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EXTEACTS FROM THE PEEFACE TO THE
FIRST EDITION.

nnHE foundations of Mechanical Science were laid by Newton,
-J- and his achievements in this department constitute perhaps
his most enduring title to fame. Later writers have developed
his principles analytically, and have extended the region of their

application, but, in regard to the principles themselves, they have

acted the part of commentators. Nevertheless we may trace a

tendency in modern investigations, which is of the nature of a

gradual change in the point of view: there is less search for

j
causes, more inclination to regard the object to be attained as a

I
precise formulation of observed facts. On another side there is

an important respect in which modem writers have departed
from the form of the Newtonian theory. The philosophical

dictum that all motion is relative stands in pronounced contra-

^

diction with Newton's dynamical apparatus of absolute time,

absolute space, and absolute motion. It has been necessary to

reconsider in detail the principles, and the results deduced from

them, in order to ascertain what modification would be needed

to bring the theory of Rational Mechanics founded by Newton

into harmony with the doctrine of the relativity of motion.

The purpose of this book is didactic
;

it is meant to set before

students an account of the principles of Mechanics, which shall

be as precise as possible, and which shall be in accordance with

modern ideas.

The class of students for w^hom the book is intended may
be described as beginners in Mathematical Analysis. The reader

is supposed to have a slight acquaintance with the elements of

the Differential and Integral Calculus, and some knowledge of

Plane Coordinate Geometry. He is not assumed to have read

330176



VI PREFACE

Solid Geometry or Differential Equations. The apparatus of

Cartesian Coordinates in three dimensions is described, and the '

solutions of the differential equations that occur are explained, j

It not infrequently happens that analytical methods are preferred i

to geometrical ones, as likely to be more helpful to the students
j

whose wants are in view. i

In addition to the Examples in the text, some of which are I

well-known theorems and are referred to in subsequent demon- >

strations, large collections have been appended to some of the /

Chapters. It is hoped that these may prove useful to teachers, j

and to students occupied in revising their work. These Examples ,

are for the most part taken from University and College Examina-

tion papers; others, in very small number, which I have not
j

found in such papers, are taken from the well-known collections
|

of Besant, Routh, and Wolstenholme.
j

The works which have been most useful to me in connexion I

with matters of principle are Kirchhoff's Vorlesungen uber Mathe-
j

matische Physik (Mechanik), Pearson's Grammar of Science, and
|

Mach's Science of Mechanics. The last should be in the hands of
'

all students who desire to follow the history of dynamical ideas. In

regard to methods for the treatment of particular questions, I am
conscious of a deep obligation to the teaching of Mr R. R. Webb.

A. E. H. LOVE.

Cambridge,

August, 1897.



PREFACE TO THE SECOND EDITION.

rilHE changes which have been made in this edition are, for

-^ the most part, of the nature of a rearrangement of the order

of the material. The main objects in view in this rearrangement

1 have been on the one hand to present the theory in a less abstract

(
fashion and on the other hand to avoid long preliminary dis-

cussions.

As in the first edition, some Articles have been marked with

an asterisk to indicate that they may with advantage be omitted

in a first reading. The collections of miscellaneous examples at

the ends of most of the Chapters have been retained with a few

changes; and all of these examples have now been verified or

corrected, so that it may be hoped that few errors remain. A

I

student who may be reading the book without the guidance of a

1
teacher is recommended to pay the greatest attention to the

! unmarked Articles and to the unmarked \ ollections of examples

inserted in the text.

My best thanks are due to Mr A. E. JoUiffe for his kindness

in reading the proofs.

A. E. H. LOVE.

Oxford,

September, 1906.
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INTRODUCTION.

1. Mechanics is a Natural Science; its data are facts of

experience, its principles are generalizations from experience.
The possibility of Natural Science depends on a principle which

is itself derived from multitudes of particular experiences
—the

"Principle of the Uniformity of Nature." This principle may
be stated as follows—Natural events take place in invariable

sequences. The object of Natural Science is the description of

the facts of nature in terms of the rules of invariable sequence
which natural events are observed to obey. These rules of sequence,
discovered by observation, suggest to our minds certain general
notions in terms of which it is possible to state the rules in

abstract forms. Such abstract formulas for the rules of sequence
which natural events obey we call the " Laws of Nature." When

any rule has been established by observation, and the corresponding
Law formulated, it becomes possible to predict a certain kind of

future events.

The Science of Mechanics is occupied with a particular kind

of natural events, viz. with the motions of material bodies. Its

object is the description of these motions in terms of the rules

of invariable sequence which they obey. For this purpose
it is necessary to introduce and define a number of abstract

notions suggested by observations of the motions of actual

bodies. It is then possible to formulate laws according to which

such motions take place, and these laws are such that the

future motions and positions of bodies can be deduced from them,

and predictions so made are verified in experience. In the process

of formulation the Science acquires the character of an abstract

logical theory, in which all that is assumed is suggested by ex-

jperience,
all that is found is proved by reasoning. The test of the

/validity of a theory of this kind is its consistency with itself; the

'

L. M. 1
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test of its value is its ability to furnish rules under which natural

events actually fall.

The study of such a science ought to be partly experimental ;

it ought also to be partly historical. Something should be known

of the kind of experiments from which were derived the abstract

notions of the theory, and something also of the processes of

inductive reasoning by which these notions were reached. It will

be assumed here that some such preliminary study has been

made*. The purpose of this book is to formulate the principles

and to exemplify their application.

2. Motion of a particle. We have said that our object is

the description of the motions of bodies. The necessity for a

simplification arises from the fact that, in general, all parts of a

body have not the same motion, and the simplification we make

is to consider the motion of so small a portion of a body that

the differences between the motions of its parts are unimportant.
How small the portion must be in order that this may be the

case we cannot say beforehand, but we avoid the difficulty thus

arising by regarding it as a geometrical point. We think then in

the first place of the motion of a point.

A moving point considered as defining the position from time

to time of a very small part of a body will be called a "
particle."

Motion may be defined as change of position taking place in

time.

In regard to this definition it is necessary to attend to two

things: the measurement of time, and the determination of

position.

3. Measurement of time. Any instant of time is separated
from any other instant by an interval. The duration of the

interval may be measured by the amount of any process which is

effected continuously during the interval. For the purposes of

Mechanics it is generally more important that time should be

conceived as measurable than that it should be measured by an

assigned process.
i

* Historical accounts are given by E. Mach, The Science of Mechanics (Trans-l

lation), Chicago, 1893, and by H. Cox, Mechanics, Cambridge, 1904.
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The process actually adopted for measuring time is the average
rotation of the Earth relative to the Sun, and the unit in terms

of which this process is measured is called the "mean solar

second." In the course of this book we shall generally assume
that time is measured in this way, and we shall denote the measure

of the time which elapses between two particular instants by the

letter ty then Hs a real positive number (in the most general sense

of the word "number") and the interval it denotes is t seconds.

4. Determination of position. The "
position of a point

"

means its position relative to other points. Position of a point
relative to a set of points is not definite until the set includes

four points which do not all lie in one plane. Suppose 0,A,B,C
to be four such points ; one of them, 0, is chosen and called the

origin, and the three planes OBC, OCA, OAB are the faces of

a trihedral angle having its vertex at 0. (See Fig. 1.) The

position of a point P with reference to this trihedral angle is

determined as follows :
—we draw PN parallel to 00 to meet the

plane AOB in Ny and we draw NM parallel to OB to meet OA

Fig. 1.

in if
;
then the lengths OM, MN, NP determine the position of P.

IAny particular length, e.g. one centimetre, being taken as the

unit of length, each of these lengths is represented by a number

(in the general sense), viz. by the number of centimetres contained

in it. It is clear that OP is a diagonal of a parallelepiped and

that OM, MNy NP are three edges no two of which are parallel.

/The position of a point is therefore determined by means of a

1—2
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parallelepiped whose edges are parallel to the lines of, reference, and

one of whose diagonals is the line joining the origin to the point.

It is generally preferable to take the set of lines of reference

to be three lines at right angles to each other, then the faces of

the trihedral angle are also at right angles to each other
;
sets of

lines so chosen are called systems of rectangular axes, and the

planes that contain two of them are coordinate planes'^.

It is clear from Fig. 2 that a set of rectangular coordinate

planes divide the space about a point into eight compartments,

Fig. 2.

the particular trihedral angle OABG being one compartment.
The lengths OM, MN, NP of Fig. 1, taken with certain signs, are

called the coordinates of the point P, and are denoted by the

letters x, y, z. The rule of signs is that x is equal to the number

of units of length in the length OM when P and A are on the

same side of the plane BOG, and is equal to this number with a

minus sign when P and A are on opposite sides of the plane BOG,
and similarly for y and z.

Axes drawn and named as in Fig. 2 are said to be "right-handed." If the

letters x and y are interchanged the axes are left-handed. In most applications

of mathematics to physics right-handed axes are preferable to left-handed

axest. To fix ideas we may think of the compartment in which x\ y, z are all

positive as being bounded by two adjacent walls of a room and the floor of the

* We shall, in the course of this book, make use of rectangular coordinates

only.

t In the course of this book the axes will be taken to be right-handed unless a

statement to the contrary is made.
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room. If we look towards one wall with the other wall on the left-hand, and
name the intei-section of the walls the axis of 2, the intersection of the floor

with the wall on our left the axis of x, and the intersection of the floor with

the wall in front of us the axis of y, the axes are right-handed. An ordinary,
or right-handed, screw, turned so as to travel in the positive direction of the

axis of a: (or 3/,
or z) will rotate in the sense of a line turning/rom the positive

direction of the axis of y (or 2, or x) to the positive direction of the axis of

z (or X, or y). The senses of rotation belonging to the three screws are

indicated in Fig. 3.

Fig. 3.

5. Frame of reference. A triad of orthogonal lines OA,

OB, OC, with respect to which the position of a point P can be

determined, will be called a frame of reference.

To determine a frame of reference we require to be able to

mark a point, a line through that point, and a plane through that

line. Suppose to be the point, OA a line through the point,

AOB a plane through the line. We can draw on the plane a line

at right angles to OA meeting it in 0, and we can erect at a

perpendicular to the plane. The three lines so determined can be

a frame of reference.

In practice we cannot mark a point but only a small part of a body, for

example we may take as origin a place on the Earth's surface; then at the

place we can always determine a particular line, the vertical at the place, and,

at right angles to it, we have a particular plane, the horizontal plane at the

place ;
on this x^lane we may mark the line which points to the North, or in

any other direction determined with reference to the points of the compass,

we have then a frame of reference. Again we might draw from the place lines

in the direction of any three visible stars, these would determine a frame of

reference. Or again we might take as origin the centre of the Sun, and as

lines of reference three lines going out from thence to three stars.
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When we are dealing with the motions of bodies near a place

on the Earth's surface, for example, the motion of a train, or a

cannon-ball, or a pendulum, we shall generally take the frame of

reference to be determined by lines which are fixed relatively to

the Earth, and we shall generally take one of these lines to be

the vertical at the place. When we are dealing with the motion

of the Earth, or a Planet, or the Moon, we shall generally take

the frame of reference to be determined by means of the
"
fixed

"

stars.

A point, or line, or plane which occupies a fixed position

relatively to the chosen frame of reference will be described as

"fixed."

6. Choice of the time-measuring process and of the
frame of reference. Time may be measured by any process which

goes on continually. Equal intervals of time are those in which equal

amounts of the process selected as time-measurer take place, and different

intervals are in the ratio of the measures of the amounts of the process that

take place in them. In any interval of time many processes may be going on.

Of these one is selected as a time-measurer; we shall call it the standard

process. "Uniform processes" are such that equal amounts of them are

effected in equal intervals of time, that is, in intervals in which equal amounts

of the standard process are effected. Processes which are not uniform are

said to be "variable." It is clear that processes which are uniform when

measured by one standard may be variable when measured by another standard.

The choice of a standard being in our power, it is clearly desirable that it

should be so made that a number of processes uncontrollable by us should be

uniform or approximately uniform
;

it is also clearly desirable that it should

have some relation to our daily life. The choice of the mean solar second as

a unit of time satisfies these conditions. So long as these conditions are not

violated, we are at liberty to choose a different reckoning of time for the

purpose of simplifying the description of the motions of bodies.

The choice of a suitable frame of reference, like the choice of the time-

measuring process, is in our power, and it is manifest that some motions which

we wish to describe will be more simply describable when the choice is made
in one way than when it is made in another. We shall return to this matter

in Chapter XI.



CHAPTER I.

DISPLACEMENT, VELOCITY, ACCELERATION.

7. The history of the Science of Mechanics shows how,

through the study of the motions of falling bodies, importance
came to be attached to the notions of variable velocity and

acceleration, and also how, chiefly through the proposition called

''the parallelogram of forces," the vectorial character of such

quantities as force and acceleration came to be recognized. We
shall now be occupied with precise and formal definitions of some

vector quantities and with some of the immediate consequences
of the definitions.

8. Displacement. Suppose that a point which, at any

particular instant, had a position P with reference to any frame,

has at some later instant a position Q relative to the same frame.

The point is said to have undergone a "
change of position

"
or a

displacement. Let the line PQ be drawn. It is clear that the

displacement is precisely determined by this line
;
we say that it

is represented by this line. Let the line PQ drawn through P
be produced indefinitely both ways, and let a parallel line

be drawn through any other point, for

instance through 0. Then this line de-

termines a particular direction
;

this is

the direction of the displacement. Of the

two senses in which this line may be

described one, OR, is the sense from

towards that point {R) which is the fourth

corner of a parallelogram having OP, PQ
as adjacent sides

;
this is the sense of the

displacement. The measure of the length
of PQ is the number of units of length it

f' 4

contains; this number is the magnitude
of the displacement. The subsequent position, Q, is entirely
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determined by (1) the previous position, P, (2) the direction of

the displacement, (3) the sense of the displacement, (4) the

magnitude of the displacement.

Further it is clear that exactly the same change of position

is effected in moving a point from P to iT by
the straight line PK, and from K to Q by the

straight line KQ, as in moving the point from

P to Q directly by the straight line PQ. That

is to say, displacements represented by lines

PK, KQ are equivalent to the displacement

represented by the line PQ.

Displacement is a quantity, for one dis-

placement can be greater than, equal to, or

less than another
;
but two displacements in

diiferent directions, or in different senses, are

clearly not equivalent to each other, even when they are equal in

magnitude; and thus displacement belongs to the class of mathe-

matical quantities known as vectors or directed quantities.

9. Definition of a vector. A vector may be defined as a

directed quantity which obeys a certain rule of operation*.

By a "directed quantity" we mean an object of mathematical

reasoning which requires for its determination (1) a number

called the magnitude of the quantity, (2) the direction of a line

called the direction of the quantity, (3) the sense in which the

line is supposed drawn from one of its points, called the sense of

the quantity.

Let any particular length be taken as unit of length. Then

from any point a straight line can be drawn to represent the

vectorf in magnitude, direction, and sense. The sense of the line

is indicated when two of its points are named in the order in which

they are arrived at by a point describing the line.

* The rule of operation is an essential part of the definition. For example,
rotation about an axis is not a vector, although it is a directed quantity.

t The line is not the vector. The line possesses a quality, described as

extension in space, which the vector may not have. From our complete idea of the

line this quality must be abstracted before the vector is arrived at. On the other

hand the vector is subject to a rule of operation to which a line can only be

subjected by means of an arbitrary convention.
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The rule of mathematical operation to which vectors are

subject is a rule for replacing one vector by other vectors to

which it is (by definition) equivalent.

This rule may be divided into two parts and stated as

follows :
—

(1) Vectors represented by equal and parallel lines drawn

from different points in like senses are equivalent.

(2) The vector represented by a line AC is equivalent to the

vectors represented by the lines AB, BG, the points A, B, G being

any points whatever.

Among vector quantities, as here defined, we note (i) displacement of a

particle, (ii) couple applied to a rigid body.

10. Examples of equivalent vectors. If AG, A'C are

equal and parallel lines, their ends can be joined by two lines AA\

Fig. 6.

GG' which are equal and parallel; then the vectors represented by

AG, A'G' are equivalent; vectors represented by AG, G'A' are not

equivalent.

Again '\i A^ B, G are any three points, and a parallelogram

A, B, C, D is constructed having AB, BG as adjacent sides, AD

Fig. 7.

and BG are equivalent vectors. Also the vector ^0 is equivalent

to the vectors AB, BG, or AD, DG, or AB, AD.
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Further if a polygon (plane or gauche) is constructed, having
AG a.s one side, and having any points

Py Qy ... T as corners, the vector repre-

sented by ^(7 is equivalent to the vectors

represented by AP, PQ, ... TO. This is

clear because by definition the vectors

AP, PQ can be replaced by AQ, and so

on. The statement is independent of

the number of sides of the polygon, and

of the order in which its corners are

taken, no corner being taken more than

once, provided that the points A, (7 are

regarded as the first and last corners.

[The restriction that no corner is to be

taken more than once will be presently removed.]

In particular, if the polygon is a gauche quadrilateral ABDG,
a parallelepiped can be constructed having its edges parallel to AB,

BD, DC, and having J. (7 as one diagonal. Then the vector AG m

equivalent to the vectors represented by the edges AB, AP, AQ
which meet m A. (See Fig. 9.)

Fig. 8.

Fig. 9.

The case of this which is generally most useful is the case

where the edges of the parallelepiped are the axes of reference

relatively to which the positions of points are determined.

11. Components and resultant. A set of vectors equiva-

lent to a single vector are called components, and the single vector

to which they are equivalent is called their resultant.

The operation of deriving a resultant vector from given com-

ponent vectors is called composition, we compound the components
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to obtain the resultant
;
the operation of deriving components in

particular directions from a given vector is called resolution, we

resolve the vector in the given directions to obtain the components

in those directions.

It is clear from the constructions in the preceding article that

we can resolve a vector in one way into components parallel to

any two given lines which are in a plane to which the vector is

parallel, and again we can resolve the vector in one way into

components parallel to any three given lines not in the same

plane.

When the directions of the component vectors are at right

angles to each other the components are called resolved parts of

the resultant vector in the corresponding directions.

Thus, if we take a system of rectangular coordinate axes, any

vector parallel to a coordinate plane, e.g. the plane of (a?,?/), can be

resolved into components parallel to the axes of oo and y, these are

the resolved parts of the vector in the directions of the axes of x

and y.

Again, if we take a three-dimensional system of rectangular

axes, any vector can be resolved into components parallel to the

axes of sc, y, and z, and these are the resolved parts of the vector

in the directions of these axes.

Fig.* 10.

In the former case we take OP to represent the vector, and

draw PM at right angles to Ox, then OM and MP represent the

resolved parts of the vector parallel to the axes. If R is the
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magnitude of the vector represented by OP, and 6, <f>
the angles*

between the lines OP and Ox, Oy, then R cos 6 and R cos <^ are

the magnitudes of the resolved parts respectively, and these are

the projections of OP on the axes.

More generally, we take OP to represent the vector, and draw

a parallelepiped with and P as opposite corners and with its

faces parallel to the coordinate planes, then the resolved parts of

the vector in the directions of the axes are numerically equal to

the projections of OP on the axes. If R is the magnitude of the

IVI
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This rule determines the senses as well as the magnitudes of

the resolved parts ; thus, when cos 6, in the first case, and I, in

the second case, are negative, the component parallel to the x axis

is in the negative direction of that axis, ie. in the direction xO

produced.

It is clear from this rule that, when the magnitudes and signs

of the resolved parts of a vector in the directions of three mutually

rectangular lines are given, the vector is uniquely determinate,

that is to say there is one and only one vector which has given

resolved parts parallel to three such lines.

The construction in the former of these cases is a construction

for the resolved parts of a p

vector parallel and perpen-

dicular to a line. As before,

let OP be a line representing

the vector, and OA a line

parallel and perpendicular

to which the vector is to be

resolved. Draw PM at right

angles to OA. Then the

vector is equivalent to vectors represented by OM^ MP, and the

magnitudes of these are respectively R cos d and R sin 6, where

R is the magnitude of the vector to be resolved, and 6 is the

angle between its direction and OA.

The vector represented by MP is the resolved part of the

vector represented by OP at right angles to the line OA.

12. Composition of any number of vectors. I. Consider

first the case where all the vectors are

parallel to a plane, and take it to be

the plane oi (x, y). Let OPi, OP^,

. . . OPn be lines representing the

vectors, (supposed to be n in num-

ber,) in magnitude, direction, and

sense, and let 61,6^, ... 6^ be the

angles which the lines OP^, OP2,

. . . OPn make with Ox, i.e. the angles

traced out by a revolving line turning about from Ox towards

Fig. 13.

Fig. 14.

Oy. Let r.2, Vn denote the magnitudes of the vectors.
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Then the vector represented by OPi may be replaced by vectors

rj cos $1 parallel to Ox, and r^ sin 6i parallel to Oy, and similarly

for the others.

All the resolved parts parallel to Ox are equivalent to a single

vector X parallel to Ox given by

X =
7\ COS Oi 4- r^ cos ^2 + • • • + ^ n COS 6n = X (7' COS 6).

All the resolved parts parallel to Oy are equivalent to a single

vector Y parallel to Oi/ given by

F = ri sin ^i + ra sin ^2 + • • • + ^»i sin ^„ = 2 (r sin 6).

The vector whose resolved parts parallel to Ox and Oy are X
and F is the resultant of all the vectors. Let the magnitude of

this vector be R, and let its direction and sense be those of a line

going out from and making an angle i/r
with Ox.

Then we have 2^ cos -^
= X, and R sin '\jr=Y.

These two equations determine the magnitude R and the

angle -i/r.
R is the numerical value of V (X^ + F^), and

yjr
is

that one among the angles whose tangents are F/X for which the

sine has the same sign as Fand the cosine has the same sign

as X.

II. Consider the more general case where the vectors are not

parallel to a plane. Let i\, r^,-"rn be the magnitudes of the

vectors, and call any one of these numbers r. Let ly m, n be the

cosines of the angles which the line representing this vector in

direction and sense makes with the axes Ox, Oy, Oz. Then this

vector may be resolved into rl, rm, rn parallel to the lines Ox, Oy,

Oz, and the whole set of vectors is equivalent to a vector whose

resolved parts parallel to the axes are X, Y, Z, where X = %rl,

Y=^rm, Z=^rn, the summations extending to all the vectors of

the set. The resultant is therefore a vector whose magnitude, R,

is the numerical value of VC^'^ + Y^-\- Z'^), and such that the line

representing it in direction and sense makes with the axes Ox, Oy,

Oz angles whose cosines are XjR, Y/R, Z/R.

13. Vectors equivalent to zero. When the magnitude of

the resultant of any set of vectors is zero the set of vectors is said

to be equivalent to zero. Thus two equal vectors parallel to the

same line, and in opposite senses, are equivalent to zero.
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It is clear that the sum of the resolved parts, in any direction,

of a set of vectors equivalent to zero is equal to zero.

Again vectors parallel and proportional to the sides of a

closed polygon, and with senses determined by the order of the

corners when a point travels round the polygon, are equivalent

to zero.

This last statement enables us to do away with the restriction

(Art. 10) that in the resolution of a vector into components

parallel to the sides of a polygon not more than two sides of the

polygon may meet in a point.

14. Components of displacement. Let x, y, z be the

coordinates of a moving point at any particular instant with

reference to any particular frame, x
, y\ z' the coordinates of the

point at a subsequent instant, with reference to the same frame,

then X —
X, y'

—
y, z' — z are the components, parallel to the axes,

of a vector quantity which is the displacement of the point.

(Cf. Art. 8.)

15. Velocity in a straight line. Consider in the first place

a point moving in a straight line, e.g. one of the lines of reference,

and let s be the number of units of length it passes over in t units

of time. Then it may happen that the two numbers s and t have

a constant ratio whatever number we take for t The point is then

said to move uniformly in the line, and the fraction - is defined to
z

be the measure of its velocity. A point moving uniformly
describes equal lengths in equal times.

Again consider the case where the point moves in a straight line, but the

number of imits of length passed over in any interval of time does not bear a

constant ratio to the number of imits of time in the interval. In this case

there will be equal intervals of time in which the point describes unequal

lengths ;
in the one of two equal intervals in which it describes the greater

length we should say it was moving faster, in the other, in which it describes

the shorter length, we should say it was moving more slowly. We have thus

an idea of velocity of a point not moving uniformly, and we seek to make it

precise.

For a point moving in a straight line we may define the

average velocity in any interval of time to be the fraction

number of units of length described in an interval

number of units of time in the interval
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When the point is not moving uniformly this fraction is a

variable number, which has a definite value when the measure of

the interval is given and the first instant of the interval is given.

Taking the first instant of the interval always the same, and

taking for the measure of the interval a series of diminishing

numbers, we obtain a series of fractions, which approach a limit-

ing value as the measure of the interval is indefinitely diminished.

This limiting value is defined to be the velocity of the point at

the first instant of the interval. We might in the same way
define the velocity of a point at the last instant of an interval.

We can now define the velocity of a point moving in a straight

line at any instant. It is the limit of the average velocity in an

inte7'val of time beginning or ending at the instant, the interval

being diminished indefinitely.

The two limits are in general the same
;
when they are differ-

ent we call them the velocity just after the instant and the

velocity just before the instant respectively.

Let t be the measure of the interval of time which has elapsed

since some particular instant, chosen as the origin of time, and

suppose that at the end of this interval the point has described a

length s measured from some particular point in the line of its

motion. We say that the point is at s at time t. In the same

way suppose that it is at s' at time t'. Then in the interval t'
— t

it describes a length s' — s, and its average velocity in the interval

s' — s
is '-

. The number s is a function of the number t, and the
t "- z

limit of the fraction just written is the number known as the

differential coefficient of s with respect to t. The velocity of the

ds
moving point is accordingly measured by -j-

.

The number s' - s is the measure of the displacement of the point during

the interval t'-t. When the velocity is uniform it is measured by the

displacement in a unit of time. If the unit of time were replaced by a

smaller unit the displacement in it would be replaced by a shorter length,

and this length would measure the velocity in terms of the new unit of time.

However short an interval is taken for the unit of time the length described

in it measures the velocity in terms of it. When we wish to recall this fact,

and to bring it into connexion with the definition of variable velocity we say
that the latter is measured by "the rate of displacement per unit of time,"
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but we must not attach to this phrase any other meaning than that which has

just been explained, i.e. the phrase means nothing but the limit of the fraction

number of units of length described in an interval

number of units of time in the interval

when the interval is indefinitely diminished.

16. Velocity in general. When the point is not moving
in a straight line it will have a component of displacement in any
interval f — t parallel to each of the three axes of reference.

Let these components be w —x, y'
—

y, z' — z. Then each of the

fractions —,
—-

, ^,
—

j , -,
—-

,
has a limit, and these limits are,

t — t t — t t — t

as above, the rates of displacement per unit time parallel to the

axes. They are defined to be the component velocities parallel to

the axes. As before x, y, z are functions of t, and the component
velocities parallel to the axes are

dx dy dz

dt' dt* dt'

The velocity at an instant is the limit of the average velocity in an
interval. This limit has a definite magnitude, and is associated with a

definite straight line. At any instant the point is moving along the tangent
to a curve, called its path or trajectory. The velocity is associated with this

particular line, drawn in a definite sense. Let s be the arc of the curve
measured from some particular point of the curve up to the position of the

moving point at time ?, and let s' be the corresponding arc for time t'. Then
the length of the chord joining the two positions is the magnitude of the

vector whose components parallel to the axes are a^'-w, y'-y, z' -z. From
the definition of s we have the equation

Thus the magnitude of the velocity of the moving point at time ^ is -^ ,
where

s is the length of the arc of the path measured, in the sense of description of

the path, from some particular point of it to the position of the moving point
at time t. The magnitude of the velocity of a point is often called its speed,

and, when it is independent of the time, the point is said to move with uniform

speed whether its path is straight or curved.

It is manifest that the velocity of a moving particle can be represented in

many respects by a vector, of which the components parallel to the axes are

dx dy dz ,

jt } ^ ) ^ ;
but the vector does not express the association of the velocity

with a particular line—the tangent to the path of the particle.

L. M. 2
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17. Localized vectors. The vectors we have so far con-

sidered have no relation to any particular point, they are equally
well represented by lines drawn from any point ;

and they have no

relation to any particular line, they are equally well represented

by segments of all lines parallel to their direction. They may be

called unlocalized vectors. But it is often important to consider

quantities which, in other respects, have the properties of vectors,

but which have relations to particular points or particular lines.

A vector localized at a point is defined by its magnitude,

direction, and sense, and also by a point and by a rule of equiva-

lence, viz.:—two sets of vectors localized at the same point are

equivalent if two sets of unlocalized vectors with the same

magnitudes, directions, and senses are equivalent.

There is in general no rule of equivalence for vectors localized

at different points.

A vector localized in a line is a vector localized at any point in

a particular line, which is in the direction of the vector, with the

additional rules of equivalence, (i) Two vectors localized in the

same line are equivalent if they have the same magnitude and the

same sense, (ii) Two vectors localized in lines which meet are

equivalent to a single vector localized in a line.

All the constructions in the previous Articles apply to vectors

localized at points and to vectors localized in lines, provided
that all components and resultants are localized at the proper

points or in the proper lines. In particular a vector localized at

a point is equivalent to components (or resolved parts) of the

same magnitudes, directions, and senses as if it were unlocalized,

provided that these components and resolved parts are localized at

the same point; also a vector localized in a line is equivalent to

components (or resolved parts) of the same magnitudes, directions,

and senses as if it were unlocalized, provided that these compo-
nents and resolved parts are localized in lines which meet in a

point on the line of the resultant.

Thus a vector localized at may be represented (as in Fig. 12)

by a line OP^ and is equivalent to vectors localized at and

represented by lines OH, OK, 0M\ and a vector localized in the

line OP, having the same magnitude and sense, is equivalent to

vectors localized in any three lines parallel to Ox, Oy, Oz, meeting
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in a point on OP, and having the magnitudes and senses of OH,

OK, OM.

The differences between the three classes of vectors may be

expressed thus :
—

A vector (un localized) is equivalent to any parallel vector of

equal magnitude and like sense. Thus the line representing the

vector may be drawn from any point.

A vector localized in a line is equivalent to any vector of equal

magnitude and like sense localized in the same line. The line

representing it may be drawn from any point in a particular line,

and is a segment of that line.

A vector localized at a point is not equivalent to any other

single vector. The line representing it must be drawn from the

point.

A vector localized in a line is clearly determined by its com-

ponents parallel to three given lines and by one point of the line,

in particular the line in which it is localized is thereby determined.

As examples of vectors localized in lines we may cite (i) velocity of a

moving particle, (ii) force applied to a rigid body (Chapter VI). Force

applied to a particle is an example of a vector localized at a point (Chapter III).

18. Formal definition of velocity. We may now define the

velocity of a moving point to be a vector, localized in a line

through the position of the point, whose resolved part in any
direction is the rate of displacement of the point in that direction

per unit of time.

19. Measurement of velocity. The measure of any par-

ticular velocity is a number expressing the ratio of the velocity to

the unit velocity.

The unit velocity is that with which a point describes one

unit of length uniformly in each unit of time.

The number expressing a velocity is the ratio of a number ex-

pressing a length to a number expressing an interval of time.

It therefore varies inversely as the unit of length and directly as

the unit of time.

Velocity is accordingly said to be a quantity of one dimension

in length, and of, minus one dimension in time; or its dimension

symbol is LT-^, where L stands for length, and T for time.

2—2
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20. Moment of localized vector. The reason for defining

velocity as a localized vector is that special significance is found

to attach to a certain quantity called the "moment of the velocity."

We shall attend at present to the cases of vectors localized in

lines that lie in a plane and vectors localized at points in a plane,

and having their directions parallel to the plane*. We define the

moment of such a vector about a point in the plane as follows :
—

Draw a line L' in the direction of the vector, so that if the

vector is localized in a line that line is L\ and if the vector is

localized at a point the line L' passes through the point. The

moment of the vector about a point is the product, with a

certain sign, of the magnitude of the vector and the perpendicular

to L' from 0. The rule of signs is this : Draw a line L through
at right angles to the plane containing and L'

,
and choose a

sense of description of this line
; then, if the senses of L and the

vector are the same as those of translation and rotation in an

ordinary right-handed screw, the sign is +, otherwise it is — .

The rule of signs may also be stated thus : Let a watch be

placed in the plane of and L\ so that a line drawn from the

back to the face is in the sense of L\ when the sense of the

vector is opposite to that of the motion of the hands the sign
is +, otherwise it is —

.

21. Iiemxna. The moment about a point of a vector

localized at a point A is identical with the moment about of the

resolved part of the vector at right angles to OA.

Let 6 be the angle which the direction of the vector makes

with the line AO, and

draw ON at right angles

ox^^ / to the line of the vector.

The magnitude of the

resolved part of the vector

at right angles to ^0 is

R sin 6, where R is the

magnitude of the vector.

The perpendicular from

on the line of the vector

is the line ON, and it is

Fig. 15. equal to OA . sin 6.

A more general discussion will be given in Chapter III.
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Now moment of R about = R . ON
= R.OA sin 6

= i? . sin (9 . 0-4

= moment about of resolved part at right angles to OA.

22. Theorem of moments. The sum (with proper signs)

of the moments about a point of two vectors localized at a point
A is equal to the moment of their resultant about 0.

Let Pi and Pg be the magnitudes of the vectors, 6i and 6^ the

angles which the lines re-

presenting them drawn from

A make with AO, R the

magnitude of the resultant,

<f>
the an»^le which the line

representing it makes with

AO. Then the magnitudes
of the resolved parts at right

angles to AO are Pj sin 6i ,

Pa sin ^2 »
and Rsm<f>, and

we know (Article 12) that

i^ sin
<^
= Pj sin ^i + Pg sin 62.

Now sum of moments of Pi and Pg about

= OA (Pi sin (9i + P2 sin O^)

= OA . Rsm<j>
= moment of R about 0.

This result can be immediately extended to any number of vectors

localized at a point.

It follows that, when a vector localized at a point (^1, y^) in

the plane of (x, y), or in a line

passing through this point, is

specified by its components
Xi and Yi parallel to the axes

of w and y, its moment about

the origin is Xi Y^ -
y^X^. See

Fig. 17. For example, the

moment about the origin of the

velocity 1-^-, -^ j
of a particle

moving in the plane of (x, y) is Fig. 17.

Fig. 16.
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I-y
at time t.

( ^ -^
—

?/ -^ )
, where x and y are the coordinates of its position

23. Acceleration. A point moving with a variable velocity,

relative to any frame, is said to have an acceleration relative to

that frame.

When the point is moving in such a way that its velocity

increases by equal amounts in equal intervals of time, however

short the intervals may be, it is said to have a uniform accelera-

tion, provided that the velocity acquired in every interval has the

same direction and sense.

Uniform acceleration is determined, as regards magnitude,

direction, and sense, by the velocity added in a unit of time.

When the acceleration is not uniform, the moving point is

said to have a variable acceleration.

The acceleration of a point moving in a straight line is the

rate of increase of its velocity per unit of time. This is a short

way of expressing the following definition :
—

Let V be the velocity of the point at time t, and v its velocity

v' — V
at time t\ then its acceleration is the limit of the fraction -,

—-
t — t

when the interval t' —tis indefinitely diminished, or in words it is

the limit of the fraction

number of units of velocity added in an interval of time

number of units of time in the interval
'

when the interval is indefinitely diminished. The number v is

a function of the number t, and its differential coefficient with

respect to t is the acceleration, i.e. the acceleration is measured

, dv

When the point is not moving in a straight line it will in

general have a variable velocity parallel to each of the lines of

reference (coordinate axes). Let u, v, w be component velocities

parallel to these axes at time t^ and u', v\ w corresponding com-

ponents at time t', then the fractions —,
—-

, —,
—

. , -—,
—— have

Z ~' z z ^ z z ~- z

limits when the interval t' —t is indefinitely diminished, and
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these limits are the differential coefficients -^ , -^ , -r . The
at at at

vector which has these components parallel to the axes is defined

to be the acceleration of the point, or in other words we define

the acceleration of a moving point to he the vector, localized in a

line through the point, whose resolved part in any direction is the

rate of increase of the velocity in that direction per unit of time.

24. Measurement of acceleration. The measure of any

particular acceleration is the number expressing the ratio of the

acceleration to the unit acceleration.

The unit acceleration is that uniform acceleration with which

a moving point gains a unit of velocity in a unit of time.

The number expressing an acceleration is the ratio of a number

expressing a velocity to a number expressing an interval of time.

It therefore varies inversely as the unit of length and directly as

the square of the unit of time.

Acceleration is accordingly said to be a quantity of one

dimension in length and of minus two dimensions in time, or

its dimension symbol is LT~^.

Accelerations are not measured directly. The quantities which are

measured directly are lengths and angles. By measuring angles we can

estimate intervals of time, using a clock or watch, for example. The values

of velocities are deduced from a knowledge of the distances described in

different intervals of time. The values of accelerations are deduced from a

knowledge of the values of velocities at different times.

25. Notation for velocities and accelerations. We
have so frequently to deal with differential coefficients of

quantities with regard to the time that it is convenient to use

for them an abbreviated notation. We shall therefore denote

the differential coefficient of any quantity q with regard to the

time t by placing a dot over the q, thus q stands for
-^

.

Now let oc, y, z be the coordinates of a moving point at time t,

then its component velocities parallel to the axes are denoted

by X, if, z.

Again let u, v, -m; be the component velocities of a point parallel

to the axes, then its component accelerations are denoted by

ii, V, w.
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Since u — ^-,v = ~, w = -rr it is convenient to write for
at at at

them x, y, z respectively. Then x stands for ^— or -^ (-77) ,
and

so on.

In the same way when we have to deal with any function

of the time, say q, we may write q for -7^ ,
as we write q for -^ ,

Also, following the analogy of the case where q is x, y, or z, we

may call q the velocity with which q increases, and q the accelera-

tion with which q increases.

26. Ang^ular velocity and acceleration. Let a line, for

example the line joining the positions at any time of two moving

points, move so as always to be in the same plane with reference

to any frame. To fix ideas we shall take the plane to be the

coordinate plane of {x, y). Suppose the line to make an angle 6

(measured in radians) with the axis x at time t, and an angle

6 -{ ^6 with the same axis at time t + ^t. Then A^ is the

measure of the angle turned through by the line in the interval

measured by A^, and the limit of the ratio of these two numbers

is 6, the differential coefficient of 6 with respect to t This

number, 6, is called the angular velocity of the line. In the same

way 6 is called the angular acceleration of the line.

27. Relative coordinates and relative motions. Let

^ly 2/1, -2^1
be the coordinates of a point A at time t referred to

axes with origin at 0, x^, y^, z^ the coordinates of a second point

B at the same time referred to the same axes, and f, 7;, ^ the co-

ordinates of B at the same time referred to parallel axes through

A. Then f, ?;, J" are called the coordinates of B relative to A.

We have a^a
= ^1 + f» 1

2/2
=

2/1+^'
[

^-^^

^2
=

-S"! + ?• I

Let accented letters denote at time t' the quantities that cor-

respond to unaccented letters at time t, thus let ^/, y^, z( be the

coordinates of A', the position of A at time t'. Then as before

a?2
= ^1 + g , 1

y^ = yx^v, \

Z'2
= Zl + T- J
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By subtraction we deduce

y2-y2 = (yi-yi)-\-{v-v),
\

(2)

^/-^2 = (^/-^i)+(r-r).J

The terms on the left are the components parallel to the axes

of the displacement of B.

The terms in the first brackets on the right are the components

parallel to the axes of the displacement of A.

The terms in the second brackets on the right are the com-

ponents of the displacement of B relative to parallel axes with

origin at A.

Thus we have the result:—The displacement of a point B
relative to axes at is compounded of the displacement of a

point A relative to the same axes and the displacement of B
relative to parallel axes through A.

By dividing both members of each of the equations (2) by
f — t and passing to the limit when t' — t is indefinitely diminished,

or, what is the same thing, by differentiating equations (1) with

respect to t, we find

^2 = ^1 + t 2/2
=

yi + V, 4 = ii + t

and by differentiating again we find

00.2
= ^1 4- f , 3/2

=
2/1 + V, z%

=
Zx + ?.

These equations may be expressed in words as follows :
—

The \ , ^. \ oi B relative to axes at is compounded
(acceleration )

*

of the \ \ ^.[ofA relative to the same axes and the
[accelerationj

] , ,
. I of 5 relative to parallel axes throusfh A.

(acceleration]
^ °

28. Geometry of relative motion. The geometrical view of

relative motion is instructive, and leads easily to results of some importance.
For shortness we shall speak of displacement, velocity, and acceleration of a

point relative to a second point, meaning thereby displacement, velocity, and

acceleration of the point relative to axes drawn through the second point

parallel to the axes of reference.

Let A be the position at any time ^ of a point which moves relatively

to a frame having its origin at 0, and let A' be its position at time f.
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From draw OH equal and parallel to AA\ and in the same sense; the

vector represented by OH is the displacement of A.

Similarly let B be the position at time ^ of a second point referred to

the same frame, and B' its position at time t'. From draw OK equal and

parallel to BB\ and in the same sense
; the vector represented by OK is the

displacement of B.

Fig. 18.

Then the displacement of B relative to A is the vector that must be

compounded with the displacement of A in order that the resultant may
be the displacement of B,

Join HK, Then the vector OK is compounded of OH^ HK.

Hence HK represents the displacement of B relative to A in magnitude,

direction, and sense.

Now the vector HK is the resultant of HO, OK.

Hence to obtain the displacement of B relative to A we must compound
the displacement of B with the reversed displacement of A. The resultant

is the required relative displacement.

In the same way the \ , ^. \ oi B relative to A is the \ ^ ?. \''

(accelerationj (accelerationj

which must be compounded with the \ , ^. \ oi A m. order that the^
(acceleration)

resultant may be the \ , ^. \ oi B.
•'

(accelerationj

Since the velocity of a point in any direction is the rate of increase of its

displacement in that direction per unit of time, and since its acceleration in

any direction is the rate of increase of its velocity in that direction per unit

of time, we have the rules :
—

The \ , . \ oi B relative to A is the resultant of the \ , . !

(accelerationj (accelerationj

of B and the \

^
, \7 \ oi A reversed,

(accelerationj

The compositions and resolutions described in this Article are to be

effected as if the vectors involved were not localized, but the velocity and

acceleration ofB relative to A are to be regarded as localized in lines through B,



CHAPTER II.

THE MOTION OF A FREE PARTICLE IN A FIELD OF FORCE.

29. Gravity. An unsupported body near the Earth's surface

generally falls towards the Earth. The differences in the be-

haviour of "
light

"
bodies and "

heavy
"
bodies are to be traced to

the buoyancy and resistance of the air. When the effects due to

the presence of the air are eliminated, for instance, when bodies

fall in the exhausted receiver of an air pump, it is found that all

kinds of bodies fall to the Earth with the same acceleration. The

direction of this acceleration at any place is the "
vertical at the

place." The magnitude of this acceleration depends to some extent

on latitude
; but, in the neighbourhood of any place, it is prac-

tically constant. We call it the "
acceleration due to gravity," and

we denote it by the letter g. When the centimetre is the unit of

length, the value of ^ in London is 981 '2, when the foot is the unit

of length the value is 32-2. The fact that bodies fall to the Earth

with a constant acceleration was discovered by Galileo.

30. Field of force. A region in which a free body moves

with a certain acceleration is called a "
field of force." The mag-

nitude of the acceleration is the "
intensity of the field," and the

direction of the acceleration is the "
direction of the field." When

the intensity and direction of the field are the same at all points

the field is said to be " uniform."

For example, the neighbourhood of the Earth is a field of force

of which the intensity near the Earth is g. We call it the "
field

of the Earth's gravity." If we confine our attention to a small

part of the Earth's surface we may regard the field as uniform.

31. Rectilinear motion in a uniform field. Let the

direction of the field be the axis of x, and let / be its intensity.



28 MOTION OF A FREE PARTICLE IN A FIELD OF FORCE [CHAP. II.

A particle moving in the field parallel to the axis of x has an

acceleration /. Let Xq be the value of x at the initial position of

the particle, and u its velocity (parallel to the axis of x) in this

position.

Then we are given x =/,

with the conditions x = Xq when ^=0, and x=^u when ^ = 0.

Writing v for x, so that v is the velocity at time f, we are given

with the condition v = u when ^=0.

Now one function of t having the constant / for its differential

coefficient is the function ft, and the most general expression for

a function having this differential coefficient is ft + C, where G is

an arbitrary constant. Hence v must be of the form ft + G.

Putting ^ = 0, we find u = G, so that the constant is determined.

Hence v = ii-\- ft, or x = u -{-ft

Again one function of t having the function u+ft for its

differential coefficient is ut 4- ift^, hence x must be of the form

G' i-ut + \ft^, where G' is an arbitrary constant.

Putting ^ = 0, we find Xq = G', so that the constant is deter-

mined.

Hence x =XQ-\-ut-\- \ff.

If s is the distance described in the interval t, s \s, x — Xq, so

that

s = ut + ^ft\

By elimination of t between this equation and the equation
v = u-\-ft, we find

v''-u'= 2fs.

In particular, the velocity acquired in moving from rest over a

distance s is V2/s. This is described as the "
velocity due to

falling through s with an acceleration /."

32. Examples.
1. Prove that, when the acceleration is uniform, the average velocity in

any interval of time is the velocity at the middle of the interval.

2. Obtain the formula v'^— u^= 2fs by multiplying both sides of the

equation x=f by a; and integrating.
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3. Let the distance s be divided into a great number of equal segi»ents,

and the sum of the velocities after describing those segments divided by their

number, a velocity will be obtained which will have a limit when the number

of segments is increased indefinitely, and this limit may be called the average

velocity in the distance. Prov^e that, when the initial velocity is zero, this

average velocity is equal to § of the final velocity.

33. Parabolic motion under gravity. When a particle

moving in the field of the Earth's gravity, near a place on the

Earth's surface, does not move vertically, it has a component

velocity in a horizontal direction. We prove that the particle

describes a parabola with a vertical axis.

Let the axis of y be drawn vertically upwards, and let the

plane (x, y) be the vertical plane through the initial direction of

motion.

Since the acceleration parallel to the axis z is always zero, the

particle does not acquire velocity parallel to this axis
; and, since

at time ^= it has no velocity parallel to this axis, it undergoes
no displacement parallel to this axis

;
thus the particle moves in

the plane {x, y).

At time ^ = let the velocity of the particle be F in a

direction making an angle a with the axis x.

Fig. 19.

We have the equations ^ = 0,

with the conditions that when ^ = 0,

x=V cos OL, y = Fsin a.
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Since x = 0, we have x = V cos a always.

Since y = —g, we have y = Fsin a — ^^ after an interval t.

Thus, after an interval measured by (Fsin a)lg, y vanishes, and

the particle has no velocity parallel to the axis y, it is therefore

moving parallel to the axis x. Previously to this it had a velocity

in the positive direction of the axis y, and after this it has a

velocity in the negative direction of the same axis. Its path
therefore has a vertex, which is reached after an interval

(Fsina)/^, =foSay,

from the beginning of the motion.

If we refer the motion to parallel axes of x\ y' {y' being

positive in the opposite sense to y) through the vertex A, and

take t' to measure the time of moving from the vertex A to any

point P we shall have

-— = 0, with
-rp—

^cos a, and x — 0, at time t' = 0,

and -^ =
g, with -^

= 0, and y'
— 0, at time t' = 0.

Hence a?' = Fcos a . ^', y'
=

\gt'^' Eliminating t\ we have

„ 2F2cos2a ,

so that the path of the particle is a parabola with vertex at A»

We might have deduced this result analytically from the equations J7=0,

yz=z —g. Integrating and determining the constants so that when ^=0, x=Xq^
x= Fcosa, and y=yo) 3?= Fsin a, we find

^=;ro+ Fcosa. t,

y==yQ+V^ma.t-\gt\
Eliminating t we have

F2sin2a
, iVjr - ^-^0 T nv— Vq X \-7r\ Fsma-flr^T =0,^ ^^

2^ 2^L
^ FcosaJ

'

the equation of a parabola whose axis is parallel to the axis y, and whose

vertex is at the point
F^ sin a cos a F* sin^ a

^=^^+
-g

' ^=^«+-2^-
The theorem of this Article was discovered by Galileo.

34. Examples.
1. Write down the length of the latus rectum of the above parabola.

2. Show that the height of the directrix above the starting point is V^jig.
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3. If V is the velocity at any point of the path, show that the point is at a

distance v^j'ig below the directrix.

4. Prove that the time until the particle is again in the horizontal plane

through the point of projection is (2 Fsin a)lg. [This is called the time of flight

on the horizontal plane through the point of projection.]

5. Prove that the distance from the starting point of the point where the

particle strikes the horizontal through the starting point is ( F^ sin 2a)lg. [This
is called the range on the horizontal plane through the point of projection.]

6. To find the range and time of flight on an inclined plane through the

point of projection. Let 6 be the inclination of the plane to the horizon.

Resolve up the plane, and at right angles to it. The resolved accelerations

are

-^sin^, -^cos^;

Fig. 20.

the resolved initial velocities are

Fcos (a
- e\ Fsin {a-B)\

the resolved velocities at time t are

Fcos {a -6)- gt sin 6y Fsin {a~6)- gt cos 6 ;

the distances described in time t parallel and perpendicular to the inclined

plane are

F^cos(a-^)-^^^2gin^, VtBm{a-e)-\gf^coB0.

The time of flight is obtained by making the second of these equal to zero, it is

2 Fsin (g-^)

gcosB

The range is found by substituting this value for t in Fif cos {a
— 6)- ^gt^ sin 6.

Prove that the range in question is

2F2cos2a., ^
..

;r- (tan a - tan 6\
gcosd

^ '

and that this is the same as

F2

-2^
[sin (2a -^)- sin ^].

^cos*

7. Prove that, when the velocity of projection is given, the range on an

inclined plane is greatest when the direction of projection bisects the angle
between the plane and the vertical.

8. Show that, if a parabola is constructed having its focus at the point of

projection S^ its axis vertical, and its vertex at a height F72^ above the point



32 MOTION OF A FREE PARTICLE IN A FIELD OF FORCE [CHAP. II.

of projection, then the parabolic path for which the range on a line through aS*

is greatest touches this parabola at the point where the line cuts it.

[From this it follows that all possible paths of particles moving with

uniform acceleration g downwards, and starting from a point S with given

velocity T, touch a paraboloid of revolution about the vertical through S

having its focus at ^S*. This paraboloid is the envelope of the trajectories of

such particles.]

9. A particle is to be projected from the origin with a given velocity V
80 as to pass through a given point {x, y\ the axes of coordinates being the

same as in Art. 33. Prove that the direction of projection must make with

the axis x an angle a which satisfies the equation

gx^ tan2a
- 2 V^x tan a+ (2 V^y +gx^)= 0,

arid hence show that there are, in general, two directions in which the particle

can be projected, with given velocity, from one given point, so as to pass

through another given point.

[Clearly the point {x, y) must lie within the parabola 2V'^y+gx'^= V^/g^
which is the envelope considered in Ex. 8.]

10. Prove that, in the different trajectories possible under gravity between
two ix)ints A, By the times of flight are inversely proportional to the velocities

of the projectile when vertically over the middle point of AB.

11. Two particles describe the same parabola under gravity. Prove that
the intersection of the tangents at their positions at any instant describes a
coaxial parabola as if under gravity. Prove also that, if r is the interval

between the instants when they pass through the vertex, the distance between
the vertices of the two parabolas is ^gr^.

12. A particle moves under gravity from the highest point of a sphere of
radius c. Prove that it cannot clear the sphere unless its initial velocity
exceeds ^/Hgc).

13. Prove that the greatest range on an inclined plane through the point
of projection is equal to the distance through which the particle would fall

during the time of flight.

35. Motion in a curved path. When the motion of a

body, treated as a particle, is observed, the things that can be
observed are the positions of the particle at diflferent times. The
aggregate of these positions constitutes the path of the particle.
For example, the path may be a circle, and equal arcs may be
described in equal times. In such cases we have the mathemati-
cal problem of deducing the acceleration of the particle from the
observations, that is to say the problem of determining the direction
and intensity of the field of force. Conversely we may set before
ourselves the problem: Given the acceleration of the particle, to



34-36] MOTION IN A CURVED PATH 33

determine its path and its positions at different times. The

solutions of such problems are facilitated by a theorem of kine-

matics to which we proceed.

36. Acceleration of a point describing a plane curve.

Let a particle move in the plane of {x, y).

Let V be the velocity at any point P of the path, v' the

velocity at a neighbouring point Q, and A</) the angle QTA

Fig. 21.

between the tangent at P and the tangent at Q. Also let M
be the time taken by the particle to move from P to Q, and let

As be the length of the arc PQ.

The velocity at Q can be resolved into components v' cos A</) in

the direction of the tangent at P and v sin A^ in the direction of

the normal at P.

Hence the acceleration in the direction of the tangent at P is

the limit of -r^
— when A< is indefinitely diminished. Now

V cos A<^
— v_v'

— v ,1 — cos A0
A^ "aT"^ A^

'

A T AJL 2 sin2 f
i

Ai/))
. .

and 1 - cos A<^ V2 V Aj>

A^ (A(^)2 A^ ^'

The limits of the three factors of this expression are ^, (f>,
zero.

Hence the above limit is ^- or v. Since we have
at

dv _dv ds_ dv

dt
~

ds dt ds
'

we may write v -r- for the component acceleration parallel to the

tangent, and we may also write s for it, since v is s.

L. M. 3
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Again the acceleration in the direction of the normal at P

is the limit of
^ ^^" ^

,
and this is the same as the limit of

, sin A0 A^ A5
^
~Kf Ks At

'

and the limits of these factors in order are v, 1,
-

, v, where p is

the radius of curvature of the curve at P. Thus the acceleration

in the direction of the normal drawn towards the centre of curva-

tare is - or - .

P P

37. Examples.

1. A particle describing a circle of radius a with velocity v has an

acceleration v^/a along the radius directed inwards.

If the radius vector drawn from the centre to the particle turns through

an angle 6 in time <, the acceleration of the particle has components ad^ along

the radius (directed towards the centre) and aB along the tangent in the sense

of increase of 0.

2. Verify the result that, in parabolic motion of a projectile under gravity,

the value of v'^/p at any point of the path is equal to the resolved part along

the normal to the path of an acceleration equal to g.

3. Assuming this result, and that the horizontal component of the

velocity is constant, deduce the result that the path is a parabola.

4. Interpret the formula v^/p for the normal component acceleration so

as to show that the velocity, at any point P, of a particle describing a curved

jmth, in any field of force, is equal to that due to falling through one quarter

of the chord of curvature at P, drawn in the direction of the field, with an

acceleration equal to the intensity of the field at P.

38. Simple harmonic motion. Appoint moving in a straight

line in such a way that its displacement from a fixed point at

time t can be expressed in the form

a cos (nt + e),

where a, n, e are any real constants, is said to have a "simple
harmonic motion."

Let the straight line be the axis of oc, and the fixed point the

origin. Then we have
x = a cos (nt + e),

and therefore ^ = — n^x.
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We shall now show that, if the acceleration is connected with

the displacement by an equation of the form

x= —
/jLOC,

where /* is a positive constant, the motion is simple harmonic

motion.

Let time be measured from an instant when i; = 0, and let a

be the value of x at that instant. With the origin as centre,

and with a as radius, describe a circle
; and, when the moving

point is at N on one diameter of this circle, coinciding with the

axis X, draw NP at right angles to this diameter to meet the

circle in P. Consider the motion of the point P.

Fig. 22.

Let the angle xOP = 6.

Then a;,
= a cos 6, and y, =a sin 6, are the coordinates of P.

By differentiating we have

i: = — a sin ^ . ^, ^ = — a sin ^ . & — a cos ^ . ^^

hence x = — (y6 + xO^);

since x = — fjLX,

we must have 6 = 0, and 6^ =
/jl.

Hence the point P describes the circle uniformly, the angular

velocity of the radius vector is uniform and equal to aJ/jl,
and the

angle 6 = t
aJ/jl.

3—2
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The a?-coordiDate of the point N at time t is given by

x = a cos {t slfi).

The velocity of the point is directed along xO, and its magni-

tude is a
•sjfi

sin {t ^/fi).

The above process shows that the solution of the equation

X — — flXf

with the conditions that, when ^=0, x=a, x=0, is x=a cos (ts/fi).

It follows, by changing the epoch from which time is measured,

that the complete solution must be of the form

X — a cos {(t
—

to) *J fi],

and this can be expressed in the form

a; = ^ cos (t\/fJL) + B sin (t \/fi).

Let the moving point have at time ^=0 a position denoted

by Xq and a velocity denoted by Xo', we know that, at any time t,

X must be given by an equation of the form

a? = ^ cos {t\/ fi) + B sin {t^J^l).

To determine the constant A put ^ = 0, we have Xq = A.

To determine the constant B, differentiate with respect to t,

we have
x = — A

/y/z-t
sin {t y/fi) + B \//jl

cos {t sjfi).

Now put f = and we find

Xo = B ^J|X.

Hence the solution of the equation x=—fix, with the conditions

that a; = ajo and x = i*o when ^ = 0, is

X
X— Xo cos (t s/jj) + -J-

sin {t ^Jii).

It is to be observed that the whole motion is periodic, that

is to say, it repeats itself after equal intervals of time
;
the period

. 27r
IS

-J-,

The equation a? = a cos (< Vm + e) represents simple harmonic

motion with period ^irj^Jfi. In this formula a is called the

amplitude of the motion—it is the greatest value of x; and e

determines the phase of the motion.

Simple harmonic motion may be regarded as the type of to-and-fro, or

osciUatory, motions. Oscillatory motions can generally be described either

as simple harmonic motions or as motions compounded of simple harmonic
motions in different directions.
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39. Composition of simple harmonic motions. We con-

sider the case where the moving particle has a simple harmonic

motion of period ^ parallel to each of the axes of x and y, the

acceleration in each case being directed towards the origin.

We have the equations x = — fix,

and we deduce that x and y must be given by equations of the

form
x=^A cos {t y/fi) + B sin (t \Jfi),

y=C cos (t ^J^l) + D sin {t \/fj),

where A, B, G, D are arbitrary constants depending on the initial

conditions, viz. A and C are the coordinates, and B^fi, D \/fi

the resolved velocities at the instant ^ = 0.

Solving the above equations for cos {t aJ/jl) and sin (t sjfjb), we have

(AD-BG) cos (t ^/^l)=Dx- By, (AD- BG) sin (t ^/fi)
= Ay-Gx;

eliminating t, we find

(Dx - ByY + (Ay - Gxf = (AD - BGf,

so that the path of the moving point is an ellipse whose centre

is the origin, and whose position with reference to the origin and

axes is fixed. The whole motion is clearly periodic with period

27r

Let us change the axes to the principal axes of the ellipse,

and suppose the moving point to be at one extremity (x = a) of the

major axis at the instant ^ = 0, then at this instant x = a, y = 0,

and, since the point is moving at right angles to the major axis,

x = 0. Let y = b\//M at this instant. Then we must have at

time t

x = aco8 (t Va^), y = bsm (t \Jfj).

Thus 26 is the minor axis, and t\/fL is the eccentric angle at

time t.

The point therefore moves so that its eccentric angle in-

creases uniformly with angular velocity \/fi.

40. Examples.
1. Prove that, when the equation is x=iix, where /z is positive, and the

initial conditions are that x=Xq and x=Xq when ^=0, then at any time t

x=Xo cosh (« Va*) + -7^ sinh (t^ii).
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2. Prove that when the acceleration is directed from the origin and is

proportional to the distance the path is an hyperbola.

3. In simple harmonic motion given by x=-fjiX starting from ^=a,

prove, by multiplying both sides of the equation by x and integrating, that

x*«=|i(a*
—

:r*) for all values of x.

4. In the elliptic motion of Article 39 prove that the velocity v at

distance r from the centre is given by

v^+fir^= const.
J

and evaluate the constant.

5. In the hyperbolic motion of Example 2 prove that the velocity v

at distance r from the centre of the hyperbola is given by

v2=/Lir2+ const.,
and evaluate the constant.

41. Kepler's laws of planetary motion. From a long
series of observations of the Planets, and more especially of Mars,
which were made by Tycho Brahe, Kepler* concluded that the

motions of the Planets could be very precisely described by means
of the two laws :

—
(i) Every planet describes an ellipse having the Sun at a

focus.

(ii) The radius drawn from the Sun to a Planet describes

equal areas in equal times.

areas. We consider the42. Equable description of
second of Kepler's laws, and suppose
that a particle describes a plane
curve in such a way that the radius

vector drawn to it from a fixed

point in the plane describes area

uniformly. In Fig. 23 represents
the fixed point, B any fixed point
on the curve, F the position of the

particle at time t, r the radius vector

OP, p the perpendicular from on
the tangent at P, v the velocity of

the particle at P.

Let P' be a point on the curve
near to P, A^ the time of moving
from P to P', A« the arc PP', Ac

p. 23

.,

*

^""""Tl^
^*^^^'' '^'^'''^"'''' nova...tradita GommentaHis de Motibus Stella

Martu, 1609.
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the chord PP\ q the perpendicular from to this chord. The area

of the triangle POP' is J g Ac. Hence the rate of description of

area is the limit oi \q - - or ^q t in \
and this limit is ^ps or

\pv. If therefore we write

pv = h,

h is twice the rate of description of area, and the condition that

the radius vector describes area uniformly is expressed by saying
that h or pv is constant.

Now pv is the moment of the velocity about 0. If therefore

we take to be the origin of coordinates and draw the axes of

X and y in the plane of motion, we have (cf Article 22)

pv = xi/
— yx = h

;

and, since this is constant, we have -y. (xy
-
yx) = 0, or xy

—
yx — 0,

and therefore

x^y
X y'

If follows that the direction of the acceleration is that of the

radius vector, drawn from or towards the origin. We conclude

that, if a particle moves in a plane path, so that the radius vector

drawn to it from a fixed point describes area uniformly, it is in a

field of force, and the direction of the field at any point is either

directly towards or directly away from the fixed point. Such a

field of force is described as "
central," the fixed point being the

"centre of force," and the path of the particle is a "central

orbit."

In the motion discussed in Article 39 the ellipse is a central

orbit, and the centre of the ellipse is the centre of force.

Kepler's second law of planetary motion may be interpreted

in the statement that the Planets move in a central field of force,

the centre of force being in the Sun.

43. Radial and transverse components of velocity and

acceleration. Let a particle move in the plane of {x, y) and

let r, 6 be the polar coordinates of its position at time t It

is required to express, in terms of r, 6 and their differential
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coefficients with respect to t, the components of the velocity

and acceleration in the direction of the radius vector and at

right angles to it. The senses are to be those in which r and 6

increase, as in Fig. 24.

Fig. 24.

Let Vi, Va be the required components of
velocity. Then x, y

are the components parallel to the axes of x, y of the same
velocity. We have therefore

Vi co^d-v^^me = x =
j^

(r cos 0) = rcos6-r6 sin 0,

Vi8md-\-v^co8 d =^y = j^(rsm e) = rsin e -{-rd cose.

Solving these equations, we find

Vi = r, ^2 = rd.

Let /i» fi be the required components of acceleration. We
have in like manner

/i cos e -/, sin ^ = ^ =
-^-

(r cos 6)

= r cos ^- 2r^sin ^ -r^'sin 6 - rO'cos 6,

/, sin +/2 cos ^ = y =
-^^

(r sin 6)

= r sin 6 + 2rd cos 6 + rd cos 6 - r^^ gi^ ^^

Solving these equations, we find
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It is important to observe that the acceleration parallel to the

radius vector is the resolved part along the radius vector of the

acceleration relative to the frame Ox, Oy; it is not the accelera-

tion with which the radius vector increases.

44. Examples.

1. Since the moment of the velocity about the origin is r.rS, we verify
the formulae of Differential Calculus

r^d =3cy
— yx=ps.

2. In a central orbit we have

3. A point P describes a ciu-ve C relatively to axes through 0. Prove

that, relatively to parallel axes through P, describes a curve equal in all

respects to C, and that any point dividing OP in a constant ratio describes,

relatively to either of these sets of axes, a curve similar to C.

45. Acceleration in central orbit. Let / be the magni-
tude of the central acceleration at P, and let it be directed towards

P. Let r, p, p denote the radius vector OP drawn from the

centre of force 0, the perpendicular from on the tangent at P,
and the radius of curvature of the path at P. (Cf. Fig. 23 in

Art. 42.)

The resolved part of the acceleration parallel to the normal at

Pis /p.

But this resolved part of the acceleration is — .

P

Hence —^f^,
p

'' r

From this equation and the equation vp = h we may eliminate

V, and obtain the equation

Since p = r -r~ ,yfe may also write this equation

f_^dp^
p^ dr'
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46. Examples.
L Show that, when the orbit is an ellipse described about the centre, the

acceleration is proportional to the radius vector.

2. In the same case show that the velocity at any point is proportional

to the length of the diameter conjugate to the diameter through the point.

3. Points move from a position P with a velocity V in different directions

with an acceleration to a point C proportional to the distance. Prove that all

the elliptic trajectories described have the same director circle.

Let the tangent at P to one of the trajectories meet the director circle in

T, and let Q, be the point of contact of the other tangent to this trajectory

drawn from T. Prove that the trajectory in question touches at $ an ellipse

having C as centre, and P as one focus, and that 1CT is the length of this

major axis of this ellipse.

[This ellipse is the envelope of the trajectories of points starting from P
with the given velocity and moving about C with the given central acceleration.]

4. Show that the central acceleration when a circle is described as a

central orbit about a point on the circumference is %l?a?-\r^^ a being the radius

of the circle.

5. Show that the central acceleration when an equiangular spiral is

described as a central orbit about its pole is proportional to r~^. x

6. Show that, for an ellipse described as a central orbit about any point
in its plane, the central acceleration at any point P is proportional to r/g-^

where r is the radius vector OP, and q is the perpendicular from P on the

polar of 0.

47. Elliptic motion about a focus. We consider now the

interpretation of the first of Kepler's laws (Art. 41). Let an

Fig. 25.

ellipse of semi-axes a, h be described as a central orbit about a
focus S. Let /S' be the second focus, e the

eccentricity, I the
semi-latus rectum.
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Let P be any point on the ellipse ;
let r and r be the radii

vectores drawn from S and /Sf' to P
;
let p and p be the perpen-

diculars from >Si and S' on the tangent at P
;
let C be the centre,

and CD the semi-diameter conjugate to CP.

Then

p = CD^/ah, rr' = CD'', pp =^h\ r-^r'=2a, ¥ = al.

Also since ^SPY=^^ STY\ we have

- =^ ,
and therefore each of these = --Mz = j^r^ .

r r sJrr' GD
Now the acceleration, /, is given by

/=
py
h'rah iCDy h^ a h(m =
CD' \brj r" b' r'l'

Thus the acceleration varies inversely as the square of the

distance r, and, if we write iijr^ for it, we have h^ = id.

Accordingly Kepler's first and second laws of planetary motion

may be interpreted in the statement that the field of force in

which the Planets move is directed radially towards the Sun, and

the intensity of the field varies inversely as the square of the

distance from the Sun. The field is described as that of the

Sun's gravitation.

48. Examples.
1. Prove that, if any conic is described as a central orbit about a focus,

the acceleration is /x/r^ towards the focus, and
(1
=

^^/1.

Prove also that when the conic is a parabola v^=2fxlr, and when it is an

hyperbola v^= n (2/r+ 1/a).

2. Prove that the velocity v at any point of the ellipse is given by the

equation

-4
2 ]

3. Prove that in elliptic motion about a focus S the velocity at any point

P is perpendicular and proportional to the radius vector from the other focus

to the point TT, where SP produced meets a circle centre S and radius 2a.

[From the formula in Example 2, this circle is called the "circle of no

velocity."]

4. Prove that the velocity at P can be resolved into two constant

components, one at right angles to the radius vector SP, and the other at

right angles to the major axis.
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5. The periodic time in which the ellipse is described is

2irab _ ^ira^

6. To find the time of describing any arc of the ellipse.

Draw the auxiliary circle AQA'.

Fig. 26.

Let
<f)y =lQCA in the figure, be the eccentric angle of P, and 0, =lASP^

the vectorial angle.

Then curvilinear area ^*S'P= curvilinear area ^iVP- triangle SFN

=- (curvilinear area ANQ)- tna,ug\e SPJV.

Now curvilinear area ANQ= sector ACQ- triangle CQN
=

\ {a^(f)
- a^ sin cos

<^),

and triangle SPN= ^ 6 sin <^ (ae
- a cos

</>)
.

Hence curvilinear area ASP=^ab {(f>
- e sin

<f)).

Let t be the time from A to P, then, since h is twice the area described per
unit of time,

ht= ab{(j)
— e sin <^).

Thus «= -y-(</)-esin<^).

The quantity V/*/« is known as the "mean motion" and is denoted by n,

80 that the time in question is given by

nt= <f)-eam(f).

By putting <t>
= 2n we find the periodic time, as in Ex. 5.

Prove that is connected with
<f} by the equation

. e+ cos^ J .1 . •- . „
cos = —, .

,
and that, if e is small,^

1 + ccosd' ' '

$ = nt-^2e sin nt approximately.

7. Two points describe the same ellipse in the same periodic time, starting

together from one end of the major axis
; one of them has an acceleration to a

focus Sy and the other an acceleration to the centre C. Prove that, if
</>!

and

<^ are their eccentric angles at any instant, then (f)i-<f)2=e sin
(f)^.
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8. Two points describe ellipses of latera recta I and V in different planes

about a common focus, and the accelerations to the focus are equal when the

distances are equal. Show that, when the relative velocity of the points is

along the line joining them, the tangents to the ellipses at the positions of the

points meet the line of intersection of the planes in the same point, and that

the focal distances, r and /, make with this line angles 6 and 6' such that

r sin B _r' sin 6'

49. Inverse problem of central orbits. In regard to the

problem : Given the field of force to find the orbit—we prove a

general theorem as follows:—The path of a particle moving in

a central field of force is in a plane through the centre of force^

and the radius vector drawn from the centre of force to the particle

describes equal areas in equal times.

At any instant, chosen as initial instant, let a plane be drawn

through the tangent to the path of the particle and the centre of

force. Let this be the plane (x, y), and let the centre of force be

the origin. Then at the initial instant z and i vanish.

Since the acceleration is directed along the radius vector we

have

^ = ^ = ?
X y z'

or y'z
— zy—0, zx — xz=0, xy—yx = 0.

Hence, by integration,

yz
—

zy=^ const., zx — xz — const., xy
— yx= const.

The first two constants of integration vanish because z and z

vanish initially. If the third also vanishes, the velocity is directed

along the radius vector, and the particle moves in a straight line.

We omit, for the present, the case of rectilinear motion (see

Art. 54).

We may consider the equations

xz — xz = Q, yz-'yz =

as simultaneous equations to determine i and z. If xy
— xy does

not vanish, these equations can only be satisfied by putting i and z

equal to zero. Hence z is always zero, and the particle moves in

the plane (x, y).
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Since xy — yx^ or the moment of the velocity, is constant, the

rate of description of area by the radius vector is constant
;
for

we saw in Art. 42 that this rate, whether constant or not, is always

half the moment of the velocity about the origin.

60. Determination of central orbits in a given field.

The tangential component of the acceleration of a particle

dv
describing any path can be expressed as ?; -7- (Art. 36). When

the acceleration is of magnitude /, and is directed towards the

dv dv
origin, the tangential component is —/ -7- ,

for -7- is the cosine of

the angle between the tangent and the radius vector drawn from

the origin. We have therefore the equation

dv ^dv ^^.

"ds^-^Ts (1>

When / is a function of r, this equation can be integrated in the

form

^v'==A-jfdv, (2)

where il is a c^stant. Now, according to Art. 43, we have

and we have also, by Ex. 2 in Art. 44,

v'd = k
Hence we may write

' ^f^ A _ h dv
^

dd V^dd'
and equation (2) becomes

If M is written for -
, this equation becomes

(duV „ 2A 2 rf
\de)^-'=-w^h4i^- (3)

in which / is supposed to be expressed as a function of u Bv

this equation we can express ^ as a function of u, and then by

integration we can find the polar equation of the path.
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It is often more convenient to eliminate A from equation (3)

by differentiating with respect to 6. This process gives the

equation

51. Orbits described with a central acceleration vary-

ing inversely as the square of the distance. When/=yL6t*2

equation (4) of Art. 50 becomes

d^u a 1_ + ,, = -=- say,

where I is a, constant. To integrate this equation we put

1

then w satisfies the equation

d^'w

The complete primitive of this equation is of the form (cf.

Art. 38)
w = A cos (0

—
e),

where A and € are arbitrary constants. We write ejl for A. Then

the most general possible form for u is -t

u==j{l + ecos{d
—

e)}.

Hence all the orbits that can be described with central accele-

ration equal to fi/r^ are included in the equation

- = 1 + e cos (6 — e),

in which e and € are arbitrary constants, and I is equal to h^ffM.

The possible orbits are conies having the origin as a focus, and

the latus rectum is equal to 21 or 2h^lfjL.

According to the results of Examples 1 and 2 in Art. 48, the

conic is an ellipse, parabola or hyperbola according as the velocity

f2a\^
at a distance r is less than, equal to, or greater than (

—
j

.
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52. Additional Examples of the determination of central
orbits in given fields.

1. If / is any function of r, any circle described about the centre is a

possible orbit.

2. If /= fir equation (3) of Art. 50 gives

Hence prove that, when
/* is positive, all the possible orbits are ellipses

having the centre of force as centre.

3. To find all the orbits which can be described with a central acceleration

varying inversely as the cube of the distance.

If /= fiu^ equation (4) of Art. 50 gives

dhi _ fi

-m^
There are three cases according as A2>^ =^ or </i.

(1) When A2>fi, 1 -^ is positive, put it equal to t^.

Then all the possible orbits are of the form u^A cos {ji6-\-a).

(2) When h^=yL, we have^2=^»
«« that u= A6+ B, where A and B are

arbitrary constants. If ^ =0 the orbit is a circle, otherwise it is a hyperbolic
spiral, as we see by choosing the constant ^ so as to write the above

u= A{e-a).

(3) When A^< ^^ i _
^^

is negative, put it equal to - n\

Then all the possible orbits are of the form

u=A cosh {n6-\-a) or tc= ae**^+be~ "^.

Putting a or 6 equal to zero we have an equiangular spiral.

4. Deduce the equation
dhi _ f
~d6'''^'^~l^i

from the equation

^ pV
5. From the equations

which are obtained from the results of Art. 43, deduce the results
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53. Newton^s investigation. We give here a version of

Newton's investigation* of the orbit described by a point which
moves from a given position P, with a given velocity V, in a

given direction PT, and has an acceleration directed towards a

point S and varying inversely as the square of the distance

from S.

Lemma.

Given a point P, a tangent P7^, a focus S^ and the focal chord of curvature

PQ^ one conic, and only one, can be

described, and this conic is an ellipse,

parabola, or hyperbola according as

P$<, =, or>4AS'P.

Let U be the middle point of PQ.
Draw PG at right angles to PT, and

UG parallel to PT-, draw UO and GK
at right angles to SP meeting PG and

SP in and K respectively.

Then by similar triangles OPU^
UPG, GPK we have

OP : PU=PU : PG=PG : PK.

PG^
Whence 0P=^^.

Fig. 27.

Now describe a conic with focus S
and axis *S'G' to touch P 2^ at P, 6^ is the foot of the normal, and PK is the

semi-latus rectum. Hence is the centre of curvature.

Since SG : aS'P= eccentricity, the conic is determinate and unique.

Since a semicircle on PU a^a diameter passes through G, we have when

SP>\PU, SG<SP; when SP<\PU, SG>SP', when SP=^PU, SG= SP.

Thus the conic is an ellipse, parabola, or hyperbola according as

SP>, =, or <\PU.

Now let a point move from P with velocity V in direction PT
and have an acceleration /^/(distance)^ towards 5.

Find Q in PS produced so that

^
SP' 4>

Then by Ex. 4 in Art. 37, PQ is the chord of curvature of the

path in direction PS.

With S as focus describe a conic touching PT at P, and

having PQ for focal chord of curvature at P.

*
Principia, Lib. 1, Sect. 3, Prop. 17.

L. M. 4
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Let a second point describe this conic as a central orbit about S,

starting with velocity V at P. It follows from Art. 47 that the

two moving points have at starting the same position, velocity,

and acceleration, and their accelerations are always the same when

their distances from S are the same, they therefore describe the

same orbit.

The orbit in question

is an ellipse if iPQ < SP i.e. if P <^ ,

it is a parabola if ^PQ = SP i.e. if ^' =
|^ »

it is an hyperbola if JPQ > SP i.e. if F=^ > |p .

54. Motion in a straight line with an acceleration to

a point in the line varying

inversely as the square of

the distance. Let a point

N move in a straight line OA,

starting from A, so that, when

On OA as diameter de-

scribe a circle, and let G be

its centre, and a its radius;

draw NP at right angles to

OA, and consider the mo-

tion of the point P on the

circle.

We shall show that, if P
describes the. circle with an

acceleration towards 0, the
Fig. 28.

point N will have the acceleration named.

By Ex. 4 of Art. 46 we have

acceleration of P = -pr^z: , where h is twice the rate at which OP

describes areas about 0.

To resolve in direction AO multiply by ON/OP amd observe

that ON : OP=OP: OA. Thus

acceleration of iV=
Sh'a^ON Hh^a^ON h^ 1

OP' {2a.0Ny a ON'
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Hence if we take the point N to start at a distance 2a from
and put h^ = fia, then when ON^x, iV^ will have an acceleration

fijx^ towards 0, i.e. we shall have

x = —
fl/o)^.

Since the radius vector OF describes areas uniformly we can
utilise the figure to express the position in terms of the time.

Let angle AOP=d, and let t be the time of going from A to

K Then

^„ OP^ (2a cos (9)2 ^

and ht = twice the curvilinear area AOP
= twice the sector AGP + twice the triangle OOP
= 2a-l9 + a2sin2(9,

ai
thus t=-j-(20 + sin2e).

Thus the coordinate x and the time t are both expressed in

terms of a parameter 0.

55. Examples.
1. The same results may, of course, be arrived at by integrating the

equation x= —
—^ with the conditions that, when t=0, a^=2aj x=0.

Multiplying both sides by x and integrating, we find

|i:2_^^_(7^ where C is an arbitrary constant
;

putting ^=0, we have C= - ~-
.

JtOb

Thus ^2= /2_1\
'^Xx a)

Hence, observing that x diminishes as t increases, we have

jaaV CiX J

By putting ^=2acos2^ in this, deduce the result in the text.

2. Find the time of falling to 0.

56. Field of the Earth^s gravitation. It is consonant

with observations of falling bodies to state that the field of force

around the Earth is central, and the acceleration of a free body in

this field is directed towards the centre of the Earth. The Moon

describes a nearly circular orbit about the Earth, in a period of

4—2
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about 27i days; this motion is nearly uniform, and the distance of

the Moon from the Earth is about 60 times the radius of the

Earth. Now the central acceleration of a particle describing a
A 2 X?

circular orbit of radius R uniformly in time T is
^^ ; and, if the

radius is 60 times the Earth's radius (3980 miles), and the period

is 27^ days, this acceleration, when expressed in foot-second units,

32'1
is equal to ^w?rr approximately. Thus the Moon moves around the

Earth in nearly the same way as if it were under gravity diminished

in the ratio 1 : (60)^

From this result we conclude that the field of force around the

Earth extends to the Moon, and that the intensity of this field, like

that of the field around the Sun, varies inversely as the square of

the distance.

For bodies in the neighbourhood of the Earth there is a

correction of gravity due to height above the Earth's surface.

If ^ is the acceleration due to gravity at the surface, and a the

Earth's radius, the acceleration due to gravity at a height h above

the surface is

There are other corrections of gravity at least as important as

that here mentioned. The most important, depending upon the

Earth's rotation, will occupy us in Chapter X.

57. Examples.
1. The envelope of the elliptic orbits described by particles, which start

from a point P with velocity F, and move with an acceleration directed

towards a point ^S* and varying inversely as the square of the distance, is

an ellipse, which has S and P as foci, and touches any of the trajectories

at the point where the line drawn from P to the second focus of the trajectory
meets it.

2. Show that a gun at the sea level can command Ijn^ of the Earth's

surface if the greatest height to which it can send a shot is 1/w of the

Earth's radius, variations of gravity due to altitude being taken into.

account.

3. Prove that the time in which a particle falls to the Earth's surface

from a height A isf—
j (l+g-J approximately, a being the Earth's radiua

and (Jijaf being neglected.
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MISCELLANEOUS EXAMPLES.

1. Prove that the time in which it is possible to cross a road of breadth c,

in a straight line, with the least uniform velocity, between a stream of

omnibuses of breadth 6, following at intervals a, moving with velocity F, is

-(- + -).fU a/

2. A particle moves in the plane of two rectangular axes so that the

resolved parts of its velocity parallel to the axes are proportional to its

distances measured in fixed senses from two other rectangular lines in the

plane. Prove that its path is an equiangular spiral or a rectangular

hyperbola.

3. Three horses in a field are at a certain moment at the angular points

of an equilateral triangle. Their motion relatively to a person driving along

a road is in direction round the sides of the triangle (in the same sense) and

in magnitude equal to the velocity of the carriage. Show that the three

horses are moving along concurrent lines.

4. A straight line AB turns with uniform angular velocity about a point

A, retaining a constant length, and a second straight line BC, also of constant

length, moves so that C is always in a certain straight line through A. Prove

that the velocity of C is proportional to the intercept which BC makes on the

line through A at right angles to AC.

5. A point F moves uniformly in a circle
; Q is a. point in the same

radius at double the distance from the centre
;
PR is a tangent at P equal to

the arc described by P from the beginning of the motion
;
show that the

acceleration of R is parallel and proportional to RQ.

6. A point C describes a circle of radius r with angular velocity ©' about

the centre 0, and a point P moves so that CP is always equal to a and turns

with angular velocity to in the plane of the circle described by C, Prove that

the angular velocity of OP is

^ {to (R^+ a2 _ r2) + co' {R^ -a^-\- r^)}{R%

where R is the length of OP.

7. Two points move uniformly in straight lines in the same plane. At

any time the distance between them is a, V is their relative velocity, u and v

are the resolved parts of F parallel and perpendicular to the direction of a.

Show that, when they are nearest together, their distance is av/ V, and that

the time until they arrive at this position is au/ V^.

8. Two points A and B move with uniform velocities w, v in two straight

lines containing an angle a
; prove that the time from the position in which

AB is least to that in which it is double its least value is

Jdcu sin a/(w2 4- ^2 _ 2uv cos a),

where c is the distance AB when A crosses the path of B.
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9. Prove that when a particle moves along a plane curve the velocity of

the foot of the perpendicular from the origin on the direction of motion is

rvlp^ V being the velocity of the particle, r its distance from the origin, and p
the radius of curvature of its path.

10. Two particles start simultaneously from the same point and move

along two straight lines, one with uniform velocity, the other with uniform

acceleration. Prove that the line joining the particles at any time touches a

fixed parabola.

11. A particle moves with uniform acceleration along the tangent to its

path and describes arcs «i, «2) *3 ^^ *^he %, n^, %th seconds after any

particular instant; prove that

12. Two boats start off to race with velocities v, v\ and move with

accelerations/,/', the result being a dead heat. Prove that the length of the

course is

^iv-v'){vf-v'f)l{J-fY.

13. A body is projected vertically upwards with velocity v
;
after a time t

a second body is projected vertically with velocity v' {<v). If they meet as

soon as possible

14. A particle moves in the axis x with acceleration ixjx^ towards the

origin, starting from rest at x=a. Show that the time of arriving at a
distance x is

\/(S)HV^\/6-3}-
15. A particle moves in a straight line under a force tending to a fixed

point in the line which, at distance r, is equal to ^/r^
-

b^fi/{r^a), and starts

from rest at distance a+ ^{a^ - b^). Prove that it will come to rest at distance

a-»J{a^-h'^) in time rrc^j^fi^ and will oscillate between these distances.

16. A particle moves along the axis ^, starting from rest at x=a\ for

an interval tx from the beginning of the motion the acceleration is -
^lx, for a

subsequent interval ^2 the acceleration is fix, and at the end of this interval

the particle is at the origin ; prove that

tan {tiJp) tauh («2N/fi)
= 1.

17. Three tangents to the path of a particle whose acceleration is constant
and always in the same direction form a triangle ABC ; the velocities are u
along BC^ v along CA^ w along AB. Prove that

BC ^CA AB ^— + 1-
— =0.U V w
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18. Prove that the angular velocity of a projectile about the focus of its

path varies inversely as its distance from the focus.

19. Prove that when a shot is projected from a gun at any angle of

elevation, the shot as seen from the point of projection will appear to descend

past a vertical target with uniform velocity.

20. A particle is projected from a platform with velocity Fand elevation

^. On the platform is a telescope fixed at elevation a. The platform moves

horizontally in the plane of the particle's motion, so as to keep the particle

always in the centre of the field of view of the telescope. Show that the

original velocity of the telescope must be Fsin (a
-

/3) cosec a, and its accelera-

tion g cot a.

21. A cricketer in the long field has to judge a catch which he can secure

with equal ease at any height from the ground between k^ and Jc^ ;
show that

he must estimate his position within a length

''{v/('-J)V('4')).
where 2^ is the range on the horizontal and h the greatest height the ball

attains.

22. If a is the requisite elevation of a cannon for a mark on a target at a

horizontal range 72, and if the axis of the trunnions of the cannon is inclined

to the horizontal at an angle )3, the shot will strike the target at a distance

^ tan a sin /3 on one side, and ^tana (1
—

cos/3) below the mark aimed at.

23. A heavy particle is projected from a point A with the least velocity

of projection V so as to pass through a point B ;
show that the velocity at B

is Ftan/3, where 2/3 is the angle which AB makes with the vertical.

24. A heavy particle is projected from a point A so as to pass through
another point B ; show that the least velocity with which this is possible is

v/(2(7^)cos^a, and that the highest point of the path is at a height ^cos*^a

above A, where AB=l and makes an angle a with the vertical.

25. From a fort a buoy was observed at a depression i below the horizon,

and a gun was fired at an elevation a, but the shot was observed to strike the

water at a depression i'. Show that to strike the buoy the elevation should

be 6, where
cos sin {B + i) _ cos2^ sin ^

'

cos a sin (a -\- i') cos^i
'

sin i
'

26. A particle is to be projected so as just to pass through three equal

rings, of diameter c?, placed in parallel vertical planes at distances a apart,

with their highest points in a horizontal straight line at a height h above the

point of projection. Prove that the elevation must be tan~^ —-—
.
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27. A particle is projected from a point on a horizontal table so as to pass

through the four upper corners of a regular polygon of an even number of

sides which stands in a vertical plane with one side on the table. If R and r

are the radii of the circumscribed and inscribed circles of the polygon, prove

that the range on the plane is 2^{B^-5li^r^+ 8r^)IR, and that the greatest

height of the particle above the polygon is ^B^{R^-r^)/{r{2r^-E%

28. A man standing at a distance a from a net of height h wishes to

strike a ball over the net so that it may fall to the ground within a distance

6(< a) on the other side of the net. Prove that the square of the maximum
horizontal velocity which should be imparted to the ball increases in

harmonic progression as the height at which the ball is struck increases

in arithmetic progression, so long as the height does not exceed A(l+a/6);
and that for heights h and 2A these maximum horizontal velocities are in the

ratio ,J(a
-

b) : ija.

29. A man travelling round a circle of radius a with speed v throws a

ball from his hand at a height h above the ground, with a relative velocity F,

so that it alights at the centre of the circle. Show that the least possible

value of Fis given by V^= v^+gy(a^+h^)-h}.
30. If A and B are two given points, and C any given point on the line

joining them, prove that, in the diflferent trajectories possible under gravity

between A and B, the time of flight varies as '^CB, where I) is the point
in which the trajectory meets the vertical through C.

31. In any trajectory between two points A, B, the intercept on a vertical

line through a point C on AB between C and the trajectory is ^gtit2, where ti

is the time from A to the vertical through C, and ^2 the time from that

vertical to B.

32. A pai-ticle is projected with elevation a from a point on a plane of

inclination /3 in a vertical plane containing a line of greatest slope. Prove

that, if the elevation of the point of the path most distant from the inclined

plane is y, then tan a -f- tan ^= 2 tan y.

33. A particle is projected with velocity V at any elevation, a, greater
than the least positive value of cos-4 ;

show that its path will cut two

planes through the point of projection at right angles; that, if their inclina-

tions to the horizontal are ^ and
-y,

then ^4-7=0; and that the time of

passing from one to the other is

8in(/3~y).F/^.

34. A heavy particle starts, with a velocity u at an inclination y to the

horizontal, from a point in a plane of inclination a, such that 2^2 tan =^3tan y.
Show that, for different positions of the vertical plane of motion, the greatest
projection of the range on a horizontal line perpendicular to the line of

greatest slope is
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35. Two inclined planes intersect in a horizontal line and are inclined to

the horizontal at angles a and ^. A particle is projected from a point in the

former, distant a from the intersection, so as to strike the latter at right

angles; show that the velocity of projection is

J{2ga) sin /3/v/ {sin a - sin /3 cos (a +/3)}.

36. If the velocity v at any point of the path of a projectile under gravity

is suddenly diminished by one-half, prove that the focus of the new trajectory

is nearer to the projectile by the distance f v^/^, and that the curvature of the

path is quadrupled.

37. Two heavy particles are projected from a point with equal velocities,

their directions of projection being in the same vertical plane; t, t' are

the times taken by the particles to reach the other point where their paths

intersect, and T^ T are the times taken to reach the highest points of the

paths: show that tT-\-t'T' is independent of the directions of projection.

38. Three particles are projected from the same point in the same

vertical plane with velocities i?i, V2> % at elevations /3i, /Sg, /Ss- Prove that

the foci of their paths lie in a straight line if

sin202-i33)
I

sin2(^3-^i)
,

sin20i-^2) _Q^
Vi^ V2^ Vi^

39. Three particles are projected simultaneously from a given point in

given directions. Prove that after an interval of time t they form a triangle

of area proportional to t^. If the directions of projection of two of them are

in the same vertical plane, show that the plane of the triangle will pass

2 uv sin (8 — a)
through the point of projection after a time ^

-7, ,
where u, v are

the initial velocities and a, ^ the initial elevations of these two particles.

40. A number of particles are projected simultaneously from a point, and

move under gravity; prove that, if tangents are drawn to their paths from

any point in the vertical line through the point of projection, the points

of contact will be simultaneous positions of the particles.

41. Particles are projected from the same point with equal velocities

under gravity; prove that the vertices of their paths are on an ellipse. If

they are all equally elastic and impinge on a vertical wall the vertices of their

subsequent paths also lie on an ellipse.

42. A shot is fired with velocity ^/{2gh) from the top of a mountain

which is in the form of a hemisphere of radius r. Show that the furthest

points of the mountain which can be reached by the shot are at a distance

(measured in a straight line) r-y,f{r^-4rh) from the point of projection.

43. A gun is placed on a fort situated on a hill side of inclination a to

the horizon. Show that the area commanded by it is 47rA(A+ c^cosa)sec3a,

where >/(2^A) is the muzzle-velocity of the shot, and d the perpendicular

distance of the gun from the hill side.
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44. A gun is mounted at a given spot so as to command the horizontal

plane on which it stands. Its mounting is such that the direction, in which

it is pointed, must lie in a given plane inclined to the horizontal at an angle a.

Prove that the part of the plane commanded is an ellipse of eccentricity sin a,

the muzzle-velocity being constant.

46. At a horizontal distance a from a gun there is a wall of height

h{>a-ga^lv^\ and a shot is fired with velocity v in the vertical plane at

right angles to that of the wall. Prove that the distance commanded by the

gun on the other side of the wall is

provided that this expression is real.

46. It is required to throw a ball from a given point with a given velocity

F 80 as to strike a vertical wall above a horizontal line on the wall. When
the ball is projected in the vertical plane at right angles to the wall, the

elevation must lie between ^i and 62. Prove that the points on the wall

towards which the ball may be directly projected lie within a circle of radius

F2 sin (^1
-

62)I{g sin (<9i + 62)}.

47. Water issues from a fountain jet in such a manner that the velocity

of emission in a direction making an angle B with the vertical is JigacosecB),

the jet being at a height h above the centre of a circular basin. Prove that,

if all the wateris to fall into the basin, its radius must not be less than

[2a{a+ Jia^+h^)}]K

48. Prove that, if the sole eff'ect of a wind on the motion of a projectile is

to produce an acceleration / in a horizontal direction, the locus of points in a

horizontal plane which can just be reached with a given velocity v of projec-

tion is an ellipse of eccentricity //V(/^+5'^) and area nv*jj{f^+g^)/g^.

49. A particle is projected so as to enter in the direction of its length a

smooth straight tube of small bore fixed at an angle of 45° to the horizon, and

to pass out again at the other end of the tube. Show that the latera recta of

its paths before entering and after leaving the tube differ by ^2 times the

length of the tube.

50. Prove that, if two heavy particles projected in the same vertical

plane at the same instant from two given points with the same velocity meet,
the sum of the inclinations of the directions of projection must be constant,
and that, for a constant velocity of i^rojection and different directions of

projection, the locus of the point of meeting is a parabola.

51. A man standing on the edge of a cliff throws a stone with given

velocity w, at a given inclination to the horizon, in a plane perpendicular to

the edge of the cliff; after an interval r he throws another stone from the

same spot with given velocity v at an angle ^n-6 with the line of discharge
of the first stone and in the same plane. Find r so that the stones may strike

each other, and show that the maximum value of r for different values of 6 is

iv^/tpgf and occurs when sin ^= 2;/w, w being the vertical component of v.
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52. Two particles describe the same ellipse in the same time as a central

orbit about the centre. Prove that the point of intersection of their directions

of motion describes a concentric ellipse as a central orbit about the centre.

53. Two particles are projected in parallel directions from two points in

a straight line passing through a point 0, with velocities proportional to their

distances from 0, and each particle has an acceleration to equal to

/i (distance). Prove that all the tangents to the path of the inner cut oflf,

from that of the outer, arcs described in equal times.

54. Two particles describe concentric and coaxial ellipses about the

common centre with accelerations which are equal at equal distances, the

sum of the axes of one ellipse being equal to the difference of the axes of the

other; and the particles start in opposite directions from corresponding

extremities of the transverse axes. Prove that the line joining them is of

constant length, and turns with uniform angular velocity.

55. From all points on the circumference of a circle, to the centre of

which tends a force varying as the distance, particles are projected towards a

point on the circumference with velocities varying as their distances from the

point. Prove that at any instant the particles lie on a circle.

56. Particles are projected from points on a sphere of radius a with

velocity slig^) and move with an acceleration to the centre equal to grja
at distance r. Prove that the part of the surface on which they fall is the

smaller of the two segments into which the sphere is divided by a small circle

of radius h.

57. A body is describing an ellipse of eccentricity ^ under a force to the

centre, and when it is at one end of the latus rectum the centre of force is

suddenly transferred to the foot of the corresponding directrix. Prove that

the times which elapse in the two possible cases before the body reaches the

major axis are to one another as 2 : 1.

58. A particle P describes a rectangular hyperbola with an acceleration

/x(7P from the centre C; a point Y is taken in CP so that CP . CT=a^; prove

that the rate at which P and Y separate is

v.cp(i-^)*(i+^y
where 2a is the transverse axis.

59. If the acceleration of a particle is directed to a point S and varies

inversely as the square of the distance, prove that there are two directions

in which it can be projected from a point P with given velocity so as to pass

through a point Q, and that the velocity of arrival at Q is the same for both.

Prove also that the angle between one of the directions of projection and PQ
is the same as the angle between the other and PS.
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60. A particle describes an elliptic orbit about a focus ; prove that the

angular velocity at any point about the other focus varies inversely as the

square of the part of the normal at the point cut oflf by the major axis.

61. A particle describes any conic about a focus
; prove that the total

velocity acquired in moving from one point to another is in the direction of

the line joining the focus to the pole of the chord joining the points.

62. Prove that the periodic time of a particle projected with velocity V

from a point distant r from the origin, and having an acceleration n/r^ to the

origin, is

27r /2 _ V^\-^
y/(x\r fi )

'

63. Prove that the greatest radial velocity of a particle describing^n

ellipse about a focus is '^

where 2a is the major axis, e the eccentricity, and T the periodic time.

64. A particle describes an ellipse as a central orbit about a focus, and a

second particle describes the same ellipse in the same time with uniform

angular velocity about the same focus. The particles start together from

the farther apse. Prove that the angle which the line joining the particles

subtends at the focus is greatest when the angle described by the first

particle is coa~^{\-{l-e^)^/e, e being the eccentricity.

65. A particle describes an ellipse of axes 2a, 2b about a focus. Prove

that the average distance of the particle from the focus for an indefinitely

great number of instants corresponding to equal differences of vectorial angle
is 6, and that the average distance of the particle from the focus for an

indefinitely great number of equidistant instants of time is a{l+^e^), where

e is the eccentricity.

66. When a parabola is described as a central orbit about a focus, prove
that the direction of motion at any point P meets the directrix in a point, Q,

whose velocity is inversely proportional to the abscissa of P.

67. When an hyperbola is described as a central orbit about a focus,

prove that the rate at which areas are described about the centre is inversely

proportional to the distance from the focus.

68. Prove that the central orbit described with acceleration /^/(distance)^,

by a particle projected with velocity V from a point where the distance is R,
is a rectangular hyperbola if the angle of projection is

cosec-i { V^( V^B^ - 2tiR)lfM}.

69. A particle describes an ellipse about a focus, and at any point of the

orbit the acceleration begins to be directed to the centre and to vary as the

distance, its magnitude being unaltered. Prove that the new orbit is an

ellipse having double contact with the old orbit and entirely within it.
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70. A particle describing an ellipse about a focus has its velocity suddenly-
doubled and turned through a right angle, and proceeds to describe a parabola,

the law of the acceleration being unaltered; the axis of the parabola is at

right angles to the axis of the ellipse. Prove that the eccentricity of the

ellipse is ^v/2.

71. A particle describes an ellipse about a focus S starting from the

further end of the major axis, and arrives at the end of the minor axis in

time T. At the end of this time the centre of force is transferred without

altering its intensity to the other focus II, and the particle moves for a second

interval T under the action of the force to H. Find the position of the particle,

and show that if the centre of force were transferred back to S after the second

interval T the particle would begin to describe an ellipse of eccentricity

{Ze-e^)/{l + e), where e is the eccentricity of the first ellipse.

72. A body is moving in a given hyperbola under the action of a force

tending to a focus S; when it arrives at any point P, the force suddenly
becomes repulsive ;

find the position and magnitude of the axes of the new

orbit, and show that the difference of the squares of the eccentricities of the

new and old orbits is proportional to >S'P.

73. Find, when possible, the point in an elliptic orbit about a focus at

which, if the centre of force were transferred to the empty focus, the orbit

would be a parabola. Prove that there is no such point unless the eccentricity

is greater than ^/5
— 2.

74. A particle is describing a circle under a force to a point S on the

circumference. At a point P on the circle the force changes to the inverse

square, its magnitude being unaltered, and the particle proceeds to describe

an eUipse. On FS produced a point Q is taken so that SQ= §SP, QT is

drawn perpendicular to the tangent at P, and SQTR is a parallelogram.

Show that the middle point of TR is the centre of the ellipse.

75. A particle is describing a circle of radius c as a central orbit about a

point distant c/^d from the centre. When the line joining this point to the

particle subtends a right angle at the centre of the circle the law of the

acceleration suddenly changes, and thereafter it varies inversely as the square

of the distance, but the magnitude of the acceleration does not change

discontinuously. Prove that the major axis of the new elliptic orbit is

16c/5(v/3 and that its eccentricity is ^19/8.

76. Prove that the focal radius and vectorial angle of a particle describing

an ellipse of small eccentricity e at time t after passing the nearer apse are

approximately given by the equations

r=a (1
- e cos nt+^e^-^e^ cos 2nt),

6= nt+ 2e sin nt+ ^e'^ sin 2nt,

where 2a is the major axis and ^ir/n is the periodic time.

Prove also that if e^ is neglected the angular velocity about the other focus

is constant.
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77. Prove that the time of describing the smaller part of an elliptic orbit

about a focus, cut off by a focal chord, is ^{a^/fx)(2<i>
- sin 2<f)),

where 2a sin
(f)

is the chord of the auxiliary circle that corresponds to the focal chord, and 2a

is the major axis of the orbit.

78. If the perihelion distance of a comet is -th of the radius of the

earth's orbit, supposed circular, show that the comet will remain within the

earth's orbit for

^(l + 2/n)V(l- 1/91) years,

the comet's orbit being parabolic.

79. If the parabolic orbits of two comets intersect the orbit of the earth,

supposed circular, in the same two points, and if ^j, ^2 are the times in which

the comets move from one of these points to the other, prove that

{h + ti)^+ (^1
-

^2)^
=

(^ ^) '
^^^^® ^ i^ ^ y®^^'

80. The times of passage of a particle between two points distant d apart

in the two parabolic orbits that can be described about the same focus with

the same law of acceleration are 7\, T2, and the distances of the points from

the focus are ri, r2. Prove that

(7^1- 7^2)2 : {T,+ T,y={r, +r2-dy : (r. + r^+ dr.

81. Three focal radii SP, SQ, SR of an elliptic orbit about a focus S are

determined, and the angles between them. Show that the ellipticity may be

found from the equation 6a = aA', where A is the area of the triangle FQRy
and A' is the area of a triangle whose sides are

2^{SQ.SE)amiQSR,
and two similar expressions.

82. A particle describes a circle as a central orbit about a point 0.

Prove that the sum of the velocities at any two points coUinear with is

constant.

83. A circle is described as a central orbit about a point on the circum-
ference ; if the tangent to the circle meets the diameter through produced
in Rj prove that the velocity of R is proportional to

V(4a2-r2)/r(2a2-r2)2,

where a is the radius of the circle.

84. A particle is projected from A with velocity ^{^fiyOA^ and moves
with an acceleration /i/(distance)5 directed to 0, the direction of projection
making an angle a with OA. Prove that the particle will arrive at after a
time

* OA^ a— sin a cos a

-s/(2u) sin^ a
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85. A particle describes a circle as a central orbit about an eccentric

point. In any diameter AB of the circle points S, S' are taken such that

SA'.S'A=SB\S'B=e. Prove that, if F and V are the velocities of the

particle at any point on the portion of the circle concave to S\ when the circle

is described about S and S' respectively, and if F= V at A, then 1/F-e/F'
is constant.

86. Prove that the acceleration with which a particle P can describe a

circle as a central orbit about a point S is inversely proportional to SP^ . FF'^,
where FF' is the chord through S.

If points are taken on the orbit such that the squares of their distances

from S are in arithmetic progression, the corresponding velocities are in

harmonic progression.

87. Prove that the accelerations with which the same circle can be

described as a central orbit about two points B, S in its plane in the same

periodic time are in the ratio JSG^ : RF^. SF, F being any point on the circle

and SG being a straight line drawn from S parallel to BF to meet the tangent
at Fin G.

88. A particle is moving with uniform velocity >J{^ijl)/c^ in a given

straight line, and when it is at a certain point it begins to have an acceleration

/ir/(r2+ 6^)3 towards a point S distant a from the line. Prove that, if

€^>{a^+ b^), there are two positions of the point for which the subsequent
orbit is a circle, and that the two circles cut at an angle a> given by

c2 sin ^ 0) = 2aV(c2- «^- b^)-

89. A particle describes an ellipse of latus rectum 21 about the point X
where the axis meets a directrix. Prove that the acceleration is e^h?'XFI{lSM^),

where S is the focus corresponding to JT, and if is the foot of the perpendicular

from F on the major axis.

90. An ellipse is described as a central orbit about a point on the

major axis
; prove that the acceleration at F varies as FL^jOF^ where L is

the point of intersection of OF and the diameter conjugate to that passing

through F.

91. When a particle describes an ellipse as a central orbit about any

point in its plane, the sum of the reciprocals of the velocities at the extremi-

ties of any diameter is independent of the position of the point and varies as

the periodic time.

92. Any conic whose centre is C is described as a central orbit about

any point R. Prove that the acceleration at F is proportional to GG^jRF^^
CG being drawn parallel to BF to meet the tangent at F in G.

93. A particle F describes a parabola as a central orbit about a point

on the axis; prove that the acceleration is /i{l/OP-}-l/Ojo}-3. OP-^, p being

the other point of intersection of OF with the curve
; prove also that the time

of passing from one extremity of the ordinate through to the other is

§n/(2//x).
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94. A particle describes a parabola, latus rectum 4o, with an acceleration

tending to a point on the axis distant c from the vertex. Prove that the time

of moving from the vertex to a point distant y from the axis is proportional

to y+Ay^/««-

95. Prove that any conic can be described by a particle with an

acceleration always at right angles to the transverse axis and varying

inversely as the cube of the distance from it.

If a particle is describing an ellipse in this manner, and at one end of one

of the equiconjugate diameters the acceleration is suddenly changed in sense

without being altered in magnitude, prove that the particle will proceed to

describe an hyperbola having the axes of the ellipse as asymptotes.

96. A particle describes an ellipse with acceleration parallel to a diameter.

Show that the acceleration must vary inversely as the cube of the ordinate of

the conjugate diameter.

97. A particle moves with an acceleration \iy~^ towards the axis x^

starting from the point (0, h) with velocities U^ V parallel to the axes of x, y.

Prove that it will not strike the axis x unless
/a > F^P, and that, in this case,

it strikes it at a distance Ul^\{^^
-

Vh) from the origin.

98. A particle describes a cycloid with an acceleration always perpen-
dicular to the base, prove that its magnitude is proportional to the inverse

fourth power of the radius of curvature at each point of the curve.

99. Show that a particle can describe an equiangular spiral of angle a

and pole S with an acceleration iijSP^ whose direction makes a constant

angle ^ with the tangent to the spiral provided that

tana=^(n-l)tanj3.

100. If an equiangular spiral whose pole is is described as a central

orbit about any point aS', prove that the acceleration at P is inversely propor-
tional to OP. SP^ sin3<^, where is the angle which the radius vector SP
makes with the tangent at P.

101. Prove that the acceleration towards the centre of the fixed circle

with which a particle can describe an epicycloid is proportional to r/p*, where
r is the radius vector and p the perpendicular from the centre to the

tangent.

102. The curve r=a+ 6^ is described as a central orbit about the origin
with initial distance a and initial velocity F in a direction making an angle
^n with the initial radius vector. Find the formula for the acceleration.

103. Prove that the acceleration with which the curve r=a sin n6 can be
described as a central orbit about the origin is proportional to

104 Prove that the curve r= a
( 1 + ^^6 cos ^) is a central orbit about the

origin for acceleration proportional to r~*-f- Jar ~^
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105. If the curve r^" + b^'^-\-2a'^r^ cos n6= is described as a central orbit

about the origin with areal velocity ^h, prove that the central acceleration is

2^2 (52«
_

(^2n) ^ |^2«-2/(^2n
_

52«)2| .

106. If any curve is described as a central orbit about a point 0, the

velocity of the foot of the perpendicular from on the tangent varies inversely
as the chord of curvature through 0.

107. A particle is describing a central orbit about a point S, and h

is twice the rate at which the radius vector describes areas. Another particle

moves so that at any instant its distance (r) from >S' is equal to that of

the first particle, and the angular velocity of its radius vector is less than that

of the first particle in the ratio sin a : 1. Show that the second particle has

an acceleration to S less than that of the first particle by h^ cos^ ajr^.

108. A series of particles are describing the same curve as a central orbit

about a point with an acceleration whose tangential component is
h^/p^(f)' (p).

Prove that, if the line density at any time is constant and =po, the line

density p at any subsequent time t is given by

(i){p) + ht= ct){ppo/p),

^h being the rate of description of areas about 0, and p the perpendicular
from on the tangent.

109. If inverse curves with respect to can be described as central

orbits about with accelerations /, /', prove that

^3/ /3/' 2
+

A2
'

A'2 sin2<^»

where h and h' are constants, r and / are corresponding radii vectores, and

(f>
is the angle r or r' makes with the tangent.

110. If / is the acceleration and ^h the areal velocity in a central orbit

about a point 0, prove that the angular acceleration a about satisfies the

equation

where u is the reciprocal of the distance from 0.

111. Prove that a body ejected from the Earth with velocity exceeding

seven miles per second will not in general return to the Earth, and may leavev

the solar system.

112. Prove that the least velocity with which a body could be projected

from the North Pole so as to meet the Earth's surface at the Equator is

nearly 4i miles per second, and that the angle of elevation is 22^°.

L. M. 5
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113. A particle is projected from the Earth's surface so as to describe a

portion of an ellipse whose axis major is f of the Earth's radius. Prove that,

if the direction of projection makes an angle 30° with the vertical, the time of

flight is

K/(3a/^)(tan-V6+ v/i),

where a is the Earth's radius and g is the value of gravity at its surface.

114. A stream of particles originally moving in a straight line K with

velocity V is under the influence of a gravitating sphere of radius R, whose

centre moves with velocity i; in a straight line intersecting the line K and

making with it an angle a. Prove that, if the distance of the sphere from the

line is originally very great, a length

•
- V( ^^ - 2 Vv cos a+ v^+ 2gE)

of the line of particles will fall upon the sphere, g being the force per unit

at the surface of the sphere.



CHAPTER HI.

FORCES ACTING ON A PARTICLE.

58. The force of gravity. Consider a heavy body sup-

ported near the Earth's surface. The body may, for example,
rest upon a horizontal plane, which is then the plane surface of

some other body, or it may be supported by a rope or a spiral

spring. In either case we should say that there was a force

acting upon it and counteracting the force of the Earth's field.

When the body is supported by a spring, the spring is stretched
;

if the body is supported even by a steel bar, the bar is stretched a

little*, and the stretching of the bar can be observed by means of

suitable instruments. If the body is supported by a man carry-

ing it, his muscles are thrown into a state of strain, analogous to

the stretching of the steel bar, and the man has a sensation

of muscular effort. We should say that he exerted "force."

The operation of weighing a body in a common balance deter-

mines a certain quantity : the number of pounds or grammes
which the body weighs. The number so determined is inde-

pendent of the latitude and longitude of the place where the

operation is performed ;
and it is independent also, so far as

observation can tell, of the altitude of the place above, or its

depth below, the mean surface of the Earth.

The stretching of a spring supporting a body can be measured
;

and, when the weight of the body, as determined by the common

balance, is not too great, the stretching of the spring, at any
definite place on the Earth's surface {e.g. in London), is propor-

tional to the weight so determined. We may therefore use this

* A steel bar, of sectional area one square inch, hanging vertically, and

supporting a load of 1 ton, is extended by the fraction 0-00007 of its length,

approximately.

5—2
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stretchiDg to determine the weight of the body, and then the

body is said to be "weighed by a spring balance." The weight of

the body, determined by the spring balance, is different in different

latitudes and at different altitudes. It is found to be proportional

to the local value of g (the acceleration of a free falling body).

The primitive notion of "force" is based upon the muscular

sensations of a man supporting a heavy body. The measure of

force which is suggested by the above considerations is the

stretching of an ideal spring supporting a heavy body*. This

stretching is always proportional (i) to the weight, as determined

by a common balance, (ii) to the local value of g. We are thus

led to measure the force of the Earth's gravity as proportional to

each of these factors.

The operation of weighing a body in a common balance

teaches us how to assign to any body of sufficiently small bulk a

definite constant quantity: the number of pounds or grammes
which the body weighs. This quantity, or any suitable constant

multiple of it, will be called the mass of the body. For a body
which cannot be weighed in a common balance, e.g. a battleship,

the mass may be determined by adding the masses of the several

parts, each being determined by weighing in a common balance or

by some equivalent method. This definition of " mass
"
does not

cover such cases as the mass of the Earth, or Sun, or Moon.

A more general definition will be given in Chapter YI. We
denote the mass of a body by the letter m.

The force of the Earth's gravity acting upon a bodyf- is

measured by the product of the number of units of mass in the

mass of the body and the number of units of acceleration in the

local value of g. We denote this force by W, and write

W^mg.

59. Measure of force. Force may be defined as a certain

measure of the action which one body exerts upon another. In the

particular case of a body supported upon a horizontal plane, the

• The spring is "ideal" in as much as the extension is supposed to be pro-

portional to the weight, however great the weight may be. An actual spring would
be damaged by a suflficiently heavy weight, and it would not measure that weight

correctly.

t This force is sometimes called the "
weight

"
of the body.
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force counteracting the force of the Earth's gravity is traced to

an action of the body having the horizontal plane for part of its

surface
;

this force is called the pressure of the plane upon the

supported body. In the case of a body supported by a rope or

spring, the force counteracting the force of the Earth's gravity is

traced to an action of the rope or spring; this force is called the

tension of the rope or spring. The force of the Earth's gravity

acting upon a body is, in like manner, traced to a supposed action

of the Earth upon the body.

In this last case we know that the effect of the action, if not

counteracted, is to produce in the body a certain acceleration
;

and the measure of the force is the product, as explained above, of

the mass of the body and the acceleration which it produces.

In like manner, we may say that the effect of any force on a

body, when not counteracted by other forces, is to produce in the

body an acceleration, and the measure of the force is the product

of the measures of the mass and the acceleration. If a force P
acts upon a body of mass m, it produces in it an acceleration /,

and we have the formula

60. Units of mass and force. In the "c.g.s. system" of

units, the gramme is the unit of mass. It is the one-thousandth

part of the mass of a certain lump of platinum known as the

"Kilogramme des Archives," made by Borda, and kept in Paris.

The unit of force is called the "dyne." It is the force which,

acting upon a body of mass one gramme, produces in it an accele-

ration of one centimetre per second per second.

In the "foot-pound-second system," the pound is the unit of

mass. It is the mass of a certain lump of platinum kept in the

Royal Exchequer in London. The unit of force is called the

"
poundal." It is the force which, acting upon a body of mass one

pound, produces in it an acceleration of one foot per second per

second.

In the "British engineers' system" the unit of force is the

force of the Earth's gravity acting in London upon a body which

weighs a pound, when weighed in a common balance. It is called
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a "force of one pound." The unit of mass is the mass of a body

which weighs 322 pounds in a common balance. The mass of

a body which weighs one pound in a common balance is ^^
units of mass. In this system, as in the others, the unit force,

acting upon the unit mass, produces in it an acceleration of one

unit of length (one foot) per second per second.

In any system of units, force is a quantity of one dimension in

mass, one dimension in length, and — 2 dimensions in time. The

dimension symbol is MLT^^.

61. Vectorial character of force. In the cases which we

have examined so far, either there has been a single force acting

upon a body, which for definiteness we thought of as a "
particle,"

or else the forces acting upon the body have exactly counteracted

each other. In the former case, the body moves with a certain

acceleration. In the latter case, it remains at rest. In the case

of a heavy body supported by the tension of a cord, we may regard

the Earth's gravity as producing in it the acceleration g down-

wards, and the tension of the cord as producing in it the accelera-

tion g upwards. If we do this we are able to maintain in both

cases the measure of force as the product of the mass and the

acceleration that is produced by the force.

Consider a body supported upon a plane horizontal surface.

Let the surface be gradually tilted so that the plane becomes an

inclined plane. It is found that the body will begin to slide*

down the plane when the plane is tilted at an angle which

exceeds a certain limiting angle. If the surfaces in contact are

highly polished the angle at which sliding begins is small. We
might imagine the surfaces to be so smooth that sliding would

take place at any inclination however small. The acceleration

with which the body slides down the plane is the resultant of

the acceleration g in the direction of the downward vertical and
some other acceleration,/. Let a be the inclination of the plane;
then the acceleration g can be resolved into two components,

• The body should have a flat base. A solid sphere, or any body with a curved

surface, placed on an inclined plane, will generally roll. We avoid for the present
the complication of rolling.
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viz.: ^sina in the direction of a line of slope drawn down
the plane, and gcosa at right angles to

the plane. See Fig. 29. If the accelera-

tion / is directed at right angles to the

plane its amount must be g cos a, in the

sense opposite to one of the two compo- gsina

nents of g, as shown in Fig. 29, since the X ^o cos a

body moves on the plane, and so has no
. Fig. 29.

acceleration at right angles to the plane.

In this case, the acceleration with which the body slides down
the plane is g sin a *, and the pressure of the plane on the body
is of amount mg cos a, the mass of the body being m. This state

of things cannot be exactly realised in practice, but it can be

approximately realised when the surfaces are very smooth.

In any actual case the acceleration with which the body slides

down the plane is less than g sin a, and the motion is said to be

resisted by "friction." For the present we shall suppose that the

surfaces are so smooth that the effect of friction is negligible.

We have learnt that the effect of the Earth's gravity on the body
is the same as that of two forces: one m^sin a producing accelera-

tion down the line of slope, and the other mg cos a producing
acceleration at right angles to the plane.

This result leads us to the conclusion that force, as a mathe-

matical quantity, is to be regarded as a vector quantity, equivalent
to "component forces" in the same way as any other vector

quantity is equivalent to components.
In particular, we see that force acting on a particle ought to

be regarded as what we have called a "vector localized at a point"

(Art. 17), the point at which the vector is localized being the

position of the particle. The line, drawn through the point, by
which the vector is determined, is the "line of action" of the

force. The line of action of the force and the sense of the force

are the direction and sense of the acceleration which the force

produces.

According to this statement any forces acting on a particle

are equivalent to a single force, to be determined from the sepa-

rate forces by the rules for the composition of vectors. This single

force is called the "resultant" of the forces acting on the particle.

* This result was used by Galileo for the determination of g.
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62. Examples^.
1. Find the time of descent of a particle down an inclined tube when

friction is neglected and the particle starts from rest at a given point of

the tube.

2. Prove that the time of descent down all chords of a vertical circle,

starting at the highest point of the circle, or terminated at its lowest point,

is the same.
*

3. Prove that the line of quickest descent from a point ^ to a curve,

which is in a vertical plane containing A, is the line from A to the point of

contact with the curve of a circle described to have A as its highest point and

to touch the curve. Prove also that the line of quickest descent from a curve

to a point A is the line to A from the point of contact with the curve of a

circle described to have A as its lowest point and to touch the curve.

4. Prove that each of the lines of quickest descent in Ex. 3 bisects the

angle between the vertical and the normal to the curve at the point where

it meets the curve. Hence show that the line of quickest descent from one

given curve to another in the same vertical plane bisects the angle between

the normal at either end and the vertical.

6. Prove that a particle projected in any manner on an inclined plane,

and moving on the plane without friction, describes a parabola.

63. Definitions of momentum and kinetic reaction.

The momentum of a particle of mass m, moving with a velocity

V, is a vector, localized in the line of the velocity, of which the

sense is the same as that of the velocity, and the magnitude is the

product 7nv.

The kinetic reaction of a particle of mass m, moving with an

acceleration /, is a vector, localized in the line of the acceleration,

of which the sense is the same as that of the acceleration, and

the magnitude is the product mf.

The kinetic reaction of a particle is the same quantity as the

rate of change of momentum of the particle per unit of time.

64. Equations of motion. The discussion of the nature

of force in Articles 58—61 leads to the following statement :
—

The kinetic reaction of a particle has the same magnitude,
direction and sense as the resultant force acting on the particle.

This statement is to be regarded as a general principle which
is suggested by the facts stated in the previous discussion and
other facts of like nature. In other words it is an induction

 The results in Examples 2 and 3 were noted by Galileo.
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from experience. From the nature of the case it is not capable of

mathematical proof The truth of it is only to be tested by the

comparison of results deduced from it with results of experiment.

The statement is expressed analytically by certain equations,

which are called the "equations of motion" of the particle. They
are obtained by equating the resolved part of the kinetic reaction

in any direction to the sum of the resolved parts of the forces

in that direction.

Let X, F, Z be the components parallel to the axes of x, y, z

of the resultant force acting on the particle, or, what comes to the

same thing, the sums of the resolved parts of the forces in the

directions of these axes. Let m be the mass of the particle, and

X, y, z the coordinates of its position at time t. The equations of

motion are

mx — X, my = F, mz = Z.

We have had several examples already of equations which are really

equations of motion.

For example, the equations

^•=0, 'y
= -g

in Art. 33 are really equations of motion.

As a further example, consider the motion of a particle in a central field of

force. If / is the intensity of the field, and the centre of force is the origin,

and if the force is an attraction, it is of amount mf and is directed towards

the origin ; and the equations of motion are
t

mx= — mf -
, my= -mf-, mz= - mf -

,

where r denotes distance fi'om the origin. Just as in Art. 49, these equations

show that the motion takes place in a fixed plane. By means of the result of

Art. 43 the equations of motion, expressed in terms of polar coordinates in

the plane, can be written

m(f- rS^)=-mf m^j^ (r^)=0.

Equations of Motion in simple cases.

65. Motion on a smooth guiding curve under gravity.

The motion of a small ring on a very smooth wire, or of a small

spherical shot in a very smooth tube, can be discussed by treating

the ring or shot as a particle constrained to describe a given

curve, and supposing that the particle is subject not only to the

force of the field, but also to a force—the pressure of the curve-

directed along the normal at any point of the curve. We take
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the case where the curve is a plane curve in a vertical plane, and

the field is that of the Earth's gravity at a place. We draw the

axis of y vertically upwards, and denote by s the arc of the curve

measured from some fixed point of it up to the position of the

particle at the instant ^, and by v the velocity of the particle

in the direction of increase of s. We denote the pressure of the

curve by R, and suppose that its sense is towards the centre

of curvature. If the pressure really acts outwards, the value

found for R will be negative.

Fig. 30.

In the left-hand figure (Fig. 30) are shown the components
of the kinetic reaction along the tangent and normal. In the

right-hand figuie are shown the forces acting on the particle-
The equations of motion, obtained by resolving the forces along
the tangent and normal, are

dv . . v'^ r,mv -T-
= — mg sm <f>,

m- = R- mg cos
<j>.

Now sin
</)
=^ , and the first of these equations becomes

dv dv

This equation can be integrated in the form

^mv^ = — mgy -{-G,

where C is a constant. Let Vq be the velocity at some point

(^0, 2/o) of the curve. Then C = ^mv^^ + mgy^, and the equation
can be written

J mv' - i wV = mg (y^
-

y).

This equation can be partially interpreted in the statement
that the velocity of a particle moving under gravity without
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friction is always the same when it comes back to the same level.

This result was found by Galileo.

If the particle starts with an assigned velocity from a given

point of the curve, this equation determines the velocity in any

position ;
the equation ni— = R— mg cos

(f>
determines the pressure

at any point of the curve.

66. Examples.
1. When the curve is a circle, the angle ^ of Fig. 30 is the angle which

the radius of the circle drawn from the centre to the particle makes with the

vertical drawn downwards. Prove that, if the particle starts from rest in a

position in which <^=a, the velocity v in any position is given by the equation

y2= ^ga (cos ^ - cos a),

where a is the radius of the circle.

Find the pressure in any position.

2. Find the greatest angle through which a person can oscillate in a

swing, the ropes of which can support a tension equal to twice the person's

weight.

3. When a particle moves on a smooth

cycloid under gravity, the vertex of the

cycloid being at the lowest point, the equa-
tion of motion, by resolution along the

tangent in direction QP^ may be written

5= —
^sin^,

s being the arc measured from the vertex

to P, and 6 the angle which the normal OP
makes with the vertical. Now, by a known

property of the cycloid, s= 4asin^, where a Fig. 31.

is the radius of the generating circle, and thus the above equation becomes

4a

showing that the motion in s is simple harmonic with period 27r ^Ji^a/g).

Thus the time taken to fall to the vertex from any point on the curve is

independent of the starting-point, and in fact is tt ^{a/g).

[This property is known as the "Isochronism of the cycloid."]

4. Show that the time a train, if unresisted, takes to pass through a

tunnel under a river in the form of an arc of an inverted cycloid of length 2s

and height h cut off' by a horizontal line is

.J /f-2gh\
>J2g/i''''^"\v^+2ghJ'

where v is the velocity with which the train enters and leaves the tunnel.
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67. Kinetic energy and -work. The quantity obtained

by multiplying the number of units of mass in the mass of a

particle by half the square of the number of units of velocity in

the velocity of the particle is called the "kinetic energy" of the

particle.

The "work done" by a constant force acting on a particle

is a quantity which is defined in terms of the force and the dis-

placement of the particle. We resolve the displacement into

components parallel and perpendicular to the line of action of the

force. The component parallel to this line (taken in the sense of

the force) has a certain magnitude, which is a number of units

of length, and a certain sign. We multiply this number, with

this sign, by the number of units of force in the measure of the

force. The product so obtained is the work done.

In the case of a particle moving under gravity, the work done

by the force of gravity is the product of the force, mg, and the

distance through which the particle descends, y^-y. The equation

imi;2
-
\ mvo' = mg {y,

-
y)

can be expressed in words in the statement :

The increment of kinetic energy in any displacement is equal to

the work done by the force of gravity in that displacement.

68. Units of energy and work. The unit of work is the

work done by the unit force in a displacement of one unit of

length in the direction of the force. The unit of kinetic energy is

the kinetic energy acquired by a free body on which one unit of

work is done.

In the C.G.S. system of units the unit of work is called the erg.
It is the work done by a force of one dyne acting over one

centimetre.

In the foot-pound-second-system the unit of work is the

"foot-poundal." It is the work done by a force of one poundal
acting over one foot.

In the British engineers' system the unit of work is the "foot-

pound." It is the work done by a "force of one pound" acting
over one foot. It is equal to the work done in the latitude of
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London in raising through one foot a body which weighs one

pound in a common balance.

In any system of units, work and kinetic energy are quantities

of 1 dimension in mass, 2 dimensions in length, and
— 2 dimensions

in time. The dimension symbol is MUT~'^.

69. Power. An agent which does one unit of work per
unit of time is said to be working up to a unit of power. If 550

foot-pounds of work are done per second the power is one horse-

power. Power is a quantity having the dimensions MUT~^. For

a more extended discussion see Chapter VI.

70. Friction. Consider a body sliding down an inclined

plane. Let a be the inclination of the plane. The acceleration of

the body down the lines of slope is less than ^sina. Let/be the

acceleration up the lines of slope which must be compounded with

the acceleration ^sina down the lines of slope in order that the

resultant may be the actual acceleration of the body. The forces

acting on the body are the force of gravity mg vertically down-

wards, the pressure mg cos a at right angles to the plane, and a

third force which is of magnitude m/and acts up the lines of slope.

This force is called the "
friction."

The body will not slide down the plane unless the inclination

a exceeds a certain angle i. When a = i, the friction just prevents

motion. In this case ^ sin a =/, or /=^sini, and the friction

= mg sin i. In the same case the pressure = mg cos i. Hence the

ratio of the friction to the pressure when motion is just about

to take place is tan i. We write /^ for tan i, so that when the

body is about to slide the friction is equal to the product of
//,

and the pressure.

It is found that, when motion takes place, the ratio of the

friction to the pressure remains constant. This ratio (equal to

tani or /a) is called the "coefficient of friction." The angle i is

called the "angle of friction."

The angle of friction, and the coefficient of friction, depend

upon the materials of the bodies in contact and the degree of

polish of the surfaces.

Whether the body moves up or down the plane, the friction

acts in the senseopposite to that of the velocity, and is equal to

the product of ^ and the pressure.
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71. Motion on a rough plane. We shall take the plane

to be inclined at an angle a to the horizontal, and treat the body

sliding on it as a particle moving down a line of slope. Draw the

axis of X down a line of slope. The equations of motion are

mx = mg sin a - F, = mg cos a- R,

where F is the friction and R the pressure. Also we have

F=fiR.

Hence the particle moves down the line of slope with acceleration

g sin a — fi cos a.

When the particle moves up a line of slope, the friction acts

down the line, and the acceleration is equal to

^ sin a + /x cos a

down the line.

When the body slides on a horizontal plane the pressure is

equal to mg vertically upwards, and the friction is equal to fimg
in the sense opposite to that of the velocity.

This last result is generally taken to be applicable to the

motion of a train on level rails. The resistance to the motion is

taken to be proportional to the mass. The force by which the

train is set in motion and kept in motion against the resistance

is called the "pull of the engine." We shall consider this force

further in Chapter VIII.

When there is friction the increment of kinetic energy in any
displacement is less than the work done by gravity in that dis-

placement.

72. Examples.

1. A particle is projected with a given velocity up a line of slope of a

rough iuclined plane. Find the height above the point of projection of the

point at which it comes to rest. Supposing the inclination of the plane to be

greater than the angle of friction, find the velocity with which the particle
returns to the point of projection.

2. A carriage is slipped from an express train, going at full speed, at a
distance I from a station, and comes to rest ^at the station. Prove that the
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rest of the train will then be at a distance Mll{M- m) beyond the station,
M and m being the masses of the whole train and of the carriage slipped, and
the pull of the engine being constant,

3. Prove that the extra work required to take a train from one station to

stop at the next at a distance I in an interval t is

gf^ k I \Sin'^ n)\m'^ 71^ kj]
times the work required to run through without stopping, where the incline

of the road is 1 in w, and the resistance of the road and the brake power per
unit mass are equal to the components of gravity down uniform inclines of

1 in 71 and 1 in ^ respectively.

73. Atwood's machine^. Another simple example of equa-
tions of motion is afforded by the problem
of two bodies attached to a string or chain

which passes over a vertical pulley. This

arrangement constitutes in principle the

instrument called "Atwood's machine." We
shall assume that the tension of the chain

is the same throughout. This amounts to

assuming that there is no friction between

the pulley and the chain, and that the

mass of the chain is negligible in com-

parison with the masses of the bodies (see

Chapter VI).

Let m, m be the masses of the bodies, x the distance through
which m has descended at time t. Then x is also the distance

through which m' has ascended at time t. If m has ascended and

m' descended, x is negative. Let T be the tension of the chain.

The forces acting on m are mg vertically downwards, and T

vertically upwards. The kinetic reaction of m is mx vertically

downwards. The equation of motion of m is therefore

mx = mg — T.

The forces acting on m' are m'g vertically downwards, and T

vertically upwards. The kinetic reaction of m' is m"x vertically

upwards. The equation of motion of m' is therefore

m'x = T— m'g.

Fig. 32.

* G. Atwood, A treatise on the rectilinear motion and rotation of bodies,

Cambridge, 1784.
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By adding the left-hand, and also the right-hand, members of

these equations, we find

(m + m!) x = (m — mf)g.

It follows that the heavier body descends, and the lighter

ascends, with an acceleration

,Q'm -{-vi
^

The value of g is sometimes determined by means of Atwood's

machine. Various corrections have to be applied to the result.

Generally the pulley turns with the motion of the chain, and the

most important correction is on account of the mass of the pulley.

(See Chapter VIII.)

74. Examples.
1. The kinetic energy of the two bodies in the case of the simple

Atwood's machine, in which the friction and the masses of the chain and

pulley are neglected, is

^mx^+ ^m'a;'^.

The work done by gravity is mgx—m'gx. Assuming that the increment of

kinetic energy in any displacement is equal to the work done by gravity,

deduce the acceleration of either body.

2. Prove that the tension of the chain is

2mm'
,<f-

m-\-m^

3. In Atwood's machine the smaller mass m' is rigid, the mass m consists

of a rigid portion of mass m' and a small additional piece resting lightly

upon it. As m descends it passes through a ring by which the additional

piece is lifted oflf. Prove that, if m starts from a height h above the ring, and

if after passing through the ring it falls a distance ^ in the time ^, then

_ m+m' ^2

^~2(m-m') A^'

the friction and the masses of the pulley and chain being neglected.

75. Simple circular pendulum executing small oscilla-

tions. A particle constrained to describe a circle in a vertical

plane, without friction, is called a "simple circular pendulum."
An ordinary pendulum consists of a massive body, called the

"bob," suspended by a bar which can turn about a horizontal axis.

When the bob is small and massive, and the bar thin, the motion

of the bob, treated as a particle, approximates to that of a simple
circular pendulum.
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We denote the radius of the circle by I. When the radius of

the circle which passes through the particle

makes an angle 6 with the vertical as in

Fig. 33, the acceleration along the tangent to

the circle is 16 (Ex. 1 of Art. 37). We may
write down one equation of motion in the

same way as in Art. 65 in the form

mid = — mg sin 6.

If 6 is very small throughout the motion,

sin 6 may be replaced by 6, and we have the approximate equation

le^^-gO,

This equation shows that the motion in 6 is simple harmonic

motion of period 27r \/{llg). (Cf. Art. 38.)

The pendulum swings from side to side of the vertical. If it

starts from rest, in a position slightly different from the position

of equilibrium, it falls to this position in the time i7r>^{l/g),

passes through it, and proceeds to move away from it on the other

side until its displacement is numerically equal to that at starting,

and comes to rest after an interval JttVC^/^) from the equilibrium

position. The motion is then reversed. The time from rest to

rest is ir^JQ^jg). This is known as the time of a "beat," the

period 2'ir*^(llg) is the time of a "complete oscillation."

A pendulum which beats seconds is known as a "seconds'

pendulum"; the time of a complete oscillation of such a pendulum
is two seconds. The length of the seconds' pendulum at a place

is given by the equation

Pendulum experiments afford the most exact method of deter-

mining the value of g.

76. Examples.
1. Prove that, if in London ^=981*17, the units being the centimetre

and the second, then the length of the seconds pendukim there is 99*4] 3

centimetres.

2. A balloon ascends with constant acceleration and reaches a height of

900 ft. in one minute. Show that a pendulum clock carried with it will gain

at the rate of 27*8 seconds per hour, approximately.

L. M. 6
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3. If ^1 is the length of a slightly defective seconds' pendulum which

gains n seconds in an hour, and I2 the length of another, such pendulum

which loses n seconds in an hour, n being small, prove that the square root

of the true length of the seconds' pendulum is the harmonic mean between

^li and V^2-

4. The bob of a pendulum which is hung close to the face of a cliff is

attracted to the cliflF with a horizontal force of intensity /. Show that the

time of a beat is

where I is the length of the pendulum.

5. A bead slides on a smooth circular wire of radius a, whose plane i^

inclined at an angle a to the vertical. Find the period of its small oscillations

about the lowest point.

77. One-sided constraint. A particle may be constrained

to describe a circle by means of a thread of constant length at-

tached to the centre of the circle; or it may be inside a smooth

circular cylinder. More generally a particle may be constrained

to describe a curve in a vertical plane by being inside a cylinder,

of which the normal section is the curve and the generators are

horizontal, and not too far from the lowest generator. Or it may
be outside such a cylinder, and not too far from the highest

generator. In either case the constraint is "one-sided," and the

particle may leave the curve. This will happen if the pressure

vanishes. The particle then describes a parabola under gravity

until it strikes the curve again.

Now the pressure is given, according to Art. 65, by the

equation

R = m -
-{- mg cos

<f>,

where
(j)

is the angle which the tangent, drawn in a definite sense,

makes with the horizontal. To make R vanish, we must have

cos <b =
,

99

where v' is known. This equation determines the point at which

the particle leaves the curve.

78. Examples.
1. The bob of a simple circular pendulum is projected horizontally from

its equilibrium position with a velocity V. Find limits between which V
must lie in order that the suspending fibre may become slack, and determine

the position of the bob at the instant when the fibre becomes slack.
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2. A cylinder whose section is a parabola is placed with its generators

horizontal, the axis of a normal section vertical, and the vertex upwards, and

a particle is projected along it in a vertical plane. Prove that if it leaves the

parabola anywhere it does so at the point of projection.

3. A particle is projected from the lowest point of a vertical section of a

smooth hollow circular cylinder, whose axis is horizontal, so as to move round

inside the cylinder. Prove that, if the velocity is that due to falling from

the highest point, the particle leaves the circle when the radius through it

makes with the vertical an angle cos~i §.

Find the least velocity of projection in order that the particle may describe

the complete circle.

4. A particle is constrained to describe a circle by means of an inex-

tensible thread, and leaves the circle when the thread makes an angle /3 with

the vertical drawn upwards. Prove that when it strikes the circle again the

thread makes an angle 3/3 with the same vertical.

79. Conical pendulum. A particle can be constrained to

describe a horizontal circle uniformly by the tension of a string or

thread, attached to a fixed point on the vertical straight line

which passes through the centre of the circle. In any position of

the particle the string lies along a generator of a right circular

cone having its vertex at the fixed point.

Let 2a be the vertical angle of the cone and I the length of the

string. The radius of the circle is

Zsin a. Let v be the velocity of the

particle and T the tension of the

string. The kinetic reaction of the

particle is -^—.
— directed alonsf the^

t sin a °

radius of the circle towards its

centre. The forces acting on the

particle are the force of gravity,

mg vertically dov^^nwards, and the

tension T of the string, directed

along the generator of the cone

towards the fixed point. We form ^^8* ^^•

equations of motion by resolving vertically, horizontally along the

radius of the circle, and horizontally along the tangent of the circle.

Neither the kinetic reaction nor the forces have any components in

the third of these directions; and we therefore have the two equations

— T sm a,
= mg — I cos a.

I sin a

6—2
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By eliminating T we find the equation

I sin^ a

• ^ cosa

This equation determines the velocity with which the circle

can be described when I and a are given, or the angle a when

V and I are given.

80. Examples.
1. A train rounds a curve, of which the radius of curvature is p, with

velocity v. Prove that to prevent the train from leaving the metals the

outer rail ought to be raised a height equal to hv^jpg above the inner, h being

the distance between the rails.

[The train may be treated as a conical pendulum, in which the pressure

of the rails, directed at right angles to the plane of the rails, takes the place

of the tension of the string.]

2. The point of suspension of a simple pendulum of length I is carried

round in a horizontal circle of radius c with uniform angular velocity w.

Prove that, when the motion is steady, the inclination a of the suspending

thread to the vertical is given by the equation

to^{c + l sin a) =g tan a.

Prove also that, if (gl(o^)^<l^-c^, the inclination can be inwards towards

the axis of the circle.

Theory of Momentum.

81. Impulse. Let the equations of motion of a particle

be written in the forms

mx = X, my = F, mz= Z,

and let both members of each of these equations be integS
with respect to t over an interval from 4 to ^i. Let x-^,yi, ii be

the components of velocity at the instant ^i, and ^o, Vo, Zo the

components of velocity at the instant ^o- The result is

mil - ^^0 = I Xdt, myi
-
my^ = Ydt, raz^ -mZo= | 'Zdt

JU Jto Jto

The quantities in the left-hand members of these equations are

the components of a vector, which is the change of momentum of

the particle during the interval. The quantities in the right-hand
membei-s of the same equations are the components of another

vector which is called the "impulse of the force" acting on the

particle during the interval. The equations can be expressed in
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words in the statement:—The change of momentum of a particle
in any interval is equal to the impulse of the force acting on the

particle during the interval.

82. Sudden changes of motion. Changes of motion of

bodies sometimes take place so rapidly that it is difficult to

observe the gradual transition from one state of motion to

another. We may allow for the possibility of sudden changes of

motion by supposing that the force acting on a particle becomes

very great during a very short interval of time, in such a way that

the impulse of the force has a finite limit when the interval is

diminished indefinitely. Let t' denote the instant at which the

sudden change of motion takes place. In the equations of the

type

mil — ma;o=| ^dt,
J to

the right-hand members have finite limits vfhen tQ
= t' — ^t, and

ti
= f + Jt, and T is diminished indefinitely. We write

rf+ir ct'+^ rf+ir
Lt Xdt = X, Lt Ydt=Y, Lt Zdt = Z.

Then the equations are

miPj
—

mi^o = X, myi
—
myo = F, mii — mzo = Z.

We define the vector, localized at the position of the particle,

of which the components parallel to the axes are X, Y, Z, to be

the "
impulse exerted on the particle

"
at the instant t\ at which

the sudden change of motion takes place.

83. Constancy of momentum. The equations of motion of

the form mx = X

may also be written -j- (mx) = X,

and this equation may be expressed in words in the statement :
—

"The rate of increase of the momentum of a particle in any

direction is equal to the sum of the resolved parts in that direction

of all the forces which act upon the particle."

If the line of action of the resultant force acting on the

particle is at right angles to a fixed line, the resolved part of the

momentum in the direction of this line is constant.



86 FORCES ACTING ON A PARTICLE [CHAP. III.

We had an example of this in the parabolic motion of pro-

jectiles (Art. 33).

If the velocity of a particle undergoes a sudden change, the

resolved part of the momentum in any direction at right angles to

the direction of the resultant impulse is unaltered.

84. Moment of force, momentum and kinetic reaction

about an axis. Let the axis be the axis of z, and consider a force

applied at the point (x' , y\ z'). Let F be the force, and X, F, Z
its components parallel to the axes. Through the point {x\ y', z')

draw a plane, cutting the axis of z in the point P. Resolve

the force F into components : Z parallel to the axis of z, and F'

at right angles to this axis. Then the moment of F about the

axis of z is defined to be the same as the moment of F' about P.

The rule of signs is that when the axis of z and the direction of

F' are related like the directions of translation and rotation in

an ordinary right-handed screw the sign is +. Otherwise the

sign is — .

The theorem of Art. 22 gives for the moment of F about the

axis of z the expression

x'Y-y'X.
So long as the magnitude, line of action and sense of the

force remain the same, the moment is independent of the point
of application. If {x, y, z) is any point on the line, we have the

equations*
x — x __y

—
y' ^z — z'

and therefore we have

xY-yX== x'Y-y'X.
Now let the force be supposed to be applied at that point

in its line of action at which the common perpendicular to the
line of action and the axis of z meets the line of action. Then
the force F' is at right angles to this common perpendicular.
Hence the moment is the product, with a certain sign, of the

length of the common perpendicular and the resolved part of

the force at right angles to the axis. The rule of signs is, as

before, the rule of the right-handed screw.
* These equations express the conditions that the projections on the axes of

a segment of the line are proportional to the resolved parts of the force parallel to
the axes.
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Fig. 35.

This result leads to a general definition of the moment of

a localized vector about an axis:—Let the axis be a line L to

which a certain sense is assigned, and let the vector be localized

in a line L', or be localized at

a point in L' and have for

direction the direction of L'.

Resolve the vector into com-

ponents parallel to L and at

right angles to L. The mo-

ment of the vector about the

axis L is the product, with

a certain sign, of the re-

solved part of the vector at

right angles to L, and the

length of the common per-

pendicular to L and U. The rule of signs is the rule of the

right-handed screw.

From what precedes it is clear that, if the vector is resolved

into any components, or is the resultant of given component
vectors, the moment of the resultant about any axis is the sum
of the moments of the components.

The moments of a force {X, F, Z), applied at a point {x, y, z)y

about the axes of x, y, z, are respectively

yZ-zY, zX-xZ, xY-yX.
The moments of the momentum of a particle about the axes

are

m {yz
—

zy), m (zx
—

xz), m {xy
—

yx),

where x, y, z are the coordinates of the position of the particle

at time t. The moments of the kinetic reaction of the particle

about the axes are

m {yz
—

zy), m {zx
—

xz), m {xy
—
yx\

85. Constancy of moment of momentum.

Let X, y, z be the coordinates at time ^ of a particle which is

subject to any forces, and let X, F, Z be the components of the

resultant force parallel to the axes. We have the equations

mx = X, my= F, mz = Z.
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Multiply both members of the second of these equations

by a?, and both members of the first by y, and subtract the

results. We have
m {xy

—
yx)

— xY — yX.

This equation may be expressed in words in the statement :
—

" The moment of the kinetic reaction of a particle about an axis

is equal to the sum of the moments about the same axis of all

the forces acting on the particle."

The equation may also be written

^ [m {xy -yx)]=xY-yX;

and now the left-hand member may be read as "The rate of

increase of the moment of momentum of the particle about

the axis."

If the line of action of the resultant force acting on the

particle meets a fixed axis, or is parallel to such an axis, the

moment of momentum of the particle about the axis is constant.

We have had an example of this in central orbits.

If the velocity of a particle undergoes a sudden change the

moment of the momentum about any line which meets, or is

parallel to, the line of the resultant impulse is unaltered.

Work and Energy.

86. Work done by a variable force. Let a partible move

along a curved path, of which the arc measured from a fixed

point to a variable point is denoted by s, and let i^ be a force

acting on the particle, 6 the angle which the line of action of F
at any point of the curve makes with the tangent to the curve

at the point. We suppose this tangent to be drawn in the

sense in which the curve is described.

Let the arc between any two points A and B of the curve be

replaced by a polygon of n sides, s^, s^, ... s„, having all its vertices

on the curve. If the force F were the same at all points of any
of these sides, and, at any point on the side 5^(/c

=
1, 2, ... w), its

magnitude were F^ and the angle which its line of action makes
with the side were 6^, the work done by the force, as the particle
describes the polygon, would be

Fi . 5i cos di + F^. §2 cos 0.2+ ...-[- Fn. Sn COS 0^.
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When the number of sides of the polygon is increased inde-

nnitely, and the lengths of all of them are diminished indefinitely,

this expression tends to a limit, called
"
the line-integral of the

tangential component of F'' along the arc of the curve between

the points A and B. It is expressed by

F cos dds.
A

If X, F, Z are the components of the force at any point {oo, y, z),

this expression is the same as the line-integral

taken along the curve from the point A to the point B.

This expression represents the work done by the force upon
the particle in the displacement from ^ to -B along the curve.

It is clear from the form of the expression that the work done

by the resultant of any forces acting on a particle is equal to the

sum of the works done by the separate forces.

87. Calculation of work. For the actual calculation of

the work it would in general be necessary to know how to express

the coordinates of a point of the curve in terms of some para-

meter, say 0, and also to know the values of the components of

the force in terms of the position of the particle. Then at any

point on the curve we could express X, Y, Z in terms of oo, y, z,

and therefore of 6, and we could also express -7^ , -7^
, -Th ^^

terms of 6, and thus we should have to integrate an expression

of the form

dx ^dy ydz
l{^fe-^fe-'%h'

between two fixed values of 6, corresponding to the points

A and B. In this expression Z, . . . and
3^ »

• • • would be ex-

pressed in terms of 6.

It is clear that the result, if it could be obtained, would

depend in general upon the curve; that is to say it would be

different for different <)urves joining the same two points.
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In the case where the force is a central attractive force, mf{r),

which is a function of the distance r from a fixed point, the

tangential component of the force is — mf{r) -7- ,
and the work

done is

where r^ and i\ are the distances of A and B from the fixed point.

Now let
<\) (r) be the indefinite integral of f{r), so that

then the work done is m [<^(^o)- <^(n)]- It depends on Vq and rj,

but is the same for any two curves joining the points A and B.

Another example in which the work is independent of the

curve is afforded by a constant force as we saw in Art. 67.

88. Work function. When the work is independent of

the path, we may choose arbitrarily a fixed point A, and take

the integral

l(Xdx+Ydy + Zdz)

along any path drawn from the point J. to a point P. The result

is a function of the coordinates of P. This function is the work

function. The value of the work function at any point P is equal
to the work done by the forces upon the particle as the particle

moves along any path from the chosen fixed point A to the

assigned point P.

When the work is independent of the path, so that a work

function exists, the forces are said to be "
conservative."

89. Potential function. In the case of a particle moving
in a field of force, we denote by / the intensity of the field at

any point. Let A be an arbitrary fixed point in the field, s the

arc of a curve measured from A, 6 the angle which the direction

of the field at any point makes with the tangent to the curve

at the point, the sense of the tangent being that in which the

curve would be described by a particle starting from A. The

work done by the force of the field in the displacement of a
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particle of mass m along the curve from the chosen point A to

a variable point P is

m I /. cos 6 .ds.

If the force of the field is conservative, this expression is equal
to the value of the work function at P

;
we write it

mV(P) or mV.

Then V(P) is defined to be the value of the potential function
at the point P, and the function V is called the "

potential
"

at

a point. It is the line-integral of the tangential component of

the force of the field (estimated by its intensity) taken along any
curve joining the chosen point A to the variable point P.

The potential function vanishes at the point A.

If we replace the point A by any other fixed point P, the

potential function is increased by a constant, which is the value

of the integral
•JB

f . cos Q . ds.
I.A

In the case of a central field, of which the intensity at a

distance r from the centre of force is -^ ,
we take the point A

at an infinite distance. The potential function is then given

by the equation

or the potential at any point is the product of the constant
/jl

and the reciprocal of the distance of the point from the centre

of force.

In the case of a uniform field of intensity g, we may draw

the axis z in the direction opposite to that of the field, then the

potential at a point is — gz.

90. Forces derived fi'om a potential. Let mX, mY, mZ
be the components of the force of a field acting on a particle of

mass m, so that the direction of the vector (X, Y, Z) is the

direction of the field, and the resultant of {X, Y, Z) is the in-

tensity of the field. Let V be the potential of the field, supposed
conservative.
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Let P be any point {x, y, z), and P' any neighbouring point

(x + Bw, y-¥By, z-\-Bz). The difference V(r)-V(P) is the

value of

r (Xdx + Ydy + Zdz) - 1 {Xdx+ Ydy + Zdz),

and this is the same as the value of the integral

(Xdx+Ydy + Zdz)
p

taken along the straight line drawn from P to P\

Now there exist some values X', Y\ Z\ intermediate between

the greatest and least values of X, Y, Z that occur on the line

PP\ which are such that

"^

{Xdx + Ydy + Zdz) = X'hx + Y'hy + Z'hz.
p

This is, of course, a fundamental theorem of Integral Calculus.

Hence we have

X'hx + Y'hy + Z'hz =V{x + Bx,y-\-hy,z + Bz)
- V (x, y, z).

Let By and Bz be zero, so that the line PP' is parallel to the

axis of x. Then we have

V{x-\-Bx,y,z)- V{x,y,z) ^^ -
Bx.

'

and therefore, in the limit, when P' moves up to P,

dx

In like manner we should find

F=^ zJ—
dy

'

dz
'

The result may be interpreted in the statement :
—The force of

the field (estimated per unit of mass), in any direction, is equal to the

rate of increase of the potential per unit of length in that direction.

If, adopting a different notation, we denote by X, F, Z the

components parallel to the axes of the force acting on a particle,

and if a work function U exists, we have

^^dU Y^dU ^^dU
dx

'

dy
*

dz
'

When the components of force are, as here, the partial

differential coefficients of a function of the coordinates, the force

is said to be "
derived from a potential."
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91. Energy equation. Multiply the left-hand and right-
hand members of the equations of motion

• mx = X, my = Y, mz = Z

by x, y, z respectively, and add the results. The sum of the left-

hand members, viz. :

m (xx -\-yy -\- zz)

is
^[hm(x' + f-\-z%

where the quantity differentiated is the kinetic energy of the

particle at time t The sum of the right-hand members is

Xx+7y-\- Zz,

and this expression represents the 7'ate at which work is done by
the forces.

Hence we have the equation

^-[im(x'
+ f-hz')] = Xx-\-Yy + Zz',

and this equation can be expressed in words in the statement :
—

The rate of increase of the kinetic energy of a particle is equal

to the rate at which work is done by the forces acting on the

particle.

Let s denote the arc of the path measured from a fixed point

A of it to a variable point P of it. We multiply both sides of

the equation just written by -r- . It becomes

and we hence find the equation

^mv^ - ^mvo^ = {Xdx+ Ydy + Zdz\
J A

where v and v^ are the values of the velocity of the particle

at P and A, and the integral is a line-integral taken along

the path.

The equation can be expressed in words in the statement :
—

The increment of kinetic energy in any displacement is equal to

the work done by the forces in that displacement.
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When the forces are conservative, and U denotes the work

function, the right-hand member of the equation last written is

^(P)-?7(^), andwehave

Jmy^- C/'(P)
= const.

We call this equation the "
energy equation."

We have already had several examples of energy equations. In the para-

bolic motion of projectiles we have the result in Art. 34, Ex. 3, in the case of

simple harmonic motion we have the result in Art. 40, Ex. 3, in the case of

central orbits we have the result in equation (2) of Art. 60 and the special

results in Art. 40, Ex. 4, and Art. 48, Ex. 1 and 2.

92. Potential energy of a particle in a field of force.

The work function at a point P, with its sign changed, is the

work that would be done by the force of the field upon a particle

which moves from the point P by any path to the chosen fixed

point A,

This quantity is called the ''potential energy of the particle

in the field."

The energy equation can be written

" Kinetic Energy + Potential Energy = const."

The potential energy of a body, treated as a particle, in the

field of the Earth's gravity is mgz, where z is the height of the

particle above some chosen fixed level, and m is the mass of the

body.

93. Forces which do no work. When a particle moves
on a fixed curve or surface, forming part of the surface of a body,
the pressure of the curve or surface does no work

;
for it is always

directed at right angles to the path.

Forces which do no work are frequently called
"
constraints."

In forming the energy equation we may always omit such
forces from the calculation.

94. Conservative and non-conservative fields. All fields

of force which are found in nature are co;iservative.

It is easy to invent analytical expressions for non-con-
servative fields. For example, let the force at a distance r
from a fixed point be always directed at right angles to the
radius vector drawn from the point, and be equal to /zr ;

and let
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a particle be guided by a "constraint" to describe, under the

action of the force, a plane closed curve containing the point.

The work done can be shown easily to be equal to the product
of 2yu, and the area of the curve. Hence every time that the

particle moves round the curve it acquires an increment of kinetic

energy expressed by this product.

If such a system could be devised it could be used to drive

a machine. We should then have a "
perpetual motion." The

statement that natural fields of force are conservative is included

in the statement that there cannot be a perpetual motion.

By a "
perpetual motion "

is meant a self-acting machine which continu-

ally performs work. In the above example the particle, after each circuit of

the curve, might yield up its increment of kinetic energy by striking against
an external body. It would then start always from the same initial position

with the same initial velocity. Its motion would be periodic, and yet it

would transfer kinetic energy to an external body. In natural systems,

when periodic motions are performed without friction, there can be no incre-

ment of kinetic energy available for transfer to an external body. In general

there are forces of the nature of friction which have the effect that, when the

initial position is recovered, the kinetic energy is diminished. For this

reason an ordinary machine, once started, and subject to natural forces, does

not go on for ever, but gradually comes to rest.

It is to be observed that a function U may exist which is such

that the force {X, F, Z) satisfies the equations

dx
'

dy
^

dz
'

and yet the field of force may not be conservative. In a con-

servative field the work done in displacing a particle round any

closed curve whatever vanishes. Now if U were of the form

A tan-^(2//^) an amount of work equal to "lirA would be done

in displacing a particle round any curve surrounding the axis

of z. We may express the restriction to which this example

points by saying that, in a conservative field, not only is the

force derived from a potential, but also the potential is a one-

"valued function.
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MISCELLANEOUS EXAMPLES.

1. Prove that the time of quickest descent along a straight line from

a point on one vertical circle to another in the same plane is

V{2(c2-a2)/^(a+A)},

where c is the distance between their centres, a is the sum of the radii, and k

the vertical height of the centre of the former circle above that of the latter.

2. Any curve is drawn in a vertical plane, and a second curve is drawn

cutting oflf equal distances along the normals to the first curve. Prove that,

if the second curve now receives a certain vertical displacement, the time of

quickest descent from one curve to the other is independent of the starting

point.

3. Show that when two curves lie in the same vertical plane and do not

intersect, the straight line of quickest descent from one to the other is such

that the normals and the vertical lines through its extremities form a

rhombus ; and further that the centres of curvature at the extremities cannot

lie on the segments of the normals included between the verticals.

4. A parabola is placed in a vertical plane with its axis inclined to the

vertical at an angle cos~^§, the vertex being the highest point of the axis.

Prove that the time of sliding down the latus rectum is the same as that

of sliding down the chord drawn from the upper end of the latus rectum to

the vertex, and that the time down any intermediate chord is less.

5. A parabola is placed in a vertical plane with its vertex downwards and

its axis inclined to the vertical at an angle ^. Prove that the time down the

chord of quickest descent from the focus to the curve is V(2a^^sec3^/3).

6. A spherical shell has a small hole at its lowest point ;
and a particle

starts down a chord from the interior surface, passes through the hole, and
then moves freely. Prove that, at any instant before or after passing through
the hole, the locus of the positions of the particle for different chords of

•descent is a sphere, and find the radius and position of such a sphere.

7. An ellipse is placed with its minor axis vertical. Prove that the

normal chord of quickest descent from the curve to the major axis is that

drawn from a point at which the line joining the foci subtends a right angle
when there is such a point. Determine the normal chord of quickest descent

when there is no such point.
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8. A cycloid is placed with its axis vertical and base upwards, and

particles starting from various points of the base run down chords of quickest
descent to the curve. Prove that, if x is the length of such a chord, and 2h

the vertical height through which a particle would fall freely in the time of

describing it, then x^ - xj{h?la)
— 2h^ = 0, where a is the radius of the

generating circle.

9. Two equal parabolas of latus rectum 2? are placed with their axes

vertical at a distance 2Z from each other and with the vertex of the lower at

a depth I below the vertex of the higher, the convexities being opposed. The
line of quickest descent from the higher to the lower is of length h and makes
an angle (^ with the vertical. Prove that

hjl= sec
</)

sec^
2</>
= 2^2 cosec ^ sec

2</) cos (| rr + 20) .

10. A train of mass m runs from rest at one station to stop at the next

at a distance I. The full speed is F, and the average speed is v. The
resistance of the rails when the brake is not applied is u Vjlg of the weight of

the train, and when the brake is applied it is u' Vjlg of the weight of the train.

The pull of the engine has one constant value while the train is getting up
speed, and another constant value while it is running at full speed ; prove that

the average rate at which the engine works in starting the train is

^Tf- 2A>-2/V-i/4
-

11. A train starts from rest at one station and stops at the next, the pull

of the engine having one constant value while the train is getting up speed,

and another constant value while it is running at full speed. Prove that the

work done by the engine in getting up speed exceeds that done by the brake

in stopping the train by (F/y
—

1) times the work done by the resistance

during the whole journey, F and v being respectively the full speed and the

average speed of the train.

12. It is required to find in horse-power the average rate of working of,

and in pounds weight the pull exerted by, each horse of a two-horse omnibus

which maintains an average speed of 6 miles an hour without exceeding 7^

miles an hour and slows down to 1 foot per second every hundred yards to

pick up or set down—given the following data
—weight of 'bus= 25 cwt., weight

of two horses= 30 cwt., weight of driver, conductor and passengers=35 cwt.,

and brake power produces a friction equal to one-fifth of the pressure. The

brake is supposed to be applied to one wheel only, and no work is done by the

horses when going at full speed.

13. If in an Atwood's machine the chain can only support a tension equal

to one quarter of the sum of the weights at its two ends, show that the greater

weight cannot be much less than six times the smaller, and that the least

acceleration possible is ^5'n/2.

L. M. 7



98 FORCES ACTING ON A PARTICLE [CHAP. III.

14. Two equal bodies, each of mass J/, are attached to the chain of an

Atwood's machine, and oscillate up and down through two fixed horizontal

rings so that each time one of them passes up through a ring it lifts a bar of

mass m, while at the same instant the other passes down through its ring

and deposits on it a bar of equal mass. Prove, neglecting friction, that the

period of an excursion of amplitude a is

yiK-^')).
and that the successive amplitudes form a diminishing geometric progression

of which the ratio is

where /i
is a mass which distributed over the circumference of the pulley will

produce the same effect on the motion as the inertia of the actual mechanism.

15. A series of vertical circles touch at their highest points, and smooth

particles slide down the arcs with the velocity due to falhng from the highest

point ; prove that the foci of the free paths lie on a straight hne whose

inclination to the vertical is tan~i(|V5)-

16. A particle is projected along the circumference of a smooth vertical

circle of radius a. It starts from the lowest point and leaves the circle before

reaching the highest point. Prove that, if the coefficient of restitution

between the circle and the particle is unity, and if the initial velocity is

v/[agr{2+|V(3-V3)}],

the particle after striking the circle will retrace its former path.

17. A smooth parabolic cyhnder is fixed with its generators horizontal,

and the axis of each of its normal sections is horizontal. A particle is placed

uix)n it at a height above the axial plane equal to the latus rectum
; prove

that it will run off at the extremity of the latus rectum, and will then describe

a parabola of equal latus rectum.

18. A particle slides under gravity on a smooth parabola whose axis is

inclined to the vertical, and is free to leave it and describe a different parabola

under gravity alone. Prove that, if the particle leaves the first parabola at

all, it will do so at the point where the normal passes through the intersection

of the directrices of the two parabolas.

19. A particle moves on the outside of a smooth elliptic cylinder whose

generators are horizontal, starting from rest on the highest generator, which

passes through extremities of major axes of the normal sections. Prove that

it will leave the cylinder at a point whose eccentric angle is given by the

equation
e^ coB^(f)

= 3 cos
<f)
— %

where e is the eccentricity of the normal sections.
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20. A particle slides down a smooth cycloidal tube with its axis vertical
and vertex downwards, starting from rest at an arc-distance Si from the vertex.
After a time t, and before the first particle has reached the vertex, a second

particle slides down the tube starting from rest at an arc-distance Sg from the
vertex. Prove that the arc-distance from the vertex of the point where the

particles meet is

27r^
/ // 1 1 2 27rA

where T is the time of a complete oscillation in the tube.

21. Two cycloids are placed in the same vertical plane, with their axes

vertical, and their vertices downwards and at the same level. Two particles
start to describe the cycloids from points at the same level. Show that they
will next be at the same level after a time ^ir >J{aa')/{{y/a+^a')y/g}, and next
after that at time ^'TsJ{aa')l{{^la-\-^a')^g] or ^tt J{aa')l{{>Ja^Ja')]jg}, which-
ever is less, a and a' being the radii of the generating circles.

22. A railway carriage is travelling on a curve of radius r with velocity

V, 2a is the distance between the rails and h is the height of the centre of

gravity of the carriage above the rails. Show that the weight of the carriage
is divided between the rails in the ratio gra-v^h : gra-\-v^h^ and hence that

the carriage will upset if v> >J{gralh).

23. A train starts from rest on a level uniform curve, and moves round
the curve so that its speed increases at a constant rate /. The outer rail is

raised so that the floor of a carriage is inclined at an angle a to the horizon.

Show that a body cannot rest on the floor of the carriage unless the coefiicient

of friction between the body and the floor exceeds.

V(/^ + g"^
sin2 a)jg cos a.

24. A locomotive, starting with a constant acceleration/ from a point A
of a railway, comes to a curve PQ in the line. Prove that, if, in passing along

PQ, the pressure of the flanges of the wheels on the rails is constant, PQ must
be a portion of an equiangular spiral, and the pole of the spiral must lie on a

circle touching AP &.t P and having its diameter equal to AP. Prove also

that, if the track is tilted up at an angle 6 so that the constant pressure

vanishes, the angle of the spiral must be tan-i(|^/~i tan 6).

25. Prove that the impulse necessary to make a particle of unit mass,

moving in an equiangular spiral of angle a under the action of a force to the

pole, describe a circle under the action of the same force, is

2V(i^r)sin(^±^)^

r being the distance from the pole, and F the force at the moment of impact.

7—2



100 FORCES ACTING ON A PARTICLE [CHAP. III.

26. A particle is describing an ellipse of eccentricity e about a focus and

when its radius vector is half the latus rectum it receives a blow which makes

it move towards the other focus with a momentum equal to that of the blow.

Find the position of the axis of the new orbit and show that its eccentricity

is |(e~^-c).

27. A particle of mass m is projected from a point P with velocity V and

moves under a force to a fixed point *S' varying inversely as the square of the

distance. P-P is the chord through the other focus of the path. When the

particle reaches P the kinetic energy is increased by |wi V^RI{4a — R) by a

tangential impulse, R being the distance SP and 2a the major axis of the

orbit. Prove that the new path is independent of the direction of projection.

28. A particle is describing an ellipse about a centre of force in one focus

Sy and when it is at the end E of the further latus rectum it receives a blow

in direction SE which makes it move at right angles to SE. Find the

momentum generated by the blow, and prove that the particle will proceed
to describe an ellipse of eccentricity {26^/(1 +e^)}.

29. A particle is describing an ellipse about a focus S, and when it is at

one end of the latus rectum it receives a blow which makes it describe a

confocal hyperbola. Prove that the direction of the blow makes with the

tangent to the ellipse an angle cot-^e, where e is the eccentricity of the

ellipse.



CHAPTER IVt.

MOTION OF A PARTICLE UNDER GIVEN FORCES.

95. The application of the principles which have been laid

down in previous Chapters to the discussion of the motions of

particles in particular circumstances is the part of our subject

usually described as
"
Dynamics of a Particle." We shall devote

to it the two following Chapters. This part of our subject divides

itself into two main branches, referring respectively to motions

under given forces, and to constrained and resisted motions taking

place under forces which are not all given. We confine our

attention in the present Chapter to motions under given forces.

96. Formation of equations of motion. The method of

formation of the equations of motion has been described in Article

64. It consists in equating the product of the mass of the particle

and its resolved acceleration in any direction to the resolved part

of the force acting upon it in that direction. The equations thus

arrived at are differential equations. The left-hand member of

any equation contains differential coefficients of geometrical

quantities with respect to the time. The right-hand member is,

in general, a given function of geometrical quantities. Although

there are many cases in which equations of this kind can be

solved, there exists no general method for solving them.

Diversity can arise, in regard to the formation of the equations,

only from the choice of different directions in which to resolve.

Thus we may resolve parallel to the axes of reference, or we may
resolve along the radius vector from the origin to a particle, and

in directions at right angles thereto, or again we may resolve

along the tangent to the path of a particle and in directions at

right angles thereto. The most suitable directions to choose in

particular cases are determined by the circumstances.

+ Articles in this Chapter which are marked with an asterisk (*) may be omitted

in a first reading.
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Methods by which the components of acceleration in chosen directions

can be expressed in terms of suitable geometrical quantities have been

exemplified in Arts. 36 and 43. Further illustrations are given in the next

two Articles.

*97. Acceleration of a point describing a tortuous curve.

We recall the facts that, if .r, y, z are the rectangular coordinates of a point

of a curve and s the arc measured from some particular point of the curve to

the point (^, y, z\ the direction cosines of the tangent, in the sense in which s

dx dy dz ^. „ . ,, , ^. fdxV' (dy\^ (dz\^ ,

increases, are ^, -,
^-,

satisfymg the relation
(^^j

+
(^^j +(^j

=1;

the direction cosines of the principal normal directed towards the centre of

curvature are p-r^t P^i PT2^ satisfying the relation

where p is the radius of circular curvature
;
and the direction cosines of the

,. , (di^ydz dhdy\ (dHdx d^x dz\ (d'^xdy d^ydx\

We recall also the relation -j- y^ + -^ -,-f +^ -t^=0.
ds ds^ ds ds^ ds ds^

In the expressions x, i/,
z for the component accelerations parallel to the

axes we change the independent variable from t to s.

We have, writing v for the speed, so that v stands for s,

.. d^x d
^~df- ~dt

fdx\ _ds cl /ds dx\ _ d
f

dx\

\dt)~dtds \di d^)~^dsyd^)
'

c^ k«4. • dv dx
,

„ d^x
80 that ^=,_ _+,.__,

dv dy „ d^y

„^i •• dv dz
, ^dh

If we multiply these component accelerations in order by the direction

cosines of the tangent and add, we obtain the component acceleration parallel
to the tangent to the curve in the sense in which s increases ; we thus find

for this component the expression

dvr(dx\^ (dyY . (dz\n 2 (dx d^x ^ dy d^y ,
dz dh\ dv

v*LU; +
V^; "^UvJ^' Kdsd^^-^dsdT^-^d^d^)^

^^
^^•

Again, if we multiply by the direction cosines of the principal normal and
add, we obtain the component acceleration parallel to the principal normal
directed towards the centre of curvature

; we thus find for this component
the expression

^d^Vdxd^xdy d^y dz dhl F/d'xy^ fdW .

/dWl v'^
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Finally, if we multiply by the direction cosines of the binormal and add,
we find no component acceleration parallel to the binormal.

Thus the acceleration of a point describing a tortuous curve is in the

osculating plane of the curve, and its resolved parts parallel to the tangent

and principal normal are v-r and —
, exactly as in the case of a point describing

a plane curve. As in that case, the expression for the former component

may be replaced by v, or by s.

^98. Polar coordinates in three dimensions. The co-

ordinates are r the distance from the origin, 6 the angle between the radius

vector and the axis 2, ^ the angle between the plane containing the radius

vector and the axis z and a fixed plane drawn through the axis z.

The plane containing the radius vector and the axis z will be called the

"meridian plane," and the circle in which this plane cuts a sphere r= const,

the "meridian."

We denote distance from the axis z by or, so that ar = rsin B.

In a plane parallel to the plane (.r, y), or and are plane polar co-

ordinates
;
in the meridian plane z and -oj are Cartesian coordinates, and r and

6 are plane polar coordinates.

Hence the velocity {x^ y) parallel to the plane (^, y) is equivalent to w at

right angles to the axis z in the meridian plane, and ot^ at right angles to

this plane ;
and the velocity (i, y, z) is equivalent to (i, w) in the meridian

plane and tzr0 at right angles to this plane. Also the velocity (i, w) in this

plane is equivalent to r along the radius vector and r6 along the tangent to

the meridian. The components of velocity are therefore

f along the radius vector,

r6 along the tangent to the meridian,

r sin 64) at I'ight angles to the meridian plane.

The accelerations i?, y parallel to the axes x^ y are equivalent to iis-w^'^

and —
J- (or^A) in and perpendicular to the meridian plane. Hence the

ZET at

acceleration is equivalent to z parallel to the axis z, -zs
- w^^ at right angles

to the axis z and in the meridian plane,
-

-r. {'^'^4>)
^* ^^g^* angles to the

"uH dt

meridian plane.

Taking the components 2, ot, which are in the meridian plane and are

parallel and perpendicular to the axis z, we see that these are equivalent to

r-rB'^ along the radius vector and -
jii^^) along the tangent to the

meridian.
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We resolve the acceleration -
tc^^^ which is in the meridian plane and at

right angles to the axis
-s,

into components parallel to the radius vector and

to the tangent to the meridian. These components are -
tiT(^2

gj^ ^ ^nd

-
1«7^2 cos B. Hence the components of acceleration are

r - r&^ - r sin^ 0^^ along the radius vector,

1 f]
- -=- (r^B)

- r sin B cos 6^"^ along the tangent to the meridian,

—
:
—

li-r (r2sin2^(f)) at right angles to the meridian plane.
rainBdt ^ ^^ ^ ° ^

99. Integration of the equations of motion. When-

ever there is an energy equation (Art. 91) it is an integral of the

equations of motion.

When the particle moves in a straight line under conservative

forces the energy equation expresses the velocity in terms of the

position; and the position at any time, or the time of reaching

any position, is determined by integration. For an example see

Ex. 1 in Art. 55.

When the particle does not move in a straight line other

integrals of the equations are requisite before the position at any
time can be determined. If there is an equation of constancy of

momentum (Art. 83), or of moment of momentum (Art. 85), these

also are integrals of the equations of motion. These, combined

with the energy equation, are sometimes sufficient to determine

the position at any time. Examples are afforded by the parabolic

motion of projectiles and by elliptic motion about a focus.

100. Example.
Deduce the result that the path of a particle moving freely under gravity

is a parabola from the equation expressing the constancy of the horizontal

component of momentum and the energy equation.

101. Motion of a body attached to a string or spring.

Simple examples of Dynamics of a Particle are afforded by
problems of the motion of a body attached to an extensible string
or spring. We consider cases in which the particle moves in the

line of the string or spring (supposed to be a straight line).

When the mass of the string is neglected f, and there is no

+ A string of which the mass is neglected is often called a «' thread."
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friction acting upon it, the tension is constant throughout it

(Chapter VI.).

When the length of a string can change there is a particular

length which corresponds to a state of zero tension. This state

is called the "natural state/' and the corresponding length the

"natural length."

Let Iq be the natural length, I the length in any state. The

quantity {I
—

lo)/lo is called the " extension."

The law connecting the tension and the extension is that the

tension is proportional to the extension. If e is the extension, the

tension is equal to the product of e and a certain constant. This

constant is called the " modulus of elasticity
"
of the string.

If, in the course of any motion of an extensible string, the

string recovers its natural length, the tension becomes zero, and

the string becomes "
slack." A particle attached to the string is

then free from force exerted by the string until the length again

comes to exceed the natural length.

A string which exerts tension, but is never sensibly extended,

must be thought of as an ideal limit to which an extensible string

approaches when the extension e tends to zero, and the modulus \

tends to become infinite, in such a way that the product Xe is the

finite tension of the string. Such a string would be described as

"
inextensible."

A spring, when extended, exerts tension in the same way as

an extensible string ;
when contracted, it exerts pressure which is

the same multiple of the contraction (lo
-

1)1 lo
as the tension is of

the extension.

A body attached to a spring, of which one end is fixed, and

moveable in the line of the spring, is subject to a force equal to

fix, where /a is a constant called the
"
strength of the spring," and

X is the displacement of the body from the position in which the

spring has its natural length. When the length is increased by x

the force is tension; when it is diminished by x the force is

pressure. The equation of motion of the body, considered as a*

particle of mass m, is mx = —
fix.

It follows that the motion of the particle is simple harmonic

motion of period 2'ir\J{mjfi).
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This result may also be obtained by forming the energy equation. For

the work done by the force in the displacement x is

I
—
\ixdx^

or it is -
^/Lur2 ;

and the kinetic energy of the body, treated as a particle, is

\ma^. Hence the energy equation is

^^n^2^^^2— const.,

and the result that x is of the form a cos {^^/(/i/m)+a} can He obtained by

integrating this equation.

102. Examples.
1. A particle of mass r/i is attached to the middle point of an elastic

thread, of natural length a and modulus X, which is stretched between two

fixed points. Prove that, if no forces act on the particle other than the

tensions in the parts of the thread, it can oscillate in the line of the thread

with a simple harmonic motion of period TrJimajX).

2. A particle of mass m is attached to one end of an elastic thread, of

natural length a and modulus X, the other end of which is fixed. The

particle is displaced until the thread is of length «+ 6, and is then let go.

Prove that, if no forces act on the particle except the tension of the thread, it

will return to the starting point after a time 2f7r + 2T)^/-Y"-

3. Prove that, if a body is suddenly attached to an unstretched vertical

elastic thread and let fall under gravity, the greatest subsequent extension is

twice the statical extension of the thread when supporting the body.

4. Prove that, if a spring is held compressed by a given force and the

force is suddenly reversed, the greatest subsequent extension is three times

the initial contraction.

5. An elastic thread of natural length a has one end fixed, and a particle

is attached to the other end, the modulus of elasticity being n times the

weight of the particle. The particle is at first held with the thread hanging

vertically and of length a', and is then let go from rest. Show that the time

until it returns to its initial position is

2 (tt
- ^+ ^'+ tan ^ - tan 6') Jiajng),

where d, 0' are acute angles given by

sec «= na'/a
- w — 1

,
sec^ 6'= sec'-^6 - 4n,

and a' is so great that real values of these angles exist.

103. The problem of central orbits. We have already in-

vestigated this problem in some detail in Arts. 49—52. We found that

a particle moving under a central force directed to a fixed point, moves in

a fixed plane which contains the centre of force and the tangent to the path
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at any chosen instant. We found that the equations of motion could

be expressed in the form
1 dm (r

-
r^2)= _

m/, ^ -^ {rH) =

where m is the mass of the particle, and / is the intensity of the field of force,

taken to be an attraction. We suppose that /is given as a function of r.

The energy equation is

hn {r^+ rW^) = const. — m
j
fdr^

and the equation of constancy of moment of momentum about an axis through
the centre of force at right angles to the plane of motion is

mr^0=mh,

where A is a constant which represents twice the rate of description of area

by the radius vector.

We found that these equations lead to the equation

where ^ is a constant, u is written for 1/r, and / is now supposed to be ex-

pressed in terms of u. This equation determines the path of the particle.

When / is given, and the particle starts from a point at a distance a

from the centre of force, with a velocity F, in a direction making an angle a

with the radius vector, the value of h is Fa sin a. The initial value of

-T5 )
+ M^ is 1 /a2 sin2 a, for it is the reciprocal of the square ofthe perpendicular

from the origin of r upon the tangent to the path. Hence the equation of

the path takes the form

[dej
"^ "^

a2 sin2 a
~

V^a^ sin^ a J i u^
a

When the path is known, so that u becomes a known function of 6, the

time of describing any arc of the path is the value of the integral

d0

I-.u^ Va sin a
'

taken between limits for 6 which correspond to the ends of the arc.

104. Apses. Au apse is a point of a central orbit at which

the tangent is at right angles to the radius vector.

There is a theory concerning the distribution of the apses

when the central acceleration is a single-valued function of the

distance, i.e. for the case where the acceleration depends only on

the distance and is always the same at the same distance.
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Let A be an apse on a central orbit described about a point 0,

/ the central acceleration, supposed a

x'< ^ >T single-valued function of distance, TAT'
a line through A at right angles to AO.

Then a point starting from A at right

angles to AO with a certain velocity

would describe the orbit. Let V be this

velocity.

If a point starts from A with velocity

V in direction AT or AT, and has the

p- gg
acceleration /* towards 0, it describes the

orbit
;
so that two points starting from A

in these two directions with the same velocity F and the same

acceleration / describe the same orbit. Since the two points have

the same acceleration at the same distance, the curves they de-

scribe are clearly equal and similar, and are symmetrically placed
with respect to the line AO. Thus the orbit is symmetrical
with respect to AO in such a way that chords drawn across

it at right angles to ^0 are bisected by AO. The parts of the

orbit on either side of ^0 are therefore optical images in the

line AO.

Now let the point start from A in direction AT, and let B
be the next apse of the orbit that it passes

through, also let A' be the next apse after B
that it passes through. Then the parts A OB,

BOA' of the orbit are optical images in the

line OB, and the angle AOB is equal to the

angle A'OB, and the line J.0 is equal to

the line A'O. In the same way the next

apse the point passes through will be at

a distance from equal to OB, and thus

^ig- 37. all the apses are at distances from equal
to either OA or 0B\ these are called the apsidal distances, and
the angle between consecutive apses in the order in which the

moving point passes through them is always equal to AOB, this

is called the apsidal angle.

The theory just explained is usually stated in the form :
—

Thei^e are two apsidal distances and one apsidal angle.
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It is clear that the radius vector is a periodic function of the

vectorial angle with period twice the apsidal angle.

105. Examples.
1. If the apsidal distances are equal the orbit is a circle described about

its centre.

2. Write down the lengths of the apsidal distances and the apsidal angle
for (1) elliptic motion about the centre, (2) elliptic motion about a focus,

(3) all the orbits that can be described with a central acceleration varying

inversely as the cube of the distance.

3. Explain the following paradox:
—Four real normals can be drawn to

an ellipse from a point within its evolute, and in Ex. 6 of Art. 46 we found

the central acceleration to any point requisite for the description of an ellipse ;

there are apparently in this case four apsidal distances and four apsidal

angles.

106. Apsidal angle in nearly circular orbit. Let the

central acceleration be f{r) at distance r, then a circle of radius c

described about its centre is a possible orbit with \h for rate of

describing area provided that

i
©-/<•>•

or h'=(ff{c).

Let us suppose the point to be at some instant near to the

circle, and to be describing an orbit about the origin with moment

of momentum specified by this h.

The equation of its path is

d^ _f{r)

At the instant in question u is nearly equal to -
;

if it was

precisely -, and if the point was moving at right angles to the
c

radius vector, the point would describe the circle of radius c. We
assume that it is always so near to the circle that the difiference

u is so small that we may neglect its square ;
the investigation

c

we give will determine under what condition this assumption is

justifiable.

Put u = - + a; and write <^ (u) for /(r), and a for -, so that

h?=(}>{a)la\
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Then

d^ _ a^<l> (a + os) 1

<f>{a)

if a^ is neglected.

Now if 3 - ^7M is positive we may put it equal to /c^ and
9W

then the solution of the above equation is of the form

x = A cos {icB 4- a),

so that the greatest value of x is A, and by taking A small enough
X will be as small as we please and the neglect of x^ will be

justified.

In this case u, and therefore r, will be a periodic function of 6

with period 27r /* /]3
—

?r7\\ >
*^^ ^^^^^ i^ nearly circular and

/ /fo a<i>'{a)\
its apsidal angle is tt/ . /

j3
—

-77-^-

Again, if 3 r^ \
is negative we may put it equal to — /c^

9(a)
and then the solution of the above equation is of the form

and it is clear that one of the terms increases in geometrical

progression whether 6 increases or diminishes, so that x will very

soon be so great that its square can no longer be neglected,

whatever the number we agree to neglect may be. In this case

the orbit tends to depart widely from the circular form.

In the former of these cases the circular motion is said to be

stable, in the latter unstable.

107. Examples.
1. If /(r)=:r~" or <f>{u)

=
u'', prove that the possible circular orbits are

stable when n<3 and unstable when w>3.

2. For n= 3 prove that the circular orbit is unstable, and find the orbit

described by a point moving with the moment of momentum required for

circular motion in a circle of radius c through a point near the circle.
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3. If /(r)= r~* prove that the curve described with the moment of

momentum required for circular motion in a circle of radius c, when the

point of projection is near to or on this circle, is either the circle r=c or one

of the curves

r_cosh^4-l r_cosh^-l
c
""
cosh6^ '

c
~

cosh ^+ 2
'

108. Examples of equations of motion expressed in terms
of polar coordinates.

1. When the radial and transverse components of force acting on a

particle which moves in one plane are R, T, the equations of motion are

2. When the forces are derived from a potential V we have

R= m^:^ .

cr

and there is an energy equation

\m (r2+ r^e^)
=mV+ const.

3. Put 7^B — h^ u=r~^; in general h is variable. The equation of the

path can be found by eliminating h between the equations

4. When the forces are derived from a potential, as in Ex. 2, the equation
of the path can be written in the form

dV_ , d V
de^"" dO

, d .""*, r d du d
where -y^ stands for ^ + -t^ 5- •

dd 06 dd du

\do)

109. Examples ofmotion under several central forces.

1. A particle of mass m moves under the action of forces to two fixed

points A, A' of magnitudes m/i/r^, m/x'/^^ respectively, where r and r' are the
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distances of the particle from A and A\ and
\i.
and

/a'
are constants. The

equations of motion possess an integral of the form

T^r'^B'= a in cos 6-
fi'

cos 6')+ const.,

where a is the distance A A'.

Resolving at right angles to the radius vector r, we have

ni _ _ (^^)_wi ^ sin X, where x is the angle APA\

so that /2 _ (^2^)
=^V sin X= /*'« sin 6',

similarly r^
-j {r'H')

= -
/ir' sin ;t

= -
/xa sin 0.

Multiplying by 6' and ^, adding, and integrating, we have an equation of

the given form.

This equation with the energy equation determines the motion.

2. A particle of mass m moves under the action of forces to two fixed

points of magnitudes my^r^ mii'r'. Prove, with the notation of Ex. 1, that

there is an integral equation of the form

/ir2^+/xy2^'= const.

3. A given plane curve can be described by a particle under central forces

to each of n given points, when the forces act separately. Prove that it can

be described under the action of all the forces, provided that the particle is

properly projected.

Let /k be the acceleration produced in the particle by the force to the (cth

centre 0<t, Vk the velocity of the particle at any point when the curve is

described under this force, r^ the distance of the point from Ok ,
and p* the

perpendicular from Ok on the tangent to the curve at the point, p the radius

of curvature and ds the element of arc of the curve at the point. Then we
are given that

dVK _ J, dVK Vk^ _J! Pic

'""'d^-'^'^'ds' J'J'Vk'
Now the curve can be described under all the forces if there exists a

velocity V satisfying the two equations

dV_ n dvK V^npK^
ds-~V~d^' ~P~V"^'

and it is clear that these are satisfied by

V'^'S.Vk^
I

Thus the condition is that the kinetic energy when all the forces act must
be the sum of the kinetic energies when they act separately.

4. Prove that a lemniscate rr' =c^^ where 2c is the distance between the

points from which r and r' are measured, can be described under the action

of forces m^jr and w/*// directed to those points, and that the velocity is

constant and equal to §K/(3/i).
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5. A particle describes a plane orbit under the action of two central

forces each varying inversely as the square of the distance, directed towards

two points symmetrically situated in a line perpendicular to the plane of the

orbit. Show that the general (p, r) equation of the orbit, referred to the

point where the line joining the centres of force meets the plane as origin, is

of the form

where c is the distance of either centre of force from the plane, and a and b

are constants.

6. A point describes a semi-ellipse, bounded by the axis minor, and its

velocity, at a distance r from the nearer focus, is €ts/{f{a-r}lr{'2a-r)],
2a being the axis major, and / a constant. Prove that its acceleration is

compounded of two, each varying inversely as the square of the distance, one

tending to the nearer focus, and the other from the farther focus.

110. Disturbed elliptic motion. The motion of the Planets

about the Sun does not take place exactly in accordance with

Kepler's Laws (Art. 41). Although the Sun's gravitational

attraction preponderates very greatly oyer the attractions between

the Planets, these attractions are not entirely negligible. The

theory of the motion of the Planets presents us with the problem
of determining a motion which, apart from relatively small forces,

would be elliptic motion about a focus.

We shall consider here some examples of elliptic motion dis-

turbed by small impulses in lines which lie in the plane of the

orbit. The ellipse described after the impulse is a little different

from that described before. The ellipses, having a given focus,

are determined by the lengths of the major axes, the eccentricities,

and the angles which the apse lines make with some fixed line in

the plane of the orbit. We denote the major axis by a, the

eccentricity by e, and the angle in question by -cr.

111. Tangential impulse. Let a particle P, describing an

elliptic orbit about a focus S, receive a small tangential impulse

increasing its velocity by Sv. Let R be the distance of the

particle from S at the instant, /^/r^ the acceleration to S when

the distance is r, a + Sa the semi-axis major of the orbit imme-

diately after the impulse.

We have, by Ex. 2 of Art. 48,

/2 1

L. M. 8
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giving
Ba 2vBv . ^ ,~ = approximately.

Again, if h is the moment of the velocity about S before the

impulse, h + Bh afterwards, since the tangent to the path is un-

altered, we have
h + Bh _h
V -{- Bv v'

giving

Fig. 39.

Hence if I is the semi-latus rectum before the impulse, I + Bl

afterwards, we have

fjL{l + Bl)
= h'(l + jj ,

with Ji' =
fil,

Bv
Bl = 21 — approximately.giving

Now l = a(l — e^), and if e becomes e + Be,

(1
-

e^) Ba - 2€aBe = 2a (1
-

e^)

Bv

giving
(1-.^) vBv Bv] 1 — e^Bv \v^ l"!

a = a
,

fjL vj e V
ifjL a]

or Be
1 - e- 2Bv\Bv /I 1\

Further the angle 6 which SP makes with the axis major is

given by the equation l/R = 1 + e cos ^ and it is clear that

Be = - B^,

I
hence BllR =

-^(j^-l^-^esm6Bx^.
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If the particle is subject to a disturbing force producing a small

tangential acceleration / we shall have

fjL

'

V e\R a

... 2lf efl
e sin 0^ = yc^M V e

112. Normal impulse. Suppose the particle to receive an

impulse imparting to it a velocity Bv in the direction of the normal

outwards. Then the resultant velocity is, to the first order, un-

altered, and consequently a is unaltered, or Ba = 0.

If p is the perpendicular from the focus S on the tangent at P,

meeting it in F, then the value of h is increased by PYBv, or we

have

Bh==^{R'-p^^)Bv.

Hence fiBl
= 2hBh = 2pvBv sJ{R^

-
p'') ;

also Bl = — 2aeBe, so that

fjLCie

Again, IjR = 1 + e cos 6, so that

-
2aeBelR =

(;^
-

l) 7 + ^ ^^^ ^^^•

If the particle is subject to a disturbing force producing a small

normal acceleration / we have

nfv ^ /2ae l — R\
« = ^' ^ =

-^e'^^^'-P'^-
^^'"^^ =-n:B'^^-

113. Examples.
1. For a small tangential impulse prove that

'

8e= 2bv{e+cose)lv, 6tzr = 2S2; sin ^/ev.

2. For a small normal impulse prove that

8e=- rdv sin Ofav, drzr= 8v {2ae+ r cos e)laev.

3. For'a small radial impulse prove that

8a= 2a%Svsiu^/A, 8e= ASv sin ^//x, 8^= - h8v cos 6/Cfi.

4. For a small transversal impulse prove that

da=2Sm2(H-ecos^)/A, 8e= dv{r{e + cose) + lcose}/h, dizr= 8v sin 6 (I +r)leh.

8—2
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MISCELLANEOUS EXAMPLES.

1. The motion of each of two points relative to a certain frame is

uniform rectilinear motion, and the straight paths intersect. Prove that the

acceleration with which the distance between the points increases is inversely

proportional to the cube of that distance, and find the path of either point

relative to the other.

2. Kelatively to a certain frame a point describes a straight line

uniformly with velocity F, and a second point F describes a curve in such

a way that the line OP describes areas uniformly ; prove that the resolved

part perpendicular to OP of the acceleration of P is 2 Vv sin (fyjOP^ where v

is the velocity of P, and <f>
the angle which the tangent to its path makes with

that of 0.

3. Relatively to a certain frame, a point A describes a circle (centre 0)

uniformly, and a point B moves with an acceleration always directed to A.

If the area covered by the line AB is described uniformly, prove that the

resolved part parallel to OA of the velocity of B is proportional to the

perpendicular from B on OA produced.

4. A particle moves with an acceleration always directed to a point

moving uniformly in a straight line, and the line joining the point to the

position of the particle at any time is normal to the path of the particle ;

prove that the path of the particle relative to the point is a conic.

5. A particle moves so that the angular velocity of the radius vector
from a fixed point and the acceleration along it are both constant, prove that
the acceleration at right angles to it varies as the hyperbolic sine of the angle
between it and a fixed straight line.

6. A particle is moving in a parabola and at distance r from the focus

its velocity is v
; show that its acceleration is compounded of — — (v^r)

4r dr^ '

parallel to the axis and t j- (
—

]
along the radius vector outwards.

7. A particle is describing an involute of a given curve
; prove that its

accelerations along the tangent and normal to its path are ~
{s\jr) and 5^2

respectively, where s is the arc of the given curve, a/a
the angle which the

tangent makes with a fixed straight line.
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8. Prove that, if the acceleration of a point describing a tortuous curve

makes an angle i/r
with the principal normal, then tan >//

=^ -^ .

V as

In the case of a plane curve the condition that the acceleration is always

directed to the same point is that the equation sin^/r-f-7- ^ t- = must^ as
^ d^\r

be satisfied at every point.

9. The position of a point is given by the perpendiculars ^, t;
on two

fixed lines containing an angle a ; prove that the component velocities in the

directions ^, rj
are

(i+ '7C0Sa)/sin''^a and (^ + ^cosa)/sin2a.

10. Prove that the component accelerations of a moving particle are X
parallel to the axis of ^, and R perpendicular to the radius vector, where

y_rT{r^
—

x^)
—

{rx
- xrf

X {f^
-
x^)

'

, n_r{rr
—

xx){r'^
—

x^)
— {rx—xrf

~x
{r^-x'^f

11. The position of a point is given by x, y, r, where x^ 3/, 2, r have their

usual signification relative to rectangular axes; show that the component
accelerations are

u+ —
;-,

V H ,
w- [uicx+ vwy)lr\

u, V, w being component velocities in the directions x^ y, r.

12. If x^ y are the coordinates of a point referred to rectangular axes

turning with angular velocity «, prove that the accelerations in the directions

of the axes are

i; - yco
-

2yo)
- 0)% and y+ ^^o)+ 2.ra) - w^y.

13. Prove that, if rectangular axes Ox, Oy revolve with uniform angular

velocity co, and the component velocities of a point {x, y) parallel to the axes

are Ajx and Bjy, then the square of the distance of the point from the origin

increases uniformly with the time.

14. The sides (7/1, CB of a triangle are fixed in position, and the side AB
is of constant length c. The velocities of A and B along CA and CB are u and

V, the corresponding accelerations are U, V, and a> is the angular velocity of

AB
; prove that

mcos^+?;cosjB=0, usin a ~v8in B=ca)j

UcosA+ FcosB=- cu)'^,
C^sin A -< Fsin B=ca>.
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15. Two axes Ox^ Oy are inclined at an angle a and rotate with angular

velocity o) about 0. Show that the component velocities are

X — <iiX cot a— <oy cosec a, y+ cay cot a + (ox cosec a.

If the position of a point is defined by the perpendiculars |, rj
drawn to

the instantaneous positions of Oxj Oi/, prove that the component velocities

UfV in these dii*ections are given by

«= (I -f ^ cos a)/sin'^a + cor]/sina\
r=

(,) 4- ^ cos a)/sin2a
-
w^/sin a )

'

and that the component accelerations fire

u — (jiU cot a-\-oiV cosec a,

y+ a)V cot a — (nu cosec a.

16. Two fixed points are taken on a circle and any point on the circle is

at distances rj , r.^.
^''O™ them, the radii vectores r^ , r^ containing an angle a

;

prove that the component velocities in the directions of rx and ^2 are ^tj, u^i

where

«i+««2C0Sa=ri, W2+%cosa= r2,

and that the component accelerations in the same directions are

17. The radii vectores from two fixed points distant c apart to the position

of a particle are ri, ^2, and the velocities in these directions are UiyV^] prove

that the accelerations in the same directions are

18. The radii vectores from three fixed points to the position of a particle

are n, /•2, ^s, and the velocities in these directions are u^, 2^2? ^3; prove that

the accelerations in these directions are

wi + wi (
— + - )

-^

(W2 cos ^12+% cos ^13),

and the two similar expressions, in which ^23) ^31 » ^12 are the angles contained

by the directions of {r^, r^), {r^, ri) and (ri, r^.

19. A particle is suspended from a point by an elastic thread and oscillates

in the vertical line through the point of suspension. Prove that the period
is the same as that of a simple pendulum of length equal to the excess of the

length of the thread in the position of equilibrium above its natural length.

20. A particle is attached to one end of an elastic thread of natural

length ?, the other end of which is fixed to a point on a smooth horizontal

table. When the particle is at rest on the table, with the thread straight but

unstretched, it receives a blow, which, if directed along the thread would make
the particle move to a maximum distance 21 from the fixed end. Prove that,

if the direction of the blow makes an angle a with the thread, the maximum

length of the thread during the motion is the greatest root of the equation

ar*-2/.r3 + ^^sin2a= 0.
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21. A particle is attached to a fixed point by means of an elastic thread

of natural length 3a, whose coefficient of elasticity is six times the weight
of the particle. When the thread is at its natural length, and the particle

is vertically above the point of attachment, the particle is projected hori-

zontally with a velocity S^/i^ag); verify that the angular velocity of the

thread can be constant, and that the particle can describe the curve

r= a{4 — cos 6).

22. A heavy particle is fastened to the free ends of a number of elastic

threads which passed through fixed smooth rings, each ring being at a dis-

tance from the fixed end of the thread which passes through it equal to the

natural length of the thread. Prove that, if the particle is projected in any

direction, it describes an ellipse about its position of equilibrium as centre.

23. If the central acceleration is fi[2(a^ + b'^)io^-2a%^u^], the initial

distance a, and the initial velocity ^fi/a at right angles to the radius vector,

determine the orbit.

24. A particle describes a central orbit about the origin with accelera-

tion fiu^in^+l-^Ti^a^u^), starting from an apse at distance a with the

velocity from infinity ; prove that it describes the curve

r=a coshnO.

25. A particle describes a central orbit with acceleration

^[4(a/r)9+ (a/r)3-32(r/a)3],

starting from a point for which r=a with velocity 3V(2«/a) i" a direction

making an angle ^tt with the radius vector. Prove that the path is

?-= |a3coth2^.

26. If the central acceleration is 2/x {u^
- aH^) and the particle is pro-

jected from an apse at distance a with velocity Vm/«, the time until the

distance is r is

27. A particle moving with a central acceleration fi{zc'^+ 2au^) starts

from a point at distance a from the origin in a direction making an angle

(n
- cot -12) with the radius vector and with the velocity from infinity. Show

that the equation of the path is r=a (1
— 2 sin 6).

28. A particle moves in a nearly circular orbit with an acceleration

fj,^p(^i^-a), a being the mean radius; show that the apsidal angle is

7ro)/V(3a>2-|-j/), where at is the mean angular velocity.

29. If the central acceleration is /xw' the velocities at the two apsidal

distances satisfy the relation Vi^+ V2'^=2h*lfi.
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30. A particle describes a central orbit with acceleration fi{r-^
-

la^r''^),

starting from a point where r=^a with velocity iJ{2fi)/a^ at an inclination

sin-i
4,
to the radius vector. Prove that its path is

l-^= av'3y(4r2-a2).

31. A particle describes a central orbit with acceleration /i/(r
-

a)^ towards

the origin, starting with the velocity from infinity at a distance c (which is

greater than a and less than 2a) at an angle 2cos-\/(a/c). Prove that the

path is given by the equation

|^=tanh-
1
^{{r

-
a)/a}

- Un-^J{{r- a)/a].

32 . A particle moving with a central acceleration 4^2 (2r
~ ^— 3ra ~*- 2r^a

~
^)

starts from a point distant A a from the origin in direction making an angle

tan ~*
27/125 with the radius vector with such velocity that the rate of descrip-

tion of areas is k. Show that the equation of the orbit is

33. A particle is projected with velocity less than that from infinity under

a force tending to a fixed point and varying inversely as the nth power of the

distance. Prove that if n is not < 3 the particle will ultimately fall into the

centre of force.

34. A particle moves under a central force varying inversely as the nth

power of the distance (w>l), the velocity of projection is that due to a fall

from rest at infinity, and the direction of projection makes an angle/? with the
2

radius vector of length R. Prove that the maximum distance is R cosecw-s /3

when n>3j and that the particle goes to infinity if u= or <3.

35. Prove that the time of describing any part of a central orbit is

/.V{2r2((7+F)-A2}'

taken between appropriate limits, where V is the potential, and C and h are

constants depending on the initial conditions.

36. Prove that, if a possible orbit under a central force (r) is known, a

possible orbit under a central force (f){r) + \r~^ can be found. In particular

prove that a particle projected from an apse at distance a with velocity

v/(X +/*)/«, under an attraction

^fi{n-l) «»'
- 3 >•-»+ Xr-3, (

w> 3),

will an*ive at the centre in time
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37. A particle moves under a central force and is projected with velocity

Vq from a point at distance
?*q

in a direction making an angle a with the radius

vector. Prove that the apsidal distances are the real positive roots of the

equation for r

WV2/(Vsin2a-r2)=^V.

where W is the work done by the central attractive force (per unit of mass) as

the particle moves from the point of projection to any point at distance r from

the centre of force.

38. A particle is describing a circular orbit of radius a under a force to

the centre producing an acceleration /(r) at distance r, and a small increment

of velocity Aw is given to it in the direction of motion. Prove that the

apsidal distances of the disturbed orbit are

3/" (a) + «/(«)

Prove also that, if the increment of velocity imparted to the particle is

directed radially, the apsidal distances are approximately

a±Au
V{3/(a)+a/(a)}

39. A particle moves under a central force
fi {I + 8k cos 20) /)'^ being

projected from an apse on the initial line at distance c with velocity y/ifi/c) ;

show that the next apsidal distance is c/(l+3ic).

40. A particle moves under a central force proportional to u^ {cu + cos $)~^

towards the centre. Show that the orbit is one of the conies given by the

equation (cu+ cos ^)2= a + 6 cos 2 (6+ a).

41. A particle moves in a plane under a radial force F and a transverse

force T where

P=-HU^ (3+ 5 cos 26), T=^fi2iHm20;

prove that a first integral of the differential equation of the path can be

expressed in the form

h^^Une'^-ucosd^
-
f^[{sm3e-sme)'^-2ucos3e~]^

= C,

42. A particle moves under the action of a central force P and a transverse

disturbing force -f(t). Prove that

where i^(0 = 1/(0 «^^-
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43. Verify that in a plane field of force of which the potential referred to

polar coordinates is

a particle, if projected in the proper direction with the velocity from infinity,

will describe a curve of the form

(r
- a sin d){r-b sin 6)

= ah,

provided that ^+__^^+|=0.

44. A particle of mass m describes a circle (centre C) in period T under

the action of a force to a fixed point S. Prove that the force at any point P
can be resolved into two directed to inverse points 0, 0' in CS and equal

respectively to

16m7r2 CCPqP^ . IGmTT^ CO^ CP^_

45. A particle describes an ellipse under two forces, functions of the

distance, one to each focus. If the law of force to one focus is /ir, prove that

to the other it must be fir-{-n'/r^.

46. An ellipse is described under the action of two forces, one to each

focus. Show that the force j)er unit of mass along the focal radius vector r is

ai>^ _ 1 rfy2

2r(2a-r) 4 dr '

where 2a is the major axis and v the velocity.

47. Two centres of force of equal strength, one attractive and the other

repulsive, are placed at two points S and H, each force varying inversely as

the square of the distance. Show that a particle placed anywhere in the

plane bisecting SB at right angles will oscillate in a semi-ellipse of which -S"

and ff are foci.

48. A body is placed at rest in a plane through two fixed centres of force,

each varying inversely as the square of the distance, at a point where the

forces are equal. Prove that it will oscillate in an arc of an hyperbola if both

forces attract, and in an arc of an ellipse if one force attracts and the other

repels.

49. A particle describes a parabola under two forces, one constant and

parallel to the axis, and the other passing through the focus
; prove that the

latter force varies inversely as the square of the focal distance. If the force

through the focus is repulsive, and numerically equal, at the vertex, to the

constant force, and if the particle starts from rest at the vertex, find the time

occupied in describing any arc of the curve.
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50. A particle describes a circle under the action of forces, tending to the

extremities of a fixed chord, which are to each other at any point inversely as

the distances r, r' from the point to the ends of the chord. Determine the

forces, and prove that the product of the component velocities along r and /
varies inversely as the length of the perpendicular from the position of the

particle to the chord
;
also show that the time from one end of the chord to

the other is

a (7r-a)cosa+sina
V COS^a

'

where F is the velocity of the particle when moving parallel to the chord,

a the radius of the circle, and a the angle between r and r'.

51. A particle moves under the action of a repulsive force \i{u^-avF)

from a fixed point, and a force [i (1/c^- \<^y^) parallel to a fixed line, \\u being

the distance from the point. Show that, if it starts from rest at a point where

the forces are equal, it describes a parabola of which the fixed point is the

focus.

52. If a curve is described under a force P tending to the origin and

a normal force N, prove that

where p denotes the perpendicular from the origin on the tangent.

53. A particle is projected from an apse of Bernouilli's Lemniscate

{rr'= (P) along the tangent with vefocity Vft/2c and moves under the action of

forces

,2
r' - r •2_LZI-—

^^
(3r/-r2)3'

^'
(3rr'-r'2)3'

to the nearer and further poles respectively, r being the distance from the

nearer pole, and / from the further pole. Show that it describes the lemniscate.

54. A particle P moves under the action of two fixed centres of force

>S'i, >S'2 producing accelerations /ij/ri^ and ^2/^2^ towards Si and *S'2, where /j, rg

are the distances ^jP, S^P. Prove that, if the motion does not take place in

a fixed plane, there is an integral equation of the form

(n^) (^2^4)+ ^'^ cot e^ cot ^2
= c (fii cos Bi+ /i2

cos $2) + const.,

where ^1, $2 are the angles S^S-^P and S^S^P, c is the distance *S'i*S'2, and h is

the moment of the velocity about the line of centres.

55. When a particle is at the nearer apse of an ellipse of eccentricity e

described about the focus, the force on unit mass at unit distance is increased

by the small fraction - of itself : when the particle is at the further apse, the

force becomes less than its original value by the same amount. Prove that

the time taken in this revolution is less than the original period by the fraction

—-
ST of itself.
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56. A particle describes an elliptic orbit about a fociis and, when at the

end of the minor axis, it receives a small impulse towai-ds the centre equal to

- th of its momentum. Show that the eccentricity e is increased or diminished

by
-
»J{\—e^) according to the direction of motion at the instant.

57. An ellipse of eccentricity e and latus rectum 2^ is described freely

about a focus, with moment of momentum equal to h. When the particle is

at the nearer apse it receives a small radial impulse /i.
Prove that the apse

line is turned through the angle liijeh.

58. If, at any point of an elliptic orbit about a focus, the force ceases to

act for a given very short time, find the angle through which the apse line will

have turned and the change of the eccentricity, and show that they are

respectively proportional to the resolved parts of the force parallel and

peri^endicular to the apse line.

59. A particle of mass m describes an ellipse about a focus, /xwi being the

force at unit distance
;
when the particle is at an extremity of the minor axis

it receives a small impulse m V in a direction perpendicular to the plane of

the orbit; prove that the eccentricity of the orbit will be diminished by

^ V^ae/fi, and that the angle which the axis major of the orbit makes with the

distance from the focus will be increased by

V^a 2-eg

where 2a is the axis major, and e the eccentricity of the orbit.

60. If the velocity of a periodic comet is suddenly increased near its

aphelion by a small amount dV, prove that the changes produced in the

eccentricity and axis major are given by the equations

8e=-28V^{l/fji), 8a= 2bV^{a^l-e)/^{l+e)},

where the letters have their usual meanings for elliptic motion.

61. A comet describes about the Sun an ellipse of eccentricity e nearly

equal to unity. At a point where the radius vector makes an angle S with

the apse line, the comet is instantaneously affected by a planet so that its

velocity is increased in the ratio w + 1 : ti, where n is great, without altering its

direction. Show that, if the new orbit is a parabola,

4
e= l— cos^^B nearly.

62. A body is revolving in an elliptic orbit with acceleration fi/r^ to a

centre of force in one focus S, and when at P it receives impulsively a small

velocity 8v in the direction PM a,t right angles to the major axis. Prove that

xu • •
-11 . ^u 1. xu 1

^y S^' P^
the major axis will turn through the angle -r —^p

—
.
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63. At a point P of an ellipse, described under a force to a focus S^ the
direction of motion is deflected through a small angle ^ without alteration of

magnitude. Prove that at a point Q on the original ellipse the deviation of

the new path, measured along the normal at $, is

where H is the second focus, and CB the semi-axis minor.

64. If, when a particle, describing an elliptic orbit about a focus, is at an
end of the axis minor, the centre of force is suddenly shifted a small distance

aa towards the particle, the eccentricity e of the orbit will be unaltered, but
the axis major will be turned through an angle a^{e~^-\).

65. If the particle (of the last Example) is at an end of the latus rectum,
and the centre of force is suddenly shifted a small distance aa towards the

centre, show that, to a first approximation, the eccentricity is diminished by a,

and the major axis is turned through an angle aajl, where I is the semi-latus

rectum, while the periodic time is unaltered. Also prove that, to a second

approximation, the periodic time is increased by Za^a^l2P of its original

value.

66. If when the particle (of the last Example) is at any point distant r

from the centre offeree, the centre of force is suddenly shifted a small distance

k perpendicular to the plane of the orbit; prove that the periodic time is

increased in the ratio 1 + ^ —3 : 1. Also, if the change takes place when the

particle is at an end of the latus rectum, the angle between the apse line and

the radius vector is altered by

(l-e2)2 2ea2-

67. A particle is describing an ellipse under a force to a focus S, and,

when the particle is at P, the centre of force is suddenly moved a short

distance x parallel to the tangent at P. Prove that the axis major is turned

through the angle -^7, sin
cf)

sin {6
—

0), where G is the foot of the normal,

6 the angle which the normal makes with ISO, and ^ the angle which the

tangent makes with SP.

68. Defining the instantaneous orbit under a central force varying as the

distance as that orbit which would be described if the resistance ceased to act,

show that, if at any point the resistance produces a retardation /, the rate

of variation of the principal semi-axes are given by the equations

a ^ b ^ f

where v is the velocity and r the radius vector at the instant.
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69. In the last Example there is a disturbance which produces a normal

acceleration g instead of the resistance. Show that the maxima of the rates

of variation of the principal semi-axes of the instantaneous ellipse are given

by the equations
d h _ ±.g

where fi
is the central force on unit mass at unit distance.

70. A particle P describes an ellipse under a central force producing an

acceleration k^ (distance) directed to a point 0. When F is at an end of the

axis major, begins to move along this axis with a simple harmonic motion

/isinX^. Show that the motion of P may be represented at any time by
motion in an ellipse whose centre is fixed and axis minor is constant and

whose semi-axis major is variable according to the formula

uk
a= OQ+ [' ,g (X sin kt - k sin \t) sec kt.



CHAPTER Vt.

MOTION UNDER CONSTRAINTS AND RESISTANCES.

114. The second main subdivision of "
Dynamics of a Particle"

relates to motion of a particle in a given field of force when the

force of the field is not the only force acting on the particle, but

there are other, unknown, forces acting upon it.

Such forces may be constraints, that is to say they may do no

work. Another class of forces to be included in the discussion are

known as resistances. We had an example in the friction between

an inclined plane and a body placed upon it (Art. 71). The
characteristics of a resistance are that its line of action is always
the line of the velocity of the particle on which it acts, and its

sense is always opposed to the sense of the velocity. It follows

that the work done by a resistance is always negative. This work,

with its sign changed, is called the "work done against the

resistance."

When a particle moves in a given field of force, and is at the

same time subject to resistances, the increment of the kinetic

energy in any displacement is less than the work done by the

force of the field by the work done against the resistances.

115. Motion on a smooth plane curve under any forces.

Let a particle of mass m be constrained to move on a given smooth

plane curve under the action of given forces in the plane. Let s

be the arc of the curve measured from some point of the curve up
to the position of the particle at time t Let S be the tangential

component of the forces in the direction in which s increases, and

A' the component along the normal inwards. Let v be the velocity

of the particle in the direction in which s increases, and R the

pressure of the curve on the particle. We shall write down the

equations for the case where the particle is on the inside of

t Articles in this Chapter which are marked with an asterisk (*) may be omitted

in a first reading.
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the curve, and R accordingly acts inwards. The equations for

the case in which R acts outwards can be obtained by changing
the sign of R.

By resolving along the tangent and normal we obtain the

equations of motion
dv ^

^

mv -Y-
= o,

ds

m- = N-\-R
P

When the forces are conservative, the first of these equations
has an integral, which is identical with the energy equation. It

may be written

Sds + const.^mv''
=

I
)

When V is known from this equation, the second of the equations
of motion determines the pressure B.

In the case of one-sided constraint (Art. 77) the particle may
leave the curve. This happens when R vanishes.

116. Examples.
1. Prove that, when the particle leaves the curve, the velocity is that

due to falling under the force kept constant through one quarter of the chord

of curvature in the direction of the force.

2. Prove that, when the curve is a free path under the given forces f«r

proper velocity of projection, then, for any other velocity of projection, the

pressure varies as the curvature.

117. Motion oftwo bodies connected by an inextensible

string. We shall suppose that the bodies may be treated as

particles, that the mass and extension of the string can be

neglected, and that the tension of the string is the same

throughout. (See Chapter VI.) When this is the case the

tension of the string does no work, for the sum of the rates at

which it does work on the two particles vanishes. The equations
of motion of the bodies can be formed in the manner explained in

Art. 73. In forming the equations of motion we take account of

the condition that the length of the string is constant. For

example, if the string is in two portions, separated by a ring or

a peg, the sum of the lengths of the two portions is constant. If
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there is an energy equation, or an equation ot constancy of

momentum, or of moment of momentum, it is an integral of the

equations of motion.

118. Examples.
1. Two particles of masses if, m are connected by an inextensible thread

of negligible mass which passes through a small smooth ring on a smooth

fixed horizontal table. When the thread is just stretched, so that J/ is at a

distance c from the ring, and the particles are at rest, M is projected on the

table at right angles to the thread. Prove that until m reaches the ring M
describes a curve whose polar equation is of the form

r=csec[^VW(Jf+m)}].

2. Two particles of masses i/, m are connected by an inextensible thread

of negligible mass
;
M describes on a smooth table a curve which is nearly a

circle with centre at a point 0, and the thread passes through a small smooth

hole at and supports m. Prove that the apsidal angle of J/'s orbit is

7rV{i(l+W^)}.

*119. Oscillating pendulum. The motion of a simple

circular pendulum, whether it executes small oscillations (Art. 75)

or not, can be determined by the energy equation.

Let 6 be the angle which the radius of the circle drawn

through the position of the particle at time t makes with the

vertical drawn downwards. The kinetic energy is ^ml^6^, where

m is the mass of the particle, and I the radius of the circle, or

length of the pendulum. The potential energy of the particle in

the field of the earth's gravity (Art. 92) is mgl(l-co8 6), if the

chosen fixed level from which it is measured is that of the lowest

point. Hence the energy equation can be written

^l6- = g cos 6 + const.

If the pendulum is displaced initially so that 6 = 01, and is let

go from this position, the energy equation is

^16^
= g (cos 6 — cos a),

or i^^ =
f(sin^|-sin^|),

showing that the pendulum oscillates between two positions in

which it is inclined to the vertical at an angle a on the right and

left sides of the vertical.

To express the position of the pendulum in terms of the time

L. M. 9
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ty since it was in the equilibrium position, we introduce a new

variable yjr
defined by the equation

sin ^
sin

i/r
= sin

^ ,

with the further conditions that as 6 increases from to a, i/r

increases from to ^tt ;
as ^ diminishes from a to 0, i/r

increases

from i TT to TT
;
as ^ diminishes from to — a, >/r

increases from ir

to f TT
;
and as 6 increases from — a to 0, i/r

increases from |7r to

Stt. With these conventions there is one value of
^fr corresponding

to every instant in a complete period.

Now we have

J ^ cos ^
=

-^fr
sin

^
cos

yjr,

n fi n
sin^ - - sin^ - = sin^ - cos^

-^/r,

^2 = 1 ^l-sin2|sin2i|rV

Hence the time t from the instant when the particle was

passing through the lowest point in the direction in which Q

increases is given by the equation

'Sl'g).
^(l-sin^lsin^V'

where the square root is always to be taken positively. The

complete period is

a

IP d±4 /LP

With the above relation between t and
i/r,

sin
i/r

is said to be an

Elliptic Function of t
a/j, and the relation is written

sin
yjr
= sn

(^t y/|) ^mod
sin

|)
.

The function has a real period, and the integral

.C-

dyjr

'y/(l-sin^|sin^^
is one quarter of this period.
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The position of the pendulum at any time t is determined by
the equation

sin
^
=
sin^sn U .

/'Ij (mod sin ^

*120. Complete Revolution. If the constant in the Energy

equation of Art. 119 is such that 6 never vanishes, it must be

greater than g, and the velocity at the lowest point is greater than

that due to falling from the highest point. Hence there will be

some velocity at the highest point. Let us suppose the velocity

at the highest point to be that due to falling through a height h
;

then, w^hen 6 = 7r

l^e^ = 2gh,

and for any other value of

il6' = g(cose + l+j\

*^
21' V h + 2l^'''2j'

giving sin
^
= sn

(t a /f) i^od k), where k' = 2l/{h + 21).

The period of a complete revolution is

/I r^ d4>

*121. Limiting case. In the case where the pendulum is

projected from the position of equilibrium with velocity equal to

that due to falling from the highest point the equation can be

integrated by logarithms.

The constant in the energy equation of Art. 119 must then

be chosen so that vanishes when 6 = 7r, and the equation there-

fore is

^le^
= g {1 + cos d),

which may be written

The time of describing an angle is therefore t, where

9—2
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It is to be noted that the particle approaches the highest

point indefinitely, but does not reach it in any finite time.

The same equations may be used to describe the motion of the

particle which starts from a position indefinitely close to the

unstable position of equilibrium at the highest point of the circle.

*122, Examples.
1. Prove that the time of a finite oscillation when the fourth power of a,

the angle of oscillation, is neglected, is 2rr (1 + j^^a^) >J{l/g).

2. Prove that, in the limiting case of Art. 121,

e= 2ia.n-^{i\nh{t^{ffll)}.

3. Prove that, if a seconds' pendulum makes a complete finite oscillation

in four seconds, the angle a is about 160°.

*123. Smooth plane tube rotating in its plane. Let

a particle of mass m move in a

smooth plane tube, and let the

tube rotate in its plane about

a point rigidly connected with

it. Let OA be any particular

radius vector of the tube, and

<^ the angle which OA makes

with a fixed line in the plane of

the tube. Then
<f>

is the angular

velocity of the tube. We shall

Fig. 40. write (o for
<j>.

Let P be the position of the particle in the tube at time t.

Let OP = r, and ^AOF = 0. Then r and 6 are polar coordinates

of P referred to OA as initial line, and r and ^ +
</>

are polar

coordinates of P referred to a fixed initial line. Let p be the

radius of curvature of the tube at P.

Let V be the velocity of the particle relative to the tube.

Then, if arc AP =
s, v is s, the direction of v is that of the tangent

to the tube, and the resolved parts of v along OP and at right

angles to OP are r and rO.

Now the resolved accelerations of the particle along OP and at

right angles to OP are

and
1|{^.(^4_^)).
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These may be written

r —

1^
r dt

(r2^)4-2r« + ra)|

Of these the terms independent of w are equivalent to v
dv

ds

along the tangent to the tube at P and v^lp inwards along the

normal to the tube.

The terms containing 2(o as a factor are equivalent to 2cov

inwards along the normal to the tube. This can be seen by con-

sidering that r along OP and rO transverse to OP are equivalent
to V along the tangent in the direction in which s increases, and

that we have, as multipliers of 2ft), the components of this result-

ant turned through a right angle.

Now we can resolve a vector in the direction OP into com-

ponents along the tangent at P to the tube and inwards along
dv 7)

the normal by multiplying by -7- and -
,
where p is the perpen-as V

dicular from on the tangent; similarly for a vector transverse

to OP.

Hence finally the accelerations resolved along the tangent and

normal to the tube are

dv dr
V ^ ft)"r -y- + ft)»,
ds ds

v^ r^ „ , dr—h zwv + (o^p -\- cor -y-

p
^

ds^

Now let the particle move in the tube under the action of

forces in the plane of the tube whose resolved parts along the

tangent and normal to the tube are S and N, and let R be the

pressure of the tube on the particle. Then the equations of motion

are

drm dv
V -T- (o^r -T- + oyp

rn
v^ ^ o . dr- + 2(ov + (o^p + (or

LP ds

*124. Newton's Revolving Orbit. Suppose that the form

of the tube in Art. 123 is a free path under a central force to 0.
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Let the tube turn about with an angular velocity (f>
which is

always equal to nd, where n is constant, and 6 is the angular

velocity of the radius vector in the free path when the particle is

at (r, 0). Then the path traced out by the particle is a free path

under the original central force and an additional central force

which varies inversely as the cube of the distance.

Let f be the central acceleration in the free path, and ^h the

rate of description of areas. Then we are given

Now, in the tube <^
= nO^ so that

and r-r{d + (j>y
= -f^re^ (2n + n")

Hence the path traced out by the particle in the revolving
tube is a free path with a central acceleration to made up of two

terms, one of them being /, and the other being inversely propor-
tional to r^.

This result may be stated in another form as follows :
—Rela-

tively to a certain frame a particle describes a central orbit about

the origin with central acceleration /; if a second frame with the

same origin rotates about the origin relatively to the first frame,

with an angular velocity always the same multiple of that of the

radius vector in the said central orbit, the path of the particle

relatively to the second frame is again a central orbit with the

central acceleration increased by an amount inversely proportional
to the cube of the distance.

n25. Examples.
1. A particle moves in a tube in the form of an equiangular spiral which

rotates uniformly about the pole, and is under the action of a central force

to the pole of the spiral. Prove that, if there is no pressure on the tube, the
central force at distance r must be of the form Ar+ Br-^, where A and B
are constants.

2. Prove that motion which, relatively to any frame, can be described as
motion in a central orbit with acceleration ^/(distance)3 towards the origin
and moment of velocity h may be described, relatively to a different frame
with the same origin, as uniform motion in a straight line, provided h'^>fx.
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3. A particle moves in a smooth plane tube, and is under a central force

to a fixed point about which the tube rotates uniformly. Prove that, if the

pressure is always zero, the central force is

m [rco2+ 2ro) (Ji
-

r^a>)/p^+ {h
—
r^a))^p~^dpjdr],

where m is the mass of the particle, mh is its moment of momentum about

the fixed point, w is the angular velocity of the tube, r is the radius vector,

and p the perpendicular from the fixed point on the tangent to the tube at

the position of the particle.

*126. Motion on a rough plane curve under gravity.

When a particle is constrained to describe a plane curve in a

vertical plane under gravity but there is

frictional resistance to the motion as well

as pressure on the curve we assume that

the friction is
fju
times the pressure, where

/A is the coefficient of friction. The friction

acts along the tangent to the curve in the

sense opposite to that of the velocity.

The equations of motion take different

forms in different circumstances. We shall

choose for investigation the case where the ^^a, 41.

particle is on the outside of the curve, and

is descending.

Let the arc s of the curve be measured from some point of the

curve so that it increases in the sense of the velocity, and let
<f)
be

the angle contained between the inwards normal and the down-

wards vertical. Then
(p

increases with s, and ds/d(l> (= p) is the

length of the radius of curvature.

Let V be the velocity of the particle, m its mass, R the pressure

of the curve on the particle. The equations of motion are

dv .
, „mv -j-

= mg sm <p
—

/xMy

m — = mg cos
cf)

— R

Eliminating R we obtain the equation

dv v^
V

^-^
—

fjb
— = g (sin <^

—
//<

cos (^),

or

ds

dv

~d^

—
/jbv^

= gp (sin </>

—
/a cos <^).
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This equation can be integrated after multiplication by the

factor e-^***, in fact it becomes

-ri (iy^e-'^'*"^)
=

gpe-^f"^ (sin <t>

-
fi cos

</>),

d<p

so that v»e-2M«^ = 2g I pe'^*^ (sin <^
-

/i cos <^) d<t> + const.,

an equation which determines v as a function of
<^,

and therefore

gives the velocity at any point of the curve. The velocity being

determined, the second of the equations of motion gives the

pressure, and, just as in the case of a smooth curve, if i? vanishes

the particle leaves the curve.

The equations of motion take different forms according as the

particle is inside or outside the curve, and according as it is

ascending or descending. But in each case the equations can be

integrated by the above method. There is accordingly no definite

expression for the velocity at any point of the curve in terms of

the position, but the expressions obtained are different in the

different cases.

*127. Examples.
1. Write down the equations of motion in the three cases not investigated

in Art. 126 and the integrating factor in each case.

2. A particle is projected horizontally from the lowest point of a rough

sphere of radius a, and returns to this point after describing an arc aa,

(a<^7r), coming to rest at the lowest point. Prove that the initial velocity
is sin a ^{2ga {l+fi'^)/{l

-
g/x^)}, where

/x is the coefficient of friction.

3. A particle slides down a rough cycloid, whose base is horizontal and
vertex downwards, starting from rest at a cusp and coming to rest at the

vertex. Prove that, if
fi

is the coefficient of friction, fi^e^'=\.

4. A ring moves on a rough cycloidal wire whose base is horizontal and
vei-tex downwards

; prove that during the ascent the direction of motion at

time t makes with the horizontal an angle 0, given by the equation

where f is the angle of friction.

^,{/*«"^sin(</> + 0}=-|-sec2..*tane^i^(^^^^^

*128. Motion on a curve In general. When a particle
moves on a given curve under any forces, we take m for the mass
of the particle, S for the tangential component of the resultant
force of the field, iV for the component along the principal normal.
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and B for the component along the binormal. Also we take Ri
for the component of the pressure along the principal normal

towards the centre of curvature, and R^ for the component of the

pressure along the binormal in the same sense as B. Further if

the curve is rough we take F for the friction.

We take s to be the arc of the curve from some point to the

position of the particle at time t, p to be the radius of curvature,

and V to be the velocity, and we suppose the sense in which s

increases to be that of v. Then the equations of motion are

mv j- = S-F,
as

m-=N+Rj
P

= B + R,

When the curve is smooth F is zero, and we can integrate the

first equation, in the same way as in Art. 115, in the form

^mv^ = I Sds + const.,

and this result can be expressed in the form

change of kinetic energy = work done,

so that the velocity is determined in terms of the position. The

other two equations then determine the pressure.

When the curve is rough we have to eliminate F, R^, R^ by
means of the equation

F^=^ti^{R^^ + R.^\

which expresses that the friction is proportional to the resultant

pressure. There results a differential equation for v^ and, if we

can integrate this equation, we shall obtain an equation giving the

velocity in terms of the position. As in Art. 126 the velocity in

any position depends partly on the way in which that position has

been reached.

*129. Motion on a smooth surface of revolution with

a vertical axis.

Let the axis of revolution be the axis x {x being measured

upwards), and let the particle at time t be at distance y from the

axis, and be on a meridian curve of the surface in an axial plane
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making an angle </>
with a given axial plane, and let o- be the arc

of the meridian from some particular circular section to the

position of the particle.

Then it is clear that the velocity along the tangent to the

meridian is &, and the velocity along the tangent to the circular

section is y^. Thus the energy equation is

i (a^ + y^(j>'') +gx = const.

Fig. 42.

Again, since the pressure of the surface on the particle acts

along the normal to the surface, and the normal meets the axis of

revolution, while the force of gravity acts in a line parallel

to this axis, the forces acting on the particle have no moment

about this axis. Hence the moment of the momentum about the

axis is constant, or we have

y^(f>
= const.

The equations which have been written down determine & and

(j),
that is they determine the two components of velocity (cr and

y(f})
in two directions, at right angles to each other, which lie in

the tangent plane to the surface.

*130. Examples.
1. If the particle is properly projected it can describe a circle. If

3/
IS

the radius of the circle, and ^ the angle which the normal to the surface at

any point on the circle makes with the vertical, the required velocity of

projection is {gy tan /S)'.
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In this case the pressure of the surface is equal to mg sec ^, where m is the

mass of the particle.

2. Prove that, if Iju is put for y, and x=f{u) is the equation of the

meridian curve of the surface, the projection of the path of the particle on a

horizontal plane is given by an equation of the form

(^)'[l
+
K/(«)P]+,*2+|/(«)=const.,

where A is a constant.

*131. Motion on a surface in general. Let a particle

move on a fixed surface under the action of given forces and the

pressure and friction of the surface.

We may imagine the surface to be covered with a network of

curves belonging to distinct families, in such a way that at each point
of the surface one curve of one family meets one curve of the other

family, and we may suppose the curves that meet in any point to

cut at right angles. At any point we may resolve the force of

the field into components along the tangents to the curves that

meet in that point, and along the normal to the surface. We may
resolve the acceleration along the same lines.

For a particle moving on a smooth surface in a conservative

field there will be an energy equation expressing the velocity in

terms of the position. We shall see presently that the pressure is

determinate as soon as the velocity is known.

When the surface is rough there will be two components of

friction in the directions of the tangents to the two curves that

meet at any point, and the resultant friction has the same direction

as the velocity but the opposite sense. Also the resultant friction

is equal in magnitude to the product of the coefficient of friction

and the pressure.

We have thus the means of writing down equations of motion

of the particle, but the process can in general be simplified by

using methods of Kinematics and Analytical Dynamics which are

beyond the scope of the present work. We shall therefore confine

ourselves to the simplest cases.

We proceed to investigate a general expression for the resolved

part of the acceleration along the normal to the surface.

Let V be the velocity of the particle, p the radius of curvature
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of its path. The tangent to the path touches the surface, and we

suppose a normal section of the surface drawn through it. This

section is not, in general, the osculating plane of the path ;
we

suppose that it makes an angle </>
with this osculating plane. We

take p to be the radius of curvature of the normal section of the

surface through the tangent to the path.

Since the normal to the surface is at right angles to the

tangent to the path the resolved part of the acceleration along
the normal to the surface is the resolved part in that direction

of the acceleration along the principal normal to the path, it is

therefore

^'
A.— COS Q).

9

Also by a well-known theorem we have p
= p cos

</>.

Hence the acceleration along the normal to the surface is v^\p\

and the pressure is determined by resolving along the normal.

*132. Osculating plane of path. In Ex. 1 of Art. 130

it is stated that a particle may be projected along a horizontal

tangent of a smooth surface of revolution whose axis is vertical

with such velocitv that it describes the circular section under

Fig. 43.
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the action of gravity and the pressure of the surface. It is

almost obvious that if the velocity exceeds that requisite for

description of the circle the path of the particle rises above the

circle, otherwise it falls below the circle. We may use the result

of Art. 131 to find the position of the osculating plane of the

path for any velocity of projection.

Let P be the point of projection, PG the normal to the surface

at P, PN=y the ordinate of P at right angles to the axis of

revolution, Q the point where the osculating plane of the path
meets the axis. Let Z GPN =

a, and Z GPQ = </>.

When the particle is projected along the tangent to the

circular section with velocity V there is initially no acceleration

along a line in the meridian plane at right angles to PQ.

Hence resolving along this line we have

RsiiKJ)
— mg cos («

—
</>)
= 0,

where m is the mass of the particle, and R is the pressure.

Again, resolving along PN^ we have

m— cos (a
—

(j))
= R cos a,

where p is the radius of curvature of the path.

Now, with the notation of Art. 131,

p'=PG, p = PG cos
<l).

Also y = PN = PG cos a.

Hence taiKJ) =gy/V^.

This equation determines the position of the osculating plane

of the path.

Now if tan
(j>
> tan a, or V^< gy cot a, the osculating plane of

the path initially lies below the horizontal plane through the

point of projection, and if tan
</>
< tan a, or V^>gy cot a, it lies

above that plane.

n33. Examples.
1. A particle moving on ca surface (smooth or rough) under no forces

but the reaction of the surface describes a geodesic.

2. A particle moves on a rough cylinder of radius a under no forces but
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the reaction of the surface, starting with velocity F in a direction making an

angle a with the generators ; prove that in time t it moves over an arc

a/x
~ ^ cosec2a log (

1 + /*
Vta

" ^ sin^ a),

fi being tlie coefficient of friction.

3. A hollow circular cylinder of radius a is rough on the inside, and is

made to rotate uniformly with angular velocity a> about its axis which makes

an angle a with the vertical. Show that a particle can slide down a fixed line

parallel to the axis with uniform velocity

aa,v/{(/iHl)/(/i2tan2a-l)},

where /x is the coefficient of friction, and fi>cot a.

4. An ellipsoidal shell whose principal semiaxes are a, 6, c{a>b>c) is

placed with the greatest axis vertical, and a particle is projected from one of

the lower umbilics with velocity v along the tangent to the horizontal section

within the ellipsoid. Show that the osculating plane of the path is initially

above or below this section according as

v2> or <gab^ {¥lc^-\)lsj{{a^-c^) {a^-h'^)].

134. Motion in Resisting Medium. We consider cases

of the motion of a particle in a known field of force when, in

addition to the force of the field, there is exerted on the particle

a force proportional to a power of its velocity having the same

direction as the velocity and the opposite sense.

Problems of this kind are related to facts of observation in

regard to the motions of bodies in the air and in other fluid media.

In many cases it is found that the observed facts can be approxi-

mately represented by the supposition that the resistance is

proportional to the velocity, this is true for instance for the

motion of a pendulum swinging in air.

135. Resistance proportional to the Velocity. Since

the velocity of a particle is a vector whose direction and sense

are determined by the resolved parts x, y, i, the resistance has

resolved parts
—

kx, —
k^,

—
kz, where /c is a constant.

Let the motion take place under gravity parallel to the

negative direction of the axis y, and first suppose the particle
to move vertically. The equation of motion is

mi/ = -mg-- fcy,

or ^ +^ + 9 = 0,
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where X is written for «r/m. Multiplying by e^^ and integrating,

we have

A,

where (7 is a constant of integration. Hence

y = Ce-"^/'^ - mgJK.

If the particle continues to fall for a sufficiently long time

the value of y will ultimately differ very little from —gmJK, or

the particle falls with a practically constant velocity when it has

been falling for some seconds.

This velocity is called the terminal velocity in the medium.

The equation last written can easily be integrated again so

as to express r/ as a function of t.

Again suppose that the particle is projected in any other than

a vertical direction
;
then the vertical motion is the same as before,

but for the horizontal motion we have an equation

mx = —
KXy

giving i; = Ae""*/^,

where ^ is a constant of integration. This equation can easily

be integrated again so as to express a; as a function of t

Since x and y are known, as functions of t, the path can be

determined.

136. Resisted Simple Harmonic Motion. Consider the

case where, apart from the resistance, the motion would be simple

harmonic in period 27r/n, and the resistance is proportional to

the velocity.

We have the equation

mx = — mn^x — kx,

or X -\-\x { v?x — 0,

where \ is written for /c/m. The complete primitive of this

equation takes different forms according as v?> ox < ^X^. In the

former case, which is practically the more important, it is

X = e-^^* [A cos
[t sj^n"

- \\% + B sin
[t slin"

- \\%\

The motion may be roughly described as simple harmonic

motion with period '±'K\\J{n^
—

JX^), and with amplitude diminishing
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according to the exponential function e~^^^. It will be observed

that the period is lengthened by the resistance, and that

the amplitude falls off in geometric progression as the time

increases in arithmetic progression. Thus the motion rapidly

dies away.

137. Examples.
1. A particle is projected vertically upwards with velocity *' in a medium

in which the resistance is proportional to the velocity. It rises to a height h

and returns to the point of projection with velocity iv. Prove that

where V is the terminal velocity in the medium.

2. A particle moves under gravity in a medium whose resistance varies

as the velocity, starting with horizontal and vertical component velocities Wq,

^0, and returning to the horizontal plane through the point of projection
with component velocities ^i , Vi; show that the range R and time of flight t

are given by the equations

Vo-Vi= gt, E=t {uo
-

Wi)/(log Uq
-
log u^).

Prove also that R=UQVtl{y+V()\ where Fis the terminal velocity in the

medium.

3. A body performs rectilinear vibrations under an attractive force to a

fixed centre proportional to the distance in a medium whose resistance is

proportional to the velocity. Prove that, if T is the period, and a, h, c, are

the coordinates of the extremities of three consecutive semi-vibrations, then

the coordinate of the position of equilibrium and the time of vibration if

there were no resistance are respectively

4. If in the problem considered in Art. 136, X>2w, and the particle
starts from rest in any displaced position, it creeps asymptotically towards its

position of equilibrium, according to the formula

where a and /3 are the roots of the quadratic ^^- \^-\-n^= Q.

5. A particle of unit mass is fastened to one end of an elastic thread

of natural length a and modulus an^, in a medium the resistance of which
to the motion of the particle is 2k (velocity). The other end of the thread

is fixed and the particle is held at a distance h{>a) below the fixed point.
Prove that, when set free, (i) it will begin to rise or fall according as

n2(6-a)>or<^, (ii) in its subsequent motion it will oscillate about a
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point which is at a distance a+g/n^ below the fixed point, (iii) the distances

from of successive positions of rest form a geometric series of ratio e""^*/"*,

(iv) the interval between any two positions of rest is 7r/m, where m^=n^ — kK

6. A particle moves on a smooth cycloid whose axis is vertical and vertex

downwards under gravity and a resistance varying as the velocity. Prove that

the time of falling from any point to the vertex is independent of the starting

point.

7. A particle moves under a central force (r) in a medium of which the

resistance varies as the velocity. Investigate the equations

where h and
/x are constants.

*138. Motion in a vertical plane under gravity. For

any law of resistance we can make some progress with the

equations of motion of a particle moving in a vertical plane
under gravity.

Let mf{v) be the magnitude of the resistance when the

velocity is v, m being the mass of

the particle, then resolving hori-

zontally we have

u = -
f(v) COSCJ),

where
<f>

is the angle which the

direction of motion at time t

makes with the horizontal and u ^^' '

is the horizontal velocity, so that u — v cos
</>.

Again resolving along the normal to path, since the resistance

is directed along the tangent, we have

- =
gcos<l>,

where p is the radius of curvature. Since <^ diminishes as s

increases, />
is — ds/dcf), and the above equation may be written

v^—-^g cos
(f>,

and thus, eliminating t, we get

du vf(v) ,
,

-rrr = "^

,
where v = u sec 6.

d<i> g
^

This equation can be integrated when f{v) = aci;**, and we have

1 n/c r d(b
^^-\

—
:^zr-,

= const.,
u^ g jcos"+i<^

an equation giving u, and therefore also v, in terms of
</>.

L. M. 10
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Now the equation

gives t = — I
- sec ^dcft -{- const.,

so that t is found in terms of
<^.

Also the equations

dx
, dy . . ds

^ =
cos<l>, ^=s.n^, j^

= v,

give us a? = -
I
—

d(/) + const., 3/
= - I— tan</>c?<^ + const.

and thus the time and the position of the particle are determined

in terms of a single parameter <^.

It is not generally possible to integrate the equation for

vertical rectilinear motion even for the case here described where

f{v) = KV^. In the special case, however, where the resistance

is proportional to the square of the velocity the velocity can be

found in any position. We have, when the particle is ascending,

y being measured upwards. Now

hence —{^f)^Ky^ = -g,

Multiplying by ^"y and integrating, we have

^fe^y = - |- e^-y + const.,

giving 2/2
= Cg-iKy _ gj^^

Again, when the particle is descending we have, measuring
y downwards,

y = 9-'cy\

or
^(hy')

+ 'cy'
=

g.

giving y^=z
^ ^ Ce~^y.
fC
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As in the case of resistance proportional to the velocity, there

is a terminal velocity, s/{g/K), which is practically attained when
the particle has fallen through a considerable height.

"^139. Examples.
1 . A pai-ticle is projected vertically upwards in a medium whose resist-

ance varies as the square of the velocity. Prove that the interval that

^lapses before it returns to the point of projection is less than it would be if

there were no resistance.

Prove also that, if the particle is let fall from rest, then in time t it

acquires a velocity Utanhigt/U) and falls a distance C/'^^
-i

log cosh
(^^/C/'),

where U is the terminal velocity in the medium.

2. A particle of weight W moves in a medium whose resistance varies

as the nth. power of the velocity. Prove that, if F is the resistance when

the direction of motion makes an angle with the horizon, then

W f— = ncos^(f) j
sec" + ^(/)c^0.

3. A particle of unit mass moves in a straight line under an attraction

fi (distance) to a point in the line, and a resistance k (velocity)2. Prove that,

if it starts from rest at a distance a from the centre of force, it will first

come to rest at a distance 6, where

4. The bob of a simple pendulum moves under gravity in a medium of

which the resistance per unit of mass is k (velocity)^, and starts from the

lowest point with such velocity that if it were unresisted the angle of oscilla-

tion would be a. Prove that it comes to rest after describing an angle 6 which

satisfies the equation

(1 + 4:<H^) cos a= 4<H^ - 2kI sin ^e^^W ^.cos Oe^^^

where I is the length of the pendulum.

10—2
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MISCELLANEOUS EXAMPLES.

1. A particle moves in an elliptic tube under a force to a focus equal to

^^-2+ ^-3 per unit of mass. Prove that, if it is projected from the nearer

vertex with velocity >v^{/a {l + e)/a (1
-

e)}, the pressure is given by

p\r^^a^{l-ef arj

2. A particle is constrained to move in an ellipse about a centre of force

in one focus varying inversely as the square of the distance, and its initial

velocity is such that if it were free its orbit would pass through the other

focus. Prove that, if the constraint were removed at any point of its path, it

would describe an orbit passing through the other focus.

3. A particle is projected horizontally from the lowest point of a smooth

elliptic arc, whose major axis 2a is vertical, and moves under gravity along
the concave side. Prove that it will leave the curve if the velocity of projection

lies between »J{2ga) and •J{{ga (5
-

e^)] .

4. A ring is free to move on a smooth elliptic wire whose minor axis is

vertical. An elastic thread of natural length I and of modulus equal to n
times the weight of the ring passes through the ring and has its extremities

fixed to the foci of the wire. Prove that, if the ring falls from an extremity
of the major axis, the pressure at the lowest point will vanish if

I= 4na^bl{a^+ 2nab +262),

where 2a, 26 are the major and minor axes of the ellipse, and l<2a.

5. A smooth cycloid has its axis AB inclined to the vertical and its

convexity upwards ;
a particle begins to slide down the arc from A, and leaves

the curve at P; the perpendicular from F on AB cuts at Q the circle on AB
as diameter, and QR is a diameter of this circle. Prove that PR is horizontal.

6. A particle moves on a smooth curve in a vertical plane, the form
of the curve being such that the pressure on the curve is always m times
the weight of the particle. Prove that the time of a complete revolution is

(m^-D? V Q
'
^^^ *^^* *^® length of the vertical axis of the curve is

7—5
—

=-75, the whole length of the curve being Tra
^

-

7. Prove that, if a particle moves in a smooth tube under the action

of forces tending to centres, the pressure on the tube at any point will be

proportional to

p-{^-^i4H'



MISCELLANEOUS EXAMPLES 149

where
-j-

is the acceleration towards any one of the centres, p is the perpen-

dicular from this centre on the tangent, r is the distance from this centre,

and p is the radius of curvature.

8. A smooth circular tube of radius a is fixed in a vertical plane, and

contains a particle, which is attached to the highest point of the tube by an

elastic thread inside the tube; the modulus of elasticity is \yj^ of the weight
of the particle, and the natural length of the thread subtends an angle ^tt at

the centre. Prove that, if when the particle is in equilibrium it receives by an

impulse a downward velocity V{(2t ^3 -
3) ag]^ it will just reach the lowest

point.

9. Two equal smooth circular tubes are fixed so as to touch at their

lowest points the same horizontal plane, their planes being at different

inclinations
;
two small heavy beads are projected at the same instant along

these circles from their lowest points, the velocity of each bead being due to

falling from the highest point of the other circle. Show that throughout the

motion the two beads will always be at the same height.

10. A bead moves on a smooth circular wire in a vertical plane its velocity

being that due to falling from a horizontal line HK above the circle. Prove

that, if / is the internal limiting point of the co-axal system of which the

circle and the line HK are members, then any chord through / divides the

wire into two parts which are described in equal times.

11. The bob of a pendulum (weight W) is suspended by a cord from one

end of an inextensible rod of negligible mass, which is constrained to move

vertically, and the other end of the rod is attached to a cord passing over

a smooth pulley and supporting a body of weight W. Prove that the period

of small oscillations of the pendulum is the same as when the point of support

is at rest. Prove also that, if the amplitude of the vibration is a, the tension

of the suspending cord, when it makes an angle d with the vertical, is

j
cos ^ 2 (cos 6 - cos g) "!

^*^\l-f-cos2^"^ (H-cos2^)2 I

12. A simple pendulum is suspended from the roof of a railway carriage

and remains vertical while the train is running uniformly at 30 miles an hour.

When the brakes are put on, the pendulum oscillates through an angle of 3".

Prove that the train will come to rest after running about 385 yards, the

resistance being assumed constant.

13. Prove that the time of a beat of a circular pendulum of length a

oscillating through an angle 2a is equal to the time of complete revolution of

a pendulum of length a cosec^^a, the height of the line of zero velocity above

the lowest point being 2acosec'*^a.

14. The bob of a simple pendulum of length I and mass m is acted on by

a horizontal force mpg cos nt, where p is a large number, and In^ is large
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compared with g. Show that the pendulum may oscillate about either of

two points distant a from the lowest point with an amplitude ^, where

COS a= 2ln^l{gp^), ^=2/p.

15. The point of support of a simple pendulum of length I and weight

w is attached to a massless spring so that it can move to and fro in a

horizontal hne; prove that the time of vibration is

where W is the weight required to stretch the spring a length I.

16. A platform is sliding down a smooth spherical hill from rest at the

summit. From a point fixed on it a plumb-line is suspended in a tube which

is always held perpendicular to the surface of the hill at the point of contact

of the platform. Prove that the tension of the cord, when the platform has

descended a distance x measured vertically, is w{a- Sx)la, where a is the

radius of the sphere, and w is the weight of the lead.

17. A ring slides on a smooth wire bent into the form of a curve in

a vertical plane, being attached by an elastic thread to a fixed point in the

plane ;
it starts from a position in which the thread has its natural length,

and the modulus of elasticity is twice the weight of the ring. Prove that it

will descend through a vertical height which is a third proportional to the

natural length of the thread and the increase of its length when in the lowest

position, the thread being stretched throughout the motion.

18. Prove that, if the suspending fibre of a simple pendulum is slightly

extensible, the period of small oscillation is that due to the stretched length
of the fibre in the position of equilibrium.

19. A particle moves in a smooth tube in the form of a catenary being
attracted to the directrix with a force proportional to the distance from the

directrix. Prove that the period of oscillation is independent of the amplitude.

20. Prove that a hypocycloid, generated by the rolling of a circle of radius

6 on a circle of radius a, is isochronous for a force varying as the distance

from the centre of the fixed circle, and that the time of an oscillation is

where the force per unit of mass at unit distance is
fi.

21. A particle, of unit mass, is at rest in a smooth tube in the form of an

equiangular spiral of angle a at a distance 2d from the pole. Prove that,
under the action of a force /x/(distance)2 towards the pole, it will reach the pole
in time or sec a c?^/V/i.

22. A cycloidal wire in a vertical plane, with its axis vertical and vertex

upwards is completely occupied by equal small smooth rings. Prove that, if

the constraint at the cusps is removed, then in time t the length of the arc

cleared of rings will be

where I is the length of the cycloid.
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23. A cycloidal tube, of which the radius of the generating circle is a, is

placed with axis vertical and vertex downwards, and contains two elastic

threads of natural length I fastened at one end of each to the cusps and at

their other ends to a particle. If the particle is moved a distance x from
the vertex, where x<Aa— l^ it will reach the vertex in time

Ive 8wa+ ^,

where n is the ratio of the modulus of the string to the weight of the particle.

Find the time also when x>^a -
1.

24. Two particles of masses P and Q lie near to each other on a smooth
horizontal table, being connected by a thread on which is a ring of mass R
hanging just over the edge of the table. Prove that it falls with acceleration

^(l/P+l/0^(l/P+l/$+4/i2).

25. Two particles of masses m, m' are attached to the ends of a thread

passing over a pulley, and are held on two inclined planes each of angle a

placed back to back with their highest points beneath the centre of the pulley.

Prove that, ifeach portion of the thread makes an angle /3 with the corresponding

plane, the particle of greater mass m will at once pull the other off the plane if

m'/m<2 tan a tan i3
- 1.

26. An endless thread of length 21, on which are threaded beads of masses

M and m, passes over two small smooth pegs A and B, which are at a distance

a apart and in a horizontal line. The hghter bead m is raised to the middle

point of AB and is then let go. Show that the beads will just meet if

(M+m)IM=2^{l/{l-\-a)}.

27. Two particles A, B are connected by a thread of length I which

passes through a small hole C in a smooth horizontal table, on which A moves,
and supports B. A is projected along the table at right angles to AC. Show

that, if AC=kI, and if n is the ratio of the masses of B and A, B cannot

reach the table if the velocity of projection is less than that due to falling

through a height nlj{! + <).

28. Two particles of masses m and Km are connected by a thread which

passes over the top of a smooth circle, the particles lying on the circle. Show
that the motion of m from its position of equilibrium will be the same as that

of a free particle starting from the top of the circle, under gravity diminished

in the ratio V(l + k^+ 2k cos a) : 1 + k, a being the angle which the connecting

thread subtends at the centre.

29. A straight smooth groove is cut in a horizontal table, and a straight

slit is cut in the bottom of the groove. A thread of length I, attached at one

end to a shot of mass m resting in the groove, passes through the slit and

supports a particle of mass Km. The suspended particle is held displaced in

the vertical plane containing the slit with the string straight, and is let go.

Prove that its path is part of an ellipse of semi-axes I,
and 1/(1 +k), the major

axis being vertical.
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30. Two particles A^ B each of mass m slide on a circular wire of radius a

fixed in a vertical plane, and are connected with a third particle C of mass m!

by two threads each equal to the radius. The system starts from rest in a

position in which the threads and the radii through A and B form a square

with C vertically below the centre. Prove that, when A and B meet, the

velocity of either of them is

V{(2-V2)a^(l+m7m)}.

31. Two particles of masses J/, m are connected by a cord passing over a

smooth pulley ;
the smaller {m) hangs vertically and the other (J/) moves in a

smooth circular groove on a fixed plane of inclination a to the vertical, the

highest point of the groove being vertically under the pulley. M starts from

a point close to the highest point of the groove without initial velocity.

Prove that, if it makes complete revolutions, the radius of the groove must

not exceed hmM cos al{m^
— M^ cos^ a),

where h is the height of the pulley above the highest point of the groove.

32. A particle moves from rest at an extremity of the major axis of a

smooth elliptic groove of axes 2a, 25 cut in a horizontal table, being attached

to a thread, which passes through a small hole at the centre of the ellipse and

supports a particle of equal mass. Prove that the horizontal pressure on the

groove when the first particle is at an extremity of the minor axis vanishes if

2a3- a^h - AaW+ 463= 0.

33. A particle of weight W moves in a smooth elliptic groove on a

horizontal table, and is attached to two threads which pass through holes at

the foci, and each thread supports a body of weight W. One of the bodies is

pulled downwards with velocity Ve when the particle is at an end of the minor

axis. Prove that, if V^<ah'^gl{e{Za^-'2.h'^)]^ the threads do not become slack,

and that in this case the horizontal pressures, R and R\ on the groove when
the particle is at the ends of the axes are connected by the equation

RIP ~ R'a (3a2
_

262)=6 Wa%e^,
where 2a and 26 are the principal axes, and e is the eccentricity of the ellipse.

34. A smooth parabolic wire, on which is a smooth bead of weight w, is

fixed in a horizontal plane. To the bead is attached a thread, which passes

through a smooth ring fixed at the focus of the parabola and carries, at its

other end, a weight 2c/{e-l). Prove that the tension T of the thread at any
stage of the motion is given by an equation of the form

(eT-w) (er—a)2= const.,

where r is the focal distance of the bead and 4a the latus rectum of the

parabola.

35. Two smooth straight horizontal non-intersecting wires are fixed at

right angles to each other at a distance d apart. Two small rings of equal
mass, connected by an inextensible thread of length l, slide on the wires, and

they are projected with velocities u and v from points at distances a and 6

from the shortest distance between the wires. Prove that after the thread

becomes tight the motion is oscillatory and of period 27r {l^-(P)/{av'^bu).
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36. Two equal beads connected by a massless rigid rod are placed

on a vertical circular wire, one being at the highest point. Show that, when
the other reaches the lowest point, the velocity of each is the same as if they
had been unconnected throughout the motion.

37. One end of a thread of length I is attached to the highest point of a

fixed horizontal circular cylinder of radius a. A particle attached to the other

end is dropped from a position in which the thread is straight and horizontal

and at right angles to the axis of the cylinder. Prove that, if l-^'^tra^ the

thread will become slack before the particle comes to rest, and that it will

then have turned through an angle whose circular measure is

7r + ^a/^+ |7r(a/Z)2+ f(ff+ O(«/0'+ ....

38. Two particles P, Q, of equal mass, slide on a smooth endless cord

OP^,,which passes through a small smooth ring at 0, and lies on a smooth

horizontal plane. Initially OF=OQ, and the particles are projected with

equal velocities along the external bisectors of the angles OPQ, OQP respect-

ively. Prove that, throughout the motion, the tension of the cord varies

inversely as OP.

39. Particles of masses i/and m are attached to the ends of a thread, the

former being within a smooth fixed horizontal tube and the latter on a smooth

table in the horizontal plane of the tube. The thread is initially straight and

the particle of mass m is projected at right angles to the thread. Prove that

the polar equation of its path is of the form r cos < 6
j./'Trr

—
\~^'

40. Two particles, masses wi, m', on a smooth horizontal table are con-

nected by a thread passing through a small smooth ring fixed in the table.

Initially the thread is just extended and in two straight pieces meeting at the

ring, the lengths of the pieces being a and a!. The particles are projected at

right angles to the string with velocities v and v' . Prove that, if T is the

tension at any time and r, / the distances from the ring, then

m m'J
~

7^ r'^

Prove also that the other apsidal distances will be equal if

mv^ : mV^=3a' + a : 3a+ a'.

41. Two particles of equal mass, connected by a thread of length a, lie on

a smooth table with the thread just straight. One of the particles is set in

motion at right angles to the thread with velocity v
; prove that each of them

describes a series of cycloids, the time of describing any one of which is '2,7ra/v.

42. Two particles P, Q, are connected by a fine string which passes

through a small hole in a smooth inclined plane (inclination a). Q hangs

vertically, and P moves on the inclined plane. Show that the differential

equation of P's path is

K - sin a cos ^+ sin a sin B{1 + k) -^sin 6 sinad
^' (! + '') ^2 + ^^'

=0,

where k is the ratio (mass of Q : mass of P).
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43. Two particles, of masses m and m\ are connected by a thread which

passes through a hole at the vertex of a smooth right circular cone having its

axis vertical and vertex uppermost. The particle of mass m! hangs vertically,

and m describes a circle of radius c on the cone. Prove that, if slightly

disturbed, it will perform small oscillations in time

2^ /[ c{m'+m) 1

V \Zg {m'
- m cos a) sin a)

'

2a being the vertical angle of the cone.

44. A ring can move on a long straight rough rod, the coefficient of

friction being /*,
under an attraction to a fixed point (not on the rod) varying

as the distance. Prove that the time of oscillation is the same as if the rod

were smooth, and that the ring will ultimately come to rest at a point within

a length 2/iO? of the rod, where d is the distance of the rod from the centre of

force.

45. A particle slides down the arc of a rough circle (/x
=

^) fixed in a.

vertical plane, and the particle starts from rest at an end of the horizontal

diameter. Prove that, if 6 is the angle which the radius vector through the

particle makes with the horizontal when the velocity is a maximum, then

sin ^= Jcos^+ e~^.

46. A particle of unit mass moves in a rough straight tube AB under the

action of a central repulsive force from a point C of magnitude X/r at a

distance r from C. The point A is the foot of the perpendicular from C on

the tube, and the particle is projected from A along the tube with velocity v.

Prove that it comes to rest when the radius vector from C makes with CA an

angle 6 satisfying the equation

/i^-logsec^= |y2/^,

where /x is the coefficient of friction.

47. A particle starts from rest at a point close to that point of a rough

cycloidal arc (vertex uppermost) at which it could rest in hmiting equilibrium.
Show that the velocity at a point at which the tangent makes an angle <^

with the horizon is 2 J{ag) sin (<^
- f

),
and that the particle leaves the cycloid

when the velocity is kK^^9) (sin ^e+cos^c), where e is the angle of friction.

48. A particle slides down a rough cycloid whose axis is vertical and
vertex downwards. Prove that the time of reaching a certain point on the

cycloid is independent of the starting point.

Prove also that, if X is the angle of friction, and if the tangent at the

starting point makes with the horizontal an angle greater than a, where a is

the least positive angle which satisfies the equation

sin(a-X)= e(*+^)*'^"^sin2X,

the particle will oscillate.

49. A ring moves on a rough cycloidal wire with its axis vertical and
vertex downwards. Prove that, if it starts from the lowest point with velocity
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Uq, its velocity u when its direction of motion is inclined at an angle <f>
to the

horizontal is given by

^^2= (^^2+ 4^^ sin2^) e-2«/>
tan . _

^^^ ^^^2 (^ + g)^

where a is the radius of the generating circle and t is the angle of friction.

Prove also that, if it starts from a cusp with velocity Vq, its velocity v

during its descent is given by

v'^= {Vo^+ 4ag C0s2 e) e(*-2'^)tane _ ^^^ ^-^^2 ^^
_

g),

50. A particle is projected from a point on the lowest generator of a rough
horizontal cylinder of radius « with velocity Fat right angles to the generator,

and moves under no forces except the pressure and friction of the surface.

Prove that it returns to the point of projection after a time
a{e^t*''^-l)/{iiV)^

where fi is the coefficient of friction.

51. A rough wire in the form of an equiangular spiral whose angle is

cot~^2fi is placed in a vertical plane, and a heavy particle slides down it,

coming to rest at its lowest point. Prove that at the starting point the

tangent makes with the horizon an angle 2tan~i/i, and that the velocity

is greatest when the angle <f)
which the direction of motion makes with the

horizon is given by the equation

(2/bt2
- 1

)
sin

</>+ 3/x cos =
2/i.

52. A particle on a plane is moving with constant velocity V relative to

it, the plane at the same time turning round a fixed axis perpendicular to it

with angular velocity a>. Prove that the path of the particle is given by the

equation

—= V(r2-a2)+-cos-i-,

r and being referred to fixed axes, and a being the least distance of the

particle from the axis of rotation.

53. A point P moves along a plane curve which rotates in its plane about

a point with uniform angular velocity o). Prove that the curvature of its

path is

V{(r V+ 2a>)(V+r(o sin
\fA)+ r(o(Va> sin

yjr -/cos ylr+r<o^)

( 72+rW 4- 2 Vra> sin y(r)^

where r is the length OP, a- is the curvature of the curve at P, yjr
the angle

between OP and the tangent, V the velocity of P relative to the curve, and /
the rate of increase of V.

54. A particle P is free to move on a smooth circular wire whose centre

C revolves with constant angular velocity in the plane of the wire about a fixed

point 0. Show that, if CP=30C and the particle just makes complete

revolutions, the pressure between the particle and the wire vanishes when

CP makes with 00 an angle sec'^B.
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65. A smooth horizontal circular wire rotates uniformly about a point in

its plane. Prove that the motion of a bead on the wire will be the same

as that of the bob of a simple pendulum.

56. A particle is at rest in a smooth horizontal circular tube, and the

tube is made to rotate with uniform angular velocity about a vertical axis

through a point on the diameter passing through the particle. Prove that

the time of describing any arc bounded by a chord through the centre of

rotation is constant.

57. A bead is initially at rest on a smooth circular wire of radius a in a

horizontal plane ;
the wire is made to rotate with uniform angular velocity a>

about an axis perpendicular to its plane and passing through a point on the

diameter through the bead at a distance c from the centre. When the bead

has moved a distance aO on the wire, the wire is suddenly stopped. Prove

that the bead will subsequently move with velocity

a>y(a^+ c2+ 2ac cos ^)
-

(a+ c cos ^)}.

58. Two small beads of masses rrii , m2 slide along two smooth straight

rods which intersect at an angle a, and the beads are connected by an elastic

thread of natural length c and modulus X. The rods are made to revolve

uniformly in their plane, about their point of intersection, with angular

velocity a>. Prove that throughout the motion

mi (ri2
-

ri2a)2)+ m^ {r^ - rgW) +Xe2/c= const.,

where e is the extension of the thread, and r^, ^2 are the distances of the beads

from the intersection of the wires at any time.

59. A smooth elliptic tube rotates about a vertical axis through its

centre perpendicular to its plane with uniform angular vislocity co. Prove that

a particle can remain at an extremity of the axis major, and, if slightly

disturbed, will oscillate in a period 27r V(l — e^)/ea)j where e is the eccentricity.

60. A particle can move in a smooth elliptic tube which can turn about

its centre in a vertical plane, and, the major axis being vertical and the

particle being at rest at the highest point, the tube is suddenly set in rotation

with uniform angular velocity >/{^gl{(i+ b)}, where 2a and 26 are the axes of

the ellipse. Prove that the particle will move on the ellipse as if under

a force to the centre varying as the distance.

61. A body is describing an ellipse of semi-axes a, b about a centre of

gravitation, and when it is at a distance r from this centre it comes under the

influence of a small disturbing force directed to the same point and varying

inversely as the cube of the distance. Prove that the effect is the same as if

the body described under the original force an orbit which at the same time

rotated (with the body) round the centre of force with angular velocity n times

the angular velocity of the body, where m is a small constant such that the

semi-axes of this new free orbit are equal to those of the original one reduced

by fractions inh^jr^ and n{\ + b'^/r^) of themselves.
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62. While one particle oscillates in a smooth circular tube of radius a

in a vertical plane through an arc of height h, another particle circulates in a

smooth helical tube described on the cylinder of diameter h whose axis is

horizontal, touching the circular tube at the lowest point, with velocity due to

a height 2a above the lowest point. Prove that the two particles can move
so as always to be at the same level, provided that the length of one turn

of the helix is equal to the circumference of the circular tube.

63. A particle slides on a smooth helix of angle a and radius a under a

force to a fixed point on the axis equal to /x (distance). Show that the pressure

cannot vanish unless the greatest velocity of the particle is ay/fiseca.

64. A particle moves on a helical wire whose axis is vertical. Prove that

the velocity v after describing an arc s is given by the equations

. ,
,

ds . sec^acoshd)
y2= aflr sec a smhd), -tj-=^cl , ^>^ ^

d(f)
"^

. ta.n a -fi cosh (f)

where a is the radius of the cylinder on which the helix lies, a the inclination

of the helix to the horizon, and
fi

the coefficient of friction.

65. A small smooth groove is cut on the surface of a right circular cone

whose axis is vertical and vertex upwards in such a manner that the tangent

is always inclined to the vertical at the same angle ^3. A particle slides down

the groove from rest at the vertex
;
show that the time of descending through

a vertical height k is equal to the time of falling freely through a height

h sec^ /3. Show also that the pressure is constant and makes with the principal

normal to the path a constant angle

tan
- 1

(I sin a/^(cos2 „
_ ^032 ^) |^

where 2a is the angle of the cone.

66. A smooth helical tube of pitch a has its axis inclined at an angle

/3 (>a) to the vertical, and a particle rests in the tube. The tube is made to

turn about its axis with uniform angular velocity a. Prove that the particle

makes at least one complete revolution round the axis if

^aa)^lg>[{7r + 2y) sin 7+ 2 cos y] sin ^ cot a cosec^ a,

where sin 7= tan a cot ^3, and a is the radius of the helix.

67. A smooth tube is bent so as to lie on a cone of vertical angle 2a and

to cut the generators at a constant angle ^, the axis of the cone being vertical

and the vertex uppermost. The tube is made to rotate uniformly about the

axis of the cone with angular velocity Q. Prove that, if a particle starts from

rest at the vertex, it will in time t describe along the tube a distance

-^ - ?^^° r. fcosh (Qi sin a cos ^)
-

1].
Q2sm2acosi3^

^ ^ ^

68. A particle moves in a smooth tube in the form of a loxodrome on a

sphere of radius a, while the tube turns uniformly about the polar axis with

angular velocity w. The particle is projected from a point in the equatoreal
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plane with velocity aa> relative to the tube. Prove that the particle will be

at an angular distance 6 from the equatoreal plane after a time

{sec a
-

log (sec $+ tan 6)} /a,

and that the pressure on the tube in this position is

2maa>2 (1 +sin a) cos 6,

m being the mass of the particle and a the angle of the loxodrome.

69. A particle is fastened to one end of a thread of length I, the other

end being fixed to the top of a smooth sphere of radius a ;
the particle

describes a horizontal circle with angular velocity a>, and the length of the

thread in contact with the sphere is aa. Prove that

a>^=g cot al{a sin a+ (/
-
aa) cos a}.

70. A bead can slide on a rough straight wire which is rotating with

uniform angular velocity o) about a fixed vertical axis intersecting it, and a

is the inclination of the wire to the horizontal. Prove that, for the ring to

be in relative equilibrium, it must lie between two points on the wire whose

distance apart is

^0)"
^ sec a {tan (a+ X)

— tan (a
—

X)},

where X is the angle of friction.

71. A small ring can slide on a smooth plane cm-ved wire which rotates

with angular velocity cd about a vertical axis in its plane. Find the form of

the curve in order that the ring may be in relative equilibrium at any point.

Prove that, if the angular velocity is increased to a>\ the ring will still

be in relative equilibrium if the wire is rough and the coefl&cient of friction

between it and the ring is not less than \ (w'/to
—

w/o)').

72. A rod of length 2a rotates in a horizontal plane about one of its

ends with uniform angular velocity a. The ends of a thread of length 2/ are

attached to the ends of the rod, and a bead can slide on the thread. Prove

that, when the motion is steady and the bead is at a distance a-\-x from

the axis, the acceleration towards the axis is

73. A smooth cycloidal tube rotates with uniform angular velocity about

its base which is vertical. Prove that a particle cannot rest in the tube

anywhere except at the lowest point unless the angular velocity a> of the tube

exceeds J{gla\ where a is the radius of the generating circle, and that, when
<k> exceeds this value, there are two positions of relative equilibrium, the

arc-distances of which from the vertex of the cycloid are

2a>-V[2a^<»^±2a ^,'{a^(o'^-g^)'].

74. A particle moves in a smooth circular tube of radius a which rotates

about a fixed vertical diameter with angular velocity o. Prove that, if 6 is

the angular distance of the particle from the lowest point, and if initially it is

at rest relative to the tube with the value a for 6 where a cos ^a = ^{gla\
then at any subsequent time t

cot iO= cot ^a cosh (at sin ^a).
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75. A particle of mass m is constrained to remain on the surface of

a sphere of radius a, and is attached to a fixed point of the sphere by a

slightly extensible thread of natural length aa and modulus X. Prove that, if

the particle is projected at right angles to the unstretched thread with velocity

V the greatest subsequent elongation is '2.a\~'^mv^cota.

76. A particle is projected horizontally on the interior surface of a

smooth cone whose axis is vertical and vertex downwards. Prove that its

path when the cone is developed into a plane is the same as the path of a

particle under the action of a constant force to a fixed point.

77. A particle moves on a smooth cone under a force to the vertex

varying inversely as the square of the distance. Prove that, if the cone is

developed into a plane, the path will be a conic having one focus at the vertex

of the cone.

78. A particle moves under gravity on a right circular cone with a

vertical axis. Show that, if the equations of motion can be integrated without

elliptic functions, the particle must be below the vertex, and that its distance

r from the vertex at time t is given by an equation of the form

{rirf
= 2g cos a{r- Tq) (r+ 2ro)»,

where 2a is the vertical angle of the cone.

79. A particle moves on the inside of a smooth circular cone of vertical

angle 2a under a force to the vertex varying inversely as the square of the

distance. It is projected from an apse at a distance c from the axis with

velocity ^^6 of that requisite for circular motion. Prove that the polar

equation of the projection of the path on a plane perpendicular to the axis is

3cjr=2+ cos (B sin a),

that the time from one apse to the next is tt (2c cosec a)^/<^fi, and that the

pressure is inversely proportional to the cube of the distance from the vertex.

80. A particle is projected horizontally along the smooth inner surface

of a right circular cone, whose axis is vertical and vertex downwards, the

initial velocity being ^{2ghl(n^+ n)}, where k is the initial height above the

vertex. Prove that the lowest point of its path is at a height h/n above the

vertex.

81. A right circular cone of vertical angle 2a is placed with one

generator vertical and vertex upwards. From a point on the generator of

least slope a particle is projected horizontally and at right angles to the

generator with velocity v. Prove that it will just skim the surface of the cone

without pressure if the distance of the point of projection from the vertex is

^v^ cosec^ a/g.

82. A particle is projected horizontally from a fixed point on the interior

surface of a smooth paraboloid of revolution whose axis is vertical and vertex

downwards. Prove that when it is again moving horizontally its velocity is

independent of the velocity of projection.
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83. Prove that, when a body of mass m moves under gravity on a smooth

sphere of unit radius, the osculating plane of the path makes an angle

t&n~^ (gh/mt^) with the normal, h being the moment of momentum about the

vertical diameter and v the velocity, the osculating plane always cutting the

vertical diameter below the centre.

84. A particle moves on the inner surface of a smooth bowl in the form

of a paraboloid of latus rectum 4a with axis vertical and vertex downwards,

being projected along the surface in the horizontal plane through the focus

with velocity J{^iiag). Prove that the initial radius of curvature of the path
i8 2>v/2na/V(l-fw2).

85. A particle moves inside a smooth paraboloid of revolution whose

axis is vertical and vertex downwards, being projected from the level of the

focus with velocity due to a height A in a direction making an angle ^tt

with the meridian. Prove that, if I is the latus rectum, the initial radius

of curvature of the path is

—^ cos tan~i-7.
5 oh

86. Prove that, if the path of a particle moving on a right circular cone

cuts the generators at an angle x^ ^^e acceleration in the tangent plane to the

surface and normal to the path is

v^ {dxjds+ r
~ 1 sin x),

where v is the velocity, and r the distance from the vertex.

If the axis of the cone is vertical, and the vertex upwards, and if the

velocity is that due to falling from the vertex, prove that, when the particle

leaves the cone,
2 8in2;^

= tan2a,

2a being the vertical angle of the cone. What happens when tan^a > 2 ?

87. A particle moves on a smooth surface of revolution. The velocity is

V at a point where the normal terminated by the axis of revolution is of length

v, and this normal makes an angle 6 with the axis
; prove that, if ds is the

element of arc of the path, and x the angle at which it cuts the meridian, the

acceleration in the tangent plane to the surface and normal to the path is

^'^(dx
 

sin X cot ^\

88. A particle describes a rhumb line on a sphere in such a way that

the longitude increases uniformly ; prove that the resultant acceleration

varies as the cosine of the latitude, and that its direction makes with the

normal an angle equal to the latitude.

89. A particle describes a rhumb line on a smooth sphere under a force

parallel to its axis. Show that the force varies inversely as the fourth power
of the distance from the axis and directly as the distance from the diametral

plane perpendicular to the axis.

90. A particle of unit mass moves on a smooth sphere under two central

attractive forces \ilr^r^^ and tijr^ri^ in the distances rj, r^ of the point from
the ends of a fixed diameter. Prove that, if the velocity at starting is that due
to falling from an infinite distance, the path on the sphere is a rhumb line.
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91. A particle is placed at rest on the smooth inner surface of a vertical

circular cylinder, which rotates with uniform angular velocity at about the

generator which is initially furthest from the particle. Prove that the

pressure vanishes when the particle has descended a distance

92. A particle is attached by a thread of length a to a point of a rough
fixed plane inclined to the horizon at an angle equal to the angle of friction

between the particle and the plane. The particle is projected down the plane
at right angles to the thread, which is initially straight and horizontal. Prove

that it comes to rest at the lowest point of its path if the square of the initial

velocity is {n
-
2)figa/^{l +ix^), where

/a is the coefficient of friction.

93. A rough hollow circular cylinder is made to rotate uniformly about
its axis which is horizontal, and a particle within it is projected from the
lowest point in a direction contrary to that of the motion of the neighbouring

parts of the cylinder with such velocity that it comes to rest at an end of the

horizontal diameter. Prove that, provided the angular velocity is great

enough, the next position of instantaneous rest is given by the least positive
root of the equation

3/x {e^f"^
- cos e)= (2^2

_ 1 ) sin ^,

being the angle between the axial planes through the two positions of

instantaneous rest, and n the coefficient of friction.

94. A particle is projected horizontally with velocity V along the interior

surface of a rough vertical circular cylinder. Prove that, at a point where

the path cuts the generator at an angle ^, the velocity v is given by the

equation

agjv^= sin^ {ag/ V^+ 2ft log (cot (f)+ cosec ^)} ,

and the azimuthal angle and the vertical descent are respectively

I
— d(b &nd I

— cot d) ad).

J'i> ^9 J<f> 9

95. A particle moves on the surface of a rough right circular cone of

vertical angle 2a under no forces except the pressure and friction of the

surface. It is projected at a distance r from the vertex with velocity V
perpendicular to the generator. Show that, when its path crosses a generator

at an angle x^ the velocity is Ve~'^^^^'^^^^\ and the time to that point is

^P''g^C0taC0SXcosec2;^C^;t,

fi being the coefficient of friction.

96. A particle is projected vertically upwards in a medium in which the

resistance is k (velocity)^. If u is the initial velocity and T the whole time

of motion prove that ^k{2ujg
- T) is positive and increases as k increases.

L. M. 11
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97. A particle is projected vertically upwards in a medium in which

the resistance is -^ (velocity)2.
Prove that, if U, V are the velocities with

which the particle leaves and returns to the point of projection,

_i JL_J_

98. A particle falls from rest under gravity through a distance a: in a

medium whose resistance varies as the square of the velocity ;
v is the velocity

acquired by the particle, V the terminal velocity, and Vq the velocity that

would be acquired by falling through a distance x in vacuo
; prove that

i;2/V= l-^o7^'+2^V/^*-2:^V/F«+...

99. A particle is projected vertically upwards from the surface of the

Earth with velocity w, and when its velocity is v and its height above the

surface is z the resistance is Kv'^l{a-\-z), where a is the Earth's radius. Prove

that, if z is always small compared with a, the velocity V with which it

returns to the point of projection is approximately given by the equation

variations of gravity with height being taken into account.

100. A particle is projected vertically upwards in a medium in which the

resistance is kg (velocity)^. Prove that it returns to the point of projection

with kinetic energy diminished in the ratio 1 : 1+^ F^, where F is the velocity

of projection.

Prove that in the same medium the angle B between the asymptotes of the

complete trajectory of a projectile is given by the equation

IJ^lw^= cot $ cosec 6 + sinh
~ ^ cot B,

where Via the terminal velocity and w the velocity when the projectile moves

horizontally.

101. A particle moves under gravity in a medium whose resistance is

proportional to the velocity. Prove that the range on a horizontal plane is

a maximum, for given velocity of projection, when the angle of elevation at

first and the angle of descent at last are complementary.

102. A particle is projected up a plane of inclination a under gravity and
a resistance proportional to the velocity. The direction of projection makes
an angle /3 with the vertical, the range i2 is a maximum and t is the time of

flight. Prove that, if U is the terminal velocity and F the velocity of

projection, then

(i) l+(F/£7)sec^=exp.(5r«C^),

(ii) UV{C- + Fcos/3)/( F+ £/cos/3)=^(i2sina+ Ut\

(iii) UV^ sin
/3/( F+ (7 cos /3)=gR cos a.

103. A particle of unit mass describes a plane curve under a central

attraction equal to
{fi'^
+ K^)r when it is at a distance r from the origin, in a
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medium whose resistance is 2k (velocity). Prove that its coordinates at

time t are

e
- **

{^0 cos /i^+ /i

- 1
(wo+ K-^o) sin fit}^

«
" "^

{ya cos /i^+ /i

- 1
(vo+ kt/q) sin ^^},

•^o> yo being its initial coordinates and Wq) ^o its initial velocities.

104. A particle moves under gravity in a medium whose resistance varies

as the square of the velocity, and u and v are the magnitudes of its velocity
at the two instants when its direction of motion makes an angle ^tt with the

horizontal. Prove that, when it is moving horizontally, its velocity is

105. Defining the instantaneous parabola of a projectile in a medium
whose resistance is proportional to the square of the velocity as that which
would be described if the resistance ceased to act, prove that its latus rectum
diminishes at a rate which varies as v^ cos^ 6, where 6 is the inclination to the

horizon of the direction of motion at the point where the velocity is v. Prove

also that the axis of the parabola moves towards or from the point of

projection according as the projectile is ascending or descending.

106. Show that the horizontal and vertical coordinates ^, y of a particle

moving under gravity in a medium whose resistance is R satisfy the equation

dx^ V* cos^
'

V being the velocity and ^ the inclination of the tangent to the horizontal.

107. Prove that the time t, the horizontal abscissa x^ and the vertical

ordinate y, at a point where the tangent of the inclination of the velocity to

the horizon is
jt?,

of a trajectory in a medium whose resistance varies as the

nth. power of the velocity, are given by

where P= {'^ il+p^)~^ dp,
J p

w denoting the terminal velocity in the medium, and a the tangent of the

inclination to the horizon at the origin, the point of infinite velocity,

108. A particle in a medium whose resistance is small, and equal to

K (velocity )2, is executing small vibrations. Prove that the period is unaltered,

but that in each semi-vibration the amplitude is diminished by ^ko^, where a

is the original amplitude.

109. A pendulum oscillates in a medium of which the resistance per unit

of mass is k (velocity)2, Prove that, when powers of the arc above the first

are neglected, the period is the same as in the absence of resistance, but the

time of descent exceeds that of ascent by | ko >J{l^lg), where a is the angular

amplitude of the descent, and I is the length of the pendulum.

11—2
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110. Prove that in a resisting medium a particle can describe a circle

of diameter a under the action of a force to a point on the circumference

varying inversely as the fourth power of the distance, the resistance being

proportional to r~^J{a^-r^) when the distance is r.

111. A particle describes an equiangular spiral in a resisting medium

under a force F to the pole, and the rate of description of areas is uniformly

retarded
; prove that

where X and ft are constants, and find the law of resistance.

112. The resistance of a medium is kV^\ prove that the orbit described

in it by a particle of unit mass under a central attraction /x/r^ will be an

equiangular spiral if the velocity of projection is that in a circle at the same

distance, and the angle of projection is cos~i (2fi/c).

113. A particle acted on by a central force and moving in a resisting

medium in which the resistance is k (velocity)2 describes an equiangular

spiral whose pole is the centre of force ; prove that the force is proportional

j^Q ^-Sg-Strseca^ where a is the angle of the spiral.

114. A particle of unit mass moves in a resisting medium, of which the

resistance at any point is R, under the action of a radial force F and a

transversal force G. Prove, with the usual notation of central orbits, that

de ^^ ^
~

w3 u'^ds'

,, fd'^u \ \ f „Gdu\

115. A particle of mass m moves in a field of force having a potential V
in a medium in which the resistance is k times the velocity. Prove that, if

D is the quantity of energy dissipated in time t,

-TT H {D- F)= const.
dt m^ '

If the resistance is k (velocity )2, and if ds is the element of arc of the

path of the particle, then

^ + ?^(/)_F)= const.
ds m^

116. A smooth straight tube rotates in one plane with uniform angular

velocity a about a fixed end, and a particle moves within it under a resistance

equal to k times the square of the relative velocity. Prove that, if the particle
is projected so as to come to rest at the fixed end, the relative velocity at

a distance r from that end is

^V2a)»c-V(e^'''*-2Kr-l).

117. A particle is suspended so as to oscillate in a cycloid whose vertex

is at the lowest point, and starts at a distance a from that point measm-ed

along the curve. Prove that, if the medium in which it moves gives a small
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resistance < (velocity)2 per unit of mass, then before it next comes to rest

energy approximately equal to fxa of the original energy will have been

dissipated.

118. A particle moves on a smooth cycloid whose axis is vertical and
vertex upwards in a medium whose resistance is (2c)

"^
(velocity)'^ per unit

of mass, and the distance of the starting point from the vertex measured

along the curve is c
; prove that the time to the cusp is >^{8a (4a

-
c)/gc}y

2a being the length of the axis.

119. A particle of mass m moves under equal constant forces m/ along
the tangent and normal to its path, and the resistance is mfv^/k^ when the

velocity ia»y. Prove that the intrinsic equation of the path is

where u is the velocity of projection.

120. A particle moves in a medium in which the resistance at any point

varies as the density of the medium at the point and as the square of the

velocity of the particle, and the particle describes an ellipse under the action

of two forces to the foci varying inversely as the nth power of the distance ;

find the density of the medium at any point of the path ;
and show that, if

w= l, and the forces are equal at equal distances, the density varies as the

acceleration with which the particle would move if constrained to describe

the same ellipse under the same forces but without resistance.



CHAPTER VI.

THE LAW OF REACTION.

140. Direct impact of spheres. Let the centres of two

spheres move in the same line. This line must be that joining

the centres. The spheres will come into contact if their centres

are moving in opposite senses, or if one of them is at rest, and

the other is moving towards it, or if they are moving in the same

sense, and one overtakes the other. Let m, m be the masses of

the spheres, determined by weighing them in a common balance.

Let U be the velocity of the centre of the sphere m before impact,

in the sense from m towards m', W the velocity of the centre of

m before impact, in the same sense
;
and let u and u be the

velocities of m and m' in the same sense after impact. When

proper arrangements are made for measuring the velocities, it is

found that

m{u-U)=^m'{U'-u').

141, Ballistic balance. An instrument by which experiments of

the kind just considered may be maxie is called a
"
ballistic balance." In principle it comes to this* :

—
The two spheres are suspended from two fixed points
at the same level by cords, and, when the cords

are vertical, the spheres are in contact and the line

of centres is horizontal (see Fig. 45). The distance

between the fixed points is equal to the sum of the

radii. One sphere is then raised, the cord attached

to it being kept taut, until its centre is at a known

height ^ above the equilibrium position. It is then

let fall. At the instant of impact its velocity is

J{2gH). The velocities of the spheres immediately
after the impact are measured by observing the

Fig. 45.
heights to which the centres rise.

* The actual construction and method of using the instrument are described by
W. M. Ricks, Elementary Dynamics of Particles and Solids, London, 1890. Experi-
mental investigations of the kind referred to in the text were made by Newton.
See Principia, Lib. i., 'Axiomata sive leges motus.'
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142. Statement of the Law of Reaction. The result

stated in Art. 140 may be written

m'u' — m U' = — (mu - m U).

The left-hand member is the measure of the "
change of momen-

tum" of the sphere m'\ the right-hand member, with its sign

changed, is the measure of the change of momentum of the

sphere m. These changes of momentum are produced, during
the very short time of the impact, by forces which the spheres
exert one on the other. The result can be stated in the form :

—
The impulses of these forces are equal and opposite. This result

leads us to conclude that the forces also are equal and opposite.

The result is generalized in the statement :
—In any action between

bodies, by which the motion of either is set up, altered or

stopped, each body exerts force on the other, and these forces are

equal and opposite. The statement may be made more precise

when the bodies are replaced by particles, and then it takes the

form :
—

The magnitude of the force exerted by one particle on another

is equal to the magnitude of the force exerted by the second particle

on the firsts the lines of action of both the forces coincide with the

line joining the particles, and the forces have opposite senses.

This abstract statement may be regarded as an induction from

experience. The proof of its truth is found in the agreement of

results deduced from it with results of experiment.

The statement is frequently called the " Law of Reaction
"

because it was briefly expressed by Newton in the phrase
"
action

and reaction are equal and opposite."

143. Mass-ratio. The result of Art. 140 may be expressed

in the form
— {u— U) _m'
"H^lT'm'

and this result may be generalized, and made precise, in the

statement :
—

In any action between particles the changes of velocity are

inversely proportional to the masses.

This result enables us to assign for any two particles, or for

any two bodies treated as particles, a perfectly definite ratio,
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which may be called the "
mass-ratio." If the force between the

particles produces in them accelerations / and /' respectively, the

mass-ratio is f : f.

The mass-ratio of any two particles is the inverse ratio of the

accelerations which, by their mutual action, either produces in the

other.

144. Mass. Whenever two bodies can be treated as particles,

the mass-ratio of the particles is the ratio of the masses of the

bodie.s.

This statement enables us to assign masses to bodies without

weighing them in a common balance.

Whenever the bodies can be so weighed, the ratio of the

masses that is determined by the mutual action is, as a matter of

feet, the same as the ratio that is determined by the operation of

weighing.

It is clear that the definition of mass by means of mutual action is more

general and more fundamental than that by means of weighing. We shall

.show in Chapter X. that the determination of masses by weighing is a

particular case of the determination by means of mutual action.

Since we are accustomed to estimate the qiiantity of matter in a body by

weighing the body, it is customary to state that the quantity of matter in

a body is equal to the mass of the body.

To produce any alteration in the velocity of a moving body, to set the

body in motion, or to bring it to rest, applications of force are required.

This result leads us to recognize a tendency in bodies to maintain an esta-

blished state of motion when there are no forces which produce changes
of motion. This tendency is called " inertia." The impulse of the force

required to produce any assigned change of motion in a body is proportional
to the mass of the body. Thus the mass of the body provides a measure

of its inertia.

145. Density. The fraction

number of units of mass in the mass of a body
number of units of volume in the volume of the body

is the " mean density
"
of the body. In the same way we may

define the mean density of any portion of a body.

When the mean density of all parts of the body is the same,
the body is said to be "

homogeneous," or
"
uniform," otherwise it

is
"
heterogeneous."
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In the case of a heterogeneous body, we may define the density

at a point as the limit to which the mean density of a volume con-

taining the point tends when the volume is indefinitely diminished.

The densities of sensibly homogeneous substances in assigned

circumstances are physical constants. For example, the density

of pure water (at a temperature of 4° Centigrade and a barometric

pressure represented by 76 centimetres of mercury) is unity, the

centimetre and the gramme being the units of length and mass.

Density is a physical quantity of dimensions 1 in mass and

— 3 in length.

146. Gravitation. The periodic time of a particle describing

an elliptic orbit about a focus is Stt^^ ^u,"^, where 2a is the major
axis of the orbit, and

//.
is the intensity of the field of force at

unit distance from the focus (Art. 48, Ex. 5). The result that the

squares of the periodic times of the Planets, describing orbits

about the Sun, are proportional to the cubes of the major axes of

the orbits, was noted by Kepler*. If the intensity of the field of

the Sun's gravitation is denoted by /^/(distancey, the quantity fi is

the same for all the Planets.

Let E be the mass of the Earth, P that of any Planet, r, r'

the distances from the Sun to the Earth and the Planet respect-

ively. The forces of the Sun's gravitation, acting on the Earth

and the Planet respectively, are jxEIr"^ and ^Pjr'K These there-

fore are the magnitudes of the forces which the two bodies exert

on the Sun, and they are proportional to the masses of the bodies.

Thus the force of the Earth's gravitation, and the force of the

Planet's gravitation, are proportional to the masses of the Earth

and the Planet respectively. We should accordingly expect the

force of the Sun's gravitation to be proportional to the mass of

the Sun, that is to say, we are led to take for fi the form 7^,

where 8 denotes the mass of the Sun and 7 is a constant indepen-

dent of the masses. The force exerted by the Sun on the Earth,

or by the Earth on the Sun, is then expressed by the formula

* Harmonices Mundi, 1619. The result is sometimes called Kepler's "third law

of planetary motion."
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Such forces would arise if bodies were made up of small parts,

each of which may be treated as a particle, if these particles

acted upon each other with forces in the lines joining their

positions, and if the force between two particles of masses m and

m were an attraction of amount

r^
*

The law of gravitation states that this formula expresses the

law of force between particles (taken to be small parts of bodies)

at all distances which can be measured by ordinary means {e.g. by
a divided scale), and at all greater distances.

The law can be verified by actual observation of the gravitational force

between bodies at the Earth's surface. By these observations also the value

of y can be determined. The best determination gives for y the value

(6-65)10-8 in c.G.s. units^.

The quantity -y
is a physical constant

;
it is called the " constant of

gravitation." It is of dimensions, 3 in length,
— 1 in mass,

— 2 in time.

Since the intensity of the field of the Sun's gravitation is yAS'/(distance)2,

a knowledge of the period of the Earth's revolution about the Sun (365| days)

enables us to determine the mass of the Sun.

147. Theory ofAttractions. When a body is regarded as made up
of particles, and the particles of a body, and those of other bodies, act upon
each other with forces according to the law of gravitation, the resultant force

acting on a particle of any one of the bodies may be calculated. The theory

by means of which the calculation is effected is the Theory of Attractions,

and accounts of it will be found in books on Statics. From our present

point of view, the most important result of the theory is that homogeneous

spheres, or spheres of which the material is arranged in concentric spherical

strata of constant density, attract an external particle as if their masses

were condensed at their centres t.

148, Mean density of the Earth. In consequence of the result

last stated, we are led to take the intensity of the field of the Earth's

gravitation, even at a moderate distance, to be yEjR^, where E is the mass
of the Earth, and R denotes distance from its centre. Now if we take R
to be the radius of the Earth, this quantity is the acceleration of a free

body at the surface. Apart from the correction on account of the rotation

of the Earth, it is the same as g. We denote it by g'. Then we find that

the mean density p of the Earth is given by the equation

^
^nyR

• C. V. Boys, Proc. R. Soc. London, vol. 56 (1894).

t The result is due to Newton, Principia, Lib. i. Sect. xii.
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If we ignore the distinction between g' and g, or if we determine g' (cf.

Chapter X.), this equation gives us p when y is known. Thus the law of

gravitation avails for the determination of the mass and the mean density

of the Earth. The mean density (in grammes per cubic centimetre) has

been determined* to be 5*527, or about h\ times the density of water.

149. Attraction within gravitating sphere. It is a known
result in the Theory of Attractions that a homogeneous shell bounded by
concentric spherical surfaces exerts no attraction at any point within its

inner surface.

It follows that the attraction at a point within a homogeneous gravitating

sphere is that of the concentric sphere which passes through the point.

If the Earth were a homogeneous sphere of radius a, the attraction of

the Earth upon an internal particle at a distance r from its centre would be

gfrja^ where g' is the attraction at the surface.

150. Examples.
1. Consider the motion of a particle under the action of a uniform fixed

gravitating sphere, of density p and radius a, and suppose the particle to

start from rest at a distance h{>a) from the centre. It will move directly

towards the centre with an acceleration ^nypa^/.v^ at a distance a; from the

centre, so long as a?>a, and when ^= a, it will have a velocity given by

iS:^
=
i^pa=(l-iy

Now suppose a fine tunnel to be bored through the centre of the sphere

in the direction of motion of the particle. When the particle passes into

the tunnel its acceleration becomes ^rrypx at a distance x from the centre,

and it moves with a simple harmonic motion. The velocity at a distance

X from the centre is given by the equation

Ji2^ 1 7ryp^2
_

const.,

and the constant is determined from the expression given above for the velocity

at the instant of entering the tube.

Prove that the velocity at the centre is

V{|7rypa2(3_2a/6)};

and, taking b= a, find the time of passing through the tunnel.

2. Prove that, on taking a pendulum down a mine, the time of vibration

is increased or diminished according as the mean density of the siu-face rock

is greater or less than two-thirds of the Earth's mean density. [Neglect

the distinction between g' and g.]

*
C. V. Boys, loc. cit.
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Theory of a system of particles.

151. The Sun and the Planets with their Satellites afford an

example of a system of bodies, which can be treated as particles

moving under their mutual attractions. The law of gravitation

avails for the determination of the masses of the system as well

as for the determination of the motions. Much of theoretical

Mechanics has been developed from the theory of the motion of

such a system of particles. In general we shall suppose that each

particle of the system has an assigned mass, and moves under

forces, some of which are taken to arise from the mutual actions

of particles within the system, and others from the actions

exerted upon particles within the system by particles outside the

system.

152. Centre of mass. Let x, y, z be the coordinates at

time ^ of a particle of the system, m the mass of the particle ;

and let a point {x, y, z) be determined by the equations

X^) 2(?7i3/) l(mz)'^~
2m ' '^~ 2m ' Im '

where the summations extend to all the particles. This point is

defined to be the
"
centre of mass

"
of the system of particles.

The centre of mass coincides with the "
centre of gravity

"

defined in books on Statics. On account of the relation between

mass and inertia (Art. 144) it is sometimes called the "centre of

inertia." We shall denote it by the letter G.

153. Resultant momentum. The momentum of a particle

of mass m, which is at the point {w, y, z) at time t, has been

defined to be a vector, localized in a line through the point, of

which the resolved parts in the directions of the axes are mi, my,
mz. The momenta of the particles of a system are a system of

vectors localized in lines.

The general theory of the reduction of a system of localized

vectors (see Appendix to this Chapter) shows that the momenta of

the particles of a system are equivalent to a "
resultant momen-

tum," localized in a line through any chosen point, together with

a vector couple, which is a " moment of momentum." The
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resolved parts in the directions of the axes of the resultant

momentum are

S (mi), S {my), 2 {mz),

where the summations extend to all the particles.

Now we have

x%m = S {mx), y^m — 2 (my), z^m = ^mz.

The left-hand members of these equations are the resolved parts

parallel to the axes of the momentum of a fictitious particle, of

mass equal to the sum of the masses of the particles, and moving
so as to be always at the centre of mass of the system of particles.

We call this fictitious particle the "particle (r." Then we have

the result that the resultant momentum of the system of particles

is equal to the momentum of the particle G.

154. Resultant kinetic reaction. The kinetic reaction

of a particle of mass m, which is at the point {x, y, z) at time t,

has been defined as a vector, localized in a line through the point,

of which the resolved parts in the directions of the axes are

m^, my, mz.

The kinetic reactions of a system of particles are equivalent
to a "

resultant kinetic reaction," localized in a line through any
chosen point, and a vector couple, which is a " moment of kinetic

reaction."

The components parallel to the axes of the resultant kinetic

reaction of a system of particles are

S {mx), S (my), S {mz).

Now by dififerentiatiDg the equations such as x% (m) = 2 {mx), we

find such equations as x% (m) = X {mx).

Hence the resultant kinetic reaction is the same as the kinetic

reaction of the particle G {i.e. of a particle of mass equal to the

mass of the system, placed at the centre of mass of the system,

and moving with it).

155. Relative coordinates. The resultant momentum
and resultant kinetic reaction are independent of the chosen point

which is used in reducing the system of momenta, or kinetic

reactions, to a resultant and a vector couple; but the vector couples

depend upon the position of the point. For most purposes it is

simplest to take the point either at the origin of coordinates,
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which is an arbitrary fixed point, or at the centre of mass. We shall

take Xy yy z to be the coordinates of the centre of mass, and put

x^x + x', y = y + y\ z^z-\-z\

Then x\ y\ z' are the coordinates of a point relative to the centre

of mass.

From the definition of x, y, z we have

S(ma;')
= 0, S(m/) = 0, 2(m/) = 0,

and it follows that

5:(mi;')
= 0,... 2(m^') = 0,....

156. Moment of Momentum. The sum of the moments

of £he momenta of the particles of the system about any axis is

the moment of momentum of the system about the axis.

The moment of momentum of the system about the axis x is

^\m{yz-zy)\

See Appendix to this Chapter. This expression is equal to

2 [m {{y+ y') {i + z') -{z + z') (y + y')}l

and this reduces to

{yz
-

zy) 2 (m) + S [m {y'z'
-

zy')\

The first term of this expression is the moment about the axis x

of the momentum of the particle G, and the second term is the

moment about an axis drawn through G parallel to the axis x of

the system of momenta mx, my', mz. These are the momenta

relative to parallel axes through G, or the momenta in the
" motion relative to 6r." We may therefore state our result in the

words :
—The moment of momentum of a system about any axis

is equal to the moment of momentum of the particle G, together
with the moment of momentum in the motion relative to G about

a parallel axis through G,

When the momenta of a system of particles are reduced to a

resultant momentum at the centre of mass and a vector couple,

the couple is the moment of momentum in the motion relative to

the centre of mass. It may be called the " resultant moment of

momentum at the centre of mass "
and its axis

" the axis of re-

sultant moment of momentum." Its components are

X[m{y'z-z'y')\.,..
" Moment of momentum" is often called "angular momentum."
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157. Moment of kinetic reaction. The sum of the

moments of the kinetic reactions about the axis iP is

2 [m {yz
-
zy)\ or

^-
S [m {yz

-
zy)\

and this can be expressed in the form

{yz
-
zy) X (m) + S [m {y'z'

-
zy')\

Hence the sum of the moments of the kinetic reactions about any
fixed axis is equal to the rate of increase (per unit of time) of the

moment of momentum about the same axis, and this is equal to

the moment of the kinetic reaction of the particle G about the

axis together with the moment of kinetic reaction in the motion

relative to G about a parallel axis through G.

When the kinetic reactions of a system of particles are reduced

to a resultant kinetic reaction at the centre of mass and a vector

couple, the couple is the rate of increase (per unit of time) of the

resultant moment of momentum at the centre of mass.

158. Kinetic energy. The kinetic energy of a particle is

half the product of its mass and the square of its velocity.

For a particle of mass m at (x, y, z) it is

lm{d^ + f + z^.

The kinetic energy of a system of particles is the sum of the

kinetic energies of the particles. It is the quantity

iX[m(^2 + ^2_^i2)].

This expression is equal to

i (^2 + ^2 _|. |2) ^m-\-^t [m {x^ + y'^ + z%
We may state this result in words :

—The kinetic energy of a

system of particles is the kinetic energy of the particle G together

with the kinetic energy in the motion relative to G.

159. Examples.
1. Two particles of masses m, m' move in any manner. V is the velocity

of the centre of mass, and v the velocity of one particle relative to the other.

The kinetic energy is

\{m-\-m')V^-\--
—

;

—
fV^.
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2. In the same case, if p is the perpendicular from the position of one

particle to the line drawn through the other in the direction of the relative

velocity, the resultant moment of momentum at the centre of mass, is

mm'
; jDv,

m-\-m^
and the axis of resultant moment of momentum is at right angles to the

plane containing the particles and the line of the relative velocity.

160. Equations of motion of a system of particles.

Let Wi be the mass of one particle of the system, x^, y-^, z^ its

coordinates at time t, Zi, Fj, Z^ the sums of the resolved parts

parallel to the axes of the forces exerted on this particle by

particles not forming part of the system, X/, F/, Z( the sums of

the resolved parts parallel to the axes of the forces exerted on the

same particle by the remaining particles of the syst;em.

The equations of motion of this particle are

mii?i = Xi + X/, ?7ii2/i
= Fi + F/, m^z^ = ^i -f- Z^.

Similarly the equations of motion of a second particle of mass

7?i2 at (.^2, 2/2, z^ may be written

ma^2 = X2 + Z2', ^22/2
= F2 + F2', muz^ = Z^-\- Zi.

We shall write as the type of such equations

mx^X^-X\ my=Y+Y', mz = Z + Z\

Then {X, Y, Z) is the type of the external forces, and

(X\ F', Z') is the type of the internal forces.

161. Law of internal action. I'he sum of the resolved

parts parallel to any aocis, and the suin of the moments about any
axis, of all the internal forces between the particles of a system
are identically zero.

The mutual action between any two particles of the system
consists of two equal and opposite forces acting upon the two

particles in the line joining their positions. The sum of the

resolved parts of these two forces parallel to any axis' vanishes.

The moment of a force about an axis is the same at whatever

point in its line of action the force may be applied. Hence the

sum of the moments about any axis of two equal and opposite
forces acting in the same line vanishes.

In the notation of Art. 160 the result may be written

5:(zo = o, 2:(r)=o, i(Z')=o,

l.{yZ'-zY')=0, l{zX'-xZ')=0, ^{xT -yX')==0.
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162. Simplified forms of the equations of motion.

Adding the left-hand members of all the aj-equations of motion, and

remembering that IX' = 0, we obtain the equation S (mx) = SX.

In like manner we have

X(m2/)=2F, and t(mz) = 2Z.

Again multiplying the ^'-equations by the ys and the y-equs.-
tions by the zs, and remembering that ^(yZ' — zY^) = 0, we form

the equation

2[m(2/2-2y)] = 2(yZ-^F).

In like manner we have

2 [m {zx — xz)]
— X {zX — xZ), and X [m {ayy

—
yx)] = S (a^F— yX).

Our equations may be stated in words :
—

(1) The sum of the resolved parts in any direction of the

kinetic reactions of a system of particles is equal to the sum of the

resolved parts of the external forces in the same direction.

(2) The sum of the moments about any axis of the kinetic

reactions of a system of particles is equal to the sum of the

moments of the external forces about the same axis.

The result may also be briefly stated in the form :
—When the

external forces are regarded as localized in their lines of action,

the kinetic reactions and the external forces are two equivalent

systems of localized vectors.

This result, in a slightly different form, was first stated by
D'Alembert in his Traite de Dynamique, 1743. It is known as

D'Alembert's Principle.

By integrating both members of the equations such as

^ (mx) = 2X
with respect to the time, between limits which correspond to the

initial and final instants of any interval, we find such results as

ft,
X {mx)t^t,

- X {mx)t^t,
= X Xdt,

Jt,

or, in words:—The change of momentum of the system in any
direction is equal to the sum of the impulses of the external

forces resolved in that direction.

L. M. 12
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163. Motion of the centre of mass. Since the resultant

kinetic reaction of a system is the kinetic reaction of a particle

of mass equal to the mass of the system placed at the centre of

mass and moving with it, we see that

xl^m^lX, pm=2F, 'ilm^^Z,

so that the centre of mass moves like a particle, of mass equal to

the mass of the system, under the action of the vector resultant

of all the forces applied to the system.

164. Motion relative to the centre of mass. In the

equations such as 2 [m {yz
—

zy)]
= 2 (yZ—zY) put x = x-\-a)',....

The left-hand member of the equation just written becomes

[(yz
-

zy) Im] + t{m (y'z
-

z'y')],

and the right-hand member becomes

[ylZ'-zXY] + X(y'Z-zY).
The terms in square brackets in the two members are equal, and

we thus have such equations as

These can be stated in words :
—The rate of increase (per unit

of time) of the moment of momentum in the motion relative to G,

about any line through G, is equal to the sum of the moments of

the external forces about the same line.

165. Independence of translation and rotation. From
the results of the last two Articles we see that the motion of the

centre of mass is determined by the external forces independently
of any motion relative to the centre of mass, and the motion

relative to the centre of mass is determined independently of the

motion of the centre of mass.

166. Conservation of Momentum. When the resultant

external force on a system has no resolved part parallel to a

particular line, the sum of the resolved parts of the kinetic re-

actions of the particles parallel to that line is zero. Hence the rate

of increase (per unit of time) of the resolved part of the resultant

momentum of the system parallel to that line is zero, or the resolved

part of the resultant momentum parallel to the line is constant.

In such a case the resolved part, parallel to the line, of the

velocity of the centre of mass is constant.
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167. Conservation of moment of momentum. When
the sum of the moments of the external forces about any fixed

axis vanishes, the sum of the moments of the kinetic reactions

about that axis vanishes, and the moment of momentum of the

system about the axis is constant.

When the sum of the moments of the external forces about an

axis, drawn in a fixed direction through the centre of mass,

vanishes, the moment of momentum about that axis in the motion

relative to the centre of mass is constant.
•

168. Sudden changes of motion. As in Art. 160, let

X -\- X' he the sum of the resolved parts parallel to the axis x of

all the forces, external and internal, that act on a particle m ; and,

as in Art. 82 suppose that X and X' do not remain finite at time

t, but that the impulses of X and X' are finite, or that X and X\
defined by the equations

Lt,=o Xdt = X, Lt,=o Xdt==X,

are finite. Let x and ^ be the resolved parts parallel to the axis

X of the velocity of m just after the instant t and just before this

instant respectively. Then we have the equation

In like manner the impulsive changes of velocity parallel

to the axes y and z will be determined by equations which may be

written

m (i
-

?) = ^ + ^^

Now it follows from the law of internal action (Art. 161)

that XX', ... and X (yZ'
—

zY'), ... vanish. Hence we have the

equations

2[m(ic-5)] = 2X-,
X[m{y{z-t}-,(y-i,)}] = t(yZ-zY),....

These equations can be expressed in words in the statements :
—

(1) The change of momentum of the particle G in any
direction is equal to the sum of the resolved parts of the external

impulses in that direction.

12—2
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(2) The change of the moment of momentum of the system

about any axis is equal to the sum of the moments of the external

impulses about that axis.

169. Work done by the force between two particles.

Let a?i, 2/i, ^1 and x^, y^, z^ denote the coordinates of the two

particles at time t, and r the distance between them, so that

r^^{x,- x,y + (yi
-

y,y + {z,
-
z^\

Also let F denote the magnitude of the force between them, and,

for definiteness, take this force to be repulsive. The components

parallel to the axes of the forces exerted on the particles 1 and 2

respectively are

F^^izJ^ ^ y^-^y^ F^_i:ii3
r

'

r
'

r
'

and 2^^::i^i py_i:zy.^ i^^^-\
r r r

The rate (per unit of time) at which the first force does work is

^^^v;^, ^^yi^-y^ ^^^^^-^,
r r ^ r

and the rate at which the second force does work is

jF X^ + Jf
2/2 + -P -2^2-

r r ^ r

Hence the sum of the rates at which the two forces do work is

F
r

or Fr,

[(a?i
- x^ {x^

- x^ -I- (yi
-

2/2) (yi
-

3/2) + («i
- z^ (ii

- z^\

The work done in any displacement is the value of the integral

\Frdt or [Fdr,

taken between limits which correspond to the positions of the

particles before and after the displacement.

If the distance between the particles remains unaltered

throughout the motion, no work is done by the force between

them
;
but if the distance varies, the internal force does work.

170. Work flinction. We form as in Art. 86 the work
done by all the forces acting on any particle of a system as the
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particles move from their positions at time ^o to their positions at

time t The expression for the sum of the works of all the forces

acting on all the particles may be written

where the summation extends to all the particles.

When this expression has the same value for all paths joining

the initial and final positions of the particles, it is a function of

the coordinates of the final positions, the initial positions being

prescribed. This function is the
" work function."

We refer to the prescribed initial positions as constituting the
" standard position."

It is important to observe that the work done by the internal

forces may not in general be omitted from the sum.

When a work function exists the system is said to be "con-

servative."

171. Potential Energy. The work function in any position

A with its sign changed is the work that would be done by the

forces if the system passed from the position A to the standard

position. It is defined to be the Potential Energy of the system
in the position A.

Only systems for which a work function exists, i.e. only con-

servative systems, can possess potential energy.

For the sake of precision we present our previous statements

in the following form :
—A system in which the work done by all

the forces on all the particles, as they pass from one set of positions

to another, is independent of the paths of the particles, is said to be

a conservative system ;
and the work done by the forces of such

a system, as its particles pass from any set of positions to a

prescribed standard set of positions, is called the potential

energy of the system in the former set of positions.

172. Potential energy of gravitating system. When the

force between two particles of masses m, m' is an attraction ymm'/r^, the

work done in a displacement by which the distance r between them changes

from ro to r^ is

/
^i mm ,
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and this is

y„m'(i-i).
Hence in a gravitating system the work done in any displacement is

/mm' mm'\

where the summation extends to all the pairs of particles.

If we choose the standard position to be that in which all the distances

are infinite, the value of the work function in any other position is

and the potential energy in this position is

„wim'

The negative sign indicates that there is less potential energy in any other

state than there is in the state of infinite difiusion.

173. Energy equation. From the equations of the type

mx = X -\- X'
we form the equation

of which the left-hand member may be written

We deduce the result that the rate of increase (per unit of

time) of the kinetic energy of the system is equal to the rate at

which work is done by all the forces internal and external; and

consequently we deduce the result that the increment of kinetic

energy in any displacement is equal to the sum of the works

done by all the forces.

When a work function exists this result gives us an integral
of the equations of motion, and this integral can be written in

the form

kinetic energy -|- potential energy = const.

174. Kinetic Energy produced by Impulses. As in

Art. 168 let x, y, z be the resolved parts parallel to the axes of

the velocity of the particle of mass m just after an impulse, f , 97, \

the similar resolved parts of the velocity just before the impulse,

X, F, Z the sums of the resolved parts parallel to the axes of the
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external impulses applied to m, X\ Y\ Z' the sums of the similar

resolved parts of the internal impulses, T and T^ the kinetic

energies of the system just after and just before the impulses.

We have such equations as

Also T- To = JS [m {x" ^f^- i^)]
_ \^ [m (f + ^^ + fO]

= JS [m {x
-

j) (i? + f) + two similar terms]
= S \{X \-^')\{x-\-\)-\- two similar terms].

Thus, the change of kinetic energy produced by impulses is the

sum of the products of all the impulses and the arithmetic means of
the velocities, in their directions, of the particles to which they are

applied, just before and just after the impulsive actions.

It is very important to notice that the internal impulses may
not be omitted from the equation here obtained, just as the internal

forces may not be omitted from the energy equation of Art. 173.

The Problem of the Solar System.

175. The problem of n bodies. As we have already ex-

plained, the bodies of the Solar system can be treated as a system
of particles moving under their mutual gravitation. The mathe-

matical problem of integrating the equations of motion of such

a system of particles, supposed to be n in number, is known as

the "problem of n bodies." The particular cases of two and

three bodies are known as the "
problem of two bodies

"
and the

"
problem of three bodies." The only one of these problems which

has been solved completely is the problem of two bodies,

176. The Problem of Two Bodies*. Two particles which

attract each other according to the law of gravitation are projected

in any manner. It is required to show that the relative motion is

parallel to a fixed plane, and that the relative orbits are conies, and

to determine the periodic time when the orbits are elliptic.

The principle of the conservation of momentum shows that

the centre of mass of the two particles moves uniformly in a

straight line. The accelerations of the particles, and the velocity

* The Problem of Two Bodies was solved by Newton, Principia, Lib. i. Sect. xi.

Props. 57—63.



184 THE LAW OF REACTION [CHAP. VI.

of either relative to the other, are unaltered, if we refer them to

a frame whose axes are parallel to those of the original frame

of reference, and whose origin is at the centre of mass. We shall

suppose this to be done.

Then the acceleration of each particle is in the line joining

it to the origin, and the velocities of the particles are localized

in lines which lie in a plane containing the origin ;
the motion of

each particle therefore takes place in this plane.

»»2

Fig. 46.

Now let G be the centre of mass, m^, m^ the masses of the

particles, r-j, r^ their distances from G at time t, 6 the angle which

the line joining them makes with any fixed line in the plane of

motion, also let r,
= rj + r^, be the distance between the particles

at time t The force between them is ym^m^lr^

Then the equations of motion of mj, are

Since i\ = m^rl{7n^ + m^, these equations become

^(^^)=« r
and it is clear that the equations of motion of m^ would lead

us to the same two equations.

The equations last written show that the acceleration of m^
relative to w^, or of m.^ relative to m-^, is 'yim-^ + m^jr'^, and that

there is no transverse acceleration. Thus either particle describes
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a central orbit about the other with acceleration varying inversely

as the square of the distance, and, by Art. 51, this orbit is a conic

described about a focus.

Further, when the orbit is an ellipse, its major axis, 2a, is

the sum of the greatest and least distances between the particles,

and the periodic time is, by Ex. 5 of Art. 48, equal to

27r-
*^{y (mi + ma)}

'

177. Examples.
1. If the particles are projected with velocities v, v' in directions con-

taining an angle a from points whose distance apart is R^ prove that the

relative orbit is an ellipse, parabola, or hyperbola according as

.y2^ -y'2 _ 2^2;' cos a< = or > 2y ('/ni + '(fii^\R.

2. >S', P, and E denote the masses of the Sun, a Planet, and the Earth
;

the major axis of the Planet's orbit is h times that of the Earth's orbit, and

its periodic time is n years ; prove, neglecting the mutual attractions of the

Planets, that

[Kepler's Third Law of Planetary motion quoted in Art. 146 states that

7^=1<^ approximately. Kepler's law is approximately correct because S is

great compared with P or E^
3. Two gravitating spheres of masses m, wi', and radii a, a', are allowed

to fall together from a position in which their centres are at a distance c,

it is required to find the time until they are in contact.

We may suppose the centre of mass to be at rest, and take x for the

distance beween the centres of the spheres at time t. Then their velocities

are equal in magnitude to

vr^x J mx
-,
and

m-^m m-\-m

Hence the kinetic energy of the system is

2 \m+ m'J
^

\m+m'/
^ m+m'

from the

rt. 172)

\c~x)'

The potential energy, measured from the position in which the distance

was c as standard position, is (see Art. 172)

ymm

Hence the energy equation is

i;2=2y(m+
wi')(^---j,

and the time required is

I C J^cLc.
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If then we find an angle Q such that a-\-a'= c cos^^, we shall have for the

required time

c^(^+ sin^co3^)

V{2y(m+m')}

4. Two gravitating spheres, masses m, im!^ moving freely with relative

velocity V when at a great distance apart, would, in the absence of gravitation,

pass each other at a minimum distance d. Prove that the relative orbits

are hy^^erbolic, and that the direction of the relative velocity will ultimately

be turned through an angle

2tan-i{F2c?/y(m+m')}.

5. Prove that, if two bodies of masses E and M move under their mutual

gravitation and that of a fixed body of mass ^, so that the three are always

in a fixed plane, then

{E^MfH^EMh =const.,

where h is the rate at which M describes area about E^ and H is the rate at

which the centre of mass of E and M describes area about S.

Prove that, if all three bodies are free, the equation becomes

S{E^MfH^{S^E-\-M)EMh=QO\\^t.

178. General problem of Planetary motion. In the general

case of a system of particles moving under their mutual gravitation we know

seven first integrals of the equations of motion. The principle of the

Conservation of Momentum gives us three integrals representing the result

that the velocity of the centre of mass in any direction is constant. The

principle of the Conservation of Moment of Momentum gives us three

integrals representing the result that the moment of momentum of the

system about any axis drawn in a fixed direction through the centre of

mass is constant. The energy equation also is an integral of the equations

of motion.

Even in the case of three particles these integrals do not suffice for a

complete description of the motion. Except in particular circumstances of

projection, no other first integral has, so far, been obtained.

Thus we cannot deduce from the law of gravitation an exact account of

the motions of the bodies forming the Solar system. But there are a number
of circumstances which conduce to the possibility of deducing from this

law such an approximate account of the motions in question as shall be

sufficiently exact to agree with observation over a long period of time.

Among these we may mention (1) that the mass of the Sun is great com-

pared with that of the other bodies, even the mass of Jupiter being less than

ic'su*^ P^^ of that of the Sun, (2) that all the orbits are nearly circular, and
all but those of a few Satellites lie nearly in one plane.

It would be outside the scope of this book to explain how these special

circumstances can be utilized for the piupose of integrating approximately
the equations of motion of the bodies of the Solar system. For this we must
refer to books on gravitational Astronomy. The most recent comprehensive
treatise is F. Tisserand's Trait4de M^canique celeste^ tt. 1—4, Paris, 1889-1896.
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Bodies of finite size.

179. Theory of the motion of a body. We deal with

the motion of a body in the same way as with the motion of

a system of particles. If the body is divided in imagination into

a very large number of very small compartments, and a particle
is supposed to be placed in each compartment, the motion of the

body is determined when the motions of all the particles are

known.

We suppose that the particles move under the actions of forces

obeying the law of reaction.

We adjust the masses of the particles so that the sum of the

masses of those particles which are in any part of the body shall

be equal to the mass of that part of the body. This comes to the

same thing as taking the mass of a particle, in any compartment,
to be equal to the product of the volume of the compartment and

the density of the body in the neighbourhood.

In general we do not attempt to determine the forces between

the particles, but we assume that they are adjusted so as to secure

the satisfaction of certain conditions. For example, when the body
is regarded as rigid, we assume that they are adjusted so that

the distance between any two particles is invariable. When the

body is a string or chain, we assume that the forces between par-

ticles situated on the two sides of a plane, drawn at right angles

to the line of the chain, are equivalent to a single force directed

along this line. This force is the tension of the chain. A more

general discussion will be given in Chapter XI.

The centre of mass of a body is found by a limiting process

from the formulae of Art. 152. It coincides with the centre of

gravity of the body, as determined in books on Statics.

The momentum of a body is equivalent to a certain resultant

momentum and a certain moment of momentum. The resultant

momentum is that of a particle, of mass equal to the mass of

the body, placed at the centre of mass and moving with it. The

moment of momentum about any axis through the centre of mass
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is the sum of the moments about that axis of the momenta of

the particles relative to the centre of mass.

Like statements hold for the kinetic reaction.

The kinetic enei^gy of the body is equal to the kinetic energy

of a particle, of mass equal to the mass of the body, placed at

the centre of mass and moving with it, together with the kinetic

energy of the motion relative to the centre of mass.

The equations of motion of the body express the statements

that the resolved part of the resultant kinetic reaction in any
direction is equal to the sum of the resolved parts of the external

forces in the same direction, and the moment of kinetic reaction

about any axis is equal to the sum of the moments of the external

forces about the same axis.

The equations of motion of any part of the body are formed

in the same way. The forces exerted upon this part of the body
across the surface which separates it from the rest of the body
are now " external

"
forces acting on the part in question. The

gravitational attractions between particles within the surface and

particles outside it are also
*' external

"
forces acting on the part

within the surface.

The rate (per unit of time) at which the kinetic energy of a

body increases is equal to the sum of the rates at which work is

done by all the forces external and internal. If the work done

can be specified by a " work function
"
there is an energy equation,

which is an integral of the equations of motion.

180. Motion of a rigid body. Solid bodies often move
in such a way that no apparent change of size or shape takes

place in any part of them. To represent the motions of such

bodies by those of systems of particles we subject the internal

forces between the hypothetical particles to the condition that

the distance between any two of the particles is to be maintained

invariable.

The system of particles subjected to this condition is said to

represent a "rigid body."

The motion of a rigid body is determined when the motion
of three of its particles is determined. For the three particles
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determine a frame of reference relatively to which all the par-

ticles of the body have invariable positions.

To determine the positions of all the particles of a rigid body
relative to a frame is therefore the same thing as determining
the position of one frame, F, relative to another. This requires

the determination of the positions of the origin of the frame F^

of one of its lines of reference, and of a plane through that line.

The position of a point depends on three quantities, the co-

ordinates of the point. The position of a line through a point

depends on two quantities, since the line may make any angle
with one of the axes, and the plane through it parallel to that

axis may make any angle with a coordinate plane, but these two

angles determine the line. The position of a plane through a line

depends on one quantity, which may be taken to be the angle
it makes with the plane drawn through the line parallel to one

of the axes of reference. Thus the positions of all the particles

of a rigid body relative to a frame are determined when six

quantities such as those specified are given.

When a rigid body moves without rotation, the motion of

the body is determined by that of a fictitious particle, of mass

equal to the mass of the body, placed at the centre of mass and

moving with it. The equations of motion of this particle are

the same as if all the forces acting on the body were applied at

the centre of mass, their magnitudes, directions and senses being

unaltered.

181. Transmissibility of force. The motion of every part of a

rigid body is known when the motion of any part of it is known.

Now the equations of motion of the body involve the external forces

by containing the sums of the resolved parts of these forces in assigned

directions and the sums of the moments of these forces about assigned axes.

The forces do not enter into the equations in any other way.

The resolved parts and moments in question depend upon the lines of

action of the forces, but not upon their points of application.

Hence the forces may be supposed to act at any points in their lines of

action without altering the motion of the body, or of any part of the body.

In the cases of a deformable body and a system of isolated particles, it is

manifest that the internal relative motion of the parts of the body or system

would be altered by transferring the point of application of a force from one

particle to another in the line of action of the force.
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We conclude that a force acting on a rigid body may be regarded as a

vector localized in a line instead of a vector localized at a point. This result

is sometimes called the Principle of the transmissihility offorce.

182. Forces between rigid bodies in contact. The

surfaces of two rigid bodies may be regarded as touching at

a single point, and the action between the two bodies (apart

from their mutual gravitation) may be regarded as consisting

of a pair of equal and opposite forces applied at the point

of contact.

The force which one of the bodies A exerts upon the other B
at the point of contact can be resolved into components along

and perpendicular to the common normal. The normal com-

ponent is the "pressure" of A on J5, and the tangential component
is the "friction" oi A on B, The resultant of the pressure and

friction is often called the "
total reaction."

In the system of two bodies in contact the pressure does no

work
; for, so long as the bodies remain in contact, the parts in

contact have the same velocity in the direction of the normal,

and the pressures acting upon the two bodies are equal and

opposite. In general, the pressure does (positive or negative)

work on both bodies, and the sum of the rates (per unit of time)

at which it does work on the two is zero.

183. Friction. Let P be the point of contact of two bodies

A, B, and let R denote the pressure and F the friction.

Each of the bodies is regarded as having a particle at P.

The particle of .4 at P will have a certain velocity, and

similarly for the particle of B at P. The velocity of the particle

of A at P, relative to axes parallel to the axes of reference

drawn through the particle of B at P, is the velocity of the point
of contact, considered as a point of A, relative to B. In like

manner there is an equal and opposite velocity of the point of

contact, considered as a point of B, relative to A.

The condition of continued contact is that the relative velocity

just described is localized in a line in the tangent plane at P,
or that the resolved part of this velocity in the direction of the

common normal vanishes.
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The first law of Friction is that the friction acting upon •! p [

at P is opposite in sense to the velocity of the point of contact,

considered as a point of
\-d\ ,

relative to
j

.

The second law of Friction is that the friction F and the

pressure R are connected by a relation of inequality F ^ fiR,

where
yu,

is a constant depending only on the materials of which

the bodies are composed. The constant
fju

is called the coefficient

of friction.

When the relative velocity above described is zero, the motion

is described as rolling. In order that rolling may take place it

is generally necessary that the coefficient of friction should exceed

a certain number depending on the circumstances of the case.

A motion of two bodies in contact which is not one of pure rolling

is described as a motion of sliding or slipping. The rule for the

direction of friction may be stated in the form :
—Friction tends

to prevent slipping. When slipping takes place F= fiR. When
the bodies are sufficiently rough to prevent slipping throughout

the motion they are sometimes said to be perfectly rough.

When the motion is one of rolling, the friction does no work

on the system of two bodies, but it may do (positive or negative)

work on each of the bodies
;
and then the sum of the rates (per

unit of time) at which it does work on the two is zero.

When the motion is one of sliding, the friction does work on

the system, and this work is always negative.

184. Potential energy of a body. For a body under the

gravitational attractions of other bodies, and regarded as made

up of particles, the external forces X, F, Z of Art. 160 do work

in any displacement ;
and this work is specified by means of a

work function. Further the work done by those components of

the internal forces, which represent the mutual gravitation of the

parts of the body, is also specified by means of a work function.

The other internal forces may also do work, and this work may
also be specified by a work function. When this is the case the

portion of the potential energy, corresponding to this work function,

represents what may be called
"
internal potential energy."
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In such a case the potential energy is divisible into three

parts : potential energy of the body in the field of the external

attraction, potential energy of the mutual gravitation of the parts

of the body, and internal potential energy.

The potential energy of a body in the field of the Earth's gravity is

represented by the expression

where m denotes the mass of any of the hypothetical particles, and z is the

height of that particle above a fixed level. This expression is equal to

Mg'z,

where M is the mass of the body, and z is the height of its centre of mass

above the fixed level.

185. Energy of a rigid body. It follows from the result

of Art. 169 that the internal forces between the particles of a rigid

body never do any work.

The potential energy of the mutual gravitation of the parts

of a rigid body and the internal potential energy of the body
can both be taken to be zero by choosing the actual state of

aggregation of the body as the " standard
"

state.

The kinetic energy of the body and the potential energy of

the body in the field of external force are variable quantities.

The equations of motion of a rigid body do not always possess

an integral in the form of an energy equation. For the body may
be in contact with other rigid bodies, or with deformable bodies

such as elastic strings, or with resisting media such as the air
;

and the forces exerted upon the rigid body by bodies with which

it is in contact may do work which is not specified by a work

function.

186. Potential energy of a stretched string. Consider

a portion of the string of natural length l^, and let its extension

be e, so that its length is ^o (1 + e). Its tension is Xe, where X is

the modulus of elasticity. For the purpose of calculating the

potential energy we may regard this portion as having one end

fixed, and the other attached to a body, which exerts upon it

a tension Xe, and we may also regard the portion as free from

the action of any other external forces. Now let the string be

extended further. The rate at which the terminal tension does
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work (per unit of time) is Xe . l^i, for l^^e is the velocity of the

moving end. Hence the work done in the extension of the string
from its natural length to the length 1^(1 + e) is

/
Xe. Lidt

The integral is taken between limits which correspond to the

values and e of the extension, and its value is ^Xloe-.

We may regard the string as being extended so slowly that

no sensible kinetic energy is imparted to it. Then the work done

by the internal forces together with that done by the external

forces vanishes. It follows that the work done by the internal

forces is —^\lo6\

Since this amount depends only on the initial and final states

we can regard it, with changed sign, as an amount of internal

potential energy (Art. 184). Hence the potential energy of

a portion of a stretched string, which is of natural length Iq,

is ^\lo€^, when its extension is e.

A similar result holds for a spring, whether extended or con-

tracted (cf. Art. 101).

When the string is not stretched uniformly, let Sq be the natural length

of any portion measured from one end, Sq+^^o that of a slightly longer

portion, and let s, s+ As be what these lengths become when the string is

stretched. Then we define the extension at the point corresponding to Sq to be

, As - ASn

If this is denoted by c, the potential energy of any portion between s^-a
and SQ

= b is

b

i:

187. Localization of Potential Energy. The potential energy
of a gravitating system and the potential energy of a stretched string are

two examples of the potential energy that arises from internal forces between

the parts of a system.

But the two cases present a marked difierence. In the case of the string

we are able to assign a certain amount of the potential energy to each piece

of the string, in such a way that the amount so assigned corresponds to the

state of that piece. We may therefore say that the energy is located in the

string, so much being located in each piece. The amount located in any

piece can be expressed as ^Xe^ per unit of length (in the natural state),

e denoting the extension at any point of the piece. We can think of this

energy as possessed hy the piece of string, in the same way as kinetic energy

is possessed by a moving body.

L. M. 13
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In the case of the gravitating system we are not able to assign a certain

amount of the potential energy to any part of the system in such a way that

changes of the energy so assigned correspond to changes in the state of that

part, independently of changes in the position of the part relative to other

parts. We cannot, in any way that shall be completely satisfactory, locate

some portion of the energy in one part of the system, another portion in

another part of the system, and so on. For instance, in the case of a heavy

body near the Earth's surface we cannot locate the energy in the body, or

in the Earth, or in any definite proportion some of it in the body and some

in the Earth. We have to think of it as possessed hy the system, not by the

bodies composing the system.

188. Power. When work is done by the action of a system S upon

a system S' the forces exerted by the particles of >S' upon the particles of

*S" do work in the displacements of the particles of *S". In cases where the

energy can be localized, the energy of the system aS" is increased, and that

of S diminished, by a quantity equal to the amount of work so done. The

number of units of work done in any interval bears a definite ratio to the

number of units of time in the interval
; and, when the interval is indefinitely

short, this ratio has a limit, which is the rate at which work is being done

per unit of time.

The poicer of a system acting on another system is the rate per unit of

time at which the first system does work upon the second.

Corresponding to each force between particles of the two systems there

is a certain power measured by the product of the magnitude of the force

and the resolved part, in its direction, of the velocity of the particle on

which it acts, or by the product of the magnitude of the velocity of the

particle and the resolved part, in its direction, of the force exerted upon it
;

either of these products measures the rate at which the force does work.

The sum of all these powers is the power of the first system acting on the

second.

The power can be measured equally by the rate at which work is done

upon the second system or by the rate at which the first system does work.

Thus, in any machine performing mechanical work, a certain amount of

energy is expended, and an equal amount of work done, per unit of time
;

and the machine is said to be "working up to a j)ower" measured by the

rate at which the work is done. In general much of the work is done

against friction.

189. Motion of a string or chain. In general we neglect
the thickness of the chain, but suppose that the mass of any
finite length of it is finite. When the mass of any portion is

proportional to the length of the portion, the chain is uniform.

When the chain is not uniform, the limit of the ratio of the

number of units of mass in the mass of any portion to the number
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of units of length in the length of the portion, when the length
is diminished indefinitely, is the mass per unit of length, or the

line-density.

If a (geometrical) plane is drawn to cut the line of the chain

at right angles at any point, the two parts of the chain which
are separated by this plane act one oq the other with a force

directed along the line of the chain at the point. This force is

the tension of the chain.

Let the chain be divided in imagination into a very large
number of very short lengths. In each length let a particle be

supposed to be placed, and let the mass of the particle be the

mass of that length of the chain. Let each of the hypothetical

particles act upon its next neighbours with a force adjusted in

accordance with the law of reaction. The force between two

neighbouring particles is taken to be equal to the tension of the

chain at the corresponding point. The motion of the chain is

determined by forming the equations of motion of any particle,

and then passing to a limit by increasing the number of particles,

and diminishing the lengths of the small portions of the chain,

indefinitely.

If any of the short lengths is As, and if m is the line-density

of the chain in the neighbourhood, m^s is the mass of the cor-

responding particle.

The tensions in the two directions from the particle to its

two next neighbours are in general different, but the difference

tends to zero with As.

The other forces acting on the hypothetical particles are the

forces of the field, when the chain is in a field of force, and

the pressure and friction of any curve or surface with which the

chain is in contact.

190. String or chain of negligible mass in contact

with smooth surface. The chain lies in a curve drawn on the

surface. We resolve the acceleration of any hypothetical particle

of the chain in the direction of the tangent to this curve at the

point occupied by the particle. We denote the resolved part of

the acceleration by /. We resolve the force of the field in the

same direction, and denote by F the force of the field per unit

13—2



196 THE LAW OF REACTION [CHAP. VI.

of mass in that direction. The pressure of the surface on the

hypothetical particle is directed at right angles to the tangent

to the curve at the point.

Let T be the tension of the chain at the point ;
and let Tj

and Tg be the forces acting between the hypothetical particle and

its two next neighbours, 0i and
<f)^

the angles which their lines

of action make with the tangent to the curve. In the limit

T^ = T,=^T and ^,
= 0, (t>,= vr.

Resolve along the tangent to the curve for the motion of the

hypothetical particle. We have

m^s ./= mAs .F-\-T^ cos
</)2
+ Tj cos

<^i ,

 

'' As As

The limiting form of this equation is

J, j^ dT
mf=mF-\--^-.

If m is very small this equation is nearly the same as
-^-

= 0.

Hence we conclude that, if the mass of the chain may be

neglected, the tension is constant.

The result is proved for any portion of the chain which is in

contact with a smooth surface. The form of the argument shows

that it holds also for any portion which is free.
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MISCELLANEOUS EXAMPLES.

1. A thin spherical shell of small radius, moving without rotation,

describes a circle of radius R with velocity V about a gravitating centre of

force
; and, when its centre is at a point A, bursts with an explosion which

generates velocity v in each fragment directly outwards from the centre of

the shell. Prove that the fragments all pass through the line AO within a

length

8F3yi2/(F4-6KV+ 2;4),

and that, if v is small, the stream of fragments will form a complete ring

after a time approximately equal to ^ttR/v.

2. Two particles are under the action of forces tending to a fixed point

and varying as the distance from that point, the force being the same at the

same distance in each case
;

the particles also attract each other with a

different force varying as the distance between them
; prove that the orbit

of either particle relative to the other is an ellipse and the periodic time is

2Tr/s^{fi + 2fjL'), fi
and /x' denoting the forces on unit mass respectively at unit

distance.

3. A body, of mass km, describes an ellipse of eccentricity e and axis

major 2a under the action of a fixed gravitating body of mass m. Prove that,

if m is let go when the distance between the bodies is B, the eccentricity e' of

the subsequent relative orbit is given by the equation

?h<-S}-(1+^)

4. Two gravitating particles of masses m, m' are describing relatively to

each other elliptic orbits of eccentricity e and axis major 2a, their centre of

mass being at rest. Prove that, if m is suddenly fixed when the particles

are at a distance R, the eccentricity e' of the orbit subsequently described by

m' is given by the equation

,,/2 w+ »i'l-e'2\ /2 1

(m-\-m) -fi _ s- r=^ -^^

'\R am l-e^ J \R a

5. A body of mass M is moving in a straight line with velocity U, and

is followed, at a distance r, by a smaller body of mass m moving in the same

line with velocity tc. The bodies attract each other according to the law of

gravitation. Prove that the smaller body will overtake the other after a

time

/ r \f
7r-j-y(l --?g2)-hcos-i?g

\l + iv) "V{7(^+^)}
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6. Two bodies, masses m, ?«', are describing relatively to each other

circular orbits under their mutual gravitation, a and a' being their distances

from the centre of mass. If V is the relative velocity, and m receives an

impulse m V towards m', prove that the two bodies proceed to describe,

relatively to the centre of mass, parabolas whose latera recta are 2a and 2a'.

7. In a system of two gravitating bodies, M and m, initially M is at rest,

and m is projected with velocity ^{y{M-\-m)ld} at right angles to the line

joining the bodies, d being the distance between the bodies. Prove that the

path of M is a succession of cycloids and that M comes to rest at successive

cusps after equal intervals of time.

8. In a system of two gravitating bodies of masses M and m the relative

orbit is an ellipse of semi-axes a and h. Prove that, if the mass of the second

body could be suddenly doubled, the eccentricity of the new orbit would be

where v is the relative velocity at the instant of the change.

9. Two gravitating paFticles, whose distance is r, are describing circles

uniformly about their common centre of gravity with angular velocity o), and

a small general disturbance in the plane of motion is communicated to the

system, so that after any time t the distance is r-f w, and the line joining the

particles is in advance of the position it would have occupied if the steady
motion had not been disturbed by the angle ^ ;

obtain the equation

2w - ^0)0
= 3&)^ (r0 + 2a) z<) -|- const.,

squares of u and ^ being neglected.

10. Two equal particles P, Q are projected from points equidistant on

opposite sides of a third particle S, with a velocity due to their distance under

the attraction of *S^ only. All three particles are gravitating, and the directions

of projection are at right angles to PQ. If h is the conjugate axis of the

orbit described by either P or Q, e its eccentricity, and 6', e' those of the

relative orbit of P and *S' (in the absence of §), P being projected in the

same manner as before, then b= 2b\ and

(1 -.)/(! + e)
= i(l -.')/(! + 0.

11. If three bodies of masses Wj, m2, W3, subject only to their mutual
attractions /'23> Psiy A25 remain at constant distances from one another, those

distances are in the ratios

7711 P23 : WI2P31 : msPi2-

12. Three equal particles A, B, G attracting each other with a force

proportional to the distance and equal to
/x per unit mass at unit distance,

are placed at the comers of an equilateral triangle of side 2a. The particle A
is projected towards the centre of the triangle w^ith velocity c^fx, the other

particles being set free at the instant of projection. Prove that the three

particles will first be in a straight line after a time

1 . , a
sm^

v/(3,.)"" •Jia^Ho'Y
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13. Two particles, each of unit mass, attracting each other with a force

/i (distance), are placed in two rough straight intersecting tubes at right angles
to each other and the friction is equal to the pressure on each tube : prove

that, if they are initially at unequal distances from the point of intersection,

one moves for a time \trlsJix before the other starts, and that, while they are

approaching the point of intersection of the tubes, they move in the same
manner as the projections of the two extremities of a diameter of a circle

upon a straight line on which the circle rolls uniformly.

14. Two particles move in a medium, the resistance of which is pro-

portional to the mass and the velocity, under the action of their mutual

attraction, which is any function of their distance. Prove that their centre

of mass either remains at rest or moves in a straight line with a velocity

which diminishes in geometric progression as the time increases in arithmetic

progression.

15. A particle placed at an end of the major axis of a normal section of

a uniform gravitating elliptic cylinder of infinite length is slightly disturbed

in the plane of the section. Prove that it can move round in contact with

the cylinder, and that its velocity v when at a distance y from the major axis

of the section is given by the equation

v^= ^iirypy^ a {a- h)j{b {a+ 6)},

where p is the density of the cylinder, and 2a, 2& are the principal axes of a

normal section.

16. A particle is projected along a circular section of the surface of a

smooth uniform oblate spheroid given by the equation {x^-\-y'^)la^-\-z^lc^
= l.

Prove that, if it describes the circle with uniform angular velocity w under

the attraction of the spheroid, then

a)2=(Ja2_(7c2)/a2^

where Ax, Ay, Cz are the components of attraction of the spheroid at a

point {x, y, z).

17. A ring moves on a rough eUiptic wire, of semi-axes a, 6, under the

attraction of a thin uniform gravitating rod of mass M in the line of foci.

Prove that, if it is projected from an end of the minor axis and comes to rest

at the end of the major axis through which it first passes, the velocity v of

projection is given by the equation

V''= -
4yMiJ,a [^ e~^e

Jol{a + byj Ol-^acosd+ a^'

where fi
is the coefficient of friction, and a= (a-b)/(a-\-b).
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APPENDIX TO CHAPTER YI.

REDUCTION OF A SYSTEM OF LOCALIZED VECTORS.

(a) Vector couple. Two equal vectors, localized in parallel lines,

and having opposite senses, are said to form a " vector couple," or, briefly, a
"
couple."

Draw any line L at right angles to the plane of the couple, and choose a

sense for this line. The sum of the moments (with their proper signs) of the

two vectors about this line L is always the same, both in magnitude and in

sign, whatever line L we take, so long as the chosen sense of the line L remains

the same. This sum of moments is the moment of the couple. Its magnitude
is the product of the measure of either vector of the couple and the measure

of the perpendicular distance between the lines in which the vectors are

localized. Its sign is determined when the sense of the line L is chosen.

The rule of signs is the rule of the right-handed screw, and may be stated as

follows :
—If the line L meets one of the vectors, and the sense of the line L

and that of the other vector are related like the senses of translation and

rotation of a right-handed screw, the sign is -}- ; otherwise, it is -
.

When the sense of the line L is such that the moment is positive, a

vector (unlocalized), of which the magnitude is the magnitude of the moment
of the couple, and the direction and sense are those of the line Z, is called

the axis of the couple.

We shall obtain the result that a couple can be represented in all respects

by this unlocalized vector.

(6) Equivalence of couples in the same plane. We shall

prove that two couples in the same

plane, of equal moments, in opposite

senses, are equivalent to zero.

The lines in which the vectors

are localized, being two pairs of

parallel lines, form a parallelogram.
Let this be ABCD (Fig. 47).

Let the vectors of one couple
be of magnitude P, and be localized

in the lines AB, CD; and let the

vectors of the other couple be of

*^^* ^^-
magnitude Q, and be locaHzed in

the lines AD, CB.
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Let the unit of length be so chosen that AB represents P in magnitude.

Then the area of the parallelogram is of magnitude equal to the moment
of the couple.

Hence AD represents Q in magnitude.

Now the vectors P and Q localized in the lines AB, AD, and proportional
to those lines, are equivalent to a vector localized in the line AC, and propor-
tional to that line. The sense of this vector is AC.

Also the vectors P and Q localized in the lines CD, CB, and proportional
to those lines, are equivalent to a vector localized in the line CA

,
and propor-

tional to that line. The sense of this vector is CA.

It follows that the set of four vectors P, P and Q, Q are equivalent to zero.

This theorem shows that a couple may be replaced by any other couple in

the same plane having the same moment and sense.

(c) Parallel vectors. Let P, Q be the magnitudes of two vectors

localized in parallel lines, A, B any points on these lines, d the distance

between the lines.

When P and Q are in like senses, let two vectors each of magnitude Q be

introduced in the line of the vector P and in opposite senses. Then the

vectors P and Q are equivalent to a vector of magnitude P+Q, localized in

the line of P, and having the sense of P, and a couple of moment Qd. See

Fig. 48. Replace the couple of moment Qd by two vectors, each of magnitude

P-\-Q, localized in parallel lines, one of which is the line of P, and let the

sense of the vector in this line be opposite to that of P. The line of the

other vector is at a distance from the line of P which is equal to Qd/{P+Q),
it lies between the lines of P and Q, and the sense of the vector P+Q in it

is that of P or Q. See Fig. 49. The two vectors P and Q are equivalent to

a single vector P+ Q in this line.

R= P-t-0
aq

Fig. 48. Fig. 49.

When P and Q are in unlike senses, let Q be the greater. Introduce two

vectors each of magnitude Q into the line of action of P. Then the vectors

P and Q are equivalent to a vector of magnitude Q- P localized in the line of

P, and having the opposite sense to P, and a couple of moment Qd. See
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Fig. 50. Replace the couple of moment Qd by two vectors each of magnitude

Q-P localized in parallel lines, one of which is the line of P, and let the

sense of the vector in this line be the same as that of P. The line of the

other vector is at a distance from the line of P which is equal to Qd/{Q-P)
and it lies on the side of the line of Q which is remote from the line of P, and

the sense of the vector Q-P in it is that of Q. See Fig. 51 . The two vectors

P and Q are equivalent to a single vector Q- P in this line.

Fig. 50.

R=Q-P

Fig. 51.

Hence two vectors localized in parallel lines, when they are not equal and

opposite, are equivalent to a resultant vector localized in a parallel line, and

the moment of the resultant about any axis is equal to the sum of the

moments of the components about the same axis.

(d) Equivalence of couples in parallel planes. We shall

prove that two couples in parallel planes having equal moments and opposite

senses are equivalent to zero:

Let the vectors of one couple be of magnitude P, and be localized in the

lines AB, CD; and let the vectors of the other couple be of magnitude ^, and
be localized in the lines A'D\ C'B'.

Fig. 52.
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Through A'D and B'C draw a pair of parallel planes meeting the lines of

the couple P in the points A^ D, B^ C.

Through AB and CD draw a pair of parallel planes meeting the lines of

the couple Q in the points A\ B\ 6", D'.

These two pairs of planes with the planes of the two couples form a

parallelepiped.

Replace the couple Q in its plane by an equivalent couple consisting of

vectors localized in the lines B'A' and i/C". These vectors are both of

magnitude P, and have the senses indicated by the order of the letters.

Now parallel vectors P localized in lines AB, DC\ and having the senses

indicated, are equivalent to a vector of magnitude 2P localized in the line

MM' joining the middle points of AD' and BC. The sense of this vector

is MM'.

Also parallel vectors P localized in lines CD, B'A' are equivalent to a

vector of magnitude 2P localized in the same line MM'. Th^ sense of this

vector is M'M.

It follows that the set of four vectors P, P, and Q, Q are equivalent

to zero.

This theorem shows that a couple may be replaced by any couple of the

same moment in any parallel plane.

(e) Composition of couples.

p

P B

Fig. 53.

Let the planes of two couples meet in the line AB.

Replace the couple in one plane by any couple having one of its vectors

localized in AB iu the sense AB.

Let the two vectors be of magnitude P, and let the other be localized in

the line CD.

Replace the couple in the other plane by a couple having one of its vectors

localized in BA in the sense BA.

We can take these vectors also to be of magnitude P, and then the other

will be localized in a certain line FF in the plane of the second couple.
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Let AB represent F in magnitude, and through the points A, B draw

planes at right angles to AB cutting the lines CD and EF in the points

named C, />, E, F.

Then the two couples are seen to be equivalent to a single couple, whose

vectors are of magnitude P, and are localized in the lines CZ>, FE.

The figures ABCD^ ABEF, CDFE are rectangles, and their areas are

proportional to the moments of the couples. These areas are in the ratios

of the lengths of BC, BE, CE.

Hence if we turn the triangle BCE through a right angle in its plane its

sides will be parallel and proportional to the axes of the couples. Let B'C'E'

be the new triangle. See Fig. 53. It is clear that, if E'B' represents the

axis of the second couple in sense, the sense of the first is B'C\ and the

sense of the resultant is E'C.

Thus the axis of a couple which has the magnitude, direction, and sense

of a line E'C^is the axis of the resultant of two component couples, the axes

of the components having the magnitudes, directions, and senses of two lines

E'B' and B'C. This is the vector law.

It follows from the preceding theorems that a couple can be regarded as

an unlocalized vector represented by its axis.

(f) System of localized vectors in a plane. Let a vector of

any magnitude F be localized in a line A B, and let be any point not in the

line AB. Through draw a line parallel to AB, and let

there be two vectors each of magnitude F and of opposite

senses localized in this line. Then the system of vectors is

equivalent to a vector localized in the line through parallel

to AB, of magnitude F, and having the sense of the original

vector in A B, together with a couple of moment Fp, where

p is the distance of AB from 0. This couple has a definite

sense, and its axis is perpendicular to the plane A OB.

Any given system of vectors in a plane can in this way
be replaced by a resultant vector localized in a line passing

through a chosen point in the plane, together with a

couple. The resultant vector is the resultant of vectors

Fie 54
localized in lines through 0, equal and parallel to the given

vectors, and having the same senses as those vectors. The
axis of the couple is perpendicular to the plane and its moment is 2 ( ± Fp),
where F is the magnitude of any one of the original vectors, p the perpen-
dicular on its line from 0, and the sign of each term is determinate.

Let R be the resultant of the vectors at 0, and G the moment of the

couple. If R is not zero, replace G by two localized vectors, each of magni-
tude R, one localized in the line of R through and in the sense opposite
to R, and the other in a parallel lirfe at a distance GjR from 0. The whole

system is then equivalent to this last vector. See Fig. 55.
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If R is zero the whole system is equivalent to the couple G.

If R and G are both zero the system is equivalent

to zero.

Thus any system of vectors localized in lines

lying in a plane is equivalent to a single vector

localized in a line lying in the plane, or to a couple

whose axis is perpendicular to the plane, or to zero.

The single vector, or the couple, in the cases

where the system is equivalent to a single vector, or _ o/f

a couple, are determinate and unique.

The conditions of equivalence of two systems of

vectors localized in lines lying in a plane are these :

(1) When one system is equivalent to a single vector,

the other is equivalent to a single vector, of the

same magnitude and sense, localized in the same ^p
line. (2) When one system is equivalent to a couple, yIq. 55.

the other is equivalent to a couple, of the same

magnitude and sense. (3) When one system is equivalent to zero, the other

is equivalent to zero.

{g) Reduction of a system of vectors localized in lines.

Take any origin 0, and any rectangular axes of x, y, z. Let X, T, Z be the

resolved parts parallel to the axes of one of the vectors, and x^ y, z the

coordinates of a point on the line in which it is localized. Introduce a pair

of equal and opposite vectors localized in a line through parallel to the line

of this vector, and resolve them into components localized in the axes. The

magnitudes of these components are Z, 7, Z. The original vector is thus

Y<-

^Y

,'^X

Fig. 56.
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replaced by vectors X, F, Z localized in the axes, and by three couples about

the axes, whose moments are

yZ-zY, zX-xZ, xY-yX
respectively. Cf. Art. 84.

Hence any system of vectors localized in lines can be replaced by a resultant

vector localized in a line through the origin, whose resolved parts parallel to

the axes of coordinates are SA", 2 Y^ 2Z, together with a couple, equivalent to

component couples about the axes, whose moments are 2, {yZ-zY\ 2 {zX-xZ\
2 {xY-yX\ where A', Y^ Z are the resolved parts of any one of the original

vectors parallel to the axes, and x, y, z are the coordinates of any point on the

line in which that vector is localized. The resultant vector, of which the

components are '^X, ..., is independent of the position of the origin; but the

vector couple, of which the components are "^{yZ-zY)^ ..., takes different

values for different origins.



CHAPTER YIL

MISCELLANEOUS METHODS AND APPLICATIONS.

191. We propose in this Chapter to bring together a number

of methods and theories relating to general classes of problems
which can be solved by the principles laid down in previous

Chapters. One of the great difficulties of our subject is the

integration of the differential equations of motion of a system of

bodies, but there are a number of cases in which all the desired

information can be obtained without any integration. Such cases

include sudden changes of motion, and initial motions, or the

motions which ensue upon release from constraint. There are other

cases in which the method of integration is known. Such cases

include small oscillations, and problems in which the principles of

energy and momentum supply all the first integrals of the equations

of motion.

Sudden Changes of Motion.

192. Nature of the action between impinging bodies.

When two bodies collide, at first their surfaces come into contact

at a point of each, but a little observation shows that, before

separation, they must be in contact over a finite area
;
for example,

if one body is smeared over with soot, the other, after separation,

will show a sooty patch. It is clear therefore that during the

impact the bodies undergo deformation. There are numberless

cases in which the deformation is permanent, there are others in

which the recovery of form is practically complete. Now it is

clear that, if the bodies are rigid, no deformation can take place,

and accordingly we shall be unable to give an account of the

circumstances if we treat the bodies as rigid. On the other hand,

the problem of calculating the deformation from the elastic

properties of the bodies is generally beyond our power. Further,
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we shall find that one inevitable result of every impulsive action

between parts of a system is a loss of kinetic energy in the system,

and this apparent loss of energy can frequently be calculated.

Nor have we far to seek for the form of energy that is developed
in compensation for the apparent loss. It is a fact of observation

that, when one body strikes against another, the temperature
of both is raised, and it has been abundantly proved that the

production of thermal effects of this kind is of the nature of

a transformation of energy. We must therefore expect that in

impulsive changes of motion some mechanical energy will be

transformed into heat. In order to formulate in a simple and

general manner the mechanical effects produced in two bodies

by collision it is necessary to have recourse to special experiments
and subsidiary hypotheses.

193. Newton^s experimental Investigation. Newton
made an elaborate series of experiments* on the impact of spheres
which come into contact when their centres are moving in the line

joining them. He found that the relative velocity of the two

spheres after impact was oppositely directed to that before impact,
and that the magnitude of the velocity of separation bears to the

velocity of approach a ratio which is less than unity. He found

that this ratio depends upon the materials of which the spheres
are made.

To express this result, let U and U' be the velocities of the

two spheres in the line of centres, and in the same sense, before

impact, u and u' their velocities in the same line and in the same
sense after impact, then

u-u' = -e{U-U'),
where e is a positive number less than unity.

194. Coefficient of restitution. The number e is called

the "
coeflficient of restitution." For very hard elastic solids, such

as glass and ivory, e is little different from unity ;
for very soft

materials, such as wool or putty, it approaches zero. The con-

nexion between e and the elasticity of the impinging bodies has
led to its being sometimes called the "

coefficient of elasticity," but
we avoid this phrase because it is sometimes used (in a different

*
Loc. cit. ante, p. 166.



192-195] IMPACT OF ELASTIC SPHERES 209

meaning) in the Theory of Elasticity. For a like reason we avoid

the phrase "coefficient of resilience" which has also been some-

times used. Materials for which e is zero or unity may be re-

garded as ideal limits to which some bodies approach. We shall

speak of such materials as being
" without restitution

"
and " of

perfect restitution
"
respectively, ordinary materials we shall speak

of as having
"
imperfect restitution." It is, of course, to be under-

stood that any such phrase refers to an action between two bodies

of the same or different materials. The coefficient e depends on

both the materials, just as the coefficient of friction between two

bodies depends on the materials and degree of polish of both.

195. Direct impact of elastic spheres. Let the masses

of the spheres be m, m'
;

let the velocities of their centres just

before impact be U, C/'^and just after impact, u, u, these velocities

being parallel to the line of centres. We suppose all the velocities

to be estimated in the same sense, which is that from the centre

of the sphere m to the centre of the sphere m'.

For the determination of u, u' we have the equation given by
Newton's experimental result, viz.

and the equation of constancy of momentum of the system, viz.

mu + mii! —mJJ-\''m!lJ',

Hence we find

(m-m'e)f7 + m'(l+e)0''u =
-, -,m + m

,_ {m' - me) U' + m{\ -^ e)U
m + m

Let R be the impulsive pressure between the spheres. R is

regarded as the impulse of a force acting on the sphere m in the

direction opposite to that of U. Then we have

R = -m{u-U) = m\u'-U') = {l + e)-^^^^^{U-U').\ \ / \ ^ m + m
The kinetic energy lost in the impact is

(im U^ + ^m' U'^)
-
{\mv? + \w!u!%

or \m{TJ- u){JJ+u)^-\rd{JJ' - u'){U' + u'),

or ^R[{U+u)-{U' + u')l

This expression accords with the result of Art. 174.

L. M. 14
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In virtue of the equation

the expression for the kinetic energy lost becomes

and, when we substitute for R, we find that this is equal to

mm
im + mJ

,(l-e^)(U-Uy,

196. Generalized Newton's rule. For the purpose of

applications to problems of collision in which the circumstances

are less simple than in the case of direct impact of spheres we

state the following generalization of Newton's experimental

result :
—

The relative velocities, after and before impact, of the points of

two impinging bodies that come into contact, resolved along the

common normal to their surfaces at these points, are in the ratio

— e : 1, where e is the coefficient of restitution,

197. Oblique impact of smooth elastic spheres. Let

two smooth uniform spheres, of masses m, 7n', impinge.

Let U, V be the resolved

velocities of m in the line of

centres and at right angles
thereto before impact, U', V
corresponding velocities of

m, and let u, v and u\ v' be

corresponding velocities for

m and rn after impact.

The spheres beingsmooth,
^8- 57. there is no friction between

them, and the pressure between them is directed along the line

of centres. Hence the resolved part of the momentum of either

sphere at right angles to the line of centres is unaltered by the

impact. We have therefore the equations

v^y, v'^y.

The generalized Newton's rule gives the equation

u-xC^-eiTJ-U'),
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and the equation of constancy of momentum parallel to the line

of centres is

mu + m'u' = mU \-m' U'.

Solving these equations we find

^ {m-m'e)U+m'{l+e)T]'
m-\-m'

*

, _ {m'- me)U' + m (l-\-e)U

Hence the velocity of each sphere after impact is determined.

The impulsive pressure between the spheres is found in the

same way as in Art. 195 to be

m + m ^

and the kinetic energy lost is found in the same way as in that

Article to be

mm'
^ m + m ^ ^ ^

198. Deduction of Newton's rule firom a particular as-

sumption. In the motion before impact, let w, v denote the components
of velocity of the centre of mass of the two spheres parallel to the line of

centres and at right angles to this line, IF, rj
the components of the velocity

of 7n relative to m' parallel to the same directions. Then w, v, rj
are unaltered

by the impact. Let W be changed into w by the impact. The quantities W
and ^v are the " relative velocity of approach

" and the " relative velocity of

separation." The kinetic energy before impact is equal to

Cf. Art. 159, Ex. 1. The kinetic energy after impact can be expressed in a

similar form. Hence the kinetic energy lost in the impact is

If we assume that the kinetic energy lost is proportional to the square

of the relative velocity of approach, we have the result that w has a constant

ra,tio to IF, and this is Newton's rule.

199. Blastic systems. The method followed in applying the above

rule is to treat the impact as instantaneous, and the impinging bodies as rigid

both before and after it. This method is adequate for the discussion of many

questions. It cannot however give an exact account of the eflfects of impact in

elastic systems. In such systems no internal forces are developed except after

wme deformation has taken place, so that at the beginning of a motion which is

14—2
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suddenly produced some part of the system yields at once, and starts to move

with a finite velocity; after a finite time a finite deformation is produced,

and is opposed by finite elastic forces, which continue to act as long as there

is any deformation. This statement may conveniently be summed up in the

proposition :
—A71 elastic system cannot support an impulse. It is now clear

that the method founded on Newton's result is of the nature of a compromise,
the time of the action in which the elasticity of the bodies is concerned being
treated as negligible. An example of the statement that an elastic system
cannot support an impulse will be found in the action of elastic strings

attached to rigid bodies whose motion is altered suddenly. There is no

impulsive tension in such a string, and the motion of the body immediately
after the impulse is exactly the same as if the string were not attached to

it (cf. Art. 213). On the other hand, an inextensible string is regarded as

capable of supporting an impulsive tension.

200. General theory of sudden changes of motion.

So far we have been confining our attention to the impulsive
action between impinging bodies, but there are many other

changes of motion which take place so rapidly that it is con-

venient to regard them as suddenly produced. The general
method of treating such changes of motion depends simply on

repeated applications of the principle that for every particle

in a connected system, and for each rigid body in such a system,
the changes of momentum are a system of vectors equivalent
to the impulses that produce them. We shall illustrate the

application of this principle by means of some problems.

201. Illustrative problems.
I. Two equal smooth balls, whose centres are A and B, lie nearly in contact

on a smooth tahle^ and a third hall of equal size and mass impiiiges directly
on J, so that the line joining its centre C to A makes with the line AB an angle
CAB, ^w-0. Prove that, if sin S>{1 -

e)/(l +e), the ball A will start of in
a direction making with AB an angle tan~^{2{l-e)-'^ tanO], e being the

coeffixiient of restitution for either pair of halls.

Let V be the velocity of C before striking A ; since the impact is direct,
Fis localized in CA. Let w be its velocity after striking A ; the direction of
w is that of V. Let u' be the velocity of A immediately after C strikes it,

u its velocity just after A strikes B, v the velocity of B after A strikes it, then
the direction of iC makes an angle 6 with AB. Suppose the direction of u to
make an angle <^ with AB. The direction of v m AB.

We have the equations of momentum
V=u' + w, u'cos$= ucos(j> + v, u'ainO=usincf>,

and the equations given by Newton's Rule

ii'-w=eV, ucos<f)-v=-eu'coa6;
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whence 2w=V(l-e), 2u'=V{l + e\ 2ic cos
(f)
=

{I -e)ic' cos 0,

and tand)=:- .^ l-e

Fig. 58.

Thus A moves off as stated, provided that there is no second impact
between A and C. The condition for this is u cos

(cf)
-
e)>iv,

l-e
or i (1

-
e) w' cos2 + it' sin^ ^>YTr ^''

which leads to sin ^>(1 -e)/(l +e).

II. A particle is projected with velocity V from the foot of a smooth fixed

plane of inclination 6 in a direction making an angle a with the horizon {a>6).
Find the condition that it may stnke the plane n times striking it at right angles
at the nth impact, e being the coejfficient of restitution between the plane and the

particle.

Since the velocity parallel to the plane is unaltered by impact, the motion

of the particle parallel to the plane is determined by the same equation as if

there were no impacts, thus at the end of any interval t from the beginning
of the motion the velocity parallel to the plane is Fcos {a -6) — gt sin 6.

Let ^1, ^2) ... ^n be the times of flight before the first impact, between the

first and second, and so on. Then ti is given by

Vti sin {a -6)- ^gti^ cos ^= 0,

and thus ^i
= 2 Fsin (a

—
B)/g cos 3. The velocity perpendicular to the plane

at time ti is Fsin {a'-6)—gti cos ^ or - Fsin {a- 6). Immediately after the

impact the velocity at right angles to the plane becomes eFsin {a -6) a,wa.j

from the plane. We thus find that t2=eti, ts^et^,....

Hence ^i + ^2+...-H^n» —^ ^^—\ is the interval from the be-
l-e gcosO

ginning of the motion till the nth impact. By supposition, at the end of
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this interval the velocity parallel to the plane vanishes, or this interval is

Fees (a
—

^)/^ sin ^. The required condition is therefore

tan^= 2tan(a-^)(l-e«)/(l-e).

III. A smooth sphere of mass m is tied to a fixed point hy an inextensihle

thready and another sphei'e of mass in' impinges directly on it with velocity v in

a direction making an acute angle a with the thread. Find the velocity with

which m begins to move.

The impulse between the spheres acts in the line of centres so that the

direction of motion of m' is unaltered.

Let its velocity after impact be v'.

There is an impulsive tension in the

thread and the sphere m is constrained

to describe a circle about the fixed end.

It therefore starts to move at right

angles to the thread. Let ii be its

velocity.

Kesolving for the system at right

angles to the thread we have the equa-
tion of momentum

Fig. 59.
mu-^-mv sma=wivsma.

By the generalized Newton's Rule we have

v'— %sina=-ey.

wi'sina(l + e)Whence m+ m' sin^ a

IV. Two particles A, B of equal mass are connected hy a rigid rod oj

negligible mass^ and a third equal particle C is tied to a point P of the rod at

distances a, b from the two ends. C is projected mth velocity u perpendicular
to AB. Find the velocity of C immediately after the string becomes tight.

Let V be the velocity of C immediately after the string becomes tight.

'0

AV-hua
i ^r+ato

Fig. 60.
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Since the impulse on C is along the string its direction of motion is unaltered.

The velocity with which P starts to move is v along the string.

Let 0) be the angular velocity with which the rod begins to turn. The

velocity of A is compounded of the velocity of P and the velocity of A
relative to P. Thus A starts with velocity ?;+ aa>. So B starts with velocity
v-hat.

The equation of momentum parallel to the string is

mv+ m{v+ a(a)-\-m{v
—

h(a)='inu,

m being the mass of either particle.

The equation of moment of momentum about P is

ma (v+ aa) — mb (v
— ba)= 0,

giving a)= (6-a)v/(a2+62).

Eliminating a> we find

a^+b^

1 a2+ 52
or v=- -o-rx^r-;

—
i ^»

2 a^+ b^+ab

202. Examples.

[In these examples e is the coefiBcient of restitution between two bodies.]

1. The sides of a rectangular billiard table are of lengths a and b. If a

ball is projected from a point on one of the sides of length b to strike all

four sides in succession and continually retrace its path, show that the angle
of projection with the side is given by ae cot 6= c+ ec\ where c and c' are

the parts into which the side is divided at the point of projection.

2. Prove that, in order to produce the greatest deviation in the direction

of a smooth billiard ball of diameter a by impact on another equal ball at rest,

the former must be projected in a direction making an angle

with the line (of length c) joining the two centres.

3. A particle is projected from a point at the foot of one of two smooth

parallel vertical walls so that after three reflexions it may return to the point

of projection; and the last impact is direct. Prove that e^+ e^+ e= l, and that

the vertical heights of the three points of impact are in the ratios

e2 : 1 - e2
.

1.

4. A particle is projected from the foot of an inclined plane and returns

to the point of projection after several rebounds, one of which is at right

angles to the plane ; prove that, if it takes r more leaps in coming down than

in going up, the inclination 3 of the plane and the angle of projection a are

connected by the equation

cot 6 cot {a-e) = 2 y{l - e»-)
-

(1
-

e^)}l{e^ (1
-

e)}.
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6. A particle is projected from the foot of a plane of inclination y in a

direction making an angle ^ with the normal to the plane, in a plane through
this normal making an angle a with the line of greatest slope on the inclined

plane. Prove that, for the particle to be on the horizontal through the point
of projection when it meets the plane for the nth. time, the angles a, /3, y must

satisfy the equation

(1
-

e") tan y= (1
-

e) cos a tan ^.

6. Three equal spheres are projected simultaneously from the corners of

an equilateral triangle with equal velocities towards the centre of the triangle,

and meet near the centre. Prove that they return to the corners with velocities

diminished in the ratio e : I.

7. A smooth uniform hemisphere of mass M is sliding with velocity V
on a plane with which its base is in contact

;
a sphere of smaller mass m is

dropped vertically, and strikes the hemisphere on the side towards which it

is moving, so that the line joining their centres makes an angle 7r/4 with the

vertical. Show that, if the coefficient of restitution between the plane and

the hemisphere is zero, and that between the sphere and the hemisphere is e,

the height through which the sphere must have fallen if the hemisphere is

stopped dead is

V2 {2M-emY
2g \l+efm^

'

8. A particle of mass M is moving on a smooth horizontal table with

uniform speed in a circle, being attached to the centre by an inextensible

thread, and strikes another particle of mass m at rest. Show that, if the two

particles adhere, the tension of the thread is diminished in the ratio

i//(J/+m).

If there is restitution between the particles and the second one is describ-

ing the same circle as the first, prove that the tensions T and t in the two

threads after impact are connected with their values Tq and ^o before impact

by the equation

9. A bucket and a counterpoise, of equal mass i/, connected by a chain

of negligible mass passing over a smooth pulley, just balance each other, and

a ball, of mass «i, is dropped into the centre of the bucket fi*om a height h

above it
; find the time that elapses before the ball ceases to rebound, and show

that the whole distance descended by the bucket during this interval is

4meh/{{2M+m){l-ey}.

10. Three equal particles are attached to the ends and middle point of a

rod of negligible mass, and one of the end ones is struck by a blow so that it

starts to move at right angles to the rod. Prove that the magnitudes of the

velocities of the particles at starting are in the ratios 5:2:1.

11. An impulsive attraction acts between the centres of two spheres

which are approaching each other so as to generate kinetic energy K If v is
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their relative velocity before the impulse, and 6, & the angles which the

directions of the relative velocity, before and after, make with the line of

centres, then

sin«=
sin^'y(l

+
^,),

where M is the harmonic mean of the masses.

12. Two small bodies of equal mass are attached to the ends of a rod

of negligible mass
; the rod is supported at its centre and is turning

uniformly, so that each of the bodies is describing a horizontal circle, when
one of the bodies is struck by a vertical blow equal in magnitude to twice

its momentum. Prove that the direction of motion of each of the bodies is

instantaneously deflected through half a right angle.

Initial Motions.

203. Nature of the problems. We suppose that a system
is held in some definite position in a field of force, and that at a

particular instant some one of the constraints ceases to be applied ;

then the system begins to move, each particle of it with a certain

acceleration. Our first object in such a case is to determine the

accelerations with which the parts of the system begin to move.

When the accelerations have been found there is generally no

difficulty in determining the initial values of the reactions of

supports, or internal actions between different bodies of the system ;

and the determination of the unknown reactions is our second

object.

The senses of the accelerations with which a conservative

system moves away from a position of instantaneous rest can

sometimes be determined by help of the observation that the

motion must be one by which the potential energy is diminished.

This is evident since the kinetic energy must be increased above

the value (zero) which it has in the position of rest.

The problem of determining the curvature of the path of a

particle whose velocity is not zero offers no difficulty when the

velocity and acceleration are known, since the resolved acceleration

along the normal to the path is the product of the square of the

resultant velocity and the curvature. This remark enables us

easily to determine the initial curvature of the path of a particle

when its motion is changed suddenly.
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204. Method for initial accelerations. It is always

possible to determine expressions for the accelerations of all the

points of a connected system in terms of a small number of

independent accelerations, and there is always the same number

of equations of motion free from unknown reactions, so that all

the accelerations can be found. The expression of the initial

accelerations in the proposed manner is facilitated by observing

(1) that the velocity of every particle initially vanishes, (2) that

every composition and resolution may be effected by taking the

position of the system to be that from which it starts. The

method will be better understood after the study of an example.
We purposely choose one of a somewhat complicated character in

order to illustrate the various details of the method.

205. Illustrative Problem . Four equal rings A,B,C,D are at equal

distances on a smooth fixed horizontal rod, and three other equal and similar

rings P, Q, R are attached hy pairs of equal inextensihle threads to the pairs of

rings {A, B)y {B, C\ (C, D). The system is held so that all the threads initially

make the same angle a with the hoi^izontal, and is let go. It is required to find

the acceleration of each Hng.

From the symmetry of the system the accelerations oi A, D are equal and

Fig. 61.

opposite, so are those of B, C, and those of P, R. Also the acceleration of Q
is vertical.

Let/,/' be the accelerations of J, J5 along the smooth horizontal rod.

Now relatively to A, P describes a circle, and thus the acceleration of P
relative to .1 is made up of a tangential acceleration / at right angles to AP,
and a normal acceleration proportional to the square of the angular velocity

of AP. Since the initial angular velocity vanishes, we have, as the relative

acceleration, /i at right angles to AP. Again, since the threads AP, BP are
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equal, the particle P is always vertically under the middle point oi AB and

thus its horizontal acceleration is \ (/+/')•

Hence M/+/') =/-/i sin a,

giving /i sin a=^ (/-/')•

Again, the horizontal acceleration of Q vanishes, and we have therefore the

acceleration f^ of Q relative to B given by the equation

/2sina=/'.

Thus the accelerations of the particles are expressed in terms of / and /' ;

in particular the vertical accelerations of P and Q are ^ (/-/') cot a and

/'cot a downwards.

Now let m be the mass of each, particle and Ii, T^, T^ the tensions in the

threads as shown in the figure. Then resolving horizontally for J, /*, and B
we have

m/=riCosa, |m(/+/') = (r2-ri)cosa, mf'=={T^-T^^C0Ba...{l);

and resolving vertically for P and Q we have

\m if-f) cot a= -
( 7\+ Ta) sin a+ mg, mf cot a= - 2 Tg sin a+ mg. . .(2).

From the set of equations (1) we have

T^ cos a= mf, T.i cos a^m (f/+i/'), 7^3 cos a=m f (/+/') ;

and from (2), on substituting for T^i, ^2, T^^ we have

(/-/') cot a+ (5/+/') tan a= 2^, /' cot a+ 3 (/+/') tan a =5r ;

, f f q sin 2a
whence = = •

4 -cos 2a cos 2a 12 — 11 cos 2a+ cos2 2a*

206. Initial curvature. As an example of initial curvatures when

the motion does not start from rest we take the following problem :

Two particles of masses m, m! connected hy an inextensihle thread of length I

are placed on a smooth table with the thread straight^ and are projected at right

angles to the thread in opposite senses. It is required to find the initial

curvatures of their paths.

Let u^ V be the initial velocities of the particles, and w the initial angular

velocity of the thread, then

U-\-V— l(a. >^"

Let G be the centre of mass

of the two particles. Then G
moves unifoiTnly on the table

with velocity

{7nu — m'v)l{m-\-m'). y
The acceleration of G vanishes, Yis. 62.

and the acceleration of m relative

to G is that of a particle describing a circle of radius m'll{m-\-m') with angular

velocity w
;
thus the acceleration of m along the thread is m'l(o^l{m+ m'), and

V_^a,
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this is the acceleration of m along the normal to its path. Hence, if p is the

initial radius of curvature of the path of m,

u'^ _ m'l
/u-\-v\^

p
~
m+ m'\ I J

'

giving llp
= m'{u+ vf/{(m+ m') lu^].

In like manner the initial curvature of the path of m' is

m{u+vfl{{m-\-m')lv'^],

207. Examples.
1. Two bodies A and B of equal weight are suspended from the chains

of an Atwood's machine; A is rigid, while B consists of a vessel full of

water in which is a cork attached to the bottom by a string. Supposing
the string to be destroyed in any manner, determine the sense in which A
begins to move.

2. A particle is supported by equal threads inclined at the same angle a

to the horizontal. One thread being cut, prove that the tension in the

remaining thread is suddenly changed in the ratio 2sin2a : 1.

3. Particles of equal mass are attached to the points of trisection C, D
of a thread ACDB of length 3^, and the system is suspended by its ends from

points A, B distant ? (1 + 2 sin a) apart in a horizontal line, so that CD is

horizontal and equal to I. Prove that, if the portion DB of the thread is cut,

the tension of AC \^ instantly changed in the ratio 2 cos^ a : I -{- cos^ a, and

that the initial direction of motion of D is inclined to the vertical at an

angle ^ such that
cot

<\)
= tan a+ 2 cot a.

4. Three small equal rings rest on a smooth vertical circular wire at the

corners of an equilateral triangle with one side vertical, the uppermost being
connected with the other two by inextensible threads. Prove that, if the

vertical thread is cut through, the tension in the other thread is instantly

diminished in the ratio 3 : 4.

6. A set of '2n equal particles are attached at equal intervals to a thread,

and the ends of the thread are attached to equal small smooth rings which

can slide on a horizontal rod. The rings are initially held in such a position

that the lowest part of the thread is horizontal and the highest parts make

equal angles y with the horizontal, and the rings are let go. Prove that in

the initial motion (i) the acceleration of each particle is vertical, (ii) the

tension in the lowest part of the thread is to what it was in equilibrium in

the ratio mf : mncot^y+ 7n\ where in is the mass of a particle and m' the

mass of a ring.

6. Three particles A, Bj C of equal masses are attached at the ends and

middle point of a thread so that AB= BC=a, and the particles are moving
at right angles to the thread, which is straight, with the same velocities,

when B impinges directly on an obstacle. Prove that, if there is perfect

restitution, the radii of curvature of the paths which A and C begin to

describe are equal to ^a.
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7. Two particles, of masses M and ?ii/, are attached respectively to a

point of a thread distant a from one end and to that end, and the other end

is fixed to a point on a smooth table on which the particles rest, the thread

being in two straight pieces containing an obtuse angle tt — a. Prove that, if

the particle nM is projected on the table at right angles to the thread, the

initial radius of curvature of its path is a (1 + ^ sin^ a).

8. Two particles P, Q, of equal mass, are connected by a thread of length I

which passes through a small hole in a smooth table. P being at a distance c

from the hole and Q, hanging vertically, P is projected on the table at right

angles to the thread with velocity v
; prove that the initial radius of curvature

of P's path is 2cv^l{v'^-\-cg). Prove also that, if Q is projected horizontally

with velocity v, while P is not moved, the initial radius of curvature of ^'s

path is

Applications of the Energy Equation.

208. Equilibrium. The possible positions of equilibrium
of a system are distinguished from other positions by the con-

dition that, if the system is at rest in an equilibrium position, so

that all the velocities vanish there, the accelerations also vanish

there.

Now let the equations of motion be taken in the forms

of Art. 160; and let the system pass through a position of equi-

librium with any velocities denoted typically by x\ y',
z. The

equation which expresses the result that the rate of change of

kinetic energy (per unit of time) is equal to the rate at which

work is done (Art. 173) is

S [m {xx' + yy' + ^•^')]
= S [(X + X') ^' + (F+ Y') y \-{Z-\- Z') z'].

Since, by hypothesis, the position is one of equilibrium, the

left-hand member of this equation vanishes. Hence the right-

hand member also vanishes, or we have the result :
—

The rate at which work is done when a system passes through a

position of equilibrium with any velocity vanishes.

This result is usually stated in a form involving infinitesimals,

and is called the '

Principle of Virtual Work '

or of '

Virtual

Velocities.'

In forming the expression for the rate at which work is done,

or the expression for the virtual work, the velocities must be such
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as are compatible with the connexions of the system. Further, if

there are any resistances which depend upon velocities, and

vanish with the velocities, the rate at which these resistances

would do work is to be omitted, for manifestly such resistances do

not affect the positions of equilibrium.

When there is a work function W, the rate at which work is

dW
done is —i— . If TT is a function of any quantities which define

the position of the system, say 0, <f), ..., then

dW dW. dW .

W==W^"^80 * + ••••

If the position is one of equilibrium, this vanishes for all values

of ^, <j),
.... Hence we have the equations

and the values of ^, ^, ... which satisfy these equations determine

the positions of equilibrium.

If we sought the positions in which TT is a maximum or

minimum, we should have to begin by solving the equations

and then proceed to determine which among the various sets

of solutions make W a true maximum or a true minimum.
In the positions in which

de
'

•••

we should say that W is stationary, whether it is a true maximum
or minimum or not. Since the potential energy of the system in

any position is — W, we have the result :

The equilibrium positions of a conservative system are those

positions in which the potential energy is stationary.

209. Machines. In all the so-called "simple machines"

or "mechanical powers" the positions of all the parts can be

expressed in terms of a single variable, and consequently the

potential energy is determined in terms of a single variable. The

condition that the potential energy is stationary in the position of

equilibrium becomes a relation between the masses of two moving
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parts: the "power" and the "weight." This result is w^orked

out in books on Statics.

In any conservative system in which the positions of all the

parts can be expressed in terms of a single variable, the equation

of energy determines the whole motion. We had an example
in Atwood's machine [Ex. 1 of Art. 74].

210. Examples.

1. Two bodies are supported in equilibrium on a wheel and axle, and

a body whose mass is equal to that of the greater body is suddenly attached

to that body. Prove that the acceleration with which it moves is agl{2a-\-b),

a and b being the radii of the wheel and the axle respectively, and the inertia

of the machine being neglected.

2. In any machine without friction and inertia a body of weight F
supports a body of weight Tf, both hanging by vertical cords. These bodies

are replaced by bodies of weights F' and W\ which, in the subsequent

motion, move vertically. Prove that the centre of mass of F' and W will

descend with acceleration

g ( WF' - W'Ffli W^F'+ W'F^) (W+ F').

211. Small oscillations. We have to consider the small

motion of a system which is slightly displaced from a position of

equilibrium. We confine our attention to cases where any position

of the system is determined by assigning the value of a single

geometrical quantity 6, as in the case of the simple circular

pendulum (Article 119). We can always choose to vanish in

the position of equilibrium ; for, if it has been chosen in any
other way so that its value in the position of equilibrium is 6o,

then —
Oq can be used instead of 6.

Now the velocity of each particle of the system can be ex-

pressed in terms of 6 and 0, and the kinetic energy T is thus of

the form ^A6^ where A may depend upon 6, but does not vanish

with e.

Also the potential energy V vanishes with 6, if the standard

position is the position of equilibrium. Thus F is a function of 6

which may be expanded in powers of 6 and the series contains

no term independent of 6. Again, the principle of virtual work

dV
shows that -^n vanishes with 0, or that the term of the first order

do

is missing from the series for V. Thus V can be expressed as a
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series beginning with the term in 6'^, and more generally we may
say that, when 6 is sufficiently small, V=^Cd^, where (7 is a

function of 6 which is finite when ^ = 0.

The equation of energy accordingly is

and on differentiating we have

Omitting small quantities of an order higher than the first we

have

Ae-\- 00=^0,

where A and C have their values for ^ = 0. Thus, if these two

quantities have the same sign, the motion in is simple harmonic

with period 2'7r ^(A/G).

Now A must be positive since otherwise the expression ^AO^
could not represent an amount of kinetic energy. Hence there are

oscillations in a real period if (7 is positive.

The value of (7 for ^ = is the value of -77^- for ^ = 0, and thus

the conditions for a real period of oscillation are the same as the

conditions that V may have a minimum value in the position of

equilibrium.

If the period is real, the motion can be small enough for the

approximation to be valid
;
otherwise it soon becomes so large that

we cannot simplify the equation of motion by neglecting 0\ In

the former case the equilibrium is stable and in the latter unstable.

We learn that in a position of stable equilibrium the potential

energy is a minimum*.

The process which has been adopted shows that we might have

reduced the expression for T by substituting zero for ^ in ^, and

the expression for V might have been taken to be simply the

term of the series which contains d'\ These simplifications might
have been made before differentiating the energy equation. If we

express the kinetic energy correctly to the second order of small

quantities in the form ^A 6\ and the potential energy also correctly

to the second order of small quantities in the form ^06'^, the

* This result, here proved for a special class of cases, is true for all conservative

systems.
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period of the small oscillations is 27r \/{AIG). In the case of a

simple pendulum of mass m and length I, A is mP and G is mgly
so that

AjC^ljg.

In any other case we may compare the motion with that of a

simple pendulum, and then the quantity gAjC is the length of a

simple pendulum which oscillates in the same time as the system.
It is called the length of the equivalent simple pendulum for the

small oscillations of the system.

212. Examples.
1. Two rings of masses m, m' connected by a rigid rod of negligible

mass are free to slide on a smooth vertical circular wire of radius a, the rod

subtending an angle a at the centre. Prove that the length of the equivalent

simple pendulum for the small oscillations of the system is

{m + m') aji^iw?+ w'^ 4- 2mm' cos a).

2. One end of an inextensible thread is attached to a fixed point A^ and

the thread passes over a small pulley B fixed at the same height as A and at

a distance 2a from it and supports a body of mass P. A ring of mass M can

slide on the thread and the system is in equilibrium withM between A and B.

Prove that the time of a small oscillation is

477 ,J{aMP{M->rP)lg (4P2 _ M^f).

3. A particle is suspended from two fixed points at the same level by

equal elastic threads of natural length «, and hangs in equilibrium at a depth
h with each thread of length I. Prove that, if it is slightly displaced parallel

to the line joining the fixed ends of the threads, the length of the equivalent

simple pendulum for the small oscillations is

hl^{l-a)l{P-h^a).

4. Prove that, if the fixed points in Ex. 3 are at a distance 2c apart,

and the particle is displaced vertically, the length of the equivalent simple

pendulum is

hl^{l-a)l{p-c^a).
-

5. A pulley of negligible mass is hung from a fixed point by an elastic

cord of modulus X and natural length a, and an inextensible cord passing

over the pulley carries at its ends bodies of masses M and m. Prove that the

time of a small oscillation in which the pulley moves vertically is

47r ^{Mma/{M+m) X}.

213. Principles of Energy and Momentum. We have re-

marked that there are numerous cases in which the principles of energy and

momentum supply all the first integrals of the equations of motion of a system,

L. M. 15
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and thus suffice to determine the velocities of the parts of the system in any

position.

To iUustrate these principles further we take the following problem :

Two particles A and B, placed on a smooth horizontal table, are connected

hy an elastic string of negligible mass. When the stnng is straight, and of its

natural length, one of the particles is struck by a bloic in the line of the string

and away from the other particle; determine the subsequent motion.

Let m be the mass of the particle struck, m' that of the other, V the

velocity with which m begins to move. There is no tension in the string

until it is extended, and thus at first m' has no velocity.

The centre of mass moves on the table with uniform velocity u,

= mVI{m+m'), in the line of the string. Let ^ be the increase in the

length of the string at time
t,

then the velocities of the particles are

u+m + m' ' m+ m'
'

Hence the kmetic energy is ^ (m+m ) w-4--—;

—
,
x^

°'' 2^ '2,m+m

The potential energy is „
- ^^ so long as x is positive, a being the natural

length of the string, and X the modulus of elasticity.

Thus the energy equation is

2m-\-m 2m+m 2 a 2

showing that the motion in x is simple harmonic motion of period

27r sj{mm'al{m^-m')\},

so long as x remains positive. Whenever the string is unstretched we have

JC—+V. When x vanishes the string has its greatest length

a+ V^{mm'al{m-\-rii')X\.

We can thus describe the whole motion :
—m moves oflf with velocity V

which gradually diminishes, and m' moves in the same direction from rest

with gradually increasing velocity ;
the string begins to extend, and continues

to do so until it attains its greatest length ;
this happens at the end of a

quarter of the period of the simple harmonic motion, and at this instant the

particles have equal velocities u. The velocity of m continues to diminish

until it is reduced to V{m-m')l{m+ m'), and the velocity of m' continues to

increase until it has the value 2mV/{m+m'), these values are attained at the

same instant ; in the meantime the string contracts to its natural length a,

which it attains at the instant in question, and this happens at the end of

half a period from the beginning of the motion. The particles then move

with the velocities they have attained until m' overtakes ?/i, when a collision

takes place. The subsequent motion depends on the coefficient of restitution.

If this is unity, the relative motion is reversed. In any case the description

of the subsequent motion involves nothing new.
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214. Examples.
1. A shot of mass m is fired from a gun of mass M placed on a smooth

horizontal plane and elevated at an angle a. Prove that, if the muzzle velocity
of the shot is F, the range is

2F2
'

(l + m/J/)tana

g l + (l + m/JI/)2tan2a'

2. A smooth wedge of mass M whose base angles are a and /3 is placed
on a smooth table, and two particles of masses m and m! move on the faces,

being connected by an inextensible thread which passes over a smooth pulley
at the summit. Prove that the wedge moves with acceleration

{m sin a ^ m' sin /3) {m cos a+ m' cos ^)
^
{m+ m') JM-\-m -{ m')

— {m cos a-\-m' cos ^)2
'

3. Two bodies of masses ?«i, m-i are connected by a spring of such strength
that when nii is held fixed m^ makes ?i complete vibrations per second. Prove

that, if wi2 is held, wii will make n \/(wi2Mi)) and that, if both are free, they
will make n J{{mi^m^jmi} vibrations per second, the vibrations in all cases

being in the line of the spring.

4. Three equal particles are attached at equal intervals to an inextensible

thread, and, when the thread is straight, the two end ones are projected with

equal velocities in the same sense at right angles to the thread. Prove that,

if there are no external forces, the velocity of each of the end particles

(at right angles to the part of the thread which is attached to it) at the

instant when they impinge is \ <JS of their initial velocity.

5. A particle is attached by an elastic thread of natural length a to a

point of a smooth plank which is free to slide on a horizontal table, and the

thread is stretched to a length a+ c, in a horizontal line passing over the

•centre of mass of the plank, and the system is let go from rest. Prove that,

if the plank and particle have equal masses, and the modulus of elasticity of

the thread is equal to the weight of the particle, the velocity of the jjarticle

relative to the plank when the thread has its natural length is that due to

falling through a height c^/a.

6. A spherical shell of radius a and mass m contains a particle of the

eame mass, which is attached to the highest point by an elastic thread of

natural length «, stretched to length a +6', and is also attached to the lowest

point by an inextensible thread
;
and the shell rests on a horizontal plane.

Suddenly the lower thread breaks, the particle jumps up to the highest point
of the shell and adheres there, and it is observed that the shell jumps up

through a height h. Prove that the modulus of elasticity of the upper
thread is

What external forces produce momentum in the system as a whole ?

7. Three equal particles are connected by an inextensible thread of length
-a + h^ so that the middle one is at distances a and b from the other two.

15—2
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The middle one is held fixed and the other two describe circles about it with

the same uniform angular velocity so that the two portions of the thread are

always in a straight line. Prove that, if the middle particle is set free, the

tensions in the two parts of the thread are altered in the ratios 2a + 6 : 3a

and 2b-\-a : 36, there being no external forces.

8. Two equal particles are connected by an inextensible thread of length

I ;
one of them ^ is on a smooth table and the other is just over the edge,

the thread being straight and at right angles to the edge. Find the velocities

of the particles immediately after they have become free of the table, and

prove (i) that in the subsequent motion the tension of the thread is always
half the weight of either particle, and (ii) that the initial radius of curvature

of the path of A immediately after it leaves the table is ^^ ^^51.

MISCELLANEOUS EXAMPLES.

1. A ball is projected vertically with velocity Vi from a point in a rigid

horizontal plane, and when its velocity is Vo a second ball is projected from

the same point with velocity Vi ; assuming the restitution in each impact to

be ijerfect, i)rove (i) that the time between successive impacts of the two

balls is Vi/g, (ii) that the heights at which they take place are alternately

{'^Vi-V2){vi + V2)l8g and (3^1+ ^2) (^i-'^2)/8^j (i") that the velocities of the

balls at the impacts are equal and opposite and alternately 4(^1
—

^2) and

i(^i + «'2).

2. Two equal balls of radius a lie in contact on a smooth table, and

are struck simultaneously by a ball of radius c moving in the direction

of the horizontal common tangent at the point of contact ; prove that, if all

the balls are of the same material, the impinging ball will be reduced to rest

if the coefficient of restitution is

^c2(a + c)2/a3(2a+c).

3. Two equal balls lie in contact on a table. A third equal ball impinges

on them, its centre moving along a line nearly coinciding \vith a horizontal

common tangent. Assuming that the periods of the impacts do not overlap,

prove that the ratio of the velocities which either ball will receive according

as it is struck first or second is 4 : 3 - e, where e is the coefficient of resti-

tution.

4. Two spheres of equal radius and of masses XiWi and X2m are lying in

contact on a smooth horizontal plane. A third sphere of the same radius

and of mass m falls freely, with its centre in the vertical plane containing
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the centres of the other two, so as to strike them simultaneously. Assuming
that there is no restitution in any of the impacts, prove that the velocity

produced in the sphere of mass XiWi is

V V3 (1 + 2X2)/(1 +4X1 + 4X2+12X1X2),

where v is the velocity of the falling sphere just before impact.

5. From one comer J. of a rectangular billiard table ABCD a ball is

projected in a direction making an angle a with the side AB
;

it strikes

first the side BC, then AD, then DC, then BC again, and then returns to A.

Prove that, if e is the coefficient of restitution, AB : AD=e^ cot a\\-\-e^.

6. Three smooth billiard balls of perfect restitution, each of radius d,

rest on a smooth table, their centres forming a triangle ABC', prove that,

if the ball A is to cannon off B on to C, the angle of impact at B must lie

between

^-irr-tan-i — ,-^—^ and j^+S-^tt - tan"!—^, • ,ij .\^ ',^ c-2d8mB "
c-2rtsm(Z?+8)

where S= sin~i Ad\a.

7. Show that it is possible to project a small elastic ball inside a regular

polygon of n sides so as to describe a regular polygon of the same number

of sides, and prove that the ratio of the sides of the two polygons is

where e is the coefficient of restitution.

8. A ball is projected with velocity Ffrom a point of a plane inclined

at an angle a to the horizontal
;
the direction of projection is at right angles

to the plane, and the coefficient of restitution between the ball and the plane
is e. Prove that, before ceasing to bound, it will have described a length
2 F^ sin ajg cos^ a (1

-
c)^ along the plane.

9. A hollow elliptic cylinder stands on a horizontal plane with its axis

vertical. From the focus of a horizontal section a particle is projected in a

horizontal direction with velocity v. Prove that, if it returns to the point of

projection, the height of the section above the table is '^m^ga^jn^v^, where m, n
are any integers and 2a is the major axis, the coefficient of restitution in

each impact being unity.

10. A particle is projected inside a smooth tube of equal mass, which is

closed at both ends and lies on a smooth table. Prove that the distance

travelled through by the tube when the particle has made (*i+ l) impacts is

a(l — e")/(e'*-e'*'^^) or a (1
- e**

"*"

i)/(e"
- e" +

1) according as n is even or odd,

2a being the length of the tube, and e the coefficient of restitution for each

impact.

11. Two unequal particles are attached to a thread which passes over a

smooth pulley. Initially the smaller is in contact with a fixed horizontal

plane, and the other at a height k above the plane. Prove that, if the co-

efficient of restitution for each impact is e, and if e is a root of any equation



230 MISCELLANEOUS METHODS AND APPLICATIONS [CHAP. VII.

of the form e"-2e+ l=0 with ?i integi'al, the system will come to rest after

a time 2h(l+e)/v (l-e), where v is the velocity of the particle of greater

mass immediately before its first impact on the plane.

12. Two equal spheres are in contact, and are attached by equal threads

to two other equal spheres at rest. The lines of the threads pass through
the centres of the spheres to which they are attached and make angles of 30'

with that common tangent to the first two at their point of contact which

lies in the plane of the four centres. A fifth equal sphere running along

this common tangent strikes the first two symmetrically so that the threads

become tight. Prove that the velocity of the impinging sphere is diminished

in the ratio 7- 12e : 19, where e is the coeflicient of restitution.

13. Two balls of masses M, m and of equal radii, connected by an

inextensible thread, lie on a smooth table with the thread straight, and a

ball of the same radius, and of mass m', moving parallel to the thread with

velocity v, strikes the ball m so that the line of centres (m', m) makes an

acute angle a with the line of centres (Jl/, m). Prove that, if e is the co-

efficient of restitution between on and m', M starts with velocity

vmm' (1 4-e) cos^ al{Mm' ^m^a+m {M-\-m-\-m')].

14. Two balls are attached by inextensible threads to fixed points, and

one of them, of mass m, describing a circle with velocity u, impinges on the

other, of mass m', at rest, so that the line of centres makes an angle a with

the thread attached to wi, and the threads cross each other at right angles.

Prove that m' will start to describe a circle with velocity

oim sin a cos a (1 + <?)/(?« cos^ a+ m' sin^ a),

where e is the coefficient of restitution between the balls.

15. A shell of mass Jfis moving with velocity V. An internal explosion

generates an amount E of energy, and thereby breaks the shell into two

fragments whose masses are in the ratio mi'.m-,. The fragments continue

to move in the original line of motion of the shell. Prove that their

velocities are

16. Weights P and W equilibrate on a wheel and axle of negligible mass.

A weight W is attached to P, and, after the lapse of one second, another

weight W is attached to the ascending weight W. Prove that, after the

lapse of another second, the velocity of the ascending weight 2 Tf is

gb{2a-b)/ia'^+ ah+ 2b'''),

a being the radius of the wheel, and b the radius of the axle.

17. A particle of mass w is attached by inextensible threads to particles

of masses m' and m". The particles are placed on a smooth table with the

threads in two perpendicular straight lines, and the particle m is struck by a

blow in the direction of the bisector of the angle between the threads so that

both threads are jerked. Prove that the initial velocities of m' and m" are in

the ratio m+ m" : m + m'.
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18. A particle of mass M is projected with velocity V in a direction

making an angle 6 with the horizontal, being attached to the point of pro-

jection by an inextensible thread of length T^ cosec^ ^/2^. Prove that the

impulsive tension when the thread becomes tight is JfFcos^ 6 cosec 6y and

that, immediately after the change of motion, the tension is Mg (1-2 sin* 6).

19. Three particles J, B, (7 of equal mass are placed on a smooth plane
inclined at an angle a to the horizontal, and B, C are connected with A by
threads of length h sec a which make equal angles a with the line of greatest

slope through A on opposite sides of it, the line BC being below the level of

A. li A is struck by a blow along the line of greatest slope, so as to start to

move down this line with velocity F, find when the threads become tight, and

prove that the velocity of A immediately afterwards is

F/(3
- 2 sin2 a)+ ^gh sin a/ F.

20. Four equal particles are attached at the corners of a rhombus formed

of four threads each of length a
;
and the system is moving on a horizontal

plane with uniform velocity u in the direction of the longer diagonal AC^
when the end A of that diagonal is suddenly fixed. Prove that the sides of

the rhombus begin to turn with angular velocity 2w sin a/a (1 4-2 sin^ a), where

2a is the acute angle of the rhombus.

21. Three particles of equal mass are attached at equal intervals to a

rigid rod of negligible mass, and, the system being at rest, one of the extreme

particles is struck by a blow at right angles to the rod. Prove that the

kinetic energy imparted to the system, when the other extreme particle is

fixed, and the rod turns about it, is less than it would be if the system were

free in the ratio 24 : 25.

22. Two equal rigid rods AB, BC oi negligible masses carry four equal

particles, attached &t A, C and at the middle points of the rods. The rods

being freely hinged at i5, and laid out straight, the end A is struck with an

impulse at right angles to the rods. Prove that the magnitudes of the

velocities of the particles are in the ratios 9:2:2:1.

23. Four particles of equal masses are tied at equal intervals to a thread,

and the system is placed on a smooth table so as to form part of a regular

polygon whose angles are each n-a. Prove that, if an impulse is applied

to one of the end particles in the direction of the thread attached to it, the

kinetic energy generated is greater than it would be if the particles were

constrained to move in a circular groove, and the impulse were applied

tangentially, in the ratio cos2a+ 4sin2a: cos2a+ 2 sin^a.

24. Four small smooth rings of equal mass are attached at equal

intervals to a thread and rest on a circular wire in a vertical plane. The

radius of the wire is one-third of the length of the thread, and the rings are

at the four upper cornel's of a regular hexagon inscribed in the circle, the two

lower rings being at the ends of the horizontal diameter.
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thread is cut between one of the extreme particles and one of the middle

ones, the tension in the horizontal part is suddenly diminished in the

ratio 5:9.

25. Particles of masses m and m' are fastened to the ends of a thread,

which rests in a vertical plane on the surface of a smooth horizontal circular

cylinder of mass M. The cylinder can slide on a horizontal plane. The

system is initially held at rest so that the radii of the circular section, which

pass through the particles, make angles a and fi with the vertical. Prove

that, when the system is released, the tension of^the thread immediately
becomes

, M{ism a 4- sin 3)+ (wi sin a+ m'sin /3) {1 -cos (a +3)}
^
{m+ m!) {M-\-m sin^ a+ m' sin'-^ fi)

- mini! (cos a
- cos /S)^

*

26. A particle P, of mass J/, rests in equilibrium on a smooth horizontal

table, being attached to three particles of masses m, m\ m" by cords which

pass over smooth pulleys at points A^ B, Cat the edge of the table. Prove

that, if the cord supporting m" is cut, M will begin to move in a direction

making with CP an angle

_ J /A (m ~ m') {{m -\- m')^
-
m"^]

~AMmm'm''^+ {m+ m!) /i^

'

where /x2
= 2wi'2m"^+ 2m"2m^+ 2wi2 m'2 - m* - m'^ - m"\

27. Two particles A, B oi masses w, m' are connected by a thread, which

passes through a smooth ring C at the top of a smooth plane of inclination a

to the horizontal. Initially AC {
= a) is along a line of greatest slope, and

BC is vertical. Prove that, if A is projected at right angles io AC with

velocity v, B will begin to ascend or descend according as

iii!lm<i or >sina + v2/^a.

28. A sphere of mass m hangs by a chain, of length h and negligible mass,

to one end of a rigid horizontal arm of length c, which is free to rotate about

a fixed vertical axis passing through its other end. The arm is seized and

made to rotate with angular velocity Q. Prove that the tension of the chain

immediately becomes m {g \- Q!^ c^jh), and that the plane through the chain and

the radius from the centre of the sphere to the point of attachment starts to

rotate with angular velocity \Q. about the radius.

29. A thread ABC is fixed at J, and has particles of masses m, m'

attached to it at B and C, and the system is held in a vertical plane so that

AB and BC make acute angles a and a 4-/3 with the vertical. Prove that,

when B and C are let go, the initial tension of AB is

m {m+ m') g cos a/(w+ m' sin^
/3).

30. A circular wire of mass M is held at rest in a vertical plane, so as to

touch at its lowest point a smooth table
;
and a particle of mass m rests

against it, being supported by an inextensible thread, which passes over the

wire, and is secured to a fixed point in the plane of the wire at the same level

as the highest point of the wire. Prove that, if the wire is set free, the
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pressure of the particle upon it is immediately diminished by an amount

m^g sin^ a/{M+ 4m sin^^a), where a is the angular distance of the particle
from the highest point of the wire.

31. Four particles A, B, C, I) of equal mass, connected by equal threads,
are placed on a smooth plane of inclination a(<^7r) to the horizontal, so

that AC is a. line of greatest slope, and AB, AD make angles a with ^C on

opposite sides of it. If the uppermost particle A is held, and the particles
B and D are released, prove that the tension in each of the lower threads is

instantly diminished in the ratio

(l-2sin2a)/(H-2sin2a).

32. A bead of mass m' can slide on a thread, one end of which is fixed,

while the other end carries a particle of mass m. Initially m is held at the

level of the fixed end, and the two parts of the thread make equal angles a

with the vertical. Prove that, if the particle m is released, the initial tension

in the thread is mm'g co8a/(m' + 4m cos^ a), and the initial acceleration of the

bead m' is

g {m' + 2w cos^ a)l{m' 4-4m cos'^ a).

33. One end of a thread PQ is fixed to a point P on a smooth horizontal

plane, and the other end Q is attached to a small smooth ring of mass m
which rests on the plane ;

another thi-ead passes through the ring and is

fixed at one end to a point R of the plane while its other end iS carries a

particle of mass M. Initially the angle PQR is obtuse and equal to ^, and
the angle RQS is right ; the particle M is projected parallel to QR with

velocity V. Prove that the initial tension in PQ is

Mm 72 (sin /3
- cos i3)/a (m+ M-k-M&m 2/3),

where a is the length of QS.

34. There is a system of n moveable pulleys, of masses m-^, mo, ... m,„
and n corresponding counterpoises, of masses [ii, fj.2,

•-• H-n- Each pulley and

its coimterpoise are suspended by a cord passing over the preceding pulley.
The highest cord (connecting mi and m) passes over a fixed pulley, and no
cord passes over the lowest pulley w„. The suffixes indicate the order in

which the pulleys are slung. The pulleys are simultaneously set free. Prove

that, if Ti, T.2, ... T^ are the tensions in the cords,

2 {Tp^Jmp+Tp_i/mp_{) = Tp{llmp+ llfji^+ 4/mp_i) ;

further, if the mass of each pulley (m) is to the mass of each counterpoise (fi)

as 5 : 3, prove that the downward acceleration of the p^^ moveable pulley is

32n-/> + l_5

35. Two equal particles connected by an inextensible thread lie on a

smooth table with the thread straight ; prove that, if one of them is pro-

jected on the table at right angles to the thread, the initial radius of curvatiu-e

of its path is twice the length of the thread.
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36. A small ring of mass m rests on a smooth straight wire, and another

particle of mass on' is connected with it by a thread of length a. Prove that,

if m' is projected in a direction at right angles to the wire from a point on it

at a distance a from m, the initial radius of curvature of the path is

a{m-\'m')lm.

37. An inextensible thread passes through two smooth rings A, B on a

smooth table
; particles of masses p and q are attached to the ends, and a

particle of mass m is attached to a point between A and B. Prove that, if

m is projected horizontally at right angles to the thread, the initial curvature

of its path is {pjOA ~ q/OB)/(p+ q + m).

38. A particle of mass m on a smooth table is joined to a particle of

mass m' hanging just over the edge by a thread of length a at right angles to

the edge. Prove that, if the system starts from rest, the radius of curvature

of the path of wi immediately after it leaves the table is

{m-k-m'Y (m + ??i')2+ 2m'2

39. Two particles J, B are connected by a fine string ;
A rests on a rough

horizontal table (coefficient of friction= /x) and B hangs vertically at a dis-

tance I below the edge of the table. If A is on the point of motion, and B is

projected horizontally with velocity w, show that A will begin to move with

an acceleration yiU^I{{yL-\-\)Vj^ and that the initial radius of curvature of J5's

path will be (/A+ 1)^.

40. Three particles A, B, C are connected by two threads AB, AC and

the system is placed in a line on a smooth table. The extreme particles are

projected at right angles to the thread with velocities u, v. Prove that, if

771, p, q are the masses, and a, b the lengths of the threads, the initial

curvatures of the paths of B and C are

(q+7n) ijfifa -f qv^lb , {p+m ) v^/b +pu^/a

{p-\-q+'m)u^ (p -\- q -^^ m) v^

41. A particle of mass m is attached to one end of a thread which passes

through a bead of mass M and the other end is secured to a point on a

smooth horizontal table on which the whole rests. Initially the two portions

of the thread are straight and contain an obtuse angle a, the portion between

m and M being of length a, and m is projected at right angles to this portion.

Prove that the initial radius of curvature of the path of m is

a(H-4mi/'-icos2^a).

42. A window is supported by two cords passing over pulleys in the

framework of the window (which it loosely fits), and is connected with

counterpoises each equal to half the weight of the window. One cord breaks

and the window descends with acceleration /. Show that the coefficient of

friction between the window and the framework is

«(^-3/)/6(^+/),

where a is the height and b the breadth of the window.
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43. A bucket of mass Mm raised from the bottom of a shaft of depth
/i by means of a cord which is wound on a wheel of mass m. The wheel

is driven by a constant force, which is applied tangentially to its rim for a

certain time and then ceases. Prove that, if the bucket just comes to rest at

the top of the shaft t seconds after the beginning of the motion, the greatest

rate of working is

2hM^gH/{Mgf-
- 2/i (J/+ m)},

the mass of the wheel being regarded as condensed uniformly on its rim.

44. An engine is pulling a train, and works at a constant power doing

H units of work per second. If M is the mass of the whole train and F the

resistance (supposed constant), prove that the time of generating velocity v

from rest is

fMH, H Mv\ ,

\w ^^° ir^v
~
f)

^^^''''^^-

45. A two-wheeled vehicle is being drawn along a level road with velocity

V
;
the wheels (radius c) are connected by an axle (radius r) fixed to them, the

weight of the vehicle exclusive of the axle and wheels is TF, and its centre of

mass is vertically over the middle point of the axle. Show that, if the shafts

are in a horizontal plane with the tops of the wheels, the horse is working at

a rate Wvr sin \l>J{c^
- r^ sin'^ X), where X is the angle of friction between the

axle and its bearings.

46. A particle of mass M is attached to a cord, and is on a smooth table.

The cord passes over the edge of the table and supports a pulley, of mass m,

carrying another cord to the ends of which bodies of masses mi, on^, are

attached. Prove that the acceleration of 31 is

m {lYii + rn^ -I- 4mi m^

(M+m) (Wi+ 7712)+ 4?«i ??l2

47. Two bodies hang by a cord over a fixed pulley : show that, if the

inertia of the pulley is neglected, the spaces described by the bodies in

successive equal intervals of time are in arithmetic progression.

If for one of the bodies a pulley of negligible mass is substituted, and

bodies of masses m and m' slung over it, find the mass of the single body in

order that m' may remain at rest if initially so, and prove that the acceleratioa

„ , , ,, . Im'-m
01 the T)ulley is a.

48. For one of the moving bodies in an Atwood's machine a pulley is

substituted, round which passes a cord connecting two masses P, Q, which

hang freely. Show that, if the ratio F: Q lies between 3 and ^, certain values

of the mass of the other moving body may be found which will keep either P
or Q stationary, and that these values are in the ratio SP-Q: 3Q-P.

49. In an Atwood's machine the groove in the pulley in which the chain

runs is cut to that depth at which it is found that the inertia of the pulley

may be divided equally between the moving bodies, and Q is the weight
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required to be added to overcome the friction of the axle when equal weights

P are hung at the ends of the chain. Prove that an additional weight R will

produce acceleration Rg/{2P+2Q-\-R+ W), where W is the weight of the

pulley.

50. Two equal masses P, P' are connected by a cord passing over a

smooth pulley, and to them are attached equal masses Q, Q' by cords.

Initially Q lies on a horizontal plane, and P, P', Q' are in motion
; Q is raised

from the plane and Q' caught by it almost simultaneously. If Fis the initial

subsequent velocity of P, Q, P' when Q rises just before Q' reaches the plane,

and V the initial subsequent velocity when Q' reaches the plane just before

Q rises, prove that

F:F'= (2P+^)2:4P(P+^).
51. Two pulleys each of mass 8m hang at the ends of a chain of negligible

mass which passes over a fixed pulley ;
a similar chain passes over each

of the two suspended pulleys and carries at its ends bodies of mass 2m. A
mass m is now removed from one of the bodies and attached to one of those

which hang over the other pulley ; prove that the acceleration of each pulley

is y^^. Prove also that the two descending bodies move with the same

velocity, and that the velocity of one of the ascending bodies is five times

that of the other.

52. A chain of negligible mass passes over two fixed pulleys and under a

moveable pulley, and bodies are attached to its ends. Prove that, if all the

parts of the chain are vertical, the moveable pulley will remain at rest if its

mass is twice the harmonic mean of the other two masses.

53. A chain of negligible mass passes over a fixed pulley i5, and supports

a body of mass m at one end and a pulley C of mass p at the other. A similar

chain is fastened to a point A below B, passes over (7, and supports a body of

mass m'. Prove that the acceleration of the pulley is

g (2m'
- m \-p)l{Am' -fm +p).

54. Two pulleys of masses M and M' are connected by a cord passing

over a fixed pulley. Bodies of masses mi and ra^ are hung over J/ by a cord,

and bodies of masses m/, mo are hung over M'. Prove that either pulley

moves with acceleration

g {M+ 2/i
- M'- 2,i')l{M+ M'+ 2,x+ 2fi'),

where fi
is the harmonic mean of mi and 7)12 ,

and
fi

is the harmonic mean of

m/ and 7712'.

55. A body of weight P balances a body of weight W in that system of

pulleys in which each pulley hangs by a separate cord. Prove that, if bodies

of weights P' and W are substituted, P' will des:,cend with acceleration /,

such that

/{22«P'+fP+ i(2'^+ l)(2"P- W)} = 2^g{2''{P'-P)+W'- Tf},

all the pulleys being of equal weight.
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56. Three particles, of masses mi, m^., m^, are symmetrically attached

to a circular wire, of negligible mass, and of radius a, which can move in a

smooth circular tube, of the same radius, fixed in a vertical plane. Prove

that the length of the equivalent simple pendulum of the small oscillations

of the system is

(mi+ WI2 + ^3) a/s,/{mi^+mi -^-m^- m^m^-m^m^- mi wig}.

57. Two equal particles of mass Psin a are attached, at a distance 2a sin a

apart, to a thread, to the ends of which particles of mass F are attached.

The thi*ead is hung over two pegs distant 2a apart in a horizontal line. Prove

that the period of the small oscillations about the position of equilibrium is

the same as that for a simj)le pendulum of length a tan a.

58. Three particles of masses m, M, m are attached to the points B, C, D
of a thread AE of length 4«, and rest suspended by the ends A, E from

two points at the same level. The portions AB, BC, CDj DE are each of

length a and make with the horizontal angles a, /3, /3, a respectively. Prove
that i/'tana= (i/'+2m)tan^, and that, if M receives a small vertical dis-

placement, the period of the small oscillations is the same as for a simple

pendulum of length

sin a sin ^ sin (a
—

/3) cos (a
-

jS)

sin^ a cos a+ sin^ /3 cos /3

59. A particle of mass M is placed at the centre of a smooth circular

horizontal table of radius a ; cords are attached to the particle and pass over

n smooth pulleys placed symmetrically round the circumference, and each

cord supports a mass M. Show that the time of a small oscillation of the

system is n [a (?? + 2)lgnY.

60. Two equal particles are connected by a string of length 21, which

passes over a small fixed pulley, and they rest on a smooth inclined plane so

that the two parts of the string are nearly in a vertical plane; /3 is the

inclination of the two portions of the string to the i)lane when the particles

are together, and a that of the plane to the horizon. Prove that, when they
are slightly displaced and the motion is regarded as taking place in a vertical

plane, the length of the equivalent simple pendulum is

I cot ^ cosec j3 cosec a.

61. A triangle ABC is formed of equal smooth rods each of length 2a,
and small equal rings rest on the rods at the middle points of AB, AC, being
attached to A by equal elastic threads of natural length I, and connected

together by an inextensible thread passing through a fixed smooth ring at

the middle point of BC. Prove that, if there are no external forces, and if

one of the rings is slightly displaced, the period of the small oscillations is

2Tr ^{2almlE {pa -U)},

where m is the mass of each ring and E is the modulus of elasticity.

62. A particle is attached to the middle point of an elastic thread whose

ends are attached to two points in the same horizontal plane. The distance
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between the points and the unstretched length of the thread are each equal

to 2a ; and, in the position of equilibrium, the two parts of the thread contain

a right angle. Prove that the time of a small oscillation is the same as for a

simple pendulum of length

a(2V2-2)/(2V2-l).

63. A uniform elastic ring, of mass m, modulus X, and natural length 27rc,

in the form of a circle, is under the action of a force
fi (distance) per unit

mass directed from its centre. Prove that its radius will vary harmonically

about a mean length 27rXc/(27rX
—

w/xc), provided that 2nX>mfxc. What

happens if this condition is not satisfied ?

64. Three small equal rings are fitted on three smooth rods, which are

parallel and in the same plane, one being midway between the other two, and

the distance between neighbouring rods being a. Prove that, if the rings

attract each other according to the law of gravitation, and are placed so that

the line joining any two of them is nearly perpendicular to the rods, the

middle ring and the centre of mass of the other two will oscillate in a period

27rls/{Sfx), and the other two relatively to each other in period 4iTl^{5fi), fia

being the attraction at distance a.

65. A circular hoop of negligible mass and of radius h carries a particle

rigidly attached to it at a point distant c from its centre, and its inner

surface is constrained to roll on the outer surface of a fixed circle of radius

a, (6>a), under the action of a repulsive force, directed from the centre of

the fixed circle and equal to /x times the distance. Prove that the period of

small oscillations of the hoop will be

h+ c Ih-a
a \J c^

66. Two particles of masses Jf, m are attached to a thread which hangs

vertically from a fixed point, m being above J/
; (1) m is held slightly pulled

aside a distance h from the position of equilibrium, and, being let go, the

system performs small oscillations ; (2) J/ is held slightly pulled aside a

distance k^ without disturbing m^ and, being let go, the system performs

small oscillations. Prove that the angular motion of the lower thread in the

first case will be the same as that of the upper thread in the second case if

67. A number of uniformly distributed particles move with the same

velocity v in the same direction
;
in this medium is placed a body of any form

and such that all the particles impinging on it adhere. Show that, if J/ is the

mass of the body at any time, and u its velocity, then M{v-it) will remain

constant.

68. An umbrella, whose surface is smooth and spherical, is held in rain

which falls vertically with velocity v
;

and the umbrella itself is drawn
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vertically downwards with velocity V(<v). Prove that the average pressure

per unit area of the rain falling on the umbrella at a point whose distance

from the highest point is ^ is
jt?

cos^ 6 (v
—

V)'^lv% where p is the average

pressure per unit area of the rain falling on a fixed horizontal plane.

69. Three equal particles are attached at equal intervals to a thread
;

and, when the thread is straight, the two extreme ones are projected in

like directions with the same velocity v at right angles to the thread.

Prove that, if there are no external forces, the angular velocity of the

portions of the thread when they have turned through an angle 6 is

l/V(l+2sin2^) of its initial value.

70. Two particles on a smooth table are connected by an elastic thread

of natural length a, and are initially at rest at a distance a apart. One

particle is projected at right angles to the thread. Prove that, if the greatest

length of the thread during the subsequent motion is 2a, the velocity of

projection is ^{SaX/Sm), where X is the modulus of elasticity of the thread,

and m is the harmonic mean between the masses of the particles.

71. An equilateral wedge of mass M is placed on a smooth table, with

one of its lower edges in contact with a smooth vertical wall, and a smooth

ball of mass M' is placed in contact with the wall and with one face of the

wedge, so that motion ensues without rotation of the wedge. Prove that the

ball will descend with acceleration

72. Two particles A, Bof masses 2m and m are attached to an inextensible

thread OAB, so that OA = AB, and lie on a smooth table with the thread

straight and the end fixed. The particle B is projected on the table at

right angles to AB. Prove that, in the subsequent motion, the angle OAB is

never less than a right angle, and that, when OAB is again a straight line,

the velocity of B is half that of A.

73. Two particles of masses m, m' are placed close together on a smooth

horizontal plane, and are connected by an elastic thread of modulus X, which

]3asses round a smooth peg in the plane, and is of its natural length a. The

two particles are projected away from the peg with equal momenta. Prove

that they will come to rest at the same time and that their distance

a.part will then be {7n'^m') J{auvl\{m-{-m')}, where ic and v are their initial

velocities.

74. Find the charge of powder required with an elevation of 15° to

send a 32 lb. shot over a range of 1600 yards, being given that the initial

velocity is 1600 feet per second when the charge is half the weight of

the shot.

Prove that, if the gun is moveable on a smooth horizontal plane, and if

the weight of the gun is n times that of the shot, while the charge is that

just found, then the range is

6400?i/(4w+ 2 - V3) yards.
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75. A gun is suspended freely at an inclination a to the horizontal by
two equal parallel vertical cords in a vertical plane containing the axis of the

gun, and a shot whose mass is Ijii of that of the gun is fired from it. Prove
that the range on a horizontal plane through the muzzle is 4n (1 +7i) Atana,
where h is the height through which the gun rises in the recoil.

76. A wedge of mass M and angle a rests on a smooth horizontal table,

and a small sphere of mass 7n, moving on the table in a vertical plane which

contains the centre of mass of the wedge and a line of greatest slope on its

inclined face, comes to the edge of the wedge. Prove that, if there is no

restitution between the wedge and the sphere, and if the wedge is high

enough, the sphere will ascend through a vertical height

hM^ cos2 a[{{M+ m) (J/'+m sin2 a)} ,

where h is the height to which the velocity of the sphere before reaching the

wedge is due.

77. A wedge of angle a and mass M is free to move on a fixed horizontal

plane. Another wedge of angle a and of mass M' is laid upon it so that

its upper surface, on which there is a particle of mass m, is horizontal.

The surfaces are all smooth and the motion takes place in a vertical plane.

Prove that the pressure of the particle m on the plane with which it is in

contact is

MM'mgl{MM' + (if+M') {m+ M') tan2 «} .

Prove also that the total weight exceeds the pressure on the fixed

horizontal plane by

{(J/4- M') {M'+ m)2g sin2 a}/{(J/+M') {M'+m) sin2 a+MM' cos2 a}.

78. A smooth bore gun and carriage, together of mass M tons, are

placed on a railway truck of mass M' tons which runs on a smooth level

railway. A projectile of mass m tons is fired from the gun parallel to the

rails. Show that, if the gun is fixed to the carriage, if the powder gas exerts

a uniform thrust equal to the weight of Q tons on the shot and gun, lasting

till the shot has traversed the bore, a length I feet, and if the resistance to

sliding between the gun carriage and the truck is constant and equal to the

weight of R tons, then the velocity imparted to the shot is

Q^J\^Mgll{m (m + M) Q — m^R]'\ feet per second,

and the total length of recoil of the gun carriage on the truck is

iqm{M'{q-R)-MR)l[R{M-\'M'){{M+m) Q-mR]] feet.

79. In a truck of mass M is fixed a fine vertical tube inside which is

fastened a particle of mass m. The truck is made to slide on a smooth

horizontal plane by a massless horizontal chain, which passes over a fixed

smooth pulley and supports a body of mass M'. Motion ensues for a time ^,

after which the particle is allowed to fall down the tube. Prove that the path
of the particle is a parabola of latus rectum

2M'^{M-if-M'^-m)gt^l{{M+M'-\-mY-\-M'^f.
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80. A railway carriage of mass J/", moving with velocity v, impinges on a

carriage of mass M' at rest. The force necessary to compress a buffer

through the full extent I is equal to the weight of a mass m. Assuming that

the compression is proportional to the force, prove that the buffers will not be

completely compressed if

Prove also that, if v exceeds this limit, and if the backing against which

the buffers are driven is inelastic, the ratio of the final velocities of the

carriages is

Mv->J{2mM'ffl{l + M'IM)}:Mv+ y/{2mMgl{l-\-MIM')}. .

81. Two particles of masses m and m', joined by an elastic thread of

natural length I and modulus X, are placed on a smooth table with m at the

edge and m' at a distance I in a, line perpendicular to the edge. The particle

m is then just pushed over the edge. Prove that, if the length of the thread

at any time is ?+ s, then

«2= 2gs
— Xs2 (m + m')lmm'L

Also, if at time t, m has fallen through z and m' is at a distance 3^ from

the edge, prove that

m' (l
-
x) +mz= \mgt^.

82. An elastic circular ring of radius c sin a is placed unstretched in a

horizontal plane over a smooth sphere of radius c. Prove that, if it just

slips over the sphere, the position of equilibrium is defined by the equation

4 (sin ^ - sin a)2 (
1 + sin a)

= tan^ ^ (
1 - sin of.

83. Two equal particles are connected by a thread, one point of which

is fixed
;
and the particles are describing circles of radii a and h about this

point, with the same angular velocity, so that the thread is always straight.

Prove that, if the thread is suddenly released, the tensions in the two portions

are altered in the ratios (a+ 6) : 2a and (a +.6) : 26.

84. Three equal particles are attached at equal intervals to a thread.

One extreme particle A is held fixed
;
and the other two are describing circles

about it with the same angular velocity, so that the thread is straight. Prove

that, if the particle A is let go, the tensions in the two portions of the thread

are diminished in the ratios 1 : 3 and 1 : 2.

85. Two particles each of mass m are connected by a rod of negligible

mass and of length I, and lie on a rough horizontal plane (coefficient of

friction
/*).

One of the pai-ticles is projected vertically upwards with velocity

r, prove that the other particle will begin to move when the rod makes with

the plane an angle a, where a is the least angle which satisfies the equation

(
V^— Sgl sin a) (cos a+ /x

sin a)= figl,

provided that V^/gl is less than 3 sin a+ cosec a. Find also the radius of

curvature of the path immediately afterwards.

L. M. 16
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86. Two particles, each of mass m, are connected by an inextensible

thread of length l^ passing over a smooth pulley at the top of a smooth plane
of inclination a, on which one of the particles rests at a distance a from the

top {a<l). Prove that, in the motion which ensues after the system is free of

the plane, the tension of the thread is constant and equal to

\mgal~^ cos^ a (1
- sin a),

and that the radius of curvature of the path of the upper particle immediately
after it leaves the plane is

1 - sin g [cos2a+^(l-sina)2]^
cos a l+^a^~i cos2a(l-sina)'

87. A spherical shell contains a particle of equal mass, supported by
springs of equal length and strength, which are attached at opposite ends

of a diameter ; and the system, all parts of which are moving in the line

of the springs with the same velocity, strikes directly a fixed plane. Show

that, if the coefl&cient of restitution between the shell and the plane is unity,
the shell will strike the plane again after an interval of time equal to half the

period of free oscillation.

88. In Ex. 87 the spherical shell is of mass 1cm and the particle of

mass m. Prove that the shell will or will not strike the plane again

according as /:< or >1+2 cos a, where a is the least positive root of the

equation tana= a+7r.

89. In Ex. 87 the particle and the shell have equal masses but there

is imperfect restitution (coefficient e) between the shell and the plane.

Prove that, if '^•nln is the period of the free oscillations of the systera, the

time t until the shell again strikes the plane is the smallest positive root of

the equation
(l + <2)sin7i^

=
(l -e)nt.

90. In Ex. 88 prove that the period of oscillation when the shell is free

to move is less than it would be if the shell were held fixed in the ratio

l:^{l + \lk).

91. In a smooth table are two small holes A^ B Sit a. distance 2a apart ;

a particle of mass M rests on the table at the middle point of AB, being

connected with a particle of mass m hanging beneath the table by two

inextensible threads, each of length a(l-fseca), passing through the holes.

A blow Jia applied to M a,t right angles to AB. Prove that, if

J^>2M'mag tan a,

M will oscillate to and fro through a distance 2a tan a, but if

J^=2Mmag (tan a - tan /3)

where tan ^3 is positive, the distance through which M oscillates will be

2a^{(sec a
- sec ^3) (sec a — sec /3+ 2)} .



CHAPTER Vlllt.

MOTION OF A RIGID BODY IN TWO DIMENSIONS.

215. In this CKapter we propose to discuss the motion of

a rigid body in cases where every particle of the body moves

parallel to a fixed plane, for example the plane {x, y) of a frame

of reference. In such a case the x and y of a particle of the

body vary with the time, but the z of each particle remains

constant throughout the motion. The motion is said to be "in

two dimensions," or "in one plane." Now we saw in Art. 180

that to determine the position of a rigid body it is requisite and

sufficient to determine the positions of a particle of the body, of

a line of particles passing through that particle, and of a plane
of particles passing through that line. In the case now under

discussion we may take the line and plane in question to be

parallel to the plane {x, y). Then the position of the plane is

invariable
;
and the position of the line is determined by the

angle which it makes with a fixed line in the plane, for instance

the axis of x\ further, the position of the chosen particle is

determined by its coordinates x and y. Thus the determination

of the position of the rigid body (moving in two dimensions)

requires the determination of three numbers, representing the

coordinates of the position of one of the particles, and the angle

which a line of the body drawn through that particle, and moving
in the plane of its motion, makes with a fixed line.

We can now see what is meant by the angular velocity of a

rigid body moving in one plane. Let one line of particles, fixed

in the body, and parallel to the plane, make an angle 6 at time t

with a line fixed in the plane. Then this angle is increasing at

t Articles in this Chapter which are marked with an asterisk (*) may be omitted

in a first reading.

16—2
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a rate 6. Let any other line of particles be drawn also parallel

to the plane, and let a be the angle which it makes with the first

line. Then a is invariable, for if it were to change the body
would be deformed. Now the second line of particles makes an

angle ^ + a with the fixed line, and this angle also increases at

a rate 6. We thus see that every line of particles parallel to the

plane turns with the same angular velocity, and this is the angular

velocity of the rigid body.

216. Moment of Inertia. Consider a rigid body turning

about an axis with angular velocity o). L^et m be the mass of

a particle of a body at a distance r from the axis. Then this

particle is describing a circle of radius r with velocity ro). Hence

its moment of momentum about the axis is mr^ay, and its kinetic

energy is ^mr^co^.

It follows that the moment of momentum of the rigid body
about the axis is

and the kinetic energy is

the summations referring to all the particles.

These expressions become

(o\\\p{x^-\- 2/2) dxdydz,

and \(jiy^\\\p {x^ + y^) dxdydz,

for a body of density /9
at a point {x, y, z)^ the axis of rotation

being the axis of z.

The integrals are volume integrals taken through the volume

of the body; that is to say we must divide the volume of the

body into a very large number of volumes, very small in all their

dimensions, multiply the value of p {a^ + y"^)
at a point in one of

these volumes by this volume, sum the products for all the

volumes, and pass to a limit by diminishing the volumes in-

definitely. The process will be exemplified in Art. 218.

The multiplier of &> and Jw^ in these expressions is called the

moment of inertia of the body about the axis. We shall see

presently that it enters into the expressions for the kinetic energy
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and moment of momentum of a rotating body, whether the axis of

rotation is fixed or not.

The moment of inertia of a body about an axis depends only
on the shape of the body, its situation with reference to the axis,

and the distribution of density within it.

217. Theorems concerning Moments of Inertia. I. The

moment of inertia of a system about any axis is equal to the moment of

inertia about a parallel axis through the centre of mass together with the

moment of inertia about the original axis of the whole mass placed at the

centre of mass.

Let X, y, z be the coordinates of any particle of the system, m its mass,

^, y, z the coordinates of the centre of mass, ^', y, zf those of the particle m
relative to the centre of mass.

Then x=x-{-a/^ y=y-^y\ z— z+ z'A

2maf=0y 2m^=0, 2m2f=0.}

Now 2m^2=2m (^+ j/)^
= x^2m+ 2nu/^ + 2x2mjf

So 2my^=p2m+lmi/'\

Hence 2m (x^+f)=2m (af^+y'^) + (^ +y^) 2m,

which is the theorem stated.

II. The moment of inertia of a plane lamina, of any form, about any axis

perpendicular to its plane, is the sum of those about any two rectangular axes

in the plane which meet in any point on the first axis.

For, if the axes are taken to be those oi z, x, y, the moments of inertia

about the axes of x and y are respectively 2my'^ and 2mj;\ and the moment of

inertia about the axis of 2 is 2m {x^+y'^).

III. To compare the moments of inertia of a lamina about different axes

in its plane.

For parallel axes we can use Theorem I. and it will therefore be sufficient

to consider axes in different directions through the origin. Let 6 be the angle
which any line makes with the axis x. The distance of any point {x, y) from

this line is — ^ sin ^ -h^ cos ^, and thus the moment of inertia about the line

is 2m {y co^6-x sin 6f= sin^ 62 {mx^) + cos^ O2 {my^)
- 2 sin ^ cos 62mxy.

The expression for the moment of inertia about a perpendicular line

would be
cos2 B2 {mx"^) + sin2 d2my'^+ 2 sin ^ cos 62 {mxy).

The quantity 2 (mxy) is known as the product of inertia with respect to

the axes of x and y (in two dimensions). For new axes obtained by turning

through an angle 6 it has the value

(cos2^
- sin2 6) 2 {mxy) + sin 6 cos 6 {2 (m/) _ 2 {mx^)).

We can always choose the axes of (^, y) so that this quantity 2 {mxy)
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vanishes. When this is done the axes of x and y are called Principal axes

of the lamina. The directions of the principal axes vary with the point chosen

as origin.

Now let the axes of x and y be principal axes of the lamina at the origin.

Let ^, =2 {my'^), be the moment of inertia about the axis x, and 5, =2 (wx-^),

be the moment of inertia about the axis y. Then the moment of inertia

about a line through the origin making an angle 6 with the axis x is

Jcos^^+ ^sin'-^^.

If an ellipse whose equation is Ax'^-\-By^
= Gon^t. is drawn on the lamina,

then the moment of inertia about any diameter of it is inversely proportional
to the square of the length of that diameter. This ellipse is known as the

ellipse of inertia.

IV. If two plane systems in the same plane have the same mass, the

same centre of mass, the same principal axes at the centre of mass, and

the same moments of inertia about these principal axes, they have the same

moment of inertia about any axis in or perpendicular to the plane.

For, in the first place, the two systems have by Theorem III. the same

moment of inertia about any axis lying in the plane and passing through the

common centre of mass, by Theorem I. they have the same moment of

inertia about any other axis in the plane, and by Theorem II. they have the

same moment of inertia about any axis perpendicular to the plane.

Such systems are described as momental equivalents.

It is clear that two plane systems are momental equivalents if they have

the same mass, and the same centre of mass, and if their moments of inertia

about any three assigned axes in the plane are equal.

218. Calculations of moments of inertia.

I. Uniform, ring. Radius of gyration of a body. For a circular ring of

mass m and radius a, and of very small section, the moment of inertia about

the axis is ma'^, since every element of the mass can be taken to be at the

same distance a from the axis.

In the case of a body of any shape, and of mass m, we can always express

the moment of inertia about any axis in the form mJc\ where k represents the

length of a line
; and thus we see that k is the radius of a ring such that, if

the mass of the body were condensed uniformly upon the ring, the moment
of inertia of the ring about its axis would be the same as the moment of

inertia of the body about the axis in question. The quantity k for any body
and any axis is known as the radius of gyration of that body about that axis.

II. Uniform rod. Let m be the mass of the rod, and 2a its length, r the

distance of any section from the middle point. The mass of the part between

-- br. Therefore, if the thickness of the rod is
2a
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disregarded, the moment of inertia about an axis through the middle point at

right angles to the rod is

The radius of gyration of the rod is a/^d.

III. Circular disk. The mass per unit of area of a uniform thin circular

disk of radius a and mass m is m/na^ The area of the narrow ring contained

between two concentric circles of radii r and r+8r is 2ir (r+ ^dr) 8r. All the

particles in such a ring are at distances from the centre which lie between r

and r+8r. Hence the moment of inertia of the disk about an axis drawn

through its centre at right angles to its plane is

/:
-„ r2 . ^Trrdr.

Ta2

which is -^wa^. The radius of gyration of the disk about this axis is a/^2.

IV. Uniform sphere. Let a be the radius of the sphere, p the (constant)

density of the material, and let the origin of coordinates be the centre of the

sphere. According to the general formula of Art. 216 we must integrate

'\x'^-\-y'^) through the volume of the sphere. Now it follows from the symmetry
of the sphere that

/ I \x^dxdydz= j
i \y^dxdydz= \

j Iz^dxdydz,

where the integrations are taken through the volume of the sphere. Hence

each of these integrals is equal to

l\ \ \{x^+y^-\- z^) dxdydz or
\\\\'r^dxdydz,

where the integration is taken through the volume of the sphere, and r

denotes the distance of the point {x^ y^ z) from the centre.

To evaluate this integral we have first to divide the sphere into a very

large number of very small volumes, next to multiply the value of r^ for a

point within one of the small volumes by this volume, then to sum the

products so formed, and finally to pass to a limit by diminishing all the small

volumes indefinitely.

Now the volume contained between two concentric spheres of radii r and

r-\-br is 47r{r2+ r5r-f ^(Sr)2}gr, and the distances from the centre of all the

points in this volume lie between r and r+ br. Hence the required integral

j I \r^dxdydz= r r^. 47rr'''ci?r=—^,

The moment of inertia of the sphere about any diameter is therefore

where w, =
^irpa^, is the mass of the sphere.
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219. Examples.
1. Prove that a momental equivalent of a thin rod of mass m consists of

three particles : one of mass pn at the middle point, and one of mass }m at

each of the ends.

2. Prove that the moments of inertia of a uniform rectangular lamina of

mass m and sides 2a, 26 about axes through its centre parallel to its edges are

Jm6^ and ^ma^,

3. Prove that the radius of gyration of a circular disk about a diameter

is half the radius. Hence evaluate the integral I ix^dxdy taken over the

area of a circle of radius a, the origin being at the centre of the circle.

(Cf. II. of Art. 217 and IV. of Art. 218.)

4. To evaluate the integral 1 1 x^dxdy taken over the area within an ellipse

which is given by the equation x^la^-{-y^lh^
=

\, change the variables by putting

x=a^, y=br). We have to find the value of a^b I l^^d^drf, where the

integration extends over a range of values given by the inequality $^+r]'^1^l.

This is the same thing as an integration over the area of a circle of unit

radius. Hence prove that the moments of inertia of a imiform thin elliptic

lamina of semiaxes a, h and mass m about its principal axes are \w,h^

and \7na?.

5. An ellipsoid is given by an equation of the form x^/a^ +y^/b^+ z^/c^
— l.

To find the value of / / ix^dxdydz taken through the volume of the ellipsoid,

change the variables by putting x=a^, y= bT], z= c^. We get

a^bcjjj$^d^dr}dC,
where the integration extends over a range of values given by the inequality

^2+ ^2_j_^2^ 1_ This is the same thing as an integration through the volume

4
of a sphere of unit radius. According to IV. of Art. 218 the result is — tt.

15

Hence prove that the moments of inertia of the ellipsoid (supposed to be of

uniform density />)
about the axes of x, y, z are

I (62+^2), |(c2+a2), f(aH62),

where m, = ^npabc, is the mass of the ellipsoid.

6. Prove that a momental equivalent of a uniform triangular lamina

consists of three particles, each one-third of its mass, placed at the middle

points of its sides.

7. Prove that the moment of inertia of a uniform cube of mass m and

side 2a about an axis through its centre parallel to an edge or at right angles

to an edge is fma^.

[It can be shown that the same formula holds for any axis drawn through
the centre of the cube.]
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220. Velocity and Momentum of rigid body.

249

Fig. 63.

Let G be the centre of mass of a rigid body moving in two

dimensions, and let u and v be resolved parts of the velocity of G

parallel to the axes x and y. Let P be any other particle of the

body, r its distance from G, and x', y' its coordinates relative to G
at time t Then the line GP is turning with the angular velocity

ft) of the rigid body, and the velocity of P relative to G is rw

at right angles to GP
;
the resolved parts of this relative velocity

parallel to the axes are — wy' and wx, since the line GP makes

with the axis x an angle whose cosine is x'jr and whose sine

is y'jr.

Hence the resolved velocities of P parallel to the axes are

u — (oy and v + cox.

Let m be the mass of the particle at P. Then the resultant

momentum of the body parallel to the axis x is

Sm {u
—

(oy'),

which is equal to Mu, where M, =Sm, is the mass of the body.

Similarly the momentum of the body parallel to the axis y is Mv.
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Thus the resultant momentum of the bod}?^ is the same as the

momentum of a particle of mass equal to the mass of the body

placed at the centre of mass and moving with it. (Art. 153.)

The moment of momentum of the body about an axis through
the centre of mass perpendicular to the plane of motion is

%m {x' (v + cox')
—

y' {u
—

coy')}y

which is equal to wSm (x'^ + y'^) or to Mk^co, where k is the radius

of gyration about the axis.

The moment of momentum about any parallel axis is the

moment about that axis of the momentum of the whole mass

placed at the centre of mass and moving with it together with

the moment Mk^co (Art. 156). Thus the momentum of the rigid

body is specified by the resultant and couple of a system of

vectors localized in lines. The resultant is localized in a line

through G, and has resolved parts Mu, Mv in the two chosen

directions; and the moment of the couple is Mk^a).

Again, the kinetic energy of the body is

^Im {(u
-

(oy'y + {v + (ox'Y]

= iif(M2 + v^ + A;W),

which is the kinetic energy of the whole mass, moving with the

centre of mass, together with the kinetic energy of the rotation

about the centre of mass (Art. 158).

The formulae for the velocity of a point show that at each

instant the point whose coordinates relative to G are —
vjw and

ujco has zero velocity, so that the motion of the body at the

instant is a motion of rotation about an axis through this point

perpendicular to the plane of motion. The point is called the

instantaneous centre of no velocity, or frequently "the instantaneous

centre." The fact that the motion of a rigid plane figure in its

plane is equivalent to rotation about a point is of importance in

many geometrical investigations.

221. Kinetic Reaction of rigid body. With the notation

of the last Article, the point P moves relatively to 6^ in a

circle of radius r with angular velocity equal to (a at time t
;

its

acceleration relative to G may therefore be resolved into rw at
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right angles to GP, and rm^ along PO. Hence the resolved parts
of the acceleration of P parallel to the axes are

u — my'
—

(o'^x\ and v + wx —
ay^y'.

Fig. 64.

The kinetic reactions may be reduced to a resultant kinetic

reaction localized in a line through the centre of mass and a

couple. The resultant in question has resolved parts parallel to

the axes which are

^m {u
—

my'
—

(o^x') and 2m {i) + wx —
to^y'),

and these are Mu and Mi).

The couple is the moment of the kinetic reactions about a line

through the centre of mass perpendicular to the plane of motion
;

this moment is

2m [x' (v 4- d)x' — co^y')
—

y'{ii— coy
—
wV)},

and this is Mk^oa.

The moment of the kinetic reactions about any axis perpen-
dicular to the plane of motion is the moment about that axis of

the kinetic reaction of a particle of mass equal to the mass of the

body, moving with the centre of mass, together with the moment
of the couple Mk^m, (Art. 157.)
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The formulae for the acceleration of any point of the body
show that at each instant there is a point which has zero

acceleration. This point is called the instantaneous centre of no

acceleration. It is of much less importance than the instantaneous

centre of no velocity.

222. Examples.
1. Prove that, at any instant, the normal to the path of every particle

passes through the instantaneous centre (of no velocity).

[It follows that this centre can be constructed if we know the directions

of motion of two particles.]

2. Calculation of the moment of the kinetic reactions about the instan-

taneous centre (of no velocity).

The coordinates of the instantaneous centre / being
—

vjat and uja) referred

to axes through the centre of mass G parallel to the axes of reference, the

moment in question is

—mv + —mu-\-mK^ai.
0) O)

The velocity of G is rm at right angles to the line joining it to /, where

r=IG, or we have u'^-\-v^=r'^(x>^.

Hence the above is --j- (^ir^co^j + mk'^co^

or l^{^^(F+ r2)a>2}.

If we take an angle 6 such that B= a>, and write K for the moment of

inertia about the instantaneous centre /, then K=m{k^+ r^) by I. of Art. 217,

and the result obtained may be written -j^ {^K(o^).da

When the point / is fixed in the body this can be replaced by Ka. Other

cases in which this formula can be used are noted in Arts. 235 and 236 infra.

3. Prove that those particles which at any instant are at inflexions on

their paths lie on a circle.

[This circle is called the "
circle of inflexions."]

4. Prove that the curvature of the path of any particle which is not on

the circle of inflexions is ay^p^j V^ where p"^ is the power with respect to the

circle of the position of the particle, w is the angular velocity of the body,

and V is the resultant velocity of the particle.

5. Prove that, in general, that particle which is at the instantaneous

centre (of no velocity) is at a cusp on its path.

223. Equations of motion of rigid body. The equations

of motion express the conditions that the kinetic reactions and

the external forces may be equivalent systems of vectors.
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Let M be the mass of the body /i, /a the resolved accelerations

of the centre of mass in any two directions at right angles to each

other in the plane of motion, « the aagular velocity of the body.

Let the forces acting on the body be reduced to a resultant

force at its centre of mass and a couple. Let P, Q be the resolved

parts of the force in the directions in which the acceleration of

the centre of mass was resolved, and let N be the couple.

Then the system of vectors expressed by Mf^, Mf^, Mk-(6 has

the same resolved part in any direction, and the same moment
about any axis, as the system P, Q, N.

In particular we have

and the equations of motion of the body can always be written in

this form.

In the formation of equations of motion diversity can arise

from the choice of directions in which to resolve, and of axes

about which to take moments. As in the case of Dynamics of a

Particle, the equations arrived at are differential equations, and

no rules can be given for solving them in general. If however

the circumstances are such that there is au equation of energy, or

an equation of conservation of momentum, such equations are first

integrals of the equations of motion.

224. Continuance ofmotion in tw^o dimensions. The question
arises whether a body, which at some instant is moving in two dimensions

parallel to a certain plane, continues to move parallel to that plane or will

presently be found to be moving in a different manner. A general answer to

this question cannot be given here, but it is clear that there is a class of cases

in which the motion in two dimensions persists. This class includes all the

cases in which the body is symmetrical with respect to a plane and the forces

applied to it are directed along lines lying in that plane, or, more generally,

when the forces can be reduced to a single resultant in the plane of symmetry
and a couple about an axis perpendicular to that plane.

225. Rigid Pendulumf. A heavy body free to rotate

about a fixed horizontal axis is known as a "compound pendulum"

t Ch. Huygens was the first to solve the problem of the motion of the pendulum,
and the principles which he invoked were among the considerations which ulti-

mately led to the establishment of the Theory of Energy. His work, De horologio

oscillatorlo, was first published in 1673.
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to distinguish it from the "
simple pendulum

"
whose motion was

discussed in Arts. 95 and 119.

Let G be the centre of mass of the

body, GS the perpendicular from G to the

axis, 6 the angle which GS makes with

the vertical at time t Then the whole

motion takes place in the vertical plane
which passes through G and is at right

angles to the axis; and the position of

Fig. 65. the pendulum at any time depends only
on the angle 6.

Let GS = h. Let M be the mass of the body, k its radius of

gyration about an axis through G perpendicular to the plane of

motion.

The velocity of the centre of mass is hO, and the kinetic

energy is

The potential energy of the body in the field of the earth's

gravitation is

Mgh{\-co%d\
the standard position being the equilibrium position.

Hence the energy equation can be written

iM{h'' + k') &" = Mgh cos 6 + const.

Comparing this equation with that obtained in Art. 119, we
see that the motion is the same as that of a simple pendulum of

length {k^ + ¥)lh.

A point in the line SG at this distance from S is known as

the " centre of oscillation," S is called the "
centre of suspension."

The distance between these centres is the "
length of the equi-

valent simple pendulum."

226. Examples.
1. A rigid pendulum, for which S and are respectively a centre of

suspension and the corresponding centre of oscillation, is hung up so that it

can oscillate in the same vertical plane as before, but with as centre of

suspension instead of S ; prove that S will be the centre of oscillation.

2. A uniform rod moves with its ends on a smooth circular wire fixed in



225-227] RIGID PENDULUM 255

a vertical plane. Prove that, if it subtends an angle of 120° at the centre,

the length of the equivalent simple pendulum is equal to the radius of the

circle.

3. A compound pendulum consists of a rod, which can turn about a

fixed horizontal axis, and a spherical bob, which can slide on the rod. Prove

that the period of oscillation will be prolonged by sliding the bob up or down,

according as the length of the equivalent simple pendulum is > or < twice

the distance of the centre of gravity of the bob from the axis of rotation.

4. Two rigid pendulums of masses m and m' turn about the same hori-

zontal axis. The distances of the centres of mass and of oscillation from

the axis are A, A' and I, V respectively. Prove that, if the pendulums are

fastened together in the position of equilibrium, the length of the equivalent

simple pendulum for the compoimd body will be {mhl+ m'h'l')l{mh+ m'h').

227. Illustrative Problems. We exemplify the application of the

principles that have been laid down by partially working out some problems.
The most important matters to be illustrated are actions between two rigid

bodies whether smooth or rough, and the expression of the effects of the

inertia of a rigid body by means of the moment of inertia. Other matters

of subsidiary interest are the kinematical expression of velocities and

accelerations in terms of a small number of independent geometrical quanti-

ties, the expression of kinematical conditions, and the calculation of resultant

stresses.

I. Inertia of machines. We shall consider Atwood's machine. To avoid

having to take account of the motion of the pulley in our preliminary notice

of Atwood's machine (Art. 73) we assumed the pulley to be perfectly smooth,
or that the rope slides over it without frictional

resistance and without setting it in motion. It

will now be most convenient, in order to get some

idea of the way in which the motion of the pulley
affects the result, to suppose the pulley to be so

rough that the particles of the rope and the pulley
in contact move with the same velocity along the

tangents to the pulley.

Now let M be the mass of the pulley, a its radius,

Ic its radius of gyration about its axis, 6 the angle

through which it has turned up to time t.

Let m and m' be the masses of the bodies at-

tached to the rope, and x the distance through
which m has fallen at time t. Then x= a6.

Fig. 32 [his).

The mass of the rope being neglected, the kinetic energy is

and the work done is (m - m') gx,
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so that the energy equation is

I?-

\M -2 i^ + ^ (
w + m') i^= (m - m') gx+ const.

Thus the acceleration with which m descends is

m+ m'+Mk^la^

It appears that the effect of the inertia of the pulley is equivalent to an

increase of each of the masses in the simple problem (where the pulley is

regarded as smooth and its mass is neglected) by ^Mk^ja^.

II. Wheel set in motion hy couple. Let a wheel, the plane of which is

vertical, be in contact with rough horizontal ground ;
and let the wheel be

set in motion by a couple about its axis.

Let a be the radius of the wheel, k the radius ot gyration about the axis,

m the mass, G the applied couple, F the friction and R the pressure at the

point of contact with the ground.

Let o> be the angular velocity with which the wheel turns, v the velocity

with which its centre moves.

Fig. 66.

The left-hand figure is the diagram of the kinetic reactions, and the right-

hand figure is the diagram of the applied forces.

The equations of motion, obtained by resolving horizontally and vertically

and taking moments about the centre, are

mv= Fj =R- mg, mk^o) = G — Fa.

We have drawn the figiu-e, and written down the equations, on the

supposition that v does not exceed aw. When v < aw, the point of contact

slips on the plane in the sense opposite to that of v, and then the friction

acts in the sense shown.

If v= a(Oj so that the wheel rolls, we may eliminate F fron^ two of our

equations, and obtain the equation

m{k^+ a^)d>= 0.

The sense of a is the same as that of G
;

and therefore, if the motion

starts from rest, the sense of a> is the same as that of G. In the same case
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F=Gaj{k^-\-a^\ which is positive, so that the friction acts in the sense in

which the centre of the wheel moves (the sense shown in Fig. 66).

In order that this motion may take place it is necessary that FjR or

Gal{{k^+a^)mg] should not exceed the coefficient of friction.

We conclude that, if the ground is sufficiently rough, the wheel will begin
to roll along the road, and that the friction at the point of contact is the

horizontal force which produces the horizontal momentum.

III. Wheel set in motion hy force. Again let the wheel of No. II. be set

in motion by a horizontal force P applied at its centre in its plane. With

the same notation as before, we have the equations of motion

mv=P+F, =R-mg, mk^a=-Fa.

If the wheel rolls, so that v=aa)j we have, on eliminating F^

Hence « is positive, and F is negative, and equal to -Pk^Kk^+ a^). The
friction in this case acts in the sense opposite to that in which P acts, or

the centre of the wheel moves {i.e. in the sense opposite to that shown in

Fig. 66). The motion will be one of rolling if Pk^l{mg{k^-\-a^)} is less than

the coefficient of friction.

The problems of Nos. II. and III. illustrate the forces that affect the

motion of a railicay train. The machinery is so contrived that a couple is

exerted on the driving wheel of the locomotive. If this couple is too great, or

the friction is too small, the wheel slips or " skids " on the rail
; but, if the

friction is great enough, the wheel starts to roll. The direction of the friction

at the point of contact is that of the motion of the train as in No. II.

The motion of a wheel of any coach or truck attached to the train is of

the character considered in No. III. The tension in the coupling is a

horizontal force setting the vehicle in motion, and the frictions at the points
of contact of the wheels with the rails act as resistances.

It appears that the "pull of the engine" (Art. 71) is really the friction of

the rails on the driving wheel. This is the " force
" which sets the train in

motion, and keeps it in motion against the resistances. The condition for the

production of the motion is the existence of a source of internal energy,

which can be transformed into work done by the couple acting on the driving

wheel. The way in which a source of internal energy may result in the

production of motion, through the agency of external forces, has already been

illustrated in simple cases in Ex. 1 of Art. 207 and Ex. 6 of Art. 214. All

the characteristic motions of machines and of living creatures are examples of

the same principles, but the working out of the details is in general a matter

of difficulty. The external forces, such as the friction in this problem, are

necessary to the successful action of the animal or machine. (Cf. R. S. Ball,

Experimental Mechanics, 2nd Edition, London, 1888, pp. 83, 84.)

L. M. 17
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IV. Rolling and sliding. We take the problem presented by a uniform

cylinder of mass M and radius a which is set rolling and sliding on a rough
horizontal plane, the angular velocity being initially such that the points on

the lowest generator have the greatest velocity.

Fig. 67.

Let V be the velocity of the axis, and <a the angular velocity at time t, the

senses being those shown in Fig. 67.

The system of kinetic reactions reduces to MV horizontally through the

centre of mass, in the sense of F, and a couple J/Fd) in the sense of w, where

h is the radius of gyration about the axis of the cylinder.

Taking moments about the point of contact we have

ifaF-ifFw= 0.

Now let F be the friction between the cylinder and the plane. The

particles on the lowest generator have velocity F+awin the sense of F,

and therefore F has the opposite sense.

Resolving horizontally we have

MV=-F,
where F is positive. Hence F is negative and to is also negative.

The velocity F diminishes and the angular velocity on also diminishes

according to the equation
Foj - a F= Fa>o

- a Fq,

where Fq and wq are the values of F and w in the beginning of the motion.

We shall proceed with the case where Fo<(iDoF/a. Then there must come

an instant at which F vanishes, and at this instant o has the value

(OQ-aFo/F. At this instant the lowest point has velocity aatQ- Voa^/k^ in

the same sense as before, the friction is still finite and in the same sense

as before, and a velocity of the centre in the opposite sense begins to be

generated.

At any later stage of the motion let U be the velocity in the sense

opposite to Vq. See Fig. 68. Then so long as aQ)>U the friction F acts

in the same sense, and we have

MU=F,
I

MaU+MPi> = 0j

whence U increases and eo diminishes according to the equation

a t^+ Fo) = Fo)o
- a Fo .
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When U becomes equal to aw the value of either is

a(Fa>o-aFo)/(a2 4-^2)^

and at this instant the cylinder is rolling on the plane. Thereafter the

cylinder rolls on the plane uniformly.

Fig. 68.

It is to be noticed that, in this problem, so long as the cylinder slips, the

friction is constantly equal to y^Mg, where ft
is the coefficient of friction

between the cylinder and the plane.

228. Examples.
1. In the problem just considered prove that the time from the beginning

of the motion until the motion becomes uniform is -^—j^
— ^

.

a^+B ixg

2. A homogeneous cylinder of mass M and radius a is free to turn about

its axis which is horizontal, and a particle of mass m is placed upon it close

to the highest generator. Prove that, when the particle begins to slip, the

angle 6 which the radius through it makes with the vertical is given by the

equation

^i {{M+ 6m) cos 6 — 47n}
= ifsin 6,

where
/x

is the coefficient of friction between the particle and the cylinder.

3. A uniform thin circular hoop of radius a spinning in a vertical plane
about its centre with angular velocity co is gently placed on a rough plane of

inclination a equal to the angle of friction between the hoop and the plane
so that the sense of rotation is that for which the slipping at the point of

contact is down a line of greatest slope. Prove that the hoop will remain

stationary for a time aa>lg sin a before descending with acceleration \g sin a.

4. A locomotive engine of mass M has two pairs of wheels of radius a

such that the moment of inertia of either pair with its axle about its axis of

rotation is A. The engine exerts a couple G on the forward axle. Prove

that, if both pairs of wheels bite at once when the engine starts, the friction

between one of the forward wheels and the line capable of being called into

play must not be less than \ G {A-\-Ma'^)la {2A+Ma^). Prove also that, if the

only action between an axle and its bearings is a frictional couple varying as

the angular velocity of the axle, the final friction called into play between

either forward wheel and the line is G/Aa.

17—2'
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5. A uniform sphere rolls down a rough plane of inclination a to the

horizontal. Prove that the acceleration of its centre is fg sin a, and that the

ratio of the friction to the pressure is f tan a.

*229. Kinematic condition of rolling. Consider the following

problem :
—

A cylinder of radius b rolls on a cylinder of radius a, which rolls on a

horizontal plane. It is required to determine the motion.

Let m and m' be the masses, A and B the centres, V the horizontal

velocity of m, Q the angular velocity of m, 6 the angle which AB makes

with the vertical, o> the angular velocity of m', k and k' the radii of gyration

of m and m' about their axes.

The condition that m rolls on the plane is V=aQ, .(1).

Fig. 69.

The velocity of B relative to A is {a+ b)6 at right angles to AB, and the.

velocity of B is therefore compounded of this velocity and V horizontally.

(Fig. 69.)

The velocity of F (considered as a point of m') relative to B is b(o at right,

angles to AB, in the sense of (a 4-6) 6.

The velocity of P (considered as a point of m) relative to A is aQ at right,

angles to AB, but in the opposite sense.

The condition of rolling is that the particles of m and m' that are at F
have the same velocity along the common tangent to the two circles.

We therefore have {a+ b)0-\-ba)= -aQ. (2).

In the diagram of accelerations (Fig. 70) we have introduced the value of

V from equation (1).

Since B describes a circle relative to A with angular velocity 6, the accele-

ration of B relative to A is compounded of {a+ b)d at right angles to AB,_

and {a+ b) 6^ in BA. This gives us the diagram.
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Now, to form the equations of motion, take moments about P for m\ and
about for the system. We have

-m'h{a+ h)'e-\-m'atlhco^6-\-m'Jcf'^m=-m'gh^V[\6 (3),

and

mk^Q +ma'^Q. + m'ail {a+ {a -{-h) cos, 6] + m'k^'^a} \

-m'{a-ifh)d{a-ith + a cos 6) + m' (a+ h) 6^ a sin 6=- m'g {a+ h) sin 6)'"^
''

One of the quantities co and G can be eliminated by means of equation (2),

and there then remain two unknown quantities in terms of which the motion

can be completely expressed by solving the equations that are obtained by

substituting from (2) in (3) and (4).

Two first integrals of these equations can be obtained
;
one of them is the

energy equation.

iai-^e-'

Fig. 70.

*230. Examples,

1. Prove that, in the problem just considered, there is an integral

equation of the form

maQ. (1 \-k^la?)-\-m' {aQ. -{a+ b) 6 cos 6 - a)k"^lb}
= const.,

and that 6 and 6 are connected by an equation of the form

i{a+ b) 6^ [(1 +k'yb^)
- m' (cos 6 - k"^lb^f\{m (1 +F/a2) 4.^' (1 +/&'2/&2)|] 4.^ cos 6

= const.

2. A uniform rod of length I rests on a fixed horizontal cylinder of radius

a with its middle point at the top ; prove that, if it is displaced in a vertical

plane, so as to remain in contact with the cylinder, and if it rocks without

slipping, the angle 6 which it makes with the horizontal at time t is given

by the equation

\ (xV V-+aW) e^^ga (cos ^+ ^ sin ^)
= const.,

and the length of the equivalent simple pendulum for small oscillations is
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Fig. 71.

3. A thread unwinds from a reel of radius a, the uppermost point of the

thread being held fixed, the unwound part of the thread being vertical, and
the axis of the reel being horizontal. Prove that the acceleration of the

centre of the reel is ga?-\{a^-\-lc^\ where h is the radius of gyration of the reel

about its axis, and that the tension of the thread is F/(F+ a2) of the weight
of the reel.

4. A thread passes over a smooth peg and unwinds itself from two

cylindrical reels freely suspended from it and having their axes horizontal.

Prove that each reel descends with uniform acceleration.

5. A ball is at rest in a cylindrical garden roller, when the roller is seized

and made to roll uniformly on a level walk
;
to find the motion of the ball,

assuming that it does not

slip on the roller.

Let a be the radius of

the ball, h of the roller, B

the angle which the line of

centres makes with the ver-

tical, V the velocity of the

roller.

Prove (i) that the an-

gular velocity of the roller

is F/6,

(ii) that the angular velocity (a of the ball is Y\a
—

{b
—

a) d/a.

Let k be the radius of gyration of the ball, supposed uniform, about an

axis through its centre, m the mass of the ball. Initially all the impulsive

forces acting on the ball pass through the point of contact, and therefore the

moment of momentum of the ball about any axis through this point is zero

initially. Hence obtain the equation

mk'^a)o
— ma{{b — a)0o- V] =

for the initial values coq of co and ^o of ^- Prove also that coq vanishes, and

find the value of Sq.

Obtain the equations of motion

mk^d> - ma {h-a)'6=mga sin ^,

m{h-a)6^=R — mg cos 6,

where R is the pressure of the roller on the ball. Prove that the motion in 6

is the same as that of a simple pendulum of length |(6
-

a). Prove also that

the value of R in any position is

mg (Y- cos ^ - V^)+m F2/(6
-

a).

Deduce the condition that the ball may roll quite round the interior of

the roller.

6. A cube containing a spherical cavity slides without friction down a

plane of inclination a, and a homogeneous sphere rolls in the cavity. Prove
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that the angle 6, between the normal to the plane and the common normal to

the sphere and the cavity, is connected with the angular velocity o) of the

sphere by the equation (a-h)6= ba, where a is the radius of the cavity, and
b is the radius of the sphere.

Further, taking M and m for the masses of the cube and sphere, and a;

for the distance described by the cube in time
t, obtain the equations of

motion by resolving for the system down the plane and at right angles to it

and taking moments for the sphere about its point of contact with the cavity.

Finally obtain the equation

^ {f {M+m)-m cos^ 6] ^2 _ [M-\-m) cos a cos 6 gl{a
-

6)
= const.

7. Prove that, when the plane of Ex. 6 is rough, and e is the angle of

friction between it and the cube, the value of 6 at time t is given by the

equation
1/7

9 1^ ^{5 (-^+ ^) ^^^ €—m cos 6 cos {B
-

ij\ 6'^']
-
\ra¥ sin e

+{M+ m) cos a sin {B
-

e) gj{a
—

b)
= 0.

8. Motion of a circular disk rolling on a given curve under gravity.

Let c be the radius of

the disc, the angle which / \
the normal at the point of I \.L-^'^^

contact makes with the ^^~x\
vertical, p the radius of X \

,

curvature of the curve at

this point. The centre of
p. -^

the disk describes a curve

parallel to the given curve and at a distance c from it, and the instantaneous

centre of rotation of the disk is at the point of contact, so that, if a> is the

angular velocity of the disk, we have

Velocity of centre= coi= (p + c) <j>.

Hence obtain the equation of energy

^{p+ cY{l+k^le^)^^=gj {p + c)sm(}>d(f),

where k is the radius of gyration of the disk about its centre of mass,

supposed to coincide with its centre of figure. Investigate the corresponding

equation when the curve is concave to the disk.

Prove that the disk can roll inside a cycloid the radius of whose generating
circle is a and whose vertex is lowest so that the angular velocity (p is uniform

and equal to

Prove that, when the disk is uniform and rolls outside a cycloid, the radius

of whose generating circle is |c and whose vertex is highest, the motion is

determined by the equation

3c<j>^ cos* ^(f>=g (3 + cos
(f))

sin2 ^0,

and that the disk leaves the cycloid when cos = f.
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9. A uniform rod slides in a vertical plane between a smooth vertical

wall and a smooth horizontal plane. To determine the motion.

Let AB he the rod, 2a its length, m its mass, and let the end A move

vertically in contact with the

;i
wall and the end B horizon-

tally in contact with the plane.

The instantaneous centre / is

the intersection of the horizon-

tal through A and the vertical

through B, and the figure

OBIA is a rectangle, so that

the centre of mass G, which

is the middle point of AB, is

always at a distance a from 0.

The system of kinetic re-

actions is therefore equivalent

Fig. 73. to a resultant kinetic reaction

at O having components maO and maO^ perpendicular to OG and along GO,
and a couple mk^d in the sense of increase of the angle 6 which the rod BA
makes with the vertical BI.

The forces acting on the rod are its weight at G, the horizontal pressure

at A, and the vertical pressure at B.
'

The lines of action of the two latter

forces meet in /. If then we take moments about / the pressures do not

enter into the equation.

Hence prove that the motion in 6 is the same as that of a simple pendu-
lum of length |a.

By resolving horizontally and vertically find the pressures at A and B,
and show that the rod leaves the wall when cos ^= | cos a, a being the initial

value of 6.

10. When the plane and the wall of Ex. 9 are both rough, with the same

angle of friction e, prove that the value of 6 at time t is given by the equation

a(^+ cos 2e) B
- oB^ sin 26=^ sin {6

-
2e).

11. A wheel, whose centre of gravity is at its centre, rolls down a rough

plane of inclination a, dragging a particle of mass m, which slides on the

plane, and is connected with the centre of the wheel by a thread
;
the whole

motion takes place in a vertical plane, and the thread makes an angle ^ with

the line of greatest slope down which the particle slides. Prove that the

system descends with uniform acceleration

Msin a cos (/3
- f

) +m cos ^ sin (a
-

c) ^M (F+ a2) cos (/3
-

e) + ma^ cos /3 cos e
^^ '

where a is the radius of the wheel, M its mass, Jc its radius of gyration about

its axis, m the mass of the particle and e the angle of friction between it and

the plane.

12. Two smooth spheres are in contact, and the lower slides on a hori-

zontal plane.
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Let J/, m be the masses, a and h the radii, 6 the angle which the line of

centres makes with

the vertical at time

t. If the whole sys-

tem starts from rest,

the centre of mass G
descends vertically,

for there is no re-

sultant horizontal

force on the system.

Further, since all

the forces acting on

either sphere pass

through its centre,

neither acquires any
^^'

angular velocity. Let x be the distance of the centre of the lower sphere (if)

from the vertical through the centre of mass at time t, then the distance of G
from the centre of Jf is m {a-\-b)/{M+m), and thus the horizontal velocity of

Gis

X- M+m {a+ b)0 cos 3.

By equating this to zero we express x in terms of and 6.

Hence prove that the equation of energy can be put in the form

K C0S2^)^2+\e^ COS ^= const.

cos ^ 3

Find the pressure between the spheres in any position, and prove that, if

8=^ a initially, the spheres separate when

njT cos^^ )=2cosa.M+m J

*231. Stress in a rod. As an example of the resultant force between

two parts of a body we consider the case A^

of a rigid uniform rod swinging as a

pendulum about one end.

If m is the mass of the rod, 2a

its length, 6 the angle which it makes

with the vertical at time ^, we have,

since the radius of gyration about the

centre of mass is a/v/3,

^a^= —ctg sin 6,

and |a^2=g (cos 6 — cos a),

where a is the amplitude of the oscil-

lations.

Now consider the action between

the two parts of the rod exerted across Fig. 75.

..'^8
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a section distant 2x from the free end. Let P be the centroid of this section.

We may suppose the action of AP on BP reduced to a force at P and a

couple, and we may resolve the force into a tension T in the rod, and a shear-

ing force S at right angles to it. We call the couple G, and suppose the

senses of T, S, and G^ to be those shown in the figure. The action of BP
on AP is then reducible to a force at P having components T, S, and a

couple G, in the opposite senses to those shown.

Now BP is a rigid uniform rod of mass mxja, turning with angular

velocity 6, while its centre describes a circle of radius 2a — xyi ith the same

angular velocity. It moves in this way under the action of the forces T, Sy

the weight mgxja vertically downwards through its middle point, and the

couple G. By resolving along AB and at right angles to it, and by taking

moments about P, we obtain the equations of motion of BP in the form

m-(2a-x)6^=T-'mg-GOfie, \

m -
{2a

-
x) 6=S— mg - sin 0,

m- \x(^a-x)6-\-~ (^\
— — G—mg-x sin 6,

and by these equations T, S, and G are completely determined, 6 and 6^ being
known. In particular the couple G resisting bending is

imgsme^{a-x),
or ^mg sin 6

J^^
.

232. Impulsive motion. We apply the theory of sudden

changes of motion of any system (Ch. VI, Art. 168) and the

theory of the momentum of a rigid body (Art. 220).

We have three equations of impulsive motion expressing that

the change of momentum of the body is equivalent to the impulses
exerted upon it.

The momentum of the body was shown to be equivalent to

a resultant momentum localized in a line through the centre of

mass, and equal to the momentum of the whole mass of the

body moving with the centre of mass, together with a couple, of

amount equal to the product of the angular velocity of the body
and the moment of ineytia about an axis through the centre of

mass perpendicular to the plane of motion.

Let m be the mass of the body, U, V the resolved velocities of

the centre of mass in two directions (at right angles to each other)

in the plane of motion, and H the angular velocity before impact ;

let u, V be the resolved velocities of the centre of mass in the
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same two directions after impact, and « the angular velocity ;
also

let k be the radius of gyration of the body about an axis through
the centre of mass perpendicular to the plane of motion.

The change of momentum of the system can be expressed as

a vector localized in a line through the centre of mass, whose

resolved parts in the two specified directions are m {ii
— U) and

m{v — V)\ together with a couple, in the plane of motion, of

moment

The impulses exerted on the body can be expressed as a single

impulse at any origin and an impulsive couple.

The equations of impulsive motion express the equivalence of

the two systems of vectors.

Thus if the impulses are reduced to an impulse at the centre

of mass, whose resolved parts in the specified directions are X
and F, together with a couple N, we can take the equations of

impulsive motion to be

m{u-U) = X, m{v-V)=Y, mk' (co
- n) =^ K

More generally, the resolved part, in any direction, of the vector

whose resolved parts, in the specified directions, are m{u — U) and

m (v
— V) is equal to the resolved part, in the same direction, of

the vector whose resolved parts, in the specified directions, are

X and F; and the moment about any axis of the vector system
determined hym(u — U), m(v — V), mk^((o

—
D.), is equal to the

moment about the same axis of the vector system determined by
X, F, N.

233. Kinetic energy produced by impulses. Let the

body move in one plane. Let m be the mass of the body, U., V
resolved velocities of its centre of mass parallel to the axes of

reference, and H its angular velocity, just before the impulses act,

u, V, 0) corresponding quantities just after.

Let X, Y be the resolved parts parallel to the axes of the

impulse applied to the body at any point whose coordinates

relative to the centre of mass are w, y.

The equations of impulsive motion are

m{v-V) = tY,

mk'{oy-D.) = t\xY-yX).
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Multiply these equations in order by

and let The the kinetic energy of the body after the impulses, Tq

that before. Then we have

The right-hand member of this equation is the sum of the

products of the external impulses and the arithmetic means of the

velocities of their points of application resolved in their directions

before and after.

Now the theorem of Art. 174 asserts that the change of kinetic

energy is equal to the value of the like sum for all the impulses
internal and external. It follows that the internal impulses
between the parts of a rigid body, which undergoes a sudden

change of motion, contribute nothing to this sum.

234. Examples.
1. A uniform rod at rest is struck at one end by an impulse at right

angles to its length. Prove that, if the rod is free, it begins to turn about

the point of it which is distant one-third of its length from the other end,

and that the kinetic energy generated is greater than it would be if the other

end were fixed in the ratio 4 : 3.

2. A free rigid body is rotating about an axis through its centre of mass,

for which the radius of gyration is ^, when a parallel axis at a distance c

becomes fixed. Prove that the angular velocity of the body is suddenly
diminished in the ratio F : c^+k\

3. An elliptic disk is rotating in its plane about one end P of a diameter

PP', when P is suddenly fixed. Find the impulse at P and the angular

velocity about P, and prove that, if the eccentricity exceeds v'f, the diameter

PP may be so chosen that the disk is reduced to rest.

4. A uniform rod of length 2a and mass m is constrained to move with

its ends on two smooth fixed straight wires which intersect at right angles,

and is set in motion by an impulse of magnitude mV. Prove that the

kinetic energy generated is '^V^p^Ja^ where p is the perpendicular from

the intersection of the fixed wires on a line parallel to the line of the im-

pulse and such that the centre of mass is midway between the two parallels.

235. Initial motions. No new method is required for the

solution of problems concerning rigid bodies of the same kind as

those which were considered in Arts. 203—206
;
but attention

must be paid to the proper expression of the kinetic reaction of

a rigid body. The kinetic reactions are equivalent as we saw in



233—287] IMPULSES, initial motions, oscillations 269

Art. 221 to a resultant kinetic reaction and a couple ;
and the

resultant kinetic reaction is the same as that of a particle of mass

equal to the mass of the body placed at the centre of mass and

moving with the acceleration of the centre of mass.

Sometimes it is convenient to form an equation of motion by

taking moments about the instantaneous centre. It is then to

be remarked that, at an instant when the velocity vanishes, the

moment of kinetic reaction is Kco, where K is the moment of

inertia about an axis drawn through the instantaneous centre

at right angles to the plane of motion, and c6 is the angular
acceleration. Cf. Ex. 3 of Art. 222.

236. Small oscillations. When the method of Art. 211 is

applied, the most important matter to attend to is the expression

of the potential energy correctly to the second order of the small

quantity 6 by which the displacement from the equilibrium

position is specified.

As in the case of initial motions, so also in the case of small

oscillations, it is sometimes convenient to form an equation of

motion by taking moments about the instantaneous centre. If

we take moments about the instantaneous centre in the position

of equilibrium the equation is nugatory. This position is, of

course, occupied by the body at one instant during the period
of oscillation, and at any other instant during the period the

instantaneous centre is in a slightly different position. The
method which is now effective is to take moments about the

instantaneous centre in a displaced position. The moment of

the kinetic reaction about the instantaneous centre is expressed

correctly to the first order in the displacement by the formula

K(D, where the letters have the same meanings as in Art. 235.

This approximation is sufficient for the purpose of forming the

equation of oscillatory motion.

237. Illustrative problem.
A uniform rod can slide with its ends on two smooth straight wires which

are equally inclined to the horizontal and fixed in a vertical plane. It is re-

quired to find the oscillations about the horizontal position.

Let OA^ OB be the two wires, a the angle which each of them makes with

the horizontal, AB the horizontal position of equilibrium of the rod. A'B' a

displaced position, 6 the angle between AB and A'B'. Then 6 is the angular
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velocity, and 6 the angular acceleration of the rod. The instantaneous centre

in any position is the point of intersection of perpendiculars to OA, OB

drawn from the ends of the rod. We denote by /, /' the positions of the

instantaneous centre corresponding to AB and A'B\ and by G, O' the corre-

sponding positions of the centre of mass.

The moment of the kinetic reaction about /' is m(F-f /'(?'2) 6, where m is

the mass of the rod and k its radius of gyration about its centre of mass.

With sufficient approximation we may put IG for I'G'.

The forces acting on the rod are its weight and the pressures at its ends,

and the lines of action of the pressures pass through /'. Now OF is a

diameter of a circle of which A'B' is a chord subtending an angle tt - 2a at

the circumference, and thus OF is of constant length and //' is therefore

ultimately at right angles to 01 and horizontal. Also GG' being ultimately

at right angles to IG is horizontal, and thus the moment of the weight about

/' is - mg {ir
—

GG'). Hence we have the equation of moments

: m{P+IG^)e=-mg{ir-GG').
Now let 2a be the length of the rod. We find

//'= BB' sec a= IBB sec a= a$ cosec a sec a,

GG'=IGe= ae cot a,

and the equation becomes

ma^ (^+ cot^ a)S=— mgaS (sec a cosec a — cot a).

The right-hand member is — mga6 tan a, and therefore the motion in 6 is the

same as that of a simple pendulum of length

acota(^ + cot2a).



237, 238] INITIAL MOTIONS AND OSCILLATIONS 271

238. Examples.
1. A uniform rod of length 2a and mass m is supported in a horizontal

position by two equal inextensible cords each of length I. The ends of the

cords are attached, one to either end of the rod, and the other to a fixed

point, so that the cords make equal angles a with the vertical. Prove that, if

one cord is cut, the tension in the other immediately becomes

mg cos a/ (
1 + 3 cos^ a),

and that the initial angular accelerations of the remaining cord and the rod

are in the ratio

a sin a : 3^ cos^ a.

2. A uniform triangular lamina is supported in a horizontal position by
three equal vertical cords attached to its corners. Prove that, if one cord is

cut, the tension in each of the others is instantly halved.

3. Into the top of a smooth fixed sphere of radius a is fitted a smooth

vertical rod. A uniform rod of length 26 rests on the sphere with its upper
end constrained to remain on the vertical rod, the centre of mass being at a

distance c from the point of contact. Prove that, if the constraint is removed,

the pressure on the sphere is instantly diminished in the ratio

b{b-c) : (62 + 3c2).

4. A uniform rod of length 2a rests in a horizontal position in a smooth

bowl in the form of a surface of revolution whose axis is vertical
;
the ends of

the rod are at points where the radius of curvature of the meridian curve is p

and the normal makes an angle a with the vertical. Prove that the length of

the equivalent simple pendulum for small oscillations in the vertical plane

through the equilibrium position of the rod is

^ap cos a (1 + 2 cos^ a)/{a
—
p sin^ a),

X^rovided that this expression is positive.

5. A uniform rod of length 2a passes through a smooth ring, which is

fixed at a height b above the lowest point of a smooth bowl in the form of a

surface of revolution whose axis is vertical. The rod rests in a vertical

position. Prove that, if c denotes the radius of curvature of the meridian

curve at the lowest point, the length of the equivalent sim-ple pendulum for

small oscillations is

ic {a^+ d{a-bf}/{b^-ac),

provided that this expression is positive.

6. A uniform rod of length 2a is supported in the way explained in

Ex. 1, the distance between the fixed points of attachment of the cords being

2 (a -r^ sin a). Prove that the length of the equivalent simple pendulum for

small oscillations in the vertical plane through the cords is

^al cos a {1 + 2 cos^ a)f{a+ 1 sin^ a).
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MISCELLANEOUS EXAMPLES.

1. If any circle is drawn through the instantaneous centre of no acceler-

ation, prove that the accelerations of all other points on this circle are

directed to a common point.

2. A straight rod moves in any manner in its plane. Prove that, at any

instant, the directions of motion of all its particles are tangents to a parabola.

3. A rope passes round a rough pulley, which moves in any manner in

its plane, so that the rope remains tight. Prove that the directions of motion

of all the points of the rope, which are in contact with the pulley at any

instant, are tangents to a conic.

4. A uniform triangular lamina ABC is supported so that it can oscillate

in its own plane (which is vertical) about the angle A. Prove that the

length of the equivalent simple pendulum is

i {3 (62+ c2)
-
a2}/V {2 (62+ c2)

-
a2}.

6. A uniform triangular lamina ABC is constrained to move in a vei-tical

plane with its corners on a fixed circle. Prove that the motion is the same

as that of a simple pendulum of length

^ (1
— 2 cos A cos B cos C)f,J{\

— 8 cos A cos B cos C\

where R is the radius of the circle circumscribing the triangle.

6. The pendulum of a clock consists of a rod with a moveable bob clamped
to it, the position of the centre of mass of the bob on the central line of the

rod being adjustable. Prove that, if Xi^ x^^ X3 are the distances of the centre

of mass of the bob from the axis of suspension when the clock gains ?ii, 7?2j %
minutes a day respectively, the length of the equivalent simple pendulum
when the clock keeps correct time is

2 [xiW {ej-ej)]/2 [xi (ej-e^^)i

where I, m, n are the numbers 1, 2, 3 in cyclical order, ^i = l4-ni/1440, ...,

and each of the sums contains three terms obtained by putting 1, 2, 3

successively for I.

7. Two circular rings, each of radius a, are firmly joined together so

that their planes contain an angle 2a and are placed on a rough horizontal

plane. Prove that the length of the equivalent simple pendulum is

^a cos a cosec2 a (1 + 3 cos^ a).

8. A thin uniform rod, one end of which can turn about a smooth hinge,

is allowed to fall from a horizontal position. Prove that, when the horizontal

component of the pressure on the hinge is a maximum, the vertical com-

ponent is ^ of the weight of the rod.

9. A uniform sphere, of mass M and radius a, oscillates under gravity

about a fixed horizontal tangent as axis. Given the angular velocity a of the

sphere in the lowest position, find the pressure on the axis in any position ;
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and prove that, in a position of instantaneous rest, the line of the resultant

pressure will be at right angles to the line drawn from the centre to the point
of contact of the sphere with the axis if a)^=^gi/a.

10. A uniform rectangular block, of mass M, stands on a railway truck

with two faces perpendicular to the direction of motion, the lower edge of

the front face being hinged to the floor of the truck. If the truck is

suddenly stopped, find its previous velocity if the block just turns over.

Prove that, in this case, the horizontal and vertical pressures on the hinge
vanish when the angle which the plane through the hinge and the centre of

mass of the block makes with the horizontal has the values sin~i § and

sin^ijj respectively, and that the total pressure is a minimum, and equal
to ^Mffy/f^^ when the angle is sin~i§^.

11. The door of a railway carriage, which has its hinges (supposed

smooth) towards the engine, stands open at right angles to the length of the

train when the train starts with an acceleration/. Prove that the door closes

in time ^ ^ "w^j J o J{^^) '
^^^^ ^^ angular velocity ^{2afl{a^+k%

where 2a is the breadth of the door, and k the radius of gyration about a

vertical axis through the centre of mass.

12. A solid homogeneous cylinder is placed on a truck, with its axis

perpendicular to the length of the truck, and the truck is suddenly started,

and made to move horizontally parallel to its length with given uniform

velocity. Prove that the cylinder will at first slide and afterwards roll on the

truck, and find the time that elapses before it begins to roll.

13. A particle is placed on a rough plane lamina which is initially hori-

zontal, and which is free to turn about a horizontal axis through its centre of

mass. Show that the particle will begin to slip when the plane has turned

through an angle

tan
-
i{/x^«V(^«^+ 9^c^)} >

fji being the coefficient of friction, 2a the length of the lamina perpendicular

to the axis, c the distance of the particle from that axis, and M, m the

masses of the lamina and the particle.

14. A uniform sphere is placed on the highest generator of a rough

cylinder, which is fixed with its axis horizontal. Prove that, if slightly

displaced, the sphere will roll on the cylinder until the plane through the

centre of the sphere and the axis of the cylinder makes with the vertical

an angle a satisfying the equation

17/i cos a
- 2 sin a= lO/x,

where
/x

is the coefficient of friction.

15. A system consisting of a rough uniform circular wire of mass i/,

and a straight uniform rod of mass m, whose ends can slide on the wire,

L. M. 18
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moves in one plane under no forces, the rod subtending an angle 2a at the

centre of the wire. Prove that if neither of the expressions

{M+ m) sin^ a+ SJIfcos^ a± /x
sin a cos a {m - ZM)

is negative (/x being the coefficient of friction), and, if initially the rod has an

angular velocity Q about the centre, while the wire is at rest, the rod will

come to rest relatively to the wire after a time

(^^4-m) [{M+ m) sin^ g+ 3Jfcos^^ a+ fi^m sin^ a ~ 2/x'^Jf sin^ a]

fxmQ [{M'\-m) sin''^ a+ 3i/ cos^ a]

16. A flat circular disk of radius a is projected on a rough horizontal

table which is such that the friction on an element a is c Vhna, where V is the

velocity of the element and m the mass of a unit of area. Prove that, if ttQ

and 0)0 are the initial velocity of the centre of mass and angular velocity of

the disk, the corresponding velocities u, « at any subsequent time satisfy the

equation

(3^2
- aW)y{Suo^ - aWy= (u^co)/{uo^<oo).

17. A uniform circular ring moves on a rough curve under no forces, the

curvature of the curve being everywhere less than that of the ring. The

ring is projected from a point A of the curve, and begins to roll at a point B.

Prove that the angle between the normals at A and B is fi-^ log 2, where
/x is

the coefficient of friction.

18. A homogeneous solid hemisphere, of mass M and radius a, with a

smooth base, is placed with its vertex lowest on a rough horizontal plane,
and a particle of mass m is placed on the base at a distance c from the

centre. Prove that the hemisphere begins to roll or slide on the plane

according as the coefficient of friction between the hemisphere and the plane
is greater or less than

25wiac/{26 {M+m) a^-\-40mc^} .

19. A homogeneous sphere of radius a is initially at rest on a horizontal

plane ;
and the plane is made to move backwards and forwards horizontally,

so that its displacement at time ^ is 6 cos ni. Prove that, if
/x the coefficient

of friction <^bn^lg, the changes from rolling to sliding take place at times

{m -
a)/ny where r is a positive integer and a is the least positive root of the

equation cos a= 7/i^/26n2 ; prove also that the changes from sliding to rolling

(except the first) take place at times {r7r-\-y)l7i, where y is the least positive
root of the equation

sin y+ sin a= 7fxg (y+ a)l2bn^.

20. A uniform sphere of mass M rests on a rough plank of mass M',

which is on a rough horizontal plane ;
the plank is suddenly set in motion

along its length with velocity V. Prove that the sphere will first slide and

then roll on the plank, and that the whole system will come to rest after a time

M'V/fig (M+M') from the beginning of the motion, where jx is the coefficient

of friction at each of the places of contact.
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21. A board of mass J/ rests on a table, and a sphere of mass m is set in

motion on the upper surface of the board so that the vertical plane containing
the direction of projection of its centre passes through the centre of mass of the

board ;
the velocity of projection is V and the sphere has an angular velocity

Q. about a horizontal axis perpendicular to the plane of projection. The
coefficient of friction between the board and the sphere is

/a,
and the friction

between the board and the table is neglected. Prove that after a time

(r-aa)/;x<,(l
+ |V=)

the motion will become uniform, and that the velocity of the board will

then be
^ /T7- ^\ I ft ,

^^
, ^\

22. A reel of mass M and radius a rests on a rough floor, /* being the

coefficient of friction. Fine thread is coiled on the reel so as to lie on a

cylinder of radius b{<a) and coaxal with the reel. The free end of the

thread is carried in a vertical line over a smooth peg at a height k above

the centre of the reel and supports a body of mass m. Prove that, if either

fx<mb/{M-m)a, or if M<m[l-b\l-]-a/h-aybk)/{a^-hk^)],

the thread will be unwound from the reel.

23. A garden roller, in which the mass of the handle may be neglected,

is pulled with a force P in a direction making an angle a with the horizontal

plane on which it rests. Show that it will not roll unless

P { sin a sin
cf>+ cos a cos

(j)
. k^l{a^+k^)} ^ TTsin ^,

where a, k, W are the radius, the radius of gyration about the axis, and the

weight of the roller, and
<f)

is the angle of friction between it and the ground.

24. Two rough cylinders of radii r^, r2 are put on a rough table, and on

them is placed a rough plank. Prove that, under certain conditions, the

system can start from rest and move so that each cylinder rolls on the table

with the constant acceleration

Mg sin 2a/{mi (1 +^iW) + Wg (1 +^27^2^) + 4i/ cos^ a} ,

where sina= (ri'-'r2)/o?, and d is the initial distance between the axes of the

cylinders.

25. A circular cylinder of radius a whose centre of inertia is at a distance

b from its axis rolls on a horizontal plane. Prove that, if it oscillates, its

angular motion is given by an equation of the form

^^2 (y{;2+ cj2 4. j2 _ 2ab cos 6) =gb (cos 6 - cos a).

26. On the top of a fixed smooth sphere rests a fine uniform ring with

its centre in the vertical diameter, and its diameter subtends an angle 2a at

the centre of the sphere. Prove that, if the ring is slightly displaced, it will

18—2
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first begin to leave the sphere when its plane has turned through an angle

which is given by the equation

sin {6 + a) sin a= 2 cos^ a (2
- 3 cos B).

[Assume that the pressure between the sphere and the ring acts only at the

highest and lowest points of the ring.]

27. A uniform rod, lying at rest in a smooth sphere, is of such length

that it subtends a right angle at the centre. The rod is set in motion so that

its ends remain on the sphere and make complete revolutions in a vertical

plane. Prove that, if V is the initial velocity of the centre, and a the radius

of the sphere,

F2>^a(|V2 + i\/202).

28. Two uniform rods of equal length a sl% and of equal mass, are

firmly fixed at one extremity of each, and are at right angles. The rods are

placed over two smooth pegs, distant c apart, in a horizontal line and move
in the vertical plane through the pegs. Prove that the angular motion of

the right angle on the semicircle which it describes is given by one of the

equations

<;f)2 (I a2
_ (j^Q cos ^0 + c2) + ^g {a cos ^(f>-c cos

(f>)
= const.,

and, if the motion is a small oscillation, the length of the equivalent simple

pendulum is

|(2a2+ 3c2~3ac)(4c~a).

29. Two equal uniform rods, each of mass m and length 2«, are free to

turn about their middle points, which are fixed at a distance 2a apart in a

horizontal line. The rods being horizontal, a uniform sphere of mass M and

radius c is gently placed upon them at the point where their ends meet.

Prove that, if 9M{a^+ c^y^
= 2m{a^ — G^}^, the sphere will, as it leaves the rods,

have half the velocity which it would have had after falling freely through the

same height.

30. An elastic thread of modulus X is wound round the smooth rim of a

homogeneous circular disk of mass m, one end being fastened to the rim,

and the other to the top of a smooth fixed plane of inclination a to the

horizontal, down which the disk moves in a vertical plane through a line of

greatest sloj^e, which is the line of contact of the straight portion of the

thread with the plane. Initially the thread has its natural length I and is

entirely wound on the rim of the disk which is at rest at the top. Prove that

at any time t before the thread is entirely unwound the tension is

^mg sin a sin^ {^ t ij{3\/lm)}.

31. Two equal cylinders of mass wi, bound together by a light elastic

band of tension T, roll with their axes horizontal down a rough plane of

inclination a. Show that their acceleration down the plane is

\ mg sin a

/i being the coefficient of friction between the cylinders

f^rsm.
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32. A waggon runs down a road inclined at an angle a to the horizon,

and the road is crushed uniformly by the wheels, prove that the accelera-

tion is

(J/+ 2m)8in(a-i3)

{M+ 2m) cos /3+ 2m¥Ja^
^'

the centre of mass being midway between the wheels, M denoting the mass

of the body of the waggon, m the mass, mF the moment of inertia, and a the

radius of each pair of wheels, and ^3 being an angle depending on the nature

of the road.

33. A rod AB, whose density varies in any manner, is swung as a

pendulum about a horizontal axis through A. Prove that the couple resisting

bending is greatest at a point P determined by the condition that the centre

of mass of the part FB is the centre of oscillation of the pendulum.

34. A semicircular wire A CB^ whose line density varies as the distance

from the diameter AB, rotates in its plane, which is vertical, with uniform

angular velocity a> about the fixed point A. Prove that the stress couple at

the middle point C of the arc AB vanishes when AB is vertical if

a>= V{(4-7r)^/(6~7r)a},
the forces which maintain the rotation being applied to the part AC oi the

35. A uniform rod of mass m has one extremity fastened by a pivot to

the centre of a uniform circular disk of mass M, which rolls on a horizontal

plane, the other extremity being in contact with a smooth vertical wall. The

plane of the wall is at right angles to the plane containing the disk and the

rod. Prove that the inclination 6 of the rod to the vertical when it leaves

the wall is given by the equation

QM cos^ d+ Qm cos 6 - 4m cos a= 0,

the system starting from rest in a position in which = a.

36. A homogeneous sphere, of mass M and radius a, rests on a horizontal

plane in contact with a vertical wall
;
and a second homogeneous sphere, of

mass m and radius b{<a), is placed in contact with it and the wall, the

centres being in a vertical plane at right angles to the wall. Prove that, if

all the surfaces are smooth, the spheres will separate when the line joining

their centres makes with the horizontal an angle 6 which is given by the

equation
(a+ b) {{M- m) sin^ 6+ 3m sin ^}

= 4m V («&)•

37. A smooth circular cylinder, of mass M and radius c, is at rest on a

smooth horizontal plane ;
and a heavy straight rail, of mass m and length 2a,

is placed so as to rest with its length in contact with the cylinder, and to have

one extremity on the ground. Prove that the inclination of the rail to the

vertical in the ensuing motion (supposed to be in a vertical plane) is given by
the equation

\6^
[^(1+

sin'2^)a2+^^ (^—4^-acos^yj=5ra(cosa-cos^),
where a is the initial value of 6.
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38. The outer surface of a uniform spherical shell of mass M is of radius

a, and the inner (concentric) surface is of radius h. A particle of mass m
moves inside the shell, while the shell rolls on a horizontal plane. The
friction at the inner surface is neglected. Show that the angular distance 6 of

the particle from the vertical diameter at time t is given by the equation

\ (|if+m sin2 $) ^2= (ijf+m) (cos 6
- cos a) (g/b),

where a is the greatest value of 0.

39. A circular cylinder, of radius a and radius of gyration k, rolls inside

a fixed horizontal cylinder of radius 6. Prove that the plane through the

axes moves like a simple pendulum of length

{b-a){l+k^la^).

The second cylinder is free to turn about its axis
; the first cylinder is of

mass m, and the moment of inertia of the second about its axis is MK^.
Prove that the length of the equivalent simple pendulum is (6-a)(l-f 7i)/?i,

where n= a^/k^+mb^lMK^ ; prove also that the pressure between the

cylinders is proportional to the depth of the point of contact below a plane
which is at a depth 2w6 cos a/(1+3/1) below the fixed axis, where 2a is the

angle of oscillation.

40. A garden roller stands at rest on a level path with the handle

vertical
;
the handle is pulled down into a horizontal position, held at rest,

and then released. Prove that the angular motion of the handle about the

axis of the roller is given by the equation

where R is the radius of the roller, K its radius of gyration about its axis,

M its mass, and m is the mass of the handle, h the distance of its centre of

mass from the axis, and I the length of the equivalent simple pendulum of

the handle when the roller is held fixed.

41. A uniform circular hoop of radius a is so constrained that it can

only move by rolling in a horizontal plane on a fixed horizontal line
;
and a

particle whose mass is l/'X, of that of the hoop can slide on the hoop without

friction. Prove that, if initially the hoop is at rest, and the particle is

projected along it from the point furthest from the fixed line with velocity -y,

then the angle turned through by the hoop in time t will be

(vtja- 8inylr)/{2\ + l),

where ^ is the angle through which the diameter through the particle has

turned in the same interval. Prove also that

42. A uniform rod swings in a vertical plane, being suspended by two

cords which are attached to its ends and to points A, B in a horizontal line.

AB is equal to the length of the rod, and the cords are not crossed. Prove

that, if the cords attached to A and B are of lengths a and a+X respectively,
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where X is small, the angular velocity of the cord attached to A, when

inclined to the vertical at an angle 6, is greater than it would be if \ were

zero by
X (g/2a^)'^ (cos 6— cos a)2 (tan^ 6

- i sec 6 sec a)

approximately, a being the value of ^ in a position of rest, and not being

nearly equal to a right angle.

43. A uniform rod, which is free to turn about a point fixed in it, touches,

at a distance c from the fixed point, the rough edge of a disk of mass m,

radius a, and radius of gyration k about its centre. The system being at

rest on a smooth horizontal plane, an angular velocity Q, is suddenly com-

municated to the rod so that the disk also is set in motion. Prove that in the

subsequent motion the distance r of the point of contact from the fixed point

satisfies the equation

{MK^+ mr^){l-\- k^a^) r^= {MK^+ mc^) {k"-+ a'+ r'^- c^)£l\

where MK"^ is the moment of inertia of the rod about the fixed point, and the

edge is rough enough to prevent slipping.

44. A uniform rod has its lower end on a smooth table and is released

from rest in any position. Show that the velocity of its centre on arriving

at the table is V(f ^A), where h is the height through which the centre has

fallen. Prove also that, at the instant when the centre reaches the table, the

pressure on the table is one quarter of the weight of the rod.

45. If a particle is moving in a circular tube held at rest on a smooth

horizontal plane, and the tube is let go, the centre of the tube will describe a

trochoid.

46. A uniform sphere of mass m is rolling on the horizontal upper
surface of a wedge of mass i/", whose under surface slides without friction on

a fixed plane inclined at an angle a to the horizontal. Assuming the system
to move from rest, and the whole motion to take place in a vertical plane,

prove that, if at time t the wedge has slipped a length x along the plane, and

the sphere has rolled a length s along the surface of the wedge, then

7 7 (i/"-|-m)sina ^„

,r=|sseca=- ^ ,^\ ,„
———^r- gtK

47. A wheel can turn freely about a horizontal axis
;
and a fly of mass

m is at rest at the lowest point. If the fly suddenly starts off" to walk along

the rim of the wheel with constant velocity V relative to the rim, show that

he cannot ever get to the highest point of the rim unless V is at least as

great as

2y/{ga {nia^jMK^) (1 -\'mayMK^)},

where a is the radius of the wheel, and MK^ its moment of inertia about its

48. A hollow thin cylinder, of radius a and mass M, is maintained at rest

in a horizontal position on a rough plane of inclination a ;
and an insect of
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mass m is at rest in the cylinder on the line of contact with the plane. The

insect starts to crawl up the cylinder with velocity F, and the cylinder is

released at the same instant. Prove that, if the relative velocity is maintained

and the cylinder rolls uphill, then it will come to instantaneous rest when the

angle which the radius through the insect makes with the vertical is given by
the equation

72 {1
- cos {B

-
a)} + ag (cos a- cos ^)

=
(1 + Mjm) ag {6

-
a) sin a.

49. A rigid square ABGD^ formed of four uniform rods each of length 2«,

lies on a smooth horizontal table, and can turn freely about one angular point

A^ which is fixed. An insect, whose mass is equal to that of either rod,

starts from the corner B to crawl along the rod BC with uniform velocity V
relative to the rod. Prove that, in any time t before the insect reaches C, the

angle through which the square turns is

\/i4
*''""'

(¥\/^)-

50. The corners ^, 5 of a uniform rectangular lamina ABCD are free to

slide on two smooth fixed rigid wires OA, OB at right angles to each other in

a vertical plane and equally inclined to the vertical. The lamina being in a

position of equilibrium with AB horizontal, find the velocity produced by an

impulse applied along the lowest edge CD.

Prove that, if AB= '2.a, BC=4:a, then AB will just rise to coincidence

with a wire if the impulse is such as would impart to a mass equal to that

of the disk a velocity

§V{«5'(4-2v/2)}.

51. A uniform rigid semicircular wire is rotating in its own plane about

a hinge at one end, and is suddenly brought to rest by an impulse applied

at the other end along the tangent at that end. Prove that the impulsive
stress couple is greatest at a point whose angular distance from the hinge is

(f),
where

(f)
tan ^<j)

= l.

52. A particle of mass m impinges directly on a smooth uniform spheroid
of mass M and semiaxes a, b the spheroid being at rest, and no energy being
lost in the impact. Prove that, if

1 < Mjm< 6 - 10ab/{a^+ ¥\
the point of impact may be so chosen that the particle is reduced to rest.

53. A uniform circular disk is supported in a vertical plane by two cords

attached to the ends of a diameter, which is horizontal
;
the cords are equally

inclined to the horizontal at an angle a. Prove that, if one is cut, the tension

of the other is diminished in the ratio 2 sin^ a : 1 -f 2 sin^ a.

54. A uniform equilateral triangular board is suspended by three equal

cords, which are attached to its corners and to the corners of a similar fixed

triangle in a horizontal plane ;
the plane through any two cords makes an
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angle a with the horizontal. Prove that, if one of the cords is cut, the

tensions in the remaining two are diminished in the ratio

Ssin'-^a : 2 -\- 4c aiii^ a.

55. A circular ring hangs in a vertical plane on two pegs which are in

a horizontal line, and the line joining the pegs subtends an angle 2a at the

centre. One peg is suddenly removed. Find the pressure on the remaining

peg (1) when it is smooth, (2) when it is rough, and prove that these pressures

are in the ratio 1 : (1 + j tan^a)^,

56. A sphere resting on a horizontal plane is divided into a very large

number of segments by planes through the vertical diameter, and is kept in

shape by a band round the horizontal great circle. Prove that, if the band is

cut, the pressure on the plane is diminished by the fraction 4577^/2048 of

itself.

57. The lower end of a uniform rod of length a slides on an inextensible

thread of length 2a whose ends are fixed to two points distant 2 >J(a^
-

h^)

apart in a horizontal line, and the upper end of the rod slides on a fixed

smooth vertical rod which bisects the line joining the two fixed points. Prove

that, if 26 > a, the time of a small oscillation about the vertical position

of equilibrium is

2v/27ra/v/{3^(26-a)}.

58. The extremities of a uniform rod of length 4a slide without friction

on the circumference of a three-cusped hypocycloid whose plane is vertical,

one of the cusps being at the highest point of the circumscribing circle

(radius 3a). Prove that the length of the equivalent simple pendulum
is ^a.

59. In a heavy plane lamina, whose centre of gravity is 6*, are two

narrow straight slits BA^ AC, such that AG bisects the angle BAG. Through
each slit passes a fixed peg, the pegs, P, Q, being in the same horizontal

line. Prove that the time of a small oscillation of the lamina in its own

plane, about a position of equilibrium in which the vertex A of the triangle

APQ is upwards, is

\/ g^inAjAPQ^-AG^sm^AY
where k is the radius of gyration of the lamina about a line through G

perpendicular to its plane.

60. A uniform solid right circular cone of height h, vertical angle 2a,

and radius of gyration k about an axis through its centre of inertia at right

angles to its axis of figure, rests with its vertex downwards between two

rough parallel rails at a distance 2c apart in a horizontal plane. Prove that,

if the equilibrium is stable, the period of the small oscillations about it is

rr v/[{16F sin2 a + (3A sin a - 4c cos af]lg sin a cos a (4c
- 3A tan a)].
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61. A uniform sphere of radius c is placed on a horizontal wire in the

form of an ellipse of axes 2a, 26. Prove that, if the wire is rough enough to

prevent slipping, the length of the equivalent simple pendulum of the small

oscillations about the position of equilibrium is

where F=fc2, and d^= c^-¥.

62. Two equal wheels each of mass J/, radius a, and radius of gyration
k about its axis, are rigidly connected by an axle of length c and run on a

horizontal plane. Two particles, each of mass m, are connected, one to each

of the centres of the wheels by cords which pass over smooth pegs in the

line of centres. Prove that, if the wheels are symmetrically placed between

the pegs, and slightly displaced by rolling on the plane, the time of a small

oscillation is

where 26+ c is the distance between the pegs.

63. A solid circular cylinder, bounded by two planes making given

angles with the. axis, is laid on its curved surface on a rough horizontal plane.

Find the position of stable equilibrium, and prove that, if I is the length of

the equivalent simple pendulum for a small oscillation, and d the diameter of

the cylinder, then the ratio of the longest and shortest generators is

l-\-4.d\l-M.



CHAPTEE IX ^.

RIGID BODIES AND CONNECTED SYSTEMS.

239. Impact of two solid bodies. To investigate the

motion of solid bodies which collide, Poissonf introduced a certain

hypothesis as to the motion which takes place while the bodies

are in contact. In this short interval of time the bodies may not

be regarded as rigid, but the deformation that occurs must be

taken into account (Art. 102). Poisson supposed that this

interval could be divided into two periods : during the first period
the bodies are undergoing compression ; during the second period
the restitution of form takes place. Further Poisson supposed
that the impulse of the pressure between the bodies during the

period of restitution bears to the impulse of the pressure during
the period of compression the ratio e, which is the coefficient

of restitution.

This hypothesis leads to the following rule for solving the

problem of impact :
—First solve the problem on the supposition

that there is no restitution, and find the impulsive pressure
between the bodies. Multiply this pressure by {\-\-e). Now
solve the problem again on the supposition that the impulsive

pressure has the value so determined.

Let us apply this method to the problem of the direct impact of two

spheres. With the notation of Art. 195 in Ch. vii, the equations of the

problem, on the supposition that there is no restitution, are

u-u'=0, mu + m'v!=mU-\- m'U\

and the impulsive pressure jffo between the bodies is

^rn(u-U) or -^'^^,{U-U').^ ' m •\-m
^

* This Chapter may be omitted in a first reading.

t S. D. Poisson, Traite de Mecanique, 2nd ed., Paris 1833, t. 2, pp. 273 et seq.
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We multiply this by (1+e). The equations of the problem, on the suppo-
sition that the impulsive pressure between the bodies is {l-{-e)Ro, are

-m{u-U)=^^^,{U-U'){l+e), m' {u'- U')=^^-,{U-- U'){l + e\

and the values of u and u' which are found from these equations are the

same as those found in Art. 195.

In the case of the direct impact of smooth spheres the results

that can be deduced from Poisson's hypothesis are the same as

the results that can be deduced from Newton's experimental
result. We may show in like manner that, in the case of the

oblique impact of smooth spheres (Art. 197), the results that can

be deduced from Poisson's hypothesis are the same as those that

can be deduced from the "generalized Newton's rule" stated in

Art. 196. We shall show that this result holds for the impact
of any two bodies, whether smooth or rough, provided that the

friction is not great enough to prevent sliding.

240. Impact of smooth bodies. Let two rigid bodies moving in

the same plane come into contact at a point P. Suppose the bodies to be

smooth at P. Let R be the impulsive pressure between the bodies at P.

The direction of R is the common normal at P to the two surfaces. Let the

axis of ^ be taken in this direction, the axis of y being any fixed line in a

perpendicular direction.

Let m and m' be the masses of the bodies, U, V, Q, the velocity system of

m before impact, w, v, at corresponding quantities after impact, and let

accented letters denote similar quantities for m'. Also let x, y be the co-

ordinates of the centre of mass of m and .r', y' those of m! at the instant of

impact, and let ^, ;;
be coordinates of P at the same instant. Also suppose

that, as acting on m, the sense of R is the negative sense of the axis of x

(Fig. 77).

Fig. 77.

The velocity of P, considered as a point of m^ has components

U—Q.{r\-y\ F+ Q (^
-
^) before impact, and

u — (o{t] —y\ v-^(a{^-x) after impact.
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The velocity of P, considered as a point of m', has components

JJ'
— Q.'

{r} —y'\ V + Q' (^
-

x') before impact, and

u' — o)'
(77
—

3'')?
'^'+ «' (^

-
^') after impact.

The equation provided by the generalized Newton's Eule is accordingly

u-a){T} -y) -m'+ co' (V-y)= -e{U- Q {-q -y) -U' + Q' {r)- y')}.

The equations of impulsive motion of the two bodies, obtained by resolving

parallel to the axis of ^, are

m{u-U)=- R, m' {u'
-

U')= R.

The equations obtained by resolving parallel to the axis of y are

m (y
- F)= 0, m' {v'

- V) = 0.

The equations of moments about axes through the centres of mass per-

pendicular to the plane of motion are

mF (o)
- Q) = i?

(77 -y\ m'k"^
(o)' -a')=-R{-q- 1/\

where k and kf are the radii of gyration of the bodies about the axes in

question.

On substituting for u^ u\ w, a>' in the equation containing e, we find

and this equation shows that the impulsive pressure with any value of e is

{l+e) times what it would be if e were zero.

The result of this Article can be expressed in the statement that the

generalized Newton's rule and the rule derived from Poisson's hypothesis
are equivalent for any two smooth bodies moving in one plane.

241. Impact of rough bodies. The impulsive action between

two rough bodies which come into contact, when there is sliding at the point
of contact, is assumed to be expressible by means of an impulsive pressure,

as in the case of smooth bodies, and an impulsive friction tending to resist

sliding, the friction and the pressure having a constant ratio, the coefficient

of friction. We shall suppose the geometrical condition as regards the

relative velocity to be the same as in the case of smooth bodies, viz. the

generalized Newton's rule.

We shall show that, when there is sliding at the points that come into

contact, the rule deduced from Poisson's hypothesis is equivalent to the

generalized Newton's rule, for the impulsive action between rough bodies.

Writing F for the impulsive friction at the point of contact, and taking
the same notation as in the last Article, we have the equations of impulsive
motion

m{u-U)^-R, m{v-V)=-F\
mJc^{a>-Q)==-{^-x)F+{7)-y)R j

^ ^'

and

m'iu'-U')= R, m'iv'-V')=:F,l
m'k'^<o' -Q')= {^-a/) F-{ri -y') R j

^^^'
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Also we have the equation of sliding friction

F=i^R (3),

«,nd the equation provided by the generalized Newton's Rule

U-o;>{rj-y)-u'+<^'(r^-y')=-e{U-Q,{rj-y)-U'+ Q.'{r^-y')]...{^).

From these equations we obtain, by elimination of u, u\ v, v', o), <»', 7^, an

•equation for R, viz.

= (l+«)[£^-a(>,-y)- U'+a'{n -!/')].

This equation shows that R contains (1+e) as a factor and is otherwise

independent of e, and thus proves the equivalence of the two rules.

242. Case of no sliding. When the bodies are sufl&ciently rough to

prevent sliding the problem is more complicated. The efifects of the elasticity

of the bodies cannot be so simple as in the previous cases*.

We may obtain a provisional solution by assuming that the generalized

Newton's rule holds good. Then equations (1), (2), (4) of Art. 241 are still

valid, but instead of equation (3) we have the condition that there is no

sliding, viz.

v+ (o{$-a;) = v'+ (o'{^-x') (5).

From equations (1), (2), (4), (5) we can form two equations for R and

F, viz.

|_\m mj mk^ mk^ J |_ mk^ mk^ J
= (l+e)[U-Q{rj-y)-U'+ Q'{r]-y%

It is clear that the solution of these equations will give an expression for R
•consisting of two terms, one of them having (1+e) as a factor and the other

not containing that factor.

Since R is not in general proportional to 1+e, the result which would be

•obtained from Poisson's hypothesis is not in general the same as that which

would be obtained from the generalized Newton's rule.

The results would however be the same in any case in which either

V+Q{^-x)- V'-Q'{^-x')=0,

-or (I -^)iv- 2/)/^^'+ (^
-

^') in -y')lm'k'^=o.

The first of these equations expresses the condition that there is no

relative velocity of sliding at the instant of impact, or that the impact is, in

* Poisson himself did not suppose his hypothesis to be applicable to cases in

which there is sufficient friction to prevent sliding. The question is not really of

any practical interest because the motion must depend largely on accidental

circumstances.
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an obvious sense, "direct." The second is satisfied if r^=^y=y\ that is if the

normal at the point of contact passes through the centres of mass of the two

bodies, as it would if the bodies are spheres or circular disks. It is also

satisfied if r}=^y and ^=x\ which would be the case if one bodj is a sphere

or a circular disk and the other is a thin rod.

243. Examples.
1. A uniform sphere of radius a and mass wi, moving without rotation,

impinges directly on a smooth uniform cube of side 2a and mass m', the line

of motion of the sphere being at a distance b from the centre of mass of the

cube. Prove that, if there is no restitution, the kinetic energy lost in the

impact is to that of the sphere before impact in the ratio

1 :l + (m/m')(l + f62/«2).

2. A uniform rod, falling without rotation, strikes a smooth horizontal

plane. Prove that, for all values of the coefficient of restitution, the angular

velocity of the rod immediately after impact is a maximum if the rod before

impact makes with the horizontal an angle cos "^1/^3.

3. A sphere whose centre of mass coincides with its centre of figure is

moving in a vertical plane and rotating about an axis perpendicular to that

plane when it strikes against a horizontal plane which is sufficiently rough to

prevent sliding. Prove that the sphere will rebound at an angle greater or

less than if there were no friction according as the lowest point of it at the

instant of impact is moving forward or backward.

4. A disk of any form, of mass w, moving in its plane without rotation

and with velocity l''at right angles to a fixed plane, strikes the plane so that

the distances of the centre of mass from the point of impact and from the

plane are r and p. Prove that, if the plane is sufficiently rough to prevent

sliding, the impulsive pressure is

mF(l-fe)(F+i?2)/(F+ r2),

where k is the radius of gyration of the disk about its centre of mass.

5. A ball spinning about a vertical axis moves on a smooth table, and

impinges on a vertical cushion, the centre moving directly towards the cushion.

Prove that, if B is the angle of reflexion, the kinetic energy is diminished

in the ratio

10+ 14 tan2 ^ : lOe
- 2+ 49 tan2 <9,

the cushion being sufficiently rough to prevent sliding.

6. A circular disk of mass M and radius c impinges on a rod of mass m
and length 2a which is free to turn about a pivot at its centre, and the point

of impact is distant h from the pivot. Prove that, if the direction of motion

of the centre of the disk makes angles a and /3 with the rod before and

after collision, then

2 (3i/62+ ona^) tan ^3
= 3 (3Jf6^ _ ema^) tan a,

the edges in contact being sufficiently rough to prevent sliding.
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244. Impulsive motion of connected systems. In illus-

tration of the application of the equations of impulsive motion to

systems of rigid bodies with invariable connexions we take the

following problems. In the first it will be observed that we do

not need to introduce explicitly the reactions between the connected

bodies. The second illustrates the choice of equations; for, although
some of the unknown reactions must be introduced, it is unnecessary
to form equations for each body separately.

I. Three uniform rods of masses proportional to their lengths are freely

jointed together and laid out straight^ and one of the end rods is struck at the

free end at right angles to its length. It is required to find how they begin to

move.

Let 2a, 26, 2c be the lengths of the rods, the last being struck, and let

PA vA

Fig. 78.

xla^ yjh^ zJG be the angular velocities with which they begin to move, u the

velocity of the centre of mass of the first. Then the system of velocities

is as shown in the figure. Let P be the impulse applied at the end A, and

fca, k6, kc the masses of the rods.

We take moments about G for the rod CD, about B for the rods BC, CD,

and about A for the three rods, and we resolve for the whole system at right

angles to the rods. We thus obtain the equations

u-\x=0, \

h\b{u + x-\-y)-lhy'] + a[{^h-\-a)u-^ax]=0, \

c[c{u^-x-\-2y-^z)-\cz\ + h{{'ilc+ h){u+x+y)-\hy'\ \

+a[(2c+ 26+ a)w-^a^]=0,
1

Kc{u-\-x+ ^y+z)-\-Kh{u-'rX-\-y)-\-Kau
= P. I

Subtracting the second and third we get, on dividing by c,

c{u+x+2y+ %z)+2b{u+x+y) + 2au= 0,

and, on simplifying this and the second by using the first, we get

x{a+ 4b+ 2c)+y{dc + 3b)+zc=0,

and (2b + a)x+ by = 0.
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Hence we have

289

IC X y

^ F

II. A rhombus formed of four equal uniform rods freely jointed at the

corners is set in motion by an impidse applied to one rod at right angles to it.

To find how the rhombus begins to inove.

Let 2a be the length of each side of the rhombus ABCBj a the angle

v+aujk

Fig. 79.

DAB, X the distance of the point struck from the middle point of the side

AB containing it, P the impulse, m the mass of each rod.

The centre of mass of the system is the point of intersection of the lines

joining the middle points of opposite sides. Since the figure is always a

parallelogram, opposite sides have the same angular velocities, and the lines

joining the middle points of opposite sides are of constant length 2a and turn

with the angular velocities of the sides to which they are parallel. Let these

angular velocities be o) and (n'
,
and let v be the velocity of the centre of

mass. Then the velocities of the centres of mass of the rods and their

angular velocities are as shown.

Now let the impulsive reaction of the hinge at G be resolved into S

parallel to BC and R at right angles to BC^ and the impulsive reaction of the

hinge at D into <S", R' in the same directions. These impulses act in opposite

senses on the two rods which meet at a hinge. The figure shows the senses

in which we take them to act on the rod CD.

L. M. 19
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We form two equations of motion by resolving for the system in the

direction of the impulse and by taking moments about the centre of mass.

We thus obtain
4mv= P, )

|ma2 ((o+ a)')
= P{x+ a cos a).j

Again, we can form three equations containing R and R' by resolving for

CD at right angles to BC, and taking moments for BC and AD about B and

A respectively. We thus obtain

m {v cos a - aa')=R+ R',

m \{v
—

aco) a cos a— \ o^in'^
= —

'^aR,

m \{v+ a<ji) acosa— ^a2&)']=
— 2aR\

from which, on elimination of R and R', we get

V cos a= ^a(o'.

Hence v=iFlm, a)= ^F:vlma% a>=%P cos ajma.

245. Examples.
1. Two equal rods AB, AC freely jointed at A are at rest with the angle

BAC a right angle, and AC is struck at C by an impulse in a direction

parallel to AB. Prove that the velocities of the centres of mass oi AB and

ACin the direction of AB are in the ratio 2 : 7.

2. Two equal uniform rods freely hinged at a common end are laid out

straight, and one end of one of them is struck by an impulse at right angles

to their length. Prove that the kinetic energy generated is greater than it

would be if the rods were firmly fastened together so as to form a single rigid

body in the ratio 7 : 4.

3. Four equal uniform rods are freely hinged together so as to form a

rhombus of side 2a with one diagonal vertical, and the system falling in

a vertical plane with velocity V strikes against a fixed horizontal plane.

Taking a to be the angle which each rod makes with the vertical and assuming
no restitution, prove that (i) the impulsive action between the two upper
rods is directed horizontally, (ii) the angular velocity of each rod after the

impulse is f ( V/a) sin a/(l + 3 sin^ a), (iii) the impulsive action between the two

upper rods is to the momentum of the system before impact in the ratio

sin a (3 cos^ a --'
1) : 8 cos a (1 + 3 sin^ a),

(iv) the impulsive action at either of the hinges in the horizontal diagonal

makes with the horizontal an angle tan~i {(3 cos^ w^l) cot a] .

4. In Example 3, prove that, if the coefficient of restitution between the

rhombus and the ground is e, the angular velocity of each rod after the

impulse is f (1 + 6) ( V/a) sin a/(l + 3 sin^ a).

5. A square framework ABCD is formed of uniform rods freely jointed

at B, Cf and D, the ends at A being in contact but free. Prove that, if yl^

is struck by a blow at A in the direction DA, the initial velocity of A ia

79 times that of D.
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6. A rectangle formed of four uniform rods, of lengths 2a and 26 and
masses m and m', freely hinged together, is rotating in its plane about its

centre with angular velocity n when a point in one of the sides of length 2a

becomes suddenly fixed. Prove that the angular velocity of the sides of

length 2b instantly becomes ^?i (3m+w')/(3??i+ 2m'), and find the angular

velocity of the sides of length 2a.

246. Initial motions and initial curvatures. The kinetic

reactions of the parts of a connected system of particles and rigid

bodies caa always be expressed in terms of a finite number of

geometrical quantities which are unconnected by any geometrical

equations. This can usually be effected by methods similar to

those used in Art. 205.

It may however happen that such methods are difficult of

application. When this is the case we may begin by writing
down the geometrical equations which hold between the coordinates

of the points in any position. If we differentiate these equations
twice with respect to the time, and, in the results, substitute for

every first differential coefficient of a geometrical quantity the

value 0, and for every geometrical quantity the value that it has

in the initial position, we shall obtain the relations between the

initial accelerations of the various geometrical quantities involved.

Thus if X, y are the coordinates of any particle whose acceleration

is required, and ^, </>,..
. are a series of geometrical quantities which

define the position of the system, there will be certain values ^o, <^o,
• • •

for these quantities in the initial position. Now the geometrical

equations provide the means of expressing the x and y of the

particle in any position in terms of the values of 6, (f),
... for that

position. Let x =f(0, </>,...)
be the form of one of the equations

we can obtain. On differentiating we have

Reducing in the way that has been explained we obtain

19—2
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where ^o, ^o--- denote the initial values of x, 6, and

denote the values of 8/ 3/ when 6 — 6q, (f)
=

(j>(,,Wa'*" a^'a<^'

Now this process can be carried further, and arranged as a

process of approximation for expressing the values of or, y, ... as

series in ascending powers of the time. We have in fact as a first

approximation ac =
^ooot^, y = ^yof^.

From such series we can deduce the initial curvatures of the

paths of all the particles.

It will be easier to understand how this process is carried out

after studying its application to a particular problem, and it will at

the same time be seen how simplifications may at times suggest

themselves. A complicated problem has been chosen intentionally.

247. Illustrative problem. Two uniform rods AB, BC of masses

mi, wi2 and lengths a, 6 are freely hinged at B, and AB can turn about A in

a vertical plane. The system starts from rest in a position in which AB is

horizoTiial and BC vertical. It is required to determine the initial curvature of

the path of any point of BC,

Let AB make an angle 6 with the horizontal, and BC an angle with the

Fig. 80.

vertical at time t. Since B describes a circle of radius a about A, and since

the centre of mass of BC describes a circle of radius \h relative to B, the

diagram of accelerations is that shown in Fig. 80.

By taking moments about B for BC, and about A for the system, we

obtain the two equations

wi2 (j^^+ I'g^^) ^ ~ m2a6\h sin (^+ </>)
-
m^aJd^^h cos (^+ <^)

= - ^n2gb sin <^,

^1 (i«^+ ^«^) ^+ ^2«'<^ {a+ ib sin (S + (f>)} + m2ae^ ^b cos {d+ cf))

-m2^^b^(j>-m2{^b+ amn{B-\-(f))}^b(j)-m2acos {B+(f)) ^b<j>^

= \miga cos 6 +m2g {a cos 6-\-^b sin 0).
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Adding the equations, and dividing out common factors, we have

(|?/ii + ^^) aO — \m^h<j) sin (d + cf))
—
^^26^^ cos {B + cf>)

=gcos6{^mi+m2) (1).

Also the first of the above equations is

^b(j)
-

^a'S sin {B + (f))-had^ cos {$ + (!))= -^ffaincj) (2).

In the initial position ^=0, <;^=0, ^= 0, <^
=

0, and we have

^ _o /?
_ ^mi + 6m2 g

*^«-^'
^'-2m, + 6m2a-

In any position we have, by Maclaurin's theorem,

also 0= 0^t +ieot^+.,., 0= '(^Qt +^4>ot^+,,,.

Now, taking equation (2), we see that if ^0 were finite, (f)
would be of order

t^, and 6 of order t^, so that the terms would be respectively of orders 1, 2, 2,

3. This shows that 0o Qiust be zero. Again, if 0o^^ is finite the equation
can be reduced, by picking out the terms of order 2 in

t, to

, . 9a-^„ 9a /Zmi + 67712 gY
giving *„.-=^ «„^=^ (zWTem, a)

'

Again, taking equation (1), and observing that cos^=l-^ + — -... we

see that the lowest power of t in this series is the fourth, and then it appears
from equation (1) that the lowest power of t in 6 is the fourth, so that the

series for 6 begins

Going back now to equation (2), it is clear that ^ contains no term in t^

but there is a term in f^. In fact, picking out the terms in <* in equation (2)

we have

3«^
p--

Now, in the figure, taking as origin the initial position of B, and taking

the axes of x and y horizontal and vertical, we can write for the coordinates

of a point of BC distant r from B^

cc= -a(l-cos^)+rsin(^, y= asm.d-\- rcoacf);

expanding these we have approximately

giving ^=_|^^„.+i:^^^„..=^^„v(|:-2),)
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which are correct as far as t^. Hence the initial path of the point is ap-

proximately a parabola

and the radius of curvature of the path is 2a6/(3r
-
26) unless r= |6.

If, however, r=§6, in order to get an approximate equation to the path,
we must expand to a higher order. We find

^-^«></>o 61-^1 + 27712 6 480^'

correct as far as t^^ and thus the initial path is given by the approximate

equation

(y-§6)3=60a6^(l+2m2/mi).

248. Examples.

1. Two equal uniform rods are freely jointed at common ends, the other

end of the first is fixed so that the rods can turn about it, and the other end

of the second is held at the same level as the fixed end of the first, so that

the rods make equal angles a with the horizontal, and this end is let go.

Prove that the initial angular accelerations of the rods are in the ratio

6 - 3 cos 2a : 9 cos 2a - 8.

2. Three equal uniform rods are freely jointed at B and C so as to form

three sides of a quadrilateral ABCD, and the ends A and D can slide on a

smooth horizontal rod. The system is initially held (by means of horizontal

forces applied at A and D) in a symmetrical position with BC lowest and

horizontal, and with AB and CD equally inclined at angles a to the hori-

zontal. Prove that, when the ends A and D are released, the pressures at A
and D are changed in the ratio 1 -l-sin'-^a : 5 - 3 sin^a.

3. A uniform rod of length 2a is held at an inclination a to the hori-

zontal in contact with a smooth peg at its middle point. Prove that, when

the rod is let go, the initial radius of curvature of the path of a particle

distant r from the middle point is {a^jr) tan a.

4. Two equal uniform rods AB, BC each of length a are freely jointed

at B, and can turn freely about A. Prove that, if the system is released from

a horizontal position, the initial radius of curvature of the path of (7 is fa.

249. Small oscillations. Illustrative problem.

The following problem illustrates the application of the method

of Art. 211.

A uniform rod is supported at its ends by two equal vertical cords suspended

from flawed points. It is required to find the small oscillation in tvkich the

middle point moves vertically and the rod, remaining horizontal, turns round

its middle point.
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Let 2a be the length of the rod, I the length of either cord, z the dis-

tance through which the middle point

has risen at time t, the angle through
which the rod has turned in the same

time. The depth of either end A or

B below the corresponding point of

support is I — Zf and the distance AM
or BA^ of an end from the equilibrium

position of the corresponding cord is

2a sin ^0. Hence we have

this equation shows that when z and

6 are small z=^{a^ll) &^ to the second

order, and I= to the first order.

Now, if m is the mass of the rod,

the kinetic energy in any position is

\m{z^^\aW\
and the potential energy is

mgz,

the lowest position being the standard position.

Hence, in the small oscillations, the kinetic energy is, with sufl&cient

approximation,

\ma^\
and the potential energy is, with sufficient approximation,

\mg{a^ll)6\

The motion in 6 is therefore the same as for small oscillations of a simple

pendulum of length \l.

Fig. 81.

250. Examples.
1. A number of equal uniform rods each of length 2a are freely jointed

at a common end and arranged at equal intervals like the ribs of an umbrella,

and this cone of rods is placed in equilibrium over a smooth sphere so that

the angle of the cone is 2a. Prove that, for small vertical oscillations of the

joint, the length of the equivalent simple pendulum is

\a cos a (1+3 cos2a)/(l + 2 cos^a).

2. Prove that the length of the equivalent simple pendulum for small

oscillations of the handle of a garden roller rolling on a horizontal walk is

where a is the radius of the roller, M the mass of the roller alone, h its radius

of gyration about its axis, m the mass of the handle, h the distance of the

centre of mass of the handle from the axis of the roller, and I the length of

the equivalent simple pendulum for the oscillations of the handle when the

roller is held fixed.
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3. Four equal uniform rods are freely jointed so as to have a common

extremity, and four other like rods are similarly jointed ;
the other ends of

the rods are then jointed in pairs so as to form eight edges of an octahedron.

One of the joints where four rods meet is fixed and the other is attached to

it by an elastic thread, so that in equilibrium the octahedron is regular and

the thread vertical. Prove that the length of the equivalent simple pendulum
for small vertical oscillations of the lowest point is f (^— ^o)? where I and ^o

are the equilibrium length and the natural length of the thread.

251. Stability of steady motions.

The principles of energy and momentum may frequently be applied to

problems concerning the stability of steady motions. We shall illustrate the

method by considering the steady motion of a spherical pendulum, that is a

particle moving under gravity on the surface of a sphere so as to describe a

horizontal circle.

Let be the angle which the radius vector from the centre

of the sphere to the particle makes with the downw^ards vertical

at time ty a the radius of the

sphere, <f>
the angle contained

between the plane through the

particle and the vertical diameter

and a fixed plane through the

same diameter.

The energy equation is

\raa^ {e''-\-^ixi^e^^)^-mga (1 -cos 6)

= const.,

and the equation of constancy of

momentum about the vertical

diameter is ma^ sin^ ^<^
= const. ^^*

We wish to discover the condition that motion in a horizontal

circle, ^ = a, with angular velocity o) may be possible. We have

<^ sin^ 6 = (o sin'^ a,

so that the energy equation may be written

Differentiating with respect to the time we obtain the equation
V „sin^acos^ , Q - n r. /-ix
e-ay" . 3^ +^sin(9 = (1).

sin^ 6 a

Now the steady motion is possible if o) is so adjusted that

^ = when 6 — a. This gives us the condition

const.

(Cf. Art. 79.)

aa)^= ^seca. ,(2).
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If the particle is projected from a point for which 6 is nearly

equal to a, in a nearly horizontal direction, with an angular
momentum ma^cofim^a about the vertical diameter, where co is

given by (2), then either it tends to remain always very near the

circle =
a, or to depart widely from it. Supposing it to remain

near the circle, we may put ^ = a + %, expand the terms of equa-
tion (1), and reject powers of

;^ above the first. We thus find
~
d (g . ^ cos 6^

-j^ \^ sin e - (0^ sin^ a ^-^-^,% + % 0,

..
.

orl + Scos^a ^
"^ '^a cos a

showing that the particle oscillates about the state of steady
motion in a period equal to that of a simple pendulum of length

a cos a/(l + 3 cos^ a).

The steady motion is stable if cos a is positive, or the circular

path is below the centre of the sphere.

^ote. If the angular momentum (as well as the direction and point of

projection) is slightly altered, the possible steady motion would take place

along a slightly different circle
;
but the period of oscillation would be un-

changed.

252. Examples.
1. Utilize the method of Art. 251 to show that the motion of a particle

describing a circular orbit under a force /(r) directed to the centre is stable

if [3+ c/'(c)//(c)] is positive, c being the radius of the circle. Deduce the

results in Art. 106.

2. Prove that the steady motion with angular velocity w of a conical

pendulum of length I is stable, and that, if a small disturbance is made,
oscillations take place in time

3. A particle describes a horizontal circle of radius r on a smooth para-
boloid of revolution whose axis is vertical and vertex downwards. Prove that,

if it is slightly disturbed, its period of oscillation is

7rV{(r2+ 4a2)/2^a},

where 4a is the latus rectum.

4. A circular wire of radius a and of negligible mass rotates freely about

a vertical chord distant c from the centre
;
a small heavy ring can slide on

the wire without friction. In the position of relative equilibrium the radius

of the circle drawn through the ring makes an angle a with the vertical.

Find the angular velocity with which the wire rotates, and prove that the

length of the equivalent simple pendulum for small oscillations of the ring is

a cos a{c-{-a sin a)/(c+ a sin a (1 + 3 cos^a)}.
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Prove also that, if the wire is made to rotate uniformly, the period of

small oscillations is the same as for a simple pendulum of length

a cos a{c-\-(i sin d)\{c+ a sin^a).

[In the second case energy is expended in keeping up the angular velocity

of the wire, and an equation of motion of the ring must be formed by

resolving along the tangent to the circle. The angular velocity in relative

equilibrium is the same as before.]

5. An elastic circular ring of mass m and modulus of elasticity X rotates

uniformly in its own plane about its centre under no external forces. Prove

that, if a is the radius in steady motion, and I is the radius when the ring is

unstrained, the period of the small oscillations about the state of steady
motion is

V{27r^am/X(4a-30}.

253. Illustrative problem. In further illustration of the principles

of Energy and Momentum consider the following problem :

A uniform rod and a particle are connected hy an inextensihle thread

attached to one end of the rod^ the system is laid out straight^ and the

particle is projected at right angles to the thread. It is required to find the

motion when there are no forces.

Let 2a be the length of the rod, I the length of the thread, x the angle

which the thread makes with the line of the rod produced at time t.

Fig. 83.

Consider first the motion of the particle P relative to the centre of mass M
of the rod AB.

Let 6 be the angle which AB makes at time t with its initial direction.

Then the velocity of B relative to M is aB at right angles to AB, and, since

^P makes an angle 6+x ^'^^^ a line fixed in the plane of motion, the velocity

ofP relative to B is l{B+x) perpendicular to BP. The velocity of P relative

to M is the resultant of these two velocities. Its resolved parts along and

perpendicular to AB are accordingly

-l{6-\-x)^mx and aB -\- 1 {6 ^x) cob X'

Now the centre of mass G is always at the point dividing MP in the

ratio of the masses of the particle and the rod; and, if these masses are jo

and m respectively, the velocity ofM relative to O has components

-4-^(^ + x)sinx and --^{ad+ l{e-\-x)co^x]
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along and perpendicular to AB, and the velocity of F relative to G has

components
^

l{e+x)smx and -^-^ {ae+ 1(6+ x) cos x}
m-\-p

"^ '^ m+p
in the same directions.

Hence the moment of momentum in the motion relative to 6^ is

or ^aa^e+^[{a+ lcoax)(^+ {^+ C'COBx)l{0+ x)];

also twice the kinetic energy in the motion relative to G is

^a2^2+ _^?£_
[a2^2+^2 (^+^)2+ 2a;^ {O+x) cos x]-

Now the centre of mass moves with uniform velocity in a straight line
;

and thus the kinetic energy of the whole mass placed at the centre of mass

and moving with it is constant, and the moment about any fixed axis of the

momentum of the whole mass placed at the centre of mass and moving
with it is also constant. Also the kinetic energy of the system and its

moment of momentum about any fixed axis are constants. Hence the

moment of momentum in the motion relative to G and the kinetic energy
in the same relative motion are constants.

Let V be the velocity with which the particle was initially projected at

right angles to the thread
;

then the initial values of the moment of

momentum and kinetic energy in the motion relative to G are

{a-{-l)Vmpl{m-\-p) and \V^mpl{m->rp).

Hence throughout the motion we have the equations

\{\-^mlp)aW +a^(a-|-Zcosx) + ^(^+x)(^+ «cosx)= (a+ 0^>l
l{\-\-mlp)a^^+ aW+l'^{6+xf-\-^aie{e+x)ooBX= V^- ^

254. Kinematical Note. It is sometimes convenient in calculating
the velocities of points in a connected system to use the coordinates of a

point referred to axes which do not retain the same directions. In the

problem of Art. 253 we might have obtained the velocity of P relative to M
by taking as axes lines through M along and perpendicular to AB. When
we wish to calculate the velocity of a point in this way we have to attend

to the fact that the component velocities parallel to the moving axes are

not the differential coefficients (with respect to the time) of the coordinates

referred to the same axes.

Consider the motion of a particle P whose coordinates at time t are x', y'

referred to rectangular axes rotating in their own plane about the origin ;

let be the angle which the axis of x' makes with a fixed axis of x in the

plane at time U and ^, y the coordinates of the particle referred to fixed
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rectangular axes of x and y. Also let u^ v be component velocities of the

particle parallel to the axes of x' and y'.

Fig. 84.

We have x= of cos
(f>
—

7/ sin (f), y= y' cos ^+^ sin 0,

whence x= {x'—y'<p)cos(j)-{^'+x'^)8m(f),'\

y={y'+x'4>) cos
(fi 4- {^''-2/'4>) sin 0. J

Also x=ucos(f)
—
vsm(f), y= vcos(f)+ usin(f).

Hence we find u=x'—y'<j), v=y'-{-x'^.

Now, if we write co for
</>,

w is the angular velocity of the moving axes,
and the resolved parts parallel to the moving axes of the velocity of the

particle whose coordinates are x', y' are

cd — toy' and y'+ (nof.

We may prove in precisely the same way that, if a, 3 are the resolved

parts of the acceleration of P parallel to the axes of x\ y\ then

a—u — oiV and ^= v-\-a)ii.

In the problem of Art. 253, we take axes through M along and perpen-
dicular to A B. Then the angular velocity of the moving axes is B, and the

coordinates of P are a+ ^cos;^ and ^sin;^. From these the component
velocities of P relative to M which were obtained otherwise in that Article

might be deduced.

255. Examples.
1. Two uniform rods AB, BG^ freely jointed at B, move in one plane

under no forces
;

it is required to find the motion.

We may use the figure and notation of Art. 253, taking P to be the

middle point of BC, and writing m and p for the masses of AB and BC and

2a and 21 for their lengths. We have to add to the expression given in that

Article for the moment of momentum in the motion relative to G the term

ipl^{B+x), and to the expression there given for the kinetic energy in the

motion relative to O the term ^pl^{0+x)^. The energy equation and the

equation of constancy of moment of momentum determine the motion.
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Note. It is important to observe that the moment of momentum of either

rod, or of the system, about B is not constant, although the hne of action of

the resultant force acting on either rod passes through B. If the moment of

momentum of BC^ say, about B at the instant t is denoted by A, the moment
of the kinetic reaction of BG about B is not equal to A. To see this consider

the meaning of h. Let be any fixed point in the plane of motion, and let

R be the moment of momentum of BC about at the instant ?, H' the

moment of momentum of BC about at the instant t. Since is a fixed

point, the moment of the kinetic reaction of BC about at the instant t is

H (cf. Art. 157), that is to say it is

H'-Hhm
., . .

f'-f=0 t-t

If B coincides with at the instant
i,
h is identical with H at this instant,

and H vanishes at this instant. At the instant t\ B coincides with some
other point 0'

; and, if the moment of momentum of BC about B (or 0') at

this instant is A', then what we mean by h is

K-h
i'-t^f) I -t

This is not equal to H because h! is not equal to H'
,
h' being the moment of

momentum about 0', and H' the moment of momentum about 0, at the

same instant t'. The instantaneous vanishing of ^ does not involve the

constancy of h. On the other hand H may be a maximum or a minimum
at the instant t, but the instantaneous vanishing of H does not involve the

constancy of H.

In reference to this discussion it should be observed that, when we take

moments about an axis, the axis is a geometrical line which is always a
"
fixed

"
line. If the axis about which we take moments is defined by some

line of a moving body, then we are taking moments about a fixed axis with

which the moving line coincides at an instant.

2. Two equal circular rings, each of radius a and radius of gyration k

about its centre, are freely pivoted together at a point of their circumferences,
so that their planes are parallel, and the rings are so thin they may be

regarded as in the same plane. The system being at rest on a smooth table

with the pivot in the line of centres, the pivot is struck by a blow perpen-
dicular to the line of centres, so that the centre of mass of the system starts

to move with velocity V. Prove that the angle 6, which either radius through
the pivot makes with its initial direction at any subsequent time, is given

by the equation

^2(F+ a2sin2^)^2=F2a2.

3. A uniform straight tube of length 2a contains a particle of equal mass,

and, the particle being close to the middle point, the tube is started to

rotate about that point with angular velocity o). Prove that, if there are no

external forces, the velocity of the particle relative to the tube when it leaves

it is aa)v/|.
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4. Two horizontal threads are attached to a circular cylinder of negligible

mass whose axis is vertical, are coiled in opposite directions round it, and carry-

equal particles which are initially at rest on two smooth horizontal planes.

One of the particles is struck at right angles to its thread so that it starts

oflf with velocity V and its thread begins to unwind from the cylinder.

Prove that, if the initial length of the straight portion of the thread

attached to the particle struck is c, its length r at time t is given by the

equation
r^= c'^ + 2aVt+ ^V^fi,

the cylinder being free to turn about its axis.

5. A thread is attached to a rigid cylinder of radius a and moment

of inertia / about it^ axis, and carries a particle of mass m which is free to

move on a smooth plane perpendicular to the axis, while the cylinder is free

to rotate about the axis. The particle is projected on the plane at right

angles to the thread with velocity V so that the thread tends to wind up
round the cylinder. Prove that the length r of the straight portion at any

subsequent time is given by the equation

(/+ ma2) r^p= {/+m {r^+ a^- c2)} a'^ V\
where c is the initial value of r. Hence prove that

^2 - c2= 2a Vt+ VH'^ml{M+ m),
where M^I/a^.

6. A cone of vertical angle 2a is free to turn about its axis, and a smooth

groove is cut in its surface so as to make with the generators an angle /3.

A particle of mass m moves in the groove, and starts at a distance c from

the vertex. Prove that, if at any subsequent time the particle is at a

distance r from the vertex and the cone has turned through an angle 0,

r and 6 are connected by the equation

(/+wc2sin2a)e2^'^"''^°^^ =(/+mr2 sin2a),

where / is the moment of inertia of the cone about its axis.

7. An elliptic tube of latus rectum 2?, eccentricity e, and moment of

inertia / about its major axis, is rotating freely about its major axis, which

is fixed, with angular velocity Q, and contains a particle of mass m which is

attracted to one focus by a force /xm/(distance)2 and is initially at rest at the

end of the major axis nearest the centre of force. Prove that, if the particle

is slightly displaced, and if fjie{l+ey<PQ,% it will come to rest relatively to

the tube at an end of the nearer latus rectum, provided that

Sin= 2fi7)ie{l/7nP+ llI).

8. Four equal uniform rods are freely hinged together so as to form a

rhombus of side 2a and the system rotates about one diagonal, which is fixed

in a vertical position, the highest point of the rhombus being fixed and the

lowest being free to slide on the diagonal. Find the angular velocity in

the steady motion in which each rod makes an angle a with the vertical,

and prove that the period of the small oscillations about this state of steady

motion is the same as for a simple pendulum of length

^acosa(l+3sin2a)/(l+3cos2a).



255-258] MOVING chain 803

Motion of a string or chain.

256. Inextensible chain. When a chain moves in a straight

line, the condition of inextensibility is that all the particles of it

have at any instant the same velocity. When the chain forms

a curve, and moves so as to be in contact with a given curve,

the condition takes the form :
—The velocity of a particle, resolved

along the tangent to the curve at the position of the particle,

is the same for all the particles.

257. Tension at a point of discontinuity. It often

happens that two parts of a chain move in different ways, and

that portions of the chain are continually transferred from the

part that is moving in one way to the part that is moving in

the other way. The tension at the place where the motion

changes is then to be determined by the principle that the

increase of momentum of a system in any interval is equal to

the impulse of the force which acts upon it during that interval.

(Art. 162.) This principle is to be applied to a hypothetical

particle of the chain, supposed to pass during a very short interval

from one state of motion to the other, and the mass of the

hypothetical particle is to be taken to be the mass of the part

of the chain which changes its motion during the interval.

(Cf. Art. 189.) This principle is illustrated in the following

problems.

It is important to observe that discontinuous motions such as

are considered here in general involve dissipation of energy.

258. Illustrative Problems.

I. A chain is coiled at the edge of a table with one end just hanging over.

It is required to find the motion.

At any time t let x be the length which has fallen over the edge, T the

tension at the edge in the falling portion. There is no tension in the part

coiled up. Let m be the mass per unit length of the chain.

During a very short interval A^ a length of the chain which can be taken

to be i'Ai is set in motion with velocity x^ and the impulse of the force by
which it is set in motion can be taken to be TM. Hence we have the

approximate equation
Tt:d=^mxM .x^

which passes over into the exact equation

T=mx^.
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The equation of motion of the falling portion is therefore

mxx=mxg - inx^, ^
Writing v for i?, this is

dv
,

„

or
^^(.r2i;2)

=
2^A-2.

Integrating, and observing,that v and x vanish together, we have

This equation gives the velocity of the falling portion when its length is x.

The time until the length is ^ is

[^
dx _ /Ox

The potential energy lost while the free end falls through x is \mgx\ and
the kinetic energy gained is ^mxv^ or ^mgx^ ;

and the amount of energy dissi-

pated in the same time is ^mgx^.

II. A chain, one end of which is held fixed, is initially held with the other

€nd close to thefixed end, and the other end is then let go.

Let 2^ be the length of the chain, m the mass per unit length, l-{-x the

length of the part that has come to rest at time t, T the tension
^ at its lower end.

The free end has fallen through 2.r under gravity, so that

2x=\gt'^, x= hgt,

and the falling portion is free from tension.

During a very short interval At a length approximately equal
to ^gt . At passes from motion with velocity gt to rest, so that

an impulse, which is approximately equal to TAt, destroys an
amount of momentum which is approximately equal to hmgH^At.

P Hence we have the exact equation

Fig. 85. T=inigH\

Thus the motion and the tension at any time are determined.

259. Constrained motion of a chain under gravity. We
shall suppose the chain to be in a rough tube, or in a groove cut

on a rough surface, so that the line of it is a given curve. We
shall take this curve to be in a vertical plane.

Let s be the distance, measured along the curve, of a point P
of the g^urve from a fixed point, p the radius of curvature of the

xmrfe at P, </>
the angle which the normal to the curve at P

makes with the vertical. Let P' be a point near to P, for

which 5, (/),
become 5 + As, </> + A</>. Between P and P' we may

B):
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imagine a hypothetical particle of mass mAs. Let v be the velocity

of this particle, which we may
take, with sufficient approxima-

tion, to be directed along the

tangent to the curve at P. We
may regard the particle as

moving under the tensions T and

T+AT, which we may take to

be directed along the tangents
at P and P\ the pressure of the

curve, which we may take to be

directed along the normal at P,

and the friction, which we may
take to be directed along the

tangent at P. We denote the pressure and friction by RAs and

fjuRAs, so that R is the pressure per unit of length, and fi is the

coefficient of friction.

We form equations of motion by resolving along the tangent
and normal at P. The equations are

mAs . t) = mgAs . sin <^ + (jT + AT) cos A^-T— /jlRAs,

mAs .
- = mgAs . cos + (Th- AT) sin A</)

— RAs.

On dividing by As, and passing 'to the limit, we have the

exact equations of motion

dT
mi) = mg sin <^ + -j A'-P (1)>

Fig. 86.

(2).

(

v'^ Tm — = mq cos (i>-\ R
P P

If the curve is smooth we omit fxR from the first equation.

If, further, the ends of the chain are free, the velocity v can be

determined by means of the energy equation, and the tension can

be found by substituting for v in the equation (1). When the

tension is known the pressure at any point can be found from the

equation (2).

260. Examples.
1. A uniform chain of length a is laid out straight on a smooth table,

and lies in a line at right angles to the edge of the table. One end is put just

L. M. 20
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over the edge. Prove that, if the edge of the table is rounded off, so that the

part of the chain which has run off at any time is vertical, the velocity of the

chain as the last element leaves the table is »J{ag).

2. A uniform chain of length I and weight W is suspended by one end

and the other end is at a height h above a smooth table. Prove that, if the

upper end is let go, the pressure on the table as the coil is formed increases

from 2h W/l to (2^ + 3^) W/l.

3. A uniform chain AB is held with its lower end fixed at B and its

upper end J^ at a vertical distance above B equal to the length of the chain.

The end A is released, and at the instant when it passes B the end B is also

released. Prove that the chain becomes straight after an interval equal to

three-quarters of that in which A fell to B.

4. Two uniform chains whose masses per unit of length are mi and m2
are joined by a thread passing over a fixed smooth pulley. Initially the

chains are held up in coils and they are released simultaneously without

causing any finite impulse in the thread . Prove that, until one of the chains

has become entirely uncoiled, the thread slips over the pulley with uniform

acceleration

g {s^m^
-
s!mo)l{s!'nh + \/^2),

and that the portions of the chains which have become straight increase

during the interval with uniform accelerations

^g^m^lis/mi + ^m^) and 2g^mil{>Jmi-\-^m2).

5. A uniform chain of length I and weight W is placed on a line of

greatest slope of a smooth plane of inclination a to the horizontal so that

it just reaches to the bottom of the plane where there is a small smooth

pulley over which it can run off. Prove that, when a length x has run

off, the tension at the bottom of the plane is

W{\-&ma)x{l-x)IP.

6. A uniform chain is held with its highest point on the highest generator

of a smooth horizontal circular cylinder, and lies on the cylinder in a vertical

plane, subtending an angle /3 at the centre of the circular section on which it

lies. Prove that, when the chain is let go, the lower end is the first part of

it to leave the cylinder, and that this happens when the radius drawn through

the upper end makes with the vertical an angle </> given by the equation

J^ cos
{<f)

+ ^) = sin /3 -f sin
- sin

(</> +^).

261. Chain moving freely in one plane. Kinematical

equations. At any instant the chain forms a curve. Let A be

the position on this curve of a chosen particle, P that of any

other particle, and let s be the arc of the curve measured from

A to P. If the chain is inextensible we may regard 5 as a

parameter specifying the particle which is at the point P at
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time t Let
</>
be the angle which the tangent at P to the curve,

drawn in the sense of increase of s, makes with a fixed axis of x

in the plane ; <^
is estimated as the angle through which a line

coinciding with the axis of x must turn in the positive sense so as

to coincide with the tangent. Also let p be the radius of curva-

ture of the curve at P.

We resolve the velocity of the particle of the chain which is

at P at time t into components u, v, of which u is directed along
the tangent to the curve at P in the sense of increase of s, and v

is directed along the normal. The sense of the normal is taken

Fig. 87.

to be such that, if the curve is described in the sense of increase

of s, the normal is drawn towards the left hand. If this sense

is that of the normal drawn towards the centre of curvature,
r)fh

-^ is positive; otherwise, it is negative. (See Fig. 87.) The

absolute value of ^, without regard to sign, is -.

Let X, y be the coordinates of P, i.e. of the position of the

particle specified by s at time t We have the equations

,
dx

in which the differential coefficients are partial, s and t being

independent variables. From these equations we have

d^y _ d<f> dx d^x _ d(f> dy
d^^dsds' d¥~~dsds'

20—2
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Further the direction cosines of the normal drawn in the sense

nil nX
already chosen are —^ and ^ .

The velocity of the particle specified by s at time t has com-

ponents u and V in the stated directions, and also has components

—
, ^ parallel to the axes of coordinates. We have therefore the

dt ot

equations

_dxdx dydy _ _dydx dx dy

Since (^) +(o^) =1» we have the equation

dt\\ds}
^^(dy^^ 0,

Kds.

which is the same as

dx d^x dy d'^y _ ^
ds dsdt ds dsdt

'

or

9 fdx dx dy dy\ d^x dx d^y dy _^
ds\ds dt ds dt) ds^ dt ds^ dt

or
du dd) ^

ds OS

This equation, combined with the statement that s and t are

independent variables, expresses the condition of inextensibility

of the chain.

The angular velocity ^ ,
with which the tangent to the curve

at the position of the particle specified by s is turning, may be

expressed in terms of u and v. We have the equation

^ = — sin ^ ^ (cos (j)) + cos
(/>^ (sin 0),

or

d(j) _ dy d^x dx d^y

dt ds dsdt ds
^ '^'

__d j dydx dx dy\ d'^y dx d'^x dy

'~ds\dsdi'^dsdi)'^ds^di~'d^di

_ 6 / dydx dx dy\ d<f> (dx dx dy dy\

~ds\dsdi'^dsdi)'^ds[dsdi'^dsFt)
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or

dt
~

ds ds'

The two equations

ds ds
'

ds ds dt

are the kinematical conditions which must be satisfied at all

points of the chain throughout the motion.

Note. If the chain is extensible, and Sq is the natural length of the

portion of it that is contained between a chosen particle A and any other

particle F, the particle P is specified by the parameter Sq, and we may take

Sq and t as independent variables. We may then prove in the same way
as in the above Art. that the following kinematical equations must hold at all

points of the chain :

where e is the extension of the chain at the particle P.

262. Chain moving freely in one plane. Equations of

motion. We form the equations of motion by resolving the

kinetic reaction of a small element of the chain in the directions

of the tangent and normal to the curve which it instantaneously

forms. The component accelerations in these directions are

obtained by the method of Art. 254 in the forms

du d(b dv dd)

dt dt' dt^ dt

The resultant of the tensions at the ends of the element is obtained

in the same way as in Art. 259. If S and iV denote the component
forces per unit mass applied to the chain in the directions of the

tangent and normal to the curve, the equations of motion are

fdu dct>\ dT^ ^
'^[Vt-''dt)

=
-ds^'^^'

-^t^^y^fs--^^
where m denotes the mass per unit of length.

263. Invariable form. Interesting cases of the motion of a chain

arise in which the shape of the curve formed by the chain is invariable, but

the chain moves along the curve. In discussing such cases it conduces to
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clearness to imagine the chain to be enclosed in a fine rigid tube, of the shape
in question, and to move along the tube while the tube moves in its plane. The

velocity of any point of the tube is then determined as the velocity of a point
of a rigid body moving in two dimensions, and the velocity of any element of

the chain will be found by compounding a certain velocity lu relative to the

tube with the velocity of any point of the tube. The direction of w is that

of the tangent to the line of the tube at the point, and its magnitude is

variable from point to point in accordance with the kinematical conditions.

Taking now the special case of a uniform chain moving under gravity,
we show that the chain can move steadily in the form of a common catenary,

the curve retaining its position as well as its form. The velocity w is in this

case the velocity of an element of the chain, and, with the notation of Art. 261,

we have
u= w^ v= 0.

The kinematical conditions become

dw ^ d(b deb

so that the chain moves uniformly along itself.

The equations of motion of Art. 262 are satisfied by

T= mgc sec
(/>
+ mw^^

the curve being the catenary s= c tan
</>.

264. Examples.

1. Prove that any curve which is a form of equilibrium for a uniform

chain under conservative forces is a form which the chain can retain when

moving uniformly along itself under the same forces, and that the tension is

greater in the steady motion than in equilibrium by mvfi^ where m is the

mass per unit length of the chain, and w is the velocity with which the chain

moves along itself.

2. A uniform chain moves over two smooth parallel rails distant 2a apart
at the same level and is transferred from a coil at a distance h vertically below

one rail to a coil at a distance h-^h vertically below the other. Prove that

the portion between the rails can be a common catenary, provided that the

velocity of the chain along itself is s]{gh).

3. A uniform chain moves in a plane under no forces in such a way that

the curve of the chain retains an invariable form which rotates about a fixed

point in the plane with uniform angular velocity w, while the chain advances

relatively to the curve with uniform velocity F. Prove that the general (/?, r)

equation of the curve must be of the form

(^+ 2F/a>)r2=ap+ 6,

where a and h are constants.
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4. A uniform chain falls in a vertical plane under gravity. Prove that

the square of the angular velocity of the tangent at any element is

7-

5. A uniform chain hangs in equilibrium over a smooth pulley ;
one end

is fixed to the extremity of the vertical diameter, and portions hang vertically

on both sides. Prove that, if the end is set free, the distance y of the lowest

point from the horizontal diameter during the first part of the motion satisfies

the equation

where I is the length of the chain and 2c is the circumference of the circle.

6. A uniform chain of length 2L and mass 2Z/i has its ends attached to

two points A, C, and passes over a smooth peg B between A and C and in

the same horizontal line with them, the points A, B, C being so close together
that the parts of the chain between them may be considered vertical. Elastic

threads of natural lengths I and l' and moduluses X and X' are fastened to

points P and F' of the chain on opposite sides of B and their other ends are

fixed to points and 0' vertically below F and F'. The system oscillates so

that the threads are always stretched, and the points F and F' are never for

any finite time at rest. Prove that the time of a complete oscillation is

27r sJ{Lll'txl{\l'+ \'l- fxgll')}.

7. A fine elliptic tube is constrained to rotate with uniform angular

velocity a> about its major axis which is vertical, and contains a uniform

chain whose length is equal to a quadrant of the ellipse. Prove that, if

0)2= 4^/^, where I is the latus rectum of the ellipse, the chain will be in

stable relative equilibrium with one end at the lowest point.

8. A rough helical tube of pitch a and radius a is placed with its axis,

vertical, and a uniform chain is placed within it, the coefficient of friction

between the tube and the chain being tan a cos e. Prove that, when the chain

has fallen a vertical distance ma, its velocity is ^{ag sec a sinh 2fi)j where
/a

is;

determined by the equation

cot ^e tanh /x
= tanh (/x sin e+^m cos a sin 2e).

265. Initial Motion. When the chain starts from rest in

a position which is not one of equilibrium the initial velocities are

zero, and the equations of motion are simplified by the omission of

d(l>/dt.
At the same time the kinematic conditions are altered in

form. Since ^-^ vanishes initially, the result of differentiating

equation



312 RIGID BODIES AND CONNECTED SYSTEMS [CHAP. IX.

We may write the equations of motion in the form

du ^ IdT \

^ = o H ^- ,

ct, m OS

dt m ds

Differentiating the first with respect to 5, multiplying the second

by -^ ,
and subtracting, we obtain an equation

ds \m ds J m p^ ds ds
'

This equation serves to determine the initial tension at any

point of the chain. To determine the arbitrary constants which

enter into the solution of the equation we have to use the condi-

tions which hold at the ends, or at other special points, of the

chain. If, for example, one end of the chain is guided to move on

a given curve, the acceleration of the extreme particle must be

directed along the tangent to the curve.

Cases arise in which this method cannot be applied. In the case of a

heavy chain with an end which moves on a smooth straight wire, not perpen-

dicular to the tangent at the end, the equation of motion of an element at

the end, found by resolving along the wire, cannot be satisfied if the accelera-

tion of the element is finite (not infinite) and the tension is finite (not zero).

The conclusion in such cases must be that the chain becomes slack at the

end, and it may become slack throughout. In such cases it is usually con-

venient to suppose the end of the chain to be attached to a ring which can

slide on the wire, and to take the mass of the ring, at first, to be finite;

when the problem has been solved with this condition we can pass to the

case above described by supposing the mass of the ring to be diminished

without limit.

266. Impulsive Motion. The equations of impulsive motion

of a chain which is suddenly set in motion are obtained at once

by the method of Art. 262. We have only to regard S and N as

the resolved parts of an impulse, reckoned per unit of mass,

applied to an element, and T as impulsive tension. The equations

are

ds

ds
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The kinematical conditions are the same as those which were

obtained in Art. 261 for a chain in continuous motion.

In case no impulses are applied to the chain except at its ends,

8 and iV vanish, and we can eliminate u and v, obtaining an

equation for T in the form

ds \m ds ) mp^

The solution of this equation subject to the given terminal

conditions gives the impulsive tension at any point of the

chain.

267. Examples.
1. In the initial motion of a chain under gravity prove that the tension

satisfies the equation
a /I dT\ T
8»\m ds ) mp^~

2. A uniform chain hangs under gravity with its ends attached to two

rings which are free to slide on a smooth horizontal bar. Prove that, if the

rings are initially held so that the tangents to the chain just below them

make equal angles y with the horizontal, and are let go, the tension at the

lowest point is changed in the ratio 2M' : 2M'-{-Mcot^y, where Mis the mass

of the chain, and M' that of either ring. [Cf. Ex. 5 in Art. 207.]

3. If the ends of the chain of Ex. 2 are held fixed, and the chain is severed

at its vertex, prove that the tension at a point where the tangent makes an

angle with the horizontal immediately becomes

^ Mgcf) sec <^ cos yl{cos -y+ y sin y).

4. Impulsive tensions Ta , Tp are applied at the ends of a piece of chain

of mass M hanging in the form of a common catenary with terminal tangents

inclined to the horizontal at angles a and /3. Prove that the kinetic energy

generated is

1 tan a- tan i3 f(^a cos a -3^/3 008/3)2 ._. „ . rr 9 - a a\\- ^ -V- -^ ^-^+ ( Ta^ sm a COS a -Tb^ am ^ COS ^)y.
z M [ a—p )

MISCELLANEOUS EXAMPLES.

1. A rod of length 2a is held in a position inclined at an angle a to the

vertical, and is then let fall on a smooth horizontal plane. Prove that, if

there is no restitution, the end of the rod which strikes the plane will leave it

immediately after impact provided that the height through which the rod falls

is greater than

^g a sec a cosec^ a (1 + 3 sin'-^ a)^.
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2. A circular cylinder rocks between two parallel rails whose distance

apart is less than the diameter of the cylinder. Prove that the greatest

heights of the axis above its equilibrium position diminish in geometrical

progression.

3. A heavy ring of radius a rolls with its plane vertical down a piano

of inclination a. On this plane there is a series of pointed obstacles which

are equal and at equal distances from each other, and are sufficiently high to

prevent the ring from ever touching the plane. Prove that, if the ring starts

from rest in a position in which it is in contact with two obstacles, and if

there is no slipping, its angular velocity o as it leaves the (7i + l)th obstacle is

given by
aa)2= 2^ sin a sin y cos* y (

1 - cos*" 7)/( 1 — cos* y),

where 2y is the angle subtended at the centre by two adjacent obstacles

when the ring touches both.

4. A circular disk, with n spikes projecting from it in its plane at equal

angular intervals, is projected with its plane vertical so as to strike a rough
horizontal plane (zero restitution) in such a way that the line joining the

point of contact to the centre makes an angle tt/ti with the vertical. Show

that, if at the instant the angular velocity is o, and the velocity of the end

of the spike at right angles to the spike is F, the number of spikes which

strike the plane is the greatest integer in the value of m that is given by the

equation
(1
- 2a2^

- 2 sin2 tt/w)*" (Fco + a F)= 2^ ^{ag) sin 7r/27i,

where a is the radius of the circle on which the ends of the spikes lie, k is the

radius of gyration about the end of a spike, and the radius of the disk is less

than a cos tt/w.

5. A uniform ball moving without rotation with velocity F strikes the

ground at an angle a with the vertical, and subsequently meets a bat whose

plane is vertical and perpendicular to the plane of the ball's motion, and

which is kept moving in the vertical plane of the ball's motion with a uniform

velocity in a direction making a given angle with the horizontal. Prove that,

after striking the bat, the ball will descend if the vertical velocity of the bat

is greater than

|P^cosa(e+ f tana),

gravity being neglected, and e being the coefficient of restitution between the

ball and the ground ;
the bat and the ground are supposed to be sufficiently

rough to prevent sliding.

6. A sphere of radius a rolling on a rough table with velocity F comes

to a slit of breadth h perpendicular to its path. Prove that, if there is no

restitution, the condition that it should cross the slit without jumping is

72 ;> -L^Q-ga (1
- cos a) sin2 a (14

- 10 sin2 a)/(7
- 10 sin2 a)\

where 6= 2a sin a and 1 Iga cos a> F2+ lO^a.

7. A sphere (centre 0) with its centre of gravity at a point O distant c

from is dropped vertically upon a plane of inclination a to the horizontal
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so that G is above and GO is normal to the plane. Prove that, if the plane
is rough enough to prevent sliding, the kinetic energy lost in the impact is to

that of the sphere before impact in the ratio

(l-e2)cos2a+ (>J:2sin2a)/{F+ (a+ c)2} : 1,

where 1c is the radius of gyration of the sphere about an axis through G at'

right angles to GO, and e is the coefficient of restitution.

8. A circular disk of mass J/, radius a, and moment of inertia MK'^ about

its centre, spinning with angular velocity Q. impinges normally on a rough
rod of mass m. Prove that the angular velocity immediately after impact is

{M+m)K^Ql{{M+m) K^+ma^}, there being no restitution.

9. Two rough circular disks of masses Mi, J/2, radii ai, a2, and radii of

gyration ki, h^ about their centres, spinning about their centres with angular
velocities 12i, ^2 impinge directly, the relative velocity of the centres before

impact being V. Prove that, if there is no restitution, the kinetic energy-
lost in impact is

1 ___F2___ 1 (aiQi + a2Q2)^
2 1/Jfi + l/i/2

"^
2 1/J/i (1 + a^lki^) + l/ifa (1 + a^jlc^)

'

10. A sphere of mass m falls vertically and impinges with velocity V
against a board of mass M which is moving with velocity C^ on a horizontal

table. The coefficient of restitution between the sphere and the board is e,

and the friction between the board and the table can be neglected. Prove

that, if the coefficient of friction between the sphere and the board exceeds

2MU'/{'7M-\-2m) (1 + e) F, the kinetic energy lost in the impact is

^m (1
-

e2) V^+mMUy{7M+2m).

11. A ball is let fall upon a hoop, of which the mass is 1/n of that of the

ball
;
the hoop is suspended from a point in its circumference, about which it

can turn freely in a vertical plane. Prove that, if e is the coefficient of resti-

tution, and a the inclination to the vertical of the radius passing through the

point at which the ball strikes the hoop, the ball rebounds in a direction

making with the horizontal an angle tan~i{(l + |^7i) tana-ecota}.

12. A homogeneous sphere is allowed to fall on one end of a uniform

horizontal beam balanced on a horizontal axis through its centre of mass.

Prove that the sphere will not rebound unless the mass of the beam is at

least three times as great as that of the ball, the coefficient of restitution

being unity.

13. A plank of length 2a is turning about a horizontal axis through its

centre of gravity, and a particle strikes the rising half, rebounds, and strikes

the other half, the coefficient of restitution being unity. Prove that, if the

motion indefinitely repeats itself, the inclination of the plank to the horizontal

must never exceed a where / (tt -f 2a) tan a = ma^, /being the moment of inertia

of the plank about its axis, and m the mass of the particle.

14. A wedge of mass M is placed on a table, and a uniform sphere
of mass m is dropped upon it so that its centre falls in a vertical plane
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through the centre of mass of the wedge. The friction between the wedge
and the table is negligible, but that between the wedge and the sphere is

great enough to prevent sliding. Prove that, if there is no restitution, the

kinetic energy is diminished by the impact in the ratio

(M+m)sin^a : if+msin'^a+ f (if+m),
where a is the angle which the face on which the sphere is dropped makes
with the horizontal.

15. Two equal rigid uniform laminae, each in the shape of an equilateral

triangle, rest with two edges in contact. They are struck at the same instant

with equal blows F in opposite directions bisecting the common edge and one

other edge of each, so that they are pressed together and begin to slide one

over the other. Find the velocity v of the point of application of either

blow resolved in its direction, and prove that, if
/x

is the coefficient of friction,

the kinetic energy generated in the system is (l-/n^3)Py, assuming no

restitution.

16. A smooth oval disk is rotating with angular velocity « on a smooth

horizontal plane about its centre of mass, which is fixed, when it strikes a

smooth rod of mass m at the middle point of the rod. Prove that the new

angular velocity is {I—'mep^)ail{I+mp^), where I is the moment of inertia of

the disk about an axis through its centre perpendicular to its plane, p the

perpendicular from the centre of mass to the normal at the point of contact,

and e the coefficient of restitution.

17. A small smooth ring of mass m can slide on the side ^jB of a square
ABCD formed of four rigidly connected rods. An impulse R is applied at C
in direction DC. Prove that the initial velocity of the ring is

Racj{mc^ + {M+m) F},

where 2a is the length of a side, c is the distance of the ring from the middle

point o{ AB, M is the mass of the square and k its radius of gyration about

its centre.

18. A uniform rod of length 2a moving in a vertical plane falls on a

horizontal smooth plane so as to make with it an angle 6 at the instant of

impact, and there is perfect restitution. Prove that, if at the instant of

impact the rod is turning about any point in the vertical line through that

point of the rod which is distant a(l+Jsec2^) from the lower end, the

angular velocity a and the vertical component of the velocity of the centre

of mass will be immediately reversed, and further that if 3^ cos d= aa)^lg the

subsequent impacts on the plane will take place at equal intervals of time

2^/0).

19. A smooth uniform cube of side 2a and radius of gyration k about an

axis through its centre is free to turn about an axis which is horizontal and

passes through the centres of two opposite faces, and the cube is at rest with

two faces horizontal. An equal cube falls without rotation and with velocity

F, and strikes the upper face of the first cube along a line parallel to the

fixed axis and at a distance c from the vertical plane through it. Prove that,



MISCELLANEOUS EXAMPLES 317

if e is the coefficient of restitution and a the angle which the lower face of

the falling cube makes with the horizontal, the angular velocity imparted to

the first cube is c F(l + e)l{c^+F -\-a^-a^ sin 2a).

20. Two uniform rods AB, BC of masses w, m! lie on a smooth table

inclined to each other at an angle a
; they are jointed at 5, and the end A

turns on a pivot fixed to the table. If ^5 is struck at the middle by a blow

P at right angles to AB the kinetic energy of the resulting motion is

If there is a smooth peg touching BC at its middle point on the proper

side to give constraint the kinetic energy is

^ P2/(;|m+ 4m' - I m' cos2 a).

21. Two uniform rods AB^ BC hinged together at B are moving about

the middle point of ^Cas instantaneous centre of rotation, with no motion

relative to each other, when a point in one of the rods is suddenly fixed,

ABC being at the moment a right angle. Prove that, if after impact the

relative motion of the rods is initially zero, the point must be the hinge.

22. Two lengths 2a and 26 are cut from the same uniform rod of mass M
and freely jointed at one end of each. The rods being at rest in a straight

line, an impulse MVis applied at the free end of a. Prove that the kinetic

energy when b is free is to that when the further end of b is fixed in

the ratio (4a + 36)(3a + 46)/12(a+ 6)2.

23. An equilateral triangle, formed of three equal uniform rods hinged at

their ends, is held in a vertical plane with one side horizontal and the opposite

corner downwards. Prove that, if after falling through any height the middle

point of the highest rod is suddenly stopped, the impulsive stresses at the

upper and lower hinges will be in the ratio ^13 : 1.

24. A rectangle, sides 2a and 2b, formed of four uniform rods of the

same material and section, smoothly hinged at the ends, is moving without

rotation on a smooth horizontal plane, when a side of length 2a impinges on

a small rough peg (zero restitution). Prove that, for that side to acquire the

greatest possible angular velocity, the point of impact must be at a distance

a{(36+ a)/(36+ 3a)}^ from its centre. Prove also that the rectangle cannot

begin to rotate as a rigid body unless the direction of motion before impact
makes with the impinging side an angle greater than

_^ a{3b+af{3b+3af^^"^
6 (26+ 3a)

•

25. A rhombus, formed of four equal uniform rods each of length 2a

freely jointed at common extremities, is moving with velocity v in the direction

of one of its diagonals, of length 4a cos a, when the middle point of one of the

front sides is suddenly fixed. Prove that the initial angular velocity of that

side is zero, and that of the adjacent sides is f (v/a) sin a.
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26. Twelve equal rods each of length 2a are so jointed together that

they can be the edges of a cube, and the framework moves symmetrically

through a configuration in which each rod makes an angle 6 with the vertical
;

prove that, if u is the velocity of the centre of mass, the kinetic energy is

^M(^aW+'U^), where if is the mass of the framework, and that, if the frame

strikes the ground when ^= 0, then u is reduced in the ratio

l/(l + ^Vcosec2^).

27. Any number of equal uniform rods are jointed together so as to have

a common extremity and placed symmetrically so as to be generators of a

cone of vertical angle 2a
;
the system Mling with velocity V strikes sym-

metrically a smooth fixed sphere of radius c (no restitution). Prove that the

angular velocity with which each rod begins to turn is

V (c cos a '-' a sin^ a)/(§ a^ sin^ a + c^ cot^ a — ac sin 2a).

28. An infinite number of equal uniform rods are loosely jointed together,

and are in a straight line and at rest when a blow F is struck at the free end

of the extreme rod in a direction perpendicular to its length. Prove that the

impulse exerted at the hinge at the further end of the n^^ rod is

(
-
1)"P 22« sin2« ^ .

29. A set of (27i+ l) equal rods OA, OB, 00, ... each of mass m and

length 2a are freely jointed at 0, and lie in one plane so that any two neigh-

bouring rods are inclined at an angle a, =27r/(2n+ l); an impulse P acts

along OA, and ©i, ©2, ... are the initial angular velocities communicated to the

rods on each side of OA in order. Prove that

0)1 cosec a= 0)2 cosec 2a= . . .
=

| uja,

where u, =|P/{(2?^- 1) m], is the initial velocity of OA.

30. Two equal uniform rods each of length 2a are freely hinged at one

extremity, and their other extremities are connected by an inextensible thread

of length 21. The system rests on two smooth pegs distant 2c apart in a

horizontal line. Prove that, if the thread is severed, the initial angular
acceleration of either rod is

(8a2c
-

1^) gl{%aW+ 32aV/^2 _ 8a2c^).

31. Six equal uniform rods each of mass m are freely jointed and are

kept in the form of a regular hexagon by a thread joining two opposite

comers. The hexagon is in a vertical plane with the highest rod fixed and

horizontal and the thread also horizontal, and a particle of mass p is attached

to the middle point of the lowest rod. The thread is then destroyed. Prove

that jo descends with initial acceleration

(9m+ 3/))^/(10m + 3p).

32. A uniform circular disk is symmetrically suspended by two elastic

cords of natural length c, inclined at an angle a to the vertical and attached

to the highest point of the disk. Prove that, if one of the cords is cut, the

initial radius of curvature of the path of the centre of the disk is

3 cos a.h{h- c)/{c sin 4a -b sin 2a),

where b is the equilibrium length of each cord.
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33. A thin uniform rectangular board, hinged along a line in itself

parallel to one side, is opened out to any angle and placed on a smooth

horizontal plane, so that the cross section of the board made by a vertical

plane perpendicular to the hinge forms two sides of a triangle ABC, of

which the side AB is in the horizontal plane, and the angle C in the hinge.

Find the initial vertical and horizontal accelerations of C, and prove that

it starts to move in a direction making with the vertical an angle whose

tangent is

^ tan A tan B tan ^{A- B).

34. Four uniform rods, two of length 2a and two of length 26, whose

masses are proportional to their lengths, are freely jointed so as to form a

parallelogram. One of the rods of length 2a is free to turn about a pivot at

a distance c from its middle point, and is initially held in a horizontal

position so that the figure is a rectangle, and is let go. Prove that the

initial angular acceleration of each of the horizontal rods is

gc{a+ h)l{c\a+ h)+a'{la+ h)}.

35. Two uniform rods AB, BC, of masses m, m' and lengths 2a, 26, are

freely jointed at B. The end A is fixed
;
and the system is supported by a

string attached to C in a position in which AB, BC make angles a and /3 with

the vertical. Prove that, if the string is cut, the initial angular accelerations

of AB and BC are

I (w + 2m') sin a — 2«i' sin ^ cos {a
— ^)g

Y" {m + 3m')
- 4w' cos^ (a

-
/3) a'

, |(*^^+ ^'^^') sin ^ - 2 (m+ 2m') sin a cos {a-fi) g^^^ '

J^- {m+ Zm')
- 4m' cos2 (a

-
^) h'

36. A uniform rod of length 2a and weight W rests on a rough horizontal

plane with its pressure on the plane uniformly distributed. A horizontal

force P, large enough to produce motion, is suddenly applied at one end

perpendicularly to the length of the rod. Prove that the rod begins to turn

about a point distant x from its middle point, where x is the positive root of

the equation
x^ - (1

-
2P//X W) a\v - 1 Pa^lfi W= 0,

and
/M

is the coefficient of friction.

37. A thin uniform rectangular plank of mass M is suspended from

four points in the same horizontal plane by four parallel chains of equal

length and negligible mass attached to the corners, and a uniform cylinder of

mass m is on the plank with its axis parallel to an edge and its centre of

mass vertically over that of the plank. The whole system is drawn aside

in the vertical plane at right angles to the axis of the cylinder till the chains

make an angle a with the vertical, and is then let go. Prove that the initial

tension of each chain is equal to

I (if+m) (3J/+m) g cos a/{3 {M-\-m)
- 2??i cos^ a}.
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or J J/" (J/"+m) g cos a/{J/+ wi sin^a — mfi sin a cos a},

according as /* the coefficient of friction is greater or less than

(M+m) tan a/(3J/'+m).

38. A uniform circular disk (mass M) rotates in a horizontal plane with

angular velocity a>. Close round it moves a ring of mass m and radius c

rotating about its centre with angular velocity v{<(o). The ring carries a

massless smooth spoke along a radius, and a bead of mass p can move on the

spoke under the action of a force to the centre of the ring equal to

/Li/(distance)2, and the bead is in relative equilibrium at a distance a from the

centre. Prove that, if a slight continuous action now begins between the

disk and the ring, of the nature of friction and proportional to the relative

angular velocity, the distance of the bead from the centre, and the angular

velocity of the ring, will at first increase, and their values after a short time t

will be

and
1/ + ^\ (o)

-
i/)/(«ic2+joa2)

-
4x^2 [X (o)

-
v)l{mc^ -^pa?)] [^jMc^+ l/(wc2 \-pa^)\

where X^ is the frictional couple when the relative angular velocity is 6.

39. A series of 2/1 equal uniform rods, each of mass ?n, are hinged

together and held so that they are alternately horizontal and vertical, each

vertical rod being lower than the preceding ;
the highest rod is horizontal

and can turn freely round its end which is fixed. Prove that, when the rods

are let go, the horizontal component X^r and the vertical component Y2r of

the initial action between the 2rth and the (2r+ l)th rods are given by

X^r^B {-b + ^sl^Y + C (-5-2V6r,

r2r=5'(-5 + 2V6r+^''(-5-2V6n
the constants By C, B\ C being determined by the equations

-^2n=0, r2„=0, X2+ 2Xo=0, 2F2+ 16ro-5m5r=0.

40. A chain is formed of n equal symmetrical rods, each of length 2a

and radius of gyration k about its centre of mass. One end is fixed and the

whole is supported in a horizontal line. Prove that, if the supports are

simultaneously removed, the free end begins to move with acceleration

^ [1 +(-)"
+ 1 sech log (tanh" ^ 6)], where 6= log (a/^).

41. A particle of mass M rests on a smooth table, and is connected

with a particle of mass m by an inextensible thread passing through a hole

in the table. Prove that, if m is released from rest in a position in which its

polar coordinates are a, a referred to the hole as origin and the vertical as

initial line, then in the initial motion

(Jl/+wi) 7^0
= mucosa, a^y=— ^sina,

a (i/"+ m) ro>^
= Zmg"^ sin^a, a^^''=g^ sin a cos a (i/'+ Zm)\{M\ m).

Also prove that the initial radius of curvature of the path of m is

where i?o=>'oj yo=«*<^o, V=ro*^-3ai9o^ yo'^
=

«^o*''+6>=o<^o-
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42. One end of a uniform rod of length 2a and mass m is freely jointed
to a board of mass M at the centre of mass of the board, and the board

is j)laced on a smooth table. The rod is held so as to make an angle a with

the vertical, and is let go. Prove that the initial radius of curvature of the

path of its middle point is

a {JI/2 cos2a+ (if+ w)2 sin2a}
^/M(M+ m^.

43. A garden roller is at rest on a horizontal plane which is rough enough
to prevent slipping ;

and the handle is so held that the plane through the

axis of the cylinder and the centre of mass of the handle makes an angle
a with the horizon. Show that, if the handle is let go, the initial radius of

curvature of the path described by its centre of inertia is

cn~^ (sin2 a+ n^ cos^ a) *,

where (n-l) M{K^+ a^)= ma^,

and c is the distance of the centre of mass of the handle from the axis of the

cylinder, m its mass, and MK^ the moment of inertia of the cylinder about its

axis, the cylinder being homogeneous and of radius a.

44. Two uniform rods of lengths 2a, 26 and masses Ay B are freely hinged
at a common extremity and the other extremity of A is fixed. The rods fall

from a horizontal position of rest. Prove that the initial radius of cm-vature

of the further extremity of B is

2ah {A +BYI{aA'^+h{2A + Bf}.

45. A rough plank of mass M is free to turn in a vertical plane about a

horizontal axis distant c from its centre of mass, and a uniform sphere of

mass m is placed on the plank at a distance h from the axis on the side

remote from the centre of mass, the plank being held horizontal. Prove that,

when the plank is let go, the initial radius of curvature of the path of the

centre of the sphere is 216^/(5
-

11^), where 3={mb — Mc)l{mb + Ma), and Mab
is the moment of inertia of the plank about the axis.

46. Two rods A C, CB of equal length 2a are freely jointed at C
;
the rod

-4(7 is free to turn in a vertical plane about the point A, and the end B of the

rod CB is attached to A by an inexteusible string of length Aa/^'S. The

system being in equilibrium the string is cut. Show that the initial radius

4 /413
of curvature of the path of 5 is a—-

^/ ir '

47. A set of 71 equal rods are jointed together in one straight line and

have initial angular accelerations ©i, wg, ... <Bn ^^ one plane. Prove that, if

one end is fixed, the initial radius of curvature of the path of the free end is

(aiwi + a20)2+ . . . + a„a)„)2/(aiQ)i2 + agtog^ + . . . + «w«n^).

48. A system consists of two equal uniform rods AB, CB and a sphere

of diameter BC equal to the length of either rod. The system is free to

turn about J, the bodies being freely jointed at B and C, and ABCD being

initially a horizontal straight line. Prove that, if the mass of the sphere

is equal to that of either rod, the initial radius of curvature of the path
of D is |i§ AB.

L. M. 21
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49. A number n of uniform isosceles triangular laminae are smoothly

jointed at a common vertex so as to form a pyramid, whose base is a regular

polygon inscribed in a circle of radius a, and whose edges lie on a cone of

vertical angle 2cot~iV(3+sin2 7r/w). Prove that, if the system is placed so

as to rest on a smooth sphere with each of its planes inclined to the vertical

at an angle a[>sin~i (^ cos tt/ti)], the length of the equivalent simple pendu-
lum for its small oscillations is

^a cos a (1 4-8 cos2 a)/(l +2 cos^a).

60. Four equal uniform rods, each of length 2a and weight W, are freely

jointed so as to form a rhombus, and the opposite comers are joined by two

similar elastic threads of equal uustretched lengths and of modulus X. Prove

that, if the system is laid on a smooth horizontal plane and the threads never

become slack, each rod swings about its position of equilibrium like a simple

pendulum of length |^2 WajX.

51. A cubical framework of twelve rods, freely jointed at the corners, is

suspended from a corner, and held in shape by an elastic string occuj^ying the

vertical diagonal. Prove that, if small oscillations take place with the string

remaining vei-tical, their period is the same as that of a simple pendulum of

length §1 {I
—

Iq), where I and Iq are the equilibrium length and natural length

of the string.

52. An elastic circular ring of which the radius when unstrained is a

rests on a smooth surface of revolution, whose axis is vertical, in the form of

a circle of radius r. Prove that the period of the small oscillations in which

each element moves in a vertical plane is the same as for a simple pendulum
of length I, where 1/^

= sin a cos a/(r- a)
— sec a/p, p being the radius of curva-

ture of the meridian curve at a point on the ring, and a the inclination of the

normal to the vertical.

53. An endless flexible and inexteusible chain, of which the mass per

unit length is
/i through one continuous half and / through the other, is

stretched over two equal rough pulleys each of mass M and radius a, which

can turn freely about their centres at a distance b apart in a vertical line.

Prove that the time of a small oscillation of the chain under gravity is

the pulleys being rough enough to prevent slipping.

54. Two equal spheres, each of radius a and moment of inertia / about

an axis through its centre, have their centres connected by an elastic thread

passing through holes in their surfaces, and are set to vibrate symmetrically,

so that the spheres turn through equal angles about their centres and the

thread remains in one plane. Prove (i) that, if in equilibrium the tension of

the thread is T, then the time of an oscillation of small amplitude is

27r ^{I/Ta),
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and (ii) that, if the natural length of the thread is 2a and X is its modulus of

elasticity, then the period of a small oscillation of amplitude a is

a\/\\a) Jo

dd

V(l-isin2^)

[There are no forces besides the tension of the thread and the pressure

between the spheres.]

55. A particle is placed on one of the plane faces of a uniform gravitating

circular cylinder at a very small distance from the centre of the face
; prove

that it will make small oscillations in a period

where a, A, p are the radius of the cylinder, its height, and the density of its

material.

56. A uniform rod rests in equilibrium on a rough gravitating uniform

sphere under no forces but the attraction of the sphere. Prove that, if

slightly displaced, it will oscillate in time

27r?(a2+ ^2)l/ax/(3yTO),

where m is the mass of the sphere, a its radius, and 21 the length of

the rod.

57. A uniform rod of length 2a moves in a smooth fixed tube under

the action of a fixed gravitating particle of mass m at a point distant c from

the tube. Prove that the period of small oscillations is

58. A series of n infinitely long uniform circular cylinders, each of radius c

and mass M per unit of length, is ranged symmetrically round a rigid frame-

work freely moveable about a fixed axis A^ the axis of each cylinder being

parallel to A and at distance a from it. They are attracted by a similar

gravitating fixed cylinder with a parallel axis at a distance h {>a) from A.

Find the positions of stable equilibrium, and prove that the period of small

oscillation about such a position is

where X is the pressure on the axis per unit of length, and the mass of the

framework is neglected.

59. Two equal uniform balls are fixed to the ends of a rod J.^ of

negligible mass which is suspended by its middle point by means of a wire

of such torsional elasticity that the system makes a complete oscillation

about in a horizontal plane in time T. Two equal uniform spheres of

radius a are fixed with their centres at C, D so that AC and BD are each

of length h and are in the same horizontal plane with AB and perpendicular

to it on opposite sides. The attraction of the spheres alters the position of

equilibrium of the balls by a small distance x. Prove that the density of

the spheres is

21—2
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60. Two particles of masses m and m' are attached to the ends of a rigid rod

of negligible mass and of length 21, which is freely moveable about its middle

point. Show that the inclination a of the rod to the vertical when the particles

are moving with uniform angular velocity <» is given by the equation

cos a= (m— m') g/ {(m+ m') aH}.

61. A particle can move in a smooth plane tube which rotates uniformly
with angular velocity a> about a vertical axis. Prove that the time of a small

oscillation about a position of relative equilibrium is

p sin a

p sin a cos'

where p is the radius of curvature at the point of relative equilibrium, a the

angle which the normal at this point makes with the vertical, and a the dis-

tance of the point from the axis.

62. A smooth circular wire is made to rotate uniformly about a vertical

diameter. A bead of mass m can move on the wire, and is attached to a

thread, which passes through a fixed smooth ring at the lowest point of the

circle and supports a body of mass m. Prove that, if a is the angle which the

radius through the bead in steady motion makes with the vertical, the steady
motion is stable or unstable according as

l-6sin2|a-8sin3^a
is negative or positive.

63. A particle describes a horizontal circle in steady motion at a depth d
below the centre of a smooth oblate spheroid of >axes 2a, 26, the axis of

revolution being vertical. Prove that, if the tangent plane at any j)oint of

the circle makes an angle yj^
with the vertical, the velocity is a cot

yjr >J{gd)lh,

and the period of the small oscillations when the steady motion is slightly

disturbed is the same as that of a simple pendulum of length

aHj{a'^ cos2
>//>+ 46^ sin^

^|/).

64. A particle is describing a circle of radius r in a smooth bowl in the

form of a surface of revolution whose axis is vertical. Prove that, if the

particle is slightly disturbed, the length of the equivalent simple pendulum
for the small oscillations is

rp cos a/(r+ 3p cos^ a sin a),

where p is the radius of curvature of the meridian curve and a the inclination

of the normal to the vertical at any point on the horizontal circle.

65. A thread of length I has its ends attached to two points distant o

apart on a vertical axis, and a bead can slide on the thread
;
the system

rotates about the vertical axis with angular velocity a. Prove that, if

the time of a small oscillation about a position of relative equilibrium is

^irsf{A a^
-
Ah'')l2Pg {P + ZA'%

where A = 2gl^l(o^ {l^
-

c^).

I
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66. A particle describes a circle uniformly under the influence of two

centres of force which attract inversely as the square of the distance. Prove

that the motion is stable if 3cos^cos^<l, where d, are the angles which

a radius of the circle subtends at the centres of force.

67. A straight uniform rod passes through a ring on a smooth horizontal

plane, and an elastic thread whose natural length is equal to that of the rod

has its ends fastened to the ends of the rod and its middle point fixed to the

ring. Prove that, if the rod is rotating about its centre with an angular

velocity such that the steady motion is unstable, then if it is slightly dis-

turbed its centre will describe the curve whose polar equation is

(1 -f F/r2) sin2 a=cosh2 (3 sin a),

where B is measured from the apse line, k is the radius of gjTation of the rod

about its centre, and k tan a is the value of r at the apse.

68. A uniform rod of length 2b can slide with its ends on a smooth

vertical circular wire of radius a and the wire is made to rotate about a

vertical diameter with uniform angular velocity <». Prove that the lowest

horizontal position is stable if

69. Four equal uniform rods are freely jointed so as to form a rhombus

ABJDC
; AB, AC a,re connected with a vertical spindle by means of a hinge

at A, permitting free motion in the vertical plane BAC. An elastic thread,

of natural length equal to § of the value which AD has when AB is inclined

to the vertical at an angle a, and of modulus of elasticity equal to twice the

weight of a rod, joins A to D. Prove that, if the system is started to rotate

with angular velocity ©, =sJ{ZglAD\ when each rod makes an angle a with

the vertical the system will move steadily, and that the time of a small

oscillation about the steady motion is

(7r/a>)V(H-3sin2a).

70. A plane lamina of any form has in its surface a flat circular cavity ot

radius a, and it is free to turn about a vertical axis through a point in the

circumference of the cavity. A circular disk of mass m and radius c{<a)
with a smooth face and a rough edge is in the cavity, and the whole system is

rotating steadily about the vertical axis with angular velocity w. Prove that

the length of the equivalent simple pendulum for small oscillations about the

state of steady motion is

g{a-c) {c^+ k^)I^-Amk^a^
ac'o>-^ /+m{F+ (2a-c)2}'

where / is the moment of inertia of the lamina about the axis, and k is the

radius of gyration of the circular disk about a vertical axis through its

centre.

71. A plane tube the equation of which is y'^=f{x) is turning freely

about the axis of symmetry, which is vertical, with angular velocity V(^/c),
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and a particle of mass m is in the tube close to the lowest point. Prove that,

if the radius of curvature of the tube at the lowest point is greater than c,

the particle will rise in the tube to a vertical height h which is the least

positive root of the equation
2lch= {I-'lmch)f{h\

where / is the moment of inertia of the tube about the axis of symmetry.

72. One end of a rigid uniform rod of length 2a formed of gravitating

matter is constrained to move uniformly in a circle of radius c with angular

velocity cd, and the rod is attracted to a fixed particle of mass m at the centre

of the circle. Prove that the rod can move steadily projecting inwards

towards the centre, and that this steady motion is stable if

'ym>a>^c(c-2a)2.

73. If an elastic thread whose length is the same as that of a uniform

rod is attached to the rod at both ends, and suspended by the middle point,

prove that the rod will sink until the parts of the thread are inclined to the

horizon at an angle 6 which satisfies the equation

cotH^-cot|<9 = 2?i,

where n is the ratio of the modulus of elasticity of the thread to the weight

of the rod.

74. A bead is free to slide on a rod of negligible mass whose ends slide

without friction on a fixed circle. Prove that, if there are no external forces,

the bead moves relatively to the rod as if repelled from the middle point

with a force varying inversely as the cube of the distance.

75. A smooth rigid uniform circular tube of mass M contains two

particles of masses mi, 7^2. The tube is placed on a table and set in motion

by a blow in a line passing through the centre of mass of the system. Prove

that, if ^1, 62 are the angles which the radii to the particles make at time t

with a fixed line on the table, then throughout the motion

MimiOi+ mJz)+ 2?ni?W2 (^1 +4) sin'^ ^ (^1
-

^2)
= 0.

76. Two equal uniform rods AB, BG each of mass m and length 2a are

freely jointed at B and have their middle points joined by an elastic string,

and the system moves in one plane under no forces. Prove that, if 6 is the

angle between the string and either rod at any time, the angle which the

string makes with a fixed line, and V the potential energy of the stretched

string, then throughout the motion

{\ + cos2 B)^= const.,

maP- {(J+ cos2 6) 0^+ (^ + sin2 6) 6^] + F= const.

77. Two equal uniform rods AC, CB, hinged at (7, and having their

extremities A, B connected by a thread so that ACB is a right angle, are

revolving in their own plane with uniform angular velocity about the angle
A which is fixed. Prove that, if the thread is severed, the reaction at the

hinge is instantaneously changed in the ratio */& '' 4.
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78. A smooth uniform tube contains a smooth uniform rod and the

system moves under no external forces, being set in motion by an impulse
directed at right angles to the tube when the distance between the middle

points of the rod and tube is a. Prove that the distance r between the middle

points when the system has turned through an angle 6 is given by the

equation

(^2+ ^,2)

1^2
+ 52

^(^gyi
=(^+ 52)2,

where 6 is a certain constant depending on the masses and moments of inertia

of the rod and tube,

79. A smooth circular tube lying on a horizontal plane contains a

particle at a point (7, and can turn about a point A of its circumference.

Prove that, if the tube is struck by a horizontal blow, the particle can

oscillate about the point B furthest from J, and that, if CB subtends at the

centre an angle a, and the line joining the particle to the centre at time t

makes with the radius to B an angle j3, the limits of oscillation are given by

cos ^ j3
= ± ^ sin a.

80. One end of an inextensible thread of length a is attached to a

smooth circular wire of radius a, whose plane is vertical, at one end of a

horizontal diameter
;
the other end of the thread is attached to one end of a

rigid uniform rod of length a, whose other end can slide on the wire. The

system starts from rest with the thread and rod in a horizontal position ;
find

the velocity of the rod when its middle point has fallen through any
distance.

81. A uniform rod of mass m and length 2a moves at right angles to

itself on a smooth table, and impinges symmetrically on a uniform circular

disk of mass m! and radius a spinning freely about its centre. Prove that,

if there is no restitution, and the edge of the disk is rough enough to prevent

slipping, the bodies will separate after an interval in which the unmolested

disk would have turned through an angle whose circular measure is

(m'+ 3m)/(m'+ m),

82. A solid paraboloid of revolution is free to turn round its axis, which

is vertical, and has a groove cut in its surface which makes a constant angle

a with the axis. A particle of mass m is placed in the groove at a depth Aq

below the vertex. Prove that, when the particle has descended a depth h, the

angular velocity of the paraboloid is

/ 'igha {(A +Ao) sin^a— a cos^ a}

V {/+4wa(A+ Ao)}{i+4ma(a+A+Ao)cos2a}'

where 4a is the latus rectum of the paraboloid and / is its moment of inertia

about its axis.

83. A uniform cube, of mass if, and radius of gyration h about an axis

through its centre, rests on a smooth horizontal plane, and a smooth circular

groove of radius a is cut on the upper face and passes through the centre
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of that face. A particle of mass m is projected along the groove from with

velocity V. Prove that, if a0 is the arc traversed by the particle, and 6 the

angle turned through by the block in any time,

where ^2= ^2
(j/-_,_ m)l4ma\

84. Two uniform rods, each of length 2a, are freely jointed and placed

on a smooth table in a straight line parallel to an edge. A cord is attached

to the joint and passing over the edge of the table at right angles supports a

body of mass l/n of that of either rod. Prove that the angle 6 through
which either rod has turned at time t is given by the equation

{2 + w(l + 3sin2^)}a^2=3^sin^.

85. Six equal uniform rods are freely jointed at a point and have

their other ends at the corners of a regular hexagon on a smooth horizontal

plane, these ends being connected by six similar elastic threads in the sides

of the hexagon. Initially all the threads have their natural lengths, and the

rods are inclined at an angle a to the vertical. Prove that the joint will or

will not reach the plane according as the ratio of the modulus of elasticity of

each thread to the weight of each rod < or > sin a cos a/(l
— sin a)^.

86. A rifled gun is mounted on a carriage without wheels. Prove that,

if a is the elevation of the gun, p the pitch of the barrel, k the radius of gyra-

tion of the shot, and U, V the muzzle velocities of the shot when the carriage

is (1) fixed and (2) allowed a free recoil, then

72 {F//)Hsin2a+ Jfcos2a/(Jf+m)}= ^72 (1 +F/p2) {sin2a+i/'2 cos2a/(i/+ w)2^

where m is the mass of the shot, and M is the mass of the gun and carriage.

87. A particle is placed in a smooth elliptic tube of n times its mass at

an end of the major axis, and the tube is struck by a blow parallel to the

minor axis so that it starts to move parallel to this axis with velocity V.

Prove that the eccentric angle <p of the position of the particle at any time

is given by the equation

sin2(f, + 62cos2d>+ cL^a^-b^)sm^4> n-,

where 2a and 26 are the principal axes of the tube, and k is its radius of

gyration about an axis through its centre at right angles to its plane.

88. Two rough horizontal cylinders each of radius c are fixed with their

axes inclined to each other at an angle 2a
;
and a uniform sphere of radius a

rolls between them, starting with its centre very nearly above the point of

intersection of the highest generators. Prove that the vertical velocity of its

centre in a position in which the radii to the two points of contact make

angles ^ with the horizontal is

sin a cos
(f) <s/{lOg (a+c) (1

- sin (p)/{7
— 5 cos2 a cos2 <^)}.

89. Two equal right circular cones, each of vertical angle 2a, are fixed

with their axes horizontal, so as to touch along a horizontal generator and to

ra2
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have their vertices coincident. A sphere of radius a rolls between them.

Prove that the height z of its centre above the plane of the axes satisfies the

equation

i^'|l+^COt2a+^COt2a(^sec2a
+
^j|=5r(2ro-^).

90. A circular tube of mass m and radius a contains a particle of mass

nm^ and the tube rotates freely about a vertical chord AB {^A above E) which

subtends an angle 2a at the centre. Initially the particle is at the highest

point C of the tube, and the tube is set rotating with angular velocity G.

Prove that, if the particle oscillates between C and B^ then

aO:^ {(w+ 1 ) C0s2 a+ ^} C0s2 a =5r (1 + sin a) (
1 + 2 cos^ a).

91. A rhombus is formed of four equal uniform rods each of length a,

freely jointed together. The rhombus is laid on a smooth horizontal table

with one angle equal to 2a, and the opposite corners are joined by similar

elastic threads of natural lengths 2a cos a and 2a sin a. Prove that, if one

thread is slightly extended and the rhombus left free, the periods during

which the two threads are respectively extended in the subsequent motion are

in the ratio (cos a)^ : (sin a)^.

92. A particle of mass m is placed in a smooth straight tube which can

rotate in a vertical plane about its middle point, and the system starts from

rest with the tube horizontal. Prove that the angle 6 which the tube makes

with the vertical when its angular velocity is a maximum and equal to co is

given by the equation ^{rnr^-\-I)<ii^-^ingr(i? QXi%6-\-mg'^^\v?e
=

^^ where /is

the moment of inertia of the tube about its middle point, and r is the distance

of the particle from that point.

93. Four equal rods, each of length a and mass wi, are freely jointed so

as to form a rhombus, one of whose diagonals is vertical
;
the ends of the

horizontal diagonal are joined by an elastic thread at its natural length, and

the system falls through a height h to a horizontal plane (no restitution).

Prove that, if any rod makes an angle B with the vertical at time t after the

impact, then

/I . o • 9/1NZJ9 18,"7^ sin^a 6a, .,
3X (sin ^- sin a)^

(l + 3sm2(9)^^=—^ ., , o • 9
- +— (cosa-cos<9)-^

— ^
;

~
,'

a^ l+3sm2a a ^ ' '^ma sm a

where a is the initial value of ^, and X is the modulus of the thread.

94. A square formed of four similar uniform rods freely jointed at their

extremities, is laid on a smooth horizontal table, one of its corners being fixed
;

show that, if angular velocities «, to' in the plane of the table are communicated

to the rods that meet at this corner, the greatest value of the angle between

them in the subsequent motion is

ICOS-I {-f(o)- 0)7/(0,''^ + 6,'2)}.

95. A homogeneous hemisphere of radius a and mass M falls from rest



330 RIGID BODIES AND CONNECTED SYSTEMS [CHAP. IX.

with its base vei-tical on to a smooth horizontal plane (no restitution). Prove

that its pressure on the plane when its base is horizontal is equal to

where V is the velocity with which it strikes the plane.

Prove that the hemisphere will leave the plane immediately upon its base

becoming vertical if 15 F>16V(a^), and that, if 675 V^l{10247rag) is an integer,

the hemisphere will again strike the plane with its base vertical.

96. Two equal homogeneous cubes are moving on a smooth table with

equal and opposite velocities V in parallel lines, and impinge so that finite

portions of opposing faces come into contact; show that, so long as they
remain in contact, the line joining their centres meets the opposing faces at

a distance x from the centres of the faces which satisfies the equation

^2 (;r2+ §a2) (^^2+ 1^2)= 72^^2 (^2+ ^2 _
^.^2)^

where 2a is a side of either cube, and
.Tq is the initial value of x.

Prove further that, if the line joining the centres at the instant of impact
cuts the opposing faces at an angle ^tt, then while the faces are in contact they

slip with uniform relative velocity, and separate after an interval (1 + J3) aj V
after turning through an angle

2^f{tan-Vf+tan-Vi}.

97. Two equal rigid inelastic uniform hooks ABCD, A'B'C'D', each in

the form of three sides of a square of side 2a, move with equal velocities V
in opposite directions parallel to ^^ or A'B', and impinge so that the points
B and D' strike the middle points of B'C and BC. Show that they separate

immediately after impact with the velocities of their centres of mass reduced

in the ratio 9 : 53.

Prove that if the ends D and D' are provided with apparatus for clipping
the sides B'C and BC so that they can slide on these sides without friction,

then in the subsequent motion D and D' will come to relative rest after

moving over distances ^ {S
—

fJb) a on B'C and BC, and that the sides CD and

CD' will impinge upon A'B' and AB after an interval

V53 a p V(44+^2)
18 VJy/5 V(^2_5)«-^

from the instant when D and D' were at rest relative to the hooks.

98. Two smooth rigid uniform hemispheres, each of radius a and of equal

masses, moving at right angles to their bases with the same velocity V, impinge
so that lengths fa of the diameters of their bases in the plane through their

centres perpendicular to their bases come into contact. Prove that the

distance a; between their centres (measured parallel to their bases) at time t

is given by the equations

80^2=,19^2(^2_l)^

15 F^ 8 ,, /8+^l9z-l
V19 a V19

,, /84-V19^-l\
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99. A uniform chain of length I is held by its upper end so that its

lower end is at a height I above a fixed horizontal plane, and is let drop on

the plane. Prove that when half the chain is on the plane the pressure on

the plane is f of the weight of the chain.

100. A uniform chain of length I is coiled at the edge of a table
;
one end

is attached to a particle of mass equal to that of the chain, and the other end

is put over the edge of the table. Prove that immediately after leaving the

table the particle is moving with velocity \ >J{^gl).

101. A coil of uniform chain of mass rrix per unit of length is placed on

a smooth table
;
and one end of it is joined by a thread, passing over the edge

of the table, to one end of another coil of mass m^ per unit of length, which

is held just at the edge. Prove that if the second coil is let go the straight

parts of the chains increase with uniform accelerations

^VW(V*^i+\/^2) and ^Vmi/(Vwii + \/wi2),

so long as neither is completely uncoiled.

102. A string without weight is soiled round a rough horizontal uniform

solid cylinder of mass M and radius a which is free to turn about its axis.

To the free extremity of the string is attached a uniform chain of mass m
and length I

;
if the chain is gathered close up and then let go, prove that the

angle ^, through which the cylinder has turned after a time #, before the chain

is fully stretched, satisfies the equation Mla6= m{\gt^-aBY.

103. A quantity of uniform chain is coiled on a horizontal plane, and a

body of mass equal to that of a length I of the chain is fastened to one end

and projected vertically upwards with the velocity due to falling through
a height h

; prove that it will rise to a height

{l'^il+ Zh)f-l.

104. A length ^ of a uniform chain of length l-{-Jc and mass ii{l-\-k) is

coiled at the edge of a table and the length I hangs over the edge. Prove

that the amount of energy dissipated by the time the chain leaves the table

105. A great length of uniform chain is coiled at the edge of a horizontal

platform, and one end is allowed to hang over until it just reaches another

platform distant h below the first. The chain then runs down under gravity.

Prove that it ultimately acquires a finite terminal velocity F, that its velocity

at time t is Ftanh (Vt/k), and that the length of chain which has then run

down is A log cosh ( Fjf/A).

106. A thread of length 2h— l passing over a smooth peg at a height h

above a table has attached to its ends two uniform chains, and the system
is released from rest when a length I of one chain is vertical and the rest of

that chain and the other chain are coiled on the table. Prove that the chains

will be momentarily at rest when the length of the vertical portion I is

reduced to ?-^, where

logm- a;)}
=

2^:11,

and that the maximum velocity is acquired when 2jcll=\og2.



332 RIGID BODIES AND CONNECTED SYSTEMS [CHAP. IX.

107. Two buckets each of mass M are connected by a chain of negligible

mass which passes over a fixed smooth pulley. On the bottom of one of them
lies a length I of uniform chain, whose mass is

fxl^
one end of which is attached

to a fixed point just above the bottom of the bucket. Prove that, if the system
starts to move from rest, the velocity of the bucket when there remains upon
it a length y of chain is F, where

108. Two scale-pans each of mass M are supported by a cord of negligible

mass passing over a smooth pulley, and a uniform chain of mass m and length I

is held by its upper end above one of the scale-pans so that it just reaches the

pan. Find the acceleration of the pan when a length x of chain has fallen

upon it, and prove that the whole chain will have fallen upon it after an

interval ^{\l{4:M+m)IMg].

109. A chain of length I slides from rest down a line of greatest slope

on a smooth plane of inclination a to*the horizontal, the end of the chain

hanging initially just over the edge. Prove that the time of leaving the plane
is J{llg (1

- sin a)] log (cot \a).

110. A chain of length a is coiled up on a ledge at the top of a rough

plane of inclination a to the horizontal, and one end is allowed to slide down.

Prove that, if the inclination of the plane is double the angle of friction (X),

the chain will be uncoiled at the end of a time sJ{Qal{giaxi\)].

111. A smooth circular cylinder is fixed with its axis horizontal and

vertically over the edge of a table, on which a length a of a uniform chain

of mass ml and length I is coiled
;
the chain passes over the cylinder and has

its free end on a level with the table. Prove that, if this end is slightly dis-

placed downwards, the amount of energy that will have been dissipated by the

time the chain leaves the table is ^mga^/l.

112. A smooth circular cylinder is fixed with its axis horizontal and

vertically above- the edge of a table, on which lies a chain of length I and

mass
/x ;

one end of the chain is attached to a thread which passes over the

cylinder and supports a body of mass M. Prove that, if all the chain is off

the table before any of it reaches the cylinder, the amount of energy dissipated

by the time the chain leaves the table is

lf.gl{dM-^)/{M+f.).

113. One end of a uniform chain of length I and mass m is fixed to a

horizontal platform of mass (2^-l)m; the chain passes over a smooth fixed

pulley, and is coiled on the platform. As the platform descends vertically,

the chain uncoils, rises vertically and passes over the pulley. Prove that, at

any time t before the chain is completely uncoiled, the depth x of the plat-

form satisfies an equation of the form a;^= a+^j:-\-ye~^'^'^, where a, /3, y are

constants.

114. A uniform chain is placed on the arc of a smooth cycloid whose axis

is vertical and vertex upwards. Show that, so long as the chain is wholly in
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contact with the cycloid, the tension at any point of the chain is constant

throughout the motion, and is a maximum at the middle point.

115, A chain whose density varies uniformly from p at one end to 3p at

the other end is placed symmetrically on a small smooth pulley and is then

let go. Prove that it leaves the pulley with velocity ^is^f{lllg\ where 21 is its

length.

116. An elastic string (modulus X, mass ma, unstretched length a) is

confined within a straight tube to one end of which it is fastened, and the

tube rotates about that end with uniform angular velocity w in a horizontal

plane. Show that the length of the string in equilibrium is

tan 6 . ^ /m
a

,
where 6=a(o^ Y'

117. A cone of vertical angle 2a, whose moment of inertia about its axis

is /, is free to turn about its axis which is vertical, and a fine smooth groove
is cut on its surface so as to make a constant angle /3 with the generators.

A uniform chain of mass /x and length I moves in the groove under gravity,

one end being initially at the vertex. Prove that, if 6 is the angle through
which the cone has turned when the upper end is at a distance r from the

vertex,

{/cosec2a//x+ ^?2cos2^}e2«8i"«cot^^^2+^^cos^+ |Z2cos2^+ 7cosec2a//i.

118. A uniform chain of mass m and length 21 is in a tube of uniform

bore in the form of an equiangular spiral which revolves in its plane about

its pole with uniform angular velocity &>. Prove that the tension at any

point of the chain is ^mcos^ a{l^
—

a;^) co^/l, where a is the angle of the

spiral and a^ the arcual distance of the point from the middle point of

the chain.

119. A smooth tube in the form of a cycloid generated by a circle of

radius a rotates uniformly about the base of the cycloid with angular velocity

i2, and a piece of uniform chain of length 21 is in the tube. Prove that, if

the chain is under no forces but the pressure of the tube, the time of a small

oscillation about the position of relative equilibrium is

(87r/i2)v/{2a2/(16a2_^2)|,

120. A rough circular cylinder of radius c is fixed with its axis vertical,

and a uniform chain lying on a smooth horizontal plane has a length c/3 in

contact with the cylinder, its end portions of lengths a and b being straight.

The free end of the length a is pulled by a constant force F in the direction

of its length. Prove that, when the free end of the length b reaches the

cylinder, it will be moving with a velocity

/(IF l^-{l-bf 1

where ?=c//x+ (a + 6e^^)/(e^^-l),

/x being the coefficient of friction, and m the mass of a unit of length of the

chain.

121. A uniform chain falls in a vertical plane with uniform acceleration
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/ retaining an invariable form, while the chain advances along itself with a

velocity which at any instant is the same for all points of the chain. Prove

that the angle (f)
which the tangent at any point of the chain makes with the

horizontal, considered as a function of the time t and of the arc s measured up
to this point from some definite point of the chain, satisfies the two partial

differential equations

ds dsdt dt ds^

122. A uniform flexible chain passes over two rough equal pulleys of

radius a, whose centres are at a distance d apart in the same horizontal line ;

part of the chain is coiled up on a horizontal platform at a depth k below this

line, the part between one pulley and the platform is vertical, the part below

the pulleys is a catenary of parameter c, and the chain hangs from the second

pulley to a platform at a lower level A', the vertical parts being between the

pulleys. Show that steady motion with this configuration is possible, the

pulleys rotating with angular velocity J{g{h — h')]la^ and that the relation

between c, c?, and h can be found by eliminating a between the equations

A=cseca+ a cos a, (^=2csinh~i (tan a)— 2a sin a.

123. A uniform chain hanging under gravity receives a tangential impulse

at one end. Prove that the initial velocity at any point in the direction parallel

to the directrix is proportional to the curvature at the point.

124. A chain of variable density is in the form of an arc of a circle less

than a semicircle and subtending an angle 2a at the centre, and the line

density varies inversely as the square of the distance from the diameter

parallel to the chord joining the ends. The chain is set in motion by equal

tangential impulses T applied at its ends
; prove that the kinetic energy

generated is ^T^siu^ajM^ where M is the mass of the chain.

125. The ends of a chain of variable density are held at the same level,

and the chain hangs in the form of an arc of a circle subtending an angle

2^ (<7r) at the centre. Prove that, if equal tangential impulses are applied at

the ends, the initial normal velocities at the lowest point and at either end are

in the ratio 1 : cos 6.

126. A uniform chain lying in a curve on a smooth horizontal plane is set

in motion by an impulsive tension applied at one end in the direction of the

tangent. If the initial direction of motion of every element makes the same

angle with the tangent, prove that the curve is an equiangular spiral.

127. A uniform chain lies in an arc of the curve r=ae^^ from ^= to

6=^ and receives a tangential impulse Tq at ^=0, the other end being free.

Prove that the impulsive tension at any point is

128. An endless uniform chain, lying in the form of a circle, receives a
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tangential pluck at one point J, which gives it an impulsive tension T^ at that

point ; prove that the impulsive tension at any point P is

sinh(27r-(9)
^

sinh 27r
'

6 being the angle which AF subtends at the centre. Prove also that P starts

to move in a direction making an angle ^ with the tangent, where

tan(/,= (6*'^-.2«)/(e^-+ e2%

129. A chain of variable density is placed on a smooth table in the form

of the curve in which it would hang under gravity, and two impulsive tensions

are applied at its extremities, which are to each other in the ratio of the

tensions at the same points in the hanging chain. Prove that the whole will

move without change of form parallel to the line which was vertical in the

hanging chain.

130. A uniform flexible inextensible chain of density p rests on a smooth

plane ;
a part of its length is in contact with a smooth circular disk of radius a

which lies on the plane, the length of this part being a (a+ ^) ;
the remainder

is in two straight portions of lengths Z, V which touch the disk at the ends of

the arc of contact
;
and particles of masses m and m' are attached at the ends.

Prove that, when the disk is suddenly moved with velocity F in a direction

making an angle a with the radius to the point at which the portion carrying

m leaves the disk, m begins to move with velocity

M~ 1 V [(m'+ pV) (sin a+ sin ^) + pa {(a -f i3) sin a + (cos a
- cos j3)}] ,

where J!/'=m4-m'+p^+ pZ', and V is the length of the straight portion of chain

to which m' is attached.

131. A uniform chain is suspended from two points in the same horizontal

line so that the tangents at the ends make angles a with the horizontal
;
and

the ends can slide on fixed straight wires which are at right angles to the

tangents at the ends. Prove that, if the wire supporting one end is removed,

that end starts to move in a direction making with the horizontal an angle ^,

where
tan ^= (1 +sin2 a+ 2a tan a)/sin a cos a.

Prove also that the tension at the other end is diminished in the ratio

1 : 1 +^a""i cot a.

132. A heterogeneous chain hangs under gravity in the form of a circle,

its ends being free to slide on two smooth straight wires which make equal

angles y with the vertical. Prove that, if the chain is severed at its vertex,

the tension at a point where the tangent makes an angle with the horizontal

is diminished in the ratio

^ : y+ cot y.

133. A chain of variable density hangs under gravity, the tangents at its

ends A and B making angles a and /3 with the horizontal
;
the ends can slide

on fixed wires which are at right angles to the tangents at the ends. Prove

that, if the wire supporting A is removed, the tension at a point P, where the

tangent makes an angle ^ with the horizontal, is instantaneously changed in

the ratio

(0-fa)sin/3 : cos/3-|-(a+3) sin/3.



CHAPTER Xt.

THE EOTATION OF THE EARTH.

268. It is a fact of observation that there is a relative motion

of the Earth and the stars by which every star moves relatively to

the Earth continually from East to West, or, what is geometrically
the same thing, by which any part of the Earth's surface moves

relatively to the stars continually from West to East. This motion

can be precisely described by saying that the Earth rotates about its

polar axis. The time in which the Earth turns through four right

angles is called a "sidereal day." The rotation is such that, if the

polar axis is supposed to be drawn from South to North, the sense

of this axis and the sense of the rotation are related like the senses

of translation and rotation of a right-handed screw.

269. Sidereal Time and Mean Solar Time. This process of

relative rotation has for ages been accepted as a "
time-measuring process,"

that is to say it has been regarded as taking place uniformly. Time measured

by this process is called "sidereal time."

Now we have said (Article 3) that the process used for measuring time

is the average rotation of the Earth relative to the Sun. To explain this

statement, consider in the first place the motion of the Sun relative to

a frame whose origin is the centre of the Earth and whose lines of reference

go out thence to stars so distant as to have no observable annual parallax.

The path and motion of the Sun relative to this frame are the same as the

motion (in a planetary orbit) of the Earth, relative to a frame whose origin is

in the Sun and whose lines of reference go out thence to the same stars

(cf. Ex. 3 of Art. 44). The Sun's path relative to this frame of Earth and

stars is very nearly the same as if his motion were an elliptic motion about

a focus at the centre of the Earth. The sense in which the Sun describes

his orbit is the same as the sense in which any particular meridian plane
of the Earth turns about the polar axis, that is to say the Sun is always

t Articles in this Chapter which are marked with an asterisk (*) may be omitted

in a first reading.
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moving from stars which have a more westerly position towards stars which

have a more easterly position in the plane of his path. The elements of the

elliptic orbit are not quite constant
;
in particular the apse line has a small

progressive motion in the sense in which the orbit is described, and the line

of intersection of the plane of the orbit with the plane of the Earth's equator

(known as the line of nodes) has a small progressive motion in the opposite

sense. The Sun passes the line of nodes at the Equinoxes, and the periodic

time in the orbit is a year (technically a "tropical year"). Now it is to be

observed that, relatively to a frame fixed in the Earth, the Sun makes about

365|^ revolutions round the Earth in a year, and the stars make about

366J revolutions, but the time of revolution of the Sun is not a constant

multiple of the time of revolution of the stars. The variability arises in

the first place from the fact that the motion of the Sun in his path, relative

to the frame of Earth and stars, is much more nearly elliptic motion about

a focus than uniform circular motion, and in the second place from the fact

that the plane of the Sun's path is inclined to the equator. To define the

measurement of time by the average rotation of the Earth relative to the

Sun, we imagine a point to move (relatively to the frame of Earth and stars)

in the Sun's path, with a uniform angular motion about the centre of the

Earth {i.e. so that the time of describing any angle is a constant multiple of

the time in which the Earth turns through the same angle), and at such

a rate as always to coincide with the Sun at the nearer apse of his path ;

then we imagine a second point to move in the plane of the Earth's equator
with a uniform angular motion about the centre of the Earth, and at such

a rate as always to coincide with the first point at the node corresponding to

the Vernal Equinox. This second point is called the Mean Sun. We may
determine a frame of reference by taking the centre of the Earth as origin,

the line joining the origin to the Mean Sun as a line of reference, and the

plane through this line and the polar axis as a plane of reference. Relatively

to this frame the Earth rotates about its polar axis in an interval called

a mean solar day ;
this rotation can be used instead of the rotation

relative to the stars as time-measuring process, and time so measured is

mean solar time. The unit of time is the time in which the Earth rotates

relatively to this frame through an angle equal to 1/86400 of four right angles,

and this unit is the mean solar second.

270. The law of gravitation. When we say that the

Earth is rotating, we imply that a body at rest relative to it is

moving round the polar axis. Any particle of the body is describing
a circle about a centre on this axis, and therefore has an acceleration

directed towards the centre of this circle. If we refer the motion

to axes which rotate with the Earth the particle has no such

acceleration. The specification of the acceleration of the particle,

and therefore of the forces acting on the body, depends upon the

axes to which the motion is referred.

L. M. 22
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The law of gravitation is a statement concerning the forces

that act upon the particles of bodies. It implies that the motion

is referred to some axes or other. For a complete statement of

the law the origin and axes to which the motion is referred ought
to be specified. In other words, the law implies that a frame of

reference has been chosen; and a complete statement of the law

would involve the specification of this frame of reference.

When the law is applied to the motions of bodies within the

Solar System an adequate frame of reference can be specified by
the statements: (i) The origin is the centre of mass of the system,

(ii) The axes are determined by stars so distant as to have no

observable annual parallax.

Relatively to this frame the Earth as a whole has certain

motions. Of these the most conspicuous are the orbital motion

about the Sun and the rotation about the polar axis.

271. Gravity. The acceleration denoted by ^, and described

as the "acceleration due to gravity," is specified by reference to

axes fixed in the Earth. It may be precisely defined as the

initial acceleration, relative to such axes, of a particle starting

from rest, relative to such axes, in a position near the Earth's

surface.

This acceleration is not identical with the acceleration produced
in the particle by the field of the Earth's gravitation. The latter

is denoted by g. (Of Ch. vi.)

Let H denote the angular velocity of the Earth's rotation,

so that 27r/n is the number of mean solar seconds in a sidereal

day. Let p denote the distance of a particle from the polar axis.

Let/ denote the acceleration of the Earth's centre of mass referred

to the frame specified by the centre of mass of the solar system
and the "fixed" stars. The acceleration of a body, treated as a

particle, which is at rest relatively to the Earth, is compounded
of the accelerations / and pVL^\ the acceleration pD? is directed

towards the point where the polar axis cuts a plane drawn at right

angles to it through the position of the particle.

Let m be the mass of the body, as determined by the law of

gravitation (Ch. Vl). The forces acting upon it are the force mf
due to the field in which the Earth moves, the force mg' due to
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the Earth's gravitational field, aud a force W which keeps the

particle in relative equilibrium.

We disregard in this statement the difference in the values

of the intensity / of the external field at the centre and surface

of the Earth. (See Art. 274.)

The direction of W is that of a plumb-line at the place; in

other words it is the "vertical" at the place. The sense of TT is

upwards.

The kinetic reaction of the particle is compounded of mf in

the direction of the acceleration / and mpD.^ in the direction of

the acceleration pHl
Hence the resultant of W and mg' is equal to mpil^ in the

direction of the acceleration pD.\

If the particle is released, its initial acceleration is compounded

of/, pfl^ and g. The forces acting upon it are then those specified

by mf and mg'. Hence W = mg ;
and the line of action of W is

directly opposed to that of the acceleration g.

In obtaining the relation W = mg in Chapter ill we neglected
the rotation of the Earth. It now appears that, when g is defined

as above, the relation is unaffected by taking account of this

rotation.

272. Variation of gravity with latitude. Let I be the

angle which the vertical at a place makes with the plane of the

equator. Then I is the (Astronomical) latitude of the place.

Let X be the angle which the direction of the Earth's gravi-

tational field at the place makes with the plane of the Equator.

Consider a body at rest relative to the Earth. Its kinetic

reaction consists of vectors mf, mpfl^; and the forces acting upon
the body are mf, mg', W. The directions and senses of all these

vectors have been specified.

Form an equation of motion by resolving in the direction

of the polar axis. The equation is

= mg' sin X — TT sin I.

Form an equation of motion by resolving parallel to the

direction of the acceleration pCl^. The equation is

mpD? = mg' cos\—W cos I.

22—2
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Since W = mg, we have

9' ^ 9 ^ P^' QX
sinZ sinX s\n{l

—
\)

Of the quantities in these equations ^, 12, / are known by
observation and p is known in terms of I when the figure of the

Earth is known. The equations determine X, and g'.

If the Earth is regarded as spherical, and as made up of

concentric spherical strata of equal density, the line of action

of the force mg' passes through the centre, and we have

g'=^r^EIR\ p==Rcos\
where R is the radius of the Earth, and E is its mass.

Hence
sin (l-\) _ i^n^ _ ryE sin \ , .

sin X cos X
~

g
' ^~^ sin I

^ ''

Now RD?lg is a small fraction equal to yj^ nearly, and therefore

?
— \ is a small angle, approximately equal to ^^ sin I cos I radians.

This angle is called the "deviation of the plumb-line." Also g is

approximately equal to

r^E

^(1-^i^cos^O-

With the above assumptions as to the figure and constitution

of the Earth, \ becomes the "geocentric" latitude of the place.

The assumptions enable us to account for the variation of g with

latitude. There is a small correction to the formula for g on

account of the spheroidal figure of the Earth.

273. Mass and weighing. When two bodies are found to be of

the same weight, by weighing them in a common balance, it is verified that

the forces required to support them in equilibrium relative to the Earth are

equal at the same place. Hence the product mg is the same for both. Now
the ratio g : ^' is sin X : sin I, where I is the Astronomical latitude of the place,

and X is the angle which the direction of the Earth's gravitational field at the

place makes with the plane of the Equator. It follows that the product mg'
is the same for the two bodies. But the ratio of two masses, as determined

by the law of gravitation, is the ratio of the forces with which they are

attracted by a gravitating body when they occupy, successively, the same

position with respect to that body. Hence the masses of the two bodies, as

determined by the law of gravitation, are equal.

The determination of the mass of a body by weighing it in a common
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balance may therefore be regarded as a particular case of the determination

of mass by means of mutual action, on the basis of the law of gravitation, as

was stated in Chapter vi.

274. Lunar de&exion of gravity. In the above discussion we
have treated the external field as uniform, or as having the same intensity at

the centre of mass of the Earth and at any point on its surface.

The external field arises from the gravitational attractions of the Sun,
Moon and Planets. Its intensity varies slightly from centre to surface.

This variation is most marked in the case of the Moon on account of its

comparatively small distance from the Earth.

Let / denote, as before, the intensity of the external field at the Earth's

centre of mass, and let f denote the intensity at a point on the surface.

A force compounded of m/', in the sense of /', and m/, in the sense of

/ reversed, is available for producing motion of the body m relative to the

Earth.

The effect of this force is to make the direction of the plumb-line at

a place deviate slightly from the direction which it would take if /' were

the same as /. Since the difference between / and /' arises mainly from the

attraction of the Moon, this effect is generally referred to as the "lunar

deflexion of gravity."

The direct measurement of this effect is extremely diflicult* The
theoretical value can, however, be determined. Cf. Ex. 5 in Art. 275.

The force which produces the lunar deflexion of gravity is the same as

that which produces the tides, at least in so far as these depend upon the

Moon. The force which arises, as above, from the difference between/ and /'
is the tide-generating force.

275. Examples.

[In these examples the Earth is regarded as a homogeneous sphere.]

1. If the Earth were to rotate so fast that bodies at the equator had no

weight, prove that, in any latitude, the plumb-line would be parallel to the

polar axis.

2. If the acceleration due to gravity at the Poles is g^ and at the Equator

^e, prove that in (geocentric) latitude X the value of ^ is

VW sin2X4-^g2 cos'-^X),

and that the deviation of the plumb-line from the (geometrical) vertical is

tan-i{(^o-^e) sin X cos X/(^o sin^X-l-^^ cos^X)}.

3. Prove that a pendulum which beats seconds at the Poles will lose

approximately 30m cos^^ beats per minute in latitude ?, where \-\-m \\ is

the ratio of the values of g at the Poles and at the Equator.

* See G. H. Darwin, The Tides and kindred phenomena in the Solar system,

London, 1898.
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4. A train of mass m is travelling with uniform speed v along a parallel

of latitude in latitude I. Prove that the difference between the pressures on

the rails when the train travels due East and when it travels due West is

4mvQ, cos I approximately.

5. Assuming that the mass of the Moon is ^^ of that of the Earth, and

that the Moon's distance is 60 times the Earth's radius, prove that, owing to

the Moon's attraction, a seconds' pendulum at the Earth's surface will be

losing at a rate i^jjC^ sin^a- 1) seconds per day, where a is the altitude of the

Moon at the place of observation.

*276. Motion of a free body near the Earth's surface.

We form first the equations of motion of the body referred to axes

fixed in the Earth. As in Art. 272 we take the Earth to be

spherical. We take the origin to be at the centre of the Earth,

the axis of z to be the polar axis (from South Pole to North Pole),

the axis of x to be the intersection of the plane of the equator and

the meridian plane near which the motion takes place, the positive

sense of the axis of x being from the centre to the meridian in

question; also we take the axis of y to be at right angles to this

meridian plane and directed towards the East. This system is a

right-handed system. By the results of Art. 254, the component
velocities of the body parallel to these axes are not x, y, i, but

they are

x-Qy, y + D.x, i,

and the component accelerations are

j^{x-ny)^n(y + nx), ~{y + nx)-}-n(x-~ny), z.

Hence the equations of motion of the body are

m(x- 2fly
-
n^x) = - (ymE/E^) cos X,

]

m(y + 2nx-n^y)=: 0, I

mz = -
(ymE/R^) sin \, j

where \ is the angle which the radius of the Earth drawn through
the body makes with the plane of the equator. Now, as the body
remains near a place, we may take X to be constant, and we may
in the terms containing H^, put x = R cos X and y = 0. Then, using

equations (2) of Art. 272, we find

X — 2fly = —
g cos I,

y + 2nx = 0,

z = " 9 sin L
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Since these equations contain only differential coefficients of

X, y, z with respect to the time, we may, without making any

alteration, suppose the origin to be on the Earth's surface in the

latitude and longitude near which the motion takes place.

We shall now, taking the origin as just explained, transform

to the horizontal drawn southwards as axis of x', the horizontal

drawn eastwards as axis of y\ and the vertical drawn upwards as

axis of /. We have

x' = X sm I — z cos I, y'
—

y, z =^ z sin I \- x cos I.

We thus obtain the equations

^'-2n2/'sinZ = 0, \

y' + 2n(ir'sin^ + i'cos0=0, \ (1),

z - 202/' cQsl^-g; J

these equations determine the motion of the body relative to the

axes at the place of observation.

*277. Initial motion. Suppose the body to fall from rest

relative to the Earth. Then the initial velocities relative to the

axes at the place of observation are given by the equations

x' = 0, y'
= 0, z = 0,

and we shall suppose that the initial value of the coordinate ?/'

is zero. The motion is determined by equations (1) of Art. 276.

Integrating the first of these, we have

x=2ny'sml (1),

and integrating the third equation, we have

-z =gt-2ay'cosl (2),

where t is the time from the beginning of the motion. Substi-

tuting in the second equation, and neglecting fl^y\ we have, on

integration,

y'
=

ngt'' cos I

so that y'
= ^ngfcosl (3).

Substituting in equations (1) and (2), and neglecting terms of the

same order as before, we have, on integration,

X = Xq ,
I

/ = Zo
-

\gt\ J

where Xq and V are the initial values of x' and /.
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In the beginning of the motion the acceleration relative to

axes fixed on the Earth is directed vertically downwards, and it

is what we have called g. To the order of approximation here

adopted the vertical component of acceleration remains constant

throughout the motion.

It appears that the body falls a little to the East of the starting

point, the eastward deviation in a fall through a height h being

very approximately

|nV(2/iV^)cosZ.

This result accords well with observed facts.

*278. Motion of a Pendulum. Let a simple circular

pendulum of length L be free to move about its point of support,

which is fixed relatively to the Earth, and let T be the tension

of the suspending fibre.

Let x', y', z' be the coordinates of the bob referred to the

system of axes described in Art. 276, the origin being at the

equilibrium position; then the line of action of T makes with

the axes angles whose cosines are

-^IL, -y'lL, (L-z')IL,

and we have the relation

a)'' + y' + (L-zy = L' (1).

Now the equations of motion are, by Art. 276,

mx -
2mQ.y' sin ^ = - T {x'jL), \

my' + 2mn {x' sin I + z' cosl) = - T (y'/L), I (2).

mz —
2mVly cos / = — mg -\-T {L — ^')IL. J

We shall integrate these equations on the assumption that

the pendulum makes small oscillations. On this assumption we

have approximately
z' =w + y")IL (3).

Multiply the equations (2) in order by x\ i/', z, and add. The

terms containing T vanish identically by (1), the terms containing
n also vanish identically, and the equation can be integrated.

Omitting z'^ in the integral equation, and substituting for / from

(3), we have

\m {x'^ + y'^)
= const. - ^mg {x'^ + y^)IL (4).
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Again, multiplying the first of equations (2) by — y\ and the

second by x, adding, and omitting the term in y'z\ we have on

integration

xy -y'x' = -D.^ml{x'-^-^y"')-\-GOn^t (5).

Introducing polar coordinates in the horizontal plane given by

X =r cos 6, y —r sin Q,

from equations (4) and (5) we obtain equations of the form

r2 + r2^2 = ^-r%/Z),
r2^ = 5-r2nsin^,

and, if we put
^ + n^sin^ = <^ (6),

we shall have

r2 + r2<^2
= (^ + 205 sin i)

- r^ {{g\L) + H^ sin^
I], \ ^

These equations completely determine the motion. It is to be

noticed that r and
</>

are polar coordinates referred to an initial

line which rotates about the vertical from East to West with an

angular velocity Hsin^.

*279. Foucault's Pendulum. When the pendulum can

turn freely about its point of support and is set oscillating so as

to pass through its equilibrium position, the system is known as a

Foucault's Pendulum.

Since r can vanish, it follows by the second of equations (7) of

the last Article that B must vanish, and thus
(f>

vanishes through-
out the motion. Hence the pendulum oscillates so that its plane

of vibration turns round the vertical relatively to the Earth with

angular velocity O sin I from East to West.

The first of equations (7) of the last Article then becomes,

if we neglect ll^sin^^ in comparison with g/L,

r' = A-r'(g/L),

showing that the horizontal motion in the plane of vibration is

simple harmonic motion of period 27r\/ (L/g).

If a is the amplitude of the simple harmonic motion, so that

the pendulum has no velocity in the plane of vibration when

r = a, it will not move as here described unless its angular velocity

relative to the Earth is 12 sin I from East to West. To start the
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pendulum, therefore, it is not sufficient to hold it aside from its

equilibrium position ;
it must be projected at right angles to the

vertical plane containing it with velocity aOsinZ. When thus

set going it moves like a simple pendulum of the same length

in a plane which turns about the vertical from East to West with

angular velocity 11 sin Z.

This result accords well with observed facts.

^280. Examples.
1. A projectile is projected from a point on the Earth's surface with

velocity V at an elevation a in a vertical plane making an angle ^ with

the meridian (East of South). Prove that after an interval t it will have

moved southwards through ^, eastwards through y, and upwards through 2,

where

x= Vt cos a {cos ^+ Qt sin I sin
/3}, \

y=Vt {cos a sin ^— Q,t (sin I cos ^ cos a + cos I sin a)} + ^ Qgt^ cos I, >

z = Vt {sin a+ Qt cos I sin /3 cos a}
—

^gt^, )

approximately, Q^i/ being neglected.

2. Prove that, if the bob of a pendulum of length L is let go from

a position of rest relative to the Earth when its displacement from its

equilibrium position is a, and the vertical plane through it makes an angle jS

with the meridian (East of South), its path is given approximately by the

equation

{^-e)= n s/{Llg) sin I y{a^- r2)/r
- cos

" i
(r/a)},

powers of L€^^lg above the first being neglected.

3. A particle is observed to move, relatively to a certain frame, with

a simple harmonic motion of period ^irjn in a line, which turns uniformly
about the mean position of the particle in a plane fixed relatively to the

frame with angular velocity a> ; prove that the acceleration of the particle

when at distance r from its mean position is compounded of a radial

acceleration (w^+ q>^) r, and a transverse acceleration 2a)r in the sense in

which the line turns.



CHAPTER XI.

SUMMARY AND DISCUSSION OF THE PRINCIPLES OF
DYNAMICS.

Galileo discovered by experiment that the velocity of a falling

body is proportional to the time during which it has been falling,

and he was thus led to the notion of acceleration. He recognized
in the motion of a body on a very smooth horizontal plane that

a body, which could be regarded as subject to no forces, moved

uniformly in a straight line
;
and he was thus led to connect the

existence of force with the production of acceleration.

Newton found that the notion of acceleration, thus introduced

by Galileo, availed for the description of the motions of the bodies

of the Solar System equally with the motion of falling bodies near

the Earth's surface, and he made the idea of force, as that which

produces acceleration, the cardinal notion in his philosophy.

Newton also introduced the notion of mass, as distinct from

weight, and stated that the mass of a body is the quantity of

matter which it contains. He formulated his theory in a series

of definitions, in the three celebrated Laws of Motion, w^hich he

called Axiomata sive Leges Motus, and in the Scholia attached

thereto. We give here a translation of the three Laws of

Motion :

"First Law. Every body remains in its state of rest or of
" uniform motion in a straight line, except in so far as it is

"compelled by impressed forces to change its state."

" Second Law. Change of motion is proportional to the

"impressed moving force, and takes place in the direction in

" which that force is impressed."
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" Third Law. Reaction is always equal and opposite to action
;

"
or the actions of two bodies one on the other are always equal

" and oppositely directed."

The definitions preceding the laws introduce the notions of

mass, and of impressed moving force as an action on a body by
which its state of motion is changed, and as proportional to what

we now call momentum generated in a given interval. The

scholia attached to the laws contaii^ a demonstration of the

theorem of the parallelogram of forces, and an account of the

determination of masses by direct experiment with the ballistic

balance. The latter is given as a verification of the Third Law.

In the course of this book the theoretical aspect of the science

has been developed from two principles which are essentially the

same as Newton's laws of motion, but are expressed in a form that

is more convenient for application. They are

I. The kinetic reaction of a particle has the same magnitude
direction and sense as the resultant force acting on the particle

(Art. 64).

II. The magnitude of the force exerted by one particle on

another is equal to the magnitude of the force exerted by the

second particle upon the first, the lines of action of both the forces

coincide with the line joining the particles, and the forces have

opposite senses (Art. 142).

These principles correspond precisely to the second and third

of Newton's laws. The first law may be regarded as a particular

case of the second
; for, if there is no impressed force, there is no

change of motion, and the motion goes on unchanged. In Newton's

time this particular principle was so subversive of current ideas

that it was necessary to state it explicitly.

The first step in the formulation of the principles of Mechanics*

is the recognition of the vectorial character of such quantities

as velocity and acceleration. The statement that velocity is a

vector is the proposition that is often called the "
parallelogram

* Discussions of the principles of Mechanics will be found in the works cited

on p. 357 below, and also in H. Hertz's Principles of Mechanics, Translation,

London, 1899.
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of velocities." It is not a physical law, nor is it a mathematical

proposition capable of mathematical proof from definitions, postu-
lates and axioms, but it is a definition arrived at by gradually

increasing the precision of a notion already formed. This notion

is the notion of velocity as rate of displacement per unit of time.

The discussion, given in many books as a "
proof," by means of the motion

of a ball in a moving tube, is valuable as an illustration
;
but the process that

it illustrates is not the composition of two velocities relative to the same

frame, but the composition of a velocity relative to one frame with the

velocity of that frame relative to another frame. The analytical formulation

of this latter process is very simple (see Art. 27).

We make a step which has physical significance when we

recognize the existence of a field of force. The establishment

of this notion was one of the services rendered to science by
Galileo. He showed that we could say of a free body near the

Earth's surface that it has such and such an acceleration, no

matter how its motion is started. In Newton's hands the

principle was carried further. It was found to be possible to

say of a body anywhere in the Solar System, and free from contact

with other bodies, that it had a definite acceleration.

It is hardly necessary to say that neither Galileo nor anyone else has ever

experimented upon a free body. Galileo found how to isolate the effect

which we now call the ''acceleration due to gravity," and he demonstrated

the existence and nature of this eflfect conclusively.

It is inferred that there is some action of the Earth upon
bodies in its neighbourhood, or of one body of the Solar System on

another, by which the acceleration is produced. This hypothetical
action is called /orce.

When we draw this inference we go beyond the facts. The occurrence

of definite accelerations in definite places is a physical fact. The inference

that some "action" or "force" produces them may, or may not, be legitimate.

In so far as the analytical formulation of the facts is concerned it is un-

necessary. In our Chapter II it has not been introduced. In our Chapter IV
it is introduced merely for the purpose of stating results in the same terms

as in subsequent Chapters.

We make another step which has physical significance when

we recognize that the motion of bodies in a field of force is

modified when they are in contact with other bodies. A book

placed on a table rests on the table, instead of falling through
to the floor. A ball thrown into the air does not move in a
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parabolic path, but the trajectory is steeper in falling than in

rising. It does appear to be a legitimate inference that there

is an action of some sort, due to the table, or due to the air,

whereby the acceleration that a free body would have is modified.

When we infer such action we assert the existence oiforce.

The existence of pressure between bodies in contact seems obvious to

common sense. Nevertheless it is to be noted that the pressure is just as

much inferred from an observation about the motion of the bodies as the

action between gravitating bodies is inferred from the motions of these

bodies. Yet action at a distance appears to common sense to be absurd. We
shall make a mistake if we suppose that the existence of any action between

bodies is verified by our muscular sensations, although it was from these

sensations that the notion of such action grew up. In like manner it is not

verified, nor is its measure determined by the use of the spring balance

(Art. 58). The result that, under suitable conditions, the extension of the

spring, by a body hung on to it, is proportional to the weight of the body (as

determined by the common balance) is a fact about the elasticity of the

spring.

Another point to be noted is that the notion of force is not really

necessary to the analytical formulation of those parts of the science in which

we pay attention to the motion of one body at a time. For example, in our

Chapters III and V (as well as in II and IV), nearly all the questions dis-

cussed could be expressed without using the notion of force. We might, for

instance, discuss the motion of a particle which moves in a given field of

force, and has, in addition to the acceleration of a free body, an acceleration

directed along the tangent of its path, whatever that tangent may be, in the

sense opposite to the velocity, and proportional to a power of that velocity,

whatever the magnitude and sense of the velocity may be. We should have

the method and results of Art. 138. In the same parts of the science the

notion of mass is irrelevant. We have introduced it in Chapter III solely in

order that the statement of the results may take the same form as in the

subsequent parts of the theory.

It would appear from this discussion that the action of one

body on another is a concept
—

something conceived by us—in

terms of which we describe the motions of bodies. We infer the

existence of the action from observed accelerations
^
which we

regard as produced by the actions. It would appear also that

we are at liberty to define
"
force

"
in the way that we find most

convenient. We define it as a particular measure of the action

of one body on another, and we state how it is to be measured.

The definition can be given in most precise terms when the

body acted upon can be treated as a particle. We define the
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magnitude of any force, acting on a particle, as the product of

the mass of the particle and the acceleration that is produced in

it by the corresponding action.

The definition is incomplete until we state what the nature

of the dependence of force upon direction is to be taken to be.

We define the force acting on a particle as a vector localized at

a point.

From this point of view the "
parallelogram of forces

" becomes part of a

conventional definition. The "proofs" and "verifications" given in most

books may be regarded as verifications that the definition is, as a matter of

fact, convenient. One way in which the definition may be arrived at has

been sketched in Art. 61.

The definition of force remains incomplete until we explain
what is meant by the " mass

"
of a body, or of a particle.

To do this we must introduce the Law of Reaction. As has

been explained in Chapter VI, this Law is equivalent to the

statement that the accelerations, which are produced in two

bodies by their mutual actions, have a ratio which is always
the same so long as the bodies remain the same. The reciprocal

of this ratio is the ratio of the masses of the two bodies.

There are two quite distinct sets of circumstances in which we
can observe accelerations or changes of velocity; and in accordance

with our concept of force, these changes of velocity are regarded
as produced by mutual actions. We may consider, in the first

place, the mutual actions of the bodies and the Earth
;
and we are

thus led to the mass-ratio of two bodies, as the ratio of their

weights when weighed in a common balance. In the second

place, we may let the bodies collide, and determine their mass-

ratio by the method of the ballistic balance. The fact that the

result is the same seems to the present writer to be the central

fact of Mechanics.

As has been already pointed out, the notions of force and mass

are not essential to the analytical formulation of those parts of the

science in which we study the motion of one body at a time

(the body being treated as a particle). They are essential as soon

as we begin to discuss the motions of several bodies forming a

connected system.
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In the course of this discussion we introduce two subsidiary

principles, both of which were introduced by Newton : the law

of gravitation, and the conception of a body as a system of

particles. We have already worked out in considerable detail

the consequences of these principles, when applied to bodies which

may be treated as rigid. It may be stated here that no new

principle is required for the more complete discussion of the

motions of rigid bodies, or for the discussion of the motions of

deformable solid bodies or of fluids.

The conception of bodies as made up of particles, and the

conception of the mutual actions of bodies, as made up of forces

between particles, are, as a matter of historical fact, the two

conceptions upon which the existing science of Mechanics is

based. They possess further the advantages, (1) that it is possible

to found upon them a strictly logical deductive theory, (2) that

this theory provides an adequate abstract formulation of the rules

obeyed by the motions of the bodies of the Solar System, and of

matter in bulk under ordinary conditions. They have thus his-

torically developed into a scheme which successfully coordinates

an immense number of disconnected observations concerning

matters of fact. Accordingly this theory constitutes a science—
a logically valid and practically valuable method of representing

observed facts by abstract formulas.

We must be on our guard against identifying the "
particles

"
of the

mechanical theory with the atoms and molecules of chemistry and the kinetic

theory of gases, or with the electrons and corpuscles of modern physical

speculation. The mechanical conception of the constitution of bodies is

independent of the chemical and electrical conceptions ;
and the problem of

bringing the various conceptions into harmony with each other has not been

solved. There is no reason for thinking that it is incapable of solution '^.

It appears to be desirable to explain how it may be possible for internal

forces between the hypothetical particles of a body, or a set of bodies, to be

adjusted so that the motion of the particles may represent the motions of the

bodies.

It has been already explained in Chapter VI how the masses of the hypo-

thetical particles can be assigned.

* See the remarks on the 'Beneke Preis-stiftung
' in Gottingen Nachrichten,

1901 (" Geschaftliche Mitteilungen "), and cf. H. M. Macdonald, Electric Waves,

Appendix B, Cambridge, 1902, and J. G. Leathem, Volume and surface integrals

med in Plnjsics, Cambridge, 1905.
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In the case of a free body, the external forces are gravitational attractions

between the particles of the body and the particles of other bodies, and so

they can be regarded as known.

A body which is not free is in contact with some other body. We regard
all the bodies which are thus in contact as forming a single "system of

bodies."

Let the body, or the system of bodies, be replaced by a system of particles.

The masses of the particles, and the external forces acting on them, are

known.

To make the motion of the particles represent the motion of the body, or

system of bodies, each particle must have a suitable acceleration. Thus the

kinetic reactions of the particles can be regarded as known.

Let there be n particles in the system. The Zn components of kinetic

reaction can be regarded as given. The magnitudes of the internal forces

between them are ^71 (n—1) quantities. The \n{n— \) unknown quantities

are connected with the known quantities by 3?i equations, which are the

equations of motion of the particles.

The Zn equations are of the form

in which mxXi and X\ are known, and X^ is of the form

Fyi, COS ^i2+ i^l3 cos ^13 -f ... +i^i„COS ^i„,

where the angles ^12, ... are those which the lines joining the particles make
with the axis of ^, and F^i denotes the force exerted on the particle mi by the

particle m2, and so on.

These quantities are such that, if ^21 is the same as Bxii then ^^21= — -^i2)

and therefore the equations of the types

2Z'=0, 2(yZ'-2F)=0
are satisfied.

But the equations of the types

2wi?= 2X, 2m {y'i-zy)= l. {^Z- z T)

also are satisfied identically, since the accelerations and the external forces

are supposed to be adjusted correctly.

We conclude that, if the particles are sufl&ciently numerous, the \n{n—\)
quantities Fxi can be adjusted in an infinite number of ways so that the

3w, equations may be satisfied.

It appears that the forces between the hypothetical particles are largely

indeterminate. This result offers no difficulty so long as we do not attempt

actually to assign these forces. We conclude that the motion of the body, or

system of bodies, can be represented by the motion of a system of particles.

The method that is actually adopted involves a restriction upon the hypo-
thetical forces, which, nevertheless, leaves them largely indeterminate. The
method involves the introduction of the notion of stress.

L. M. 23
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Consider a body resting on a horizontal plane in the field of the Earth's

gravity. Let the body be imagined to be divided into two parts by a hori-

zontal plane. When we represent the body by a system of particles we may
suppose that none of the particles are in the plane. Consider the forces

acting upon those particles which are above the plane. Those forces which

are due to the Earth's gravity act vertically downwards. Those which are

due to the mutual gravitation between the particles below the plane and

those above it have horizontal components and vertical components, but the

vertical components are directed downwards. If these were all the internal

forces the centre of mass of the particles which are above the plane would

have an acceleration, of which the vertical component would be different from

zero and would be directed downwards. Since the centre of mass of the

particles does not move, the particles below the plane must be regarded as

exerting upon those above the plane forces which, on the whole, counteract

the gravitational attractions, and thus the internal forces between the two

sets of particles must be regarded as consisting of other forces besides these

attractions.

Since the law of gravitation is assumed to hold for all distances that are

measurable by ordinary means (Art 146), we must regard the additional

forces as being exerted only between particles which are very near together.

In general let a plane surface be drawn through a point of a body, and

draw on the plane a closed curve C of area S containing the point 0. Some

of the lines of action of forces between neighbouring particles on the two

sides of the plane cross the plane within the curve C. We consider the forces

thus exerted upon the particles which lie on a chosen side of the plane. Let

^, ?7, ^ denote the sums of the components of these forces parallel to the axes.

Then |, ?;, ^ are the components of a vector quantity, which is called the

"resultant stress" or "resultant traction" across the area >S' of the plane.

The quantities ^//S', r]\S^ (fS are the components of a vector quantity which is

called the "
average stress

"
or "

average traction
"

across the area >S' of the

plane. We suppose that as the area S is diminished, by contracting the

curve C towards the point 0, the components of the average stress tend

to definite finite limits; then these limits are the components of the "stress"

or the " traction
"
across the plane at the point 0.

Let S now denote any closed geometrical surface drawn in the body,

Xu, Yy^ Zv the components of the stress or traction across the tangent plane

at any point of >S^. Then the part of the body within aS' is to be regarded

as a system of particles which move under forces, and the sums of the

components parallel to the axes, and the sums of the moments about the

axes, of the forces which arise from actions between neighbouring particles

on the two sides of >S^ are expressed by such formulae as

where the integration extends over the surface.
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This specification of the internal forces by means of stress is found to be

adequate for the description of the motions of extended bodies.

The stress across a plane at a point of a body is a measurable quantity
which can sometimes be determined theoretically and in some cases measured

practically. The simplest examples are pressure in a fluid and tension in

a string or chain. This tension is the resultant of the tractions across a

plane which is normal to the line of the chain.

The introduction of the notion of stress carries with it a distinction

between two classes of forces :
—

body forces and surface tractions.

Gravitational forces are proportional to the masses of the particles on

which they act. The sum of the components, parallel to any fixed direction,

of all the gravitational forces which act upon the part of a body within any
small volume is proportional to the volume. For theoretical purposes we

regard such forces as examples of a possible class of forces which we call

"
body forces." They may be specified by the force per unit of volume, or

per unit of mass.

The resultant traction across a portion of a geometrical plane, drawn

through a body, is an example of another class of forces, which we call

"surface tractions." These forces act across surfaces, and are proportional

to the areas of the surfaces across which they act, when these areas are

small enough. They may be specified by the force per unit of area, or, what

is the same thing, by the traction across a plane at a point.

In the course of this book the energy equation has been

regarded as one of the first integrals of the equations of motion

of a conservative system. This mode of treatment appears to the

writer to be the most natural when the science is based upon
Newton's laws of motion, or any equivalent statements

;
but

modern Physics would assign to the energy equation a much

more important rdle. This comes about through the doctrine of

the conservation of energy. The energy equation in Mechanics is

seen to be but an example of a general principle applicable to all

kinds of physical processes.

Attempts have been made to discard the notion of force, and

to develope the theory of Mechanics from the notions of mass

and energy. It has been proposed also to discard the conception

of bodies as made up of particles at the same time as the notion

of force. One difficulty in the way of this method of formulation

is the difficulty of giving any account of the retained notion of

mass. In the Newtonian Mechanics we have, on the basis of the

Law of Reaction, a clear and definite meaning for the term
" mass." Another difficulty in the way of the "

energetic
"
method

of formulation is the difficulty of giving any adequate account

23—2
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of potential energy, or of work. These difficulties may perhaps be

overcome in the future. In the present state of science we may
make a compromise between the two methods, by taking the

notions of kinetic energy and work from the Newtonian system,

and destroying the scaffolding of forces and particles by which

they are reached. The masses that occur in this intermediate

method of formulation are then regarded as coefficients in the

expression for the kinetic energy.

The possibility of this intermediate method depends upon an analytical

transformation of the equations of motion, as developed in accordance with

the Newtonian method. This analytical transformation proceeds by way
of generalization of the principle of virtual work. Just as all the equations,

of equilibrium of a system can be deduced from an equation of the form

2[(X+Z')^' + (r+F)y'+(^+^)0']=O,
as has been explained in Art. 208, so all the equations of motion of the system
can be deduced from an equation of motion of the form

2[m(^^'+J/y'+B0]= 2[(X+Z')i^'+ (F+ r)^'+ {Z+Z')z'l (A)

which may be obtained by the method of Art. 208. The important result

is that the terms of the equations of motion which, in the Newtonian method,

represent what have been called in this book "kinetic reactions*" are ex-

pressible in terms of the kinetic energy.

To explain this statement we consider the case in which the position

of the system at any time can be expressed in terms of a finite number of

independent geometrical quantities. Let these quantities be denoted by
0, (ji,

.... Then the kinetic energy T can be expressed as a homogeneous,

quadratic function of the corresponding velocities 0, <j>,
... ;

and the left-hand

member of equation (A) can be expressed in the form

{itCD
-m ^'*

{a© "
St *'+•• '

in which ^', </>',
... represent any set of velocities with which the system

might pass through the position denoted hy 0, (f),
The result is due to

Lagrange.

It appears from this discussion that, if we can find, for any

system, an expression for the kinetic energy and an expression for

the rate at which work is done, we can obtain the equations of

motion of the system without introducing any considerations of
**
forces

"
or "

particles."

The formulation of the principles of Mechanics implies that

choice is made of the frame of reference and of the time-measuring

process. This statement remains true whether the formulation is

* In some books they are called •' effective forces."
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carried out in terms of mass and force, or in terms of kinetic

energy and work
;

for the two methods require the specification

of accelerations and velocities. When we say that a particle at

a certain place has a certain acceleration, the place and the

acceleration must be specified by reference to some frame or other,

and the specification of the acceleration involves also the use of

some method or other of measuring time. A similar statement

holds for velocities.

For many theoretical purposes it is unnecessary to specify

either the frame of reference or the time-measuring process; it

is sufficient to suppose that they have been chosen. But in any

problem concerning observable motions of actual bodies, the

description of the motion is incomplete until the reference system,

both for space and time, is specified. We may ask two questions:

(1) How is the system specified ? (2) How ought the system to be

specified ? It is a little difficult to answer briefly either of these

questions; and it is comparatively easy to answer the slightly

different question : What reference-systems are inadmissible ?

The answer is that no system ought to be admitted which

conflicts with the principles of Mechanics, or the law of gravita-

tion, or the principle of the conservation of energy.

A system of reference which satisfies the conditions of this

question and answer may be described as
"
kinetic*." A frame of

* W. H. Macaulay, in the Article '

Motion, Laws of
'

in Ency. Brit. 10th Edition,

vol. 30 (1902), describes what is here called a "kinetic frame" as a "Newtonian

base." In regard to the general question of the relativity of motion, reference

should be made to Newton's original argument in the Principia, Lib. 1,
' Scholium '

attached to the '

Definitiones,' and to the following more recent works :
—

J. C. Maxwell, Matter and Motion (London, 1882), Thomson and Tait, Natural

Philosophy, Part I (Cambridge, 1879), E. Mach, The Science of Mechanics, Trans-

lation (Chicago, 1893), C. Neumann, Ueber die Principien der Galilei-Newton'scht

Theorie (Leipzig, 1870), K. Pearson, The Grammar of Science (London, 1900),

H. Poincar^, La science et Vhypothese (Paris, N.D.), the Article by W. H. Macaulay
cited above and the Article by A. Voss in Ency. d. math. Wiss. Bd. iv, Teil. 1,

Art. 1 (Leipzig, 1901). In regard to the reference system of Astronomy see the

Article by E. Anding in Ency. d. math. Wiss. Bd. vi, Teil 2, Art. 1 (Leipzig, 1905).

It need hardly be said that the view adopted from Newton by Maxwell and by
Thomson and Tait, viz. that we have knowledge of absolute direction but not of

absolute position, differs from that stated in the text. Since the question is not of

practical importance, it has seemed to the present writer to be desirable to set forth,

as clearly as may be, a view which seems to him to be logically defensible, rather

than to emphasize the divergence of this view from those held by others.
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reference which satisfies the conditions will be called a "
kinetic

frame," and time measured in accordance with the conditions will

be called
"
kinetic time."

To illustrate this question, and the answer, let us consider

the motion of the Earth. The principles of Mechanics require
that the Earth should be regarded as a body having a certain mass

and a certain centre of mass. Observations of falling bodies

and Astronomical observations lead us, in accordance with the

concept of force, to regard the Earth as exerting forces on other

bodies, and the law of reaction states that these bodies exert

forces on the Earth, and, therefore, that the centre of mass of the

Earth has certain component accelerations. Thus we cannot

choose as a frame of reference axes fixed in the Earth, and at the

same time maintain the law of reaction. The change from the

geocentric astronomy of Ptolemy to the heliocentric astronomy of

Copernicus may be regarded as an instance of the discarding of an

unsuitable frame of reference.

As an illustration of the restrictions limiting the choice of

the time-measuring process we may consider the forces that can

affect the rotation of the Earth. The system of Earth and Moon,
with the fluid ocean on the Earth, executes various internal

relative motions, among which the tides are conspicuous. Such

internal relative motions generally involve dissipation of energy
*

in a system, for they do not take place without friction. We are

thus led to expect that the kinetic energy of the Earth's rotation

is being dissipated at a finite rate, or that the period of the

diurnal rotation (the length of the day) is gradually increasing.

On the basis of the law of gravitation and the principle of the

conservation of energy, but without fixing beforehand what the

time-measuring process is to be, astronomers have shown that

one of the inequalities in the motion of the Moon could be

explained by the supposition that such a gradual slackening in

the speed of the Earth's rotation is taking place. This result

implies that the time-measuring process is not the rotation of

the Earth, or, in other words, that sidereal time is not kinetic

time.

* That is to say a change in the form of the energy by which less of it is

rendered available, as, for example, in the conversion of kinetic energy into heat.
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The result is usually stated in the form that the Earth

as a time-keeper is losing at the rate of so many seconds in a

century *.

The processes by which we reach a kinetic frame of reference

and a kinetic time-measuring process are approximative. It has

always proved to be possible to correct a choice previously made
so as to harmonize the observations of the motions of actual

bodies with the principles of Mechanics. By means of the law

of gravitation we can determine, to a certain order of approxima-

tion, the masses of the bodies which compose the Solar System
and the position relative to these bodies of the centre of mass

of the system. It has proved to be sufficient to take this centre

of mass as origin, and to take, as lines of reference, lines drawn to
"
fixed

"
stars which have no appreciable proper motion or annual

parallax.

In regard to the measurement of time we have no natural

system of reference such as the "
fixed

"
stars provide for the

determination of direction
;
but we can proceed in a different

fashion by means of the familiar process of changing the in-

dependent variable. Let t denote sidereal time, that is to say

time determined by the rotation of the Earth relative to the

stars; t is, of course, measured from some particular epoch, the

instant of the occurrence of some assigned event, and we may
take the interval t to denote t sidereal days. During this interval

the Earth turns through 27rt radians. Let the Earth as a time-

keeper be losing at the rate of e seconds per day. We know that

€ is a very small fraction. Let a new variable r be introduced by
the equation

^. €_l
'^

86400 2
•

It we measure time by r instead of t, the quantity r measures

kinetic time so far as it has been necessary as yet to determine its

measure.

This discussion suggests also a method by which we might dispense with

the " fixed
"
stars in the choice of a frame of reference. We may construct a

frame, of which the origin is the centre of mass of the Sun, by means of three

* The rate is variously estimated. Two estimates are 22 seconds per century

and 8 -3 seconds per century. See Thomson and Tait, Nat. Phil. Part II, Appendix G

(contributed by G. H. Darwin).
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lines drawn from the origin. We may take these lines arbitrarily ;
for

instance, we may draw two of them to the centres of mass of the Earth

and Jupiter, and the third, in a chosen sense, at right angles to the plane

of these two. This frame does not, of course, continue to be a kinetic frame
;

but we can take it to coincide with a kinetic frame at some instant. It will

then move relatively to the kinetic frame, and the kinetic frame will move

relatively to it. If the relative motion of the two frames were known, we

could determine the position of the kinetic frame in the system after a short

interval of time
;
and thus we might by a continued approximation, determine

the position of the kinetic frame at any time. This method has no practical

value
;
but it appears to have some theoretical interest. This interest will

be more apparent if we reflect that, according to the law of universal gravita-

tion, there are gravitational forces acting between the bodies of the Solar

System and the stars. However small the forces which thus act upon the

bodies of our system may be, it remains true that the centre of mass of

the system cannot, in the long run, be a proper origin for a kinetic frame.

The frame which we now adopt, with origin at the centre of mass of the Solar

System, and axes pointing to fixed stars, may be taken to coincide with a

kinetic frame at some instant. Then we are able to state that the relative

motion of the two frames is so small that it has not been detected by any
observations.

Finally it must be said that the choice of a kinetic frame

and of kinetic time, instead of any other frame and time, is a

convention. We have set out to describe the motions of bodies
;

and we wish to utilize the results that have been accumulated

during three centuries by scientific investigators who, for the

most part, paid little attention to the question of systems of

reference. To achieve our object we must state, as precisely as

we can, what our system of reference is, and how actual bodies

move with reference to it. We do this when we say that the

system of reference is what we have called
"
kinetic," and when

we explain how a kinetic frame can be found and how kinetic

time can be determined, with, at any rate, sufficient approximation
for our purpose.
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MEASUREMENT AND UNITS.

(a) Measurement. The mathematical theory of measurement rests on

the assumed possibility of dividing an object into an integral number of

parts which are identical in respect of some property. Thus, to measure

the length of a segment of a line, we must suppose the segment divided into

a number of equal segments, where the test of equality of length is con-

gruence ;
to measure the mass of a body we must suppose it capable of

division into a number of bodies of equal mass, where equality of mass is

tested by weighing ;
to measure an interval of time we measure the angle

turned through by the Earth in the interval
;

this requires the division of

an angle into a number of equal angles, and the test of equality of angles

is congruence.

The measurement of an object in respect of any property requires (1) a

unit or standard of comparison, and (2) a mode of referring to the standard.

The standard must be an object which possesses the property in question.

The mode of referring to the standard must be such that it determines a

positive number (integral, rational but not integral, or irrational) which is

the measure of the object in respect of the property. The number is deter-

mined by the following rules :
—

(a) When the object can be divided into an integral number n of parts,

each of which is identical with the standard in respect of the property in

question, the measure of the object in respect of that property is n.

O) When the object and the standard can be divided into p and q parts

respectively {p and q being integers), such that all the parts are identical in

respect of the property in question, the measure of the object in respect of

that property is the rational fraction pjq.

Here it is to be noted (1) that the rule (a) is the case of the rule O) for

which q= \, and (2) that in practice the integer q may be taken so large that

an integer p may be found for which the fraction piq measures the object

within the limits of experimental error.

In the mathematical theory of measiu-ement the case where no rational

fraction pjq can measure the object may not be so simply dismissed. It may
happen that however great q is taken there is no corresponding number

jo,

but that, while the fraction pjq would measure an object somewhat smaller
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than that to be measured, the fraction {p+ l)/q would measure an object

somewhat greater than that to be measured. When this is the case the

measure sought is an irrational number. We may in fact separate all rational

numbers into two classes—a "superior" class and an "inferior" class—so

that all the numbers in the superior class are too large to be the measure of

the object, and all those in the inferior class are too small. Every rational

number without exception falls into one or other of the two classes, and the

separation between them is marked by an irrational number which is the

measure of the object.

Suppose, for example, that we wish to measure the diagonal of a square
whose side is the unit of length. We may separate all rational numbers

into two classes— those whose squares are greater than two, and those

whose squares are less than two. Every rational number without exception

falls into one or other of the two classes. The separation between the two

classes is marked by the irrational number >/2, and this irrational number is

the required measure.

(b) Number and Quantity. When the unit is stated the magnitude of

an object is precisely determined by its measure in terms of the unit, and

this measure is always a number. The "object" may be anything which

we can think of as measurable in respect of any property, and the phrase

"magnitude of an object" is thus coextensive in meaning with the word
"
quantity." The quantity does not change when the unit chosen to measure

it changes, and thus the quantity is not identical with the number express-

ing it.

A number can express a quantity only when the unit of measurement

is stated or understood. When the unit is stated or implied the number

expresses the quantity.

Mathematical equations, and inequalities, are relations between numbers,

expressing that a certain number which has been arrived at in one way is

equal to, greater than, or less than, a certain number which has been arrived

at in another way.

Mathematical equations, and inequalities, between numbers expressing

quantities are valid expressions of relations between the quantities, as distinci

from the numbers, only if they hold good for all systems of units.

(c) Fundamental and derived Quantities. The fundamental Physical

quantities are lengths, times, and masses. In Dynamics, as considered ic

this book, all the other quantities which occur are derived from these. Thus,

velocity is measured by a fraction of which the numerator is a numbei

expressing a length and the denominator is a number expressing an interva"

of time
;

acceleration is measured by a fraction of which the numeratoi

is a number expressing a velocity and the denominator is a number ex-

pressing an interval of time ;
force is measured by the product of a numbei

expressing a mass and a number expressing an acceleration
;
and all th(

other magnitudes that occur are in similar ways dependent upon lengths

times, and masses.
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{d) DimeTisions. A number which expresses a quantity is said to be of

one " dimension "
in that quantity. If the unit of measurement is altered

so that the new unit is a certain multiple x of the old, the number expressing
the quantity in terms of the new unit is the quotient by x of the number

expressing the quantity in terms of the old unit.

The number expressing a derived quantity is, in every case, the product of

three numbers A, B,C, of which ^ is a homogeneous expression of some degree

p in numbers expressing lengths, B is a homogeneous expression of some degree

q in numbers expressing intervals of time, and (7 is a homogeneous expression

of some degree r in numbers expressing masses. We say that the quantity
is of p dimensions in length, q dimensions in time, and r dimensions in mass.

We express this shortly by saying that the dimension symbol of the quantity
is [Z]^[7^«[J/']*". The numbers p, q^ r may be positive or negative, integral

or fractional, or zero.

If the units of length, time, and mass are changed so that the new units

are respectively x, y^ z times the old, the measure of any quantity in terms

of the new units is obtained from its measure in terms of the old units by

dividing by x^y^z^, where [Z]p[7^«[J/]'* is the dimension symbol of the

quantity.

The condition that a mathematical equation or inequality between numbers

expressing quantities may be a valid expression of a relation between the

quantities is that every term in it must be of the same dimensions.

(e) Physical Quantities. We give here a list showing the principal derived

quantities that occur in Dynamics and their dimension symbols.

Velocity [LYIT]-^'
Acceleration [^P[^"^-

Moment of
Momentumj [ipryi-.rjni.

Impulsive Couple j
l j l j l j

Kinetic

Reaction

J
j^pf^^-.f^,

Kinetic

Energy|
^^p^^-.^j^,

Power [LY[T]-^[MJ.

Density [Z]-3[J/]i,

Constant of Gravitation [LY[T]^\]ir[-\

(/) Method of Dimensions. We can frequently determine the form of

a result by consideration of the dimensions of the quantities involved.

This will be made clear by the consideration of some examples. Thus, if

we assume that the period of oscillation of a pendulum can depend only on

its mass, its length, and the acceleration due to gravity, we can prove that

it is proportional to the square root of the length. Since the quantity to be

expressed is an interval of time its expression cannot involve any power of a
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mass, and we have assumed that no mass but the mass of the body can

enter into the expression ;
the period is therefore independent of the mass

of the body. Now g has dimension symbol [Z']^[^]~^ and therefore \lijg

has dimension symbol [^^[-^]~i, hence the only way in which the expression
of the period can contain the length I of the pendulum is by being pro-

portional to its square root. This argument would prove that the period is a

numerical multiple of J{lly). Again, to take another example, consider the

ellipticity of the Earth supposed to depend on the angular velocity of

rotation w, the mean density p, and the constant of gravitation y. The

product yp has dimension symbol [7^]"^ and thus (o^lyp is a number (angles

being measured in radians) ;
the ellipticity being a number, must be a function

of (o^lyp.

The method of dimensions supplies also a useful means of verification.

In any piece of mathematical reasoning where the numbers represent

quantities all the terms in each equation must be of the same dimensions.
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Boys, C. v., 170, 171

\

Central forces, 39, 73, 106 ; motion

! under several. 111

Central orbits, 39-50, 106

Centre, Instantaneous, 250, 269 ;
of

mass, 172, 187; of oscillation, 254

Cliain, Tension of, 187, 195, 355 ;

j
motion of, 194, 303

Conservative forces, 90, 181
; motion of

a particle under, 94, 104

Collision, 207, 283

Conic, Construction of, from certain

conditions, 49

Constraint, Definition of, 94 ; one-sided,

82, 128

Coordinates, Eectangular, 4; Eelative,

Earth, Mean density of the, 170 ;

Eotation of the, 336
;
motion relative

to the, 342-346; the, as a time-

keeper, 359 ; ellipticity of the, 364

Elasticity, Modulus of, 105

Elliptic motion, 42
;
of two bodies, 183;

disturbed, 113

Energy, Kinetic, 76, 175 ; Potential, 94,

181 ; Internal, 191 ; Conservation of,

355; Dissipation of, 127, 211, 303,

358

Energy equation, 93, 182

Energy and momentum, 104, 225, 253,

296, 298

Envelopes, of trajectories, 32, 42, 52

Equations of motion, of a particle, 72;
of a system of particles, 176 ;

of a

body in general, 188
; of a rigid body,

252
;
of a chain, 305, 309 ; Lagrange's^

356
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EquiUbrium, 221

Erg, 76

Extension, 105 ;
at a point, 193

Field of force, 27, 349

Foot-pound, 76

Force, Definition of, 67-71, 350 ;
Vectorial

character of, 70, 351 ;
Primitive notion

of, 68; Kesultant, 71 ; Transmissibility

of, 189

Forces, Central, 39, 73, 106, 111
;
Con-

servative, 90, 181
; External, 176,

 188
; Internal, 176 ; Body, 355 ;

Effective, 356

Foucault's pendulum, 345

Friction, 71, 77, 190 ;
Coefficient of, 77,

191 ;
on plane, 78 ;

on curve, 135,

136
;
on surface, 139 ;

in rolling and

sliding, 256-259; impulsive, 285

Frame of reference, 5, 338, 356

Galileo, 27, 30, 71, 72, 75, 347, 349

Gramme, 69

Gravitation, 43, 51 ;
Law of, 169, 337 ;

Constant of, 170 ;
Work done by, 181 ;

Motion of two bodies under, 183

Gravity, 27, 68, 338, 343
;
Force of, 68

;

Work done by, 76, 192 ;
Free motion

under, 104 ;
Corrections of, 52, 339,

341

G3rration, radius of, 246

Heat, generated in collision, 208

Hertz, H., 348

Horsepower, 77

Huygens, Ch., 253

Impact. See Collision

Impulse, 84, 179; internal, 179, 183;

effect of, on elastic system, 212

Impulsive motion. See Sudden changes
of motion

Inertia, 168 ;
Moment of, 244

; Ellipse

of, 246

Inflexions, Circle of, 252

Initial motion, 217, 268, 291, 311,

343

Inverse square, Law of, 43, 47, 50

Kepler, J., 38, 169

Kinematic formula, 17, 23, 33, 39, 102,

103, 249, 300

Kinematic conditions, 260, 306

Kinetic energy, 76, 175, 250; change of,

76, 93, 182
; produced by impulses,

182, 267 ;
lost in collision, 209

Kinetic frame and kinetic time, 357

Kinetic reaction, of a particle, 72 ;
of

a system of particles, 173 ;
of a rigid

body, 250
;
Moment of, 175

Lagrange, J. L., 356

Laws of motion, 347

Leathem, J. G., 352

Line of action, 71

Macaulay, W. H., 357

Macdonald, H. M., 352

Mach, E., 2, 357

Machines, 222, 257

Mass, Notion of, 68, 167, 351; Deter-

mination of, 68, 168, 170, 171 ;

Measurement of, 69, 340; Centre of,

172, 187

Mass-ratio, 167

MaxweU, J. C, 357

Measurement, Theory of, 361

Momenta! equivalents, 246

Moment, of localized vector, 20, 86
;
of

momentum, 87, 174 ;
about a moving

axis, 301

Momentum, of a particle, 72 ;
of a system

of particles, 172; of a rigid body, 249 ;

Conservation of, 85, 178 ; Change of,

84, 177

Neumann, C, 357

Newton, I., 49, 133, 170, 183, 208, 347,

357

Notation, for velocities, &c., 23

OsciUation, 36, 80, 129, 223, 269, 294

Osculating plane, of path of particle,

140

Parabolic motion, 29, 104

Parallelogram, of localized vectors, 18
;

of velocities, 349 ;
of forces, 351

Particle, Notion of, 2
; Dynamics of a,

101

Path, 17

Pearson, K., 357

Perpetual motion, 95

Pendulum, Simple, 80, 129 ; Conical,
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83 ; Eevolving, 131 ; Equivalent

Simple, 225
; Rigid, 253

; Foucault's,

345 ;
Period of, found by method of

dimensions, 364

Planetary motion, 38, 113, 169, 183,

186

Plumb-line, 339, 340

Poincar^, H., 357

Poisson, S. D., 283, 286

Position, Determination of, 3

Potential, 91 ;
Potential function one-

valued, 95

Potential energy, 94, 181 ; Localization

of, 193 ;
of gravitating system, 181 ;

due to gravity, 192 ;
of stretched string

or spring, 192

Pound, 69
;
Force of one, 70

Poundal, 69

Power, 77, 194

Pressure, 69, 190, 350
;
on a curve, 74,

127, 135, 305
;
on a surface, 141

Problem of two bodies, 183

Projectile, 29, 143, 145

Pull, of a locomotive, 78, 257

Quantity, 362 ; of matter, 168

Range, of a projectile, 31, 144

Reaction, Law of, 167, 351; of bodies

in contact, 190; of string in contact

with surface, 195
; initial, 217

Relative motion, 24, 25, 41, 132, 134,

342
•

Resistance, 127

Resisting medium, 142

Restitution, coefficient of, 208, 283

Rigid body, 187 ; Motion of, 188
; Energy

of, 192 ;
in two dimensions, 243, 253

Rolling, 191, 258, 260

Rotation, of frame, 134
;
of rigid body,

244
;
of the Earth, 336

Rough curve, Motion on a, 135

Screw, right-handed, 5, 20, 86

Second, Mean solar, 337

Seconds' pendulum, 81

Simple harmonic motion, 34
; Composi-

tion of, 37 ; Production of, 105 ; of

pendulum, 81 ; of oscillating system,

224; Resisted, 143

Sliding, 70, 191, 258

Speed, 17

Spheres, Impact of, 166, 209, 210, 283 ;

Attraction of, 170, 171

Spring, 104
; Potential energy of, 193

Stability, of circular orbit, 110
;

of

equilibrium, 224
; of steady motion,

296

Stress, 353 ;
in a rod, 265

String, 104 ; Motion of two bodies

connected by a, 128; Potential energy

of, 193

Surface, Motion on a, 137, 139

Tension, of a string or chain, 187, 195,
355 ; at a place of discontinuity, 303

Thomson and Tait, 357, 359

Thread, 104

Time, Measurement of, 2, 336

Tisserand, F., 186

Traction, Surface, 355

Train, motion of a, 257

Trajectory, 17

Translation and Rotation, Independence
of, 178

Tycho Brahe, 38

Uniformity of Nature, 1

Unit, of time, 3 ; of velocity, 19 ;
of

acceleration, 23
;

of mass, 69 ;
of

force, 69 ; of work, 76 ; of power,
77

Vectors, Definition of, 8
; Composition

and Resolution of, 10
; Localized, 18

;

Moment of, 20, 86 ; Reduction of a

system of, 200-206

Velocity, Definition of, 15-19 ; terminal,

143, 147 ;
of rigid body, 249

Virtual work, 221, 356

Voss, A., 357

Weight, 68

Work, Definition of, 76, 88
;
of internal

forces, 180 ^

Work function, 90, 180.
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