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MESSENGER OF MATHEMATICS.

PRODUCT-DETERMINANTS OF THE SAME
FORM AS ONE OF THEIR FACTORS.

By Thomas Muir, LL.D.

1. From Lagrange's interesting observation that the

quadrinomial

x~ + pif + qz
1 + pqio

2

is homogenetic,—that is to say, that the product of two such

expressions is a similar expression—Samuel Roberts was led

to the equally interesting result

= (x'+py 2+ qz' + pqiD*)',

and to the corresponding identity for the case of a determinant

of the eighth order. Roberts might, however, have taken

further advantage of his opportunity ; and on this and other

accounts it seems desirable to have a re-examination of the

subject. In doing so, it is best to treat the case of the fourth

order in what may seem unnecessary detail, the reason being

that the space requisite for the proper treatment of the quite

similar case of the eighth order would be excessive.

2. Instead of Roberts' determinant, let us consider the

more general form

x py



Dr. Afirir, Product-determinants of

Performing on this the operations

row, x he, ro\v
a
x ca, row

4
x ah,

we obtain

aW x E =

x hey caz ahw

— hey hex — ahew ahcz

— caz ahew cax —ahcy

— ahw —ahcz ahcy ahx (!•

— a determinant skew with repect to the principal diagonal.

From this, by noting that the final expansion can contain no

term9 involving an odd number of diagonal elements, we
learn that R

t
is not altered by changing x into — x.

Again, by performing the operations

row, x (— c), row
3
x (c), row

4
x (- 1),

there results

x hey acz

cy — ex acw

— cz hew ex

w cz —cy -x (!!•)

3*. 22 =

abiv

— acz

-hey

— x

—a determinant skew with respect to the secondary diagonal,

and thus independent of the sign of iv.

Lastly, by interchanging the 2nd row with the 1st, and

the 4th with the 3rd, we obtain



the sameform as one of their factors.

3. Considerable variety is possible in the expressing of R
k

by means of a skew determinant. Thus, instead of (I.), we

•night substitute
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nnd, the multiplication being performed in row-by- row fashion,

find the product to be

X bcY caZ abW

-Y X -aW aZ

-Z bW X -bY
- W -cZ cY X

where X = x% -f bcyr) + cazt, + abwco,

)' = — .' t) 4- yZ — azo) 4- awf,

Z= — xZ+ l>rju)+ z£— blVT),

W=- xa> - cy£+ czy+ w%
;

( IV.)

in other words, the form of the product is exactly the same
as that of the first factor.

5. It is seen that A', I
7
, Z, II* may be easily remembered

in tbe form

(1st row ofRj£, 77, £, &>),

-(2ndrowofi*J „ ),

- (3rd row of R£ „ ),

-(4th row of R& „ ). (V.)

Also that Y, Z, W, being equal to

— (xrj — £?/) — a (zci) — %iv),

-(xZ-ty) -b(wr]-coy),

- (xto - *» - c (yZ, - 170),

respectively, must vanish when

£, V, Z, a> = », ?/, 2, W.

Making this substitution, we have, from §4,

{R
A
(x, y, z, w)Y= (x'+ bcy'

i +caz'
2 + abw1

)

4

,

and therefore

x bey caz abw

— y x — aw az

— z bio x —by

— 10 —cz cy x (VI.)

= (x*+ bey'
2+ caz'+ abw')'

1
.



the sameform as one of their factors, o

6. Using (VI.) along with (IV.), we obtain

( x*+bcy*+caz
9

-{- alio') (£' +W+ ca?+ aba?)

= X 2 + bc Y*+caZ'+ ab W\ (VII.)

which degenerates into Lagrange's identity, mentioned in § 1,

on putting a or b or c eqnat to 1, and is seen to be included

in the same by putting io = cw and &> = c&>'.

7. From the result of the substitution made in § 5 it

follows that the elements of the a<ljn(jate of i?
4
(x, y, z, w) are

proportional to the elements of R^ (x, — y, — z, — w) (VIII.)

This, however, is best viewed as a speeial ease of the

theorem that If*

a, a
3

a
3

a
t

h h K K

C
!

C
2

C
*

C
4

d, d. d, d.

|ft ft ft ft

<?, 9, ?3 ?4

r r »". r
4

*3 S
4

tf

#
i7

H

then the ratio of any element of the adjugate o/Kb/ylJ to

the corresponding element of !p,q,i'
3
sj is constant, namely, is

equal to
j

a,b
s
c
3
d, 1 -v- H. (IX.)

For proof, let us take B
3
as an example of an element of

the adjugate in question. Then

HB
3
=

«1 «2

c
x

c,

d, da

. a,

H b.

a, a
2 2 l

a
1
+ g1

a
f
+0,a,+ &a

4
a

A

C
X

C
* 1x

C
X + ?1C1 + 23C3 +^ C

4

* This hypothesis involves also the identity

H .

\p iqirisl \.\ct
}
b.
2
cidi \

- H .

. H

. . 11

so that the result might have been stated in a dual form.
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a, a
2

= 23 |«A<yU

and therefore

*, ^ <?A \

d
i

d
2 q-A d

.

B
3 + <23 = \

a
i
h

2
C
3
d*\+H'

as was to be proved.
If, in addition, it be given that

(which, of course, need not imply that any element of the one

is equal to the corresponding element of the other), we obtain,

from the first datum,

\

aAcA\=E^

and thence B=b
3
.m~K (X.)

8. Conversely to (IX.), if |p r q„>yj have its elements pro-

portional to the elements of the adjugate <2/"|a
1
h
8
u
3
cl
4 |,

the common
ratio being p, then

liw^JHA.B^Aiy,
-ta,bMr-p4

;

and, if addition, it be given that |p,q/3
sj = |a,b

a
c
3
dj we shall

have

P =|a 1
b,c

3
d
4
|4(2^. (XL)

9. The determinant of the eighth order, R
&
say, is

x. )CX. acx r abx. dx< bcdx
6

aedx
7

abdx
s

-x
2



the sameform as one of theirfactors. 7

and last column changed in sign
; the minor occupying the

bottom left-hand quarter is fi
4
(— x

s , x
6
, xv x

8 ) with its last

column changed in sign ; and the minor occupying the remaining

quarter is B
t
(x., x , .r

7 , xB
) with a <l annexed as a multiplier

to each element and the signs of the last row changed.

The properties of i?
s

are exactly similar to those of E
t

.

(a) It can be expressed as a skew determinant with any one

of the eight x's confined to the diagonal, (b) It is not altered

in substance by changing the sign of one or more of the .Vs.

(c) If i?
8
(x

t
, a?

8, ..., x
s)

be multiplied by the conjugate of

^s(^i'
—

&u ~~ £3' •••' — £8^'
^ ,e Product-determinant is of the

same form as R , the new variables X„ Xr ..., X being

(1st row of -BJfc, £„ ..., £,),

-(2nd row of B£ „ ),

- (8th row of BJi „ ).

(7) The value of B
a

is

(.'V
+ bcx* + cax

3
+ abx' + dx* + bcdx

6
* + acdx* + abdxj)\

(e) The octonomial which is the fourth root of fi
s

is homo-
genetic, the fact in detail being

{x* + bcx* + cax*+ abx* + dx' + bcdx*+ acdx* + abdx
s
")

. (£,* + bci; + ca^ + abZ
t

' + dt; + bcd%* + acd£* + abd?*)

{x£
x
+ bcx

2^ + cax£
3
+ abxJZ4

+ dxJZ5+ bcdxJZ6+ acdx£7
+ abdxJZ8

)*

+ be (x£-x£
2
+ ax&- UX&+ dx£- dx£

6
+ adx& - adxfij

+ ca (x£
t
- bx£

3
- xg

3
+ bx^+ dxfis

- bdx£
6
- dx£

7
+ bdx^J

+ a b (x& + cx
3
L-cx£

3
-x£-dx£.- cdx£

6+ cdx
6K7
+ dx

5Q 3

+ d (x.^ - bcx£
3
- acx£

3
+ abx£

A -xfch
+ bcx£

6
+ acx£

7
-abx£

sY

+ bcd(x£
l
+ v&+ axg

3+ axfit-x£s
- z&-ax&-ax&y

+ acd (xA - *>*&

+

xh - hx& - *& » hx&-*&+ fo^y

+ abd (x& + cx£
2
- cx£

3
- x£

A
+ x£

b
+ cx£

6
- cx£

7
-x^)\

(f) The elements of the ad jugate of R^x^ .... x
s
) are pro-

portional to the conjugate elements of
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10. When a = 5 = c=l, the four-line R is a skew orthog-

onant: and so also is the eight-line B when a = b = c= d=l.
Further, the sums of the rows of the former are the factors of

the determinant

x y z iv
'

y x w z

z w x y

\w z y x

and the sums of the rows of the latter are the factors of the

like determinant (so-called Puchta's)

•'',
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that, in 1800, Souillart, probably from seeing a suggestive

re-statement of Euler's old paper in the Nouvelles Annates,

vol. w.. pp. 403—407, published, in the same serial (vol. xix.,

pp. 320—322), the related determinant;* and that, as already

stated. Roberts, in 1870 {Mess, of Math., vol. viii., pp. 138—
14D), did the same tor the more general result of Lagrange.

The existence of a theorem like Euler's for the sum of

eight squares was first established by J. T. Graves, the date

apparently being 1843; and the non-existence of a corre-

sponding theorem for the sum of sixteen squares was more or

less satisfactorily proved by J. R. Young, in H-U7
; but on this

special branch of the subject a paper by S. Roberts, prefaced

by a historical sketeh. in the Quart. Jour, of Math., vol. xvi.,

pp. 159—17H, will be found fully informative.

Capetown, S.A..

9th March, 1913.

NOTES ON SOME POINTS IX THE
INTEGRAL CALCULUS.

By G. H. Hardy.

XXXVI.

On the asymptotic values of certain integrals.

1. In this note I propose to apply the ideas and methods

of Paul du Bois-Reymond's Infinitarcalcul, which I have

discussed at length elsewhere, f to the determination of the

asymptotic values of certain integrals of the types

rx r°^

-<p (t) e'W) dt, <p (t) eW) dt,

where <p and ^ are logarithmico-exponential functions (7-

functions). I shall confine myself to the case in which the

integral up to infinity is divergent or oscillatory, so that we

* See also Briosclns attempt, in 1855, in Crelles Journ., vol. Hi., pp. 133—141

;

and my commentary on it in the Mess, of Math , vol. xxxvii., pp. 107—111.

t " Orders of infinity." dnnb. Math. Tracts, No. 12 ;
" Propel ties of logarithmico-

exponential functions," Prnc. Land. Math. Soc , vol. x., p '

Lirichlet's Integrals," Quarterly Journal, vol. xliv., p. 1.

54 ;
" Oscillating
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must take x as the upper limit. The reader will find no

difficulty in obtaining the corresponding results in the other

case.

2. When tp = 0, this problem is solved completely in my
paper in the Froc. Lond. Math. Soc. already referred to.* If

\p ^1 or \p no A, e*> tends to a limit, and the results are the

same as when t/, = 0. If <£ -< ip\ the integral up to infinity is

convergent ; and if ~ A\\i it is easy to see that

J

0e»> dt ~ AeW.

We may therefore suppose ip >- 1, <p >-
\f/'.

The integral <j> dt

is certainly divergent. We write

4>dt-<t>.

Then we can determine (in virtue of the results of my former

paper) an ^-function (j>
]

such that <£ ~ 0„ and Z<J> no l(pv
We must now distinguish three cases, accoiding as

(a) ^<fa>
3

(b) xp~Al<P, (c) ^>M>.

3. In case (a), we have

I

feW dt=C+ Oe^ — • $i//V'J' eft.

Now tty'ety <fc = *i//<ft.

But, since \p -< Al> no fy^ we have ;// -< <p
t '

I
<j>

t
,
and so

/•x /-a; /•»

I <P\P'dt~ $$dt = o \'<j>
l
'dt = o((i>

i
) = o(<P).

Thus

( 1

)

0ef^ G?« no $g»^.

* I.e., pp. 73-75.
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4. In Case {b), we have

l^Altp, ^ = Al<P+xP
x OA,-^),

r
x c

x

<pe i{l
/ dt.= QM&etyidt

<J>l+-4t

comist. + -r-.e^i - - —r.
\
^^Ail't %^\dt.

l+At l+Ai] ri

The last integral is

[
Q^'etydt = ofvh'dt = i'^'dt

= o \ 0,'^ = o(0,) = o(*).

rx (p\+Ai <pe*&
(2) 0e'^(^~- —r-.etyi =

5. Case (c) requires a slightly more complicated treatment.

In this case, we write

We shall prove that

we*)*-®.
and it will then follow that

(3)
J

tpe^dt ~ Ac**.

In the first place, it is clear that

M(»*-°Ja(*)*- (»'

and so
J

<pe^dt= (-£,
J

;



,., ]/,_ iiardy, >
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and the Bame result, of course, is true of the real and imagin-

ary parts of the integral* Again,

and /,' - 0, we have 0/i// -<
tf>„

and therefore

Hence we may write

a(*)-*
where ij-<1. As q is an L-function, it is ultimately mono-

tonic, say. for t>%. Then

f.a(|)»**-(f.
+f> e"**

= 0(1) + v (s) <j>cos\pdt.

Henc° ia l(i')
c°s^/(=

"(-f)-

The corresponding integral containing a sine may be dis-

cussed in a precisely similar way; and so the proof of (3)

is completed.

(I. We have thus found the complete solution of the

problem for integrals ;f it may be stated as follows.

Determine, by the rules given in "Properties of logarithmico-

ponentialfunctions," an L-function
<f> x

such that

(
j>i

^j <$> = (j>dt.

* For all this argument compare "Oscillating Dirichlet's Integrals," pp. 14—19.

the integral up to infinity is not convergent. When it is,

analogous results hold for the integral

)a>

(pert dt.

As I stated in § 1, I leave the formulation of these results to the reader.
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Then the integral tye
x^ dt is asymptotically equivalent to one

or other of the functions

according as

xP<l<t>
{

, \P~AIfr, ^ >/</>,.

7. We are naturally led to consider the corresponding

problem for the series of the type

n

It would be futile to expect a complete solution here. It is

clear, for example, that the behaviour of such a series as

n

Se«'V2 (a>0)

is not determined by any such simple rules as the foregoing;

it depends, in fact, in an exceedingly intricate way, on the

arithmetic nature of a*.

The problem mav, however, be solved in a number of

interesting cases in which it is possible to establish asymptotic

relations between the series and the corresponding integral.

A number of results in this direction have been proved by
Dr. Bromwich and inyself,f and for the moment I confine

myself to referring to them. I propose, in another note,

to reconsider the question with the aid of the methods of

the Infinitarcalciil.

* See Hardy and Littlewood. " Some problems of Diophantine Approximation,"

E

transactions of the Fifth International Congress of Mathematicians, Cambridge,
912.

f Bromwich, Proc. Lond. Math. Soc, vol. vi., p. 327 : Hardy, ibid., vol. ix.,

p. 126.



( U )

ON FINITE \ IJCIJ AX GROUPS OF
SUBSTITUTIONS, ESPECIALLY

OF ORTHOGONAL SUBSTITUTIONS.

By //. Bryon Heywood.

The following work was done at the suggestion of Prof.

Harold Hilton, who is responsible for §2. Its main object

is the classification of finite Abelian groups of orthogonal

substitutions, which will be found in §4. This is preceded

in S I by a summary of some general results on finite Abelian

groups which arc necessary for the later articles, in §2 by

the simultaneous reduction of such groups of substitutions

to a special canonic form, and in § 3 by some results upon
these groups depending'upon § 1 and §2.

§ 1. Remarks on finite Abelian groups.

Consider any finite Abelian group, G, and let a base*

of Q be A, B, (J, ... K, where these letters represent permu-
table operations of order a, b, c, ..., k respectively. Then
there exists between A, B, C, ..., K no relation of the form

A«'BVC<
,

...KV = E (1),

where the integers a, b', c, ..., k' are less than the corre-

sponding orders, E is the identical operation, and all operations

of the group can be represented by the formula

e = AaBW...K* (2)

,a = 0, 1, 2, ...,a-l

j8 = 0, 1, 2, ..., 6-1

7=0,1,2, .... c-1 .

>/c = 0, 1, 2, ...,*- I

once and once only, the order of the group being

n = abc...k.

For 6 we shall use the notation

and we note that two operations follow the law of combination

(—
\ a

Ge '_ ,'« + «' # + #' 7 + 7'

, ^)-..(4).
k

We here adopt the definition given in Weber's Algebra, vol. ii., p. 48.



Dr. ITet/wood, On finite Abelian groups of substitutions. 15

If any of these fractions are improper, the integral parts may
be rejected. The base will be

A=(\ja, 0, 0, ..., 0)>

B={ o, ljb, o, ..., o)

G'=( 0, 0, l/c, ..., 0)\ (5),

K={ 0, 0, 0, ..., 1/*)/

It is easy to deduce other bases from the one we have chosen.

Let

where pv p 2 , p3 , ...
; q x

, q.r q3
, ... ; r„ r

2
, r

3
, ... are the prime

invariants; pv p v , p3
, ... being powers ot the prime p] qv q^,

q3
, ... powers of the prime q, and so on.

All these prime invariants occur once and once only as

factor- in the denominators of the fractions belonging to the

operations of any given base, no two prime invariants involv-

ing the same prime, p say, occurring in the same operation.

We thus obtain a new base A', B' , C, ..., L' by making
a new distribution of the prime invariants among the opera-

tions of a base.

We should obtain the base with the maximum number of

operations by putting one prime invariant into each operation.

This is the base indicated in Weber's Algebra. If p is the

prime which occurs most often among the prime invariants (sag

Ts times), then the minimum number of operations that a base

mag have is vs ;
ways of constructing such a base will occur

at once to the reader: a base of this kind occurs in the proof

of the well-known fundamental theorem concerning Abelian

groups.* This base is obtained by forming an operation

by associating the greatest prime invariants corresponding

to each of the several primes p, q, r, ..., then a second

operation by associating the greatest invariants remaining

in the same way, and so on.

If a finite Abelian group G can be generated tug ang number
n of operations, then ang sub-group S of G can be generated

bg n operations or less.'f

* H. Hilton, An Introduction to the Theory of Groups of Finite Order, p. 126.

f Frobenius and Stickelberger, Crelle, vol. lxxxvi. (1879), p. 252.
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§ 2. Re taction of a finite Abelian group of substitutions

to a canonicalJorm*

If we have <'» Abelian group of orthogonal substitutions

with lii" '/• [simple) invariantrfactors,\ we can transform it

into a group of multiplications, each if the type

x
l
'=axv x,' = /3 x

3

' = yx
3
, ..

y,'=«"Vi> .v/=£~V,> y>=y~% •

x;=±xv x:=±x, x;=±x
3
,..

having the invariant

If we have any Abelian group or" substitutions with linear

invariant-factors, we can transform it into a group of multi-

plications. For we can transform one of them, S, into

a canonical form i.e . into a multiplication, since the invariant-

factors of S are linear] and each of the rest into a direct product
of substitutions with only one distinct characteristic root.§

But a substitution with linear invariant-factors and only one
distinct characteristic-root is a similarity.

Let now the Abelian group of substitutions with linear

invariant-factors be also orthogonal.

Suppose, lor the sake of illustration, that when the Abelian
group is transformed into a group of multiplications, one of
these multiplications, S, is

(«.',, ax
a , okb

3 , oa*
4

, of'aSj, a~
lx

6 , a
_1
a

7 , a
_1
^

8),

while another, J\ is

("''„ oaj„ ax
8 , bx

t, a^x., b'
rx^ a'\r^ a\r

8).

Transform the group by

.'
,, x

2
, x

3 , xv x
s
, x

s , x
7l
x

6).

This docs not alter /Sand transforms T into

[axv gu-
2 , ax

3 , bx
4

, a'\, a~\r^ a~\, &
_1

jk
8),

whde the other substitutions remain multiplications.

1 By Professor Hilton.

t For instauce, a real orthogonal Abelian group.
J It is immediately evident that any multiplication with this invariant is of

the type stated.

§ Quarterly Journal, vol xi, p 171; Messenger, vol. xli
,
p. 116.
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The quadratic invariant of non-zero determinant common
to every substitution of the group has now become the sum
of quadratic functions on xv x

3 , &3
, as

5 , x
6 , xv and on x

t
, x

a )

since it is an invariant of both S and T.

Suppose now one of the other substitutions, U, is

[Ax, Ax
ti
Bx

3 , Oc4 , B-lx
5 ,
A~ l

jc
t , A'\, C'\).

Transform the group by

1^1? ^25 *^3' ^4> ^7' ^6' ^5' ^V*

This leaves /Sand T unaltered and transforms £7 into

(Ax
y1
Axv Bx

z , CxA
, A~\i A~lx^ B~ lx

7 , G^x^.

The quadratic invariant must now become the sum of quad-

ratic functions on aj„ x
s , xs , .r

6
, on x

3, xr and on x
A,

a?
8 ; since

it is an invariant of $, i\ and Z7.

If now, for example, every substitution of the group is

of the same form as U, we transform the variables #,, cc„

X
s1
x
6
so that the quadratic function on x

t
, Xs

, 05,., #
6
becomes

#,#,.+ #,#,.. No substitution of the group is altered thereby,

for the transform of a similarity is a similarity.

Continuing in this way, the theorem at the beginning

of this section is proved.

§ 3. Theorem on finite Abelian groups of substitutions.

From the last article it appears that any finite Abelian

group of substitutions of degree ct can be transformed into

a group of substitutions of the form

where h/m, kjn, ..., Ijp are proper fractions.

If we represented this substitution by the notation

h k I

= , ,m n p

it is clear that the product of two such substitutions will be

represented by

ee'=
fh k l\(li_ K_ X\
1 i » ••• i ll » >•••»

J\m n pi \vi n p

I

_/k + h' k + k' l + l' \ *

V m n p )

* Tlie denominators m, n, ... may be taken the same for the two substitutions,

the fractions having been reduced to a common denominator.

VOL. XLIII. C
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In other words, we have again met with the notation of the

first article, and the group under consideration i.s a sub-group

of what we shall in future call the main group generated

by the base

A

B

= (1, 0,0, ...,.),

or it is the main group itself. The order of the main group is

m n...p.

The propositions of the first article give us at once the

following results

A finite Abelian group of substitutions of degree w can

always be generated by vr substitutions.

frequently the group may be generated by a smaller

number of substitutions. In fact, rs generating substitutions

would not be necessary except in the case where the numbers

m. it. ..., p had a common factor, and if, of the & numbers

>n. a. ..., p, only cr, had a common factor, then only sr
t

generating substitutions, or less, would be needed.

§ 4. The classification of finite Abelian groups of orthogonal

substitutions.

By the theorem of § 2 any finite Abelian group of orthogonal

substitutions can be transformed so that each of its substitu-

tions is of the form

aj
i
'==e2

'7rWwl)a;
(

) x
a
'=e2,7ri

(
k/n)x

3 )

where h, m, /,-, n, ... are integers, to which may be added

a certain number of equations such as

a, =:h-A.
|

, A, = + A
2 , ....

As this group is a particular case of § 3, we might use the

same notation as before; however, as the first and second

equations (bracketed) are paired in all the substitutions of the

group, these can be made to correspond to a single fraction;

the same remark applies to the third and fourth, and so on up

to the equations in AT

,, X3
, ... : the last cannot be paired and



Dr. Heywood, Onfinite Abelian groups of substitutions. 1

9

must each be associated with a separate fraction. A substitu-

tion will thus be denoted by the notation

fh k !_. l a \

\m n p )

the fractions after the semicolon all being either zero or \
(since — 1 =e2™$), and the law of combination being the

same as before.

Geometrically interpreted the substitution is a transforma-

tion of ''axes
1

' in space of zs dimensions, m being the degree

of the substitution ; a pair of equations such as

aj
1

'= e2irt(A/«)^;
i?

y^— e-2ni(k'm) y^

corresponds to a rotation through an angle 27r{h[m) about

an "axis," while the equation JT,' = — -3l, corresponds to a

reflexion in a " plane.
1 '*

It will be remarked that the determinant of the substitution

is + 1 when there is an even number of equations of the form

X'= — X,, and it is — 1 when there is an odd number.

We shall now discuss the finite Abelian groups of substi-

tutions of the several degrees.

Degree 1.—Only two groups occur. One contains the

single substitution x=Xj the other contains the pair ,c' = — x
and x' = x.

Degree 2.—There are two types of group. The first is

a cyclic group of rotations (0), ( —
) , (---), ..., (

J,
whose

order is m. The second is the special group containing

reflexions (; 0,0), (; £, 0), (; 0,1), (;
i|), and its four

sub-groups: two substitutions are necessary to generate it.

Degree 3.—The first type of substitution is of the form

(— ; 0) or (
— ; i). A main group of substitutions of this

type can be displayed in the form

(o; i), (-; *), (-; i)

,

9

(•!0).(si°).(s5°).-«(

m-1. ,\
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:uk1 consist- of 2m substitutions. Tlie first row have a modu-

lus — 1, and the second row a modulus + 1. The group may

be generated by a pair; tor example, by I — ; Oj and (0; ^),

when m is even. When m is odd the group is eyelie and

is generated, for example, by f—
; ^j .

The second tvpe of group of* degree 3 consists of reflexions.

It is limited to the main group

(l 0,0,0), (; |,0,0), (; 0,1,0), (; 0,0,*),

\1 'b 21 2)? (5 27 0, 2)1 {') 25 25 "), {] 21 21 211

and its sub-groups. Three substitutions, for example
(; ^, 0, 0),

(j
(,

i 2) °b (j °> °) 2)? w '" ' )e needed to generate the main

group.

Degree 4.—The first tvpe consists of substitutions of the

/ h k \
form I

—
,
—

J
: that is to sav, a pair of rotations. The main

in u I

group or any of its sub-groups can be generated by a pair of

substitutions when m and it contain a common factor, and by

a single substitution when m and » are prime to each other.

The second type contains the form f —
; \, ^ )

; that is,

a set of rotations about any one "axis" with a pair of

reflexions about the two perpendicular " planes," and the

forms in which one or both of the two last fractions is

replaced by a zero. A main group would be

h= 0, 1, 2, ..., m — 1).

The degree is 4m, and the main group can be generated

by three substitutions when m is even and by two when m
is odd.

The third consists wholly of reflexions about the four co-

ordinate ''planes." There is a single main group consisting

of 16 substitutions (; 0, 0, 0, 0), (; ^,0, 0, 0), etc., which can

be generated by four substitutions.

Degree 'Jet.—We pass now to the general case. The first

type for a group of even degree 2ct would be a group of

substitutions consisting of rotations about vs of the ct(2et— 1)
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"axes" of coordinates. The cr axes are the intersections

of the 2cr coordinate "planes" paired off in any way, but

all the substitutions of the given group would consist of

rotations about this set of "axes" and no other. The type

of substitution would be (— , — , ... ,
—

] and if not more
\ in n p

)

than ct, at a time of the integers m, r<, ..., p had a common
factor, then ct, substitutions (or less perhaps for sub-groups

of the main group) would be necessary to generate a group.

The order of the main group would be mn...p.

Wo must next consider groups of substitutions which con-

sist of rotations about certain of the "axes" of coordinates

(the same for all substitutions of the group) and reflexions

about the "planes" which are perpendicular to all these

special axes. If there are rotations about ct' "axes," there

would be reflexions about (2cr— 2s/) "planes," and such a

substitution would be, for example, |
—

, --, .... — : -L -L ...J.
1

\in n p ~
s

J

If m, »?, ..., p were all even, say, a maximum number of

2cr— ct' substitutions might be necessary to generate the group;

if some were odd, a smaller number would always be suffi-

cient.

In particular, the substitutions may consist wholly of

reflexions about the 2gx "'axes" of coordinates. There
would be a main group of 2-nsr

substitutions, to generate

which 2cr substitutions would be needed.

Degree 2cr+l.—A separate discussion of this case is hardlv

necessary. The first, type would consist of rotations about

u "axes," together perhaps with a reflexion about the single

"plane" perpendicular to them all. A maximum number
or ct+ 1 generators would be necessary when the denominators

of the elements were all even. There would be, as before,

intermediate types consisting partly of rotations and partly of

reflexions, and a final type with a single main group of 2 2
*ar+l

substitutions consisting entirely or reflexions.
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NOTES ON SOME POINTS IN THE
INTEGRAL CALCULUS.

By G. H. Hardy.

XXXVII.

On the region of convergence of BoreVs integral.

1. Borel's integral, associated with a power series

(1)
2a

n
x",

(2) f{x) = [
e-'u {tx) dt,

where
n

a x
(a) «<(*) = s-^.

If the series (1) has a positive radius of convergence, the

region of convergence of the integral (2) is Borel's " polygon

of summability"; the integral is convergent everywhere

inside, and nowhere outside, the polygon, and represents the

analytic function f (as) defined in the ordinary way by the

series (l).

Let us suppose now that the radius of convergence of (l)

is zero. If (2) converges for x = x , it converges uniformly

along the straight line (0, a?J.* And if it represents an

analytic functiony(cc) in a region D, that region must extend

up to the origin, and the origin must be a singular point

of fix).
My object in this note is to show by examples how Borel's

integral may converge in two different regions of the plane,

having only the origin as a common boundary point, and

represent, in these two regions, two different analytic functions.

2. 1 consider first the series

2' 4'
1 + 0-^ + + ^ + 0-...,

2i>!
in which a., = (— lV —,-"

, a„
,
. = 0.

Here Borel's integral is

f(x)= ( e-t-^-dt,
J

+ See Note xxxi., vol. xl., p. 161.
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which is plainly convergent if

or ]7r < am.f^ |7r,

i.e., in two quadrants abutting at the origin.

Suppose x real and positive. Then

•or, if x= 1 ///,

f{x) = - [ e-(«/^-«' rfw,

f{x)=y\ e-y"-u"du = yeW \ e~v'dv

say. Tlie function F(y) is an integral function of y. Thus,

in the quadrant which includes the positive real axis,

f[x) = F[Hx).

In the other quadrant it is plain that

f{x) = F(-l!x),

which differs from F(ljx) by

^ e-w.
x

Thus f[x) is equal to different analytic functions in the two

regions.

3. As a second example I shall consider the series in which

~ (- \)
v vn

a =2 i— .

o v I

Here ?< (;v) = ^ —-. i- - — ,— =2.—r— oVX

o n\ o v\ o v\

-*-*"dt.

Thus Borel's integral is

(4) f(x) = [ r*
J

If X = £ + Z77,

|

e-e
te

|

= e-«f'cosni!.

It is easy to see that, if £>0, the integral (4) is convergent

if and only if rj = 0. On the other hand, if s^O, it is con-

vergent for all values of rj. Thus the integral is convergent
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(i) along the positive real axis and (ii) in the half-plane to the

left of the imaginary axis.

First suppose x = £>0. Then, putting e'= m, we obtain

i r
M

5 J,

.-,r e-wwy-\ dw ^

where w = — l/f = — 1/#« I£ m t' 16 ordinary notation of the

theory of the Gamma function, we write

oo ,-l r°°

r ^
s

)
= 6-v-iito= e-'t'«)s

-1 (/!(;+ e-wws~l div

when the real part of s is positive, then Q(s) is an integral

function of 5; and, for x real and positive, we have

'/•) /w-i«(-i)-
Secondly, suppose £ < 0, and a; = £ = — \. Then

J

du
e

*
-t-e-^dt =

.

1 r
1

= - e-vwWy-^dic
X

= y I er
J n

where y = l/\= -~ l/E= — l/sc. Thus, for real negative

values of x,

(6) /W=-^(-~
The function P(s) is regular for all values of s save negative

integral values (including zero), where it has simple poles.

Thus

X \ X

is regular in the half-plane which we are considering, and it

is clear that equation (6) is valid throughout this half-plane.

The equations (5) and (6) show that Borel's integral converges,

for different values of x, to two different analytic functions.
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A CANONICAL FORM OF THE BINARY SEXTIC.

By E. K. Wakeford, Trinity College, Cambridge.

TiIE natural canonical form for the binary sextic would be

x* + i/+ z'
i+ 30tf.c

2
/yV, where x, y, z are linear forms satisfying

an identity l.v A my + nz = 0, but apparently the general binary

sextic lias not been previously reduced to this form (see Elliott,

Algebra of Qualities, §224). The object of the following-

work, in the arrangement of which 1 have been kindly

assisted by Mr. P. W. Wood, M.A., of Emmanuel College, is

to demonstrate the possibility of such a reduction of the general

sextic, and to point out in how many ways the reduction

is possible.

Let the sextic be S = (f>J>J>J>bbbJlX, F) 6
, and suppose

that the required reduction is possible, ./•, ?/, z being the linear

factors of the cubic C = (afl^a^X, Yf. We have then

the identity

If we operate on the right-hand side of this identity with the

operator O = {a a
t

a
2
a,$d jc)Y, —djdX) 3

, we shall annihilate

the.terms x5

,y
6
, and z

6
, and be left with the result of operating

on SOiex'y'z* alone. This is (Elliott, § 49, Ex. 3) a numerical

multiple of the eubicovariant of C, which we shall denote

by T=(A
a
A

x

A nA 3
\X. Yf. Now the coefficients A

(l

A
l
A

a
A

3

may be proved by actual substitution to satisfy the equations

CO-

a,A
a
-2a

l
A

1
+ a

n
A

2
=u\

aA~ Mi" a
i
A,+ ao

A*=°

a
s
A

l
-2a

t
A

a
+a

l
A

3
=Qj

Hence, if we operate with upon the left-hand side of our

original identity, the coefficients A 'A
X

'A
3
'A

3
of the resulting

cubic must also satisfy these equations. These coefficients are

A ' = 120 {a b
3
- Safia

+ 3a
g&,

- a
3
& ),

A; = 120 {aJ?A
--3ct

l

b
3
+3a

3
b

2
-a

3
h

l ),

A
2

' = 120 [a
a
b- 3a,5

4
+ 3a,5

3
-a

3&,),

A; = 120 [a b- 3a^
5
+ 3a

f
6
4
- a

s
&
3 ),
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If we substitute these expressions for A
n
A

x

A
t
A

3
respectively

in the equations (i) above, we obtain three homogeneous

quadratic equations in a^a^ciy There must be at least one

system of ratios, say a : a, : «, : a
i
= ('

- c
t

: c
3

: c
3 , which satisfies

these equations.

We shall prove that the required reduction of the sextic is

possible if we take x, y, z to be the factors of (c
Q
c

x
c
3
c
3
\X, Y f.

We have so far proved that if the reduction is possible at all,

the forms x, >/, z must be found in this way.

Let (C'6;c;C;\X, Y) 3
be the result of operating with

(W/Jtf/^ -cjdXf on S. Then

C ' = 120(cJ>a-3c l
b
i
+3c

a
b

t
-c

a
b ),

C; = 120 (c &
4
-3 Cl&3+3c2&,-cA),

etc. (see A^A{A^A
3

above).

Jlence c.c:-2c,c:+ cn c:2 ~0 I 1 1
= 0)

*,<V- c
2
c;- c

(

c;+c cv=o (ii),

since c^c^c^ are known to satisfy the quadratic equations

formed by substituting for C
n

'

C

}
' C,'

C

3
in equations (ii) their

values in terms of c
Q
c

x
c^c

3
.

Now the coefficients C C
l
G

2
C

3
of the cubicovariant of

(
c
o
c

i

c
»
cJ[^> Yf also satisfy these equations, and indeed the

Cubicovariant may be written in the form

X* 3X*Y 3XY' Y 3

c, -2c, c

C
3 ~ c

» - c, c

c
3

-2c, c,

Hence C '

: C,': (7/ : C
3
'= C\: C

x

: C,: Cv for otherwise the cubi-
covariant of (cf&c&X, Yf would vanish identicallly, equations
(ii) not being independent.

In that case Kc.c/^Y, Yf would be a perfect cube, =x3

suppose, and (C ': C/: C
2
': O/JX, F) 3

a cubic containing the
factor as twice, = x3

y suppose.
Then we should have

(dSldy
3

) = x'y,
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whence S= x3
(ax* + bx

s

y + cx'y
1 + ^y

4

) suppose,

showing that S would contain a square factor. This is not so

in the general case, so that we may disregard it.

Hence, in general, the result of operating with

(w,cjdidY,-didxy

on S is to give a numerical multiple of the eubicovjiriant of

(CqC^sJ^X, Yf) and so, if we choose k aright, we shall obtain

(wvdP/a r, - didXf(S- so^yv) = o.

Now if x = a.X+ /?, F, y = a,X+ 0, Y, z = a
t
X + /3

3
Y are

the factors of (c c
x
c
a
cJ[_X, Yf, the operator

(c^cjdidY, -d/dxy

is tlie same as the three combined operators

(a, 2Y~ ft aj)
(a, ^y~ ft ^J [a

3^ - ft ^j .

Accordingly, by a known theorem, the general solution of

( co
c

i

C
2
C3dld Y> -dlBXy U = is P+Q + E, where P, Q, and

R are the general solutions of

(«, g^- ftU) « = 0, and (a,A _ ft
J>_) „ =

respectively.

(We may take x, y, z to be all different, for otherwise the

resulting canonical form would contain too few constants,

implicit and explicit, to be general.)

We find therefore that

S - SOfcx'y'z'
1 = ax6 + by* + cz

s
.

Hence, by taking suitable numerical multiples of x, y, z, and k,

we reduce S to the form

xs
-^y

6 +z 6 + 'dOiex'y'z
1

,
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there existing a relation of the form

Ix + my + uz = 0.

We may also write S as

ax6+ Inf + cz
ti

4- 80*as"yV,

where oj +# + s = 0.

If we regard Oy/'/'J as the coordinates of a point in

space, the three quadratic equations mentioned above represent

three quadries. We should therefore expect eight distinct

solutions of the problem. By considering any common point

of the quadries in particular, it can easily be shown that the

tangent planes to the three quadries at this point do not in

general intersect in a line so that the eight points of inter-

section of the quadries are all distinct. Hence the reduction

is in general possible in eight distinct ways.

The existence of the canonical form (long suspected) is

thus established: the form does not appear to lend itself easily

to the formation of invariants and covariants.

Note on a previous paper.

On p. 143 of vol. xlii. I published a theorem, which I

believed to be new, relating to three triangles circumscribing

a conic. My attention has since been drawn to the fact that

this theorem with its converse is to be found as Ex. 862

(p. 360) in C. Taylor's A ncient and modem Geometry of Conies.

The more general result that the three sets of the six

sides of the complete quadrangles formed by the common
points of any three conies taken in pairs touch a class cubic

leads easily both to the theorem I published and to its con-

verse. This class cubic is the Cayleyan contravariant of the

cubic of which the conies are polar conies.
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NOTES ON SOME POINTS IN THE
INTEGRAL CALCULUS.

By G. H. Hardy.

XXXVIII.

On the definition of an analytic function by means

of a definite integral.

1. The two theorems proved in this note are in no way of

a novel character, and the first of them is actually stated

without proof in Osgood's Lehrbuch der Funkfionentlieorie*

The second I have never seen quite in the form in which I

give it here. The theorems have so many important appli-

cations that it seems worth while to state them explicitly and

with proofs.

2. I must first define the meaning of the expressions

"regular curve' and 'region,' which occur in the enunciations

of the theorems. 1 do not propose to use these terms in the

most general senses possible: 1 wish indeed to use them in

the simplest and narrowest senses possible so long as the

theorems retain sufficient generality to admit the ordinary

applications.

An elementary arc is a set of points in the plane (£, rf)

defined by two equations

£ = *(*), v=*(i) [t^t^o,

where </> and xp are functions with continuous derivatives

which can only vanish for t=t or t = tr and then not

simultaneously.

The points

{*(',W('o)h i*(*,WWJ.
are the first and last points of the arc.

A regular curve is the set formed by a finite succession of

elementary arcs in which the first point of each arc is the last

of its predecessor. If the last point of the last arc coincides

with the first of the first, the curve is closed. If no point of

the curve belongs to more than one of its arcs, the curve is

simple.

A simple closed regular curve divides the points of the

plane which do not lie upon it into two classes, interior and

* Vol. i., p. 260.
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rior points. The points interior to such a curve will be

said to constitute a region. The points of a region, together

with those of its boundary, constitute a domain.

.;. THEOREM l. Suppose thatf{x,y) is a junction of the

tiro complex variables x and y, continuous when x varies alotig

a regular curve C and y over a region S. Suppose also that

f(x, y) is, for each particular value of x, analytic throughout S.

Thru

f v)=\ ffa y) dx
J c

is analytic throughout S, and

F' (?/)= ;

—

dx.
Jcdy

We prove first that F(y) is continuous in S. Let 2 be a

domain which lies entirely inside S. Then f{x,y) is continuous,

and so uniformly continuous, when x varies on C and y in 2.

Hence it follows in the ordinary manner that, if y and y + h

lie in 2,

F(y + k)-F(y) =
f

[f(x, y + h)-f(x, y)\
J c

dx

tends to zero with \k\. Thus F(y) is continuous in 2, and so

in S.

Now let r be a simple closed regular curve lying inside S
and including the point y inside it. Then

,, v If f fx. u)

and so

du.
y

F{y)
i[

dx [f±iA du.

-7T* J C J V U- V

In this equation we may invert the order of integration. In

order to prove this we observe first that C and T are formed
by the union of a finite number of elementary arcs C% and IT}',

and that it is obviously sufficient to show that the inversion is

permissible when x varies on d and u on Tj. The arcs <
,,

I ', are defined by equations of the form

x=${t)+mp) {t^t^tj,
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where 0, \p, ... lire functions which satisfy the conditions of §2.

We substitute for x and u in terms of t and w, and separate

the real and imaginary parts of the resulting repeated integrals

in t and 10. Each of these is the repeated integral of a

continuous function of t and w, and the inversion of the order

of integration is therefore legitimate.

Inverting the order of integration we obtain

EVA l
(

dU f St \ J l
f
F

(
U
) 7F[y)=— . /[x,u)dx = —.\ —— du

•2tti j y u — y j c 27ti J p u — y

Hence

F(y + h)-F(y) 1
f

F{u)du

h 2iri J r {a — y) [a — y — h)

and, F(u) being continuous on T, it is easy to show in the

ordinary way* that the integral tends, as h -> 0, to the limit

27tj J r (« — y)*

Hence F (y) is analytic inside T and so inside S. Finally

If i?»
w/

2-wj Jr (ei— #)

27riJ Jr(«-2/j

J
^-dx,

coy

the inversion of the order of integration being justified in

precisely the same way as before. Thus the proof of the

theorem is completed.

4. It usually happens in applications that the integral

f(x,y)dx,
I

by which F (y) is defined, is an infinite integral; the contour

C stretches to infinity, or^ has infinities on C.

* Cf. Osgood, I.e., p. 241.
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Let C(R) denote the aggregate of points of C for which

x\ /.'; and let us suppose that, for any given R, C(R)\$

i regular curve. Further, let us suppose that. C contains

a finite number of points £. which we will call exceptional

points; and let us denote by G (R, 8) the aggregate of points

of 0(R) for which \x-£
i
\^8. Then C{R, 8) will consist

of a finite number of regular curves Cj{R, 8). We suppose

that each of these curves satisfies, in conjunction with S and/,

all the conditions of Theorem 1.

Further, let us suppose that, as 8->0, R-> x>
,
the sum of

integrals

2 fix, y) dx

tends to a limit, uniformly for all values of y in any domain 2

such as was considered in § 3. This limit we denote by

J c

and we say that this integral is uniformly convergent in 2.

We can now state the following theorem :

THEOREM 2. Lot be a contour such that the contour

C{R, 8), formed by the points of C for which

is composed of a finite number of regular curves, each of which,

toqetlo'r with the region S and the function f{jc, y), satisfies the

conditions of Theorem 1. Further, let the integral

f(x, y) dx
J c

be uniformly convergent in any domain 1 interior to 8. Then

the conclusions of Theorem 1 still remain true.

5. In sketching the proof of this theorem I shall confine

myself, for the sake of simplicity of statement, to the most

important case, viz., that in which C is the positive real axis,

and there is one exceptional point, namely, the origin. In

this case (R, 8) is the segment (8, R), and our definition of

uniform convergence reduces to the ordinary definition for

infinite integrals of a function of a real variable. The proot

follows exactly the same lines as that of Theorem 1, the con-

dition of uniform convergence being required (i) in proving
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that F{y) is continuous and (ii) in justifying the inversions of

the order of integration. A few words should perhaps be

added on the latter point. We reduce the problem, as in § 3,

to an inversion problem concerning real integrals. In this

case t is a% and x ranges from to co .

The theorem to which we finally appeal is that of de la

Vallee-Poussin which asserts that

f°° f
w

\ Cw \ f
m

dx x (
x

>
w

)
dw — dw J x (

r
»
w

)
dx

J J wu J w J

whenever (i) the inversion is legitimate when the limits (0,co)

are replaced by any positive numbers, and (ii) the integral

with respect to x is uniformly convergent.

6. In order to give a simple application of Theorem 2, let

us consider the equation

i:
ery*dx = \*J{ir\y) (1),

which holds when y is real and positive. Let S be any legion

for all points of which B(y)>0. Then the real parts of the

points of S have a positive lower limit \, and the integral

in (1) may be seen to be uniformly convergent in 2 by com-
parison with

J
e-^*

2
dx.

Hence the conditions of Theorem 2 are satisfied, and (1 ) holds

for all values of y whose real part is positive. Putting

y = a + i/3, and equating real parts, we obtain

Making a-> 0, and using Abel's continuity theorem for infinite

integrals,* we obtain

J

cos fix' dx = %*/ (ir
J 2fi).

The corresponding integral involving a sine may of course be
evaluated similarly.

* Bromwich, Infinite Series, p. 434.
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I The author's acknowledgments are due to Mr H. J. Woodall, A.R.C.Sc, for

reading the Proof sheets, and for suggestions ; also to M. L. Valroff for numerous

additions to the Tables.

J

1. Introduction. In this Paper it is proposed to develop

the factorisation of the numbers [N) of the four types

JV^-2, 2v>/+2, NM=2f-l, N
i
=2^+l...{l).

These numbers are closely connected, so that it is convenient

to consider them together : they are also closely related to

the numbers (2"+l), and their factorisation depends in fact

largely on a prior knowledge of that of the latter kind of

numbers, as will appear later.

2 Notation. All symbols denote integers, p denotes an

(odd) prime.

w, Q denote odd Lumbers; *, E denote even numbers; i, I denote

integers.

v,-, v,,-, ym, y iv denote the roots (yj of the numbers A';, iV«, A7

*;, AT

,„

respectively ; but the subscripts will often be omitted when not required to

distinguish the tour kinds.

3. Linear and 2
ieforms of N. These are shewn below :

—

Linear '.
'
\y=t

Quadratic

16-nr-l

2(8-qt-— t)

e
2 ~2f-

16-nr + 3

2(«-sr+l)

c
2+2<#

32ur + 1
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4±2)S(2y*+l).

Another way of putting this is

All primes p=i$-ar + l, = a2 f b8
, with b = 4w, are non-divisors (6c).

8. Complete set of Divisors. It will be seen from what

precedes (Art. 6, 7)—
All primes j> = bw + 7 are factors of some A', and Nm (7a).

All primes /> = 8iir + 3 are factors of some An and iV<» (76).

All primes p = 8nr + l, having (2jp) i
=+1, are factors of some of each

kind of Ni, Nih Nm, W, (7c),

All other (odd) primes are non-divisors (Id).

9. Congruence-solutions. The mast powerful aid to the

factorisation of these numbers (N) is a Table of solutions— (y)

of the four congruences

—

Wi=y*-2=0, Nu=y*+2= 0, Nm=2y*-1= 0, A,-,= 2y«+I=0
(mod p and p

K
)...(S).

Such a Table is given— (see Tab. I., II.)—at end of this

Paper, complete for all primes and prime-powers p and

p" > 1000.

The mode of solution of these Congruences, and their

mutual connexion, are explained in Art. 10—166?. Three

Methods ;ire available.

Method I. From known factorisations (Art. 10).

Mhtiiod II. By use of primitive roots (Art. 11— 116).

Method III. By use of residues of powers of 2 (Art. 14— 16rf).

Art. 12, 13 contain general properties of the roots

applicable to all the Methods.

10. Method i. From known factorisations. Every
actual factorisation— complete or partial—of any of the

numbers (N) shows one root (y) for each of the prime factors,

or prime-power factors, found in N. Thus the factorisations

explained in Art. 4, 5 furnish (at sight) one, or more, roots [y]

of each of the primes and prime-power factors (p and p")

found. A Congruence-Table showing the roots (y) so found

for those moduli (p and p
K
) can thus be started. It will, of

course, be very incomplete; it does, however, yield a certain

number of roots more simply than either of the other more
powerful Methods described below.

11. Method ii. Use of primitive roots, (g). Let g be

a primitive root (> 2) of the prime p, and—for shortness

—

write

J>-1=£, so thutyf= +l, «7
lf=-l (mod p) (9).
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Now, find a, j3, such that

g
a =+2, gP=-2 (mod p), ..., [always possible] (10),

And let >= <7

ar
', ya= g

x
", ym \g

Xi° (mod p) (U),

where the subscripts under x, y indicate that the a?, y belong

to the 1st, 2nd, 3rd, or 4th of the Congruences (8) respectively:

but these will be written more simply as

y= 9
x (mod p) (ll«)i

when the subscripts are not really required for the sake of

distinction

Then the four Congruences (8) may be expressed in terms

of x, a, /3 ; and solutions (,r) arc tlience obtained as follows

—

jV,7l-= N*=
P g

a***= gf 9^+u=9i
Congruences

x =

iV,-=0

9*=9* g
ix— gt- 9*^= 9*

i(^-j8) (12)

Here m is to be an integer determined so that x may be an

integer < £.

Now, it will be found that

/;=8<nr + 7, 3 have one of a, /3 odd, and one even (13«),

p = Stsr+l, with {2jp)%
= + 1, has « = 4t, j3 = 4»' (136).

From this, it results that, in each of the four Congruences

m has 2 values, giving 2 values of x and y, when ^ = 8tr + 7, 3 (14«),

m has 4 values, giving 4 values of .v and y,

when p=8w+ 1, with (2/p)4= + l...(146),

whence it follows that, in each Congruence,

Every prime p = Stst+7, 3 has two roots .)'(</>) (14c).

Every prime /> = Sw+l, with (2//>)4
= -f 1, has /<?«>• roots jj'( <p)...( 1 4rf).

The set of exponents, say x, x, x", x", of any one

Congruence (8) are quite simply connected as follows

p = Sw+7, 3 has only x and x"=x+ ±% (15a).

P = 8W + 1 , with (2/p)t
= + 1 has .v, .v' = * + \l, x" = x +& x'"=x+ f?.. .( \5b),

so that, when one (x) has been found, the rest follow at once.

Also, in each Congruence

y= 9
X

, y"=9X ; and (when p = 8^+l) y'=gx ,
y" .(16).

The above process suffices for the computation of the

whole of the roots (y) of each of the four Congruences (8) for

every prime for which a primitive root (g) is known.
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+l).

1 1 involves of course, considerable labor when Tables of

idues of v' are not available, viz.

x x' x" x'"

Finding a, fi ; v, v', v", x'" ; and Residues of 9,9,9 ,9 •

|"1 he tinding ol «, \i from (10) is often a difficult matter, involving much

tentative work: that of determining m in (12) is comparatively easy :
the

• of the process, viz. finding the Residues of «/
x in(16) is a direct process,

bul is laborious when * is large].

11". Prime-power Moduli (//). With slight modification

the above process—described for prime moduli (p)—suffices

also when the modulus is a prime- power (p
K
). The chief

changes are

—

Use p
K instead of p; write S=pK, (j»-l) instead of S,=p-\.

lib. Use of the Canon Arithmeticus. This Table gives

the complete set of Residues (R) of//*, and also the exponents

1: vicldiug the Residues (B) for all moduli p and p
K
>> 1000.

Hereby the required values of a. #, and the Residues of

-/'. Gil, &c., can be picked out at sight-, so that the complete

set of solutions (//) of the four Congruences (8) can be

thereby found tor all [p and p
K

)
moduli up to the limit of 1000.

12. Connexion of roots of a Congruence. Let y, y\ y'\ y"

denote the roots of the same Congruence
;
[only y, y" are

real when p=8u+7, 3J.

Now, since ±y satisfy the same Congruence, the roots of

any one Congruence evidently occur in pairs, connected by

the relations
*+/'=/>=/+/" ...(17).

And since ?/, yi—(where i
2 = — 1)—satisfy the same Con-

gruence, the roots may also be arranged in pairs, connected

by the relations

y=i,v, y=n'y'\ /"=»>/', y"=n'y'" (mod p) (18),

where tj, ij' are roots of >i*+l =0 (mod p) (19),

[and )(, 'i' are real when p=S-ar+l].

12«. Hence, for each Congruence, it suffices to compute

one root— (say y)—by the Rule y = (f (mod p) of Art. 11, and

the remaining roots are then given more simply as follows:—
When ;; = 8-nr + 7, 3; the other root/' =p-v (20a),

When p= 8vr+l ; one new root is y' = >iy, and the other roots are

y"=P-y, y'"=p-y'
(
2(6 >-

[Note that, when the roots (»i) of »r+l = (mod p) are known, it is

usually much easier to compute the Residue of y' = riy, than that of

y< =g* (mod p).]



Lt,-Col.Cunningham,FactorisationofN={y^2)<L{2y%\), 30

13- Connexion of different Congruences. The four Con-
gruences (8) may be arranged in pairs in two ways, modulo p.

(1) Reciprocal Congruences, {Ni= 0, Nm=Q), (Na=0, Niv
= b).

(2) Conjugate Congruences, {JVi=0, Ni:=0), (3^= 0, iYiv= 0).

The roots of the four Congruences are denoted by v., ?/..,

y..., y.v, as in Art. 2.

13a. Reciprocal Congruences. One of each of the roots

y., yu . may be paired together, and one of eaeh of the roots

.ViP Vvb ,nay be P ;ine(i together, eaeh pair in such a way that

yiym=±\, andr^E+l (mod p) (21),

so that these form reciprocal pairs modulo p ; and the Con-
gruences to which they belong may for this reason be styled

Reciprocal.

[Note that j/,-, ym exist for p = 8i!r + 7 ; >',,•.>",„ exist for p=8-ar+3...(2\a),

and that y it yiU ; ya , yiv exist for .p = 8-sr + 1 , with (2//>)4= .+ l...f2lJ).

13&. Conjugate Congruences \_p = 8xff + l~\.

Since >,,-
4= -y\\ and v,-,

4= -y,,-;
4 (mod p) (22),

it is clear that the roots may be paired in such a way that

y«=Xyi, #=£?«; y*v=tyiu, ysu=l'y-« (mod p) (22a),

where £, £' are roots of £
4 + 1=0 (mod p) (23).

[The roots £, X,' are real when p=8-w + l].

13c. Use of above {for computing). By these properties

the labor of finding the complete set of roots ot the four

Congruences (8) may be much reduced. It will suffice to

find one root of only one of the four Congruences (8) by the
Rule of ?/ = </* (mod p) of Art. 11. One root of each of the

other Congruences (8) may then be found by the use of .Rules

(21), (22a). The other roots of each of the Congruences may
then be found from the single known root of each bv the
Rules of Art. 12a.

[The solution of (21), (22a) is usually less laborious than the calculations
of the Residue y=gx

. To use Rule (22a) the solutions of £
4 + 1 = (mod p

must of course be known.]

14. Method hi. Use of Residues of 2
X

.

It will here be shown that one root [y] of each of two of
the four Congruences (8 J may be found from the Residues of
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the powers of 2 [i.e. from 2*), whenever the Haupt-Exponent*
-.iv i) of 2 is either an odd number, or twice an odd number.

I'his condition (£=w or 2a>) always occurs when p = S-w-f 7 or 3, and
also occurs usually—(but not always;—when p= Sw+l with (2/p) 4

= + l.]

Four Cases must be distinguished.

Case (I). *=4#-l; (2). £=4*+l; (3). ^=4.v- 1 ; (4). i£~4x+ l.
.

Case i :. £ = 4.c-l.

I ike j'i

=2''» (mod p), where .r;
=.* = |(g+l) (24a),

and v,„ = 2"
r
'" (mod p), where *i«=£-«=£(3£-l) (246).

Then Vi«y/-2= 2
te,-2= 2(2

f-l)=0 (modp) (25a),

-V„. = 2v,„
, -1 =2

4 '" i+1 -l = /6 -l=0 (mod p) (256).

r,,,, (2). g = ix+ l.

Take .Vm = 2
ar

"''
-

(mod p), where *,-l7 = .v= | (5- 1) (26a),

and ^= 2*' (mod p), where *.=$-*=£ (3|+1) (266).

Then \ .„=2j,7l
1 - 1 =2

ir
'»
+1
-l =2 f -l = (mod p) (27«),

.Y;=j,<-2 = 2 '-2 = 2(2
4

-l) = (mod» (276).

It is seen that in both Cases 1°, 2°,

Xi+Xiu=K, and r,J'm=+l (mod p) (28).

Case (3). £g= 4«-l.
Take v.,-2'''" (modp), where .v,

t
=.v = i (U+ I) (29a),

and .r 1v=2
a
'''"(modp), where *<*=££-«= f(|£- I) (296).

Then \ „ = y,7« + 2= 2 "+2=2(24t + l)= Q (mod p) (30a),

and A',v=2yi,
4+ l = 2

4aP
'v+1+ l=2

3'if + l=0 (mud p) (306).

(7ctse (4). ^£ = 4.t + 1.

Take yiv= 2
Xi
>(mod p), where #.•„=#= £ (|£-1) (31a),

and v, l
= 2

X,'

< (mod p), where *i.= |5-*= |(|?+l) (316).

Then Viv=2yiv
* +1 =2

ix
'°
+1
+1 =2iS+ 1= (mod p) (32a),

and 2Vtf=)>«*+ 2= 2
4x
*+2=2(2

3'if
+l)= (mod p) (326).

And, it is seen that in both Cases (2), (4),

*«+#«.=££> yuyiv=-\ (mod p) (33).

Thus it has been shown that, whenever the Haupt-
Exponent (£) of 2 is £= <» or 2a>, the Residues of 2* suffice

to give one root (//) of each of two out the four Congruences

(8), viz. of the Reciprocal Congruences (Art. 13a),

i.e. of iVi=0, 2^=0; orof.Yl7 = 0, 7^= 0.

• Haupt-Exponent, i.e. the least exponent (£) giving 2f= + 1 (mod p). This
is the German term : it is sometimes styled Caussien by the French.
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14a. Completion of Solutions. One root of each of two
Reciprocal Congruences having been found by the above

Rules of Art. 14, a single root of each of the Congruences
conjugate to that pair may be found by Rule (22a) of Art.

lSb (when p = 8nr + l).

Otherwise, it reallv suffices to find one root of any one of

the four Congruences (8) by these Rules (of Art. 14). After

which one root of each of the other Congruences may be

found hv the Rules of Art. 13a, b combined.

The remaining roots of each of the Congruences may
then be found by the Rules of Art. 13c).

[Note that when one root of any one Congruence has been found by the

Rules of Art. 14, the calculation of the reciprocal rout by the solution of

(21) of Art. Via is usually less laborious than by the Rules of Art. 14].

14,7;. Use of the Binary-Canon. This Table gives [the

complete set of Residues (R) of 2
X

, and also the exponents

(x) yielding the Residues (R) for all moduli p and p
K

;j> 1000.

Hereby the required Residues of 2* of the formulae: of Art. 14

can be picked out at sight: thus giving (at sight) one root

of each of two Reciprocal Congruences for every prime

p ^> 1000 which has £ = a> or 'lay.

14c. Failing Cases. There is a limited class of divisors

P = 8ct + 1, with (2/p) 4
= + l, in which the above process fails,

viz. when £ = 4.r. In these cases— (which are few* in

number)—the roots (y) of the four Congruences are not

congruent to any power of 2, so that the process fails.

15. Contrast of Methods II., III. Up to the limit of

p and p" ^> 1000, the Canon Arithmeticus gives all the

results required by the formula? of Art. 11 [i.e. all the roots

of all the Congruences (8)J with so little trouble that Method II.

is to be preferred (as the Binary Canon gives only one root

of each of two Reciprocal Congruences).

When, however p or ^
K >1000, the use of the powers

of 2—(by Method ill.)—has considerable advantages (when
the Maupt-Exponent (f) of 2 is £ = o> or 2o>), viz.

(1) A primitive root (y) is not needed.

(2) The solution of g
x~ + 2 is unnecessary.

(3) The value of x is given explicitly by the formulae of Art. 14.

(4) The final reduction of y as the Residue of 2X is usually far easier

than that of g
x':— [g is often an inconvenient basej.

* Only 5 cases of ;j> < 1000, viz. p= 113, 257, 35:?, 577, 593. All Fennat's

Primes /•"„ = (2
2"+ 1), > 17 fall under this class.
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16. Tables available for Method III. This Method (by

use of Residues of 2") is greatly facilitated by the use of

suitable Tables :

The following data are required :
—

(1) Haupt-Exponents (£) of 2, modulo p.

(2) Solutions (17) of »?* + 1 = (mod p).

(3) Solutions (£) of S
4 +l =0 (mod p).

It will be useful to show how far Tables are now available

for likely to be available shortly) for the above.

16''. Haupt-Exponents (|) of 2.

The values of these (£) have been computed* for all primes p up to the

limit p^f* 100000, and are being published in a series of Papers in the

Quarterly Journal of Pure and Applied Mathematics in the form of Tables of

the values—(not of t. but)—of v the reciprocal of g; i.e. of v = {p- 1) -1-4',

whence the value of 5 can be at once deduced as %=(p — \)i-v.

I Vol. xxxvit., 1905, p. 142; up tojo;}>10 4
.

See VoI.xlti., 191 1, pp. 248, 249
; p > 10' up to 3.10*.

Journal
\

Vol. xltv., 1912, pp. 45— 47 ; /; >o.l0 4 up to 6.1C 4
.

quoted. Vol. xliv., 1913, pp. 240, 241 ; p >6.10 4 up to 8.!0 4
.

^
Vol. xlv., (to appear shortly) p >8.10 4 up to 10 5

.

16^. Solutions (n) of yf + 1 = (mod p).

These can be obtained from the 2 ic partition ^=(a! + b2
) by reduction of

the formulae

—

»j= +(a+ mp)/b, orEE +(b + ?»/>)/ a, (mod p) (34),

where the value of in is to be determined so that ') may be an integer.

A Table of the values of (a, b) for all primes p=iw + 1 ^> I05 is given

in the author's Tables of Quadratic Partitions.^

A Table of the actual roots (ij) of »j
a + lEE0 (mod p and p

K
) up to

p and ja^ ^|> 10 5 has been prepared by the author, and is in course of

publication.

16c. Solutions (f) of £
4 + 1 = {mp).

These can be obtained from the 2lc partitions p = a2 + b2 = c2 -f2d' by the

reduction of either of the following formulae (in which the sets of + signs,

being independent, give four roots), viz.

S= ±
C — (l + l), or = +i^.(»,±l), =0, (mod/>) (35),

c 2d

where 'i is a root of »j*+l =0, (mod/;), ..., [see Art. 166],

and the value of m is to be determined so that X, may be an integer.

A Table of the values of (a, b), (c, d) for all primes /? = 8-nr+l ^> I
5 is

given in trie author's Table of Quadratic Partitions.

f

A Table of the actual roots (£) of £' + 1 = n (mod p and p
K

) up to p and
]>

K
^> 5.10 4 has been prepared by the author and is in course of publication.

* By the present author and Mr. H. J. Woodall, A.R.C.Sc, in collaboration,

t i'ublisued by Fr. Hodgson, London, l'JU4.
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16'/. Binary Canon Extension.

This is a Table* showing the Residues (both + R) of 2X up to x = 100 for

all p andpK ^> 10 4
; and up to .v=36 for all p and ^K

}j> 12000. Thus this

gives at sight the Residues y of 2* required by the formulae of Art. 14 up
to p%> I0 4

.

17- Allied-Forms (A7
, N) Take a new set of forms

N, = 8IV-1, N«=8IV + 1; N,«=FiH*-8, Na,= F.„" + 8 (36),

and let their bases Y be connected with the bases (?/') of the

other set of forms (N) by the relations

v=2P-. r-=2F--: Y—=2Vi~. Y- =2v- (37)

Hereby the two sets (A7", N) are connected thus

Hence the solutions (y) of the four Congruences (8) of

Art. 9 suffice to give also the solutions (Y) of the four new
Congruences

N-0, N«= 0, N
;ii
= 0, Nir

= 0(modpor/i. .(39),

by the simple relation (37) ; so that the Tables (I., II.) at end
of this Paper of solutions [y) of the Congruences (8) can be

easily used as a Table of solutions [Y) of the allied Congru-
ences (37).

Also by the relations (38) the factorisation of either set

(N or N) suffices to give that of other set (N or N).

18- The rest of this Paper deals chiefly (Art. 19-27) with

various properties of the four numbers of type N, as follows :

Common (actors, Art. 19

Square forms, ,, 20

Dimorphism, „ 21

Equality, ,, 21a

Dimorph sums, ,, 22

Factorisable sums, ,, 23

Form F~
M
+1, Art. 24

Trinomial forms, ,, 25

Isomorph Products, ,, 26

Problem, ,, 27

Octavan forms, ,, 28

General forms, ,, 29

and ends with explanation (Art. 30) of the various Factori-

sation-Tables at end of the Paper.

19. Common Factors. Since a < £, and /3 < £, and also

a=£.d (in Art. 11), it follows from (12) that no two of x xu ,

x
Ui , xiv , can be equal for the same p, and therefore also

—

No two ofy t , yh , yiU , yiv, can be equal for the same p (40a).

* Prepared by the present author and Mr. H. J. Woodall, A.R.C.Sc, in

collaboration. It is at present only in MS.
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-r-2)d&(2y
4+i ).

Hence also

—

No two of .V. -V,,-, 3",,;, Xiv , formed with the same y, can contain any

common factor >3 (406).

20- Square Forms. Since y
4 ~ £ cannot = 2, it is clear

that
A'i and N

it
cannot =Q (41a).

Next, let (t.\ v
r
'), and (r

r, v
r )

be the /h
of the successive

solutions of

t'»-2w',= -1, t2-2w*=:+1; [r=\, 2, 3, &c.].

Then ^, = 2^.;- 1 =r- requires T"-2(^3

)

2 = - 1,

so that (t', yu£) must be a solution of t'*-2i/2 = -1, [>,•'=.)',•,•;*].

Here ^
'= 2:i9, t/= 169= 13" gives the only known solution, viz.

J»i=13. AT

iii
= 2.134 -l=239 2 (416).

If any other solution exist, it must be in very high

numbers, |Y> 39 giving y> 10
14

].

Also N
iv
= 2y.* - 1 requires t*— 2 (y.J)

2 = + 1, so that

(t, y {J) must be a solution of t«— 2y2= 4-1, [k,. =>',-,/]•

But it is known that

uJr_, = 2Tr'u/ always, and u2r = 2Trur always.

Now t ', v/ are always odd, and T
r, vr

are always mutually

prime, so that neither f
2r_,,

f.
2r
can = D ; hence no v

r
can = D.

Thus, finally

N
iv

cannot =Q (4h)-

It may be noted also that

Vi+ ilfc-jtf+V. i(^i + ^J=Vm4
+3'n.

4 (*2a).

^~2^=JV-4V^, ^- 2^=^^V (424),

^i+2Niv
=yi*+ 4yiv*, JY

ii + 2Xiii=yii
* + iy

iii
* (42c).

As it is known that none of the six dexters of Results can
be square forms, it follows that

None of the six sinisters of (42a, b, c) case= (42).

21. Dimorphism impossible. It is easily seen that

*I= *V. ^«= -7V«'. iV^= iVy, JV
iv
=Niv

'

(43),

are impossible (except with y = y' in each case).
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21rt. Equality of different types. It is easily seen that

- which are all impossible... (44).

Ni =N{i
involves y> — y#* =4-4 ^

N
tii
=N

iv
involves yiU

l - y it
* = + 1

iVj = A'.-,- involves yt
* — 2?/, ;i

4= + 1

N^Ntv involves y«
4 -2y

it
< = -

1

N
t

-A',,, involves «/,•' -'2y
il

,

4 -+3

-^.i
~ jTm involves yu - 2y tii

4 = - 3

Hence it follows that

—

The same number Ar cannot be expressed in two different types. .(44a).

22. Dimorph Sums of N. Let a
r, b., c

r , d
r
denote the

roots (y) of four (different) numbers A
r

, Br , Cr , Dr
of same

type (iV), [r = i, n, lit, iv.)

Then

a/ f br
4 = cr

4 + d r
4 involve A r V B, = Cr + Dr [r = i, ii, Hi, £«]... .(45a),

a/ +V = c
il i

4 + f'i,
4 involve A

{ +B ii
= \(Ciii +Div) (456),

so that everv solution of a
4 + b* = c

4 + d* in integers gives a

solution of (45a, b).

[This equation was solved by Euler, see Comment-Arithm., Vol. t.,

pp. 473-470, &c. A Table of the solutions was given in the author's

Paper on Diophantine Factorisation of Quartans in the Messenger of
Mathematics, Vol. xxxvm., 1908, p. 86. 1 he lowest solution known is

134 4 +I3o 4 = o9 4 + 158 4
.]

23. Factorisable Sums of N. Since, for the same modulus

{p = %vj f 1)— see Art. 13, Eesult (22),

yi*+yH*= 0, and v,,,-
4 +yh *= (mod p), ahoays.

These give at once the pairs (Nv JV..), (NHi , Niv),
such that

A-,+ A^=0, and X
iii
+Xw= (mod p) (46).

And, since each such prime p has four roots (y) of each

kind (y., y.., y..., y.r),
all satisfying the congruences (8), and

all <p, it follows that 16 different solutions of each of the

congruences (46) exist for each such prime (p) with every

root y <p.

[Cor. The Tables (I., II.) of Solutions of the four congruences (8), given
at end of this Paper, supply 32 solutions (a, b) of the congruence

a 4 -hb*= (mod p = S-ar + \), [a&b</],

for all primes p = 8w + i < 1000 with (2/p)i
= l : thus this Table suffices to

show factors (^>1000) of the Quartans iV"=a4 + b 4
; it is, however, not

exhaustive up to that limit as it includes only primes (p) such that

(2//)«= + l.]
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24- Form N or \N= ( F" T 1).

Take y= 2x .rf, with /* ot/d (47a).

And, take X = \(kn + l), so that 4\±1 =fy (476),

where /• is determined 30 that A. may be an integer (always

possible).

Write Y-2k
.7)\ and note that y = 2^ ;i

.rf (47c).

I. Let \ = l(k/x + l) ; then—
i. N{ =y'-2=2{(2*vY-l}; hKi = Y'i -l (48«),

ii. 2V«=y«+2= 2{(2*»j
4
)'
i+ l}; £iV«=rM +.l (486).

II. Let \= l(kn— 1) ; then—
iii. 2V<w=2(2*'

1 - I .»jV)-'l =(2*nT-l = I
rM -I (48c),

iv. Niv
=2(2*'x- l

.n*'
x
) + l = (2*r)*f+ l = Yfl+l (48rf).

Thus it has been shown that

JVor A^y + l), whenever ^ = 2
J(tMT,)

.»j
M

(49).

And, since fi is odd, each of the above forms of N is

composite, and has (1^+1) as an algebraic divisor: and, if fx

be a product of odd primes, then p(Ya + \) will have several

such algebraic divisors.

This form \N or N—(Y'1 — l) is of some importance as

regards factorisability, as the procedure for its factorisation is

well known. Unfortunately the values of y increase rapidly

in magnitude as ft = 3, 5, 7, &c, increases.

Ex. Subjoined is a short Table showing the bases

y=-2 x
r)
a

of the factorisable N arising from small values of

H = 3, 5, 7, ..., and the auxiliary bases F=2*i?4
useful in

factorising A7
. It will be noted that

Y>y, when ,u. = 3; Y<y, when /*>3 (50).
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25. Trinomial Forms. By aid of the relations

2 = 3-1; 2
3 = 3

3 - 1 ; 2
3 = 7 + 1

;

it is possible to express some of the numbers iVor ±N in the

trinomial forms

i<V or N = Y
n
+ Y

n
+\, where T=3 or 7, »= 4m (50).

Thus—
y = 3>" gives JV

iii
= 2.34m-l=34mM -3 4'"-l (50a),

iY,
t
,
= 2.3 4"'+l=3 4 '" +1 -34m +l (506),

j> = 2.3>" gives i-Y; = 8.3'--l =34m+2-3 4"'-l (50c),

^X
ti
= 8.3i'»+l = 34 "' t2 -3«"'+l (50d),

jV=2.7
m gives i^V,. =8.7 4-»-l =74m+1 + 7""- 1 (50*).

^V.
i
= 8.7 1'"+l = 7

4 ",+, + 7
< "' + l (50/).

Tx
25a. Use oj Canons of Residues of 1

The author has compiled extensive Tables (at present in MS.) showing
the Residues (say + li) of Yx moduli p and p

K for the small bases
F=3, 5, 7, 11 for the range of powers x = l to 24, and of moduli p and

p
K =$> 10000.

"With these Tables it is easy to pick out at sight the divisors p and

p
K ~^> 10 4 of A = (y

4+ 2), where y= Ym. And, it is easy also in the case of
JV= (2y*+l), because

N= ?yi+ 1 = Y*m- ( - Yim
) + 1

,

and the Tables givft side by side the values of R, and (p — R) or (p'
t — R),

when R is the + Residue of Yim (mod p or p
K
).

The divisors of the trinomial forms of Art. 25 can also be picked out at

sight from these Tables.

26- Isomorph Product. The question arises whether the

product N
r
of two numbers L

r , Mr
of the same type as N

r ,

or the product of their halves \Li
r , hMr , can be a number

isomorph {i.e. of same type) with them, i.e.

Can L r.Mr=Nr or \Lr.\Mr=\NTt [r= i, ii, Hi, »'»]? (51).

It does not seem easy to settle this question completely.

It may, however, be shown to be impossible when £., Mr
are

both prime (if M
r
> L

r
> 1). This is a special case of the

following Theorem, so that its proof is included therein.

26a. Valrqfs* Theorem.

"If (2x-±l)(2y*±\) = 2z'±\, [all signs +, or all -], then one of the
factors is always composite (except when .v or y = \, or x=y)." (52).

* This Theorem (with the —signs only) was proposed as Question 339 in the
Journal Sphinx-CEdipe for 1912, p. 60: this solution (by the present author)

appears ou pp. 78, 79 of the same volume.
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The two cases with the signs all +, or all—, require

separate treatment.

Ca8i i. (with + signs). For shortness, write

L = 2.v
! +1, M=2y*+1, N=2z-+l, L.U =N (53).

And. if possible, let L, M be both prime: in this case the

above forms of L, M are both unique.

Here LM=2U'+T1

(54),

where T=2xy + 1, U=x±y (54a).

And, it is at once seen that

T=±l is impossible, except when ^' = 0, or x=y = \ (55).

This proves the Theorem for the + signs.

Case II. (with — signs). For shortness, write

L = 2.v--\, M=2y--l, N<=2z*-1, LM=X (55),

and, if possible, let L, M be both prime.
And, let (t/, i/,'), (t

2
\ t//), ..., (t

p\ vp ) be the successive
solutions of the " unit-form "

t"-2i/2 = -1 (56).

Now, since M is prime, it can be expressed in only one
way in the infinite series of forms

M=t;i -2u
{

2 =t:-2u* = ... = t;--2u; (57),

and each pair (tp , u
p) can be expressed in terms of the

original (y, 1) by means of the members (t/, vp
') of the

" unit-form " (56) ; thus

t
P = 2v;y+JTP

', u
p
= rp't/+jv;, [j= ±l] (58).

And, since L also is prime, the product LM = (2x
l — 1)

(f— 2u") consists of only two infinite series of product-forms
of type

lm=2u;-t;,
[p = i, 2, 3, ...] (59),

where Tp , Up are given by

T
p= 2upx + Jtp , Up

= tpx + Ju
p , [J= ± 1] . . . . . .(60).

Aud the question is finally whether it is possible that

Tp = 2upx + Jt„ = ± 1, for some value of p (61).

This gives x= -(Jtp +l) + 2up (61a).

Now tp is always < 2u
p
when p> 1, so that x^ integer

it p> 1 : but t9 is always > 2up when p = l.
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Now p=\ gives t,'=1, i//=l, t
{

= 2y+j, u^y+j,
by (58) ;

/(2y+/) + l
whence aj = '/ ..— (616),

the only integral values of which are

*=1, ?/ arbitrary, which involve z= y, L=l, M=N.
X= 2, # = 2, which involve 2 = 5, Z = Af=7, iV=49.

This proves the Theorem for the — sign.

Note that the above proof depends essentially on the forms (2x2 ±\),
(2y*+ I) of Z,, A/ being unique: for if either of them were expressible in
some other form, say M=('2w-±v-), different from

—

(i.e. not equivalent to)—
the original form (2jj'

2 +l), then the T, U of the product-form of L, M
would be different from those used above, and the equation T=±\ would
become possible. An example of each Case will suffice to show this.

I (2.3*+l) (2.5*4-1) = 19.51= 969= 2.222 4-l.

Here .51 = 3.19 =2.5* + 1 = 7
2 + 2.l 2

; and the result (2.222 + 1) arises from
the conformal* multiplication of (2.32+ 1) (7

2 + 2.1 2
).

II. (2.22-
1) (2. 142 -1) =7.391 =2737 =2.37'- 1.

Here 391 =17.23 = 2. 14 2 - 1=2.162- 11 2 = 212- 2.

o

2
; and t }le reSult

(2.37 s— 1) arises from the conformal* multiplication of (2.22 — 1) by
(21'-— 2.5 2

) ; this latter form is not equivalent to (2. 1

4

2 —
1 ).

Note further that Valroff's Theorem is true only when L, M, W are all

three of same type : thus, if L, M are of same type and both prime, they
may yield a product-form N of the reciprocal type. An example of each
Case (i., ii.) will suffice to show this

—

i. (l«+2)(3*+2) = 3. 11=33=2. 4 2 + l; [3, 11 are primes].

ii. (3
2 -2)(52 -2) = 7.23=161 = 2.3*-l; [7, 23 are primes].

27- Problem. In modification of the Question of Art. 26,

the following simpler Problem may be proposed.

Write L, = 2.v,
2 +1, L,= 2x/^l, L3 = 2.r3

2 + 1, &c (62),

and AT= 2jy'+l (62a),

where L,, L
2
, L

3
are all quadratic functions, and N a quartic.

The question is

—

Can N = L
l
L2 L3 , ..., [like signs throughout]? (63).

When there are only two factors Lv Lr then Valroff's

Theorem (Art. 26a) shows that

N = L
X
L2 requires one (or both) of Lu L2 composite (61).

No examples have, however, been found.

* Conformal multiplication means multiplication with preservation of (quad-

ratic) form.
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When there arc more than two factors (L L
2 , &e.) the

problem is certainly possible, as the following- examples show

though n<) general Rule has been found).

•_>.;;2
4 - 1 =-J'.i.!27.3:J7 = (2.5

? -l) (2.8"- 1) (2.13*— 1),

2.15
4 + 1 = 19.73.73 ='2 (3*+ l) (2.6* + 1) (2.G

2 + 1).

28- Octavan Forms. Consider the numbers

N<=y«-2, N
j; =y

8 +2, N«i=2y*-1, Niv= 2j/»+l.

These, being only a special form of the 4-tan numbers
Y, .... A'.i of Art. 1, wherein ?/ = Y 2

, are subject (mutatis

mutandis) to all the general Rules of those numbers.

The chief modifications are

—

In Results G, Ga, b, 7c, &c, and elsewhere, change (2/p)4
=l into

2//>).= l-

In (12), change 4.v into 8.v and \ into J.

In (146, (/), change 4 values (or roots) into 8 values (or roots).

In (156), the 8 exponents (x, x', &c.) are found by repeated addition

of 'i' instead of ££.

&c. &c. &c.

But, for practical factorisation of these 8-van forms, it

often suffices— (so long as y is small)— to convert them into

the 4-tan forms by writing y — Y\ upon which the congruence-
solutions (?/) of the 4-tan congruences (Art. 9) can be used.

29. General Forms. The numbers (N) above discussed

have all been 4-tic forms of determinant ±2. By a quite

similar procedure the factorisation of the set of 4-tic forms (N)

N^tf-q, N
i{
=y* + q, NUi

=qy*-l, N
iv
=qy*+1,

with determinant ±q, may be effected.

The prime divisors (p) must be of the same linear and 2
ic

forms as those of {Y2 + q), (qY'J +l), the forms of which
have been discussed by Legendre, with the condition

—

When />= 4ct + 1 ; then {qjp) t
must =+1 for N. & iV...,

[qlp) 4
must =+1 for K. & N.

v
.

Ex. When q = 3; the forms of the prime divisors (p) are

Oic
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30. Factorisation-Tables. Four Tables—(III.—VI.)—of

the factorisation of these numbers [N) are presented at end of

this Paper. In all these Tables the following signs are used.

(1) A semi- colon (;) on right shows complete factorisation (into prime

factors).

(2) A full-point (.) on right shows that there are other (undetermined)

factors.

(3) A semi-colon (;) in middle separates algebraic factors.

[These occur only in the case of N=(Ym — l) [m odd] of Art. 24.]

(4) The signs f, |, §, U show the limits (as stated below) up to which
the search for factors has been pushed, with the aid of various MS. Tables

in the author's possession. These often suffice to determine High Prime
factors ( >10 7

).

fup to 1000; + up to 10000; § up to 32000 ; H up to 50000.

[The author's acknowledgments are due to Mr. L. Valroff for 29 of the

factorisations of Nii
= (2yi—1), including 19 High Primes (>10 r

) marked V
in the Tables].

30a. Table III. [y > 100).

This gives the factorisation of the numbers of the four kinds (A
r

;
to Niv)

up to the limit y ^> 100. The factorisation is complete (into prime factors)

up to the following limits

y = 66 for N
{ ; y = 62 for A',-. ; y = 50 for NUi ; y = 62 for A',-,,

A',-, X
i{i are so closely related that they are placed together; and X

;;
'

N
iv

are so closely related that they are placed together. The search

for factors (p) has been pushed in all cases up to p^p-1000, and in a few

cases wherein y — 2 .»i
M

[»i = 3, 5, 7, 11], much further, viz.

A\ Na Nm X u .

y = S0, 88; 98; 48, 50, 56; 48, 96.

Only two cases of the kind N={Ym+l) of Art. 24 occur in this Table,

viz. of A>(54*-2), X
fi
= (54

, + 2).

30£. Table IV.
This Table gives the factorisation of selected numbers of the four kinds

N ,toA',v ) in which v = 2\if", [>; = 3, 5, 7, 11] from j>100 up to 1000.

In this Table several cases occur of the kind AT -(T"'+ 1) of Art. 24 as

follows ;
—

AT
- and Na Xm and A

T

„,

y=250, 432, 686; y=\0S, 486, 500, 864.

The search for factors (p) has been pushed in most cases up to p^> 10000,

and in some cases further : it is thought worth while recording the results,

although in many cases very incomplete.

30c Table V.

This Table gives the factorisation of a few selected cases of high
numbers (Ar

) with j'>10 3 but <10 4
: in. most of which jV is of the kind

A' = (
?'"• + 1 ) of Art. 24, which admits of factorisation to very high limits.

S0d. Table VI.

This Table gives the factorisation of the four numbers N=(y*+ 2),

(2j
8 +l) up to j=32 inclusive.



>2 Lt.- ( hi. ' 'unningkam, Factorisation of'N={y*+2)&{'lif~-

CoHt/rurjice-SoIutions (i/). Tab. I.

y*-2 0&2y-l (i(ii lod/ = .Sw + 7). y* + 2=0 & 2)<*+ 1=0 (mod^ = 8-ar + 3).
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Congruence- Solutions (moduli p = 8sr + 1 {2jp) i
= + l).

Tab. II.

y*-2= i
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Factorisation of N={i/ + 2) & (2y + l). Tab. IIIa.

Nt=y*-2
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Factorisation of N= {if + 2)& (2/ + 1) . Tab. 1 1 1 b.

N-f-'l
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Factorisation of A=(y4 + 2) & (2j/
4
Ti). Tab. IV.

.V, =(^-2)
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4
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Factorisation of N= (y
8+ 2) & (2?/

4
q= l). Tab. VI.

y-2
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NOTE ON THE SOLUTION
OF THE DIFFERENTIAL EQUATION r=/{t).

By J. R. Wilton, 31. A., B.Sc.

I HAVE been unable to find any reference to solutions of

the partial differential equation

dx<
~J

\dy
2
)

'

t-e., r = f(t) (1),

except for a few particular cases. The general solution,

though complicated in appearance, is very simple to obtain,

and it is difficult to believe that it can have escaped observa-

tion ; but there is no reference to the solution in any book or

memoir to which I have had access. I have not, however,
seen Legendre's original memoir on the equationy(r, s, <) =
in UHistoire de VAcademie des Sciences for 1787.

Following Legendre's method, we differentiate equation (l)

with regard to y and take q as the new dependent variable,

obtaining

dx*
J

\dy) dif
'

By Legendre's transformation (the principle of duality] this

becomes

dX*
=f{X) dT (2) '

where u = sx + ty-q, X = t, Y=s (3).

To solve equation (2), assume a solution of the form

u = (p(X)^(Y).

Substituting this value of u in (2), we find

4>"(X) + (Y)=f{X)4>[X)+"(Y),

wiience, if we assume that \L(Y)= .' uY.
sin

<t>"(X) + Sf(X)<p(X) = o (4),

a differential equation for which has two linearly independent
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solutions,
(f> ]

and
2
say. Hence a particular solution of equa-

tion (2) may be expressed in the form

u = A(j>
l
(X) cos f*Y+B(t>

2
{X) sin fiY,

and by the addition of particular integrals, we obtain the

general solution

u
a

=
J

F
x
(/*) <p

t

(X) cospYd^
J a

+ [V>)^(X)sin/*r^ (5),

where F
{

and F
2
are arbitrary functions of /x

; 0, and <£ a ,

of course, depend on /j, ; and a and b are any constants.

In most cases either of the two integrals in equation (5)

will serve as the general solution of (2), but the two integrals

are given in order to include those special cases in which
equation (2) is soluble by Laplace's method, as extended by
Legendre. In order to obtain the solution of (1) from this

result, we use the relations

du du
x
~dY' y ~dX'

xY+yX-q

= u = i^0
(

cos/jbYd/j, + \ F$
2
sin fi Yd/j,. ..(&),

x = —\ pF
1
(p

i

sin fiYdfJt+ I /j. F^(f> 2
cos /j. Yd/j,... (7),

J a •'a

y= F^i cosp Yd/jl +\ F^^' s\n fiYdfi... (8).

•'a •'a

Making use of equations (7) and (8), we see that we may
re-write equation (6) in the form

q—\ ^[(^/-^Jcos/iF— Y$
l
fia\npY]dfi,

rb

+ K\ix$*-$*) sin ^ Y+ Y(P^ C0*I* Y ] <fc--- (9),

We have now to integrate this equation with regard to y, and
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...(10),

thus to obtain z. In carrying out the analysis of this step, the

work will 1)0 much simplified by making use of the relations

dx: f
b

f
b

' = - I ix FrfS ain p Yd/i+ fi FrfJ eos ftYdfi^

f
b [''

. = - pFrf, cos ixYdfj.- pF
s<p t

suifiYdp

3// r>iy\ 3^

X -J (A)^,

dy dx

dY~dX
where, in obtaining the third of equations (10), use has been

made of (4). Using these relations, we find

3 {jc, y) dX d-e

~ ~
3~Y'

Bx

dX'

d(X,Y) dy'

d(x,y) dY
3 (X, Y) dy

And therefore

3 (a), y) 'dz d (x, y) dx cz dx dz

* d (A, Y) " dy d[X,Y) "dXdf ' dY dX
In order to perform the integration, we assume

dx dydz

di

dz-

dx p dx +q dz (ii),

(12),
dx dy

dY~ p dY +q dY
where p is a function of X and Y which is plainly equal to

dz/dx, but is as yet undetermined.
From equations (ll) and (12) we see, by differentiating

the first with regard to Y, the second with regard to A", and
equating the results, that

dx_ dp d^dp dq^dy_ dq 3y
dXdY dYdX ~ dXWY~dYdl

( :V

dX
X fy -4- Y ty \ M ( Y^-j V ?
dX

+1 dYj"dxvv
dx

+1
d

dx

Y

Y d («, .y)

3 [X, Y) '
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where use lias been made of equations (4) and (10) in obtain-

ing Bq/dX. To solve this equation for p assume

dp _ v dx dx _ v dy 8//

91" " d2
+ V

dY~ dY +VdY (13) '

ax" v (A)
ar +

y
az~

r
az +

".§r" (14)i

where y is a function of X and Y to be determined.

Differentiating equation (13) with regard to X, equation (14)

with regard to Y, and equating the right-hand sides, we find

dx dv dx dv dy

dldY~dYdX~~ dX''

which is plainly satisfied by

v=g(x)+/[X).

where g is an arbitrary function of x.

From the form of the equations which have to be satisfied

by p and z, it is clear that the arbitrary function of x in the

expression for v leads merely to an arbitrary function of a; in

the expression for z. We therefore put g = 0, and therefore

v —J'(X), so that

p=Yy + jf(X)^dX

= Yy + xf(X) - ixf (X) dX

f
b

l c
b

l
= Yy + xf(X)-\ — F^

l

's\nfjiYdfjk+ \ — F^JcoapYdn,
J a P K f*

using equation (4).

We have now to substitute this value ofp in equations (11)

and (12), and hence to obtain z. Performing the integration,

we find

z = h{x) +px + qy-\ Xif- Yxy — %f(X) x*+ w,

where h is an arbitrary function of x, and to is a function of

X and Y, such that

~=^{xY(X)+y%

dw

dY
=Xy '
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It is easily seen from equations (10) that these two equations

arc consistent ; wherefore

>/• =
I
U\xif{X)^yr\dX f 2xydY}.

It is possible to obtain the explicit form of ic, but the resul

Ktremely complicated, and as there is no point of interes

in the work the integration has not been carried out.

The expression for z contains an arbitrary function of x.

We have now to determine this function. Differentiating

with regard to x, we find

dz ( d.c dt/\ dX ( d-c dy\ dY

d {x, y) dX d-r,

di.
dx 3

But
a (X, Y) dx

d(x,y) dY

therefore

while

Thus

and

a (X, Y) dx

^Z 7', \~^=P + h[x),

dz

By
=q '

= h"(x)+f(X),

dfe _dq y

Therefore h" (x) = 0; and we may take h(x) = 0.

Hence, finally, the solution of (l) is given by eliminating
X and Y from (7) and (8), and

z = $Xy> + Yxy + y{X) x* + \ j{[xy (X) + y>] dX + 2xy dY]

!
F

l
(j>

l
cosfj.Ydfi+ \ F^^'mfxYdfi

- a " a

'
c
b

l r
b

i-x - Ffa' sin ft Yd/x - - FrfJ cospYdfi

where F
x
and F

a
are arbitrary functions of /x, and (/>, and <p t

are two linearly independent solutions of (4).

-y
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The method applied to the solution of equation (2) may be

used to solve a somewhat more general equation, namely,

r-2f(x)s + g(x) t= (15),

where/ and g are arbitrary functions of x. For assume, as a

trial solution,

Z = (j>(x)^ (?/),

and therefore r = (j>"\p, s = <p'^', t= <p\p",

so that (j>"ip-2f(x)<t>'y-g(x)\P"=0,

or, putting xp = e^Y
,

f [x) - 2m/ (x) <p' [x) + ^g (x)<f>(x)=0 (16),

an equation which will have two linearly independent solutions,

(p
t

and <p 2
say. The general solution of equation (15) will

thus be
.6

z

The solution of equation (15) does not, however, enable us to

obtain the solution of a more general equation of the type

r=f(s, t).

ON THE SERIES FOR SINE AND COSINE.

By F. Jackson, University College, London.

§ I. Prof. M. J. M. Hill has given (Mess, of Math., vol.

xxxv., pp. 58—69) an inductive proof of the series for sin.r

and eos£. The demonstration is based on Le Cointe's

identity

3"sin|-sinx = 4^sin
3

| + 3sin
3 ^f...+ 3" 1

sin
3

|i),

and consists in proving that, for any positive integral value of r,

x x 1 /ar\
3 (-1Y (x^1

3" sin--- + -,(-] -...+
3" 3" 3!\3V (2r-l)!\3 n

f X*
, vr ^ \
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tin* Bign of inequality being > or < Recording as r is odd or

even.

If tlie second member of this inequality is denoted by <^ (x),

the first member is

r*
(f.)

I tliink that it has not been noticed that a similar proof can

be given which depends upon proving that

2> (£) % <t> (*).

the signs of inequality > or < occurring alternately as above.

§ 2. We start with the identity

X CC f X
2" sin —— sin x = 2 sin — f

1 — cos-
2" 2V 2

~ . x f x\
+ 2

2 sm-
3
(l-cos^j

+.

+ 2"sin|
l
(l-cos|„) (I.),

the truth of which is evident, for multiplying out the right-

hand side, we get

cc 3C CC CC ^c

2 sin sinx + 2
5sin— — 2 sin— +...+ 2

n
sin- 2"~ 1

sin—r ,

2 2 2 2" 2

whence we get 2" sin — — sin.r.

Now, if x is any acute angle,

sinx <£ (1),

and 1 — cos 2x = 2 sin
2

£,

therefore 1 — cos2.t < 2#2

,

therefore l-cosx< — (2).

From (1) and (2)

9

s'mx (1 — cos.r) < — (3).
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Now use (3) in the identity (I.). Therefore

2
n
)

"

The difference between the two members of this inequality

depends upon n, but does not tend to zero as n tends to infinity

;

for it consists of the sum of the expressions

/x\ 3

n . X ( X
I
—

1 - 2 sin — 1 — cos —
\'l) 2 V 2

,'x\ ., . x I x
- l?)-'

2
"

s,"?( 1 - cos?
etc.

Tli ere fore

„ . x . (x
2 sin— - sin«< (

—

2" I 2
-) +2s

f4l +-•••+ 2
>-

n-l

<
2 ) 1 -(l/2 9

j

a;
3

/ 1 \
<

3~! V

1-^'
therefore

o"
. X X I ( X s '

3!

If n tends to infinity, the left-hand side tends to zero, while the

difference remains positive; therefore

;>

<s\nx — x H

—

3!

i.e.,

Use (4) in

therefore

x
smx>x ,.

3!

1 — cos2.t = 2 siira;

;

( ^ \
1 - cos 2x > 2 [ x — —

j j

a- X
>2*- 4

3!
+ 2

51

,3 3

>2.c'
J-

3!
'

(*)

VOL. XLIII. F
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therefore
X' X,_ cosa;> ___ (5).

/ x3
\ I

x

2 xA
\

Therefore sin#(l — cosx) > \x—— 1 y— — —
)

'
2!

X
Ul +

3\2l)

x3
. a;

5

> -=.3 ;.15
3! 5!

> 5 <*-»- £<*•-»)

Use this in the identity (I.). Therefore

3 !

'

'.2 1

.5

(6).

2
n sm--sina:;-

f
(2

,
-l) * -1 +2'2

(^] +...4 2
n [-

Th ere to re

"sl'
2 - 1

'
2
-U)

+2
(?)

+-+ 2

IV
2'V

&
aS ,. 1 {l-fl/2 2n

){
2" sin Slllfl5> —:: (2 - 1) — — ——^—

—

2" 3!
V ;

2
J 1-(1/2 J

)

>

x5
1 {l-(l/m

5!
1 J

2
4 l-(l/2 4

)

3] V 2
s
/ 5~! V~2 i7')'

Therefore

., f . x x I (x\ 3
1 fxy) . x3 xb

- P r " r +
il Irj - si (?) J

"

s""»-»;

+ J]
- a •

Now make « tend to infinity, and reasoning as before it

follows that

x 3 xh

Substitute this into

sinx<.x H—

;

3! 5!
(7).

therefore

1 — cos2& = 2 sin* &,

x3 x5 ^
1 — cos 2x < 2 [x : -f — < 2jc*— 2

3! iO +
l!3! ' 3!l!>

+2x6
(ri5!

+
373!

+
oTh)
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2 /

8
a;

10

Provided sU^sIs!'

i.e., a'
J <40, which is so. Therefore

l-cos2.r< Tr
-
I

-

!

2.i.2* + ^2.i.2
6

< M! _ M* +
(2.)

6

2! 4! 6! '

a;" a;
4

a;
s

therefore 1 — cosa;<
1— — —, + —

:

(8).
2! 4! 6!

K J

Before proceeding to prove the induction I shall quote

a theorem given by Prof. Hill {Joe. cit„ art. 1), and make two
deductions therefrom which will be used in the subsequent

work.

§ o. Hill '* theorem . If

M
l5 "3' ••*? M

4r+1>
U
ir+3

are two series of positive quantities, eacli in descending order

of magnitude, and if Z7aud V ure two quantities such that

and

then ZJFis less than

-(», ?,3+»,U .)

+ («
!
v
s
+M

3
«3+M

5
y

1 )

but is greater than

11,17,

-(M
i

|fi+ M
i
t,

i)
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xr

H. Let *,= -,•

Then <„ t
% , t

5 , ... are decreasing if

x" <('),

and f.,, /„ /
R

, ... are decreasing if

ar<12.

These are both satisfied if x<\tt <\J"d.

Therefore, using the theorem of §3,

< t
x
t
x

~(*A+'A)

+ (V4rf.+ V4r-l+-+Ul'. 1
.

N<>W 'AW*,+ 'A«-,+-+*«+A
xum+* / (2w + 2)! (2»» + 2)! f2m + 2)! \

:

(2w + 2)! U!(2m + 1)!
+

3!(2j»-1)!
K " f

-Jw + ljlT!/

iU + l}*"**

^mw

(2/» + 2)!

~ ~ (2m + 2)!
'

therefore [t
t
- t

3
+ *

s
-...+ *

4 ,. + ,)

2

^ ! f
W W

,

(2^)
6

(2a;)—
}

2
(2! 4!

+ Hir~"'
+

(4r+2)!j
-'

[ ;
'

Also (f
i

_«
a
+i

5
_...+ ^J (ff

. f
4 + „.+ ^J

< 'A

-CA+V.)

+ (*A+'A+'A)

+ (
lAr*+«Ar+-+*«„A)-
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Now *A.+^d+-+^A
x3m¥1

f(2m + l)! (2m + 1)! (2m 4-1)!

(2w + lj! (i!(2mj)! 3!(2m-2)! (2m- 1)! 2!

(in + iy»"'_i}
(2m + l)!

M + J <

(2""-l),
(2m + 1)!

therefore ft- f,+ *,-... 4 «
4r+I) (<„- *

4
+...+ f4rJ

<^2'- 1)-5](
2,- 1

) + yi(
2,- 1)--+ (iS-!

^"- 1)

(10)-

Similarly, we can show that

>2
( 2! 4!

+
6! - (4r + 4)!]--' 1 j '

and (t
1
-t

3
+t

5
-...-t

4rJ(t-t4
+t

6
-

i ..-t
irJ

(12).

§5. Let us now assume that

sin £»<£. — t.+ f. -...-{ t. , (13).

Use this in 1 — cos 2x = 2 sin
2
x.

Therefore, from (9),

[2x)
s (2xY (2a)

6
{2x)

tr* 2

1 — Cos2j5<-W- - ^—r- + —r- -..-4
2! 4! 6! '" (4r + 2)!'

therefore

xs
-x* x6

x*
r * 3

1 — COSX<—:
: H j — ...+ — , ,

2! 4! 6! (4r+2j!'

r2
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Therefore, from (13), (14), and (10),

sin a; (l — eosa;)

X
< —.

4r'3

, |

..
1)_|!(2._x)+f]

(2.-l)-...+
T
^—

]

(2-- 1
)

...(15).

Now use (15) in the right-hand side of the identity (I.).

Therefore

•_' sin ,— sinr'j
2"

4^-"Hl)'^(^--"(i"

i i

Therefore

x

4^ 3

2 sin-7,— sma;
2"

05" l\ a;
6

/ 1 \ a4
/ 1

th ere (ore

0«

...+

«>".,, -y + :r, U -••• +

.7;

4r ' :'

/ 1

1 -a :

.7? iC 1 / .'£

(4r + 3)! V~ ^r+J>

1 /»v 4r+3
>

.7; x
<SUKT — X+ — — ...+

{ + > + ?,) I
\2"

4r<3

3! 14/- + 3)!
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1

Now make n tend to infinity. The left-hand side tends to

zero; and reasoning as in § 2, we see that

• x3 x4r > 3

3! {ir + djl

therefore s\nx>t
t

— %+t
t
—...— *

4r+3
(16).

]n a similar way from

1 — cos2^ = 2 sin'x,

and, using (1G) and (11), we get

l-co%x>t.
2
-t

i
+ t—...— t

ir+i
(17).

Then from (16), (17), and (12),

sin^(l-cos«)>^(2 z-l)-^(2^-l)+^(26 -l)-...

xAr~ 5

- (2
4rM -l) (18),

Substituting this into the identity (I.), we get

x
2" sin — —sin x

2"

x3
( 1 \ x6

( 1 \ x1

( 1

_xir+5
/\

'"
(1

therefore

(4r+5)!V
1

2^+4
>V'

f . x x l / x \ if x \
5

1 / a? \
7

2 r?"?^^] "hiw + 7iw"
1 / X

(4r + 5)!V2" /

a;
3

a;
5 X7\ 5 7 „.<>"+ ft

X X x x

And, reasoning as before, it follows that

x3
x>

,

x4- 3

i.e., Bina?<*
1
-#

1
+ *,-...+^ (

19 )-
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Now (m) can be got from (13) by changing r into r+ 1, and

we have proved (in §2) that (13) is true tor r = 0, 1, there-

tore it must be true for r = 2, and so on for all positive integral

values.

It follows therefore that the inequalities (14)
f
(15), (16) (17)'

(18j are also true for all positive integral values of r.

Therefore, since the series

and t
2

— t
4
+t

6
-...,

are both absolutely convergent, it follows that

r3 ™ 5 r7 «,»»-+i

M.-.-JJ + -, -
Tl

+...+ (- 1) ^-^i +...,

and

1 —cosx = '—.
x* x* x6

, .. , xlr
i*/ iaj *ki , \r—\ ""

''

=
2l~ 4l

+ 6"!~" ,+ l
""

1J
(2r)!

+ '-'

2 4 6 ^r

This completes the demonstration for £B an acute angle. By
using the series in the expressions for sin (x+y), cos(u; + y),
we can prove that the series are true for all values of x.

QUELQUES
REMARQUES SUR LES CONGRUENCES

rp
-

] = 1 (.nod/) et (p - 1) ! = - 1 (mod//).

par N. G. IV. H. Beeger.

La premiere de ces deux congruences s'est introduit dans
les reeherches recentes sur le dernier theoreme de Fermat.
Si l'equation

xp+yp+zp=0
a lieu pour des valeurs de x, y, et z qui ne sont pas divisibles

parp, chaque faeteur r de x, y, z doit satisfaire a la congruence :

(1) rp~> = 1 (mod/).

O'est le theoreme de M. Fiirtwangler.*

Wiener Berichte, Abfc. Ila , cxxi , p. 589.
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Abel a pose la question de satisfaire a la congruence (1)
par des nombres r<p.* La seule reponse tut une petite

table de Jacobi, calculee par Buscli.f

M. Cunningham^ a trouve* quelques cas de la congruence
7-2

'" 1 = 1 (modp°) avec r<pa~\ On les trouve dans la table

suivante

r
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•

M. Rteiasner* a poussc plus loin ccs calculs et il a trouve le

caa _'""'=
1 (modl093*), et a verifie qu'il n'y a pas d'autrea

nombres »<2000. I /assertion de Proth se trouve done con-

trary. La d^couverte de M. W. Meissner nous niontre qu'il

eat impossible de demontrer le dernier theoreme de Format

par moyen de I'irapossibilite de 2"" 1 = 1 (niodp") laquelle con-'

gruence aura lieu, suivant M. Wieterich, si x1' + y
p + zp = [).

M. MiritnanofFf a etudie le reste de

i-
1
'' 1— 1

(inodw)
P

et tout recent M. Baclimann| a donne une nouvelle expression

du reste de

2 p
~ l — 1

(mod«).
P

I. 1. La solution de la congruence xv~' = 1 (mod^r) a

rt(' donne par M. Worms de Romilly§ : Soit co une racine

primitive de p
2
. Formona les restes:

(2) x. = to
ip (mod;/) i= 1, 2, ...,p-l.

Ces p—l restes sont tons incongruenta (modp2
) et

x v-i s ^iPtP-i) = 1
(
moay).

II 'sensuit que tous ces restes sont les racines de la con-

gruence.

J'ai calcule les racines de la congruence

of'
1 = 1 (mod/)

pour tons les nombres premiers /><200. On trouve cette

tabic a la tin du present memoire. J'ai pris, pour cliaque

nombre premier p, une racine primitive de £>, w.\\ Je
recberche d'abord si w'

1
'

1

if est pas congruent de i'unite

(mod//). Alors on sait que co est rapine primitive de p
3
.

Je calcule maintenant

±05, = o)
p (modp")

ou iar, a la plus petite valeur absolu. x
t

est done racine.

Je prends

x* = co'
2p = ±x

i
(mod/; 2

)

. Ber. d. K. Preuss Acad., vol. xxxv., 1913, p. 663.
+ Jour. f. Math., B. 115, p. 295.

J
Ibid., B. 142, p. 41.

§ Inttrm. d. Math., 1901, p. 214.
II y a dea tables de.racmes primitives, v. p. e., Acta Math., B 17.
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3
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ou ±aJ
s
a encore la plus petite valeur absolu. Alois il vlent

x
x
x

%
= ± a;

8, x
x
x

3
= ± x

A, etc.,

jus qu'a x
i

xhb>-3) = ±Xk(p-\).

On a une controle du calcul parce que

±;ci(;,_i) = wHp-Vp = - l

de sorte qu'on doit trouver sr$(p_i)= l. Ainsi on trouve

^(p — 1) racines de la congruence. Les autres \{p — 1) se

trouvent en diminuant *>
s
des racines trouvees, car si .v. est

racine, il en est de meine de //—•*> Dans la table je h'ai

ecrit que les | (p—1) racines qui out les plus petites valeurs.

Exemple

—

p = 23, to = 5 :

5
?3 = 28, -28.130 = 63,

28
2 = 255, 28.63 = 177,

28.255 = 263, 28.177 = 195,

28.263 = — 42, 28.195 = 170,

-28.42 = — 118, 28.170= — 1.

-28.118 = -130,

Les 11 racines les plus petites seront done: 28, 255, 42, 118,

130, 63, 177, 195, 170, 1.

11 va sans dire que si x est racine, il en sera de meme de

x + pk. Done, on pent deduire autant de cas que Ton vent

de la congruence r
p_I = 1 (mod/r) par ['addition de Kp3 an

nombres donnes dans la table. On pent trouve p.e.

60000U8 = 1 (mod 149"),

parce que 60000 = - 6603+3.149 ?

2. On pent aisement trouver quelques proprietes des

racines: Formons le produit

{x- Xi ) (x-xs
)...(x-xp_ l

)= ar1- S
x
x^+...+ s„

ou a\ sont les racines de xv~ l = 1 (mod^/).

On aura done

(x— X
1
)(x— x

t
)...(x-Xp_1 )

= xp
~

] - 1 (mod//).

II sensuit

:

S, = 0, S
2
= 0, ..., fl^s-1 (mod//).
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Solent x xh(p-l) 'es P^ us pctites raqines. Les | (p — 1)

autrus rapines seront done

p*— xv ...,p*— J»*i(p-1).

Noug avona demontre que #, = — 1 (inodjp*). Done

a-,a-
a ...ari(p_l)(^-a;,) (>?*-*,). ..(?'- *£(?-!)) = - 1 (mod/;.

on x'x'...x\(P-\) = (— l)i(P+l) (mod/).

Si ;? = 4;/ — 1 on aura

«W"«i(P-l)=±l (mod;/).

La determination du signe du deuxieme membre semble

difficile.

3. Si p = 6n + 1 il y a toujours deux rapines qui different

l'unitd.

La prcuve peut se donner ainsi

:

xP- i-\=x6a-l

=(<r+ l) (x-\) (x*+X+1) (x'-x + 1) (;c
r,(n_I)

+...),

(ic+l)*
-1— l=(cc4-l)

6n—

1

=(a;+2)aj(a;
v +3a;+3)(a;

a+£c+l){(a;+l)6
(
n-J

>+...}.

Si done on prend

(3) x'+X + l = (mod/),

on aura a la f'ois

xp~ l = 1 (mod/) et (as+ l)
p_1 = 1 (mod/).

On preut enoneer ee theoreme sous la forme suivante

:

Pour toute racjine primitive co de / on a:

(ol(p-l)P— G>i(p-l)P = 1 (mod/).

Soit x = o uP et x + 1 = w^P,

on aura

(4) o}PP-a) aP=l,

et snivant (3)

:

a>2aP + w aP + 1 = 0,

et aussi

:

(co"P — 1) (u2aP + aaP + l) = 0,

ou w3^ — 1 = 0.



rp
~ l = 1 (modjt?

8
) et(p-l)l = -l (mod//-'). / t

Done

et il suit de (4) :

( 5 ) (
toPP - 1

)

3 = wfc-1 )? = 1

.

Du reste on a x = wPP — 1.

Substituons cette expression dans (3) :

(
a>PP -iy+( wPp - 1) + 1 = (modp*),

(d-Pp — a>PP + 1 = 0,

(oPp (coPp — 1) = — 1,

u^Piwpp-iy^-i,

(o3PP = - 1,

Table des RAgiNES de la congruence xp~ l = l (uiod^
2

).

et suivant (5) :

d'oii

P racines x

3
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rapines 03

1 43 147 164 348 350 386 391 470 687 908 1008 1067

1547 1595 1849 1889 2135 2286 2400 2670 2703 2817

2867 2890 2911 3038 3326 3392 3417 3445 3446 3557

3589 3645 3676 3697 4027 4031 4288 4355 4405 4425

4432 4441 4620 4808 4931 5101 5173 5244

1 164 317 469 510 695 730 955 1058 1100 1200 1239

1384 1477 1570 1777 1799 1837 1948 2004 2167 2195

2308 2364 2430 2552 2574 2583 2638 2784 2808 2878

2886 3079 3227 3365 3473 3495 3497 3594 3666 3895

3998 5061 5085 5203 5230 5257 5383 5517 5573 5602

5676

1 96 291 380 402 410 476 499 500 624 681 837 977

1256 1347 1379 1514 1693 1766 1828 2040 2470 2602

2613 2637 2665 2697 2727 2772 2815 2928 2935 2949

3023 3094 3202 3250 3369 3384 3651 3806 3936 4049

4056 4077 4174 4730 4898 5032 5064 5542 5744 5910

5947

1 68 129 174 356 373 620 690 742 937 954 1027 1057

1220 1330 1359 1418 1497 1578 1668 1690 1710 1901

1990 2618 2959 3029 3092 3366 3455 3517 3647 3853

3872 3997 4106 4121 4152 4156 4624 4689 4738 4793

4853 5098 5139 5152 5385 5573 5728 5952 5991 6070

6145 6335 6346

1 38 62 497 736 911 1155 1159 1224 1444 1549 1730

1813 1821 1846 1875 1891 2163 2172 2356 2360 2755

2757 3102 3347 3592 3607 3820 3844 4290 4339 4345

4378 4495 4497 4574 4612 4621 4682 4757 4803 4972

4973 5074 5095 5175 5632 5643 5654 6319 6485 6533

6609 6690 6734 6922 7094 7246 7342 7464 7916 7992

8034

131 1 58 111 250 424 659 835 899 1033 1100 1113 1465

1634 1657 1973 2386 2661 2818 3034 3053 3107 3177

3364 3416 3634 3674 3875 3900 4029 4050 4090 4135

4138 4337 4362 4419 4456 4505 4840 4844 5249 5256

5354 5464 5693 5869 6144 6341 6376 6438 6446 6572

6860 6880 7160 7397 7431 7734 7804 8014 816G 8194

8431 8490 8565
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r^"
1 = 1 (motlju

2

) ct (p-\)\ = -l (mod/). 81

racines x

163
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V
rapines x

181

191

193

197

1 78 298 313 314 416 420 836 1241 1368 1485 1618

2240 2291 2326 2430 2956 29-87 3398 3458 3598 3659

3718 3832 4047 4151 4154 4699 4711 4840 4845 4874

5009 5167 5263 5579 5884 5910 6084 6151 6921 7026"

7076 7087 7296 7636 7914 7920 8269 8347 8421 8909

9251 9269 9331 9447 9479 9517 9622 9894 10238

10876 10915 10968 11177 11637 11944 11982 12151

12300 12595 12741 12754 12960 13139 14141 14205

14324 14532 14893 15019 15138 15214 15222 15379

15473 15612 15662 15898 16124

1 176 395 714 746 938 979 1249 1293 1372 1802 2017

2044 2528 2721 2822 3442 4170 4208 4300 4643 4669

4798 4840 5066 5232 5275 5379 5385 5505 5700 5796

5867 6277 6609 7156 7378 7993 8364 8453 8682 8807

8883 8961 9301 9378 9793 9818 9935 10101 10322

10686 10826 10988 11124 11177 12150 12537 12777

12824 13070 13074 13361 13466 13573 13895 13979

14062 14385 14571 14586 14628 14788 15623 15966

15991 16072 16077 16107 16221 16242 16260 16276

16375 16612 16752 16846 17317 17319 17379 17423

17583 17652 17830 18213

1 276 436 558 813 873 874 894 895 954 1678 1732 1767

1947 2018 2361 2501 2561 2831 2897 3021 3374 3455

3851 4325 5012 5099 5272 6026 6205 6230 6627 6666

7312 7346 7835 8138 8574 8589 9058 9513 10085

10098 10172 10215 10846 10848 11011 11148 11500

11584 11776 11817 11850 12183 12458, 12459 13029

13354 13364 13372 13441 13576 13723 13797 13861

13999 14128 14318 14615 14819 14894 15173 15184

15240 15382 15860 15886 16050 16140 16420 17007

17149 17294 17343 17345 17454 17455 17512 17730

17901 18022 18158 18353 18403 18453

1 143 284 318 349 556 997 1328 1336 1342 1393 1672

1753 1784 1803 1890 1912 1929 2051 2139 2236 2455

2650 2768 2997 3038 4141 4155 4184 4443 4510 4595

4623 4628 5154 5374 5445 5697 5980 6242 6566 6574

6665 6962 7098 7522 7535 7698 8303 8666 8781 8994

9140 9147 9276 9297 9965 10028 10938 11006 11098

11485 11630 11774 12030 12377 12419 12486 12665

12694 12928 13468 13532 13834 13795 14080 14128

14162 14405 14526 14806 14823 14895 15025 15229

1530:; 15750 16075 16177 16551 17130 17179 17237

17311 17825 18360 18468 18885



i*~
l = 1 (mod;/) el (p - 1)1 = - i (mod/). $3

p



84 Dr. Beeger, Quelques remarqices sur les congruences.

Soil maintenant S
p_ x (p) = l

p_1 + 2 p"+...+ (p- l)""
1

la

fonction tie Bernouilli, on aura

done (p-iy. + l^ph^-p+ l (mod/).

Adams a calculi les nombres de Bernouilli jusqu'a h
lst
*

A I'aide de cette table j'ai verifie quHl tCy a pas de nombres

p< 114 qui satisfont a la congruence

(p-l)! + l=0 (mod/).

Prenons p.e. p = 61 on aura

121 52331 40483 75557 20403 04994 07982 02460 41491
61

',50= 930930

11 f'aut done chercher le reste r de

60.930930

+ 121 52331 40483 75557 20403 04994 07982 02460 41491

(mod61 2

).

On trouve r = 2745. On peut controler ce resultat, paree

qu'il taut que

2745 = (mod 61),

car (p— l)! + 1 = (modp). Le nombre 61 ne satisfait done
pas a la congruence (p— 1)!+ 1 = (mod/).

Enfin je veux tirer l'attention sur le quotient de Wilson.

On a

2!+l 4!+l 6!+l
=1, *- = l, —-!— =103.

3
'

5
2 '

7
'

10! + 1 12! +

1

- = 329891, —- = 283329.
11

' 13'

Tous ces nombres sont premiers.

* Crelh's Journal, B. 85, p. 26'J.
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ON A NOTE ON THE ELEMENTARY
THEORY OF GROUPS OF FINITE ORDER

(vol. xlii., pp. 132-134).

By H. W. Chapman, 3.8c.

In the above-mentioned paper I proved that if H be any

sub-group of a group O it is possible to find a single set of

operations Sv S
2

, ..., Sm belonging to the group G, such that

the group can be written in either of the two forms 8
t

H, S
3
H,

.... S H: HS„ HS , .... BS. It has since been pointed out
' m " I' 2> ' ti ii • •

to me that the same result, with others, has been given in the

Quarterly Journal of Mathematics, vol. xli., pp. 382—384, by-

Professor G. A. Miller.

I may perhaps be allowed to remark that my proof follows

directly from first principles, whereas Professor Miller's involves

the theory of the representation of a group as transitive.

I also wish to point out that, owing to an oversight in

reading the proof, the p
th rows in my schemes (A) and (B)

are wrongly placed and should be interchanged; also [A)

and [B) should be interchanged in the last paragraph.

A NOTE ON LEGENDRE'S FUNCTIONS.

By A. E. JoUiffe, 31.A.

In vol. vii., series 2, of the London Mathematical Society's

Proceedings, Professor E. W. Hobson, in a paper entitled

" Series of Legendre's Functions," proves, as a lemma, that

\{n &m0) lP
n
{co&6)\ is less than some fixed number, independent

of n and 0, for all values of 6 in the range (0, -n). As the

results based on this lemma are of considerable importance

and the proof of it there given is somewhat intricate, a very

simple proof may be of some interest.

It can be shown in a variety of ways that, it > 6 > 0,

0„(oos 6) + 1™ P„(co S 0) =
^^z^ff If = O.

G2
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therefore

„ , n r sin
2"+1

<fr<fy

|qff
(coig)+»r»f,(eo.^<J

J1
,^:

||
,

fli
.

jJow |l -sVin'^l = (1 -2cos2£sin
i!

<J>
+ sin

4
^)*

= {(l+sin»Vui'0 \- (1- sin^)'
J

co S
2 ^p>(l+sin»sin^

therefore

l

^coafl) + i«P.(coS 6) |<^t£ (I

S

^y.^

(by the substitution sin
2

<£ = sini/,),

1
/

77 1

Therefore
|

(n sin 0)
5 P„ (cos 0) | < (2 / tt)*,

and incidentally
|

(n sin0)* 4>„(cos#)
|
< (tt/2)*.

An alternative form of the analysis has been suggested to

roe by Dr. T. J. Fa Bromwich.

We have

fs f dt

Q. (co3 0) + i«P„ (cos 9) =
j ^ K<

_ s)li _ 1/2)|i

where the integration may be taken along the straight

line joining the origin to the point z. If t be any point on

this path of integration and r the distance of t from the origin,

then it is evident at once from a figure that \t— z\ = l—r and

1

1 — z'
1

1

> (1 + r) sin 0, therefore

| Qn
(cos 6) + \-niP

n
(cos 0) |

<^ £
^~ ,

leading to the same result as before.
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NOTES ON EXACT DIFFERENTIAL
EXPRESSIONS AND THEIR INTEGRATION

WITHOUT QUADRATURES.

By E. B. Elliott.

t t->
d 7) 3 d d

dx dx Jl
dy

*ys
33/

l

oy2

where yr
denote d ryjdxr

, the well-known necessary and suffi-

cient condition (Euler's) tor a function

K = F i
x ', y»y,i •j.yj

to be an exact derivative D<p is

^y fy, fy, <&,/

The suhject occupied a number of writers in the middle of

the last century. See, in particular, Bertrand and Sarrus in

vol. xvii. of the Journal de UEcvle poll/technique. Mr. J. E.
Campbell has recently given the best form of proof tree from
all reference to the Calculus of Variations. First he shows
the condition to be necessary by obtaining

(o, ?o^=(-ir^" +i

J <t>

from the alternant identities

4'/ dy oyr dyr dyr_ x

and observing that if an F
n

is a D<p, the <p must be free from

yn
. Then he adopts the method ot Sarins for exhibiting the

sufficiency, noticing that if (0, n)Fn=0, and in fact if it does

not involve y9n , we must have

F = P
,
?/ + Q ,

(with Pn _ l5 (?„_, not extending beyond yB_J

=^-.+ e»- - (s.
+*# +-+ »- 9^,)

*~
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where, as Fn
and DBn_}

are annihilated by (0, ?i), F
n _

x

must

be, and so by (0, n — 1) ; whence

and eventually

^.-^{5^ + 5..,+...+ -B.+rt («)(&).

This integration of an 2^ satisfying (0, j*)i
n̂
=Q requires

quadratures, at most n + 1 in number.

J have nowhere seen a record of the following observations.

I. When the condition is satisfied by an F
n of algebraical

form in y, ?/,, ..., yn , Fn can be integrated by differential

operations.

Whatever function be operated on, we have

(4 +
-Vl
|,

+-+y"l)^ { °' n)

= D{y(l,n)+y
l

(2,n)+...+ yn _ l
(n,n)},

where (r, h) =£ - dJ--+...+ (-1)«"2T*A .

This is readily proved by taking together the first terms, the

second terms, &c, of the two operators on the left and using,

for r = 1, 2, ..., n,

y,H(-i)M^=^|//^-,^ 1
+...+ (-ir 1FM j.

Hence a function which is homogeneous of degree i (^0)
in ?/, ?/,, ..., ?/n , and which is annihilated by (0, n), is inte-

grated by direct operation on it with

7{y(l.«)+y
1
(2,n)+...+y

lrt (n,n)}.

Now an i
M̂ algebraical in y, yr ..., yn

can be arranged in

a sum of parts homogeneous in them—not necessarily a finite

sum if it be not rational and integral. If it have the anuihil-

ator (0, n), so must its parts separately. Unless then there is

a part of zero dimensions, F
n

can be integrated by direct

operation.

In the case of F
n

rational and integral, a part of zero
dimensions involves x only. It must be integrated by a
quadrature. In the general case of Fn algebraical, such
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a part may also involve y, ?/,, . .., yn
. It may be hopeless

to look tor a direct operator free from transcendents which

will integrate it. For instance, regard yjy = D\ogy. It is,

however, of theoretical, though not practical, interest to note

that simple transcendental transformations will prepare it for

treatment like other parts. Put y = e in the partial F
n

of

zero dimensions. It becomes &v\f[x] z , z , ••.,£„) free from z.

This is annihilated by (0, ??)
3
because it is a derivative, or

because (0, n)
z
— y(0, v) . Arrange it as a sum of parts homo-

geneous in (», s
2
, ..., z

n
. It' no part is of zero dimensions,

direct operation integrates it as before. To deal with a part

of zero dimensions, after removal of terms in x only, put

2, = ec, thus obtaining an f{x\ £,, £2
, ..., £H_,)

with one argu-

ment less than before. This is annihilated by D (1, «)
s

, which

Sv (0, n)
z

, and therefore by (1, n)
z , i.e., (0, n — l)Zi (which

cannot produce from it a constant other than zero because of

its dimensions in «,, z
3
, ...), so that it is by (0, n — 1)^. Repeat

the reasoning if there is a part of zero dimensions in £,, £, ...,

t„-ii and so on. Eventually the whole of F
n , except terms

in x only remaining for quadrature, is integrated by direct

operation.

An alternative method, using weight (sum of suffixes)

instead of degree, is available when F
n
does not contain x

explicitly. By a method used already, we see that

».J+». J
|;+-+»«4~',(0, "

)

= 2%,(1, «) + y,(2, «)+...+3r.(», «)}.

Here the left-hand member is D —
^ y x

{0, n), so that if

(0, n) F
n
= 0, with F

n
free from x, °x

K= l^i U. ») +^(2»») +••+&.(»> »)},

since D annihilates no function of y, yv ..., yn
. Now it is

easy to verify that

yxfy+
2y,^ +-+ fly-^ -{yi(1»«)+y,(2»»)+-+y»(n»«)}

= D{y
l
(2,n) + 2yt

(3,n)+...+ (n-l)y
a_1

(n
i
n)}.
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( consequently, if the F
n

is of weight to throughout,

(ic -\)F
n
=D {//, (2, n) + 2y§ (3, n) +...+ [n - 1) y_, (n, »)}.

An 7'
1

free from ft; can he arranged as a sum of isobaric

parts, and the parts of different weights can thus be integrated

separately by direct operation not involving transcendental?,

except a part of unit weight, such as yjy. Only for such a

part is exponential transformation, as above, necessary.

II. Exact derivatives token there are several dependent

variables.

The early investigators gave a set of conditions

(0,m)
y
F=0, {0,n)

g
F=Q, (Q,p) u

F=0, ...

as necessary and sufficient to secure that

F
i
x

', y,Vv —»y«; *> *u ••> s«; M
>
Mn •••> v •••)

he an exact derivative D(f>.

I have not seen it stated that if F is of algebraical form
in all its arguments but x, so that it can be arranged as a

sum of parts homogeneous in a chosen system of arguments

y, y t
, ..., ym , and if none of these parts is of zero dimensions

in them, the single condition (0, m)
y
F- suffices. This,

and the fact that the integration can be performed by direct

operations, can be established as before. We can also, as

before, deal with a part of degree zero, and actually involving

any of ?/, ?/,, ..., ym . by exponential transformations. Eventu-
ally the whole of F, but for a residue not involving y and its

derivatives at all, is thus integrated. Such a residue R, it

there be any involving z and its derivatives, has to obey
(0, n)

z
R = 0; and further direct operations in a second system

are necessary. It may be that we thus have to run through
all the systems.

I I I. Abbreviated conditions.

Closely connected with 11. is the fact that a function F
n (xj

y,yv ...,yn),
which is a D(j) with free from ym (m<n), obeys

(0, m)Fn
=0. As a partial converse, an F

n
annihilated by

(0, m), which is homogeneous of non-zero degree i in the abbre-
viated system y, ?/,, ..., ym , is the derivative of a <p free from

ym directly derived from it by operation with the abbreviated

7 \y (*> m) + Vi (
2

> »0 +•••+&»-,K «)!
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For instance, finding that (0, 5) annihilates (5?/ 10
+rv:y

ll ) <
y + ^3/gys ,

we know that this is a derivative, and can directly integrate

it, without examining the effect on it of (0, 11).

This still holds it" other dependent variables z, u, ... and
their derivatives are present in F.

IV. Integrability more than once.

Bertrand gave r necessary and sufficient conditions for an

F to be an r
th

derivative. These are the annihilation of
n

F
n
by the operators which occur as co-factors with 1, — e,

e
2

, ..., (— l/
_1

6
r_1

in the expansion of

in powers of the arbitrary constant e. A convenient method
of pioof uses the fact, easily obtained by use of alternant

identities like ^— [D + e) — (D + e) — = -»—
- , that operation

with the expansion on (Z)+ e)<£ produces (— l)"(Z)+ e)"
+1— <p.

The fact yields n + 1 facts upon taking separately the co-

factors with different powers of e.

In particular, for F
n
to be a second derivative, it is sufficient,

and also necessary, that

[0,n)Fn=0,
and

+ (-rrnD-^JF = o.

It is perhaps worth remarking that, when F
n

is free from x,

the one condition (1, n)'

F

n
=0 is sufficient, having (0, n)Fn=0

as a consequence, provided that F
n , when arranged as a sum

of isobaric parts, has no part of weight zero. If F(w)
is a

part of weight w, a method used more than once above gives

us that

|»-y
1
(l,n)'}^W= 2>jy

i
(2,«y + yf

(S
>
«)'+...+ ylrt

(ji,ii)
,}^W

J

where

(r, n)' = r^-- (r + 1) D ~— + (r + 2) D2

+ (-l) n"r
wi)B

-r^-
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Thus, if (1, n)'FW=0, F™ is a D<p with <p obtained directly.

New the second of the n + 1 facts above is

(O, W)0-(l, M)'2ty = (-l)>+l)Z>»^;

and the expression on the right here is zero for our present ^>,

which does not extend beyond yv v We have then (0, n)(j) — 0,

so that <j> is a Dip, and consequently l1

'vn a i)
2

^.

ON THE SOLUTION OF AN EQUATION
OF THE FOKM F(r, s,t) = 0.

By y. R. Wilton, 31.A., B.Sc, Assistant Lecturer in Mathematics
at the University of Sheffield.

An exhaustive list of cases in which the partial differential

equation

F{r,s,t) =

is soluble by Darboux's method (and therefore by that of

Legendre), on confining oneself to characteristics of order

not higher than the second, has been given by Boer.* For
convenience of reference I here reproduce his list.

(1) ar + bs + ct+ (rt — s') — e, where a, b,c,e are constants.

(2) The eliminant of in from

r + ms = inF— in
2
F'

,

t+ sjm=F' + Fjm.

(3) The eliminant of in and n from

r = m2F" - 2mF' + 2F+ n* G" - 2n G' + 2 G,

s =-mF" + F'-nG"+G',

t=F"+G'\
where, as throughout this list, F is an arbitrary function
of ?h, G of 11.

(-0 '=/(•).

* F. De Boer, Archives Neerlandaists, t. xsvii.
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(5) The eliraiuant of m and n from

(
rt- 8*)l{r+2as+a

,t)=tn*F'-2mF'+2F+n3G"-2nG'+2G
1

{s + at)l (r+2as+d
2t)=-mF" + F' -nG" + G\

ll{r+2as+a't)=-F"-G" i

where a is an arbitrary constant.

(6) The eliminaut of m and n from

r + 2as + a;
it=(a-b)(n + 2G'IG"+G' i

IG">ll)
i

r + 2bs + Vt ={a-b) (m + 2F \F" - F'^F'^M),

r+(a + b)s + abt=(a-b)F'*G'*IF"G"M,

where J/= (GG' -2G")\\G" - [FF" - 2F'
2)/4F",

and a and b are constants.

(7) A set of results of which the final form cannot be

found. (Equations 104, p. 400, of Boer's paper.)

(8) To these may be added the equations

r=f[t), r + at=f(s),

which, though they cannot in general be solved by Darboux's

method, will always yield to that of Legendre.

In the present paper it is shown that the equation resulting

from the elimination of m between

r 4 m«=/(m) (1),

t+ slm=g{m) (2),

where f and g are arbitrary functions of their argument ??z,

though not obviously included in the list, is soluble by the

same method. It must therefore be included somewhere,

probably under case (7).

Differentiating equation (l) with regard to y we obtain

ds ds . ., . dm

dx dy
vy

dy

which, on making use of (2), reduces to

v ex) \dy m cxcyj \ m dxj \d% dxdyj

.(3)
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and this by Legendre'a transformation (the principle of

duality) becomes

W,
where v=sx+ ty- q, and m is a function of a; and ?/, given by

7/ + a:/m = r/(w) (5).

In equation (4) change the independent variables to x

and m.
. dv . do m do do ,

We must replace =— by ^—I —— ~-
,
— by

r 8x J dx x+ m g dm cy

m* do , c ,—, — , and we find
x + m g dm

8't> m{f+m'g') / d
2
v _ 1 Jfe\ n

8x" x + m'g' \dxdm x+ m*g' dm J

which, in order to avoid a complicated notation, we shall,

without danger of confusion, re-write as

m(/ +
r
V) / _ t\_„

(f>,
x- + »*# \ a; + w </ /

The characteristic equations of the first system are

j , m{f' + m'g')dq m(f+ m*g')qdx
dm = 0, up -i

; —, = ; ; * , ^r x + mg (x + m g )

while those of the second system are

m(f' + m 2
q')dx , m

(f + m*g) qdx
dm= : j-, , dp = —

—

, , ,

x + m'g r {x + m g

)

£ ' v* '

The second system cannot have two integrable combi-

nations unless f'+ in'g' = 0, which is Boer's case (2). The
first leads plainly to the first order integral

,
m (f' + m'q) „, , ,_,

V + \ » , q = F{m) (7).
L x + m g

Let log h (m) = -
,

——
,

J m {/ + m g J
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and let F(m) =H-hH' /*',

where H is an arbitrary function of w», so that equation (7)

p- qhj[h' (x + ma

g)] =H-hH' jh'.

It is easy to verify that the solution of this equation is

v = xH+ lm*g'R'dm + G {xh + frri'g'h'dm),

where G is an arbitrary function of its argument

xh + fm'g'h'dm.

Also ^- = H+hG',
dx

^ = (x+m'g')(H' + h'G').

The solution of equation (3) is therefore given by elimi-

nating m and s from

sx + ty — q = sH+fm 2g'H'dm + G (sh + §m'g'tidm),

x = H+mH'+(h + mh') G' (8),

y = m 3 (H' + h'G') (9),

where t + sjm=g[m).

The first of these equations may, by using (8), (9), and (2),

be written

q = shG'+m
n

~g{H' + h'G')- G- jm*g'H'dm... [10).

To find z we have to integrate the equation

dz

Zy
=q '

Let

J=l¥^= mh*G''rm(H"+h"G) + 2(H'+k'G')l
d (», rn)

. T 3.«f 9.» 7cm dx
SO that J ST" = — ^—

,

«/ -~- = — .

dy dm dy ds

Therefore J? = ./ — ^- + ^ ^—
\ds dy cm dy 1

dx dz dx dz

ds 'dm dm ds
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Hence z is found by integrating the simultaneous equatious

ds 1 1in dz

d-e dx Jq

'

dm ds

One solution is

H + mil' + (h + mh') G' = x = constant,

„, x — U—mH' .
,

i.e., G'= 11 .

n + mk

dz T jdx , d.G'
Also -

1— = Jq I
^— = - mh -T— q,dm I ds dm

where G' is determined as a function of m by equation (11).

Thus
dG'— \mhq —— dm (12),

in which the appropriate functions of wi, drawn from equations

(10) and (11), must be substituted for s, G', and G before

integration, while x is to be treated as a constant during the

integration, and afterwards to be put equal to

H+mE'+G'{h + mk').

There is a slight simplification in equation (12) if we take

m and sh + \m~g'Kdm as new independent variables, but I

have been unable to obtain the explicit form of z when G
is arbitrary.

The elimination of m and s from equations (8), (9), and

(12) leads to the solution of that equation of the form

F(r, s, t)=0 which results from the elimination of m from

r + ms + lini'g + hjmti) dm =

and t + s/m=g,

where h and g are arbitrary functions of m.
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ON A METHOD OF REARRANGING
THE POSITIVE INTEGERS IN A SERIES OF

ORDINAL NUMBER GREATER THAN
THAT OF ANY GIVEN FUNDAMENTAL

SEQUENCE OF X2.

By N. Wiener.

1. Let / represent the series of positive integers greater

than 1 in their order of magnitude.

2. Let pn
stand for the nt\\ prime in order of magnitude.

Let A represent a series of positive integers, not necessarily

in order of magnitude. Let a and b, respectively, be the ath

and 5th integers in order of magnitude. Let a A b mean,

"a precedes b in the order determined by A" Construct,

now, the series P of the primes of the form pn , where pa
Pp

b ,

when, and only when, a A b. Let us call this series P( A).

It will be seen immediately that P(A) is by definition

ordinally similar to A, and hence must have the same
ordinal number.

For example, if A be the series

1, 3, 5, 7, 9, ..., 2, 4, 6, 8, 10, ...,

P{A) will be the series

Ii O » i . 1 • ) . I -
' « * > 4 — O • 1 I • -I t • -O. • • « »

If -4 be the series

1,3, 5, 7,9, ...,2,6,10, 14, 18, ...,4,12,20,28,36, ...,8,24,...,

P(A) will be the series

1,3,7,13,19, ...,2,11,23,41,59, ...,5,31,67,103, ...,17,83,....

' 3. Given a well-ordered series P of primes, it will have

a first term, a second term, ..., an nt\\ term. Let the nth

term be represented by the symbol P
n

. Take, now, those

products of L terms of P satisfying the following conditions:

(a) Every such product contains at least one P
n , where

n is finite.

(b) If P
a

is a factor of such a product, and if when P
b

is another tactor of that product a<b, the product contains

a distinct factors, none of which are equal to 1.

VOL. XLIII. h
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(c) No factor of the product occurs more than once in the

product.

Since all the factors by which the products in question are

determined are primes, and since no factor occurs twice in

any product, it follows that each group of n factors satisfying

((c), (b), and (c) determines one product, and one only, and

vice versa.

Let us represent a product of the form in question by

Pn
.p'.p".p"••p [

"' l

\ where p\ p'\ ..., p<
n~l)

are distinct

members of P, and, if p
{k) = Pn n<L It will be seen on

inspection that any product which will satisfy (a), (b), and

(c) may be expressed in this form, and vice versa. It is also-

clear that the order of the terms in the product is a matter of

indifference. We may then, without any loss of generality,

assume that p < p" <
p"

'<...< }/
n~ l)

.

I shall now arrange these products in a series p (P) in

accordance with the following rules

:

(1)

Pn
.p'.p"...p

{n- 1)p(P)Pm .q.q"...c/
m

>, ifn<m;

(2)

P.p'.p''...p^p(P)P
n
.q.q''... q^\\(p'Pq;

(3)

Pn .p.p"...pi
k-lKpikKpV¥l

K..pv-
l)p{F)Pn .p.p"...—

>

...^
w,

.5'
t

-»f'»..f
,)

, if pVPqM.

I now wish to prove that if the ordinal number of P is a,

that of//(P) is aw
,
provided a is a number with no immediate

predecessor.

By rule 3, if p> Pq,

P
n
.p'.p"...pl n yp(P)P

n
.p'.p"...p^q.

For tliis to be true, however, it is necessary that (1) neither

p nor q should be a Pm , where m<n, and (2) that

p>]jin"i) >...>p">p', 2>pin-*>>...>p">p'

by the conventions we decided on in representing a pioduct
in the form PM -p'.p"...p{n~1)

. That is, p and q are excluded
from (l) the (n- 1) terms preceding P

n
in p, and (2) the

finite number of members of P not greater in numerical value
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than the largest p
{k)

. Except for this finite group of values,

p and q may assume any other value in P, and the order

of the products P^.p .j1
'

•'•P
{ni)

-P an(^ PH -p'-2}
"
••P

{n 2)

-<l->

which will actually exist, will be the same as the order

in P ofp and q. That is, the series of the P
n
.p'.p"...p<'

n~2Kp ,

s

will be similar to that of the jo's, with a finite number of

terms of the latter removed. Since, however, the ordinal

number of the jo's has no immediate predecessor, it can be

shown readily that the removal of a finite number of terms

from P will not alter its number, and therefore that the series

of the P
n
.p\p"...}A n~i).p'l

s, arranged as they occur in p(P),
where P

H
,p',p'\ ...,p (

"_"
) are assigned, and p is allowed to

take all possible values, has the ordinal number a.

In a precisely parallel manner, it may be shown that the

series of the P
n
.p'.p"...p {

"~S)
.q .r's, arranged as they occur in

p(P), where P, p', p", ..., p (
" ~

3) are assigned, q is allowed

to take all possible values, and r is given some particular

appropriate value for each value of q, has the ordinal

number q.

Therefore, the series of the P
H
.p'.p" ...p

<n~Z).q.rs, arranged

as they occur in p (P), where P
H , p\p'\ ...,p

(n~3) are assigned

and both q and r are allowed to take all possible values, forms

a series of the number a of series of the number a, or a series

of the number a* by the definition of a*.

Similarly, the series of the Pn -p' .jt/'i.-jt?**
-
*' .q.r.s'a,

arranged as they occur in p(P), where P
n,p\p\ ...,jo 1

" -4)

are assigned, and q, r, and s are allowed to take all possible

values, forms a series of the number a of the series of the

number a
2

, or a series of the number a
3

.

In a similar manner it can be shown that it follows in.

general from rules (2) and (3) that if the series of the

Pn
.p'.p"...pM.p^ l)

...p(
ni) \ where Pn ,

p\p", ..,, p<
k)

are

assigned, and p
{k+1

\ ..., p
(n~1]

are allowed to take all possible

values, when arranged as they occur in p(P), has the

umber a""*"
1
, the series of the Pn .p'.p"...p^~

1Kp^...p<n-^'a

where P
n , p', p", ..., p

{k~ l)
are assigned, and p

{k
\ ..., p {

"~l>
are

allowed to take all possible values when arranged as they

occur in jo (P), has the number a"~
k

.

Therefore, by mathematical induction, the number of the

series of terms P
n .p

.p" ...p
{n~ l)

, arranged as they occur in

p(P), where P
M

is given and p', p", ..., p {
'l~ 1} are allowed to

assume all possible values, is a"
-1

.

Now, by (1), p (P) consists in the various series of terms

P ,p'.p"...p{n~1

\ where p\ p", ..., p
{n~ l)

are allowed to assume

all possible values, arranged in the order of magnitude of n.
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Therefore the ordinal number ofp(P) is

a
1 + a

2+a3 +a'
,

+...+ a
7, +...= a<0

.

As an example of p (P), let P be the series

1, 3, 7, 13, 19, 29, ..., 2, 5, 11, 17, 23, 31, ...,

where every prime whose position in the series of primes

is odd belongs in the first part of the series, and every prime

whose position in the series of primes is even belongs in the

second part. Then p (P) will be the series

3.7, 3.13, 3.19, 3.29, , 3.2, 3.5, 3.11, 3.17, 3.23, 3.31, ...

7.13.19, 7.13.29, , 7.13.17, 7.13.23, 7.13.31,

7.19.29, 7.19.37, , 7.19.23, 7.19.31, 7.19.41,

7.29.37, , 7.29.31,

7.2.13, 7.2.19, 7.2.29, , 7.2.5, 7.2.11, 7.2.17,

7.5.13, 7.5.19, 7.5.29, , 7.5.11, 7.5.17, 7.5.23,

13.19.29.37, 13.19.29.43, ..., 13.19.29.41, 13.19.29.47,

13 19.37.43, 13.19.37.53, ..., 13.19.37.47, 13.19.37.59,

13.19.23.29, 13.19.23.37, ..., 13.19.23.31, 13.19.23.41,

13.19.31.37, 13.19.31.43, ..., 13.19.31.41, 13.19.31.47,

13.29.43.53, , 13.29.43.47,

13.29.31.41, , 13.29.31.37,

and so on indefinitely.

4. Given a set of series A„ A
2 , A 3 , ..., A n , ..., whose

numbers are positive integers, construct the series of num-
bers, 8, such that, it' aA

n
b, 2

n (2a-l) ^2" (26-1), and, if a

belongs to Am and b to An (if m<n), 2""(2a-l) S2m
(2b-l).
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It Is clear that no term in S is repeated, for, if a^b,
2" (2a — 1)/2*(2Z> — 1), and, if m>n, there are no pairs of

terms a and b such that 2"(2a- l) = 2
m
(2& - 1), for, if this

could happen, an odd number 2a— 1 would equal an even
number 2

m~n (2b—l), Let us call the series S, obtained from
A v A 2

, ..., A
n , ..., Sn (A n ).

Representing the number of

each A
h
by a

k , it is easy to see that the ordinal number
of Sn(AJ is a, + a,+ a

3
+...+ a

i
+... . As a^a,, a, + a

3
^a

2,

a, + a
3
+a

3
^a

s , ..., a, + a
2 -|-...-i-an^an , ..., it is obvious that

that the ordinal number of S
n
(A

n ) ^ the upper limit of the

ordinal number of A. As an example of S (A ), let A
be the series

2
n!

.l, 2
M!

.3, 2
n!

.5, 2
n!

.7, ..., 2
nl~ l

A, 2
nl
~\s

i
2
m!" 1

.5, ...

,
2
BI

\1, 2
w!

-.3, 2
n

* \5, .., ...,

9
(n-l)!+l (n-l)!+l

whose ordinal number is obviously

to [nl - (n - 1) !] = a) [0 - 1) ( w - 1 ) !],

whose upper limit is w.co. Then >5
n (^ (i

) will be the series

2 (2.2 -1), 2 (2.2 .3-1), 2(2.2.5-1), ...,

2
2
(2.2

2 -l), 2
2
(2.2

2.3-l), ...,

2
2
(2.2 -1), 2

2 (2.2.3-l), ...,

2
3
(2.2

G -1), 2
3
(2.2

6.3-l), ...,

2
3
(2.2

5 -l), 2
3
(2.2

5.3-l), ...,

2
3
(2.2

4 - 1), 2
3
(2.2

4.3-l), ...,

2
3
(2.2

3 -l), 2
3
(2.2

3.3-l), ..., 2
4

(2.2
24 -l), ....

Its number will be <w
2

, which is ^ a>
3
.

5. The number of I, by the definition of &>, is co.

Let us write $ (A) for p {P(A)\. Then, by (2), (3), the

number of <t> (/) is

Then, by (2), (3), the number of <J>
3

0O is

( ft)"
,

)
£U = a)

t°2
.

H2
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Then, by (2), (3), the number of <P\I) is

((o°'
2

)
w = COM\

Then, by (2), (3), the number of *"(/) is

0) 1

Then, by (4), the number of Sn {Q
n
(l)} is

w a, + (,)«>" + (t)<"
3 +...-\-Q>wn -{-...= a)"'

0>
.

Thou, by (2), (3), the number of <1> [£. {*"(/)}] is*

O) 1"
J = (O"

Then, by (2), (3), the number of <t>'

2

[£n {*
n

(Z )!] is

Then, by (2), (3), the number of *", [S
,

„ {*"(/)}] is

Then, by (4), the number of £„, (*"•[£„ {*"(/)}]) is

„»»+! + w<»"+2 + a)(0
»+3 +...+ mco»+» + .. _ „.-•*

Let us write * (A) for £m }

$>
m (A

)
}

.

We have shown that the number of *(/) is a> u>
u>

, and that

that of ¥*(/) is a)
wW '

2
. Similarly, it can be shown that the

number of +"(/) is a> a>
w -H

. Therefore, by (4), the number
of SJ*m (l)\ is equal to a>«

i0 + co""
2 + co«

w -3 +...+ (o«
ion

+...,

and is at least <ww
"J ~.

.-. the number of «J> [Sm {*""(/)}] is at least (»«•"> = »»,,*fl
.

Similarly, „ * 2

[A {*'"(/)}] „ „ a)""^ 2
.

,.«•>'

* We can always apply <|> to any S„ [for 5,,, and in consequence P (S), has no last
term

|
and be sure of raising the number of the 5 to the wth power.
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Let us write F(A) for Sn
\y"(A)}. We have shown that

the number ofF(I) is at least w«M\ and that that of F\I) is

at least co™'"''
2

. Similarly, we may prove that the number of

Fn
(I) is at least co^Jl

.

/. the number of Sn {F
n
(I)\ is at least .-•*•" = to* *.

„ „ *[SJF*(I)\] „ „ a^1
-

„ „ *-[$, {**(/)}] „ »
•-**

„ „ Vm
[SH {F»(I)\] „ „ ---* 1*-.

„ „ F[^|^-(/)}] „ „ ^3+tu2
-

„ „ F»[S
u
\F»(I)\] „ „

.•"*'-

„ „ -Sf, (^"[fif,, { F- (/)}]) „ „ ^3
-2

.

Let us write G(4) for £,{Fn
(v4)}. We have shown

th.ct the number of G(I) is at least &>"'
u,t

and that that of

(x
2
(I) is at least a)«>

w3 -2
. It can be shown in the same

manner that the number of Gn
(l) is at least a>«

w*'ra

. Let us

write H{A) for Sn
\G*(I)\. Then it is obvious that the ordinal

number of H(I)\s at least G>"
,ft,

.

In a precisely analogous manner we can construct a series

of number at least to""", whatever n may be. Let us call this

series, in general, Kn
(I), where K

l

(I)=^(I), K,(I)= F(I),

X (I) = G(I).Kn
(I) is always constructed according to a

perfectly definite method, leaving no possible doubt what step

to take after any given step, for after any series you have

obtained you form the 4> of that series, and after any series ot

series, you form its 8. Therefore no implicit postulation

of Ze'rmelo's axiom is to be found in any of my constructions,

so that 1 can be sure that they always exist. Therefore

I can form S„ \Kn
(I)}, and its number will be a*"" at least.

Iu a precisely parallel manner we can construct a re-

arrangement not less than o)^"" etc. Given rearrangements

of I which will be at least as large as <w, w«", a><" ', a)"'"'", etc.,

we can, by means of &, construct a rearrangement ot I at

least as large as an

[
,.w"'

do times
\ woy

or an e.
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In general, given a rearrangement L of /, sucli tliat the

ordinal number of L(l) is at least as large as (o^
a

, <t>\L(I)\

will have an ordinal number at least as large as &>
wU+I

. Also,

given a sequence of rearrangements Ln L,
2 , Za, ..., Zn , ...,

of / of ordinal numbers at least as large as cowai, g>w«Sj ...,

(o<°
a
», ..., respectively, if aw be the limit of the sequence

a,. a
M , a,, ..., an, ..., then the ordinal number of &

H
(cuwa»)^ou.

Therefore we can construct a number at least as large as co w<1
,

where a denotes any ordinal number which can be formed
from 1 by the repetition of the operations (1) of adding 1 to-

a previously given ordinal number, and (2) of taking the

number of any given infinite sequence of numbers previously

obtained. But the class of such numbers is the class of

numbers of fundamental sequences of 12. Therefore, if a is

the number of a fundamental sequence of 12, we can get by
our method a not smaller rearrangement of the number-series
than <ww". If, then, a>wa ^La, the proposition I set out to prove
is obviously proved. This is clearly true if co

a ^la. This can
be proved in the following manner:

(1) o)
1 ^ 1.

(2) Let o)
a ^a. Then

co
a+1 = oa

. co = wa + a)". co ^ a + a)
a.cd^a+ 1.

(3) Let o)
an^.a

H , when an
takes any one of the infinite

series of values av a
2 , a

3, ..., am , ..., whose upper limit is aw .

Since au > an , it can be shown that

eoa <° = co a>'+/^ = toa»co/^ = a>a » + (o a»coP > a)
a».

Therefore, &)"a>^a
(1

, whatever n is. Therefore, ci)
a<o^aw .

Therefore, when a is the number of a fundamental sequence
of 12, we have a method of rearranging the positive integers

in a series of number i^a+ 1, and hence > cu-

lt will be noted that the method 1 have developed enables
me directly to reorder, not the whole, but a part of the series

of the integers in a series of number greater than the number
eow , but this is of no importance, for let the part of I so

arranged be A. Let a
1
be the numerically smallest member

of A, a
2
the next, and so on. Then replace each a

n
by n.

This will give a rearrangement of I similar to the already
obtained rearrangement of A.

The interest of the construction of rearrangements of/ lies

in the fact that all the proofs hitherto given of the existence
ot numbers greater than those of any given fundamental
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sequence of Q, have involved the multiplicative axiom.* By
actually rearranging 1 in a series of such a number, we
avoid this.

It should be noted that the particular nature of the pro-

cess <£> we have chosen of increasing the number of a series

by rearranging it is a matter of more or less indifference
;

any other process which, when applied to a series, always
gives a larger or equal series would have done quite as

well, logically. For example, if ®\B) = B, the number of

Sn
{$' n (B)\ = <o, multiplied by the number of B] and, as

it can be shown that <y.a>a, it is clear that, by the same
sort of proof which we used to show that <P and S together

enable us to construct a rearrangement of / larger in number
than any given fundamental sequence of £2, S alone will

enable us to do it. However, at least at first, the use of 4>

enables us to increase the ordinal number of the rearrangement
of I more rapidly than that of S alone would.

AN ARRANGEMENT OF THE POSITIVE
INTEGERS IN THE TYPE e

t
.

By E. K. Wakefurd, Trinity College, Cambridge.

1. "The numbers" means the positive integers.

Given some arrangement A of the numbers, and the set

P of prime numbers, A (P) denotes the result of arranging the

prune numbers in the order A by putting instead of a

number u of J. the ?ith prime in order of magnitude. Unity
will not be considered a prime.

When we speak of the order-type of some number in an

arrangement of numbers we mean the order-type of the set of

numbers preceding it in the arrangement. For instance, in

the sequence 12345... the order-type of n is (n — 1), and in

the repeated sequence 1357..., 2468... the order type of 2 is w.

Multiplying together two relatively prime sets of numbers
means forming the set consisting of members which are the

products of one out of each set. The order is given by
taking the first of the second set and multiplying it in turn

by each of the first set, then taking the second of the second

* See Whitehead and Russell, trinclpia Mathematical, vol iii., p. 170, lines ti

from bottom to bottom.
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and treating it likewise, and so on. If N N
3
are the

order-types of the Hr.st two sets, the order-type of the resulting

set will he N
t
N

t
(where the order of letters m;iy be important).

2. Multiplying the set

1 2 2' 2
3
...,

of type w, by the set 1 3 3
2
3

3
...

,

also of type &), according to the rule above as shown :

1 2 2
2

2
:t

2
4

...,

3.1 3.2 3.2 3
3.2

3
3.2

4
...,

3\1 3
2
.2 3

2
.2

2
3

2
.2

3
,

and we have a set of type to
2

.

Now multiplying this by the set

which is of type ft>, we obtain first the same set of type

to
2
as before, next the numbers of that set multiplied by 5,

giving us to
2

. 2 numbers, next the number smultiplied by 5
s

,

giving us &>\3 numbers in all, and so on till Ave get &>
3 numbers.

By taking now the set

1 7 7
2
7
3

...,

we obtain in all co
4 numbers, and so on, till, when all the primes

have been taken in order of magnitude, an arrangement of the

primes which we shall call A
}

(P), we have obtained all the

numbers arranged in a set of type co". Call this arrangement
of the numbers Ar The order type of a particular number
Upc

is 2&>
r
.c, where p has order-type r in the arrangement

A
X
{P). For instance, the order-type of2

4
.3.5\ 11 is

(u
4

-|- to*. 5 + ft) + 4.

3. Now form yl
2
(P), thus arranging the primes in a type

a)
10

. Then take them in succession in this order, instead of

the order A
y
{P) in which we took them before.

The first co primes, viz., the 1st, 2nd, 4th, 8th, ... primes,

give us &>
w numbers as before. We then take the 3rd prime,

i.e., 5, and multiply each of the numbers of this set by the

numbers of the set

1
.

t ) < ) >..»•
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As in the previous work 1 gives us the same to
w numbers,

5 gives us another a)" numbers, making o>
w.2 in all, 5

2
yet

another, making u>
w
.3, and so on till we arrive at &>

w+1
after using

all the powers or' five. Then taking the Gth prime, i.e., 13, and
multiply the existing set by the set

1 13 13
2
13

3
...,

we thus arrive at a set of type a)
0)+a

, and after taking the

12th, 24th, 48th, ... primes we reach a set of type tw"" 2
.

We notice that we have so far only used to. 2 primes, viz.,

the first &). 2 primes in A
2
(P), and have thus obtained ft)"'

2

numbers. It is almost self-evident that by taking a/ primes
from A

2
(P) we shall obtain fo

wZ numbers, for to"'
2
is the limit

of u>
w

, ft)™-2 , (ow -3
, ..., just as &)

2
is the limit of &>, to. 2, <u.3, &>. 4,

etc. But we have not yet taken nearly all the numbers of

A
2
(P). After what has been said it should be clear that as

we take each prime in turn we add 1 to the index of &>, so

that to" primes yield ft)"'
3 numbers, etc. Finally, by taking all

the primes in the order A
2
(P), we obtain ft>

a,U) numbers, all

the numbers being at length obtained. We call this arrange-
ment Ay

The order-type of a particular number Upc
is as before

2&)
r
.c, but heve 2? has order-type r in the arrangement A (P).

For instance, the order-type of 2
3
. 11.132

is ft)"
2

-f- (o u>+ 1
. 2 + 3,

for 2, 11, 13 have order types 0, co
2

, and &> + 1 respectively in

4. It is not difficult to see that by forming A
3
(P) we

could obtain the numbers in a type a)
wW and so on. In each

case the formula for the order-type of any particular number
Hpc

in the arrangement Ar
is 2&>

r
.c, where p has order-type r

in the arrangement A
n
_,(P).

To obtain a set of type co
wU> = e, we may simply take any

o>
2
arrangement of the numbers, operating on the nth a> of

them with the operator A
n , as suggested

:

A(l, 3, 5, 7, )ft,,

+ 4,(2.1, 2.3, 2.5, 2.7, ...)&)-,

-f J
3 (2

2
.l, 2

2
.3, 2

2

.5, 2
2

.7, ...)<
+ etc.

The rule for finding the type of any particular number
would not be so elegant. Possibly it could be improved by
some device, but it is quite simple even as it stands.
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.'). This last process, which finds a number for the limit of

any sequence of given numbers, corresponds, I believe, to

Mr. Wiener's 8 operator. After reading some of his work I

saw that if I rearranged the indices of the primes instead of

the primes themselves, I could raise a number to the power

of a), instead of raising o) to the power of a number. This latter

process is much quicker at first, but stops at e,, since a>8i=e
1 ,

while the former (combined with the S process) goes on for

ever. If we take the primes in order A, and their indices in

order B, the resulting set has order-type B , so that by this

means any number can be raised to the power of itself.

This process combined with the S method goes on for ever.

In fact, any method (even adding unity), which must increase

any Cantor number, combined with the S method, is bound

to go on for ever, and so to prove the existence of any number
of the second class that has been defined.

ON THE SERIES FOR SINE AND COSINE.

By Prof. E. J. Nanson.

The power series for sin#, cos.-e follow at once from the

two theorems

sinsc lies between #„(#), Sn+1
(x) (1),

cos a; lies between Cn
(x), C

n+l
(x) (2),

where „ (
. _ X X3 Xb (- l)

nXin+l

"W ~l! "3! + 5l"-+ "(2« + l)!

n(x)= 1 -T7T + TT---- +
2! ^4! '•' (2n)! *

Since cosa; lies between 1 and 1— \x' for all values of #,
it is sufficient, in order to prove (1), (2), to show first that (1)
follows from (2) for all values of x, and, second, that if (1) is

granted, then it follows that cos# lies between £„,, (x), G
n
^(x).

Now these two results may be proved by similar elementary
methods. For we have

sin2v/?.T;
- = cosa; + cos3x +...+ cos(2m — 1) x.

mil i0
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Hence, assuming (2), it follows that

sin 27nfl5.. , ... „— lies between F , r i0
-v» TV 71+1 7

sin a;

**
, . .- a)""

where P
r
=*„- -,s

3
+...+ (- l)

n

2! 3 v J
(2«)!

»"'

s
r
=l r+3 ,>...+ (2» i -l) r

2W* 1

+
*
P
=—-rCl + e,.), and Lte

r
=0.

' "r -1 m-^ co

Hence, it' y = 2mx, L = xls'mx, it follows that

i sin y lies between ^n , Qn+1 ,

where

«"=i
y
T-ir< 1+^ +-+ (- 1 >

,

(2f
:

ny!
(1+£") -

Hence, making m->oo , it follows that

sin?/ lies between Sn (y), Sn+1 (y),

so that (1) follows from (2).

Again we have

1 —COS 2/7203 . . „ . ,„
; =sina; + sin 3X+...+ sin (2m — 1) x.

2sn»iC v '

Hence, assuming (1), it follows that

1 — cos 2 was

2 sin a;

lies between P
n , Pn+1 ,

x x3
, _ x'

n"
when ^=

TT
s
-F!

s
»+-+(- 1)B

(2^TT)l^'

and hence, as before, it follows that

Z(l - cosy) lies between Qn, #n+1 ,

where

^= fr
(1 + e

^ } - 4T
(1 4 6^ + "*+ (

- 1} "

c^T^! ^
+ €—>*

Hence, making ?»—>cc , it follows that

1 — cosy lies between P
n , Rn+V
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.1

where fl.=
f, -J,

+...+ (-O'^^,,
and hence that

cosy lies between C„
+1 (#) ? #„+J (y)-

Thus the two theorems (1), (2) have been proved tor all

values of #. Reference may be made to the Messenger, vol.

xxxv., pp. 58—69, 142-144; vol. xliii., pp. 63—71; and to the

Mathematical Gazette, vol. iii., pp. 284-288.

SOME SIMPLE TRANSFORMATIONS
OF STOKES' CURRENT FUNCTION EQUATION.
By J. R. Wilton, 31.A., B.Sc, Assistant Lecturer in Mathematics

in the University of Sheffield.

1. One or two of the following elementary transformations

of Stokes' current function equation, namely,

8V + av_i 5_i = m
dx" dv ct d&

may possibly be unfamiliar, tbougli most of them are probably
well known to all who have studied the subject of fluid motion
symmetrical about an axis.

Using the notation

R = CT*, V — \/(x~ + E7
2

) , %= r + X, Tj = 7' — x,

r
t
= [{x + tc)

2

-r vf ]», r= [(x - \cf+ sr'j
1

,

we shall find

dx*
+ cV v fo~dx<

+ W
'
dr*

+
r drdR cR1

c>"" r dx d>' dx*

=
u-v\iW + v w)

•'-

<>\ /ys
d'\cr

3
dr

3
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Also, if (p is the velocity potential corresponding to the

stream function \p, we have the relations

whence, if we take <p and ip as independent variables, we find

dx _1_ BR dx J_ dR

and therefore

§J
+!>^ = ° W''

A solution of equation (4) is easily seen to be

w*=i2=(a,-^,)sec> (5).

The corresponding value of a? is, it is easy to verify,

x = \p tan^ (6).

The stream lines are therefore the hyperboloids

ST X

a —ip \p

of which <p = consists of that part of the plane x= which
lies outside the circle CT = a, so that equations (5) and (6) give,

in a form somewhat simpler than the familiar form as given,

for instance, in Lamb's Hydrodynamics, § 102, 3°, or § 108, 1°,

the solution of the problem of the flow of water through a

circular hole in an infinite plane.

The velocity is g, given by the equation

g
2 ~

4 \\d})
+ B \d<p)\ ~ {a

2-xpy + f '

and over the circle ts = a, x = this gives

1 = c
2 ~3

-3 — a — ct
,

which is a well-know result.

* A solution of equation (4) involving an arbitrary function is given by the
equation R=f{<p + i\j/R'-*), but this has no physical meaning as it makes the
velocity everywhere infinite.
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Another obvious solution of equation (4) is

with the corresponding value of x,

The stream lines are

and the $ curves are

2x = - e<P + — ,

both of which equations represent a system of confocal parabo-

loids of revolution.

The velocity at any point is given by the equation

9.

2. The equation resulting from the transformation (2) is

remarkably simple, and it has an obvious general solution in

the form of an infinite series of terms, each of which consists

of the product of a Bessel function of g multiplied by a Bessel

function of 77, one of the two arguments being a pure imagin-

ary. This form of the equation is adapted for giving the

solution of problems in which certain boundary conditions

have to be satisfied over some one or more of a set of confocal

paraboloids.

The transformation (3) is somewhat remarkable in that

it does not become indeterminate on putting c=0. In fact,

when e = 0, the solution is

^= V(r
I

i-0{F(r
I
'-0 + (7(r

1
/r

1)Ji

showing that, by a simple transformation, it will be possible

to obtain a solution when c is not zero in an ascending series

of powers of c. 1 am not aware, however, that any physical

importance can be attached to this fact.

The equation

9>i 8»V rp
%

dr
x
dr2

v ;
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lias a solution of the form

which may conceivably lead to some new results, though the

task of looking for such would probably be a somewhat
thankless one.

An evident set of particular solutions of equation (7) is

2 3 3
r. —c r.—c

'i. ',» -^7-' -V- («),
T T
3 I

of which the two latter are most easily derived by noticing

that the solution for a source at the origin of r- is

cos0,= (os + ^/r,,

and therefore a solution of equation (7) is

»-
1
-2ccos^

1

=(?'
3

2
-c'

2
)/r

l
.

Each of the four solutions (8) corresponds to a motion due to

a semi-infinite line source and a serai-infinite line sink in the

same straight line, the strength in every case being 2-rr per

unit length. The third of the four solutions has in addition

a point source at the origin of r
9,
and the fourth a point sink

at the origin of r
l5

the strength in each case being Sire.

The solution

\L =
;

r < k [r, — ?\) -f-
— ? }

represents a finite line source of strength m per unit length,

together with two equal point sources at its extremities, of

which the strength is at our disposal by proper choice of k.

A few other rather curious results may just be noted.

The equation

m , ., , ,. / 1 1 \

^ = "5-
(
?
*i
+ r

2
~ c~)

represents the motion inside a sphere due to a diametral

line source of strength m per unit length with equal point

sinks at the extremities. And

m
/ !l 2 3 ( n 1\

VOL. XLIII.
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represents the motion in the presence of the two intersecting

spheres

r '+r
t
'=c', r=nr„

due to a certain arrangement of line and point sources and

-inks. Alld

represents the motion, either inside or outside the sphere

r =nrg, due to a finite radial line source of strength m per

unit length, together with a point sink at the extremity

remote from the surface. The length of the source in com-
parison with the radius of the sphere is arbitrary, but one end

of it is necessarily in contact with the surface.

THE RELATION BETWEEN
THE PENCIL OF TANGENTS TO A RATIONAL

PLANE CURVE FROM A POINT AND
THEIR PARAMETERS.*

By J. E. Rowe.

Introduction.

THE relation between the pencil of tangents to a rational

plane curve from a point and their parameters along the curve
is a question which arises very early in the study of rational
plane curves. After further reading on the subject the
student finds himself in a position to predict that no simple
relation of this kind is likely to exist. In as much as this

is quite an unsatisfactory position to hold—one which is not
justified by facts, but one which the student is forced to hold
because there has never been sufficient research on this

subject—I shall outline a method of attacking the problem
which is straightforward and which makes it possible, in

particular cases at least, to discover interesting relations
which do exist between the pencil of tangents and their
parameters. The rational plane cubic is taken up as the
simplest illustrative example; incidentally, it is necessary
to give a new geometric interpretation to several combinants
oi two binary cubics.

Read before the American Mathematical Society, April 20, 1913.
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Covariants of rational curves defined by the pencil of

tangents from a point.

§ 1. Let the E" (or the rational plane curve of order n) be

written parametrically

(1) a"=*£
= a,r+nJ/""*... (4 = 0,1,2).

If (1) is cut by the two lines

( 2 ) (£*)=to+fo+&v=<>.
( 3) (nx) = \XQ + rj.x^ + %*

3
= 0,

the result is the two binary ?i-ics

u
u
s(aZ)r+n[bZ}f-l

...= Q>,

and v
n
=(ar

) )t
n + n(bV )t

n- 1

...= 0,

whose roots are the parameters of the points in which the lines

(2) and (3) cut the M'\

It has been explained in a previous paper* how the

combinants of u
H
and vh are transformed into covariant curves

of the Bn by substituting (in the combinant of u
n
and vK

equated to zero) x , x x
t
for the coordinates of the point in

which the lines (2) and (3) intersect, which point will be

referred to in the sequel as the point x.

Consider the expression

(6) u
n
K+v

H
=0,

a binary n-ic in t] its discriminant equated to zero may be

put in the form

(7) DJC n-*+ D
l
K 2»-3...D

2n
_=Q.

Invariants of (7) are combinants of uH and v
n

. A combinant

of u and v
K
may be detinedf as a function of their coefficients

(and possibly variable, although not generally containing the

variable in what follows) which is unaltered (except by a

constant multiplier), not only when the variable is linearly

transformed, but also when, for u
n
and vn , linear combinations

of u and v
H
are substituted. Hence, an invariant of (7) is

a combinant of un and t>
B , i.e., it is unaltered if we substitute

lu
n
+mv

H , l'u
H
+m'vn

for u
n , vn . For, by this substitution, we

get the "same invariant of (IK+ I') u
H+ (mK+ in) v„, which

is equivalent to a linear transformation of K, by which the

invariants of (7) are unaltered.

* J. E. Rovve, " Important covariant curves and a complete system of invariants

of the rational quartic curve," Transactions of the American Mathematical Society,

vol. xii. (July, li>ll), pp. 295-6.

t Salmon, Modern Higher Algebra, Fourth Edition, p. 161.
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The roots of (7 ) are those values ofK which, substituted in

(8) (?a?) K+ (»;«) = 0,

yield equations of tangents to the Rn through the point rr.

Any invariant relation imposed upon the roots of (7) imposes

that same invariant relation upon the pencil of tangents from

the point x to the R". Hence, by the use of the usual

translation scheme a combinant of u and v , derived as an

invariant of (7), becomes (equated to zero) the equation ot

a covariant locus of the RH
defined by a projective relation

connecting the pencil of tangents from any point of it to the Rn
.

Covariants of the R n
defined by the parameters of tangents

from a point.

S 2. The Jacobian of u and v is a combinant which,
•> n n 7

equated to zero, may be written in the form

(9) E/"-2 +E
i
e-\..E

2i>_ %
= 0.

The roots of (9) are those values of t which occur as squared

factors in members of ths system* of binary ?*-ics (6); in

other words the roots of (9) are the 2n — 2 parameters of the

tangents of the Rn from a point of x. Invariants of (9) are,

of course, combinants of u and v . Hence, a combinant
of v

n
and v

n
derived as an invariant of (9) is, equated to zero,

the equation of a covariant of the R" defined by some pro-

jective relation connecting the parameters of the 2n — 2

tangents that can be drawn from a point of it to the Rn
.

Covariants of R" from which the pencil of tangents and their

parameters are projectively equivalent.

§ 3. To derive these curves it is only necessary to make
a comparative study of the invariants of (7) and (9). Suppose
that I

s
and I

4
are invariants of (7), and 7,' and // the same

invariants of (9), of degree in the coefficients of these equations

indicated by their subscripts. Then, if

(10) ^=^-,
2 2

we have, by cross-multiplication and transposition, the curve

But this curve would arise in the same way from

(i->)
I

4 + Ki; _ I
4

' + KI-

:almon (loc. cit., p. 4), p. 162.
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Hence (11) is the equation of a co variant locus of the R*
such that the pencil of tangents and the parameters of these

tangents from a point of it, i.e., a point of (11), are projectively

equivalent for a certain set of invariant relations. If a definite

projective property, say B , is imposed upon the parameters of

the tangents of the 72" from any point of (11) the pencil of

tangents will possess this property B also, and vice versa,

if only this invariant relation can be imposed by equating to

zero an invariant of the form

(13) al
a
' + bl

t
= 0.

Similarly, J
6
and J

6
', together with I

2
and I.', give rise to the

locus

(14) «-«/= <>,

from which the pencil of tangents and their parameters are

projectively equivalent for the set of invariants

(15) a'l? +&76
= 0.

If a curve is a factor of (11), (14), and

(16) J,7
4
'-J,7

4
= 0,

then, for such a curve, the pencil of tangents and their

parameters from any point of it to the Rn
are projectively

equivalent for the vanishing of any invariant of the form

(17) aiP + b
x
IJ

A
+ c

x

l
&

.

If /,, 7
4
, and I

6
constitute the complete system of invariants

of the binary form (7), a curve whose equation is a factor

of (11), (14), and (16) is such that from any point of it the

pencil of tangents to the R n and their parameters along the

R" are projectively equivalent in the fullest sense. The general

method of procedure is so obvious that a formal statement

is unnecessary. There may be a set of parameters along the

Rn
, the roots of a binary (2n— 2)-ic, whose absolute invariants

are the same as those of (7); this could be verified by carrying

out the process just outlined. Its geometric meaning is that

in such a case the pencil of tangents from a point and this set

of parameters are projectively equivalent.

The rational plane cubic.

§4. Let the R 3
be written parametrically

(18) y(=a/+35/4 3c,i + ^ = 0, 1,2).

12
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Cutting (18) by (2) and (3) gives rise to

(19) Mg= (at) ?+ 3 (It) **+ 3 (c£) t+(dZ) = 0,

(20) v
3
= (uti) ?+ 3 (h?) t'+ 3 (ct?) t + (dV) = 0.

The expression corresponding to (7) may be written

(21) DJC+DJC f #,£*+ D3
K+ D

4
= 0,

The Jacobian of (19) and (20) becomes

(22) \abx\t
A +2\acx\t*+[\adx\ + 3 \bcx []<*...= 0,

by making use of the translation scheme already referred to,

which changes combinants of (19) and (20) into covariant loci

of the 22
s

. Several of these combinants have been geometri-

cally interpreted* before. P=0, the apolarity condition

of (19) and (20), becomes the line on the flexes on the R*.

Q = 0, the condition that there be a member of the system of

binary cubics u
3
K+v

3
, which contains a cubed factor, is the

equation of the three flex tangents. The elimiuant of (19)

and (20) becomes the point equation of the E3
, and may be

expressed in the form P3— 27(2= 0. We shall give a table

of combinants and their geometric interpretation ; so far as

the geometric interpretation is concerned all of those given in

the table are new except the first two, and the reason for

their place in the table will appear as we proceed.

Table of combinants and their geometric interpretation.

Combinant.

Soi (22)

T of (22)

S of (21)

7'of (21)

See later i

discussion >

In terms of P and 0.

3P2
.

biQ-P3
.

3P(P3 -2iQ)

-(P«-36P 3Q + 2I6Q^)

P3 -32Q

Pe -iOP3Q + ±32Q?

Locus from which tangents to Ii3
:

Have self-apolar parameters

Have harmonic parameters

Form self-apolar pencil

Form harmonic pencil

{Cubic and sextic from which the pencil of

tangents and their parameters are pro-

tectively equivalent.

By S is meant the invariant of the binary quartic of degree

two in its coefficients; by T the catalecticant of the binary

quartic, which is also the condition that the roots of the quartic

be harmonically separated; these constitute the complete system
of the binary quartic. Observe that the S and T of (21)

* \\. Gross, Mathematische Annalen, vol. 32, (1888), pp. 141-5 ; Grace and
Young, Algebra of Invariants, pp. 317-8.
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cannot be expressed in terms of the #and T of (22) ; this leads

to the theorem : an invariant relation cannot be imposed upon

the pencil of tangents from a point to the Rs hy imposing a

suu/le projective relation upon their parameters along the R3

The binary quartic has only one absolute invariant 7^5

hence, by making the absolute invariants of (20) and (21)

equal, we are making the roots of these equations protectively

equivalent. After cross-multiplication and transposition this

gives rise to a multiple of

(24) P'#(P 12-99P9 (H3G5GP6

#
S -432139P 3

$
3 + 72V) = 0,

which readily factors into

(25) P*Q{P- 27 Q) (P3 - 32 Q) (P6- 4QP 2

Q + 432 Q
7

) = 0.

Hence, not only do the pencil of tangents and their para-

meters become projectively equivalent from any point of

Q = Q and P* — 27 $ = (where there is coincidence), but

also from a point of either of the curves

(26) ^-32*2 = 0,

(27) P*-40P3

(? + 432()
8 = G,

which are entirely new loci.

It should be noticed that P is a factor of the S of (22)

and (21) and that the pencil of tangents to the R* from any

point of it as well as the parameters of these tangents are

self-apolar. Also that the pencil of tangents from a point

of P to R* is harmonic if only their parameters are harmonic.

The equations of the osculant conic of the E* at a point

whose parameter is t' may be written

(28) x
l
= (a

i
t'+b

i
)t

i +2(h
i
t' + c

i
')t + (c

i
t' + d.) (*= 0,1,2).

If the point equation of this conic is found and t' made equal

to t (to show that it has become variable), remembering the

translation scheme already used, the result may be written

(28) [4
I

abx \\bcx\-\ acx
|

a

] t*

+ [i\abx\\bdx\-2\acx\\arf.r\ + 2\acx\\bcx\]t
3

+ [4
I

abx
1

1 cdx
I

+ 2
I

acx
1

1 bdx
|

4-3|to||
3 -|a^| 3 -2|a^||/>^|]«s

+ [ ]* + [ ] = °-
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If a particular value of t, say t', is substituted in (29), we
have the point equation of the osculant conic of the R3

at

the point whose parameter is t ; if the coordinates of a given

point are substituted in (29), the result is a binary quartic

whose roots are the parameters of the osculant conies which

pass through the given point. The S and T of (29) are

respectively

(30)
r<r-*Q)

(31)

12

P6- 36P3Q + 216 Q*

216

It is easy to verify that the absolute invariant of (29) is equal

to the absolute invariant of (21), which proves the theorem:

The pencil of tangents of the Rsfrom a point and the parameters

of the osculant conies of the R* through the point are projectively

equivalent.

Concluding observations,

§ 5. In the case of the R3
it has been shown that the

curves (26) and (27) are related to the R3
in such a way that

a pencil of tangents drawn from a point of either of these loci

to the R3
has the same projective property as their parameters

along the R3
. Similarly, by using the same process it would

be necessary to make a comparative study of the invariants

of two binary sextics to solve the problem for the it*, and
this would lead to a series of curves from which the pencil of

tangents to the Ri and their parameters are projectively equi-

valent for a limiting set of invariants; the same kind of

results may be obtained for the R5 and higher Rn
. It is my

belief that the method just outlined may be applied with

advantage to the solution of certain problems of construction

in connection with invariant pencils of six lines, but I shall be

content, for the present, if I have established my point—that

interesting relations do exist between the pencil of tangents

to the R" and their parameters, and that these relations may
be found by the method indicated.
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ON THE SOLUTION OF SOME THEOREMS IN
ELEMENTARY OPTICS, HYDROSTATICS, &c.

By J. H. H. Goodwin.

The following applications of (1) a theorem of Apollonius
and (2) of the well-known theorem that the centre or' gravity
of a uniform tetrahedron coincides with that of equal weights
placed at its corners are, I helieve, new. They may possibly

be useful as affording simple solutions to three important pro-
positions in Elementary Mathematics.

To find the minimum and greatest deviation token a ray of light

passes through a prism in a principal plane.

Let /a be the index of refraction into the prism, i the
angle of the prism ; <p,

$' the angles of incidence and emerg-
ence at the first face, and \p', xp the angles of incidence and
emergence at the second face.

By a well-known theorem the locus of a point whose
distances from fixed points and are in the ratio of greater

inequality fx:\ is a circle whose centre G is in 00' produced.

Let P, Q be points on this circle such that the angles PO

G

and QO' are (j> and \p respectively. Then, since

sin PO' C: sin POO':: OP: OP: : p : 1,

the angle POO' = <p', and similarly the angle QOO' = \p'. Let
the internal bisector of the angle QOP, meet PQ in T.

Then the angle TOO'= \(<tf +xf,') = $t and the line TO is

fixed.

Also, since OT bisects the angle QOP, it follows that

QT:TP=QO:PO = fiQO':pPO'=QO':PO'.

Therefore TO' bisects the angle QOP, and the angle

TO'C^m + t),

whence the angle

0'TO = ±(<t>+4)-h = ±D,

where D is the deviation.

Now if <}>' decreases from the value it, ip' increases, since

<p' + \p'=t, and both P and Q move along the circle receding

from each other, and for both reasons T approaches along

the fixed line TO) and the angle 0' TO, which measures
the semi-deviation, continually increases until OQ become
a tangent to the circle, after which the construction becomes
imaginary.
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The minimum deviation occurs when Panel Q coincide and
0'=^'=£i. The greatest deviation occurs when either OP
or OQ is a tangent to the circle, i.e., when OOP ov 00'

Q

respectively is a right angle, i.e., when either (p' or \p' is equal

to the critical angle sin
_1

(l//n).

To find the centre of pressure of a triangle ABC wholly
immersed in a homogeneous liquid.

Let A', B', C he the orthogonal projections of A, B, G
on the effective surface, A the area of A'B'G'

; a, /3, y the

lengths of AA', BB\ GG\ and a the specific gravity of the

liquid.

Now it is known that the centre of pressure of ABC is in

the vertical through the centre of gravity of the fluid con-

tained in ABCC'B'A'. Let the weight of this fluid acting

at its centre of gravity be resolved into three components
P, Q, R along AA, B'B, C G respectively.

Now ABCC'B'A' may be divided into three tetrahedra

AA'B'C, ABB'C',ACC'Bo? weights, say, wv 10,, and w
3 ;

and since the centre of gravity of a tetrahedron is the same
as that of weights placed at its four corners, each equal to one-
fourth of the weight of the tetrahedron, it follows that the

centre of gravity of ABCC'B'A' lies in the resultant of

4 wi+4(wi+ 1('j+ I(
':i)

along A'A together with two forces

along B'B and G' G respectively.

Now P+Q+R= w,+ w
3
+ iv

t ,

and 10^=1 Acta,

therefore P= tV^ " +i(P+ Q+ E) C
1 )-

And, since the values of P, Q, R are unique, it follows by
symmetry that

Q = I\&l3* + i(P+Q + R), £ = &c.

By addition, we have

P+Q + R = lA<r(a+p + y).

Hence, by (1), P= ^Aj (2a + pS + y),

with similar expressions for Q and R.
It follows that the centre of pressure of ABC is the centre

of gravity of weights proportional to 2a + /3 + y, 2(3 + y+a,
2y + a+ /S acting at A, B, C respectively.

[Or we may proceed as follows:

w
3
the weight of ABCG'

= i (i GO'. GB sin BGC) x {A'C sin A' G'B') x a

= }.CC'.B'C'.A'C's\nA'C'B'xa
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and similarly io
x
, w. = la&<r and £/8A<r respectively; whence

P= xV
^°"

(
2a + fi + 7) as before.]

To find the moment of inertia of a triangle ABC about

any straight line PQ in its plane.

Let the triangle ABC be rotated through a small angle 6

about the line PQ into the position A'B'C'. Then if dS be

a small area of the triangle at B, and if R' be the position

of B after the rotation, and if p be the perpendicular from B
on PQ, the required moment of inertia is

jP
\lS = j^f.PdS=l jp.(BB'.dS) = j\

where K is the moment of the volume

of the solid ABCC'B'A' about PQ (1).

This solid may be divided into the three tetrahedra AA'B'C,

ABB' C, AB'C C. The bases of these tetrahedra, viz., A'B'C

,

ABC, AB'C are, by orthogonal projection, each equal to A,

the area of ABC, if we neglect 6" and their heights to the

same order of small quantities are respectively A A', BB',

CC, or ad, #0, yd, where a, /3, 7 are the perpendiculars

from A, B, G on PQ. Hence their volumes are respectively

I Aad, l±fid, l±yd', and, since the centre of gravity of a

tetrahedron is "the same as that of particles, each equal to

one-fourth of its weight, placed at the angular points, the

moment of the figure ABCC'B'A' about PQ is the same

as that of particles each equal to

T^Aafl at A, A', B', C,

TLAj30 at A, B, B', C,

TLA7 at A, B', C, C,

which is

(2a+ /3 + 7 ) I
12Aa^+ (2/3 + 7 + a) T

1

2 A/30+ (27 + a+ /3) TVA70.

Hence, by (1), the required moment of inertia is

iA[{Ka + /3)r+lH|3 + 7)r+{H7 + «)}
3

]'

which is the moment of inertia about PQ of particles placed

at the mid-points of the sides of ABC, each equal to one-

third of the mass of the triangle.
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A NON-ABEMAN GROUP WHOSE GROUP OF
ISOMORPHISMS IS ABELIAN.

By G. A. Miller.

In the " Second report on recent progress in the theory of

groups of finite order," published in volume ix. (1902) of the

Bulletin of the American Mathematical Society, it was stated,

on page 116, that "no one seems to have investigated the

question whether a non-abelian group can have an abelian

group of isomorphisms." In the Appendix of Hilton's Finite

Groups (1908), page 233, the question whether a non-abelian

group can have an abelian group of isomorphisms is placed

among " a few interesting questions still awaiting solution."

In what follows we shall give a very simple example of a
non-abelian group which actually has an abelian group of

isomorphisms.

Let s
x

be an operator of order 8 and let s
2
be an operator

of order 2 which transforms s, into its fifth power. The
group jsp s,}, which is generated by s, and s

fi
, is clearly

a non-abelian group of order 16. We extend this group by
means of an operator s

3
which is of order 2 and is commutative

will] each of the operators of {s,, s,}. Finally, we extend this

group just obtained by adding an operator s
t
which is also of

order 2 and which satisfies the following conditions:

The group \sv s
2
, s

3
, sj = G is of order 64 and its central

is of order 8, being generated by s,
3 and s

3
.

The co-sets (Nebengruppe) of G with respect to its

central will be called central co-sets of G, and we shall first

prove that each of these central co-sets is invariant under
the group of isomorphisms I of G. This is equivalent to

proving that every operator of the group of inner isomor-
phisms of G is invariant under 7. This group of inner
isomorphisms is of order 8 and it contains seven operators
of order 2. Four of these operators correspond to operators
ot order 8 in G, one corresponds to operators of order 4,

while each of the remaining two corresponds to a co-set

involving four operators of each of the orders 2 and 4.

One, and only one, central co-set of G is composed of eight
operators of order 8, each of which is transformed under the
group of inner isomorphisms of G only into itself and into its

filth powers. These are the 8 operators of order 8 contained
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in js„ s
3 \. Hence tins central co-set, which we shall denote

hereafter by Gv is invariant under 1. It is evident that G is

generated by (7, and its two central co-sets Gv C
3 , each of

which involves four operators of each of the orders 2 and 4.

As one of the two central co-sets C
2
, G3

is composed of

operators which are commutative with each operator of C,,

while the other co-set does not have this property, it results

that each of the two co-sets 6T

2
, G3

must be invariant under I.

As each of the three co-sets Gv 3 , G3
is invariant under /

and as these co-sets generate G, it has been proved that every

central co-set of G is invariant under the group of isomorphisms
o/G.
We shall now prove that each of the three operators of

order 2 in the central of G is also invariant under I. In fact,

one of these operators is the fourth power of each of the 32

operators of order 8 contained in G, and hence it is invariant

under I. A second one of these three operators of order 2 is

the commutator of every pair of non-commutative operators

of order 2 contained in G. Hence this one is also invariant

under I. As two of these three operators of order 2 are

invariant under 7, the third must also have this property.

Two of the operators of order 4 in the central of G are

the squares of the operators of 0,, and hence these two
operators are transformed among themselves under I. It is

now easy to find the order of I. In fact, the operators of C
x

cannot be transformed in more than eight different ways under

j? since they must be transformed into themselves multiplied

by operators of the central of G. These eight ways corre-

spond to pormutations of the operators of Cv which constitute

the abelian group of order 8 and of type (1, 1, 1).

The four operators of order 2 in each of the central co-sets

C
2
, G3

can be transformed into themselves multiplied only by
the operators of the central whose orders divide 2. Hence
these operators are transformed separately according to the

group of order 4 and of type (1, 1). The order of I
can therefore not exceed 128. Moreover, G admits 127 iso-

morphisms of order 2 since the given transformations of the

operators of Cv 2
, C3

are independent of each other. This

completes a proof of the fact that 1 is abelian. In fact, it is

the abelian group of order 128 and of type (1, 1, 1, ...).

Hence G is a non-abelian group of order 64 which has an

abelian group of isomorphisms of order 128.

University of Illinois.



( 120 )

A GROUP OF ORDER p
m WHOSE GROUP OF

ISOMORPHISMS IS OF ORDER p\

By G. A. Miller.

In the Appendix to Hilton's Introduction to the theory of
groups offinite order (1908), page 233, the following question

appears as number eight of a list of "a few interesting

questions still awaiting solution "
:

" Can a group of order

p
a have a group of automorphisms whose order is also a

power of p?" When p = 2 the infinite system of abelian

groups of order p
m which contain no two equal invariants

is composed of groups whose groups of isomorphisms have
orders of the form p

a
, but when p is an odd prime number

there is no abelian group of order p
m whose group of isomor-

phisms has an order which is of the form p
a

. We proceed to

construct a non-abelian group of order £>
9

, p being any odd
prime whatever, whose group of isomorphisms has an order

of the form p
a

.

Let sv s
2 , and s

3
be three operators of orders p*, p

3
, and p*

respectively, p being any odd prime number, and suppose

that these operators satisfy the following conditions

:

VV, = •/% *
a
-\s, = *3

P+1
> OV, - s/+1.

The central of the group G generated by sp s
2
, s

3
, is of index

p
z

, and it is generated by s,
p

, sf, s
3

p
. The central quotient

group is abelian because each commutator of G is invariant

under G, and this quotient group is of type (1, 1, 1). The
sub-group of order p generated by sf is a characteristic sub-
group of G because it is generated by each operator of order
p* contained in G. The sub-group of order p generated by

sf and sf is also a characteristic sub-group, because it

iovolves all the operators of order p which are generated
separately by the operators of order p* contained in G.

The sub-group of order p
3
generated by the three operators

s
i '.

s* '
S
3

P
1S composed of all the operators of G whose orders

divide p, and hence it is also a characteristic sub-group of G.
These three characteristic sub-groups will be denoted by i/,,

H
2 , and H

3
respectively. By adjoining to ff

s
the operator

s
t

p there results a characteristic sub-group H
A
of order p*,

since it involves all the operators of order p
2
contained in G

which generate separately the characteristic sub-group Hv
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By extending H
4
by 8* and then extending the group thus

obtained by s
x
there result two more characteristic sub-groups

'H
s
and II

e
of orders p

b and p
6

respectively. The latter of

these is composed of all the operators of G whose orders

divide p*, while the former may be distinguished by the fact

that it contains no operator of order p
2 which generates s

3

p
.

Two additional characteristic sub-groups may be obtained

by extending H
6
by means of s* and then extending by means

of s.
3
the group thus obtained. These two characteristic sub-

groups will be denoted by H
7
and H

%
respectively. The

former contains the p
iil powers of the operators of highest

order contained in G, while the latter is composed of all the

operators of G whose orders divide p
3

. The series of character-

istic sub-groups Hv Hp ..., H
&
satisfies the condition that each

includes all those which precede it.

To prove that the order of the group of isomorphisms / of

G is of the form p
a

it is only necessary to prove that in every
possible isomorphism of G the operators of Ha are transformed

into themselves multiplied by operators of Ha_ x
(«= 1, 2,

..., 8 and H =l), and that all the operators of G which are

not in H
&

are transformed into themselves multiplied by
operators of i/

8
by each of the operators of /.* In other

words, we have to prove that every isomorphism of 67 is a

^-isomorphism.

We shall now prove that if s
l

is transformed into t s
l

under I. then L and s, must be commutative. All the

operators of order p* which transform each operator of H
6

into itself multiplied by a power of s
t
must correspond to

each other under i, and these operators constitute a sub-group

of order p
s

. Some of the operators of this sub-group trans-

form operators of H
t
into themselves multiplied by operators

of H„ while other operators of this sub-group do not have
this property. As s

3
is one of the latter operators and as s

2
is

not contained in the sub-group of order p* composed of those

operators of G which transform each operator of H
6
into itself

multiplied by an operator of Hv it has been proved that s
l

corresponds only to operators which are commutative with

Sj in every possible automorphism of G.

Suppose that, in some automorphism of G, 5, corresponds

to Sj
a

, where a has one of the values 1, 2, ..., p— 1. Let s
$

'

correspond to s
3
in the same automorphism. Since

s~as
3
s

l

a = s
l

a
l
)3
s
3
and s-as

3
's« = s

i

aP*s
3 ,

* G. A. Miller, Annals of Mathematics, vol. 3 (1902), p. 180.
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it results that s
3

is equal to the product of s
a
and some

operator which is commuative with sr That is, s
3

corre-

sponds to itself multiplied by some operator of H.
o
whenever

s
l

corresponds to s,". In the same automorphism s
2
must

correspond to itself multiplied by some operator of H
7
, since

the operator which corresponds to s
2
must transform the

operator which corresponds to s
3
into itself multiplied by s

3

p

into some operator of H
2
.

It is now easy to prove that a = l. From the fact that s

transforms s
2

into itself multiplied by sf", it results that sA
transforms the operator which corresponds to s

2
in this auto-

morphism into itself multiplied by sf" into some operator of

If. This cannot be equal to s
2

ap
into some operator of H

l

unless a=l. Hence s
t

cannot correspond to any power
of itself, except the first power, in any automorphism of G.
Since these arguments were based upon the way in which

s
(
transforms G, it has been proved that, in all the possible

automorphisms of G, s
t

must correspond to itself multiplied by

an operator of the central of G.

It may be observed that the commutator sub-group of

H
s
, is composed of the powers of s

3

p
, and hence s

3
generates

a characteristic sub-group of order p. It must therefore

correspond to itself multiplied by operators of H
3

in every
automorphism of G. As it has been proved that, in every

possible automorphism of G, the operators which can corre-

spond to the three generators of G, «„ s
2

, and s
3
respectively, are

obtained by multiplying these operators by operators which
appear in a smaller sub-group of the series Hv H2

, ..., H^ G,
it has been proved that the order of the group of isomorphisms
of G is of the form p

a
for every value of the odd prime

number p.

For the sake of simplicity we confined our attention, in

what precedes, to the case when p is an odd prime number.
In this case the p

xh power of the product of any two operators

of G is the product of their p
th powers, while this is not

always true when p = 2. The series of sub-groups Z7,, H^
..., 27

g
is, however, composed of characteristic sub-groups

even when p = 2. Hence the order of the group of iso-

morphisms of G is a power of p even in this special case.

We have therefore proved that G is a group of order p*

whose group of isomorphisms is of the form p
a when p is any

prime number ivhatever.
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NOTE ON THE EQUATION s=/f».

By J. R. Wilton, 3I.A., B.Sc, Assistant Lecturer in Mathematics
at the University of Sheffield.

The general form of a pseudo-sphere can be obtained,

when the measure of curvature is small, to any required

degree of accuracy. If B, and M„ are the principal radii

of curvature, we have B
i

bt
i
= — a

2

, and, as is well known,
the problem of determining the form of the pseudo-sphere is,

by Bonnet's theorem, reduced to the solution of the differential

equation

&b 1 .

s= = —
3
su\z (1),

dx dy a

where x = constant, y= constant are the asymptotic curves on
the surface and z is the angle between them.*

If the measure of curvature is small, a is large, and it is

easy in this case to obtain successive approximations to the

solution of (1). Thus, if a were infinitely great (corresponding

to the particular case of the developable surface), we should

have s = and z = X+ Y, where X and Fare arbitrary func-

tions of x and y respectively. (Substituting this value of z in

the right-hand side of (1), we find

s = sin (X -f Y) = sinXcosF-r-cosXsin Y,

and therefore «,=X +- Y+ -i (X F + X Y
),

where X, = JsinX dx, X
2
— jcosX dx,

Y
^
= /*'« Ydy, Y, = Jcos Y dy,

is a first-order approximation to the solution of (l) when a is

large. Substituting z — z
{
+ £ in equation (1), we have

= i(X
J
F

i +X8
F

l
)coS (X+r),

dx dy a*

i.e.,

z
2
= z

{
+ -

4 {
jX, cosXdx JYa

cos Ydy + JX2
cosXdx

J"
Y

{
cos Ydy

-\X^xnXdx\Y^mYdy-\X^Xdx\Y
x
%mYdy\

is a second-order approximation to the value of z. We may

* See, for example, Forsyth's Differential Geometry, p. 74. The determination
of surfaces of constant mean curvature depends on the same equation (see p. 77
footnote).

VOL. XLIII. K
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evidently repeat the process until z is obtained to the required

degree of accuracy.

It is clear that the solution will be of the form

z =X+Y+l ±Sm,

m-l a

2m

n=l

where X and Y are arbitrary, but X is a function of xJ 7 »m
whose form depends on that of X, while Ynm is a function

of y whose form depends on that of Y. Substituting in (1),

we have

co 1 2;» f 2 2*
)

2 -L 2 X'mn Y'mn = sin (X+ F) 1 -| +
f-,

-...

-fcos(Z4-r){2-|j-f...|,

co 1

where 2 = 2 -^ #.2m ^m*

It is clear that there are sufficient equations to determine
the forms of the functions X and Y . We have already
obtained the first six of each.

It is, however, sufficient to assume for z a form apparently
less general. Let

where b is a constant and X
n

is a function of x, whose form
depends on that of X. Substituting this value of z in (1),
we find*

+ cosZJs-|j+...| (2>,

where 2=2 ^ -2."X
n=l nl

The coefficient of -j —- on the right-hand side of (2)

We have put u-y instead of y in equation (1), so that it becomes s=siaz
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is readily obtained by the multinomial theorem. It is, how-

ever, somewhat complicated in form, and it will be sufficient

to call it Fm. We then have

Xn
=\*Fn dx+rr>(b),

where c is a constant, the same for all values of m, and Y<
n)

(5),
:

the value of the «
th differential coefficient of a function Y

when y— b, is an arbitrary constant. We thus have, as the

general solution of the equation

s = sin 2,

z =X+Y-Y(b)+l C (-^^FJx (3),

where Y is a function of y, expansible by Taylor's theorem

in the form

n-l

and the series on the right-hand side of (3) will be convergent

for sufficiently small values of y — b.

The relation (3) furnishes us with a formally complete

solution of the equation s = sinz, such that

z =X when y = b,

z=Y+X(c)~ Y(b) when x = c.

It is, however, on account of its complicated form, of very

little' practical importance, though of some interest from a

purely theoretical standpoint.

It is evident that precisely the same method will furnish

us with a solution of the more general equation

'<=/(*) 00'

provided that/(« + fi) may be expanded by Taylor's theorem.

As before, we assume

Y4-v (y- bT x

and we find

«=1 (n-l)l
2n

=/(X) + S/'(X)+...^">(Z)+....
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Pick out the coefficient of (y — i)"
_1

/(« — l)! on the right-

liand side ; let it be F
n

. Exactly as before we have

^-jV.«fe+r«0),

and the equation (3), with the new value of F
n , represents the

solution of (4).

It is always possible to find the form of F
n, but the result

is in general complicated; and it is only in very special cases

that the sequence equation for X
n

can be solved. For
instance, even in the simple ease,

s = z
!i

,

this sequence equation is

y = « !
T s —m

. ,

Z
"-\, dx + r<"

1

" (ft),

hm=0 rn\ (n-m)l K

where X = X.
As a particular example of the method, consider the

equation

s = z (5).

On substituting

z = X+Y(b)+2 fc^x
n

n=i n\

in this, we find

Xn
= ff...fx(dxr +^^Y(b)

+ ^^Y'(b)+...(x-c)Y^(b) + Y^(b)t

and the general solution of (5), such that

z = X+Y(b) when y = b,

z=Y+X(c) when x = c
}

is

z

m=i m !

The general solution of equation (5) is, of course, well known,
but 1 am not aware that it has been given in this form.

It is clear that the equation

*•=/(<?) (6),
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which is of some importance in the theory of conduction of

heat,* may be treated in the same manner. We take

«=1 «

!

and substituting in (6), we have

-/(r)+z/(r)+...-jy"(r)+..v

Whence F and F, are arbitrary, and by equating the co-

efficients of powers of (*— c), we find

Y
2
=f{T),

Y = YJ'{Y'),

F
4
=F

1
/(r) + F

1
"/'(y'),&c.

On the other hand, solving for q, we may write (6) in the

form
q = F{r),

and if we assume

we have

Whence X is arbitrary, and

x^x^'cx"),

i^i/irj+iTcn &c.

Either form of solution is general.

* Differentiating (6) with regard to y, and taking q as the new dependent

variable, we haveg =/' (?) g , which is the equation of conduction of heat when
' 6x- oy

the conductivitj is a function of the temperature q.

K2
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SOME THEOKBMS CONCERNING DLRICHLET'S
SERIES.

By G. II. Hardy and J. E. Litlleieood.

I.

1. The present paper is intended as a supplement to a

scries of papers published during the last few years in the

Proceedings of the Loudon Mathematical Society.

These papers have been concerned, in the main, with

what we have called " Tauberian " theorems, theorems whose

general character is the same as that of Tauber's well-known

converse of Abel's theorem on the continuity of a power-

series. The most typical Tauberian theorems have, as one

of their hypotheses, a hypothesis of the type

(1.1) «
n
= 0(n»),

where a is the general term of the series considered. It is

a natural conjecture that there must be analogues of these

theorems in which this hypothesis is replaced by one as to

the convergence of a series of the type

(i.2) s^kh
and the fundamental importance of such hypotheses in the

theory of Fourier's series suggests that theorems of this

character might prove to be very interesting.

One such theorem has been proved already by Fejer.*

Fejer shows that

if (i) the series 2a
n is summable (Cl), (ii) the series 2 m \a

n \

3

is convergent, then the series 2a
n

is convergent.

This theorem is the analogue, in the direction indicated

above, of the simplest case of what we have called the
" general Cesaro-Tauber theorem," from which it differs in

that the hypothesis that a
n
=0[lj n) is replaced by the

hypothesis (ii).

2. We do not propose now to work out systematically
a whole theory analogous to that contained in our former
papers. We shall confine ourselves to proving the analogues
of two of our .simplest theorems, viz.: (i) ifan

= (1/??) and
f(x) = "2anx

n
tends to a limit as x tends to 1 through real

ralues less than 1, then 1a
n

is convergent] (ii) if an
= (1 n),

ConqAes Rendus, (Jth January, 1913.
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bn =0(ljn), and the series 2a
K, 2&

s
are convergent, then the

product series 2c
n ,
formed in accordance with Cauchys rule

for multiplication, is convergent', or rather of the generali-

sations or' these two theorems which hold for Diriehlet's

series and Diriehlet's multiplication.

One preliminary remark is required. Iu our previous

researches there was a sharp distinction between "general"

theorems, theorems whose hypotheses involve an 0, and
" special " theorems, theorems whose hypotheses involve an o.

This distinction now disappears: the theorems which we shall

prove are of a " special " character, and their proofs involve

none of the characteristic difficulties of those of the "general' 1

theorems; nor do they appear to be capable of any generali-

sation analogous to the passage from the " special " to the

" general."

3. In what follows we shall, as usual, denote by (Xj an

arbitrary increasing sequence of positive numbers, tending to

infinity with n, and we shall be concerned with series 2a„,

such that the series

O.I) s Gdfcj"
|o

»
«-l

'

where p is a positive number, is convergent: this series

reduces to 2np
|aJ

p+1 when \ = n. It will be convenient to

write X
o
= 0.

It should be observed first that the convergence of the series

(3.1) for any particular value of p neither implies, nor is

implied by, its convergence for any other value of p. We can

see this by considering the special case in which X
n= w.

Suppose first that

a =
n (log h)"

'

where <a<l. Then the series (3.1) is convergent if

p>(l/a)-l,

so that its chance of convergence is increased by an increase

in p. If on the other hand we suppose that an =v~° when

n = v?, a and |3 being positive integers, of which the latter

is the' greater, and that aH
= when n is not a perfect /3

th

power, the series (3.1) assumes the form
p/3-(p+l)«

and is convergent if

a-1
1 id- a
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Time in this cnse the chance of convergence is diminished by
;ui increase in p.

Secondly, we observe that if the series (3.1) is convergent,

the series 2.ane~^»* is absolutely convergent for all positive values

of 8. The proof of this depends on an inequality on which
much of our subsequent analysis will depend, viz., the inequality

(3.2) 2 ab < (S a
p+l

)

,/(/,+1)
(2 b

{p+])/pfip+1
\

known as the "generalised inequality of Schwarz." In this

inequality the as, the i's, and p are positive.*

\Ye have

"
i - i -a^= s (

x" YKp+1)
\ a I

A>-xy-i\y/(p+D

1

n

(2
1 \A.y— A.V_1

Also

Vr}
1

^}^^)^.*^].'

v (
K X"~ l

) e-{(P+Wi>}K* < - s (X,- X„_i) e-KP+DM^^
i

l f
x «

<
x,J (p + i)V

From these inequalities our assertion follows immediately.

4. Theorem A. Suppose that the series

is convergent, and that the series f{s) = 2a
ne~^»

s
, then certainly

absolutely convergent for s>0, tends to a limit A as s->0.
Then the series 2a

n is convergent to the sum A.

Choose m so that

2
(r-ir-)l«.r<^m+l \A.„ — A v-lJ

and s so that s = 1 /X
n, where ?? > m. Then, if

a,+ «,+...+ aB=Jn,

we have

, -/ 1 \ m n «,A»~f\\) = ~a'0 ~ e
~Ks

) + 2 .«„ (1- e~V) - v a„e-'V
x

.i
7

1 m+l «+l

= s
t
+s

2
+ s

3 ,

say. Then

* For a proof of the inequality see, e.g., F. Riesz, Math. Annalen, vol. 69, p. 455.
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\S
t
\<s 2Xw |a>|

^)V,r}"wl»*(,-v,)m+1 VVy "*-!' J W+l

<esl2Kv
/p

{Xv-\v-i)Y

Pj(p+i)

!1

Also

S>\<]*
U+l

\av \P+1 )V(p+i) f
<° "!P/(p+i)

\P/(P+1)
< eX

n
-P/(P+i) f | g-{(p+i)/p}«»rf«J

Vp + ly

Finally it is evident that, if n is large enough in comparison
with m, we have

| #, |
< e, and so^ <3e;

and the theorem is therefore proved.

In particular the convergence of 2np |a
B p

,+1

, and the exist-

ence of Abel's limit lino 2a
n
&" when 03—>1, involve the con-

vergence of 2a
n

. Finally, since the summability (GV) of la
involves the existence of Abel's limit, a series la , such that

-"
l

anr ' s convergent, cannot be summable (Cr) unless

convergent. For p = 1, r= 1, this reduces to Fejer's result.

5. Theorem B. // 2a
n , 2/>

n
converge to sums A, B, and

s(—^— i la r\ 2(—^— )
\b r

x n n-1 n n-1

are convergent, then the Dirichlefs product of the two series,

formed according to the rule associated with Dirichlefs series

of type (A.J, converges to the sum AB.
The proof of this theorem is a modification of that of the

theorem of which it is the analogue, given in one of our

former papers.*

* Proc. London Math. Soc, vol. 10, p. 399.
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We shall use the notation

U(x) = 2 u
n

to denote the sum of those terms of a series m,+ ?«
2
+... whose

rank is not greater than a positive number .r, not necessarily

an integer. We shall denote by X [x) a continuous and

steadily increasing function of X, which assumes the value \
n

for x = n, and by (v
r)

the sequence {^ m+\), arranged in

ascending order of magnitude.

The product series is Sc
r ,
where

Thus

c= 2
AOT+A.„=:z/r

a b

where the summation is bounded by the inequalities

m > 1 , n > 1 , X + X < v .

Let us draw the curve whose equation is

X [x) +X{y) = v
r ,

and take on it the point P whose coordinates are

«,= MK), yr-MK)>
where X is the function inverse to X. Then G (r) is the sum
of all products ambn such that (m, n) lies in or on the boundary
of the region SQQ', and A (x

r )
B (x

r ) the sum of all such

(0,1)

(1,0)
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that [m, n) lies in or on the boundary of SRPR'. Hence

C(r) - A (xj B (x
r)
= S ab

n+ 2 ajn„
(D) (D')

where D and D' denote the regions PQR, P'Q'R', the

boundaries of these regions being reckoned as part of them,

except in so far as they are formed by the lines PR, PR'.
It is plainly sufficient for our purpose to show that (e.g.)

(D)

as r -> oo .

Now Sfl b = 2 aB\\(v-\)},
(Z>) J*<X«<IV

the modulus of which is less than a constant multiple of

2 \a '

m I

h vr<Xm<Vr

We can choose r so that

^,.<\m <iv \\ — \,_,

and then

X \ p
-l l<r

|

p+1 <ep+1
;

y> . JVl/'+i) / X -X \p/(p+i)

i;i m-1

But

X -X , f"r d«
2 j ™^<1 + — = l + log2.

Hence 2
l

am |~>0,

and so Sfl^-^O,

as r -> oc .

6. A comparison of the argument which precedes with

that of our previous paper shows at once that a series 2a
n for

which

[

^ V|a l*
+1

l

X -X ,'
n n-1
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njcut may be multiplied by a series 2,b
n for which

Whether o may be replaced by in this result we cannot say.

In another of our papers* we showed that our theorem

concerning the multiplication, by Cauchy's rule, of series

whose genera] terms are of order l/n is a corollary of another

theorem, viz., that a series 2 a
n, for which a

n=0{\jn), if
summable by any of Cesa.ro's means, is summable (C, —1 + 6)

for all positive values of 8. It is naturally suggested that

this theorem also has an analogue, and we have in fact

proved the following result.

Theorem C. If San
is summable (Ck) for any value of

k, and
2np

|a„|
p+1

is convergent, then 2a„ is summable ( C, ^~+ °\ for all

positive values of&.

In order to prove this theorem, we observef that the

necessary and sufficient condition that a series 2a
n ,
known

to be summable (C, r+ 1), shall be summable (CV), is that

where

„ /r + n-l\ (r + n — 2\ ir\

Plainly

t; = 0{nr
\a

l \ + (n-lY2\ai \+...+ n\an \}.
'

We divide the expression inside the brackets into the two

parts

m n

£,= 2 {n-v+ l)
r

Ha„|, #,= 2(w- v+l)rv\av \;
i/=l m+l

and we choose m so that

2 vp \a„\
p+l <ep+1

.

m+l

* Proc. London Math. Soc, vol. 11, p. 462.

t Proc. London Math. Soc, vol. 8, p. 304.
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Then

\8t \ <( S vP \a„\P+*)W+vi
{ S (w- r'+ 1)^+1

>
rMP ^/pjp/tp+i)

7/J+l 7H+1

n

< e {2 (« - v + l){(p+i)'-}/P vVp)p/(p+1) < e/6i'+ l

,

where if is a constant. Also

m
\S

1
\<nr

-2v\a v \<en
rn

,

l

if n is large enough in comparison with m. These inequalities

obviously suffice to establish Theorem C.

II.

7. The theorem with which we shall conclude this paper
is of a deeper character.

We have shown* that iff(x) = '2a
nx

n
is a power series, all

oj whose coefficients are positive, and xohich is convergent when
0<x< 1, and if

as x-> 1. then

An
"" rjT+a)

A
n
=a

t

+ a
2
+...+ an

~ w , , A .f

Further, we showed that the hypothesis that ci
n
>0 may be

replaced by the more general hypothesis that «„> — Kna~ l
.

8. We shall now prove

Theorem D. lff{s) = 2aBe~
x»s is a Dirichlefs series con-

vergent for s>0, of type (A.J such that

K
-> i

* Proc, London Math. Soc, vol. 13. This paper has not yet been published,

t In the paper referred to above we consider relations of the type

The differences introduced into the proof by the adoption of the more general
hypothesis are of the nature of trivial complications, and we shall confine ourselves
now to the case in which a, = a2

=...— 0. The reader will easily satisfy himself of
the truth of the more general results which are at once suggested.
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as a —> x . and with positive coefficients ; iffurther

/(*•) ~Air" [A>0, a>0)

as *-><).• then

Axu

ns n -> co .

We shall base our proof on the following lemma.

Lemma Dl. If the series

F{s) = 2a
n
[

nn
<T*

x dx
J A.n

is convergent for s> 0/ iffurther a
n
>_ and

F(s)~As~a {A>0,a>0)

as * -> 0, ^en - F' (*) ~ ^a.s"
a_1

.

Let ff(#
)*.*!W;

then

F(s) rx«+i i rXn +i

w w
5 "J Xn s

n
Jx„

e dx

plainly decreases steadily as s~>0. Hence, by a theorem

of Landau,*

G' {s) ~ ~ [As-°-i) = - A (« + 1) s—2
,

- 2?"
(
s)
= _*M _ £'

(*) ~ Aas-«-K

There is also another lemma which we shall find useful,

although it is of no particular intrinsic interest.

Lemma D2. If Z, and p are positive, and

then

i fp^-D , i r
r(p + i) Jo r(p + i) Jpd+D

* Rtndlconti di Palermo, vol. 26, p. 218: see also /Voc. London Moth. Soc..
vol. 13
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Consider the second integral, for example. It is

r {p + 1) J P(i+j)

<K y

, e-lp

e-/>{£-log{l+t)}

where K is a constant. That the other integral tends to zero

may be proved in a similar manner.

9. Before proceeding to the proof of the main theorem we
add the following preliminary remarks.

(i) Our argument will involve three variables, f, r, and s.

Of these £ and r are definite functions of one another, and

£->0, r->oo, £V->cc. We may, for example, suppose

that £V = 1. The choice of a value of s will always be sub-

sequent to that of £ and r.

(ii) We shall make a number of assertions of the type

|/(£r, *)|<e,

or, more generally,

tf>(£
r, R, e)<0.

All such assertions are to be interpreted as follows: "given

any positive number e, we can choose r so that, when any

definite r greater than r is taken, we can then choose s so

that <£ <0 for <s <s , or for all such values of s as satisfy

some further condition or conditions previously laid down."

It follows, of course, that when e occurs in each of a

succession of inequalities it must not be regarded as a definite

number having the same value in each inequality.

(iii) We may plainly take .4 = 1.

10. We observe first that

(io.i) A
n = 0{K);

since A
n
< e 2 a„e-('Vx-) < efvrj'
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Next, we have

and so 2J„ e"sa;^ «- sr*- 1
.

Hence, by Lemma Dl,

* ~ a f
An+1

7
r fa + r + 1

)

.

(10.2) 2A
n j^

xre-*dx~-
r(a+1)

;

s~"-'- 1

for any value of r.

We shall suppose that r and s are such that

r+ a—
\n"

8

and we shall denote by Xm-v and \Wi+w the last and first

respectively of the A-'s such that

(10.3) Xm-v < (1 - f) \m, \„l+i, > (l+ £) Xm.

It is important to observe that tie is possible to choose r and
s so that either m — v or m + v shall be equal to any assigned

large integer p. For example, m — v—p if

(l-0(r+g)
x > (1-0 (r+ a)

and we can certainly choose r and s so that these inequalities

shall be satisfied. Thus m — v and m + v may be regarded as

variables which assume all integral values, from a certain

point onwards, as they tend to go .

Now
co f^n+i oo f^n+iSi, xre-**dx < K 2 \l xrer**dx

<1T xr+aer8xdx
1

= 7rs-r-a-i nr+«e-u du,
J S\tn+v

where ^ is a constant. The lower limit is greater than

(1 +£) (>' + a). Hence, by Lemma D2, we have

(10.4) v A
n

J

*' X^-^dx <er(r + a+l) «-»-«-i
;
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and a similar argument sliows that

m-u-l rA„ +1

(10.5) 2 A
n

xre~sxdx <er(r + «+ 1) s~'-« - 1
,

1 "J '\n

11. From (10.2), (10.4), and (10.5) it follows that

WM-I/-1 r\n+l p /,. i „ , i \

(11.11 2 A x>-e-*dx> (l - 6)

J
[ + +

> 8-»-«-i

(11.12) 2 A
n \

arer«dx<(l+e)
1

[ T \ .,
V--1.

But, since a > 0, A„ is a steadily increasing: function of n.

Hence

f
x»+v , . . r (r + a + 1

)

Am. „ x'-e-s* dx <{l + e) -±- —-! «-»'-«-
1

,

Jx»_, r(a+l)

f
Xr,+ "

j ^ >T(r + a 4-1)
Am+V xre~sx dx> (1 — e)

r(a+l)
J?-'"-"-'.

In virtue of Lemma D2, we may replace the limits in these

integrals by and co . The first inequality then gives

, T(r + a+l)
.
^- <

^
1 + g) rf,M-i)r(.M)^

l + e fr\ a

r(a+l) Vs

Now \m-v < (1 — %) A,m , Kn-u+l > (1 — K) *-m,

X
_lj

n

Hence
1 4 €

rfc + i)

and similarly we can show that

and _a±.«->i.»

(,
1 1 •

<5

J

" »i—1> < ^77 " A-tti—V )

J
1 ~ e

\
aAm+„> — —— Aj/J+y

T(a+ 1)

* It is interesting to observe that this is the only joint in the proof at which
any use is made of this hypothesis.

VOL. XLIII. L
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It now follows from the remark made early in §10 that,,

given any positive e, we can choose p6
so that

1-6 x«<A< -
1 + g

. xr
P(a+ 1) * "" * r(a+l) p

for p>p¥ and the proof of the theorem is accordingly

completed.

12. It is easy to deduce from Theorem D a more general
theorem.

THEOREM E. The conclusion of Theorem D is still valid
when a > and the condition that. an is positive is replaced by
the more general condition

a
n>-AX_1

(\-V,)-

Let
tf>

(*) = vx;;-
1

(\b
_ \

b_J
e-Ksm

Then it is easily proved that the series is convergent for s>
and that

<j> {s) ~ T (a) s-«

as s->0.*

The series g (s) =/(*) + ify (*) = 2&
n
e-*»*,

where ft.-a. +^T1 (\~ *„-,),

satisfies the condition

&„ > 0, g{»)~\A+Kr(a)} s~«.

n (A 7T1
Hence sJ t

,^J -f- 1 X"
;

i [r(a+l) a j
n

'

and since 2A° (\„ — >.„_i) ~ — ,

i a

it follows that A ~
" r (a + 1)

"

13. Theorem F. 27<e conclusion of Theorem E is still

valid when a = 0.

The proof given in the last section depends essentially on
the hypothesis a>0. The result is true when a = 0, but the
proof is more subtle.

t

* Cf
. Knopp, " Divergenzehaiactere gewisser Dirichlefscher Reihen,"' Acta

Mathematica, vol. 34, pp. 165-204 (especially pp. 191-294).
t Cf. Proe. London Math. Soc, toI. 13.
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We have to prove that if

/•\ -r-r A — A.

(,) a„>-K m ~
,

n

(ii) f(a) = 2aner^'->A,

<ts s->0, then 2«n is convergent.

We have /(*) = A + o{\
),

and

f" (•) = 2«X*-X»S > " "*. (X„- X
n_.)

e-Ks > _ ff/«\

Hence* f (s) =o(l/*),

2a
MV-X"s = o(l/s).

To this series we can apply Theorem E ; and so we obtain

a
x\+ a

s
\

s
+...+ an\=o(\).

But this equation, together with condition (ii), secures the

convergence of the series 2,ctJ\; so that the theorem is

proved. This theorem is of' considerable interest as embody-
ing the widest direct extension at present known of Timber's

original converse of Abel's theorem.

J

* Proc. London Math. Soc, I.e. supra.

t Sclinee, Rendiconti di Palermo, vol. 27, p. 87.

j In our earlier writings on this subject we have made considerable use of the
following preliminary lemma : [fj(x) has continuous derivatives of the first two
orders, and f'(x) = A + o(l), j~" (x) = 0{\), as x -» oo , then f (a;) = o(l). Prof. J.

Hadamard has very kindly pointed out to us that this result had already been
proved independently, in the course of certain dynamical investigations, by
himself ("Sur ceitaines proplietes des trajectories en Dynamique,'' Journal de,

Mathematiques, ser. 5, vol. 3, 18y7, p. 334), and by Herr A. Kneser (" Studien

iiber die Bewegungsvorgiinge in der Umgebung instabiler Gleichgewichtslagen,

Journal fiir Mathematik, vol. 118, 1897, p. 199). Hadamard and Kneser indeed

prove the result, as Prof. Landau asks us to state, in the more general form in

which it appears in his paper '' Einige Ungleichungen fiir zweimal differentiierbare

Funktionen " (Proc London Math. Soc, ser. 2, vol. 13, 1913, p. 43), where only

the existence and not the continuity oi f" (x) is presupposed.

Both in our own writings and in Landau's paper the theorem in question

appears only as a preliminary to a series of numbered theorems, the novelty

of which is in no way affected by this anticipation.

We take this opportunity of referring also to a recent paper by Mr. A. Rosenblatt

("Uber die Multiplikation der unendlichen Reihen," Bulletin de VAcademic des

Sciences de Cracovie, 1913, p. 603), which contains a number of very interesting

generalisations of some of our theorems on the multiplication of series.
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ROOTS {y) OF /,u

+ l = (mod f).

By Lt.-Col. Allan Cunningham, R.E., Fellow of King's College, London.

[The author's acknowledgments are due to Mr. H. J. Woodall, A.It.G.Sc, for

help in reading the proof-sheets.

J

1. Subject. The object of this Paper is to develop

Utiles tor computing the complete set of proper roots (y) of

the Congruences

y
qpa

+ 1 = (mod;/) [a<fcl, *>a] (1),

wherein the exponent of y contains pa
. The Rules will be

shown to be very simple.

2. Notation.

/> an odd prime.

p
K the modulus of the Congruences (1).

y denotes a root of y^ —1=0 (mod p").

y „ „ of yWa
+ 1=0 (mod p*).

'i means the Haupt-Exponent (Art. 4) of y modulo p
K

.

H denotes the number of proper roots (y) [see Art. 4] of the Con-

gruences (1).

t(x) denotes the Totient of (x), so that

r(p)=p-l, -r(p
a )=(p-l).p»-\ T(qpa)=T(q).r{p°) (2).

3. FermaCs Theorem [for mod p
K
~\. It is well known

that—
yT(P )=+i (mod p

K
) always, [y prime to p~] (3),

and that

—

y'EE+l (mod ;j
k

) requires x= a factor of -r(pK
) (4).

Hence

y$P =4-1 (mod pK
) requires

gp
a = a factor of (p-\).pK- 1

(5),

which requires—
<7 = a factor of (p— l), [q may=l, or (p-l)] (5a),

«>k-1 (56).

4. Haupt-Exponent (£), Residue-Index (v). Proper Root (y).
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The Haupt-Exponent* (£) of y modulo^/ is defined to be the

Least value of the Exponent x satisfying the Congruence

j*~l = (mod p
K
) (6),

and—(in this case)

—

y is said to be a proper root of that

Congruence. Also, since &, £ are factors of r {p
K

) by (4) we
may write

—

nx = v£ =t(p ic

) (7),

so that

—

v is the max. value of n, and £ is the min. value of * (8),

and here v is styled the Residue-Index of y modulo p
K

.

YV hen xf^ £ in (6), y is said to be an improper root of
v 6).

5. Roots y mod. successive prime-powers p
K

. The finding

of roots (y) for successive prime-power moduli p", p
K+1

, p
K+

'\

&c, depends on the following general theorem

—

"If j be a root of y-'= +1 (mod p
K
),

then y is also a root of?*= + 1 (mod p
K ") "...(9).

For, by the hypothesis

—

y* = mp K + 1 (10),

.-. y*> = (mpK + iy

= 1 + p.mpK + terms containing p
tK

= + 1 (mod p
K+1

) (11).

Again, since the general value of y satisfying (11) is

Y=mp* + y (12),

whereby, Yx=y*= + 1 (mod p
K

)
(12a).

Hence also, Y is the general form of the roots of (12). ..(125).

In what precedes this, y, Y are not necessarily proper
roots of (9) and (11). But, taking x = £ the Haupt-Exponent
of y modulo p

K
}

rf=/=+l (mod px)
(13),

.-. YSp=y*P= + 1 (mod p
K " 1

) (14).

and Y if =y^= - 1 (mod p
K

)
[if £ be even] (13a).

.-. Ym=yiliP=- I (mod/>K+I
) [? even] (135).

And here y, Y are proper roots of (13), and are also— (with

rare exceptions)

—

proper roots of (14).

* This is the German term : it is often styled Gaussitn by French writers.

L2
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6. Simplest Case [q—l
9 a = l]. The proposed Con-

gruences (1) become simply

jp-l o, and yp + 1= (mod p") (15).

Here, since y = + l, tf = -l, are the only proper roots of the

above when * = 1, the general formulae for the roots (?/, /) of

the above (15) are

—

y s= mp + 1, y*=mp—l (mod ps
) (16),

j = w//'+I, y = m>K_, -l (mod p
K

) (16«),

:uh1 the whole set of proper roots (y, y) <pK may be obtained

;it once from these formulae by simply taking

m, m'ssl, 2, 3, ..., (p- 1), in succession (17),

excluding m. ?»" = (), because y — + 1, y
K —— 1 are not proper

roots of the Congruences (15) when k > 1. This shows that

—

The number of proper roots of (15) is fi=p — 1 (18).

6<t. Properties of Roots (y, y"). Since p is odd, the two

Congruences (15) co-exist, and the formulae (1G, 16a) show

that the roots ?/, y" may be paired together in two ways,

so that

—

I . m = m gives y—y— 2, j>+y=2inp'c
-

,
f
yy"=m*^K-t—\ (19a).

2°. m + ro=p gives y+y=pK
,

yy*=—\ (mod p"" 1

)... (196).

And, as to the sums of the roots

—

Z(j)-Z(/)=2(p-1)=2t(p ), *(y)+ X(?)=(p-\)pK= T(p™). .(20a),

s{y)=i-r(p^ 1)+r( P),
S(y)=ir(^>)-T

( p) (205).

7. Other simple Cases [#=1, a> 1, but <«]. The pro-

posed Congruences (1) become

y?
a
-1 = 0, jP

a
+l = (mod jo

k
),

[o<k] (21).

Here since, as in the previous Case (Art. 6), y= + l,

y
y = — l are the only proper roots when k — a, the general

formula! for the roots
(3/, y

s

) of the above (21) are

y=mp+l, y
y =mp-\ {mod p

K
), [*=a + l] (22),

y=mpK-a+ l, y=my-"-l (mod p") (22a),

and the w/*o?e se/ 0/ proper roots (?/, ?/

v

) </c may be obtained

at once from the formulae by simply taking

m. m = 1, 2, 3, ..., (v
a — 1) in succession (23),

excluding m = 0, and ?/* = multiple of p, because these values

do not yield proper roots of the Congruences (15) when k = <x.

This shows that

—

The number of proper roots of (21) is n=pa -p"~ ] =r(pu
) (24).
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7a. Properties of Roots (y, y
K

). Since p is odd the two
Congruences (15) co-exist, and the formulae (16, 16a) shew
that the roots ?/, y

s may be paired together in two ways,

so that

—

1°. m=iri gives y-y = 2, y+y=2mp li
~a

, yy*=m2p?*~-m— 1 {15a),

2°. f?i + ni=p— l gives y+y=pK
, yf = —1 (mod p

K~a
).. (25b}.

And, as to the sums of the roots

—

-(y)-Z(y) = 2T(p°), X(y)+ Z(?)= T(p"+°) (26a).

Z(v) = ir(^+«) + T(7J
a

), 2(y)= JT(p«-«)—r(p") (26a).

8. Jl/ore general Case [q > 1, a= 1, /c> l]. The proposed
Congruences become

jw-l=0, j-«»+l=0 (mod p«), [«>!] (27).

where q is a factor of (p—\), by (5a).

Let t], -q be proper roots of the auxiliary Congruences

j«-l=0, j'*+l=0 (mod ?*-') (28),

the modulus (p
Kl

) being therein one degree lower than that

(p
K
) of the proposed Congruences.

Then—-by the general Theorem (9)—the general formulae

for the roots (y, y
y

) of (27) are

y=mp+% y=7np + n (mod p-) (29),

y=mpK~ 1+ tj, y
t

=nCpK~1+ n (mod p") (29a),

and the whole set of roots (y, y^) <pK of (27) may be found

by taking

?n, 7n=0, I, 2, 3, ..., (p— 1) [p values] in succession (30),

for each sub-root jj, V of the auxiliary Congruences.

But one root (y, f) in the set of p roots ?/, y
K

arising as

above from each sub-root {rj, y) is really a proper root of one

of the Congruences
yM-\=0, y*+l= (mod p

K
) (31),

of lower order than the proposed [though with same modulus

(//)] ; and is therefore to be* rejected (as not being a proper

root of the proposed Congruences) : so that each sub-root

{v, v) yields effectively only (p — 1) proper roots (y, y
y

).

This shows that

—

Number of proper roots (y, y) of (27)

= (p— 1) x number of proper roots (<i, >j") of (31) (32),

= f(qp) with q odd (32a),

Number of y is = -r(2qp) with a even (326).

* It is not possible to recognise these roots a priori. A Table of the roots of

(31) is in fact required.



I 1. 1 -< 'ol.
( 'unningham, Roots [y) off''" +1 = {mod p

K
).

8't. Properties of the Boots (y, y). Two Cases arise

Recording as q is odd, or even.

Cask i. q odd gives the exponent (^p) of (27) o^o
7

, so

that the two Congruences co-exist. The formulae (29, 29a)

show that the roots y, y may be paired together in two ways
- that

—

1°. m-in gives y-/ = 'i-v\ y+y= 2mp*-l+(n+ n) (33a).

2°. vi+m=p gives y+y=PK
(336).

And, as to the sums of the roots

v v) = l{iM(v-»r)}=-2.T(p)= + 2(modp), Z(y> + Z(/)=T(pK
")..(34rt>

= +1, Z/EE-1 (mod p) (346).

Case ii. q even gives the exponent (qp) of (27) even, so

that the only effective Congruence is

yiP+l=0 mod p" (35),

and here the roots may be paired by taking the roots equi-

distant from the ends (of the complete set) so that

—

y + the conjugate root y —pK
(36),

And 2(/)= (p-l)p«= -r<p'<+') (37),

9. Most general Case \_q>\, a>l, k> a]. The pro-

posed Congruences are now of the most general kind (l), viz.

yWa
-\= 0, y9P

a
+l= (mod p

K
), [*>«] (38),

where q is a factor of (p— 1), by (5a).

Lei rj, rf be proper roots of the auxiliary Congruences

j»-l=0, y+l=0 (mod p
K "') (39),

the modulus (p
K~ l

) being therein—as in Art. 8

—

one degree

lower than that (p
K
) of the proposed Congruences: these

roots 7], rf will (for shortness' sake) be styled Sub-roots.

Then—by the general Theorem (9)—the general formulae

for the roots y, y" of (38) are

y-mp+n, / = ;«> + '/' (mod p
K

), [«=a + l] (40),

y=mpK'a+ ti, y= tn
s

pfc~a + v (mod p
K

)
(40a),

and the whole set of roots (y, y
y

) <p* of (38) may be obtained

from these formulae by taking

—

in, ro' = 0, 1, 2, 3, ..., (p
a — 1), [p

u values], in succession. ...(41),

for each Sub-root (77, rf) of the auxiliaries.

But ;/' ' roots (y, y
K

) of the set of p
a roots {y, y

y

) arising

as above from each Sub-root (17, r?) will be found to be really
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the complete set of roots of all kinds (both proper and im-

proper) of one of the Congruences

//"'-lEO, /?P
a_1

+ l=0 (mod p
K
) (42),

of lower order than the proposed (though with same modulus

(p
K
) : and are therefore to be* rejected (as not being proper

roots of the proposed Congruences) : so that each Sub-root

(n, if) yields effectively only p" — p"' 1 = r{p a
)
proper roots

(y, y). This shows that

—

Number of proper roots (y, y) of (3S)

= t(pu ) x number of proper sub-roots (q, q) (43),

= i{qpa) with q odd (43a),

Number of proper roots y is = -r(2qpa ) with q even ,...(436).

9a. Properties of the roots {y, y). Two Cases arise

according as q is odd, or even.

Case i. q odd gives the exponent {qp
a
) of (38) odd, so

that the two Congruences (38) co-exist. The formulae (40,

40a) show that the roots (?/, y) may be paired together in

two ways, so that

—

1°. m = m gives y-y =i}-n
, y+y = 2mpK - a + hi + 'i) (44a).

2°. m + tn =pa -1 gives y+y=pK
(446).

And, as to the sums of the roots

L(y)-Z(y) = Z{m(v->;)}= + 2(modp), S(y)+ 2(y)= T(pK+a)...(45a),

2(y)= + l, S(y)=-1 (mod p) (456).

Case ii. q even gives the exponent (qp
a
) of (38) even

so that the only effective Congruence is

ytp+1= (mod p") (46),

and here the roots may be paired by taking roots equi-distant

from the ends (of the complete set), so that

—

y + the conjugate y = p
K

(47),

and 2(f)=T{pa)-PK= T(p*+a
)

(48).

10. Divisibility of binomial factors by p
x—

Let F[a) denote (/ + 1) (49).

Let /(a) denoted (a) -ri^a-1) (50),

so that F(0) means (y*+l), F(l) means (/
p +l), &c...(50o),

wherein q may = 1 or any factor of (p — 1).

* It is not possible to recognise these roots a priori. A Table of all the roots

of (42) is in fact required.
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Here the same sign is to be used in the symbols F, f
throughout any one research.

Then /(0),/(l), /(2), ...,./(a), are the binomial algebraic

factors of F(a), so that

—

J?'H=/(0)./(l)./(2).../(a); [a+1 factors] (51).

Now, let y be a proper root of i^(a) = (mod ;>
K

), [«> a].

Then this involves the following' important laws of

divisibility of the binomials / by p and its powers,

l
c

. p is a divisor of each of the (a + 1) binomials /(0) to /(«) (52).

2°. « = a + l involves that each of the (a + 1) binomials /(0) to f(a)
contains p once only. ..(52a).

3°. K>a+1 involves that /(0) contains p
K~a

,

and each of the « binomials /(I) to /(«) contains p once only. ..(526).

11. Tabulation of Roots. The number (/u.) of roots (y. y
s

)

being, [see Results (18), (24), (32), (43)], fi = T (q.p") is so

large, even for small values of p and a, as to preclude tabula-

tion except for a few small primes with quite small values of a.

Some space may be saved by the simple relations between

certain associated roots y, y\

1°. 5 = 1 gives y=y— 2 always (53a).

2°. j = 3 gives y=y—\ always (536).

so that in those two Cases it suffices to tabulate one set

(say y), leaving the other set (?/') to be inferred from those

relations.

12. Tests. The following Tests are so simple as to admit

of being very easily applied to the results.

1°. When 5=1 and a = l ; then £(y)= -r(p), £(/)= -r(p) (mod p
K
j..(ii).

2°. When 5 = 1 and <z>l; then £(v)= T(pa ), Z(/)=--r(p
a

)
(mod p

K
).. (51a).

3°. When 5 is odd and >1; then £(>>)= +1, £(/)=— 1 (mod p) (546).

13. Auxiliary Congruence Solutions. The solutions

(?;, rf) of the Auxiliary Congruences (28, 31, 39, 42)

y- 1=0, >'«+ 1 =0 (mod p*" 1 and p
K
),

yW -1=0, v?
^" + l = (mod p

K' 1 and p"),

are^ required to form the Congruences (l) which are the
subject of this Paper.

Tables giving the complete set of proper roots modulo p\
for all values of q possible to each prime, up to p= 101, and
« = 1, 2 in all cases (and for some of the smaller primes up
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to ic = 5) are given in the author's Paper on Period-Lengths

of Circulates in Vol. XXIX, 1900, pp. 166-179 of this Journal.

Corrigenda* in the Tables in Vol. xxix.

page 158. In the small Table, cancel two lines ;
—

line 10, on left [1=13, r = 44, ^=53*, r,<63].

line 8, on right [J=35, r=60, iV< = 712
,
r«<71].

page 174. Table of p
35 = 4-1, mod 71

s
. For p" = 60, Read 5030.

page 177. Tables of p
l3= +1, and r ,3 = -1, mod 53 2

. Cancel both lines.

For p' 3= +1 (mod53 2
),

Bead 752, 895, 1689, 460, 413, 1586, 1656, 925, 1777, 2029, 521, 1341.

And, For r l3= +1 (mod 532
),

Read 2057, 1914, 1120, 2349. 2396, 1223, 1153, 1884, 1032, 780, 2288, 1468.

14. Present Tables. In the Tables following, the moduli

include the powers of all the small primes p=3 to 19, up to

the limit p
K >10*.

The Tables give the complete sets of roots (y, y) of the

Congruences (1) for these moduli (//) for the exponents

g or %%=*qp
a as shown in the scheme below. The last line

shows the number (/*) of roots of each Congruence.

Tab.
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Tables of y
v =±1 (mod p").

Tab. I.

mod

P
K

3-

3«

B*

3*

3s

38

S = 3

4.

io,

28,

82,

244.

19

55
it>3

487

U = 3

y- y

2. 5

8, 17

26, S3
8O, Hi!

242, 485
728,145773o.i |S'(

2188,4375 2186,4373

y y
|= 9

y y y y

4, 7, 13, 16, 22, 25

10, 19, 37, 46 .
64. 73

28, 55, 109, 136, 190, 217
82, 163, 325, 406, 568, 649

244, 487, 973,1216,1702,1945
730, 1459,29 1

7,3646,5 104,5833

y y
|?=9

y y y.

2, 5- II, M- 20, I
8, 17. 35- 44. 6 2, i

26, 53, IO7, I34, 188, 21

80, l6l, 323, 404, 566, 64

242, 485, 971,1214,1700,194!

728,1457,2915,3644,5102,581

?nod
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Tables of y
r = ± 1 (mod p

K

).

Tab. II.

mod
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a

+ 1=0 {mod

p
K
).

Tables of /" = ± 1 (mod f).

Tab. III.

mod
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Tables of y
pa
= ± 1 (mod p").

Tab. IV.

mod
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'

y

qpU
+ 1 = [mod p

K
,

.

Tables of y
p = ±\ (mod p

K
).

Tab. V.

mod 5= 13

p
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Tables of y
qpa

= ± 1 (mod p
K
).

Tab. VI.

mod
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Tables of if" = ± 1 (mod p
K
).

Tab. VII.

mod
.'/ .'/ !/ y y

£=3.7
y y y y y y y

2, 4. 9. ", 16, • , 23, 25, . , 32, 37, 39, 44, 46
., 30, 67, 79, 116, 128, 165, 177, 214, 226, 263, 275, 312, .

18, 324, 361, 607, 704,1010, . , . , 1390,1696,1733,2039,2076,2382

mod

7'

7'

y y y
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Tables of y
qp = ± 1 (mod p

K
).

Tab. VIII.

mod
P
K
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A GENERAL RESULT IN THE THEORY
OF PARTIAL DIFFERENTIAL EQUATIONS.

By //. Bateman.

1. Considerable progress has been made recently in the

theory of a partial differential equation of the type*

d d_ d

where f is a homogeneous polynomial of the nth degree in its

three arguments.

The theory is closely connected with that of the algebraic

curve y (a;,, x„ x
i)
= 0, where xv £

2 , x
3
are homogeneous co-

ordinates: the solutions of the characteristic equation

J \dx' dy' Be)

plays a very important part.

When we pass on to the study of a partial differential

equation of type

d d_ a a

dy

some new problems present themselves. We shall consider in

this note the general problem of finding solutions of the form

M = Y0(a,£) (2),

where a, /3, 7 are certain functions of x, y, z, t, and ij> is

an arbitrary function which possesses a suitable number of

derivates.

In order that solutions of this type may exist, the equation

/ (.-£,, x
2
, x3 , #

4
)
= must represent either a ruled surface or a

surface containing at least one straight line, the case in which
the surface in ruled is, however, of chief interest ; we suppose
as before that^" is a homogeneous polynomial of the nth

degree
in its arguments.

'(S'SJ'S'D"" (1) "

* See, for instance, A. R Forsyth, Mess, of Math, vol. xxvii. (1898), p. 99.
Phil Trans

, A, vol. cxci. (1898), p. 1. Iv;u Fredholm. Comptes Rendu.*, t. cxxiv.

U899), p. 32. Acta Math., t. xxiii. (1900). Rend'. Palermo, t. xxv. (1908),
J. le Roux, Liouvitle's Journal (5), t. vi. (1900). Comptes Rendut, December 28th,

B. T. Whittaker, Monthly Notices of the Royal Astronomical Society,
vol. lxii. (1902). Math. Ann. (1903). H. Bateman, Proc. London Math. Soc. (2),
vol. i. (1904). N. Zeilon, Arkiv.f. Mat. Astr. o. Fys., Stockholm (1911), (1913).
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To obtain a particular solution of the required type, we

choose two sets of constants lv /,, l
3

, l
t
and mv my ms, mt

such

that, when A, and /j, are arbitrary, the equation

/[X^ + fim^ \l
s +fi,mai

X/
3
+/Li?»

3
, X^+/*m4)

= 0...(3)

is satisfied identically. This may be done by taking the

homogeneous coordinates of two points on the same generator

for the Vs and ins respectively. Now write 7 = 1 and

« = f,»+ Ky+ lf+ ht + a\ ,^
ft = m^x + m^y + m

3
z + mj, + b)

where a and b are arbitrary constants, then it is easy to

verify that the expression (2) satisfies the partial differential

equation (1).

To generalise this solution, we regard ?,, ?,, ?
3 , 1

4
, a and

mv ma , my mv b as functions of two parameters a , /3 ,
and

consider the double integral

<<=/K'^- (5) >

taken over some domain of the complex variables a . /3 . Since

each element of the double integral satisfies the equation (1),

it follows that u is generally a solution of (l) provided the

domain of integration does not depend directly on x, y, z, t.

With a suitable choice of a domain of integration the double

integral can be evaluated with the aid of Poineare's theory

of the residues of double integrals.* Let us suppose that

a and (3 both vanish when a = a,, /3 = /3,, then the term in u

which depends on the residue at ap j3 t
is

where J is the value of the Jacobian _ '
*
-r for a = a,, [5

(
,
= (5r

v
^
a

o' Po)
It is natural to expect that each such term will itself be a

solution of the differential equation (l), and so we are led

to enunciate the following general theorem :
—

Let the equations a = 0, (5 = be solvedfor a , /3 ,
giving

«= «!(*»# s
> 0» /3 = /3,(^, y, z, t) (6),

* Comptts Rendus, t. cii. (1886), p. 202. Acta Math., t. ix. (1887), p. 321. See

also E. Picard and G. Simart, Theorie desfauctions ulgebriques dc deux variables

independuntts, t. i., Paris (1897). E. Picard, Traitc d'analyse, t. ii. (1905), p. 27ii.

M2
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//,, ii ifJ is the value of the Jacobian ——^—v- after these expres-
<Hao'Po)

sionfl have been substitutedfor a , /3 , the Junction

»--j»(«
1,ft) (7)

is /r solution of the differential equation (l).

This result is difficult to prove directly in the general case,

Imt a simple verification can be given when the differential

equation (1) is the equation of wave motion

.(8).

r\2 <-\9 *>2 r>J

d u a u c u d u

a?
+
97

+
a?

= ^
In the general case it can be verified by differentiation

that the functions a,, /3, are such that an arbitrary function

<I> (a , /3,) satisfies the partial differential equation of the

characteristics, viz.,

(9).J \dx '
3jy

' 8» ' dt)~

In the present case this implies that a, and |3, satisfy the

equations

&)
,+

(!)'+ g)- (I)'

)

vaw

3-c 3-e 3^ dy dz dz dt dt

(
dA\\ fiA\\ fiA\

2

- (^

}... (10).

\dx J \cy J V dz J \dt

a
+ Ur

\

These equations may be replaced by three equations of type

..(11).
a ra„ffj

_ t

. B(a„/3,)

Writing Mx .F(aL t
, j3,) for the quantity which occurs on the

left-hand side and M
y
.F(a

t , /3,), Mt
.F{a^ /3,) for analogous

quantities occurring in the other two equations, we can easily

verity that the following equations are satisfied:

—

dM, _ oM
u + l

dJIx = dMx

< .'/ dz dt ' dz

<M. c.V.

3.1/ . cM %

.3.1/ —- -\— +
dx ?y

dM.

dz
=

;i2).
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Now it follows from these equations that M, M , M are all

solutions of equation (8). Hence, since the function iy '(a,, p,)
is arbitrary, we may conclude that if ^ (a,, j3,) is an arbitrary

function,

is a solution of equation (8). On calculating the first factor,

we find that

9(y, *j

now the quantity on the right-hand side depends only on a,

and j3 p hence we have the result that if *I> is an arbitrary

function an expression of type (7) satisfies the differential

equation (8).

2. The theorem can be generalised in several ways.

First of all we can introduce two sets of variables x, y, z, t:

xv y {
, s„ t

t
and write in place of (4)

a =l
1
x +l,y +l

s
z +lj +a)

p" = m
l
x

l
+ m

2y x
+ ?n

3
z

l
+ m

4
t

l
+ b\

"

When the Vs and ins are constants connected by equation

(3), it is easy to verify that <p (a, /3) satisfies the partial

differential equation

ffy.
a

a-
8

A
3

4.
d

Ax
ai
+ ' ,

S;
, ^ + "¥,'

for all values of the constants X, /a. Generalising this solution

as before, we regard the Vs and vi
7

a as functions of two

parameters a , /3
Q
and form the double integral (5). The

equations a = 0, )3 = now give

a =a, (ar, 3/, », *; a?,, y„ »„ *,), & =& (a?, #, «, <; *,, ?/„ z
l}

t
t)

and formula (7) provides us with a solution of all the equations

of type (14). Putting /i = 0we see that equation (1) is satis-

fied, while if we put \= we find that the same function also

satisfies the equation

yW 3y.' a».' *./
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Hence we have a solution of (1) which depends on tlie two

of v.tii.iUcs x, ?/, z, t; sc„ //,, «„ <,, and remains a solution

when we put 3J, = JJ, y, =3/, 2, =2, £, = t.

In the case of the equation of wave motion (8) the equation

(1 ij implies that the three equations

in. (fa d'
z
u (>'u

d?
+

ay
+

a? W
r'n d'u d'u d'u

dxdx
t

dydy
t

dzdz
l

dtdt
t

'

d''u d
2
u r

'"
3

2
«

3j5,* a^,
2

a^
2

a*,
2

arc satisfied. With the aid of a function u of this type we
can obtain some interesting expressions for the components of

the electric and magnetic forces E, 11 in a type of electro-

magnetic field in free aether. If the units are chosen so that

the velocity of light is represented by unity, the electro-

magnetic potentials

du . d>t . a«* du

* av »
=
wr *~av

* = ~&;

satisfy the relation

8a; dy dz ct

and are all solutions of the wave equation ; consequently the

equations

_a$ dA_ d
!

u d
?
u

dx dt d% dt
x

dx
l
dt

'

rr dA
z dAv

d'u d'u
11 = - —— =

dy dz dy dz
v

dy
{

dz

may be used to specify the vectors E, H in a type of electro-

magnetic Held in free aether. It is interesting to note that

when x,, ?/,, s,, /, are regarded as the variables, E and H are

the elect nc and magnetic forces in a type of electromagnetic

field for which the potentials are

. , du , du , du du



Mr. Bateman, On partial differential equations. 169

3. Returning to the general theory of § 1 let us write

„ ?(<>,. ft) = a («,,£,) B _ a(«„/3,)

8 (a,, ft) = a(a„ft)
B _ 3 («„£,) .

^u d[x,t) ' ^ '

9(y,«) ' ?« a (^ *)
'

and regard the p's as the six coordinates of a line. It is easy

to see that if an arbitrary function of a, and ft satisfies

equation (9) the functions a„ /3, will satisfy three partial

differentia) equations of type

&
l (ft* P«. Pl3> Pu» P*4> Pj =

°]

<?»(Pfl»P.I>.Pl.lPl«>Pl4»Pj=
f

(
15

)>

G
z (P«»P3nPi 3 - Pu» P«' P3< )

= °'

where £?, = (), ^=0, £r
3
=0 are the line equations of the

ruled surfaceJ (as,, ir
2
, a:

3 , trj = 0. Conversely, if we are given

three partial differential equations of type (15) for two

functions a,, ft we can obtain a solution by finding the ruled

surface y=0 common to the three complexes 6r,= 0, 6r
2
=0,

G
3
=0

1
and solving a differential equation of type (9).

4. The general theory of § 1 can evidently be extended

to the case in which there are 2n independent variables instead

of four ; it is necessary, of course, to use the theory of the

residues of multiple integrals. The verification used for the

case of the wave equation can also be extended to the case of

the equation

S 2̂
= (1.6),

the system of equations (11) being now replaced by a system

of equations of type

3 (a,, a
2
, ..., a„) = + d (a,, a,, ..., aj

^

,_
d{xx , asM, ...) 3(ajf , xm ...)

where the indices X, fx, ..., £, 77, ... are all different. The
system of equations (12) is replaced by a more general system

of linear equations which are of the types considered by

Volterra;* it follows from his results that the functions M
* "Sulle funzione conjugate," Rend. Lincei (4), t. v. (1889), pp. 599, 630.
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which occur in these equations are all solutions of (16). Hence

one of the Jacobians in (17), when multiplied by an arbitrary

function of a, ..., a„, represents a solution of (16). On cal-

culating the Jacobiau, we obtain the desired result.

To make things clear, let us consider the case of six inde-

pendent variables. We require, first of all, three functions

a, a,, a, (which we shall call a, fi, 7) which satisfy the

equations

?(£)'-* ?©'-•. ?.©' = 0.

1 3aJr <*»„
'

1 3xr 3#r1 3a3
r d#r

Usiner If,, to denote the determinant 7^-—- —-. , we may
123 3 [xr 3J

a, xs)

J

replace the preceding equations by the following set of

equations

:

(18),

wherein either the upper or the lower sign is taken in each

case.

Now the quantities M evidently satisfy the following

equations

:

Mm , ^m ,
MXM .

dMni _ n \

±Mm^Mi56 ,
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Differentiating these with regard to x
4
, ar

5, a-
6
, xv xv x

3
re-

spectively and making use of the equations (18), we get

In a similar way it can be shown that the other quantities

M satisfy this equation. If, moreover, we multiply all the

quantities M by the same function <p (a, /3, 7) the relations

(19) will still be satisfied, and so we may conclude that a

function of type

3 (a, /3, 7) , / a n

d (0J„ *
8, a:,)

r

satisfies the partial differential equation

= 0,
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2. Two constituents are said to be conjugate with respect

to tlio centre of a determinant when they lie on a line

through the centre and are equally distant from it.

A determinant is centro-symmetric when every constituent

qual to its conjugate with respect to the centre.

A determinant is skew-centro-symmetric when every con-

stituent is the negative of its conjugate with respect to the

centre.

It follows from this definition that a skew-centro-symmetric

determinant of odd order has its centre constituent zero.

3. Combinations and minors. Let a = (a,a,...am ) be a

combination, in at a time, of the numbers 1, 2, 3, ..., 2m,

such that a
h
+ a,.^2m+ 1 for all values of h and k from I to

m. There are 2'" such combinations, for they evidently may
be formed by writing the numbers 1, 2, ..., 2m in in pairs,

the sum of each pair being 2m + 1, and taking one number
from each pair.

Let /3 = l

ftfio-"ftm ) he the complementary combination

of a, then (3 is also the reflex-combination of a, that is
fik

is the defect from 2m + 1 for some one of the numbers in a

for each value of k from I to m. For by hypothesis the

defect of c^. from 2m + 1 is not found in a and therefore must
be in /3. It follows therefore that of the {2m) m combinations

of the numbers 1, 2, ..., 2m taken m at a time there are 2"',

the complementary and reflex of each of which are alike.

Two minors of a determinant may be called the reflex of

each other when the rows and columns of one are the reflex

combinations of the rows and columns respectively of the

other.

Two minors are said to be trans-reflex of each other when
the row numbers of the two are the same and the column
numbers of the two are reflex combinations.

Two minors are said to be sub-reflex when the column
numbers of the two are the same and the row numbers are

reflex combinations.

4. Every centro-symmetric determinant A of even order is

expressible as the difference of two squares.

For if we perform the following operations:

(a)
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the resulting determinant has a square of m 2
zeros in the

upper left-hand corner and therefore breaks up into the pro-

duet of two determinants with binomial elements, D and D '.

We may write

D' = \a„ — a.

w here

v
rtl t

, m,

r=l, 2, 3,

*=1, 2, 3,

t= 2m, 2m — 1, ... , m + 1.

The determinant D may be written as the sum of 2
m

determinants with monomial elements, concerning which it

may be observed that

:

(1) For every determinant

1,2,
a„ a,,

Ma =
m

there is another

M,=

»««

m1 2

Pi 5 P 2 ,
•••

1 pm I

z^e?-e ak + fik
=2m + 1 (&=1, 2, ..., m).

That is Ma and il/^ are trans-reflex minors.

(2) The signs ofMa and Mp, when the columns are arranged

in their natural order, are the same or opposite according as

j%
{m [m— 1)\ is even or odd.

For if there are gk
numbers following ak smaller than <xk,

there are gk
numbers following p\ larger than (3k . Therefore

gk
is the number of inversions due to the position of a

k
in Mu ,

and m - k—g
k

is the number of inversions clue to the position

(3k
in Mp. The sign factor, therefore, for Ma when the

column numbers are written in their natural order is

(-1)
ffi+ff^-.-.+ffm and that for Mp under similar circumstances is

,
1
.m*-${m{m+l)}-(g

l+...+gm) Qr
,

1
^i[m{m-l)}-{g l+ff2+...+ffm)

^ gjnce

the exponents differ from \ [m (m — 1)} by an even number
the truth of the theorem appears.

(3) There are as many positive as negative terms in the

series of terms.

Considering two consecutive cases, say when m — k and

m = k + 1, we see that for every term

l, "_
. •>., />

a
1?
a

2 , > «*

= M,
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when m = h, there are two terms

1 ° 3

and
/t-f 1

«* + !
= M",

1, a,+ 1, a
2
+l, .

1 , 2 , 3 , .

2£ + 2, c^-n, a2+ i, .

when mj = k+ 1.

The term J/' will obviously have the same sign as M, and
J/" will have the same or opposite sign according as /„

' is

even or odd. It follows, therefore, that if there are as many-
positive as negative terms when m = k, there will be as many
positive as negative terms when m = k+ l

f
and since it is true

when m = 2 and m = 3, it is true in general.

5. In the case of D' it is obvious from the method of
formation that the same 2

m
determinants occur as in D, and

the signs of the various terms will be the same as in D
except that whenever there is an odd number of columns
with negative elements the sign will be changed. If k be
the number of such columns taken the sign factor will be
multiplied by (-1)*, and there are m

h
such determinants

The number of terms changing sign on account of necativtgative

= 2
m~\elements would therefore be tw, +m

3 + m ...+ m
th +

which is just half of the whole number of terms.

6. It follows from the foregoing that D is the sum of two
sets of minors of order m, and that D' is the difference of the
same two sets of minors, and therefore A, which is their
product, may be expressed as the difference of two squares.

7. If A is of odd order 2m + 1, it still breaks up into two
factors, the one factor being the sum, with proper sign, of
those minors of order m, formed from the first m rows, which
have for their column numbers the 2

m
combinations the com-

plementary and reflex of each of which are alike. The other
factor consists of the sum, with proper sign, of those same
minors each bordered with elements from the first m + 1

elements of the [m + l)at column and the first m elements
of the (m + l)st row.

8. Every skew-centro-symmetric determinant of even order
is expressible as the difference of two squares.

For if we perform the operations

:

(#) r -\- r . r -t- r r 4- r

and
m+l>

c. + c2mi ^3 + C,m-lJ c + cm+1

5
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tlie result will be seen to break up into two determinants

D and D' with binomial elements. Here as in the case of

centro-symmetric determinants if the element in the r
th row

and s
th column of D is x — y, then the element in the same

position of D' (or — D' if m is odd) is x — y, and hence the

theorem follows as for centro-symmetric determinants.

9. Every skew-centro-symmetric determinant of odd order

vanishes.

For, performing the operations

vanish

Fo

(a)

and

r, + v 2m+l'
r + r + r

m+2'

C„ + C
»!f2'(°) Ci+<W C

2
+ C

2 n>> '

the result will be a determinant with a square of (m + 1)
2

zeros and therefore vanishes.

10. The sum of the coaxial minors of odd order of a skew-

centro-symmetric determinant is zero.

For all those which are bicoaxial, that is coaxial with

respect to both principal and secondary axis, are determinants

of the same type as the original and therefore vanish. Those

which are not bicoaxial go in pairs which are the negative

of each other, and therefore the whole sum vanishes.

11. It follows from the preceding article that the determi-

nantal equation of a skew-centro-symmetric determinant contains

either only even or only odd powers oj the variable.

12. Vanishing aggregates for skew-centro-symmetric deter-

minants. Since every minor of order m of a skew-centro-

symmetric determinant A of order 2m is equal to the reflex

when ?n is even, and to the negative of the reflex when m is

odd, it is evident that the known aggregate* for centro-

symmetric determinants takes the following form:

nik
[2m
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13. It may be observed that this aggregate could be
stated in a somewhat more general form and not be confined
to minors of order m of a determinant of order 2m.
We might write our aggregate for a skew-centro-symmetric

determinant as follows:

Si
1

(n
|

m \k) (n\ m \ k)
i a i

{ll
|
m)

a l

(- 1)"' 2.'

l

(n
|
m)

{n
|
m

|
k) [n

|
in

\
k)

a i

•(B),

where, ifm is greater than 1 (n), the aggregate may be either a
trivial identity (consisting of certain terms and their negatives)
or the extensional of an aggregate of lower order.

Thus, if w= 6, w = 4, k = 2, and (w|w) = 1234, eight of

the twelve terms vanish on account of identical rows or
columns and the remaining four gives the trivial identity

= 0.

If we take « = 6, m = 4, k=l, and (n|?n) = 1234, then
a

four of the eight terms vanish on account of identical rows or
columns and the remaining four gives the identity

= 0.

1243

1234
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NOTE ON THE SUM OF EQUIGRADE MINORS
0F A DETERMINANT.

By Thomas Muir, LL.D.

1 An expression for the sum of the co-factors of the

elements in any determinant is obtained by bordering the

determinant with the row

and the column

for example,

0, 1, 1, 1, ..•

0, -1, -1, -1, ••
5

1 1 1

— 1 °\ a
2

tt
3

-1 c, c
s

c
3

= A
x
+ A i

+ A
3
+ B

1

+...+ C
3

If instead of the co-factors of the elements we wish to have

the sum of the unsigned primary minors, we border the row

and the column

0, 1, -1, 1, -i,

0, -1, 1, -1, 1,

2 The obtaining of a like expression for the sum of the

secondary minors defends on the possibility of findmg values

for the sc's and y\ winch will satisfy the equations

00. J^2 Xn

U 11

= i.

When n is 3 a solution with two disposable quantities is

readily obtained, namely,

*\ ®2 as,

#i y 3 y*

VOL. XLIII.

®, ^y- 1 -®iy.- aj
i
+1

i y, -y'r 1

N
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I'or example, putting x
x

= 1, ?/, = ->, we have

.11-2

. 1 2—3
1 1 ", <(.j a

3

l 2 b. b. b.

--; - ;} c, c, e
3

= ", + a,+ «
3
+ b

t
+ &s+ Js+C +c +c

1 1 j ;n

The said solution, however, is in a sense not more general

or even than

. -1 1

1 y> -y
4
-i

. -1 1

1 . -1

o. In view of the multiplicity of solutions when n is 3,
it is somewhat curious that when n is 4 there is no solution
at all. There are then six equations to he satisfied, namely,

xiV- xiy x
= 1 = x

iy3 -x3ys ,

x>y-xiy = i=x
3l/4 -xiI/3

.

Taking in pairs the three on the left we have

x
i \y-> + y,)=y

x
{->, + s

3),

>\{y>- yj = &(», --'-J,

xi(y3 + yi)=y l
(*

3
+ •'<),

whence, on multiplying by - xv - » » respectively and
adding, there is obtained

On the other hand, if we take the remaining three, we obtain
directly by addition

- x
* (y,+y,)-^ (y,-&) +<My,+ yj = 1.
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We thus have a manifest contradiction unless X
x
be 0. But

from the three equations just used we also have

whence, if cc, be 0, we obtain, with the help of the first three,

-y3-y,= 2V

-yt+y^-y*

3/4+2/3= yJ

and therefore by addition

0=2/,

—a result which again involves a contradiction. There is

therefore no solution.

4 Furthei , as the equations which have just been proved

to be inconsistent when n is 4 make their appearance in every

higher case, our conclusion is that the equations

03, #
2

... «,
= 1

y^ y* ••• y«

are not soluble when n is greater than 3.

5 Before considering arrays of three rows, it is desirable

to call attention to the general theorem that ,/ all the primary

minors of an (n-l)-by-n array be equal, the sum o each

row of the array vanishes. This is read.ly seen to be true on

using in order the multipliers Xn, xn_
..., *, with the given

equations and then performing addition; tor thereby we

obtain when n is 4 and c is the common value oi the minois

x
Y
x

2
x

3
x

4

y x y* 2/3 2/4

Z
,

Z
2

Z
Z

Z
A

I

x
x
x, x

3
x

t
I

= c{x
i
+ x

3
+ ;r, + x

l )i

i.e.,

and therefore

= c , Sec,

= Sec.
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Were we to use the _y's as multipliers instead of the x's we
should similarly find the fourth row to be

3/, y2 y3 1/v

the right-hand side to be

c (#4 + 3/3+ 3/2+ 2/,),

= 2*/.

and the result to be

6. In eonnection with this it is also worth noting that the
data can be expressed as a set of linear equations in the
-foments of any row of the array, and that the determinant
f the set is skew with zero diagonal. Thus, if

e

of

X
l
X

3
X

3
X

4

3/, y2 y3 y4

Z
l

Z
>

Z
3

z
*

= c,

and we put, for shortness' sake,

3/, y, 3/3 3/4

Z
l

Z
2

Z
3

Z
i

= A, B, C, D, E, F,

the set of linear equations in xr x
2 , x3, x

A
is

x
3
A—x

2
B + x

l
D=c

— x
4
A + x

i
C-x

l

E= c

x
4
B-x

3 +x
l
F = c

-x
t
V + x

3
E-x

a
F = c

7. Even it A, B, C, ... in these equations were uncon-
ditioned, it would follow on multiplying by x , x , x, x and
adding that

4321
x

4
+x

3+ 0,4-^= 0.

On solving we should also have

x=c( A + B+C) + {AF-BE+CD),
x
s
=c(-A + D + E)-,(AF-BE+CD)

x=c(-B-D + F) + (AF-BE+CD)\ 1

x=c(-C-E-F
) + {AF-BE+CD),

from which the same fact is evident.



Br. Muir, On equigrade minors of a determinant. 181

8. As things stand, however, A, B, ... are such that

AF-BJE+CD = 0,

and consequently the determinant of the set, being the square
of AF—BE + CD, vanishes. In other like cases, namely,
where n is even, the same occurs, that is to say, the pfaffian,

which is the square root of the determinant, vanishes because
of a relation between its elements. In the cases where n is

odd, the determinant vanishes altogether from any relation

between the elements on one side of the diagonal.

9. Passing now to arrays of three rows let us try to find

a solution of the set of equations

/>• nn /y* sy*
*•! *°2 "°3 "Ay

4

y, 3/, y3 y*

Z
\

Z
i

Z
3

Z
A

= 1.

In the first place it is clear that a three-line determinant
equal to 1 can readily be constructed by utilizing the result

of § 2. We have only got to take for two of its columns
such a 2-by-3 array as is there given, for example,

u

uv — 1

— uv — u + 1

1

v

-v-1

and then prefix or annex another column whose sum is 1, for

example,

r

—r-s+1

By both prefixing and annexing such a column we should

have the 3-by-4 array

x. x.

x
i
- z

,

+ 1 x*ya
- 1 y*

— X.

— z.

with two of its four primary minors already satisfying the
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required condition. This, however, can, by legitimate opera-

tions on rows, be changed into

x
x

x
t

1 —x
t

-a-,-^, + 1 x
ayt

-l y, -z
t

z. . . — 1

To secure the fulfilment or' the two remaining conditions' we
might formulate them and solve for x

A
and «

4
; but it is more

promptly effective to use the fact (§ 5) that the sum of each

row must vanish. This gives us at once the result

x
x

x
2

1 Xj 33, 1

-x
t
-z

t
+ l x

2y3
-l y3

-y
a
{x,+ l) +», + *,

1 . . . -1

By operating on rows, however, it may be simplified into

x
2

1 —x
3
— 1

1 *,&- l y3 -&(*,+ *)

1 . . -1

and thence into

= 1.

= 1,

•
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solution at all. In order that this may be seen, we first

remark that included in

x
t
x

3
x

a
x

t
x

s

y i y, y* y* y5

z, z„ z, z. z =

= 1

there are ten equations, namely, the four included in

X
l
X

2
X

3
X

4

y-, y.2 y3 y,

z
l

z
%

z
3

z
t

= 1

and other six which all involve the fifth column. But by

reason of the first four we must have

y*=- (y. +y,+y*)i

and three of the six being

l<W5 l
= l

> Iw5 l

= - h |<Wsl = !»

there is obtained thence by addition or subtraction

l

apiCy,+y,)*«l=°> K®i+*.)yAl=°. Ifo+^AH *

and therefore by operating on columns and substituting

-
1w, I

= °> -
1w^ I

= °- -
!<Wi I

= °>

—results which are at variance with the other three of the

six equations, namely,

l<Wsl = J
> I<W5I= h kiVAh ~ ! -

There is thus no solution for

JU. iX/_

y l y.

z
i

z
t

yn

z

= 1

when n is greater than 4.
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1 1. When the number of rows is greater than 3, the like

results are obtained in similar fashion, there being no solution

of

^11 ^12

"Si ^n

X
1 ,n < h

.'
2,n +h

X
ill

X ,''

11,n+/t

= 1

when h>l\ and the simplest solution when h=l being got

by taking equal to 1 each element of the diagonal passing

through xu , each element of the last column equal to 1, and
every other element equal to 0.

Capetown, S.A.
January 28th, 1914.

THE DETEftMINANT OF THE SUM
OF A SQUARE MATRIX AND ITS CONJUGATE.

By Thomas Muir, LL.D.

1. If the matrix of any determinant D be increased by
the matrix of the conjugate determinant D' , the determinant

of the matrix thus produced may be conveniently called the

duplicant ofD or of D . Thus the duplicant of \afia \

is

and is equal to

2a,

&, + a.

o
3
+b

t

2b.

\a
i
b
2 \
+ 2a

l
b
2
-(a;+ b

l

s

),

4
!

aAI-(a*-^)
2

-

2. A duplicant is necessarily axisymmetric. The duplicant

of an axisymmetric determinant of the n
th

order is 2" times

the original. The duplicant of a skew determinant is 2" times

the diagonal term of the original, and therefore is when the

original is zero-axial.

3. A duplicant on account of having all its elements
binomials is expressible as the sum of 2" determinants with

monomial elements; and as each determinant of the sum has
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every one of its columns taken either from D or from D',

a convenient notation for it is obtained by simply specifying

in some short way the columns of which it is composed.

Thus, if we denote the columns of D by 1, 2, 3, ... and those

of D' by l', 2', 3', ..., one of the determinants of the sum
would be readily recognised from the notation

12345 or 12'34'5'

4. Taking the case of the 3rd order we have

2a, a
t + \ «

3
+ c

t

b
i + a

2
2b

, h + c,

o, + a c, + b. 2c,

= (123+ 123')+ (12'3 + 12'3')

+ (l'23 + l'23') + (1'2'3 + 1'2'3'J.

The development is however more suitably arranged in the

form

123 t- (123' + 12'3+ 1'23)

+ (12'3- + 1'23' + 1'2'3) + 1'2'3';

for since 123 = l'2'3'

and* 123' + 12'3 + l'23 = 12'3' + l'23' + l'2'3,

it thus assumes the alternative forms

a, a
2

a
3

K K h
C

.

C
2

C
3

+

a,
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5. If we express each of the last three determinants in (I)

in terms of the elements of the columns taken from D' and
their co-factors, we obtain the development

+ b
1
A, + a

3
C

l
+a,B

1
+ a

l

Aj>
which is best written in the form

(|aAc3 |
+ (a„ a

s
, aJA

x

, B
t
, C

t
)\

2 J

The same is obtained from (!').

(II).

6. From this is derived an interesting theorem regarding
the dnplicant of the adjugate of |a^,c

3 |. For, by (II), we
have

^,^l + (^...I|5f
C,|,...)

2A
X
A,+ B

t
A

a
+C,

B
t

+A, 2B
2
B

3
+C

?
= 2

C
l
+ A, Ci+ B2

2C
h

and as in the right-hand member we can put

\^AA\ = \aJ,fJ,

\

B
2
C

3 \

= «,l«Ac3 |, ...,

it follows that that member has |a/>,c
3 |

for a factor, and that
the co-factor is

+
This, however, being identical with (II), we have the propo-
sition that the dnplicant of the adjugate of \a

x

b.fi% \
is the product

°J
\

a
\
b£z\ ™*o the duplieaitt of\a

}
b
2
c
3 \. (HI).

7. In the case of the 4
th

order, the initial form of develop-
ment is r

1234 + (1234'+ 123'4 + 12'34 + l'234)

+ (123'4'+ 12'34*+ 1'234'+ 12'3'4 + l'23'4 + l'2'34)

+ (12'3'4'+ 1'23'4'+ 1'2'34'+ l'2'3'4)

+ 1'2'3'4'.
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And since, as before, we have

1234 = 1'2'3'4', 21234' = 2l'2'3'4.

it follows that the four-line duplicant is equal to

2 {1234 + 21234'} + 2123'4'. (IV).

It would thus seem that in this case 2 is not a factor: it remains
however to examine more closely

a
i

b.

2 123 4, i.e., 2

«..

c
.

c
a

d. da

dn

d.

Taking each of the six determinants included in it, and
expanding in terms of the two-line minors formed from the

columns of D and their co-factors, we obtain an expression of

thirty-six products, namely,

|a,6
2
|.|c3rf4
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different arrangement of the members of the first assemblage.

In fact, the second assemblage is the first rotated 180° round

its secondary diagonal. On this account the quadriform col-

lection of products is symmetric with respect to its secondary

diagonal, and thus save for the portion

i«3M
a

+i^r+!«Ai
2+i^r+iM3r+i^i%

contains 2 as a factor.

These six non-repeated terms correspond to the two
— a* — b* in the case of the duplicant of the second order (§1).

8. The development of the duplicant of the 4
th
order thus is

+ 2(|a
I
6
2
|.coiijcon>p|a

1&,|) J
(IV);

and therefore, if we pass from |a/>
2
c
3a?J to its adjugate

\A
l

B
i
C^D

A \, we come on a state of affairs exactly similar

to that encountered in § 6, save that the common factor

found is now not the first, but the second power of the

original determinant. We thus have the theorem that the

duplicant of the adjugate of \a
i

b
i
c
i
d^\ is equal to the product

of |
a,£

2
c
3
<7

4
1* into the duplicant of \ af2

c
:t

d
4 1. (V).

9. Proceeding to the consideration of the 5
th

order, we
find, in the same manner as before, the initial development
of the duplicant to be

12345+ 212345' + 21234'5'+...,

the grouping of the thirty-two determinants with monomial
elements being

1+5 + 10 + 10 + 5 + 1;

and since we know that

12345= 1'2'3'4'5',

212345'= 212'3'4'5',

21234'5'=2123'4'5',

it follows without further examination that 2 is a factor. (VI).
Carrying the development a stage farther, as in the

previous cases, we have

2
{

I

aAcAe
s I + 2

(I
aAc

3
d

* I
• conJ com P I

aAc
3
d

, I

)

+ 2
(I
aAc

3 !

• <*"j coinp
1 0,5,6, |)
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and applying this to \A
x
B

%
C

A
D

i
E

;>
\

we find that {af&d&l*
is a factor of it, and that the co-factor is the duplicant of

10. The consideration of further cases is seen to be un-

necessary, it being clear that 2 is a factor of the duplicant

only when the order is odd, but that the theorem regarding

the adjugate holds also when the order is even. The latter

matter, be it noted, is quite unconnected with the former:

to deal with it we only need to change the initial form of

development
123456+ 2123456' + ...

into the more advanced form

I
afoAeJe I

+ 2
(I
aMdA I

•
con

J
comP)

+.

and then use the familiar theorems regarding the adjugate

and its minors.

11. The matter of next importance concerns the deter-

minants which arise from bordering a duplicant by two rows

or two columns of the original determinant. In dealing with

it let us at once take the fourth order, and in the first place

use the same row for forming both borders, the subject of

consideration thus being

a, a. a,

",

<-'-,

a,

a.

a
t
+ a

t
a

2 +&,

b
y
+ a

2
b,+ b.

Cl+a 3

d, + a,

2 ' "2 h+c,

C3+ C
3

d. + b
g

d,+ c,

«4
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and if we multiply the last three rows of this by a, and then

perform the operations

h
row. -row,, row, '-row,, row. L row

followed by the operations

a i >

COJ„ COl,
,

a, '

CO 1

4
L col, , col

5

we find our determinant

a,

a,

a.

fl„

2|«AI

|a,cj + 1«,&3 |

\a
l
d

i \

+ \a
1
l>

4 \

a

o.

aj)
3 1

f
|
a

t

c
2 1

2
|
a,c

3 1

\

aA\ + l

a
.

c
4l

col
a.

i i

a.

l«AI+M2 |

|a,c
4 |
+ |a,a

7

3 |

2|<y*J

a.
duplicant of

aA\

a
i

C
2\

Ct.d

.

I«AI

kc
al

I«i4.l

«A

(VIII),

where instead of — l/a, we should have had the co-factor

— l/«,""
3

if the basic determinant had been of the nth
order.

Similar results follow when the bordering is done with any
other row. In fact, these results are all included in this one,

because, the duplicant being axisymmetric, any one of its

rows can be made the first.

12. The result of the double bordering of any duplicant by

one of the roivs of the original is the same as the result of the

like bordering with the corresponding column. (IX).

For the determinant obtained after the performance of the

Hist operation in § 11 needs only to have its first two rows
interchanged and then its first two columns in order to become

a.

a.

a„ a„ a.

b,+ b
3

b
3
+c

2
b

4
+d

2

C*+K C3+ C
3

C4+^3

d
! + K ^3 + C

4
d

4 + d
4
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which by the operation

row
8
+row„ col

2
4 col,

gives the bordering of the duplicant by

«,» bv c„ dr

191

13. Tlie theorem corresponding to that of §11 when we
border with two different rows instead of using the same row
twice is sufficiently indicated by giving the example in which
the bordering rows are

The result then is

a. a„ #, a.

h K K

aA \

aA
a„

\

aA

+

+
I

b,a.

a n

\b,o
A

l

aA \

a.,

\

a
,
c
z\

\

aA

4

+

K

b.

aj>.

a..

\b,c,\

a
2
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In i he case where the duplicant which is bordered is of the

3rd order we have from § 11

«, «
2

C<
3

a, 2a, a,
z
-f b

t

a
9
+ c,

a
8

a
2
+ b

t

2b
2

b
3
+ c

s

a, a, + c. Ik + c. 2c
s

and from § 13

2 l«AI a,5
3 |
+ |a,c

3 |

2 |a,cj
I l«AI + KC

2 I

= -4a
1
|a,V3 |

+ (|a^
3
|-|rf

1
c
2 |)

3

,

a
i

2a.

a
3

a
3

a
2
+ 6, a

3
+ c,

a, + b
l

2b
2

b
3
+ c

2

2c,«3 + C
. *3 + C

2

= - «A

\

aA
a„

+
6,a. I%_l + A CJ

a„
i

kc
il + AaJ

• a., 6,

la.c, I l&.c.l
I _ 2_3_l_ i I 13 1

a.. b.

=-2(a
a+ b

l
)\a

1
h
a
c
3 \
+ (\a

l
b
3
\-\a

l
c
s
\).(\a

3
b
3
\-\b

t
c,\).

Tlie last two identities may be interestingly applied in

connection with a result of Gayley's on geometrical reciprocity

(Collected Math. Papers, vol. i., pp. 377-382).

Capetown, S.A.,

February 20th, 1914.
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