•i SMITHSONIAN CONTRIBUTIONS TO KNOWLEDGE. 232 M E M O I E SECULAR VARIATIONS OF THE ELEMENTS DEBITS OF THE EIGHT PRINCIPAL PLANETS, MERCURY, VENUS, THE EARTH, MARS, JUPITER, SATURN, URANUS, AND NEPTUNE; WITH TABLES OP THE SAME; TOGETHER WITH THB OBLIQUITY OP THE ECLIPTIC, AND THE PRECESSION OP THE EQUINOXES IN BOTH LONGITUDE AND RIGHT ASCENSION. BY JOHN N. STOCKWELL, M.A. [ACCEPTED FOB PUBLICATION, DECEMBER, 1870.] ADVERTISEMENT. THIS memoir was presented to the Institution by Professor J. H. C. Coffin, Superintendent of the American Nautical Almanac, and was afterwards submitted to Prof. S. Newcomb of the Naval Observatory, both of whom recommended its adoption as one of the Smithsonian Contributions to Knowledge. The appropria- tion for printing at the time it was presented having been temporarily exhausted, a friend of science, who does not allow his name to be mentioned, furnished the means for its immediate publication. JOSEPH HENRY, Secretary. SMITHSONIAN INSTITUTION, May, 1872. (iii) PREFACE. THE computations of the secular inequalities, the results of which are given in the following Memoir, were commenced about ten years ago, and have been con- tinued, during many interruptions, till the present time. In the spring of 1870 the calculations were so far advanced that the greater part of the Memoir was put in form for the press ; but funds for printing it were not then available, and the computations were suffered to languish till late in autumn, when provision was made through the Smithsonian Institution for its publication. The work was then resumed, completed, and forwarded to the printer without delay ; but an unex- pected interval of leisure occurring during the process of publication, I availed myself of the opportunity thus presented, and prepared an additional chapter con taining tabular values of the elements of the planetary orbits, together with the formulas necessary for their convenient application. It is believed that this addi- tional chapter will contribute largely to the usefulness of the work, and be found of great practical value in the researches of astronomers. J. N. STOCKWELL. CLEVELAND, May, 1872. (v) INTRODUCTION, THE reciprocal gravitation of matter produces disturbances in the motions of the heavenly bodies, causing them to deviate from the elliptic paths which they would follow, if they were attracted only by the sun. The determination of the amount by which the actual place of a planet deviates from its true elliptic place at any time is called the problem of planetary perturbation. The analytical solution of this problem has disclosed to mathematicians the fact that the inequalities in the motions of the heavenly bodies are produced in two distinct ways. The first is a direct disturbance in the elliptic motion of the body; and the second is produced by reason of a variation of the elements of its elliptic motion. The elements of the elliptic motion of a planet are six in number, viz: the mean motion of the planet and its mean distance from the sun, the eccentricity and inclination of its orbit, and the longitude of the node and perihelion. The first two are invariable • the other four are subject to both periodic and secular variations. The inequalities in the planetary motions which are produced by the direct action of the planets on each other, and depend for their amount only on their distances and mutual configurations, are called periodic inequalities, because they pass through a complete cycle of values in a comparatively short period of time ; while those depending on the variation of the elements of the elliptic motion are produced with extreme slowness, require an immense number of ages for their full development, and are called secular inequalities. The general theory of all the planetary inequalities was completely developed by La Grange and La Place nearly a century ago; and the particular theory of each planet for the periodic inequali- ties was given by La Place in the Mecanique Celeste. The determination of the periodic inequalities of the planets has hitherto received more attention from astronomers than has been bestowed upon the secular inequalities. This is owing in part to the immediate requirements of astronomy, and also in part to the less intricate nature of the problem. It is true that an approximate knowledge of the secular inequalities is necessary in the treatment of the periodic inequalities ; but since the secular inequalities are produced with such extreme slowness, most astronomers have been content with the supposition that they are developed uniformly with the time. This supposition is sufficiently near the truth to be admissible in most astronomical investigations during the compara- tively short period of time over which astronomical observations or human history extends ; but since the values of these variations are derived from the equations (vii) INTRODUCTION. of the differential variations of the elements at a particular epoch, it follows that they afford us no knowledge respecting the ultimate condition of the planetary system, or even a near approximation to its actual condition at a time only com- paratively remote from the epoch of the elements on which they are founded. But aside from any considerations connected with the immediate needs of practical astronomy, the study of the secular inequalities is one of the most interesting and important departments of physical science, because their indefinite continuance in the same direction would ultimately seriously affect the stability of the planetary system. The demonstration that the secular inequalities of the planets are not indefinitely progressive, but may be expressed analytically by a series of terms de- pending on the sines and cosines of angles which increase uniformly with the time, is due to La Grange and La Place. It therefore follows that the secular inequali- ties are periodic, and differ from the ordinary periodic inequalities only in the length of time required to complete the cycle of their values. The amount by which the elements of any planet may ultimately deviate from their mean values can only be determined by the simultaneous integration of the differential equa- tions of these elements, which is equivalent to the summation of all the infinitesi- mal variations arising from the disturbing forces of all the planets of the system during the lapse of an infinite period of time. The simultaneous integration of the equations which determine the instantaneous variations of the elements of the orbits gives rise to a complete equation in which the unknown quantity is raised to a power denoted by the number of planets, whose mutual action is considered. La Grange first showed that if any of the roots of this equation were equal or imaginary, the finite expressions for the values of the elements would contain terms involving arcs of circles or exponential quantities, without the functions of sine and cosine, and as these terms would increase inde- finitely with the time, they would finally render the orbits so very eccentrical that the stability of the planetary system would be destroyed. In order to determine whether the roots of the equation were all real and unequal, he substituted the approximate values of the elements and masses which were employed by astrono- mers at that time in the algebraic equations, and then by determining the roots he found them to be all real and unequal. It, therefore, followed, that for the parti- cular values of the masses employed by La Grange, the equations which determine the secular variations contain neither arcs of a circle nor exponential quantities, without the signs of sine and cosine ; whence it follows that the elements of the orbits will perpetually oscillate about their mean values This investigation was valuable as a first attempt to fix the limits of the variations of the planetary elements ; but, being based upon values of the masses which were, to a certain extent, gratuitously assumed, it was desirable that the important truths which it indicated should be established independently of any considerations of a hypothetic character. This magnificent generalization was effected by La Place. He proved that, whatever be the relative masses of the planets, the roots of the equations which determine the periods of the secular inequalities will all be real and un- equal, provided the bodies of the system are subjected to this one condition, that they all revolve round the sun in the same direction. This condition being satisfied INTRODUCTION. jx by all the members of the solar system, it follows that the orbits of the planets will never be very eccentrical or much inclined to each other by reason of their mutual attraction. The important truths in relation to the forms and positions of the planetary orbits are embodied in the two following theorems by the author of the Mecanique Celeste: I. If the mass of each planet be multiplied by the product of the square of the eccentricity and square root of the mean distance, the sum of all these products will always retain the same magnitude. II. If the mass of each planet be midtiplicd by the product of the square of the inclination of the orlit and the square root of the mean distance, the sum of these products will always remain invariable. Now, these quantities being computed for a given epoch, if their sum is found to be small, it follows from the preceding theorems that they will always remain so ; consequently the eccentricities and inclinations cannot increase inde- finitely, but will always be confined within narrow limits. In order to calculate the limits of the variations of the elements with precision, it is necessary to know the correct values of the masses of all the planets. Unfor- tunately, this knowledge has not yet been attained. The masses of several of the planets are found to be considerably different from the values employed by La Grange in his investigations. Besides, he only took into account the action of the six principal planets which are within the orbit of Uranus. Consequently, his solu- tion afforded only a first approximation to the limits of the secular variations of the elements. The person who next undertook the computation of the secular inequalities was Pontecoulant, who, about the year 1834, published the third volume of his Theorie Analytique du Systeme du Monde. In this work he has given the results of his solution of this intricate problem. But the numerical values -of the constants which he obtained are totally erroneous on account of his failure to employ a suf- ficient number of decimals in his computation. Our knowledge of the secular variations of the planetary orbits was, therefore, not increased by his researches. In 1839 Le Verrier had completed his computation of the secular inequalities of the seven principal planets. This mathematician has given a new and accurate determination of the constants on which the amount of the secular inequalities depends ; and has also given the coefficients for correcting the values of the con- stants for differential variations of the masses of the different planets. This investigation of Le Verrier's has been used as the groundwork of most of the sub- sequent corrections of the planetary elements and masses, and deservedly holds the first rank as authority concerning the secular variations of the planetary orbits. But Le Verrier's researches were far from being exhaustive, and he failed to notice some curious and interesting relations of a permanent character in the secular variations of the orbits of Jupiter, Saturn, and Uranus. Besides, the planet Nep- tune had not then been discovered ; and the action of this planet considerably modifies the secular inequalities which would otherwise take place. We will now briefly glance at the results of our own labors on the subject. On the first examination of the works of those authors who had investigated this problem, we perceived that the methods of reducing to numbers those analytical integrals which determine the secular variations of the elements were B June, 1872. x INTRODUCTION. far from possessing that elegance and symmetry of form which usually charac- terize the formulas of astronomy. The first step, therefore, was to devise a system of algebraic equations, by means of which we should be enabled to obtain the values of the unknown quantities with the smallest amount of labor. It was soon found to be impracticable to deduce algebraic formulas for the constants, by the elimination of eight unknown quantities from as many linear symmetrical equations, of sufficient simplicity to be used in the deduction of exact results. It therefore became necessary to abandon the idea of a direct solution of the equations, and to seek for the best approximate method of obtaining rigorous values of the unknown quantities. This we have accomplished as completely as could be desired, and by means of the formulas which we have obtained, it is now possible to determine the secular variations of the planetary elements with less labor, perhaps, than would be necessary for the accurate determination of a comet's orbit. The methods and formulas are given in detail in the following Memoir. After computing anew the numerical coefficients of the differential equations of the elements, we have substituted them in these equations, and have obtained, by means of successive approximations, the rigorous values of the constants corre- sponding to the assumed masses and elements. The details of the computation are given in the Memoir referred to, and it is unnecessary to speak of them here. We shall, therefore, only briefly allude to some of the conclusions to which our computations legitimately lead. The object of our investigation has been the determination of the numerica. values of the secular changes of the elements of the planetary orbits. These elements are four in number, viz : the eccentricities and inclinations of the orbits, and the longitudes of the nodes and perihelia. The questions that may legitimately arise in regard to the eccentricities and inclinations relate chiefly to their magni- tude at any time ; but we may also desire to know their rates of change at any time, and the limits within which they will perpetually oscillate. In regard to the. nodes and perihelia, it is sometimes necessary to know their relative positions when referred to any plane and origin of coordinates ; and also their mean motions, together with the amount by which their actual places can differ from their mean places. With respect to the magnitudes and positions of the elements, together with their rates of change, we may observe that our equations will give them for any required epoch, by merely substituting in the formulas the interval of time between the epoch required and that of the formulas, which is the beginning of the year 1850. A tabulation of the various planetary elements, of sufficient extent to supply the needs of the astronomer, is given at the close of the work. A similar tabulation of the elements of the earth's orbit of sufficient extent to be useful in geological investigations, does not come within the scope of our work ; and we leave the computation of the elements for special epochs to those investigators who may need them in their researches. We shall here give the limits between which the eccentricities and inclinations will always oscillate, together with the mean motions of the perihelia and nodes on the fixed ecliptic of 1850; and shall also give the inclinations and nodes referred to the invariable plane of the plane- tary system. INTRODUCTION. xi For the planet Mercury, we find that the eccentricity is always included within the limits 0.1214943 and 0.2317185. The mean motion of its perihelion is 5". 463803 ; and it performs a complete revolution in the heavens in 237,197 years. The maximum inclination of his orbit to the fixed ecliptic of 1850 is 10° 36' 20", and its minimum inclination is 3° 47' 8" ; while with respect to the invariable plane of the planetary system, the limits of the inclination are 9° 10' 41" and 4° 44' 27". The mean motion of the node of Mercury's orbit on the ecliptic of 1850, and on the invariable plane, is in both cases the same, and equal to 5".126172, making a complete revolution in the interval of 252,823 years. The amount by which the true place of the node can differ from its mean place on the ecliptic of 1850 is equal to 30° 8', while on the invariable plane this limit is only 18° 31'. For the planet Venus, we find that the eccentricity always oscillates between 0 and 0.0706329. Since the theoretical eccentricity of the orbit of Venus is a vanishing element, it follows that the perihelion of her orbit can have no mean motion, but may have any rate of motion, at different times, between nothing and infinity, both direct and retrograde. The position of her perihelion cannot there- fore be drtermined within given limits at any very remote epoch by the assumption of any particular value for the mean motion, but it must be determined by direct computation from the finite formulas. The maximum inclination of her orbit to the ecliptic of 1850 is 4° 51', and to the invariable plane it is 3° 16'. 3; while the mean motion of her node on both planes is indeterminate, because the inferior limit of the inclination is in each case equal to nothing. A knowledge of the elements of the earth's orbit is especially interesting and important on account of the recent attempts to establish a connection between geological phenomena and terrestrial temperatures, in so far as the latter is modified by the variable eccentricity of her orbit. The amount of light and heat received from the sun in the course of a year depends to an important extent on the eccen- tricity of the earth's orbit; but the distribution of the same over the surface of the earth depends on the relative position of the perihelion of the orbit with respect to the equinoxes, and on the obliquity of the ecliptic to the equator. These elements are subject to great and irregular variations ; but their laws can now be determined with as much precision as the exigencies of science may require. We will now more carefully examine these elements, and the cqnsequences to which their variations give rise. As we have already computed the eccentricity of the earth's orbit at intervals of 10,000 years during a period of 2,000,000 years, by employing the constants which correspond to the assumed mass of the earth increased by its twentieth part, we here give the elements corresponding to this increased mass. We therefore find that the eccentricity of the earth's orbit will always be included within the limits of 0 and 0.0693888 ; and it consequently follows that the mean motion of the perihelion is indeterminate, although the actual motion and position at any time during a period of 2,000,000 years can be readily found by means of the tabular value of that element. The eccentricity of the orbit at any time can also be found by means of the same table. The inclination of the apparent ecliptic to the fixed ecliptic of 1850 is always xii INTRODUCTION. less than 4° 41'; while its inclination to the invariable plane of the planetary system always oscillates within the limits 0° 0' and 3° 6'. It is also evident that the mean motion of the node of the apparent ecliptic on the fixed ecliptic of 1850, and also on the invariable plane, is wholly indeterminate. The mean value of the precession of the equinoxes on the fixed ecliptic, and also on the apparent ecliptic, in a Julian year, is equal to 50".438239 ; whence it follows, that the equinoxes perform a complete revolution in the heavens in the average interval of 25,694.8 years ; but on account of the secular inequalities in their motion, the time of revolution is not always the same, but may differ from the mean time of revolution by 281.2 years. We also find that if the place of the equinox be computed for any time whatever, by using the mean value of pre- cession, its place when thus determined can never differ from its true place to a greater extent than 3° 56' 26". The maximum and minimum values of precession in a Julian year are 52".664080 and 48".212398, respectively, and since the length of the tropical year depends on the annual precession, it follows that the maximum variation of the tropical year is equal to the mean time required for the earth to describe an arc which is equal to the maximum variation of precession. Now this latter quantity being 4".451682, and the sidereal motion of the earth in a second of time being 0".041067, it follows that the maximum variation of the tropical year is equal to 108.40 seconds of time. In like manner, if we take the difference between the present value of precession and the maximum and minimum values of the same quantity, we shall find that the tropical year may be shorter than at present by 59.13 seconds, and longer than at present by 49.27 seconds. We also find that the tropical year is now shorter than in the time of Hipparchus, by 11.30 seconds. The obliquity of the equator to the apparent ecliptic, and also to the fixed ecliptic of 1850, has also been determined. The variations of this element follow a law similar to that which governs the variation of precession, although the maximum values of the inequalities are considerably smaller than those which affect this latter quantity. The mean value of the obliquity of both the apparent and fixed ecliptics to the equator is 23° IT 17". The limits of the obliquity of the apparent ecliptic to the equator are 24° 35' 58" and 21° 58' 36"; whence it follows that the greatest and least declinations of the sun at the solstices can never differ from each other to any greater extent than 2° 37' 22". And here we may mention a few, among the many happy, consequences which result from the spheroidal form of the earth. Were the earth a perfect sphere there would be no precession or change of obliquity arising from the attraction of the sun and moon ; the equinoc- tial circle would form an invariable plane in the heavens, about which the solar orbit would revolve with an inclination varying to the extent of twelve degrees, and a motion equal to the planetary precession of the equinoctial points. The sun, when at the solstices, would, at some periods of time, attain the declination of 29° 17' for many thousands of years; and again, at other periods, only to 17° 1 7'. The seasons would be subject to vicissitudes depending on the distance of the tropics from the equator, and the distribution of solar light and heat on the surface of the earth would be so modified as essentially to change the character of INTRODUCTION. xiii its vegetation, and the distribution of its animal life. But the spheroidal form of the earth so modifies the secular changes in the relative positions of the equator and eclip- tic that the inequalities of precession and obliquity are reduced to less than one-quarter part of what they would otherwise be. The periods of the secular changes, which, in the case of a spherical earth, would require nearly two millions of years to pass through a complete cycle of values, are now reduced to periods which vary between 26,000 and 53,000 years. The secular motions which would take place in the case of a spherical earth are so modified by the actual condition of the terrestrial globe that changes in the position of the equinox and equator are now produced in a few centuries, which would otherwise require a period of many thousands of years. This consideration is of much importance in the investigation of the reputed anti- quity and chronology of those ancient nations which attained proficiency in the science of astronomy, and the records of whose astronomical labors are the only remaining monument of a highly intellectual people, of whose existence every other trace has long since passed away. For it is evident that, if these changes were much slower than they are, a much longer time would be required in order to pro- duce changes of sufficient magnitude to be detected by observation, and we should be unable to estimate the interval between the epochs of elements which differed by only a few thousand years, since they would manifestly be so nearly identical with our own that the value of legitimate conclusions would be greatly impaired by the unavoidable errors of the observations on which they were based. The duration of the different seasons is also greatly modified by the eccentricity of the earth's orbit. At present the sun is north of the equator scarcely 1863 days, and south of the same circle about 178f days; thus making a difference of 7f days between the length of the summer and winter at present. But when the eccen- tricity of the orbit is nearly at its maximum, and its transverse axis also passes through the solstices, both of which conditions have, in past ages, been fulfilled, the summer, in one hemisphere, will have a period of 198| days, and a winter of only 166 1 days, while, in the other hemispheres, these conditions will be reversed; the winter having a period of 198f days, and a summer of only 166^ days. The variations of the sun's distance from the earth in the course of a year, at such times, are also enormous, amounting to almost one-seventh part of its mean distance — a quantity scarcely less than 13,000,000 of miles! Passing now to the consideration of the elements of the planet Mars, we find that the eccentricity of his orbit always oscillates within the limits 0.018475 and 0.139655; and the mean motion of his perihelion is 17".784456. The maximum inclination of his orbit to the fixed ecliptic of 1850, and to the invariable plane of the planetary system, is 7° 28' and 5° 56' respectively. The minimum inclination to both planes being nothing, the mean motion of the node is indeterminate. The secular variations of the orbits of Jupiter, Saturn, Uranus, and Neptune present some curious and interesting relations. These four planets compose a sys- tem by themselves, which is practically independent of the other planets of the system. The maximum and minimum limits of the eccentricity of the orbits of these four planets are as follows:— INTRODUCTION. Maximum eccentricity. Minimum eccentricity. Jupiter O.OGOS274 0.0254928 Saturn 0.0843289 0.0123719 Uranus 0.0779652 0.0117576 Neptune 0.0145066 0.0055729 The maximum and minimum inclinations of their orbits to the invariable plane of the planetary system have the following values: — Maximum inclination. Minimum inclination. Jupiter 0° 28' 56" 0° 14' 23" Saturn 1 0 39 0 47 16 Uranus 1 7 10 0 64 25 Neptune 0 47 21 0 33 43 The perihelia and nodes of their orbits have the following mean motions in a Julian year of 365£ days: — Mean motion of perihelion. Mean motion of node on the invariable plane. Jupiter + 3".716607 — 25".934567 Saturn +22 .460848 — 25 .934567 Uranns +3 .716607 — 2 .916082 Neptune +0 .616685 — 0 .661666 But the most curious relation developed by this investigation pertains to the relative motions and positions of the perihelia and nodes of the three planets, Jupiter, Saturn, and Uranus. These relations are expressed by the two following theorems : — I. The mean motion of Jupiter's perihelion is exactly equal to the mean motion of tJte perihelion of Uranus, and the mean longitudes of these perihelia differ by exactly 180°. II. The mean motion of Jupiter's node on tlie invariable plane is exact!// equal to that of Saturn, and Hie mean longitudes of these nodes differ by exactly 180°. We also perceive that the mean motion of Saturn's perihelion is very nearly six times that of Jupiter and Uranus, and this latter quantity is very nearly six times that of Neptune; or, more exactly, 985 times the mean motion of Jupiter's peri- helion are equal to 163 times that of Saturn, and 440 times the mean motion of Neptune's perihelion are equal to 73 times that of Jupiter and Uranus. The peri- helion of Saturn's orbit performs a complete revolution in the heavens in 57,700 years; the perihelia of Jupiter and Uranus in 348,700 years; while that of Nep- tune requires no less than 2,101,560 years to complete the circuit of the heavens. In like manner the nodes of Jupiter and Saturn, on the invariable plane, perform a complete revolution in 49,972 years ; that of Uranus in 444,432 years ; while the node of Neptune requires 1,958,692 years to traverse the circumference of the heavens. The motions of the nodes are retrograde, and those of the perihelia are direct ; thus conforming to the same law of variation as that which obtains in the corresponding elements of the moon's motion. We may here observe that the law which controls the motions and positions of the perihelia of the orbits of Jupiter and Uranus is of the utmost importance in relation to their mutual perturbations of Saturn's orbit. For, in the existing INTRODUCTION. xv arrangement, the orbit of Saturn is affected only by the difference of the perturba- tions by Jupiter and Uranus ; whereas, if the mean places of the perihelia of these two planets were the same, instead of differing by 180°, the orbit of Saturn would be affected by the sum of their disturbing forces. But notwithstanding this favor- ing condition, the elements of Saturn's orbit would be subject to very groat pertur- bations from the superior action of Jupiter, were it not for the comparatively rapid motion of its perihelion; its equilibrium being maintained by the very act of per- turbation. Indeed, the stability of Saturn's orbit depends to a very great extent upon the rapidly varying positions of its transverse axis. For, if the motions of the perihelia of Jupiter and Saturn were very nearly the same, the action of Jupiter on the eccentricity of Saturn's orbit would be at its maximum value during very long periods of time, and thereby produce great and permanent changes in the value of that element. But, in the existing conditions, the rapid motion of Saturn's orbit prevents such an accumulation of perturbation, and any increase of eccen- tricity is soon changed into a corresponding diminution. The same remark is also applicable to the perturbations of the forms of the orbits of Jupiter and Uranus by the disturbing action of Saturn; for the secular variations of Jupiter's orbit depend almost entirely upon the influence of Saturn, because the planet Neptune is too remote to produce much disturbance, and the mean disturbing influence of Uranus on the eccentricity of Jupiter's orbit is identically equal to nothing, by reason of the relation which always exists between the perihelia of their orbits. We may here observe that the eccentricity of the orbit of Saturn always increases, while that of Jupiter diminishes, and vice versd. The consequences which result from the mutual relations which always exist between the nodes of Jupiter and Saturn, on the invariable plane of the planetary system, are no less interesting or remarkable with respect to the position of the orbit of Uranus than those which result from the permanent relation between the perihelia of Jupiter and Uranus are with respect to the form of the orbit of Saturn. The mean disturbing force of Saturn on the inclination of the orbit of Uranus is about four times that of Jupiter ; but as these two planets always act on the inclinations in opposite directions, it follows that the joint action of the two planets is equivalent to the action of a single planet at the distance of Saturn and having about three-fourths of his mass ; so that the orbit of Uranus might attfain a considerable inclination from the superior action of Saturn if allowed to accumulate during the lapse of an unlimited time, at its maximum rate of variation depending on the action of this planet. But such an accumulation of perturbation is rendered forever impossible by reason of the comparatively rapid motion of the nodes of Jupiter and Saturn, with respect to that of Uranus, on the invariable plane. By reason of this rapid motion, the secular changes of the inclination of the orbit of Uranus pass through a complete cycle of values in the period of 56,300 years. The corresponding cycle of perturbation in the eccentricity of Saturn's orbit is 69,140 years. It is the rapid motion of the orbit with respect to the forces in the one case, and the rapid motion of the forces with respect to the orbit in the other, that gives permanence of form and position to the orbits of Saturn and Uranus. xvi INTRODUCTION. The .mean angular distance between the perihelia of Jupiter and Uranus is exactly 180°; but the conditions of the variations of these elements are sufficiently clastic to allow of a considerable deviation on each side of their mean positions. The perihelion of Jupiter may diifer from its mean place to the extent of 24° 10', and that of Uranus to the extent of 47° 33'; and therefore the longitudes of the perihelia of these two planets can differ from 180° to the extent of 71° 43'. The nearest approach of the perihelia of these two planets is, therefore, 108° 17'. In like manner the longitudes of the nodes of Jupiter and Saturn, on the invari- able plane, can suffer considerable deviations from their mean positions. The actual position of Jupiter's node may differ from its mean place to the extent of 19° 38'; while that of Saturn may deviate from its mean place to the extent of 7° 7'. It therefore follows that their longitudes on the invariable plane can differ from 180° by only 26° 45'. Their nearest possible approach is 153° 15', while their present distance apart is 166° 27'. The inequalities in the eccentricity of Neptune's orbit are very small, and the two principal ones have periods of 613,900 years, and 418,060 years respectively. Strictly speaking, the periods of the secular inequalities of the eccentricities and perihelia are the same for all the planets ; and the same remark is equally applicable to the nodes and inclinations. But the principal inequalities of the several planetary orbits arc different, unless they are connected by some permanent relation, similar to that which exists between the perihelia of Jupiter and Uranus, or the nodes of Jupiter and Saturn. Thus the principal inequalities affecting the inclination of the orbits of Jupiter and Saturn have the same periods for each planet, and these periods are, for the two principal inequalities, 51,280 years, and 56,303 years. In like manner the principal inequalities in the eccentricities of Jupiter and Saturn depend on their mutual attraction, and have a period of 69,141 years. The secular inequalities of those orbits which have no vanishing elements are composed of terms, of very different orders of magnitude ; and it frequently happens that two or three of these terms are greater than the sum of all the remaining ones. In such cases the variation of the corresponding element very approximately conforms to a much simpler law, and the maxima and minima repeat themselves according to definite and well-defined cycles. But with regard to the orbits of Venus, the Earth, and Mars, the rigorous expressions of the eccentricities and inclinations are composed of twenty-eight periodic terms, having coefficients of considerable magnitude ; and this circumstance renders the law of their variations extremely intricate. The method we have adopted for finding the coefficients of the corrections of the constants, depending on finite variations of the different planetary masses, consists in supposing that each planetary mass receives in succession a finite incre- ment, and then finding the values of all the constants corresponding to this increased mass in the same manner as for the assumed masses. By this means we have a set of values corresponding to the assumed masses, and another set corre- sponding to a finite increment to each of the planetary masses. Then, taking the INTRODUCTION. xv difference between the two sets of constants, and dividing by the increment, which produced it, we get the coefficient of the variation of the constants for any other finite increment of mass to the same planet ; but, on account of the importance of the earth's mass, and the probable inaccuracy of its assumed value, we have pre- pared separate solutions corresponding to the several increments of J^, ^, and ^V of its assumed mass ; and a comparison of the values which the different solutions give for the superior limit of the eccentricity of the earth's orbit has suggested the inquiry whether there may not be some unknown physical relation between the masses and mean distances of the different planets. The same peculiarity in the elements of the orbit of Venus is also found to depend upon particular values of the mass of that planet. But without entering into details in regard to the pecu- liarity referred to, we here give the several values of the masses of these two planets which we have employed in our computations, and the corresponding values of the superior limit of the eccentricity of their orbits. Mass mf m' For Venus. Maximum e' 0.070G33 V) 0.074372 0.076075 0.075029 0.072098 For the Earth. Mass m" Maximum e". m"0 0.067135 0.069389 0.069649 0.068089 These numbers show that if the mass of Venus were to be increased, the supe- rior limit of the eccentricity of her orbit would also increase until it had attained a maximum value, after which a further increase of her mass would diminish that limit; and the same remark is also applicable to the eccentricity of the earth's orbit. The above numbers indicate that the superior limit of the eccentricity of the orbit of Venus is a maximum if the mass of that plant is equal to m'0 M -| — -); » /^U / or, if m' = -- of the sun's mass ; and the superior limit of the eccentricity of 3o449() the earth's orbit is a maximum if the earth's mass is equal to m"0 M -| — -; \ A\J / or, if m" = tne sun's mass. But this value of the earth's mass corre- sponds to a solar parallax of 8". 7 30, a value closely approximating to the recent determinations of that element. If, then, the mass of Venus is equal to -^-.-. — , and the mass of the earth is equal Ot)^tTci/ \J to — , it follows that the orbits of these two planets will ultimately become more eccentric from the mutual attraction of the other planets, than they would for any other values of their respective masses; and we may now inquire whether such coincidence between the superior limits of the eccentricities and the masses of these two planets has any physical significance, or is merely accidental. C July, 1872. xviii INTRODUCTION. Since ' the mean motions and mean distances of the planets are invariable, and independent of the eccentricities of the orbits, it would seem that there could be no connection between these elements, by means of which the stability of the sys- tem might be secured or impaired ; but a more careful examination shows that, although the mean motions or times of revolution of the planets arc invariable, their actual velocities, or the variation of their mean velocities, depends wholly on the eccentricities ; and, were any of the planetary orbits to become extremely ellip- tical, the velocity of the planet would be subject to great variations of velocity, — moving with very great rapidity when in perihelion, and with extreme slowness when in the neighborhood of its aphelion; and it is evident that when the planet Avas in this latter position a small foreign force acting upon it might so change its velocity as to completely change the elements of its orbit, by causing it to fall upon the sun or fly off into remoter space. A system of bodies moving in very eccen- trical orbits is, therefore, one of manifest instability; and if it can also be shown that a system of bodies moving in circular orbits is one of unstable equilibrium, it would seem that, between the two supposed conditions, a system might exist which should possess a greater degree of stability than either. The idea is thus suggested of the existence of a system of bodies in which the masses of the different bodies are so adjusted to their mean distances as to insure to the system a greater degree of permanence than would be possible by any other distribution of masses. The mathematical expression of a criterion for such distribution of masses has not yet been fully developed; and the preceding illustrations have been introduced here, more for the purpose of calling the attention of mathematicians and astronomers to this interesting problem than for any certain light we have yet been able to obtain in regard to its solution. MEMOIR THE SECULAR VARIATIONS OF THE ELEMENTS OF THE ORBITS OF THE EIGHT PRINCIPAL PLANETS, MERCURY VENUS THE EARTH MARS, JUPITER, SATURN, URANUS, AND NEPTUNE. CHAPTER I. ON THE SECULAR VARIATIONS OF THE ECCENTRICITIES AND PERIHELIA. 1. We shall assume as the basis of our computation the following differential equations, which determine the instantaneous variations of the eccentricities and places of the perihelia of the planetary orbits at any time. These equations are demonstrated by LA PLACE, in Book II, Chapter VII, of the Mecanique Celeste; and by PONTECOULANT, in Book II, Chapter VIII, of his Theorie Analytique du Syst&me du Monde, and are as follows : — ft = | (o,o+(o,8)+(o,8)+&c. } i -E] * - di~ dhf_ I dt = \ §=-{(i,o)+— To^— &c. If we suppose the number of planets whose mutual action is considered, to be i, the number of these equations will be i; and by eliminating the constant quantities N, N1, N"t &c., we shall obtain a final equation in g of the degree i. 3. The quantities (0,1) and (1,0), [0,1 1, [ I,Q| ; (0,2) and (2,0), |o,2|, 1 2 . o | ; (1,2) and (2,1); |i,8| and |2,i|, &c., have some remarkable relations with each other, which not only facilitate their computation, but render the equations resulting from the elimination of N, N', N", &c., much shorter and more commodious. The general expression for (0,1) is In this equation n and a denote the mean motion and mean distance of Mercury, m' denotes the mass of Venus and a' its mean distance from the sun. If we change n, a into »', a', and m', a' into m, a, respectively, (0,1) will change it into (1,0), and we shall have Now since (a, a')'=(a', a)', equations (4) and (5) will give m n'a' we shall also have &c. na m' na m na m" (6) The same relations also hold with respect to the quantities [oTT], [To], [oTFI, [TTo], &c., so that we shall also have rri=|TT|~ n'a> 8 , 0 = I 0 , i 3,0 = 0,3 na m' na m" na m'" &c. (8) THE ORBITS OF THE EIGHT PRINCIPAL PLANETS. Therefore when we have computed the quantities (0,1), (°,2), (°,3), &c-> or the coefficient for an interior planet, depending on the action of an exterior planet, we shall obtain the corresponding coefficient for an exterior planet, depending on the action of an interior planet, by means of equations (6), (7), and (8). Equations (6) and (7) may be written as follows : — , . in f , m (1,0) = (0,1) n'a' na , m" , > TO I 2 , 0) = (0,2) ' ri'a" ' na &c. We shall also similarly have (\ TO" , , m' " 2, 1 1 ' 1 n"o" n'a' M TO'" (1 ,3 TO' n'"a'" n'a' (•\ TO'" TO" 3,2) ^-— (2,3 / ri"a'" ri'a" &c. We shall therefore have (3,0)(0,2)(2,3) = (0,3)(3,2)(2,0), &c. We shall also have the following products of four factors &c And of five factors we have , O) = (l, 0)(0,4)(4,S)(S, (9) (10) (H) (12) j. . (13) (1,2)(2,4)(4,3)(3,5)(5,1) = (2,1)(1,a)(5,3)(3,4)(4,2), &c. . And in like manner we may form the products of six, or any number of factors. Equations (11), (12), and (13) are very useful in reducing two terms to a single one. We may in like manner form the following equations : — (14) SECULAR VARIATIONS OF THE ELEMENTS OF • (15) H] [Hil [HI] HH] — [HiD H3 [HE GUI] » •ZEl Hill EH] E3 ~ E3 E3 EH] UH] > 0^1|l.8||«.8||g.4l[4.o| = |l.Q||o.4||4.S||3.a||a.l|, 0,1 1,2 a,* h,3 3,0 = 1,0 0,3 3,4 4,2 2,1 , 1,2 2,4 4,3 3,5 3,1 = 2,1 1,6 5,3 3,4 4,2 I 4. The quantities (0,1), (0,2), (0,3), &c., (1,0), (1,2), (1,3), &c.; [uj], FT^l. 1^1, &c., [TTo], [T7T|, QTT], &c. ; depend on the masses and mean distances of the different planets. The analytical expressions of ( = — 0.625a4 + 0.15625a6 + 0.024414061a8 + 0.008544920a10 + 0.004005431a12 + 0.002202987a14 + 0.001 3424452aM \ + 0.0008789820^ + 0.00()6070469a20 + 0.0004368899a23 4- 0.0003249368a24 + 0.00024824720,26 + 0.0001 939431a28 4- 0.0001 544085601"° -j- 0.0001 2493996as2 + &c. (19) (21) (22) THE ORBITS OF THE EIGHT PRINCIPAL PLANETS. 5 It will manifestly be unnecessary to compute b(V separately, since it is already included in the value of &(0). Therefore taking logarithmic coefficients of equations (19) and (21), we shall have the two following working formulae for the computation of bm and b(V. &<«>= — a4^ 0.625— [9.1938200]a2 — [8.3876400]a* — [7.9317080]a8 — [7.6026493]a8 — [7.34301 19]a10 — [7.1278964]a12 — [6.9439800]au — [6.7832222]a16 — [6.6403720]a18 - [6.51179S9]*20 — [6.3948844]a22 — [6.2876743]a24 - [6.1886714]a20 — [6.0967014] x28— &c. } &(i>= _ a\ 1 — [9.0969100]a2 — [8.1938200]a4 — [7.6886700]a6 - [7.3296480]a8 — [7. 049 80 7 3] a10 — [6.8201332]a12 -[6.6252212]a14 — [6.4558633] x1G — [6.3061010]a18 - [6.1718509]a20 — [6.050 1898]a22 — [5.9389523]a24 - [5.8364888]a20 — [5.7415133]a28 — [5.6530038]a30— &c. Then we shall have 3 c«.o= - . (23) 5. To reduce the preceding formulae to numbers we shall assume the following values of the invariable elements of the eight principal planets. Invariable Elements of tlie Eight Principal Planets. Masses. Mean motions in a Julian year. Mean distances from the sun. Mercury .... l+H 771 _ _ !__£ . " 4865751 n = 538101 6".2 a =0.3870987 Venus .... , — * + ^' n' = 2106641 .438 a' =0.7233323 390000 The Earth . . . 1 + 1"" n" = 1295977 .440 a" = 1.0000000 368689 Mars m •*• 1 /*'" n'" = 689050 .9023 a'" = 1.5236878 = 2680637 Jupiter .... IY '' 1047.879 n'F= 109256.719 a'v= 5.202798 Saturn .... v 1 + ^ nr == 43996 .127 av = 9.538852 3501.6 Uranus .... m " ~T~ P nw= 15424.5094 avl= 19.183581 24905 Neptune .... "18780 nF"= 7873 .993 av"= 30.03386 6 SECULAR VARIATIONS OF T U E ELEMENTS OF From these quantities we shall obtain m log. 93.3128501 ; m' log. 94.4089354; log. 94.4333398 ; log. 93.5717620; log. 96.9796889 ; log. 96.4557335 ; log. 95.6037135; mra log. 95.7263044; m" m' mf mr the following logarithms a log. 9.58782172; log. 9.85933786; log. 0.00000000 ; log. 0.18289600; log. 0.71623697; log. 0.97949611; log. 1.28292968; log. 1.47761116; a' a" a'" a'] ar ar a n n' n" n" n" nr nn log. 6.7308643; log. 6.3235906 ; log. 6.1125974; log. 5.8382513; log. 5.0384481 ; log. 4.6434145; log. 4.1882114; log. 3.8961950; m — - na m' - - n'a' m" - - n"a" m'" - - n'"a'" m" - - nrra' mT '— - nrar mvi - -nvla m7"- - nv"a log. 86.9941641 ; log. 88.2260070; log. 88.3207424 ; log. 87.5506147; log. 91.2250039 ; log. 90.8328229 ; log. 90.1325724; log. 90.3524982. The values of a, a', a", &c., give the following values of a and 1 — a2. For Mercury and Venus a=0.5351603 log. 9.72848386; 1 Earth a=0.3870987 log. 9.58782172; 1 Mars a=0.2540538 log. 9.40492572 ; 1 Jupiter a=0.07440202 log. 8.87158475; 1 Saturn a=0.04058127 log. 8.60832561 ; 1 Uranus a=0.02017864 log. 8.30489204; 1 «« Neptune a=Q.Q!2888U log. 8.11021056; 1 — a2 lot -a- log. 9.8534569 ; -a2 log. 9.9294980 ; -a2 log. 9.9710237; -a2 log. 9.9975892; -a2 log. 9.9992842; -a2 log. 9.9998231 ; —a2 log. 9.9999279. For Venus and Earth a=0.7233323 log. 9.85933786 ; 1— a2 log. 9.6783274; Mars a=0.4747247 log. 9.67644186 ; 1— a2 log. 9.8890979 ; J^er a=0. 1390276 log. 9.14310089 ; 1— a2 log. 9.9915235 ; Saturn a=0.07583011 log. 8.87984175; 1— a2 log. 9.9974955 ; Uranus a=(X03770580 log. 8.57640818; 1— a2 log. 9.9993822; Neptune a=0.02408390 log. 8.38172670; 1— a2 log. 9.9997480. For Earth and Mars a=0.6563025 log. 9.81710400; 1— a2 log. 9.7553161 ; Jupiter a=0.1922043 log. 9.28376303 ; 1— a2 log. 9.9836522 ; Saturn a=0.1048344 log. 9.02050389; 1— a2 log. 9.9952006 ; Uran-as a=0.0521279 log. 8.71707032; 1— a2 log. 9.9988183 ; Neptune a=0.03329575 log. 8.52238884; 1— a2 log. 9.9995183. For Mars and Jupiter a=0.2928593 log. 9.46665903 ; 1— a2 log. 9.9610571 ; Saturn a=0.1597349 log. 9.20339989 ; 1— a2 log. 9.9887751 ; Uranus a=0.07942665 log. 8.89996632; 1— a2 log. 9.9972515; Neptune a=0.05073232 log. 8.70528484 ; 1— a2 log. 9 9988808. THE ORBITS OF THE EIGHT PRINCIPAL PLANETS. 7 For Jupiter and Saturn a=0.5454324 log. 9.73674086; 1— a2 log. 9.8466486; Uranus a=0.2712110 log. 9.43330729; 1— a2 log. 9.9668195; Neptune a=0.1732311 log. 9.23862581 ; I—a? log. 9.9867677. For Saturn and Uranus = 98.6758747% ; log. 61V = 99.7120142% ; Earth log. 6(0) = 98.1301668%; " Mars log. 6<0> = 97.4084445% ; " Jupiter log. 6(0) = 95.2816171%; Saturn log. 6(0) = 94.2290035% ; Uranus log. 6<°> = 93.0154041%; log. 61V = 99.5794468%; log. 61!' = 99.40 13786%; log. 61V = 98.8712839%; log. by = 98.6082362% ; log. by = 98.3048699% ; Neptune log. 6(0) = 92.2367042% ; log. by = 98.1102016%. Venus and = 99.8275394»; = 99.6636495^; Earth log. 6<°> = 99. 1656339%; log. 61 Mars log. 6<°> = 98.4754676% ; log. 6^ Jupiter log. 6<°> = 96.3661735% ; log. 61! Saturn log. 6<°> = 65.3146217% ; log. 61't> = 98.8795292% ; Uranus log. 6<°> = 94.1013583% ; log. by = 98.5763310% ; Neptune log. 6(0> = 93.3227239% ; log. by = 98.3816952%. TheEarth and Mars log. 6<°> = 99.0105934% ; log. by = 99.7915113% ; Jupiter log 6(0) = 96.9268788% ; log. 61V = 99.2817435% ; « Saturn log. 6(0) = 95.8766987%; Uranus log. 6(0) = 94.6638660% ; log. 61V = 99.0199061% ; log. 6lJ> = 98.7169227%; Neptune log. 6(0) = 93.8853150% ; log. 61V = 98.5223286%. (C u 97.6529713% ; log. 61V = 99.4619255% ; 96.6066892% ; log 61j> = 99.2020080% ; 95.3950591% ; log. 61V = 98.8996234% r Neptune log. 6(0) = 94.6167398% ; log. 6 Saturn log. 6(0) Uranus log. Jupiter and Saturn log. 6(0) : Uranus log. 6(0) : Neptune log. 6(0) ; a » : 98.7074558%; ; 97.5209527%; log. : 96.7470972%; log. ' = 99.7195915%; = 99.4292578%; 1 = 99.2369875%. Saturn and Uranus log. " Neptune log. = 98.5532200% ; log. 61V = 99.6824668% ; = 97.7921436% ; log. 61V = 99.4963019%. Uranus and Neptune log. 6(0) = 98.9667121% ; log. by = 99.7812070%. 8 SECULAR VARIATIONS OF THE ELEMENTS OP 7. We must now substitute the values of #,', and the corresponding values of a, in equation (24) ; and change m', successively into m", m'", m'r, &c., and we shall obtain the values of (o,i)> (°.2), (°'3)> &c-» or the coefficient of the action of each of the planets on Mercury. The characters 0, 1, 2, 3, 4, 5, 6, 7, refer respectively to Mercury, Venus, the Earth, Mars, Jupiter, Saturn, Uranus, and Neptune. Then changing n into ri, and m', into m", m'", &c., we shall obtain the values of (1,2), (1,3), &c., or the action of each outer planet on Venus. And in like manner we shall obtain (2,3), (2,4), (2,5), &c. ; (3,4), (3,5), &c., or the action of each outer planet on each inner one. We shall then obtain (1,0), (2,0), (2,1), &c., or the action of an inner planet on an outer one by means of the equations (6), (7), (10), &c. In this manner we have obtained the following results : — (0,1) = (0,7) = (2,0) = (2.1)= (•'«)= (2,6)= (3,0) = ). 2".9986729 ). 0.8617070 ). 0.0279815 '). 1.6028375 ). 0.0772642 r). 0.0013324 rO. 0.0004603 ). 0". 1758273 ). 6.6305873 ). 0.1020355 r). 4.2028443 ). 0.1988873 r). 0.0034100 r/). 0.0011765 ). 0".0406239 ). 5.3310972 ). 0.2982001 '). 7.0682646 ). 0.3265163 '). 0.0055565 rO. 0.0019144 ). (T.0077700 ). 0.4832186 ). 1 .7564488 (,,4) = (1-fy ).14 .6598964 (i,. ) = (!+!«'' ). 0.6313987 (i, e) = (!-{-/'). 0.0105215 (3, 7) = (1-|-/"). 0.0036105 log. 0.4769291; log. 9.9353596 ; log. 8.4468702; log. 0.2048895; log. 8.8879781 ; log. 7.1246469; log. 6.6629969. log. 9 log. 0 log. 9 log. 0 log. 9 log. 7 log. 7. log. 8. log. 0. log. 9. log. 0. log. 9. log. 7. log. 7. 2450862; 8215520; 0087513; 6235433; 2986071; 5327484; 0706089. 6087813; 7268166; 4745078 ; 8493128; 5139049; 7447989 ; 2820328. log. 7.8904196 ; log. 9.6841436; log. 0.2446355 ; log. 1.1661309; log. 9.8003037; log. 8.0220791 ; log. 7.5575701. THE ORBITS OF THE EIGHT PRINCIPAL PLANETS. ). 0".0000942.0 ). 0.0042125.6 (4,j)=(l-(-/ )• 0.0088115.3 (4,s)=(l-|y (4,5)=(l-j-/ log. 5.9740497 ; log. 7.6245464; log. 7.9450513; log. 7.4917417; log. 0.8690189 ; log. 8.8794563 ; log. 8.3805175. log. 5.0493193 ; log. 6.6917912; log. 7.0018244; log. 6.5180955; log. 1.2611999; log. 9.4444852 ; log. 8.8372088. log. 93.9862386 ; log. 95.6261830; log. 95.9329689 ; log. 95.4401214; log. 99.9718878; log. 0.1447357; log. 99.6367457. ). 0".0000002.0168 log. 93.3046628 ; ). 0.0000087.926 log. 94.9441177; ). 0.0000177.94 log. 95.2502770 ; (7,3)=(14-^"' ). o .0000056.975 log. 94.7556866; log. 99.2530232; log. 99.3175335; log. 99.4168199. In like manner formulas (25) and (8) will give the following values of 0 .0031027.1 7 .3963746.3 0 .0757628.5 0 .0240169.3 0".0000112.0 0 .0004918.0 0 .0010042.1 (5,3)=(l_)-ft'" ). 0.0003296.8 (5,4)=:(l-|-^jr).18 .2473541 («,<>)=(l-h*TJ)- 0.2782820.5 "). 0.0687398.9 ). 0".0000009:688 ). 0.0000422.85 ). 0.0000856.98 ). 0.0000275.50 '). 0.9373198.2 ). 1.3955188.2 '). 0.4332570.2 ). 0.1790701.5 (7,«)=(14.#t'r ). 0 .2077464.0 ). 0.2611078.3 7i]=(l+^ ).1".926868 Ts]=(l-f/i' ).0. 4087579 78l=(l-j-p* ).0. 008812816 I]=(l-)_/r).0. 1489646 ).0. 00391854 ).0. 0000336068 -0- 00000741495 ).0."1129820 )-5. 520785 ).0. 0587105 [Hl]=(l+iaiy ).0. 7286137 QT3=(l+iit1' ).(). 0188385 QT3=(l-j-ftw).0. 00016069 .0. 0000354172 log. 0.2848519; log. 99.6114662; log. 97.9451147; log. 99.1730832; log. 97.5931242; log. 95.5264270; log. 94.8701084. log. 99.0530090 ; log. 0.7420008; log. 98.7687157; log. 99.8624973 ; log. 98.2750461 ; log. 96.2059893; log. 95.5492142. July, 1871. 10 SECULAR VARIATIONS OF THE ELEMENTS OF ]=(1+^ !=(!+/ . 0".0192703 log. 98.2848879 ; . 4.438798 log. 0.6472654; . 0.2293041 log. 99.3604119; . 1 .690254 log. 0.2279520; . 0.0427287 log. 98.6307197; . 0.000361930 - log. 96.5586316; r 0 .0000796657 log. 95.9012715. . 0".00244717 log. 97.3886641 ; . 0.2780404 log. 99.4441080 ; . 1 .350640 log. 0.1305396; , 5.307483 log. 0.7248886; . 0.1256652 log. 99.0992151 ; . 0.001043788 log. 97.0186122; . 0.000228889 log. 96.3596252. . 0".0000087547 log. 94.9422434 ; . 0.00073030 log. 96.8635004 ; , 0.00210713 log. 97.3236905 ; . 0.00112331 log. 97.0504994 ; , 4.835390 log. 0.6844315; . 0.0254429 log. 98.4055666 ; . 0.00518090 log. 97-.7144056. . 0".00000056815 log. 93.7544654; . 0.0000465833 log. 95.6682302; . 0.000131413 log. 96.1186392; . 0.0000656156 log. 95.8170069; .11 .92923 log. 1.0766125; . 0.1671612 log. 99.2231355; . 0.0269346 log. 98.4303106. . 0".000000024435 log. 92.3880187; . 0.0000019926 log. 94.2994239 ; . 0.00000558215 log. 94.7468016; . 0.0000027331 log. 94.4366545 ; . 0.3147736 log. 99.4979981 ; . 0.8382741 log. 99.9233860 ; . 0.3255696 log. 99.5126438. . 0".00000()003249 log. 91.5117743; . 0.00000026468 log. 93.4227230; . 0.000000740484 log. 93.8695157; . 0.000000361195 log. 93.5577417; . 0.0386288 log. 98.5869113; . 0.0814020 log. 98.9106353; . 0.1962086 log. 99.2927180. THE ORBITS OF THE EIGHT PRINCIPAL PLANETS. 11 8. The values of (0,1), (0,2), &c., [oTT], [oTa], &c., (1,0), (1,2), &c., QTo], [T^\, &c., being substituted in equations (B), supposing ^, ^', ^", &c., to be equal to nothing, we shall have a series of numerical equations which are perfectly symmetrical in form, between g and the unknown quantities N, N', N", &c. If we then eliminate N, N', N" from these equations, we shall obtain a final equation in g, of a degree equal to the number of original equations. The construction of this final equation in g is the most delicate and intricate problem connected with the actual determi- nation of the secular inequalities. Theoretically speaking, this equation may be formed by eliminating the quantities N, N', N", &c., by the ordinary methods of elimination in algebra. But this method, though direct and simple in theory, leads to impracticable operations when we attempt to apply it to the formation of the equation of the eighth degree which is necessary in the simultaneous determination of the secular inequalities of the eight principal planets. The only actual merit of this method seems to be that of leaving the algebraic values of N',N", N'", &c., in the successive eliminations, in very good form for computation, when the value of g has been determined ; while its defects are twofold, as follows : First, it intro- duces foreign facts depending on g, which raise the final equation in g, to a very high degree ; and secondly, it necessitates the employment of a very great number of decimals in the successive eliminations, in order to obtain a near approximation to the correct value of the final equation. The method of determinants enables us to form the final equation in g without actually performing the eliminations of the unknown quantities N, N', N", &c. It also enables us to estimate, in advance, the exact amount of labor necessary for forming the final equation arising from any number of linear symmetrical equations. In the year 1860, we published a short paper on this interesting branch of analysis in GOULD'S Astronomical Journal, Vol. VI. From the explanation and formulae there given, it follows that each of the given equations contains one binomial term of the form g — a, and that each term of the final equation contains one factor from each of the given equations ; and also that the whole number of terms in the final equation is equal to the continued product of the numbers 1, 2, 3, 4, &c., to n inclusive; n denoting the number of given equations. In the present case n is equal to eight ; there being one equation corresponding to each of the eight principal planets. The whole number of terms in the equation of the eighth degree is therefore equal to 1.2.3.4.5.6.7.8 = 40320. There are therefore 40320 distinct terms in the equation of the eighth degree, each of which contains eight factors which are either monomial or binomial. They are distributed in the following order : — 1 term having 8 binomial factors producing 9 monomial terms. 28 terms " 6 " " " 196 112 " " 5 " " " 672 " " 630 " " 4 ". " " 3150 " " 2464 " " 3 " " " 9856 " " 7420 " " 2 " " " 22260 " 14832 " 1 " " " 29664 14833 " without binomial factors " 14833 Total 40320 80640 SECULAR VARIATIONS OF THE ELEMENTS OF The equation of the eighth degree when completely developed is therefore com- posed of 80640 distinct monomial terms, each of which contains eight factors. The actual formation of this equation could therefore with difficulty be brought within the compass of an ordinary lifetime ; and we must, therefore, seek for a shorter and more expeditious method of attaining results which seem to necessarily involve such an immense expenditure of labor. 9. For this purpose we shall resume equations (B) of § 2, and shall suppose , 3)+ &c. £ ; &c- ! &c. By this means equations (B) will be reduced to the following : — Now since the coefficients of Nir, N\ NVI, and NT" of the first four of the equations (B') are independent of y, and also the coefficients of N, N\ N" and Nm, in the last four of equations (B'), we may divide them into two distinct groups, and determine the values of g, N\ N", N'", &c., by successive approximations. We shall therefore suppose (27) (28) Substituting these quantities in equations (B'), they will become (B") THE ORBITS OF THE EIGHT PRINCIPAL PLANETS. 13 417jA-'-|-61=0, 3^w-fia=o, If we now suppose b, b, b", &c. to be equal to nothing, and eliminate IV, N", and N" from equations (B"), and N\ N", and JVr// from equations (B'"), the resulting equations will be divisible by N and N'v respectively ; and we shall have +[iTT][TT7][T]nii^+ir^r^r^ , -2 2 , ii o , 3 — 3,2 2,0 0,1 1,3 — 3,0 0,1 1,2 2,3 + 3, 2 2,1 1,0 0,3 4,4 .I,* 8,6 7,7 — 7,6 6,7 4,4 5,5 — 7,8 5,7 4,4 8,6 — 7,4 4,7 a, 5 6, 6,05,64,47,7 6,44,65,57,7 .',,44,56,67,7 7,b6,44,S-,,7 7,4 4.5 -,,66,7 -4-7,6 6,5 5,4 4,7 Each of these equations is evidently of the fourth degree in g, and consequently has four roots, which may be found by any of the ordinary methods of finding the roots of numerical equations. These roots will be only approximate, because we have neglected b, b\ b", &c., in the determination of equations (29) and (30). If we substitute the approximate roots derived from equation (29) in any three of equations (5"), we can find by elimination the values of N\ N", and N'" in terms of N, which remains indeterminate. When N', N", and N'" have been thus deter- mined we must substitute their values in equations (28), and we shall obtain the values J1? 525 ^3, and b^ in terms of N; and these quantities are then to be substituted in equations (-B'"), together with the corresponding value of g; and we shall then obtain the values of N'\ Nr, NVI, and NT", in terms N. But instead of performing this operation separately for each of the roots, in the manner described above, it is better to deduce a system of algebraic equations, not only for the purpose of facili- tating the numerical calculations, but also for the purpose of devising checks to the accuracy of the different parts of the computations. 10. If we now assume the following quantities (32) 14 SECULAR VARIATIONS OF THE ELEMENTS OF TO] I 0 , 1 I 1 . 3 | I 2. ill 1 ,0|[0.3| | j o7l|[l,2|riT3| Io,2|[-J.l||l.3| I L—J I0-3) : ) ED f(; [3, 2j [ 2.1 ] ^0,2|[3,3][3.l| I i~ . r° • * i J 5,4|j4,8|[6,:| [i, 6 [[6, 4][ 4. 7 [ 1 Frn~~ ~ E3 r(; 1 (45) THE ORBITS OF THE EIGHT PRINCIPAL PLANETS. 15 ,(46) B „ J I 4,lil| 5, fl | . ) , „ f | 4 , 5 1 1 li , f] | . ) , 1 (50) ,(49) =B +C +E ; ?';1 fr=B"-\-C'"+F'"; j iTJ:; I (52) /.==j we shall have the following system of equations for the rigorous determination of g, N', N", JV'", &c.— observing that the terms of equations (29) and (30), which are inclosed by braces, are reduced to single terms by means of equations (14) and (15). 6,4)[4,6|[s,a]| 7,7| =(£4, J&, ^6,^7); (54) 16 SECULAR VARIATIONS OF THE ELEMENTS OF / D3 /) /• I ^ | ^_ f [HO I HTTl I EH]/) / Ci3n /• I . J EZ] = s |^=-^3/3 — p^M.A r ~=~ 1 jYYi — J EZ - rHE 1 f -*• /En] 1 pj— n moi M- T71 I Z11 m I \r' A'N+f - (57) ' " ±±Lly ; (58) " (55) (56) ^RTU"Z>"— |2,i||o,:,M' ; (60) - ; (61) Nr"=, '1/4— rr»ipr?i 3Z?3— |4,V||0,S| . (64) 11. Equations (53) to (64) are entirely rigorous. They are, moreover, under a very simple and convenient form for the computation of JV, N", N'", &c. • and, as there are duplicate and independent formulae for all these quantities, any error that may accidentally creep into the computation of one formula is at once detected by computation of the other. They have also this additional advantage : sometimes one of the formula? for N, N", N", &c., gives value for these quantities of the form THE ORBITS OF THE EIGHT PRINCIPAL PLANETS. 17 N=--' „ --> in which a is very nearly equal to a', and the computation of these (t quantities cannot be readily effected by logarithms with sufficient precision to give their difference correct to more than three or four significant figures; and, in all these cases, the other formula for the same quantity gives a value which is free from this source of error. The computation of the successive approximations to the values of the required quantities is then arranged as follows: — We first find the roots of equation (53), on the supposition that £ is equal to nothing. We shall designate these roots by ffii ;T|— [772]=: — 0.008365 164.0+ 0.1468326 + ED DUE [EH— E3= 4- 0.0002436 4-[T7s][37olEE— [TT3= + 0.0000106 _[sTo]^7?] - 0.0000216 Sum of terms A'= g~— 23.14584877.0+98.0010178 Computation of A'. [oTo] Q7T]=02— 16.885024000.0+63.02615319 _ [oTojjTTjQT]?] — [|T3]= . 1.136499372.^+ 6.33059222 — [ZZIUZKIZ]— HH]= — 0.0.00740612.^+ 0.00837985 +HUE3EH]— Hil]= + 0.00950700 +[]TT] [173 [»7T] _[?:¥]= -}- 0.01927424 _[TTo][77T] — 0.21770124 Sum of terms 4"=0a— 1 8.022263984.^+69. 1 7620526 Computation of D. 24.386941200.^+147.908607365 = — 10.635634399#.+120.339738 = — 12.836685468.(/+167.803373 +276.789684 + 12.087392 ' 24.5056485 D=f— 47.859261067.^+700.423146 Computation of V. =<72— 28.867632700.^+198.606593 := - 0.0291 19780.(/+ 0.329484 = -26.024746029.^+456.808841 =: + 0.373801 = + 0.033095 0.016324 ^=<72— 54.92149851.^+656.135490 Computation of 17. =ga— 30.625037500.^+229.4540814 ^ — 0.001271660.J/+ 0.0166233 j^ _ 0.941628729.^+ 16.5282815 = + 0.0274200 + 0.0135249 0.3097073 = g1— 31.56793789.0+245.7302238 Sum of terms Sum of terms — Sum of terms 20 SECULAR VARIATIONS OF THE ELEMENTS OF Computation of A^ (T7T][77T|=(y2— 10.278627600.0+20.78112498 — E3E3E3— ELN • 2.020545804.04-15.17909859 — [E3E3E3— EjQ= - 2.294602698.0-j- 6.34744976 + |s,4|[4,«'][o7r] _ [777]=: + 3.66870084 -f E3E3EZ]— E3= + 0.01012112 _[7T4][4T6j = — 0.00800875 Sum of terms ,41=02-14.593776102.0+45.97848654 Computation of A2. =02— 8.160332300.0+4.86769548 I]= — 0.031614994.^-|-0.23750370 =: -1.815697936.^-j-1.17649401 = -(-0.07254385 = +0.00015836 -0.00020013 At=gt— 10.00764523.^+6.35419527 — EZHI Sum of terms Computation of A3. T^|=<72— 26.108588300.<7+139.70173232 Z]— [13= — 0.069351012.^+ 0.52099084 l— [13= — 0.005009102.^+ 0.09315032 HKH3HII]— [H]= + 0.12592049 +|7:7][5TT][477]_ [777] = + 0.15913300 —(TTTJITrs] — 57.68249007 Sum of terms A^g1— 26.182948414.0+ 82.91843690 Computation of D^ (7T]][67I]==,7!!_21.362465100.<7+ 51.44181485 7]-!-[477j== — 1.598839244.^-f- 29.732355 — [T7T]= —25.138334450.0+ 69.538973 — [77T|= + 50.793156 _ |77fJ= 4- 0.110881 0.140127 Sum of terms Dl=g2— 48.09963879..(/ +201.477053 Computation of Z>2. 77r\=f— 19.244169800..<7+12.04954446 —[TTT] [777] [776] -^[176]= _ 0.039953699.^4- 0.7429875 ]-:-[473= —31.768769968.^4-20.5847937 + 1.0043694 + 0.0027708 — [77J](TrfJ — 0.0021925 Sum of terms A=92— 51.052893467.//+34.3822734 THE ORBITS OF THE EIGHT PRINCIPAL PLANETS. 21 Sum of terms Computation of Dz. 77]=/— 3.4142091000.^+1.7924122001 — [Ts]= -0.0000872187..7+0.0002412688 — [HI = —0.00441 08379.^+0.0028580329 13= +0.0001394486 —0.0638795429 Da=". — HZ1=+ H".3147682— g 4-EZ)IIZI^-C2Zl:=+ 12.8366855 Sum =+ 24.1514537—.? log. { [oTJ] -=-[T]£]|= [ 8.5847028] Therefore E'= J24".1514537— g\ X [ 8 .5847028J6". — [sTs]=+ 17".5528645— g +E3EIKEII]=:+ 0.00127166 Sum =+ 17 .55413616— ^ log.|[oTT]-T-[TTl|= [9.6375865] Therefore E"= |17".55413616— g\ X [9 .6375865]6". EIDlII!]-5-|IZl=+ 9-360164 — Q>TTJ=— 0.408758 Sum =Em-±-V'=+ 8.951406 Therefore ^"'=+[0.9518913]J". Computation of F, F', F", and F'". ]=+ 0.004346915 - 0.008812816 Sum =F+V"—— 0.004465901 Therefore F=— [7.6499091]6'". EII][!:I]H-IIID=+ 0.09954018 -[Ell - 0.00881282 Sum =.P-f-Zr=-f- 0.09072736 Therefore F'=+ [8.957738,3]6'". -|im=+13".072173QO— g ]^-En]=-i- 0.94162873 Sum =+14.01380173— g log. \ (oTII-5-ED \ = [° -8407439] Therefore F"= |14".01380173— g\ X [0 .8407439]6". — rr7]=+ir.3I47682— a .0247460 Sum =+37 .3395142—^ (13 -^-[E3 1 = [9.4809266]' Therefore F"= |37".3395142— g\ x [9 .4809266]^"'. Sum Therefore Sum Computation of E^ Es, Es, and E^ 0.03215367 0.02544-290 0.00671077 El— ['i.b'M I723]63. =+18'.5962129— g N +25 .1383344 =+43 .7345473—.? log- IEI]-5-EIIl!= [8.2017618]' Therefore E2= \ 43 .7345473— / ^[8.8694654] £/_ ~[8M94654]Air — [9.1763990]^'^" ; [8.5847028]Z>/" — [9.6375865]Z7/^ ~[9.6375865]1''Z>"— [8.584702^' A ; [0.8407439]:^r— [9^4809266]A/vr ~[9.4809266]^Zy —[0.8407439] A" D" ' ; (90) Nri = Da ; (91) ; (92) /r_[9.2840950]A/2 -[9.1824311] A/i . " ' /r_[8.2017618]A/4 -[0.7610455]7).,/3 . [0.7610455]13JD3— [8.2017618] AA' ,r_[1.7737962]A/« -[9.1 128486] A/6 . ,«*•. - ' [9.9882719]£/ -[0.2952055]Z>/ -L { [8.9873765]Z>/" — [0.0402602W/" 1 l J N [8.6595749] A/"'"— [0.0193922]A/r } — [0.5787943] A/, —[0.6804582] A A } A | [7.4419161] A/* -[0.001 1998] A/3 } ^ [7.3400015]A/6 — [0.0009491]A/o =(& &>Z»Z*)'' (96> We shall here repeat and number the equations which we have computed, for convenience of future reference. By this means we shall obtain the following THE ORBITS OF THE EIGHT PRINCIPAL PLANETS. 25 Fundamental Equations for flic A =f— 40.22178322 .g+ 193. A'=y*— 23.14584877 .0-j- 98. A'="="=+103.10436 D1=~ 31.473166 A=— 214.70366 Z>3=+ 12.899760 log. 2.6709749 ; " 2.5864890 ; " 2.0132764; " 1.4979404n; " 2.3318394n ; " 1.1105816. Substituting A, A', A", D, D, B', in equations (84-86), and neglecting/,/', &c., we shall get the following computation of N',N", and N'". Computation of N' & N". Computation of N' & N'". Computation of N" & N'". constant log. 0.3624135 constant log. 0.8236010 constant log. 1.1305346 A !-=-£> A" constant N' N" tt u 1C u u it 0. 7. 9. 1. 5347412 3290251 7481365 4152972 A l-^D A' constant N' N'" u u M M u M 0.1433218 7.4135110 9.7481365 0.5190734 A 1-KD" A constant N" N'" n M K it 1C 1C 0.1433218 7.9867236 0.5347412 9.1592561 8. 8. 6873673 4924588 8.6873674 7.6807209 8.4924589 7.6807209 The computation of these quantities is thus seen to be correct, since independent formula give the same values. We may now use these values of N\ N", and Nm, in equations (119), and we shall obtain the following values of J,, &2> b& an(l ^4- ^=+0.0001151786^ ^=+0.000007234609^ J3=+0.0000003080273^ 64=+0.00000004087918JV Equations (114-117) will now give, ^=+0.00007796538^ _B2=+0.0005510300JV £3=— 0.001520571^V (71=— 0.00000152882^" <72=— 0.00000525886^ ^=—0.0000348856^ Ct=— 0.0000349058^ ^=+0.000000002067JV ^=+0.000000187594^ E3=— 0.00000855646^ ^=+0.00000358228JV ^=—0.0000000000442^ ^=+0.000000076558^ ^3=— 0.00000653946^ ^4=+0.000000238018^V log. 96.0613718; " 94.8594150; " 93.4885892; " 92.6115022; 95.8919018; 96.7411752; 97.1820068»; 94.1843555w; 94.7208918n; 95.5426467«; 95.5428974n; 91.3153615; 93.2732190 ; 94.9322943»; 94.5541593; 89.6454496n ; 92.8839917; 94.8155417n; 93.3766095. 28 SECULAR VARIATIONS OF THE ELEMENTS OF Substituting these quantities in equations (52) we get, ^=-(-0.00007643863^ log. 95.8833129; /2=4-0.0005457711JV " 96.7370106; /,=— 0.001555269^" " 97.1918055n; /4=+0.0005425501# " 96.7344399 ; ^=4-0.00007500820^ " 95.8751088; /6=— 0.001555239^" " 97.1917972?*. With these values of /„ /2, &c., and A» A2, As, Du Z>2, and D3, either of the equations (93-95) will give JV"=_0.00005102365JV log. 95.7077716«. Therefore we shall easily find ^#""=4-0.0001992746^, J2tf'"=4-0.0009425372iV, J3Ar/r Then AzN'r+fz=— 0.000009996^"; A3N'r+f6=— 0.000009966M Equations (90-92) will now give the following : — constant log. A^ir+/. " 1-s-A " A*N"+fz » constant " Nr " Nn " Nr and Nri. Computation of Nr and Nr". 0.7159050 constant log. 0.8175689 96.4404576 A2Nir-\-f ; " 97.1726929 98.5020596n 1-4- A " 97.6681606» 94.9998262n J^y'-j-/ i " 94.9985209n 1.7982382 constant " 0.8871514 95.6584222» Nr " 95.6584224» 95.3001240 Nr" " 93.5538329 Computation of N" and Nv constant log. 99.2389545 " 97.1717519 " 98.8894184 " 96.4381985 " 98.2262038 constant N" Nr" " 95.3001248 " 93.5538207 The small differences in the different values of N TI and Nv", in this example, are owing to the circumstance that A3N'V is nearly equal to /3 and /6, and has a contrary sign, which renders AzN'r-\-fs and J3^V/r-f-/6 very small quantities. We must therefore reject these values and use those depending on /4 and /s. THE ORBITS OF THE EIGHT PRINCIPAL PLANETS. 29 Having found the values of Nir, Nr, Nrt, and N"1, we must now substitute them in equations (118), and we shall get the following values of b, V, I", and V". b =—0.000007745108^ log. 94.8890274»; Z/ =—0.00003787069^ " 95.5783033» ; If — _ 0.00008781746 JV " 95.9435809%; b'"=— 0.0002754383JV " 96.4400243«. Substituting these quantities, together with #, in equations (110-113), we get B =+0.0002259314^ log. 96.3539766 ; B' =+0.00009374307JV " 95.9719391 ; B" =+0.00005411940JV " 95.7333530; C =— 0.00010371 10JV " 96.0158248%; C' =— 0.00003397893JV " 95.5312097%; C" =+0.00006651123JV " 95.8228950; e""=+0.00006978516JV " 95.8437631 ; E —— 0.0000368787^ " 95.5667753%; .#' =_ 0.00006307260JV " 95.7998407%; E'= —0.0004609025 N. " 96.6636091«; E"=— 0.0007860900^" " 96.8954722?i; F =+0.00000123008^" " 94.0899334; ^'^—0.00002498980^ " 95.3977626«; F"=— 0.01632072iV " 98.212739471 ; ^'"=—0.002657125^ " 97.42441 19n. These quantities being substituted in equations (51) we shall obtain / =+0.000085341 IN log. 95.9311615; /' =+0.00006099422^ " 95.7852886; /" =+0.00005755803^V " 95.7601059 ; /'"=— 0.0003921 492iV " 96.5934513n; //r=— 0.01688088^" " 98.2273951«; /^==_0.002533220Ar " 97.4036729». Now substituting /, /', &c., D, D, D\ in equations (96), each one of them will give x =+0.0243677. This value of £ is to be substituted in equation (120), and we shall find and consequently #= 5".4638024. We have thus obtained ar first approximation to the values of the required quantities. In order to get a closer approximation we must repeat the whole computation by using the corrected value of (135) If the origin of the time t, be fixed at the epoch for which the values of h, I, 7t', ?, &c., are supposed to be known; the two preceding equations will give, m , n N tan 3 =- h + N' 7,' na na N'mrr na , na n a n a Z'"+&c. (136) Since N', N", N'", &c. are given in terms of N, this indeterminate quantity will disappear from the expression of tan /3. Having found /?, we may substitute it in either of equations (134) or (135), and we shall obtain the value of N; and conse- quently N\ N", N'", &c. will be known. We shall thus have the system of con- stant quantities corresponding to the root g. Changing in the preceding equations the root g successively into g^ g.,, g3, &c., we shall obtain the values of the constant quantities, corresponding to each of these roots. 5 September, 1871. 34 SECULAR VARIATIONS OF THE ELEMENTS OF If we now put the first members of equations (134) and (135) equal to x and y respectively and the coefficients of sin or cos (gt+P) in the same equations equal to z, we shall have, z=z sin (0H-/S) ; y=z cos (gi+fl. (137) Whence tan (gt+^=x-r-y. (138) 17. In order to find the values of a; and y, it is necessary to know the values of It and I. We shall therefore suppose that at the epoch of 1850, the eccentricities and places of the perihelia of the eight principal planets have the following values, Mercury, e Venus, e' The Earth, e' =0.2056179 =0.00684184 =0.01677120 Mars, Jupiter, Saturn, Uranus, Neptune, e'" =0.0931324 e'r =0.0482388 ev =0.0559956 e" =0.0462149 er"=0.00917396 log. e =9.3130610; log. e' =7.8351730; log. e" =8.2245642; log. e'" =8.9691008; log. e" =8.6833965; log. er =8.7481539; log. eri =8.6647821; log. er"=7.9625568 ; cj = 75° 7' 0".0; d =129 28 51.7; vf =100 21 41.0; CT'"=333 17 47.8; vs'r= 11 54 53.1; crr = 90 6 12.0; *jr'=170 34 17.6; tffr"= 50 16 39 .1. Now since h=e sin or, l=e cos or, 7t'=^ sin rs\ l=e' cos cy', &c., we shall obtain the following values h =+0.198720, log. K = li =+°-00528°8, log. h' = h" =+0.0164977, h" =—0.0418510, h'r =+0.0099592, hr =+0.0559955, h" =+0.0075707, 7ir"=+0.0070561, I =+0.052813, 7' =—0.0043502, f =—0.0030164, r =+0.083199, I'7 =+0.0471996, lr =—0.00010988, r'=— 0.0455906, Zr"=+0.0058628, log. h" log. h'" log. h" log. hv log. hn log. 7tr" log. Z log. Z' log. T log. T log. r log. 1T log. Z" log. Zr// 9.2989408 ; 7.722.6976; 8.2174237; 8.6217066rc; 7.9982241 ; 8.7481532; 7.8791377; 7.8485672; 8.7227434; 7.6385092ra; 7.4794898ra; 8.9201199; 8.6739377; 6.0042715n; 8.6588752»; 7.7681049. We have already given the logarithms of m-~-na, m'-t-ria', m"-r-n"a", &c., in § 5 ; and if we add them successively to log. h and log. I, log. 7t' and log. Z", &c., we shall obtain the following values of the logarithms of the constants, for the given epoch, which enter into the values of x and y. THE ORBITS OP THE EIGHT PRINCIPAL PLANETS. 35 log. hm =86.2924049 ; log. I— =85.7169075 ; na na n-rt' fn-^ log. h'-- =85.9487046 ; log. 7— =85.8645162n; 7i ft ftd m" m" log. 7i"-,-,,=86.5381661 ; log. ?SrT,=85.8002322«; it Ct> /v CL log. 7i'"-^,=86. 17232137*; log. r^,=86. 4707346; Y& to 7tf Ct IV IV log. 7ijr^-jr=89.2232280; log. ^-^=89.8989416; IV \A> 79 W V V 1TI 1YI log. 7ir-r-F =89.5809761 ; log. r-^-r=86.8370944w; 7i CL ¥1 Ct log. 7i"4^=88.01 17101; log. r'4^=88.7914476ra; fL (Z ?i (Z mv" mv" log. 7^-^-^^88.2010654; log. Z"S«- ^=88.1206031. fit \JU IV Ct 18. These quantities are now to be substituted in equations (136) and (137), in connection with the values of N\ N", N'", &c., corresponding to the different roots. For the root g=5". 4638027, we find ,1847539,. ,64178.9.. . 10467760 „ -r-w 2/==^ Whence ^=88° 0' 37".8, and log. ^V=9.2470063. Therefore for root #, we have the following values, jV =-|^0.1766064, NIV=— 0.0000090002, N' ^-(-0.0085906, Nr =—0.0000080335, N" =4-0.0054825, Nri =+0.0000035 168, Nm =+0.00084182, ^m=-(-0.0000000631-31. In like manner we shall find for the root #1=7".2484269, 1654860.4.. 4347600.6 173037154 . Whence ft=20° 50' 19".4, and log. ^,=8.4294913. Therefore for the root gl we have N, =+0.02688384, N^ =+0.000010644, NJ =—0.02014438, N^ =+0.000010875, Nf =—0.01536192, N," = — 0.000002744, Nf =—0.00254509, ^"=—0.0000001122. For the root ^2=17".0143734, we find, 18893046,, , 40873423 .- . 3.068840 ._. - --- - /32=335° 11' 31".4, log. ^2=7.1665150. N2 =+0.001467287, N2IV =—0.000001059, ^2'=— 0.01121706, W =—0.000006401, Nf =+0.01 131047, Ntn =+0.000000392, ^'"=+0.02257186, N^"= +0.0000000288. 36 SECULAR VARIATIONS OF THE ELEMENTS OF For the root #,=17".7844562, we find, , 0.01310358 ... 0.014106133 12.083015 a*=H ---- 10io -&**?= "To>»~ 10r° &=137° 6' 36".5, log. ^3=7.2023283. Na =+0.001593413, N," =+0.0000010652, Ns' =-0.01318916, Nsr =+0.0000110097, ^"=+0.01626412, N3ri =-0.0000006258, ^"=-0.0790650, ^''"=-0.00000004636. For the root 04=0".6166849, we find, . 3.3572052 ,r 1.360283 56970.44 ** ' «*- -- ft=67° 56' 34".9, log. JV/r=95. 8033371. JV4 =+0.000007714, Ntir =+0.000063582, ^'=+0.000011722, NS =+0.000071708, N{ =+0.000013577, NJ1 =+0.00155775, ^=+0.000021946, ^/"=+0.01003893. For the root ^5=2".7276592, we find, , 0.6475797 ..„ 0.1743025 345.0396 «3=H --- -.O -- ^6 , 2/5= - ----- ^ 2= -•"• • /?6=105° 3 52".9, log. ^57r=9 Ns =+0.000568545, N6'r =+0.001943624, Nb' =+0.000557100, N6r =+0.00176940, N: =+0.000583230, ^6" =+0.02973295, ^6"'=+0.000776548, N™= -0.0029 10500. • For the root #6=3".7166075, we find, , 0.4583186 v . 0.8566965 tr . 22.5112 x«=-\ --- W -- W« » 2/6= IO -- ^6 . ZG— ~*~~ /88=28° 8' 45".8, log. N,ir =98.6350825. JV6 =+0.02449386, JV8/r =+0.04316011, JV6' =+0.01660532, N6r =+0.03410106, N," =+0.01634130, JVaF/ =—0.04486144, ^=+0.01879544, N™= +0.00 14205 13. For the root 07=22".4608479, we find, 1.0095026 v/r , 0.7872144 AT/r 81.86052 1010 — ' ^T — ' ~ 10'" f ' 7~ 1()10 ^=307° 56' 50".l, log. ^/r=98.1941887. If, =—0.00009753, JV/r =+0.01563827, Nj' =+0.00031 750, N,r =—0.04835044, JVT" =—0.00237805, N7" =+0.001805776, N7"=— 0.01503712, JV7v//=+O.Oj00136499. T1IE ORBITS OF THE EIGHT PRINCIPAL PLANETS. 37 If these values be substituted in equations (C), we shall have the complete values of h, h', h", &c., /, l\ I", &c., from which we can obtain the eccentricity and place of the perihelia by means of the formulas, tan or =7t-f-Z ; e=-j/7t2+Zz=7j cosec c*=Z sec or. (139) 19. If, in equations (C), we put, instead of Ji and Z, their values, e sin «j, and e cos or, we shall get e sin a=N sin ( and (141) by sin ( °r> on the supposition that the masses of all the planets were multi- plied by a factor (l-|-a), a being any supposed correction of the mass of the planet, and greater than — 1. If we suppose a, or /t, u', u", &c. to be equal to — 1, it is evident the whole system of differential equations would vanish. The effect of changing all the masses, in the ratio of 1 to 1-f-a, on the equation of the eighth degree, would be equivalent to multiplying the coefficients of the different powers of g by (l-|-a)8~n, n denoting the exponent of g in the given term. Consequently, the coefficient of &c. ; while the term of the equation which is independent of g would be multiplied by (1-j-a)8. It is evident that these changes are such as would be produced by multiplying each of the roots of the equation by 1-f-a ; consequently, we shall have the following theorem : — If (lie masses of all tlie planets be simultaneously increased in the ratio of i W\ -|-a, all the roots of the equation in g will be increased in the same ratio. It is also evident that, if the masses of all the planets be multiplied by l-|-a, the values of A, A', A", &c., D, D, Lf', &c. will all be multiplied by (1-f a)2; and, as they are all multiplied by the same quantity, it is manifest that the ratios of the quantities N, N, N", &c., will remain unaltered. And since the ratios of N, N', N", &c., remain unaltered, it is evident that tan (3 will be unchanged, and consequently the values of N, N\ N", &c. will not be changed. It therefore follows that, if the masses of all tfa planets be simultaneously increased in any given ratio, tlie magni- tudes of the secular inequalities will remain unchanged. To illustrate,, we shall observe that if the masses of all the planets be supposed to be doubled, the intensity of the disturbing forces would be doubled ; but, accord- ing to the preceding theorem, the roots g, #„ g,, &c. would be doubled ; and conse- quently the disturbing forces would operate in the same direction during only one- THE ORBITS OF THE EIGHT PRINCIPAL PLANETS. 41 half of the time ; and since a double force acting during one-half the time produces the same effect as a single force acting during a double interval, it follows that the magnitude of the resulting inequalities will remain unchanged. 23. The rigorous determination of the separate effects of the corrections of the masses fi, fi, ft", &c. on the values of the constants which determine the secular variations of the elements, when the masses simultaneously vary, is a much more difficult and intricate problem than that of the determination of the secular inequali- ties themselves. For, if we employ the masses in indeterminate forms, m(l-\-ft), m'(l-f ft), m"(l-\-ft"), &c., instead of m, m', m", &c., it is evident that the solutions of the differential equations would contain terms depending on ft, ft', ft", &c., and on all the powers and products of these quantities up to [S, ft1, ft"7, inclusive, in addition to the terms already calculated. And if we neglect the powers and pro- ducts of ft, ft, ft", &c., above the first, it is evident that our solution would be very imperfect, unless fi, ft', fi", &c. were very small quantities. Unfortunately, this is not the^case, for the masses of some of the planets are still very imperfectly known; and consequently the terms depending on the powers and products of ft, ft, fi", &c. ought not to be neglected. There seems to be only one practicable method of determining the effects of the corrections of the masses on the values of the con- stants which we have already determined. And this method consists in supposing the mass of each planet, in succession, to be increased by a finite quantity, //„, and then determine anew all the constants in the same manner as with the assumed masses. If we then subtract the values of the constants which depend on the assumed masses, from the values of the constants which result from the corrected mass of the planet, we shall obtain the coefficient of the correction depending on ft, by dividing the difference of the constants by fi0, or the finite variation of the mass of the planet. In this way we get the whole variation resulting from the assumed variation of mass, or, in other words, we retain the terms depending on all the powers ft0, fi02, jt/03, &c., and neglect only the terms depending on the products ft, ft, ft", &c., when they simultaneously vary. As this is the method which we have adopted, we shall here give the resulting fundamental equations, together with the values of the constants determined by their solution. 24. We shall now suppose the mass of Mercury to be increased to two and one- half times its assumed value. In this case fia will be equal to 1|, and OT— 4H6575l~ 1946300 4' value of the mass of Mercury is very nearty tne same as that employed by astronomers, during the early part of the present century, and is doubtless considerably larger than the actual value. But as the perturbations produced by this planet are very small, a considerable variation of its mass will produce only a small variation in the values of the fundamental equations. We shall now compute the effect which this change in the mass of Mercury produces in the fundamental equations. 6 October, 1871. 42 SECULAR VARIATIONS OF THE ELEMENTS OF If we now put 1+^=2.5 in the values of (i ,o), (2,0), (3,0), &c., Q7_o], [To], QjTo], &c., and substitute the resulting numbers in equations (26), we shall get the following values of ["7^1, |TT1, [J3> &c- [TT4]==0— 7".5125167; [T7T|=0— 18.5962297; «7s]=0— 2.7662536; 777] =<7— 0.6479572. [oTo]=0— 5".5702558; (TT71=0— 11.5785090; [Tg] =0—13.1331088; pTT|=0— 17.5645194; These values give ^lT7T\=g2— 17.1487648.0+ 64.4952569126 ; EI!][I3=^— 18.7033646.04- 73.1547754652 ; [oTo][3:i]=02— 23.1347752.04- 97.83886606206 ; [TTTI [17^1=0'— 24.7116178.04-152.06181843878; |TTT|=r/2— 29.1430284.0+203.37094595357; ]=/— 30.6976282.04-230.67674429991; [T^/— 26.1087464.0+139.70448617829; ]=02— 10.2787703.04- 20.78152636644 ; ]=02— 8.1604739.04- 4.86778928589; ]=0a— 21.3624833.,v-(- 51.44188735405 ; ]=02— 19.2441869.04- 12.04956092697 ; 1=4"— 3.4142108.04- 1.792413937146. ]=0*— 47.8463930.0H- 821.59840712 -5935.67265019.04-14877.555887385 ]=0*— 29.5229572.03+230.63766404.0 —523.77824644.0 4-250.40826811 (153) (154) (155) (156) (157) (158) (159) (160) (161)' (162) (163) (164) (165) f } (166) } (167) The difference between these values and the similar quantities depending on the assumed masses being denoted by A, we shall find the following values, A[o7o]= 0. AE3=— 0.0001413, " A[T7|=:— 0.2637408, A FT1=— 0.0000168, A[J3=— 0.0609358, A [^1=— 0.0000014, A[^\=— 0.0116549, A [Tm=— 0.0000003. (168) -0.2637408.^+1, -0.0116549.^4-0 -0.2753957.^+4 -0.0609358.^4-0 -0.3246766.^4-4 -0.0725907.^+1 -0.0001581.^+0 -0.0001416.^4-0 -0.0000171.<7+0 -0.0001427.*9+0 -0.0000182.^+0 -0.000001 7..J7+0. 4691037; 06492077 ; 7643529 ; 33942800 ; 1532110 ; 2226629 ; 00275386 ; 00009381 ; .00001647; .00040139; 00007250 ; 0000017370. (169) THE ORBITS OF THE EIGHT PRINCIPAL PLANET 8. 43 The following calculation of AA must serve as an example for the computation of all similar quantities. — 0.06093580.0+ 0.33942800 0.02543896.= j2; (74=— [0.6834824]i2; ^=+[7.8267723]^; E2= |43.7345641 -^|[8.2017618]&3; E3= 1 0.648004419— #j[0.7610455]&3; j&4=+[1.0655652]63; ^1=_[7.0339474]&4; ^3= \ 2.770664438— g \ [1.7737962]64; <= j 50.3649997 — ^}[9.1128486]64; (186) (187) (188) (191) 0«_47.8463930./+796.2()272817. Whence ^2=335° 23' 35". 1 ; log. JV2=7.2167768. ^ =+0.0016473; ^"=—0.00000124; NJ =—0.0126245 ; Nar =—0.00000796 ; N," =+0.0122872; Nz" =+0.000000482; ^"'^+0.0299815 ; JV2m=+0.0000000355. For the root gz= 17". 836 030, we get, , 111304510 A7 112878600,r . 8.789905 ^3=-H --- 1(^5 -- f»i ^3= i(p ---- N*> %=-\ --- JQ10 Whence /33=135° 24' 8".2 ; log. V,=7.2561145. N3 =+0.0018035 ; N3tr =+0.000000872 ; NJ =—0.0148692 ; N3r =+0.00000947 ; JV3" =+0.01 75270; #,"=—0.000000536; #3'"=— 0.0720238 ; N3r"=— 0.0000000397. For the root #4=0".6166852, we get, . 3.358365 „„ , , 1.360318 V/F. 56975.27 SB*=H --- IO - ^* ' 2^*= ~ - ^ ' 2^= /34=67° 56' 57".9 ; log. AT4/r=95.8034310. N, =+0.00000761 ; N" =+0.00006359 ; #; =+0.00001098 ; #4F =+0.00007172 ; JV4''=+0.00001345; NJ1 =+0.00155816; ^'"=+0.00002194 ; JV4r;/=+0.0100415. For the root #5= 2". 727688, we get, . 0.6475863 v/r 0.1743984 v/r. 345.0960 ^ X;>~ "ioin — ' ^6= "lo70"" 6"~ "lo10 6 ' Whence &=105° 4' 20".9 ; log. AVr=7.2885615. N, =+0.00056101 ; NbIV =+0.0019434 ; #; =+0.00054730 ; N* =+0.0017692 ; JV6" =+0.00057711 ; N™ =+0.0297331 ; ^6"'=+0.00077525 ; Ntm=- 0.0029105. 48 SECULAR VARIATIONS OF THE ELEMENTS OF For the root gr6=3".716714, we get, 0.8567341 „„. 22 io 0.4584871 „. , ,0.8567341 • ; 9*=+- - - - 22.51143_ "".to "t • Whence #,=28° 9' 13".5 ; log. #6'r=8. 635 1298. #6 =+0.0243977 ; #fl'r =+0.0431648 ; #8 =+0.0165257; #/ =+0.0341050; #; =+0.0162732; #u" = -0.0448615; #8"=+0.0187798 ; #„" '=+0.0014203. For the root ^7=22".460892, we get, 1.009497 .,„ , 0.7872134 „„. 81.35929 r, r— ^7 ;yr= -,-TVO ^ ' '— ~r" 10'° 7 ' 10" 10" Whence ft=307° 56' 50".6 ; log. #/r=8.l941936. #T =—0.0000994; #T/r =+0.0156384; #7 =+0.0003396; #/ =—0.0483507 ; #7 =—0.0024030 ; #/' =+0.0018058 ; #/=-0.0150672 ; #7m=+0.00013650. The difference between the values here given, and the values depending on the adopted masses, manifestly measures the increment arising from the supposition that fi=| ; and two-thirds of this difference is the coefficient of //, in the expression for the values of the constants corresponding to any other value of //. 26. We shall now suppose that n' =l -4-371428.6. Ap^n=— 0'. 1499336; Arrq=— 0.2665548 ; A[I^1=— 0.0241609; Whence, [oTo]=i7— 5".7201894; (TT)=0— 11 .3147682; [Tnn=<7— 13.3387278; |1TT1 =(7—17.5770254; These quantities give, I— 1*— 17.0349576. 1 =— 23. 29721 48, l—y2— 24.6534960 =p»— 28.8917986 l="=02— 31.8586536.0 +250.7543893; X>1=02— 48.09966549.0 +201-477252; A=^2— 51.052918467.0 + 34.3823105; Ds=g2— 3.4187096566.0+ 1.731950106. — - - . 371428.6 (209) (210) (211) (212) (213) (214) (215) (216) (217) (218) (219) (220) 5=^0—34 .9011230(6; B = \g— 17.591388707J6; ) „„.. B"=\g— 12.508092541 \b; J ( C = 1 23.9743622 — 0|[9.1763990]&'; 1 C"= S 17.60614518— 0| [8.8694654]&; C*=— [0.265 7810]6'; (7'"=— [0.2866491]&;; E =+[9.6231944]J"; 1 ^'= ^24.7932880 — 0|[8.5847028]6"; | ^"= S 17.57829706— 0j [9.6375865J&"; .» F =— [7.6499091]i"f; JF'=+[8.9577383]6"'; .F" = \ 14.28035653—0 j [0.8407439]i' F'"= |38.6407515 — 0j[9.4809266]// October, 187L 50 SECULAR VARIATIONS OF THE ELEMENTS OF R = {7— 4.786800116,; £,= ^—0.6795722937(6,;) B3= ^-18.665588512*6,; J C,= J4.365093544 -<7J[9.2840950]6,; C2= {0.68791009996— <7J[9.1824311]&S; C3=-[0.6832317]62; C4=— [0.6834824]62; .#1=+[7.8267723]63; Ef= 543.7345719 — #j[8.2017618]63; E3= | 0.648004519— j7J[0.7610455]63; ^=-f[1.0655652]63; Fl=— [7.0339474]64; .F2=+[0.2724895]&4; (228) F3= \ 2.770665138— flrj[1.7737962]54; Ft= \ 50.36500746 — «7}[9.1128486]64; o4-47.9507108y+799.53205638.(/2— 5381.3548732.j7 ) , v +12499.1914947 J " ^-29.5230351.^+172.74239830.^— 323.32220515.^ ) _, +140.47332174 j The values of b, J', 6", and lm are given by equations (118); and the values of 6,, 62, 68, and 64 are given by equations (119), by simply adding log. [0.0211893] to the coefficients of N'. Putting equations (229) and (230), equal to nothing, they will give, g = 5".59773937 ; g,= 0".61668564; gl= 7.25215980; gt= 2.72773622; j72=17. 20072233; g.= 3.71796565; &=17 .90008930 ; "=02— 31.70284173.0 +247.7780603 ; A=<72— 48.09969329.0 +201.477460 ; A=3=02— 3.4187123566.0+ 1.7319529170. B= {#—35.7126879 } b ; B = \g— 17.655050207 1 b ; B"=\q— 12.782796972 6 I*/ C = {24.2395891 — ^[9.1763990]&'; C" = {17.66980668— g \ [8.8694654]6'; C"=— [0.2445917]&'; C'"=— [0.2654598]6'. E =+[9.6443837]6"; E'= {24.4829831 — ^|[8.5847028]5"; E"= {17.64195856— g \ [9.6375865J6"; (238) ; 1 > I F =— [7.649909 1]5'"; F' =+[8.9577383]6"'; F'= {14.06088317— yj[0.8407439]6'"; F"= {37.6710436 — ^|[9.4809266]i'". : {^—4.7868023 }6,; B^=\g— 0.6795727937^6 ^={^—18.665614112 \b Ci= {4.365095744 — ^[9.2840950]62; (72= {0.6879114996— #j[9.1824311]&2; (73=— [0.68323 17]62; (74=— [0.6834824]&a; ^=+[7.8267723]^; Et= {43.7345975 -^|[8.2017618]53; E3= \ 0.648005019— «7j[0.7610455]&3; ^4=-j-[1.0655652]J8 ; * Fl=— [7.0339474]&4 ; F3= \ 2.770667338— g \ [1.7737962]64; Ft= {50.3650331 — (239) (240) (241) (242) (243) (244) (245) (246) (247) 56 SECULAR VARIATIONS OF THE ELEMENTS Cb to obtain the numbers which are to be used in this computation. For the root 0=5".5095453, we get, 1853601 „ J3698.3,, _1Q443191 X— 1Q20 "' y 1 1Q20 Z~ Whence 0=87° 43' 23".3 ; log. ^=9.2495260. N =+0.1776340 ; N'r =—0.000008865 ; N" =+0.0083657 ; NT =—0.000007939 ; N" =4-0.0053866; NTI =+0.000003416 ; ^'"=-(-0.00085332 ; ^"'=+0.0000000640. For the root ^=7". 3 15380, we get, 1595251 4450991 180052670 &\ - H --- TQM •"!» 2^1 - I JQiM •"!» Zl - I 1Q20 ** Whence fr=190 43' 4".3 ; log. ^=98.4192990. JVt =+0.0262603; N^ =+0.000010694; ^'=—0.0197843; NJ =+0.000010986; ^"=—0.0152679 ; Nj" =—0.0000027265 ; JVi"'=— 0.00261793 ; ^^"=—0.00000011315. For the root <72=17".217532, we get, _ 27629730 51666060 __a432446 •"•• 2/2 - + 20 "t» 22— iO • 1— JQ20 Whence /?2=331° 51' 47".6 ; log. ^2=97.2322182. Nt =+0.00170694; ^"=—0.0000012756; JV2' =—0.01 31662 ; N2r =—0.000008639 ; Ai" =+0.0122912; N," =+0.0000005187; ^'"=+0.0325334 ; ^2m=+0.0000000382. For the root j73=17".931057, we get, __ ^104020250 108060520 _ 8.174639 X*~ » 3; y*~ 20 3* z*~ ~~ s< Whence &=136° 5' 29".0 ; log. JV3=97.2635963. N9 =+0.0018348; N3rr =+0.0000007482; JVS' =—0.0152412 ; N3r =+0.000008946 ; 2V3" =+0.0171912; N3VI =— 0.0000005014; AV=— 0.0694007 Nsr"=— 0.0000000372. THE ORBITS OF THE EIGHT PRINCIPAL PLANETS. £>9 For the root zi — + imo •"! • Whence ^r=307° 56' 52".2; log. JV/r=98.1941978. Nr =—0.0001043 ; N,IV =+0.01563860; Nj' =+0.0004095 ; N,r =—0.04835037 ; N,"=— 0.0024158 ; N," =+0.00180575 ; JV/"=— 0.0152719 ; N7T"= +0.000136497 30. The assumed mass of the earth was obtained on the hypothesis that the mean equatorial parallax of the sun is only 8".50. Recent investigations indicate that the sun's parallax is greater by at least one- thirtieth part. Consequently the assumed mass of the earth is too small by its one-ninth or one-tenth part; and on account of the importance of this element in most astronomical theories, we shall here give another determination of the constants corresponding to an increment of V to the earth's mass. This new determination will be useful as an indication to 60 SECULAR VARIATIONS OF THE ELEMENTS OF what extent the variation of the constants is proportional to the variation of the masses ; and will also enable us to interpolate the constants for intermediate values of the earth's mass. And by using If we now suppose ^"=+™ we shall find m"—i^2:-^^=f this value of the mass we shall find, A[o7o]=— 0".0861707, A[T7J]=— 0 .6630587, Af87J]=— 0 .1756449, 1 335172' T7T1==_0".0008812, 77]:=— 0 .0001004, Tcj^—O .0000086, 777]=— 0 .0000018, Whence we get, [J7o]=ff— 5".6564265; JT7n=«7— 11.9778269; [T7I1=ff— 13.0721730; [T7?1 =ff— IT .7285094; =g— 7".5 132566; ]=flr— 18.5963133 =ff— 2.7662608 =ff— 0.6479587. These quantities will give the following equations, [o7JJ[77T]=ff2— 17.6342534.ff+ 67.75169748957285 ; [oTJJUTJ^ff2— 18.7285995.ff+ 73.94178576978450 ; |77^|lT71=ff2— 23.3849359.ff+100.28001037565910; [77iirm=.g>— 25.0499999,9+156.57622540085370; [177117771 =ga— 29.7063363.ff+212.34901678822286; fam|T73l=,ji'— 30.8006824,^+231.75014190892620. }=— 19.2442720^+ 12.04964299066071 ; ]=g*— 3.4142195.ff+ 1.79242275182896. |773]=ff*— 48.4349358.ff«+842.64887773.ff2 1 —6173.539244345.^ +15701.465507779 J r5.a||6.6|r777|=ff4— 29.5237894.(73+230.655099078.ff8) —523.830290018.^+250.4352879666 J (251) (252) (253) (254) (255) (256) We shall therefore obtain the following Fundamental Equations for (i"=-\-^; or for 7n'=l-f-335172. A =/— 42.46419343.*? +208.5335061 ; A'=tf— 23.40766437.ff +100.5097899 ; A"=g*— 18.77149338.ff + 74.00017359; A\=f— 14.594665902.ff+ 45.9827890; A,=/— 10.00852823.ff + 6.35481085; -43=/— 26.183930014.ff+ 82.93563982 ; (257) THE ORBITS OP THE EIGHT PRINCIPAL PLANETS. 61 D ="=/— 31.83774566.0 +249.8341677 ; Z^^— 48.09974779.0 +201.477866 ; A=/— 51.052995667.0 + 34.3824324; Z>3=y— 3.4187175566.0+ 1.7319581971. B=\g— 36". 7908076^; # = ^0—17" 742872707 \b; \ J3"= 1 0—13 .114326272 |&;J C = J24.7713708— g \ [9.1 763990]6'; C' = \ 17.75762918— # j [8.8694654J&' ; €"=.— [0.2445917]6'; C""=— £0.2654598]6' : E =+[96645871]Z>"; E' => |24.8145124— #J[8.5847028]6"; E" = \ 17.72978106—0 } [9.6375865]6" ; E"= +[0.9932840]6"; F =— [7.649909 !]&'"; F"= {14.10796460— 0j[0.8407439]Z>'"; F»= 1 38.0025729—0 1 [9 4809266]6'". 5,= {0—4.78680657^; 52={0— 0.6795736737 J&! 53=J0— 18.665664332 1 &! Ci= 14.365100014— 0j[9.2840950]52; C,= J0.6879123796— 0|[9.1824311]52; (7S=— [0.6832317]52; (74=— [0.6834824]62; ^=+[7.8267723363; Et= |43.7346477— 0| [8.2017618]53; E3= \ 0.648005897— 0}[07610455]&3; Fl=— [7,0339474]&4 ; F3= \ 2.770671608— 0| [1.7737962]64; F,= |50.3650833— 0^[ (258) (259) (260) (261) (262) (263) (264) (265) (266) 0<-48.4349358./+815.10927504./ 1 —5528.66691090.^+12909.37803021 | k } Z *• Z SECULAR VARIATIONS OF THE ELEMENTS OP ,,<-29.5237894./+172.758201154./ 1 } -323.368779974.. 2/1— ~~ 20 '• Zi~ "1 I 1020 > yl~ 1020 Whence /3,=18° 39' 8".9 ; log. #!=98.4104497. #, =+0.0257306 ; #1'r =+0.00001075$ ; #/ =—0.0194493 ; #jr =+0.000011106; #,"=— 0.0151823; #"=— 0.000002714; #^=—0.00269026 ; #/"=— 0.0000001142. For the root gr2=17".4034121, we get, __?9_188_05J) .65870040 4.079210 10io Whence ^2=329° 15' 1".2; log. #2=97.2739118. #2 =+0.0018789 ; #2/r =—0.000001477 ; #2' =—0.0145930 ; #/ =—0.000011248 ; #2" =+0.0125684; #2" =+0.0000006631 ; #2'"=+0.0449428 ; #2"'= +0.00000004893. For the root <73=18".09 84790, we get, __j_82704460 _8JL987110 _5.806087 2/3 into 5 23— fmo • Whence /3S=134° 45' 1".6 ; log. JV8=97.3022770. N3 =+0.0020058 ; N^ =+0.0000004469 ; JV3' =—0.0167491 ; Nsr =+0.0000065211 ; ^"=+0.0173974; ^"=—0.0000003597; W=— 0.0572983 ; #8r"=— 0.00000002674. THE ORBITS OF THE EIGHT PRINCIPAL PLANETS. 65 For the root #4=0".6 166870, we get, 3.357912_ 1.360959 56997.71 1010 1010 Whence &=67° 56' 42".3 ; log. #4/r=95.8032384. JV4 =+0.000007676 ; JV4/F =+0.000063565 ; JV4' =+0.000011687 ; NJ =+0.000071695 ; Nt' =+0.000013561 ; ^"=+0.00155764; ^'"=+0.000021841 ; JV4" '=+0.01003850. For the root <75=2".7277089, we get, 0.6477216 0.1749684 _345.4842 x* — I TTiTo > 2/5 five ' 25 inio 10 Whence &=105° 6' 59".3 ; log. ^=97.2882538. Nb =+0.00055404; N&'r =+0.0019420; Nj =+0.00054913 ; Ntr =+0.0017682; JV6" =+0.00057941 ; ^"=+0.0297289; JV5'"=+0.00077160 ; N6™'=— 0.00290997. For the root r7,j=3".7172386, we get, 0.4583439 0.8566511 _22.50983 x*~ "UF ' 2/6~ "TO1" ' Z°~ ~1015 ' Whence /S6=28° 8' 55". 1 ; log. ^8"=98.6350978. N6 =+0.0233180; N6ir =+0.0431616 ; NJ =+0.0162078 ; Ntr =+0.0341038 ; N,' =+0.0161491 ; JV6r/ =— 0.0448343 ; JVa'"=+0.()186903 ; JVar/J=+0.00141840. For the root <77=22".46H216, we get, 1.009450 , 0.7872062 81.85450 1010 ; Vn~ 1010 ; 2''~ xv Whence /37=307° 56' 54".3 ; log. ^/1=98.1942049. N, =—0.00011217; N,ir =+0.0156388; AY =+0.0005 1216; ^TTF =—0.0483500; JV7"=— 0.0024585; N™ =+0.0018057; N™=— 0.0155133 ; .#7"=+0.00013650.' 32. We shall now suppose ^"'=+1 ; and the mass of Mars will become, m,= i+i_ j_ "2680637~ 1340318.5' Using this mass, we shall find, AFT]D=— 0".0279815 ; AR3=—0". 0031027 ; ] . ! AQTTj^—0. 1020355; A^^— ° -0003297 ; , (26g. AH7g=— 0 .2982001; A[«T«]=—0 .0000275; | A[sTs]= 0. ; AQT3=— 0 .0000057. J 9 November, 1871. (Jfi SECULAR VARIATIONS OF THE ELEMENTS OF Whence we get, [o7o]=^— 5".5982373; [77T]=0--11 .4168037; [272]=0— 13 .3703731 ; ri~r]=(y— 17.5528645; [TT]=0- 7".5154781; [«76]=(jr— 18 .5965426 ; [67e]=0— 2.7662797; =— 0.6479626. (270) From these quantities we get the following equations, ]=02— 17,0150410.04- 63.9139763201 ; 0»— 18.9686104.^4- 74.8505214033 ; ^— 28.1511018.04- 98.2651007657 ; 02— 24.7871768.0+152.6469250785; g*— 28.9696682.0+200.3976083692; 0*— 30.9232376.J/4- 234.6883473387; l=fl«— 26.1120207.0+139.7619086460; |=0s— 10.2817578.04- 20.7899145038 ; ]=^— 8.1634407.0+ 4.8697487299; ] =0»— 21.3628223.0+ 51.4432382846 ; ]=02— 19.2445052.04- 12.0498640941 ; ]^— 3.4142423.04- 1.79244578674. (271) (272) =04— 47.9382786.03+824.7624793..72 ) ,,,-gv -5969.6589279.^+14999.865474416 ; j •f\ 99. j —523.98540191 .^+250.515644299 We shall therefore obtain the following Fundamental Equations for ^'"=+1; or, for mw=l-:-1340318.5. A =y2— 40.54796482.0 +195.9771436 ; A'=rf— 23.18819358.0 + 98.5732170; A"=1=02_ 48.09999599.7 4-201-479694 5 Z)a=0*_5 1.053228867,7 4- 34.3827873; A=«f— 3.4187403566.04- 1.7319812509. (276) THE ORBITS OP THE EIGHT PRINCIPAL PLANETS. G7 5=^—34.9327682^; B = \g— 17.581591114J6'; 1 „„. Jf= \ff— 12.553303072 J6; J C = \ 24.0060075 — ^[9.1763990]&'; C" = \ 17.61110406— ^[8.8694654]6'; C*=— [0. 24459 17J6'; C""=— [0.2654598]6'; E =+[9.6231944]i" ; E'= {24.2634892 — <7j[8.5847028]Z>"; E" = \ 1 7.55540782— g \ [9.6375865]6" ; F =— [7.9509391]//"; l<"=+[9.2587683]6"'; F"= 114.31200183— ^|[0.8407439]i"'; F'"= 537.4415497 — (/([9.4809266]//"; C,= ^4.365118944 — ^?[9.2840950]&2; C2= 1 0.6879162996— g\ [9. 182431 l]i, ; (73=— [0.683231 7]S2; C<=— [0.6834824]62; .#1=+[7.8267723]63 ; 1 E2= |43.7348770 — g\ [8.201 761 8]i3; ' Ea= \ 0.648009819— ^i[0.7610455]63; j J ^=—[7.0339474]^; JFi=+[0.2724896]64; F3= \ 2.770690538— ^}[1.7737962]54; F,= J50.365313 — flr}[9.1128486y>4; (278) (279) (280) *,={, f>3, an(J ^4 are given by equations (119), by simply adding [0.3010300] to the coefficients of N'". 68 SECULAR VARIATIONS OF THE ELEMENTS OF Putting .equations (285) and (286), equal to 0 = 5".4982776; gt= 01= 7.4032880; gb-- 02=17.0209128; g<- 03=18.0158003; g,-- The equations just computed will now give For the root j2, we get, =— 7.637284JV2 =+ Nt'v=— 0.0011 16683#a Nt* =— 0.006781928JV2 2V,W=+ 0.0004152514#2 N2r"=+ 0.00003050897^, For the root 173, we get, £8=18".0158631 ; JV3' =— 8.466438JV; Na" =+10.65257^3 Nam =— 26.00480 Na N3'r =+ 0.0005716405^s NS =+ 0.007478025^8 Na"=— 0.00041568153T, ^r"=— 0,00003086801^, the following values :— log. 98.6603816; " 98.4547195 ; " 97.6462679 ; " 95.6881175n; " 95.6398476n ; " 95.2754534; " 93.5437656. log. 9.9073209n; " 9.7821240n; " 9.0096452n ; " 6.6305296 ; " 6.6454022 ; " 6.0308069n ; « 4.6571202». log. 0.8829390N ; « 0.8702282 ; " 1.1714047; " 97.0479297/1 ; " 97.8313532»; " 96.6183110; " 95.4844276. log. 0.9277008»; « 1.0274544; " 1.4150536n; " 6.7571230; « 7.8737870 ; " 6.6187606n ; " 5.4895086rt, THE ORBITS OF THE EIGUT PRINCIPAL PLANETS. 69 For the root <;4, we get, r/4=0".6 1669 170; JV4 =+ 0.1217372^'" N>" =+ 0.2150961^V4/F N" =+ 0.345612iV/F NJ =+ 1.128136iV47 ^4"=+ 24.51803A7 nr 'IV For the root #5, we get, #,=2".7278184 ; JV5 =+ 0.29()3833^"6/F JV5' =+ 0.2 Nb" =+ 0.2 5" =+ 0. '=— 1.500545^" For the root yti, we get, ^i=3''.7186222; ; =--0.3754068JV6/r f =-j-0.4351473^6/ir S =-]-0.7902211JV6JF 6"=— 1.0372986We/F For the root V6- JQ10 Whence /?6=28° 8' 45".3 ; log. N6'v =98.6351607. ^=+0.0240344; N6tr =+0.0431679; Ne' =+0.0164295 ; N6r =+0.0341122; JV6" =+0.0162055 ; N6rr=— 0.0447780 ; JV6'"=+0.0187844 ; JV6r//=+0.0014139. For the root g7=22". 461946, we get, 1.009108 r ; 2/7= 0.7869276 81.83667 1010 1010 AVhence /?7=307° 56' 52".8 ; log. N7ir=9S. 1941499. N7 =—0.0000878; N7IV =+0.0156369; Nj' =+0.0002258 ; JV7"=— 0.0020272; ^7"'=— 0.0151238; NS =—0.0483362 ; N^ =+0.0018051; JV7m=+0.0001364. 71 34. We shall now suppose ^/r=+T ; and the mass of Jupiter will become, Using this value of Jupiter's mass' we shall find, A[oTo]=—0".01 60284; A[TT]=— Q .0420284 ; Af^1=— 0 .0706826 ; A[s73]=— 0.1465990; Whence we get, [o7o]=<7— 5".5862842; Q7[l=#— 11 .3567966; \j7j\ =ff— 13.1428556; [3TT]=^— 17.6994635; E3= 0". ; [1711=— 0.1824735; [?7J]=— 0.0093732; r?771=— 0 .0017907. GT4]=#— 7".5123754; [ITI1=/7— 18.7786864; [67J]=^— 2.7756254; [7^]=a— 0.6497476. (288) (289) 72 SECULAR VARIATIONS OF THE ELEMENTS OF From these quantities we get the following equations, ]^— 16.9430808.^+ 63.4422934092 ; ^8— 18.7291398va+ 73.4197265812 ; |=^— 23.2857477.J4- 98.8742332985 ; [272]=/— 24.4996522.^-j- 149.2607377924 ; 3=^— 29.0562601.^-j- 201.0092068986; ==.92— 30.8423191.^+232.6214929780; (290) ]=02— 26.2910618.^+141.0725417557; ]=02— 10.2880008.0+ 20.8515399746 ; [4TT][77f]=!72— 8.1621230.0+ 4.8811478864; ]=0'— •21.5543118.0+ 52.1225989505 ; -f-r 19.4284340.0+ 12.2014064196; ]=02— 3.4253730.0+ 1.80345594215. ]=04— 47.7853999.03+ 818.62769096.02 ) —5898.0322091.0 +14758.0410108 ; j ]=04— 29.7164348.0s +232.93269093.02 ) —530.6408472.0 +254.418113702. j We shall therefore obtain the following Fundamental Equations for [iir=-\-— — ; or for mrr= • (291) 100 ^ =/_40.3084942.<7 +194.2847527 ; ^'=i72— 23.30847617.<7 + 99.1027623; A"=./2— 18.08032078..; + 69.61059281; Al=f— 14.626095329.<7 + 46.1708070; J2=j72— 10.02759291.^ + 6.38342153; A3=g2— 26.365472005.^ + 83.71712664; D =/— 47.971972067.<7 +703.129607 ; D=fft— 55.11012591.^ +662-354-530 ; IT=(f— 31.78521949..7 +249.0357671 ; Z)i=i72_48.29148549..7 +202.685210 ; A=i/2— 51.237157667.«7 + 34.5983143; D3='f— 3.4298710566.;/+ 1.7430000948. (294) (295) B= }j/— 34.7052507 |ft; # = ^—17.713826807(6; ) B"= \ (/—12.49329597 } 5; j C = 1 23.7784900 — ^|[9.1763990]fe'; C' = \ 17.72858328— ^|[8.8694654]6'f 0'=— [0.24459 17]6'; C"=— [0.2654598]6'. (296) (297) THE ORBITS OF THE EIGHT PRINCIPAL PLANETS. 73 E =+[9.6231944]6"; E'= J24.1934821 — #j[8.584702S]6"; K'= \ 17.70073515— #j[9.6375865]6"; ,#'"= -(-[0.951 89 13]Z>". F =_ [7.649909 !]&'"; JF'=+[8.9577383]i'"; F" = \ 14.08448433— # } [0.8407439]6'" ; 1™= )37.3815426 — #j[9.4809266]Z>'". (298) (299) ^7-4.7961712^; £,= ) ' Cf= 3= {0—18.848037412 {4.374464644 — <^[9.2840950]&2; {0.6897012996— #j [9. 182431 1]Z>2; -[0.6832317]62; — [0.6834824]62 ; (301) j 43.9170208 -^[8.2017618]&3; \ 0.649794819— <7J[0.7610455]63; (302) (303) ^=—[7.0339474]^; jF2=+[0.2724895]64; F,= { 2.780036238— 0} [1.7737962]64; Ft= {50.5474564 -0j[9.1128486]64; j 0*— 47.7853999./+793.57041154.02 1 v -5313.7879554.*7-f 12250.8363744 J = tf— 29.7164348.0»+174.4588860.^' ) _, x -327.5400877.^ +142.7433842 j = The values of 6,, Z>2, &3, and 64 are given by equations (119); and the values of 6, U, b", and 11" are given by equations (118), by simply adding log. (l+//r)= [0.004321,4], to the coefficients of N". Putting equations (286) and (287), equal to nothing, they will give, g= 5".48175018; 9l= 7.29977391; ^2=17 .09470611 ; #3=17.90916970; 10 November, 1871. gt= 0".61 8590378; #6= 2.73702595; #6= 3.72450143; #,=22.63631704. (306) 74 SECULAR VARIATIONS OF THE ELEMENTS OF The equations just computed will now give the following values: For the root g, we get, ^=5".481 84344; N' =+0.04775507JV log. 98.6790194 ; N" =+0.03031 1511V N'" =+0.0046 156637V N'T =— 0.00004974188JV Nr =— 0.000044294982V N" =+0.00001941068iV JVm=+0.000000351368JV 98.4816076; " 97.6642342; " 95.6967222/»; " 95.6463545» ; " 95.2880406 ; " 93.5457621. For the root #,, we get, ~ "To15 6 • Whence &=1()4° 31 50" 1 ; log. ^"=97.2866700. Nb =+0.00056493; N" =+0.00193495 ; AV =+0.00055366 ; - Ntr =+0.00175748; Ay =+0.00057992 ; Ns" =+0.0296571 ; Ay"= +0.00077274 : A7/'^— 0.00289263. For the root r/6=3".723307, we get, _0.4594222 , 0.8649404 r i ??167899_ AT^Z ^o — jmu •"« > y^ — "I JQIO •**« ' Z6 — ~T JQIO -*^« • Whence &=27° 58' 31".7 ; log. AVr=8.6353288. A; =+0.0243002 ; Ne'r =+0.0431846 ; Na' =+0.0165168 ; N6r =+0.0340618 ; ^"=+0.0162693; N6ri =— 0.0451079; Ar6'"=+0.0187715 ; Ar6F"=+0.0014293. For the root r/7=22".636578, we get, 1.021673 ,. 0.7951379 , 83.56643 Ar/,.2 ^7 — T?no •"' ' 2/7 — T f?uo "T ' Z7 — H T7\io *M • Whence /37=307° 53' 32".2; log. JV/ r=8J901156. N7 =—0.0000952; N7!T =+0.0154923; N7' =+0.0002967 ; N/ =—0.0484622 ; iV7"=— 0.0023449 ; N,VI =+0.0017952 ; N7'"=— 0.0149630 ; A7"=+0.0001359. 36. We shall now suppose that /ur=-| — ; and the mass of Saturn will become, 14- L 1 v=:0-n ^-=-oTfcTKc"» Using this value of Saturn's mass, we shall find, oOUl.b AU7o]=— 0".0019316, ^QZ1=— ° -0049722, A[|72] = — 0 .0081629, A[»Ts]=— 0 .0157850, Whence we get, I^o]=j7— 5".5721874; 03=^—11 .3197404; Q3=flr— 13.0803359; pTTI =/7—17.5686495; rTl = —0". 1849094, [erg =—0.0348880, |T771=— 0.0051937. [TT4]=«7- 7".6972848; [771]=, ff— 18.5962129; [°^]=g— 2.8011402; [777]=^— 0.6531506. (307) (308) 78 SECULAR VARIATIONS OP THE ELEMENTS OF From these quantities we get the following equations, [o7_o][r;T|=02— 16.8919278.0+ 63.0757148282 ; [o7o][27J]:=02— 18.6525233.0+ 72.8860828897 ; [o7o][17T]=02— 23.1408369.0+ 97.8958073789 ; [I7jf]=02_24.4000763.0+148.0660()67328; r7J]=02— 28.8883899.0+198.8725515186; [71]=^— 30.6489854.0+229.8038367694. ]=#*— 26.2934977.?+143.140;3468927; 3=^— 10.4984250.^+ 21.5611738841 ; ]=/— 8.3504354.^+ 5.0274861855; ]=g*— 21.3973531.^+ 52.0905995219 ; \=f— 19.2493635.^+ 12.1461276134 ; 3=^— 3.4542908.^7+ 1.8295664023. -47.5409132.03+810.60000012.0- -5815.0364817.<7+14495.04127448 74— 29.7477885..73+235.7953005.r/ —542.55408336.0+261.88476948 We shall therefore obtain the following (309) (310) (311) (312) Fundamental Equations for |Ur=+j^; or, for wr=-~- -— . A =03— 40.2318777.0 +193.4460881 ; A =02— 23.16356537.0 + 98.1230397; A"=g2— 18.02916778.0 + 69.22796584; ,li=^_U.813573502.0+ 47.2122074-; A3=g*— 10.19774833.0 + 6.52926208; A3=g*— 26.369591592.0+ 84.94828460. j) =02—47.872396167.0 +700.738213 ; Z)'=02— 54.94225571.0 +656.812394; I7=g*— 31.59188579.0 +246.0948532; Z>1=02— 48.76298515.0 +206.032362 ; Dt=g"-— 51.852306416.0 + 35.1877225; D3="; E' = \ 24. 1564259— g \ [8.5847028]Z>" ; E"= j 17.569921 16— g \ [9.6375865]6"; F =—[7.649909 !]&'"; JF'=+[8.9577383]V; F"= \ 14.02196463— g\ [0.8407439]&'"; F'"= j 37.3444864— gr | [9.4809266]6'". 4.8216860 }6i; Bt=\g— 0.6847655937 }6i; ) Ba={y— 18.667297687}^; j Q= { 4.399979444— g j [9.2840950]62; <72= 1 0.6931042996— 2; Q=— [0.6939556]62; C±=— [0.6942063]&2; ^=+[7.8267723]^; E^= |44.3630057— g \ [8.2017618]63; E3= \ 0.653197819— <7J[0.7610455]Z>3; ^=4-1:1. 0655652]63; (317) (318) (320) (321) ^=—[7.0339474]^; (322) F3= .\ 2.805551038— gr j[1.7737962]64; F±= J51. 159202116— #j[9.1128486]Z>4; j/4— 47.5409132./+785.54272070./ ) -5234.4038677.^+12012.62971359 j ( /— 29.7477885./+176.4527823. -334.71804394.^ +146.97863935 j ^~~ *4' ^6' ^ Xl)' The values of fta 52, 63, and 54 are given by equations (119); and the values of 6, V, I", and I'" are given by equations (118), by simply adding log. [0.0107239], to the coefficients of Nr. Putting equations (323) and (324) equal to nothing, they will give, g= 5".46587505; g,= 0".622281636; 'g,= 7.25377728; gb= 2.76237256; gz= 17 .02345660; g,= 3 .7S742019; ^=17 .79780427; ^7=22 .57571411. (325) 80 SECULAR VARIATIONS OF THE ELEMENTS OF The equations just computed will now give the following values : — For the root g, we get, log. 8.6860778 ; " 8.4907565 ; " 7.6765512; " 5.7205493n; " 5.6713710?*; " 5.3258490 ; " 3.5604147. log. 9.8757588/1 ; " 9.7578974w ; »« 8.9767704n ; " 6.6034387 ; " 6.6130658; " 6.0257136w; " 4.6315468/1. log. 0.8837032«; " 0.8877358 ; " 1.1826643; " 96.849441 In; « 97.6314346/t; " 96.4295512; " 95.2944192. log. 0.9183798n; " 1.0102164; " 1.70l6403n; " 7.8226985; " 7.8398536 ; " 6.60541 10»; " 5.4741710«. N' =+0.04853754^ N" =+0.03095683^ Nm =+0.004748442JV N" = — 0.00005254717JV Nr =— 0.00004692140JV tf" =+0.000021 17625 JV #"'=+0.000000363425^ For the root «/„ we get, «7,=7".2545148, JV; =— 0.7512055W, Nf =— 0.5726608JV, NI" =— 0.09479172JV, N,'r =+0.0004012718^, W =+0.0004102662^, Nirt =—0.0001060996^, N™=— 0.000004281016^, For the root N, we get, ^2=17".0235807, ' =— 7.650735JVj " =+ 7.722107iV2 =+15.22875^2 =— 0.0007070363^a ^ =— 0.004279910JSr2 TI =+ 0.0002688755^V2 "= 0.00001969787^V For the root , we get, ^8=17".7978505, JV3' =— 8.286660^8 Nt* =+ 10.238030 JV3 N3m =— 60.30837iv; ^3/r=+ 0.0066481 ISJVg N3r =+ 0.006915978^, N3r'= - 0.0004030984JV. #,"'=— 0.00002979690^3 THE ORBITS OF THE EIGHT PRINCIPAL PLANETS. 81 For the root g±, we get, #4=0".62228135; jV4 =4_ o. 1215129 #4'r N{ =4- 0.1845219^'" JV4" =4- 0.2136944JV/r Nt" =+ 0.3455668^ NJ =4- 1.133130JV/" Nt"=+ 24.593006^4/^ JV4r//=4-160.63011JV4/r For the root f/6, we get, N, =+ ().2979185JV/r ^V5' =4- 0.2890480^" ^V5" =4- 0.3020508JV6;r N,'" =-)- 0.4005457JV6'r Ntr =4- 0.9164754^5'r JZV6"=4-15.69060W5/r N™=— 1.514217^6/r For the root gw we get, N6 = =+().3937991^V6J =+0.3856959^ =4-0.4382820^ =4-0.794009JV67F For the root Vt—+--joSS—Nt 'z^- io'»"^4 • Whence £4=67° 46' 10".2 ; log. ^"=95.7964432. NI =+0.000007604 ; Nfr =+0.000062581 ; JV4' =+0.000011548 ; #/ =+0.000070912; JV4" =+0.000013373 ; NJ' ==+0.00153906 ; JV/'= +0.00002 1626 ; JV4"/=+0.0100524. THE ORBITS OF THE EIGHT PRINCIPAL PLANETS. 83 For the root #=2". 762311, we get, 0.6624109 1010 ' 2/6=- 0.1988506 10'° _36J..8939 r2 Z6— -^QIO *X6 "• Whence &=106° 421 33".6 ; log. J\Vr=7.2812824. Ns =+0.00056935; N,'r =+0.00191110; Ns' =+0.00055240 ; N&r =+0.00175147 ; JV5" =+0.00057725; Nbri =+0.0299862; ^'"=+0.00076548; For the root ^=3". 786 209, we get, JVr.ir"=— 0.00289381. X6 — + 0.4675181 r ^'s ; z/o — 0.8555864 22.61242 , \' •" T_, ' * « Whence &=28° 39' 12".7 ; log. ^7 r=8.6346522. N6 =+0.0258909 ; #6/r =+0.0431174; JV8' =+0.0169796 ; N6r =-\-Q.03±2356 ; Ne" =+0.0166303; JV6" =— 0.0440755 ; JV6'"=+0.0188976 ; 2V6m=+0.0013169. For the root gr7=22".575980, we get, 1.004018 , , 0.7872757 JQ1 JQ1 r _ •"I > Z7 — 79.68195 10 io Whence /37=308° 6' 3".2 ; log. ^/r= 8. 2044480. N7 =—0.0000979; Nj' =+0.0003062 ; JV7"=— 0.00240674; N,'"=— 0.0151034 ; 38. We shall now suppose that ^"=+^5 and the mass of Uranus will become N,'r =+0.0160121 ; N,r =—0.0480733 ; N7rr =+0.0018317; tfm=:- 0.0001384 1 i TI 1 ir/=^j~^=HoYTq- Using this value of the mass of Uranus, we shall find, A[o7o]=— 0".0000666; A[TTT1=— 0.0001705; A[UJ=— 0.0002778 ; AQ73]=— 0 .0005261 ; Whence we get, {^]=g— 5".5703224; OIO=«7— 11 .3149387; [^}=(j—l3. 0724508; [373=^—17.5533906; [47*1 =— Off.OQ37881; 1775]=— 0.0139141; =_0 .0130554. 71]=^- 7".5161635; ^\=g—18. 6101270; 7e]=i7— 2.7662522; T=^— 0.6610123. (326) (327) 84 SECULAR VARIATIONS OF THE ELEMENTS OF From these quantities we get the following equations :— J=03— 16.8852611.0+ 63.0278564952 ; [£3=^— 18.6427732.0+ 73.8177655141 ; J75]=02— 23.1237130.0+ 97.7780448551 ; r^n^ff2— 24.3873895.0+147.9139794608; ]=02— 28.8683793.0+198.6155386162; (328) ]=02— 30.6258414.0+229.4658349917; |4,4||5_,i|=0s— 26.1262905.0+139.8767572878; g]=02— 10.2824157.0+ 20.7916038174 ; ]=09— 8.1771758.0+ 4.9682765223; ]=/— 21. 3763792.0+ 51.4803047560; F77]=^_19.2711393.0+ 12.3015228516; ET3Q7H0*— 3.4272645.0+ 1.82852672910. 04— 47.5111025.03+809.61901994.0a -5804.87167416.0 +14462.73971842 ; =y*— 29.5535550.03+231.24699197./ | —527.16726514.0+255,76838948. J (329) (330) We sliall therefore obtain the following Fundamental Equations for //'"'=+—; or, for w "=237 19* A =g*— 40.22212762.<7 +193.3374230 ; A=tf— 23.14644147.J/ + 98.0051228; A'=f— 18.02250108..7 + 69.17798438; ^,=^—14.698591492.^ + 46.9394976; Ai=ff— 10.02448873.<7 + 6.47860075 ; ^3=/—26.200650614.^ + 83.09379428; D =g*— 47.859709367.j7 +700.433897 ; Lf=ff— 54.92219511.^ +656.158133; Lr='f— 31.56874179.^ +245-7424731 - Z>,=/72— 48.19349485.j7 +205.563726 ; D^y*— 51.079862967./7 + 35.0495614; D3=g*— 3.4319830985.J7+ 1.7650873387. 7_ 34.6348459 16 ; ^=10—17.56775390716; ) S"=\g— 12.45143805 \b- 1 C = |23.7080852 — 0|[9.1763990]i'; 1 f" = {17.58251038— 0|[8.8694654]ft'; f"=— [0.24459 17]6'; C"*==— [0.2654598JV; (332) (333) (335) THE 0KB ITS OF THE EIGHT PRINCIPAL PLANETS. 85 E =+[9.6231944]Z>"; E '= J24.1516242 — #j[8.5847028]Z>"; E"= j 17.55466226— 0j[9.6375865]i"; [ JEW=+[0.9518913]6"; F =— [7.649909 1]6"; F" == 1 14.01407953— g \ [0. 840743 9]ZT ; F'"= {37.3396847 — g j [9.4809266]//" ; J3,={0— 4.88782529 }&,; B,=\g— 0.692627293 \b,; B3=\g— 18.679478012 j 6, ; C,= J 4.445033406 — 0j[9.2840950]Z>2; C2= 1 0. 7009659996—# j [9. 182431 1J6, ; Cs=— [0.68323 17]i2; C4=— [0.6834824]Z>2; .1 E2= S43.7484614 — r7J[8.2017618]63; . Ey= \ 0.661059519— #j[0.7610455]63; .' £4=4-[1-0867545A; " J F,=— [7.0339474]64; 1 (336) (337) (338) (339) (340) \0^ i /341\ F3= \ 2.77088358— 0j[1.7737962]&4; F,= j 50.3788970 — ^|[9.1128486]64; r/4— 47.51 11025.r/ + 784. 561 74052.J/1 ) _, y -5224.6661 1233.#-|-- H983.3131284 j = ^_29.5535550.?s +173.33949329.<72 ) _( -325.77538456.^+143.38934238 j ~^4' ^6' ZM ZT)' The values of &j, 62, 53, and 54 are given by equations (119); and the values of fe, 6', i", and b'" are given by equations (118), by simply adding log. [0.0211893], to the coefficients of Nri. Putting equations (342) and (343), equal to nothing, they will give, g= 5".46378145; 9l= 7 .24790553 ; #2=17.01456031; ^3=17 .78485521 ; g4— 0".628004507 ; &= 2.72658456; ge= 3.72632806; o7=22 .47263787. (344) S6 SECULAR VARIATIONS OP THE ELEMENTS OF The equations just computed will now give the following values :— - For the root Z= ' KP ^* Whence (3=SS° 4' 59".6 ; log. #=9.2468080. N =+0.1765257; #"=—0.0000090343; N> =+°-0085861 5 ^ =—0.0000080536; #" =-(-0.0054795 ; NVI =+0.00000:35299 ; N" =+0.00084131 ; #"'=+0.0000000562. For the root ^=7".248636, we get, 1657215 _4358217 _173063980 Xl - H -- /Sf—-«lJ 111— 20 •"!? Zl— ~"20" ~~-"l • Whence /3,=20° 49' 9".6 ; log. #,=8.4304273. JVi =+0.0269418; #/r= +0.000010692; JVY =—0.0201896; #,r =+0.000010909 ; Nf =—0.0153962; ^i"=— 0.000002753 ; JV,™ =—0.00255069; Nlr"=— 0.0000001086. For the root sr2=17".014687, we get, 18857840 40818170 _ 3.068621 xr2 ^2~ 20 Z2~ 10 ' 1020 2~ 101 Whence /32=335° 121 11".5 ; log. #2=7.1659197. #2 =+0.0014652; #/" ==— 0.0000010637; #2' =—0.0112020 ; N,r =—0.0000063803 ; N2" =+0.01 12957 ; NtT' =+0.00000039104 ; #a'"=+0.0225336 ; #2F7/=+0.0()000002851. For the root 03=17".784902, we get, 131044100 141058200 _ 12.091655 '"•> 2/3— I'JO **•» 23— 1" Whence /33=137° 6' 27".7 ; log. #3=7.2020253. #3 =+0.0015923; #3'r =+0.000001 0764;. #3' =—0.0131805 ; #3r =+0.0000109855 ; #3" =+0.0162544 ; #3r/ =—0.0000006246 ; #T=— 0.0790463 ; #/"=— 0.0000000460. For the 'root 0r4=0".6280042, we get, 3.295099 r 1.261747 53937.18 z«=-r inio ^4 ; 2/4= ,mo ^4 ; «.=- imo ^4 • Whence /34=69° 2' 50".4 ; log. #/r=95.8156910. #4 =+0.000007965 ; #4'r =+0.000065417 ; #4' =+0.000011808 ; #/ =+0.00007374!) ; #4" =+0.000013989; #4" =+0.00156804; #,"=+0.000022614; #4r'7=+0.01004537. THE ORBITS OF THE EIGHT PRINCIPAL PLANETS. For the root ^6= 2". 7 265 18, we get, 89 0.6486453 ~10'« 0.1822083 -10w 337.9588 Whence £.=105° 41' 25".3 ; log. #"=7.2996358. N& =+0.00058277; #'"=+0.00199359; jV5' =+0.00057135 ; #r =+0.00181568 ; #" =+0.00059807 ; #rf =+0.0292788 ; #'"=+0.00079643 ; #"'=— 0.0030292. For the root j70=3".725131, we get, . 0.4579378 „„ . 0.8593662 r 22.55046 n *e=H — YO>« — ° ' y«=~l io10 " 8 ' 2 A=02— 51.063762837.0 + 34.5618232; Dz=, ; f=\g— 0.682733393(6, 3=\g— 18.672437912 jfti; \ 4.408417144 — ^}[ \ 0.6919059696-r- g\ [9.182431 !]&,; — [0.683231 7]&2; —[0.6834824]^ ; Ci= C2= C3= ^= Ez= \ 43.7414213 -^[ E3= \ 0.648008841— g\ [0.7610455]&3; " ^=—[7.0753401]^; JP2=-|-[0.3138822]&4; ^3= { 2.813958738— F<= 150.37185686 — (355) (356) (358) (359) (360) /-47.5107777./+784.55104690y ) 361 -5224.5598798.0+11982.99308371 j #4— 29.575398S./+ 174.01 843537.0* ) _ . (^^ — 327.77137981.0 +142.39163768 j ~ The values of bt, &2, 53, and 64 are given by equations (119); and the values of fc, 6', I", and Z/" are given by equations (118), by simply adding log. [0.0413927], to the coefficients of Nv". Putting equations (361) and (362), equal to nothing, they will give, • (363) g= 5". 463758326 ; gl= 7 .247841113; gr*= 17 .014463042; #,=17,784715218; fft= 0".6142757037 ; lgb= 2.770720524; gs= 3.723848045; ^7=22 .466554527. SECULAR VARIATIONS OF THE ELEMENTS OP The equations just computed will now give the following values: For the root _ it/ CL it/ (t iv " in order to obtain the numbers which are to be used in this computation. 94 SECULAR VARIATIONS OF THE ELEMENTS OF For the root g=S'. 463855, we get, ,1847131,. ,63087.5 10467693 ~ Whence /3=88° y 37".9 ; log. #=9.2468998. N =+0.1765630 ; N'r =-0.00000901 76 ; #=+0.0085881; Nv =—0.0000080444; #"=+0.0054808; NTf =+0.0000035813 ; #'"=+0.00084153 ; #"'=+0.0000000609. For the root gr1=7".248571, we get, , 1656245 ,7 . 4351968 173055600 aH=+ 10,0 NI> fc=+— r- *J 2'= Whence ft=20° 50' 7".8 ; log. #=8.4298727. NI =+0.0269075 ; N," =+0.000010666 ; N> =_().0201633 ; N,T =+0.000010891 ; #/' =-0.0153761 ; #"=-0.00002774; ^'"=-0.0025474 ; N™= -0.0000001116. For the root 02=17".014590, we get, 18874270 A7 .40848060 3.068734 *»=- i(^r— -^«! ^=H --- KP — ^; z^- IQW Whence &=335° 12' 0".8' ; log. #2=7.1662319. #2 =+0.0014663 ; Wv =-0.0000010862 ; #2' =-0.01 12099 ; Ntr =-0.000006540 ; #2" =+0.01 13035 ; NS' =+0.0000004019 ; #2'"=+0.0225521 ; #2"'=+0.0000000294. For the root &= 17". 7 84 76 2, we get, , 131051610.. 141079200 12.088926 - — ^i; 2/3= 10* iow Whence /33=137° 6' 45".3; log. #3=7.2021538. #3 =+0.0015928 ; Wr =+0.0000010705 ; #3' =-0.0131842 ; NJ =+0.000010999 ; #3" =+0.0162587 ; ^P/ =-0.000000627 ; #3^=-0.0000000463. For the root ^4=0".6142754, we get, , 3.385189 ,_,r ,1.399525 53091.32 *4=+- 1010 W;y*=+- ^ - z*- '» Whence /34=67° 32" 18".7; log. #/r=95.8388230. #4 =+0.000008364; N4'v = -- +0.000068996 ; #4' =+0.000012715 ; #4r = =+0.000077824 ; Nt' = +0.0000 14729 ; #"=,+0.00167466 ; #"=-|-0.000023832 ; #4 -=+0,01002282. THE ORBITS OF THE EIGHT PRINCIPAL PLANETS. 95 For the root r/5=2".7706502, we get, 0.15:382110 0.1345391 _318.2862 10 ° ' io10 ' "~io" — ' Whence p6— 101° 54' 14".5 ; log. #5/r=7.3115881. N, =+0.00061393; Nb'r =+0.00204922 ; JV5' =+0.00059396 ;. N,r =+0.00185548 ; #5" =+0.00062031 ; N," = +0.0300096 ; N™= +0.000821 54 ; #5r"=— 0.00288234. For the root #0=3". 722656, we get, _(U577640^ 0.8595159 r 2J2.63367 r2 IO10 ~1(P~~ 10'° Whence /36=28° 2' 20".5 ; log. #6'r=8.6337215. #8 = =+0.0245381 ; N6'r =+0.0430251 ; Na' =+0.0165876 ; N6r =+0.0339716 ; JV6" =+0.0163169; JV6"=— 0.0466232; #8'"=+0.0187473 ; #6r/'=— 0.0015353. For the root #7=22".466817, we get, 1.009767 0.7872124 r 81.89131 /r2 xi — InTo •"! > y^ — I iruo "•"'l ' ^ — H i Vuo ^7 • Whence /?7=307° 56' 23".7 ; log. #/r=8. 1940957. N7 =—0.0000974; JV/F =+0.0156349; Nj' =+0.0003164 ; N,r =—0.0483516 ; Nj'= -0.0023759 ; N7ri = +0.00 18091 ; #,'"=—0.0150168 ; #7r//=+0.0001364. 42. We have thus obtained the values of all the constants, corresponding to the separate variations of the planetary masses. If we now subtract the values of the constants which correspond to the assumed masses from the values which result from the supposition that each planetary mass receives in succession a finite incre- ment, and divide the difference of the constants by the supposed increment of mass, and connect together the different results, we shall have the following system of equations for the determination of the constants which correspond to any other assumed finite variation of the masses. The unit of the coefficients of ^u, [i, fi", &c., in the values of N, N', N", &c., Nlt #/, #/', &c., are the seventh decimal place of these coefficients. 96 SECULAR VARIATIONS OF THE ELEMENTS OF «=5".463803-0".079418«+2".68094iu'+0".91484«"+0".034565/.'"+l".8040;u'r +0".08684u'+0".00150//'+0".00052um; £=88° 0' 38"-2939^+50632V-20688y-3815y-73640yr+57456y +5236y/+1202y"; J^=+0.1766064-50121iu-420200la'+205480i/+ 7970 '"+676800^ -s-486480 / — 1 6 1 8()«' ''— 4360^r" ; ^'=+00085906+59050iu+146200«'-44980X'-4746u'"-124400u"'-31040iWr — 900;."— 250/.r//; =+0 .0008418+5672^+20302 :'— 2300-/— oGl.T.a"— 23540u/r— — 10 — 72^— 52/i'+27jtt"+3.5/'+18V— 86.4^"— 6.8^"— 1. ^"=+0.0000035+30^— 9^'— 20/— 1.7(u'" ^r//= +0.0000000.6+0.4^+1.4^+0.2^— 0.0^'"— 0.8u/F— 0.2lUF— 1.4^"— 0.2^". ^1=7".248427+0".193515/u+0".08894u'+l"33906/+0".155640i(/"+5".2076i«/r +0". 2429^ r+0".0041 8:< "+0".001 44 u T" ; /31=200 50' 19"+41718>+171946V— 86900>"+7848V— 221553'Xr+'''5188>r -1396>p/— 115>F//; ^=+0.0268838+5871^+793180^'— 124700^*— 29868^'"— 658400//r +104480^ r+11600^F/+2370m; JV/=— 0.0201444— 27607^— 17180^'+ 72020/+839 V+62400/r— 98840/z" -9120/1"— 1890 r"; ^"=—0.0153619— 25311^— 25560^'+18800/+8920;u"'+95500/r— 73200^" -6860/z"'— 1420r"; ^'"=—0.0025451— 4573/u—8070u'—14568/+10181u'"+3730/r—11212ar -1120//"— 23V"; JV1/r=+0.0000106+9.3/u+43.6^'+10//"— 4.4u"'— 162iu/r+99.4lur+9.61u" ^"=+0.0000109+11.4^+45.2^+22. V—3.1/r—181/p+104.8^r+6 Nlrr=— 0.0000027— 14.6.7— 10.6u'+3.6lu*+1.8-/'+63u/r— 54.4«r— 1.8/tw -3.0,/" JVi"^— 0.0000001— 0.1^—0.5iu'—0.2/+0.0//"'+1.5/p—1.6//+0.7/u"+0.1lury/. THE ORBITS OF THE EIGHT PRINCIPAL PLANETS. 97 5r2=17".014373+Ow.075742iu+3".72988/t'+4''.06318M''4-0".0067921u"'+8".0455/t/F +0".36832«F-fO".00628,uF'+0".0021V"; &=335° ll'3r+483^— 336590y— 239676y— 27647y"+753490y/F+7692y +802y'+294'y"; ^=+0.0014673+1200ia+61784iu'+47930/[i"+11002la"'— 130700^F— 3160/tF _420^"— 90^"; N2'= -0.0112171— 9383^—345400^'— 339820lu"—83919,/"-f928300^F+20560;uF -Ay'=+0.0113105+6512^+410140/u'+196140/+77329;u'"— 842300^^- l!jm— 3928400/ -138640lMF— 7660^"+1980^r"; NJV=— 0.0000011— 1.2w— 77^'— 43.4uff— 18.1^'"-f-114"'+10.8;u "—!%"— 2.7^m; Nar= -0.0000064— 10.4a—658/—447.6/—110.1la'"4-930/F+621a "+4.2^" -13:9^"J; ^2F7=+0.0000004— 0.6i«+38;/+25.4't"+€.7^"f— 58,u JVr2"'=:+0.0000000.3+0.0/u+2.8iu'+1.9iu''+0.5lu"'— 4.2/i £73=17".784456+0".0343831u+2''.31316i«'+2".93202//'+0.2314071u"'+12".4768/t/|r -fO".53576/iF+0".00892^r/+0".00306ur"; &=137° 6' 36".5— 4099>— 1 13430y— 73350>"+352'>'"+143360y F+3904>F -ney^+ssy"; JVr3=-)-0.0015934-)-1401^+63100/<'-|-482801u"+8277^"'— 129900,u/F— 4560ittF _220/'— 60^™; ^3'=— 0.0131892— 11200u—351120^—410400ia"—73086//'+945000/F t«'"— 880700/r -26920^ F— 1940 F/—540,«r//; 3"=— 0.0790650+46942y+3069920^'+1932860/+161058i«"T— 3813200/F -209680«F+3740i;+34y+78y+16y-50700yr+25000y+79500y' — 14560>F"; Ai =+0.0000077- l(i— 6fi'- 4/+ +940y + 1 860>" +566 >'"— 192300 >' r+236840>r +45040>F/— 1 13780V" ; JV6 =+0.0005685— 50/1— 2656X—1488/— 57^'"— 3612iu/r+322iuF+2844iU" =+0.0005571— 65^— 620^— 822^"— 30^'"— 3436a/F—1881;tr+ 2850^ 6" =+0.0005832— 41iu—896X—394fi"—19/'—3314;/F— +3708/tr//; ™ =+0.0007765— 9/£— 272^—498^"— 22^'"— 3807^F—4428(aF+3976^F/ ^'"=+0.0019436—1^—80^'— 160^"— 55/'—8674/F—13008i« "+9994^" + 10560/"; JV/ =+0.0017694— l^—62u'—124/— 43/'—11920/F— 7172^ F+9256/tF/ +8608/ir//; ^6r/ =+0.0297330+1^— 240,./— 420^"— 182"'— 75800,u'r+101280^F— 90840,uF/ +27660/"; JV6F"=+0.0029105+0/«+281u'+54a"+22;/'+17870ia'p+6676/uF— 23736^" +2816,um. flf8=3".716607+0".0()0071/i+0".00318iu'+0".00632iu"+0".002015/'+0".6700/F 2".78408juF+0".17048/r/+0".06049i(iF//; ,38=280 8' 46"+19>+24>'+90y— 0".5^'"— 61400yF+73080VF— 6760>" -385()y"; N9 =+0.0244939— 642«— 233400^'— 121880/— 4595^'"— 193700/F+558800^r 36680^ "+4420^"'; Nj =+0.0166053— 531(U— 21540u'— 41360/— 1758//'"— 88500/F+149720ur + 11340u"+1770ar"; THE ORBITS OF THE EIGHT PRINCIPAL PLANETS. 99 6" =+0.0163413— 454u— 24920^'— 20000/— 1358^"— 72000/w/r+115600/ur +9220p"— 2440^"'; a'" =+0.0187954— 104^— 6080^'— 106(%"— 110^'"— 23900lu/r+40840/zr V/F =+0.0431601 +31^+40^'+ 140^"+78/'+24500^/r— 17080^^4300^ -1350 J =+0.0341011+26^4-100^'+260/+llV"— 39300/F+53800^r— 3160,u7 V6r/=— 0.0448614— 01«+1380la'+2680/+834iu'"— +72860^"— 176180^r/J; JV6F//=+0.0014205— 1^—100^—200^"— 66^'"+8800(U/F—41440^r+24280i«r/ +11480,ur". /r ^7=22".460848+0".000029«+0".00130iu'+0".00274/+0".001098u'"+17".5730ju/ 4".60528/ur+0".24104;tr/-fO".05969(tim; /?7— 307° 56' 50"+OV+20y+42"/tt"+2".7^"— 19800y+22120>r— 2060>r/ , -265V" , =—0.0000975— 13^— 1280^'— 1360lu"+97X"+2300/r—160^r+60//F/ 7' =+0.0003175+147/i+10160^'+18400/— 911/'— 20800/"— 4520^ p — 460,a"— HO/"; ," : -0.0023780— 167^— 20400^'— 7560/[i"+3508/z'"+33100ia/r—11480^r VS =—0.0150371— 201^— 10040^'— 46960^"— 867/t/'+74100f/F— 26520ur +9160^"+2030^F//; ^/F =+0.0156383+l^+40^'+60//"— 14/'— 146000^/r+149520^F— 2220/' -340^r//; V7F =—0.0483504—2^- r+ 10360/1 F— 240,u "+330^ F//; 100 SECULAR VARIATIONS OF THE ELEMENTS OF CHAPTER II. ON THE SECULAR VARIATIONS OF THE NODES AND INCLINATIONS OF THE ORBITS. 1. THE secular variations of the nodes, and the inclinations of the orbits, are determined by the integration of a system of differential equations which are entirely similar in form to those from which the eccentricities and perihelia were obtained. If we denote by , <£>, $", &c., the inclinations, and by 0, 0', 6", &c., the longi- tudes of the nodes of the planets, Mercury, Venus, the Earth, #c., and put tan $ sin 6=p, tan $>' sin 6'=p' tan <£" sin 6"=p" &c., ) /%Q±\ tan

' cos 6'=qf tan <£>" cos 6"=q" &c. ; j we shall have the following system of differential equations for the determination of p, p',p", &c., q, q1, q", &c. &C . J &C. To integrate these equations, we shall suppose , P'=N' sin (gt+p), /=#" sin (gt+(3), &c., ) ,g65 , &c. j v q=Ncos (gt-\-p), ^CM O-'Oi C1*2)? ^c-» ^n § ^- '^ne values of (0,0), (0,1), (2,2), &c., are given by means of the corresponding values |Q.Q|, |i.i|, [2,2), &c., in equations (67), by simply changing the sign of the numerical terms of the second member. 3. We shall now reduce equations (31-64) to numbers. The values of the pro- ducts (o,o)(i,i)i (°.°)(2<2), &c. are given by means of equations (68-79) by simply changing the sign of the coefficients of y. 102 SECULAR VARIATIONS OF THE ELEMENTS OF Computation of A. (o o)(a,8)=^+18.6424288.»7+ 72.81534747 _(o 0)0,2)(2,3M-0,3)= +19.3779798.J7+107.9403044 422 ,,0(0,3)^0,3)= + 0.0482175.0+ 0.6303080 + (.;. ... X'.0-K'.0= + °-4437946 +0,. 2,0)0,3)^0,3)= + 0.0738673 _/. Ovo ,) = 0.0350051) Sum of terras ^=^+88.0686261.^+181.^67616 Computation of A. (0,o)(3,3)=02+23.1231203.,o-k«,«)= + 0.0416825 H« 00,0 0,3-4,3)= + 0.0879559- _(i'o)(o 0 = -0.5272484 Sum of terms ^"=02+18.7129843.0+72.8326477 Computation, of D. (i,0(2,2)=02+24.3869412.0+147.9086074 -0 0(o,*)(*,3)-Ko,3)= + 9.1832668.0+103.9065348 (2 2)(« 00 »)-(o,»)= +10.9347838.0+142.941385 +(»'o0.2X2-3)-^(0-3)= +211.894020 Ho,2)(2,00.3)-K°'3)= + 16.751639 3)^,0,^) = - 35.348315 Sum of -terms D=02+44.50499 18.0+588.053871 Computation of D. (l,0(3,3)=02+28.8676327.0+198.606593 _(,,0(o,3)(s,2)-4-(o,2)= + 0.0570369.0+ 0.645360 _X 3)(o i)(i 2)^(0,2)= +23.0739263.0+405.013500 00 3)(3 2)— (0,2)= + 0.623672 3)(3 00 2)— («'.«)= + °-104041 (3^)0,3) = — 0.049305 Sum of term8 77=02+51. 9985959.0+604.943861 THE ORBITS OF THE EIGHT PRINCIPAL PLANETS. 103 Computation of _D". (2,2)(3,3)=0a+30.6250375.flr+229.4540814 _(2,2)(o,3)(s,i)-:-(o,i)= + 0.0045090.^+ 0.0589430 _(3,s)(o,s)(2,i)-:-(o,i)= 4 1.5319589.0+ 26.8902683 +(o,s)(s,s)(2, !)-=-(<», i)= + 0.0873762 -J-(0,2)(2,3)(3, 1)-1-(0,1)= + 0.0414048 _(3,2)(2,3) — 0.5237732 Sum of terms JD"=02+32.1615054.0+256.0083004 Computation of A}. (4,4)(G,o)=02+10.2786276.0+20.7811250 — (4,4)(o,6)(e,-)-^,7)= + 1.7539697.0+13.1764792 _(6,e)(S,4)(4,7)^-(»,7)= 4 6.3754170.0+17.6360114 + (S,4)(4,6)(6,7)-:-(5,7) = + 8.7135093 -|_(«,8)(«,4X4.0-K»,0 = + 0.0911343 _(8,4)(4,8) - 0.0710140 Sum of terms J1=02+18.4080144.0+60.3272452 Computation of A.2. (4 , 4)(7 , 7)^03+8. 16033230.0+4.8676955 —(4 , 4)(i , -)(? , 6)^(5 , 6)= +0.06449760.0+0.4845300 _(7,7)(4,4)(4,8)-=-(s,8)= +4-96787889.0+3.218971 + (5,4)(4,7)(7,8)-:-(s,6)= +0.411199 + (5 , 7)(7 , 4)(4 , 6)-l-(3 , 6)= +0.003351 _(7,4)(4,7) —0.004301 Sum of terms ^12=02+13.1927088.0+8.981445 Computation of Az. (4, 4)(^,.0=02+26.1085883.0+139. 7017323 — (4, 4)(8,a)(a, ?)-=-(«, 7)= + 0.2214108.0+ 1.663321 _(.,,5)(6,4)(4,7)-^(6,7)=: + 0.0519589.0+ 0.966238 + (6,4)(4,5)(5,7)-!-(6,7)= + 1.099942 +(e,*)(a,4)(4,7)-:-(e,7)= 4 1-4H586 _(S,4)(4,S) -134.964267 Sum of terms J3=02+26.381 9580.0+ 9.878552 Computation of D,. (a , s)(e , 6)=6) = + 0.018327 —(7,6)0-0 - 0.014281 Sum of terms A^+46.4943240.^+32.948353 Computation of D3. (6, 6)(7,7)=/+3.4142091.0+l. 79241220 —(6 , 6)(4 , T)(T , 5)-=-0 , s)= +0.0006746.0+0.00186605 _(7,7)(4,6)(6,s)-h(4,5)= +0.0142946.0+0.00926231 +(4-0(7-0(6-0-K4'0= +0.00118319 -j-(4,e)(e,7)(7,6)-:-(4,.)= +0-00092197 — ('.«)(«, 0 —0.11312682 Sum of terms Z>3=02+ 3.4291782.0+1.69251890 Computation of B, B, and B1. (2,2)=0+13.072173 — (i,i)(«,s)-t-(i,s)= +19.37798 Sum =JB-i-&=0+32.45015 (3, 3)=0+l 7.5528645 — (.,.i)(3,2)-^-(i,2)= + 0.0270293 Sum =B+b=g+ 17.5798938 (i, 0=^+11.314768 _(1>.)(i,3)^-(2,3)= + 1.824148 Sum =5*^-6=^+13.138916. Computation of C, C", C", and C'". — (2,2)=— g— 13.0721730 (o,i)(i.i)-s-(o,j)= - - 9.183266 Sum =—|^+22.255439 1 log. \ (0,3) -±-(1,3) | = [9.4381 189] 'Therefore C'=— |gr+22.255439| x [9. -(>.») =-^—17.5528645 (o,3) (3, 2) -5- («.«)= - - 0.0570356 Sum =—^+17.60990011 log. j(o,«)-s-(«,i)|=[9.113807P] Therefore C'=— \g-\-\ 7.6099001 } x [9.1138076]//. Computation of J515 B2, and B3. (6, e) =<7+2.7662522 -(••0 («, »)-=-(», T)= +1.7539698 Sum =B,H-&1=«/+4.5202220; (7, 7) =#+0.6479569 -_(«,T)(T,t)-t-(«,«j +0.0644976 Sum =52-=-Z>1=(7-)-0.7124545; (S)5)=5r+18.5962120 _(«,,)(,,T)_!-(«,T)= + 0.2214108 Sum =53^-61=^+18.81 76237. Computation of C^ Ct, C3, and Ck. — (6,6)=— g— 2.7662522 (4,e) (0,7) -^(4 ,7)= - - 1.3667356 Sum =— \g+ 4.1329878| log. {(«, 7)^-(«, 7) (=[9.5433087] Therefore Ci=— \g+ 4.1 329878 jx [9.5433087]52. — (7,7)=— g— 0.6479569 (4,T)(7,6)-i-(4,.)= -- 0.0827715 Sum =— j«/+ 0.7307284 } log. {(4,«)-5-(».e)|=s[9.484971l] Therefore (7a=— \g-\- 0.7307284 } x [9.434971 1]/>Z. THE ORBITS OF THE EIGHT PRINCIPAL PLANETS. 1Q5 (o,»)(i,i)-f.(j,»)=— 0.5002407 — (0,1) =+ 2.9986729 Sum =C"-t-b'=4- 2.4984322 Therefore C"'=+[0.3976676]&'. (o,j)(s1i)-j-(s,i)=— 0.2370651 -(•,i)=+ 2.9988729 Sum =G'"^-V=-\- 2.7616078 Therefore <7"=+[0.4411620]Z>'. Computation of E, E', E", and E'". (o,s)(i,2)-i-(i,s)=_ 1.818323 -(0,2)=+ 0.861707 Sum =E-^b"=— 0.956616 Therefore E=— [9.9807377J5". -(1,1)=— 0—11.3147682 +(o,i)(i,s)^-(o,s)= —10.9347838 Sum =— {0+22.2495520 j log. {(o.3)-i-(2,3)j = [8.9723624] Therefore E'=— j 0+22. 249552 1 X [8.9723624J&". -(3,3)=— 0—17.5528645 +(o,s)(s,i)-i-(o1i)= - - 0.0045090 Sum = — |0+17.5573735 1 log. {(«,i)-s-(s.i)} = [9.7501125] Therefore E"=— \ 0+17.5573735 1 x [9.7501 125J6". (o,i)(s,s)^-(31i)=_10.89986 -(o,s)=+ 0.86171 Sum —E'"^b"=— 10.03815 Therefore E'"=— [1.0016537J&". Computation of F, F\' F", and F'". (o.s)(i,s)-i-(i,j)=_ 0.01326047 -(o)3)=+ 0.02798148 Sum =F-+V"=-\- 0.01472101 Therefore JP=+[8-1679376]6'". (o,1)(2,s)j-(2,i)=_ 0.1677337 -(0,3)=+ 0.0279815 Sum =F-±-V=— 0.1397522 Therefore F'=— [9.1453586J6'". 14 February, 1872. («,7X«.«)-K8-7)=— 0.0773584 -(4,5)=+ 7.3963746 Sum =C»-i-6,=+ 7.3190162 Therefore <73=+[0.8644527]&2. (4,6)(7,6)-5-(7,6) = -. 0.0602795 -(4,8)=+ 7.3963746 Sum =(74-7-62=:+ 7.3360951 Therefore (74=+[0.8^54649]62. Computation of Elt E2, E3, and E4. (4, 7)(j, •)-!_(«, 7)=— 0.09722854 -(4,6)=+ 0.07576285 Sum El-^-b3=— 0.02146569 Therefore El=— [8.3317448]63. —(5,5)— —0—18.5962129 («.OC<'.7)^-(4'7)= —21.1694805 Sum =— J0+39.7656934| log. {(4, 7)^(8, ?) I = [8. 74377 18] Therefore^,=— ^0+39.7656934| x [8.7437718]63. — (7,7)=— 0— 0.6479569 («,0(7.«)-5-(*'a)= -- 0.00067458 Sum =— 10+ 0.64863148| log. I (4, s)-K«,«)| =[0.7242832] Therefore^,=— ^0+0.6486315 } x [0.7242832]63. 6)=— 9.296196 -(4,6)— +0.075763 Sum =Et-r-bf=— 9.220433 Therefore E<=— [0.96475 14]5S. Computation of F^ F2, Fs, and F+ (4,eX«,»)-5-(«,«)=— 0.01871457 -(4, 7)=+ 0.02401693 Sum =Fl-^bt=4- 0.00530236 Therefore JF1=+[7.7244692]64. (4,6X«.')-5-(6-0=— 2.296302 -(4,7)=+ 0.024017 Sum =F2+bt=— 2.272285 Therefore*^— [0.3564628]i4. 106 SECULAR VARIATIONS OF THE ELEMENTS OF —(2,2)=:— g— 13.072173 (o, :,)(„, ,)_!_(„, i)=_. 1.531958 Sum =—{0+14.604131! log. \ (o.O-K3- i)} = [0.7927855] Therefore^*=- 1«7+14.604131! X [0.7927855]6m. _(i,0=— 0—11.3147682 (o,i)(i,«)-t-(o,i)= —23.0739263 Sum =-{0+34.3886945| log. { (o.O-M3- 2) | = [9.6907241] Therefore Fm=—\ 0+34.3886945 } x [9.6907241JS'". — (6,6)=— 0+ 2.7662522 (4,6X«,0-K*.0= + 0.0142946 Sum =—{0+2.7805468! log. { (4, 0-K7. Oj =[1.5514854] Therefore F3=— {0+2.7805468! X [1.5514854]64. -(5,5)= —0—18.5962129 (4.,0(a,0-H>,«)= —27.1673827 Sum =—{0+45.7635956! log. {(4,6)^(7, 6)| [9.4626364] Therefore JP4=— {45.7635956+0! X [9.4626364]Z>4. Computation of the Equations of the fourth dejree. — (3,i)(i,2)(o,o)(3,3)=— 35.3483155.04— 817.363351.0— 3456 - (3,2)(2,s)(o,o)(i,i)=— 0.5237732.02- 8.843924.0- 33 - (i,o)(o,i)(2,2)(3,s)=— 0.5272484.02- 16.147000.0- 120, - (s.i)(i,3)(o,o)(2,2)=— 0.0493054.02- 0.919173.0- 3, — (2,0)(0,2)(1,1)(3,3) = — 0.0350059.02- - (3,o)(o,3)(i,i)(2,2)=— 0.0002174.02- +2(3, 2)(2,l)(l, 3)(0, 0) = +2(2,0)(0,1)(1,2)(3,3)= -. +2(3, OO.oXo, 3X2,2)= - + 2(3,0)(0,2)(2,3)(1,1)= — + (,,0X0,0(3,0(2,3) = 1.010537.0— 0.005302.0- 1.910880.0- 1.615446.0- 0.004755.0- 0.003993.0- (2,0)(0,2)(3,00,0 = (i 0 10 28 0 0 0 0 0 — 2(3,0)(0,2)(2,0(1,0= — 0 Sum of preceding terms =— 36.483865S.02— 847.824361.0— 3659 Add (o,o)(i, 0(2, 0(3-0= 04+47.5100615.03+809.5847278.02+5804.515976.0+14461, Sum is the value of equation (53). Whence we get 0<+47.5100615.03+773.1008620.02) , ( +4956.691615.0 +10801.93370 J " In like manner \ye get - (», 0(4, 0(«, 0('. 0=—1 34.9642669.0'— 460.796228.^— 241.911599 - (•.0(i,0(4,4)(T,7)=_ 0.3883479.02- 3.169047.^- 1.890359 — (7, 0(6, 7)(4,4)(«,»)=- 0.1131268.02- 2.953581.^— 15.804014 — («,0(<-")(s,«)(7'7)=- 0.0710140.ry2- 1.366608,9- 0.855687 - ('.0(6-7)(«'4X6'6)=— 0.0142805..72- 0.146774.'^- 0.296764 — ('.00.0(s'8)(".«)=— 0.0043007./— 0.091874.'^— 0.2212^7 .144265 .01142 ,97930 ,59019 ,95240 .03216 ,64409 35570 ,06216 .04518 ,27616 00768 00173 ,09214 04366 00728 67438 60808 THE ORBITS OF THE EIGHT PRINCIPAL PLANETS. 107 4)(4,*)(»,«)(7,»— — 3.858530.0— 2.500161 +2(7,5)(S,4)(4,7)(6,6)= 0.182088.0- 0.503701 6)(e,;)(5,7)(4,4)= — 0.050095.0— 0.376332 4)(4,6)(6,7)(a,a)= — 0.011756.0- 0.218615 -f- (S,4)(4,.)(7,o)(e,7)= + 15.268077 _)- (6,6)(S,6)(7,4)(4,7) = -f 0.001670 4- (o,4)(4,e)(7,8)(e,7)= -f 0.001014 — 2(7,4)(4,.)(S,8)(6,7)= 0.319377 — 2(7,s)(5'4)(4'8)(6-7)= — 0.248866 — 2(7, 4)(4 , •)(« , »)(a , 7)= 0.002603 Sum of preceding terms =— 135.5553368.02— 472.626581.0— 249.878554 04+29.5227974.03+230.6343243.02+523.7682780.0+250.403089 Sum is value of equation (54). Whence we get (f— 29.5227974.03+95.0789875.22 \ , (3~Q. +51.141697.0+0.524535 j = Equations (55-64) reduced to numbers are as follows, in which the numbers inclosed in brackets are logarithms. JT =[0.5618811]— lDL=rp.8861924]^±lJi-; (371) D Jj ^"=[1.0276376] ^!^b^'=[0.2498875] —^f^- ; (372) ^'"=[9.2072145] - .y =[0.3092759] - ZgL. • (373) [9.4381189] Df — [9.1138076] Df m m±. ~[9.1 138076] AD — [9.4381 189] AD ' [8.9723624]J>/W — [9.7501125]jy . ,^^ ~[9.7501125]^"Z)"— [8.9723624]A'Z> ' [0.7927855]Z>'/r— [9.6907241]Z>//r. (3~6) ~ [9.6907241] AD —[0.7927855]^"!)"' Nr =[0.4566913] -llY tv1— [0.5650289] -^ ^2; (377) ^"=[1.2562282] ^^!±^=[9.2757168] A*N ~™; (378) JVr"=[8.4485146] ^ilv tV6^[0.5373636] f M '~™; (379) Ar,r_[9.5433087]A/2-[9.4349711]A/1. (38Q. •^ ~~m AiUf\nii-\ A T\ pn a Af>r>t\OT\ A n ' V ' A7/r_[8.7437718]D,/4-[0.7242832]A/3. /381) [0.7242832] ASD3— [8.7437718]^^' 108 SECULAR VARIATIONS OP THE ELEMENTS OP _J " r[9~.46~26364]AA— [1-5514854]^3A' [9.9546226]ZX/ —[0.2789339]0/ ~ = I [9.3015115]Z>/"-[0.0792616]/)'/" 1 JL = | [8.9337058] £/'r— [0.0357672]D'/'r 1 JL [0.5477106] A/i -[0.6560482]A/2 } ~n (382) ; (383) = [8.0240547] A/4 - [0.004566 1]£>3/3 = [7.9147050]Z)2/5 -[0.0035540]^^ ). (384) If we repeat and number the formulae which we have computed, we shall have the following Fundamental Equations for the adopted masses. A =0»+38.0686261.0r+181.867616 ; A=g*+ 23.1730000.^+ 98.3267843; 72.8326477 ; 3.4080144.0+ 60.3272452; 8.981445 ; 9.878552; D =^2+44.5049918.^+588.053871 ; .9985959 .(7+604 .943861 ; 32.948353; g=^+ 3.4291782.^+ 1.69251890; 6; ) ; j C =—^+22.255439 1 [9.4381189J&'; C"=— j^+17.6099001|[9.1138076]i'; Crff=+[0.3976676]&'; C""=-i-[0.4411620]&'; E =— [9.98()7377]iff; E' =—^+22.2495521 [8.9723624]iw; E" -\\ 7+17.5573735 \ [9. E'"=— [1.0016537]&"; (385) (386) (387) (388) (389) (390) (391) (392) (393) (394) (395) (396) (397) (398) (399) THE ORBITS OF THE EIGHT PRINCIPAL PLANETS. (400) 109 F =+[8.1679376]//'; F'=— [9.1453586]//"; F"=— {0+14.604131 J [0.7927855]ZT; F'"=— 10+34.3886945 } [9.6907241]^'"; A= {0+4.5202220^,; B3=\g+ 0.7124545 1 6,; Ci=— {0+4.1329878 } [9.5433087]S.2 ; ] c*=~ {0+0.7307284 j[9.4349711]Z>2; I C3=+[0.8644527]62; C4=+[0.8654649]ftj; -E1=-[8.3317448]/;3; 1 Ef=— \ 0+39.7656934 } [8. 7437718]&3 ; Ea=—\g+ 0.6486315 j[0.7242832]63; EI=— [0.964 7514]63; (401) (402) (403) (404) —V=\ 4.2028443 -V = \ -5'"= { 14.659896 . -^ = {0.000094200 -b.2 = 1 0.0000 11 2026 -13 = 0.00000096881 (405) F2=— [0.3564628]64; •^3= -{0+ 2.7805468 }[1.5514854]64; f\=— {0+45.7635956 } [9.4626364]/>4. We shall also have -b =\ 1.6028375 .... [0.2048895] ^V/r+[8.8879781]^r +[7.1246469] ^F/+[6.6629969]^r"; . . [0.6235433] J^V/r+[9.2986071]^r +[7.5327484] ^"+[7.0706089]JVr//; 7.0682646 .... [0.8493128] j^'r+[9.5139049]^F +[7.7447989] ^r/+[7.2820328]^r"; . . [1.1661309] | ^/r+[9.8003037]^F +[8.0220791] ^r/+[7.5575701]^r//. .... [95.9740497] \N +[7.6245464]^' +[ 7.9450513] ^"+[7.4917417]^'"; , . . [95.0493193]}^ +[6.6917912]^' +[ 7.0018244] ^"+[6.5180955]^'"; , . . [93.9862386] }JV +[5.6261830]^ +[ 5.9329689] ^"+[5.4401214]^'"; -64 = { 0.00000020167.. . . [93.3046628] \N +[4.9441177]^' +[ 5.2502770] ^"+[4.7556866]^'". 4. If we now suppose the second members of equations (369) and (370) to be equal to nothing, we shall obtain the following values of g, g^ g2, &c. 0 =— 5".1223003, 04=— 0".01045922, ' gl=— 6 .5863879, 0B=— 0 .66298299, g2= -17.3924594, g,=— 2.91695653, ffa=— 18 .4089138, 07=— 25 .93239866. (406) (407) 110 SECULAR VARIATIONS OF THE ELEMENTS OF By means of equations (385-407) and (371-384), we now obtain the Mowing values. For the root g, we get, g=—5". 126 11 2, N' = +0.1 2279 19 N N" =4-0.08795864^ N" = 4-0.01 757422W .N'r =— 0.0002076885JV N "=— 0.0002642292V N™ =+0.0002315532V N m=4-0.000006403252V For the root g» we get, 9l=— 6".592128, W =— 0.27646362V; M" =— 0.22293927V; Nf =— 0.04673056 ^ Nt'r =+0.0003357396^ NJ =4-0.0004742548^ JVi" =—0.0002454315^ Nlr"=— 0.00001482107^, For the root gz, we get, g-=— 17'.393390, Ni =— 5.563101^2 JV2" =+ 4.563350^2 Nf =4-33.24578^ Nt'r=— 0.001649287^2 NS =— 0.01403826^2 #/'=+ 0.001367028JV3 JV/"=+ 0.000157230^2 For the root #,, we get, #,=— 18'.408914, NJ =— 6.098710^ .JV3" =+ 6.6558882V3 Nf =—10.22309^, N3'r=— 0.0001958278^, N3r =— 0.0001514003^3 N,rt=+ 0.000012606272V3 N5™=-{- 0.00000140198^ log. 9.0891696, " 8.9442784, « 8.2448760, « 6.3174124«, » 6.421980n, « 6.364650, « 4.806400. log. 9.4416380n, " 9.3481864n, " 8.6696010«, « 6.5260026, " 6.6760116, « 6.3899302n, " 5.1708794n. log. 0.74531 70«, " 0.6592838, » 1.5217364, " 7.2172964n, " 8.1473134n, » 7.1357772, " 6.1965360. log. 0.7852380n, " 0.8232060, « 1.0095825n, " 5.2918731n, " 6.1801268, « 5.1005864, « 4.1467414. For the root g» we get, ^=0, and THE ORBITS OF THE EIGHT PRINCIPAL PLANETS. HI ^ we get, g,=— 0".661G66, 5 =+1.232212JV/ For the root JV5" =+1.108223^." N™ =+1.049477 A;" N5r =+0.9653287 A/' Nt"= — 0.9379252 N&'r Ntru=— 9.829270^'" For the root g6, we get, <76=— 2".9 16082, JV6 =+ 3.557327A6'r AV =+ 2.059 163 A~0jr A7 =+ 1.845317AVr JV6'" =+ 1.314187JV6'r Nar =+ 0.8164588W8/r JVr/=— 20.11300W/r log. 0.0906854, 0.0535832, 0.0446270, 0.0209706, 9.9846752, 9.9721682«, 0.9925212«. log. 0.5511238, " 0.3136906, " 0.2660709, " 0.1186570, " 9.9119342, " 1.3034768n, " 0.3347880. log. 8.6240604», " 8.6677625n,' •" 9.6363826?i, " 0.1667598n, " 0.3963230n, " 9.0387886, " 8.0882343. 5. Having thus determined all the roots of the equation of the eighth degree, together with the ratios of the constant quantities N', N'\ N"\ &c., corresponding to each root, the complete integrals of equations (E) will be For the root , $', $", &c., 6, 6', 6", &c., corresponding to the beginning of the year 1850, at which epoch t—0. Mercury,

" =0 0 0.0, Mars, «r=i 51 2.3, Jupiter, ^'=1 18 40.3, Saturn, ^ =2 29 22.4, Uranus, $r/=0 46 29.9, Neptune, m=l 47 0.9, 6 = 46° & = 75 V = 0 0" =^ 48 0/r = 98 0" =112 0r/ = 73 0r"=130 33' 20 0 23 54 19 14 7 3".2; 42.9; 0 ; 36.8; 20.5; 20.6; 14.4; 45.3; Now, since ^=tan <£> cos 0, and p=:tan $ sin 0, we find, p =+0.0891690, log.jp =8.9502138; p' =4-0.0573577, p" = 0. pm =+0.0241597, log. p' =8.7585915; log. p" = — QO log. pm =8.3830911; THE ORBITS OF THE EIGHT PRINCIPAL PLANETS. 113 p'T =+0.0226127, log. p" =8.3543534 ; pr =+0.0402201, log.pr =8.6044432; pvi =+0.0129519, log. p" =8. 1123323; ^"'=+0.0238090, log. ^""=8.3767411 ; q =+0.0844678, log. q =8.9266911; q1 =+0.0149991, log. q' =8.1760651; q" = 0. log./ =-oo ; q" =+0.0214548, log. q'" =8.3315249; q'r =—0.0035434, log. q'T =7.5494159n; qv =—0.0165138, log. qv =8.2178478«; qvi =+0.0039012, log. qri =7.591 1972; qr"— —0.0200698, log. ?r"=8.3025434rc. Now, adding the logarithms of m-^-na, m'-^-n'a', &c., which are given in § 5, we shall obtain the following values of the logarithms of the constants for the given epoch, which enter into the values of x and y. log. »_^_ =85.9443779 ; log. q— =85.9208552 ; na na log.p'^L =86.9845985; log. q'^ =86.4020721; n a na P"^, —oo log.^ =-00 m'" m'" p'"^- =85.9337058; log. q" ™- m =85.8821396; p'T-^jr =89.5793573 ; log. q"^~v =88.774419871 ; pr-^ =89.4372661; log. qr-^-f =89.0506707w; log. pr! -"L_=88.2449047 ; log. qvi- —=87.7237696 ; n a' p™-^-88. 7292393 ; log. 9"'-^,=88.6550416n. 7. These quantities are now to be substituted in equations (408) and (409), in connection with the values of N', N", N"1, &c., corresponding to the different roots. For the root gr=— 5M26112, we find, _ 0.612517 1.5865662 _ 14.046564 TO" ' y~ TOlT^ ~T6""~ Whence (3=211° 6' 26".8; and log. #=9.0830567. Therefore, for the root g, we have the following values, JV =+0.121076, N'r=— 0.00002517, N' =+0.0148671, Nr =—0.00003200, N" =+0.0106496, Nrr =+0.00002804, N'" =+0.0021278, JVr//=+0.000000775. 15 February, 1872. 1H SECULAR VARIATIONS OF THE ELEMENTS OF In like manner we shall find for the root gr1=6".592128, , 0.692850 ._ 0.6389472 33.24230 a^+'-jpr— #,; y,= -JQH *iJ'%= -10u ^i- Whence ^=132° 4tf 57".8; and log. #,=8.4525867. Therefore, for the root #„ we have, Ai =+0.028352, #/r =+0.00000952, N{ =—0.007838, #/ =+0.00001345, #/ =—0.006321, #/'=— 0.00000696, #,* =—0.001325, #/"=— 0.00000042. For the root <72= — 17".393390, we find, 6.863228 v . 2.889470 ... 488.6204 . **=- -ir— N» v*=-\ — 13 — 2' Za= ~" — 2 Whence /?2=292° 49' 53".2; and log. N2=l. 1829906. ^=+0.001524, N2'r=— 0.00000251, #; =—0.008478, NS =—0.00002140 , JV2" =+0.0069546, #/' =+0.00000208, JV2"=+0.0506672, A2r//=+0.00000024. For the root ff3=— 1 a". 4089 14, we get, 6.724398 .. 2.217061 , 1925.3617 .. Xa= "~"^»; y*= 10" *; z*= "To15 — 3 Whence £,=251° 45' 8".6; and log. #,=7.5655490. #3 =+0.003677, #,^=—0.000000072, #,' =—0.022428, #3r =—0.000000557, #3"= +0.024477, N3ri =+0.0000000463, #,"=—0.0375951, #3F//=+0.000000005. For the root ^=0", we get, _ 0.7256453 „ 0.2113461 _ 27.24403 , ** - +~ ~~f0IO "*• &*— JQ10 "tt Z*— IQW '™f Whence /?4=106° 14' 18".0; log. JV4=8.4431335. And #4=#;=#/=#;''=#/r=#4r=#/ '=#/"= +0.027741 73. For the root g6=— 0".661666, we get, . 0.1016992 , 0.2717211 ,77r 24.19165 ..„ *»=H --- IQIO -- ^;yb= ~w, -- #,^5^= w ^. Whence /?6=20° 31' 24".6 ; and log. #6/r=7.0789383. #,=+0.001478, N^ =+0.001 1994, #; =+0.001 357, #6r =+0.0011577, #,"=+0.001329, #6r/=— 0.00112485, #."=+0.001259, #,"'=-0.0117882. THE ORBITS OF THE EIGHT PRINCIPAL PLANETS. 115 For the root g,=— 2".916082, we get, ,0.3678921 /r. _°^54480lv-. _580.9484 Ar/r2 •Ce 1 nlO 6 ' "fl -I mo •''6 > Z0 •• "'" •"« • JQ1 1011 Whence /?6=133° 56' 10".8; and log. ^'"=6. 9441 833. Ne =+0.003128, N6ir =+0.0008794, #„' =+0.001811, Ntr =+0.0007180, JV6" =+0.001623, JV6'"=+0.001156, =— 0.0176872, 2V0m=+0.0019010. "or the root #7= — 25".934567, we get, 0.2996623 __.„. , 0.2203054 AT,r 59.03157 w* . /V • i/ — 1 Ar • 5* — "~JQ10 ^'7 > 111 H 1Q10 -tv? ' ^— 1Q1 „. Xfl Whence ^=306° 19' 21".2; log. ^/r=7.7993771. N7 =—0.0002652, JV7/F =+0.00630053, JV7' =—0.0002932, N,r =—0.0156928, JV7" =—0.0027275, N7TI =+0.0006890, JV7'"=— 0.0092499, JV7r/'=+0.00007720. If these values be substituted in equations (F), we shall have the complete values of q, q', q", &c., p, p', p", &c., from which we can obtain the inclination of the orbits of all the planets to the fixed ecliptic of 1850, and the longitudes of the nodes, on the same plane and referred to the equinox of 1850, by the formulae tan <2>=n tan 6=-^. (412) 8. If we how substitute in equations (F), the values of q and p, we shall get 9=tan $ cos 0=^cos (^+/3)+^1 cos fat+PJ+N, cos (g^+&)+ &c.; (413) p=tan

cos (6 — gt — /3)= , we shall get, by cos — cos z— Dividing equation (415) by (416) we eliminate tan$, and find, tan(0— gt— /3)= sn - sn t- - &c. cos r1_ cos z- -3 &c :} <417) When the sum ^+^+^3+ &c. of the coefficients of the cosines of the deno- minator, taken positively, is less than N, tan (6 — gt — /3) cannot become infinite ; the angle (0—gt—(3) cannot become a right angle: consequently, the mean motion 116 SECULAR VARIATIONS OF THE ELEMENTS OF of the node will, in this case, be equal to (jt. The analysis of § 19 being applied to equation (416), will show that maximum tan q>—N-\- -ZV1-j-JYjj-|-.ZV3+ &c. ; ) and minimum tan<^=^V — j-ZV^-j--^-)-.^--}- &c. ) We shall now substitute the numbers which we have already computed, in these equations, for the purpose of determining the maximum and minimum values of the inclinations of the different orbits to the fixed ecliptic of 1850, and the mean motions of the nodes of the different planets on that plane. 9. For the planet Mercury, we have, Maximum tan <£ = N + JVi + -ZV2 + N3 + &c. =0. 1 87242. One-half of this is 0.093621, which being less than N, it follows that A7" exceeds the sum of all the remaining terms ; consequently, the mean motion of Mercury's node is equal to g, or — 5*. 126 11 2. The maximum inclination of his orbit to the ecliptic of 1850 is 10° 36' 20"; and the minimum inclination is 3° 47 8". The substitution of the numbers for the other planets shows that the minimum inclinations of all the other planetary orbits to the ecliptic of 1850 are equal to nothing; consequently, the mean motions of the nodes on that plane are indeter- minate. The maximum inclinations of the different orbits are as follows: — Max. inclination. Max. inclination. Venus, 4° 51' Jupiter, 2° 4' Earth, 4 41 Saturn, 2 36 Mars, 7 28 Uranus, 2 42.5 Neptune, 2 22.7 Having thus given the solution of the fundamental equations for the assumed masses, it now remains to determine the coefficients depending on the variation of the masses. This we shall do by using the same finite variations of the masses as were employed in finding the similar coefficients of the variations of the constants on which the eccentricities and perihelia depend. 10. If we now suppose that ^=+1.5, we shall obtain the values of the funda- mental quantities which are to be used in the computation by simply making all the terms of equations (153-169) positive. We shall then obtain the following O 1 Fundamental Equation/I for «=-(-_: or for m= — _ T2 1946300.4 ' A =£2+38.201888.<7 +183.882325; A' =0«-|- 23.2189305.04- 98.9957893 A"=<7S+18.9824430.<7+ 73.7725468 ^1=/-j-18.4081571.«7-(- 60.3279033 42=<72-fl3.1928504./7+ 8.981549; A— 0M-26.3821 161. g+ 9.881338; (419) THE ORBITS OF THE EIGHT PRINCIPAL PLANETS. 117 D =<72+44.8296684.0+595.295403; Z>'=02+52.2739916.<7+609.992181 ; JD"=:02+32.2340961.<7+257.2490518; A=<72-|-43.8986994.,7+172.463056 ; D2=<72+46.4943411.0+ 32.948378; A=i/2+ 3.4291799.0+ 1.69252064. £=10+32.51109 j&; JB'=)0+17.5915487J6; \ B"= J0+13.402657 \l- \ C =—^+22.316375 j [9.4381 189]6'; 1 C" =— |3; E,=— [0.9647509]&3; JF1=+[7.7244692]54; Ft=— [0.3564628]64; F3=— ^0+27.805482 } [1.5514854]64; Ft=— 10+45.7636124 1 [9.4626364]&4. ^+47.8463980^+784.270833 V I =(r, - «„ y3) ; +5058.994655.0+10978.29258 j /+29.5229572.03+95.0823272.02 1 =( }< +51.151359.^+0.529116 | (424) (425) (426) (427) (428) (429) 118 SECULAR VARIATIONS OF THE ELEMENTS OF The values of 6, &', &", and W are given by equations (405), and the values of 4,, 42, &,, and 14 are given by equations (406), by merely multiplying the coefficients of .Vby 1+^=2.5. If we put equations (429) and (430) equal to nothing, they will give g,=— 4".8105312, 04=— 0".0105499, g,=— 7.0595858, gb=— 0.6629939, &=— 17 .4356542, 96=— 2.9169622, gt=— 18 .5406218, fr=— 25 .9324509. The solutions of equations (419-430) will now give the following values — remem- bering that the coefficients of equations (371-384) remain unchanged. For the root g, we get, •j =— 4".815328, N' =+0.2099057# N" =+0.1471310.ZV N'" =+0.0292551^ N'r =— 0.000390605AT 2?' =—0.000486221^ N" =+0.000495923 /V N r//=-|-0.000008719136^ log. 9.3210242, " 9.1677040, " 8.4662020, " 6.5917376», " 6.6868340/?, " 6.6954144, " 4.9404735. For the root g^ we get, ffl=— 7".064535, Ni =— 0.400690 N! N," =—0.3382646^ Ai" =—0.0725079^, ^"=+0.000451081^ NS =+0.000660230JVi NS1 =—0.000300091^ Nlr"=— 0.0000202801^ For the root _/ =— 2.490698JV7/r log. 0.0916830, " 0.0551040, " 0.0455402, " 0.0211710, " 9.9846725, " 9.9722356/j, " 0.9925526/z. log. 0.5676388, " 0.3349042, " 0.2812740, " 0.1230098, " 9.9118716, " 1.3036368w, " 0.3349790. log. 8.6245191 w, " 8.6587603», « 9.6386020«, " 0.1672216», " 0.3963210H, " 9.0337842, « 8.0882305. 1'20 SECULAR VARIATIONS OF THE ELEMENTS OF 11. Substituting these values in equations (408) and (409), we shall get the following values: — For the root g=— 4".815328, we get, , 1.524075 .. . 3.435486 Ar 36.65228 .72 T" N; z= 10" - Whence /?=23° 55' 15".6; and log. #=9.2108901. #=+0.162514, #'F=— 0.0000635, # =+0.034037, NT =—0.0000790, #"=+0.023913, #r/ =+0.0000806, #"=+0.004754, #F/'=+0.0000014. For the root g,=— 7".064535, we get, 1/725880 46 To.88155 &1 — H --- JQM **!• 2/1 — ~~T(P* ' 2' — ' ""10"" '' Whence £,=90° 0' T.I ; and log. #,=8.3568764. #i =+0.022744, #/r =+0.0000103, N1'=— 0.009114, Air =+0.0000150, #t" =—0.007694, Air/ =—0.0000068, N1"=— 0.001649, N1r"=— 0.000000046. For the root gz=— 17".043656, we get, 6.709998 3.568591 _ 5820.032 -"a > Z2— " ~ 2 ' Whence ^=298° 0' 19". 7 ; and log. JV2=7. 1158842. Nt =+0.001306, #2'r=— 0.00000228, #; =—0.007211, NS =—0.00001988, Nf =+0.005538, N2" =+0.00000193, #2"=+0.048623, Ni"= +0.00000022. For the root '=/+53.1764531.#+626.087193 ; D"=/+32. 4522201.^+261. 0475918 ; ^=^+43.8987079.^+1 72. 4631 15 ; Z>2=^2+46.4943490.^+ 32.948389 ; Z>3=^+ 3.4291807.^+ 1.69252138. (431) (432) 16 February, 1872. 122 SECULAR VARIATIONS OF THE ELEMENTS OF r> c i nn 11 ctn.) T. . TV t „ I 1 1 K(\ iD^ATI A .1 (433) = {0+32.71670 j&; # = 10+17.6040547 J6; ) B"=\g-\- 13. 230 123 \b- j C =— J0+22.521994 1 [9.4381 189]^'; c'=— j0+i7.63406io£[9.ii38076]&'; (7"=+[0.4188569]6'; <7"=+[0.4623513]&'; E =— [9.9807377J&"; E'=— { 0+22.7962912 j [8.9723624]i"; ^"=—10+17.58153441 [9.7501125]6"; E'"=— [1.0016537J6"; F =+[8.1679376]6'"; F' =— [9.1453586]6'"; F'"=— I 0+35.542391 } [9.6907241JZT; !; Bt=\g+ 0.7124549 \\; \ Bz= 1^+18.8176481 16,; j Ci=— 1^+4. 1329899 } [9.5433087]62; O2=— \g-\-0. 7307288 } [9.43497 ll]ia; (78=+[0.8644527]J2; (74=+[0.8654649]&2; E,=— [8.331 7448]&3; (434) (435) (436) (437) (438) (439) (440) E4=— [0.9647509]&3; Jl=+[7.7244692]64; ^=—[0.3564628]^; J?;=—[0+2.7805489j[1.5514854]&4; FI=— [0+45.763620 \ [9.4626364]64; ^+47.9507108.08+787.5462101.02 ) +5098.436146.0 +11226.89493 j " 94+29.5230351.08+95.0839594.r/2 +51.156083.0 + 0.531357 The values of J, &', i", and b'" are given by equations (405) ; and the values of ^> &2» ba, and 54 are given by equations (406), by merely multiplying the coefficients oftf'by 1+^=1.05. If we put equations (441) and (442) equal to nothing, they will give g=— 5".1965445, g<=— 0".0105949, ff,=— 6 .6295555, g,=— 0 .6629993, ^=—17.4583971, ^6=— 2 .9169649, 9t=— 18 .6662138, g->=— 25 .9324761. THE ORBITS OF THE EIGHT PRINCIPAL PLANETS. now give the following values: 123 The solutions of equations (431-442) will For the root y— ]QU JQ14 Whence /3=20° 36' 29".8 ; and log. ^=9.0727385. N =+0.118233, #'"=— 0.00002755, N' =+0.016251, #r =—0.00003524, ^"=_)-0.011804, Nrr =+0.00002986, Nm =+0.002385, Nr"= +0.00000089 18. THE ORBITS OP THE EIGHT PRINCIPAL PLANETS 125 For the root 1=^+43.8987357.0+172.463309 ; #,=^+46.4943751.0+ 32.948430; Z)3=02+ 3.4291834.0+ 1.69252419. # = ^+17.667716216;) S"= j 0+13.490445^6; j C =— 10+22.7146021 [9.4381189]6'; C'=— J0+17.6977225 1[9.1138076]6'; C"'=+[0.3976676]6'; C""= +[0.441 1620]6'; (444) (445) (446) THE ORBITS OF THE EIGHT PRINCIPAL PLANETS. 127 E =— [0.0019270]6"; JE'=— {0+22.6010814}[8.9723624]&"; E'"=— [1.0228430J&"; F =+[8.1679376]6'"; F"=— {,7+14.680729^ [0.7927855]Z/"; J""=— !$r+34. 7402239 } [9.6907241>'"; : {,7+4.5202263 } &,; B.>=\g+ 0.71245534^,; ) ^=1^+18.8176739 }&,; J C,=— {0+4. 13299,21 1 [9.5433087]62; ] C2=— j«7+0. 7307293 j [9.434971 1]62; C3=+[0.8644527]52; 1 S ^+39.7657436 } [8.7437718]&3 ; \g-\- 0.6486324 } [0.7242832]63; [0.9647509]&3; j/;= — [0.3564628]54; — \g-\- 2.7805511 }[1.5514854]64; _j^_)_45.7636454j[9.4626364]64. (447) (448) (449) (450) (451) (452) ^+47.9724987. i'l — in11 l9 : — inu IB Whence ^=129° 50' 4".4; and log. ^=8.4791971. M =+0.030144, ^=+0.00001026, W =—0.008215, NS =+0.00001454, Nl"=— 0.006664, N™ =—0.000007438, ^'"=—0.001441, N1T"=— 0.0000004539. For the root g2=— 17".5137898, we get, 6.914692 , 3.461327 AT _6089.390 xn— ~i3 2' y* — ' 2' Zz — *5 Whence /^2=2960 35' 29".2; and log. ^=7.1037540. N2 =+0.001270, N2'r=— 0.000002201, JVj' =—0.007063, NZT =—0.000019926, Nf =+0.005211, Ai" =+0.0000019167, A2'"=+0.048560, N.2 "'=+0.0000002206. For the root ga=— 18".667944, we get, 2.032363 1783.3974 A7 _ . «— 1013 3~ jo13 3ii~ i013 •"••• Whence /38=253° 27' 40". 1 ; and log. JV3=7.6024178. N8 =+0.004003, ^^=—0.00000018, JV3' =—0.024768, N3r =—0.00000318, JV3" =+0.025376, N3ri =+0.00000027, ^'"=—0.033934, A"3r//=+0.000000031. For the root #4=0", we get, 0.7256453 0.2113461 _ 27.24508 a4 - +- ~~JO~10 •"*» 2/4— ~W* *' 2*~ 1016 Whence /?4=106° 14' 18".0; and Nt=Nj=Nt"=&c., —+0.02774066, log. 8.4431168. For the root g&=— 0".6616647, we get, 0.1016673 . _ 0.2717444 _24JL19412 ** - T~ ~W 1V6 ' 2/5 - ~T 10 iV6 > Z6— 10 * ' Whence /38=20° 30- 57".6 ; and log. JV8/r=7.0789098. N6 =+0.001476, N,'T =+0.001 19925, Nt' =+0.001356, N* =+0.00115768, ^"=+0.001329, N6rf = — 0.00112471, JV6"'=+0.001259, ^""=—0.01178812 THE ORBITS OF THE EIGHT PRINCIPAL PLANETS. 131 For the root 06=— 2".916080, we get, , 0.3678561 , 0.3544989 tftr. -i'R , Z,; 581.0130 Whence /36=133° 56' 26".3; and log. #,"=6.9441240. Ne -=+0.003086, Na" =+0.000879273", JV6' =+0.001797, N6V =+0.000717874, #6" =+0.001615, N6ri=— 0.0176858, JV6'"=+0.001157, #0r"=+0.00190082. For the root 07=— 25".934782, we get, 0.2996357 . N"; 2/7= 0.2203002 59.02984 Whence /3T=306° 19' 27".6 ; and log. JV/r=7.7993611. JV7 =—0.0002690, N,ir =+0.00630030, NJ =—0.0002227, N7T =—0.01569181, ^"=—0.0027550, N,™ =+0.000688861, JV/"=— 0.0093164, JV/"= +0.0000771929. 16. For an increment of ^ to the mass of the earth, we have the preliminary computations by merely making all the coefficients positive in equations (251-256). We shall then obtain the following Fundamental Equations for ^"=-1 ; or /orm"=l-r-335172. 10' 4=^+40.092595.0 +195.673045; A =#2+23.4348156.#+100.8391921 ; 4"=02+19.4622137.(7+ 77.7179078; 4!=^+ 18.4089042.0+ 60.3313475; 4j=02+13-1935918-#+ 8.982096; 43=02+26.3829396.0+ 9.895893. D =02+46.0863772.#+633.1 39825; Z7=02+52.837 2995.^+622.776921 ; j9"==/+32.4903462.^+261.2498776 ; A^+43.8987902.^+1 72.463686 ; D2=02+46.4944263^+ 32.948508 ; Z>3=02+ 3.4291886.^+ 1.69252948. B= |0+34.38795 16; B' = ^+17.7555387} b ) B"= ^+13.801975 1 b j C =—^+27.173766| [9.4381 149]5'; C"=— J0+17.7855450 } [9.1138076]6'; 6"'=+[0.3976676]6'; C""=+[0.4411620]6'. (455) (456) (457) (458) 132 SECULAR VARIATIONS OF THE ELEMENTS OF E =— [0.0221304]6"; E'=— {£+22.6010814 } [8.9723624J6*; E"=— j^+17.7330184 j [9.7501 125]6"; E"=— [1.0430464J&". F =+[8.1679376]6'"; F'=— [9.1453586J6'"; ^"=—^+14.7573271 [0.7927855]6";; j F"=— {^+35.0517532 \ [9.6907241J6". j : {0+4.5202306 } 6,; Bt=\g+ 0.7 1 24563 } bt; \ uiv,/ <71=_ |^+4. 1329964 1 [9.5433087]&2 ; (7,= — {^+0.7307302} [9.434971 1]JS. <74=--[0.8654649]&.2. E,=— 1^+39.7657938 } [8.7437718& ; E3=— \g-\- 0.6486333 1[0.7242832]&3; (459) (460) (461) (462) (463) (464) J\=-f[7.7244692]&4 ; F2=— [0.3564628]64; JT3=_|^+ 2.7805554 j[1.5514854]54; F4=— |V-|-45.7636960|[9.4626364]64. ^ +48.4349358*- +802.5743024.^ ) = +5231.898890.^+11585.83042 j ^+29.5237894^ +95.0997623.^ 1 =( }. (466) +51.201831.^ + 0.553045 j The values of &, ?/, &", and &"' are given by equations (405); and the values of 4,, ft,, ia, and Z>6 are given by equations (406), by merely multiplying the coefficients of N" by 1+^= If we put equations (465) and (466) equal to nothing, they will give, g=— 5".2095599; g,=- 0".0110263; g,=— 6 .6631448 ; gt=— 0 .6630507 ; £2=— 17. 6257463; ge=— 2.9169913; g3=— 18 .9364848 ; 9i=—^ .9327210, THE ORBITS OP THE EIGHT PRINCIPAL PLANETS. 133 Equations (455-466) will now give the following values: — For the root g, we get, g=— 5".2136546 ; 2V' =+0.12006842V log. 9.0794288; 2V" =+0.08711802V " 8.9401080; 2V'" =+0.018442172V " 8.2658120; 2V'"=— 0.00021192252V « 96.3261770rc; 2V r =— 0.0002712742V " 96.4334082n; 2V"=+0.0002285892V " 96.3590546; 2V "'=+0.0000069 104722V " 94.8395077. For the root glt we get, 9l=— 6".6692717; 2VJ =— 0.26830562V, 2V/' =— 0.21891682V1 2VT =—0.04878432^ 2V,'r =+0.00034441462^ 2V/ =4-0.0004893l02T, N," =— 0.000247679 2Vj #,"'=— 0.00001526832^ For the root g^ we get, ^2= — 17".6265859; Nj =:— 5.55453^2 NJ =+ N2ir=— 0.00179671^, N,T =— 0.0172969^2 N2"=+ 0.00164470JV2 Nzv"=+ 0.000189469JV2 For the root gs, we get, «/3=— 18".9364959; N3' =— 6.27941 JV3 N3" =+6.067662^ 2V3'" =—7.198122^ 2V3jr=— 0.00004612212^3 N3r =—0.00129815^ 2V^3r/ =+0.0001076252Vr3 2V7'=:+0.0()001241762V3 log. 9.4286296n; 9.3402791n; 8.6882800?*; 96.5370815; 96.6895841; 96.3938898n; 95.1837912n. log. log. 0.7446477n; 0.5654561; 1.6342060; 97.2544790»; 98.2379690n; 97.2160878; 96.2775388. 0.7979189n; 0.7830214; 0.8572192«; 95.6639090n; 97.1133248?i; 96.0319138; 95.0940376. For the root g^ we get, 1:34 SECULAR VARIATIONS OP THE ELEMENTS OF For the root g&, we get, #>=— 0".66 16623; Nt =+1.228747#6/r r log. 0.0894623; " 0.0528360; " 0.0442980; " 0.0211576; " 9.9846716; " 9.9722493n; " 0.9925608». log. 0.5396342; " 0.3072002; " 0.2622141; " 0.1196872; " 9.9119142; " 1.303530071; " 0.3348464. log. §.6375619n; " 8.3659300»; " 9,6454670n; " 0.1730168«; « 0.3962995?i; " 9.038753Q; " 8.0881970. 17. If we now substitute these values in equations (408) and (409), we shall obtain the following quantities :~ For the root g=— 5".2136546, we get, N; =+1.12937JV #6" =+1.107383#8/r N^ =+1.049923Ar5'r . Ntr =+0.965320Ar6*r N&"=— 0.938100^ N6T"=— 9.8301 !Nt'r For the root gM we get, g6=— 2".9160771; N6 =+ 3.46445JZV6'F Nj =+ 2.02862^6/r N9' =+ 1.82900JV/" JV6'" =-j- 1.317308^ N,r =+ 0.816421^ Ntn=— 20.11546^ = 2.161956iV6/ For the root we get, ^7=— 25".9350099; N, =— 0.0434072^V/F ^' =—0.0232236^" N," =— 0.442046 JV/r JV7W =— 1.489419JV7Jir JV/ =— 2.490578^" JV/'=-|-0.1093334JV7/ir *=+ 5.51372 15.90391^ 140.64952 1016 ' 10" 1016 Whence /3=19° 7' 7".0 ; log. #=9.0780045. #=+0.1196753; #'r=— 0.000025364; IT =+0.0143703 ; Nr =—0.000032468 ; #"=+0.0104268 ; #"=+0.000027359 ; #"=+0.00220757 ; #r"=+0.00000082705 . THE ORBITS OF THE EIGHT PRINCIPAL PLANETS. 135 For the root <7i=— 6".6692717, we get, 8.43328 6.419195 _ 331.3455 10i5 ; 2/i- 10i» J «i- -iQir— • Whence ^=127° 16' 40". 5 ; log. ^=98.5049615. JVi =+0.0319861; ^i/r =+0.000011017; N,' =—0.0085822 ; NS =+0.000015651 ; Nf =—0.0070024 ; N^ =—0.000007922 ; Nf=— 0.0015604 ; Nlr"=— 0.0000004884. For the root fjz—— 17".626586, we get, 6.947485 4.015769 _ 7425.592 X~2— '13 » 2/2 + l3 5 Z2— U • Whence /?2=300° 0' 37".6; log. #2=97.0339306. N2 =+0.0010813; NJr=— 0.000001943; #,' =—0.0060059 ; NZT =—0.000018702 ; JV2" =+0.00397545 ; #2" =+0.000001 778 ; JV2" '=+0.0465733 ; #,""= +0.0000002049. For the root ga= — 18".9364959, we get, 6.960810 1.901617 _1696.1782 **- To5 ; yz~ "To13 ; Zs~ "To13 ' Whence /?3=254° 43' 12".9 ; log. #,=97.6288181. N3 =+0.0042542 ; N3ir =—0.0000001962 ; #,' =—0.0267139 ; N3r =—0.0000055201 ; #3" =+0.0258130 ; NSTI =+0.0000004576 ; #,"=— 0.0306223 ; #3m=+0.0000000528. For the root <74=0", we get, , 0.7256453 X* - H JQ10 Whence ^4=106° 14' 18".0; log. JV4=98.443 1002. , 0.7256453 021134(51, _ 27.24612 - H JQ10 ' 2/4— IO10 ' Z*~ 10l° For the root g^=— 0".6616623, we get, _ 0.1016437 0.2717608 _ 241.9590 ~ ~ ' 2/6 — T 10 ' Zf>~ IO10 Whence /35=20° 30' 37".9 ; log. JV/P=97.0788886. N5 =+0.0014735 ; Nbir =+0.001 1992 ; Nj =+0.0013543 ; ^ =+0.0011576 ; ^"=+0.0013280; JV6r/=— 0.0011248; JV6'"=+0.0012591 ; Nbv"=— 0.0117880. 136 SECULAR VARIATIONS OF THE ELEMENTS OF For the root 06=— 2".9160771, we get, , 0.3678168 0.3545173 x'= + - Tmo . 2/6= 581.0884 Whence #,=133° 56' 42".7 ; log. N6ir =96.9440543. #.=+0.0030457; N6'r =+0.0008812 ; JN,' =+0.0017834 ; N0r =+0.00071774 ; JV8"=+0.0016079; JV6r/=— 0.0176842; ^'"=+0.0011581; For the root 07=— 25".9350099, we get, 85,= 0.2996051 7=+ 0.2202944 NJ"=— 0.0018963. 59.02778 1Q10 y I 1010 JQ10 Whence /3T=306° 19' 35".l ; log. JV/r=97. 7993434. NI =—0.0002735; N7'r =+0.0063000; JV/ =—0.0001463 ; N7r =—0.0156907 ; N7"=— 0.0027849 ; JV/' =+0.0006888 ; JVTW=— 0.0093834 ; JV7 "'=+0.00007719. 18. If we now suppose the mass of Mars to be doubled, we shall have the pre- liminary computations by making all the coefficients of equations (269-274) posi- tive. We shall then obtain the following Fundamental Equations for /'=+!; or for m"'=l-=-1340318.5 ^=^+38.394808.^ +184.259392; A=f+ 23.2280108.^+ 98.9712014; ^"=^+18.8430013^+ 73.7719022; A=^+18.41 11446.0+ 60.3416523; ^2=(f +13.1958172.0+ 8.983726; A,=02+26.3853904.0+ 9.939432. (467) D =02+44.9052274.0+596.989960 ; D =02+52. 1576683.0+608.070284; JD"=02+32.4642145.0+260.9092264 ; D1=02+43.8990384.0+172. 465387 ; Z)2=02+46.4946594.0+ 32.948855 ; Z>,=02+ 3.4292114.0+ 1.69255259. B= \ .7+32.74835 1 b ; B= ^+17.6069231 \ b • (4GS) C =— 10+22.553639| [9.4381 189]6'; C'=— 10+17.6669357|[9.1138076]6'; C"=+[6.3976676]6'; Crw=+[0.4411620]i'. (469) (470) THE ORBITS OF THE EIGHT PRINCIPAL PLANETS. 137 E =— [9.9807377J6"; E> =— j^+22.3515875 j [8.9723624]Z>"; E"=— J0+17.5618825 j[9.7501125]6"; E'"=— [1.0016537J6". F =+[8.4689676]&'"; F'=— [9.4463886J6'"; F"=— ^0+14.902331 |[0.7927855]Z/"; F"=— J0+34.490730 } [9.6907241]&'". (471) ?1= {0+4.5202496 } 6i; £2={0+ 0.7124602 :;:} Cl=— {0+4.1330154 j[9.5433087]£2; C2=— {0+0.73073414 j [9.434971 l]6a ; <7,=+[0.8644527]&a ; ^=+[0.8654649]^. Ej=— [8.331 7448]63; ^2=— {0+39.7660231 } [8.74377 18]63; EB=— { 0+ 0.64863718 } [0.7242832]&3 ; Et=— [0.9647514]53. ^=+[7.7244692]&4; J?i=— [0.3564628]64; ^=—10+ 2. 7805744 }[1.5514854]64; Ft=— {0+45.7639253 }[9.4626364]Jt. (472) (473) (474) (475) (476) Sr*+47.9382786./+787.7033176./ ) _ , 47?, +5108.828105.r/+11271.52356 j = ^4+29.5262630./+95.1517832.^2 ) , +51.352675.^+0.624611 ) The values of b, b', b", and b'" are given by equations (405), and the values of b2, 63, and 64 are given by equations (406), by merely multiplying the coefficients ' If we put equations (477) and (478) equal to nothing, they will give g1=— 5".1830604, &=— 0".0124492, * g2=— 6 .7024834, y5=— 0 .6632208, 03=— 17 .3261252, 9»=— 2.9170763, 04=— 18 .7266096, g,=— 25 .9335168. 18 March, 1872. 138 SECULAR VARIATIONS OF THE ELEMENTS OF The solutions of equations (467-478) will now give the following values : For the root g, we get, ff =— 5M86718, y =+0.11399082V N" =+0.0802224JV Nm =+0.01622926AT N'r =— 0.0001963412V NT =— 0.00025087662V N" =+0.000213949 N N r"=+0.000006300732V For the root g^ we get, 0!=— 6".708872, Ni =— 0.30098342V! N? =— 0.23890962Vi 2VY" =— 0.050862162V! Nt" =+0.00037137732Vt 2V/ =+0.00052924752Vi Aiw =—0.0002649250^ Aiw=— 0.00001649956^ For the root we get, ,=— 17*.327793, =— 5.526427.ZV, =+ 4.250740iV2 2V2""=— 0.0020564172V2 2V2F =— 0.016972172V2 2V2r'=+ 0.0016641 172V2 2V2r"=+ 0.0001913242Va For the root gz, we get, &=— 18".726623, 2V3' =— 6.2804372V, 2V8" =+7.1470222V3 2V3W =— 8.1177852V3 Nf =+0.00005835662V8 2V8r =+0.001772272V3 2V3" =— 0.00015168762V3 N3r"=— 0.00001 762792V3 For the root g» we get, o4=0"; and 2V4=2Vr4'=2V4"=i log. 9.0568698, " 8.9042956, " 8.2102986, " 6.2930lllnf " 6.3994600«, " 6.3303095, " 4.7993910. log. 9.4785424n, " 9.3782336n, " 8.7063948», " 6.5698154, " 6.7236588, " 6.4231228«, " 5.2174723w. log. 0.7424444w, « 0.6284646, " 1.3255284, " 7.3131111w, " 8.2297373/z, " 7.2211838, " 6.2817698. log. 0.7979898H, " 0.8541251, " 0.9094376??, " 5.7660900, " 7.2485300, " 6.1809500/?, " 5.2462000/,. THE ORBITS OP THE EIGHT PRINCIPAL PLANETS. 139 IV ir ir For the root g^ we get, &=— 0".661664, 276 =+1.22936827," 27,' =+1.12902577/'r JV6" =+1.10586027/r 275'" ==+1.04915821?; 27,' =+0.9653170iV5 276r/=— 0.9382057JV5 275r/J=— 9.83088227/7 For the root #U5 we get, #6=—2".9 16095, N6 =+ 3.479802^V6/r 27a' =+ 2.020979^" jVa" =^_ i. 810077 Na'v N6r =+ 0.816421527," 27," =—20.1157427," 27.m=+ 2.15699527/7 log. 0.0896819, " 0.0527036, " 0.0436997, " 0.0208410, " 9.9846700, " 9.9722980«, " 0.9925925n. log. 0.5415546, " 0.3055617, " 0.2576970, " 0.1168248, " 9.9119144, " 1.3035360M, " 0.3348492. For the root r/7, we get, ^7=— 25".933517, JV7 =— 0.0409446027 N,' =— 0.048154562f Nj" =— 0.4073554JV7 N7'" =— 1.4730382V N,r =— 2.490000JV 17 IV IV IV IV log. 8.6121966??,, " 8.6826374», " 9.6099734«, " 0.1682137%, " 0.3961992n, " 9.0385844, " 8.0880201. 19. If we now substitute these values in equations (408) and (409), we shall obtain the following quantities: — For the root g=— 5". 1867 18, we get, . 6.16813 v x=-{ — ins— ^; y=- 15.530471 „ 134.20637 ._ -N; z= ^r, N2. 1015 1015 Whence /3=21° 39' 31".5 ; and log. JV=9.0952088. N =+0.124511, #"=—0.000024449, N' =+0.014194, Nr =—0.000031240, N" =+0.0099895, NVI =+0.000026642, N'" =+0.0020212, #m=+0.00000078455. 110 SECULAR VARIATIONS OF THE ELEMENTS OF For the root ffl=— 6".708S72, we get, 6.90464 . 8.259874 372.8292 2 Whence ^=140° 6' 26".4; and log. ^=8.4605329, JVi =+0.028876, jy/F =+0.000010724, JVi =—0.0086913, JV/ =+0.000015283, Ni =—0.0068988, JVi" =—0.0000076500, _ZVi"'=— 0.0014686, N1T"=— 0.00000047644. For the root g,=— 17":327793, we get, 6.999264 3.944520 _ 4077.099 ^2— To13 2' ^2 — ' 1013 Z2~ 1013 \Vhence /?2=299° 24' 14".3; and log. JV2=7.2945933. JVi =+0.0019706, ^'"=—0.0000040523, JV2' =—0.0108902, iV/ =—0.000033445, J\r2" =+0.0083764, JV2" =+0.0000032793, iV2"'=+0.0416986, Nt"= +0.00000037702. For the root g3=— 18". 726623, we get, 6.863743 2.942093 _ 2202.062 X3 - ^13 ^3 - 13 •"«» Z3~ 13 JQ13 •«» 3~ 101 Whence /38=246° 47' 52".7 ; and log. ^,=7.5303588. 2f, =+0.0033912, JST3'T =+0.0000001979, JV3' =—0.0212985, 1V3T =+0.0000060102, JVs" ==+0.0242373, JV3r/ =—0.0000005144, N™=— 0.0275294, NST"=— 0.00000005978. For the root <74=0", we get, 0.7257311 0.21 12699 _ 27.24758 X*— JQ10 -"*» .V*— JQ10 •"«» Z4— Whence |84=1060 13' 51".5; and log. ^=8.4431120, JV4=0.02774035. For the root g&=— 0.6616640, we get, OJ016924 0.2718731 „ .241.9923, xi>— IO -"i > Vf> — +~ ~io -^V6 > Z6— IO — -"• • Whence /?6=20° 307 42".3; and log. JV/r=7.0790118. iVs =+0.0014747, N6'r =+0.001 19953, JV6' =+0.0013543, jy/ =+0.00115794, ^"=+0.0013265, jV5r/=— 0.00112520, jy,"=+0.0012685, N,Y"=— 0.01179220. THE ORBITS OF THE EIGHT PRINCIPAL PLANETS. For the root g,=— 2".9160954, we get, 0.3679185 0.3544211 xo -J~ 10,0 ^Vo ; yt- 1() » y^~ ihio — -tva 581.1008 Whence $,=133° 55' 46".2; and log. ^'==6.9440507. JV; =+0.0030592, JV7" =+0.00087912, W =+0.00 17767, JV/ =+0.00071774, N: =+0.0015913, JVaw =-0.01 76843, .^=4*0.0011505, _#6rj/=+0.00190064. For the root g-=— 25".936797, we get, 0.2995996 vrlr , 0.2201126 /V» . . - /\/ •* r - •« 7~ "To1"0 ^7 ' TVT_^. 7T=+- 59.01481 10'° Whence /37=306° 18' 15".6 ; and log. ^/F=7.7993080. N, =—0.0002579, N7ir =+0.00629953, Nj' =—0.00030335, N7T =—0.0156858, JV7"=— 0.00256615, N," =+0.00068848, #/"=— 0.0092794. ^ra D =^3+44.6 177028.^7+590.564857 ; 17=,72+52.1872233.i7+610.731488 ; JD"=/+32.3787870.(7+259.4006143; Z)1=^2+44.0905279.«7+173.591533 ; Z>2=<72+46.6785882..7+ 33.163967; Z>3=<72 3.4403421. ' 1.70359455. J3=jflr+32.52083}5; 5' = ^+17.7264928^; 1 B"= ^+13.180944 1 b. \ C =— {^+22.326122 } [9.4381 189]6'; C'=— j«7+17.7564991 } [9.1138076]^; <7"=+[0.3976676]6'; (7"'=+[0.4411620]&'. 20. For an increment of +T£7, to the mass of the Jupiter, we shall obtain the preliminary computations by merely making all the coefficients positive in equations (280-293). We shall then obtain the following Fundamental Equations for fj.ir=-\ ; or /orm/r=l-4- ^=^+38.155337.^ +182.786001; A =#2+23.3356274.#+ 99.4308553 ; ^"=<72+18.7710411.(7+ 73.2781865; 60.7217122; 9/040174; 9.944072- (479) (480) (481) (482) 142 SECULAR VARIATIONS OF THE ELEMENTS OF (483) E =— [9.9807377]Z>"; £'=_{0+22.2915804j[8.9723624]&''; E"=-\ (7+17.7039725 £[9.7501125]6"; E'"=— [1.00J6537]6", .P =+[8.1679376]6'"; JJ" =— [9.1453586J6'"; F"=— ^+14.674814 1 [0.7927855]5'"; F'"=— 1«7+34.4307229 } [9.6907241J6"'. (484) 52={flr+ 0.7142452 53=1^+19.0000972 } b, ;) ^!. ( [9.5433087]52; (72=_^+0.73251914|[9.4349711]62; (73=+[0.8644527]62; Ez= E3= (4g6) — [8.3317448]&s; — ^+39.9481669 j [8.7437718]fe3; — { (/+0.6504222 } [0.7242832]63 ; — [0.9647514]6S. _F1==-|-[7.7244692]&4; jr2=_[0.3564628]64; F3=— \ zi— 14 ~ 1% Whence ^=134° 3T40".5; and log. #=8.4461821. # =+0.027937, #'"=+0.00000958766, #'=—0.0079385, #r =+0.0000135304, #"=—0.0063791, #"=—0.0000069640, #'"=—0.00132626, #r//=— 0.00000042454. For the root #2=— 17".520779, we get, 69.06713 A7 , 26.31099 .. 4443.491 , *2= - — #; 2/2=H --- n— #; z2= - — # Whence ft=290° 51' 15".3; and log. #=7.2209728. # =+0.0016633, #'r=— 0.0000026543, #' =—0.0093605, #r =—0.000022202, #" =+0.0078636, #" =+0.0000021487, #'"=+0.0517583, #m=+0.00000024767. For the root <73=— 18".486192, we get, 67.51436 23.46891 20391.171 """"^ »' ^3~ H - ^3' Z3~ Whence /53=250° 49' 54".7 ; and log. #=7.5447249 # =+0.0035053, #/r =+0.00000000335, #' =—0.0215019, #r =+0.0000006499, #" =+0.0236359, #" =—0.00000005957, #'"=—0.0395973, #"'=— 0.00000000710. For the root #4=0", we get, _ , 7.294416 2.119410 274.1191 x* — "r~ jQii -^ii y*— JQII #; Z4— JQII — #• Whence /34=106° 12' 4".8; and #=#'=#"= &c., -+0.02771087, log. 8.4426502. For the root g6=— 0".6633671, we get, _ 1.016103 _. , 2.742753 . _245.2401 "« - I J^Qll 1V5 ) 5/5 - ~1 JQII r-"f > Z!> - JQ10 "I ' Whence /?5=20° 19' 41".0 ; and log. #/r=7.0765225 # =+0.0014684, #'r =+0.00119268, #'=+0.0013482, #"=+0.00115141, #"=+0.0013207, #"=—0.00112652, #'"=+0.0012511, #m=— 0.0118074. 19 March, 1870. 146 SECULAR VARIATIONS OF THE ELEMENTS OF For the root */„=— 2".925086, we get, 0.3697416 0.3561999 v/.<^~ . "«> TIT/F. — 6=H inTo •"• ' 9V- K)10 588.7466 ITZ IV, . 1010 Whence &=133° 55' 52".8; and log. JV/r=6.9405338. N6 =+0.0030841, WT =+0.00087204, Nt' =+0.0017851, N,T =+0.00071215, JV6" =+0.0015998, JV6" =-0.0176594, ^'"=+0.0011424, ^"=+0.0018922. For the root 3=i/2+ 3.4692S99.-7+ 1.72977087. (492) £=^+32.45831 6; 1 . j C =— j^+22.263602| [9.4381189J6'; C'=- 1<7+17.6256851 1 [9.1138076J&'; C"'=+[0.3976676]6'; C"*=+[0.4411620]&'. (493) (494) THE ORBITS OF THE EIGHT. PRINCIPAL PLANETS. 147 E =— [9.9807377]i"; E> =— ^+22.2545242}[8.9723624]6"; E" =— j#+17.5731585 } [9.7501 125]6"; E"'=— [1.0016537J6". F =+[8.1679376]&'"; F1 =— [9.1453586]6'"; ^=—1^+14.6122941 [0.7927855]fc";; F"'=— J0+34.3936667 } [9.6907241]i";. ^={^+4.5551100(6,; £2=j#+ 0.7176484}^; ) £,= {0+18.823159016!. J C,=— j#+4.1678758 } [9.5433087]ia ; C72= — {^+0.7359221 } [9.434971 1]62. (73=+[0.8751766]62; (74=+[0.8761888]&2. — [8.3317448]S3; —1/7+40.2949304 j [8. 7437718]&3; g+ 0.6538252 }[0.7242832]S3; — [0.96475 14]63. ^= E3= F2=— [0.3564628]64; Ff=—\g+ 2.8154348 }[1.5514854]&4; Fi=— j^+46.44278 } [9.4626364]64. (495) (496) (497) (498) (499) (500) /+47.5409132./+774.11613432./) fil +4966.568399.^+10830.80683 j " «4+29.7477885./ +96.8557913.02 ) , , +52.S77272./ + 0.536670 } =(*" ^ *» ^ The values of 619 Z>2, &3, and 64 are given by equations (406); and the values of b, V, b", and V" are given by equations (405), by merely multiplying the coefficients of ^"by l+(*r= 1.025. If we now put equations (501) and (502) equal to nothing, they will give, g =— 5".1255241 ; #4=— 0".0104061 ; gi=— 6 .5914740 ; ff&=— 0 .6688791 ; #,=—17.4063959; g&=— 2.9523070; ff3=— 18.4175192; ^7=— 26 .1161961. 143 SECULAR VARIATIONS OF THE ELEMENTS OF Substituting these roots in succession in equations (491-502), we shall get the following values: — For the root ff, we get, g=—5". 1293390, N' =+0.1 224435 AT N" =+0.08766774^ N'" =+0.0175016JV N'r = — 0.000205739^ Nr =— 0.000261587JV NTt =+0.000236310^ N r"=+0.0000062338tf For the root gv we get, % — ' JQM •> 2— JQIO Whence ^=292° 39' 13".8 ; log. ^=7.1874476. NI =+0.0015397 ; JV2/r =—0.000002485 ; jV2' ^—0.0085764 ; Ntr =—0.000021105 ; ^"=+0.0070528 ; NtTI =+0.0000021066 ; ^2m=+0.0508607 ; ^am= +0.00000024 17. For the root ga=— 18".4175195, we get, _ 67277160 22295350 _ 1.9362943 ^ - JQ20 ' 2/3— 1Q20 » Z3— JQ10 » Whence ^,=251° 39' 34".l ; log. ^3=97.5635'231. JV3 =+0.0036604; N3'r =—0.00000006466 ; Ar3' =—0.0223376 ; N3r =—0.00000042853 ; .^"=+0.0243961 ; N3rl =+0.000000036083 ; Nam=— 0.0377972 ; #3r//=+0.00000000039585. For the root <74=0", we _ , 0.7324877 0.2141555 _ 27.41415 x* — ~r JQIO > 2/4— JQIO 5 zi— J^QIO 5 Whence /34=106° 17' 49".9 ; log. ^=98.4446362. For the root &=— 0".6675803, we get, _ , 0.1042216 , 0.2727222 _245.6575 ^S - H JQIO 5 3/6 - H IQ..I » ZS— JQ10 Whence ^s=200 55' 5".7 ; log. ^=97.0749906. ^6 =+0.00146716 ; N,'r =+0.00118851 ; NJ =+0.001 3459; N,T =+°-00114755; Nt" =+0.00131823; ^5r/=— 0.00110001 ; ^"=+0.00124781 ; N6r"=— 0.0117785. THE ORBITS OP THE EIGHT PRINCIPAL PLANETS. 151 For the root 06=— 2".9514286, we get, 0.3712512 0.3561690 _ Z - 584.6008 Whence &=133° 48' 43".9 ; log. JV6/r=96.9445043. N6 =+0.0032017 Nj =+0.0018341 #/ =+0.0016409 JV6'"=+0.0011616 Nf =+0.000880044 N* =+0.000718986 N™ =— 0.0177606 ; JV6r"=+0.0018826. For the root 07=— 26M183694, we get, __0.2996395^ 0.2202906 _57.99673 HF 10l° "TO15 ; Whence /37=306° 19' 22".0 ; log. ^"=97.8070262. N7 =—0.00002671 ; N," =+0.00641248 ; JVY =—0.00031380 ; N,r =—0.0155812 ; Nj" =—0.0027363 ; N7" =+0.00069663 ; #7=— 0.0092366 ; #T" '=+0.000078059. 24. For an increment of ^m", to the assumed mass of Uranus, we shall obtain the preliminary computations by merely making all the coefficients positive in equations (326-331). We shall then obtain the following (503) Fundamental Equations for ju"=+— ; or for m™=— — — . £\j && 1 1 y A =02+38.068970.0 +181.871338; ^'=02+23.1735927.0+ 98.3308977; ^"=//2+18.7132214.0+ 72.8344734 ; ^11=02+18.4995010.0+ 61.4402060; A 2 I 1 O OAO^v^»OQ ^ I Q 1 .471 Oft • ^^=.n -|— io.^uyoo*o.^— |— y. i-r 1 1*0 , ^3=02+26.3996602.0+ 10.055139. D =^+44.5054401.0+588.063848 ; £>'=02+51.9992925.0+604.964956 ; Z)"=02+32.1623093.0+256.0208612; Z>1=02+43.9809321.0+175.644437 ; Z>2=0!+46.5212935.0+ 33.556164; Z>3=02+ 3.4429483.0+ 1.72374142. 5=J0+32.45043|6; ^ = {0+17.5804200^; ) 5Q5. ^={0+13.139086^. j C =—\g+ 22. 255718J [9.4381 189]tf; C' =— {^+17.6104269 |[9.1138076]ft'; C5Q6) Cf"=+[0.3976676]6'; C""=+[0.4411620]6'. (504) 152 SECULAR VARIATIONS OF THE ELEMENTS OF E =— [9.9807377]fe"; E' =—{0+22.2497227 } [8.9723624]6"; .£''=_ J£+17.557S996J[9.7501125]Z>"; E"=— [1.0016537]6". p — +[8.1679376]6'"; f"=— [9.1453586]6'"; F"=— 1^+14.604409 } [0.7927855]Z/"; F"=— 10+34.3888650 } [9.6907241]//". JB1= {^+4.6079205} 6,; Ba=\g+ 0.7255099(6,; 1 Baa=|(7-j-18.8315378}X I \ [9.5433087]6, ; C2=— ^+0. 7437838 j [9.434971 1]6S ; Cs=+[0.8644527]62; C4=-)-[0.8654649]ft2. E,=— [8.3529341]&3 ; ^=—1 ^-|-39.7796076 }[8.7487718)^; Et=— \g-\- 0.6616869 j [0.7242832]^; F,=+[7.7244692]i4; ^=—[0.3564628]^; Fs=— \g-\- 2.7812615 j [1.5514854]64; FI=— j <7+45.77751 } [9.4626364]Z>4. (507) (508) (509) (510) (511) (512) Sr*+47.5111025./+773.1351541.flrM , +4957.025771^+10802.91193 j" » ^+29.5535550^ +95.6630308.^ ) ~~^. (514) +52.197094.^ + 0.534229 j The values of 6X, J2, 63, and 64 are given by equations (406) ; and the values of b', 6", and I'" are given by equations (405), by merely multiplying the coefficients If we now put the equations (513) and (514) equal to nothing, they will give g=— 5".1224110; 2/4 — — Whence /?4=106° 12' 1".7; 10^^=98.4424954. For the root #6=— 0".6735122, we get, 0.1020975 0.2702021 240.6404 5 2/5 -- H - JQIO Whence /3S=20° 42' 11".2 ; log. JV67F=97.0793126. N, =+0.0014850 ; JV/r =+0.00120036 ; ^'=+0.0013612; N&r =+0.0011579 ; ^"=+0.0013329 ; ^"=—0.0011251 ; JV6'"=+0.0012609 ; N,v"=— 0.0117624. 156 SECULAR VARIATIONS OF THE ELEMENTS OF For the root 00=— 2".9236175, we get, 03679656 0.3547543 _555.2999 ~; y*~~ io10 "io10" Whence ft=133° 57' 9".9 ; log. #." =96.9640000. #6 =+0.0032908 ; N" =+0.00092045 ; #„' =+0.0019005 ; N6T =+0.00075109 ; #6"=+0.0017026 ; W =—0.01763875 ; #8'"=+0.0012109 ; #6™=+0.00199548. For the root 07=— 25".9459126, we get, 0.3001025 0.2204575 _ 59.06886 JC7== |7)i6 » y~l~ IO10 ' Z-l~ IO10 Whence ft=306° 18' 4".6 ; log. #,-=97.7996217. #7 ,= -0.0002651 ; NJr = =+0.00630408 ; #/ =-0.0002943 ; N,T =-0.0157084 ; #,"=-0.0027264 ; #/' =+0.00068938 ; #,"=-0.0092432 ; #/"= +0.00007695. 26. For an increment of +Iynm, to the assumed mass of Neptune, we shall obtain the preliminary computations by merely making all the coefficients positive in equations (345-350). We shall then obtain the following Fundamental Equations for 1ur"=+IV or for mm=lH-17072.73. 4=0^+38.068863.0 +181.870184; A =/+23. 173407 1.0+ 98.3296126; 4"=/+18.7131480.0+ 72.8339084; 60.9399039 ; 42=02+13.2015603.0+ 9.072649 ; 43=-/+26.3912337.0+ 9.975760. D =^+44.5053009.0+588.060747 ; Z>'=02+51-9990747-iH-604-958351 ; X>»=^4-32.1620579.0+256.0169344 ; ^=^+43.9488809.0+174.214515 . Z>2=02+46.5094752.0+ 33.282984 ; Ds=72+ 3.4725714.0+ 1.70970867. £=|0+32.45034|6; ^=}0+l 7.5802549 (&; ) 7J«= 10+13.139034^. ) tf =—{0+22.255630| [9.4381 189]Z>'; 1 m _ <„ i it cino«io»ro 1 1 oamrftW. (515) (516) Cr"=+[0.3976676]&'; C"'=+[0.4411620]6' THE ORBITS OF THE EIGHT PRINCIPAL PLANETS. 157 (519) (520) (521) (522) E =— [9.9807377]fc"; E' =— {0+22.2496697 \ [8.9723624]i"; E* = — {0+17.5577346 1[9.7501125]6"; Em=— [1.0016537]6". F =+[8.1679376]6'"; I"=— [9.1453586]Z>'"; F"=— {0+14.604322| [0.7927855]Z>'"; F'"—— J0+34.3888122 ^[9.6907241]Z>"'. £,= {0+4.5635477^,; 52={0+ 0.7189043(6, ;) B8= {04-18.8244977 K. J Ci=— {0+4.1763135 j[9.5433087]62; Cz=— {0+0.73900559 1[9.4349711]&2; C3=+[0.8644527]62; (74=+[0.8654649]62. El=— [8.331 7448]63; E2=— {0+39.7725674 |[8.7437718]63; E3=—\g+ 0.64869894 *[0.7242832]&3; EI=— [0.96475 14]63. Jl=+[7.7658619]54; ^i=— [0.3978555]64; ^3=—{0+ 2.8238725 } [1.5514854]64; FI=— {0+45.770470 j [9.4626364]&4. J ^+47.5107777./+773.1244605y 1 +4956.921649.0+10802.60734 j " 04+29.5753988.03+96.3534529.02 1 _( , f 52.082669.0 +0.529879 j = The values of 515 &2, J3, and 54 are given by equations (406), and the values of i, 5', b", and b'" are given by equations (405), by merely multiplying the coefficients „ _ _ Yff i - — - _ _ — of N b (523) (524) If we now put equations (525) and (526) equal to nothing, they will give 01=_ 5".1223768; &=— 0".01037221 ; <72=— 6 .5865075 ; g,=— 0 .66492499 ; ^=—17.3927801; flr,=— 2.96207581; gl=— 18 .4091132 ; <77=— 25 .93802580. 158 SECULAR VARIATIONS OF THE ELEMENTS OP Substituting these roots in succession in equations (515-526), we get the follow- ing values : — For the root g, we get, r =—5". 1262327, #' =+0.122771iV N" =+0.0879417^ N'" =+0.01756792V N'r =—0.000207983^ JV" =— 0.000264402IV N" =+0.0002360322^ #""=+0.000006 1622 For the root #„ we get, 0,=— 6".5922343, NJ =— 0.276482 JVi N,' =—0.222950^! N' =—0.0466245^1 N," =+0.00033610^ JV,r =+0.000474472iVi Nin =— 0.000248245 Nj. Nlv"=— 0.0000147153IVi For the root ffz, we get, gz=— 17".3937133, NJ =— 5.56327iV2 N,' =+ 4.563742V2 N3'r=— 0.0016539^ J^r/=+ 0.001370242V2 ^2r"=+ 0.00015714^ For the root ga, we get, «78=— 18".4091136, W =— 6.09878JV, W =+ 6.656082V3 N3'r=— 0.00001 95968JVS ^a" =— 0.0001 50608 N3 ^3^/=+ 0.0000125707iV3 N3"'=-\- 0.00000139394JV8 For the root gt, we get, „ — 0". N AT' N" AT"'" — -; y=-\- For the root =— 17".3937133, we get, __68626660> 28878680 _ _O4885253 1()» • 2/2— — JQM ; Z2— - 1()10 • Whence &=292° 49' 18".4 ; log. JV2=97.1830089. JV2 =+0.0015241; J\T2/r=— 0.000002521; JT; =—0.0084789 ; N* =—0.000021385 ; JV,' =+0.0069555 ; N™ =+0.0000020884 ; ^"=+0.0506625 ; JVr2r"=+0.0000002395. For the root #,=—18". 4091 136, we get, __67244580 _221 73520 _ 1.9255992 TO* ; y*~ io°" ; ZA~ "to10 "' Whence /?3=251° 45' l".l ; log. ^3=97.5655046. JV3 =+0.0036771 ; 2f," = -0.00000007206 ; 2ft =—0.0224258 ; JV^ =—0.0000005538 ; JV3* =+0.0244750; ^3"=+0.00000004622; N™=— 0.0375997 ; ^"^-fO.OOOOOOOOS^e. _ 0.7310062 _0.2158651 _ 27.46919 x*~ '» ' y*~ io ' zt— IO For the root gt=Q", we get, _ 0.7310062 x*~ io'» Whence /?4=106° 27' 6".5 ; log. JV4=98.4432303 ; For the root f/6=— 0.6634935, we get, _ 0^1014674 0.2722315 _ 222.4744 1Q10 '" 2/6— JQ,O ~~» Z8— JQ10 ' Whence /36=20° 26' 30".0 ; log. #6/r=97.1159056. A\ ==+0.0016101; N&'r =+0.00130589; JV8'= =+0.001 4779; Nbv =+0.00126053; JV6"=+0.0014476; JV6"=— 0.00120371 ; ^"'=+0.0013738; N,r"=— 0.0116801. THE OIIBITS OP THE EIGHT PRINCIPAL PLANETS 161 For the root r/— 1070V"; JV=+0.121076+276274a— 568000^'— 140640^"+3438V+688000lW/r +95880/fr+29840"+1630J«ra; Ar'=+0.014867+127798lu+276820/— 52360/— 6929^'"— 273100/F— 4800^' ^"=+0.010650+88422^+230840^'— 23860/— 6601/'— 239000^/r— 5360^ + 19 ^"'=+o.002128+17510/!i+51480iu'+7640/«"— 1066/'— 63400/r— ^FJ=+0.0000280+350.4iU+364/-74;«"-14.0iu"'-750«/F+252^F+36,« 21 March, 1872. 162 SECULAR VARIATIONS OF THE ELEMENTS OF 0,=— 6".592128— <)".314940«— 0".85282u'— 0".78390«"— 0". 116744,,'"— 4".3746lu'F -0".20160pr— (r.OOSSfy"— (r.OOlOGp™7; /31=1 32° 40' 57".8— 102434>— 490268^'— 205068y+26729y+ 700270'X F + 19444'> F+90>r/— 735>ra; JV,=+0.0283520— 37374^— 3360Ju'+358300/u"+5235«'"—415(HyF+133120/uF + 16400/«F/+990iuF": JV/=— 0.0078380— 8507/i+222860^'—75320/—8530/'—100200/F— 46800^" -4760^"— Stop™; A7=— 0.0063210— 9 157,u+ 167160^'— 68660/—5780u'"—58300;«/F—36680^F ^'"=—0.0013250— 2162^+32900^'— 2360/—1437/'—1400f!/r— 7280^ ^/" =+0.00000952+5^— JV/ = =+0,00001345+10^— 346/u'+218(u"+18^'"+80/t/r+32^r+10/uF/+0/Mr"; JV,r/ = -0.00000696+1^+194^'— 96/— ^""=-0.000000420-0^+10.8^-6.8^— O <7S=17".393390— 0".028779/«— r.31820^'— 2".4080/+0"()Gr)597/'— 12".7389a/F -0".55708//F— 0".00942^r/— /?J=292° 49' 53".2+124l8>+333738V+270720y+23660y— 7"ll800> -25592y— 276>"— ^=+0.0015240—1455^— 67740^'— 50820/+4466/u'"+139300^r+6280^ /F Nt'=— 0.0084783+8450^+454660^+283020^"— 24120/'— 882200,^' — 39240^— lO^u"7— ( ^"=+0.0069546— 9445^— 392740^'— 348760/+14218,u'"+909000j(/F +39280^+ 220^^+90 w; ^'"=+0.0506672— 13628^— 648600^'— 421340/+79686/'+1091100/F +77400^ F— 180^F/— 47,ura; N" -0.00000251+1.6^+66^+62^"— 15.4/'— 140/F+12/MV— 4^F/— l^^,- N,T -. -0.00002140+10.1^+434^'+ 294/-120.4/u'"—800^F-120/uF+6/fFJ ' g3=— 18".408914— 0".087808/t— 5*. 146 16^'— 5".18060/— 0".317709/'— 7".7278 -0".3442V— 0".00582;«F/— 0". /?,=251° 45' 8".6+4720>+157816y+123030/u''-17836y"-331390y -12580>F— 212>F/— 7 N3= +0.0036775 + 1 277^+82380^+65 1 60/— 2863«'"— 1 72200^—6880^ JV,'=-0.0224278-7986^— 2904(%'-46.8080l«"+11283/u"'+925900/F +36080//F+580/iF/+200/F +12932>r/— 2946yz/; ^=-1-0.0014778+29^—620^—440^"— 31^'"— 9400/F—4240(Ur+l440^F/ r— 4360^+880^ + 11850^m; ^"=—0.00112485— =— 0.0117882— 55— — 7500^"— "'— 6650/"— 4328^ r+ 206^ — 6320^—4072^ —3.5^'"— 1670/F+9936^r—50^r/ — 7886,ur"; ge=— 2".916082+0".000028a+a".00014^'+0".00004^"— 0".000013/'— 0".9004/F /— 0".45136/uF//; R =-133° 56' 10".8— 175"»— 344y-)-310y— 24".6;u"'— 1800>/r— 17876>F + 1182y/+19400y"; 164 SECULAR VARIATIONS OF THE ELEMENTS OF ^=+0.0018108+596/<+660,/-2820^-341/'-25700iu'r+9320/+17960iu^ JV6«=+0.0016228+378^+1220/t'-1540/-315iu"'-23000/''+7240iar f-15960«"+370^r"; [,"_52ju'"—15300u/r+1560iu "+11040^" ^=+0.0008794-4^-80^-20^"— 3/u'" #6"=— 0.01 76872+35^+1 100p'+280/+29//''+27800/r— 29360^+9680^' — 7850/"; #."'=+0.0019010— 4p— 600^'— 40^"— 9/'—8800/r— 7360^+18900^' — 2640/«fxr. g,=— 25".934567— 0".000039^— 0".00196/t'— 0".00430/— 0".00223/'— 18*.2906/ -7".35208;ur— 0".22692u"'— 0".( /?T=306019>21".2—2".4^—242'X+128y—65".6/«'"+40V"'+32"l«F— 1532V VI VII . 9 VI VII iv^ ; V JV7'=— 0.0002932+40^+5840^'+14100/— 102/'— 10300/7— 8240/^—220^ — 40; JVT"=— 0.0027275— 93^—12780^'— 5500/+1614iu'"+19000/r—3520j«r+220l« ^"'=—0.0092499+12631^—2700^— 13300^"— 295l«"'+8700/M/I'+5280^ + 1340^r/ ^^=+0.00630053+0^— 80^'— 40^"— 10/'— 44700/u/r+44800iuF+720/« N7r=— 0.0156928+3^+240/+200^"+70/'— 43400«/r+44640;«r— 3120^ - ^,"=+0.0006890— 1^—20^—20^—5^'— 3300/F+3040iu"+80/urr+100;«m; VI %"'; VI We have thus obtained the system of constants and the coefficients of their variations, corresponding to the ecliptic of 1850, as the plane of reference; and we shall now inquire what modifications are necessary in order to refer the same quantities to the invariable plane of the planetary system. THE ORBITS OF THE EIGHT PRINCIPAL PLANETS. 165 CHAPTER III. ON THE POSITIONS AND SECULAR VARIATIONS OF THE ORBITS WHEN REFERRED TO THE INVARIABLE PLANE OF THE PLANETARY SYSTEM. 1. WE shall now refer the positions of the orbits to the invariable plane of the planetary system, in order to discover whether there are any laws which control their mutual positions, of a similar nature to those which we have shown to exist relatively to the eccentricities and perihelia. For this purpose it is necessary to first determine the position of the invariable plane with reference to the fixed ecliptic of 1850; and we can then readily refer all the orbits to that plane. The position of this plane is found by the principle, that the sum of the products, formed by multiplying each planetary mass by the projection of the area described by its radius vector, in a given time, is a maximum. If we put y for the inclination of the invariable plane to the fixed ecliptic of 1850, and n for the longitude of its ascending node on the same plane, we shall have (Mecanique Celeste [1162]), (527) But we have c = c tan y sin n=c"; c tan y cos n=c'. — e2) cos ' cos 0' +m"V(i"a"(l— e"2)sin $' cos 6"+ &c., c"=m'[/ pa (1 — /) sin <£> sin Q-\-m'\/ pa' (1 — eri) sin q> sin ff -j-m'V//a"(l— e'^sin $>" sin 0"+ &c. If we denote the sun's mass by unity, we shall have p=l+w», f/=l+< /=l+m", &c.; but we shall also have TttWa"2, &c. +mVa"2V/li::?2" sin ^>" cos 6"-\- &c., d'=mna?V f^Tsin ^ sin 6-\-m'ria?Vl— e* sin $' sin ff (528) Substituting these values in equations (528), they will become c —mHO?]/ 1 — e2 cos $ -\-m'ria'2V 1 — e'a cos $' +mWa"V l^e^cos $>"+ &c., d =m?ia2l/l^e2sin $ cos O+rn'ria^Vl— e^sin ^' cos tf (529) 166 SECULAR VARIATIONS OF THE ELEMENTS OF Substituting in these equations the values of m, n, a, e, ty and 0, given in §§ 5 and 17 of Chapter I, and § 6 of Chapter II, we shall get c=+0.0035274157, c'=— 0.00002735230, e"=+0.00009393304. (530) In finding these quantities n" has been supposed to equal unity, and the values of n, n', n'", &c. have been multiplied by — - in order to preserve the same ratio. ?i Substituting the values of c, c', and c", in equations (527), we shall obtain n=106° 14' 6".00, and y=l° 35' 19".376. (531) If we now denote by <£>0, ^>0', <£><,", &c., 00, 00', 00", &c., the respective inclinations and longitudes of ascending nodes of the different planets, on the invariable plane; the values of 00, 00', 00", &c- being reckoned from the descending node of the fixed ecliptic of 1850, on the invariable plane; we shall have the following equations to determine 00, 00', &c., <£><,» '> &c. sin <2>0 sin 00=sin <£> sin (0 — II), ) sin $0 cos 00=cos y sin <£> cos (0 — n) — sin y cos $. j These equations will give the following elements: — (532) Mercury, fy =6° 20' 58".08, 00 =287° 54' 5". 12, Venus, , / o 11 13.57, 0o' =307 14 8. 10, The Earth, <*>!" =1 35 19.376, 00 = 180 0 0. 00, Mars, o"' =1 40 43.70, 00W =248 56 21. 45, Jupiter, o/F =0 19 59.674, 00 IV =210 7 35. 44, Saturn, $>or =0 55 30.924, 00 r = 16 34 26. 66, Uranus, , YT -I 1 45.27, 00 VI =204 12 33. 78, Neptune, $>om=0 43 24.845, 00 "'=286 39 55. 10. 2. Now putting tan $0 sin 60=p0, tan <£>„ cos 00=<70, we shall get the following values pa =—0.1058879, Pa =—0.0304057, Po' = 0. pf =—0.0273512, p0'v = -0.00273067, Por =+0.00460691, p"=— 0.00736719, Por"= +0.01 26079, tan tan , sm 00 = , cos Oa=q0 ;=?}&c.'} (533) q0 =+0.0342038, qj =+0.0231090, q0" =-0.0277354, q0" =-0.0105324, q0'T =—0.00503058, q0r =+0.0154792, 9or/=— 0.0163856, ?0m=+0.000734628. If we substitute these values in equations (408) and (409), we shall obtain the values of /3, /?j, /22, &c., N, N^ N2, &c., corresponding to the invariable plane. But instead of performing this operation separately for each root, we shall proceed in the following manner. THE ORBITS OP THE EIGHT PRINCIPAL PLANETS. 167 3. If we neglect the squares of e, e', e", &c., d>, d>', d>", &c., y, we may put cos y=l; sin y=tan y=y; sin d>=tan d>; sin $»'=tan d>', &c.; then we shall have p—sin $ sin 6, /=sin d>' sin 6', p"=sin d>" sin 6" &c., ) - „,. 5=sin d> cos 0, ' cos 6', " cos 0" &c. j Substituting these values in equations (408) and (409), also putting ;=0, and remembering that for the root #4=0, we have Nt=N^=Ntv, &c., we shall have m na m sn <> sn na na 5. Jtf4sin/34; ^sin d>' sin 6'+ &c.= I na { sin d> cos 0+-™' sin d>' cos 6'+ &c.= I —^-—. 4-&c. 1 Nt cos #,. Jza' I na ' «'a ' j na • na I na ' n'a' But if we neglect m2, m'2, &c., we shall have (535) in i i m „ « m 0 mna~= , m'«'a-=-— , mnV= --- , &c., "" « a and equations (527) will give, by substituting the values of c,c',c", • A i wi' . . . „, , o \ m in' , n } sin 04 — — sin d> sin 0 4-&c.== < — _L_&C. > y sin II: ' na [ na ' nrf ' J i 04- mt , sin d>' cos 0'4- &c.— \ — — U-'~, 4-&c. i y cos II. ' na ( na ' na } m • — sin d> sm na -sm d> cos! (536) Comparing equations (535) and (536) we find n=/34, and y=N±. Now substi- tuting n=/34, y=JV4, in equations (532), they will give sin d>0 sin 00=sin <(> sin (0 — /34)=sin d> sin 0 cos j34 — sin <£> cos 0 sin /34 =p cos /34— ? sin /24=£>0 ; sin ^0 cos 00=sin(|) cos (0 — /34) — y=: sin d> cos 0 cos/?4 — sind) sin0sin/34 — y =qcos(3t — ^)sin/34 — N4=q0. (537) And since the relative values of N, N', N", &c., N^ Nlt N^", &c., are known we may determine their actual values corresponding to the invariable plane, by the analysis of Chapter II, § 5. We shall therefore suppose ?0 =a N cos (grt+^O+a! ^ cos (gr1<+/31(0))+a2 ^2 cos 9o'=a ^' cos (flr«+i8TO)+a1 ^' cos (9'1<+/?1(0)J+a2 ^' cos &c.; Po =a N sin (^-f/^^+a! ^ sin (gj+pW+a, N, sin (^<4-/8s(0>)+&c., p0'=a N1 sin (^+/30>))-[-a1 JV,' sin 071<+/31(0))+a2 JV2' sin &c., (538) a, HI, a2, &c., being the constant factors which are necessary in order to reduce the numbers already calculated to the corresponding ones for the invariable plane ; and /3(0), (3^\ 82(0\ &c., being the constants necessary to satisfy the equations for the given epoch. 168 SECULAR VARIATIONS OF THE ELEMENTS OF Equations (408) and (409) will also become na na (539) no, «a cos If we substitute in these equations the values of by equations (537), they will become (540) ,po, &c., g0, g0', &c., given • (541) -a ( na w a (542) Now according to equations (410), the coefficient of Nt in this equation is equal to nothing; and if we substitute the values of the coefficients of a cos /?4, and a sin /34, which are given by equations (408) and (409), both members of equations (541) and (542) will be divisible by the coefficients of a sin (gt-}-(3m), and a cos and we shall find Whence we get Therefore sn (#/-=a sn cos (gt+p—pj=a cos tan >); > >). J —ft^tan («7<+13(0)) >=3-?, and «=1. (543) (544) It therefore follows that in order to apply our numbers to the invariable plane, we have only to diminish the constants /?, p^ /?2, &c., by the longitude of the ascending node of that plane, on the fixed ecliptic of 1850, and neglect the con- stant term. THE ORBITS OF THE EIGHT PRINCIPAL PLANETS. 169 Therefore we shall have '= A" sn 0'= JV' cos sin :)sin sin cos cos -\-N6 cos (s^+ft — ft sin sin sin sin cos cos cos sin cos —ft); (545) (546) Substituting for p0 and q0 their values given by the first members of equations (537), we shall easily find sin (j!>0 sin (f>0 — gl — {3)=^ sin J (gl — g)t-\~Pi — P \ -\-N% sin j (g2 — g)t-\-@2 — /? ! 'J -f-JVgsin j((/3 — g)t-\-(33 — ^l-l-JVjsin \(g6 — g)t-\-pt — (3\ > (547) -\-N6 sin { (g6 — g)t-\-fis — P \ -\-Ni sin \ (g7 — g)t-\-(37 — (3 \ ) sin eft, cos (00 — gt — /3) 1 £$\ \ (548> COS (gl- COS 1 (ga- COS t- COS (gr.- COS | (y._ COS - From these equations it is easy to show that the mean motion of 00 is equal to gt when N exceeds the sum of the coefficients of the cosines, all taken positively. We shall also have maxmum sh /I / J - — 9±W cot /i sin _ •?» JV2" I cot A-|-^tan A V sin (/2<+/32) ^2 I /2 _9?-N3" { cot A-f }.-tan 7t 1 sin (/3<+/33) /3 I /» /6 cot 7t- sn _^JV6" cot ^+ tan 7t sin /a /• - /7 -2-Jw cos cot sn Precession of the Equinoxes on the (552) Apparent Ecliptic. cos COS -^iV3 cos /3 ^-J\K COS /6 Apparent obliquity (553) of the Ecliptic. In equations (550) and (552), £ is to be determined so that ^ and # shall be equal to nothing when <=0. We may determine I and h as folio ws:- If we take the differential of equation (552), we shall obtain dt —^2" { cot co cot cot cos tan 7i cos cos 1 tan 7t 1 cos I cot fc+-tanA 1 - cos -flf^V.* | cot /i+ j tan h J c — ^JV/ { cot A+-^tan A 1 cos (/7<+/37) I /7 (554) Now at the epoch of 1850, at which time we have supposed <=0, we have e=23° 27 31."0; and — ^1=50".23572 according to the investigations of BESSEL. dt THE ORBITS OF THE EIGHT PRINCIPAL PLANETS. 173 The first members of equations (553) and (554) are therefore known; and if we substitute in them the values of g, =p -r-sin 9 =q -=-cos 0, 1 tan <2>'=y-=-sin ff=q'^-cos 0', &c. j 23 April, 1872. 178 SECULAR VARIATIONS OF THE ELEMENTS OF 3. The inclinations of the orbits of the planets and the longitudes of their ascending nodes on the ecliptic, or variable orbit of the earth, are denoted by $1, &c., 0i, Bi, 0r, &c-> and have been computed by the equations tane^Cp-pO-T-te-s"); tan 0/= (/-/') -(,'=(/— p")H-sin 01'=(", and the inclination of the equator to the same plane, which is denoted by c1} and the included side which is equal to ^-\-6". The three remaining parts of the triangle are the distances from the extremities of the known side of the triangle to the point of intersection of the apparent ecliptic and equator, and the angle included by these sides. We shall denote these quantities by ^'-\-Q", $•, and e. $ denotes the general precession in longitude, 3 denotes the planetary precession, which is the distance between the fixed and apparent ecliptics measured on the apparent equator, and e denotes the apparent obliquity of the ecliptic. The fundamental equations of spherical trigonometry will therefore furnish the following formulae for the determination of $, 3, and e : — sn s sn •= — sn ty sn sin E cos 3=sin " cos el cos (^-j-0") +cos q>" sin sin e sin (4/+0")=sin EX sin sin E cos (4/-j-0")=sin ca cos $" cos (4-|-0")-|-cos Sl sin The negative sign is given to the first equation because a forward motion of the equinox is a diminution of precession. The equations (567) give the values of ^ and e ; and either one of the equations (568) will give the value $ when e has been determined. Since $• is always a very small arc, it is determinable with all desirable precision by means of its tangent ; but this is not the case with e. This quantity cannot be determined with extreme precision by means of its sine, without using logarithms to more than seven places 180 SECULAR VARIATIONS OF THE ELEMENTS OF of decimals. But as e never differs greatly from f,, we may compute the difference between e and ti by eliminating $ from equations (567), and we shall find, sin (e — EI)= sin2 ft" cos2 e l— sin3 ft" sin2 e, cos3 (^+^')+2 cos ¥ sm ft" cos ci sin c' cos C^+fl") (5(59) sin (E+CI) Altliough f appears in the denominator of this equation it is readily determinate from its sine with sufficient precision to be used in finding sin (e — ej with accuracy. Since $ never differs greatly from 4, we may readily transform equations (568) so as to give the difference of these quantities, and we shall find sin E sin (4> — 40=cos fi sm ft" sin C^+0") \ (• -2 sin2 1 tf sin f , sin (4>+0") cos (^+6") j l This equation determines 41 — 41' witn a^ desirable precision, E having been previously determined. 6. We shall now consider the spherical triangle formed by the fixed ecliptic of 1850, the fixed equator of 1850, and the apparent equator of any time t. Since the inclination of the equator to the fixed ecliptic of 1850 is given by equation (566), we may suppose this quantity to be known for the given time. Then calling fj the inclination of the fixed equator and ecliptic E/, the inclination of the apparent equator to the fixed ecliptic, and ^ the total luni-solar precession during the time t; the two angles and the included side of the proposed triangle will be known, and the three remaining parts may readily be determined in the following manner: Let the distances from the intersection of the fixed and apparent equators to the fixed ecliptic be denoted by 90° — z and 90°-|-z', and the angle of intersection of the two equators be denoted by 0, we shall have the following equations for determining these last named quantities: — sin 0 cos z =sin 4- sin EI sin 0 sin z =sin BI cos e/ — cos 4/ sin e/ cos e 1 cos 0 =cos E! cos ^'-(-sin e, sin e/ cos ^ • (571) sin 0 cos z^sin 4- sin ei sin 0 sin z'=cos 4- sin sl cos e/ — cos el sin e, These, equations determine z, z', and 0 rigorously ; but since e i is nearly equal to e ,', they are under a very inconvenient form for accurate computation when 4- is a small angle. They may, however, be readily put under the following form for very accurate and convenient computation: — sin 0 cos z =sin 4> sin e/ sin 0 sin z =2 sin2 \ 4/ sin f/ cos ^-j-sin (e, — e/) sin2 \ 0 =sin2 \ (el — e^+sin^^sinfisinf/ }• (572) sin 0 cos z'=sin ^ sin ei sin 0 sin z'=2 sin2 \ 4- sin e, cos e/— sin (e,— E/] The sum of the quantities z and z* might very properly be called the luni-solar precession in right ascension ; and if to this we add the planetary precession we THE ORBITS OF THE EIGHT PRINCIPAL PLANETS. 181 shall have the general precession in right ascension at any time t, equal to z-f-z'-j-^; all of which quantities being taken from the table with the argument t, 7. Tables I — VIII have been computed as explained in §§ 2 and 3. They show the elements of the planetary orbits at the times given in the first column of each table, and seem to require no explanation as to their uses. 4,, and £u in Tables IX and X, have been computed from the formulae (565) and (566); $, $ and e have been computed from equations (567), (570), and (569), by using the values of 6", <£/', 4, and cj given in Tables VIII and IX; and lastly, z, z', and 0 have been com- puted by means of equations (572), by using the values of 4, e, £\ given in Table IX. 8. Having explained the method of constructing the tables, we will now explain the manner of using Tables IX and X in connection with 6" and $", which are given in Table VIII. The quantities 6", $", and $ are useful in reducing the longitudes of the celestial bodies from the mean equinox of 1850 to the mean equinox of any other date, and vice versa. This transformation is effected by means of the following equations, in which h and (3 denote the mean longitude and latitude of a celestial body at the epoch of 1850, and X and (3' denote the same co-ordinates referred to the mean equinox of any time t, before or after that epoch. cos p cos (a/— 0"— 4/)=cos ^ Cos (a,— 6") ~| cos p sin (X— 0"— 4/)=cos 0 Cos $" sin (X— 0")+sm (3 sin " I ( 573) sin p =sin (3 cos <£>" — cos (3 sin q>" sin (X — &') ) For reducing to the equinox of 1850 these equations take the following form: — cos (3 cos (A— 0")=cos p cos (a,'_0"— «J/) ] cos 13 sin (Ji— 0")=cos p cos

" sin p I (574) sin 3 =sin cos "+cos ^ sin $* sin (^— 0"— 40 J It is sometimes desirable to find the difference in the longitude or latitude of a star arising from the precession of the equinoxes. This difference may be found by the following formulae, the employment of which is perhaps more laborious than that of the preceding from which they were derived; but they may in ordinary eases be managed by the use of five-figure logarithms, whereas equations (573) and (574) require seven-figure logarithms to arrive at accurate results. fare tan = J tan ft sin ft" cos (a.-^ ff^-- gsm^ff^cos (3.— 0") sin (3,— 0") 1 T (575) \ ~ l+tan/3sin^ sin (?L— 6*)— 2 sin2 £ $>" sin2 (^-6") cos ,5 sin / sin (^- '=3-2 arc sm sin2 X=X'— ^'— ["arc tan = f tan p sin " cos (^'_0"-^')+2 sin^ ltf_caB&—ff'—M sin (^— y— ^*) 1 1 (57g) t " ~T:_ tan p sin ^iii^^F-^-S sin2 J ^>" sin2 (^'-0"-^') J cos p sin " sin (a'-0"-1J/)-2 sin /?' sin2 1 ^," ) (577) /3==/3'+2 arc sm j ^—^^-^ 182 SECULAR VARIATIONS OF THE ELEMENTS OF If, in these equations, we neglect quantities of the order sin2 " tan p cos (a,— 0") 1 P=p—^sm(^—er)', j 2, =X —y—f tan p cos (^'-0"-4') 1 P=p-WBm(X—ff'—V). } In these equations " is to be expressed in seconds of arc. 9. For the reduction of right ascensions and declinations all the necessary data depending on the motion of the equinox are contained in Table X. The quantities in the table are adapted to computation by the following formulae, in which a and 5 denote the mean right ascension and declination of a star at the epoch of 1850 ; and a' and # denote the same co-ordinates referred to the mean equinox of any time t before or after the epoch. cos 3' sin (a' — z' — jy)=cos 5 sin (a+ z — &) "j cos 5' cos (a'— sf— S')=cos 5 cos 0 cos (a+z— 3)— sin 5 sin 0 V (580) sin 5' =cos <5 sin 0 cos (a+z — S)+sin 8 cos© J For reducing to the mean equinox of 1850 these equations take the following form : — cos 5 sin (a+z — $)=cos 5' sin (a' — z' — &') ^ cos 5 cos (a-j-z— $)=cos # cos 0 cos (a — z1— $')+sin 0 sin 5' V f581) — sin 8 =cos 6' sin © cos (a' — z' — &') — cos © sin 5' J The first two of equations (580) will very readily give tan = ( tan 5 sin 0 sin (a+z — &)+2 sin2 J 0 sin (a+z — S) cos (a+z — &) ) "j t ~ 1— tan j sin 0 cos (a+z— £•)— 2 sin2 ^ 0 cos2 (a+z— £) J J Here the term z+z'+^' — $• appears as the general precession in right ascension common to, all the stars, and the last term of the equation gives the correction depending on the place of each particular star. In like manner the first two of equations (581) will give a=a'— (z+z'+S'— S)- fare tan = | tan y sin 0 sin (a'— z1— £')— 2 sin2 1 0 sin (a'—/— 3') cos (a'— z7— 3Q 1 "]/583\ ( 1+tan «' sin 0 cos (a'— z1— 3')— 2 sin2 1 0 co?(a'— z'— 3') J J For stars situated near the pole, equations (580) and (581) are preferable to (582) and (583), because when 5 or i' is equal to 90° the terms depending on tan 5 or tan X become infinite, and the equations (582) and (583) assume an indeter- minate form. But this is not the case with equations (580) and (581) ; for if 5=90° equations (580) will give sin 6'=cos0, and then we shall find cos (a — z' — $')= sin 0-j-cos f>'= — 1, whence a' — z' — 3'=18()°, from which a' is easily determined. THE ORBITS OF THE EIGHT PRINCIPAL PLANETS. 183 Rigorous expressions for the difference of the declinations depending on the precession are not readily deducible from equations (580) and (581) of sufficient simplicity to possess any advantage in computation over the original formulae, since 0 is not necessarily a small angle. 10. Having given the necessary formulae for reducing the position of a star which is given in longitude and latitude, or right ascension and declination, with refer- ence to the equinox of 1850, to that of any other date, and the reverse, we shall now give some examples by way of illustration. Example I. The mean place of polaris, at the beginning of the year 1850, was, a=16° 15' 22".815, 5=88° 30' 34".889; it is required to find its right ascension and declination at the beginning of 1950, 2050, and 2150, and also the maximum decli- nation of the star. In 1850 the planetary precession was equal to nothing, therefore 3 disappears from the second member of equations (580). For <=+100, Table X, gives z=0° 38' 23".482, z'=0° 38' 36".527, 0=0° 33' 24".811, and $=— 0° 0' 12".433. Whence a-|-z=160 53' 46".297 ; and the computation is as follows, using the first and second of equations (580): — a+z 8 a+z 0 0 sin 9.4633534 cos 8.4151046 cos 9.9808361 cos 9.9999795 sin 7.9876415 —sin 9.9998531rc cos 8 cos (a+z) cos ©=+0.02488400 - sin 8 sin 0 =—0.009716 16 cos 8' cos (a'— z'— S')l=+0.01516784 cos 8' sin (a' — z' — 3') =cos 8 sin (a+z) a'— z'— 3' =26° 29' 2V.70 38 24.10 a' =27° 7' 45".80 log. 8.3959202 cos 5' cos (a'— z' =89° 1' 44".277 " 8.1809237 " 7.8784580 tan^.6975343 cos 9.9518314 log. 8.1809237 cos 8.229092T Computing in the same way for (!=-)- 200 and <=-{-300, we shall find the values of a! and <$' as in the following table : — 89° 89 89 1' 27 28 44". 277 20.654 13.594 1950 27° 7' 45".80 2050 56 51 57.27 2150 120 32 36.31 The declination evidently attains a maximum value some time between 2050 and 2150. If we compute its place for (1=250, we shall find z=l° 35' 59".93, ^=1° 36' 26".63, 0=1° 23' 29".80, and 3'=— 21".80. 184 SECULAR VARIATIONS OF THE ELEMENTS OF Then we find a'=88° 13' 39".20 and #=89° 3? 32". 202. Now having the declination for <=200, <=250, and <=300, we very readily find that the maximum will take place when t=-\- 252.335, or a little before the middle of the year 2102. Computing the place of the star for this last value of t, we find a'=89° 53' 2".78 and 6'=89° 32' 32".973. The nearest approach of the pole to the star is therefore equal to 27 27".027. Example II. Let it be required to find the declination of Polaris when t= — 8000. For the value of t we get z=— 53° 0' 2".8, z'=— 54° 34' 37".2, B=— 39° 24' 51".5, and ^'=+2° 43' 48".3. a+z=— 36° 44' 40".0. Therefore the computation will stand as follows : — a-\-z 5 a-j-z 0 0 5 cos 5 cos (a-f-z) cos ©=+0.0161008 -sin 3 sin 0=4-0-6347087 cos # cos (a'— z7— y) =-(-0.6508095 cos # sin (a'— z'— $') a— z'— y = 358° 37' 49".7 =—.r>l 50 48.9 sin 9.7768805« cos 8.4151046 cos 9.9038016 cos 9.8879407 sin 9.802721 3n -sin 9.999*53 In log. 8.2068-Ki!) " ^.8025744 " T8134539 " 8.1919851re a'= 306° 47 a'— sf— $•' COS (V cos (a'— z7— 30 6' =49° 23' 0 tan 8.3785312» cos 9.9998759 log. 9.81345:',!) cos 9.81357SO From this calculation it follows that the present polar star wasr 8000 years ago, distant 40° 37 from the pole. Example III. In 1850 the place of the star a Cephei was a=318° 45', 3=+Ql° 56'; required its mean place when <=-)-5600 years. In this example we find z=+ 36° 55' *'+S'=4-370 35', 0=28° 44'. Then we get a'— ^— $'=249° 44', whence «'=287° 19' and #=+87° 50'. It therefore follows that the star a Cephei will be only about 2° distant from the pole in 5600 years ; it will therefore constitute the pole star of that period. THE ORBITS OF THE EIGHT PRINCIPAL PLANETS, 185 The equations for reducing from longitude cand latitude to right ascension and declination, and the reverse, are the following: — cos 6 cos a= cos (3 cos A ^ cos 8 sin a= cos t cos (3 sin 2, — sin e sin (3 ^ (584) sin <§= sin e cos (3 sin 2,-J-cos g sin (3 ) cos (3 cos X=cos 8 cos a ^ cos /? sin ?.=cos e cos £ sin a -[-sin e sin <$ V (585) sin (3= — sin e cos 5 sin a-(-cos e sin 5 J Example IV. The right ascension and declination of a Tauri (Aldebaran) in 1H50 was a=66° 49' 46".35, ,$=+16° 12' 11".(); required its longitude and latitude for t=— 4900, or, for the beginning of the year B. C. 3050. Since c=23° 27' 31".0, in 1850, equations (585) will give the longitude and latitude for the same epoch, as follows : — X=67° 41" 34'. 1, p=— 5° 28' 40".l. And for t=— 4900. Tables VIII and IX will give 6"=5° 22' 51".7, $>"=0° 41' 22".45, and ^'=—67° 40' 32".2. If these quantities be substituted in equations (573), we shall find X— 6"— ^'=62° 16'45".5, sin /S'=— 0.106061; whence we get /L'=359° 59' 5".0, and /5'=— 6° 5' 17".9. Therefore the star Aldebaran, at the beginning of the year B. C. 3050, was only 55".0 westward of the vernal equinox, measured on the ecliptic of that date, and coincided with the equinox in the year 3049 B. C. Example V. The right ascension and declination of Aldebaran being, as in the preceding example, at the beginning of 1850, required its right ascension and declination at the beginning of the year B. C. 3050. For t=— 4900, Table X gives z=— 31° 43' 26".4, z'=— 32° 44' 31".8, 0=— 26° 14' 1".4, and $'=+1° 31'0"0. If these quantities be substituted in equations (580), we shall find a'— z'— 3'=33° 42' 2".8, and sin.«y=— 0.0969604. Whence we get a'=2° 28' 31".0, and #=— 5° 33" 51'.0. We might have found these last quantities by means of equations (584) by sub- stituting for Ji, j3, the values of X and /-.', found in example IV, and using the value ofe corresponding to that epoch, which value is £=24° 3' 8*.2. From this computation we see that, although the star Aldebaran was 55" westward of the equinox when measured on the ecliptic, it was nearly 2| degrees eastward of the equinox when measured on the equator, and instead of being in a northern constellation then, as now, it was in reality in a southern constellation. 11. We will now determine the position of the pole of the equator. The longi- tude of the pole on the fixed ecliptic of 1850 at any time t will evidently be equal 24 April, 1S72. SECULAR VARIATIONS OF THE ELEMENTS OF to 90° — ^; and the latitude of the pole will also be equal to 90°— ;••/, or to the complement of the obliquity of the ecliptic of 1850, at the given time. If we then put /t=90° — 4,^/3 =90° — si, in equations (584), the resulting a and 6 will evidently be the right ascension and declination of the pole of the equator for the time /, referred to the equinox and equator of 1850. Calling the right ascension of the pole A, and the declination D, we shall evidently have cos D cos J.=sin e^ sin o// ) cos D sin A= — sin ex cos e /-(-cos ^ sin e,' cos i|/ > (586) sin Z)= cos e, cos e/-f-sin e i sin c/ cos 4- J f, denoting the obliquity in 1850, and e/ denoting the obliquity of the fixed ecliptic of 1850 at tlte time for which the computation is made. If we compare these equations with equations (571), we find sin A= — sin z, and sin Z>=cos 0. Therefore A=—z, and D=90°— 9. Now since z and 6 are already tabulated we can enter Table X with the argu- ment t, and take out the right ascension and declination of the pole by mere inspection. Example VI. What will be the right ascension and declination of pole 5600 years hence, when referred to the equinox and equator of 1850 ? Entering Table X with the argument <=-f 5600, we find z=36° 55' 6".4, and 0=28° 44' 0".89. Therefore .4=323° 4' 53".6, and Z>=61° 15' 59".ll. The mean place of a Cephei in 1850 was a=318° 45', and 2=61° 56'. This star will therefore be the pole- star of that period. THE ORBITS OP THE EIGHT PRINCIPAL PLANETS. 187 TABLE I. — Elements of the Orbit of Mercury. t e •B7 0 8.i5 47 47 7-4 6 c8 21.8 6~* _ 5OO 0.205601 74 20 36 47 7 56.6 7 6.43 47 34 47-7 58 39-9 400 0.205604 74 29 53 47 o 57.9 7 o 54-70 47 22 27.0 6 58 57-9 300 0.205608 74 39 10 46 53 59-3 7 o 43.07 47 10 6.5 6 59 15.7 200 0.205611 74 48 26 46 47 O.6 7 o 31.41 46 57 45-6 f 59 33-3 100 0.205615 74 57 43 46 40 1.9 7 ° !9-77 46 45 24.6 6 59 50.9 0 0.205618 75 7 o 46 33 3.2 7 o 8.16 46 33 3-2 7 o 8.2 + 100 0.205621 75 16 16 46 26 4.5 6 59 56.57 46 20 42.0 7 o 25.5 200 0.205624 75 25 33 46 19 5-7 6 59 45.00 46 8 20.4 7 o 42.6 300 0.205627 75 34 So 46 12 7.0 6 59 33-45 45 55 58.6 7 o 59.6 400 0.205630 75 44 7 46 5 8.2 6 59 21.92 45 43 36-6 7 i 16.4 500 0.205633 75 53 24 45 58 9-4 6 59 10.42 45 3i M-4 7 i 33-2 6oO 0.205636 76 2 41 45 51 10.6 6 58 58.93 45 18 52.0 7 i 49-7 7OO 0.205639 76 ii 58 45 44 ». 7 6 58 47.47 45 29.4 7 2 6.1 +800 0.205642 76 21 15 45 37 I2-8 6 58 36.02 44 54 6.7 7 2 22.4 188 SECULAR VARIATIONS OF THE ELEMENTS OP TABLE \\.-Elements of the Orbit of Venus. t e' w' 6' ¥ V ?l' — 6400 0.0104237 124° 30' 10" 92° 31' 48" 3° i8'33"-9 1 08° n' 5" 3° 19' 42". i 6300 0.0103630 124 42 13 92 16 15 3 18 45-6 '°7 39 55 3 '9 45-8 6200 0.0103023 124 50 12 92 o 41 3 >8 58.5 107 8 45 3 >9 49-4 6100 0.0102417 i 24 58 6 91 45 6 3 '9 '0-5 106 37 36 3 19 S3-' 6000 0.0101812 •25 5 54 91 29 30 3 19 22.2 106 6 27 3 19 56.8 5900 0.0101208 125 >3 37 91 >3 52 3 '9 33-7 105 35 20 3 20 0.5 5800 0.0100606 125 21 15 90 58 14 3 '9 45-0 105 4 '3 3 20 4. i 5700 0.0100005 125 28 47 90 42 34 3 '9 56-° 104 33 7 3 20 7.8 5600 0.0099405 125 36 14 90 26 53 3 20 6.7 IO4 2 I 3 20 11.5 5500 0.0098806 125 43 35 90 ii 10 3 20 17.2 103 3° 57 3 20 15.2 5400 0.0098209 125 50 51 89 55 27 3 20 27.4 102 59 53 3 20 18.9 53°° 0.0097613 125 58 2 89 39 43 3 20 37.5 102 28 50 3 20 22.6 5200 0.0097019 126 5 7 89 23 58 3 20 47.2 101 57 48 3 20 26.2 5100 0.0096426 126 12 6 89 8 ii 3 20 56.8 101 26 46 3 20 29.9 5000 0.0095834 126 19 o 88 52 24 3 21 6.0 ioo 55 45 3 20 33-6 4900 0.0095244 126 25 48 « 36 35 3 21 15.0 100 24 45 3 20 37.3 4800 0.0094654 126 32 30 88 20 46 3 21 23.8 99 53 46 3 20 41.0 4700 0.0094066 126 39 6 88 4 55 3 2.1 32-3 99 22 48 3 20 44.7 4600 0.0093480 126 45 36 87 49 3 3 21 40.6 98 51 50 3 20 48.4 4500 0.0092895 126 52 o 87 33 ii 3 21 48.6 98 20 53 3 20 52.1 4400 0.0092311 126 58 17 87 i? 17 3 21 56.4 97 49 57 3 20 55.8 4300 0.0091729 127 4 28 87 i 22 3 22 4.0 97 19 I 3 20 59.5 4200 0.0091149 127 10 33 86 45 26 3 22 II. 2 96 48 7 3 21 3.2 4100 0.0090571 127 16 32 86 29 29 3 22 18.3 96 17 13 3 21 6.8 4003 0.0089994 127 22 24 86 13 31 3 22 25.1 95 46 19 3 21 10.5 3903 0.0089419 127 28 9 85 .57 32 3 22 31.6 95 '5 27 3 21 14.2 3800 0.0088845 127 33 48 85 4' 32 3 22 37.9 94 44 35 3 21 17.9 3700 0.0088273 127 39 20 85 25 31 3 22 44-0 94 >3 44 3 21 21.6 3600 0.0687702 127 44 46 85 9 29 3 22 49.8 93 42 54 3 21 25.3 3503 0.0087133 '27 5° 5 84 53 26 3 22 55.3 93 "2 5 3 21 29.0 3400 0.0086566 «27 55 '7 84 37 22 3 23 0.6 92 41 16 3 21 32.6 33°3 o.oo8533O 128 0 21 84 21 16 3 23 5.7 92 10 28 3 21 36.3 3201 0.0085436 128 5 20 84 5 10 3 23 10.5 9i 39 4i 3 21 40.0 3100 0.0084873 128 10 ii 83 49 3 3 23 IS-' 9' • 54 3 2' 43- 6 3000 0.0084313 128 14 54 83 32 54 3 23 19-4 90 38 9 3 21 47.3 2903 0.0083755 128 19 29 83 16 45 3 23 23.4 90 7 24 3 21 50.9 2800 0.0083198 128 23 57 83 o 34 3 23 27.3 89 36 39 3 21 54.6 2700 0.0082643 128 28 17 82 44 23 3 23 30.8 89 5 56 3 21 58.2 2600 0.0382390 128 32 30 82 28 10 3 23 34.2 88 35 '3 3 22 1.9 2500 0.0081539 128 36 35 82 ii 57 3 23 37.3 88 4 31 3 22 5.5 2400 0.0080939 128 40 32 81 55 42 3 23 40. i 87 33 49 3 22 9. 1 2300 0.0380442 1 28 44 20 81 39 27 3 23 42.7 87 3 8 3 22 12.8 220O 0.0379896 128 48 o 81 23 10 3 23 45.0 86 32 28 3 22 16.4 2IOO 0.0079352 128 51 31 81 6 52 3 23 47.1 86 i 49 3 22 2O. O 2033 0.0078810 128 54 54 80 50 33 3 23 49.0 85 31 10 3 22 23.6 I9OO 0.0078271 128 58 8 80 34 14 3 23 50.6 85 o 32 3 22 27.2 I SOD 0.0077733 129 I 13 80 17 53 3 23 51.9 84 29 55 3 22 30.8 1700 0.0077197 129 4 9 80 i 31 3 23 53.0 83 59 18 3 22 34.4 1600 0.0076663 129 6 56 79 45 8 3 23 53.9 83 28 42 3 22 38.0 1500 0.0076132 "29 9 33 79 28 44 3 23 54.5 82 58 7 3 22 41.6 1403 0.0075602 129 12 I 79 12 19 3 23 54.9 82 27 33 3 22 45.2 1300 0.0075074 129 14 19 78 55 S3 3 2.) 55.0 81 56 59 3 22 48.7 I2O3 0.0074549 129 16 28 78 39 26 3 23 54.9 81 26 26 3 22 52.3 IIOO 0.0074027 129 18 26 78 22 58 3 23 54.6 80 55 54 3 22 55.8 IO33 0.0073506 129 20 14 78 6 30 3 23 53.9 80 25 22 3 22 59.4 900 0.0072987 129 21 52 77 49 59 3 23 53-i 79 54 5' 3 23 2.9 800 0.0072470 129 23 21 77 33 29 3 23 52.0 79 24 21 3 23 6.4 700 0.0071956 129 24 39 77 '6 57 3 23 50.6 78 53 52 3 23 10.0 600 0.0071444 129 25 46 77 o 24 3 23 49. i 78 23 23 3 23 13.0 500 0.0070934 129 26 44 76 43 5° 3 23 47.2 77 52 54 3 23 17.0 403 0.0070427 129 27 31 76 27 14 3 23 45.2 77 22 27 3 23 20.5 300 0.0069922 129 28 7 76 10 38 3 23 42.8 76 52 o 3 23 23.9 200 0.0069419 129 28 33 75 54 o 3 23 40:3 76 21 34 3 23 27.4 — 100 0.0068919 1 29 28 48 75 37 23 3 23 37.5 75 5" 8 3 23 30.8 o 0.0068420 129 28 52 75 20 4-5 3 23 34.4 75 20 42.9 3 23 34.4 + 100 0.0067924 1 29 28 45 75 4 2 3 23 31.1 74 So 18 3 23 37.8 203 0.0067431 129 28 28 74 47 20 3 23 27.6 74 >9 55 3 23 41.2 303 0.0066940 129 28 o 74 30 38 3 23 23.8 73 49 32 3 23 44-6 400 0.0066452 129 27 22 74 13 54 3 23 19.7 73 '9 9 3 23 48.0 500 0.0065966 129 26 33 73 57 8 3 23 15.4 72 48 48 3 23 51.4 600 0.0065483 129 25 33 73 40 22 3 23 ii. o 72 18 26 3 23 54.8 700 0.0065002 129 24 22 73 23 34 3 23 6.2 71 48 6 3 23 58.1 +800 0.0064523 129 23 o 73 6 45 3 23 1.2 71 17 46 3 24 1.5 THE ORBITS OF THE E1GUT PRINCIPAL PLANETS. 189 TABLE III. — Elements cf the Orbit of Mars. t ,111 or'" 8"' tf» 8,'" t,'" —6400 0.0869446 304° 22' 34" 63° 53' 22" 2° 17' 9". 7 86° 36' 50" 0 54' 44".° 6300 0.0870448 3°4 5° 33 63 40 30 2 16 50.0 86 2 43 54 39-3 6200 0.0871449 305 I 8 30 63 27 35 2 1 6 30. 2 85 28 32 54 34-6 6100 0.0872449 305 46 26 63 14 37 2 l6 10.2 84 54 19 54 29.9 6000 0.0873449 306 14 19 63 i 36 2 15 50.1 84 20 2 54 25.3 5900 0.0874448 306 42 1 1 62 48 33 2 15 29.8 83 45 4' 54 20. 6 5800 0.0875447 307 10 I 62 35 27 2 15 9-4 83 ii 17 54 16.1 5700 0.0876445 3°7 37 49 62 22 18 2 14 48.8 82 36 50 54 II-5 5600 0.0877443 3°8 5 35 62 9 6 2 14 28.1 82 2 ig 54 7-0 55°o 0.0878440 308 33 20 61 55 52 2 14 7-3 81 27 45 54 2.4 5400 0.0879437 309 i 2 61 42 35 2 13 40-3 80 53 7 53 58.0 53°° 0.0880433 309 28 43 61 29 14 2 13 25.1 80 18 26 53 53-5 5200 0.0881429 309 56 23 61 15 51 2 13 3-8 79 43 42 53 49-1 5100 0.0882424 310 24 o 61 2 24 2 12 42.4 79 8 55 53 44-7 5000 0.0883418 3io 51 36 60 48 55 2 12 20.8 ?8 34 4 53 40.3 4900 0.0884412 311 19 10 60 35 24 2 II 59.0 77 59 9 53 36-o 4800 0.0885405 3" 46 43 60 21 49 2 II 37-2 77 24 12 53 3i-7 4700 0.0886397 312 H 13 60 8 ii 2 II I5.I 76 49 n 53 27.4 4600 0.0887388 312 41 42 59 54 30 2 10 52.9 76 14 6 53 23.2 4500 0.0888378 3>3 9 10 59 40 47 2 10 30.6 75 38 59 53 i9-o 4400 0.0889367 313 36 35 59 27 o 2 10 8.1 75 3 48 53 14-9 4300 0.0890354 3H 3 59 59 13 I0 2 9 45-5 74 28 34 53 10.7 4200 0.0891341 3«4 31 21 S8 59 '7 2 9 22.7 73 53 '7 53 6.6 4100 0.0892327 314 58 42 58 45 21 2 8 59.8 73 17 56 53 2.6 4000 0.0893311 315 20 0 58 31 22 2 8 36.7 72 42 32 52 58.5 3900 0.0894294 315 53 «8 58 17 20 2 8 13.4 72 7 5 S2 54.6 3«oo 0.0895276 316 20 34 58 3 «5 2 7 5°-o 7i 31 35 52 50.6 3700 0.0896257 316 47 48 57 49 6 2 7 26.5 70 56 i 52 46.7 3600 0.0897236 3'7 15 ° 57 34 54 2 7 2.7 70 20 25 52 43-9 35°o 0.0898214 317 42 ii 57 20 39 2 6 38.9 69 44 44 52 39-1 3400 0.0899191 318 9 20 57 6 21 2 6 14.9 69 9 i S2 35-4 33oo 0.0900166 318 36 28 56 51 59 2 5 50-7 68 33 14 52 31-7 3200 0.0901140 3'9 3 34 56 37 34 2. 5 26.3 67 57 24 52 28.1 3100 0.0902113 319 3° 39 56 23 6 2 5 1.8 67 21 31 52 24.5 3000 0.0903084 3'9 57 42 56 8 34 2 4 37-2 66 45 35 52 21.0 2900 0.0904053 320 24 43 55 53 59 2 4 12.4 66 9 36 52 17-5 2800 0.0905021 320 51 43 55 39 21 2 3 47-4 65 33 33 52 14-0 2700 0.0905987 321 18 41 55 24 39 2 3 22.3 64 57 27 52 10.7 2600 0.0906952 321 45 38 55 9 53 2 2 57.0 64 21 18 52 7-3 2500 0.0907915 322 12 33 54 55 4 2 2 31.6 63 45 6 52 4.0 2400 0.0908876 322 39 26 54 40 12 2 2 6.0 63 8 51 52 0.8 2300 0.0909836 323 6 19 54 25 15 2 I 40.2 62 32 32 51 57-6 2200 0.0910793 323 33 10 54 10 15 2 I 14.3 61 56 ii 51 54-5 2100 0.0911748 323 59 59 53 55 12 2 0 48.2 61 19 46 51 5i-4 2000 0.0912702 324 26 47 53 40 4 2 0 21.9 60 43 18 51 48.4 igOO 0.0913654 324 53 33 53 24 53 59 55-5 60 6 47 5" 45-5 1800 0.0914603 325 20 18 53 9 38 59 28.9 59 30 13 51 42.6 1700 0.0915550 325 47 i S2 54 19 59 2.2 58 53 35 51 39-8 1600 0.0916496 326 13 44 52 38 56 58 35-2 58 16 55 5i 37-1 1500 0.0917440 326 40 24 52 23 29 58 8.2 57 40 n 51 34-4 1400 0.0918381 327 7 4 52 7 58 57 40.9 57 3 25 5i 3]-8 1300 0.0919320 327 33 4i 5« 52 24 57 '3-5 56 26 36 51 29.2 1200 0.0920257 328 o 18 5' 36 46 56 46.0 55 49 44 51 26.7 IIOO 0.0921192 328 26 52 51 21 4 56 18.3 55 12 50 51 24.3 IOOO 0.0922125 328 53 26 5t 5 18 55 50.4 54 35 S2 51 22. 0 900 0.0923056 329 19 58 So 49 27 55 22.3 53 58 52 51 19.7 800 0.0923984 329 46 29 50 33 33 54 54- 1 53 21 48 51 "7-5 700 0.09-24910 330 12 59 50 i? 34 54 25.7 52 44 42 51 :5-3 600 0.0925834 330 39 27 50 i 31 53 57-2 52 7 33 51 13.2 500 0.09266:5 331 5 54 49 45 23 53 28.5 51 30 21 51 I 1.2 400 0.0927674 331 32 19 49 29 n 52 59-6 5° 53 o Si 9-3 300 0.0928590 33' 58 43 49 12 55 52 30.5 5° J5 49 51 7-5 200 0.0929504 332 25 6 48 56 34 52 1.3 49 38 28 51 5-7 — IOO 0.0930415 332 51 28 48 40 8 5i 31-9 49 i 4 51 4.0 0 0.0931324 333 '7 47-8 48 23 36.8 5' 2.30 48 23 36.8 51 2.30 + 100 0.0932230 333 44 7 48 7 i 50 32.6 47 46 6 51 °-7 20O 0-0933134 334 10 24 47 50 20 50 2.6 47 8 33 5° 59-2 300 0.0934035 334 36 4i 47 33 34 49 32.5 46 3° 57 5° 57-8 400 - 0.0934934 335 2 56 47 I" 43 49 2.2 45 53 18 50 56.4 500 0-0935830 335 29 10 46 59 46 48 31-7 45 15 36 5° 55- ' 600 0.0936723 335 55 23 46 42 44 48 i.i 44 37 5° 5° 53-9 -_. P/> Q 700 0-0937613 336 2t 34 46 25 36 47 30-3 44 o 2 50 52.8 +800 0.0938502 336 47 44 46 8 22 46 59.2 43 22 n 5° 5'-7 190 SECULAR VARIATIONS OF THE ELEMENTS OF TABLE IV.— Elements of the Orbit of Jupiter. t ff ." fl/f *" V 1," — 6400 6300 6200 0.0393563 0.0394984 0.0396406 3° 10' 38" 3 '5 47 3 21 2 92° 20' 14" 92 21 55 92 23 45 ° 32' I4".9 3' 59-o 31 43- 1 124° 29' o" 124 5 5 123 41 9 0 41' I9".4 40 58.0 40 36-7 6100 0-0397830 3 26 25 92 25 42 31 27.2 '-3 J7 13 40 '5-4 6000 0.0399255 3 3' 55 92 27 48 31 'i-4 1^2 53 17 39 54- 1 5900 0.0400681 3 37 32 92 3° 2 3.o 55 -6 122 29 22 39 32-7 5800 0.0402109 3 43 l6 92 32 24 30 39-9 122 5 26 39 ii-4 5700 5600 0.0403538 o. 0404967 3 49 6 3 55 3 92 34 54 92 37 34 3° 24.3 30 8.7 121 41 31 121 17 36 38 50.0 38 28.7 5500 0.0406397 4 i 7 92 40 21 29 53-i 120 53 40 38 7-3 5400 0.0407827 4 7 18 92 43 !7 29 37-6 1 2O 29 45 37 46-0 5300 0.0409258 4 '3 35 92 46 22 29 22.2 120 5 50 37 24.6 5200 0.0410689 4 '9 58 92 49 36 29 6.9 "9 41 55 37 3.3 5100 5000 0.0412120 0.0413550 4 26 29 4 33 5 92 S2 57 92 56 28 28 51.6 28 36.4 119 18 o "8 54 5 36 41.9 36 20.6 4930 4800 0.0414980 0.0416410 4 39 48 4 46 36 93 o 7 93 3 55 28 21-3 28 6.3 118 30 io 118 6 15 35 59-2 35 37-8 4700 0.0417839 4 53 3' 93 7 52 2? 51-3 117 42 20 35 16.5 4600 0.0419267 5 o 32 93 ii 57 27 3^-5 117 18 24 34 55.1 4500 0.0420694 5 7 39 93 16 12 27 21.7 116 54 29 34 33-8 4400 0.0422121 5 H 52 93 20 34 27 7.0 116 30 34 34 12.4 43°o 0.0423546 5 22 IO 93 25 6 26 52.4 116 6 39 33 5'.° 4200 0.0424969 5 29 34 93 29 47 26 37.9 115 42 43 33 29.7 4100 0.0426391 5 37 4 93 34 36 26 23.S 115 18 48 33 8.3 4000 0.0427812 5 44 40 93 39 34 26 9.3 »4 54 S2 32 47.0 3900 0.0429231 5 S2 21 93 44 41 25 55-i 114 30 56 32 25.6 3800 0.0430648 608 . 93 49 57 25 41.0 »4 7 o 32 4.2 3700 0.0432064 680 93 55 22 25 27.1 "3 43 5 3i 42.9 3600 0.0433478 6 15 58 94 o 55 25 13.2 "3 19 9 31 21.6 35°° 0.0434890 6 24 I 94 6 38 24 59-5 112 55 12 31 0.2 0.0436300 6 32 io 94 12 29 24 46.0 112 31 16 30 38.9 33OO 0.0437708 6 40 23 94 18 30 24 32-5 112 7 20 30 17.6 3200 0.0439113 6 48 42 94 24 39 24 19.2 "I 43 23 29 56.3 3100 0.0440516 6 57 6 94 30 57 24 6.0 in 19 26 29 35-0 3000 0.0441917 7 5 35 94 37 23 23 S3-0 no 55 29 29 13.7 2900 0.0443315 7 '4 9 94 43 59 23 40.0 no 31 32 28 52.4 2800 0.0444711 7 22 48 94 50 43 23 27.3 no 7 34 28 31.1 2700 0.0446104 7 3' 3i 94 57 36 23 14.6 109 43 37 28 9.9 2600 0.0447494 7 40 20 95 4 37 23 2.2 109 19 39 27 48.6 2500 0.0448882 7 49 13 95 " 47 22 49-9 108 55 41 27 27.3 2400 0.0450265 7 58 H 95 '9 6 22 37.7 108 31 42 27 6.1 2300 0.0451645 8 7 '4 95 26 34 22 25.7 108 7 43 26 44.8 2 2OO 0.0453023 8 16 22 95 34 9 22 13.8 107 43 44 26 23.6 2100 0.0454398 8 25 34 95 4i 54 22 2.2 107 19 45 26 2.4 2000 0.0455769 8 34 50 95 49 46 21 50.7 106 55 46 25 4L3 I9OO 0-0457137 8 44 n 95 57 47 21 39-3 106 31 46 25 20.0 I800 0.0458501 8 53 37 96 5 56 21 28.2 106 7 46 24 58.8 1700 0.0459862 936 96 14 13 21 17.2 105 43 45 24 37-7 l6oo 0.0461220 9 12 41 96 22 38 21 6.4 105 19 44 24 16.5 I50O 0.0462574 9 22 19 96 31 12 20 55-7 i°4 55 43 23 55-4 I4OO 0.0463924 9 32 2 96 39 53 20 45-3 104 31 41 23 34.3 1300 0.0465271 9 41 48 96 48 42 20 35.1 104 7 38 23 13.2 I2OO 0.0466613 9 51 39 96 57 38 2O 25.0 103 43 35 22 52.1 I IOO 0.0467952 io I 34 97 6 43 2O 15.2 103 19 32 22 3I.O IOOO 0.6469286 io n 32 97 IS 54 20 5.5 102 55 28 22 IO.O 900 0.0470^16 io 21 35 97 25 14 19 56.1 102 32 23 21 48.9 800 0.0471942 io 31 42 97 34 40 19 46.8 102 7 18 21 27.9 700 0.0473264 io 41 53 97 44 H •9 37-8 ioi 43 13 21 6.9 600 0.0474581 io 52 7 97 53 54 19 28.9 101 19 7 20 45.9 500 0.0475894 II 2 25 98 3 42 19 20.3 loo 55 i 20 24.9 400 0.0477202 II 12 48 98 13 36 19 ii. 8 too 30 54 20 3.9 300 0.0478505 II 23 I4 98 23 38 19 3-6 loo 6 46 19 43-0 200 0.0479804 'i 33 43 98 33 46 18 55.6 99 42 38 19 22.1 IOO 0.0481098 ii 43 16 98 44 o 18 47.8 99 18 30 19 1.2 O 0.0482388 " 54 53-i 98 54 20.5 1 8 40.30 98 54 20.5 18 40.3 + 100 0.0483672 12 5 34 99 4 47 18 33.0 98 30 io 18 19.4 no 0.0484952 12 16 17 99 15 20 18 25.9 98 6 o 17 58.6 300 0.0486227 12 27 4 99 25 58 18 19.0 97 41 48 "7 37-8 400 0.0487496 12 37 55 99 36 42 18 12.4 97 17 36 17 17.0 0.0488760 12 48 49 99 47 31 18 6.0 96 53 23 16 56.2 600 0.0490020 12 59 46 99 58 25 17 59-8 96 29 9 "6 35-4 700 0.0491274 >3 io 47 loo 9 25 '7 53-9 96 4 55 16 14.7 +800 0.0492523 13 21 51 loo 20 29 17 48.2 95 40 39 '5 54-0 THE ORBITS OF THE EIGHT PRINCIPAL PLANETS. 191 TABLE V. — Elements of the Orbit of Saturn. t f my 6r 25 43 '9 o 52 54.66 5700 0.0478677 165 40 10 70 15 25 o 52 29.31 '24 53 57 ° 52 39-58 5600 0.0478368 165 45 36 70 17 20 o 52 22.79 124 4 19 o 52 24.75 55°° 0.0478059 165 51 2 70 19 16 o 52 16.27 123 14 26 o 52 10.18 5400 0.0477751 165 56 27 70 21 15 o 52 9.75 122 24 l8 0 5' 55-87 53°° 0.0477443 166 I 52 70 23 17 o 52 3.23 121 33 54 o 51 41.83 5200 0.0477136 166 7 16 7O 25 2O o 51 56.71 120 43 15 o 51 28.05 5100 0.0476829 166 12 39 70 27 26 o 51 50.19 IIO 52 21 o 51 14.54 5000 0.0476523 166 18 2 70 29 35 o 51 43.68 119 I 12 o 51 1.29 4900 0.0476217 166 23 24 70 31 46 o 51 37.18 i 18 9 49 o 50 48.30 4800 0.0475912 I 66 28 46 70 34 o o 51 30.68 117 18 ii o 50 35-59 4700 0.0475607 166 34 7 70 36 16 o 51 24.19 116 26 19 o 50 23.16 4600 0-0475303 166 39 27 70 38 34 o 51 17.70 US 34 13 o 50 ii. oo 4500 0.0474999 1 66 44 46 70 40 56 0 51 II. 21 114 41 54 o 49 59.14 4400 0.0474696 166 50 5 70 43 19 0 5« 4-73 113 49 21 o 49 47.56 4300 0-0474394 166 55 24 70 45 46 o 50 58.24 I'2 56 35 o 49 36.28 4200 0.0474092 167 o 42 70 48 15 o 50 51.75 112 3 36 o 49 25.29 4100 0-047379' "67 5 59 70 50 46 o 50 45.27 in 10 24 o 49 14.60 4000 0.0473490 167 ii 15 70 53 20 o 50 38.80 no 17 o o 49 4.21 3933 0.0473190 167 16 31 70 55 57 o 50 32.34 109 23 24 o 48 54.12 3803 0.0472891 167 21 47 70 58 36 o 50 25.88 108 29 37 o 48 44-34 3703 0.0472592 167 27 I 71 i 18 o 50 14.43 107 35 38 o 48 34.87 3600 0.0472294 167 32 15 7' 4 3 o 50 13.00 106 41 28 o 48 25.71 35°o 0.0471997 167 37 29 71 6 51 o 50 6.59 i°5 47 7 o 48 16.86 3400 0.0471700 167 42 42 71 9 41 o 50 o. 18 104 52 36 o 48 8.33 33°° 0.0471405 167 47 54 7' 12 34 o 49 53-78 i°3 57 56 o 48 o. 1 1 3200 0.0471110 '6? 53 5 7' «5 30 0 49 47-39 103 3 5 o 47 52.20 3100 0.0470816 167 58 16 71 18 29 o 49 41.01 102 8 6 o 47 44.61 3000 0.0470523 168 3 27 71 21 30 0 49 34-63 101 12 58 o 47 37-33 2900 0.0470231 168 8 37 71 24 34 o 49 28. 26 100 17 42 o 47 30.38 2800 0.0469939 168 13 46 71 27 41 o 49 21.90 99 22 19 o 47 23.74 2700 0.0469648 168 18 55 71 30 51 o 49 15.56 98 26 48 o 47 17-43 2600 0.0469358 168 24 3 7' 34 3 o 49 9.23 97 31 10 o 47 11.44 2500 0.0469069 168 29 10 71 37 '8 o 49 2.91 96 35 27 0 47 5-77 2400 0.0468780 168 34 17 71 40 36 o 48 56.60 95 39 37 o 47 0.43 2300 0.0468493 I 68 39 23 7i 43 57 o 48 50.31 94 43 42 o 46 55.42 22O3 0.0468206 168 44 29 71 47 21 o 48 44.03 93 47 43 o 46 50.72 •too 0.0467921 I 68 49 34 7' So 47 o 48 37-77 92 51 39 o 46 46.35 MOO 0.0467636 '68 54 39 7' 54 16 o 48 31.52 9' 55 32 o 46 42.32 1900 0.0467352 i 68 59 43 7« 57 48 o 48 25.28 90 59 22 o 46 38.62 1800 0.0467069 169 4 47 72 i 24 o 48 19.05 90 3 9 o 46 35.24 1703 0.0466787 169 9 50 72 5 i o 48 12.83 89 6 53 o 46 32. 19 1600 0.0466506 169 14 52 72 8 42 o 48 6.63 88 10 36 o 46 29.47 1500 0.0466227 169 19 54 72 12 26 o 48 0.45 87 14 18 o 46 27.08 1400 0.0465948 169 24 55 72 16 12 o 47 54.28 86 18 o o 46 25.01 1300 0.0465670 169 29 56 72 20 2 o 47 48.13 85 21 41 o 46 23.27 1 200 0.0465393 169 34 56 72 23 54 o 47 41.99 84 25 25 o 46 21.84 1 100 0.0465117 169 39 56 72 27 50 o 47 35-88 83 29 10 o 46 20.75 IOOO 0.0464842 I69 44 55 72 31 48 o 47 29.79 82 32 56 o 46 19.99 900 0.0464568 169 49 54 72 35 49 o 47 23.72 81 36 45 o 46 19.55 800 0.0464295 169 54 52 72 39 54 o 47 17.66 80 40 36 o 46 19.44 700 0.0464023 169 59 49 72 44 I o 47 11.63 79 44 29 o 46 19.65 600 0.0463752 170 4 46 72 48 II o 47 5.61 78 48 28 o 46 20.17 500 0.0463482 «7o 9 43 72 52 24 o 46 59.61 77 52 32 O 46 21. OI 400 0.0463213 170 14 39 72 56 40 0 46 53-63 76 56 40 o 46 22.17 300 0.0462945 '7° '9 34 73 o 59 o 46 47.67 76 o 55 o 46 23.64 2OO 0.0462679 i 70 24 29 73 5 2' o 46 41.74 75 5 '4' o 46 25.4? — IOO 0.0462413 170 29 24 73 9 46 o 46 35-83 74 9 4i o 46 27.53 o -f-IOO 0.0462149 0.0461886 '70 34 17-7 170 39 ii 73 H 13-4 73 '8 44 o 46 29.93 o 46 24.06 7j 14 '3-4 72 18 54 o 46 29.93 o 46 32.64 no 0.0461624 170 44 4 73 23 18 o 46 18.21 71 23 42 o 46 35.65 300 0.0461363 170 48 56 73 27 54 o 46 12.38 70 28 39 o 46 38.96 400 0.0461103 170 53 48 73 32 33 o 46 6.57 69 33 46 o 46 42.57 500 0.0460844 1 70 58 40 73 37 «5 o 46 0.79 68 39 i o 46 46.47 600 0.0460587 >7> 3 3' 73 42 o o 45 55-03 67 44 26 o 46 50.67 , l°° 0.0460330 171 8 21 73 46 48 o 45 49.30 66 50 o o 46 55.16 4.800 0.0460074 171 13 ii 73 5« 39 0 45 43-58 65 55 44 0 46 59-93 THE ORBITS OP THE EIGHT PRINCIPAL PLANETS. 19,3 TABLE Nil.— Elements of the Orbit of Neptune. t eva »"' jra f"J !,*» *,m —6400 0.0088883 49° 26' l" 130° 29' 8" 0 46' 14". 21 149° 3'' 7" 2° 22' I2//.02 6300 0.0088924 49 26 35 130 28 47 46 14.90 149 12 59 2 21 41.70 6200 0.0088963 49 27 10 130 28 27 46 15-59 148 54 52 2 21 11.29 6100 0.0089006 49 27 45 130 28 6 46 16.28 148 36 45 2 20 40. 78 6000 0.0089047 49 28 21 130 27 45 46 16.98 148 i 8 38 2 2O 10.17 5900 0.0089088 49 28 57 13° 27 25 46 17.67 148 o 30 2 19 39-47 5800 0.0089130 49 29 33 130 27 4 46 18.36 147 42 23 2 19 8.66 57°° 0.0089172 49 30 10 130 26 44 46 19.05 147 24 16 2 18 37.76 5600 0.0089214 49 30 48 130 26 24 46 19.74 147 6 8 2 18 6.77 5500 0.0089256 49 3' 25 130 26 3 46 20.43 146 48 i 2 17 35-69 5400 0.0089299 49 32 4 13° 25 43 46 21.12 146 29 54 2 i? 4-5° 53°° 0.0089342 49 32 42 130 25 22 46 21., Si 146 ii 46 2 16 33.22 5200 0.0089385 49 33 21 I3O 25 2 46 22.51 H5 53 39 2 16 1.85 5100 0.0089428 49 34 I 130 24 42 46 23.21 145 35 31 2 15 3°-39 5000 0.0089472 49 34 41 130 24 21 46 23.91 145 17 24 2 14 58.84 4900 0.0089515 49 35 2' 130 24 I 46 24.61 144 59 16 2 14 27.2O 4800 0.0089559 49 36 2 130 23 4I 46 25.31 144 41 9 2 13 55-47 4700 0.0089603 49 36 44 I3O 23 20 46 26.01 H4 23 i 2 13 23.65 4600 0.0089647 49 37 25 130 23 o 46 26.72 144 4 53 2 12 51.75 4500 0.008969! 49 38 8 130 22 40 46 27.43 143 46 46 2 12 19.76 4400 0.0089736 49 38 50 130 22 2O 46 28.14 143 28 38 2 II 47.69 4300 0.0089780 49 39 33 I3O 22 0 46 28.85 143 10 30 2 II 15-53 4200 0.0089824 49 40 17 130 21 39 46 29.57 142 52 22 2 IO 43.30 4100 0.0089868 49 41 I 130 21 19 46 30.28 142 34 14 2 IO IO.99 4000 0.0089913 49 41 45 130 20 59 46 31.00 142 16 6 2 9 38.60 3900 0.0089957 49 42 30 130 20 39 46 31.72 141 57 58 2 9 6.12 3800 0.0090002 49 43 15 I3O 2O ig 46 32.44 14' 39 49 2 8 33.56 3700 0.0090046' 49 44 i 130 19 59 46 33.16 14! 21 40 2 8 0.92 3600 0.0090091 49 44 47 130 19 39 46 33-89 Hi 3 32 2 7 28.20 35°° O.OO9OI35 49 45 33 130 19 19 46 34.62 140 45 23 2 6 55.40 3400 0.0090180 49 46 20 130 18 59 46 35-35 140 27 14 2 6 22.51 33°o 0.0090225 49 47 7 130 18 39 46 36.08 14° 9 5 2 5 49-54 3200 O.OO9O27O 49 47- 54 130 18 19 46 36.81 139 5° 56 2 5 16.49 3100 0.0090315 49 48 42 •3° '7 59 46 37-54 139 32 46 2 4 43-37 3000 0.0090361 49 49 3° '3° 17 39 46 38.28 139 H 3° 2 4 10.17 2900 O.OO9O4O6 49 50 18 130 17 19 46 39.01 138 56 27 2 3 36-89 2800 0.0090452 49 5i 6 13° '7 ° 46 39-75 138 38 17 2 3 3-53 2700 0.0090497 49 51 56 130 16 40 46 40.49 138 20 6 2 2 30. 10 2600 0.0090542 49 52 45 130 16 20 46 41.23 138 I 56 2 I 56.59 2500 0.0090587 49 53 35 130 16 o 46 41.97 137 43 45 2 I 23.01 2400 0.0090633 49 54 26 130 15 40 46 42.71 137 25 34 2 O 49.36 2300 0.0090678 49 55 l6 130 15 21 46 43-45 137 7 23 2 ' 0 15.63 22OO O.OO9O724 49 56 7 130 15 i 46 44.20 136 49 12 59 41-83 2IOO 0.0090769 49 56 59 130 14 41 46 44-95 136 31 I 59 7-96 2000 O.OO9O8l5 49 57 51 130 14 21 46 45.70 136 12 49 58 34-01 1900 0.009o86l 49 58 43 130 14 I 46 46.45 135 54 37 57 59-99 1800 0.0090907 49 59 36 130 13 42 46 47.20 135 36 25 57 25.90 1700 0.0090953 5° o 3° 130 13 22 46 47-95 135 18 13 56 51-74 1600 0.0090999 50 I 23 130 13 2 46 48.71 135 o o 56 I7-51 I5OO O.OO9IO45 50 2 17 I3O 12 42 46 49-47 134 41 47 55 43-20 1400 O.OOglOgi 50 3 12 130 12 22 46 50.23 134 23 33 55 8.84 1300 0.009II37 5° 4 7 130 12 3 46 50.99 134 5 20 54 34-4° I2OO 0.0091184 5° 5 2 13° I' 43 46 51-75 133 47 5 53 59-91 I 100 O.OO9I23O 50 5 58 130 II 23 46 52-51 133 28 51 53 25.35 IOOO O.OO9I276 50 6 54 13° ii 3 46 53.28 133 10 36 52 50-72 900 O.OO9I322 5° 7 5° 130 10 43 46 54.04 132 52 20 52 16.04 800 0.0091369 50 8 47 130 10 24 46 54.81 132 34 5 5i 4i-29 700 0.0091415 5° 9 45 130 10 4 46 55.5f 132 15 48 51 6.48 600 O.009I46I 5° I0 43 130 9 44 46 56.36 131 57 32 50 31.60 500 O.OO9I5O7 50 ii 41 130 9 24 46 57.13 131 39 15 49 56.66 400 0.0091554 5O 12 40 13° 9 4 46 57.91 131 20 58 49 2 i . 66 300 0.0091600 5° 13 39 130 8 45 46 58.69 131 2 41 48 46.60 200 0.0091646 5° H 38 130 8 25 46 59-47 130 44 23 48 11.47 100 0.0091692 5° '5 38 13° 8 5 47 0.25 130 26 4 47 36-29 0 0.0091739 50 16 38.6 13° 7 45-3 47 1.04 13° 7 45-3 47 l-°4 -f-ioo 0.0091785 5° i? 39 130 7 25 47 1.82 129 49 26 46 25.73 2OO 0.0091832 50 18 40 130 7 6 47 2.61 129 31 6 45 50.37 300 0.0091879 50 19 42 130 6 46 47 3-40 129 12 46 45 H-95 400 0.0091926 50 20 44 130 6 26 47 4-19 128 54 25 44 39-47 500 0.0091972 50 21 46 130 6 6 47 4.98 128 36 3 44 3-94 600 O.OO92OI9 50 22 49 130 5 46 47 5-77 128 17 41 43 28.35 7OO 0.0092066 50 23 52 130 5 27 47 6.56 127 59 18 42 52-7I -J-8OO ; O.OO92II3 5° 24 55 13° 5 7 47 7-36 127 40 55 42 17.01 25 May, 1872. 194 SECULAR V A K 1 A T I O N S OF THE ELEMENTS OF - TABLE VIII. — Elements of the Orbit of the Earth. t e" - 6" f — 8000 0.0192055 75° 23' 45"-8 13° 12' 44.3 0 8' 9. 1 14 7900 0.0191870 75 4i 40.1 12 57 32-4 7 17-243 7800 0.0191682 75 59 35-6 12 42 20. 6 6 25.364 7700 0.0191489 76 17 32-4 12 27 9.0 5 33-48o 7600 0.0191294 76 35 30-6 12 n 57-5 4 4I-59I 75oo 0.0191096 76 53 30.1 ii 56 46.2 3 49.698 7400 0.0190894 77 ii 30.9 n 4i 35-' 2 57.802 73oo 0.0190689 77 29 32.9 ii 26 24.2 2 5.904 7200 0.0190482 77 47 36.2 ii n 13-4 i 14.004 7100 0.0190272 78 5 40.7 10 56 2.8 o 22.105 7000 0.0190058 78 23 46.4 10 40 52.3 o 59 30.207 6900 0.0189841 78 41 53-3 10 25 42.1 o 58 38.312 6800 0.0189620 79 o 1.4 10 10 32.0 o 57 46.420 6700 0.0189396 79 18 10.7 9 55 22.0 o 56 54-533 6600 0.0189170 79 36 21. i 9 40 12.3 o 56 2.650 6500 6400 0.0188941 0.0188708 79 54 32.7 80 12 45.5 9 25 2.7 9 9 53-3 o 55 10-773 o 54 18.904 6300 0.0188473 80 30 58.6 8 54 44-0 o 53 27.044 6200 0.0188234 80 49 13.1 8 39 34-9 o 52 35- '94 6100 0.0187992 81 7 28.8 8 24 25.9 o 51 43-354 6000 0.0187747 81 25 45.7 8 9 17-2 o 50 51.524 5900 0.0187499 81 44 3-9 7 54 8.6 o 49 59.707 5800 0.0187248 82 2 23.3 7 39 o.i o 49 7.902 5700 0.0186994 82 20 44.0 7 23 1-9 o 48 16.120 5600 0.0186737 82 39 5-9 7 8 43.8 o 47 24.347 55oo 0.0186477 82 57 29.1 6 53 35-8 o 46 32.590 54oo 0.0186214 8.1 15 53-7 6 38 28.0 o 45 40.852 53oo 0.0185948 83 34 19.6 6 23 20.4 o 44 49-I32 5200 0.0185678 83 52 46.7 6 8 13.0 o 43 57-431 5100 5000 0.0185405 0.0185130 84 n 15.0 84 29 44.6 5 53 5-7 5 37 58.6 o 43 5-750 o 42 14.090 4900 0.0184852 84 48 15.4 5 22 51.7 o 41 22.453 4800 0.0184570 85 6 47-5 5 7 44-9 o 40 30. 840 4700 4600 0.0184285 0.0183998 85 25 20.8 85 43 55-2 4 S2 38-3 4 37 3'-8 o 39 39-253 o 38 47.692 4500 0.0183708 86 2 30.8 4 22 25.5 o 37 56-158 4400 0.0183415 86 21 7.6 4 7 19-4 o 37 4.652 43°° 0.0183119 86 39 45.6 3 52 13-4 0 36 I3-I75 4200 0.0182820 86 58 24.8 3 37 7-6 o 35 21.729 4100 0.0182518 87 17 5-i 3 22 1.9 o 34 30.315 4000 0.0182213 87 35 46.7 3 6 56.4 o 33 38-93' 3900 0.0181905 87 54 29.6 2 5' 5'.' 0 32 47-577 3800 3700 3600 0.0181595 0.0181282 0.0180965 88 13 13.7 88 31 59.0 88 50 45.6 2 36 46.0 2 21 4I.O 2 6 36.2 0 3' 56-254 o 31 4.962 o 30 13.706 3500 0.0180645 89 9 33-4 I 51 31.6 o 29 22.487 3400 0.0180323 89 28 22.4 • I 36 27.1 o 28 31.301 33°o 0.0179998 89 47 12.6 I 21 22.8 o 27 40.153 3200 0.0179670 90 6 4.0 I 6 18.6 o 26 49.047 3100 0-0179339 90 24 56.8 o 51 14.6 o 25 57.981 — 3000 0.0179005 90 43 51.0 o 36 10.8 o 25 6.958 THE ORBITS OF. THE EIGHT PRINCIPAL PLANETS. 195 TABLE VIII. — Elements of the Orbit of the Earth — continued. / e" •".'' 6" *" — 3000 0.0179005 90° 43' 5i".o o° 36' io".8 o° 25' 6^.958 2900 0.0178668 91 2 46.5 0 21 7.1 o 24 15.977 2800 0.0178329 91 21 43.4 o 6 3.6 o 23 25.040 2700 0.0177987 91 40 41.6 359 51 0.2 0 22 34.149 2600 0.0177642 91 59 41.1 359 35 57-o 0 21 43-304 2500 0.0177294 92 18 42.0 359 20 53.9 0 20 52.504 2400 0.0176943 92 37 44-2 359 5 5i-o 0 20 1.748 2300 0.0176589 92 56 48.0 358 5° 48.3 o 19 11.038 22OO 0.0176233 93 15 53-3 358 35 45-7 o 18 20.378 2100 0-0175875 93 35 0.0 358 20 43.2 0 17 29.769 2000 0.0175513 93 54 8.3 358 5 41.0 o 16 39.210 1900 0.0175148 94 13 18.0 357 5° 38-9 o 15 48.703 I800 0.0174781 94 32 29.3 357 35 36-9 o 14 58.248 I7OO 0.0174411 94 51 42.0 357 20 35.1 o 14 7.844 l6oO 0.0174038 95 10 56-3 357 5 33-5 o 13 17.494 1500 0.0173662 95 30 1 1. 6 356 50 32.0 0 12 27.200 1400 0.0173284 95 49 28. i 356 35 3°-7 o ii 36.961 1300 0.0172903 96 8 45.6 356 20 29.6 o 10 46.779 1200 0.0172520 96 28 4. 1 356 5 28.6 o 9 56.657 1 1OO 0.0172134 96 47 23.9 355 5° 27-8 o 9 6.592 IOOO 0.0171745 97 6 44.9 355 35 27.2 o 8 16.586 900 0-0171353 97 26 7.6 355 20 26.7 o 7 26.642 800 0.0170959 97 45 3'-7 355 5 26.4 o 6 36.759 700 0.0170562 98 4 57-5 354 50 25.7 0 5 46.937 000 0.0170163 98 24 24.8 354 35 25-3 o 4 57.178 500 0.0169762 98 43 S3-6 354 20 25.4 o 4 7-484 400 0.0169367 99 3 24.0 354 5 25.7 o 3 I7-854 300 0.0168949 99 22 55.9 353 5° 26.1 O 2 28.290 200 0.0168539 99 42 29.4 353 35 26.6 o i 38.792 100 0.0168127 100 2 4.4 353 20 27.4 o o 49.362 oo 0.0167712 100 21 41.0 353 5 28.0 o o o.ooo + 100 0.0167295 loo 41 18.9 172 50 28.6 o o 49.293 2OO 0.0166875 ioi o 58.5 172 35 29.9 o i 38.516 300 0.0166452 ror 20 39.5 172 20 31.2 O 2 27.667 4OO 0.0166027 101 40 22.0 172 5 32-6 o 3 '6-747 500 0.0165599 IO2 O 6. 1 171 50 34.1 o 4 5-754 600 0.0165169 IO2 19 51.8 171 35 35-8 o 4 54-688 800 0.0164302 102 59 27.8 171 5 39-8 o 6 32.333 1200 0.0162535 104 19 0.7 170 5 48.4 o 9 46.700 1600 2OOO 0.0160731 0.0158888 105 39 0.3 106 59 24.9 169 5 59.8 168 6 13.6 o 12 59-799 o 16 11.576 2400 32OO 0.0157009 0.0153141 108 20 18.9 i" 3 35-3 167 6 29.3 165 7 6.9 o 19 21.978 o 25 38.45 4000 4800 0.0149133 0-0144993 113 49 3.6 116 36 49.1 163 7 51.8 161 8 46.0 o 31 48-79 o 37 52.70 5600 0.0140723 119 26 59.1 159 9 46.5 o 43 49.70 6400 0.0136340 122 2O I.O 157 I0 53-9 o 49 39-49 72OO +8000 0.0131843 0.0127243 125 16 6.1 128 15 28.5 155 '2 7-3 153 13 26.4 o 55 21.67 * o 55.94 196 S E C U L A R V A II I A T I 0 N S OF THE ELEMENTS OF TABLE IX.— Precession of the Equinoxes and Obliquity of the Ecliptic. t 4 'J +' I —8000 —112° 24' 57".5 24° 24' 5 ' "-3 —109° 55' 42.2" 24° 15' 24".8 7900 III 2 3-0 24 23 '3-° 108 34 12.4 24 15 n. 8 7800 109 39 3-5 24 2' 35-7 107 12 41.6 24 14 57-9 7700 108 15 59.0 24 '9 59-4 IO5 50 9.8 24 H 43-3 7600 106 52 49.6 24 18 24.3 104 29 37.0 24 14 28.0 7500 i°5 29 35-4 24 16 50.1 '°3 8 3.3 24 14 ii. 8 7400 104 6 16.6 24 15 17.2 101 46 28.5 24 >3 55.° 73°° 102 42 53.1 24 '3 45-5 100 24 52.6 24 13 37-4 7200 101 19 25.3 24 12 15.1 99 3 '5-7 24 13 19.0 7100 99 55 53-' 24 10 45.8 97 41 37.6 24 12 59.9 7000 98 32 16.8 24 9 18.0 96 19 58.3 24 12 4O. I 6900 97 8 36.2 24 7 5«-4 94 S8 17-9 24 12 19.6 6800 95 44 5'-7 24 6 26.3 93 36 36.5 24 II 58.4 6700 94 21 3-2 24 5 2.5 92 14 54.0 24 II 36.4 6600 92 57 n. o 24 3 40-2 90 53 10.2 24 II 13.8 6500 9« 33 IS-" 24 2 19.3 89 3' 25.3 24 10 50.4 6400 90 9 15.8 24 i o.o 88 9 39.2 24 10 26.4 6300 88 45 12.9 23 59 42.2 86 47 51.7 24 10 1.7 6200 87 21 6.9 23 58 25.9 85 26 3.2 24 9 36.4 6100 85 56 57.6 23 57 »-2 84 4 13.4 24 9 10-3 6000 »4 32 45-3 23 55 58-i 82 42 22.3 24 8 43- 6 5900 83 8 30.1 23 54 46.5 8 1 20 '30. i 24 8 10.2 5800 Si 44 12.1 23 53 36.5 79 58 36.5 24 7 48.2 5700 80 19 51.3 23 52 28.0 78 36 41.6 24 7 "9-5 5600 78 55 28.1 23 51 21.2 77 "4 45-3 24 6 50.2 5500 77 3» 2-3 23 50 16.1 75 52 47-7 24 6 20.3 5400 76 6 34.3 23 49 «2-7 74 3° 48.7 24 5 49.8 S300 74 42 4-' 23 48 10.9 73 8 48.3 24 5 "8-7 5200 73 »7 3i-9 23 47 10.8 71 46 46.5 24 4 47-0 5100 7i S2 57-8 23 46 12.4 70 24 43.3 24 4 14.6 5000 70 28 21.9 23 45 15.8 69 2 38.5 24 3 41-7 4900 69 3 44-2 23 44 20.7 67 40 32.2 24 3 8.2 4800 67 39 5-' 23 43 27.4 66 18 24.5 24 2 34.2 4700 66 14 24.3 23 42 35-6 64 56 15.0 24 i S9-6 4600 64 49 42.4 23 4' 45-6 63 34 4-2 24 i 24.5 4500 63 24 59.3 23 40 57.2 62 II 51.9 24 o 48.8 4400 62 o 15.2 23 40 10.6 60 49 38.0 24 o 12.6 43°° 60 35 30.1 «3 39 25.5 59 27 22.6 23 59 35-8 4200 59 10 44.2 23 38 42.1 58 5 5'4 23 58 58.6 4100 57 45 57-5 23 38 0.2 56 42 46.6 23 58 20.8 4000 56 21 IO.3 23 37 20.0 55 20 26.0 23 57 42.6 3900 54 56 22.5 23 36 41-3 53 58 3-7 23 57 3-8 3800 53 31 34-4 23 36 4-3 52 35 39-6 23 56 24.6 3700 52 6 46.0 23 35 29.8 51 12 13.9 23 55 44-9 3600 50 41 57.6 23 34 55-0 49 50 46.4 23 55 4-8 35°° 49 >7 9-1 23 34 22.6 48 28 17.2 23 54 24.2 34°o 47 S2 20.7 23 33 S1-8 47 5 46.1 23 53 43-2 33°° 46 27 32.4 23 33 22.4 45 43 "3-2 23 53 «-8 3200 45 2 44-5 23 32 54-5 44 20 38.4 23 52 2O.O 3100 43 37 56-8 23 32 28.0 42 58 1-5 23 5' 37-7 — 3000 — 42 13 9-7 23 32 2.9 — 41 35 22.8 23 5° 55-' • THE ORBITS OF THE EIGHT PRINCIPAL PLANETS. 197 - TABLE IX. — Precession of the Equinoxes and Obliquity of the Ecliptic — continued. i * V i —3000 —42° 13' 9.7 23° 32 2.9 —41° 35 22.8 23° So 55-i 2900 40 48 23.2 23 31 39-2 40 12 42.3 23 50 12. 1 2800 39 23 37.5 23 31 16.9 38 49 59.8 23 49 28.7 2700 37 58 52.4 23 30 55-9 37 27 15.3 23 48 45.0 2600 36 34 8.3 23 30 36.1 36 4 29.0 23 48 0.9 2500 35 9 25.1 23 30 17.6 34 4i 40.7 23 47 16.5 2400 33 44 42.95 23 30 0.4 33 18 50.41 23 46 3«-7 2300 32 20 1.86 23 29 44.3 3i 55 57-95 23 45 46.5 2200 30 55 22.04 23 29 29.4 30 33 3.47 23 45 1-4 2100 29 3° 43-5° 23 29 15.6 29 10 6.89 23 44 15-5 2000 28 6 6.29 23 29 2.86 27 47 8.21 23 43 29.56 1900 26 41 30-59 23 28 51.20 26 24 7.52 23 42 43.32 1800 25 16 56.32 23 28 40.52 25 i 4.64 23 41 56.83 1700 23 52 23.62 23 28 30.80 23 37 59.64 23 41 10.09 1600 22 27 52.57 23 28 22.01 22 14 52.52 23 40 23.23 1500 21 3 23.21 23 28 14.08 20 51 43.23 23 39 36-05 1400 19 38 55.62 23 28 7.00 19 28 31.79 23 38 48.69 1300 18 14 2g.g7 23 28 0.72 18 5 18.21 23 38 1.17 1200 16 50 6.00 23 27 55-23 16 42 2.47 23 37 13-46 1 100 15 25 44.02 23 27 50-47 15 18 44.50 23 36 25.56 IOOO 14 i 24.01 23 27 46.26 13 55 24.33 23 35 37.46 90O 12 37 6.01 23 27 42.72 12 32 1-95 23 34 49-26 800 ii 12 50.06 23 27 39-75 ii 8 37.37 23 34 0.98 700 9 48 36.20 23 27 37-31 9 45 10-55 23 33 12.55 6oO 8 24 24.452 23 27 35.352 8 21 41.494 23 32 23.960 500 7 o 14.858 23 27 33-823 6 58 10.204 23 3' 35.302 4OO 5 36 7-442 23 27 32.680 5 34 36-670 23 30 46.562 300 4 12 2.229 23 27 31.874 4 ii 0.886 23 29 57.750 2OO 100 2 47 59.240 — i 23 58.492 23 27 3«-357 23 27 31-082 2 47 22.850 —i 23 42.555 33 29 8.877 33 28 19.956 O o o o.ooo 23 27 31.000 o o oo.ooo 33 27 31.000 + 100 + I 23 56.225 23 27 31.063 + i 23 44.818 33 26 42.020 2OO 2 47 50-175 23 27 31-223 2 47 31.903 23 25 53.027 300 4 ii 41.846 23 27 31.432 4 Ii 21.255 23 25 4.034 400 5 35 31-238 23 27 31.640 5 35 >2.875 23 24 15.054 500 6 59 18.351 23 27 31.800 6 59 6.765 23 23 26.097 600 8 23 3.192 23 27 31.863 8 23 2.924 23 23 37.175 800 II IO 26.IO 23 27 31.51 ii ii 2.05 23 20 59.49 1200 16 44 45.24 23 27 27.53 1 6 47 27.49 23 17 44.78 1600 22 18 30.18 23 27 16.70 22 24 29.04 23 14 32.43 2000 27 51 43.22 23 26 56.1 28 2 6.45 23 II 22.40 240O 33 24 27.47 23 26 23.0 33 40 19-39 23 8 15.7 3200 44 28 45.5 23 24 29. i 44 58 29.9 23 2 14.7 4000 55 32 2.9 23 21 17.2 56 18 55.9 22 56 34.9 4800 5600 66 35 7-2 77 38 52.4 23 16 33-7 23 10 10.4 67 4' 31-2 79 6 6.5 22 51 21.2 22 46 38.8 6400 88 44 16.7 23 2 4.8 90 32 30.1 22 42 32.0 720O + 8000 99 52 19.0 + IH 3 56.2 22 52 2O.6 22 41 7-7 IO2 0 25.8 + "3 29 33-3 22 39 4.8 22 36 21.0 - 198 SECULAR VARIATIONS OF THE ELEMENTS OF • TABLE X. — For Precession in Right Ascension and Declination. • i z' z+z' e 3 — 8000 —S30 o/ 2". 8 —54° 34' 37"- 2 —107° 34' 40».o —39° 24' 5 ' "-5 +2° 43' 48".27 7900 52 >7 37-9 53 5« 58-' 106 9 36.0 39 3 3°-2 2 42 13.99 7800 5' 35 «7-9 53 9 «9-7 104 44 37-6 38 41 50.0 2 40 35-30 7700 5° 53 3-° 52 26 42.0 103 19 45-o 38 19 51-0 2 38 52-32 7600 50 10 53.0 5' 44 5-' 101 54 58.1 37 57 33-4 2 37 5-'7 7500 49 28 48.0 51 i 29.0 loo 30 17.0 37 34 57-4 2 35 '3-97 7400 48 46 48.0 50 18 53.9 99 5 41-9 37 "2 3-4 2 33 18.85 73°° 48 4 53.0 49 36 20. o 97 4i '3-° 36 48 51.6 2 3: 19-92 7200 47 23 3-1 48 53 47-4 96 16 50.5 36 25 22.2 2 29 17.35 7100 46 41 18.3 48 II 16.0 94 52 34-3 36 ' 35-6 2 27 11.25 7000 45 59 38-6 47 28 46. i 93 28 24.7 35 37 3>-8 2 25 1.74 6900 45 '» 3-8 46 46 17.6 92 4 21.4 35 '3 >'-2 2 22 48.98 6800 44 36 34 ' 46 3 50.9 90 40 25.0 34 48 34-i 2 20 33-11 6700 43 55 9-3 45 21 25.8 89 16 35.1 34 23 40.6 2 18 14.29 6600 43 '3 49-5 44 39 2.5 87 52 52-0 33 58 3'-° 2 15 52-63 6500 42 32 34-8 43 56 41- ' 86 29 15.9 33 33 5-7 2 13 28.32 6400 41 51 25.0 43 '4 21-9 85 5 46.9 33 7 24.9 2 II 1.44 6300 41 10 20.0 42 32 4.7 83 42 24.7 32 41 28.8 2 8 32.18 6200 40 29 19.9 41 49 49.7 82 19 9.6 32 15 17.7 2 6 0.77 6100 39 48 24.7 41 7 37-° 80 56 1.7 3' 48 5"-7 2 3 27.23 6000 39 7 34-3 40 25 26-7 79 33 i-o 31 22 II.3 2 0 51.77 5900 38 26 48.9 39 43 "8-8 78 J° 7-7 3° 55 l6-6 58 I4-56 5800 37 46 8.2 39 i '3-4 76 47 21.6 3° 28 7.9 55 35-72 5700 37 5 32-2 38 19 10-4 75 24 42.6 30 o 45.4 52 55-44 5600 36 25 0.8 37 37 'o-3 74 2 ii. i 29 33 9-4 5° 13-84 55°° 35 44 34-o 36 ss 12-8 72 39 46.8 29 5 20. o 47 3'-'3 5400 35 4 n-7 36 13 18-3 71 17 30.0 28 37 17.8 44 47-44 S300 34 23 539 35 3» 26-8 69 55 20.7 28 9 2.9 42 2.93 5200 33 43 40-5 34 49 38-4 68 33 18.9 27 40 35-6 39 17-77 5100 33 3 3i-5 34 7 52-9 67 ii 24.4 27 ii 56.0 36 32.12 5000 32 23 26.8 33 26 io-7 65 49 37-5 26 43 4-6 33 46-13 4900 3« 43 26.4 32 44 3i-8 64 27 58.2 26 14 14 30 59.98 4800 3« 3 3°- ' 32 2 56.0 63 6 26. i 25 44 46.9 28 13.80 4700 30 23 37.9 31 21 23.6 61 45 1-5 25 15 21. 1 25 27.78 4600 29 43 49-7 3° 39 54-5 60 23 44.2 24 45 44-4 22 42.05 4500 29 4 5.6 29 58 29. i 59 2 34.7 24 >5 57-0 19 56.77 4400 28 24 25.2 29 17 6.9 57 4« 32." 23 45 59-3 17 12. II 43°° 27 44 48.8 28 35 48.5 56 20 37.3 23 >5 5'-4 14 28.22 4200 27 5 16.1 27 54 33-6 54 59 49-7 22 45 33-7 II 45.26 4100 26 25 47.2 27 13 22.4 53 39 9-6 22 15 6.2 9 3.36 4000 25 46 21.8 26 32 14.8 52 18 36.6 21 44 29.4 6 22.69 3900 25 7 °-i 25 51 10.7 50 58 10.8 21 13 43-5 3 43-39 3800 24 27 41.6 25 10 10.7 49 37 52.3 20 42 48. 7 i 5.62 37°° 23 48 26.2 24 29 14.7 48 17 40.9 20 II 45.3 o 58 29.51 3600 23 9 14.0 23 48 22.5 46 57 36.5 '9 4° 33-5 o 55 55-21 35«> 22 30 5.2 23 7 34-' 45 37 39-3 19 9 13.6 o 53 22.87 3400 21 50 59.3 22 26 49.7 44 '7 49-0 '8 37 45-9 o 50 52.63 33«> 21 II 56.5 21 46 g.I 42 58 5-6 18 6 10.5 o 48 24.62 3*°° 20 32 56.4 21 5 32-5 41 38 28.9 17 34 27.8 o 45 58.99 3100 19 53 59- 1 20 24 59.8 40 18 58.9 17 2 38.0 o 43 35-87 —3000 —19 15 4.4 —19 44 31.1 —38 59 35-5 — 16 30 41.3 +o 41 >5-38 THE ORBITS OF THE EIGHT PRINCIPAL PLANETS. 199 TABLE X. — For Precession in Right Ascension and Declination — continued. t z 2' •+*' e & — 3000 —19° IS 4-4 —19° 44 31.1 "I -38° 59' 35"- 5 — 16° 30' 4i".3 4-0° 4i' 15. "38 2900 18 36 12.5 «9 4 6-5 37 40 19.0 15 58 38.1 o 38 57.66 2800 17 57 22.9 18 23 45.9 36 21 8.8 15 26 28.5 o 36 42.82 2700 17 18 35.8 17 43 29.4 35 2 5.2 14 54 12.8 o 34 30-99 2600 16 39 50.8 17 3 16.8 33 43 7-6 14 21 51.3 o 32 22.29 2500 16 i 8.2 16 23 8.2 32 24 16.4 13 49 24.2 o 30 16.84 2400 15 22 27.5 15 43 3-7 31 5 3'-2 13 16 51.7 o 28 14.77 2300 14 43 49.0 '5 3 3-o 29 46 52.0 12 44 14.2 o 26 16.14 2200 14 5 12.2 14 23 6.4 28 28 18.6 12 II 31.8 o 24 21.04 2IOO 13 26 37.1 13 43 "3-9 27 9 5i-o II 38 44.8 0 22 29.62 2000 12 48 3.7 '3 3 25.3 25 51 29.0 11 5 53-5 o 20 42.00 igOO 12 9 31.9 12 23 40.6 24 33 12.5 10 32 58.1 o 18 58.24 I800 II 31 1.5 ii 43 59.8 23 15 «-3 9 59 58.8 o 17 18.45 1700 10 52 32.5 II 4 22.9 21 56 55.4 9 26 56.0 o 15 42.70 I60O 10 14 4.6 10 24 49.7 20 38 54.3 8 53 49-8 o 14 ii. 08 I5OO 9 35 38-2 9 45 20-3 19 20 58.5 8 20 40.5 o 12 43.68 1400 8 57 12.6 9 5 54-6 18 3 7-2 7 47 28.4 o ii 20.55 I30O 8 18 47.8 8 26 33.0 16 45 20.5 7 14 13-7 o 10 1.77 I2OO 7 40 23.7 7 47 '4-9 15 27 38.6 6 40 56.6 o 8 47-43 I 100 7 2 0.5 7 8 0.4 14 10 0.9 6 7 37-5 o 7 37-59 IOOO 6 23 37.8 6 28 49.4 12 52 27.2 5 34 l6-5 o 6 32.30 900 5 45 iS-8 5 49 41. 9 " 34 57-7 5 o 53.9 o 5 31.61 800 5 6 54-0 5 10 37-8 10 17 31.8 4 27 3°-° o 4 35.58 700 4 28 32.5 4 3i 37-3 9 o 9.8 3 54 4-9 o 3 44.26 600 3 50 11.032 3 52 39-776 7 42 50.808 3 20 39.064 0 2 57.696 S00 3 «« 49-738 3 *3 45-575 6 25 35.313 2 47 12.593 O 2 15.920 40O 2 33 28.307 2 34 54-553 5 8 22.860 2 13 45.771 o i 38.971 1 3°0 i 55 6-727 i 56 6.585 3 5« J3-3'2 i 40 18.850 o I 6.879 200 i i 6 44.874 i 17 21.582 2 34 6.456 i 6 52.081 o o 39.673 100 — o 38 22.631 —o 38 39-455 — i 17 2.086 — o 33 25.715 +0 o 17.373 0 o o o.ooo 0 0 0.000 o o o.ooo O 0 O.OOO o o o.ooo 4-100 +o 38 23.482 +0 38 36.527 4- i 17 0.009 +o 33 24.811 —o o 12.433 200 i 16 47.594 I 17 10.547 2 33 58-141 i 6 48.471 — o o 19.917 300 i 55 12.512 I 55 42-112 3 50 54.624 I 40 10.724 — o o 22.444 400 2 33 38-37° 2 34 "-277 5 7 49-647 2 13 31.327 — o o 20.013 500 3 I2 5-23 3 12 38-1° 6 24 43.33 2 46 50.04 — o o 12.626 600 3 5° 33-13 3 5i 2.64 7 4i 35-77 3 20 6.62 — o o 0.292 800 5 7 33-36 5 7 46.46 10 15 19.82 4 26 32.15 4-0 o 39.178 I20O 7 4' 52-11 7 40 52.87 15 22 44.99 6 38 46.37 0 2 56.756 1600 10 16 41.14 10 13 38-94 20 30 20.08 8 49 57-76 o 6 30.865 2000 12 52 7.6 12 46 14.2 25 38 21.8 10 59 50.14 o ii 18.674 2400 15 28 17.5 15 18 48.0 30 47 5-5 13 8 7.12 o 17 16.358 3200 20 43 12.7 20 24 34.2 41 7 46.9 17 18 49.10 o 32 21.726 4000 26 2 13.6 25 32 26.2 51 34 39-7 21 19 51.28 o 50 59-337 4800 31 26 0.6 30 43 56.8 62 9 57.4 25 9 o.oo I 12 10.125 5600 36 55 6-4 36 o 38.9 72 55 45-3 28 44 0.89 I 34 44-92 6400 42 29 53.8 41 24 i.o 83 53 54-8 32 2 40.02 i 57 27.37 7200 +8000 48 10 33.3 53 57 1-6 46 55 21.8 52 35 46.6 95 5 55-' 4-106 32 48.1 35 2 45-43 +37 42 10.22 2 18 55.87 4-2 37 46.67 UNIVERSITY OF CALIFORNIA LIBRARY BERKELEY Return to desk from which borrowed. Thb book is DUE on the last date stamped below. 7.JuI'52JPA JUN2 8 "• 4Jan'56R£Y ro LD APR 5 1961 p»=:c'D v MAY 1 1 1962 i c LD 21-95«-ll,'50(2877sl6) UP SE MAY 6 1 LD DEC 1 2 1967 RECEIVED DEC 5 '67 L.OA/N w? U C BERKELEY LIBRARIES THE UNIVERSITY OF CALIFORNIA LIBRARY,-,