

227. Axes of Symmetry as Principal Axes. In Fig. 393, let the

moments of inertia Ix and ly and the product of inertia K with

respect to the XX and YY axes be

known, and let the X'X' and FT'
axes be the principal axes. Then

from equation (9), § 223, we have

(15) 2K' = {h-Iy)sm2a+2Kcos2a,

but this value of K' will be zero, by

(13), since the axes are principal

axes. This shows that when the axes

are principal axes, X' = 0. But we know that when one of the

axes is an axis of symmetry of the figure, K = (§ 220A). It

follows that an axis of symmetry is a principal axis.

228. General Propositions.—Moment of Inertia and Product of

Inertia. In addition to the general summary on moment of

inertia given in § 116, we can now add the following facts.

(10) Moment of inertia may be transferred from one axis to

another making an angle with the first (§ 223).

(11) For any point, taken as the origin of coordinates, there is

one set of rectangular axes (principal axes) about one of which I

is the greatest and about the other of which I is least. These
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are the principal moments of inertia with respect to this point

(§ 224).

(12) Any axis of symmetry is a principal axis (§ 227).

(13) An inspection of equations (11) and (12) (§ 223) will

show that if the principal moments of inertia are equal the

moments of inertia about all axes passing through the origin

are equal.

(14) Since, from equation (10), § 223, I,^ + ly^ = h + ly,

it follows that the sum of the principal moments of inertia is

equal to the sum of the moments of inertia with respect to any

other pair of rectangular axes having the same origin. This is

sometimes useful in checking results of transformations of axes.

The following principles refer to product of inertia.

(1) Product of inertia is zero for any figure symmetric about

an axis of coordinates, § 220A.

(2) When K is zero, the axes are principal axes, § 227.

In more extended texts, graphic methods of dealing with mo-

ments of inertia are given. They are valuable time savers pro-

vided the general principles as here given have been mastered.

PROBLEMS

1. Determine the principal axes, maximum moment of inertia, and least radius

of gyration of an 8" X 6" XI" angle. Let the axes intersect at the

center of gravity.

2. Repeat Problem 1 using a Z bar 4" deep with flanges 3'' wide and a thickness

throughout of \".

3. Repeat Problem 1 using the section in Fig. 130.

229. Components of the Bending Moment. In §§ 217 and 218,

we have examined the question of unsymmetric bending by way
of the components of the resisting moment. We will now resume

the discussion by considering the components of the bending

moment. It is worth while first to redefine unsymmetric bending

in the light of the principles developed in §§ 219-228. As defined

in § 131, unsymmetric bending occurs when the forces producing

bending lie in a plane which does not coincide with an axis of

symmetry of the beam itself. It is easily deducible from §§ 117-

228 that in so far as the theory of bending is concerned principal
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axes might well be considered as equivalent to axes of symmetry^

This is demonstrated in § 231. It is then evidc^nt that we may
recast the previous definition to read as follows. Unsymmetric

bending occurs when the forces producing bending do not lie in

a principal axial plane of the member.

Obviously this definition admits many different arrangements

of the forces producing unsymmetric bending, but in each case

it is possible to reduce the bending moment to component

moments which lie in or are parallel to the principal axial planes.

A. Transverse Loading. When a beam
c^y is loaded as shown in Fig. 333, the load P

^r-r

V/
/< \

Fig. 394

^^X /i*' produces a bending moment equal to PL/4.

This moment can be resolved into a moment
of (PL/4) sin 6 acting parallel to one of the

principal axes and another, (PL/i) cos 6,

acting parallel to the other principal axis.

This case can then be worked out com-

pletely as in §§ 195 or 232B. If the trans-

verse loading is not in a plane passing through the center of

gravity of a section, as shown by M in Fig. 394, the moment can

be resolved into one moment
which is in the plane of a princi-

pal axis {M sin 6) and another

which is parallel to the other prin-

cipal axis {M cos 6). This latter

momen produces a twisting mo-

ment {aM cos 6) in addition to

the bending moments. Twisting

moments, in general, produce

shearing st esses,, as explained in

§ 246. When the twisting mo-

ment is not excessive, this case

can be treated like the previous

one. An analysis of the case which takes account of the twist-

ing moment on the irregular sections in common use cannot be

attempted in this text.
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B. Terminal Couples. In Fig. 395 is shown a bar acted upon

by terminal couples, not in the plane of a principal axis. Let the

moment produced by the couples be M. Then the effect of this

moment can be reduced to a moment of M cos 6, acting about

the X' plane, and one of M sin dy

about the Y' plane. A case of this

sort is worked out in § 232C.

C. Eccentric Direct Loading.

The effect of an eccentric load acting

along the length of a bar or short

block is essentially the same as that

of a direct concentric load plus a ter-

minal couple, as shown in §§ 192-194, for the case of symmetric

bending. For the case of unsymmetric bending, let Fig. 396 repre-

sent a short block with its principal axes X' and Y'. The effect of

the load P can be resolved into a direct force P, acting at c; and

a moment M = Pe. But the moment M can be further resolved

into two moments: Px tending to produce rotation about Y\

and Py tending to produce rotation about X\ But x = e cos d

Fig. 396

^C

'd^X
>"-

Fig. 397

and 2/ = e sin B. Therefore the effects produced by the load P
are as follows. (1) A direct force, P, acting at c. (2) A mo-

ment, Px = Pe cos ^, producing rotation about Y' . (3) A
moment, P\j = Pe sin ^, producing rotation about X' . This

case is discussed in full in § 232A.
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D. Combinations. Let Fig. 397A represent a Z bar acted

upon by three loads A, B, and C, corresponding to the above

cases, and let Fig. 397B represent a cross section of the bar.

The planes of the external moments are shown by dotted lines,

and X'X', Y'Y' are the principal axes.

The direct load C produces a direct compressive stress C, a

moment Ca cos d about the X' plane, and a moment Ca sin Q

about the Y' plane. The load A, at the center of the span, pro-

duces a bending moment AL/4. Its component effects are (A.L/4)

cos about the Y' plane and (AL/4) sin in the X' plane. The

terminal couples produce a moment Be which may be resolved

into Be cos a about the X' plane and Be sin a about the Y' plane.

If we call a moment producing compression on the point q

positive, then the total resultant moment about the X' plane

will be

Ca cos B + —7- sin cf)
-\- Be cos a,

and, about the F' plane, the resultant moment will be

— Ca sin 6 + —— cos
<f) + Be sin a,

to which must be added the direct effect of the load C.

230. Unit Stress Due to Un-

symmetric Bending. Let Fig.

398 represent the cross section

of a bar acted upon by a

bending moment in the plane

ZZ. This moment may be

produced in any of the ways de-

scribed in § 229. It is required

to determine the unit stress at

any point as (p) on the section,

due to the bending moment.

The following solution depends upon resolving the moment into

components which act about the planes of the principal axes of
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the section. When this is done, each component moment pro-

duces symmetric bending (as shown in § 229) and the unit

stress due to it can be determined by the ordinary theory of

bending. The effects of the component moments can then be

combined in the usual manner.

In Fig. 398, X'X' and Y'Y' are principal axes; o is the center

of gravity of the section; ZZ is the plane of the external moment,

whose amount is M, and which is so directed as to produce com-

pression on the part of the section above X'X'; NN represents

the neutral surface whose position is as yet undetermined; and

VV is perpendicular to the plane of the moment ZZ.

As was shown in § 229, the resultant moment can be resolved

into one component (Mx'), acting about the X' axis, and another

(My'), acting about the F' axis. These moments are taken as

positive when they produce compression on the point p and

negative when they produce tension. Their amounts are

(16) Mx' = M cos d, and M/ = - ikf sin d.

As noted above, the unit stresses due to these moments can

be found by the ordinary theory of bending and combined in the

usual way, as follows. Let s^' be the unit stress at p due to Mx%
and Sy' be that due to My/. Let Ix' and ly' be the moments of

inertia about the principal axes. Then we have

Mx' = ?4^

,

and My' = ?4^;
y

Mx'y' , My'x'
Sx' = ^ J

and Sy' = —f—
Substituting the values of Mx' and My' from equation (16),

we find

M cos dy' , M sin Sx'
and Syf = —

T , '
" T /

J- X -*
2/

and the total stress at the point p is

/-. -V , Tir f y' cos d a:'sin^\
(IV) s = Sx' + V = Ml ^-j—~ ]—— )•
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This equation gives the unit stress at the point p due to the mo-

ment M, as illustrated in Fig. 398. If the unit stress so deter-

mined is positive, it is compression. The minus sign indicates

tension. In order to make equation (17) apply to any position

of the point p, it may be written in the form

(18) s = m(±'1'''''
^'^^"'^

h' I

In this equation the notation is as follows.

s = the unit stress at any point p, due to unsymmetrical

bending. When s has a positive value the unit stress is compres-

sion, and when s is negative the unit stress is tension.

M = the bending moment (usually in pound-inches).

x^ and y' = the coordinates of the point p, referred to the

principal axes.

Ix' and ly' = the principal moments of inertia of the section.

6 = the angle between the X' axis and the trace of a plane

perpendicular to the plane of the bending moment. This angle

may always be considered as positive, provided the rt signs are

arranged to take account of the tendenc}^ of the component

moments to produce compression (+ ) or tension ( — ) on the

point at which the unit stress is being computed. This requires

that the + or — sign used in front of each term in the parenthesis

of equation (18) shall be separately determined on the basis of

tensile or compressive stress.

Equation (18) above gives the unit stress at any point on the

cross section. But it is usually required to find the unit stress

at the fiber most remote from the neutral surface. So far no

means of locating the neutral surface has been determined. This

will be developed in § 231.

231. Position of the Neutral Surface. When it is desired to

locate the neutral surface, we make use of the fact that the unit

stress at the neutral surface is zero. Thus in Fig. 398, let NN
represent the neutral surface, and let p", whose coordinates

are {x", y") be any point on it. Then, from equation (17), § 230,

the unit stress at p" is equal to
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Solving this equation, we obtain

(19) 2/" = ^"f-'tan^.

From the relations shown in Fig. 398, y"lx" = tan cf). Dividing

equation (19) by x", we get

(20) tan = -^ tan d.

Here 6 and are measured from the principal X' axis and are

positive when measured counterclockwise.

Equation (20) gives the position of the neutral surface when

the principal axes are known and the plane of the moment is

fixed. It may further be noted that, in the above expression,

when 6 has the value zero, also has the value zero. That is

to say, when the plane of the bending moment coincides with a

principal axis, the neutral surface is perpendicular to the plane

of the bending moment. This is the condition peculiar to what

we have heretofore considered as symmetric bending. We may
therefore conclude (as forecast in § 229) that, in so far as bending

is concerned, principal axes are equivalent to axes of symmetry.

232. Problems.—Unsymmetric Bending. A. Eccentric Di-

rect Load (see § 229C). Let the 5'' X 3
J" X ¥' angle shown

in Fig. 399A carry an eccentric load as shown, and let it be

required to find the maximum unit stress on the section of the

angle. The cross section is shown (enlarged) in Fig. 3995.

The unit stress at any point is made up of a stress P/A due to

direct compression, and a stress due to unsymmetric bending.

The stress due to this bending can be determined as follows.

From a handbook of steel sections, we find /,: = 10; 7y = 4;

area of section = 4; and the location of the center of gravity,

as shown at o in the drawing. From § 222, we see that the
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product of inertia referred to axes X and F is — 3.67''^.* Then,

from § 225, we find that the principal axes are inclined at angles

of 25° 25' and - 64° 35' to the axis XX

^

Next, using equations (4) and (5), § 223, we find that the

moment of inertia about X' is 11.75, and that about Y' is 2.25.

sooo' A ^o\^

I

zr

Y\ VV
A Fig. 399 B

AVe might now proceed, by use of equation (18), § 230, to find

the unit stress at any point on the cross section of the angle.

But we wish to find the 7naximum unit stress on the section.

This could be done by making trial computations for several

likely points such as a, h, and c, and then selecting the largest

value. But a direct solution is possible if we first locate the

neutral surface.

The trace- of the moment plane is shown by Lo) and oV is

perpendicular to Lo. By measurement, the angle d between X'

and oV is found to be — 12° 53', and by using equation (20),.

§ 231, the angle </> between the X' axis and the neutral surface

is found to be — 49° 25', as shown. When the. neutral surface

is drawn, it becomes evident that points a and c are the outer-

most fibers on the tension and compression side of the neutral

surface. Their distances from oX' and oY' may now be scaled

off, and we are ready to solve for the unit stress by use of equa-

tion (18), § 230. This gives

* Figure 399 shows the section in a position reversed from that shown in Fig.
392. Therefore, the plus and minus signs appljdng to K and to the various angles
are reversed.
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3„ = 5,000(2.7) («-:M^ + l:i||31))

= 5,058 lbs. per sq. in. tension;

= 3,240 lbs. per sq. in., compression.

These are the stresses due to bending moment only. The stress

due to the direct load is

s = 5,000/4 = 1,250 lbs. per sq. in., compression.

Then the total resultant stresses are

Sa = 5,060 — 1,250 = 3,810 lbs. per sq. in., tension, at A;

Sc = 3,240 + 1,250 = 4,490 lbs. per sq. in., compression, at C.

The solution given in § 192A is a special case of this solution in

which ^ = 0.

B. Transverse Loading.—Inclined Forces. Let Fig. 400

represent the cross section of a beam 10' 0'' long, carrying a

uniformly distribiited load

of 3,000 lbs. which acts in .\,W
the plane indicated by the

arrow W. This section is

composed of one 3" X 3"

X i" angle and one 5" X ^^/"jcy^^
3" X i" angle. The bot-

torn flanges are inclined at

30° to the horizontal. Let i
it . be required to find the A
greatest unit stress on the ^ 6^>^/^ Jecfjonl^'-^ K'^K"^.

section. From a handbook ^^' '^ "T^

we can get the centers of Fig. 400

gravity and the moments

of inertia of the sections, referred to axes parallel to the legs of

the angles.

Then, by § 52, we can locate the center of gravity of the
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section as shown at o. Also the moments of inertia of the

combination with respect to the axes marked X and Y can be

found from § 114; they are /. = 12.77; ly = 9.27. Then, by

§ 221, /v = - 0.649.

Next, by § 224, the location of the principal axis is determined,

the angle a being 10° 10', as shown on the drawing. Next, by

use of equations (4) and (5), or (7) and (8), § 223, the moments

of inertia about these axes are found, h' = 12.86; ly' = 9.15.

By measurement 6 is found to be — 40° 10'. We can now locate

the neutral surface by use of equation (20), § 231. The angle 4)

is found to be — 49° 50', as shown. From a full-sized drawing,

the distances from the points a and h to the principal axes are

scaled. Lastly, from equation (18), § 230, the unit stress at the

point a is found to be 12,250 lbs. per sq. in. tension; and at the

point h it is found to be 11,600 lbs. per sq. in. compression. The

solution given in § 195 is a special case of the one here given.

C. Bending by Terminal

Couples. Let Fig. 401 repre-

sent the cross section of a Z bar,

bent by terminal couples (simi-

lar to Fig. 382), acting in the

vertical plane 7, and having a

—X moment of 15,000 lb. ins. so

directed that the stress will be

compressive on the point a.

Required the maximum unit

jy ^'' _/'; ^''_/j^ stress on the section. From the
""^ ~ '"^^^'^

' handbook, we get h = 19.2, ly

y
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case the angle ^ is - 31° 41' and is found to be 79° 35', as

shown. From a full-sized drawing of the section, the distances

of the points a and b from the principal axes are determined.

Then, using equation (18), § 230, the unit stress at a or 6 is found

to be 5,350 lbs. per sq. in.

If treated by the ordinary theory of bending, the unit stress in

the above case would be found to be 1,960 lbs. per sq. in. This

shows how the ordinary theory, if wrongly applied to a case of

unsymmetric bending, may give results far too small and may

therefore give a false sense of security.

PROBLEMS

1. The Tee section shown in Fig. 402 is used to carry a vertical load of 1,000

lbs., concentrated at the center of a span of 8' 0". \Yhat is the max-

imum unit stress?

2. In Problem 1, what is the safe load if the allowable unit stress is 13,000 lbs.

per sq. in.?

3. A 5" X 3^" X h" angle is placed with the long leg vertical. It acts as a

beam whose span is 10' 0". The load is 1,800 lbs., uniformly distrib-

uted and vertical. Find the maximum unit stress.

channel.

Fig. 403

4. A 5" X 3§" X \" angle is used as a tie member in a truss. The total tension

is 12,000 lbs. The connection is mftde by means of a gusset plate as

shown in Fig. 403. What is the maximum unit stress?

5. Let the angle in Fig. 403 carry a compressive stress of 8,000 lbs., the length

being 5' 6". Is it safe?

6. An 8" X lU lb. channel is used as a purlin to carry a uniformly distributed

load of 3,000 lbs. on a span of 10 ft. The load is in a vertical plane

while the channel is placed as shown in Fig. 404. What is the maximum

unit stress?
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7. The section shown in Fig. 130 is used as a beam to span 20' 0", carrying a

uniformly distiibuted load which acts in a vertical plane. What is the

safe load?

8. The section shown in Fig. 400 is used as a beam 12' 0" long. The 5" leg is

set vertical and the beam carries a vertical load uniformly distributed.

WTiat is the safe load?

9. What is the safe resisting moment of a 6" X 3^" X I" Zee bar when bent

by terminal couples that lie in the center plane of the web of the bar?



CHAPTER XXIII

PROBLEMS INVOLVING WORK

233. Introduction. As pointed out in § 6, the problems of

structural engineering are chiefly those of statics. However,

there are some problems that, for their solution, depend upon

principles outside the field of pure statics. These problems are

relatively rare, but when they do arise they become highly

important. In this chapter no attempt will be made to treat

them in detail. The solutions in general become quite complex.

They are available in more extended texts. But it seems worth

while to discuss here a few of the simplest cases, and to point

out the underlying principles of the more complex ones. We
shall notice two classes of problems.

(1) Loads not static. In most structures the entire load, or

at least a very large percentage of the entire load, is static. But

in certain cases, such as bridges, the moving loads may be of such

importance as to call for special attention.

(2) Structure statically indeterminate. When a structure is

such that the stresses in it are statically indeterminate (§§40

and 163), the problem can sometimes be solved by a consideration

of the motions set up as the structure deforms under loading.

234. Basic Ideas. When a body is in motion, its motion is the

resultant of the actions of certain forces and resistances. If the

forces are greater, the velocity is increasing. If the resistances

are greater, the velocity is decreasing. Again, if the motion is

the result of an original impulse which is not sustained, the

resistances ultimately overcome the tendency to move and the

body comes to rest. Here we have a set of ideas requiring some

specific definitions.

(1) Work. When a force acts through a distance it is said to

perform a certain amount of work. Thus in Fig. 405 if the drum

A is one third the diameter of the drum B, the force F, acting

371
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through the distance ah, will move the weight W through

a'6' = iab. If the machine is frictionless, and if i*^ = W/^, the

velocity imparted to the weight will be uni-

' ^ form. The force F has performed an amount
of work which is measured by the force (say

10 lbs.) times the distance (say 6' 0''). The
work performed is then 60 ft. lbs. At the

same time the work expended in raising the

weight has been 30 lbs. X 2' = 60 ft. lbs. If

the machine is not frictionless, the force F
must be greater than TF/3 if motion is to re-

sult. Then F X ab must be greater than

WX a'h' by the amount needed to overcome

friction. If the machine is frictionless and

F > TF/3 the motion will be accelerated and

if F < TF/3 the motion will be reversed.

Work can be defined as force multiplied by the distance

through which it acts. It is ordinarily expressed in foot-pounds.

(2) Energy is the capacity for doing work. This capacity may
be the result of velocity or of position. Thus a projectile, having

a certain vertical velocity imparted to it, has the capacity of

overcoming the resistances of the air and of gravitation. It is

said to possess a certain energy. By virtue of this energy it

rises, performing a certain amount of work. When the amount

of work done against the resistances is equal to the work done in

imparting the original velocity, the projectile comes to rest. It

now has the capacity of overcoming the air resistance in falling

and of exerting forces in its impact with the ground. Thus the

projectile starts out with a certain energy due to velocity (called

kinetic energy) which, at the top of its rise, has been partly ex-

pended in heat due to overcoming air resistance, and partly

transformed into another sort of energy {potential energy)

which is due to the position of the body. If the air resist-

ances be neglected, the kinetic energy at the start and the

potential energy at the top of the flight are equal; and, at the

bottom of the return flight, the kinetic energy is again equal to
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the original. The doctrine of the conservation of energy is one

of the fundamental hypotheses of physics. According to this

doctrine, energy is indestructible. The doing of work is then but

the transforming of one kind of energy into another: such as

kinetic, potential, or heat, electricity, etc.

(3) Power is the rate at which work is done. Thus if a force

of 100 lbs. moves through 5' 0" in one second, the power expended

is 500 ft. lbs. per second. The commonly used unit called a

horse power is 550 ft. lbs. per second, or 33,000 ft. lbs. per minute.

PROBLEMS

1. A body weighing 75 .lbs. is pulled upward along a smooth plane which is

inclined at 30° to the horizontal. How much work has been done when
the body has travijled 15' along the plane?

2. An elevator car with its load weighs 2,500 lbs. The counter weight is

1,600 lbs. What is the horse power required to produce a uniform

velocity of 800 ft. per- minute?

235. Suddenly Applied LoadSo Let Fig. 406 represent a

flanged rod and imagine a ring R to be supported so that it is

in contact with hut not resting on the flange of the rod at A. Let

the weight of the ring be P.

If the support under the ring is gradually withdrawn, the load

will be gradually transferred to the flange and the flange will

gradually move from A to some position B where it will come to

rest. Throughout this operation the stress in the rod is increasing

from zero up to the final value of P.

If the support is suddenly (instantaneously) withdrawn from

under the ring, the load, when it reaches B, will have a definite

kinetic energy which will carry it on to some still lower position

C. When it reaches C, the work done by the moving load has

all been absorbed in elongating the rod, and enough energy has

been stored within the rod to pull the load nearly back to its

first position. These oscillations will continue until all of the

work done by the load has been dissipated in the form of heat,

etc., or in storing energy in the rod.

If we assume that the stress in the rod increases uniformly

from zero (when the flange is at A) to some amount P' (when
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the flange is at C), the average stress in the rod has been P'I2 and

this has been acting through the distance d; hence the energy-

stored in the rod is P'rf/2.

The load possessed no kinetic energy in the beginning; nor

does it possess any at the lowest point C. Whatever work it

has done has been done in extending the rod. But the work

done by the load is evidently Pd. Hence

(1) ^d = Pd and P' = 2P:

that is, the stress due to a suddenly applied load is twice as great

as that due to the same load when applied gradually.

236. Impact. If the load in Fig. 406 is raised to D and then

allowed to drop on the flange of the rod, the stresses developed

...--....:•.•..• are greater than before. The work done in

this case will be P{d + e) and equation (1),

§ 235, becomes

D'

u
1
i[

B '^-
cf When e is large in comparison with d, i.e., when

/^ , -_ .t_

F 406
^^^ moving load has a considerable velocity

when it reaches the ring, the stresses produced

may be much greater than those due to static loads.

In more extended texts formulas are developed to evaluate

the effect of impact on beams and for other cases, but in struc-

tural practice they are not much used, since it is extremely rare

to encounter a case in which known loads, traveling at known

speeds, produce direct impact on the structure. The cases which

actually arise are rather those of suddenly applied loads, as when

a train moves rapidly over a bridge, or of loads falling through

small and indeterminate distances, as when a roughness in the

road bed creates actual impact from wheel loads.
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General practice favors making a single allowance for impact

which varies with the probable conditions under which the struc-

ture must function. This allowance may take one of the follow-

ing forms.

(1) Loading. The estimated live loads are increased by a

definite percentage over their known static amounts.

(2) Stresses. The working unit stresses, used for static load-

ing, are decreased by a definite percentage.

(3) Factors of Safety. The factors of safety used for static

cases are increased by a definite percentage.

Evidently the net result of any one of these allowances is to

put more material into the structure to counter-balance the

effect of the impact. These allowances vary widely for different

conditions and the amount to be allowed is a matter of individual

judgment.

237. External and Internal Work. If any piece of material is

acted upon by a force of P lbs., and is deformed to the amount of

e", then work has been performed by the force in causing the de-

formation of the piece. During the period of deformation the

force applied increases from zero, at the beginning, to its full

amount P, when the full deformation is accomplished. If the

applied force increases uniformly, the average force is P/2. This

force acts through the distance e and the work done is Pg/2 in.

lbs. This is known as the external work applied to the body.

At the same time there has been stored within the piece an

energy equal to Pe/2 in. lbs. (§ 235), which is sometimes called

internal work. The fundamental principle here involved is

sometimes stated in the form

External Work = Internal Work.

In more advanced texts, it is proved that this relation holds good

not only for single members, but also for structures composed of

many members, such as trusses or beams, or even for structures

in which bending and direct stresses are combined.

238. Principle of Least Work. In the case of statically

indeterminate structures (§ 40) the determination of the stresses
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due to given loads almost invariably becomes quite complex.

In general, the solutions for such cases depend on the elastic

properties of the structure. In the case of restrained bending

(Chap. XVIII) we have already encountered one such type of

solution. A different type of problem has to do with framed

structures containing redundant members.

If a framed structure contains more members than are neces-

sary to its stability, it is said to contain redundant members.

Thus in Fig. 63, the horizontal member could be eliminated and

the truss would still function to carry its loads. In Fig. 65, the

vertical bar is not a necessary part of the structure. In each of

these cases, we have seen (§ 40) that the principles of statics

will not yield a solution. In such cases the principle of least work

can be used. No proof of this idea will be given here since it is

somewhat involved. The proof can be found in more advanced

texts. The general idea is so readily acceptable that most people

are inclined to view it as axiomatic. It can be stated as follows:

When a structure contains redundant 7nemhers or reactions, the

internal stresses are so distributed throughout the structure that the

energy stored in the members is a minimum.

Figure 407 illustrates such a case.

The lengths of the bars before the load

is applied are such that the position

of the pin joining them is a. After

the load is applied the pin is lowered,

say to b, and stresses are set up in the

bars. Let these stresses be called Ti,

Ti, and Tz, and the elongations of the

bars be called ci, 62, and e^. Similarly

A, L, and E, with appropriate subscripts, will represent the

area, length, and modulus of elasticity of the various bars.

Then the internal work, by § 237 (or the energy stored in the

bars), is

Ticx , 7^2 ,
^363

2
+ +

This total work varies as the point b changes its position. The
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principle of least work asserts that the position of b will be such

as to render the total work a minimum.

The method of solution, using this principle, is as follows.

From symmetry, we can say that Ti = T^. From statics, we

know that the vertical components of the stresses in all the bars

will be equal to P; or

2(0.7077^1) + 7^2 = P,

whefice

P - Ti
(2) ^' = TiiT-
The deformation of bar 1 is

TiLi
ei =

A,E,

and the energy stored in the bar is then Ti^Lil{2AiE\). For

bar 2 the stored energy is T2^L2l{2A2Eo^. Then the total energy

stored in the three bars will be

2AiEi 2A2E2

By the principle of least work, this must be a minimum. Treat-

ing R as Si variable depending on T2, we have

dR _ 2TiLi dTi T2L2

^
^

dT2 AiEi ' dT2 A2E2

But, from equation (2),

dTi 1_
dT2 1.414*

Then equation (3) becomes, by substitution,

dR ^ 2TiL, T2L2

dT2 1.414Ai£'i A2E2

Putting this equal to zero and solving for T2, we get

T2L2 2T1L1
(4)

A2E2 1.4 14A 1^1
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But in this case Li = 1.414L2. Then equation (4) becomes

T2 2Ti
(5)

A2E2 A-iE^

By use of equations (2) and (5), the values of Ti and T2 can now

be determined in terms of P.

239. General Remarks. The principles of §§237 and 238

furnish the means for the solution of many problems which are

statically indeterminate. The reactions of continuous and re-

strained beams may be determined from the principle of least

work and the stresses in trusses with redundant members also

can be found. The deflections of framed structures and the

reactions of arches are other problems that may be solved by

these methods.

While the principles, as here given, are simple, the solutions

become quite complex and no adequate treatment of them

is possible in a text of this nature. However, it has been

worth while to point out the lines along which statically indeter-

minate problems can be solved, leaving it to the student to carry

on the idea with the help of more advanced treatises when neces-

sary. In a number of texts, solutions are worked out to deter-

mine the reactions of continuous beams, etc., using the principle

of least work.
PROBLEMS

1. A rectangular table has all four legs of the same size and material. The
distances on centers of the legs are 6' 0" in one direction and 4' 0" in the

other. A load of 600 lbs. rests on the table, 2' 0" from a corner, meas-

ured along the length of the tabic, and 1' 0" from the same corner meas-

ured along the width. What is the total stress in each leg?



CHAPTER XXIV

Fig. 408

MISCELLANEOUS PROBLEMS

240. Stability. A body is said to be stable when it is not easily

overturned. The idea is illustrated by Fig. 408, which shows

three cones, each illustrat-

ing one of the states or

classes of equilibrium.*

Cone (a) is in stable equi-

librium. Its center of

gravity is at the lowest

possible point. The ap-

plication of any horizontal

force tending to tip the

cone will raise the center

of gravity. If such a force is removed, the cone tends to return

to its original position.

Cone (c) is in unstable equilibrium. The center of gravity

tends to fall if force is applied.

Cone (b) is in indifferent, or neutral, equilibrium. The appli-

cation of force tends neither to raise nor to lower the center of

gravity, and the cone tends neither to return to nor to depart

from any given position.

It is needless to say that stability is an important consideration

in structural design. The ever-present problem of the over-

turning moment of the wind is a case in point.

Figure 409A shows a cube resting in stable equilibrium on a

plane. The resultant weight G acts through the center of gravity

and the resultant reaction R acts through the center of the base.

At B, a horizontal force H has been introduced; the center of

gravity is rising; R acts through the edge in contact with the

* These three possible states of equilibrium should not be confused with the

three conditions of equilibrium. The latter are conditions necessary to maintam

any body in any state of equilibrium (§ 32).

379
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plane. The friction F balances H. If H is removed, the mo-

ment of G will bring the cube back to its former position. At

C, the center of gravity has reached its highest point; G and R

H

Fig. 409

act in the same line passing through the contact edge and the

cube is in unstable equilibrium. At D, G falls to the left of R
and the center of gravity is falling, under the action of the nega-

tive moment due to G. Unless a force acting toward the right

is introduced, it will continue to fall

until the center of gravity reaches the

lowest possible point and the cube is

again in stable equilibrium.

A typical problem involving sta-

bility is that presented by a wall

acted upon by wind. This problem

may be solved either graphically or

analytically, as follows.

A. Graphic Solution. Let Fig.

410 represent the cross section of a

wall acted upon by wind which is hori-

zontal and which produces a uni-

formly distributed pressure on the

vertical face. Let it be assumed that the joint beneath the wall

cannot carry any tension. Then the weight of the wall is its only

source of stability.

Since the overturning force and the weight are both propor-

tional to the length of the wall (perpendicular to the paper),

this length is immaterial. Consider a section 1' 0'' long. Sup-

pose it to weigh 1,000 lbs. and let the resultant force of the wind

be 200 lbs.

Fig. 410
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The line of action of the force of gravity acting on the wall will

pass through the center of gravity of the cross section, as shown by
G, on the space diagram A. Similarly the force of the wind will

be shown by W. The resultant of those forces, when found, will

pass through o. The force diagram B now can be constructed

and the amount and direction of the resultant of G and W can

be determined, as R. Now let a line be drawn on the space

diagram, through o and parallel to R in the force diagram.

This indicates the Hne of action of the resultant force acting on
the wall. This hne cuts the base of the wall at m. The reaction

will be a force equal and opposite to R and acting in the same
straight Hne. The unit stresses developed on the joint can be

determined from § 192B. If the unit stresses are not excessive,

the wall is stable.

If W had been twice as great (as shown by dotted Hnes), the

resultant R' would have cut the base outside the foundation,

showing that no single reaction furnished by the foundation could

balance it, i.e., the wall 'would fall under the action of such a

wind, unless the joint beneath the wall is capable of carrying

tension, as outlined below.

B. Analytic Solution. By taking a center of moments
at n, the overturning moment of the wind is seen to be Wa,
while the moment of stability is Gh. If Wa < Gb and the unit

stress (§ 192) is not excessive, the wall is stable without reference

to the question of tension on the joint. If the joint

cannot take tension, and if Wa = Gb, the wall is

about to overturn. If Wa > Gb, the wall is unsta-

ble. If the joint can take tension, the stability of

the wall depends on the strength of the joint and

the case can be treated as in § 197.

PROBLEMS
;^ y ^

1. In Fig. 411 is given the cross section of a concrete dam 50' Fig. 411

long. The water pressure covers the entire vertical

face. Is the dam stable? For unit weight of concrete see Table I of

Appendix.

2. A block of granite (175 lbs. per cu. ft.) is 5' X 5' at the base and 2' X 2' at

the top. It is 18' 0" high. A rope is attached on the center line of one
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face, 9' 0" from the ground. The rope leads away at 30'' below the

horizontal. What pull on the rope is needed to overturn the block?

3. A wall 1' 8" thick and 40' 0" high is built of common brick masonry (120 lbs.

per cu. ft.). What wind pressure (in Ibs./sq. ft.) will just overturn it?

4. In Problem 3 above, in what ratio will the stability be increased or decreased

if the wall is made 20' 0" high?

5. The cross section of a concrete dam is a right triangle 10' 0" high and with a

base 8' 0" wide. The water is retained on the vertical face and is 9' 0"

deep, (a) Is the dam stable? (6) If the joint between the dam and

the foundation can take tension, what are the maximum and minimum
unit stresses on the joint?

6. If the dam in Problem 5 is reversed so that the sloping face receives the water

pressure, to what extent are the above results altered?

241. Friction. The study of friction carries more of interest

for the mechanical engineer in its applications to power trans-

mission and absorption than it does to the structural engineer,

whose problems are chiefly static. This difference is inherent in

the subject, since friction always accompanies motion, but when

bodies are at rest they are not always, nor even usually, acted

upon by frictional forces.

There are, however, certain types of construction, as pile

foundations and stone arches, and certain details, such as spikes

and rivets, which to a greater or less extent depend upon friction

for their proper action. Moreover, even when friction is not

considered in the design, it is present in many cases in the com-

pleted structure and has its effect on the action of the various

parts. Hence some knowledge of the principles involved is

important.

Friction is the resistance to motion that exists when two

rough surfaces in contact move or tend to move on one another.

All surfaces are more or less rough in the sense here intended.

Hence no known surfaces are entirely frictionless. In many

cases, however, the effect of friction is small in comparison with

the other forces in the problem, and it may be neglected. Where

this is the case, the surfaces are said to be smooth.

In Fig. 412 is shown a brick resting on a plank and acted upon

by the force P. If P is small, motion will be prevented by the

friction F. As P increases, F will increase, up to a certain

amount, when sliding will occur. When the body is in motion,
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the frictional resistance (measured in pounds) is less than it was

just before motion commenced. The friction existing when the

body is about to start is called the friction of impending motion

(or the friction of rest). Its

P

'/y///////A ^7777777^777

n\
\

A
Fig. 412

/T^,

B

amount is equal to that of P
at the same instant.

From what precedes it will

be seen that friction is in some

sense a reaction, in that before

motion starts it is a passive

resistance set up by, and equal

and opposite to, the active force.

The reactions on the brick in Fig. 412 are then the gravity

reaction G' and the friction F. The resultant of these two is R.

The angle will be such that

F
tan <f> = — •

Experiments show that the ratio between the friction and the

weight of the body (i.e., F/G or tan </>) is constant for all sizes and

weights of bodies, but that it

varies greatly with the mate-

rials in contact. This ratio

is called the coefficient of fric-

tion. It is usually expressed

in the form of a decimal (see

Table IV in the appendix).

The important thing to re-

member is that this decimal is really a ratio of friction to weight.

The angle </> is the angle whose tangent is equal to this decimal.

If a weight is placed on a slanting surface, Fig. 413, the force

of gravity G acting on the weight can be resolved into com-

ponents parallel to and perpendicular to the support, as shown

in the drawing by P and N. The reaction of the surface can

likewise be resolved into components N' (a normal pressure)

and F (friction). If the tangent of the angle 6 on the force
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diagram is equal to the coefficient of friction for the given sur-

faces, motion is impending. Therefore, if the surface is incHned

to the horizontal at an angle 4) {= 6) the tangent of which is the

coefficient of friction, the body is about to slide. The angle

therefore is sometimes called the angle of repose; perhaps "the

limiting angle of repose^' would be better.

From the above, it will be clear that if a body, resting on a

rough surface, is acted upon by various forces, and if the resultant

of those forces makes an angle with a line drawn normal to the

surface of contact which is greater than 0, slipping will occur.

If the angle is less than <f>, no slipping will occur. This principle

is of importance in the design of masonry arches, dams, and

retaining walls.

PROBLEMS

1. If the block in Problem 2, § 240, rests on a stone base, what is the least

hoi izontal force that will slide the block?

2. If the block in Problem 1 must be pushed along by means of a force acting

on the center line of one face and inclined downward at 15° below the

horizontal, what is the limiting height below which the application of

the force will cause the block to slide and above which it will cause it to

overturn?

3. A timber 12" X 12" and 16' 0" long is placed verticall}^ against a masonry
wall and is held in place b}' the pressure of a horizontal strut applied at

the center of the timber. How much pressure from the strut is required

to hold the timber in place?

4. How much force is required to start a wooden box 4' X 4' and 3' high and
which weighs 500 lbs. down a steel chute which is inclined at 10° to the

horizontal?

5. A ladder which weighs 35 lbs. and is 20' 0" long rests against a masonry
wall and a wood floor. It is inclined at 75° with the horizontal and its

center of gravity is 12' 0" from the ground, (a) Is there enough friction

developed to support a man weighing 150 lbs. and who stands | of the

way up? (6) If the wall is smooth? (c) If the wall is smooth, what is

the least coefficient of friction on the floor that will make equilibrium

possible?

242. Non-Coplanar Forces. Most of the problems of struc-

tural engineering involve only coplanar forces. But exceptions

to this rule are not rare. The following solutions cover some

typical cases. The principles involved in these solutions may
be used in a large variety of problems. It may be well to note

that in general the problem of non-coplanar forces is largely
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geometric. The handling of planes and of lines in planes, true

angles, etc., requires that the point of view of descriptive geom-

etry be combined with the simple principles of statics, in order to

obtain the solutions for these problems.

A. All Forces Concurrent. (1) Typical case. A typical

case is shown in Fig. 414. Here A is vertical, C is horizontal,

and B is inclined to both horizon-

tal and vertical. The resultant

can be found by resolving each

force into its components parallel

to the axes OX, OY, OZ, and

adding these components. The

force B has a vertical component

equal to B sin and a horizon-

talc omponent equal to B cos </>.

This horizontal component can be

resolved into components parallel to OZ (that is, B cos cos a),

and to OX (that is, B cos sin a). It follows that the com-

ponents of the resultant will be A + B sin 0, in a direction parallel

to OF; C sin d — B cos
<f)

sin a, in a direction parallel to OX;
and C cos + B cos cos a, in a direction parallel to OZ.

D

Fig. 414

Bcf'^^

Fig. 415

A problem of this type may involve three or more forces,

and the solution may be made either analytically or graphically.
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(2) A tripod. As another case let it be required to find the

stresses in the tripod shown in Fig, 415. Draw the view A and

consider that the load is supported by the leg ad, and a resultant

force in the plane of the legs ah and ac. From symmetry, we

know that this resultant will be concurrent and coplanar with the

load and the leg ad. Draw a force diagram C for these three

forces. The stress in ad is found to be 1,470 lbs. and the resultant

stress in the plane ahc is found to be 1,040 lbs. Revolve the

triangle ahc into the horizontal, as shown on view B. This gives

the true angle between the legs ah and ac. Now construct force

diagram D, starting with- the force of 1,040 lbs., parallel to the

median line of ha'c. The stresses in ah and ac are thus found to

be 550 lbs. each.

(3) A pier. The pier shown in Fig. 416 is another case. Let

it be required to investigate the stability (§ 240) of the pier under

the action of the forces A and B and of its own weight, which is

expressed by W. The forces A and B are concurrent and

coplanar, the angle between them being 26. Their resultant is

8,300 lbs., as shown by R. This resultant is concurrent and

coplanar with the resultant weight of the pier. The final

resultant R' passes outside the base, as shown.
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B. Some of the Forces Non-Concurrent. L An analytic

solution. In Fig. 417 is shown a door acted upon by a force of 156

lbs. inclined to all three of the

planes of projection. Let it be re-

quired to find the amountand direc-

tion of each of the reactions. This

is the same door that was used in

Problem 5, § 40, but in that case

the forces were coplanar. It will

be noted that, because of the way

the hinges are constructed, the

top hinge cannot offer any vertical

reaction. At d there is a friction-

less bumper. This can exert only

a force perpendicular to the plane

of the door.

In Fig. 417, the door is shown

in isometric projection with the

156 lb. force resolved into its three

components. The reactions at h,

c, and d are also shown by their

on these component reactions are

If a mistake should be made in indicating these arrows, the later

computations would give a negative value for the amount of the

reaction, which would indicate that the assumed condition should

be reversed. Now applying the conditions of equilibrium, we find

XV = gives c^ = 80,

XH = gives h^ = c^ + 60,

Si?' = gives d - c"^' + h^' = 120.

Taking moments in the plane of the door and about the point c,

we find

56^^ = 80(31) + 60(5i);

taking moments about he

Fig. 417

components. The arrows

determined by inspection.

2id = 34(120);
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and lastly, taking moments perpendicular to the plane of the

door and about the point c,
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members and the reactions, in terms of their components.

Drawings A, B, C, and D are space diagrams. The others are

force diagrams.

In view A let the boom be swung around parallel to the V
plane. This gives the angle a as the true angle between the boom

fe and the top stay fa. By the ordinary solution for concurrent

forces (§ 25), force diagram E is constructed, giving the stresses

infe (1,230 lbs., compression) and /a (725 lbs., tension).

Next let a vertical plane be passed through fa, fe, and ea. It

will cut the plane of the stiff legs in the dotted line ab. A pro-

jection of these members in their own plane is given in drawing D.

The stress in af and ae could be equilibrated by a force in the line

ab. By taking a free body about a in drawing D, we can draw

the stress diagram F, which shows the stress in the mast ae

(490 lbs., compression) and the necessary equilibrant in the line

ah (875 lbs., tension).

In the actual derrick, the stiff legs {ac and ad) furnish the

equivalent of the force ah, just determined. Let the lines ah,

ac, and ad be rotated down into the H plane (on drawing C).

The point a falls at a'. The real angles between these lines (0

and (f>) are shown at a'. The force determined above as acting

in the line ah, and the stresses in the stiff legs, give rise to the

force diagram G, which shows the stress in ac (960 lbs., tension)

and in ad (235 lbs., compression).

Drawing i/ is a force diagram in which the stresses in the boom

and mast are combined to get the reaction at e, and the reaction

is spht into its components. Drawing J is used to resolve the

reactions due to the stiff legs into their components. The angle

p is the true angle ac and ad make with the horizontal plane.

Such methods as these find frequent apphcation in the design

of the piers, buttresses, etc., in connection with Gothic trussing

and vaulting.
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PROBLEMS

1. Is the pier in Fig. 419 stable?

2. Find the stresses in the members ah, ac, ad, af, fe in the derrick in Fig. 420.

3. Find the stresses in the tripod, Fig. 421.

4. Let the boom of the derrick in Problem 2 be s^\alng through a horizontal

angle of 30°. Find the stresses in the members.

Concrete
i5oycuft.

Fig. 419

Fig. 421

^
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7. In Fig. 417, let the same force be applied at the center of the door. Find
the component reactions.

8. Let the boom of the derrick in Fig. 418 be swung around till its plane makes
an angle of 30° with aa'. Determine the stresses and component
reactions.

243. Pulleys. Everyone is familiar with the fact that by the

use of pulleys a relatively small force may be made to lift a large

load. The force required in any given

case as well as the stresses in the

ropes can be determined by the free

body method (§23). In Fig. 424A,
which represents a single pulley, it is

evident that the load W can be held

in equilibrium only by a force equal to

Wj since each force acts at the same

distance from the axle. Moreover, this equality must hold for

any direction taken by the supporting force, as W, W, W'.

w

w
'IV

Fig. 424

^////////^
In the case of a moving pulley. Fig. 424B,

the weight is supported by two ropes, the

tension in each being TF/2.

In Fig. 425A, the load W is supported by

the force X. Let the amount of X be re-

quired. In Fig. 4255 the two sets of blocks

are shown as free bodies, and it is at once

evident that all the stresses in the rope must

be equal and each equal to TF/5. The pull

on the support 8 will be 617/5.

Another way to approach a problem con-

cerning pulleys is to consider the total work

(§ 234) done by the force and the energy

stored in the 'oad. Thus in Fig. 424B, the

force Tr/2, in moving through some distance x, performs work

amounting to Wxl2 ft. lbs. Meanwhile the load rises through

xl2 ft. and the potential energy stored in it is T7x/2 ft. lbs.

Fig. 425
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PROBLEMS

1. What force P is needed to support the weight in Fig. 426?

J 200p**

Fig. 426 Fig. 427 Fig. 428 Fig. 429

2. What are the stresses in the pulley frames in Fig. 427 at each of the sections

indicated as 1, 2, and 3 ?

3. Figure 428 shows a differential pulley. If the rope A is pulled by a force of

25 lbs. acting through 12' 0": {a) What is the greatest load P that can

be lifted; (6) How far will it rise?

4. In Fig. 429, the force P is just enough to lift the load. What are the stresses

in ah and he ?

244. Temperature Stresses. Nearly all materials expand with

a rise in temperature and contract as they cool off.* Careful

investigation has shown that the amount of this change in size is

proportional to the change in temperature, and also to the size

of the piece. It takes place equally in all directions when the

material is homogeneous.

For each material there is a number, called the coefficient

of linear expansion, which expresses the change in length (or

breadth or thickness) per degree of change in temperature, per

unit of length (or breadth or thickness). These coefficients are

quite small decimals. Some reference books quote the coefficient

as for 100° change in temperature. Every table of coefficients

should therefore state clearly whether it is made up for the

* The exception of water between 39° and 32° F. is sufficiently important to

deserve notice.
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Centigrade or the Fahrenheit scale of temperature, and for how
many degrees of change according to that scale. (See Table I,

Appendix.) Coefficients of surface expansion and of volumetric

expansion are sometimes quoted, but are not important for the

work in hand. If needed they can be derived from the coefficient

of linear expansion.

If any piece of material is homogeneous and free to move in

all directions, change in size due to temperature is accomplished

without resultant stress. But when the material is restrained

so that its normal adjustment to temperature change is pre-

vented, stresses are set up within the piece. The nature and

amount of these stresses will depend on how the restraint is

imposed and on whether the restraint is complete or partial.

The following cases are the more important ones.*

A. Homogeneous Material, Restrained. In Fig. 430, let

the bar ah be solidly fastened to the two rigid piers A and B.

Suppose that the temperature falls and that the bar

tends to shorten to the length ac. The shortening is

prevented by the rigidity of the connections, and the

length remains ab. The stress thus set up in the bar

is the same as would have been caused by elongating

the bar from the length ac to the length ah, by means

of a direct pull.

In order to illustrate the principle, let us suppose

that Fig. 430 represents a bar of medium steel (co-

efficient of expansion per degree Fahrenheit, 0.0000067)

and that it is 20 feet long and 1 inch in diameter.

Suppose it to be fastened between the rigid piers ^ ^ .

and B when the temperature is 70° F. and that later

the temperature falls to 0° F. What, at that time, is the stress

in the bar?

The normal shortening of the bar (be, Fig. 430) is

70 X 0.0000067 X (20 X 12) = 0.1126''.

* The following discussion uses the principle of proportionality of stress and
deformation, and hence does not apply to stresses beyond the elastic limit. See
also footnote on page 396.
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The modulus of elasticity for this material is 29,000,000 lbs.

per sq. in. In order to produce the above change in length, the

unit stress in the bar must be equal to x in the following equation

(§70):

29,000,000
0.7854

0.1126 0.1126
X = 13,600 lbs. per sq. in.

240 240

The total pull exerted by the bar is 13,600 X 0.7854 = 10,700 lbs.

In order to generalize what precedes, let us put the quantities

down in symbols. Let L be the length of the bar, c the coefficient

of expansion, and t the change in temperature. Then the normal

change in length = ctL, and

CtL
or ^ = EcL

A

From this expression, it is clear that the unit stress set up in a

restrained bar depends on the material and the change in tem-

perature only, and is independent of the length and cross-sectional

area. Stresses due to rising temperature are computed in the

same manner, but are compressive instead of tensile.

-4-

-A^'U-

Lru

B
-A—^

Fig. 431

B. Non-Homogeneous Material, Unrestrained. Let Fig.

431 represent a bar of length L, made up of two bars A having

a high coefficient of expansion and one bar B having a low co-

efficient. The bars A are alike as to size and material and the
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following solution depends on this symmetry. Let the bars be

rigidly fastened along the adjoining faces and let the whole piece

be unrestrained. Now let the temperature rise.

The bars A, if alone, would elongate to some length Li;

the bar B to some length L2; and the three being fastened

together will actually elongate to some length L3, intermediate

between Li and L2. When in this latter condition, the tendency

of the bar A to become even longer will have stretched the bar B
through a distance (es — €2), producing in it tensile stresses corre-

sponding to the actual abnormal elongation. Similarly the

tendency of B to lag behind A produces in A compressive stresses

corresponding to the shortening (ei — es). Manifestly the total

tension in B and the total compression in A are in the nature of

action and reaction and they are therefore equal.

Let it be required to find the actual final length L3 and the

unit stress in each bar. Let Ci and C2 be the coefficients of

expansion of A and B; let Ai and A 2 be the cross-sectional areas

of A and B; let Ei and E2 be the moduli of elasticity of A and B,

and let t be the rise in temperature.

(1) The natural elongation of A will be:* ei = CitL.

(2) The natural elongation of B will be : 62 = C2tL.

The total compressive force needed to shorten A through the

distance (ei — 63) will be

w) -f^i
-j^

}

and the total tensile force needed to stretch B through the dis-

tance (^3 — 62) will be

(4) P2 ^

Equating these two values and solving for 63, the actual elonga-

tion of the combination, we get

* In these equations the unit deformations are figured as if L, L\, L2, and Lz

were equal. The error thus introduced is negligible when L is large in comparison

with the change in length.
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EiAiGi + E2A2€2
(5) 63 =

EiAi + E2A2

We now have five equations, which, taken together, can be made

to yield the unit stress in each material and the final length for

any change in temperature.

The student should not accept these derivations without

following them through in detail for himself. It is well to note

that here again the unit stresses are independent of the length;

also that a fall in temperature would call for certain changes in

signs in the equation. Further, it should be noted that the

above action cannot take place unless the bars A are fastened to

the bar B in a manner capable of developing a shearing resistance

equal to the total tensile or compres-

^^ sive forces, as given in equations (3)

/ }^^:^V^ =1 or (4).

^ " " " "^
--V-^>

.

I^ o^ly^wo bars are fastened together,

"^^> the tensile and compressive forces are

Fig. 432 eccentric and cause a deformation like

that shown in Fig. 432. This principle

is largely used in thermostats. One end of the bar being held

fast, as at A, Fig. 432, the other end is moved by temperature

change and this motion is used to control an electric circuit.

C. Non-Homogeneous Material, Restrained. This case

can be studied in two parts: (1) when no fracture occurs, and

(2) when one material is fractured, the other remaining intact.

(1) No fracture. In this

L) S
ycase the unit stresses are the

same as they would be in sep-

arate homogeneous bars, and ^C]

no stress is brought on the Fig. 433

bond between the bars. Let

the student prove this statement, remembering that the end fas-

tenings are assumed to be fixed in position.

(2) One part fractured^ In Fig. 433, let the bars A and B
* In the following discussion, the proportionalitj^ between stress and deforma-

tion is assumed to extend to failure. But since no quantitative results are made
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have the same coefficient of expansion, but let A have much
lower strength and modulus of elasticity in tension than has B.

Let the bars be fastened to the rigid piers C and D and let the

temperature fall. Then from A and C (1) above, the stress

in each bar can be determined for each fall of temperature, until

the stress in A reaches the ultimate strength of the material.

When that happens, the bars A will crack (at the weakest section)

as at a, Fig. 434. The subsequent developments will depend
on the adhesion or bond between the bars. If this adhesion is

weak and gives way, the entire normal contraction in bars A
may take place at once (as in Fig. 435), leaving bar B carrying

the stress appropriate to the actual temperature and bars A

vM)-^ ?-X

t
Fig. 434 Fig. 435

fully contracted and unstressed. If the bond is strong and resists

the motion natural to bars A (as in Fig. 434), the crack will widen

toward the top (which is unrestrained) just enough to relieve the

stresses in the separate parts of the bars A to a point below the

ultimate strength. This will leave each half of bars A stressed

nearly to the breaking point (since the unit stress does not depend

on length) and the bond between A and B will be called upon to

resist a total force nearly equal to the ultimate strength of the

bars A. We can get an approximate idea

of the stress cond tion by taking as a free ^ ^| f'

body that part of the bar which lies between ^^^ '—\—^^
sections aa and CC as shown in Fig. 436. o q\ F
The arrow F indicates the temperature p^^ ^3q

stress in B, while F' indicates the stress in

each of the bars A. We have shown just above that F' is about

equal to the ultimate strength of bar A. Therefore F" ^ the stress

to depend on this assumption, the principles deduced are not seriously affected

thereby.
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in B Sit the section where A is ruptured, will be equal to F-\-2F\

Moreover, the bond between bars A and B must be offering a

shearing resistance equal to F\ on each of the surfaces of contact.

Now, turning to Fig. 434, if the temperature continues to fall,

a new crack may be opened up at some new section, say at e or

d, and the stress condition between the cracks will again be as in

Fig. 436.

Although the preceding analysis is not quantitative in any

sense, it is sufficient to show that in such a case (1) the total

stress in bar B is roughly equal to its own normal temperature

stress plus the ultimate strength of bars A; (2) if the bond

between the bars is strong, the normal shrinkage of bars A wiU

cause many small cracks rather than one large one.

The design of temperature reinforcement for concrete is based

on the principles developed above. Because of the defective

elastic properties of concrete and the fact that the stresses in-

volved are normally those producing rupture, perhaps no satis-

factory rational method for computing the amount of steel needed

to prevent unsightly cracking is possible. Certainly none is in

common use. The general principles underlying the empirical

rules in ordinary use are as follows

:

(1) If a piece of reinforced concrete is free to expand and con-

tract (unrestrained), no cracking will occur, since the coefficients

of expansion of the two materials are nearly equal.

(2) If the piece is completely restrained, the concrete will crack

at a very small drop in temperature (10° to 20° F.). This is

because of the very low tensile strength of concrete. When

such cracking occurs, the stress in the steel is relatively small and

no amount of reinforcement can prevent the cracks from forming

in the concrete.

(3) However, because of its bond (§90), the steel can prevent

the cracking from taking place at one spot, as in Fig. 435, and

force it to occur at many places, as in Fig. 434. Thus each

crack will remain small and unnoticed. Since a large bond

strength is desirable, the steel used is usually in the form of many

small rods rather than a few large ones.
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(4) The nearer the surface the steel is placed the less is the

tendency for the crack to spread toward the surface, as at a,

Fig. 434.

(5) The steel used should be sufficient in amount so that it

will not be stressed above its elastic limit, thus permitting indi-

vidual cracks to enlarge. A computation of the amount needed

to produce this result can be made as follows: Let the ultimate

strength of the concrete in tension be *200 lbs. per sq. in., and

let the area of cross section of concrete in our piece be Ac. Then

the stress required to rupture the concrete will be 200Ac. Let

the modulus of elasticity of the concrete be *1/15 of that for

steel. Then from § 207, the unit stress in the steel just before

the concrete cracks will be *15 X 200 = 3,000 lbs. per sq. in.,

and if the area of the steel is As, the total stress in the steel is

*3,000A8. After the concrete cracks, we wish to have the stress

in the steel less than the elastic limit, say 36,000 lbs. per sq. in.

Then (see Fig. 436)

200Ac + 3,000A, = 36,000A„
whence

4-' = 0.006.
Ac

This would seem to indicate that the area of steel should be

about 0.6 per cent, of that of the concrete, but as already pointed

out on page 398 and in the footnote on page 396, the result of

any such computation is open to serious question. In practice

it is found that from 0.2 per cent, to 0.4 per cent, of steel will

suffice, but of course the conditions are seldom those of absolute

restraint.

While the above computation leads to no important result,

the form of the equation shows plainly that there is a definite

advantage in using for this purpose a steel having a high elastic

limit.
PROBLEMS

1. A steel bar 2" in diameter and 25' 0" long is placed between two rigid con-

nections at a temperature of 70° and without initial stress. What will

be the unit stress in the bar when the temperature falls to 0°?

* None of these quantities can be stated except as an approximation.
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2. In Problem 1, if the bar is 1 ^" in diameter, what will be the reaction at each

connection?

3. A steel rod 20' 0" long connects two rigid supports. It is put in place at a

temperature of 70° and at that temperature it carries a tensile stress of

50,000 lbs. The temperature may fall to zero degrees. What must be

the diameter of the rod?

4. A steel strut 16' 0" long is put in place between two rigid piers at a tempera-

ture of 60° and at that temperature it must carry a total compression

of 40,000 lbs. The temperature may rise to 90° or fall to — 20°. Design

the strut and compute the strength needed at the connections.

5. A bar of aluminum 1 " X 4" is rigidly fastened between two bars of steel each

^" X 4" at a temperature of 50°. What is the unit stress in each ma-
teiial when the temperature rises to 100°?

6. A rod of steel 1" in diameter and 8' 0" long has a sheathing of brass i"
thick which is put in place at a temperature of 300°. What is the stress

in each material when the temperature is 50°?

245. Cylinders. The methods for investigating the stresses in

cyhnders vary with the thickness of the cylindrical walls. We
will not here consider the case of thick cylinders, such as gun

barrels. For the thin-walled cylinder, such as is usual in the

case of pipes, water tanks, etc., the following principles will

suffice:

Let a pipe be subjected to internal pressure from a fluid or gas

(water or steam). From the principles of physics the pressure

is known to be of equal intensity in

every direction, as shown in Fig.

437^. Let the cylinder be cut by a

vertical plane and one half of it be

shown as a free body in Fig. 437B.

The material (liquid or gas) which fills

the half pipe is under a pressure from

that in the other half the intensity of which is the same as that

throughout the entire mass. This situation is indicated by the

horizontal arrows on the diameter of the section. Evidently the

tensile stresses in the cyhnder walls, indicated by the arrows

marked ''*S," must be equal to the pressure of the fluid on the

diametral plane.

If the pressure on the cylinder is exterior, rather than interior,

the stresses are compressive instead of tensile. However, these
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compressive stresses act on the cylinder wall somewhat as in the

case of a column. They tend to deform the walls unsymmetri-

cally and to collapse the cylinder at stresses less than the crushing

strength of the material.

PROBLEMS

1. What unit stress is set up in a steel pipe 4" in diameter and 3/32" thick by a

steam pressure of 100 lbs. per sq. in.?

2. A water tank 8' 0" in diameter and 10' 0" high is made of wooden staves

and steel bands. The bands are of 5/8" diameter, threaded. Determine

the proper spacing intervals for the rods, as determined by the water

pressure.

3. A pipe line 4' 0" m diameter is laid on a 1 per cent, grade through a distance

of one half a mile. It is made of wooden staves and steel bands of

5/8" diameter, threaded. WTiat is the necessary spacing for the bands

at each end of the line, assuming that their sole function is to retain the

water pressure?

246. Torsion. When a moment acts in a plane normal to the

longitudinal axis of a piece of material, it is called a torsional

(or twisting) moment, and the resulting stress is called torsional

stress. The study of the phenomena of torsion is of prime

importance in connection with the transmission of power through

shafting. The structural engineer has few problems of im-

portance which involve torsional stresses, but some knowledge

of the general principles involved is desirable. We will here

discuss only one case, viz., that of a shaft of circular cross section.

Figure 438 shows a shaft sol-

idly fixed at one end and acted

upon by a moment Pa, at the

other end. The line oc is a radius

of the shaft and cd is an element

of the surface. Both these lines

are drawn before twisting occurs.

As the forces are applied, the

moment arm rotates; oc takes the position oh and the straight

line dc becomes the helix dh. Evidently shearing stresses are

set up on any plane passed normal to the longitudinal axis of

the shaft.

Tests bring out a number of important facts which are anal-
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ogous to those having to do with the performance of materials

under tensile and bending stress.

(1) The angle of torsion, hoc, is proportional to the twisting

moment up to a definite elastic limit. When this limit is exceeded,

the deformation increases faster than the applied moment and

the phenomenon of a permanent set appears just as in tensile

tests (compare § 66). Therefore a stress-deformation curve,

similar to Fig. 146, may be constructed to express the results of a

torsional test.

(2) For round bars a straight radial line like oc, Fig'. 438, is

found to remain straight throughout the test, provided the elastic

limit of the material is not exceeded. (Compare the mainte-

nance of plane sections in beams, § 130.)

(3) These facts, coupled with the necessary conditions of

equilibrium, make it clear that the shearing stresses on any cross

section set up a resisting moment which must be equal to the

twisting moment. (Compare equation (2), § 133.)

(4) The twisting moment is the same on every cross section

of the shaft and hence the unit shearing stresses are the same

for corresponding points on all sections.

(5) The amount of the unit shearing stress at any given point

on a cross section is proportional to the distance of that point

from the center of the section.

(6) The direction of the shearing stresses

at any such point is perpendicular to a ra-

dius drawn through that point.

It should be particularly noted that these

conclusions are drawn only for the case of a

circular shaft acting under stresses which do

not exceed the elastic limit.

Figure 439 shows the cross section of a

circular shaft under a twisting moment Pa.

The resisting stresses acting on a given

radial line are shown as varying from s to zero. Let dA represent

any elementary area distant v from the center of the shaft and

let s' be the unit stress on that element. Then from similar

triangles
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s r , V- = -, or s' = S-;
s V r

and the total stress on the elementary area is (sv/r)dA. The
resisting moment due to this total stress is then (sv"lr)dA and

the total resisting moment of the shaft is J^^{sv-lr)dA. But

since s and r are constants, this expression can be written

{slr)XAvHA. This gives the relation

(1) Twisting moment = Resisting moment = -
j v'^dA.

The quantity J^^vHA which occurs in this expression is known

as the polar moment of inertia, it being the same as the rectangular

moment of inertia heretofore used except that the distance term

is measured from a point instead of a line. If we let Ip represent

polar moment of inertia, equation (1) becomes

Twisting moment 1

(2) or i = M = s-^.*

Resisting moment J

The polar moment of inertia for a circle is given byf Ip = ird'^/S2.

When this substitution is made, equation (2) gives a means for

the discussion of stresses in circular shafting.

PROBLEMS

1. What is the resisting moment of a steel shaft 4" in diameter (a) as against

torsion, (6) as against bending?

2. A steel shaft 4" in diameter has a wheel 3' 0" in diameter mounted on it.

What unit stress will be set up in the shaft by a force of 500 lbs. acting

tangent to the rim of the wheel?

* Compare the above derivation with that for stress in a beam, § 134.

t The derivation of this value is as follows (see Fig.

440):

Ip = fv^dA but v^ =z^ + 2/2. ^'^"n^c/A

/ ! ri\
Therefore / -^ i/

/p = fx^dA + fy^dA. /-I .y L.

That is, in general, the polar moment of inertia referred \ j y
to a given point is equal to the sum of the moments of \,„^ • ^^
inertia taken about two rectangular axes which intersect |

at the given point. Thus for a circle / = Trd*l&4: and Ip= 2

2 X (7rdV64) = 7rdV32. FiG. 440

2



CHAPTER XXV

SPECIAL GRAPHIC METHODS

247. Introduction. In the preceding chapters the principles

underlying graphic methods have been developed and the

methods themselves have been used to some extent (§§9, 12,

14, 18, 27, etc.). In the simple cases thus far treated the prin-

ciples can be applied with little difficulty, but as the conditions

of the problem become more complex, it becomes more important

to study the method as a method, and to develop a technique

that will simplify the necessary processes.

This chapter is intended to give the student some familiarity

with the essentials of this technique. Any real proficiency in

graphics will involve the study of many more cases than can be

presented in this book. But the cases which have been included

cover quite well the absolutely necessary foundation for further

study. In more advanced texts, methods are developed for

handling problems of an intricate nature by means of graphics.

Problems dealing with center of gravity, moment of inertia,

bending moments, deflections, eccentric loading, and many other

complex conditions can be readily solved. To the student whose

mind is adjusted to graphic expression, this field is intensely

interesting, and the results obtained are most valuable.

248. General Principles. Graphic solutions of problems in

statics depend on the fact that a line has the same three character-

istics as a force (amount, direction, and position) and that there-

fore a line can fully express a force (§ 12). In the study of

concurrent and non-concurrent forces, we have already seen how

these three characteristics give rise to two kinds of diagrams,

amount and direction being shown on a force diagram, while

direction and position are shown on a space diagram (§ 28).

The force diagram necessarily will be made to some scale of

pounds per inch, while the space diagram will be at a scale of

404
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inches (or feet) per inch. But the direction of each force appears

on each diagram. Thus the two diagrams become interde-

pendent and of almost no value if considered separately.*

249. Advantages and Limitations. Graphic methods have

several outstanding advantages for certain classes of work.

When the problem contains many quantities, and particularly

when the amounts of the forces and distances or of the angles

involved are not expressible in "round numbers," graphic

methods effect important economies. In fact some problems

that would be almost hopelessly intricate and tedious in an

analytic solution are readily and quickly solved by graphics.

In many cases the results of a graphic computation are self-

checking. That is to say, if an incorrect process is introduced,

the subsequent processes cannot be carried out. . Moreover, the

eye often can detect, through the sense of proportion, errors

that might be entirely overlooked in an analytic computation.

These facts tend to give a person greater confidence and ease in

his work; these are important factors in solving long and intricate

problems.

From the point of view of mental training, there is nothing

that can so develop a sense for structure and assist in the real

comprehension of the relationship between the parts of a structure

as a graphic expression which appeals at once to the mind and

to the eye.

A graphic computation cannot be made with the same degree

of precision as a computation in figures. But it is usually possible

to attain a greater degree of accuracy than exists in the data of

a structural problem (§4). This matter of accuracy is, of course,

bound up with the question of scales to be used. The eye can-

not distinguish easily any division on a scale smaller than 1/50''

to 1/100". This fact alone introduces a probable error of about

* The fact that the direction characteristic is common to the two diagrams fre-

quently leads beginners to attempt to consolidate a force diagram and a space
diagram into one. While this can be done in certain cases, it is seldom wise to do
so. Space relations are different in kind from force relations and the two cannot
be made commensurate. Therefore any attempt to make one diagram cover both
space and force relations involves a double scale arrangement which is usually
confusing and seldom economical of time or effort.
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J per cent, into the scaled length of a line 6" long. Other fac-

tors of error are the widths of lines, relative accuracy of instru-

ments, and all those details which make up draughtsmanship.

On the whole it is not difficult to keep the probable error well

below 1 per cent. The greater the actual dimensions or forces

concerned, the smaller may be the scale used, and vice versa.

One point that is frequently overlooked is the need of relation-

ship in scale between the space diagrams and the force diagrams.

In general, that drawing (whether it be the space diagram or the

force diagram) which contains the shortest lines, on the average,

will determine the degree of accuracy of the results. This of

course means that accuracy cannot be increased by increasing

the scale of one diagram only.

In certain problems, the relations involved are so simple and

direct that there is no advantage in the graphic method. It

takes some time to as-

semble the apparatus

and clear it away . Mean-

while it may be possible

to complete an analytic

solution. In other prob-

lems, the best results are

to be had from solutions that are partly analytic and partly

graphic. A person must have had considerable experience with

both methods before he can wisely choose between them.

Neither method should be relied on to the exclusion of the

other.

250. Bow's Notation. In the study of various branches of

geometry, the student has alrpady encountered the necessity for

a careful and consistent system of notation in graphic problems.

The following system is not urged as the only possible one but it

has proved its value in use and it will be used throughout this

chapter. In Fig. 441 we have four forces shown in position on

the space diagram and in amount on the force diagram. On the

space diagram the force at the left which occurs between the

letters A and B is known as the force AB. The same force is
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shown at the top of the force diagram. It is lettered at its ends,

using the same letters as before but employing the lower case

letters ah. Thus, whether we speak of the force AB on the

space diagram or ab on the force diagram, the line representing

the force occurs between the letters AB ov ab. This system has

many advantages which cannot now be made apparent but which
will clearly appear as the applications are developed.

251. Resultant of Two Forces.* A. Concurrent Forces,

Special Case. The general principles for the solution of

problems in concurrent forces are given in Chapter III and need

not be re-stated here. But it may be worth while to introduce a

problem which involves a special method for the solution of

cases in which the point of concurrence is inaccessible.

In Fig. 442, let the forces AB and

BC be given, as shown on the space /^'^^

'

'^^'^'^•

and force diagrams, and let it be re-

quired to find the amount and posi- o\/}^

tion of their resultant, due regard \. I / / c^;

being paid to the limits of the draw- j
ing as shown. The amount and di-

rection of the resultant can be found

on the force diagram as shown by

ac. The position of the resultant

could easily be determined on the

space diagram if the forces AB and

BC could be continued to the point

k. In that event a line drawn

through k parallel to ac (in the force

diagram), as km, would give the position of the resultant oi AB
and BC. The problem then is to locate the resultant force with-

out the use of the point k.

Choose some point/ which is on AB and within the limits of the

drawing. Let/j; be drawn parallel to BC, let fh be drawn parallel

to ac, and let de be drawn anywhere so that it cuts the lines ^J5,

BC,fg, and//i. We have now created a triangle dfg, within the

* For the more general case see § 255,

i'>

Fig. 442
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limits of our drawing, which is similar to dke and which contains

a line (fh) which is placed similarly to the line of the resultant

force (km) in the larger triangle. From another point of view we

may say that we have moved the force BC closer to AB, thus in

effect merely reducing the scale of the space diagram. Now in

this new (reduced) diagram the point / represents k which

formerly was inaccessible.

A consideration of the similar triangles dfg and dke shows that

if we can divide de into two parts by some (unknown) point j,

such that dj/de = dh/dg, then the position of the resultant oi AB
and BC will be known. To do this, draw dg^ equal to dg and in

any convenient direction. Lay off dh' equal to dh and connect gf'

with e. Next draw h'j parallel to g'e. Now from similar tri-

angles, dj is to de as dh' (or dh) is to dg' (or dg). This shows that j

is in the desired position. The required resultant passes through

j and is parallel to ac.

B. Parallel Forces. In Fig. 443, let AB and BC be given in

position, amount; and direction as shown, and let the position and

amount of the resultant be required. Draw de, connecting any

two points on AB and BC. From § 41 we know that the re-

sultant will cut this line at some point h, such that dh/he = 2i/5i.

Fig. 443 Fig. 444

In order to find such a point, draw ef in any convenient direction

and lay off eg equal to 5J units (at any convenient scale) and gf

equal to 2| units. Connect d and / and draw gh parallel to df,

cutting de at h. The point h will establish the position of the

required resultant. The amount of the resultant is 8 lbs.

Figure 444 shows a beam of known span and carrying a known

load. Let the amounts of the reactions be required. The

slanting line which intersects the right reaction is drawn in any
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convenient position and it is made equal to the given load. Now
the principle of similar triangles, used in Fig. 443, can be employed
again, but it must be applied in the reverse sense, as shown in the

drawing.

252. A Truss. In § 27, the free body method for the determi-

nation of stresses in a truss is developed. In that case each joint

is treated as a free body and the internal stresses are determined

by graphics. Our present purpose is to take up the same idea and
show how the work involved in the solution given in § 27 may be

shortened and organized by the use of Bows notation.*

Let Fig. 445A be the space diagram for a truss carrying loads as

shown. The first step consists in computing the reactions

(§ 41) and in noting their amounts on the drawing. Letters are

now placed between each external load or reaction so that the

external forces become AB, BC, . . ., FO, OA; taken in order.

Similarly a letter is placed in each space between truss members
so that each member of the truss may be named from the letters

between which it occurs, as AG, BJ, . . ., OG, GH, etc.

The next step is to lay off the external forces on a load line as

shown on the force diagram. Fig. 445i5. In this diagram the

external forces (including the reactions) are laid off in order, and

in the directions given by the forces themselves as ah, he, cd, de,

ef, fo, oa. It is evident that these forces, being in equilibrium,

must produce a closed polygon when represented on the force

diagram (§ 17). In this case none of the external forces has a

horizontal component. Therefore the force polygon becomes a

straight line, but essentially it is a force polygon and must close

up in the same way as if horizontal forces were involved. The

closing of the load line indicates equilibrium between loads and

reactions. We are therefore ready to proceed with the determi-

nation of stresses.

Now let the members AG and GO be cut, giving the free body as

shown in the space diagram C.'\ This body is acted upon by the

* In using the method given in § 252, it is all too easy for the student to lose sight

of the principle of § 27 and to substitute rules of action for real understanding.

For this reason a review of §§ 20-28 wUl prove valuable at this time.

t Let the student be sure he understands whii this joint is chosen as the point of

beginning.
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known force OA and the unknown stresses in AG and GO. A
force diagram for this point is drawn at Z), which determines the

stresses in AG (compression) and GO (tension).

Fig. 445

The next free body, which is shown in E, cuts the members OG,

GH, and HO. The stress in OG is known (from the preceding
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solution) and it is laid off in the force diagram F, from o to g.

A vertical line drawn through g represents the stress in GH.
From the end of this line, a line drawn parallel to OH must now
close back to o. This shows that h and g must coincide and

hence the stress in GH is zero. This fact could have been proved

from the conditions of equilibrium without drawing any force

diagram. Let the student prepare a proof.

Now proceed to the next joint (ABJHG). The free body is

shown in G. It is seen to be acted upon by the known force AB
and the known stress ga. Let the force diagram for this joint be

drawn at H, starting with the known stress ga and the known force

ah, and closing with the unknown stresses hj (compression) and jh

(tension). The points h and g coincide as shown in the preced-

ing diagram.

In the figure, drawings J and L are space diagrams for two

other joints while K and M are the corresponding force diagrams.

Similar diagrams could be drawn for all the joints of the truss.*

An analysis of the load line B and the force diagrams D, F, H,

K, M shows a considerable repetition of identical lines. This

repetition can be avoided by attaching all the separate force

diagrams to the load line. In N the load line is shown with the

three force diagrams D, F, and H attached. In P the load line is

shown in connection with the stresses in all members.

An examination of P shows a figure composed of lines which are

controlled, as to direction, by the space diagram, and as to sepa-

ration by the load line. The lengths of these lines (and hence the

stresses in the truss) are thus seen to depend on the shape and

loading of the truss.

Let us now trace the making of diagram P in detail. First the

load line a,h, . . . f, o, a is laid off by taking the external forces

in order as described above. Then taking the left reaction joint

as a free body, we trace out its force diagram, oa, ag, go. We
start with the known force oa and trace it from oto a in the direction

given hy the known reaction. From a we continue along ag and go

and thus we arrive back at our starting point, o. In doing this

* The student is advised to do this before proceeding.
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we have established the directions of ag and go and hence the

fact that AG is in compression and GO in tension. *

Since the stress in GH is zero (as already shown), we can at once

establish the point h on the force diagram as coinciding with g, or

we can trace out a polygon similar to F, which would give the

same result.

Next take the joint ABJHG as a free body. The stress in AG
and the load AB are known and already drawn on the force

diagram P. Starting with ga and ah (the direction being given

by the known force directions), we trace out the polygon ga, ah, hj,

jg. For the next joint the polygon is oh, hj, jk, ko. Then comes

he, cl, Ik, kj, jh. At the peak we obtain Ic, cd, dm, ml.

The diagram which has just been built up is called the con-

nected stress diagram. It contains no information which cannot

be found on the separate stress diagrams D, F, H, K, M. In fact it

is nothing more than an aggregation of the diagrams for individual

joints. The only reason for putting stress diagrams in this

connected form lies in the matters of convenience and methodical

procedure.

The basis of the connected stress diagram is order. Given a

load line on which all the external forces (including the reactions)

have been laid off in a certain order, the individual stress dia-

grams should be built up on the load line in an order based on the

one first chosen. In this way it is possible to organize the

procedure in a very effective manner. It would be easy to give a

rule for doing this work, but it is far better for the student to

derive his own rules of procedure through practice.

253. A Cantilever Truss. In Fig. 446A is shown another

example somewhat like the previous case but more complex as to

reactions and loading. The first step is to compute the reactions,

CD, DE, and EO. The load line is then laid off from o to a, h, c, d,

e and back to o. Thus the forces are taken in the order and

direction of their occurrence. The stress diagram, Fig. 446B, can

now be traced out just as before.

* If the student has difficulty in following this idea, let him refer back to §§ 23-

28.
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let us trace out the stress diagram for the joint GBCJH. The

stresses in HG and GB are known; also the load BC, as shown in

Fig. 446C. In starting to trace the stress diagram, it is best to

circle the joint (as indicated by the arrow) until we arrive at a

member containing an unknown stress, as HJ. Now starting

with the letter to the left of that member, as H, trace out the

known stresses and forces in order on the force diagram, as hg, gh,

be. This establishes the direction in which the polygon reads and

from c we can draw cj and from h we can draw hj, thus closing the

polygon. The characters of the unknown stresses are then fixed

by the known direction already established, i.e., c to j (showing

tension in CJ) and j to h (showing compression in HJ) .

(c) The self-checking feature of these diagrams should not be

overlooked. Thus in Fig. 446B, the point k is the one last

determined. The line ko should then be found to be parallel to

KO in the space diagram. This constitutes a good check on the

correctness of the work.

255. Resultant of Several Non-Concurrent Forces. A.

General. The resultant of several forces can be found by the

graphic method given in § 38 if the forces are not parallel. If the

forces are parallel, the position of the resultant can be found by

the analytic method given in §§ 41-44. When many forces are

^/ Space .

C D E

Fig. 447

to be combined, these methods become excessively tedious and

cumbersome. This is especially true of the graphic method of



SPECIAL GRAPHIC METHODS 415

§ 38. The intersections frequently occur at points so remote

from the main part of the drawing as to call for drawing boards

and straight edges of quite impossible dimensions. Therefore, we
give below a method which employs a similar principle but which

is simpler in execution.

B. The Equilibrium Polygon. In Fig. 447, let it be required

to find the amount and position of the resultant of the forces

AB . . . DE. From §§ 15-16, we know that the amount and
direction of the required resultant may be found by laying off the

forces continuously to scale. This has been done in the force

diagram. Fig. 447, where abcde is the load line for the given

forces and ae gives the amount and direction of the resultant.

The position of the re-

sultant must now be de-

termined. Since position

is a space relation, it will

of course involve the use

of the space diagram. In

order to study this in de-

tail, let the first two forces

be drawn separately as in

Fig. 448. Whatever rela-

tion, whether of equilibrium or lack of equilibrium, may exist be-

tween AB and BC, that relation will not be disturbed if we

introduce into the system two forces which are equal and op-

posite and which act in the same straight line.*

Let us then arbitrarily introduce into the problem two forces.

bo and o'b, which are equal and opposite (as shown on the force

diagram) and which act in the same straight line (as shown by 1-3

on the space diagram) . Now ab and bo have a resultant, ao, and

this resultant acts through the point 1 (on the space diagram).

Similarly o'b and be have a resultant which acts at the point 3.

These two resultants have now replaced the two original forces

* This idea of arbitrarily introducing balanced elements into a problem is not

an uncommon one. The neutral elements do not affect the result but do simplify

the solution. One case in point is the addition of a quantity to each side of a

quadratic equation to complete the square.

Fig. 448
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and the two introduced forces. Again these two forces, ao and

o'Cj have a resultant which is given in amount and direction on

the force diagram by ac, and whose position is determined on

the space diagram by the intersection of 1-2 and 2-3.

In Fig. 449, the first three forces of Fig. 447 have been drawn

and the operations performed in Fig. 448 have been shown by

dotted Hnes. The resultant of AB and BC is lettered R. We
may now repeat the operation performed in Fig. 448, using R and

CD as the given forces and letting oc represent the pair of forces

introduced between them. These forces are introduced on the

line 3-4 in the space diagram. Now R and co have the resultant

ao (force diagram), which acts through 3 (space diagram) and

which is shown by 3-5. Also oc and cd have a resultant od which

acts through 4 and which is shown by ^-5. The final resultant is

R' , whose amount and direction must evidently be given by a line

connecting a and d on the force diagram, and whose position is

given by the point 5 on the space diagram. Evidently this

operation can be repeated as often as necessary to account for all

of the forces in the problem.

Before going further it will be wise to make some observations

and definitions. First as to the force diagram. The location of

the point o is dependent on the amount and direction of the

first pair of introduced forces. Since these forces are chosen

Fig. 449

arbitrarily, the point o (called the pole) may be anywhere. The

line abed is called the load line and the lines from the pole to the

load line are called rays. Now the resultant of all the forces in

the load line is always equal to the resultant of the two outside
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rays, ao and od, Fig. 449. This resultant is represented by a line

joining the ends of the load line ad. On the space diagram we
have a polygon 1-2-4-5-1, each line of which (called a string) is

parallel to a ray in the force diagram. This polygon is started

from a point {1) chosen at random, just as o was chosen at

random in the orce diagram. The two outside strings of this

polygon {1-5 and 4-5) represent the position of the two outside

rays {ao and do) of the force diagram. Therefore, their point of

intersection, 5, gives the position of the final resultant. The

polygon 5-1-2-4-5 is called the equilibrium polygon.

In Fig. 447 the same principles are applied to finding the

resultant of four forces.

256. Equilibrium Polygon.—Forces in Equilibrium. We have

proved already (§ 17) that if a system of forces is in equilibrium

the force polygon (load line)

/I

C

Space .

D
jL-"

5
dK

c

Force.

Fig. 450

must be closed. This is equiv- A / \^ E
alent to the analytic condi-

tions of equilibrium which are

expressed by 2^ = and

SF = 0. We now will show

that if a system of forces is

in equilibrium the equilibrium

polygon also must be closed.

This corresponds to the anal-

ytic condition expressed by SM = 0.

In Fig. 450 we have five forces in equilibrium. The first four,

ah . . . de, are the same forces shown in Fig. 447. The equi-

librium polygon 5-1-2-3-4-5 is also the same as in Fig. 447 and

the outside lines 5-1 and 4~5, meeting at 5, give the position of

the resultant in Fig. 447. But the equiUbrant of these five

forces {ea, Fig. 450) must be equal and opposite to the resultant,

and it must act in the same straight line as the resultant. Hence,

equilibrium will exist in Fig. 450 if, and only if, the last force, ea,

is found acting through the point 5. Let the student move the

vertical force to the right or left of the position given in Fig.

450 and then let him trace the resulting equilibrium polygon.
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These considerations may be summed up as follows:

If
^H =

:^V =

If XM = 0,

the force polygon is closed.

the equilibrium polygon is closed.

257. The Equilibrium Polygon as a Frame Diagram. In Fig.

451 we have three forces, ah, he, and cd. Let an equihbrium

polygon Jf-l-2-3-5 be drawn. At

each of the points 1, 2, and S we

now have three forces acting; and

each group is in equilibrium in it-

self as shown by drawings B and

D. Moreover the two forces act-

ing in the line BO are equal and

opposite as are also the two forces

acting on the line CO. Therefore

the whole system is in equilibrium

so long as the forces OA and DO
are applied where shown in draw-

ing B and are of the amounts

shown in drawing Z).

Now let us imagine that the

forces oa and do (Fig. 45ID) are applied at the points 4 and 5

(Fig. 451A); then evidently the entire system of forces is in

equilibrium. Moreover each line of the equilibrium polygon is

the line of action of two equal and opposite forces, thrusting

towards the ends of the line. Therefore, if a timber frame be

built, taking its form from the equilibrium polygon as shown

in Fig. 451 C, and if it be loaded with loads as shown, and pro-

vided with proper reaction points (corresponding to 4 and 5 in

drawing A), the frame would be in equilibrium under the given

loads. Also it would be stressed in compression in each of its

parts. The amounts of these compressive stresses are given by

the corresponding rays of the force polygon. Thus we see that

every equilibrium polygon gives the form of a frame which can

Fig. 451
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carry the given loads without any tendency to rotate or distort.

It is well to notice that

(a) The reactions must be provided somewhere on the two

outside lines of the equilibrium polygon.

(6) There is a different frame diagram for each different set of

loads and for each position of the pole chosen for the force

polygon.

(c) If the pole is selected as in Fig. 45 IB, the stresses in the

frame are compression. If it is chosen on the opposite side of the

load line, the stresses are tension.

(d) Selecting a pole close to the load line gives a deep frame

with relatively small reactions, and vice versa.

fg H J K

Fig. 452

258. Center of Gravity. In Fig. 452A the area shown is

divided into four parts. The center of gravity of each part is

found by inspection and the lines AB^ BC, CD, DE are drawn to

represent the lines of action of the (nominal) weights of the

parts. The force polygon C is laid out with the lines ah . . . de

made proportional to the areas of the corresponding parts of

Fig. 452A. Now when we draw the corresponding equilibrium

polygon, the resultant R is found. The center of gravity of the

area lies on this line. In Fig. 4525, by the same process as above,
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the center of gravity is found to lie on the line R' . Then by

superimposing R (from Fig. 452A) on this diagram we get the

point X, which is the center of gravity of the area.

259. Reactions of a Beam.—All Forces Vertical. In Fig. 453A
let the beam and the loads be given and let it be required to find

the reactions. In the force diagram, Fig. 4535, the loads a6,

6c, cd are laid off to scale. Since all the forces are vertical, it is

evident that the sum of the reactions must be equal and opposite

to ad. When these reactions are laid off in order, with the forces,

the load line will read ah, he, cd and from d upward to some

unknown point o and from o to a, thus making the load line a

closed polygon. It remains to locate o.

Fig. 453

From any point, 1, on the line of action of AB, as a point of

beginning, lay off an equilibrium polygon cutting the lines of the

known reactions at 4 and 5. Now the three forces and the two

reactions are known to be in equilibrium. Hence their equi-

librium polygon must close (§ 256). Therefore let us draw the

line 4~5 to close the equilibrium polygon. Now there must be a

ray in the force polygon to correspond to the string 4-5, just

drawn. Draw such a ray, po, parallel to ^-5. The point o thus

found determines the reactions; do being the amount of the

right reaction while oa is the amount of the left reaction.

260. Bending Moment Diagrams. An equilibrium polygon

sometimes may be interpreted as a bending moment diagram.

This may be seen by reference to Fig. 454. A beam is given,

loaded with two loads AB and BC. By means of an equiUbrium
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polygon, the reactions co and oa are determined (§ 259). Now
imagine the beam to be cut at the section &S. The bending

moment at that section is equal to the moment of all forces to the

left (or right) of the section, i.e., it is equal to the moment of the

forces OA and AB (or what is the same thing it is equal to the

moment of the resultant of OA and AB) taken about the section

SS as a center. On the force diagram the resultant of oa and ah

is seen to be oh. From the equilibrium polygon already drawn,

the position of this resultant is found (as in § 255) by continuing

lines 1-2 and 3-4, till they meet at o'.

Fig. 454

This resultant, being equal to oh lbs., and having a lever arm

about the section SS of n inches, produces a bending moment of

{oh)n lb. ins. The triangles o'h'oi (on the space diagram) and

pho (on the force diagram) are similar, therefore

X : oh = n : m,

(oh)n = xm.

But we have shown that {oh)n is the bending moment at the

section SS. The vertical distance x is measured across the

equilibrium polygon at SS and m is the horizontal component of

the introduced forces represented by the rays of the force polygon.

From the preceding discussion it becomes clear that the bending

moment (in pound inches) at any section cut through a beam is

equal to the vertical distance across the equilibrium polygon at

that section (measured in inches) multiplied by the horizontal

component of the rays in the force polygon (measured in pounds).

Let the student now repeat the above demonstration using a

different case which involves a larger number of loads.
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261. Wind-Load Reactions. Wind blowing on a roof produces

loads on a truss whicli liave horizontal components. In such a

case the reactions cannot be obtained as in § 259. In fact the

case is statically indeterminate (as explained in § 40) unless (as is

sometimes done) a roller is placed under one end of the truss.

The effect of the roller is to make the reaction at that end take a

definitely vertical direction and thus to reduce the unknown

components to three.

A. Roller under One End. (1) The reactions may be

found by first finding the resultant of all the loads acting on the

truss. This can be done by using an equilibrium polygon as in

§ 255 or by analytic methods. All forces on the truss are now

reduced to three and these three must meet at a point (§ 39).

From this point the solution follows (§16).

})--^ AZ^-^'^

Fig. 455

(2) Another solution for this case is illustrated in Fig. 455.

The loads AB, BC, and CD are given; the reaction DO is known

to be vertical; while OA is wholly unknown. Draw the load line

ahcd and from d draw a vertical line. The reaction do will follow

this line to some (unknown) point o and from there the other

reaction (oa) must close back to a.

In order to find o let us attempt to draw an equilibrium

polygon starting at point 1. If we follow the method of § 259,

this polygon will close up on the point 2 on the right reaction

and at some other point on the left reaction. But since the left

reaction is unknown in direction, we cannot obtain the needed

closing line. However we know that the left reaction (whatever

may be its direction) must pass through the point 3. Therefore

if we slip our polygon down until the outside string passes through
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the reaction point 3, it will then have both ends resting on the

reaction lines and a closing line can be drawn. Such a polygon

is shown in the figure, drawn in dotted lines and closed by the line

3-4' We can now draw the last ray of the force polygon, po, stop-

ping it on the vertical previously drawn through d. The reac-

tions are now determined as do and oa.

B. Both Ends Fixed in Place. When both ends of the truss

are fixed in place the reactions are indeterminate, as explained in

§ 40. There are however two commonly used assumptions that

may be made the basis of a statical solution.

P'^^y.

"•••-V^

Fig. 456

(1) The reactions are assumed to he parallel. In Fig. 456 the

load line ahcd calls for reactions that will close up from d to a.

If these reactions are parallel they will form a continuous line as

da, leaving their separation into amounts to be determined by the

unknown point o.

The lines of the reactions can now be drawn on the space

diagram and the solution completed precisely as in § 259.

(2) The reactions are assumed to have equal horizontal com-

ponents. In this case we do not know the direction of either

reaction. But we do know one point on each line, namely, the

two reaction points. It will be our purpose to draw an equi-

librium polygon that will pass through these two points. In

Fig. 457, draw the load line ahcd as usual and, using the pole p,

find the position of the resultant load R, as shown.

Now choose any point on R, as 3, and draw lines from it to the

reaction points 1 and 2. Now the lines 1-3, 2-3 constitute an

equilibrium polygon for the force R, the closing line of which is
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1-2. Draw the corresponding rays on the force polygon, an and

nd, thus locating the i)ole of the force polygon which corresponds

to the equilibrium polygon 1-3-2. From n draw a line parallel to

1-2, being the ray corresponding to the closing line of the equi-

.0.

Fig. 457

librium polygon. The reaction lines must meet on this line.

Also (from the assumption) the reaction lines must fall on a line

midway (in a horizontal sense) between a and d, i.e., on the line

rs. This locates the point o as the point where the reaction lines

must meet and determines the reactions as do (right) and oa (left).

If some point on R other than 3 had been chosen, from which

to construct the equilibrium polygon for the force R, the result

would have been the same. Thus, choosing 4? the equilibrium

polygon becomes 1-4-2. The pole of the force polygon is found

at n' and the reactions are as before. In other words, for every

point on R which may be chosen as the vertex of the equilibrium

polygon, the pole of the corresponding force polygon will be

found on the horizontal line on'. This can be proved analytically

by extending the force R to the point 5 and treating its H and V
components separately. Let the student prepare the proof.

C. Choice of Assumptions. The results obtained from the

two assumptions explained in (A) and (B) do not differ materially

in the ordinary case. Where the supports are equally stiff and the

truss itself is reasonably stiff, there is perhaps more to justify the

assumption of equal horizontal components. However, one

should not forget that in any case (except when a roller or other

similar device is used) the problem is statically indeterminate.



NOTATION

The following is a list of the symbols used in the text. In so far as

possible these symbols agree with the list approved by the Society for the

Promotion of Engineering Education, June 28, 1918, and published in the

Bulletin of the Society, November, 1923. Symbols which are used but not

included in that list are marked *. In the case of Reinforced Concrete a

separate set of symbols which has become standardized in the literature of

the subject has been used. See page 296.

* Angles—in general, Greek letters, e.g a/S00

Area A
Breadth b

* Center of gravity—distance to x,y or z

Center of rotation ^
* Coefficient of linear expansion c

Coefficient of friction /
Coefficients and constants C

* Concrete—reinforced See p. 296.

Definite integral—See footnote p. 54 J^w^ ^'^

Deflection of a beam y
* Deformation—linear q

Depth d

Diameter D
Distance of extreme fibre from the neutral axis c

Eccentricity of application of load e

* Elasticity, modulus of E
* Forces—known A, B, C, etc.

* Forces—unknown X, Y, Z, etc.

Force—moment of M
Friction, coefficient of /

* Gyration—radius of r

Height h

Inertia, rectangular moment of /

* Inertia, product of K
Length L

* Load, concentrated (e.g., on a beam) P
* Load, distributed (e.g., on a beam), in pounds per linear unit, .w

* Load, distributed (e.g., on a beam), total W
* Load, direct tension, compression or shear (See Force)

Load, eccentricity of e

* Modulus of section -
c

425
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* Modulus of elasticity E
Moment of force M
Moment of inertia—rectangular /

* Product of inertia K
* Radius of gyration , . . r

Reactions R
Reinforced concrete See p. 296.

* Section modulus -
c

* Shear—total in a beam J
* Slope—of the elastic curve in a beam v

* Span—of a beam L
* Stress, unit—in general s

* Stress, unit—in tension, compression, shear or flexure st, Sc, Ss, s/

* Stress, total S
* Temperature—change of T
* Thickness t

Volume V
Weight W



APPENDIX

TABLES

The tables which follow give a number of the constants needed in the solu-

tion of the problems. These tables are of necessity much condensed and are

not intended for general reference, but only to give a basis for obtaining com-

parable answers to the problems.

No such condensed tables can do more than give very roughly approximate

information. For instance, in Table I the ultimate compressive strength of

timber is given as 3,000 lbs. per sq. in., whereas in fact the various kinds of

timber under various conditions show values ranging all the way from 1,800

lbs. per sq. in. to 5,200 lbs. per sq. in. Again, in the case of the metals, sUght

variations in the chemical composition or treatment during manufacture may
cause equally large or larger variations in the physical properties.

Therefore, these tables should not be used for computations which are to

form the basis of actual construction. Information for such purpose should

be sought in books of reference and in the light of the special conditions of the

actual problem. However, the condensed form of the tables will be found a

good one for the beginner's use and the values quoted may ultimately remain

in his mind, useful for the purpose of arriving at quick approximations.

427
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TABLE II

Factors of Safety

Note. Tables of factors of safety are rarely found in technical literature.

This is probably due to a natural reluctance on the part of the writer to commit

himself on a subject that is very involved and in which it is most difficult

to guard against numerous possible misunderstandings.

The following is taken from Merriman's Mechanics of Materials. It was in-

tended there merely as a basis for discussing the problems in the text and it is

here repeated for the same purpose. No such simple table could possibly

cover all of the contingencies mentioned in § 61. It is at least doubtful

whether any possible table could properly cover the subject. (See footnote,

page 95, also §62.)

Usual Factors of Safety (on the Basis of Ultimate Strength)

Material

Brick and stone. .

Timber
Cast iron

Wrought iron . . . .

Steel—structural .

Steel—hard . . . . .

Steady stress
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TABLE III

Notes and Explanation. On the following pages, eighteen cases of

beam loadings are summarized. The load, shear, moment, slope, and deflec-

tion curves are drawn and the equations of the curves are stated. In general,

maximum and minimum values are determined and located.

In most of the cases the origin of coordinates is taken at the left end of the

beam; but in special cases, such as No. 5 and No. 18, more than one origin is

used.

Forces directed upward are treated as positive. Distances measured up-

ward or to the right are positive. The slope of a curve is positive when the

curve slants upward and to the right or downward and to the left. In the

diagrams, the loading is indicated above the beam in order to maintain a

semblance of reality. But since the loading is a force acting downward, it

must be treated as a negative quantity.

The purpose of the table is two-fold : first, to serve as reference material on

the critical values of shear, moment, and deflection covering a larger number of

cases than can be derived profitably in the text; second, to bring out more

fuUy the manner in which any given curve is related to the curves above and
below it (§156).

The general equations, on which the equations for the special cases are based,

can be found in §§ 121, 123, 124, and 152. In the curves for slop© and de-

flection, E and / are treated as constants. This means that the equations apply

to beams of homogeneous material and constant cross section only.

In the equations, the symbols V and M indicate the shear and bending

moment. In the curves and equations covering slope and deflection, the

results have been given in terms of EIv and Ely. Thus the right-hand member
of any equation shows the effect of load and span only. When a given loading

gives rise to two or more separate curves, as in No. 2, No. 5, No. 12, etc., the

beam is divided into sections marked I, II, III, etc. The shear, moment, slope,

and deflection for section I are indicated as usual by F, M, EIv, and Ely.

For section II the same quantities are primed, F', M\ etc. For section III

we use V", M" , etc.

The equations for two or more cases of loading may be combined tO*give

the effects of more complex loadings, as explained in §§126 and 158.
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TABLE III

Vertical Loading
W =

Shear
F =

Moment
M = -Pa

Slope

EIv = M(x - L)
EIv (max.) = - ML, at the free end.

Deflection

MEIy=-^{L- X)

EIy{msiX.) = —
-

, at the free end.

f
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rofa/foocf= W

TABLE III, continued

Load

--^xnirniiTQjij]

r^n^^^i

w
Rate of Loading = — y- lbs. per ft.

Total Load = W
Shear

Moment
W

M(max.)
WL

, at the fixed end.

Slope

EIv{max.) = —-r- , at the free end.
b

Deflection

Ely = -

Elyimtix.)

24 VL
4L^x + 3L3

TFL3
, at the free end.

Tofo//oac/=W__^.^.^r^

—^n^r^

Loading
Total Load = W.

Rate of Loading: at any point
2W
L2

at the fixed end
2W
L

Shear
WV = — — x2

Moment

WL
M(max.) = — , at the fixed end.

o

Slope

Eh-U-~^)
EIv(m3iX,) = -—— , at the free endo

Deflection

Ely(max.) = - -—
, at the free end.
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Wolload^ W

TABLE III, continued

1^ Load

Slope

W
Rate of Loading = — _ lbs. per ft., on

Total Load = W.
section II

Shear

I, F =

11,7'=-^.'
Ill, Y" = -

Moment

I, M =0
II, M' = -

W

26

III, M" = -w(x" +~\

ikf(max.) = - Tf^ ^c + ^V at the fixed

end.

I, EIv = ^(^c^ + cb+~^

W
III, EIv" = y (c2 + c6 - x"^ - hx")

Elvimax.) occurs throughout space I.

Deflection

I, Ehj
W
^ [(3c2 + Sch + &2)(3c + 3& + 4a - 4a:) - c^]

W
II, Ely^ = - ^ (6 - ^0 [ 4(3c= + Scb + 6^) - ^^^ +^ + ^^)

]W
III, £'/7/" = - i^ (c - a:")'(2a:" + 4c + 36)

EIy{ma.x.) can be found by putting a: = in lo
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TABLE III, continued

r-r*P
a ^
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TABLE III, continued

Tofal lood= W,

.rrrJr^^mm^M

fnTnTmTr;;::i"v;;;;"" I

Loading
Total Load = W.
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TABLE III, continued

IbtaUoad- r
^--^^^^^^^,

9 (Continued)

Slope

5WL
EIV(max.) = it

96
at the supports.

Deflection

EIy= -
Wx' Wx^ 5WL^x
30L2 "^12 96

Ely(max.) =
60

, at the center.

10

Note.—The loading conditions in this case are symmetrical. Thereore ail

equations are given for the left half of the beam only.

Loading
Total Load = W
Rate of Loading: at any point

= 2TF 4Wx

at the ends = r-

W
Ri = R2 = -^

Shear

p^-'Z^
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TABLE III, continued

I 1 I I I I I ITTTT

^i Load = P

Shear

.^aorSiSSM

m^f<^

I, 7 = Pb

II, V' = - Pa

Moment

I, ilf
Pbx

II, M' =^ - P(^' - «)

M(max.) = Af'(max.) = -j—

11

Slope

Pb
I, EIv = ^ [3^2 - (L2 - 62)]

II,^/.=f^[3.'^-L^ (a;' - ay - {U -&^)]

*£^/y = when x = \\
IL^ - 62

A—3"

Deflection

Pb
I, E/?/ = ^ C^' - (L' - ^'M

II, ^V = ^ [^" - (^' - ^')^' - § (^' - «)']

P6 |L2 - 62

Elyim^x.) = --^ (L2 - 62)^/2, when a: = V—o—
9V3L ^ "^

iVofe.—If the position of P is considered as variable;

L - . , .
PL

when a = -^ and is equal to -^M(max.) occurs wiicn "- — ""^ "" "^— "" 4

EIy(m&x.) occurs when 0=2 and is equal to — ^g-

* In the above equations a > b.
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TABU-: 11 r, continued

Loads

W
12

7— lbs. per ft. Ri = -j—
Li Lt

Shear

!,. = -

«-^"

III, v" = ^^ - ir

Moment

II,M' = -^x'-2^(^x'-a+2J

III, M" =^x" -W{x" -a)

Slope

Wh
I, EIv =^ [12x2 _ 4(7,2 _ 52) 4. ^2]

n, EIv' =^ lUx" - 4(L2 - 62) + d^] - ^ (:r' - a + ^)'

III, £7." =^ [12x"=^ - 4(L2 - 62) +d^-l--^ (X" - «)' -^
Deflection

I, Ely
Whx

III, £•/?/" =

24L
76^

24Z
Tr6x^^

24L

[4x2 _ 4(L2 _ 62) + <Z2]

II, Ely' =^ [4x- - 4(L2 - 62) + ^2] - ^^ (x' - a +
f^

[4x' 4(L2 - 62) + c?2] - ^ (X' a)3

--^(x"-a)

Note.—For il/'(max.)—Find the value of x' when V = and use this
value of x' in moment equation II. j

For EIy'(msiX.)—Find the value of x' when EIv' = and use this value of
x' in deflection equation II.
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load-W

K
y//////////yy///////'^y/////. ^^^^v///.

TABLE III, continued

\ Load

Rate of Loading = —

[TrrTrT>^i

rx-.375L- pnin^

w
lbs. per ft.

Total Load = W
Ri W

Shear

7 = W Wx
L

F(max.) = — fW, at restrained end.

F = 0, when a: = fL

Moment

ilf = 0, when x = IL
9

13

Af(max.)

+ j^ WL, when x = ^L

— - WL, when x = L
a

Slope
W

EIv = ^ (9a:2 - 8a:3 _ j[,2)

EIv = 0, when a; = .422L

£'/y(max.) = - ^^ TF/^^ when x = 0.
48

Deflection

48 VL -'--^-')

EIy{msix.) = .0054TFL3, when x = .422L.

EIi^= - — I
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TABLE III, continued

K-x-^

^

i

^M^^^i

Load =

Shear

14

^:(26 + 3a)

I, V
II, F

Moment

Rx-P

I, M = Rix
M(max.) = Ria, under the load.

II, M' = Rxx' - P(x' - a)

T\jf/ _ f ^1^' under the load.

( RiL — Pb, Sit the restrained

end.

M' = when x' = ^ 5-
r — Ki

Slope

_ ^. Rrx^ ,Pa?

II, EIv' =^ + Paa:' - -1^ - PaL

2

2

PaL

Deflection

Rix
I, Ely =^ +

II, ^///'

Pa^x _
2

y'L2.r - PaLa:
2

— PaLx' -\ ::
1 77-

Note.—li the position of P is considered as variable, the greatest possible

value of M occurs when a = .375L (about).

The maximum negative moment occurs at the restrained end, when
a = .577L (about).
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iiiii iiiimim

it—i

TABLE III, continued

Load = P

b-^
S Shear

.^#>^ „„

P62
I, F = ^ (6 + 3a)

P62
II, y = ^ (6 + 3a) - P

Moment
I, M = M" + Fa:

M" (at left end) = - ^'

M(max. +) = 2Pa262

15

L3
(under the load).

M = 0, when .t

aL
3a +6

II, M' = -7^ (6 + 3a) j^ - P(a:'
L3 L2

P6

a)

AP" (at right end) = - -y-g (a2 + a - ah)

M' (max. +) = same as for M.
252

M' = 0, when x = a -\ —^

Slope

I, EIv =^ Ca:(3a + 6) - 2aL]

11, ^-/y' = ^^ Ix'i^a + 6) - 2aL] - ^ix' - a^

Deflection

I, £/!/ = ?^ [x(3a + 6) - 3aL]

II, E/^/' = i^ b'(3a + 6) - 3aL] - ^ (:r' - ay
6L3

E"/?/ (max.) = 2Pa362
when X

2aL

3(3a + 6)2

'

3a + 6

A^o^e.—If the position of P is considered as variable;

The greatest possible + moment = - PL, when a = -^

4 ri
The greatest possible — moment = — PL, when a =<l

The greatest possible Ely = —7- PL^, when a = —
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TABLE III, continued

Load

'y

yg/ load= W-^
> y////////////^//y/////y//////y \

llT^m^
-^^mn^

W
Rate of Loading = — -7- lbs. per ft.

Total Load = W.
Shear

Moment

M
2 2L 12

ikf(max.) =
+ — , at the center.

TFL— —r-
, at the ends.

ilf = when x

Slope

Elv

.212L

.788L

W£_Wx^_WLx
4 6L 12

16

Elvimax.) = ± .00965TFL2, when a;

Deflection

={:
.212L

788L

Ely = Wx^ Wx^ WLx^
12

EIy(msiX.)

24L 24
TFL3-— ,whenx

K---,JA^

fTMiT^^i

Each Load = P

]' .p- Shear

'^aJ I, 7 = - P
J—-i II, V =

Moment
1, M = - Px

M(max.) = — Pa
II, M' = - Pa

Slope

I, E/y =
I

(a2 + a& - x2)

17

II, Elv' = Pa(a+|-a:'^

Deflection

I, Ely = ^ ISahx + Salx - a;^ - Sa^fo - 2a'2

Ely {max.) = -^ l-Sa% - 2a^'], at the end.

II, Eh/ = Y C&(^' - «) - (^' - ^)'^

Pab^
Ely' (max.) = -3— , at the center.

o

Note.—The curves for the End Spans are

symmetric.
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TABLE III, continued

Slope

Load
W.

Rate of Loading = j- lbs. per ft.

Total Load
W

W.

2a
R. =^

Shear
W

I, V = Ri-^x

V = 0, when x =

W
II, y = 21 (6 _ x')

Moment

RiL

W

I, M = Rix -

M(max.) =

2L

-2^, when a: = -^

M = 0, when x =

II, M' = w(h - x'y

2RiL
W

2L
Wb2

M'(max.) = — —j- , when x' =

I, ^^^ = ^ [ 4i^i(3x2 - a2) + ^ (a3 - 4.^3)

j

II, ^/v' = -^ j 8i?ia2 + ^ [4(& - xO^ - 3a3 - 463]
|

Deflection

I, Ehj = -^\^(-^' - f^'^) - 4^1 C^' - «'-r)

]

II, Ely' = - JL r^ (662x'' - 4:bx" + x'' + Sa'x') - SR.a^x' 1

18
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TABLE IV

Coefficients of Friction

Note. The following table of coefficients of friction has been condensed

from various sources. It is intended to give a definite basis for the solution of

problems rather than accurate information on specific cases. So much de-

pends on the condition of the surfaces as to finish, presence of moisture, etc.,

that no single value can be considered more than a rough average for a given

case.

Earth on earth, dry 0.55

" " "
, damp clay 1.00

" " " , wet 0.33

Masonry on dry earth 0.50
" " moist clay 0.35
" " masonry 0.65
" " timber 0.40

Metal on metal, dry 0.20

" " "
, oiled 0.05

Metal on earth, dry 0.40

'' " , wet 0.30

" masonry 0.35

" timber 0.40

Stone on stone 0.58

Timber on timber 0.40

" earth .0.40
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TABLE V
Data Recorded During Tensile Tests on Steel and Cast Iron

Made at the Watertown Arsenal





INDEX

Acceleration, 10
Accuracy, degree of, 5
Aesthetic qualities, 115
American Society for Testing

terials, 93
Analysis, 6
Analytic method, 13, 18, 20
Anti-resultant, 16
Areas,

center of gravity of, 72
effect of size and shape, 148
moment of inertia of, 145
product of inertia of, 350

Axes, of symmetry, 64, 67
transfer of, 150, 350, 353

Axial loads, 79
Axial stress, 25

6
Beams, 155

bending stresses in, 176
cantilever, 170
cast iron, 185, 203
characteristic shapes of, 199
classification of, 156
combined stresses in, 306
comparison of curves, 219
concentrated loading, 249
condition of ends, 226

both ends fixed, 233
one end fixed, 230

continuous, 240
deflection of,

allowable, 223
by approximation, 223

deformation of, 207
elastic curve, 208, 212
flange stresses in, 311, 313
fillets of, 319
fixed, both ends, 233
fixed, one end, 230
flitched, 326
investigation and design, 184
neutral surface, 180
partial distributed loads, 250
plane sections, 177
reactions of, 50, 53, 55
rectangular, 200
reinforced concrete, 309, 332
relations of span and depth,

restrained bending, 226
effects of restraint, 239

rolled section, 203
shearing unit stress in, 191

j^ span and depth, 201
special cases, 429
stress relations in loading shear

and moment, 162, 168
by addition, 173

theory of bending, 178
thin webs, 310-320
total stresses in, 155
uniform strength, 201
unit stress, bending, 176
unit stress, shear, 191
unsymmetrical section, 203
uniform moment, 173
various loadings, 174
web buckling, 315, 318
wooden, 184, 198, 309

Bearing, 113, 130
Bearing block, 141, 254, 292, 361
Bending,

combined with direct stress, 298
formula for stress, 182
general theory of, 178
in columns, 255
in purlins, 295
ordinary theory of, 179
restrained, 226
symmetric and unsymmetric, 178
ultimate strength in, 187
unit stresses in, 179
unsymmetric, 347

Bending moment,
and shear, 168
by addition, 173
components of, 359
continuous beams, see Continuous

hearns

diagrams, 164, 420
graphic diagram, 420
uniform, 173
variation in, 159

Bond, 122
Bow's notation, 406
Brick and stone, 121
Brittleness, 109

C
Calculations, 4, 124

201 Cantilever beams, 156

447
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shear and moment in, 170
Cast iron, 118
Center of gravity, 61, 64

areas, 72
by approximation, 72
by integration, 71
by trial, 72
graphic solution, 419
various solids, 71

Center of moment, 40
choice of, 42

Coefficient of expansion, 114, 392
average values for, 427

Coefficient of friction, 383
average values for, 443

Columns, 254
bending in, 255
built up section, 281
braced, 282
cast iron, 278
characteristic shapes, 260
classification of, 256
concrete, 330
critical load, 255
curves for working stress, 271
design of, 280
eccentric loads, 286
end conditions, 258, 266, 278

round, 263
fixed, 266
flat, 266

Euler's theory, 262
general form, 267
limitations of, 267
modifications of, 269

formulas, 261
Euler, 261, 26.7

Gordon, Eankine, 270
parabolic, J. B. Johnson, 270
straight line, T. H. Johnson,

273
working, 275, 278, 282

general theory, 263
ideal, 255
investigation of, 279
limit of validity, 267, 278
long columns, 257, 262
radius of gyration, 265, 279
results of tests, 275
slenderness ratio, 265, 282
steel, 276, 277
wood, 278
working formulas, 278

Combined materials, 324
concrete column, 330
concrete beam, 332
flitched beam, 326

Combined stresses, 286-323
bending and direct stress, 298

direct stress and shear, 304
general theory, 287
in beams, 306
transverse loading, 294

Components,
of a force, 16
of a moment, 348, 359

Compression, 25
and shear, 104
failure in, 110

Computations, 6

Concrete, 121
Continuous beams, 240

alignment of supports, 251
bending moments used in design,

252
concentrated loading, 249
partial distributed loads, 250
uniform loading, 243, 250, 251

Cost, 116
Critical load, 255
Cross section, 80

net, 83
Curves,

column, 259-283
fatigue, 116
for reinforced concrete beams,

338
stress-deformation, 96

Cylinders, 400

Dead load, 252
Deflection, 207

by addition, 221
fundamental equation, 220
maximum, 220

Deformation, 89, 93
in beams, 207

Design,
(structures in general), 123

Derrick, 30, 388
reactions of, 43

Diagrams,
areas of, for beams, 169
bending moment, 164
force and space, 32
shear, 159
special beams, 429
truss, dead load, 32, 409
truss, wind load, 422

Ductility, 109
Dynamics, 9

Eccentric loading, 286
on columns, 293
on rectangular block, 141, 288,

292
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Elasticity, 94, 107
modulus of, 98, 427

Elastic curve, 208
by inspection, 210
general equation for, 212
slope of, 214

Elastic limit, 94
Empirical method, 3

Energy, 372
Equilibrant, 16
Equilibrium, 13

conditions of, 20, 39, 418
of three forces, 49
polygon, 415, 417
three classes of, 379

Euler's theory, 262
modifications of, 269

Expansion, 114
coefficient of, 114, 427

Experimental method, 3

Factor of safety, 86, 375, 428
Failure,

in compression, 110
in ductile materials, 111
in steel columns, 113
in tension, 110

Fatigue, 116
Fiber stress, 79
Fixation, 226
Flitched beams, 326
Forces, 11

characteristics of, 12
classification of, 13
concurrent, 13, 15-23
concurrent coplanar, 23
coplanar, 13, 15-23
introduced, 416
non-concurrent coplanar, 48, 414
non-coplanar, 384
parallel, 53, 408
transmissibility of, 46
uniformly varying, 136

Forces and stresses, 24-36
Formulas,

column, 261
Frame diagram, 418
Freebody method, 27
Friction, 49, 382

angle of repose, 384
coefficient of, 383, 443

Gordon, column formula, 270
Graphic method, 404-424

bending moment diagrams, 420
Bow's notation, 406
center of gravity, 417

diagrams, 404
equilibrium polygon, 415
general principles, 404
introduced forces, 416
non-concurrent forces, 414
reactions of a beam, 420
resultants, 407
trusses, 32, 409
wind loads, 422

Gravity, 10
center of, 61, 64

H
Hardness, 113
Historical note, 7

Horse power, 373

I

I beams, 184, 198, 202
Impact, 374
Inertia, moment of, 145-154, 358

polar moment of, 403
principal axes, 356
product of, 349

Intensity of stress, 79

Introduced forces, 416
Investigation, 123

Kinetic energy, 372

Least work, principle of, 375
Lever arm, 39

Live load, 252
Load line, 409, 413
Loads,

axial, 79
critical, 255
dead, 252
eccentric, 141
impact, 374
live, 252
shock, 374
suddenly applied, 373
transverse on beams, 294

wind, 422

M
Masonry, 121
Materials, 107

combined, see Combined materials

factors of safety, 428
table of properties, 427

Methods,
free body, 26
graphic, 404-424
of structural engineering, 3
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Modulus of elasticity, 08
average values, 426

Modulus of rupture, 187, 189
Modulus, section, 183
Moment,

bending, 158, 420
center of, 40
of a force, 38
of inertia {see Inertia), 145-154
resisting, 158
static, 76
twisting, 401

Motion, laws of, 9

of rotation, 12
of translation, 12

Multi-force piece, 58

N
Neutral surface, 180, 203, 335, 364
Notation (symbols),

concrete, 333
general, 425

O
Olsen testing machines, 91

Parallel forces, 53
resultant of, 56

Pier,

uniformly stressed, 81, 254, 386
Pipes, 400
Plane sections, maintenance of, 177
Plasticity, 108
Plate girders, 204
Pole, 416
Potential energy, 376
Power, 373
Presentation of computations, 6

Preuss, E., 84
Product of inertia, 349-358

transfer between axes, 352
Pulleys, 391

Quantities, 4

Eadius of gyration, 265, 268, 279
least, 358

Eafters, 301
Eankine's formula, 270
Rational method, 3

Eays, 416
Eeactions, 11, 41, 53, 413
by composition, 55
by graphics, 420

varying loads, 136
wind load, 422

Eedundant members, 376
Reinforced concrete,

beams, 309, 332, 338
bond, 122
columns, 330
critical steel ratio, 341
curves, 342
Joint Committee, 331
neutral surface, 335
shear, 345
symbols, table of, 333
temperature stress, 398

Repose, angle of, 384
Resisting moment, 158, 176

components of, 348
Resisting shear, 158, 176
Restrained bending, 226

effects of restraint, 239
general phenomena, 227
limits of theory, 229

Resultant, 16, 48
parallel forces, 57, 408
several forces, 414
two forces, 407
weight, 62

Riehle testing machines, 90
Riveted joints, 125

butt joints, 129
deduction for holes, 130
eccentric connections, 320
empirical rules, 131
stresses in, 127
tests of, 128

Rotation, 12, 37
Riihl, D., 84

Safe load, 123
Safety, factor of, 86

average values, 428
Section,

cross section, 80
net section, 83
section modulus, 183
transformed, 328

Set, 94
Shear, 25, 101, 103-106
and loading (beams), 162
area of diagram, 169
by addition, 173
diagrams, 159
in beams, 158
reinforced concrete, 345
resisting, 158
unit stress in beams, 192
variation in, 159
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Shearing deformation, 102
Shearing stress, 101
Sleuderness ratio, 265
Slide rule, 7

Stability, 379
Static moment, 76, 147, 194
Statics, 9

graphic, 404-424
Statically indeterminate cases, 50,

228
Steel, 117
Stiffness, 98
Strength, 85, 109

bearing, 113
ultimate, 85, 96
unit, 85

Stress, 24
and deformation, 89
and force, 24
axial, 25
by moments, 45
-deformation curves, 93, 96-98
diagrams, connected, 412
distribution diagrams, 189, 197
due to own weight, 81
fiber, 79
intensity of, 79
temperature, 392
total, in beams, 155
uniformly varying, 136
unit, 79
variation, in beams, 159
working, 87

String, 417
Strut, 254
Successive combination, 18

Suddenly applied loads, 373
Summation of components, 19

Symbols (notation),

concrete, 333
general, 425

Symmetry, axes of, 64, 67

Temperature stresses, 392
eoeflficient of expansion, 114, 392,

427
Tension, 25
and shear, 104

failure in, 110
Testing, 89

of riveted joints, 128
Three-moment equation, 243
Timber, 119
Torsion, 401
Transfer of axes,

moment of inertia, 150, 353
product of inertia, 352, 353

Transformed section, 328
Translation, 12, 37
Transmissibility of force, 46
Transverse loads,

on beams, purlins, 294, 295
Tripod, 386
Truss, 32, 409

cantilever, 412
Two-force piece, 27

U
Ultimate strength, 85, 96
Uniformly varying forces, 131
Unit deformation, 93
Unit strength, 85
Unit stress, 79, 93

ultimate, 85
working, 87

Unsymmetric bending, 347

Valve, pressure on, 140
Vertical shear, 158

W
Weathering, 114
Weight of materials, 115

average values, 427
Wind load, 422
Work, 371-378

energy, 372
external, internal, 375
impact, 374
power, 373
principal of least work, 375

Working unit stress, 87

Yield point, 95













SOUTHEASTERN
ffi'lfll^^iiir.L'BRARlES DUPL

3 9358 01325^^

TA350
Y6 Youngt Georgey Jr»

Mechanics of materiaisf by George
Youngy Jr« and Bubert Bugene Baxter*
New York, Macmiliany 1921.
vii p«f 1 £• f 451 p« ilius«f diagrs*

23 cm* (Engineering science series)

18124

28 OCT 77 1084766 NEDDbp 27-20318




