Digitized by the Internet Archive in 2008 with funding from Microsoft Corporation

MESSENGER OF MATHEMATICS.

EDITED BY

J. W. I. GLAISHER, Sc.D., F.R.S., FBLLOW OF TRINITY COLLEGE, CAMBRIDGE.

> VOL. XLIII.
> $[$ May 1913 -April 1914].

Cambriãge: BOWES \& BOWES.
Zlomon: MaCMILLAN \& CO. Ltd.
Glaggow : JAMES MACLEHOSE \& SONS.

CONTENTS OF VOL. XLIII.

PAGE
Product-determinants of the same form as one of their factors. By Thomas MUIR 1
Notes on some points in the integral calculus. By G. H. Hardy 9
On finite Abelian groups of substitutions, especially of orthogonal substi- tutions. By H. Bryon Hicywood 14
Notes on some points in the integral calculus. By G. ㄱ. Hafidy 29
A canonical form of the binary sextic. By E. K. Wakeford 25
Notes on some points in the integral calculus. By G. H. Hardy 29
Factorisation of $N=\left(y^{4} \mp 2\right)$ and ($2 y^{4} \mp 1$). By Lt-Col Allan Cunningham $3!$
Note on the solution of the differential equation $r=f(t)$. By J. R. Wiliton 58
On the series for sine and cosine. By F. Jackson 63
Quelques remarques sur les congruences $r^{p-1} \equiv 1\left(\bmod p^{2}\right)$ et $(p-1)!\equiv-1$ $\left(\bmod p^{2}\right)$. par N. G. W. H. Beraisr 72
On a note on the elementary theory of groups of finite order. By H. W. Chapman 85
A note on Legendre's functions. By A. E. Jolliffas 85
Notes on exact differential expressions and their integration without quad- ratures. By E. B. Elliott 87
On the solution of an equation of the form $F(r, s, t)=0$. By J. R. Wiliton 92
On a method of rearranging the positive integers in a series of ordinal number greater than that of any given fundumental sequence of Ω. By N. Wiener 97
An arrangement of the positive integers in the type ε_{1}. By E. K. Wakbford - 105
On the series for sine and cosine. By E. J. Nanson 10 s
Some simple transformations of Stokes' current function equation. By J. R. Wilton 110
The relation between the pencil of tangents to a rational plane curve from a point and their parameters. By. J. E. Rowe 114
On the solntion of some theorems in clementary optica，Jydrostatics，ic． 121
A non－abelian group whose group of isomorphisms is abelian．By G．A． Mhidell 124
A group of order $y^{\text {ma }}$ whose gromp of isomorphisms is of order p^{a} ．By （i．A．Mu，MEル 126
Nute on the equatiun $s=f(z)$ ．By．J．J．W＇ilton． 129
Sume therrems conceming Dirichlet＇s series．By G．II．Hatidy and J．E．LIJTILEW（HOJ） 134
Loots (p) of $y^{\text {gpa }} \mp 1=0\left(\bmod p^{\kappa}\right)$ ．By Lt．－Col．Allan Cunningham 148
A general result in the theory of partial differential equations．By H ． Batriman 16.4
On centro－symmetric and skew－centro－symmetric determinants．By W．M． ME゙「ZLE」に 171
Note on the sum of equigrade minors of a determinant．By＇Thomas Muna 177
＇I＇he determinant of the sum of a square matrix and its conjugate．By＇丁口いMs．MU1に184

Errata．

 p．133，1．10，read $\Gamma_{3}=Y_{1}^{\prime} f^{\prime}\left(Y^{\prime \prime}\right)$ ．
＂L 11，，，$I_{1}=I_{2}^{\prime} f^{\prime}\left(Y^{\prime}\right)+Y_{1}^{\prime 2} f^{\prime \prime}\left(Y^{\prime \prime}\right)$ ，\＆c．
＂1．22，$\quad, X_{2}=X_{1}{ }^{\prime \prime} F^{\prime}\left(X^{\prime \prime}\right)$ ．
＂ $1.23, \quad, \quad X_{3}=X_{2}{ }^{\prime \prime} F^{\prime}\left(\mathrm{I}^{\prime \prime}\right)+X_{1}{ }^{\prime \prime} F^{\prime \prime}\left(\mathrm{I}^{\prime \prime}\right)$ ，de．

MESSENGER OF MATHEMATICS.

PRODUCT-DETERMINANTS OF THE SAME FORII AS ONE OF THEIR FAC'ORS.

By Thomas MIuir, LL.D.

1. From Lagrange's interesting observation that the qूuadrinomial

$$
x^{2}+p y^{2}+q z^{2}+p q v^{2}
$$

is homogenetic, -that is to say, that the prodnct of two such expressions is a similar expression-Samuel Roberts was led to the equally interesting result

$$
\left|\begin{array}{cccc}
x & p y & q z & p q w \\
-y & x & -q w & q^{z} \\
-z & p w & x & -p y \\
-w & -z & y & x
\end{array}\right|=\left(x^{2}+p y^{2}+q z^{2}+p q w^{3}\right)^{3},
$$

and to the corresponding identity for the case of a determinant of the eighth order. Roberts might, however, have taken further advantage of his opportunity; and on this and other accounts it seems desirable to have a re-examination of the subject. In doing so, it is best to treat the case of the fourth order in what may seem unnecessary detail, the reason being that the space requisite for the proper treatment of the quite similar case of the eighth order would be excessive.
2. Instead of Roberts' determinant, let us consider the more general form

$$
\left|\begin{array}{cccc}
x & b c y & c a z & a b w \\
-y & x & -a v & a z \\
-z & l w & x & -b y \\
-w & -c z & c y & x
\end{array}\right| \text {, or } R_{4} \text { say. }
$$

Performing on this the operations

$$
\operatorname{row}_{2} \times b c, \quad \text { row }_{3} \times c a, \quad \text { row }_{4} \times a b,
$$

we obtain

$$
a^{2} b^{2} c^{2} \times R_{4}=\left|\begin{array}{cccc}
x & b c y & c a z & a b w \tag{I.}\\
-b c y & b c x & -a b c w & a b c z \\
-c a z & a b c w & c a x & -a b c y \\
-a b v & -a b c z & a b c y & a b x
\end{array}\right|
$$

-a determinant skew with repeet to the principal diagonal. From this, by noting that the final expansion can contain no terms involving an odd number of diagonal elements, we learrs that l_{4} is not altered by changing x into $-x$.

Again, by performing the operations

$$
\text { row }_{3} \times(-c), \quad \text { row }_{3} \times(c), \quad \text { row }_{4} \times(-1),
$$

there results

$$
c^{2} \cdot R_{4}=\left|\begin{array}{cccc}
x & b c y & a c z & a b w \tag{II.}\\
c y & -c \cdot x & a c w & -a c z \\
-c z & b c w & c \cdot x & -b c y \\
w & c z & -c y & -x
\end{array}\right|
$$

-a determinant skew with respect to the secondary diagonal, and thus independent of the sign of w.

Lastly, by interchanging the 2nd row with the 1 st, and the 4 th with the 3 rd, we obtain

$$
R_{4}=\left|\begin{array}{cccc}
-y & x & -a w & a z \\
x & l c y & c a z & a b w \\
-w & -c z & c y & x \\
-z & b w & x & -b y
\end{array}\right|,
$$

where the y 's are confined to the one diagonal and the z 's to the other, and where, by suitable multiplications, we can show that $a^{2} R_{4}$ is skew with respect to the primary diagonal, and $b^{2} R_{s}$ with respect to the secondary diagonal, and thus deduce that R_{0} is imaffected by changing the sign of y or the sign of z.
3. Considerable variety is possible in the expressing of R_{4} by means of a skew determinant. Thus, instead of (1.), we anight substitute

$$
R_{4}=\left|\begin{array}{cccc}
x & c y & a z & b w \\
-c y & \frac{c}{b} x & -a w & c z \\
-a z & a w & \frac{a}{c} x & -b y \\
-b w & -c z & b y & \frac{b}{a} x
\end{array}\right|
$$

and instead of (II.)

$$
R_{4}=\left|\begin{array}{cccc}
x & b y & a c z & a b w \\
c y & -x & a c w & -a c z \\
-z & \frac{b}{c} w & x & -b y \\
w & z & -c y & -x
\end{array}\right|
$$

4. Now let us form the determinant which is the same function of ξ, η, ζ, ω as R_{4} is of x, y, z, v, and distinguish the two as

$$
R_{4}(x, y, z, w), \quad R_{4}(\xi, \eta, \zeta, \omega)
$$

We shall then have, from § 2 ,

$$
R(\xi, \eta, \zeta, \omega),=R_{4}(\xi,-\eta,-\zeta,-\omega)
$$

and hence, by the interchange of rows and columas,

$$
R(\xi, \eta, \zeta, \omega)=R_{4}^{\prime}(\xi,-\eta,-\zeta,-\omega), \text { say }
$$

It thus follows that

$$
R_{4}(x, y, z, w) \times R_{4}(\xi, \eta, \zeta, \omega)
$$

$$
=R_{4}(x, y, z, w) \times R^{\prime}(\xi,-\eta,-\zeta,-\omega)
$$

$$
=\left|\begin{array}{cccc}
x & b c y & c a z & a b w \\
-y & x & -a w & a z \\
-z & b w & x & -b y \\
-w & -c z & c y & x
\end{array}\right| \cdot\left|\begin{array}{cccc}
\xi & \eta & \zeta & \omega \\
-b c \eta & \xi & -b \omega & c \zeta \\
-c a \zeta & a \omega & \xi & -c \eta \\
-a b \omega & -a \zeta & b \eta & \xi
\end{array}\right| ;
$$

aml, the multiplication being performed in row-by- row fashions, we find the product to be

$$
\left|\begin{array}{cccc}
X & b c Y^{r} & c a Z & a b I V \\
-Y & X & -a W & a Z \\
-Z & b W^{\gamma} & X & -b Y \\
-W^{\top} & -c Z & c Y & X
\end{array}\right|
$$

where

$$
\begin{align*}
\mathrm{T} & \equiv x \xi+b c y \eta+c u z \zeta+a b w \omega, \\
\mathrm{~J}^{\prime} & \equiv-x \eta+y \xi-a z \omega+a w \zeta, \\
Z & \equiv-x \zeta+b y \omega+z \xi-b w \eta, \\
H & \equiv-x \omega-c y \zeta+c z \eta+u \xi ; \tag{IV.}
\end{align*}
$$

in other words, the form of the product is exactly the same as that of the first factor.
5. It is seen that $X, Y, Z, I f$ may be easily remembered in the form

$$
\begin{align*}
& \text { (1st row of } R_{4} \backslash \xi, \eta, \zeta, \omega \text {). } \\
& - \text { (2nd row of } R_{4} \gamma \quad, \quad \text {), } \\
& \text { - (3rd row of } \left.R_{4} \gamma \quad, \quad\right) \text {, } \\
& -\left(4 \text { th row of } R_{4} X \quad, \quad\right) \text {. }
\end{align*}
$$

Also that Y, Z, W, being equal to

$$
\begin{aligned}
& -\left(x \eta-\xi_{y}\right)-a(z \omega-\xi w), \\
& -(x \zeta-\xi z)-b(w \eta-\omega y), \\
& -(x \omega-\xi w)-c(y \zeta-\eta z),
\end{aligned}
$$

respectively, must vanish when

$$
\xi, \eta, \zeta, \omega=x, y, z, u
$$

Making this substitution, we have, from §4,

$$
\left\{R_{4}(x, y, z, w)\right\}^{2}=\left(x^{2}+b c y^{2}+c a z^{2}+a b w^{2}\right)^{4}
$$

and therefore

$$
\left|\begin{array}{cccc}
x & b c y & c a z & a b w \tag{VI.}\\
-y & x & -a w & a z \\
-z & b w & x & -b y \\
-w & -c z & c y & x
\end{array}\right|=\left(x^{2}+b c y^{2}+c a z^{2}+a b w^{2}\right)^{2} .
$$

6. Using (VI.) along with (IV.), we obtain

$$
\begin{gather*}
\left(x^{2}+b c y^{2}+c a z^{2}+a b w v^{2}\right)\left(\xi^{2}+b c \eta^{2}+c a \zeta^{2}+a b \omega^{2}\right) \\
=X^{2}+b c \Sigma^{-2}+c a Z^{3}+a b W^{2}, \tag{VII.}
\end{gather*}
$$

which degenerates into Lagrange's identity, mentioned in § 1 , on putting a or b or c equal to 1 , and is seen to be included in the same by putting $v=c w^{\prime}$ and $\omega=c \omega^{\prime}$.
7. From the result of the substitution made in $\S 5$ it follows that the elements of the adjugate of $R_{4}(x, y, z, w)$ are proportional to the elements of $R_{s}^{\prime}(x,-y,-z,-w)$ (VIII.)

This, however, is best viewed as a special case of the theorem that $I f^{*}$ *
$\left.\left|\begin{array}{llll}a_{1} & a_{2} & a_{3} & a_{4} \\ b_{1} & b_{2} & b_{3} & b_{4} \\ c_{1} & c_{3} & c_{3} & c_{4} \\ d_{1} & d_{3} & d_{3} & d_{4}\end{array}\right| \times \begin{array}{cccc}p_{1} & p_{2} & r_{3} & r_{4} \\ r_{1} & q_{2} & q_{3} & q_{4} \\ r_{1} & r_{2} & r_{3} & r_{1} \\ s_{1} & s_{2} & s_{3} & s_{4}\end{array}|\equiv| \begin{array}{llll}H & \cdot & \cdot & \cdot \\ \cdot & H & \cdot & . \\ \cdot & \cdot & H & . \\ \cdot & \cdot & \cdot & H\end{array} \right\rvert\,$,
then the ratio of any element of the adjagate of $\left|a_{1} b_{2} c_{3} d_{4}\right|$ to the correspondining element of $\mathrm{p}_{1} q_{2} r_{3} \mathrm{~s}_{4} \mid$ is constant, namely, is equal to $\mid \mathrm{a}_{1} \mathrm{~b}_{2} \mathrm{c}_{3} \mathrm{~d}_{4} \div \mathrm{H}$.

For proof, let us take B_{3} as an example of an element of the adjugate in question. I'hen

$$
\begin{aligned}
H B_{3} & =\left|\begin{array}{llll}
a_{1} & a_{2} & \cdot & a_{4} \\
b_{1} & b_{3} & H & b_{4} \\
c_{1} & c_{3} & \cdot & c_{4} \\
d_{1} & d_{2} & \cdot & d_{4}
\end{array}\right| \\
& =\left\lvert\, \begin{array}{llll}
a_{1} & a_{2} & q_{1} a_{1}+q_{2} a_{3}+q_{3} a_{3}+q_{4} a_{4} & a_{4} \\
b_{1} & b_{2} & q_{1} b_{1}+q_{2} b_{2}+q_{3} h_{3}+q_{4} b_{4} & b_{4} \\
c_{1} & c_{2} & q_{1} c_{1}+q_{2} c_{3}+q_{3} c_{3}+c_{4} c_{4} & c_{4} \\
d_{1} & d_{2} & q_{1} d_{1}+q_{2} d_{2}+q_{3} d_{3}+q_{4} d_{4} & d_{4}
\end{array}\right.
\end{aligned}
$$

* This hypothesis involves also the identity

$$
\left|p_{1} q_{2} r_{3} s_{4}\right| \cdot\left|a_{1} b_{2} c_{3} d_{4}\right|=\left|\begin{array}{cccc}
H & \cdot & \cdot & \cdot \\
\cdot & H & \cdot & \cdot \\
\cdot & \cdot & H & \cdot \\
\cdot & \cdot & \cdot & H
\end{array}\right|
$$

so that the result might have been stated in a dual form.

$$
=\left|\begin{array}{llll}
a_{1} & a_{2} & q_{3} a_{3} & a_{4} \\
b_{1} & b_{2} & q_{3}^{l_{3}} & b_{4} \\
c_{1} & c_{2} & q_{3} c_{3} & c_{4} \\
d_{1} & d_{2} & q_{3} d_{3} & d_{4}
\end{array}\right|=q_{3}\left|a_{1} b_{2} c_{3} d_{4}\right|
$$

and therefore

$$
B_{3} \div q_{3}=\left|a_{1} b_{2} c_{3} d_{4}\right| \div H,
$$

as was to be proved.
If, in addition, it be given that

$$
\left|p_{1} q_{2} r_{3} s_{4}{ }_{4}=\left|a_{1} b_{2} c_{3} d_{4}\right|\right.
$$

(which, of course, need not imply that any element of the one is equal to the corresponding element of the other), we obtain, from the first datum,

$$
\begin{gather*}
\left\lvert\, a_{1} b_{2} c_{3} d_{4}=\Pi^{\frac{1}{2}}\right. \\
B_{3}=b_{3} \cdot M_{2}^{4-1} \tag{X.}
\end{gather*}
$$

and thence
8. Conversely to (IX.), if $\left|p_{1} q_{2}{ }^{\prime}{ }_{3} s_{4}\right|$ have its elements proportional to the elements of the adjugute of $\left.\mid a_{1}\right)_{2} c_{3}{ }_{3} d_{\downarrow} \mid$, the common ratio being o, then

$$
\begin{aligned}
\left|P_{1} q_{2} r_{3}{ }_{3}^{s}\right| & =\left|A_{1} B_{2} C_{3} D_{4}\right| \cdot \rho^{4} \\
& =\left|a_{1} b_{2} c_{3} d_{4}\right|^{4-1} \cdot \rho^{4} ;
\end{aligned}
$$

and, if addition, it be given that. $\left|\mathrm{p}_{1} \mathrm{q}_{2} \mathrm{r}_{3} \mathrm{~s}_{4}\right|=\left|\mathrm{a}_{1} \mathrm{~b}_{2} \mathrm{c}_{3} \mathrm{~d}_{4}\right|$ we shall have

$$
\begin{equation*}
\rho=\left|\mathrm{a}_{1} \mathrm{~b}_{3} \mathrm{c}_{3} \mathrm{~d}_{4}\right| \frac{1}{3}(2-4) . \tag{NI.}
\end{equation*}
$$

9. 'The determinant of the eighth order, R_{8} say, is
$\left|\begin{array}{rrrrrrrr}x_{1} & b c x_{2} & a c x_{3} & a b x_{4} & d x_{5} & b c d x_{6} & a c d x_{7} & a b d x_{8} \\ -x_{2} & x_{1} & -a x_{4} & a x_{3} & -d x_{6} & d x_{5} & -a d x_{3} & a d x_{7} \\ -x_{3} & b x_{4} & x_{1} & -b x_{2} & -d x_{7} & b d x_{8} & d x_{5} & -b d x_{6} \\ -x_{4} & -c x_{3} & c x_{2} & x_{1} & d x_{8} & c d x_{7} & -c d x_{6} & -d x_{5} \\ -x_{5} & b c x_{6} & a c x_{7} & -a b x_{8} & x_{1} & -b c x_{2} & -a c x_{3} & a b x_{4} \\ -x_{6} & -x_{5} & -a x_{8} & -a x_{7} & x_{2} & x_{1} & a x_{4} & a x_{3} \\ -x_{7} & b x_{8} & -x_{5} & b x_{6} & x_{3} & -b x_{4} & x_{1} & -b x_{2} \\ -x_{8} & -c x_{7} & c x_{6} & x_{5} & -x_{4} & -c x_{3} & c x_{3} & x_{1}\end{array}\right|$
where the first four-line minor is $R_{4}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$, the last four-line minor is $R_{4}\left(x_{1},-x_{3},-x_{3},-x_{4}\right)$ with its last row
and last coltmn changed in sign; the minor occupying the bottom left-hand quarter is $R_{4}\left(-x_{5}, x_{6}, x_{2}, x_{8}\right)$ with its last column changed in sign; and the minor occupying the remaining quarter is $R_{1}\left(x_{3}, x_{6}, x_{7}, x_{8}\right)$ with a d annexed as a multiplier to each element and the signs of the last row changed.

The properties of R_{s} are exactly similar to those of R_{4}. (a) It can be expressed as a skew determinant with any one of the eight x 's confined to the diagonal. (b) It is not altered in substance by changing the sign of one or more of the x 's. (c) If $R_{8}\left(x_{1}, x_{2}, \ldots, x_{8}\right)$ be multiplied by the conjugate of $R_{s}\left(\xi_{s},-\xi_{s},-\xi_{3}, \ldots,-\xi_{s}\right)$, the product-determinant is of the same form as R_{8}, the new variables $X_{1}, X_{2}, \ldots, X_{8}$ being
(d) The value of R_{8} is

$$
\left(x_{1}{ }^{2}+b c x_{2}{ }^{2}+c a x_{3}{ }^{2}+a b x_{4}{ }^{2}+d x_{5}^{2}+b c d x_{6}{ }^{2}+u c d x_{7}{ }^{2}+u b x_{1}{ }_{8}^{2}\right)^{4} .
$$

(e) The octonomial which is the fouth root of R_{8} is homogenctic, the fact in detail being

$$
\begin{aligned}
& \left(x_{2}{ }^{2}+b c x_{2}{ }^{2}+c a x_{3}{ }^{2}+a b x_{4}{ }^{2}+d x_{5}{ }^{2}+b c d x_{6}{ }^{2}+a c d x_{7}{ }^{2}+a b d x_{8}{ }^{2}\right) \\
& \cdot\left(\xi_{1}{ }^{2}+b c \xi_{2}{ }^{3}+c a \xi_{3}{ }^{2}+a b \xi_{1}{ }^{2}+d \xi_{5}{ }^{2}+b c d \xi_{0}{ }^{2}+a c d \xi_{7}{ }^{2}+a b d \xi_{8}{ }^{2}\right)
\end{aligned}
$$

$$
=\left(x_{1} \xi_{1}+b c x_{2} \xi_{2}+c a x_{3} \xi_{3}+a b x_{4} \xi_{4}+d x_{5} \xi_{5}+b c d x_{6} \xi_{6}+a c d x_{7} \xi_{7}+a b d x_{5} \xi_{5}\right)^{2}
$$

$$
+b c\left(x_{2} \xi_{1}-x_{1} \xi_{2}+a x_{4} \xi_{3}-a x_{3} \xi_{4}+d x_{6} \xi_{5}-d x_{5} \xi_{6}+a d x_{5} \xi_{5}-a d x_{2} \xi_{8}\right)^{2}
$$

$$
+c a\left(x_{3} \xi_{1}-b x_{4} \xi_{3}-x_{1} \xi_{3}+b x_{2} \xi_{4}+d x_{7} \xi_{5}-b d x_{8} \xi_{6}-d x_{5} \xi_{7}+b d x_{6} \xi_{6}\right)^{2}
$$

$$
+a b\left(x_{4} \xi_{1}+c x_{3} \xi_{3}-c x_{2} \xi_{3}-x_{1} \xi_{4}-d x_{8} \xi_{5}-c d x_{7} \xi_{6}+c d x_{6} \xi_{7}+d x_{5} \xi_{8}\right)^{3}
$$

$$
+d\left(x_{5} \xi_{1}-b c x_{6} \xi_{3}-a c x_{7} \xi_{3}+a b x_{8} \xi_{4}-x_{1} \xi_{5}+b c x_{2} \xi_{6}+a c x_{3} \xi_{7}-a b x_{1} \xi_{8}\right)^{2}
$$

$$
+b c d\left(x_{6} \xi_{1}+x_{5} \xi_{2}+a x_{8} \xi_{3}+u x_{7} \xi_{4}-x_{2} \xi_{5}-x_{1} \xi_{6}-u x_{4} \xi_{7}-a x_{3} \xi_{3}\right)^{2}
$$

$$
+\operatorname{acd}\left(x_{2} \xi_{1}-b x_{8} \xi_{3}+x_{5} \xi_{3}-b x_{6} \xi_{4}-x_{3} \xi_{5}+b x_{4} \xi_{6}-x_{1} \xi_{7}+b x_{2} \xi_{8}\right)^{2}
$$

$$
+a b d\left(x_{8} \xi_{1}+c x_{7} \xi_{2}-c x_{6} \xi_{3}-x_{5} \xi_{4}+x_{4} \xi_{5}+c x_{3} \xi_{6}-c x_{2} \xi_{2}-x_{1} \xi_{8}\right)^{2} .
$$

(f) The elements of the adjugate of $R_{8}\left(x_{1}, \ldots, x_{\mathrm{s}}\right)$ are proportional to the conjugate clements of

$$
R_{8}\left(x_{1},-x_{2},-x_{3}, \ldots,-x_{5}\right)
$$

$$
\begin{aligned}
& \text { (1st row of } R_{8} \backslash \xi_{1}, \xi_{2}, \ldots, \xi_{s} \text {), } \\
& \text { - (2nd row of } R_{8} \gamma \quad, \quad \text {), } \\
& \text { - (8th row of } R_{\mathrm{s}} X \quad, \quad \text {. }
\end{aligned}
$$

10. When $a=b=c=1$, the four-line R is a skew orthogonant; and so also is the eight-line R when $a=b=c=d=1$. Further, the sums of the rows of the former are the factors of the determinans

$$
\left\lvert\, \begin{array}{llll}
x & y & z & w \\
y & x & w & z \\
z & w & x & y \\
w & z & y & x
\end{array}\right.,
$$

and the sims of the rows of the latter are the factors of the like determinant (so-called Puchta's)

$$
\begin{array}{llllllll}
x_{1} & x_{2} & x_{3} & x_{7} & x_{5} & x_{6} & x_{7} & x_{8} \\
x_{2}^{\prime} & x_{1} & x_{4} & x_{3} & x_{6} & x_{5} & x_{8} & x_{7} \\
x_{3} & x_{4} & x_{1} & x_{2} & x_{7} & x_{8} & x_{5} & x_{6} \\
x_{4} & x_{3} & x_{2} & x_{1} & x_{8} & x_{7} & x_{6} & x_{5} \\
x_{5} & x_{6} & x_{7} & x_{8} & x_{7} & x_{2} & x_{3} & x_{4} \\
x_{6} & x_{5} & x_{8} & x_{7} & x_{2} & x_{1} & x_{4} & x_{3} \\
x_{7} & x_{8} & x_{5} & x_{6} & x_{3} & x_{7} & x_{1} & x_{2} \\
x_{8} & x_{7} & x_{6} & x_{5} & x_{8} & x_{3} & x_{2} & x_{1}
\end{array} .
$$

11. On the historical side of the sulject it may be well 10 recall that Lagrange drew attention to the identity

$$
\left(x^{2}-a y^{2}\right)\left(\xi^{2}-a \eta^{2}\right)=(x \xi+a y \eta)^{2}-a(x \eta+y \xi)^{2}
$$

in the Miscellanea Taurinensia, vol. iv (1666-1769);* that Euler, in 1770, in the St Petersburg Novi Commentarii, vol. xv, p. 75 , expressed the prodnct of $x^{2}+y^{2}+z^{3}+w^{2}$ and $\xi^{2}+\eta^{2}+\zeta^{2}+\omega^{3}$ as the sum of four squares; that Lagrange, in the Berlin Noureanx Mémoires, \dagger of the same ycar, extended Euler's result by showing that

$$
\begin{aligned}
&\left(x^{2}-a y^{2}-b z^{2}+a b w v^{2}\right)\left(\xi^{2}-a \eta^{2}-b \zeta^{2}+a \omega b^{2}\right) \\
&=(x \xi+a y \eta \pm b z \zeta \pm a b w \omega)^{2} \\
&-a(x \eta+y \xi \pm b z \omega \pm w \zeta)^{2} \\
&-b(x \zeta-a y \omega \pm z \xi \mp a w \eta)^{2} \\
&+a b(\eta \zeta-x \omega \pm w \xi \mp z \eta)^{2} ;
\end{aligned}
$$

[^0]that, in 1860, Sonillart, probably from seeing a suggestive re-statement of Euler's ohd paper in the Noncelles Annales, vol. xv., pp. 403-407, published, in the same serial (rol. xix., pp. $320-322$), the related deteminant; ${ }^{*}$ and that, as already stated, Roberts, in 1879 (Mess. of Muth., vol. viii., pp. 138140), did the same for the more general result of Lagrange.
'The cxistence of a theorem like Enler's for the sum of eight squares was first established by J. T. Graves, the date apparently being 1843; and the non-existence of a corresponding theorem for the smu of sisteen stguares was more or less satisfactorily proved by J. R. Young, in 1847 ; but on this special brameh of the sulject a paper by S. Roberts, prefaced by a listurical sketch, in the Quart. Jour. of Mutho, vol. xvi., pp. 159-170, will be found fully informative.

Capetown, S.A.
9th March, 1913.

NOTES ON SOME POINTS IN THE IN'IEGRAL CALCULUS.

By G. II. Hardy.

XXXVI.

On the asymptotic ralues of certain integrals.

1. In this mote I propose to apply the ideas and methods of Paul du Bois-Reymond's Infindï̈calciil, which I have discussed at length eilsewhere, \dagger to the determination of the asymptotic values of certain interrals of the types

$$
\int^{x} \phi(t) e^{i \psi(t)} d t, \quad \int_{x}^{\infty} \phi(t) e^{i \psi(t)} d t
$$

where ϕ and ψ are logarithmico-exponential functions (lfunctions). I shall confine myself to the case in which the integral up to infinity is divergent or oscillatory, so that we

[^1]10 Mr . Hardy, On some points in the integral calculus.
must take x as the upper limit. The reader will find no difficulty in obtaining the corresponding results in the other case.
2. When $\psi \equiv 0$, this problem is solved completely in $m y$ paper in the Hroc. Lond. Muth. Soc. already reterred to.* If $\psi<1$ or $\psi \sim A$, $e^{i \psi}$ tends to a limit, and the results are the same as when $\psi \equiv 0$. If $\phi<\psi^{\prime}$, the integral up to infinity is convergent; and if $\phi \sim A \psi^{\prime}$ it is easy to see that

$$
\int^{x} \phi e^{i \psi} d t \sim A e^{i \psi}
$$

We may therefore suppose $\psi>1, \phi>\psi^{\prime}$.
The integral

$$
\int^{\infty} \phi d t
$$

is certainly divergent. We write

$$
\int^{x} \phi d t=\Phi .
$$

Then we can determine (in virtue of the results of my former paper) an L-function ϕ_{1} such that $\Phi \sim \phi_{1}$, and $l \Phi \sim l \phi_{1}$. We must now distinguish three cases, according as
(a) $\psi<l \Phi$,
(b) $\psi \sim A l \Phi$,
(c) $\psi \succ l \Phi$.
3. In case (a), we have

$$
\begin{gathered}
\int^{x} \phi e^{i \psi} d t=C+\Phi e^{i \psi}-i \int^{x} \Phi \psi^{\prime} e^{i} \psi d t \\
\int^{x} \Phi \psi^{\prime} e^{i \psi} d t=O \int^{x} \Phi \psi^{\prime} d t
\end{gathered}
$$

Now
But, since $\psi<l \Phi \sim l_{\phi_{1}}$, we have $\psi^{\prime}<\phi_{1}^{\prime} / \phi_{1}$, and so

$$
\int^{x} \Phi \psi^{\prime} d t \sim \int^{x} \phi_{1} \psi^{\prime} d t=o \int^{x} \phi_{1}^{\prime} d t=o\left(\phi_{1}\right)=o(\Phi)
$$

Thus

$$
\begin{equation*}
\int^{x} \phi e^{i \psi} d t \sim \Phi e^{i \psi} \tag{1}
\end{equation*}
$$

Mr. Hurdy, On some points in the integral calculus. 11
4. In Case (b), we have

$$
\begin{equation*}
\psi \sim A l \Phi, \quad \psi=A l \Phi+\psi \tag{1}
\end{equation*}
$$

$\int^{x} \phi e^{i \psi} d t=\int^{x} \Phi A i \Phi^{\prime} e^{i \psi} \psi_{1} d t$

$$
=\text { const. }+\frac{\Phi 1+A i}{1+A i} e^{i} \psi_{1}-\frac{i}{1+A i} \int^{x} \Phi^{1+A i} \psi_{1}{ }^{\prime} e^{i} \psi_{1} d t .
$$

The last integral is

$$
\begin{aligned}
\int^{x} \Phi \psi_{1}^{\prime} e^{i \psi} d t=O \int^{x} \Phi \psi_{1}^{\prime} d t & =O \int^{x} \phi_{1} \psi_{2}^{\prime} d t \\
& =o \int^{x} \phi_{1}^{\prime} d t=o\left(\phi_{1}\right)=o(\Phi) .
\end{aligned}
$$

Hence

$$
\begin{equation*}
\int^{x} \phi e^{i \psi} d t \sim \frac{\Phi^{1+\Delta i}}{1+A i} i^{i \psi_{1}}=\frac{\Phi e^{i \psi}}{1+A i} \tag{2}
\end{equation*}
$$

5. Case (c) requires a slightly more complicated treatment. In this case, we write

$$
\int^{x} \phi e^{i \psi} d t=C+\frac{\phi}{i \psi^{\prime}} e^{i \psi}-\frac{1}{i} \int^{x} e^{i \psi} \frac{d}{d t}\left(\frac{\phi}{\psi^{\prime}}\right) d t .
$$

We shall prove that

$$
\int^{x} e^{i \psi} \frac{d}{d t}\left(\frac{\phi}{\psi^{\prime}}\right) d t=o\left(\frac{\phi}{\psi^{\prime}}\right),
$$

and it will then follow that

$$
\begin{equation*}
\int^{x} \phi e^{i \psi} d t \sim \frac{\phi}{i \psi^{\prime}} e^{i \psi} \tag{3}
\end{equation*}
$$

In the first place, it is clear that

$$
\int^{x} e^{i \psi} \frac{d}{d t}\left(\frac{\phi}{\psi^{\prime}}\right) d t=O \int^{x} \frac{d}{d t}\left(\frac{\phi}{\psi^{\prime}}\right) d t=O\left(\frac{\phi}{\psi^{\prime}}\right),
$$

and so

$$
\int^{x} \phi e^{i \psi} d t=O\left(\frac{\phi}{\psi^{\prime}}\right) ;
$$

1! Mr. Marily, On some points in the integral calculus.
amd thr s.mmeresult, of comrse, is trone of the real and imaginary parts of the integral.: Agrain,

$$
\psi>\mid \phi \sim 1 \phi_{1}, \quad \psi^{\prime}>\phi_{1}^{\prime} / \phi_{1},
$$

and (s), its $\phi_{1}^{\prime} \sim \phi$, we have $\phi_{1}^{\prime} \psi^{\prime}<\phi_{1}$, and therefore

$$
\frac{d}{d t}\binom{\phi}{\psi^{\prime}}<p .
$$

Hence we may write

$$
\frac{d}{d t}\binom{\phi}{\psi^{\prime}}=\phi \eta,
$$

where $\eta<1$. As η is an L-function, it is ultimately monotonie, sity, for $t>\xi$. 'Then

$$
\begin{gathered}
\int_{a}^{x} \cdot d t\left(\frac{\phi}{\psi^{\prime}}\right) \cos \psi d t=\left(\int_{a}^{\xi}+\int_{\xi}^{x}\right) \phi \eta \cos \psi d t \\
=O(1)+\eta(\xi) \int_{\xi}^{\xi^{\prime}} \phi \cos \psi d t .
\end{gathered}
$$

$\operatorname{And} \int_{\xi}^{\xi^{\prime}} \phi \cos \psi d t=0 \frac{\phi\left(\xi^{\prime}\right)}{\psi^{\prime}\left(\xi^{\prime}\right)}+O \frac{\phi(\xi)}{\psi^{\prime}(\xi)}=O \frac{\phi\left(x^{\prime}\right)}{\psi^{\prime}(x)}$.
Hence

$$
\int_{a}^{x} \frac{d}{d t}\left(\frac{\phi}{\psi^{\prime}}\right) \cos \psi d t=o\left(\frac{\phi}{\psi^{\prime}}\right) .
$$

The corresponding integral containing a sine may be discussed in a precisely similar way; and so the proof of (3) is completed.
6. We have thas found the complete solution of the problem for integrals; \dagger it may be stated as follows.

Determine, by the rules given in "Properties of logavithmicoc.iponential finctions," an L-function ϕ_{1} such that

$$
\phi_{1} \sim \Phi=\int^{x} \phi d t .
$$

[^2]Mr. Hardy, On some points in the integral calculus. 13
Then the integral $\int^{x} \phi e^{i \psi} d t$ is asymptotically equivalent to one or other of the functions

$$
\phi_{1} e i \psi, \quad \frac{\phi_{1} e^{i \psi}}{1+A i}, \quad \frac{\phi}{i \psi^{\prime}} e^{i \psi}
$$

according as

$$
\psi<l \phi_{1}, \quad \psi \sim A l \phi_{1}, \quad \psi>\mid \phi_{1} .
$$

7. We are naturally led to consider the corresponding problem for the series of the type

$$
\Sigma^{n} \phi(v) e^{i \psi(v)} .
$$

It would be futile to expect a complete solution here. It is clear, for example, that the behaviour of such a series as

$$
\begin{equation*}
\sum e^{n i \nu^{2}} \tag{a>0}
\end{equation*}
$$

is not determined by any such simple rules as the foregoing; it depends, in fact, in an exceedingly intricate way, on the arithmetic nature of α^{*}.

The problem may, however, be solved in a number of interesting cases in which it is possible to establish asymptotic relations between the series and the corresponding integral. A number of results in this direction have been proved by Dr. Bromwich and myself, \dagger and for the moment I confine myself to referring to them. I propose, in another note, to reconsider the question with the aid of the methods of the Infinitürcalciil.

[^3]
（）N FINITE ABELIAN GROUPS OF sUB心＇IITUTIONS，ESPECJALLY
 （）だ ORTHOGON゙AL SUBS＇ITTU＇IONS．

By II．Bryon Ileywood．

＇The following work was done at the suggestion of Prof． Harold Ilifton，who is responsible for $\$ 2$ ．Its main object is the chassification of finite Abelian groups of orthogonal substitutions，which will be found in §4．＇This is preceded in $\S 1$ by a stmmary of some gencral results on finite Abelian groups which are necessary for the later articles，in §2 by the simultancous reduction of such groups of substitutions th a special canonic form．and in § 3 by some results upon these groups depending＂upon § 1 and § 2.

§ 1．Remarks on finite Abelian groups．

Consider any tinite Abelian group，G ，and let a base＊ of G be $A, B, C, \ldots K$ ，where these letters represent permu－ table operations of order a, b, c, \ldots, k respectively．＇Ihen there exists between A, B, C, \ldots, K no relation of the form

$$
A^{a^{\prime}} B_{b^{\prime}} C^{c^{\prime}} \ldots K^{k^{\prime}}=E \ldots \ldots \ldots \ldots \ldots \ldots \text { (1) }
$$

where the integers $a^{\prime}, b^{\prime}, c^{\prime}, \ldots, k^{\prime}$ are less than the corre－ sponding orders，E is the identical operation，and all operations of the group can be represented by the formula

$$
\begin{align*}
\Theta=A^{\alpha} B^{\beta} C^{\gamma} \ldots & K^{\kappa} \ldots \ldots \ldots \ldots \ldots \tag{2}\\
& \left\{\begin{array}{l}
\alpha=0,1,2, \ldots, a-1 \\
\beta=0,1,2, \ldots, b-1 \\
\gamma=0,1,2, \ldots, c-1 \\
\ldots=\ldots, \ldots, \ldots, \ldots \\
\kappa=0,1,2, \ldots, k-1
\end{array}\right.
\end{align*}
$$

once and once only，the order of the group being

$$
n=a b c \ldots k .
$$

For θ we shall use the notation

$$
\begin{equation*}
\theta=\left(\frac{\alpha}{a}, \frac{\beta}{b}, \frac{\gamma}{c}, \ldots, \frac{\kappa}{k}\right) . . \tag{3}
\end{equation*}
$$

and we note that two operations follow the law of combination

$$
\theta \Theta^{\prime}=\left(\frac{\alpha+a^{\prime}}{a}, \frac{\beta+\Sigma^{\prime}}{b}, \frac{\gamma+\gamma^{\prime}}{c}, \ldots, \frac{\kappa+\kappa^{\prime}}{k}\right) \ldots(4) .
$$

[^4]If any of these fractions are improper, the integral parts may be rejected. The base will be

It is easy to deduce other bases from the one we have chosen. Let

$$
\begin{aligned}
& a=p_{1} q_{1} r_{1} \cdots, \\
& b=p_{2} q_{2} r_{2} \cdots, \\
& c=p_{3} q_{3} r_{3} \cdots,
\end{aligned}
$$

where $p_{1}, p_{2}, p_{3}, \ldots ; q_{1}, q_{v}, q_{3}, \ldots ; r_{1}, r_{2}, r_{3}, \ldots$ are the prime invariants ; $p_{1}, p_{2}, p_{3}, \ldots$ being powers of the prime $p ; q_{1}, q_{2}$, q_{3}, \ldots powers of the prime q, and so on.

All these prime invariants occur once and once only as factor: in the denominators of the fractions belonging to the operations of any given base, no two prime invariants involving the same prime, p say, occurring in the same operation. We thus obtain a new base $A^{\prime}, B^{\prime}, C^{\prime}, \ldots, L^{\prime}$ by making a new distribution of the prime invariants among the operations of a base.

We shonld obtain the base with the maximum number of operations by putting one prime invariant into each operation. T'his is the base indicated in Weber's Algebra. If p is the prine which occurs most often among the inime invariants (say w times), then the minimum number of operations that a base may have is w; ways of constructing such a base will occur at once to the reader: a base of this kind occurs in the proof of the well-known fundamental theorem concerning Abelian groups.* This base is obtained by forming an operation by associating the greatest prime invariants corresponding to each of the several primes p, q, r, \ldots, then a second operation by associating the greatest invariants remaining in the same way, and so on.

If a finite Abelian group G can le generated liy any number. n of operations, then amy sub-group S' of G can be generated by n operations or less. \dagger

[^5]If 1)r. Il. ynooorl, On finite Abelian groups of substitutions.

§2. Reduction of a finite Abelian group of suldstitutions
 in a canonical form.*

If we huew an Ahelian group of orthogonal substitutions with limere (simple) inrurticnt-factors, \dagger we can transform it into a gronp of multiplications, each of the type

$$
\left.\begin{array}{llll}
x_{1}^{\prime}=\alpha \cdot x_{1}^{\prime}, & x_{2}^{\prime}=\beta x_{2}, & x_{3}^{\prime}=\gamma x_{3}, & \cdots \\
y_{1}^{\prime}=a^{-1} y_{1}, & y_{2}^{\prime}=\beta^{-1} y_{2}, & y_{3}^{\prime}=\gamma^{-1} y_{3}, \ldots \\
I_{1}^{\prime \prime}= \pm X_{1}^{\prime}, & X_{2}^{\prime}= \pm X_{2}, & X_{3}^{\prime}= \pm X_{3}, \ldots
\end{array}\right\},
$$

having the invariant

$$
r_{1} y_{1}+x_{2} y_{2}+r_{3} y_{3}+\ldots+X_{1}^{2}+X_{2}{ }^{2}+X_{3}{ }^{2}+\ldots . \ddagger
$$

If we have any Abelian group of substitutions with linear invariant-factors, we can transform it into a group of multiplications. For we cill transform one of them, S, into a canonical form (i.e, into a multiplication, since the invariantfactors of S are linear) and each of the rest into a direct product of substitutions with only one distinct characteristic root.§ But a substitution with linear inrariant-factors and only one distinet characteristic-ront is a similarity.

Let now the Abelian group of substitutions with linear invariant-facturs be also orthogonal.

Suppose, for the sake of illustration, that when the Abelian group is transformed ints a gronp of multiplications, one of these multiplications, S, is

$$
\left(\alpha x_{1}, \alpha r_{2}, \alpha x_{3}, a, x_{4}, \alpha^{-1} x_{5}, \alpha^{-1} x_{6}, \alpha^{-1} x_{7}, \alpha^{-1} x_{8}\right)
$$

while another, T, is

$$
\left(a x_{1}, a, x_{2}, a \cdot x_{5}, b x_{4}, a^{-1} \cdot x_{5}, b^{-1} x_{6}, a^{-1} \cdot x_{2}, a^{-1} \cdot x_{8}\right) .
$$

Transform the group by

$$
\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{8}, x_{7}, x_{6}\right) .
$$

'lhis does not alter S and transforms T into

$$
\left(a \cdot x_{1}, a x_{2}, a, i_{3}, b x_{4}, a^{-1} x_{5}, a^{-1} \cdot r_{6}, a^{-1} x_{7}, b^{-1} x_{8}\right),
$$

while the other substitutions remain multiplications.

[^6]The quadratic invariant of non-zero determinant common to every substitution of the group has now become the sum of quadratic functions on $x_{1}, x_{2}, x_{3}, x_{5}, x_{6}, x_{7}$, and on x_{4}, x_{8}; since it is an invariant of both S and $\stackrel{T}{T}$.

Suppose now one of the other substitutions, U, is

$$
\left(A x_{1} A x_{2}, B x_{3}, C x_{4}, B^{-1} \cdot x_{5}, A^{-1} x_{6}, A^{-1} \cdot x_{7}, C^{-1} x_{5}\right) .
$$

Transform the gronp by

$$
\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{7}, x_{6}, x_{5}, x_{8}\right) .
$$

This leaves S and T 'unaltered and transforms U into

$$
\left(A x_{1}, A x_{5}, B x_{3}, C x_{4}, A^{-1} x_{5}, A^{-1} x_{6}, B^{-1} x_{7}, C^{-1} x_{8}\right) .
$$

The quadratic invariant must now become the sum of quadratic functions on $x_{1}, x_{2}, x_{5}, x_{6}$, on x_{3}, x_{7}, and on x_{4}, x_{9}; since it is an invariant of S. \bar{T} ', and U.

If now, for example, every substitution of the group is of the same form as U, we transtorm the variables x_{1}, x_{2}, x_{5}, x_{6} so that the quadratic function on $x_{1}, x_{2}, x_{5}, x_{6}$ hecomes $x_{1} x_{5}+x_{2} x_{6}$. No substitution of the gronp is altered thereby, for the transform of a simiarity is a similarity.

Continuing in this way, the theorem at the begiming of this section is proved.

§3. Theorem on finite Abelian groups of substitutions.

From the last article it appears that any fimite Abelian group of substitutions of degree o can be transformed into a group of substitutions of the form

$$
x_{1}^{\prime}=e^{2 \pi i(h / n)} x_{1}, x_{2}^{\prime}=e^{2 \pi i(k / n)} x_{2}, \ldots, x_{\sigma}^{\prime}=e^{2 \pi i(l, p)} x_{\omega},
$$

where $h / m, k / n, \ldots, l / p$ are proper fractions.
If we represented this substitution by the notation

$$
\Theta=\left(\frac{k}{m}, \frac{k}{n}, \ldots, \frac{l}{p}\right)
$$

it is clear that the product of two such substitutions will be represented by

$$
\begin{aligned}
\theta \Theta^{\prime} & =\left(\frac{h}{m}, \frac{k}{n}, \ldots, \frac{l}{p}\right)\left(\frac{h^{\prime}}{m}, \frac{k^{\prime}}{n}, \ldots \frac{l^{\prime}}{p}\right) \\
& =\left(\frac{h+h^{\prime}}{m}, \frac{k+k^{\prime}}{n}, \ldots, \frac{l+l^{\prime}}{p}\right) \cdot{ }^{*}
\end{aligned}
$$

[^7]
is Ir. Ifeyucoorl, On fimite Ibrtian groups of substitutions.

In other words, we have again met with the notation of the first article, and the eroup mender consideration is a sub-group of what we shall in fature call the main group generated by the base

$$
\begin{aligned}
& A=\left(\frac{1}{m}, 0,0, \ldots, 0\right), \\
& B=\left(0, \frac{1}{n}, 0, \ldots, 0\right),
\end{aligned}
$$

ur it is the main group itself. 'The order of the main group is me...p.

The propositions of the first article give us at once the following results

A fimite Alvelium group of suldstitutions of degree a cune "lwayss be generated liy का substitutions.
frequently the gromp may be generated by a smaller number of smbstitutions. In tact, os generating substitutions, wonld mot be necessary except in the case where the mombers m, n, \ldots, p had a common factor, and if, of the w numbers m, n, \ldots, p, only π_{1} hat a common factor then only σ_{1} generating substitutions, or less, wonld be needed.

§4. The clussifucution of finite Aheliun groups of orthogonal substitutions.

By the theorem of §2 any finite Abelian group of orthogonal substitutions can be transformed so that each of its substitutions is of the form

$$
\left.\left.\begin{array}{l}
x_{1}^{\prime}=e^{2 \pi i(h / m)} x_{1} \\
y_{1}^{\prime}=e^{-2 \pi i(h / n)} y_{1}
\end{array}\right\}, \begin{array}{l}
x_{2}^{\prime}=e^{2 \pi i(k / n)} x_{3} \\
y_{2}^{\prime}=e^{-2 \pi i(k / n)} y_{2}
\end{array}\right\}, \ldots,
$$

where h, m, k, m, \ldots are integers, to which may be added a certain number of equations such as

$$
X_{1}^{\prime}= \pm X_{1}, X_{2}^{\prime}= \pm X_{3}, \ldots
$$

As this group is a particular case of $\S 3$, we might use the same notation as before; however, as the first and second equations (bracketed) are paired in all the substitutions of the group, these can be made to comespond to a single fraction; the same remark applies to the third and fourth, and so on up to the equations in X_{1}, X_{2}, \ldots : the last camnot be paired and
mint each be associated with a separate fraction. A substitution will thus be denoted by the notation

$$
\left(\frac{k}{m}, \frac{k}{n}, \ldots . \frac{l}{p} ; \frac{1}{2}, 0, \ldots\right),
$$

the fractions after the semicolon all being either zero or $\frac{1}{2}$ (since $-1=e^{2 \pi i \frac{1}{2}}$), and the law of combination being the same as before.

Geometrically interpreted the substitution is a transformation of "axes" in space of ev dimensions, of being the degree of the substitution; a pair of equations such as

$$
x_{1}^{\prime}=e^{2 \pi i(h / m)} x_{1}, \quad y_{1}^{\prime}=e^{-2 \pi i(k / m)} y_{1}
$$

corresponds to a rotation through an angle $2 \pi(\mathrm{~h} / \mathrm{m})$ about an "axis," while the equation $X_{1}{ }^{\prime}=-X_{1}$ corresponds to a reflexion in a "plane."

It will be remarked that the determinant of the substitution is +1 when there is an even number of equations of the form $X_{1}^{\prime}=-X_{1}$, and it is -1 when there is an odd number.

We shall now discuss the finite Abelian groups of substitutions of the several degrees.

Degree 1.-Only two groups oceur. One contains the single substitution $x^{\prime}=x$; the other contans the pair $\cdot x^{\prime}=-x$ and $x^{\prime}=x$.

Degree 2.-There are two types of group. The first is a ceclic group of rotations $(0),\left(\frac{1}{m}\right),\left(\frac{2}{m}\right), \ldots,\left(\frac{m-1}{m}\right)$, whose order is m. The second is the special group containing reflexions $(; 0,0),\left(; \frac{1}{2}, 0\right),\left(; 0, \frac{1}{2}\right),\left(; \frac{1}{2}, \frac{1}{2}\right)$, and its four sub-groups: two substitutions are necessary to generate it.

Degree 3.-The first type of substitution is of the form $\left(\frac{h}{m} ; 0\right)$ or $\left(\frac{h}{m} ; \frac{1}{2}\right)$. A main group of substitutions of this type can be displayed in the form

$$
\begin{aligned}
& \left(0 ; \frac{1}{2}\right),\left(\frac{1}{m} ; \frac{1}{2}\right),\left(\frac{2}{m} ; \frac{1}{2}\right), \ldots,\left(\frac{m-1}{m} ; \frac{1}{2}\right), \\
& (0 ; 0),\left(\frac{1}{m} ; 0\right),\left(\frac{2}{m} ; 0\right), \ldots,\left(\frac{m-1}{m} ; 0\right),
\end{aligned}
$$

[^8]and consists of $2 m$ substitutions. 'The first row have a modulus -1 , and the second row a modulns +1 . The group may he gemerated by a pair ; for example, by $\left(\frac{1}{m} ; 0\right)$ and $\left(0 ; \frac{1}{2}\right)$, when m is even. When m is odd the group is cyclic and is generated, for example, by $\left(\frac{1}{m} ; \frac{1}{2}\right)$.

The second type of group of degree 3 consists of reflexions. It is limited to the main group

$$
\begin{aligned}
& (; 0,0,0),\left(; \frac{1}{2}, 0,0\right),\left(; 0, \frac{1}{2}, 0\right),\left(; 0,0, \frac{1}{2}\right), \\
& \left(; 0, \frac{1}{2}, \frac{1}{2}\right),\left(; \frac{1}{2}, 0, \frac{1}{2}\right),\left(; \frac{1}{2}, \frac{1}{2}, 0\right),\left(; \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right),
\end{aligned}
$$

and its sulh-groups. 'Three substitutions, for example ($; \frac{1}{2}, 0,0$), $\left(; 0, \frac{1}{2}, 0\right),\left(; 0,0, \frac{1}{2}\right)$, will be needed to generate the main group.

Degree 4.-- Thise first type comsists of substitutions of the form $\left(\frac{h}{m}, \frac{10}{n}\right)$; that is to say, a pair of rotations. The main group or any of its sub-groups can be generated by a pair of substitutions when m and n contain a common factor, and by a single substitution when m and n are prime to each other.

The second type contains the form $\left(\frac{h}{m} ; \frac{1}{2}, \frac{1}{2}\right)$; that is, a set of rotations about any one "axis" with a pair of reflexions about the two perpendicular "plancs," and the forms in which one or both of the two last fractions is replaced by a zero. A main group would be

$$
\begin{array}{r}
\left(\frac{h}{m} ; \frac{1}{2}, \frac{1}{2}\right) \cdot\left(\frac{h}{m} ; \frac{1}{2}, 0\right) \cdot\left(\frac{h_{2}}{m} ; 0 \cdot \frac{1}{2}\right) \cdot\left(\frac{h}{m} ; 0.0\right) \\
(h=0,1,2, \ldots, m-1) .
\end{array}
$$

The degree is $4 m$, and the main group can be generated hy three substitutions when m is even and by two when m is odd.
'Jhe third eonsists wholly of reflexions about the four coordinate "planes." There is a single main group consisting of 16 substitutions ($; 0,0,0,0,\left(, \frac{1}{2}, 0,0,0\right)$, ete., which can be generated by form substitutions.

Degree 2or. - W e pass now to the greneral case. The first type for a group of even degree 2π would be a group of substitutions consisting of rotations about on of the π ($2 \boldsymbol{\sigma}-1$)
"axes" of coordinates. The m axes are the intersections of the 2π coordinate "planes" paired off in any way, but all the substitutions of the given group would consist of rotations about this set of "axes" and no other. The type of substitution would be $\left(\frac{h}{m}, \frac{k}{n}, \ldots, \frac{l}{p}\right)$, and if not more than σ_{1} at a time of the integers m, n, \ldots, p had a common factor, then σ_{1} substitutions (or less perhaps for sub-groups of the main group) would be necessary to generate a group. The order of the main group would be mn...p.

We must next consider groups of substitutions which consist of rotations abont certain of the "axes" of coordinates (the same for all substitutions of the group) and reflexions about the "planes" which are perpendicular to all these special axes. If there are rotations about m" "axes," there would be reflexions about ($2 \pi-2 \sigma^{\prime}$) "planes," and such a substitution would be, for example, $\left(\frac{k}{m}, \frac{k}{n}, \ldots, \frac{l}{p} ; \frac{1}{2}, \frac{1}{2}, \ldots\right)$. If m, n, \ldots, p were all even, say, a maximum number of $2 \pi-\pi^{\prime}$ substitutions might be necessary to generate the group; if some were old, a smaller number would always be sufficient.

In particular, the substitutions may consist wholly of reflexions about the 2π "axes" of coordinates. There would be a main group of $2^{2 w}$ substitutions, to generate which 2^{π} substitutions would be needed.

Degree $2 \pi+1$. - A separate discussion of this case is hardly necessary. The first type would consist of rotations about π "axes," together perhaps with a reflexion about the single "plane" perpendicular to them all. A maximum number of $\sigma+1$ generators would be necessary when the denominators of the elements were all even. 'There would be, as before, intermediate types consisting partly of rotations and partly of reflexions, and a final type with a simgle main group of $2^{2 \pi+1}$ substitutions consisting entirely of reflexions.

NOTES ON SOME POINTS IN THE INTEGRAL CALCULUS.

By G. H. Hardy.
XXXVII.

On the region of convergence of Borel's integral.

1. Borel's integral, associated with a power series

$$
\begin{equation*}
\Sigma a_{n} x^{n}, \tag{1}
\end{equation*}
$$

is

$$
\begin{equation*}
f(x)=\int_{0}^{\infty} e^{-t} t s(t x) d t, \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
u(x)=\Sigma \frac{a_{n} x^{n}}{n!} . \tag{3}
\end{equation*}
$$

If the series (1) has a positive radins of convergence, the region of convergence of the integral (2) is Borel's "polygon of summability"; the integral is convergent everywhere inside, and nowhere outside, the polygon, and represents the analytic function $f(x)$ detined in the ordinary way by the series (1).

Let us suppose now that the radius of convergence of (1) is zero. If (2) converges for $x=x_{0}$, it converges uniformly along the straight line $\left(0, x_{0}\right)$.* And if it represents an analytic function $f(x)$ in a region D, that region must extend up to the origin, and the origin must be a singular point of $f(x)$.

My object in this note is to show by examples how Borel's integral may converge in two different regions of the plane, having only the origin as a common boundary point, and represent, in these two regions, two different analytic functions.
2. I consider first the series

$$
1+0-\frac{2!}{1!}+0+\frac{4!}{2!}+0-\ldots
$$

$$
a_{2 \nu}=(-1)^{\nu} \frac{2 \nu!}{v!}, \quad a_{2 \nu+1}=0 .
$$

Here Borel's integral is

$$
f(x)=\int_{0}^{\infty} e^{-t-x^{2} t^{2}} d t
$$

[^9]which is plainly convergent if
\[

$$
\begin{aligned}
&-\frac{1}{4} \pi \leqq \operatorname{am} x \leq \frac{1}{4} \pi \\
&{ }_{4}^{3} \pi \leqq \mathrm{am} x \leqq \\
&{ }_{4}^{5} \pi
\end{aligned}
$$
\]

$01{ }^{\circ}$
i.e., in two quadrants abutting at the origin.

Suppose x real and positive. Then

$$
f(x)=\frac{1}{x} \int_{0}^{\infty} e^{-(u ; x)-u^{2}} d u,
$$

or, if $x=1 / y$,

$$
\begin{aligned}
f(x) & =y \int_{0}^{\infty} e^{-y u-v^{2}} d u=y e^{\frac{1}{2} y^{2}} \int_{\frac{1}{2} y}^{\infty} e^{-v^{2}} d v \\
& =y e^{\frac{1}{2} y^{2}}\left\{\frac{1}{2} \sqrt{ } \pi-\int_{0}^{\frac{\pi}{x} y} e^{-v^{2}} d v\right\} \\
& =F(y)
\end{aligned}
$$

say. The function $F(y)$ is an integral function of y. Thus, in the quadrant which includes the positive real axis,

$$
f(x)=F(1 / x)
$$

In the other quadrant it is plain that

$$
f(x)=F(-1 / x)
$$

which differs from $F(1 / x)$ by

$$
\frac{\sqrt{ } \pi}{x} e^{-\frac{1}{x} x^{2}}
$$

Thus $f(x)$ is equal to different analytic functions in the two regions.
3. As a second example I shall consider the series in which

$$
a_{n}=\sum_{0}^{\infty} \frac{(-1)^{\nu} \nu^{n}}{v!} .
$$

Here

$$
\begin{aligned}
u(x)=\sum_{0}^{\infty} \frac{x^{n}}{n!} \sum_{0}^{\infty} \frac{(-1)^{\nu} \nu^{n}}{\nu!} & =\sum_{0}^{\infty} \frac{(-1)^{\nu}}{\nu!} e^{\nu x} \\
& =e^{-e^{x}} .
\end{aligned}
$$

Thus Borel's integral is

$$
\begin{equation*}
f(x)=\int_{0}^{\infty} e^{-t-t^{t x}} d t \tag{1}
\end{equation*}
$$

If $x=\xi+i \eta$,

$$
\left|e^{-t^{t x}}\right|=e^{-e^{\xi t} \cos \eta t} .
$$

It is easy to see that, if $\xi>0$, the integral (4) is convergent if and only if $\eta=0$. On the other hand, if $\xi \leqq 0$, it is convergent for all values of η. Thus the integral is convergent
"f Mr. IIardy, On some points in the integral calculus.
(i) along the positive real axis and (ii) in the half-plane to the left of the imaginary axis.

First suppose $x=\xi>0$. Then, putting $e^{t}=u$, we obtain

$$
\begin{aligned}
f(x)=\int_{0}^{\infty} e^{-t-e^{\xi t}} d t & =\int_{1}^{\infty} e^{-u \xi} \frac{d u}{u^{z}} \\
& =\frac{1}{\xi} \int_{1}^{\infty} e^{-v w} w^{-(1 / \xi)-1} d w \\
& =-y \int_{1}^{\infty} e^{-v w} w^{y-1} d w,
\end{aligned}
$$

where $y=-1 / \xi=-1 / x$. If, in the ordinary notation of the theory of the Gamma function, we write

$$
\begin{gathered}
\Gamma(s)=\int_{0}^{\infty} e^{-w} w^{s-1} d w=\int_{0}^{1} e^{-w} w^{s-1} d w+\int_{1}^{\infty} e^{-w} w^{s-1} d w \\
=P(s)+Q(s)
\end{gathered}
$$

when the real part of s is positive, then $Q(s)$ is an integral function of s; and, for x real and positive, we have

$$
\begin{equation*}
f^{\prime}(x)=\frac{1}{x} Q\left(-\frac{1}{x}\right) . \tag{5}
\end{equation*}
$$

Secondly, suppose $\xi<0$, and $x=\xi=-\lambda$. Then

$$
\begin{aligned}
f(x)=\int_{0}^{\infty} e^{-t-e^{-\lambda t}} d t & =\int_{1}^{\infty} e^{-u^{-\lambda}} \frac{d u}{u^{2}} \\
& =\frac{1}{\lambda} \int_{0}^{1} e^{-w} w(1 / \lambda)-1 d u \\
& =y \int_{0}^{1} e^{-v} w^{y-1} d w,
\end{aligned}
$$

where $y=1 / \lambda=-1 / \xi=-1 / x$. Thus, for real negative values of x,

$$
\begin{equation*}
f(x)=-\frac{1}{x} P\left(-\frac{1}{x}\right) \tag{6}
\end{equation*}
$$

The function $P(s)$ is regular for all values of s save negative integral values (including zero), where it has simple poles. Thus

$$
-\frac{1}{x} P\left(-\frac{1}{x}\right)
$$

is regular in the half-plane which we are considering, and it is clear that equation (6) is valid thronghout this half-plane. The equations (5) and (6) show that Borel's integral converges. for different values of x, to two different analytic functions.

A CANONICAL FORM OF THE BINARY SEXTIC.

By E.K. Wakeford, Trinity College, Cambridge.

T'me natural canonical form for the binary sextic would be $x^{6}+y^{6}+z^{6}+30 \kappa x^{3} y^{3} z^{2}$, where x, y, z are linear forms satisfying an identity $l x^{x}+m y+n z \equiv 0$, but apparently the general binary sextic has not been previonsly reduced to this form (see Elliott, Algebra of Quantics, $\$ 224$). The object of the following work, in the arranrement of which I have been kindly assisted by Mr. P. W. Wood, M.A., of Emmamel College, is to demonstrate the possibility of such a reduction of the general sextic, and to proint out in how many ways the reduction is possible.

Let the sextic be $S \equiv\left(b_{0} b_{1} b_{2} b_{3} b_{3} b_{5} b_{0} X X, Y\right)^{6}$, and suppose that the required reduction is possible, x, y, z being the linear factors of the cubic $\left.C \equiv\left(a_{0} a_{1} a_{2} a_{3}\right) X X, Y^{\prime}\right)^{3}$. We have then the identity

$$
\left(l_{0} l_{1} b_{2} b_{3} l_{4} b_{5} l_{6} X X, Y\right)^{6} \equiv x^{6}+y^{6}+z^{6}+30 \kappa x^{2} y^{7} z^{2} .
$$

If we onerate on the right-hand side of this identity with the operator $O \equiv\left(a_{0} a_{1} c_{2} a_{3} \gamma \partial / \partial Y,-\partial / \partial X\right)^{3}$, we shall amihilate the terms x^{6}, y^{6}, and z^{6}, and be left with the result of operating on $30 \kappa x^{3} y^{3} z^{3}$ alone. 'This is (Elliott, $\S 49$, Ex. 3) a numerical multiple of the cubicovariant of C, which we shall denote by $T^{\prime}=\left(A_{0} A_{1} A_{2} A_{3} X, Y\right)^{3}$. Now the coefficients $A_{0} A_{1} A_{2} A_{3}$ may be proved by actual substitution to satisfy the equations

$$
\left.\begin{array}{rl}
a_{2} A_{0}-2 a_{1} A_{1}+a_{0} A_{2} & =0 \tag{i}\\
a_{3} A_{0}-a_{2} A_{1}-a_{1} A_{2}+a_{0} A_{3} & =0 \\
a_{3} A_{1}-2 a_{2} A_{2}+a_{1} A_{3} & =0
\end{array}\right\}
$$

Hence, if we operate with O upon the left-hand side of our original identity, the coefficients $A_{0}{ }^{\prime} A_{1}{ }^{\prime} A_{3}^{\prime} A_{3}^{\prime}$ of the resulting cubic must also satisfy these equations. These coefficients are

$$
\begin{aligned}
A_{0}^{\prime} & \equiv 120\left(a_{0} b_{3}-3 a_{1} b_{2}+3 a_{2} b_{1}-a_{3} b_{0}\right), \\
A_{1}^{\prime} & \equiv 120\left(a_{0} b_{4}-3 a_{1} b_{3}+3 a_{2} b_{2}-a_{3} b_{1}\right), \\
A_{2}^{\prime} & \equiv 120\left(a_{0} b_{5}-3 a_{1} b_{4}+3 a_{2} b_{3}-a_{3} b_{2}\right), \\
A_{3}^{\prime} & \equiv 120\left(a_{0} b_{6}-3 a_{1} b_{5}+3 a_{2} b_{4}-a_{3} b_{3}\right),
\end{aligned}
$$

If we substitute these expressions for $A_{0} A_{1} A_{3} A_{3}$ respectively in the equations (i) above, we obtain three homogencous quadratic equations in $a_{0} a_{1} a_{2} a_{3}$. 'There must be at least one system of ratios, saly $a_{0}: a_{1}: a_{2}: a_{3}=c_{0}: c_{1}: c_{2}: c_{3}$, which satisfies these equations.

We shall prove that the required reduction of the sextic is possible if we take x, y, z to be the factors of $\left(c_{0} c_{1} c_{2} c_{3} X X, Y\right)^{3}$. We have so far proved that if the reduction is possible at all, the forms x, y, z must be fomd in this way.

Let $\left(C_{0}^{\prime} \dot{C}_{1}^{\prime} C_{2}^{\prime} C_{3}^{\prime} X X, Y\right)^{3}$ be the result of operating with $\left(c_{0} c_{1} c_{2} c_{3} \partial \partial \partial J,-\partial / \partial I\right)^{3}$ on S. Then

$$
\begin{aligned}
& C_{0}^{\prime} \equiv 120\left(c_{0} b_{3}-3 c_{1} b_{2}+3 c_{2} b_{1}-c_{3} b_{0}\right), \\
& C_{1}^{\prime} \equiv 120\left(c_{0} b_{4}-3 c_{1} b_{3}+3 c_{2} b_{2}-c_{3} b_{1}\right), \\
& \text { ete. (see } A_{0}^{\prime} A_{1}^{\prime} A_{2}^{\prime} A_{3}^{\prime} \text { above). }
\end{aligned}
$$

Hence

$$
\left.\begin{array}{rr}
c_{2} C_{0}^{\prime}-2 c_{1} C_{1}^{\prime}+c_{0} C_{2}^{\prime} & =0 \\
c_{3} C_{0}^{\prime}-c_{2} C_{1}^{\prime}-c_{1} C_{2}^{\prime}+c_{0} C_{3}^{\prime} & =0 \\
c_{3} C_{1}^{\prime}-2 c_{2} C_{2}^{\prime}+c_{1} C_{3}^{\prime} & =0
\end{array}\right\} \ldots \ldots \ldots \text { (ii), }
$$

since $c_{0} c_{1} c_{2} c_{3}$ are known to satisfy the quadratic equations formed by substituting for $C_{0}^{\prime} C_{1}^{\prime} C_{2}^{\prime} C_{3}^{\prime}$ in equations (ii) their values in terms of $c_{0} c_{1} c_{2} c_{3}$.

Now the coefficients $C_{0} C_{1} C_{2} C_{3}$ of the cubicovariant of $\left(c_{0} c_{1} c_{2} c_{3} X X, Y\right)^{3}$ also satisfy these equations, and indeed the cubicovariant may be written in the form

$$
\left|\begin{array}{rrrr}
X^{3} & 3 X^{2} Y & 3 X Y^{\gamma^{2}} & Y^{3} \\
c_{2} & -2 c_{1} & c_{0} & 0 \\
c_{3} & -c_{2} & -c_{1} & c_{0} \\
0 & c_{3} & -2 c_{2} & c_{1}
\end{array}\right|
$$

Hence $C_{0}{ }^{\prime}: C_{1}^{\prime}: C_{2}^{\prime}: C_{3}^{\prime}=C_{0}: C_{1}: C_{2}: C_{3}$, for otherwise the cubicovariant of $\left(c_{0} c_{1} c_{2} c_{3} \backslash X, Y\right)^{j}$ would vanish identicallly, equations (ii) not being independent.

In that case $\left(c_{1} c_{1} c_{2} c_{3} X X, Y\right)^{3}$ would be a perfect cube, $\equiv x^{3}$ suppose, and $\left(C_{0}^{\prime}: C_{1}^{z^{2}}: C_{2}^{\prime}: C_{3}^{\prime} X X, Y\right)^{3}$ a cubic containing the factor x twice, $\equiv x^{3} y$ suppose.

Then we should have

$$
\left(\partial S / \partial y^{3}\right)=x^{2} y,
$$

whence $\quad S=x^{2}\left(a x^{4}+b x^{3} y+c \cdot x^{3} y^{2}+\frac{1}{2}{ }_{4} y^{4}\right)$ suppose,
showing that S would contain a square factor. 'This is not so in the general case, so that we may disregard it.

Hence, in general, the result of operating with

$$
\left(c_{0} c_{1} c_{2} c_{3} \gamma \partial / \partial Y,-\partial / \partial X\right)^{3}
$$

on S is to give a mmerical multiple of the cubicovariant of $\left(c_{0} c_{1} c_{2} c_{3} X X, Y\right)^{3}$; and so, if we choose κ aright, we shall obtain

$$
\left(c_{0} c_{1} c_{2} c_{3} \gamma \partial / \partial Y,-\partial / \partial X\right)^{3}\left(S-30 \kappa x^{2} y^{2} z^{2}\right)=0
$$

Now if $x \equiv \alpha_{1} X+\beta_{1} Y, y \equiv \alpha_{2} X+\beta_{2} Y, z \equiv \alpha_{2} X+\beta_{3} Y$ are the factors of $\left(c_{0} c_{1} c_{2} c_{3} X X, Y^{\prime}\right)^{3}$, the operator

$$
\left(c_{0} c_{1} c_{2} c_{3} \partial \partial / \partial Y,-\partial / \partial X\right)^{B}
$$

is the same as the three combined operators

$$
\left(\alpha_{1} \frac{\partial}{\partial Y}-\beta_{1} \frac{\partial}{\partial X}\right)\left(\alpha_{3} \frac{\partial}{\partial Y}-\beta_{2} \frac{\partial}{\partial \bar{X}}\right)\left(\alpha_{3} \frac{\partial}{\partial Y}-\beta_{3} \frac{\partial}{\partial X}\right) .
$$

Accordingly, by a known theorem, the general solution of $\left(c_{0} c_{1} c_{2} c_{3} \gamma \partial / \partial Y,-\partial / \partial X\right)^{3} u=0$ is $P+Q+R$, where P, Q, and R are the general solutions of

$$
\begin{gathered}
\left(\alpha_{1} \frac{\partial}{\partial Y}-\beta_{1} \frac{\partial}{\partial X}\right) u=0 \\
\left(\alpha_{2} \frac{\partial}{\partial Y}-\beta_{2} \frac{\partial}{\partial Y}\right) u=0, \text { and }\left(\alpha_{3} \frac{\partial}{\partial Y}-\beta_{3} \frac{\partial}{\partial X}\right) u=0
\end{gathered}
$$

respectively.
(We may take x, y, z to be all different, for otherwise the resulting canonical form would contain too few constants, implicit and explicit, to be general.)

We find therefore that

$$
S-30 \kappa x^{2} y^{2} z^{2}=a x^{6}+b y^{6}+c z^{6} .
$$

Hence, by taking suitable numerical multiples of x, y, z, and κ, we reduce S to the form

$$
x^{6}+y^{6}+z^{6}+30 \kappa x^{2} y^{2} z^{3},
$$

there existing a relation of the form

$$
l x+m y+n z \equiv 0 .
$$

We may also write S as

$$
a x^{6}+h y^{6}+c z^{6}+30 \kappa x^{2} y^{2} z^{2}
$$

where

$$
x+y+z \equiv 0 .
$$

If we regard $\left(a_{0} r_{1}\left(a_{2} a_{3}\right)\right.$ as the coordinates of a point in space, the three quadratic equations mentioned above represent three quadrics. We should therefore expect eight distinct solntions of the problem. By considering any common point of the quadries in particular, it can easily be shown that the tangent planes to the three quadrics at this point do not in general intersect in a line so that the eight points of intersection of the quadrics are all distinct. Hence the reduction is in general possible in eight distinct ways.

The existence of the canonical form (long suspected) is thus established: the form does not appear to lend itself easily to the formation of invariants and covariants.

Nute in a previuus paper.

On p. 143 of vol. xlii. I published a theorem, which I believed to be new, relating to three triangles cireumscribing a conic. My attention has since been drawn to the fact that this theorem with its converse is to be found as Ex. 862 (p. 360) in C. 'Taylor's Ancient and modern Geometry of Conics.

The more general result that the three sets of the six sides of the complete quadrangles formed by the common points of any three conics taken in pairs touch a class cubie leads casily hoth to the theorem I published and to its converse. 'lhis class cubic is the Cayleyan contravariant of the cubie of which the conics are polar conics.

NOTES ON SOME POINTS IN THE IN'I'EGRAL CALCULUs.

By G. H. Hardy.

XXXVIII.

On the definition of an analytic function by means of a definite integral.

1. 'The two theorems proved in this note are in no way of a novel character, and the first of them is actually stated without proof in Osgood's Lehrbueh der Fuktionentheorie.* 'Ilhe second 1 have never seen quite in the tom in which I give it here. 'The theorems have so many important applications that it seems worth while to state them explicity and with proots.
2. I must first define the meaning of the expressions regular conve' and 'region,' which necur in the ennnciations of the theorems. I do not propose to use these terms in the most general senses possible: I wisl indeed to use them in the simplest and narrovest senses possible so long as the theorems retain sufficient generality to admit the ordinary applications.

An elementary arc is a set of points in the plane (ξ, η) defined by two equations

$$
\xi=\phi(t), \quad \eta=\psi(t) \quad\left(t_{0} \leqq t \leqq t_{1}\right),
$$

where ϕ and ψ are functions with contimous derivatives which can only vanish for $t=t_{0}$ or $t=t_{\mathrm{p}}$, and then not simultaneously.

The points

$$
\left\{\phi\left(t_{0}\right), \psi\left(t_{0}\right)\right\}, \quad\left\{\phi\left(t_{1}\right) \cdot \psi\left(t_{1}\right)\right\} .
$$

are the first and last points of the are.
A reyular curve is the set formed by a finite succession of elementary ares in which the first point of each are is the last of its predecessor. If the last point of the last are coincides with the first of the first, the curve is closed. If no point of the curve belongs to more than one of its ares, the curve is simple.

A simple closed regular curve divides the points of the plane which do not lie unon it into two classes, interior and
caterior points. The points interior to such a curve will be said to constitute a region. The points of a region, together with those of its houndary, constitute a domain.
3. 'Tueorem 1. Suppose that $f(x, y)$ is a function of the two complu variubles ac and y, contimons. when ex varies alony at regnlar curve C and y over a region S. Suppose ulso that $f(x, y)$ is, for each particular value of n, analytic throughout S. Then

$$
F^{\prime}(y)=\int_{C} f(x, y) d x
$$

is analytic throughout S, and

$$
F^{\prime \prime}(y)=\int_{C} \frac{\partial f}{\partial y} d x
$$

We prove first that $F^{\prime}(y)$ is continuous in S. Let Σ be a domain which lies entirely inside S. Then $f(x, y)$ is continuons, and so mifomly continnous, when x varies on C and y in Σ. Hence it follows in the ordinary manner that, if y and $y+h$ lie in Σ,

$$
F(y+h)-F(y)=\int_{C}\{f(x, y+h)-f(x, y)\} d x
$$

tends to zero with h. Thus $F(y)$ is continuons in Σ, and so in S .

Now let Γ he a simple closed regular curve lying inside S and including the point y inside it. Then

$$
f(x, y)=\frac{1}{2 \pi i} \int_{\Gamma} \frac{f(x, u)}{u-y} d u,
$$

and so

$$
F(y)=\frac{1}{2 \pi i} \int_{C} d x \int_{\Gamma} \frac{f(x, u)}{u-y} d u
$$

In this equation we may invert the order of integration. In order to prove this we observe first that C and Γ are formed by the union of a finite number of elementary ares C_{i} and Γ_{j}, and that it is obviously sufficient to show that the inversion is permissible when x varies on C_{i} and u on Γ_{j}. The ares C_{i}, Γj are defined by equations of the form

$$
\begin{array}{lr}
x=\phi(t)+i \psi(t) & \left(t_{0} \leqq t \leqq t_{1}\right), \\
u=\Phi(w)+i \Psi^{\prime}(w) & \left(w_{0} \leqq w \leqq w_{1}\right),
\end{array}
$$

where ϕ, ψ, \ldots are functions which satisfy the conditions of $\S 2$. We substitute for x and u in terms of t and w, and separate the real and imaginary parts of the resulting repeated integrals in t and w. Lach of these is the repeated integral of a continuous finction of t and w, and the inversion of the order of integration is therefore legitimate.
luverting the order of mtegration we obtain

$$
F(y)=\frac{1}{2 \pi i} \int_{\Gamma} \frac{d u}{u-y} \int_{C} f(x, u) d x=\frac{1}{2 \pi i} \int_{\Gamma} \frac{F(u)}{u-y} d u
$$

Hence

$$
\frac{F(y+h)-F(y)}{h}=\frac{1}{2 \pi i} \int_{\Gamma} \frac{F(u) d u}{(u-y)(u-y-h)},
$$

and, $F^{\prime}(u)$ being contimous on Γ, it is easy to show in the ordinary way* that the integral tends, as $h \rightarrow 0$, to the limit

$$
\frac{1}{2 \pi i} \cdot \int_{1} \frac{F(u)}{(u-y)^{2}} d u .
$$

Hence $F(y)$ is amalytic inside Γ and so inside S. Finally

$$
\begin{aligned}
F^{\prime \prime}(y) & =\frac{1}{2 \pi i} \int_{\mathbf{r}} \frac{F(u)}{(u-y)^{2}} d u \\
& =\frac{1}{2 \pi i} \int_{\Gamma} \frac{d u}{(u-y)^{z}} \int_{C} f(x, u) d x \\
& =\frac{1}{2 \pi i} \int^{\int} d x \int_{\Gamma} \frac{f(x, u)}{(u-y)^{z}} d u \\
& =\int_{C} \frac{\partial f}{\partial y} d x,
\end{aligned}
$$

the inversion of the order of integration being justified in precisely the same way as before. Thus the proof of the theorem is completed.
4. It usually happens in applications that the integral

$$
\int_{C} f(x, y) d x
$$

by which $F(y)$ is defined, is an infinite integral; the contour \dot{C} stretches to infinity, or f has infinities on C.

[^10]Let $C\left(R_{)}\right.$denote the aggregate of points of C for which $|, x|<R$; and let us suppose that, for any given $R, C(R)$ is a regular curve. Further, let us suppose that C contains a finite number of points ξ_{i} which we will call exceptional points: and let us demote ly $C(R, \delta)$ the aggregate of points of $C(l i)$ for which $\left|x-\xi_{i}\right| \geqq \delta$. Then $C(R, \delta)$ will consist of a finite number of regular curves $C_{j}(R, \delta)$. TVe suppose that each of these curves satisfies, in coujunction with S and f, all the conditions of 'Theorem 1.

Further, let us suppose that, as $\delta \rightarrow 0, R \rightarrow \infty$, the sum of integrals

$$
\underset{(j)}{\Sigma} \int_{\left.C_{j \backslash} \backslash, \delta\right)} f(x, y) d x
$$

tends to a limit, uniformly for all values of y in any domain \unlhd such as was considered in §3. This limit we denote by

$$
\int_{C} f(x, y) d x
$$

and we say that this integral is uniformly concergent in Σ.
W'e can now state the following theorem:
Thlionem 2. Let O be a contour such that the contour. $C(R . \delta)$, formed by the points of C for which

$$
|x| \leqq R, \quad\left|x-x_{i}\right| \geqq \delta,
$$

is comprosed of a finite number of regular curves, each of which. together with the region S and the function $f^{\prime}(x, y)$, sutisfies the conditions of Theorem 1. Further. let the integral

$$
\int_{C} f(x, y) d x
$$

be uniformly convergent in any domerin Ξ interior to S. Then the conclusions of Theorem 1 still remain true.
5. In sketching the proof of this theorem I shall confine myself, for the sake of simplicity of statement, to the most important case, viz., that in which C is the positive real axis, and there is one exceptional point, namely, the origin. In this case $C(R, \delta)$ is the segment (δ, R), and our definition of uniform convergence reduces to the ordinary definition for infinite integrals of a function of a real variable. 'The proof' follows exactly the same lines as that of Theorem 1, the condition of uniform convergence being required (i) in proving
that $F^{\prime}(y)$ is continuous and (ii) in justifying the inversions of the order of integration. A few words should perhaps be added on the latter point. We reduce the problem, as in $\S 3$, to an inversion problem concerning real integrals. In this case t is x, and x ranges from 0 to ∞.

The theorem to which we finally appeal is that of de la Vallée-Poussin which asserts that

$$
\int_{0}^{\infty} d x \int_{w_{0}}^{w_{1}} \chi(x, w) d w=\int_{w_{0}}^{w_{1}} d w \int_{0}^{\infty} \chi(x, w) d x
$$

whenever (i) the inversion is legitimate when the limits $(0, \infty)$ are replaced by any positive mombers, and (ii) the integral with respect to x is uniformly convergent.
6. In order to give a simple application of Theorem 2 , let us consider the equation

$$
\begin{equation*}
\int_{0}^{\infty} e^{-y x^{2}} d x=\frac{1}{2} \sqrt{ }(\pi / y) \tag{i}
\end{equation*}
$$

which holds when y is real and positive. Let S be any region for all points of which $R(y)>0$. Then the real parts of the points of Σ have a positive lower limit λ, and the integral in (1) may be seen to be uniformly convergent in Σ by comparison with

$$
\int_{0}^{\infty} e^{-\lambda x^{2}} d x
$$

Hence the conditions of 'Theorem 2 are satisfied, and (1) holds for all values of y whose real part is positive. Putting $y=\alpha+i \beta$, and equating real parts, we obtain

$$
\int_{0}^{\infty} e^{-\alpha x^{2}} \cos \beta x^{y} d x=\frac{1}{2} \sqrt{ }\left(\frac{1}{2} \pi\right) \sqrt{ }\left\{\frac{\sqrt{ }\left(\alpha^{2}+\beta^{y}\right)+\alpha}{\left(\alpha^{2}+\beta^{2}\right)^{3}}\right\} .
$$

Making $\alpha \rightarrow 0$, and using Abel's continuity theorem for infinite integrals, * we obtain

$$
\int_{0}^{\infty} \cos \beta x^{2} d x=\frac{1}{2} \sqrt{ }(\pi / 2 \beta) .
$$

The corresponding integral involving a sine may of course be evaluated similarly.

[^11]$$
\text { FACTORISATION OF } N=\left(y^{4} \mp 2\right) \quad \&\left(2 y^{2} \mp 1\right) \text {. }
$$

13: Le.-Cul. Allm, Camingham, R.E., Fellow of King's College, London.
[The anthor's acknowledgments are due to Mr H. J. Woodall, A.R.C.Sc., for reading the lroof slieets, and for suggestions; also to M. L. Valroff for numerous alditions to the Tables.]

1. Introduction. In this Paper it is proposed to develop the factorisation of the numbers (N) of the four types

$$
N_{i}=y^{4}-2, \quad N_{i i}=y^{4}+2, \quad N_{i i i}=2 y^{4}-1, \quad N_{i v}=2 y^{4}+1 \ldots(1)
$$

These numbers are closely comected, so that it is convenient to consider them together: they are also closely related to the numbers $\left(2^{\prime \prime} \mp 1\right)$, and their factorisation depends in fact Jargely on a prior knowledge of that of the latter kind of mumbers, as will appear later.
2. Totation. All symbols denote integers. p denotes ans (odd) prime.
ω, Ω denote odd numbers; ε, E denote even numbers; i, I denote integer:
$y_{i}, y_{i i}, y_{i i i}, y_{i v}$ denote the roots (y) of the numbers $\lambda_{;}, \boldsymbol{N}_{i i}, \lambda_{i i i}, \lambda_{i v \%}$ respectively; but the subscripts will often be omitted when not required to distinguish the four kinds.
3. Linear and $2^{\text {ic }}$ forms of N. These are shewn below:-

3 α. Divisors 2, 3. $N_{i i j}, N_{i v}$ are always odd........(2d):
$y=\omega$ gives $N_{i}, Y_{i i}$ odd $; \quad y=\varepsilon$ gives $N_{i}, N_{i i}$ even and $=2 \Omega \ldots \ldots .(2 e)$,
$y=3 i$ gives $\lambda_{i i}^{*}, N_{i v} \neq 3 I ; y \neq 3 i$ gives $\lambda_{i i}, \lambda_{i v}=3 I \ldots \ldots \ldots \ldots \ldots \ldots . .(2 f)$.
4. Use of Factor-Tables. Complete factorisation of these mumbers may be obtained by use of the large* Factor-Tables alone up to the following limits-
人; up to $y=\omega \ngtr 55 ; y=\varepsilon \ngtr 66$;
$\mathcal{V}_{i i}^{\prime}$ up to $y=\omega=3 i \ngtr 55 ; y=\varepsilon=3 i \ngtr 66 ; y=\omega \neq 3 i \ngtr 73 ; y=\varepsilon \neq 3 i \ngtr 88$;
$X_{\text {tii }}$ up to $y>47 ; \quad N_{i v}$ up to $y=3 i>47 ; \quad y \neq 3 i \ngtr 62$.
Berond these limits it is (in generai) necessary to search
for special factors. 'The research of these occupies Art. 6-16d
of this Paper.
5. Case of $y=2^{x}$. In this case the numbers (N) take the forms :-

$$
N_{i}=2\left(2^{4 x^{-1}}-1\right), \quad N_{i i}=2\left(2^{4 x-1}+1\right), \quad N_{i i}=\left(2^{4 x+1}-1\right), \quad N_{i v}=\left(2^{4 x+1}+1\right),
$$

the complete factorisation of which is known up to the following high limits-

Number N	$=$	N_{i}	$N_{i i}$	$N_{i i i}^{*}$	$N_{i v}$
All values up to					
Highest value	$x=$	18	16	17	16
$x=$	22	34	29	26	

It is seen that the power of 2 (viz. $4 x \mp 1$) entering into the hinomial N is always odd, and that the numbers $N_{i}, N_{i i}$, include Merseme's Numbers (given by $4 x \mp 1=$ prime).
[It is not to be expected that the study of the present numbers will lead to the discovery of divisors of the as yet unfactorised Mersenne's Numbers. In fact the known factorisation of N when $y=2^{x}$ afford the principal help to factorisation of all other cases (see Art. 14)].

6. Linear and $2^{i c}$ forms of Factors (p). Since

$$
\lambda_{i}=e^{2}-2 f^{2}, \quad \lambda_{i i}=c^{2}+2 i^{2}, \quad \lambda_{i i i}=2 f^{\prime 2}-e^{\prime 2}, \quad \Lambda_{i v}=2 d^{2}+c^{2} \ldots \text { see }(2 c),
$$

it follows that-(excepling the small factor 2 of $N_{i}, N_{i i}$) -
All factors of $\boldsymbol{N}_{i}, \boldsymbol{N}_{\text {iiz }}$ are of form $p=e^{2}-2 f^{2}=2 f^{\prime 2}-e^{\prime 2} \ldots \ldots \ldots(3 a)$.
All factors of $N_{i i}, N_{i v}$ are of form $p=c^{2}+2 d^{2} \ldots \ldots \ldots \ldots \ldots \ldots \ldots . .(3 b)$.
Hence, also-(excepting the factor 2) -
All factors of $N_{i}, N_{i i i}$ are of form $p=8 w+1,7 \ldots \ldots \ldots \ldots \ldots \ldots(4 a)$.
All factors of $\lambda_{i i}, N_{i v}$ are of form $p=8+1,3 \ldots \ldots . \ldots \ldots \ldots .(4 b)$.
7. Non-divisors (p). These are of two linear forms $9=8 \varpi+1,5$.
1°. Since $p=8 \pi+5 \neq e^{2}-2 f^{\prime 2} \& \neq 2 f^{\prime 2}-e^{\prime 2}$, it follows that All primes of form $p=8 \omega+5$ are non-divisors.
2°. There is also a limited class of primes $p=8 \pi+1$, which are non-divisors.
$\left.\begin{array}{cc|c|c|l}\text { For } & N_{i} \equiv 0 & N_{i i} \equiv 0 & \lambda_{i i i} \equiv 0 & N_{i i} \equiv 0 \\ \text { olve } & y^{4} \equiv+2 & y^{4} \equiv-2 & 2 y^{4} \equiv+1 & 2 y^{4} \equiv-1\end{array}\right\}(\bmod p)$
whence $(2 / p)_{4}=+1 \quad\{\overline{2} / p)_{4}=+1 \quad(2 / p)_{4}=+1 \quad(\overline{2} / p)_{4}=+1 \ldots \ldots \ldots .($
But, when-as here- $p=8 \sigma+1$, then $(2 / p)_{4}=(\overline{2} / p)_{4}$ always. Hence $(\pm 2 / p)_{4}=+1$ is a condition* when $p=8 \bar{w}+1 \ldots(6 a)$,
so that-
All primes $p=8 w+1$ having $(\pm 2 / p)_{4}=-1$ are non-divisors.....(6b).

[^12]36 L.t.-Col.Cumningham, Factorisation of $N=\left(y^{4} \pm 2\right) \&\left(2 y^{4} \mp 1\right)$.
Snother way of putting this is
All primes $p=8 w+1,=\mathrm{a}^{2}+\mathrm{b}^{2}$, with $\mathrm{b}=4(1$, are non-divisors.....(6c).
8. Complete set of Divisors. It will be seen from what precedes (Art. 6, 7)--

All primes $p=8 w+7$ are factors of some N_{i} and $N_{i z i} \ldots \ldots \ldots \ldots \ldots(7 a)$.
All primes $p=8 \pi+3$ are factors of some $N_{i i}$ and $N_{i v}$.
All primes $p=8 \sigma+1$, having $(2 / p)_{4}=+1$, are factors of some of each

All other (odd) primes are non-divisors.
9. Congruence-solutions. The most powerful aid to the facturisation of these numbers (N) is a 'l'able of solutions- (y) of the four congruences-
$\lambda_{i}=y^{4}-2 \equiv 0, \quad \lambda_{i i}=y^{4}+2 \equiv 0, \quad \lambda_{i i i}^{*}=2 y^{4}-1 \equiv 0, \quad \lambda_{i v}^{*}=2 y^{4}+1 \equiv 0$
$\left(\bmod p\right.$ and $\left.p^{k}\right) \ldots(8)$.
Such a Table is given-(see Tab. I.. Il.)-at end of this Paper, complete for all primes and prime-powers p and $r^{\kappa}>1000$.

The mode of solution of these Congruences, and their mutnal comnexion, are explaned in Art. $10-16 d$. Three Methods are available.

Method I. From known factorisations (Art. 10).
Mgriod II. By use of primitive roots (Art. H-1 116).
Method III. By use of residues of powers of 2 (Art. 14-15d).
Art. 12, 13 contain general properties of the roots applicable to all the Methods.
10. Method I. From known fuctorisations. Every actual factorisation-complete or partial-of any of the numbers (N) shows no root (y) for each of the prime factors, or prime-power factors, found in N. 'Thus the factorisations explained in Art. 4, 5 firmish (at sight) one, or more, roots (y) of each of the primes and prime-power factors (p and p^{x}) fomb. A Congruence-T'able showing the roots (y) so found for those moduli (p and p^{κ}) can thus be started. It will, of course, be very incomplete; it does, however, yield a certain number of roots more simply than either of the other more powerful Methods described below.
11. Method in. Use of primitive roots. (g). Let g be a primitive root (>2) of the prime p, and-for shortness write

$$
\begin{equation*}
p-1=\xi, \text { so that } g^{\xi} \equiv+1, g^{4 \xi} \equiv-1(\bmod p) \text {. } \tag{9}
\end{equation*}
$$

Now, find α, β, such that

$$
\begin{equation*}
g^{\alpha} \equiv+2, g^{\beta} \equiv-2(\bmod p), \ldots,[\text { always possible }] . \tag{10}
\end{equation*}
$$

And let $y_{i} \equiv g^{x_{i}}, y_{i i} \equiv g^{x_{i i}}, y_{i i t} \equiv g^{x_{i i i}}, y_{i 0} \equiv g^{x_{i i}}(\bmod p) \ldots \ldots$ (11), where the subseripts under x, y indicate that the x, y belong to the 1 st , 2 nd , 3rd, or th of the Congruences (8) respectively: but these will be written more simply as

$$
y \equiv g^{\alpha}(\bmod p) .
$$

when the subscripts are not really required for the sake of distinction

Then the four Congruences (8) may be expressed in terms of x, α, β : and solutions (x) are thence obtained as follows-

Here m is to be an integer determined so that x may be an integer $<\xi$.

Now, it will be found that

$$
\begin{align*}
& p=8 \pi+7,3 \text { have one of } \alpha, \beta \text { odd, and one even } \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots(13 \alpha), \\
& p=8 \pi+1, \text { with }(2 / p)_{4}=+1, \text { has } \alpha=4 i, \beta=4 i^{\prime} \ldots \ldots \ldots \ldots \ldots . .(13 b) . \tag{126}
\end{align*}
$$

From this, it results that, in each of the four Congruences
m has 2 values, giving 2 values of x and y, when $p=8 w+7,3 \ldots \ldots(14 a)$, m has 4 values, giving 4 values of x and y, when $p=8 w+1$, with $(2 / p)_{4}=+1 \ldots(14 b)$, whence it follows that, in each Congruence,

Every prime $p=\delta \varpi+7,3$ has tioo roots $y(<p)$. (14c).
Every prime $p=\delta \sigma+1$, with $(2 / p)_{4}=+1$, has four roots $y(<p) \ldots(14 d)$.
The set of exponents, say $x, x^{\prime}, x^{\prime \prime}, x^{\prime \prime \prime}$, of any one Congruence (8) are quite simply comnected as follows
$p=8 w+7,3$ has only x and $x^{\prime \prime}=x+\frac{1}{2} \xi \ldots \ldots$
$p=8 w+1$, with $(2 / p)_{4}=+1$ has $x, \because^{\prime}=x^{\prime}+\frac{1}{4} \xi, x^{\prime \prime}=x+\frac{1}{2} \zeta, x^{\prime \prime \prime}=x+\frac{3}{4} \zeta \ldots(15 b)$,
so that, when one (x) has been found, the rest follow at once.
Also, in each Congruence
$y \equiv g^{x}, y^{\prime \prime} \equiv g^{x^{\prime \prime}} ;$ and $($ when $p=8 w+1) y^{\prime} \equiv g^{x^{\prime}}, y^{\prime \prime \prime} \equiv g^{x^{\prime \prime \prime}} \ldots \ldots . .(16)$.
The above process suffices for the computation of the whole of the roots (y) of each of the four Congruences (8) for every prime for which a primitive root (g) is known.

It involves of course eonsiderable labor when Tables of Residues of ! y^{x} are not available, viz.

Finding $a, \beta ; x, x^{\prime}, x^{\prime \prime}, x^{\prime \prime \prime} ;$ and Residues of $g^{x}, g^{x^{\prime}}, y^{x^{\prime \prime}}, g^{x^{\prime \prime \prime}}$.
[The tindugs of α, β trom (10) is of on a diffeult matter, involving mueh tontuinw work: that of determining $\eta \prime$ in (12) is comparatively easy: the ract of the process, viz. finding the Residues of g^{x} in (16) is a direct proeess, but is laberitus when x is large].
 the above process-described for prime moduli (p)-suffices also when the modulus is a prime power $\left(\nu^{k}\right)$. The chief changes are-

Use p^{k} instead of p; write $\xi=p^{k-1}(p-1)$ instead of $\xi=p-1$.
11b. Use of the Canon Arithmeticus. This Table gives the complete set of Residues (R) of g^{x}, and also the exponents (.i) yielding the Residues (R) for all moduli p and $p^{*} \ngtr 1000$. Hereby the required values of α, β, and the Residues of $g^{n}, g^{x^{\prime}}$. \&e., ean he picked ont at sight: so that the complete set of solutions (y) of the four (Jongruences (8) can be therehy found for all (p and p^{k}) moduli up to the limit of 1000 .
12. Comexion of roots of a Congruence. Let $y, y^{\prime}, y^{\prime \prime}, y^{\prime \prime \prime}$ denote the ronts of the same Congruence : [only $y, y^{\prime \prime}$ are real when $p=8 \pi+7,3]$.

Now, since $\pm y$ satisty the sanue Congruence, the roots of any one Congruence evidently occur in pairs, connected by the relations

$$
\begin{equation*}
y+y^{\prime \prime}=p=y^{\prime}+y^{\prime \prime \prime} . \tag{17}
\end{equation*}
$$

And since $y, y \iota-$ (where $\iota^{2}=-1$)-satisfy the same Congruence, the roots may also be arranged in pairs, connected by the relations

$$
\begin{aligned}
& y^{\prime} \equiv \eta y, y \equiv \eta^{\prime} y^{\prime} ; y^{\prime \prime \prime} \equiv \eta y^{\prime \prime}, y^{\prime \prime} \equiv \eta^{\prime} y^{\prime \prime \prime}(\bmod p) \ldots \ldots \ldots(18), \\
& \text { where } \eta, \eta^{\prime} \text { are roots of } \eta^{2}+1 \equiv 0(\bmod p) \ldots \ldots \ldots \ldots \ldots . .(19) \text {, } \\
& {\left[\text { and } \eta, \eta^{\prime} \text { are real when } p=\varepsilon+1\right] .}
\end{aligned}
$$

12u. Hence, for each Congruence, it suffices to compute one root-(say y)—by the Rule $y \equiv y^{x}(\bmod p)$ of Art. 11, and the remaining roots are then given more simply as follows:-

When $p=8 w+7,3$; the other root $y^{\prime \prime}=p-y$.
When $p=8 w+1$; one new root is $y^{\prime} \equiv n y$, and the other roots are

$$
\begin{equation*}
v^{\prime \prime}=p-y, \quad y^{\prime \prime \prime}=p-y^{\prime} . \tag{b}
\end{equation*}
$$

(Note that, when the roots (η) of $\eta^{2}+1=0(\bmod p)$ are known, it is usually much eatier to compute the Residue of $y^{\prime}=n y$, than that of $\left.y^{\prime} \equiv y^{x^{\prime}}(\bmod p) \cdot\right]$
13. Connexion of different Congruences. The four Cougruences (8) may be arranged in pairs in two ways, modulo p.
(1) Reciprocal Congrvences, $\left(X_{i} \equiv 0, X_{i i} \equiv 0\right),\left(N_{i i} \equiv 0, N_{i v} \equiv 0\right)$.
(2) Conjugate Congrusnees, $\left(\lambda_{i} \equiv 0, N_{i i} \equiv 0\right), \quad\left(N_{i i} \equiv 0, N_{i v} \equiv 0\right)$.

The roots of the four Congruences are denoted by $y_{i}, y_{i i}$ $y_{\text {iii }} y_{i v}$, as in Art. 2.

13a. Reciprocal Congruences. One of each of the roots $y_{i}, y_{i i i}$ may be paired together, and one of each of the roots $y_{i i} y_{i r}$ may be paired together, each pair in such a way that

$$
\begin{equation*}
y_{i} y_{i u} \equiv \pm 1 \text {, and } y_{i z} y_{i v} \equiv \pm 1(\bmod p) \text {. } \tag{21}
\end{equation*}
$$

so that these form reciprocal pairs modulo p; and the Congruences to which they belong may for this reasom be styled Reciprocal.
[Note that $y_{i}^{\prime}, y_{i i}$ exist for $p=8 w+7 ; y_{i i}^{\prime}, y_{i v}$ exist for $p=8 w+3 \ldots(21 a)$, and that $y_{i}, y_{i i i} ; y_{i i}, y_{i v}$ exist for $p=8 w+1$, with $(2 / p)_{ \pm}=+1 \ldots(21 b)$.

13b. Conjugate Congruences $[p=8 \pi+1]$.

$$
\text { Since } y_{i i}{ }^{4} \equiv-y_{i}^{4}, \text { and } y_{i i^{4}} \equiv-y_{i i i}{ }^{4}(\bmod p) \ldots \ldots \ldots \ldots \ldots(22),
$$

it is clear that the roots may be paired in such a way that

$$
\begin{align*}
& y_{i i} \equiv \zeta_{y}, y_{i} \equiv \zeta^{\prime} y_{i i} ; \quad y_{i v} \equiv \zeta_{y} y_{i i}, y_{i i i} \equiv \zeta^{\prime} y_{i v}(\bmod p) \ldots \ldots(22 a) \text {, } \\
& \zeta, \zeta^{\prime} \text { are roots of } \zeta^{4}+1 \equiv 0(\bmod p) \text {. } \tag{23}
\end{align*}
$$

where
[The roots ζ, ζ^{\prime} are real when $p=8 a+1$].
13c. Use of above (for computing). By these properties the labor of finding the complete set of roots of the four Congruences (8) may be mach reduced. It will suffice to find one root of only one of the four Congruences (8) by the Rule of $y \equiv g^{x}(\bmod p)$ of Art. 11. One root of each of the other Congriences (8) may then be found by the use of Rules $(21),(22 a)$. The other roots of each of the Congruences may then be found from the single known root of each by the Rules of Art. $12 a$.
[The solution of (21), (22a) is usually less labarious than the calculations of the Residue $y \equiv g^{x}$. To use Rive $(2-a)$ the solutions of $\zeta^{4}+1 \equiv 0(\bmod p$ nust of course be known.]
14. Method iII. Use of Residues of 2^{x}.

It will here be shown that one root (y) of each of two of the four Congruences (8) may be found from the Residues of
f19 1.1.-C'ol. C'unninyluem, Fiactorisation of $N^{\top}=\left(y^{4} \mp 2, \mathcal{C}^{\prime}, 2 y^{4} \mp 1\right)$.
The powers of 2 (i.e. from $\xrightarrow{2}^{x}$), whenever the Hanpt-Exponent* say $\underbrace{-}$) of 2 is either an odd number, or twice an odd mmber.

This condition $(\xi=\omega$ or 2ω) always oceurs when $p=\delta w+7$ or 3 , and also necurs usually-(but not allways, when $p=8$ w +1 with $(2 / p)_{s}=+1$.]

Four Cases must be distinguished.

$$
\text { ('use (1). } \quad=1 x-1 \text {; (2). } \xi=4 x+1 \text {; (3). } \frac{1}{2} \xi=4 x-1 \text {; (4). } \frac{1}{2} \xi=4 x+1 \text {. }
$$

Cuse (1). $\quad \xi=4 . x-1$.
Take $\quad y_{i} \equiv 2^{x_{i}}(\bmod p)$, where $x_{i}=x=\frac{1}{4}(\xi+1) \ldots \ldots \ldots \ldots \ldots \ldots . .(24 a)$,
and $\quad y_{i i}=2^{x_{i i i}}(\bmod p)$, where $x_{i i i}=\xi-x_{i}=\frac{1}{4}(3 \xi-1) \ldots \ldots \ldots \ldots . .(246)$.
Then $\quad V_{i}=y_{i}{ }^{4}-2$ 二 $2^{1 x_{i}}-2 \equiv 2\left(2^{\xi}-1\right) \equiv 0(\bmod p) \ldots \ldots \ldots \ldots . .(25 a)$,

$$
\begin{equation*}
x_{i i i}=2 y_{i i i}-1=2^{1 r_{i i i}+1}-1=2^{3 \epsilon}-1 \equiv 0(\bmod p) \tag{25b}
\end{equation*}
$$

('ise (2). $\xi=4 x+1$.
Take $\quad y_{i i i}=2^{i r_{i i i}}(\bmod p)$, where $x_{i i i}=x=\frac{1}{4}(\xi-1)$

$$
(26 a)
$$

and

$$
y_{i} \equiv 2^{x_{i}}(\bmod p) \text {, where } x_{i}=\xi-x=\frac{1}{4}(3 \xi+1) .
$$

$$
\begin{align*}
\Lambda_{i i i} & =2 y_{i i i}^{4}-1 \equiv 2^{4 x_{i i i} i^{+1}}-1=2^{5}-1 \equiv 0(\bmod p) \ldots \ldots \ldots(27 a), \\
N_{i} & =y_{i}{ }^{4}-2 \equiv 2^{4 x_{i}}-2=2\left(2^{35}-1\right) \equiv 0(\bmod p) \ldots \ldots \ldots \ldots(27 b) . \tag{276}
\end{align*}
$$

It is seen that in both Cases $1^{\circ}, 2^{\circ}$,

$$
\begin{equation*}
x_{i}+x_{i i i}=\xi \text {, and } y_{i} y_{i i i} \equiv+1(\bmod p) . \tag{28}
\end{equation*}
$$

Cuse (3). $\frac{1}{2} \xi=4, c-1$.
Take $\quad y_{i i}=2^{x_{i i}(\bmod p) \text {, where } x_{i i}=x=\frac{1}{4}\left(\frac{1}{2} \xi+1\right) \text {. } ~}$ (29a),
and

$$
\begin{equation*}
y_{i v}=2^{x_{i v}}(\bmod p), \text { where } x_{i v}=\frac{1}{2} \xi-x=\frac{1}{4}\left(\frac{3}{2} \xi-1\right) \text {. } \tag{29b}
\end{equation*}
$$

Then

$$
x_{i i}=y_{i i^{4}}+2=2^{3 x_{i i}}+2=2\left(2^{\frac{3 \xi}{2}}+1\right) \equiv 0(\bmod p)
$$ (30a),

and

$$
x_{i v}=2 y_{i v}{ }^{4}+1=2^{4 x_{i v}{ }^{+1}}+1=2^{3 \cdot \frac{1}{2} \xi}+1 \equiv 0(\bmod p)
$$

Cuse (4). $\quad \frac{1}{2} \xi=4 x+1$.
Take $\quad y_{i v}=2^{x i v}(\bmod p)$, where $x_{i v}=x=\frac{1}{4}\left(\frac{1}{2} \xi-1\right) \ldots \ldots \ldots \ldots(31 a)$,
and $\quad y_{i i}=2^{x_{i i}}(\bmod p)$, where $x_{i i}=\frac{1}{2} \xi-x=\frac{1}{4}\left(\frac{3}{2} \xi+1\right) \ldots \ldots \ldots .(3 \mid b)$.
Then $\quad \gamma_{i v}=2 y_{i \nu}{ }^{4}+1=2^{4 x_{i v}{ }^{+1}}+1=2^{\frac{1 \xi}{5}}+1 \equiv 0(\bmod p) \ldots \ldots \ldots \ldots(32 a)$,
and $\quad y_{i i}=y_{i i^{4}}+2=2^{4 r_{i i}}+2=2\left(2^{3+45}+1\right) \equiv 0(\bmod p) \ldots \ldots \ldots .(32 b)$.
And, it is seen that in both Cases (2), (4),

$$
\begin{equation*}
x_{i i}+x_{i v}=\frac{1}{2} \check{c}, y_{i i} y_{i v} \equiv-1(\bmod p) . . \tag{33}
\end{equation*}
$$

Thus it has been shown that, whenever the HanptExponent (ξ) of 2 is $\xi=\omega$ or 2ω, the Residues of 2^{x} suffice to give one root (y) of each of two out the fom Congruences (8), viz. of the Reciprocal Congruences (Art. 13a),

$$
\text { i.e. of } \lambda_{i} \equiv 0, \lambda_{i i i} \equiv 0 ; \text { or of } \lambda_{i i} \equiv 0, \lambda_{i v} \equiv 0
$$

[^13]14a. Completion of Solutions. One root of each of two Reciprocal Congruences having been found by the above Rules of Art. 14, a single root of each of the Congruences conjugate to that pair may be found by Rule ($22 a$) of Art. $13 b$ (when $p=8 \pi+1$).

Otherwise, it really suffices to find one root of any one of the form Congruences (8) by these Rules (of Art. 14). After which one root of each of the other Congruences may be found by the Rules of Art. $13 a, b$ combined.

The remaining roots of each of the Congruences may then be found by the Rules of Art. 13c).
[Note that when one root of any one Congruence has been found by the Rules of Art. 14, the calculation of the reciprocal root by the solution of (21) of Art. $13 a$ is usually less laborivus than by the Rules of Art. 14].
143. Use of the Binary-Canon. This Trable gives \{the complete set of Residnes (R) of 2^{x}, and also the exponents (x) yielding the Residues (R) for all moduli p and $p^{k} \neq 1000$. Herehy the required Residues of 2^{2} of the formulæ of Art. 14 can be picked out at sight: thus giving (at sight) one root of each of two Reciprocal Congruences for every prime $p \ngtr 1000$ which has $\xi=\omega$ or $\varrho \omega$.

14c. Fuiling Cases. There is a limited class of divisors $p=8 \sigma+1$, with $(2 / p)_{4}=+1$, in which the above process fails, viz. when $\xi=4 . x$. In these cases-(which are few" in number-the roots (y) of the four Congruences are not congruent to any power of 2 , so that the process fails.
15. Contrast of Methods it., III. Up to the limit of p and $p^{\kappa} \ngtr 1000$, the Canon Arithmeticus gives all the results required by the formula of Art. 11 [i.e. all the roots of all the Congruences (8)] with so little trouble that Method II. is to be preferred (as the Binary Canon gives only one root of each of two Reciprocal Congrinences).

When, however p or $p^{x}>1000$, the use of the powers of 2 -(by Method III.) - has considerable alvantages (when the Hanpt-Kxponent (ξ) of 2 is $\xi=\omega$ or 2ω), viz.
(1) A primitive root (y) is not needed.
(2) The solution of $g^{x} \equiv \pm 2$ is unnecessary.
(3) The value of x is given explicitly by the formule of Art. 14.
(4) The final reduction of y as the Residue of 2^{x} is usually far easier than that of $g^{2}:-[g$ is often an inconvenient base $]$.

[^14]16. Tubles availuble for Method 1ri. 'This Method (by use of Residues of 2^{x}) is greatly facilitated by the use of suitable T'ables:

The following data are required :-
(1) Haupt-Exponents (ξ) of 2 , modulo p.
(2) Solutions (η) of $\eta^{2}+1 \equiv 0(\bmod p)$.
(3) Solutions (ζ) of $\varsigma^{4}+1 \equiv 0(\bmod p)$.

It will he useful to show how far 'Tables are now available (or likely to be availahle shorty) for the above.

16ヶ. Hunpt-Erponents (ξ) of 2.

The values of these (ξ) have been computed* for all primes p up to the limit $p>100000$, and are being published in a series of Papers in the Quarterly Jonrnal of I'ure and Applied Mathematies in the form of 'Tables of the values-(not of ξ, but)-of p the reciprocal of ξ; i.e. of $\nu=(p-1) \div \xi$, whence the value of ξ can be at once deduced as $\xi=(p-1) \div \nu$.

16%. Solutions (η) of $\eta^{2}+1 \equiv 0(\bmod p)$.
These ean be obtained from the $2^{\text {ic }}$ partition $p=\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right)$ by reduction of the formulæ-

$$
\begin{equation*}
\eta \equiv \pm(\mathrm{a} \pm m p) / \mathrm{b}, \text { or } \equiv \mp(\mathrm{b} \pm m p) / \mathrm{a},(\bmod p) . \tag{34}
\end{equation*}
$$

where the value of m is to be determined so that η may be an integer.
A 'rable of the values ot (a, b) for all primes $p=4 w+1 \ngtr 11^{5}$ is given in the authos's 'Tables of Quadratic Partitions. \dagger

A Table of the actual roots (η) of $\eta^{2}+1 \equiv 0\left(\bmod p\right.$ and $\left.p^{\kappa}\right)$ up to p and $p^{\kappa}>10^{5}$ has been prepared by the author, and is in course of publication.

16c. Solutions (ζ) of $\zeta^{4}+1 \equiv 0$ (mp).

These can be obtained from the $2^{\text {ic }}$ partitions $p=\mathrm{a}^{2}+\mathrm{b}^{2}=\mathrm{c}^{2}+2 \mathrm{~d}^{2}$ by the reduction of either of the following formule (in which the sets of \pm signs, being independent, give four roots), viz.

$$
\begin{equation*}
\zeta \equiv \pm \frac{\mathrm{d} \pm m p}{\mathrm{c}}(\eta \pm 1), \text { or } \equiv \mp \frac{\mathrm{e} \pm m p}{2 \mathrm{~d}} \cdot(\eta \pm 1), \equiv 0,(\bmod p) . \tag{35}
\end{equation*}
$$

where η is a root of $\eta^{2}+1 \equiv 0,(\bmod p), \ldots,[$ see Art. 16b],
and the value of m is to be determined so that ζ may be an integer.
A l'able of the values of (a, b), (e, d) for all primes $p=8 a+1 \ngtr 1 u^{5}$ is given in the author's Table of Quadratic Partitions \dagger

A Table of the actull roots (ζ) of $\zeta^{1}+1 \equiv 0\left(\bmod p\right.$ and $\left.p^{\kappa}\right)$ up to p and $\mu^{\prime \prime}>5.10^{4}$ has been prepared by the anthor and is in course of publication.

[^15]
167. Binary Canon Ertension.

This is a Table* showing the Residues (both $\pm R$) of 2^{x} up to $x=100$ for all p and $p^{k} \ngtr 10^{4}$; and up to $x=36$ for all p and $p^{k} \ngtr 12000$. Thus this gives at sight the Residues y of 2^{x} required by the formulæ of Art. 14 up to $p>10^{ \pm}$.
17. Allied-Forms (N, \mathbb{N}). Take a new set of forms

$$
\mathbf{N}_{i}=8 Y_{i}^{4}-\mathbf{1}, \quad \mathrm{N}_{i i}=8 Y_{i i}{ }^{4}+\mathbf{1} ; \quad \mathrm{N}_{i i i}=Y_{i i i}{ }^{4}-8, \quad \mathrm{~N}_{i v}=Y_{i v}{ }^{4}+8 \ldots . .(36),
$$

and let their bases Y be connected with the bases $\left(y^{\prime}\right)$ of the other set of forms (N) by the relations

$$
y_{i}=2 Y_{i}, \quad y_{i i}=2 Y_{i i} ; \quad Y_{i i i}=2 y_{i i i}, \quad Y_{i v}=2 y_{i v} \ldots \ldots \ldots \ldots \ldots .(37) .
$$

Hereby the two sets (N, N) are commected thas

$$
N_{i}=2 \mathrm{~N}_{i}, \quad N_{i i}=2 \mathrm{~N}_{i i} ; \quad \mathrm{N}_{i i i}=2 \mathrm{~N}_{i i i}, \quad \mathrm{~N}_{i v}=2 N_{i v} \ldots \ldots \ldots \ldots(38) .
$$

Hence the solutions (y) of the four Congruences (8) of Art. 9 suffice to give also the solutions (Y) of the four new Congruences

$$
\mathrm{N}_{i}=0, \quad \mathrm{~N}_{i i} \equiv 0, \quad \mathrm{~N}_{i i i}=0, \quad \mathrm{~N}_{i v} \equiv 0\left(\bmod p \text { or } p^{\kappa}\right) \ldots \ldots \ldots(39),
$$

by the simple relation (37) ; so that the Trables (I., II.) at end of this Paper of solutions (y) of the Congruences (8) can be easily used as a 'Table of solutions (Y) of the allied Congruences (37).

Also by the relations (38) the factorisation of either set (N or N) suffices to give that of other set $(\mathrm{N}$ or $N)$.
18. The rest of this Paper deals chiefly (Art. 19-27) with various properties of the four numbers of type N, as follows:

Common factors,	Art.	19	Form $I^{\mu} \mp 1$,	Art. 24	
Square forms,	,	20	Trinomial forms,	,	25
Dimorphism,	$"$	21	Isomorph Products,	,	26
Equality,	,$"$	$21 a$	Problem,	,	27
Dimorph sums,	",	22	Octavan forms,	$"$	28
Factorisable sums, ",	23	General forms,	,	29	

and ends with explanation (Art. 30) of the various Factori-sation-'Tables at end of the Paper.
19. Common Factors. Since $\alpha<\xi$, and $\beta<\xi$, and also $\alpha \neq \zeta$ (in Art. 11), it follows from (12) that no two of $x_{i}, x_{i i}$, $x_{i i i}, x_{i v}$, can be equal for the same p, and therefore also-

No two of $y_{i}, y_{i b}, y_{i i i}, y_{i v}$, can be equal for the same p \qquad (40a).

[^16]Hence also-
No two of $X_{i}, \lambda_{i i}, \lambda_{i i i}, \lambda_{i v}$, formed with the same y, can contain any common factor >3.
20. Square Forms. Since $y^{4} \sim z^{2}$ cannot $=2$, it is elear that

$$
N_{i}^{\prime} \text { and } N_{i i}^{\prime} \text { cannot }=\square
$$

Next, let $\left(\tau_{r}{ }^{\prime}, v_{r}{ }^{\prime}\right)$, and $\left(\tau_{r}, v_{r}\right)$ be the $r^{\text {th }}$ of the successive solutions of

$$
\tau^{\prime \prime}-2 v^{\prime \prime}=-1, \quad \tau^{2}-2 v^{2}=+1 ;[r=1,2,3, \& \mathrm{c} .] .
$$

Then $N_{i i i}=2 y_{i i i}{ }^{4}-1=\tau^{\prime 2}$ requires $\tau^{\prime 2}-2\left(y_{i i i}{ }^{3}\right)^{2}=-1$,
so that ($\tau^{\prime}, y_{i i i}^{\prime}{ }^{2}$) must be a solution of $\tau^{\prime 2}-2 v^{\prime 2}=-1,\left[v_{r}^{\prime}=y_{i i i}{ }^{2}\right]$.
Here $r^{\prime}=239, v^{\prime}=169=13^{3}$ gives the only known solution, viz.

$$
y_{i i i}=13, \quad N_{i i i}=2.13^{4}-1=239^{2} .
$$

If any other solution exist, it must be in very high numbers, $\left[r>39\right.$ giving $\left.y>10^{14}\right]$.

Also $N_{i v}=2 y_{i v}{ }^{4}-1$ requires $\tau^{2}-2\left(y_{i v}{ }^{2}\right)^{2}=+1$, so that

$$
\left(\tau, y_{i v}{ }^{2}\right) \text { must be a solution of } \tau^{2}-2 y^{2}=+1,\left[\nu_{r}=y_{i v}{ }^{2}\right] \text {. }
$$

But it is known that

$$
v_{2 r-1}=2 \tau_{r} r^{\prime} v_{r}^{\prime} \text { always, and } v_{2 r}=2 \tau_{r} v_{r} \text { always. }
$$

Now $\tau_{r}{ }^{\prime}, v_{r}{ }^{\prime}$ are always odd, and τ_{r}, v_{r} are always mutually prime, so that neither $v_{2 r-1}, v_{2 r}$ can $=\square$: hence no v_{r} can $=\square$. Thus, finally

$$
\begin{equation*}
N_{i v} \text { cannot }=\square \tag{41c}
\end{equation*}
$$

It may be noted also that

$$
\begin{align*}
& X_{i}+\lambda_{i i}=y_{i}{ }^{4}+y_{i i}{ }^{4}, \quad \frac{1}{2}\left(\lambda_{i i i}+N_{i v}\right)=y_{i i i}{ }^{4}+y_{i v}{ }^{4} \tag{424}\\
& N_{i}^{\top} \sim 2 x_{i i i}=y_{i}{ }^{4} \sim 4 y_{i i i}{ }^{4}, \quad x_{i i} \sim 2 \lambda_{i v}^{\prime}=y_{i i}{ }^{4} \sim 4 y_{i v}{ }^{4} \tag{42b}\\
& X_{i}+2 X_{i v}=y_{i}{ }^{4}+4 y_{i n}{ }^{4}, \quad N_{i i}+2 X_{i i i}=y_{i i}{ }^{4}+4 y_{i i i}{ }^{4} \tag{t2c}
\end{align*}
$$

As it is known that none of the six dexters of Results can be square forms, it follows that

$$
\begin{equation*}
\text { None of the six sinisters of }(42 a, b, c) \text { case }=\square \tag{42}
\end{equation*}
$$

21. Dimorphism impossible. It is easily seen that

$$
\begin{equation*}
N_{i}=N_{i}^{\prime}, \quad N_{i i}^{\prime}=N_{i i}^{\prime}, \quad N_{i i i}^{\prime}=N_{i i i^{\prime}}^{\prime}, \quad N_{i v}=N_{i v}^{\prime} . \tag{43}
\end{equation*}
$$

are impossible (except with $y=y^{\prime}$ in each case).

21a. Equality of different types. It is easily seen that

$$
\begin{aligned}
& x_{i}=N_{i i}^{\prime} \text { involves } y_{i}{ }^{4}-y_{i i}{ }^{4}=+4 \\
& x_{i i i}=x_{i v} \text { involves } y_{i i i}{ }^{4}-y_{i v}{ }^{4}=+1 \\
& \nu_{i}=N_{i i i} \text { involves } y_{i}{ }^{4}-2 y_{i i i}{ }^{4}=+1 \\
& N_{i i}=N_{i v} \text { involves } y_{i i}{ }^{4}-2 y_{i v}{ }^{4}=-1 \\
& \text { which are all impossible...(44). } \\
& x_{i}-N_{i v} \text { involves } y_{i}{ }^{\prime}-2 y_{i r}{ }^{\prime}-+3 \\
& X_{i i}-x_{i i i} \text { involves } y_{i i}-2 y_{i i i^{t}}=-3
\end{aligned}
$$

Hence it follows that-
The same number N cannot be expressed in two different types..(44a).
22. Dimorph Sums of N. Let $\mathrm{a}_{r}, \mathrm{~b}_{r}, \mathrm{c}_{r}, \mathrm{~d}_{r}$ denote the roots (y) of four (different) numbers $A_{r}, B_{r}, \mathcal{C}_{r}, D_{r}$ of same type $\left(N_{r}\right),[r=i, i i, i i i, i v$.

Then

$$
\begin{aligned}
& \mathrm{a}_{r^{4}}+\mathrm{b}_{r}^{4}=\mathrm{c}_{r}^{4}+\mathrm{d}_{r}{ }^{\text {involve }} A_{r}+B_{r}=C_{r}+D_{r}[r=i, i i, i i i, i v] \ldots(45 a), \\
& \mathrm{a}_{i^{4}}+\mathrm{b}_{i i^{4}}=\mathrm{c}_{i i i}{ }^{4}+\mathrm{d}_{i v}{ }^{4} \text { invelve } A_{i}+B_{i i}=\frac{1}{2}\left(C_{i i i}+D_{i v}\right) \ldots \ldots \ldots \ldots \ldots .(45 b), \ldots \ldots . .
\end{aligned}
$$

so that everr solution of $a^{4}+b^{4}=c^{4}+d^{4}$ in integers gives a solution of ($45 a, b$).
[This equation was solved by Euler, see Comment-Arithm., Vol. i., pp. 473-476, \&c. A Table of the solutions was given in the author's Paper on Diophantine Factorisation of Quartans in the Messenger of Mathematics, Vol. xxxvili., 1908, p. 86. The lowest solution known is $\left.134^{4}+133^{4}=59^{4}+158^{4}.\right]$
23. Fuctorisable Sums of N. Since, for the same modulus ($p=8 \pi+1$)-sce Art. 13, Result (22),

$$
y_{i}{ }^{4}+y_{i i^{4}} \equiv 0 \text {, and } y_{i i i^{4}}+y_{i r}{ }^{4} \equiv 0(\bmod p) \text {, alvays. }
$$

These give at once the pairs $\left(N_{i}, N_{i i}\right),\left(N_{i i}, N_{i v}\right)$, such that

$$
\begin{equation*}
N_{i}+N_{i i} \equiv 0, \text { and } N_{i i i}+N_{i v} \equiv 0(\bmod p) . \tag{2}
\end{equation*}
$$

And, since each such prime p has four roots (y) of each kind ($y_{i}, y_{i i}, y_{i i i}, y_{i r}$), all satisfying the congruences (8), and all $<p$, it follows that 16 different solutions of each of the congruences (46) exist for each such prime (p) with every root $y<p$.
[Cor. The Tables (I., II.) of Solutions of the fonr congruences (8), given at end of this Paper, supply 32 solutions (a, b) of the congruence

$$
\mathrm{a}^{4}+\mathrm{b}^{4} \equiv 0(\bmod p=8 \mathrm{w}+1),[\mathrm{a} \& \mathrm{~b}<p],
$$

for all primes $p=8 w+\mathbf{i}<1000$ with $(2 / p)_{3}=1$: thus this 'Table suffices to show factors (>1000) of the Quartans $N=\mathrm{a}^{4}+\mathrm{b}^{4}$; it is, however, not exhaustive up to that limit as it includes only primes (\hat{p}) such that $\left.(2 \mid p)_{4}=+1.\right]$

46 Lt.-Col. Cumningham, Factorisation of $N^{\gamma}=\left(y^{4} \mp 2\right) \oint^{\prime}\left(2 y^{4} \mp 1\right)$.
24. Form N or $\frac{1}{2} N=\left(Y^{\mu} \mp 1\right)$.
'Take $\quad y=2^{\lambda} \cdot \eta^{\prime \prime}$, with μ odd $\ldots(47 u)$.
And, take $\quad \lambda=\frac{1}{4}(k \mu \mp 1)$, so that $4 \lambda \pm 1=k \mu \ldots \ldots(47 b)$, where k is determined so that λ may be an integer (always possible).

Write $Y=2^{k} \cdot \eta^{4}$, and note that $y^{4}=2^{k \mu \neq 1} \cdot \eta^{\mu} \ldots \ldots(47 c)$.
I. Let $\lambda=\frac{1}{4}(k \mu+1)$; then-

$$
\text { i. } \quad N_{i}=y^{4}-2=2\left\{\left(2^{k} \eta^{4}\right)^{\mu}-1\right\} ; \quad \frac{1}{2} N_{i}=Y^{\mu}-1 \ldots \ldots \ldots \ldots \ldots . .(48 a) \text {, }
$$

$$
\begin{equation*}
\text { ii. } X_{i i}=y^{4}+2=2\left\{\left(2^{k} \eta^{4}\right)^{\mu}+1\right\} \text {; 合 } x_{i i}=Y^{\mu}+1 \text {. } \tag{48b}
\end{equation*}
$$

II. Let $\lambda=\frac{1}{4}(k \mu-1)$; then-
iii. $N_{\text {iii }}=2\left(2^{2^{\mu-1}} \cdot \eta^{4} \mu\right)-1=\left(2^{k} \eta^{4}\right)^{\mu}-1=Y^{\mu}-1$.
(48c),
iv. $N_{i,}=2\left(2^{k \mu-1} \cdot \eta^{\mu \mu}\right)+1=\left(2^{k} \eta^{1}\right)^{\mu}+1=Y^{\mu}+1$
(48d).
Thus it has been shown that
$\frac{1}{2} N$ or $N=\left(Y^{\mu \mu} \mp 1\right)$, whenever $y=2^{\frac{1}{4}\left(\kappa^{\mu} \mp 1\right)} \cdot \eta^{\mu}$
(49).

And, since μ is ord, each of the above forms of N is composite, and has $(Y \mp 1)$ as an algebraic divisor: and, if μ be a product of odd primes, then $p\left(Y^{u} \mp 1\right)$ will have several such algebraic divisors.

This form $\frac{1}{2} N$ or $N=\left(Y^{\mu}-1\right)$ is of some importance as regards factorisability, as the procedure for its factorisation is well known. Unfortunately the values of y increase rapidly in magnitude as $\mu=3,5,7$, \&e., increases.

Ex. Subjoined is a short Table showing the bases $y=2^{\lambda} \eta^{\prime \prime}$ of the factorisable N arising from small values of $\mu=3,5,7, \ldots$, and the auxiliary bases $Y=2^{k} \eta^{4}$ useful in factorising N. It will be noted that
$Y>y$, when $\mu=3 ; \quad Y<y$, when $\mu>3$
(50).

8	$\underset{\substack{\mu, k, \lambda \\ \eta ; y \\ Y}}{ }$	$\begin{gathered} 3,3,2 \\ 3 ; 108 \\ 648 \end{gathered}$	$\begin{aligned} & 3,3,2 \\ & 5 ; 500 \\ & 5000 \end{aligned}$	$\begin{gathered} 3,3,2 \\ 7 ;{ }_{c}^{137^{3}} \\ 2^{3} \cdot 7^{4} \end{gathered}$	$\begin{gathered} 3,3,2 \\ 9 ; 2916 \\ 2^{3} .9^{4} \end{gathered}$	$\begin{gathered} 3,3,2 \\ 11 ; 53^{2} \\ 2^{3} .1 I^{4} \end{gathered}$	
-	μ, k, λ $\eta ; y$ Y	$\begin{aligned} & 3,7 \cdot i \\ & 3 ; 864 \\ & 2^{7} \cdot 3^{4} \end{aligned}$	$\begin{gathered} 3,7,5 \\ 5 ; 4000 \\ 2^{7} \cdot 5^{4} \end{gathered}$	3, 11, 8 3; 6912 $2^{11} \cdot 3^{4}$	$\begin{gathered} 5,1,1 \\ 3 ; 486 \\ 162 \end{gathered}$	$\begin{gathered} 5,1,1 \\ 5 ; 6250 \\ 2.5^{4} \end{gathered}$	
\therefore	$\begin{gathered} \mu, k, \lambda \\ \eta ; y^{\prime} \\ Y \end{gathered}$	$\begin{gathered} 3,1,1 \\ 3 ; 54 \\ 162 \end{gathered}$	$\begin{gathered} 3,1,1 \\ 5 ; 250 \\ 1250 \end{gathered}$	$\begin{gathered} 3,1,1 \\ 7 ; 686 \\ 4 \mathrm{So2} \end{gathered}$	$\begin{gathered} 3,1,1 \\ 9 ; 145^{4} \\ 2.9^{4} \end{gathered}$	$\begin{gathered} 3,1,1 \\ 11 ; 2662 \\ 2.11^{4} \end{gathered}$	
$\stackrel{-1}{1}$	$\begin{gathered} \mu, k, \lambda \\ \eta ; y \\ \boldsymbol{Y} \end{gathered}$	$\begin{array}{r} 3,5,4 \\ 3 ; 43^{2} \\ 2^{5} \cdot 3^{4} \end{array}$	$\begin{gathered} 3,5,4 \\ 5 ; 2000 \\ 2^{5} \cdot 5^{4} \end{gathered}$	$\begin{gathered} 3,5,4 \\ 7 ; 5488 \\ 2^{5} \cdot 7^{4} \end{gathered}$	$\begin{gathered} 3,9,7 \\ 3 ; 345^{6} \\ 2^{9} \cdot 3^{4} \end{gathered}$	$\begin{gathered} 5,3,4 \\ 3 ; 33888 \\ 648 \end{gathered}$	$\begin{gathered} 7,1,2 \\ 3 ; 874^{8} \\ 162 \end{gathered}$

[^17]25. Tirinomial Forms. By aid of the relations
$$
2=3-1 ; 2^{3}=3^{2}-1 ; 2^{3}=7+1 ;
$$
it is possible to express some of the numbers N or $\frac{1}{2} N$ in the trinomial forms
$$
\frac{1}{2} N \text { or } N=Y^{n^{\prime}} \mp Y^{n} \mp 1 \text {, where } Y=3 \text { or } 7, n=4 m \text {. }
$$

Thus-

$$
\begin{aligned}
& y=3^{m} \quad \text { gives } \quad N_{i i}^{-}=2.3^{4 m}-1=3^{4 m+1}-3^{4 m}-1 \ldots \ldots \ldots \ldots \ldots . .(50 a) \text {, } \\
& x_{i v}=2.3^{4 m}+1=3^{4 m+1}-3^{4 n}+1 \\
& \text {................(50b), } \\
& y=2.3^{m} \text { gives } \frac{1}{2} x_{i}^{r}=8.3^{1 m}-1=3^{4 m+2}-3^{4 m}-1 \ldots \ldots \ldots \ldots \ldots . .(50 c) \text {, } \\
& \frac{1}{2} N_{i i}=8.3^{3 m}+1=3^{4 m+2}-3^{4 n n}+1 \ldots \ldots \ldots \ldots \ldots(50 d) \text {, } \\
& y=2.7^{m} \text { gives } \frac{1}{2} V_{i}=8.7^{4 m}-1=7^{4 m+1}+7^{t m}-1 \ldots \ldots \ldots \ldots \ldots . .(50 e) \text {. } \\
& \frac{1}{2} N_{i i}=8.7^{t m}+1=7^{4 m+1}+7^{4 m}+1 \ldots \ldots \ldots \ldots \ldots . .(50 f) .
\end{aligned}
$$

25a. Use of Canons of Residues of Y^{x}.

The author has compiled extensive Tables (at present in MS.) showing the Residues (say $\pm R$) of Y^{x} moduli p and p^{κ} for the small bases $Y=3,5,7,11$ for the range of powers $x=1$ to 24 , and of moduli p and $p^{\kappa}=\ngtr 10000$.

With these Tables it is easy to pick out at sight the divisors p and $p^{\kappa} \ngtr 10^{4}$ of $N=\left(y^{4} \mp 2\right)$, where $y=Y^{n}$. And, it is easy also in the case of $N=\left(2 y^{4} \mp 1\right)$, because

$$
N=2 y^{4} \mp 1=Y^{4 m}-\left(-Y^{4 m}\right) \mp 1,
$$

and the Tables give side by side the values of R, and $(p-R)$ or $\left(p^{\kappa}-R\right)$, when R is the + Residue of $Y^{4 m}\left(\bmod p\right.$ or $\left.p^{\kappa}\right)$.

The divisors of the trinomial forms of Art. 25 can also be picked out at sight from these Tables.
26. Isomorph Product. The question arises whether the product N_{r} of two numbers L_{r}, M_{r} of the same type as N_{r}, or the product of their halves $\frac{1}{2} L_{r}, \frac{1}{2} M_{r}$, can be a number isomorph (i.e. of same type) with them, i.e.

$$
\begin{equation*}
\text { Can } L_{r}, M_{r}=N_{r} \text { or } \frac{1}{2} L_{r} \frac{1}{2} M I_{r}=\frac{1}{2} N_{r},[r=i, i i, i i i, i v] \text { ? } \tag{51}
\end{equation*}
$$

It does not seem easy to settle this question completely. It may, however, be shown to be impossible when L_{r}, M_{r} are both prime (if $M_{r}>L_{r}>1$). This is a special case of the following Theorem, so that its proof is included therein.

26a. Valroff's* Theorem.
"If $\left(2 x^{2} \pm 1\right)\left(2 y^{2} \pm 1\right)=2 z^{2} \pm 1$, [all signs + , or all -], then one of the factors is aloays composite (except when x or $y=1$, or $x=y$).".........(52).

[^18]The two cases with the signs all + , or all - , require separate treatment.

Case 1. (with + signs). For shortness, write

$$
\begin{equation*}
L=2 x^{4}+1, \quad M=2 y^{3}+1, \quad N=2 z^{2}+1, \quad L M=N . \tag{53}
\end{equation*}
$$

Aud. if possible, let L, M be both prime: in this case the above forms of L, M are both mique.

Here

$$
\begin{equation*}
L M=2 U^{2}+7^{\prime 2} . \tag{54}
\end{equation*}
$$

where

$$
\begin{equation*}
T^{\prime}=2 x y \mp 1, \quad U=x \pm y . \tag{54a}
\end{equation*}
$$

And, it is at once seen that

$$
\begin{equation*}
T= \pm 1 \text { is impossible, except when } x y=0 \text {, or } x=y=1 \text {. } \tag{55}
\end{equation*}
$$

This proves the Theorem for the + signs.
Case II. (with - sigus). For shortness, write

$$
\begin{equation*}
L=2 x^{2}-1, \quad M=2 y^{2}-1, \quad N=2 z^{2}-1, \quad L M=N . \tag{5.5}
\end{equation*}
$$

and, if possible, let L, M he both prime.
And, tet $\left(\tau_{1}{ }^{\prime}, v_{1}{ }^{\prime}\right),\left(\tau_{2}{ }^{\prime}, v_{2}{ }^{\prime}\right), \ldots,\left(\tau_{\rho}{ }^{\prime}, v_{\rho}{ }^{\prime}\right)$ be the successive solutions of the "lunit-firm"

$$
\tau^{\prime 2}-2 v^{\prime 2}=-1 \ldots \ldots \ldots \ldots \ldots \ldots \ldots(56)
$$

Now, since M is prime, it can be expressed in only one way in the intinite series of forms

$$
M=t_{1}^{2}-2 u_{1}^{2}=t_{2}^{2}-2 u_{2}^{2}=\ldots=t_{\rho}^{2}-2 u_{\rho}^{2} \ldots \ldots(57),
$$

and each pair $\left(t_{\rho}, u_{\rho}\right)$ ean be expressed in terms of the original $(y, 1)$ hy means of the members ($\tau_{\rho}{ }^{\prime}, v_{\rho}{ }^{\prime}$) of the " 1 nit-form" (56) ; thus

$$
t_{\rho}=2 v_{\rho}^{\prime} y+j \tau_{\rho}^{\prime}, \quad u_{\rho}=\tau_{\rho}^{\prime} y+j v_{\rho}^{\prime},[j= \pm 1] \ldots \ldots \text { (58). }
$$

And, since L also is prime, the product $L M=\left(2 x^{2}-1\right)$ $\left(t^{2}-2 u^{2}\right)$ consists of only two infinite series of product-forms of type

$$
L M=2 U_{\rho}^{3}-T_{\rho}^{2},[\rho=1,2,3, \ldots] \ldots \ldots \ldots .(59),
$$

where T_{ρ}, U_{ρ} are given by

$$
T_{\rho}=2 u_{\rho} x+J t_{\rho}, \quad U_{\rho}=t_{\rho} x+J u_{\rho},[J= \pm 1] \ldots \ldots(60)
$$

And the question is finally whether it is possible that

$$
T_{\rho}=2 u_{\rho} x+J t_{\rho}= \pm 1, \text { for some value of } \rho \ldots \ldots(61)
$$

This gives

$$
x=-\left(J_{\rho} \mp 1\right) \div 2 u_{\rho} \ldots \ldots \ldots \ldots \ldots(61 a) .
$$

Now t_{ρ} is always $<2 u_{\rho}$ when $\rho>1$, so that $x \neq$ integer if $\rho>1$: but t_{ρ} is always $>2 u_{\rho}$ when $\rho=1$.

Now $\rho=1$ gives $\tau_{1}^{\prime}=1, \quad v_{1}^{\prime}=1, t_{1}=2 y+j, \quad u_{1}=y+j$, by (58) ;
whence

$$
x=-\frac{J(2 y+j) \mp 1}{2(y+j)} \ldots \ldots \ldots \ldots \ldots \ldots \ldots(61 b),
$$

the only integral values of which are
$x=1, y$ arbitrary, which involve $z=y, L=1, M=N$.
$x=2, y=2$, which involve $z=5, L=M=7, N=49$.
This proves the Theorem for the - sign.
Note that the above proof depends essentially on the forms $\left(2 x^{2} \pm 1\right)$, $\left(2 y^{2} \pm 1\right)$ of L, M being mique: for if either of them were expressible in some other form, say $A f=\left(210^{2} \pm c^{2}\right)$, different from-(i.e. not equivalent to)the original form $\left(2 y^{2} \pm 1\right)$, then the T, U of the product-torm of L, M would be different from those used above, and the equation $T= \pm 1$ would become possible. An example of each Case will suffice to show this.

I $\quad\left(2.3^{2}+1\right)\left(2.5^{2}+1\right)=19.51=969=2.22^{2}+1$.
Here $51=3.19=2.5^{2}+1=7^{2}+2.1^{2}$; and the result $\left(2.22^{2}+1\right)$ arises from the conformal* multiplication of $\left(2.3^{2}+1\right)\left(7^{2}+2.1^{2}\right)$.
II. $\left(2.22^{2}-1\right)\left(2.14^{2}-1\right)=7.391=2737=2.37^{2}-1$.

Here $391=17.23=2.14^{2}-1=2.10^{2}-11^{2}=21^{2}-2.5^{2} ;$ and the result $\left(2.37^{2}-1\right)$ arises from the conformal* multiplication of $\left(2.2^{2}-1\right)$ by $\left(21^{2}-2.5^{2}\right)$; this latter form is not equivalent to $\left(2.14^{2}-1\right)$.

Note further that Valroff's 'Theorem is true only when L, M, N are all three of same type: thus, if L, M are of same type and both prime, they may yield a product-form N of the reciprocal type. An example of each Case (I., II.) will suffice to show this-
I. $\left(1^{2}+2\right)\left(3^{2}+2\right)=3.11=33=2.4^{2}+1 ; \quad[3,11$ are primes $]$.
11. $\left(3^{2}-2\right)\left(5^{2}-2\right)=7.23=161=2.3^{4}-1 ; \quad[7,23$ are primes $]$.
27. Problem. In modification of the Question of Art. 26, the following simpler Problem may be proposed.
Write $\quad L_{1}=2 x_{1}{ }^{2} \mp 1, \quad L_{2}=2 x_{2}^{2} \mp 1, \quad L_{3}=2 x_{3}{ }^{2} \mp 1, \& \mathrm{c}$.
and
$N=2 y^{4} \mp 1$. (62a),
where L_{1}, L_{2}, L_{3} are all quadratic functions, and N a quartic.
The question is-

$$
\begin{equation*}
\text { Can } N=L_{1} L_{2} L_{3}, \ldots,[\text { like signs throughout }] ? \tag{63}
\end{equation*}
$$

When there are only two factors L_{1}, L_{2}, then Valroff's Theorem (Art. 26a) shows that

$$
\begin{equation*}
N=L_{1} L_{2} \text { requires one (or both) of } L_{1}, L_{2} \text { composite. } \tag{61}
\end{equation*}
$$

No examples have, however, been found.

* Conformal multiplication means multiplication with preservation of (quadratic) form.

5) 1.l-Col. Cumningham, Fuctorisation of $N=\left(y^{4} \mp 2\right) \delta^{\top}\left(2 y^{4} \pm 1\right)$.

When there are more than two factors $\left(L_{1}, L_{2}, \&<\right.$. $)$ the problem is certainly possible, as the following examples show though no general Rule has been found).

$$
\begin{aligned}
& 2.32^{4}-1=49.127 .337=\left(2.5^{2}-1\right)\left(2.8^{2}-1\right)\left(2.13^{2}-1\right), \\
& 2.15^{4}+1=19.73 .73=2\left(3^{2}+1\right)\left(2.6^{2}+1\right)\left(2.6^{2}+1\right) .
\end{aligned}
$$

28. Octuvan Forms. Consider the numbers

$$
\mathrm{N}_{\mathrm{i}}=y^{8}-2, \quad \mathrm{~N}_{i i}=y^{8}+2, \quad \mathrm{~N}_{i i i}=2 y^{8}-1, \quad \mathrm{~N}_{i v}=2 y^{8}+1 .
$$

These, leeing ouly a special form of the t-tan numbers $\left(N_{i}, \ldots N_{i v}\right)$ of Art. 1, wherein $y=Y^{2}$, are subject (mututis mutundis) to atl the general Rules of those numbers.

The chicf modifications are-
In Results $6,6 a, b, 7 c, \& c$, and elsewhere, ehange $(2 / p)_{4}=1$ into $(2 / p)_{k}=1$.

In (12), change $4 x$ into $8 x$ and $\frac{1}{4}$ into $\frac{1}{8}$.
In ($14 b, d)$, change 4 values (or roots) into 8 values (or roots).
In ($15 b$), the 8 exponents ($x, x^{\prime}, \& c$.) are found by repeated addition of $\frac{1}{6} 5$ instead of $\frac{1}{4} \xi$.
\&c. \&c. \&c.

But, for practical factorisation of these 8 -van forms, it often suffices-(so long as y is small) - to convert them into the 4 -tan forms by writing $y=Y^{2}$, upon which the congruencesolutions (y) of the t-tan congruences (Art. 9) ean be nsed.
29. General Forms. The numbers (N) above discussed have all been 4 -tic forms of determinant ± 2. By a quite similar procedure the factorisation of the set of 4 -tic forms (N)

$$
N_{i}=y^{4}-q, \quad N_{i i}=y^{4}+q, \quad N_{i i i}=q y^{4}-1, \quad N_{i v}=q y^{4}+1,
$$

with determinant $\pm q$, may be effected.
The prime divisors (p) must be of the same linear and $2^{\text {ic }}$ forms as those of $\left(Y^{2} \mp q\right),\left(q Y^{2} \mp 1\right)$, the forms of which have been discussed by Legendre, with the condition-

When $p=4 \pi+1$; then $(q / p)_{4}$ must $=+1$ for $N_{i} \& N_{i i i}$,

$$
(\bar{q} / p)_{4} \text { must }=+1 \text { for } N_{i i} \& N_{i r^{*}}
$$

Ex. When $q=3$; the forms of the prime divisors (p) are
30. Factorisation-Tables. Four Tables-(III.-VI.)-of the factorisation of these numbers (N) are presented at end of this Paper. In all these Tables the following sigus are used.
(1) A semi-colon (;) on right shows complete factorisation (into prime factors).
(2) A full-point (.) on right shows that there are other (undetermined) factors.
(3) A semi-colon (;) in middle separates algebraic factors.
[These rccur only in the case of $N=\left(Y^{m}-1\right)$ [m odd] of Art. 24.]
(4) The signs \dagger, \dagger, ${ }^{4}$, show the limits (as stated below) up to which the search for factors has been pushed, with the aid of various IIS. Tahles in the author's possession. These often suffice to determine lligh Prime factors $\left(>10^{i}\right)$.
\dagger up to $1000 ; ~+$ up to 10000 ; §up to 32000 ; I up to 50000 .
[The author's acknowledgments are due to Mr. L. Valroff for 29 of the factorisations of $\left.\Lambda_{i i}=(2)^{4}-1\right)$, including 19 High Primes $\left(>10^{7}\right)$ marked V in the 'lables].

30 a. Table III. $(y \ngtr 100)$.
This gives the factorisation of the numbers of the four kinds $\left(N_{i}\right.$ to $\left.N_{i r}\right)$ up to the limit $y>100$. The factorisation is complete (into prime factor:) up to the following limits

$$
y=66 \text { for } N_{i} ; y=62 \text { for } N_{i i} ; y=50 \text { for } N_{i i i} ; y=62 \text { for } N_{i v}
$$

$N_{i}, N_{i i i}$ are so closely related that they are placed together; and $N_{i i}$ ' $N_{i v}$ are so closely related that they are placed together. The search for factors (p) has been pushed in all cases up to $p \ngtr 1000$, and in a few cases wherein $y=2^{\lambda} \cdot 1^{\mu}[\eta=3,5,7,11]$, much further, viz.

$$
\begin{array}{cccc}
N_{i} & N_{i i} & N_{i i i} & N_{i v} \\
y=50,88 ; & 98 ; & 48,50,56 ; & 48,96 .
\end{array}
$$

Only two cases of the kind $N=\left(Y^{m} \mp 1\right)$ of Art. 24 occur in this Table, viz. of $N_{i}=\left(54^{4}-2\right), N_{i i}=\left(54^{4}+2\right)$.

30b. Table IV.
This Table gives the factorisation of selected numbers of the four kinds N_{i} to $N_{i_{r}}$) in which $y=2^{\lambda} \cdot \eta^{\mu},[\eta=3,5,7,11]$ from $y>100$ up to 1000 .

In this Table several cases occur of the kind $N^{\prime}=\left(Y^{m} \mp 1\right)$ of Art. 24 as follows: -

$$
\begin{array}{cc}
N_{i} \text { and } N_{i i} & N_{i i i} \text { and } N_{i r} \\
y=250,432,686 ; & y=108,486,500,864 .
\end{array}
$$

The search for factors (p) has been pushed in most cases up to $p \ngtr 10000$, and in some cases further : it is thought worth while recording the results, although in many cases very incomplete.

30c. Table V.

This Table gives the factorisation of a few selected cases of high numbers (N) with $y>10^{3}$ but $<10^{4}$: in most of which N is of the kind $N=\left(Y^{m} \mp 1\right)$ of Art. 24, which admits of factorisation to very high limits.

30d. Table VI.

This Table gives the factorisation of the four numbers $N=\left(y^{6} \mp 2\right)$, $\left(2 y^{8} \mp 1\right)$ up to $y=32$ inclusive.
i? L t.-Col. Cunningham, Fructorisation of $N=\left(y^{4} \mp 2\right) \mathcal{C}\left(2 y^{4} \mp 1\right)$.
Congruence-Solutions (y).
'T'ab. I.
$2^{4}-2=0 \mathbb{2} ?^{4}-1=0\left(\bmod p=S_{\omega}+7\right) \cdot 3^{4}+2 \equiv 0 \& 2 y^{4}+1 \equiv 0(\bmod p=\delta \varpi+3)$ 。

	$y^{4}-2$		$2 y^{4}-1$		p	$3^{\prime \prime}+2$		$2 y^{4}+1$	
p	y	y	3	y		y	y^{\prime}	y	y
7	2.		3.		3	1,		1,	2
$2: 3$	8.		3 ,		11		6	2,	9
31	15.		2,		19	5		4,	15
17	17.		II,		43	4,		1 I ,	32
71	15.				59	6,		10,	
73	3.		26,		67	2 S ,		12,	
1113	48,		15,		83	3.		28,	55
127	4.		32.		107	41,		47.	60
1.51		135	66		131	40,		36.	95
167	34,	133	54.		139	28.			
191	33,	158	S1,		163			2 ,	
149	4%	152	72,		179	82		24.	155
22:3	$9{ }^{4}$,	125	66,		211	84	12%	103,	108
236	92.	14%	13.		$2: 7$	62	165	11 ,	216
$\because 6.3$	68.	105	58		251	51,	200	64,	187
271	63,	203	43 ,		283	134	149	19.	264
311	114 ,	197	30,		307	$9{ }^{5}$,	210	19.	288
359	-8,	281	23.	326	331	16,	315	62,	269
367	153.	214	12 ,		347	169	178	154,	193
38.3	157 ,	220	161,		379	96.	283	75,	304
431	107,	324	145		419	177,		116,	303
439	36 ,	403	61	378	443	181,	262	93.	350
463	156,	307	92,	371	467	47 ,	420	159.	
479	115,	364			491	224		217 ,	274
457	86.	401	17,		499	145	354	11%	382
503	58.	445	26,		523	102 ,	421	241,	
599	222,	377	143		$5 \cdot 47$	249,	298	134,	413
607	297,	310	280		563	167 ,	396	I18,	445
631	57,	574	15.5 ,		571	62	509	175,	39^{6}
617	6,	641	108,		587	67.	520	184.	403
719	18,	701	40		619	258	361	12,	60%
727	235.		99.		643	163	480	71,	572
713	60,	677	349 ,		659	228	431	211 ,	44^{8}
751	142.	609	238.		683	8,	675	256,	
823 839	221,	602	108,		691	156	535	31.	660
839 863	395,	444	274		739	100	639	303.	43^{6}
863	227,	636	422 ,		787	264,		158 ,	
357	33,	854	215,		811	402,	409		579
911	120,	791	372 ,		827	201,	626	144.	683
919	408,	511	232,		859	220,	639	82,	777
967 983	368,	599 85	360,		883	29.	854	27.4 ,	609
983	131,	852	15,		907	153,		83.	82.4
991	301,	690	214.	775	947	392.	555	244.	703
49					971	241,	730	278,	693
343	121,	222	17 ,	326	9	2,	7		
5:9	146.	383	250,	279	27	7,		4,	23
961	356 ,	605	46%,		81	34,		31,	
					121	49,	72		79
					24.3	47,	196	31,	212
					361		280	156,	
					729	196,			

Congruence-Solutions (moduli $\left.p=8 \Phi+1(2 / p)_{4}=+1\right)$.
Tab. II.

-2三0	$2 y^{4}-1 \equiv 0$	p	$y^{4}+2 \equiv 0$	$2 y^{4}+1 \equiv 0$
$\begin{array}{lllll}y & y & y & y\end{array}$	y y \quad y y	P	$\begin{array}{llll}y & y & y & y\end{array}$	
:8, 25, 48, 55	4, 35, 38, 69	73	$31,34,39,42$	15, 33, 40, 58
$5,8,81,84$	11, 18, 71,78	89	7, 29, 60, 82	38, 43. 46, 51
$27,47,66,86$	12, $4^{6,}, 67,101$	113	34, 55, 58, 79	10, 37, 76, 103
:8, 71, 162, 205	25, 105, 128, 208	$\stackrel{23}{ }$	80, 103, 133, 153	$67,95,138,166$
35, 46, 211, 222	22, 95, 102, 235	257	73, 117, 140, 184	88, 123, 134, 169
16, 91, 190, 235	55, 105, 176, 226	281	50, 121, 160, 231	72, 118, 163, 209
31, 158, 179, 206	18, 32, 305, 319	337	14, 50, 287, 323	24, 155, 182, 313
8, 102, $25 \mathrm{I}, 305$	45, 125, 228, 308	353	80, 170, 183, 273	$27,75,278,326$
;2, 2;8, 299, 325	110, $245,332,467$	577	135, 222, 355, 412	13, 265, 312, 564
4, 294, 299, 489	119, 268, 325,474	593	149, 206, 387, 444	95, 199, 394, 498
15, 216, 385, 556	64, 187, 414, 537	601	123, 251, 350, 478	170, 215, 386, 431
23, 201, 416,494	132, 306, 311, 485	617	174, 179, 438, 443	39, 162, 455, 5 -8
;1, 355, 526, 830	$190,407,474,691$	881	217, 284, 597, 664	152, 203, 678,729
9, 110, 827, 928	104, 230, 707, 833	937	126, 334, 603, 81 I	409, 418, 519,528

Factorisution of $N=\left(y^{4} \mp 2\right) \&\left(2 y^{4} \mp 1\right)$.
Tab. V.

$N_{i}=\left(y^{4}-2\right)$	y	$N_{i i}=\left(y^{4}+2\right)$
257.8713.1401559;	1331	3.83.6163.2045129;
2.13121; 7-1609.15289;	1458	2.11.1193; 19.43.210739;
2.7.2857; 31.12903871; \ddagger	2000	2.3.59.113; 3.19.937.7489;
233. \ddagger	2401	9.4243 .
2.7.47.89; 857464807; §	2662	2.43.227; 3.73163 .24029 ;
2087. \ddagger	3125	81.179.
2.113.367; 49.31.73.15511;	3456	2.67.619; 1719.885313;
2.647; 281.628044881; §	3888	2.11.59; 1601.109961081;
2.76831; \dagger	5458	2.9.8537; 3 .
2.7.23; 7.71.113.323859367; §	8748	2.163; 337.
$N_{i i i}=\left(2 y^{4}-1\right)$	y	$N_{i v}=\left(2 y^{4}+1\right)$
23.31.12241.719177;	1331	3.107.233.2129.39419;
19207; 368966473; §	1372	3.19.337; 3.73601 .2803 ;
	2401	3.107.257;
73.719; 7.31.12696049;	2916	52489; 2754937657;
7.23 , \ddagger	3125	
79999; 7.	4000	27.2963; 3.73.
117127; 49. \dagger	5324	3.39043; 3.19.
1249;311. \dagger	6250	3.139; 121.691.
165887; 7. \ddagger	6912	19.8731; 43.

Fuctorisation of $N=\left(y^{\prime} \mp 2\right) \&\left(2 y^{4} \mp 1\right)$.
'I'ab. MIA.

$N_{i}=3^{4}-2$	$N_{i i i}=2 y^{4}-1$	y	$N_{i i}=y^{4}+2$	$N_{i v}=29^{4}+1$
- I;	1 ;	1	3 ;	$3 ;$
2.7 ;	31;	2	2.3; 3;	3; 11;
79;	7; 23;	3	83 ;	163 ;
2127 ;	7-73;	4	2.3; 43;	3; 3; 3.19;
7.89 ;	1249 ;	5	3.11.19;	9139 ;
2.6.75;	2591;	6	2.11.59;	2593;
2399 ;	4801 ;	7	2, 89 ;	3.1601;
2.23 .89 ;	$8191 ;$	8	2.3; 683;	3; 2731;
7.937 ;	13121;	9	6563 ;	11.1193;
2.4999 ;	7.2857;	10	2.3.1667;	3.59.113;
14039 ;	7.47.89;	11	9.1627;	3.43 .227 ;
2.7.1481;	113.367 ;	12	2.10369;	67.619 ;
28559 ;	239.239;	13	$3.9521 ;$	9.11.577;
2.19207 ;	74831 ;	14	2.3.19.337;	9.8537 ;
23.31 .71 ;	103.983 ;	15	50627 ;	19.73.73;
27; 31; 151;	131071 ;	16	2.3; 11; 3.331;	3; 43691;
47.1773;	343.487 ;	17	3.11.2531;	3.55081;
2.73.719;	7.89 .337 ;	18	2.52489 ;	209953 ;
7.18616;	71.3671 ;	19	3.43441 ;	3.283.307;
2.79999 ;	23.13913 ;	20	2.27.2963;	3.11.9697;
194479;	388961 ;	21	194483;	388963 ;
2.117127 ;	25:.1823;	22	2.3.39043;	9.52057;
49.5711;	359.1559;	23	3.9328 I;	27.19.1091;
2.165887 ;	7.9+793;	24	19.8731;	11.179.337;
73.5351;	7.233.479;	25	9.43403;	3.260417 ;
2.49 .4663 ;	23.79.503;	26	2.3.76163;	$3 \cdot 304651$;
113.4703 ;	1062881 ;	27	$11.48313 ;$	353.3011 ;
2233.1319 ;	1229311 ;	28	2.3.11.67.139;	3.83.4937;
707279 ;	31.45631 ;	29	9.89 .883 ;	3471521 ;
2.7.47.1231;	311.5209;	30	2.405001 ;	1620001 ;
23.40153;	7.263863 ;	31	3.73.4217;	243.11.691;
2.524287;	7; 127;7.337;	32	2.3; 174763;	3; 343; 5119;
7.191.887:	31.76511 ;	33	19.6241\%;	73.32491;
2.167 .4001 ;	2672671;	34	2.81.73.113;	3.19.46889;
257.5839 ;	73.41113;	35	3.500209;	3.11.90947;
$2.439 .1913 ;$	47.71743:	36	2.839809 ;	131.25643 ;
7.267737 ;	1201.3121;	37	3.624721 ;	3.113.11057;
2.23-45329;	7.73 .8161 ;	38	2.9.11.10531;	3.89.15619;
2313439 ;	7.660983;	39	11.43.67.73;	617.7499;
2.7.182857;	$719.7121 ;$	40	2.3.131.3257;	9.73.7793;
2825,59;	1231.4591 ;	41	3.107.8803;	9.627947;
2.1555847;	6223391 ;	42	2.73.21313;	121.19.2707;
3418799 ;	23.271.1097;	43	9.19.19993;	3.89 .25609 ;
$2.7 .267721 ;$	7496191;	44	$2.3 .624^{68} 3$;	32798731 ;
601.6823 ;	7353.3319;	45	$4100625 ;$	8201251 ;
2.31.257.281;	7.113.11321;	46	2.3.746243;	3.11.89.3049:
7.31.113.199;	9759361 ;	47	243.43.467;	3.107.30403;
2.73.103.353;	10616831	48	2.2654209:	1523.6971;
5764799;	23.501287 ;	49	3.121.15881;	9.59.21713:
2.3124999 ;	I2.499999;	50	2.3.11.281.337;	81; 154321;

Lt.-Col. Cunningham, Factorisation of $N=\left(y^{4} \mp 2\right) \&\left(2 y^{4} \mp 1\right) \quad$ うј

Factorisation of $N=\left(y^{4} \mp 2\right) \&\left(2 y^{4} \mp 1\right)$.
'Tab. $11 /$ в.

$N_{i}=y^{4}-2$	$N_{i i i}=2 y^{4}-1$	y	$N_{i i}=y^{4}+2$	$N_{i v}=2 y^{4}+1$
7.881.1007;	13530401 ; V	51	251.26953 ;	89.152027;
2.3655807 ;	7-71.29423;	52	2.9.19.21379;	3.4874111;
7890479 ;	7.79.28537;	53	359.44579 ;	3.11.19.25169;
2.7.23; 26407;	167.101833 ;	54	2.163; 20083;	43.395491 ;
73.103.1217;	281.65129;	55	3.113.26993;	3.67.83.1097;
2.71 .09257 ;	1193.16487 ;	56	2.9.546361;	3.655633^{1};
$631.16729 ;$	2473.8537 ;	57		11.1919273 ;
2.7.503.1607;	47.263.1831;	58	2.3.113.16691;	27.73.11483;
	7.3462103 ;	59	3.1777.2273;	9.2692747 ;
2.6479999 ;	7.31.11944; ;	60	2.11.89.6619;	$107.2422+3$:
49.23 .85999 ;	439.63079 ;	61	27.11.46619:	3.19.485819;
2.7388107 ;	$29552671 ; \quad \mathrm{V}$	62	2.3.19.227.5, 1 ;	3.331.29761;
271.58129;	$31505921 ; ~ V$	63		
2.47.178481;	31; 601.1801;	64	2.3; 2796203;	3; 11; 251.4051;
7.2550089 ;	35701249 , V	65	9.59.33617;	3.
2.113.113.743;	49.23.151.223;	66	2.107.88667;	
	7.113 .50951 ;	67	3.587.11443;	9.233.19219;
2.7.263.5807;	$\begin{array}{ll} 42762751 ; \\ 73.621017 ; \end{array}$	$\begin{aligned} & 68 \\ & 69 \end{aligned}$	2.3.3563563;	$\begin{aligned} & 9.11 .431917 \\ & 59.768377 \text {; } \end{aligned}$
2.	48019999; V	70	2.9.1333889;	3.
233.109063 ;	89.571049;	71	3.11.1940529;	3.643 .26347 :
2.49.274223;	23.19911743 ;	72	2.121.1110.49;	19.281.10067;
	7.8113783;	73	3.257.36833;	3.
2.	7.8567593;	74	2.27.555307;	3.
49.645727 ;	63281249; V	75		I1 43.353 .379 ;
2.79.211153;	66724351; V	76	2.3.55	9.11365609;
23.31.47.1049;	73.963097;	77	3.	27.2603929;
2.31.359.1663;	89.831799;	78	2.	
7.5564297 ;	$77900161 ; \mathrm{V}$	79	9.113.38299;	3.121.67.3203;
2.20479999 ;	7.1033.11329;	80	2.3.83.233.353;	3.19.1437193;
89.483671 ;	49.191.9199;	81	19.19.119243;	3859.3509
2.7.79.40879;	90424351; V	82	2.3.11.43.89.179;	$3.859 .35099$
	47.2019503;	83	9.11.479377;	$3.907 .34883 \text {; }$
2.23.89.12161;	$94574271 ; \quad \mathrm{V}$ 151. 691399°	84	2.211.117979;	
	$151.691399 ;$ $4217.25943 ;$	85		27.386671
2.7.71.113	$4217.25943 ; ~$ $7.16368503 ; ~$	86 87	2.3	9.11.110506
2.1399 .21433 ;	7.103.166351;	88	2.27.1110547;	3.73.257.2131;
7.8963177 ;	23.5455847;	89	3.	3.
2.	71.1848169 ;	90	2.19.43.40153:	11.
73.281.33+3;	31.4424191;	91	3.131.174491;	3.19.2406139;
2.239.149873;	$463 \cdot 309457$;	92	2.9.1987.2003;	3.
	149610401 ; V	93	11.6800473 ;	$443 \cdot 337721$;
2.89.438623;	7.1783.12511;	94	2.3.11.1182953;	9.
	7.23.31.127.257;	95	3.67.405227:	9.131.233.593;
2.7.6066761;	1698693II; V	96	2.89379 .1259 ;	$169869313 ;$ §
89.994711 ;	2719.65119 ;	97	9.179179 .307 ;	3.11.43.124777;
2.73.223.2833;	$\begin{aligned} & 184473631 ; \quad \mathrm{V} \\ & 727.264263 ; \end{aligned}$	$\begin{aligned} & 98 \\ & 99 \end{aligned}$	$2.3 .15372803 ;+$	$\begin{aligned} & 3285721523 \text {; } \\ & 19 . \end{aligned}$
2.7.23.310559;	89.1447.1553;	100	2.3.19.739.1187;	3.66666667 ;

fic It.-Col.Cunninghum, F'actorssation of $\Lambda^{+}=\left(y^{*} \mp 2\right) \mathcal{E}\left(2 y^{4} \mp 1\right)$.

Fuctorisation of $N=\left(y^{4} \mp 2\right) \&\left(2 y^{4} \mp 1\right)$.
'I'ab. IV.

$N_{i}=\left(3^{4}-2\right)$	$N_{i i i}=\left(2 y^{4}-1\right)$	y^{\prime}	$N_{i i}=y^{4}+2$	$N_{i y^{\prime}}=\left(2 y^{4}+1\right)$
2.31.219433	647 ;	08	451	1
2.4591 .15137 ;	23.13682717 ;	112	2.3.59.73.6	
$223.1094801 ;$	113.353.12241; ${ }^{\text {8 }}$;	$\begin{aligned} & 125 \\ & 160 \end{aligned}$	$3 \cdot 43.1892563$	
2.113 .2899823 ; 2233.1477999.	$\text { 89.14727191; } \ddagger$ $25.5359903 \text {; }$	$\begin{aligned} & 160 \\ & 162 \end{aligned}$	2.9.11.281.11779: 2.67.5139907;	3.163.2680409; $617.2232569 ;$
2.23.20858969; \ddagger	281.6829271;	176	2.3-19.43.195739;	9.
223.29542489 ;	$7.381-118831$	192	2.II.113.546643;	
2. 2.601 .1810967 ;	$7.3847 .118831 ;$	$\begin{aligned} & 200 \\ & 216 \end{aligned}$	2.9.251.354139; 2.	3.121.8815427; 89.113.227.1907;
2.191.1289.5113;	47.3719 28807;	2.4	23.491 .854593 ;	3.19.89.992561;
2. \ddagger		242	2.3.19.59.419.1217;	
\%. \ddagger		243		$19.1811 .20266 \%$;
2.1249: $7.127 .1759 ;$	23.23.31.476401;	250	2.9.139;3.73.7129	3.8273.314779;
2.5i41.599591;		8		$11.307 .40744+9$;
2.49 .		320	2.3.	27.
	$313271.273001 ;$	313	3.	3.11.
2.7. \ddagger	257.	3.5	2.3.	3.5107 .2004073 ;
2. \ddagger	$3607.12056153 ;$	384	2.1	19.2267.1009601;
		$\begin{aligned} & 392 \\ & 432 \end{aligned}$	2.3.227.947.18307; 2.2593; $19.283 .1249 ;$	9.
2.2591; $7960151 ;$	$31.5209+31369 ;$ 79.	$\begin{aligned} & 432 \\ & 44 \end{aligned}$	2.2593; $19.283 .12+9$ 2.9 ; 2.	3659
2.732207 .173137 ;	${ }_{7.23} 7.693025471 ;$ ¢゙	486	2.9 .13. 2.113.	${ }_{163} 1$
2.47.1753.3792.59;	4999; 7.79.103.439;	500	2.3.11.	3.1667
2.359 . \ddagger		640	2.3 .	3.11.
2 4 S01; 2306400; ;		686	2.3.1601; 3.7684801;	3.
289.	7.239	704	2.9.	$3.4001 .40928971 ;+$
2.7	73.27823.342569;	768	2.	12 I .
2.9	71.71 .	800		3.1259.
$2.8713 .31978439 ; \ddagger$ 2.	7.1481; 107505793; +	864 896	$\left\|\begin{array}{ll} 2.11 .43 . & \ddagger \\ 2.3 .121 .2131 .416593 ; \end{array}\right\|$	10369; 1867.57571
2.8. 2.7 .167.	89.983.200-1873; \ddagger	896	2.3.121.2131.416593; 2.3	27.83 .139 .563734
2.2969.	3833. \ddagger	1000	2.3	$3.43 \cdot 2347.6605^{827}$;

For Table V. see p. 53.

Lt.-Col. Cumingham, Factorisation of $N=\left(y^{4} \mp 2\right) \&\left(2 y^{4} \mp 1\right)$.

Factorisation of $N=\left(y^{8} \mp 2\right) \&\left(2 y^{4} \mp 1\right)$.
'I'ab. VI.

$3^{8}-2$	$2 y^{8}-1$	y	$y^{8}+2$	$2 y^{8}+1$
	I;	1	3;	3;
7 ;	7.73;	2	2.3; 43 ;	3; 3; 3.19;
7	13121;	3	6563 ;	11.1193;
; 31; 151;	131071;	5	2.3; 11; 3.331;	3.43691
; 351 ;	7.233.479;	5	9.43403;	3.260417 ;
39.1913;	47.71743;	6	2.839809 ;	131.25643;
$4 i 94 ;$	23.501287 ;	7	3.121.15881;	9.59.21713;
1-8481	31; 601.1801;	8	2.3: 2596203;	3; 11; 251.4051;
83671	49.191.9199;	9	19.19.119243;	
23.310559;	89.1447.1553;	10	2.3.19.739.1187;	3.66666667 ;
1.73.1223;	$428717761 ; ~ V$	11	3.281 .25428 I ;	
\pm	7.122851913; V	12	2.6521 .32969 ;	139.827 .7481 ;
	1631461441; V	13	27.83.347.1049;	3.257.1307.1019;
	89.33173799; \ddagger	14	2729.1012201 ; 11.	3.11.89441761;
147483647 ;	7; 23.89; 599479;	16	2.3; $158827883 ;$	3; 3; 683; 67.20857;
	223. \dagger	17	3.59.227.173617;	3.19.
$431.1826311 ;$	103.	18	2.11. \dagger	
t	7.73 .233 .285287	19	3619.9145699 ;	3.11.337.3054323;
	73.	20	2.3.	
	233.863.376199;	21	67.257.281.7817;	19.43.
	7.31.503.1434911;	23	9.9.131.232,227 + +	3.
9.1433.636.47 ${ }_{\text {¢ }}^{\ddagger}$	43 I . \ddagger	24	2.107.	
9.1433.636.47;		25	3.523.97251683;	27.11.
679.136407	$7257.8081 .28729 ;$	26	2.3.11.	
,	71 ; \ddagger	28	2.319.	
	73.13759.996103;	29	3.11.19.	81.
\dagger	7.23.26633.306023;	30	2.	
	89.1289.	31	9.337.	3.28I.
191; 79.121369;	13367.164511353 ;	32	2.3; 3; 2731; 22366891;	$3 ; 83.8831418697$;

NOTE ON 'IHE SOLUTION
 ()F TIIE DIEEERENTIAL EQUATION $r=f(t)$.

By J. R. Wilton, M.A., B.Sc.

I have been mable to find any reference to solutions of the partial differential equation
i.e..

$$
\begin{align*}
\frac{\partial^{2} z}{\partial x^{2}} & =f\left(\frac{\partial^{2} z}{\partial y^{2}}\right), \\
r & =f(t) \ldots \ldots \tag{1}
\end{align*}
$$

except for a few particular cases. The general solution, though complicated in appearance, is very simple to obtain, and it is difficult to believe that it can have escaped observation; but there is no reference to the solution in any book or memoir to which I have had access. I have not, however. scen Legendre's original memoir on the equation $f(r, s, t)=0$ in L'Histoire de l'Académie des Sciences for 1787.

Following Legendre's method, we differentiate equation (1) with regard to y and take q as the new dependent variable, obtaining

$$
\frac{\partial^{2} q}{\partial x^{2}}=f^{\prime}\left(\frac{\partial q}{\partial y}\right) \frac{\partial^{2} q}{\partial y^{2}} .
$$

By Legendre's transformation (the principle of duality) this becomes
where

$$
\begin{array}{r}
\frac{\partial^{3} u}{\partial X^{2}}=f^{\prime}(X) \frac{\partial^{2} u}{\partial Y^{2}}, \ldots \ldots \ldots \ldots \ldots(2), \\
u=s x+t y-q, \quad X=t, \quad Y=s \ldots \ldots \ldots \ldots \text { (3). }
\end{array}
$$

'To solve equation (2), assume a solution of the form

$$
u=\phi(X) \psi(Y) .
$$

Substituting this value of u in (2), we find

$$
\phi^{\prime \prime}(X) \psi(Y)=f^{\prime}(X) \phi(X) \psi^{\prime \prime}(Y),
$$

whence, if we assume that $\psi\left(Y^{\gamma}\right)={ }_{\sin }^{\cos } \mu Y$,

$$
\phi^{\prime \prime}(X)+\mu^{2} f^{\prime}(X) \phi(X)=0 \ldots \ldots \ldots \ldots(4),
$$

a differential equation for ϕ which has two linearly independent
solutions, ϕ_{1} and ϕ_{2} say. Hence a particular solution of equation (2) may be expressed in the form

$$
u=A \phi_{1}(X) \cos \mu Y+B \phi_{2}(X) \sin \mu Y,
$$

and by the addition of particular integrals, we obtain the general solution

$$
\begin{align*}
u & =\int_{a}^{b} F_{1}(\mu) \phi_{1}(X) \cos \mu Y d \mu \\
& +\int_{a}^{b} F_{2}(\mu) \phi_{2}(X) \sin \mu Y d \mu \tag{5}
\end{align*}
$$

where F_{1} and F_{2} are arbitrary functions of $\mu ; \phi_{1}$ and ϕ_{2}, of course, depend on μ; and α and b are any constants.

In most cases either of the two integrals in equation (5) will serve as the general solution of (2), but the two integrals are given in order to include thuse special cases in which equation (2) is soluble by Laplace's method, as extended by Legendre. In order to obtain the solution of (1) from this result, we use the relations

$$
\begin{gathered}
x=\frac{\partial u}{\partial Y}, \quad y=\frac{\partial u}{\partial X}, \\
x Y+y X-q \\
=u=\int_{a}^{b} F_{1} \phi_{1} \cos \mu Y d \mu+\int_{a}^{b} F_{2} \phi_{2} \sin \mu Y d \mu \ldots(6), \\
x=-\int_{a}^{b} \mu F_{1} \phi_{1} \sin \mu Y d \mu+\int_{a}^{b} \mu F_{2} \phi_{2} \cos \mu Y d \mu \ldots(7), \\
y=\int_{a}^{b} F_{1} \phi_{1}^{\prime} \cos \mu Y d \mu+\int_{a}^{b} F_{2} \phi_{2}^{\prime} \sin \mu Y d \mu \ldots(8) .
\end{gathered}
$$

Making use of equations (7) and (8), we see that we may re-write equation (6) in the form

$$
\begin{aligned}
q & =\int_{a}^{b} F_{1}\left[\left(X \phi_{1}^{\prime}-\phi_{1}\right) \cos \mu Y-Y \phi_{1} \mu \sin \mu Y\right] d \mu \\
& +\int_{a}^{b} F_{2}\left[\left(X \phi_{2}^{\prime}-\phi_{2}\right) \sin \mu Y+Y \phi_{2} \mu \cos \mu Y\right] d \mu \ldots(9),
\end{aligned}
$$

We have now to integrate this equation with regard to y, and
thas to ohtain z. In carrying out the analysis of this step, the work will be much simplified by making use of the relations
$\frac{\partial x}{\partial I^{\prime}}=-\int_{a}^{b} \mu F_{1} \phi_{1}{ }^{\prime} \sin \mu Y d \mu+\int_{a}^{b} \mu F_{2} \phi_{2}^{\prime} \cos \mu Y d \mu$
$\frac{\partial x}{\partial Y}=-\int_{a}^{b} \mu^{2} F_{1} \phi_{1} \cos \mu Y d \mu-\int_{a}^{b} \mu^{2} F_{2} \phi_{2} \sin \mu Y d \mu$
$\frac{\partial y}{\partial X^{\prime}}=f^{\prime}(X) \frac{\partial x}{\partial Y}$
$\frac{\partial y}{\partial Y}=\frac{\partial x}{\partial X}$
where, in obtaining the third of equations (10), wese has been made of (4). Using these relations, we find

$$
\begin{aligned}
\frac{\partial(x, y)}{\partial(X, Y)} \partial X & =-\frac{\partial x}{\partial Y} \\
\frac{\partial(x, y)}{\partial(X, Y)} \frac{\partial Y}{\partial y} & =\frac{\partial x}{\partial X} .
\end{aligned}
$$

And therefore

$$
q \frac{\partial(x, y)}{\partial(X, Y)}=\frac{\partial z}{\partial y} \frac{\partial(x, y)}{\partial(X, Y)}=\frac{\partial x}{\partial X} \frac{\partial z}{\partial Y}-\frac{\partial x}{\partial Y} \frac{\partial z}{\partial X}
$$

In order to perform the integration, we assume

$$
\begin{align*}
& \frac{\partial z}{\partial X}=p \frac{\partial x}{\partial X}+q \frac{\partial y}{\partial X} \ldots \ldots \ldots \ldots \ldots(11), \\
& \frac{\partial z}{\partial Y}=p \frac{\partial x}{\partial Y}+q \frac{\partial y}{\partial Y} \ldots \ldots \ldots \ldots \ldots \ldots(12), \tag{12}
\end{align*}
$$

where p is a function of X and Y which is plainly equal to $\partial z / \partial x$, but is as yet undetermined.

From equations (11) and (12) we see, by differentiating the first with regard to Y, the second with regard to X, and equating the results, that

$$
\begin{aligned}
\frac{\partial \cdot x}{\partial Y} \frac{\partial p}{\partial Y}-\frac{\partial \cdot r}{\partial Y} \frac{\partial p}{\partial X} & =\frac{\partial q}{\partial X} \frac{\partial y}{\partial Y}-\frac{\partial q}{\partial Y} \frac{\partial y}{\partial X} \\
& =\frac{\partial x}{\partial X}\left(X \frac{\partial y}{\partial X}+Y \frac{\partial y}{\partial Y}\right)-\frac{\partial y}{\partial X}\left(X \frac{\partial x}{\partial X}+Y \frac{\partial x}{\partial Y}\right) \\
& =Y \frac{\partial(\cdot x, y)}{\partial(X, Y)},
\end{aligned}
$$

where use has been made of equations (4) and (10) in obtaining $\partial q / \partial X$. 'To solve this equation for p assume

$$
\begin{aligned}
& \frac{\partial p}{\partial Y}=Y \frac{\partial x}{\partial X}+v \frac{\partial x}{\partial Y}=Y \frac{\partial y}{\partial Y}+v \frac{\partial y}{\partial Y} \ldots \ldots \ldots \text { (13), } \\
& \frac{\partial p}{\partial X}=Y f^{\prime}(X) \frac{\partial x}{\partial Y}+v \frac{\partial x}{\partial X}=Y \frac{\partial y}{\partial X}+v \frac{\partial x}{\partial X} \ldots \text { (14), }
\end{aligned}
$$

where v is a function of X and Y to be determined.
Differentiating equation (13) with regard to X, equation (14) with regard to Y, and equating the right-land sides, we find

$$
\frac{\partial x}{\partial X} \frac{\partial v}{\partial Y}-\frac{\partial x}{\partial Y} \frac{\partial v}{\partial X}=-\frac{\partial y}{\partial X} ;
$$

which is plainly satisfied by

$$
v=g(x)+f(X)
$$

where g is an arbitrary function of x.
From the form of the equations which have to be satisfied by p and z, it is clear that the arbitrary function of x in the expression for v leads merely to an arbitrary function of x in the expression for z. We therefore put $g=0$, and therefore $v=f(X)$, so that

$$
\begin{aligned}
p & =Y y+\int f(X) \frac{\partial x}{\partial X} d X \\
& =Y y+x f(X)-\int x f^{\prime}(X) d X \\
& =I_{y} y+x f(X)-\int_{a}^{b} \frac{1}{\mu} F_{1} \phi_{1}^{\prime} \sin \mu Y d \mu+\int_{a}^{b} \frac{1}{\mu} F_{o} \phi_{2}^{\prime} \cos \mu Y d \mu,
\end{aligned}
$$ using equation (4).

We have now to substitnte this value of p in equations (11) and (12), and hence to obtain z. Performing the integration, we find

$$
z=h(x)+p \cdot x+q y-\frac{1}{2} X y^{2}-Y x y-\frac{1}{2} f(X) x^{2}+w
$$

where h is an arbitrary function of x, and w is a function of X and Y, such that

$$
\begin{aligned}
& \frac{\partial w}{\partial X}=\frac{1}{2}\left\{x^{2} f^{\prime}(X)+y^{2}\right\} \\
& \frac{\partial w}{\partial Y}=x y
\end{aligned}
$$

It is easily seen from cquations (10) that these two equations are consistent; wherefore

$$
w=\frac{1}{2} \int\left\{\left[x^{2} f^{\prime}(X)+y^{2}\right] d X+2 x y d Y\right\}
$$

It is possible to obtain the explicit form of u, but the resul ${ }^{t}$ is extremely complicated, and as there is no point of interes ${ }^{t}$ in the work the integration has not been carried out.

The expression for z contains an arbitrary finction of x. Wre have now to determine this function. Differentiating with regard to x, we find

$$
\frac{\partial z}{\partial x}=h^{\prime}(x)+\left(p \frac{\partial x}{\partial \Lambda}+q \frac{\partial y}{\partial \Lambda}\right) \frac{\partial \mathrm{X}}{\partial x}+\left(p \frac{\partial \cdot}{\partial Y}+q \frac{\partial y}{\partial Y}\right) \frac{\partial Y}{\partial x} .
$$

But

$$
\begin{gathered}
\frac{\partial(x, y)}{\partial\left(X, Y^{\prime}\right)} \frac{\partial X}{}=\begin{array}{c}
\partial x \\
\partial X
\end{array} \\
\frac{\partial(x, y)}{\partial\left(X, Y^{\prime}\right)} \frac{\partial Y}{\partial x}=-\frac{\partial y}{\partial X^{\prime}}
\end{gathered}
$$

therefore

$$
\frac{\partial z}{\partial x}=p+h^{\prime}(x)
$$

while

$$
\frac{\partial z}{\partial y}=q .
$$

'Thus

$$
\begin{aligned}
\frac{\partial^{\prime} z}{\partial x^{2}}= & l^{\prime \prime}(x)+\frac{\partial p}{\partial S} \frac{\partial Y}{\partial x}+\frac{\partial p}{\partial Y} \frac{\partial Y}{\partial r} \\
= & h^{\prime \prime}(x)+f(X) \\
& \frac{\partial^{2} z}{\partial y^{2}}=\frac{\partial q}{\partial y}=X .
\end{aligned}
$$

'I'herefore $h^{\prime \prime}(x)=0$; and we may take $h(x)=0$.
Hence, finally, the solution of (1) is given by eliminatiner X and Y from (7) and (8), and

$$
\begin{aligned}
& z=\frac{1}{2} X y^{2}+Y x y+\frac{1}{2} f(X) x^{2}+\frac{1}{2} \int\left\{\left[x^{2} f^{\prime}(X)+y^{2}\right] d X+2 x y d Y\right\} \\
&-y\left[\int_{a}^{b} F_{1} \phi_{1} \cos \mu Y d \mu+\int_{a}^{b} F_{2} \phi_{2} \sin \mu Y d \mu\right] \\
&-x\left[\int_{a}^{b} \frac{1}{\mu} F_{1} \phi_{1}^{\prime} \sin \mu Y d \mu-\int_{a}^{b} \frac{1}{\mu} F_{2} \phi_{2}^{\prime} \cos \mu Y d \mu\right]
\end{aligned}
$$

where F_{1} and F_{0} are arbitrary functions of μ, and ϕ_{1} and ϕ_{2} are two linearly independent solutions of (4).

The method applied to the solution of equation (2) may be used to solve a somewhat more general equation, namely.

$$
r-2 f(x) s+g(x) t=0 \ldots \ldots \ldots \ldots(15),
$$

where f and g are arbitrary functions of x. For assume, as a trial solution,

$$
z=\phi(x) \psi(y),
$$

and therefore $\quad r=\phi^{\prime \prime} \psi, s=\phi^{\prime} \psi^{\prime}, \quad t=\phi \psi^{\prime \prime}$, so that $\quad \phi^{\prime \prime} \psi-2 f(x) \phi^{\prime} \psi^{\prime}-g(x) \psi^{\prime \prime}=0$, or, putting $\psi=e^{\mu}{ }^{Y}$,

$$
\phi^{\prime \prime}(x)-2 \mu f(x) \phi^{\prime}(x)+\mu^{2} g(x) \phi(x)=0 \ldots \ldots(16),
$$

an equation which will have two linearly independent solutions, ϕ_{1} and ϕ_{2} say. The general solution of equation (15) will thus be

$$
z=\int_{a}^{b} e^{\mu Y}\left[F_{1}(\mu) \phi_{1}(x)+F_{2}(\mu) \phi_{2}(x)\right] d \mu .
$$

The solution of equation (15) does not, however, enable us to obtain the solution of a more general equation of the type

$$
r=f(s, t) .
$$

ON THE SERIES FOR SINE AND COSINE.

By F. Jackson, University College, London.

§1. Prof. M. J. M. Hill has given (Mess. of Math., vol. xxxv., pp. 58-69) an inductive proof of the series for $\sin x$ and $\cos x$. The demonstration is based on Le Cointe's identity

$$
3^{n} \sin \frac{x}{3^{n}}-\sin x=4\left(\sin ^{3} \frac{x}{3}+3 \sin ^{3} \frac{x}{3^{2}}+\ldots+3^{n-1} \sin ^{3} \frac{x}{3^{n}}\right),
$$

and consists in proving that, for any positive integral value of r,

$$
\begin{gathered}
3^{n}\left\{\sin \frac{x}{3^{n}}-\frac{x}{3^{n}}+\frac{1}{3!}\left(\frac{x}{3^{n}}\right)^{3}-\ldots+\frac{(-1)^{r}}{(2 r-1)!}\left(\frac{x}{3^{n}}\right)^{2 r-1}\right\} \\
\gtrless\left(\sin x-x+\frac{x^{3}}{3!}-\ldots-(-1)^{r} \frac{x^{2 r-1}}{(2 r-1)!}\right),
\end{gathered}
$$

the sign of inequality being $>$ or $<$ according as r is odd or even.

If the second member of this inequality is denoted by $\phi(x)$, the first member is

$$
3^{n} \phi\left(\frac{x}{3^{n}}\right) .
$$

I think that it has not been noticed that a similar proof can be given which depends upon proving that

$$
2^{n} \phi\left(\frac{x}{2^{n}}\right) \gtrless \phi(x),
$$

the signs of inequality $>$ or $<$ occurring alternately as above.
§2. We start with the identity

$$
\begin{aligned}
2^{n} \sin \frac{x}{2^{n}}-\sin x & =2 \sin \frac{x}{2}\left(1-\cos \frac{x}{2}\right) \\
& +2^{2} \sin \frac{x}{2^{2}}\left(1-\cos \frac{x}{2^{2}}\right) \\
& +\ldots \ldots \ldots \ldots \ldots \ldots \\
& +2^{n} \sin \frac{x}{2^{n}}\left(1-\cos \frac{x}{2^{n}}\right) \ldots \ldots(\text { I. }),
\end{aligned}
$$

the truth of which is evident, for multiplying ont the righthand side, we get
$2 \sin \frac{x}{2}-\sin x+2^{2} \sin \frac{x}{2^{2}}-2 \sin \frac{x}{2}+\ldots+2^{n} \sin \frac{x}{2^{n}}-2^{n-1} \sin \frac{x}{2^{n-1}}$,
whence we get

$$
2^{n} \sin \frac{x}{2^{n}}-\sin x
$$

Now, if x is any acute angle,

$$
\begin{equation*}
\sin x<x \tag{1}
\end{equation*}
$$

and

$$
1-\cos 2 x=2 \sin ^{2} x
$$

therefore

$$
1-\cos 2 x<2 x^{2}
$$

therefore

$$
\begin{equation*}
1-\cos x<\frac{x^{3}}{2} \tag{2}
\end{equation*}
$$

From (1) and (2)

$$
\begin{equation*}
\sin x(1-\cos x)<\frac{x^{3}}{2} \tag{3}
\end{equation*}
$$

Now use (3) in the identity (I.). Therefore
$2^{n} \sin \frac{x}{2^{n}}-\sin x<2 \cdot \frac{1}{2}\left(\frac{x}{2}\right)^{3}+2^{n} \cdot \frac{1}{2}\left(\frac{x}{2^{2}}\right)^{3}+\ldots+2^{n} \frac{1}{2}\left(\frac{x}{2^{n}}\right)^{3}$.
The difference between the two members of this inequality depends upon n, but does not tend to zero as n tends to infinity; for it consists of the sum of the expressions

$$
\begin{gathered}
\left(\frac{x}{2}\right)^{3}-2 \sin \frac{x}{2}\left(1-\cos \frac{x}{2}\right) \\
2\left(\frac{x}{x^{2}}\right)^{3}-2^{2} \sin \frac{x}{2^{2}}\left(1-\cos \frac{x}{2^{2}}\right) \\
\text { etc. }
\end{gathered}
$$

Therefore

$$
\begin{aligned}
2^{n} \sin \frac{x}{2^{n}}-\sin x<\left(\frac{x}{2}\right)^{3} & {\left[1+2\left(\frac{1}{2}\right)^{3}+2^{2}\left(\frac{1}{2^{2}}\right)^{3}+\ldots+2^{n-1}\left(\frac{1}{2^{n-1}}\right)^{3}\right] } \\
& <\left(\frac{x}{2}\right)^{3} \frac{1-\left(1 / 2^{2 n}\right)}{1-\left(1 / 2^{2}\right)} \\
& <\frac{x^{3}}{3!}\left(1-\frac{1}{2^{2 n}}\right)
\end{aligned}
$$

therefore

$$
2^{n}\left[\left(\sin \frac{x}{2^{n}}-\frac{x}{2^{n}}+\frac{1}{3!}\left(\frac{x}{2^{n}}\right)^{3}\right]<\sin x-x+\frac{x^{3}}{3!}\right.
$$

If u tends to infinity, the ieft-land side tends to zero, while the difference remains positive; therefore

$$
\begin{aligned}
0< & \sin x-x+\frac{x^{3}}{3!} \\
& \sin x>x-\frac{x^{3}}{3!} \ldots \ldots \ldots \ldots \ldots \ldots \ldots(t) .
\end{aligned}
$$

i.e.,

Use (4) in

$$
1-\cos 2 x=2 \sin ^{2} x ;
$$

therefure

$$
\begin{aligned}
1-\cos 2 x & >2\left(x-\frac{x^{3}}{3!}\right)^{2} \\
& >2 x^{2}-4 \frac{x^{4}}{3!}+2\left(\frac{x^{3}}{3!}\right)^{3} \\
& >2 x^{2}-\frac{4 x^{4}}{3!}
\end{aligned}
$$

therefore

$$
1-\cos x>\frac{x^{2}}{2!}-\frac{x^{4}}{4!} \cdots \cdots \cdots \cdots \cdots \cdots(5) .
$$

Theretore $\sin x(1-\cos x)>\left(x-\frac{x^{3}}{3!}\right)\left(\frac{x^{2}}{2!}-\frac{x^{4}}{4!}\right)$

$$
\begin{aligned}
& >\frac{x^{3}}{2!}-x^{5}\left(\frac{1}{4!}+\frac{1}{3!2!}\right) \\
& >\frac{x^{3}}{3!} \cdot 3-\frac{x^{5}}{5!} \cdot 15 \\
& >\frac{x^{3}}{3!}\left(2^{2}-1\right)-\frac{x^{5}}{5!}\left(2^{4}-1\right) \ldots \ldots(6) .
\end{aligned}
$$

Use this in the identity (I.). 'Therefore

$$
\begin{array}{r}
2^{n} \sin \frac{x}{2^{n}}-\sin x>\frac{x^{3}}{3!}\left(2^{2}-1\right)\left[2 \cdot\left(\frac{1}{2}\right)^{3}+2^{2}\left(\frac{1}{2^{2}}\right)^{3}+\ldots+2^{n}\left(\frac{1}{2^{n}}\right)^{3}\right] \\
-\frac{x^{5}}{5!}\left(2^{4}-1\right)\left[2 \cdot\left(\frac{1}{2}\right)^{5}+2^{2}\left(\frac{1}{2^{2}}\right)^{5}+\ldots+2^{n}\left(\frac{1}{2^{n}}\right)^{5}\right] .
\end{array}
$$

'Therefore

$$
\begin{aligned}
2^{n} \sin \frac{x}{2^{4}}-\sin x & >\frac{x^{3}}{3!}\left(2^{2}-1\right) \frac{1}{2^{3}} \frac{\left\{1-\left(1 / 2^{2 n}\right)\right\}}{1-\left(1 / 2^{2}\right)} \\
& -\frac{x^{5}}{5!}\left(2^{4}-1\right) \frac{1}{2^{4}} \frac{\left\{1-\left(1 / 2^{4 n}\right)\right\}}{1-\left(1 / 2^{4}\right)} \\
& >\frac{x^{3}}{3!}\left(1-\frac{1}{2^{2 n}}\right)-\frac{x^{5}}{5!}\left(1-\frac{1}{2^{+n}}\right) .
\end{aligned}
$$

Therefore

$$
2^{n}\left\{\sin \frac{x}{2^{n}}-\frac{x}{2^{n}}+\frac{1}{3!}\left(\frac{x}{2^{n}}\right)^{3}-\frac{1}{5!}\left(\frac{x}{2^{n}}\right)^{5}\right\}>\sin x-x+\frac{x^{3}}{3!}-\frac{x^{5}}{5!} .
$$

Now make n tend to infinity, and reasoning as before it follows that

$$
\sin x<x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!} \cdots \ldots \ldots \ldots \ldots \ldots(7) .
$$

Substitute this into

$$
1-\cos 2 x=2 \sin ^{2} x
$$

therefore

$$
\begin{aligned}
1-\cos 2 x<2\left(x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}\right)^{2}<2 x^{2} & -2 x^{4}\left(\frac{1}{1!3!}+\frac{1}{3!1!}\right) \\
& +2 x^{6}\left(\frac{1}{1!5!}+\frac{1}{3!3!}+\frac{1}{5!1!}\right)
\end{aligned}
$$

provided

$$
\frac{2.1^{8}}{3!5!}>\frac{x^{10}}{5!5!}
$$

i.e., $x^{2}<40$, which is so. 'Therefore

$$
\begin{align*}
1-\cos 2 x & <\frac{2^{2} x^{2}}{2!}-\frac{x^{4}}{4!} 2 \cdot \frac{1}{2} \cdot 2^{4}+\frac{x^{6}}{6!} 2 \cdot \frac{1}{2} \cdot 2^{6} \\
& <\frac{(2 x)^{2}}{2!}-\frac{(2 x)^{4}}{4!}+\frac{(2 x)^{6}}{6!}, \tag{8}
\end{align*}
$$

therefore $\quad 1-\cos x<\frac{x^{3}}{2!}-\frac{x^{4}}{4!}+\frac{x^{6}}{6!}$
Before proceeding to prove the induction I shall quote a theorem given by Prof. Hill (loc. cit., art. 1), and make two deductions therefrom which will be used in the subsequent work.

§3. Hill's theorem. If

$$
u_{1}, u_{3}, \ldots, u_{4 r+1}, u_{4 r+3}
$$

and

$$
v_{1}, v_{3}, \ldots, v_{4 r+1}, v_{4 r+3}
$$

are two series of positive quantities, each in descending order of magnitude, and if U and V are two quantities such that

$$
u_{1}-u_{3}+u_{5}-\ldots+u_{4 r+1} \geq U \geq u_{1}-u_{3}+u_{5}-\ldots+u_{i r+1}-u_{4 r+3} .
$$ and

$$
v_{1}-v_{3}+v_{5}-\ldots+v_{4 r+1} \geq V \geq v_{1}-v_{3}+v_{5}-\ldots+v_{4 r+1}-v_{4 r+3},
$$

then $U V$ is less than

$$
\begin{aligned}
& u_{1} v_{1} \\
- & \left(u_{1} v_{3}+u_{3} v_{1}\right) \\
+ & \left(u_{1} v_{5}+u_{3} v_{3}+u_{5} v_{1}\right) \\
- & \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \\
+ & \left(u_{1} v_{4 r+1}+u_{3} v_{4 r-1}+\ldots+u_{4 r+1} v_{1}\right),
\end{aligned}
$$

but is greater than

$$
\begin{aligned}
& u_{1} v_{1} \\
- & \left(u_{1} r_{3}+u_{3} v_{1}\right) \\
+ & \left(u_{1} v_{5}+u_{3} v_{3}+u_{5} v_{1}\right) \\
- & \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \\
+ & \left(u_{1} v_{4 r+1}+u_{3} v_{4 r-1}+\ldots+u_{4 r+1} v_{3}\right) \\
- & -\left(u_{1} v_{4 r+3}+u_{3} v_{4 r+1}+\ldots+u_{4 r+3} v_{3}\right) .
\end{aligned}
$$

§4. Let

$$
t_{r}=\frac{x^{r}}{r!} .
$$

Then $t_{1}, t_{3}, t_{5}, \ldots$ are decreasing it

$$
x^{2}<6,
$$

and $t_{3}, t_{4}, t_{6}, \ldots$ are decreasing if

$$
x^{2}<12 .
$$

These are both satisfied if $x<\frac{1}{2} \pi<\sqrt{ } 3$.
Therefore, using the theorem of §3,

$$
\begin{aligned}
& \left(t_{1}-t_{3}+t_{5}-\ldots+t_{4 N+1}\right)^{3} \\
& <t_{1} t_{1} \\
& -\left(t_{1} t_{3}+t_{3} t_{1}\right) \\
& +\left(t_{1} t_{3}+t_{3} t_{3}+t_{5} t_{1}\right) \\
& \text {-.......................... } \\
& +\left(t_{1} t_{4 r+1}+t_{3}{ }^{\prime}{ }_{4 r-1}+\ldots+t_{4 r+1} t_{2}\right)^{\prime} . \\
& \text { Now } \\
& t_{1} t_{2 m+1}+t_{3} t_{2 m-1}+\ldots+t_{2 m+1} t_{1} \\
& =\frac{x^{2 m+2}}{(2 m+2)!}\left(\frac{(2 m+2)!}{1!(2 m+1)!}+\frac{(2 m+2)!}{3!(2 m-1)!}+\ldots+\frac{(2 m+2)!}{2 m+1)!1!}\right) \\
& =\frac{x^{2 m+2}}{(2 m+2)!^{\frac{1}{2}}(1+1)^{2 m+2}} \\
& =\frac{1}{2} \frac{(2 x)^{2 m+2}}{(2 m+2)!},
\end{aligned}
$$

therefore

$$
\left(t_{1}-t_{3}+t_{5}-\ldots+t_{4 r+1}\right)^{2}
$$

$$
<\frac{1}{2}\left\{\frac{(2 x)^{2}}{2!}-\frac{(2 x)^{4}}{4!}+\frac{(2 x)^{6}}{6!}-\ldots+\frac{(2 x)^{4 x+2}}{(4 r+2)!}\right\} \cdots \cdots
$$

Also

$$
\begin{aligned}
& \left(t_{1}-t_{3}+t_{5}-\ldots+t_{4 r+1}\right)\left(t_{2}-t_{4}+\ldots+t_{4 r+2}\right) \\
& <t_{1} t_{2} \\
& -\left(t_{1} t_{4}+t_{3} t_{2}\right) \\
& +\left(t_{1} t_{6}+t_{3} t_{4}+t_{5} t_{2}\right) \\
& \text { - } \\
& +\left(t_{1} t_{4 r+3}+t_{3} t_{4 r}+\ldots+t_{4 r+1} t_{2}\right) .
\end{aligned}
$$

$$
\begin{aligned}
& \text { Now } \quad t_{1} t_{2 m}+t_{3} t_{2 m-3}+\ldots+t_{2 m-1} t_{2} \\
& =\frac{x^{2 m+1}}{(2 m+1)!}\left\{\frac{(2 m+1)!}{1!(2 m)!}+\frac{(2 m+1)!}{3!(2 m-2)!}+\ldots+\frac{(2 m+1)!}{(2 m-1)!2!}\right\} \\
& =\frac{x^{2 m+1}}{(2 m+1)!}\left\{\frac{1}{2}(1+1)^{2 m+1}-1\right\} \\
& =\frac{x^{2 m+1}}{(2 m+1)!}\left(2^{2 m}-1\right),
\end{aligned}
$$

therefore $\quad\left(t_{1}-t_{3}+t_{5}-\ldots+t_{4 r+1}\right)\left(t_{2}-t_{4}+\ldots+t_{4 n+9}\right)$
$<\frac{x^{3}}{3!}\left(2^{2}-1\right)-\frac{x^{5}}{5!}\left(2^{4}-1\right)+\frac{x^{7}}{7!}\left(2^{6}-1\right)-\ldots+\frac{x^{4 r+3}}{(4 r+3)!}\left(2^{4++2}-1\right)$(10).
Similarly, we can show that

$$
\begin{gathered}
\left(t_{1}-t_{3}+t_{5}-\ldots-t_{4 r+3}\right)^{2} \\
>\frac{1}{2}\left\{\frac{(2 . r)^{2}}{2!}-\frac{(2 x)^{4}}{4!}+\frac{(2 x)^{6}}{6!}-\ldots-\frac{(2 x)^{4 r+4}}{(4 x+4)!}\right\} \cdots(11),
\end{gathered}
$$

and

$$
\left(t_{1}-t_{3}+t_{5}-\ldots-t_{4 v+3}\right)\left(t_{2}-t_{4}+t_{6}-\ldots-t_{4 r+4}\right)
$$

$>\frac{x^{3}}{3!}\left(2^{2}-1\right)-\frac{x^{5}}{5!}\left(2^{4}-1\right)+\frac{x^{7}}{7!}\left(2^{6}-1\right)-\ldots-\frac{x^{4 r+5}}{(4 r+5)!}\left(2^{4 r+4}-1\right)$(12).
§5. Let us now assume that

$$
\begin{equation*}
\sin x<t_{1}-t_{3}+t_{5}-\ldots+t_{4 r+1} \tag{13}
\end{equation*}
$$

Use this in

$$
1-\cos 2 x=2 \sin ^{2} x
$$

Therefore, from (9),

$$
1-\cos 2 x<\frac{(2 x)^{2}}{2!}-\frac{(2 x)^{4}}{4!}+\frac{(2 x)^{6}}{6!}-\ldots+\frac{(2 x)^{4+2}}{(4 x+2)!},
$$

therefore

$$
1-\cos x<\frac{x^{2}}{2!}-\frac{x^{4}}{4!}+\frac{x^{6}}{6!}-\ldots+\frac{x^{4 r+3}}{(4 r+2)!},
$$

ie.,

$$
\begin{equation*}
<t_{2}-t_{4}+t_{6}-\ldots+t_{4 r+2} \tag{14}
\end{equation*}
$$

id $1 / r$. Tuckison, On the series for sine and cosine. 'Ilserefore, from (1.3), (1-1), and (10),

$$
\sin x(1-\cos x)
$$

$<\frac{x^{3}}{3!}\left(2^{2}-1\right)-\frac{x^{5}}{5!}\left(2^{4}-1\right)+\frac{x^{7}}{7!}\left(2^{6}-1\right)-\ldots+\frac{x^{4 r+3}}{(4 r+3)!}\left(2^{4+3}-1\right)$(15).

Now use (15) in the right-hand side of the identity (I.). 'Therefore

$$
\begin{aligned}
& 2^{n} \sin \frac{2 x}{2^{n}}-\sin x \\
& <\frac{x^{3}}{3!}\left(2^{2}-1\right)\left\{2\left(\frac{1}{2}\right)^{3}+2^{2}\left(\frac{1}{2^{2}}\right)^{3}+\ldots+2^{n}\left(\frac{1}{2^{n}}\right)^{3}\right\} \\
& -\frac{x^{5}}{5!}\left(2^{4}-1\right)\left\{2\left(\frac{1}{2}\right)^{5}+2^{2}\left(\frac{1}{2^{2}}\right)^{5}+\ldots+2^{n}\left(\frac{1}{2^{n}}\right)^{5}\right\} \\
& +\frac{x^{7}}{7!}\left(2^{6}-1\right)\left\{2\left(\frac{1}{2}\right)^{7}+2^{2}\left(\frac{1}{2^{2}}\right)^{7}+\ldots+2^{n}\left(\frac{1}{2^{n}}\right)^{7}\right\}
\end{aligned}
$$

$$
+\frac{2^{4 r+3}}{\left(4 r^{2}+3\right)!}\left(2^{4 r+2}-1\right)\left\{2\left(\frac{1}{2}\right)^{4 r+3}+2^{2}\left(\frac{1}{2^{3}}\right)^{4 r+3}+\ldots+2^{n}\left(\frac{1}{2^{n}}\right)^{4 r+3}\right\} .
$$

Therefore

$$
\begin{aligned}
& 2^{2^{n}} \sin \frac{x}{2^{n}}-\sin x \\
& \quad<\frac{x^{3}}{3!}\left(1-\frac{1}{2^{2 n}}\right)-\frac{x^{5}}{5!}\left(1-\frac{1}{2^{4 n}}\right)+\frac{x^{4}}{7!}\left(1-\frac{1}{2^{64}}\right)-\ldots \\
& \\
& \ldots+\frac{x^{4 n+3}}{(4 r+3)!}\left(1-\frac{1}{2(x+2)^{2 n}}\right),
\end{aligned}
$$

therefore

$$
\begin{gathered}
2^{n}\left\{\sin \frac{x}{2^{n}}-\frac{x^{x}}{2^{n}}+\frac{1}{3!}\left(\frac{x}{2^{n}}\right)^{3}-\ldots+\frac{1}{\left.(4 r+3)!\left(\frac{x}{2^{n}}\right)^{4++3}\right\}}\right. \\
<\sin x-x+\frac{x^{3}}{3!}-\ldots+\frac{x^{4 r i 3}}{(4 r+3)!}
\end{gathered}
$$

Now make n tend to infinity. The left-hand side tends to zero; and reasoning as in $\S 2$, we see that

$$
0<\sin x-x+\frac{x^{3}}{3!}-\ldots+\frac{x^{4 r+3}}{(4 r+3)!},
$$

therefore

$$
\begin{equation*}
\sin x>t_{1}-t_{3}+t_{5}-\ldots-t_{4 r+3} . \tag{16}
\end{equation*}
$$

Ill a similar way from

$$
1-\cos 2 x=2 \sin ^{2} x
$$

and, using (16) and (11), we get

$$
1-\cos x>t_{2}-t_{4}+t_{6}-\ldots-t_{4 r+4} \ldots \ldots \ldots \ldots \ldots \text { (17). }
$$

Then fiom (16), (17), and (12),

$$
\begin{aligned}
\sin x(1-\cos x)> & \frac{x^{3}}{3!}\left(2^{2}-1\right)-\frac{x^{5}}{5!}\left(2^{4}-1\right)+\frac{x^{7}}{7!}\left(2^{6}-1\right)-\ldots \\
& \ldots-\frac{x^{4 r-5}}{\left(4 r^{r}+5\right)!}\left(2^{4 r+4}-1\right) \ldots \ldots \ldots \ldots(18)
\end{aligned}
$$

Substituting this into the identity (I.), we get

$$
\begin{aligned}
& 2^{n} \sin \frac{x}{2^{2}}-\sin x \\
& >\frac{x^{3}}{3!}\left(1-\frac{1}{2^{2 n}}\right)-\frac{x^{5}}{5!}\left(1-\frac{1}{2^{14 n}}\right)+\frac{x^{7}}{7!}\left(1-\frac{1}{2^{6 n}}\right)-\ldots \\
& \cdots-\frac{x^{4+5}}{(4 r+5)!}\left(1-\frac{1}{2^{(t++4)}}\right) \text {, }
\end{aligned}
$$

therefore

$$
\begin{gathered}
2^{n}\left\{\sin \frac{x}{2^{n}}-\frac{x}{2^{n}}+\frac{1}{3!}\left(\frac{x}{2^{n}}\right)^{3}-\frac{1}{5!}\left(\frac{x}{2^{n}}\right)^{5}+\frac{1}{7!}\left(\frac{x}{2^{n}}\right)^{7}-\ldots\right. \\
\left.\ldots-\frac{1}{(4 r+5)!}\left(\frac{x}{2^{4}}\right)^{4 r+5}\right\} \\
>\sin x-x+\frac{x^{3}}{3!}-\frac{x^{5}}{5!}+\frac{x^{7}}{7!}-\ldots-\frac{x^{4 r+5}}{(4 r+5)!} .
\end{gathered}
$$

And, reasoning as before, it follows that

$$
0>\sin x-x+\frac{x^{3}}{3!}-\frac{x^{5}}{5!}+\ldots-\frac{x^{4 r+5}}{(4 r+5)!}
$$

i.e.,

$$
\begin{equation*}
\sin x<t_{1}-t_{3}+t_{5}-\ldots+t_{4 r+3} . \tag{19}
\end{equation*}
$$

Now (19) can be got from (13) by clanging r into $r+1$, and we have proved (iu §2) that (13) is true for $r=0$, 1 , therefore it must be true for $r=2$, and so on for all positive integral values.

It follows therefore that the inequalities (14), (15), (16) (17) ${ }^{6}$ (18) are also true for all positive integral values of r.
'Therefore, since the series
and

$$
t_{1}-t_{3}+t_{5}-\ldots
$$

are both absolutely convergent, it follows that

$$
\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\ldots+(-1)^{r} \frac{x^{2 r+1}}{(2 r+1)!}+\ldots,
$$

and

$$
\begin{gathered}
1-\cos x=\frac{x^{2}}{2!}-\frac{x^{4}}{4!}+\frac{x^{6}}{6!}-\ldots+(-1)^{r-1} \frac{x^{2 r}}{\left(2 r^{2}\right)!}+\ldots, \\
\text { i.e., } \quad \cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\ldots+(-1)^{r} \frac{x^{2 r}}{(2 r)!}+\ldots
\end{gathered}
$$

This completes the demonstration for x an acute angle. By using the series in the expressions for $\sin (x+y), \cos (x+y)$, we can prove that the series are true for all values of x.

$$
\begin{gathered}
\text { QUELQUES } \\
\text { REMARQUES SUR LES CONGRUENCES } \\
r^{p-1} \equiv 1\left(\bmod p^{2}\right) \text { et }(p-1)!\equiv-1\left(\bmod p^{2}\right) \\
\text { par N. G. W. H. Beeger. }
\end{gathered}
$$

La premiere de ces deux congruences s’est introduit dans les recherches récentes sur le dernier théorème de Fermat. Si l'équation

$$
x^{p}+y^{p}+z^{p}=0
$$

a lieu pour des valeurs de x, y, et z qui ne sont pas divisibles par p, chaque facteur r de x, y, z doit satisfaire à la congruence:

$$
\begin{equation*}
r^{p-1} \equiv 1\left(\bmod p^{2}\right) \tag{1}
\end{equation*}
$$

C"est le théorème de M. Fürtwangler.*

$$
r^{p-1} \equiv 1\left(\bmod p^{2}\right) \text { et }(p-1)!\equiv-1\left(\bmod p^{2}\right)
$$

Abel a posé la question de satisfaire à la congruence (1) par des nombres $r<p$.* La seule réponse fut une petite table de Jacobi, calculée par Busch. \dagger
M. Cumningham \ddagger a trouvé quelques cas de la congruence $r^{p-1} \equiv 1\left(\bmod \mu^{a}\right)$ avec $r<\nu^{\alpha-1}$. On les trouve dans la table suivante

r	p	a	r	p	a	r	${ }^{\prime}$	a	
1068	5	6	2819	19	4	53	97	2	
18	7	3	2820	19	4	43	103	2	('I'h. Gosset)
19	7	3	333	19	3	58	131	2	
1353	7	5	19	43	2	69	631	2	
1354	7	5	53	59	2	252	997	2	
82681	7	7	11	71	2	175	487	2	('Ih. Gosset)
82682	7	7	26	71	2	307	487	2	(, ,
239	13	4	31	79	2	10	487	2	(Desmarest)
158	17	3				100	487	2	(,)
390112	17	6							

M. Hertzer§ a recherché s'il y a des nombres $r<p$ pour lesquelles on a $r^{p-1} \equiv 1\left(\bmod p^{3}\right)$ pour $p<307$. Il a trouvé seulement $r=68, p=113$, et $r=3,9, p=11$. Du reste il a pris $p=331,353,487,673$ et aussi tous les nombres premiers entre 307 et 753 , mais seulement pour a et $p-a$ si a $a<\sqrt{ } p$. Ainsi il a encore trouvé :

$$
\begin{array}{ll}
r=18,324,71, & p=331, \\
r=14,196, & p=353, \\
r=100,175,307, & p=487, \\
r=22,484, & p=673 .
\end{array}
$$

Desmarest \| semble avoir vérifié que pour $r=10$ les seuls nombres $p<1000$ sont $p=3$ et 487.

Proth af dome, sans aucune démonstration, comme théorème que la congruence (1) est impossible pour $r=2$.
M. Cumningham** a vérifié qu'il n'y a pas de nombres $p<1000$ qui satisfont ì $2^{p-1} \equiv 1\left(\bmod p^{2}\right)$.

[^19]Mr. Meissner** a poussé plus loin ces calculs et il a trouvé le cals. $2^{1092} \equiv 1\left(\right.$ mod $\left.1093^{\circ}\right)$, et a vérifié qu'il n'y a pas d'autres nombres $p<2000$. L'assertion de Proth se tronve done contrantí. La découserte de M. W'. Meissner nous montre qu’il est impossible de demontrer le dernier théorème de Fermat par moyen de l'impossibilité de $2^{p-1} \equiv 1$ (mod p^{2}) laquelle congruence anra lien, suivant MI. Wieferich, si $x^{p}+y^{p}+z^{p}=0$.
M. Mirmanuff \dagger a étudié le reste de

$$
\frac{p^{r^{p-1}}-1}{p}(\bmod p)
$$

et tout récent M. Bachmann \ddagger a domé une nouvelle expression du reste de

$$
\frac{2^{p-1}-1}{p}(\bmod p)
$$

I. 1. La solution de la congruence $x^{p-1} \equiv 1\left(\bmod p^{2}\right)$ a été donne par M. Worms de Romilly§: Soit ω une raçine primitive de p^{3}. Formons les restes:

$$
x_{i} \equiv \omega^{i p}\left(\bmod p^{2}\right) \quad i=1,2, \ldots, p-1 .
$$

Ces $p-1$ restes sont tous incongruents $\left(\bmod p^{2}\right)$ et

$$
x_{i}^{p-1} \equiv \omega^{i_{p}(p-1)} \equiv 1\left(\bmod p^{2}\right) .
$$

Il 'sensuit que tous ces restes sont les rac̣ines de la congruence.

J’ai calculé les raçines de la congruence

$$
x^{p-1} \equiv 1\left(\bmod p^{2}\right)
$$

pour tous les nombres premiers $p<200$. On trouve cette table à la tin da présent mémoire. J’ai pris, pour chaque nombre premier p, une raçine primitive de $p, \omega . \|$ Je recherehe d'abord si ω^{p-1} n'est pas congruent de l'unité $\left(\bmod p p^{2}\right)$. Alors on sait que ω est raçiue primitive de p^{2}. Je calcule maintenant

$$
\pm x_{1} \equiv \omega^{p}\left(\bmod p^{2}\right)
$$

ù $\pm x_{1}$ a la plus petite valeur absolu. x_{1} est done racine. Je prends

$$
x_{1}^{2} \equiv \omega^{2 p} \equiv \pm x_{2}\left(\bmod p^{2}\right)
$$

[^20]où $\pm x_{2}$ a encore la plus petite valeur absolu. Alors il vient
\[

$$
\begin{gathered}
x_{1} x_{2} \equiv \pm x_{3}, \quad x_{\mathrm{r}} x_{3} \equiv \pm x_{4}, \quad \text { etc. } \\
x_{1} x_{\frac{1}{2}(p-3)} \equiv \pm x_{\frac{1}{2}(p-1)} .
\end{gathered}
$$
\]

jus qu’à
On a une contrôle du calcul parce que

$$
\pm x_{\frac{1}{2}(p-1)} \equiv \omega^{\frac{1}{2}(p-1) p} \equiv-1
$$

de sorte qu'on doit trourer $x_{\frac{1}{2}}^{2}(p-1)=1$. Ainsi on trouse $\frac{1}{2}(p-1)$ raçines de la congruence. Les autres $\frac{1}{2}(p-1)$ se trourent en dimmuant p^{2} des raçines trourées, car si x_{i} est raçine, il en est de même de $p^{2}-r_{i}$. Dans la table je n’ai écrit que les $\frac{1}{2}(p-1)$ raçines qui ont les plus petites valeurs.

Exemple- $p=23, \omega=5$:

$$
\begin{aligned}
5^{23} & \equiv 28, & -28.130 & \equiv 63, \\
28^{2} & \equiv 255, & 28.63 & \equiv 177, \\
28.255 & \equiv 263, & 28.177 & \equiv 195, \\
28.263 & \equiv-42, & 28.195 & \equiv 170, \\
-28.42 & \equiv-118, & & \equiv-1 . \\
-28.118 & \equiv-130, & &
\end{aligned}
$$

Les 11 raçines les plas petites seront donc: $28,255,42,118$, $130,63,177,195,170,1$.

Il va sans dire que si x est rac̣ine, il en sera de même de $x+p^{2} k$. Donc, on peut déduire autant de cas que l'on reut de la congruence $r^{p-1} \equiv 1\left(\bmod p^{2}\right)$ par l'addition de $R p^{2}$ an nombres domés dans la table. Un pent trouve p.e.

$$
60000^{1 \mathrm{ds}} \equiv 1\left(\bmod 149^{2}\right)
$$

parce que

$$
60000=-6603+3.149^{3} .
$$

2. On peut aisément trouser quelques propriétés des raçines: Formons le produit

$$
\left(x-x_{1}\right)\left(x-x_{2}\right) \ldots\left(x-x_{p-1}\right)=x^{p-1}-S_{1} x^{p-2}+\ldots+S_{p-1}
$$

où x_{i} sont les raçines de $x^{p-1} \equiv 1\left(\bmod p^{2}\right)$.
() $)_{1}$ aura done

$$
\left(x-x_{1}\right)\left(x-x_{2}\right) \ldots\left(x-x_{p-1}\right) \equiv x^{p-1}-1\left(\bmod p^{2}\right)
$$

Il sensuit :

$$
S_{1} \equiv 0, S_{2} \equiv 0, \ldots, S_{p-1} \equiv-1\left(\bmod p^{2}\right) .
$$

if In. Beeger, Quelques remarques sur les congruences
Soicnt $r_{1}, \ldots, x_{\frac{1}{2}(p-1)}$ les plus petites raçines. Les $\frac{1}{2}(p-1)$ antres raçines seront done

$$
p^{2}-r_{1}, \ldots, p^{3}-r_{2}(p-1) .
$$

Nous avons démontré que $S_{p-1} \equiv-1$ (mod p^{2}). Dunc $x_{1} x_{2} \ldots x_{\frac{1}{2}(p-1)}\left(p^{2}-x_{1}\right)\left(p^{2}-x_{2}\right) \ldots\left(p^{2}-x_{\frac{1}{2}(p-1)}\right) \equiv-1\left(\bmod \mu^{2}\right)$, ou $\quad x_{1}{ }^{2} x_{2}{ }^{2} \ldots x^{2} \frac{2}{2}(p-1) \equiv(-1)^{\frac{1}{2}(p+1)}\left(\bmod p^{2}\right)$.

Si $p=4 n-1$ on anma

$$
x_{1} x_{2} \ldots x_{1}(p-1) \equiv \pm 1\left(\bmod p^{2}\right) .
$$

La détermination du sigue du deuxième membre semble diffiçile.
3. Si $p=6 n+1$ il y a tonjours deux raçines qui diffèrent l'unité.

La prenve peut se domner ainsi:

$$
\begin{aligned}
x^{p-1}-1 & =x^{6 n}-1 \\
& =(x+1)(x-1)\left(x^{3}+x+1\right)\left(x^{2}-x+1\right)\left(x^{6(n-1)}+\ldots\right), \\
(x+1)^{p-1}-1 & =(x+1)^{6 n}-1 \\
& =(x+2) x\left(x^{2}+3 x+3\right)\left(x^{2}+x+1\right)\left\{(x+1)^{6(n-1)}+\ldots\right\} .
\end{aligned}
$$

Si done on prend

$$
\begin{equation*}
x^{2}+x+1 \equiv 0\left(\bmod p^{2}\right) \tag{3}
\end{equation*}
$$

on aura à la fois

$$
x^{\mu-1} \equiv 1\left(\bmod p^{2}\right) \text { et }(x+1)^{p-1} \equiv 1\left(\bmod p^{2}\right)
$$

On pront énoncer ce théorème sous la forme suivante: Pour tonte raçine primitive ω de p^{3} on a:

$$
\omega_{0}^{\frac{1}{2}(p-1) p}-\omega_{\frac{1}{3}}^{\frac{1}{2}(p-1) p} \equiv 1\left(\bmod \nu^{\prime \prime}\right) .
$$

Soit

$$
x=\omega^{\alpha p} \text { et } x+1 \equiv \omega^{\beta p}
$$

on alla

$$
\begin{equation*}
\omega^{\beta p}-\omega^{\alpha p} \equiv 1, \tag{4}
\end{equation*}
$$

et suivant (3):

$$
\omega^{2 \alpha p}+\omega^{a p}+1 \equiv 0
$$

et aussi :

$$
\left(\boldsymbol{\omega}^{a p}-1\right)\left(\omega^{2 a p}+\omega^{\alpha p}+1\right) \equiv 0
$$

ou

$$
\omega^{3} \alpha p-1 \equiv 0
$$

$$
r^{p-1} \equiv 1\left(\bmod p^{2}\right) \text { et }(p-1)!\equiv-1\left(\bmod p^{2}\right)
$$

Donc

$$
\alpha=\frac{1}{3}(p-1),
$$

et il suit de (t):
(5)

$$
\left(\omega^{\beta p}-1\right)^{3} \equiv \omega^{(p-1) p} \equiv 1
$$

Du reste on a

$$
x=\omega^{\beta p}-1
$$

Substituons cette expression dans (3) :

$$
\begin{aligned}
&\left(\omega^{\beta p}-1\right)^{2}+\left(\omega^{\beta p}-1\right)+1 \equiv 0\left(\bmod p^{2}\right), \\
& \omega^{2 \beta p}-\omega^{\beta p}+1 \equiv 0, \\
& \omega^{\beta p}\left(\omega^{\beta p}-1\right) \equiv-1, \\
& \omega^{3 \beta p}\left(\omega^{\beta p}-1\right)^{3} \equiv-1, \\
& \omega^{3 \beta p} \equiv-1, \\
& \text { et suivant }(5): \quad \beta=\frac{1}{6}(p-1) .
\end{aligned}
$$

d'où
'TABLE DES RAÇINES DE LA CONGRUENCE $x^{p-1} \equiv 1$ (mod $\left.\mu^{2}\right)$.

p	raçines x
3	1
5	17
7	11819
11	$\begin{array}{lllll}13 & 9 & 27 & 40\end{array}$
13	$\begin{array}{llllll}1 & 19 & 22 & 23 & 70 & 80\end{array}$
17	$\begin{array}{llllllllll}1 & 38 & 40 & 65 & 75 & 110 & 131 & 134\end{array}$
19	
23	
29	
31	$\begin{array}{lllllllllll} 1 & 115 & 117 & 145 & 229 & 235 & 333 & 338 & 374 & 388 & 414 \\ 440 & 448 \end{array}$
37	$\begin{array}{lllllllllllll}1 & 18 & 76 & 117 & 300 & 324 & 348 & 354 & 356 & 424 & 437 & 473 & 476\end{array}$ 494581582632678
41	$\begin{array}{llllllllllll}151 & 148 & 207 & 313 & 378 & 471 & 487 & 505 & 509 & 540 & 644 & 719\end{array}$ $\begin{array}{lllllll}744 & 761 & 768 & 776 & 787 & 824 & 834\end{array}$
43	$\begin{array}{lllllllllllll}1 & 19 & 75 & 78 & 210 & 261 & 276 & 288 & 292 & 303 & 361 & 367 & 403\end{array}$ $423 \quad 424 \quad 537 \quad 588 \quad 641 \quad 660 \quad 764891$
47	$\begin{array}{lllllllllllll}153 & 67 & 71 & 116 & 172 & 202 & 230 & 280 & 295 & 339 & 438 & 479\end{array}$ $\begin{array}{lllllllll}600 & 623 & 629 & 655 & 867 & 874 & 1042 & 1064 & 1085 \\ 1088\end{array}$
53	$\begin{array}{llllllllllll} 1 & 338 & 406 & 413 & 451 & 460 & 500 & 521 & 655 & 737 & 752 & 780 \\ 856 & 862 & 869 & 895 & 925 & 985 & 1009 & 1032 & 1120 & 1153 & 1223 \\ 1341 & 1366 \end{array}$

raçines x

$\begin{array}{lllllllllllllllllll}1 & 143 & 248 & 279 & 310 & 448 & 504 & 560 & 567 & 630 & 699 & 700 & 722\end{array}$ $\begin{array}{lllllllllllllllll}875 & 897 & 1078 & 1121 & 1199 & 1218 & 1301 & 1342 & 1457 & 1471\end{array}$ 1528171918311857186819101994199621542216
$\begin{array}{lllllllllllll}1 & 11 & 26 & 121 & 223 & 261 & 286 & 438 & 482 & 577 & 606 & 633 & 676\end{array}$ 681757859969978114013061331133516251745 1755177818331895192221702289239524502453 2458
$\begin{array}{lllllllllllllllllll}1306368 & 527 & 619 & 621 & 672 & 699 & 711 & 734 & 770 & 776 & 786\end{array}$ 923103211341144135513811392141714401482 1595165016671818195320922162219821992286 234924302480
$\begin{array}{lllllllllllll}1 & 31 & 146 & 147 & 319 & 377 & 439 & 470 & 491 & 604 & 750 & 795 & 810\end{array}$ 961112714141523168417141715190520882092 2123227623182442246525092593271527392838 288628873004303230343035
$\begin{array}{lllllllllllll}1 & 99 & 161 & 260 & 269 & 293 & 380 & 401 & 526 & 562 & 615 & 670 & 821\end{array}$ $\begin{array}{llllllllll}822 & 925 & 1020 & 1050 & 1081 & 1115 & 1116 & 1180 & 1290 & 1389\end{array}$ 1451145316351816197520182161235423552560 25692633291230383175318132053418
$\begin{array}{lllllllllll}1 & 184 & 254 & 426 & 605 & 707 & 790 & 826 & 842 & 927 & 1070 \\ 1145\end{array}$ 1148121914851510155615731659176520542172 $\because 247227224662508260526352690278229773018$ 3171318733323352349235983645366336943858 38613926
$\begin{array}{lllllllllllllllll}153 & 107 & 138 & 226 & 279 & 382 & 402 & 412 & 525 & 750 & 866 & 978\end{array}$ 1147142814971626165116071873202220402095 2114225224882569276428092822296130183020 3079323432383667367037384031404540524069 42304337443146204621
101
 $\begin{array}{lllllllllllllll}539 & 507617 & 629 & 649 & 747 & 1059 & 1406 & 1524 & 1638 & 1744\end{array}$ 1816185421402158219822642398249725942933 2960297730053046311332523824407040844451 460547324794484548934943

$$
r^{p-1} \equiv 1\left(\bmod p^{2}\right) \text { et }(p-1)!\equiv-1\left(\bmod p^{2}\right) . \quad \tau 9
$$

14314716434835038639147068790810081067 $15471595184918892135 \quad 22862400267027032817$ 2867289029113038332633923417344534463557 3589364536763697402740314288435544054425 44324441462048084931510151735244
$\begin{array}{lllllllll}164317 & 469 & 510 & 695 & 730 & 955 & 1058 & 1100 & 1200\end{array} 1239$ 1384147715701777179918371948200421672195 2308236424302552257425832638278428082878 2886307932273365347334953497359436663895 3998506150855203523052575383551755735602 5676
$\begin{array}{lllllllllllllllllllll}1 & 96 & 291 & 380 & 402 & 410 & 476 & 499 & 500 & 624 & 681 & 837 & 977\end{array}$
 2613263726652697272727722815292829352949 3023309432023250336933843651380639364049 4056407741744730489850325064554257445910 5947

16812917435637362069074293795410271057 1220133013591418149715781668169017101901 1990261829593029309233663455351736473853 3872399741064121415241564624468947384793 4853509851395152538555735728595259916070 614563356346
$\begin{array}{lllllllll}138 & 62 & 497 & 736 & 911 & 1155 & 1159 & 1224 & 1444 \\ 1549 & 1730\end{array}$ 1813182118461875189121632172235623602755 2757310233473592360738203844429043394345 4378449544974574461246214682475748034972 4973507450955175563256435654631964856533 6609669067346922709472467342746479167992 8034
$\begin{array}{lllllllllll}1 & 58 & 111 & 250 & 424 & 659 & 835 & 899 & 1033 & 1100 & 1113\end{array} 1465$ 1634165719732386266128183034305331073177 3364341636343674387539004029405040904135 4138433743624419445645054840484452495256 5354546456935869614463416376643864466572 6860688071607397743177347804801481668194 843184908565

raçines x

$\begin{array}{lllllllllll}1 & 78 & 206 & 559 & 582 & 598 & 751 & 785 & 850 & 104 \because & 1149\end{array} 1582$ 2000210322572430286630723166326932913387 3539360736713793386341714269442744624901 $533953865596588760216024608 \pm 612463626678$ 6733677269227132717372127308748976087733 7734868488098884892289499033907291099183 $93919426944396909825 \quad 9928100751034810426$ 10531106161091511195

157
$\begin{array}{lllllllllll}1 & 19 & 161 & 361 & 1062 & 1409 & 146 t & 1496 & 1621 & 1704 & 1785\end{array}$ 1814186318862061214125742591269329723059 3072309931413342337234003623363038154233 4245434945055140516252465351557957365829 5850592760216106623965636598660766136686 6739685970787152719174017415755577617824 8002825082939047911492369267

132836939853455391411051172126315631793 2000200422502299234324142485275228833096 3129332734833598365938023836383940024336 4503459346594703487850515106527853455431 5487600161586159673469157207740674817495 7546756375767706834284748523852585538588 8798880988788881900392809344
$\begin{array}{lllllllll}1313 & 957 & 960 & 1312 & 1425 & 1510 & 1644 & 1744 & 1747 \\ 1969\end{array}$ 2005204622812752296331553207343135213528 3933394940724085431043344463471647464955 5023523153315361557156085786593761376409 6603680465356687721979277977801281398214 8255846284798499905390799153916592839464 $94999873997+1015610193102891033+1047210606$ 10671108421092811038

122623332535849750051960485789210811101 $163617781859201021842318 \quad 2336248928602941$ 3360351036983868435044004413449245834759 4919492149915021538354005486560958885951 6212623964576745689568966961702971627386 $\begin{array}{lllllllll}7444 & 7932 & 8222 & 8440 & 8757 & 9022 & 9467 & 9497 & 10043\end{array}$ $1005810245 \quad 103071053510578106441076910923$ $110181137811390 \quad 1145311639119101205012973$
$\xi^{p-1} \equiv 1\left(\bmod p^{2}\right) c t(p-1)!\equiv-1\left(\bmod p^{2}\right) . \quad$ \&
raçines x
$163 \quad 16584218266590630710711728102211821396$ 1635167819952474254727032794287729863143 3170357837434174422543734416442544954634 4725473648505219532554605614562058186141 6162620465026551658666086666692369676988 7056766579528014810781668186825782938865 8935895192799503980610244102881047010988 1103311703117811206912188123991258512797 13277

1253350865867104011491314140614431683 1792206822262522267829823048326732833307 3329338137613780392440294211422842674778 4804487848835286539855675601568160716188 $6687681068396980701870397152746 \pm 78218060$ 8114812081988231828389339166923293429418 9426954296079748990210119103081092610944 1123211704118071186212012121191218912217 1255612935136421367613888

125934036941975379310401451160616421727 2106225623672554304830523300330335183608 4013411641564966531753425423548255485744 5784596662726377667367156732678568447185 722373187382750275217575770681488159828 2 849687549337938998359850101431037111114 $11195112781140011778 \quad 12040121581231412416$ 1246412590130771317513241132681329213341 1338913484137121427614282144731447614627 14770

179
$15326326499391148133616721957 \quad 2167 \quad 2344$ 2404259125992712300434213591360837663839 3922422342404266466849055345539958506365 6617718375227644768777498017810982198276 8434847785748695886890189078940094799533 981310166104531060810821112861140711422 1148211546115471176411836120481239112485 1277512810131081321513401137351413814139
 153581581115812158141582216614
raçines x
$\begin{array}{lllllllllll}1 & 78 & 298 & 313 & 314 & 416 & 420 & 836 & 1241 & 1368 & 1485\end{array} 1618$ 2240229123262430295629873398345835983659 3718383240474151415446994711484048454874 5009516752635579588459106084615169217026 7076708772967636791479208269834784218909 $\begin{array}{lllllllll}9251 & 9269 & 9331 & 9447 & 9479 & 9517 & 9622 & 9894 & 10238\end{array}$ $\begin{array}{lllllllll}10876 & 10915 & 10968 & 11177 & 11637 & 11944 & 11982 & 12151\end{array}$ $\begin{array}{llllllllllllllll}12300 & 12595 & 12741 & 12754 & 12960 & 13139 & 14141 & 14205\end{array}$ 1432414532148931501915138152141522215379 1547315612156621589816124
$\begin{array}{llllllllllll}1 & 176 & 395 & 714 & 746 & 938 & 979 & 1249 & 1293 & 1372 & 1802 & 2017\end{array}$ 2044252827212822344241704208430046434669 4798484050665232527553795385550557005796 5867627766097156737879938364845386828807 88838961930193789793981899351010110322 1068610826109881112411177121501253712777 $1282413070 \quad 130741336113466135731389513979$ 1406214385145711458614628147881562315966
 $\begin{array}{lllllll}16375 & 16612 & 16752 & 16846 & 17317 & 17319 & 17379 \\ 17423\end{array}$ 17583176521783018213
1276436558813873874894895954167817321767 1947201823612501256128312897302133743455 3851432550125099527260266205623066276666 $\begin{array}{llllllllll}7312 & 7346 & 7835 & 8138 & 8574 & 8589 & 9058 & 9513 & 10085\end{array}$ 1009810172102151084610848110111114811500 115841177611817118501218312458,1245913029 1335413364133721344113576137231379713861 $\begin{array}{llllllllllll}13999 & 14128 & 14318 & 14615 & 14819 & 14894 & 15173 & 15184\end{array}$ $\begin{array}{lllllllllll}15240 & 15382 & 15860 & 15886 & 16050 & 16140 & 16420 & 17007\end{array}$ $\begin{array}{lllllllll}17149 & 17294 & 17343 & 17345 & 17454 & 17455 & 17512 & 17730\end{array}$ 179011802218158183531840318453
114328431834955699713281336134213931672 1753178418031890191219292051213922362455 2650276829973038414141554184444345104595 4623462851545374544556975980624265666574 6665696270987522753576988303866687818994 9140914792769297996510028109381100611098 $\begin{array}{lllllllllllllll}11485 & 11630 & 11774 & 12030 & 12377 & 12419 & 12486 & 12665\end{array}$ $\begin{array}{lllllllll}12694 & 12928 & 13468 & 13532 & 13834 & 13795 & 14080 & 14128\end{array}$ $\begin{array}{llllllllll}14162 & 14405 & 14526 & 14806 & 14823 & 14895 & 15025 & 15229\end{array}$ 1530315750160751617716551171301717917237 $\begin{array}{llllll}17311 & 17825 & 18360 & 18468 & 18885\end{array}$
raçines x 19271942204521012225123092418274534213504 3532388239754336456346314667520853155756 6240660469057229817191579165926992789318 932593869523957998179828100521052710670 1083511152112901149311519119191211512132 1343213439134401371213774139871413114224 1450114654148791488115051152291533215345 1555815590156811650716533167631683216919 1758118057180771843318490185011865518985 1904819385195631963719714197321974019792
II. La congruence $(p-1)!+1 \equiv 0\left(\bmod p^{2}\right)$.

On en connaît seulement les cas $p=5,13$. La verification directe pour un certain nombre p est impossible. J'ai fait usage de la formule counue des nombres de Beruouilli:

$$
\begin{equation*}
p h_{p-1}-p+1 \equiv(p-1)!+1\left(\bmod p^{2}\right), \tag{1}
\end{equation*}
$$

dans laquelle h_{p-1} est un des nombres de Bernouilli qui sont définis par l'équation symbolique:

$$
(h+1)^{n}=h^{*}, \quad h_{1}=-\frac{1}{2} .
$$

On peut prouver la formule (1) de la manière suivante:
Je pars de la relation

$$
m!=m^{m}-\binom{m}{1}(m-1)^{m}+\binom{m}{2}(m-2)^{m}-\cdots
$$

d'où
$(p-1)!=(p-1)^{p-1}-\binom{p-1}{1}(p-2)^{p-1}+\binom{p-1}{2}(p-3)^{p-1}-\ldots$,
$(p-1)!+1=\left\{(p-1)^{p-1}-1\right\}$

$$
\begin{aligned}
& -\binom{p-1}{1}\left\{(p-2)^{p-1}-1\right\}+\ldots-\binom{p-1}{1}\left(1^{p-1}-1\right) \\
& +1-\binom{p-1}{1}+\binom{p-1}{2}-\ldots-\binom{p-1}{p+2}+1
\end{aligned}
$$

$(p-1)!+1 \equiv\left\{(p-1)^{p-1}-1\right\}$

$$
+\left\{(p-2)^{p-1}-1\right\}+\ldots+\left(2^{p-1}-1\right)+\left(1^{p-1}-1\right)\left(\bmod p^{2}\right),
$$

$(p-1)!+1 \equiv 1^{p-1}+2^{p-1}+\cdots+(p-1)^{p-1}-(p-1) \quad\left(\bmod p^{2}\right)$.

St Dr. Beeger, Quelques remarques sur les congruences.
Soit maintenant $S_{p-1}(p)=1^{p-1}+2^{p-1}+\ldots+(p-1)^{p-1}$ la fonction de Bernouilli, on aura

$$
S_{p-1}(p)=1 / p(h+p)^{p} \equiv p h_{p-1},
$$

done

$$
(p-1)!+1 \equiv p h_{p-1}-p+1\left(\bmod p^{2}\right) .
$$

Adams a calculé les nombres de Bernouilli jusqu'à h_{124} ** A l'aide de cette table j'ai rérifié qu'il n'y a pas de nombres $p<114$ qui sutisfont à la congruence

$$
(p-1)!+1 \equiv 0\left(\bmod p^{2}\right)
$$

Prenons p.e. $p=61$ on aura
$61 h_{60}=\frac{1215233140483755572040304994079820246041491}{930930}$.
If faut done chercher le reste r de
60.930930
$+1215233140483755572040304994079820246041491$
$\left(\bmod 61^{2}\right)$.
On trouve $r=2745$. On peut contrôler ce resultat, parce qu'il faut que

$$
2745 \equiv 0(\bmod 61)
$$

car $(p-1)!+1 \equiv 0(\bmod p)$. Le nombre 61 ne satisfait done pas à la congruence $(p-1)!+1 \equiv 0\left(\bmod p^{2}\right)$.

Enfin je veux tirer l'attention sur le quotient de Wilson. On a

$$
\begin{aligned}
& \frac{2!+1}{3}=1, \quad \frac{4!+1}{5^{2}}=1, \quad \frac{6!+1}{7}=103 \\
& \frac{10!+1}{11}=329891, \quad \frac{12!+1}{13^{2}}=283329 .
\end{aligned}
$$

'Ious ces nombres sont premiers.

[^21]
ON A NOTE ON THE ELEMENTARY 'THEORY OF GROIJPS (9F FLNI'AE ORDER (vol. xlii., pp. 132-134).

By H. W. Chapman, B.SC.
In the above-mentioned paper I proved that if $I I$ be any sub-group of a group G it is possible to find a single set of operations $S_{1}, S_{2}, \ldots, S_{2 \pi}$ belonging to the group G, such that the group can be written in either of the two forms $S_{1} H, S_{2} H$, $\ldots, S_{m} H ; H S_{1}, H S_{2}, \ldots, H S_{m}$. It has since been pointed out to me that the same result, with others, has been given in the Quarterly Journal of Mathematics, vol. xli., pp. 382-384, by Professor G. A. Miller.

I may perhaps be allowed to remark that my proof follows directly from first principles, whereas Professor Miller's involves the theory of the representation of a group as transitive.

I also wish to point ont that, owing to an oversight in reading the proof, the $p^{\text {th }}$ rows in my schemes (A) and (B) are wrongly placed and should be interchanged; also (A) and (B) should be interchanged in the last paragraph.

A NOTE ON LEGENDRE'S FUNCTIONS.

By A. E. Jolliffe, M.A.

In vol. vii., series 2, of the London Mathematical Society's Proceedings, Professor E. W. Hobson, in a paper entitled "Series of Legendre's Functions," proves, as a lemma, that $\left|(n \sin \theta)^{\frac{1}{2}} P_{n}(\cos \theta)\right|$ is less than some fixed number, independent of n and θ^{n}, for all values of θ in the range $(0, \pi)$. As the results based on this lemma are of considerable importance and the proof of it there given is somewhat intricate, a very simple proof may be of some interest.

It can be shown in a variety of ways that, $\pi>\theta>0$,

$$
Q_{n}(\cos \theta)+\frac{1}{2} \pi i P_{n}(\cos \theta)=\int_{0}^{\pi} \frac{z^{n+1} \sin ^{2 n^{n+1}} \phi d \pi}{\left(1-z^{2} \sin ^{2} \phi\right)^{i}} \quad\left(z \equiv e^{i \theta}\right),
$$

therefore

$$
\begin{aligned}
& \left|Q_{r}(\cos \theta)+\frac{1}{2} \pi i P_{n}(\cos \theta)\right|<\int_{0}^{\pi} \frac{\sin ^{2 n+1} \phi d \phi}{\left|1-z^{3} \sin ^{2} \phi\right|^{2}} . \\
& \text { Now }\left|1-z^{2} \sin ^{2} \phi\right|=\left(1-2 \cos 2 \phi \sin ^{2} \phi+\sin ^{4} \phi\right)^{\frac{1}{2}} \\
& =\left\{\left(1+\sin ^{3} \phi\right)^{2} \sin ^{2} \theta+\left(1-\sin ^{2} \phi\right)^{3} \cos ^{2} \theta\right\}^{3}>\left(1+\sin ^{2} \phi\right) \sin \theta,
\end{aligned}
$$

therefore

$$
\begin{gathered}
\left|Q_{n}(\cos \theta)+\frac{1}{2} \pi i P_{n}(\cos \theta)\right|<\frac{1}{(\sin \theta)^{\frac{1}{2}}} \int_{0}^{\pi} \frac{\sin ^{2 n+1} \phi}{\left(1+\sin ^{2} \phi\right)^{\frac{2}{2}}} d \phi, \\
<\frac{1}{(\sin \theta)^{\frac{1}{2}}} \int_{0}^{\frac{1}{2} \pi} \sin ^{n} \psi(\psi \psi
\end{gathered}
$$

i.e.,
(by the substitution $\sin ^{2} \phi=\sin \psi$),
i.e., $\quad<\frac{1}{(\sin \theta)^{\frac{1}{2}}}\left(\frac{\pi}{2 n}\right)^{\frac{1}{2}}$.

Therefore $\quad\left|(n \sin \theta)^{\frac{1}{2}} P_{n}(\cos \theta)\right|<(2 / \pi)^{\frac{2}{2}}$,
and incidentally $\left|(n \sin \theta)^{\frac{1}{2}} Q_{n}(\cos \theta)\right|<(\pi / 2)^{\frac{1}{2}}$.
An alternative form of the analysis has been surgested in me by Dr. 'I'. J. I'a Bromwich.

We have

$$
Q_{n}(\cos \theta)+\frac{1}{2} \pi i P_{n}(\cos \theta)=\int_{n}^{z} \frac{t^{n} d t}{\{(t-z)(t-1 / z)\}^{\frac{2}{2}}},
$$

where the integration may be taken along the straight line joining the origin to the point z. If t be any point on this path of integration and r the distance of t from the origin, then it is evident at once from a figure that $|t-z|=1-r$ and $\left|t-z^{-1}\right|>(1+r) \sin \theta$, therefore

$$
\left|Q_{n}(\cos \theta)+\frac{1}{2} \pi i P_{n}(\cos \theta)\right|<\frac{1}{(\sin \theta)^{\frac{1}{2}}} \int_{0}^{1} \frac{r^{n}(l \cdot}{\left(1-r^{2}\right)^{\frac{1}{2}}}
$$

leading to the same result as before.

NOTES ON EXAC'T DIFFERENTIAL EXPRESSIONS AND THEIR INTEGRATION WITHOU'I QUADRATURES.

By E. B. Elliett.

IF $D \equiv \frac{d}{d, x} \equiv \frac{\partial}{\partial x}+y_{1} \frac{\partial}{\partial y}+y_{3} \frac{\partial}{\partial y_{1}}+y_{3} \frac{\partial}{\partial y_{2}}+\ldots$ to ∞,
where y_{m} denote $a^{r} y / d x^{r}$, the well-known necessary and sufficient condition (Euler's) for a function

$$
F_{n} \equiv F\left(x ; y, y_{1}, \ldots, y_{n}\right)
$$

to be an exact derivative D_{ϕ} is

$$
(0, n) F_{n} \equiv\left(\frac{\partial}{\partial y}-D \frac{\partial}{\partial y_{1}}+D^{2} \frac{\partial}{\partial y_{2}}-\ldots+(-1)^{n} D^{n} \frac{\partial}{\partial y_{n}}\right) F_{n}=0 .
$$

The suljeet occupied a number of writers in the middle of the last century. See, in particular, Bertrand and Sarrus in vol. xvii. of the Journal de l'Ecole polytechnique. Mr. J. E. Campbell has recently given the best form of proof free from all reference to the Calculus of Variaions. First he shows the condition to be necessary by obtaining

$$
(0, n) D_{\phi}=(-1)^{n} D^{n+1} \frac{\partial}{\partial y_{n}} \phi
$$

from the alternant identities

$$
\frac{\partial}{\partial y} D-D \frac{\partial}{\partial y}=0, \quad \frac{\partial}{\partial y_{r}} D-D \frac{\partial}{\partial y_{r}}=\frac{\partial}{\partial y_{r-1}} \quad(r=1,2, \ldots, n),
$$

and observing that if an F_{n} is a D_{ϕ}, the ϕ must be free from y_{n}. Then he adopts the method of Sarrus for exhibiting the sufficiency, noticing that if $(0, n) F_{n}=0$, and in tact if it does not involve $y_{2 n}$, we must have

$$
F_{n}=P_{n-1} y_{n}+Q_{n-1}
$$

(with P_{n-1}, Q_{n-1} not extending begond y_{n-1})

$$
\begin{aligned}
& =y_{n} \frac{\partial}{\partial y_{n-1}} R_{n-1}+Q_{n-1} \\
& =D R_{n-1}+Q_{n-1}-\left(\frac{\partial}{\partial x}+y_{1} \frac{\partial}{\partial y}+\ldots+y_{n-1} \frac{\partial}{\partial y_{n-3}}\right) R_{n-1} \\
& =D R_{n-1}+F_{n-1},
\end{aligned}
$$

where, as F_{n} and $D R_{n-1}$ are ammihilated by $(0, n), F_{n-1}$ must be, and so $\operatorname{lng}(0, x-1)$; whence

$$
F_{n-1}=D R_{n-2}+F_{n-3}, \& c ., \& c .
$$

and eventually

$$
F_{n}=D\left\{R_{n-1}+R_{n-2}+\ldots+R_{0}+\int \phi(x) d x\right\} .
$$

This integration of an F_{n} satisfying $(0, n) F_{n}=0$ requires guadmatures, at most $n+1$ in number.

1 have nowhere seen a record of the following observations.

1. When the condition is satisfied by an F_{n} of alpebraical form in $y, y_{1}, \ldots, y_{n}, F_{n}$ can be integrated"by differential operations.

Whatever function be operated on, we have

$$
\begin{aligned}
\left(y \frac{\partial}{\partial y}+y_{1} \frac{\partial}{\partial y_{1}}+\ldots+y_{n}\right. & \left.\frac{\partial}{\partial y_{n}}\right)-y(0, n) \\
& =D\left\{y(1, n)+y_{1}(2, n)+\ldots+y_{n-1}(n, n)\right\}
\end{aligned}
$$

where $\quad(r, n) \equiv \frac{\partial}{\partial y_{r}}-D \frac{\partial}{\partial y_{r+1}}+\ldots+(-1)^{n-r} D^{n-r} \frac{\partial}{\partial y_{n}}$.
This is readily proved by taking together the first terms, the second terms, \&c., of the two operators on the left and using, for $r=1,2, \ldots, n$,

$$
y_{r} z+(-1)^{r-1} y z_{r}=D\left\{y_{r-1} z-y_{r-2} z_{1}+\ldots+(-1)^{r-1} y z_{r-1}\right\} .
$$

Hence a function which is homogeneous of degree $i(\neq 0)$ in y, y, \ldots, y, and which is amihilated by $(0, n)$, is integrated by direct operation on it with

$$
\frac{1}{i}\left\{y(1, n)+y_{1}(2, n)+\ldots+y_{n-1}(n, n)\right\} .
$$

Now an F_{n} algebraical in y, y_{1}, \ldots, y_{n} can be arranged in a sum of parts homoreneous in them-not necessarily a finite sum if it be not rational and integral. If it have the amihilator $(0, n)$, so must its parts separately. Unless then there is a part of zero dimensions, F_{n} can be integrated by direct operation.

In the case of F_{n} rational and integral, a part of zero dimensions involves ${ }^{n}$ only. It must be integrated by a quadrature. In the general case of F_{n} algebraical, such
a part may also involve y, y_{1}, \ldots, y_{n}. It may be hopeless to look for a direct operator free from transcendents which will integrate it. For instance, regard $y_{1} \mid y=D \log y$. It is, howerer, of theoretical, thongh not practical, interest to note that simple transcendental transformations will prepare it for treatment like other parts. Put $y=e^{z}$ in the partial F_{n} of zero dimensions. It becomes an $f\left(x ; z_{1}, z_{v}, \ldots, z_{n}\right)$ free from z. This is amihilated by $(0, n)_{s}$ because it is a derivative, or because $(0, n)_{z}=y(0, n)_{y}$. Arrange it as a sum of parts homogeneous in $z_{1}, z_{2}, \ldots, z_{n}$. If no part is of zero dimensions, direct operation integrates it as vefore. To deal with a part of zero dimensions, after removal of terms in x ouly, put $z_{1}=e^{\zeta}$, thus obtaining an $f\left(x ; \zeta_{1}, \zeta_{2}, \ldots, \zeta_{u-1}\right)$ with one argument less than before. This is amihilated by $D(1, n)_{z}$, which $\mathrm{s} \frac{\partial}{\partial z}-(0, u)_{z}$, and therefore by $(1, n)_{z}$, i.e., $(0, n-1)_{z_{1}}$ (which camot produce from it a constant other than zero becanse of its dimensions in $\left.z_{1}, z_{2}, \ldots\right)$, so that it is by $(0, n-1)_{\zeta}$. Repeat the reasoning if there is a part of zero dimensions in $\zeta_{1}, \zeta_{2}, \ldots$, ζ_{n-1}; and so on. Eventually the whole of F_{n}, except terms in x only remaining for quadrature, is integrated by direct operation.

An alternative method, using weight (sum of suffixes) instead of degree, is available when F_{n} does not contain x explicitly. By a method used already, we see that

$$
\begin{aligned}
y_{1} \frac{\partial}{\partial y}+y_{2} \frac{\partial}{\partial y_{1}}+\ldots+ & y_{n+1} \frac{\partial}{\partial y_{n}}-y_{1}(0, n) \\
& =D\left\{y_{1}(1, n)+y_{2}(2, n)+\ldots+y_{n}(n, n)\right\}
\end{aligned}
$$

Here the left-land member is $D-\frac{\partial}{\partial x}-y_{1}(0, n)$, so that if
$(0, n) F_{n}=0$, with F_{n} free from x,

$$
F_{n}=\left\{y_{1}(1, n)+y_{2}(2, n)+\ldots+y_{n}(n, n)\right\},
$$

since D annililates no function of y, y_{1}, \ldots, y_{n}. Now it is easy to verify that

$$
\begin{aligned}
y_{1} \frac{\partial}{\partial y_{1}} & +2 y_{2} \frac{\partial}{\partial y_{2}}+\ldots+n y_{11} \frac{\partial}{\partial y_{n}}-\left\{y_{1}(1, n)+y_{2}(2, n)+\ldots+y_{n}(n, n)\right\} \\
& =D\left\{y_{1}(2, n)+2 y_{2}(3, n)+\ldots+(n-1) y_{n-1}(n, n)\right\} .
\end{aligned}
$$

Consequently, if the F_{n} is of weight ov throughout,

$$
(u-1) F_{n}=D\left\{y_{1}(2, u)+2 y_{2}(3, n)+\ldots+(n-1) y_{n-1}(n, u)\right\} .
$$

An F_{n} free from x can be arranged as a sum of isobaric parts, and the parts of different weights can thos be integrated separately by direct operation not involving transcendentals, exeept a part of unit weight, such as y_{1} / y. Only for such a part is exponential transformation, as above, necessary.
11. Exact derivatices when there are several dependent rariables.

The carly investigators gave a set of conditions

$$
(0, m)_{y} F=0, \quad(0, u)_{z} F=0, \quad(0, p)_{u} F=0, \ldots
$$

as necessary and sufficient to secure that

$$
F\left(x ; y, y_{1}, \ldots, y_{m} ; z, z_{1}, \ldots, z_{n} ; u, u_{1}, \ldots, u_{p} ; \ldots\right)
$$

be an exact derivative D_{ϕ}.
I have not seen it stated that if F is of algebraical form in all its arguments but x, so that it can be arranged as a sum of parts homogeneous in a chosen system of arguments y, y_{1}, \ldots, y_{m}, and if none of these parts is of zero dimensions in them, the single condition $(0, m)_{y} F=0$ suffices. This, and the fact that the integration can be performed by direct operations, cau be established as before. We can also, as before, deal with a part of degree zero, and actually involving any of y, y_{1}, \ldots, y_{m}. by exponential transformations. Eventually the whole of F, but for a residue not involving y and its derivatives at all, is thus integrated. Such a residue R, if there be any involving z and its derivatives, has to obey $(0, n)_{z} R=0$; and further direct operations in a second system are necessary. It may be that we thas have to run through all the systems.

III. Abbreviated conditions.

Closely connected with II. is the fact that a function $F_{n}(x$; $\left.y, y_{1}, \ldots, y_{n}\right)$, which is a $D \phi$ with ϕ free from $y_{m}(m<n)$, obeys $(0, m) F_{n}=0$. As a partial converse, an F_{n} amihilated by (n, m), which is homogeneous of non-zero degree i in the abbreriated system y, y_{1}, \ldots, y_{m}, is the derivative of a ϕ free from y_{m} directly derived from it by operation with the abbreviated

$$
\frac{1}{i}\left\{y(1, m)+y_{1}(2, m)+\ldots+y_{m-1}(m, m)\right\} .
$$

For instance, finding that $(0,5)$ amnihilates $\left(5 y_{10}+x y_{11}\right) y+x y_{6} y_{5}$, we know that this is a derivative, and can directly integrate it, withont examining the effect on it of $(0,11)$.

This still holds if other dependent variables z, u, \ldots and their derivatives are present in F.
IV. Integrability more than once.

Bertrand gave r necessary and sufficient conditions for an F_{n} to be an $r^{\text {th }}$ derivative. These are the amihilation of F_{n}^{n} by the operators which occur as co-factors with $1,-\epsilon$, $\epsilon^{\epsilon^{n}}, \ldots,(-1)^{r-1} \epsilon^{r-1}$ in the expansion of

$$
\frac{\partial}{\partial y}-(D+\epsilon) \frac{\partial}{\partial y_{1}}+(D+\epsilon)^{3} \frac{\partial}{\partial y_{3}}-\ldots+(-1)^{n}(D+\epsilon)^{n} \frac{\partial}{\partial y_{n}},
$$

in powers of the arbitrary constant ϵ. A convenient method of proof uses the fact, easily obtained by use of altermant identities like $\frac{\partial}{\partial y_{r}}(D+\epsilon)-(D+\epsilon) \frac{\partial}{\partial y_{r}}=\frac{\partial}{\partial y_{r-1}}$, that operation with the expansion on $(D+\epsilon) \phi$ produces $(-1)^{n}(D+\epsilon)^{n+1} \frac{\partial}{\partial y_{n}} \phi$. The fact yields $n+1$ facts upon taking separately the cofactors with different powers of ϵ.

In particular, for F_{n} to be a second derivative, it is sufficient, and also necessary, that

$$
(0, n) F_{n}=0,
$$

and

$$
\begin{aligned}
(1, n)^{\prime} F_{n} \equiv\left\{\frac{\partial}{\partial y_{1}}-2 D \frac{\partial}{\partial y_{2}}+\right. & 3 D^{2} \frac{\partial}{\partial y_{3}}-\ldots \\
& \left.+(-1)^{n-1} n D^{n-1} \frac{\partial}{\partial y_{n}}\right\} F_{n}=0 .
\end{aligned}
$$

It is perhaps worth remarking that, when F_{n} is free from x, the one condition $(1, n)^{\prime} F_{n}=0$ is sufficient, having $(0, n) F_{n}=0$ as a consequence, provided that F_{n}, when arranged as a sum of isobaric parts, las no part of weight zero. If $F^{(w)}$ is a part of weight w, a method used more than once above gives us that

$$
\left\{w-y_{1}(1, n)^{\prime}\right\} F^{(w)}=D\left\{y_{1}(2, n)^{\prime}+y_{3}(3, n)^{\prime}+\ldots+y_{n-1}(n, n)^{\prime}\right\} F^{(w)},
$$

where

$$
\begin{aligned}
(r, n)^{\prime} \equiv r \frac{\partial}{\partial y_{r}}-(r+1) D \frac{\partial}{\partial y_{r+1}}+(r+2) D^{2} & \frac{\partial}{\partial y_{r+2}}-\ldots \\
& +(-1)^{n-r} n D^{n-r} \frac{\partial}{\partial y_{n}} .
\end{aligned}
$$

Thus, if $(1, n)^{\prime} F^{(w)}=0, F^{(w)}$ is a $D \phi$ with ϕ obtained directly. Now the second of the $n+1$ facts above is

$$
(0, n) \phi-(1, n)^{\prime} D \phi=(-1)^{n}(n+1) D^{n} \frac{\partial}{\partial y_{n}} \phi ;
$$

and the expression on the right here is zero for our present ϕ, which does not extend beyond y_{n-1}. We have then $(0, n) \phi=0$, so that ϕ is a $D \psi$, and consequently $F^{\prime(w)}$ a $D^{2} \psi$.

ON THE SOLUTION OF AN EQUA'IION OF 'THE FOKJL $F(r, s, t)=0$.

By J. R. Wilton, M.A., B.Sc., Assistant Lecturer in Mathematics at the University of Sheffield.

An exhaustive list of cases in which the partial differential equation

$$
F(r, s, t)=0
$$

is soluble by Darboux's method (and therefore by that of Legendre), on confining oneself to characteristies of order not higher than the second, has been given by Boer.* For convenience of reference I here reproduce his list.
(1) $a r+b s+c t+\left(r t-s^{2}\right)=e$, where a, b, c, e are constants.
(2) The eliminant of m from

$$
\begin{aligned}
r+m s & =m F-m^{2} F^{\prime} \\
t+s / m & =F^{\prime}+F / m
\end{aligned}
$$

(3) The eliminant of m and n from

$$
\begin{aligned}
& r=m^{2} F^{\prime \prime}-2 m F^{\prime}+2 F+n^{2} G^{\prime \prime}-2 n G^{\prime}+2 G, \\
& s=-m F^{\prime \prime}+F^{\prime}-n G^{\prime \prime}+G^{\prime}, \\
& t=F^{\prime \prime}+G^{\prime \prime}
\end{aligned}
$$

where, as throughout this list, F is an arbitrary function of m, G of n.
(4) $r=f(s)$.

[^22](5) The eliminant of m and n from
\[

$$
\begin{aligned}
\left(r t-s^{2}\right) /\left(r+2 a s+a^{2} t\right) & =m^{2} F^{\prime \prime}-2 m F^{\prime}+2 F+n^{2} G^{\prime \prime}-2 n G^{\prime}+2 G, \\
(s+a t) /\left(r+2 a s+a^{2} t\right) & =-m F^{\prime \prime}+F^{\prime \prime}-n G^{\prime \prime}+G^{\prime}, \\
1 /\left(r+2 a s+a^{2} t\right) & =-F^{\prime \prime}-G^{\prime \prime},
\end{aligned}
$$
\]

where a is an arbitrary constant.
(6) The eliminaut of m and n from

$$
\begin{aligned}
& \qquad \begin{aligned}
r+2 a s+a^{2} t & =(a-b)\left(n+2 G^{\prime} \mid G^{\prime \prime}+G^{\prime 3} / G^{\prime \prime 2} M\right), \\
r+2 b s+b^{2} t & =(a-b)\left(m+2 F^{\prime} \mid F^{\prime \prime}-F^{\prime 3} / F^{\prime \prime 3} M\right), \\
r+(a+b) s+a b t & =(a-b) F^{\prime \frac{3}{2}} G^{\prime \frac{3}{2}} / F^{\prime \prime} G^{\prime \prime} M,
\end{aligned} \\
& \text { where } M=\left(G G^{\prime \prime}-2 G^{\prime 2}\right) / 4 G^{\prime \prime}-\left(F^{\prime} F^{\prime \prime}-2 F^{\prime 2}\right) / 4 F^{\prime \prime}, \\
& \text { and } a \text { and } b \text { are constants. }
\end{aligned}
$$

(7) A set of results of which the final form cannot be found. (Equations 104, p. 400, of Boer's paper.)
(8) To these may be added the equations

$$
r=f(t), \quad r+a t=f(s)
$$

which, though they camnot in general be solved by Darboux's method, will always yield to that of Legendre.

In the present paper it is shown that the equation resulting from the elimination of m between

$$
\begin{aligned}
r+m s & =f(m) \ldots \ldots \ldots \ldots \ldots \ldots(1) \\
t+s / m & =g(m) \ldots \ldots \ldots \ldots \ldots(2)
\end{aligned}
$$

where f and g are arbitrary functions of their argument m, though not obviously included in the list, is solubie by the same method. It must therefore be included somewhere, probably under case (7).

Differentiating equation (1) with regard to y we obtain

$$
\frac{\partial s}{\partial x}+m \frac{\partial s}{\partial y}=\left(f^{\prime}-s\right) \frac{\partial m}{\partial y},
$$

which, on making use of (2), reduces to

$$
\begin{equation*}
\left(f^{\prime}-\frac{\partial q}{\partial x}\right)\left(\frac{\partial^{3} q}{\partial y^{2}}+\frac{1}{m} \frac{\partial^{2} q}{\partial x \partial y}\right)=\left(g^{\prime}+\frac{1}{m^{3}} \frac{\partial q}{\partial x}\right)\left(\frac{\partial^{2} q}{\partial x^{2}}+m \frac{\partial^{2} q}{\partial x \partial y}\right) \tag{3}
\end{equation*}
$$

and this by Legendre's transformation (the principle of duality) becomes

$$
\begin{array}{r}
\left(f^{\prime}-x\right)\left(\frac{\partial^{2} v}{\partial x^{2}}-\frac{1}{m} \frac{\partial^{2} v}{\partial x \partial y}\right)+\left(g^{\prime}+\frac{x}{m^{2}}\right)\left(m \frac{\partial^{2} v}{\partial x \partial y}-\frac{\partial^{2} v}{\partial y^{2}}\right)=0 \\
\ldots \ldots(4),
\end{array}
$$

where $v=s x+t y-q$, and m is a function of x and y, given by

$$
\begin{equation*}
y+x / m=g(m) \tag{5}
\end{equation*}
$$

In equation (4) elaange the independent variables to x and m.

We must replace $\frac{\partial v}{\partial x}$ by $\frac{\partial v}{\partial x}+\frac{m}{x+m^{2} y^{\prime}} \frac{\partial v}{\partial m}, \frac{\partial v}{\partial y}$ by $\frac{m^{3}}{x+m^{2} g^{\prime}} \frac{\partial v}{\partial m}$, and we find

$$
\frac{\partial^{2} v}{\partial x^{2}}+\frac{m\left(f^{\prime}+m^{2} g^{\prime}\right)}{x+m^{2} g^{\prime}}\left(\frac{\partial^{2} v}{\partial x \partial m}-\frac{1}{x+m^{2} g^{\prime}} \frac{\partial v}{\partial m}\right)=0
$$

which, in order to avoid a complicated notation, we shall, without danger of confusion, re-write as

$$
r+\frac{m\left(f^{\prime}+m^{2} g^{\prime}\right)}{x+m^{2} g^{\prime}}\left(s-\frac{q}{x+m^{2} g^{\prime}}\right)=0 \ldots \ldots \ldots(6) .
$$

The characteristic equations of the first system are

$$
d m=0, \quad d p+\frac{m\left(f^{\prime}+m^{2} g^{\prime}\right) d q}{x+m^{2} g^{\prime}}=\frac{m\left(f^{\prime}+m^{2} g^{\prime}\right) q d x}{\left(x+m^{2} g^{\prime}\right)^{x}} ;
$$

while those of the second system are

$$
d m=\frac{m\left(f^{\prime}+m^{2} g^{\prime}\right) d x}{x+m^{2} g^{\prime}}, \quad d p=\frac{m\left(f^{\prime}+m^{2} g^{\prime}\right) q d x}{\left(x+m^{2} g^{\prime}\right)^{3}} .
$$

The second system cannot have two integrable combinations unless $f^{\prime}+m^{2} g^{\prime}=0$, which is Boer's case (2). The first leads plainly to the first order integral

$$
\begin{equation*}
p+\frac{m\left(f^{\prime}+m^{2} q^{\prime}\right)}{x+m^{2} g^{\prime}} q=F(m) \tag{7}
\end{equation*}
$$

Let

$$
\log h(m)=-\int \frac{d m}{m\left(f^{\prime \prime}+m^{2} g^{\prime}\right)},
$$

and let

$$
F(m)=H-h I I^{\prime} \mid h^{\prime},
$$

where H is an arbitrary function of m, so that equation (7) becomes

$$
p-q h /\left[h^{\prime}\left(x+m^{3} g^{\prime}\right)\right]=H-h H^{\prime} \mid h^{\prime} .
$$

It is easy to verify that the solution of this equation is

$$
v=x H+\int m^{2} g^{\prime} H^{\prime} d m+G\left(x h+\int m^{2} g^{\prime} h^{\prime} d m\right),
$$

where G is an arbitrary function of its argument

$$
x h+\int m^{3} g^{\prime} h^{\prime} d m
$$

Also

$$
\begin{aligned}
& \frac{\partial v}{\partial x}=H+h G^{\prime}, \\
& \frac{\partial v}{\partial m}=\left(x+m^{3} g^{\prime}\right)\left(H^{\prime}+h^{\prime} G^{\prime}\right) .
\end{aligned}
$$

The solution of equation (3) is therefore given by eliminating m and s from

$$
\begin{align*}
s x+t y-q & =s H+\int m^{2} g^{\prime} H^{\prime} d m+G\left(s h+\int m^{3} g^{\prime} h^{\prime} d m\right), \\
x & =H+m H^{\prime}+\left(h+m h^{\prime}\right) G^{\prime} \ldots \ldots \ldots \ldots \ldots \ldots(8), \\
y & =m^{2}\left(H^{\prime}+h^{\prime} G^{\prime}\right) \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots(9), \tag{9}
\end{align*}
$$

where

$$
t+s / m=g(m)
$$

The first of these equations may, by using (8), (9), and (2), be written

$$
q=\operatorname{sh} G^{\prime}+m^{2} g\left(H^{\prime}+h^{\prime} G^{\prime}\right)-G-\int m^{2} g^{\prime} H^{\prime} d m \ldots(10)
$$

To find z we have to integrate the equation

$$
\frac{\partial z}{\partial y}=q .
$$

Let

$$
J=\frac{\partial(x, y)}{\partial(s, m)}=m h^{2} G^{\prime \prime}\left[m\left(H^{\prime \prime}+h^{\prime \prime} G^{\prime}\right)+2\left(H^{\prime}+h^{\prime} G^{\prime}\right)\right],
$$

so that

$$
J \frac{\partial s}{\partial y}=-\frac{\partial x}{\partial m}, \quad J \frac{\partial m}{\partial y}=\frac{\partial x}{\partial s} .
$$

Therefore

$$
\begin{aligned}
J_{q} & =J\left(\frac{\partial z}{\partial s} \frac{\partial s}{\partial y}+\frac{\partial z}{\partial m} \frac{\partial m}{\partial y}\right) \\
& =\frac{\partial x}{\partial s} \frac{\partial z}{\partial m}-\frac{\partial x}{\partial m} \frac{\partial z}{\partial s}
\end{aligned}
$$

96 Mr. Wilton, On an equation of the form $F(r, s, t)=0$.
Hence z is found by integrating the simultaneous equatious

$$
\frac{d s}{-\frac{\partial x}{\partial m}}=\frac{d m}{\frac{\partial x}{\partial s}}=\frac{d z}{J_{q}} .
$$

One solution is
i.e.,

$$
\begin{gather*}
I I+m I^{\prime}+\left(h+m h^{\prime}\right) G^{\prime}=x=\text { constant }, \\
G^{\prime}=\frac{x-H-m H^{\prime}}{h+m h^{\prime}} \ldots \ldots \ldots \ldots \tag{11}
\end{gather*}
$$

Also

$$
\frac{d z}{d m}=J q \left\lvert\, \frac{\partial x}{\partial s}=-m \hbar \frac{d G^{\prime}}{d m} q\right.
$$

where G^{\prime} is determined as a function of m by equation (11).
Thus

$$
z=-\int m h q \frac{d G^{\prime}}{d n} d m \ldots \ldots \ldots \ldots \ldots(12)
$$

in which the appropriate functions of m, drawn from equations (10) and (11), must be substituted for s, G^{\prime}, and G betore integration, while x is to be treated as a constant during the integration, and afterwards to be put equal to

$$
H+m H^{\prime}+G^{\prime}\left(h+m h^{\prime}\right) .
$$

There is a slight simplification in equation (12) if we take m and $s h+\int m^{2} g^{\prime} h^{\prime} d m$ as new independent variables, but I have been unable to obtain the explicit form of z when G is arbitrary.

The elimination of m and s from equations (8), (9), and (12) leads to the solution of that equation of the form $F(r, s, t)=0$ which results from the elimination of m from

$$
r+m s+\int\left(m^{2} g^{\prime}+h / m h^{\prime}\right) d m=0
$$

and

$$
t+s / m=g
$$

where h and g are arbitrary functions of m.

(97)

ON A METHOI) OF REARRANGING

THE POSITIVE INTEGERS IN A SERIES OF ORDINAL NUMBER GREATER THAN THAT OH ANY GIVEN FUNDAMENTAL sEQUENCE OF Ω.

By N. Wiener.

1. Let I represent the series of positive integers greater than 1 in their order of magnitude.
2. Let p_{n} stand for the nth prime in order of magnitude. Let A represent a series of positive integers, not necessarily in order of magnitude. Let a and b, respectively, be the a th and $b t h$ integers in order of magnitude. Let $a A b$ mean, " a precedes b in the order determined by A." Construct, now, the series P of the primes of the form p_{n}, where $p_{a} P p_{b} p_{b}$, when, and only when, $a \underset{\rightarrow}{A} b$. Let us call this series $P(A)$. It will be seen immediately that $P(A)$ is by defiuition ordinally similar to A, and hence must have the same ordinal number.

For example, if A be the series

$$
1,3,5,7,9, \ldots, 2,4,6,8,10, \ldots,
$$

$P(A)$ will be the series

$$
1,3,7,13,19, \ldots, 2,5,11,17,23, \ldots
$$

If A be the series
$1,3,5,7,9, \ldots, 2,6,10,14,18, \ldots, 4,12,20,28,36, \ldots, 8,24, \ldots$, $P(A)$ will be the series
$1,3,7,13,19, \ldots, 2,11,23,41,59, \ldots, 5,31,67,103, \ldots, 17,83, \ldots$.
3. Given a well-ordered series P of primes, it will have a first term, a second term, ..., an nth term. Let the nth term be represented by the symbol P_{n}. 'Take, now, those products of ℓ terms of P satisfying the following conditions:
(a) Every such product contains at least one P_{n}, where n is finite.
(b) If P_{a} is a factor of such a product, and if when P_{b} is another tactor of that product $a<b$, the product contains a distinct factors, none of which are equal to 1.

98 Mr. Wiener, A method of rearranging positive integers.
(c) No factor of the product occurs more than once in the product.

Since all the factors by which the products in question are determined are primes, and since no factor occurs twice in any product, it follows that each group of n factors satisfying (a), (b), and (c) determines one product, and one only, and vice rersa.

Let us represent a product of the form in question by $P_{n} \cdot p^{\prime} \cdot p^{\prime \prime} \cdot p^{\prime \prime \prime} \ldots p^{(n-1)}$, where $p^{\prime}, p^{\prime \prime}, \ldots, p^{(n-1)}$ are distinct members of P, and, if $p^{(k)}=P_{4}, n<l$. It will be seen on inspection that any product which will satisfy $(a),(b)$, and (c) may be expressed in this form, and vice versa. It is also clear that the order of the terms in the product is a matter of indifference. We may then, without any loss of generality, assume that $p^{\prime}<p^{\prime \prime}<p^{\prime \prime \prime}<\ldots<p^{(n-1)}$.

I shall now arrange these products in a series $p(P)$ in accordance with the following rules:
$P_{n} \cdot p^{\prime} \cdot p^{\prime \prime} \ldots p^{(n-1)} p \xrightarrow{p(P)} P_{m} \cdot q^{\prime} \cdot q^{\prime \prime} \cdots q^{(m \text { 1) }}$, if $n<m ;$
(2)

$$
P_{n} \cdot p^{\prime} \cdot p^{\prime \prime} \cdots p^{(n-1)} \underset{\rightarrow}{p(P)} P_{n} \cdot q^{\prime} \cdot q^{\prime \prime} \cdots q^{(n-1)} \text {, if } p^{\prime} \underset{\rightarrow}{P} q^{\prime} ;
$$

$$
\begin{array}{rl}
P_{n} \cdot p^{\prime} \cdot p^{\prime \prime} \ldots p^{(k-1)} \cdot p^{(k)} \cdot p^{(k+1)} \ldots p^{(n-1)} p & p(P) P_{n} \cdot p^{\prime} \cdot p^{\prime \prime} \ldots \tag{3}\\
\ldots p^{(k-1)} \cdot q^{(k)} \cdot q^{(k+1)} \cdots q^{(n-1)}, \text { if } p^{(k)} \underset{\rightarrow}{P} q^{(k)} 。
\end{array}
$$

I now wish to prove that if the ordinal number of P is α, that of $p(P)$ is α^{ω}, provided α is a number with no immediate predecessor.

By rule 3, if $p P_{q}$,

$$
P_{n} \cdot p^{\prime} \cdot p^{\prime \prime} \ldots p^{(n-2)} p \underset{\rightarrow}{p(P)} P_{n} \cdot p^{\prime} \cdot p^{\prime \prime} \ldots p^{(n-2)} q .
$$

For this to be true, however, it is necessary that (1) neither p nor q shonld be a P_{m}, where $m<n$, and (2) that

$$
p>p^{(n-y)}>\ldots>p^{\prime \prime}>p^{\prime}, \quad q>p^{(n-y)}>\ldots>p^{\prime \prime}>p^{\prime}
$$

by the conventions we decided on in representing a product in the form $P_{n} \cdot p^{\prime} \cdot p^{\prime \prime} \ldots p^{(n-1)}$. That is, p and q are excluded from (1) the $(n-1)$ terms preceding P_{n} in p, and (2) the finite number of members of P not greater in numerical value
than the largest $p^{(k)}$. Except for this finite group of values, p and q may assume any other value in P, and the order of the products $P_{n} \cdot p^{\prime} \cdot p p^{\prime \prime} \ldots p p^{(n-2)} \cdot p$ and $P_{n} \cdot p^{\prime} \cdot p^{\prime \prime} \ldots p^{(n-2)} \cdot q$, which will actually exist, will be the same as the order in P of p and q. 'That is, the series of the $P_{n} \cdot p^{\prime} \cdot p^{\prime \prime} \ldots p^{(n-2)} \cdot p$'s will be similar to that of the μ 's, with a tinite number of terms of the latter removed. Since, however, the ordinal number of the p^{3} 's has no immediate predecessor, it can be shown readily that the removal of a finite number of terms from P will not alter its nmmber, and therefore that the series of the $P_{n} \cdot p^{\prime}{ }^{\circ} p^{\prime \prime}, \cdots p^{(n-2)} \cdot p$'s, arranged as they occur in $p(P)$, where $P_{n}^{n}, p^{\prime}, p^{\prime \prime}, \ldots, p^{(n-2)}$ are assigued, and p is allowed to take all possible values, has the ordinal number α.

In a precisely parallel manner, it may be shown that the series of the $P_{n} \cdot p^{\prime} \cdot p^{\prime \prime} \ldots p^{(n-3)} \cdot q \cdot r^{\prime}$'s, arranged as they occur in $p(P)$, where $P_{n}, p^{\prime}, p^{\prime \prime}, \ldots, p^{(n-3)}$ are assigned, q is allowed to take all possible values, and r is given some particular appropriate value for each value of q, has the ordinal number q.
'Iherefore, the series of the $P_{n} \cdot p^{\prime} \cdot p^{\prime \prime} \ldots \cdot p^{(n-3)} \cdot q \cdot r^{\prime}$'s, arranged as they occur in $p(P)$, where $P_{n}^{n}, p^{\prime}, p^{\prime \prime}, \ldots, p^{(n-3)}$ are assigned and both q and r are allowed to take all possible values, forms a series of the number α of series of the number α, or a series of the number α^{2} by the definition of α^{2}.

Similarly, the series of the $P_{n} \cdot p^{\prime} \cdot p^{\prime \prime} \ldots p^{(n-t)} \cdot q \cdot r \cdot s^{\prime \prime}$, arranged as they occur in $p(P)$, where $P_{n}, p^{\prime}, p^{\prime \prime}, \ldots, p^{(n-4)}$ are assigned, and q, r, and s are allowed to take all possible valnes, forms a series of the number α of the series of the number α^{2}, or a series of the number α^{3}.

In a similar manner it can be shown that it follows in general from rules (2) and (3) that if the series of the $P_{n}: p^{\prime} \cdot p^{\prime \prime} \ldots p^{(k)} \cdot p^{(k+1)} \ldots p^{(n-1)}$,s, where $P_{n}, p^{\prime}, p^{\prime \prime}, \ldots, p^{(k)}$ are $a^{\text {ssigned, and }} p^{(k+1)}, \ldots, p^{(n-1)}$ are allowed to take all possible values, when arranged as they occur in $p(P)$, has the umber a^{n-k-1}, the series of the $P_{\cdot n} \cdot p^{\prime} \cdot p^{\prime \prime} \ldots p^{(k-1)} \cdot p^{(k)} \ldots p^{(n-1)}$'s where $P_{n}, p^{\prime}, p^{\prime \prime}, \ldots, p^{(k-1)}$ are assigned, and $p^{(k)}, \ldots, p^{(n-1)}$ are allowed to take all possible values when arranged as they occur in $p(P)$, has the number a^{n-k}.

Therefore, by mathematical induction, the number of the series of terms $P_{n} \cdot p^{\prime} \cdot p^{\prime \prime} \ldots p^{(n-1)}$, arranged as they occur in $p(P)$, where P_{α} is given and $p^{\prime}, p^{\prime \prime}, \ldots, p^{(n-1)}$ are allowed to assume all possible values, is α^{n-1}.

Now, by (1), $p(P)$ consists in the various series of terms $P_{n} \cdot p^{\prime} \cdot p^{\prime \prime} \ldots p^{(n-1)}$, where $p^{\prime}, p^{\prime \prime}, \ldots, p^{(n-1)}$ are allowed to assume all possible values, arranged in the order of magnitude of n.

100 Mr . Wiencr, A method of rearranging positive integers.

 Therefore the ordinal number of $p(P)$ is$$
\alpha^{1}+\alpha^{3}+\alpha^{3}+\alpha^{4}+\ldots+\alpha^{n}+\ldots=\alpha^{\omega} .
$$

As an example of $p(P)$, let P be the series

$$
1,3,7,13,19,29, \ldots, 2,5,11,17,23,31, \ldots
$$

where every prime whose position in the series of primes is odd belongs in the first part of the series, and every prime whose position in the series of primes is even belongs in the second part. Then $p(P)$ will be the series

```
3.7, 3.13, 3.19, 3.29, ........, 3.2, 3.5, 3.11, 3.17, 3.23, 3.31,
7.13.19, 7.13.29, ............., 7.13.17, 7.13.23, 7.13.31, ..........
7.19.29, 7.19.37, ............, 7.19.23, 7.19.31, 7.19.41,
7.29.37, ....................., 7.29.31,
.........................................................................
7.2.1., 7.2.19, 7.2.29, ......, 7.2.5, 7.2.11, 7.2.17,
7.5.13, 7.5.19, 7.5.29, ......, 7.5.11, 7.5.17, 7.5.23,
```

\qquad

```
13.19.29.37, 13.19.29.43, ..., 13.19.29.41, 13.19.29.47,
13 19.37.43, 13.19.37.53, ..., 13.19.37.47, 13.19.37.59,
```

13.19.23.29, 13.19.23.37, ..., 13.19.23.31, 13.19.23.41,
13.19.31.37, 13.19.31.43, ..., 13.19.31.41, 13.19.31.47,
13.29.37.43,, 13.29.37.41,
13.29.43.53,, 13.29.43.47,
13.29.31.41,, 13.29.31.37,
and so on indefinitely.
4. Given a set of series $A_{1}, A_{2}, A_{3}, \ldots, A_{n}, \ldots$, whose numbers are positive integers, construct the series of numbers, S, such that, if $a A_{n} b, 2^{n}(2 a-1) S 2^{n}(2 b-1)$, and, if a belongs. to A_{m} and b to \vec{A}_{n} (if $\left.m<n\right), 2^{n}(2 a-1) \underset{\rightarrow}{S} 2^{m}(2 b-1)$.

It is clear that no term in S is repeated, for, if $a \neq b$, $2^{n}(2 a-1) \neq 2^{n}(2 b-1)$, and, if $m>n$, there are no pairs of terms a and b such that $2^{n}(2 a-1)=2^{m}(2 b-1)$, for, if this could happen, an odd number $2 a-1$ would equal an even number $2^{m-n}(2 b-1)$. Let us call the series S, obtained from $A_{1}, A_{2}, \ldots, A_{n}, \ldots, S_{n}\left(A_{n}\right)$. Representing the mumber of each A_{k} by α_{k}, it is easy ${ }^{n}$ to see that the ordinal number of $S_{n}\left(A_{n}\right)$ is $\alpha_{1}+\alpha_{2}+\alpha_{3}+\ldots+\alpha_{n}+\ldots$ As $\alpha \geqq \alpha_{1}, \alpha_{1}+\alpha_{3} \geqq \alpha_{2}$, $\alpha_{1}+\alpha_{2}+\alpha_{3} \geqq \alpha_{3}, \ldots, \alpha_{1}+\alpha_{2}+\ldots+\alpha_{n} \geqq \alpha_{n}, \ldots$, it is obvious that that the ordinal number of $S_{n}\left(A_{n}\right) \geqq$ the upper limit of the ordinal number of A_{n}. As an example of $S_{n}\left(A_{n}\right)$, let A_{n} be the series

$$
\begin{aligned}
& \quad 2^{n!} \cdot 1,2^{n!} \cdot 3,2^{n!} \cdot 5,2^{n!} \cdot 7, \ldots, 2^{n!-1} \cdot 1,2^{n!-1} \cdot 3,2^{n!-1} \cdot 5, \ldots \\
& \ldots, 2^{n!-2} \cdot 1,2^{n!-2} \cdot 3,2^{n!-2} \cdot 5, \ldots, \ldots,
\end{aligned}
$$

$$
\ldots, \ldots, 2^{(n-1)!+1} \cdot 1,2^{(n-1)!+1} \cdot 3, \ldots
$$

whose ordinal number is obvionsly

$$
\omega[n!-(n-1)!]=\omega[(n-1)(n-1)!],
$$

whose upper limit is $\omega . \omega$. Then $S_{n}\left(A_{n}\right)$ will be the series

$$
\begin{aligned}
& 2(2.2-1), 2(2.2 .3-1), 2(2.2 .5-1), \ldots, \\
& 2^{2}\left(2 \cdot 2^{3}-1\right), 2^{3}\left(2 \cdot 2^{3} \cdot 3-1\right), \ldots, \\
& 2^{2}(2.2-1), 2^{2}(2 \cdot 2.3-1), \ldots, \\
& 2^{3}\left(2.2^{6}-1\right), 2^{3}\left(2 \cdot 2^{6} \cdot 3-1\right), \ldots, \\
& 2^{3}\left(2 \cdot 2^{5}-1\right), 2^{3}\left(2 \cdot 2^{5} \cdot 3-1\right), \ldots, \\
& 2^{3}\left(2.2^{4}-1\right), 2^{3}\left(2 \cdot 2^{4} \cdot 3-1\right), \ldots, \\
& 2^{3}\left(2 \cdot 2^{3}-1\right), 2^{3}\left(2 \cdot 2^{3} \cdot 3-1\right), \ldots, 2^{4}\left(2.2^{24}-1\right), \ldots .
\end{aligned}
$$

Its number will be ω^{2}, which is $\geqq \omega^{*}$.
5. The number of I, by the definition of ω, is ω.

Let us write $\Phi(A)$ for' $p\{P(A)\}$. 'Ihen, by (2), (3), the number of $\Phi(I)$ is

$$
\omega^{\omega}
$$

Then, by (2), (3), the number of $\Phi^{2}(I)$ is

$$
\left(\omega^{\omega}\right)^{\omega}=\omega^{\omega^{2}}
$$

102 I/r. Wriener, A method of rearranging positive integers. Then, by (2), (3), the number of $\mathrm{L}^{3}(I)$ is

$$
\left(\omega^{\omega^{2}}\right)^{\omega}=\omega^{\omega^{3}} .
$$

Then, hy (2), (3), the number of $\Phi^{n}(I)$ is

$$
\omega^{\omega^{n}} .
$$

Then, by (t), the number of $S_{n}\left\{\Phi^{n}(I)\right\}$ is

$$
\omega^{\omega}+\omega^{\omega^{2}}+\omega^{\omega^{3}}+\ldots+\omega^{\omega^{n}}+\ldots=\omega^{\omega \omega} .
$$

Then, by (2), (3), the number of $\Phi\left[S_{n}\left\{\Phi^{n}(I)\right\}\right]$ is ${ }^{*}$

$$
\left(\omega^{\omega^{\omega}}\right)^{\omega}=\omega^{\omega^{\omega+1}} .
$$

Then, by (2), (3), the number of $\Phi^{2}\left[S_{n}\left\{\Phi^{n}(I)\right\}\right]$ is

$$
\left(\omega^{\omega^{\omega+1}}\right)^{\omega}=\omega^{\omega^{\omega+2}+2} .
$$

Then, by (2), (3), the number of $\Phi^{m}\left[S_{n}\left\{\Phi^{n}(I)\right\}\right]$ is

$$
\omega^{\omega^{\omega+m}} .
$$

Then, by (4), the namber of $S_{m}\left(\Phi^{m}\left[S_{n}\left\{\Phi^{n}(I)\right\}\right]\right)$ is

$$
\omega^{\omega^{\omega+1}}+\omega^{\omega^{\omega+2}}+\omega^{\omega^{\omega+3}}+\ldots+\omega^{\omega^{\omega+n}}+\ldots=\omega^{\omega^{\omega .2}} .
$$

Let us write $\Psi(A)$ for $S_{m}\left\{\Phi^{m}(A)\right\}$.
We have shown that the number of $\Psi(I)$ is $\omega^{\omega^{\omega \omega}}$, and that that of $\Psi^{2}(I)$ is $\omega^{\omega^{\omega \cdot 2}}$. Similarly, it can be shown that the number of $\Psi^{n}(I)$ is $\omega^{\omega^{\omega \omega}, n}$. Therefore, by (4), the number of $S_{m}\left\{\Psi^{m}(I)\right\}$ is equal to $\omega^{\omega^{\omega}}+\omega^{\omega^{\omega} \cdot 2}+\omega^{\omega^{\omega} \cdot 3}+\ldots+\omega^{\omega^{\omega} \cdot n}+\ldots$, and is at least $\omega^{\left(\omega^{\omega^{2}}\right.}$.
\therefore the number of

$$
\Phi\left[S_{m}\left\{\Psi^{m}(I)\right\}\right] \text { is at least }\left(\omega^{\omega^{\omega^{2}}}\right)^{\omega}=\omega^{\omega^{\omega^{2}+1}} \text {. }
$$

$$
\begin{array}{lllllll}
\therefore & " & " & \Phi^{n}\left[S_{m}\left\{\Psi^{m}(I)\right\}\right] & " & " & \omega^{\omega^{\omega^{2}+n}} \\
\therefore & " & " & \Psi\left[S_{m}\left\{\Psi^{m}(I)\right\}\right] & " & " & \omega^{\omega^{\omega^{2}+\omega}} .
\end{array}
$$

Similarly, " $\quad \Psi^{2}\left[S_{m}\left\{\Psi^{m}(I)\right\}\right] \quad, \quad, \quad \omega^{\omega^{\omega^{2}+\omega \cdot 2}}$.

$$
\begin{array}{lccccc}
" & " & \Psi^{n}\left[S_{m}\left\{\Psi^{m}(I)\right\}\right] & " & , & \boldsymbol{\omega}^{\omega^{\omega^{2}+\omega \cdot n}} . \\
" & " & S_{n}\left(\Psi^{\prime \prime}\left[S_{m}\left\{\Psi^{m}(I)\right\}\right]\right) & " & " & \boldsymbol{\omega}^{\omega^{\omega \omega^{2}} \cdot 2} .
\end{array}
$$

[^23]Let us write $F(A)$ for $S_{n}^{\prime}\left\{\Psi^{n}(A)\right\}$. We have shown that the number of $F(I)$ is at least $\omega^{\omega^{\omega^{2}}}$, and that that of $F^{2}(I)$ is at least $\omega^{\omega^{\omega^{2}} \cdot 2}$. Similarly, we may prove that the number of $F^{n}(I)$ is at least $\omega^{\omega^{\omega^{2}, n}}$.
\therefore the number of $S_{n}\left\{F^{n}(I)\right\} \quad$ is at least $\omega^{\omega^{\omega^{2}} \cdot \omega}=\omega^{\omega^{()^{3}}}$.

19	9	$\Phi\left[S_{m}\left\{F^{n}(I)\right\}\right]$	"	$"$	$\omega^{\omega^{\omega^{3}+1} \text {. }}$
"	$"$	$\Phi^{m}\left[S_{n}\left\{F^{n}(I)\right\}\right]$	9	"	$\omega^{\omega^{\omega^{3}+m}}$
"	19	$\Psi\left[S_{n}\left\{F^{n}(I)\right\}\right]$	"	"	$\omega^{\left(\omega^{\left(\omega^{8}\right.}+\right.}$
"	"	$\Psi^{3 \prime 2}\left[S_{n}\left\{F^{n}(I)\right\}\right]$	9	"	$\omega^{\omega^{\omega^{3}+\omega . m} .}$
"	"	$E\left[S_{n}\left\{F^{n}(I)\right\}\right]$	$"$	"	$\omega^{\omega^{\omega^{3}+\omega^{2}}}$
\%	"	$F^{m}\left[S_{n}\left\{F^{n}(I)\right\}\right]$	9	"	$\omega^{\omega^{\omega^{3}+\omega^{2}} \cdot m}$
9	"	$S_{m}\left(F^{m}\left[S_{n}\left\{F^{n}(I)\right\}\right]\right)$	"	"	$\omega^{\omega^{* 3} \cdot 2}$.

Let us write $G(A)$ for $S_{n}\left\{F^{n}(A)\right\}$. We have shown th. x the number of $G(I)$ is at least $\omega^{\omega^{\omega^{2}}}$ and that that of $G^{2}(I)$ is at least $\omega^{w^{2} \omega^{3} \cdot 2}$. It can be shown in the same manner that the mmber of $G^{n}(I)$ is at least $\omega^{\omega^{\omega^{3} \cdot n}}$. Let us write $H(A)$ for $S_{n}\left\{G^{n}(I)\right\}$. Then it is obvious that the ordinal number of $H(I)$ is at least $\omega^{\omega^{\left(\omega^{4}\right.}}$.

In a precisely analogous manner we can construct a series of number at least $\omega^{\omega^{\omega^{n}}}$, whatever n may be. Let us call this series, in general, $K_{\mathrm{n}}(I)$, where $K_{1}(I)=\Psi(I), K_{s}(I)=F(I)$, $K_{2}(I)=G(I) \cdot K_{n}(I)$ is always constructed according to a perfectly definite method, leaving no possible doubt what step to take after any given step, for after any series you have obtained you form the Φ of that series, and after any series of series, you form its S. Therefore no implicit postulation of Zermelo's axiom is to be found in any of my constructions, so that I can be sure that they always exist. Therefore I can form $S_{\omega}\left\{K_{n}(I)\right\}$, and its number will be $\omega^{\omega^{(\omega)}}$ at least.

In a precisely parallel manner we can construct a rearrangement not less than $\omega^{\omega^{\omega^{\left(\omega^{(\omega)}\right.}} \text {, etc. Given rearrangements }}$ of I, which will be at least as large as $\omega, \omega^{\omega}, \omega^{\omega^{\omega}}, \omega^{\omega^{\left(\omega^{(\omega)}\right.}}$, etc., we can, by means of S, construct a rearrangement of I at least as large as an

$$
\omega \text { times }\left\{\omega^{\left(\omega^{\left(\omega^{\left(\omega^{\left(\omega^{2}\right)}\right.}\right.}\right)},\right.
$$

In general, given a rearangement L of I, such that the ordinal number of $L(I)$ is at least as large as $\omega^{\omega^{\alpha}}, \Phi\{L(I)\}$ will have an ordinal number at least as large as $\omega^{\omega+1}$. Also, given a sequence of rearangements $L_{1}, L_{2}, L_{3}, \ldots, L_{n}, \ldots$, of I of ordinal numbers at least as large as $\omega^{\omega^{\omega_{1}}}, \omega^{\omega^{\alpha_{2}}}, \ldots$, $\omega^{\omega^{\alpha_{n}}}, \ldots$, respectively, if a_{w} be the limit of the sequence $\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots, \alpha_{n}, \ldots$, then the ordinal nmmber of $S_{n}\left(\omega^{\omega \alpha_{n}}\right) \geqq \alpha_{\omega}$. Therefore we call construct a number at least as large as $\omega^{\omega^{\alpha}}$, where a denotes any ordinal number which can be formed from 1 by the repetition of the operations (1) of adding 1 to a previnsly given ordinal number, and (2) of taking the number of any given infinite sequence of numbers previously obtained. But the class of such numbers is the clats of numbers of fundamental sequences of Ω. Therefore, it α is the number of a fundamental sequence of Ω, we can get by our method a not smaller rearrangement of the number-series than $\omega^{\omega^{\alpha}}$. If, then, $\omega^{\omega^{\alpha}} \geqq \alpha$, the proposition I set out to prove is obviously proved. This is clearly true if $\omega^{a} \geqq \alpha$. This can be proved in the following manner:
(1) $\omega^{1} \geqq 1$.
(2) Let $\omega^{a} \geqq \alpha$. Then

$$
\omega^{a+1}=\omega^{a} \cdot \omega=\omega^{a}+\omega^{\alpha} \cdot \omega \geqq \alpha+\omega^{a} \cdot \omega \geqq \alpha+1 .
$$

(3) Let $\omega^{\alpha_{n}} \geqq \alpha_{n}$, when α_{n} takes any one of the infinite series of values $\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots, \alpha_{m}, \ldots$, whose upper limit is α_{ω} Since $\alpha_{\omega}>\alpha_{n}$, it ean be shown that

$$
\omega^{\alpha_{\omega}}=\omega^{\alpha_{n}+\beta}=\omega^{\alpha_{n}} \omega^{\beta}=\omega^{\alpha_{n}}+\omega^{\alpha_{n}} \omega^{\beta} \geq \omega^{\alpha_{n}} .
$$

Therefore, $\omega^{\alpha_{\omega}} \geqq \alpha_{n}$, whatever n is. Therefore, $\omega^{\alpha_{\omega}} \geqq \alpha_{\omega}$.
Therefore, when α is the number of a fundamental sequence of Ω, we have a method of rearranging the positive integers iil a series of number $\geqq \alpha+1$, and hence $>\alpha$.

It will be noted that the method I have developed enables me directly to reorder, not the whole, but a part of the series of the integers in a series of number greater than the number $\omega^{(\omega)}$, but this is of no importance, for let the part of I so arranged be A. Let a_{1} be the numerically smallest member of A, a_{2} the next, and so on. 'Then replace each a_{n} by n. 'This will give a rearrangement of I similar to the already obtained rearrangement of A.

The interest of the construction of rearrangements of I lies in the fact that all the proofs hitherto given of the existence of numbers greater than those of any given fundamental
sequence of Ω have involved the multiplicative axiom.* By actually rearranging l in a series of such a number, we avoid this.

It should be noted that the particular nature of the process Φ we have chosen of increasing the number of a series by rearranging it is a matter of more or less indifference; any other process which, when applied to a series, always gives a larger or equal series would have done quite as well. logically. For example, if $\Phi^{\prime}(B)=B$, the number of $S_{n}\left\{\Phi^{\prime n}(B)\right\}=\omega$, multiplied by the number of B; and, as it can be shown that $\omega . \alpha>\alpha$, it is clear that, by the same sort of proof which we used to show that Φ and S together enable us to construct a rearrangement of I larger in number than any given fundamental sequence of Ω, S alone will enable us to do it. However, at least at first, the use of Φ enables us to increase the ordinal number of the rearrangement of I more rapidly than that of S alone would.

AN ARRANGEMENT OF THE POSITIVE IN'LEGERS IN THE TYPE ϵ_{1}.

By E. K. Wakeford, Trinity College, Cambridge.

1. "The numbers" means the positive integers.

Given some arrangement A of the numbers, and the set P of prime numbers, $A(P)$ denotes the result of arranging the prome numbers in the order A by putting instead of a number n of A the nth prime in order of magnitude. Unity will not be considered a prime.

When we speak of the order-type of some number in an arangement of numbers we mean the order-type of the set of numbers preceding it in the arrangement. For instance, in the sequence $12345 \ldots$ the order-type of n is $(n-1)$, and in the repeated sequence $1357 \ldots, 2468 \ldots$ the order type of 2 is ω.

Multiplying together two relatively prime sets of numbers means forming the set consisting of members which are the products of one out of each set. 'The order is given by taking the first of the second set and multiplying it in turn by each of the first set, then taking the second of the second

[^24]set and treating it likewise, and so on. If N_{9}, N_{3} are the order-types of the first two sets, the order-type of the resulting set will be $N_{1} N_{2}$ (where the order of letters may be important).
2. Multiplying the set
$$
122^{y} 2^{3} \ldots,
$$
of type ω, by the set $133^{2} 3^{3} \ldots$,
also of type ω, according to the rule above as shown:
\[

$$
\begin{array}{cccccc}
1 & 2 & 2^{2} & 2^{3} & 2^{4} & \ldots, \\
3.1 & 3.2 & 3.2^{2} & 3.2^{3} & 3.2^{4} & \ldots, \\
3^{3} .1 & 3^{2} .2 & 3^{2} .2^{3} & 3^{2} .2^{3} & \ldots & \ldots,
\end{array}
$$
\]

and we have a set of type ω^{2}.
Now multiplying this by the set

$$
155^{3} 5^{3} \ldots
$$

which is of type ω, we obtain first the same set of type ω^{3} as before, next the numbers of that set multiplied by 5 , giving us $\omega^{3} .2$ numbers, next the number smultiplied by 5^{3}, giving ns $\omega^{2} .3$ numbers in all, and so on till we get ω^{3} numbers.

By taking now the set

$$
177^{3} 7^{3} \ldots,
$$

we obtain in all ω^{4} numbers, and so on, till, when all the primes have been taken in order of magnitude, an arrangement of the primes which we shall call $A_{1}(P)$, we have obtained all the numbers arranged in a set of type ω^{ω}. Call this arrangement of the numbers A_{2}. 'The order' type of a particular number [l p^{c} is $\Sigma \omega^{r} . c$, where p has order-type r in the arrangement $A_{1}(P)$. For instance, the order-type of $2^{4} \cdot 3.5^{5} .11$ is

$$
\omega^{4}+\omega^{2} .5+\omega+4 .
$$

3. Now form $A_{9}(P)$, thus arranging the primes in a type ω^{ω}. 'Then take them in succession in this order, instead of the order $A_{1}(P)$ in which we took them before.
'lhe first ω primes, viz., the 1 st, 2 nd, 4 th, 8 th, ... primes, give us ω^{ω} numbers as before. We then take the 3rd prime, i.e., 5 , and multiply each of the numbers of this set by the numbers of the set

$$
155^{2} 5^{3} \ldots
$$

As in the previous work 1 gives us the same ω^{ω} numbers, 5 gives us another ω^{ω} numbers, making $\omega^{\omega} .2$ in all, 5^{2} yet another, making $\omega^{\omega} .3$, and so on till we arrive at $\omega^{\omega+1}$ after using all the powers of five. Then taking the 6 th prime, i.e., 13 , and multiply the existing set by the set

$$
11313^{2} 13^{3} \ldots
$$

we thus arrive at a set of type $\omega^{\omega+3}$, and after taking the 12 th, 24 th, $48 \mathrm{th}, \ldots$ primes we reach a set of type $\omega^{\omega 2}$.

We notice that we have so far only used $\omega .2$ primes, viz., the first $\omega .2$ primes in $A_{2}(P)$, and have thus obtained $\omega^{\omega .2}$ numbers. It is almost self-evident that by taking ω^{2} primes from $A_{2}(P)$ we shall obtain $\omega^{\omega^{2}}$ numbers, for $\omega^{\omega^{2}}$ is the limit of $\omega^{\omega}, \omega^{\omega .2}, \omega^{\omega .3}, \ldots$, just as ω^{3} is the limit of $\omega, \omega .2, \omega .3, \omega .4$, etc. But we have not yet taken nearly all the numbers of $A_{2}(P)$. After what has been said it should be clear that as we take each prime in turn we add 1 to the index of ω, so that ω^{3} primes yield $\omega^{\omega^{3}}$ numbers, etc. Finally, by taking all the primes in the order $A_{2}(P)$, we obtain $\omega^{\omega^{\omega}}$ numbers, all the numbers being at length obtained. We call this arrangement A_{3}.

The order-type of a particular number Πp^{c} is as before $\Sigma \omega^{r} . c$, but here p has order-type r in the arrangement $A_{2}(P)$. For instance, the order-type of $2^{3} \cdot 11.13^{2}$ is $\omega^{\omega^{2}}+\omega^{\omega+1} .2+3$, for $2,11,13$ have order types $0, \omega^{2}$, and $\omega+1$ respectively in $A_{2}(P)$.
4. It is not difficnlt to see that by forming $A_{3}(P)$ we could obtain the numbers in a type $\omega^{\omega^{\omega \omega}}$ and so on. In each case the formula for the order-type of any particular number Πp^{c} in the arrangement A^{r} is $\Sigma \omega^{r}$.c, where p has order-type r in the arraugement $A_{n-1}(P)$.
 ω^{2} arrangement of the numbers, operating on the nth ω of them with the operator A_{n}, as suggested:

$$
\begin{aligned}
& A_{1}(1,3,5,7, \ldots \ldots \ldots \ldots \ldots) \omega \\
+ & A_{2}(2.1,2.3,2.5,2.7, \ldots) \omega^{\omega} \\
+ & A_{3}\left(2^{2} .1,2^{2} .3,2^{2} .5,2^{3} .7, \ldots\right) \omega^{\omega^{\omega}} \\
+ & \ldots \text { etc. }
\end{aligned}
$$

The rule for finding the type of any particular number would not be so elegant. Possibly it could be improved by some device, but it is quite simple even as it stands.
5. This last mocess, which finds a number for the limit of any sequence of given numbers, corresponds, I believe, to Mr. Wiener's S operator. After reading some of his work I saw that if I rearranged the indices of the primes instead of the primes themselves, I could raise a number to the power of ω, instead of raising ω to the power of a number. This latter process is much quicker at first, but stops at ϵ_{1}, since $\omega^{\varepsilon_{1}}=\epsilon_{1}$, while the former (combined with the S process) goes on for ever. If we take the primes in order A, and their indices in order B, the resulting set has order-type B^{A}, so that by this means any number can be raised to the power of itself. This process combined with the S method goes on for ever. In fact, any method (even adding unity), which must inerease any Cantor number, combined with the S method, is bound to go on for ever, and so to prove the existence of any number of the second class that has been defined.

()N 'IHE SERIES FOR SINE AND COSINE.

By Prof. E. J. Nanson.

The power series for $\sin x, \cos x$ follow at once from the two theorems

$$
\begin{aligned}
& \sin x \text { lies between } S_{n}(x), S_{n+1}(x) \ldots \ldots \ldots(1) \\
& \cos x \text { lies between } C_{n}(x), C_{n+1}(x) \ldots \ldots \ldots \text { (2) }
\end{aligned}
$$

where

$$
\begin{aligned}
& S_{n}(x)=\frac{x}{1!}-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\ldots+\frac{(-1)^{n} \cdot x^{2 n+1}}{(2 n+1)!} \\
& C_{n}(x)=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\ldots+\frac{(-1)^{n} x^{2 n}}{(2 n)!}
\end{aligned}
$$

Since $\cos x$ lies between 1 and $1-\frac{1}{2} x^{2}$ for all values of x, it is sufficient, in order to prove (1), (2), to show first that (1) foliows from (2) for all values of x, and, second, that if (1) is granted, then it follows that $\cos x$ lies between $C_{n, 1}(x), C_{n+2}(x)$.

Now these two results may be proved by similar elementary methods. For we have

$$
\frac{\sin 2 m x}{\sin x}=\cos x+\cos 3 x+\ldots+\cos (2 m-1) x
$$

Hence, assuming (2), it follows that

$$
\frac{\sin 2 m x}{\sin x} \text { lies between } P_{n}, P_{n+1} \text {, }
$$

where

$$
\begin{aligned}
P_{r} & =s_{0}-\frac{x^{2}}{2!} s_{2}+\ldots+(-1)^{n} \frac{x^{2 n}}{(2 n)!} s_{2 n}, \\
s_{r} & =1^{r}+3^{r}+\ldots+(2 m-1)^{r} \\
s_{r} & =\frac{2^{r} m^{r+1}}{r+1}\left(1+\epsilon_{r}\right), \text { and } \underset{m \rightarrow \infty}{\operatorname{Lt} \epsilon_{r}}=0 .
\end{aligned}
$$

Hence, if $y=2 m x, L=x / \sin x$, it follows that

$$
L \sin y \text { lies between } Q_{n}, Q_{n+1}
$$

where

$$
Q_{n}=\frac{y}{1!}-\frac{y^{3}}{3!}\left(1+\epsilon_{3}\right)+\ldots+(-1)^{n} \frac{y^{3 n+1}}{(2 n+1)!}\left(1+\epsilon_{2 n}\right) .
$$

Hence, making $m \rightarrow \infty$, it fullows that

$$
\sin y \text { lies between } S_{n}(y), S_{n+1}(y)
$$

so that (1) follows from (2).
Again we have

$$
\frac{1-\cos 2 m x}{2 \sin x}=\sin x+\sin 3 x+\ldots+\sin (2 m-1) x .
$$

Hence, assuming (1), it follows that

$$
\frac{1-\cos 2 m x}{2 \sin x} \text { lies between } P_{n}, P_{n+1} \text {, }
$$

when

$$
P_{n}=\frac{x}{1!} s_{1}-\frac{x^{3}}{3!} s_{3}+\ldots+(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!} s_{2 n+1},
$$

and hence, as before, it follows that

$$
L(1-\cos y) \text { lies between } Q_{n}, Q_{n+1}
$$

where

$$
Q_{n}=\frac{y^{2}}{2!}\left(1+\epsilon_{1}\right)-\frac{y^{4}}{4!}\left(1+\epsilon_{3}\right)+\ldots+(-1)^{n} \frac{y^{2 n+3}}{(2 n+2)!}\left(1+\epsilon_{2 n+1}\right) .
$$

Hence, making $m \rightarrow \infty$, it follows that

$$
1-\cos y \text { lies between } R_{n}, R_{n+1} \text {, }
$$

where

$$
R_{n}=\frac{y^{2}}{2!}-\frac{y^{4}}{4!}+\ldots+(-1)^{n} \frac{y^{2 n+2}}{(2 n+2)!},
$$

and hence that $\cos y$ lies between $C_{n+1}(y), C_{n+2}(y)$.
Thus the two theorems (1), (2) have been proved for atl values of x. Reference may be made to the Messenger, vol. xxxv., pp. 58-69, 142-144; vol. xliii., pp. 63-71; and to the Mathematical Guzette, vol. iii., pp. 284-288.

SOME SIMPLE TRANSFORMATIONS OF S'TOKES' CURRENT FUNCTION EQUATION.

By J. R. Wilton, M.A., B.Sc., Assistant Lecturer in Mathematics in the University of Sheffield.

1. One or two of the following elementary transformations of Stokes' current function equation, namely,

$$
\begin{equation*}
\frac{\partial^{2} \psi}{\partial x^{2}}+\frac{\partial^{2} \psi}{\partial \sigma^{2}}-\frac{1}{\tau} \frac{\partial \psi}{\partial \pi}=0 . \tag{1}
\end{equation*}
$$

may possibly be unfamiliar, though most of them are probably well known to all who have studied the subject of fluid motion symmetrical about an axis.

Using the notation

$$
\begin{gathered}
R=\pi^{2}, \quad r=\sqrt{ }\left(x^{2}+\pi^{2}\right), \quad \xi=r+x, \quad \eta=r-x, \\
r_{1}=\left[\left(x+\frac{i}{2} c\right)^{2}+\pi^{2}\right]^{\frac{1}{2}}, \quad r_{2}=\left[\left(x-\frac{1}{2} e\right)^{2}+\pi^{2}\right]^{\frac{1}{2}},
\end{gathered}
$$

we shall find

$$
\begin{aligned}
\frac{\partial^{3} \psi}{\partial x^{2}}+\frac{\partial^{2} \psi}{\partial \omega^{2}}-\frac{1}{\pi} \frac{\partial \psi}{\partial \pi} & =\frac{\partial^{2} \psi}{\partial x^{2}}+R \frac{\partial^{2} \psi}{\partial R^{2}} \\
& =\frac{\partial^{2} \psi}{\partial r^{2}}+\frac{4 R}{r} \frac{\partial^{2} \psi}{\partial r \partial R}+4 R \frac{\partial^{2} \psi}{\partial R^{2}} \\
& =\frac{\partial^{2} \psi}{\partial r^{2}}+\frac{2 x}{r} \frac{\partial^{2} \psi}{\partial x \partial r}+\frac{\partial^{2} \psi}{\partial x^{3}} \\
& \left.=\frac{4}{\xi+\eta}\left(\xi \frac{\partial^{2} \psi}{\partial \xi^{2}}+\eta \frac{\partial^{2} \psi}{\partial \eta^{2}}\right) \ldots \ldots \ldots \ldots \ldots, 2\right) \\
& =\frac{\partial^{3} \psi}{c_{1} r_{1}^{2}} 1 \frac{r_{1}^{3}+r_{2}^{2}-c^{3}}{r_{1} r_{2}} \frac{\partial^{2} \psi}{\partial r_{1} \partial r_{2}}+\frac{\partial^{2} \psi}{\partial r_{2}^{2}} \ldots(3) .
\end{aligned}
$$

Also, if ϕ is the relocity potential corresponding to the stream function ψ, we have the relations

$$
\frac{\partial \phi}{\partial x}=-\frac{1}{\varpi} \frac{\partial \psi}{\partial \varpi}, \quad \frac{\partial \phi}{\partial \varpi}=\frac{1}{\tau} \frac{\partial \psi}{\partial x},
$$

whence, if we take ϕ and ψ as independent variables, we find

$$
\frac{\partial x}{\partial \phi}=-\frac{1}{2} \frac{\partial R}{\partial \psi}, \quad \frac{\partial x}{\partial \psi}=\frac{1}{2 R} \frac{\partial R}{\partial \phi},
$$

and therefore

$$
\frac{\partial^{2} R}{\partial \psi^{2}}+\frac{\partial^{3}}{\partial \phi^{2}}(\log R)=0 \ldots \ldots \ldots \ldots \ldots(4) .^{*}
$$

A solution of equation (4) is easily seen to be

$$
\varpi^{2}=R=\left(a^{2}-\psi^{2}\right) \sec ^{2} \phi \ldots \ldots \ldots \ldots \ldots . \text { (5). }
$$

The corresponding value of x is, it is easy to verify,

$$
x=\psi \tan \phi \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots(6)
$$

The stream lines are therefore the hyperboloids

$$
\frac{\sigma^{2}}{a^{3}-\psi^{2}}-\frac{x^{2}}{\psi^{2}}=1
$$

of which $\psi=0$ consists of that part of the plane $x=0$ which lies outside the circle $\pi=a$, so that equations (5) and (6) give, in a form somewhat simpler than the familiar form as given, for instance, in Lamb's Hydrodynamics, § 102, 3°, or $\S 108,1^{\circ}$, the solution of the problem of the flow of water through a circular hole in an infinite plane.

The velocity is q, giveriu by the equation

$$
\frac{1}{q^{2}}=\frac{1}{4}\left\{\left(\frac{\partial \dot{R}}{\partial \psi}\right)^{2}+\frac{1}{R}\left(\frac{\partial R}{\partial \phi}\right)^{2}\right\}=\frac{\psi^{2} R^{2}}{\left(a^{3}-\psi^{2}\right)^{2}}+\frac{R x^{2}}{\psi^{8}}
$$

and over the circle $\varpi=a, x=0$ this gives

$$
\frac{1}{q^{3}}=a^{2}-w^{3},
$$

which is a well-know result.

[^25]Another ubvious solntion of equation (4) is

$$
\sigma^{2}=R=\psi e^{\phi},
$$

with the corresponding value of x,

$$
x=\frac{1}{2}\left(\psi-e^{\phi}\right) .
$$

'The stream lines are

$$
2 x=\psi-\frac{\pi^{2}}{\psi},
$$

and the ϕ curves are

$$
2 x=-e^{\phi}+\frac{\sigma^{2}}{e^{\phi}},
$$

both of which equations represent a system of confucal paraboloids of revolution.

The velocity at any point is given by the equation

$$
\frac{4}{q^{2}}=\sigma^{2}+e^{2 \phi} .
$$

2. The equation resulting from the transformation (2) is remarkably simple, and it has an obvious general solution in the form of an infinite series of terms, each of which consists of the product of a Bessel function of ξ multiplied by a Bessel function of η, one of the two arguments being a pure imaginary. This form of the equation is adapted for giving the solution of problems in which certain boundary conditions lave to be satisfied over some one or more of a set of confocal paraboloids.

The transformation (3) is somewhat remarkable in that it does not become indeterminate on putting $c=0$. In fact, when $c=0$, the solution is

$$
\psi=\sqrt{ }\left(r_{1}^{2}-r_{2}^{2}\right)\left\{F\left(r_{1}^{2}-r_{2}^{2}\right)+G\left(r_{1} / r_{3}\right)\right\},
$$

showing that, by a simple transformation, it will be possible to obtain a solution when c is not zero in an ascending series of powers of c. I am not aware, however, that any physical importance can be attached to this fact.

The equation

$$
\begin{equation*}
\frac{\partial^{2} \psi}{\partial r_{1}^{2}}+\frac{\partial^{2} \psi}{\partial r_{2}^{2}}+\frac{r_{1}^{2}+r_{2}^{2}-c^{2}}{r_{1} r_{2}^{2}} \frac{\partial^{3} \psi}{\partial r_{1} \partial r_{2}^{2}}=0 . \tag{7}
\end{equation*}
$$

has a solution of the form

$$
\psi=\int_{-1}^{1} F(\mu) \sqrt{ }\left(\frac{r_{1}{ }^{2}}{1+\mu}+\frac{r_{2}{ }^{2}}{1-\mu}-c^{2}\right) d \mu,
$$

which may conceivably lead to some new results, though the task of looking for such would probably be a somewhat thankless one.

An evident set of particular solutions of equation (7) is

$$
r_{1}, \quad r_{3}, \quad \frac{r_{1}{ }^{2}-c^{3}}{r_{3}}, \quad \frac{r_{2}{ }^{3}-c^{2}}{r_{1}} \ldots \ldots \ldots \ldots(8),
$$

of which the two latter are most easily derived by noticing that the solution for a source at the origin of r_{2} is

$$
\cos \theta_{1}=\left(x+\frac{1}{2} c\right) / r_{1},
$$

and therefore a solution of equation (7) is

$$
r_{1}-2 c \cos \theta_{1}=\left(r_{3}^{2}-c^{2}\right) / r_{1}
$$

Each of the four solutions (8) corresponds to a motion due to a semi-infinite line source and a semi-infinite line sink in the same straight line, the strength in every case being 2π per unit length. The third of the four solutions has in addition a point source at the origin of r_{2}, and the fourth a point sink at the origin of r_{1}, the strength in each case being $8 \pi c$.

The solution

$$
\psi=\frac{m}{4 \pi(\kappa-1)}\left\{\kappa\left(r_{1}-r_{3}\right)+\frac{r_{1}{ }^{2}-c^{2}}{r_{2}}-\frac{r_{3}{ }^{3}-c^{2}}{r_{1}}\right\}
$$

represents a finite line source of strength m per unit length. together with two equal point sources at its extremities, of which the strength is at our disposal by proper choice of κ.

A few other rather curious results may just be noted.
The equation

$$
\psi=\frac{m}{8 \pi}\left(r_{1}^{2}+r_{3}^{3}-c^{2}\right)\left(\frac{1}{r_{1}}-\frac{1}{r_{2}}\right)
$$

represents the motion inside a sphere due to a diametral line source of strength m per unit length with equal point sinks at the extremities. And

$$
\psi=\frac{m}{8 \pi}\left(r_{1}^{2}+r_{2}^{3}-c^{3}\right)\left(\frac{n}{r_{1}}-\frac{1}{r_{2}}\right),
$$

represents the motion in the presence of the two intersecting spheres

$$
r_{1}^{2}+r_{z}^{2}=c^{3}, \quad r_{1}=m r_{z},
$$

due to a certain arrangement of line and point sources and sinks. And

$$
\psi=\frac{m}{8 \pi(n+1)}\left\{(n+2) r_{1}-(2 n+1) r_{z}-\frac{r_{1}^{2}-c^{3}}{r_{2}}+n \frac{r_{3}{ }^{2}-c^{2}}{r_{1}}\right\}
$$

represents the motion, either inside or outside the sphere $r_{1}=u r_{2}$, due to a finite radial line source of strength m per mit length, together with a point sink at the extremity remote from the surface. The length of the sousee in comparison with the radius of the sphere is arbitrary, but one end of it is necessarily in contact with the surface.

THE RELATION BETWEEN THE PENCLL OF 'TANGENT' TO A RATIONAL PLANE CURVE FROME A POINT AND 'THEIR PARAMETERS.*

By J. E. Rowe.

Introduction.

'life relation between the pencil of tangents to a rational plane eurve from a point and their parameters along the curve is a question which arises very early in the study of rational plane curves. After further reading on the subject the student finds himself in a position to predict that no simple relation of this kind is likely to exist. In as much as this is quite an unsatisfactory position to hold-one which is not justified by facts, but one which the student is foreed to hold because there has never been sufficient research on this subject-I shall outline a method of attacking the problem which is straightforward and which makes it possible, in particular cases at least, to discover interesting relations which do exist between the pencil of tangents and their parameters. The vational plane cubie is taken up as the simplest illustrative example; incidentally, it is necessary to give a new geometric interpretation to several combinants of two binary conbies.

[^26]Covariants of rational curves defi:ed by the pencil of tangents from a point.
§ 1. Let the R^{n} (or the rational plane curve of order n) be written parametrically

$$
\begin{equation*}
R^{\prime \prime} \equiv x_{t}=a_{\iota} t^{n}+n b_{\iota} t^{n-1} \ldots \quad(\iota=0,1,2) . \tag{1}
\end{equation*}
$$

If (1) is eut by the two lines

$$
\begin{align*}
& (\zeta x)=\zeta_{0} x_{0}+\zeta_{1} x_{1}+\zeta_{2} x_{2}=0, \tag{2}\\
& (\eta x)=\eta_{0} x_{0}+\eta_{1} x_{1}+\eta_{2} x_{2}=0, \tag{3}
\end{align*}
$$

the result is the two binary n-ics
and

$$
\begin{aligned}
& u_{n} \equiv(a \zeta) t^{n}+n(b \zeta) t^{n-1} \ldots=0, \\
& v_{n} \equiv(a \eta) t^{n}+n(b \eta) t^{n-1} \ldots=0,
\end{aligned}
$$

whose roots are the parameters of the points in which the lines (2) and (3) cut the R^{n}.

It has been explained in a previous paper* how the combinants of u_{n} and v_{n} are transformed into covariant curves of the R^{n} by substituting (in the combinant of u_{n} and v_{n} equated to zero) x_{0}, x_{1}, x_{2} for the coordinates of the point in which the lines (2) and (3) intersect, which point will be referred to in the sequel as the point a.

Consider the expression

$$
\begin{equation*}
u_{n} K+v_{n}=0, \tag{6}
\end{equation*}
$$

a binary u-ic in t; its discriminant equated to zero may be put in the form

$$
\begin{equation*}
D_{6} K^{2 n-2}+D_{1} K^{2 n-3} \ldots D_{2 n-2}=0 . \tag{7}
\end{equation*}
$$

Invariants of (7) are combinants of $i_{n^{n}}$ and v_{n}. A combinant of u_{n} and v_{n} may be defined \dagger as a function of their coefficients (and possibly variable, although not generally containing the variable in what follows) which is unaltered (except by a constant multiplier), not only when the variable is linearly transformed, but also when, for u_{n} and v_{n}, linear combinations of u_{n} and v_{n} are substituted. Hence, an invariant of (7) is a combinant of u_{n} and v_{n}, i.e., it is ualtered if we substitute $l u_{n}+m v_{n}, l^{\prime} u_{n}+n^{\prime} v_{n}$ for u_{n}, v_{n}. For, by this substitution, we get the same invariant of $\left(l K+l^{\prime}\right) u_{n}+\left(m K+m^{\prime}\right) v_{n}$, which is equivalent to a linear transformation of K, by which the invariants of (7) are unaltered.

[^27]The roots of (7) are those values of K which, substituted in

$$
\begin{equation*}
(\zeta x) K+(\eta x)=0 \tag{8}
\end{equation*}
$$

field equations of tangents to the R^{n} through the point x. Any invariant relation imposed upon the roots of (7) imposes that same invariant relation upon the pencil of tangents from the point x to the $R^{\prime \prime}$. Hence, by the use of the usual translation scheme a combinant of u_{n} and v_{n}, derived as an invariant of (7), becomes (equated to zero) the equation of a covariant locus of the R^{n} defised by a projective relation connecting the pencil of tangents from any point of it to the R^{n}.

> Covariunts of the R^{n} defined by the parameters of tangents from a point.

§2. 'The Jacobian of u_{n} and v_{n} is a combinant which, equated to zero, may be written in the form

$$
\begin{equation*}
E_{9} t^{t^{2 n-2}}+E_{1} t^{2 n^{n-3}} \ldots E_{2 n-2}=0 . \tag{9}
\end{equation*}
$$

The roots of (9) are those values of t which oceur as squared factors in members of ths system* of binary n-ics (6); in other words the roots of (9) are the $2 n-2$ parameters of the tangents of the R^{n} from a point of x. Invariants of (9) are, of course, combinants of u_{n} and v_{n}. Hence, a combinant of u_{n} and v_{n} derived as an invariant of (9) is, equated to zero, the equation of a covariant of the R^{n} defined by some projective relation comnecting the parameters of the $2 n-2$ tangents that can be drawn from a point of it to the R^{n}.

Covariants of R^{n} from which the pencil of tangents and their parameters are projectively equivalent.

§3. To derive these curves it is only necessary to make a comparative study of the invariants of (7) and (9). Suppose that I_{2} and I_{4} are invariants of (7), and I_{2}^{\prime} and I_{4}^{\prime} the same invariants of (9), of degree in the coefficients of these equations indicated by their subscripts. 'Then, if

$$
\begin{equation*}
\frac{I_{4}}{I_{2}^{2}}=\frac{I_{4}^{\prime}}{I_{2}^{\prime 2}}, \tag{10}
\end{equation*}
$$

we have, by cross-multiplication and transposition, the curve

$$
\begin{equation*}
I_{2}^{\prime 3} I_{4}-I_{2}^{2} I_{4}^{\prime}=0 . \tag{11}
\end{equation*}
$$

But this curve would arise in the same way from

$$
\begin{equation*}
\frac{I_{4}+K I_{2}^{2}}{I_{4}+m I_{2}^{2}}=\frac{I_{4}^{\prime}+K I_{2}^{\prime 2}}{I_{4}^{\prime}+m I_{2}^{\prime 2}} . \tag{12}
\end{equation*}
$$

Hence (11) is the equation of a covariant locus of the R^{n} such that the pencil of tangents and the parameters of these tangents from a point of it, i.e., a point of (11), are projectively equivalent for a certain set of incariant relations. If a definite projective property, say B^{\prime}, is imposed upon the parameters of the tangents of the R^{n} from any point of (11) the pencil of tangents will possess this property B^{\prime} also, and vice versa, if only this invariant relation can be imposed by equating to zero an invariant of the form

$$
\begin{equation*}
a I_{2}{ }^{2}+b I_{4}=0 . \tag{13}
\end{equation*}
$$

Similaty, I_{6} and I_{6}^{\prime}, together with I_{2} and I_{2}^{\prime}, give rise to the locus

$$
\begin{equation*}
I_{2}^{\prime 3} I_{6}-I_{2}^{3} I_{6}^{\prime}=0, \tag{14}
\end{equation*}
$$

from which the pencil of tangents and their parameters are projectively equivalent for the set of invariants

$$
\begin{equation*}
a^{\prime} I_{2}^{3}+b^{\prime} I_{6}=0 . \tag{15}
\end{equation*}
$$

If a curve is a factor of $(11),(14)$, and

$$
\begin{equation*}
I_{2} I_{4}^{\prime}-I_{2}^{\prime} I_{4}=0 \tag{16}
\end{equation*}
$$

then, for such a curve, the pencil of tangents and their parameters from any point of it to the R^{n} are projectively equivalent for the ranishing of any invariant of the form

$$
\begin{equation*}
a_{1} I^{3}+b_{1} I_{2} I_{4}+c_{1} I_{6} . \tag{17}
\end{equation*}
$$

If I_{2}, I_{4}, and I_{6} constitute the complete system of invariants of the binary form (7), a curve whose equation is a factor of (11), (14), and (16) is such that from any point of it the pencil of tangents to the l^{n} and their parameters along the R^{n} are projectively equiralent in the fullest sense. The general method of procedure is so obvious that a formal statement is mmecessary. There may be a set of parameters along the R^{n}, the roots of a binary ($2 n-2$)-ic, whose absolute invariants are the same as those of (7); this could be rerified by carrying out the process just outlined. Its geometric meaning is that in such a case the pencil of tangents from a point and this set of parameters are projectively equivalent.

The rational plane cubic.

§4. Let the R^{3} be written parametrically

$$
\begin{equation*}
v_{t}=a_{t} t^{3}+3 b_{t} t^{2}+3 c_{t} t+d_{t} \quad(t=0,1,2) . \tag{18}
\end{equation*}
$$

Cutting (18) by (2) and (3) gives rise to

$$
\begin{align*}
& u_{3} \equiv(a \zeta) t^{3}+3(b \xi) t^{2}+3(c \xi) t+(d \zeta)=0, \tag{19}\\
& v_{3} \equiv(u \eta) t^{3}+3(h \eta) t^{2}+3(c \eta) t+(d \eta)=0 .
\end{align*}
$$

The expression corresponding to (7) may be written

$$
\begin{equation*}
D_{11} K^{4}+D_{1} K^{3}+D_{2} K^{3}+D_{3} K+D_{4}=0, \tag{21}
\end{equation*}
$$

The Jacobian of (19) and (20) becomes
(22) $|a b x| t^{2}+2|a c x| t^{3}+[|a d x|+3|b c x|] t^{3} \ldots=0$,
by making use of the tramslation scheme already referred to, which changes combinants of (19) and (20) into covariant loci of the R^{3}. Several of these combinants have been geometrically interpreted* before. $P=0$, the apolarity condition of (19) and (20), becomes the line on the flexes on the R^{3}. $Q=0$, the condition that there be a member of the system of binary cubics $u_{3} K+v_{3}$, which contains a cubed factor, is the equation of the three flex tangents. The eliminant of (19) and (20) becomes the point equation of the R^{3}, and may be expressed in the form $P^{3}-27 Q=0$. We slatl give a table of combinants and their geometric interpretation; so far as the geometric interpretation is concerned all of those given in the table are new except the first two, and the reason for their place in the table will appear as we proceed.

Takle of combinants and their geometric interpretation.

Combinant.	In terms of P and O.	Locus from which tangents to $R^{3}:$
S of (22)	$3 P^{2}$	Have self-apolar parameters
T of (22)	$54 Q-P^{3}$.	Have harmonic parameters
S of (21)	$3 P\left(P^{3}-24 Q\right)$	Form self-apolar pencil
T of (21)	$-\left(P^{6}-36 P^{3} Q+216 Q^{2}\right)$	Form harmonic pencil
$\left.\begin{array}{c}\text { See later } \\ \text { discussion }\end{array}\right\}$	$P^{3}-32 Q$	
	$P^{6}-40 P^{3} Q+432 Q^{2}$	$\left\{\begin{array}{l}\text { Cubic aud sextic from which the pencil of } \\ \text { tangents and their parameters are pro- } \\ \text { jectively equivalent. }\end{array}\right.$

By S is meant the invariant of the binary quartic of degree two in its coefficients; by T the catalecticant of the binary quartic, which is also the condition that the roots of the quartic be harmonically separated; these constitute the complete system of the binary quartic. Observe that the S and T of (21)

[^28]camnot be expressed in terms of the S and T of (22); this leads to the theorem: an invariant relation camot be imposed upon the pencil of tangents from a point to the R^{3} by imposing a single projective relation upon their parameters along the R^{3}

The binary quartic has only one absolnte invariant $\frac{S^{3}}{T^{\text {ry }}}$; hence, by making the absolute invariants of (20) and (21) equal, we are making the roots of these equations projectively equivalent. After cross-multiplication and tramsposition this gives rise to a multiple of
(24) $P^{2} Q\left(P^{12}-99 P^{9} Q+3656 P^{6} Q^{2}-432139 P^{3} Q^{3}+72^{3} Q^{4}\right)=0$,
which readily factors into
(25) $P^{3} Q\left(P^{3}-27 Q\right)\left(P^{3}-32 Q\right)\left(P^{6}-40 P^{2} Q+432 Q^{2}\right)=0$.

Hence, not only do the pencil of tangents and their parameters become projectively equivalent from any point of $Q=0$ and $P^{3}-27 Q=0$ (where there is coincidence), but also from a point of either of the curves

$$
\begin{gather*}
P^{3}-32 Q=0 \tag{26}\\
P^{6}-40 P^{3} Q+432 Q^{3}=0, \tag{27}
\end{gather*}
$$

which are entirely new loci.
It should be noticed that P is a factor of the S of (22) and (21) and that the pencil of tangents to the R^{3} from any point of it as well as the parameters of these tangents are self-apolar. Also that the pencil of tangents from a point of P to R^{3} is harmonic if only their parameters are harmonic.

The equations of the osculant conic of the R^{3} at a point whose parameter is t^{\prime} may be written
(28) $\quad x_{t}=\left(a_{i} t^{\prime}+b_{i}\right) t^{2}+2\left(b_{i} t^{\prime}+c_{i}\right) t+\left(c_{i} t^{\prime}+d_{i}\right) \quad(\iota=0,1,2)$.

If the point equation of this conic is found and t^{\prime} made equal to t (to show that it has become variable), remembering the translation scheme alrealy used, the result may be written
$\left[4|a b x||b c x|-|a c x|^{v}\right] t^{4}$

$$
\begin{align*}
& +[4|a b x||b d x|-2|a c x||a d x|+2|a c x||b c x|] t^{3} \tag{28}\\
& +[4|a b x||c d x|+2|a c x||b d x| \\
& \left.+\left.3|b c x|\right|^{2}-|a d x|^{3}-2|a d x||b c x|\right] t^{3} \\
& +[\cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdot] t+[\cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdot]=0 .
\end{align*}
$$

If a particular value of t, say t^{\prime}, is substituted in (29), we have the point equation of the oscutant conic of the l_{i}^{3} at the point whose prameter is t^{\prime}; if the coordinates of a given point are substituted in (29), the result is a binary quartic whose roots are the parameters of the osculant conics which pass through the given point. 'The S and T of (29) are respectively

$$
\begin{gather*}
\frac{P\left(P^{3}-24 Q\right)}{12}, \tag{30}\\
\frac{P^{6}-36 P^{3} Q+216 Q^{3}}{216} .
\end{gather*}
$$

It is easy to verify that the absolute invariant of (29) is equal to the absolute invariant of (21), which proves the theorem: The pencil of tangents of the R^{3} from a point and the parameters of the osculant conics of the R^{3} through the point are projectively equivalent.

Concluding observations.

§5. In the case of the R^{3} it has been shown that the curves (26) and (27) are related to the R^{3} in such a way that a pencil of tangents drawn from a point of either of these loci to the R^{3} has the same projective property as their parameters along the R^{3}. Similarly, by using the same process it would be necessary to make a comparative study of the invariants of two binary sextics to solve the problem for the R^{4}, and this would lead to a series of curves from which the pencil of tangents to the R^{t} and their parameters are projectively equivalent for a limiting set of invariants; the same kind of results may be obtained for the R^{5} and higher R^{n}. It is my belief that the method just outlined may be applied with advantage to the solution of certain problems of construction in connection with invariant pencils of six lines, but I shall be content, for the present, if I have established my point-that interesting relations do exist between the pencil of tangents to the R^{n} and their parameters, and that these relations may be found by the method indicated.

ON THE SOLUTION OF SOME THEOREMS IN ELEIENTARY OPTICS, HYDROSTATICS, \&C.

By J. II. II. Goodwin.
The following applications of (1) a theorem of Apollonius and (2) of the well-known theorem that the centre of gravity of a uniform tetrahedron coincides with that of equal weights placed at its corners are, I believe, new. They may possibly be useful as affording simple solutions to three important propositions in Elementary Mathematics.

To find the minimum and greatest deviation when a ray of light passes through a prism in a principal plane.
Let μ be the index of refiaction into the prism, ι the angle of the prism; ϕ, ϕ^{\prime} the angles of incidence and emergence at the first face, and ψ^{\prime}, ψ the angles of incidence and emergence at the second face.

By a well-known theorem the locus of a point whose distances from fixed points O and O are in the ratio of greater inequality $\mu: 1$ is a circle whose centre C is in $O O^{\prime}$ produced. Let P, Q be points on this circle such that the angles $P O^{\prime} C$ and $Q O^{\prime} C$ are ϕ and ψ respectively. Then, since

$$
\sin P O^{\prime} C: \sin P O O^{\prime}:: O P: O^{\prime} P:: \mu: 1
$$

the angle $P O O^{\prime}=\phi^{\prime}$, and similarly the angle $Q O O^{\prime}=\psi^{\prime}$. Let the internal bisector of the angle $Q O P$, meet $P Q$ in T. Then the angle $T O O^{\prime}=\frac{1}{2}\left(\phi^{\prime}+\psi^{\prime}\right)=\frac{1}{2} \iota$ and the line $T O$ is fixed.

Also, since $O T$ bisects the angle $Q O P$, it follows that

$$
Q T: T P=Q O: P O=\mu Q O^{\prime}: \mu P O^{\prime}=Q O^{\prime}: P O^{\prime}
$$

Therefore $T O^{\prime}$ bisects the angle $Q O^{\prime} P$, and the angle

$$
T O^{\prime} C=\frac{1}{2}(\phi+\psi)
$$

whence the angle

$$
O^{\prime} T O=\frac{1}{2}(\phi+\psi)-\frac{1}{2} \iota=\frac{1}{2} D,
$$

where D is the deviation.
Now if ϕ^{\prime} decreases from the value $\frac{1}{2} \iota, \psi^{\prime}$ increases, since $\phi^{\prime}+\psi^{\prime}=\iota$, and both P and Q move along the circle receding from each other, and for both reasons T^{\prime} approaches O along the fixed line $T O$; and the angle $O^{\prime} T O$, which measures the semi-deviation, continually increases until $O Q$ become a tangent to the circle, after which the construction becomes imaginary.

The minimum deviation occurs when P and Q coincide and $\phi^{\prime}=\psi^{\prime}=\frac{1}{2} \iota$. 'The greatest deviation oceurs when either $O P$ or $O Q$ is a tangent to the circle, i.e., when $O O^{\prime} P$ or $O O^{\prime} Q$ respectively is a right angle, i.e., when either ϕ^{\prime} or ψ^{\prime} is equal to the eritical angle $\sin ^{-1}(1 / \mu)$.

> To find the centre of pressure of a triangle $A B C$ wholly immersed in a homogeneous liquid.

Let $A^{\prime}, B B^{\prime}, C^{\prime}$ be the orthogonal projections of A, B, C on the effective surface, Δ the area of $A^{\prime} B^{\prime} C^{\prime} ; \alpha, \beta, \gamma$ the lengths of $A A^{\prime}, B B^{\prime}, C C^{\prime}$, and σ the specific gravity of the liquid.

Now it is known that the centre of pressure of $A B C$ is in the vertical through the centre of gravity of the fluid contained in $A B C C^{\prime} B^{\prime} A^{\prime}$. Let the weight of this fluid acting at its centre of gravity be resolved into three components P, Q, R along $A^{\prime} A, B^{\prime} B, C^{\prime} C$ respectively.

Now $A B C C^{\prime} B^{\prime} A^{\prime}$ may be divided into three tetrahedra $A A^{\prime} B^{\prime} C^{\prime}, A B B^{\prime} C^{\prime}, A C C^{\prime} B$ of weights, say, w_{1}, w_{2}, and w_{3}; and since the centre of gravity of a tetrahedron is the same as that of weights placed at its four corners, each equal to onefourth of the weight of the tetrahedron, it follows that the centre of gravity of $A B C C^{\prime} B^{\prime} A^{\prime}$ lies in the resultant of $\frac{1}{4} w_{1}+\frac{1}{4}\left(w_{1}+w_{2}+w_{3}\right)$ along, $A^{\prime} A$ together with two forces along $B^{\prime} B$ and $C^{\prime} C$ respectively.

Now

$$
P+Q+R=w_{1}+w_{3}+w_{3}
$$

and

$$
w_{1}=\frac{1}{3} \Delta \alpha \sigma,
$$

therefore

$$
P=\frac{1}{12} \Delta \alpha \sigma+\frac{1}{4}(P+Q+R) \ldots \ldots \ldots \ldots . .(1) .
$$

And, since the values of P, Q, R are unique, it follows by symmetry that

$$
Q=\frac{1}{12} \Delta \beta \sigma+\frac{1}{4}(P+Q+R), \quad R=\& c .
$$

By addition, we have

$$
P+Q+R={ }_{3}^{1} \Delta \sigma(\alpha+\beta+\gamma) .
$$

Hence, by (1), $P=\frac{1}{12} \Delta \sigma(2 \alpha+\beta+\gamma)$, with similar expressions for Q and R.

It follows that the centre of pressure of $A B C$ is the centre of gravity of weights proportional to $2 \alpha+\beta+\gamma, 2 \beta+\gamma+\alpha$, $2 \gamma+\alpha+\beta$ acting at A, B, C respectively.
[()' we may proceed as follows:

$$
\begin{aligned}
& \quad w_{3} \text { the weight of } A B C C^{\prime} \\
& ={ }_{3}^{1}\left(\frac{1}{2} C C^{\prime} . C B \sin B C C^{\prime}\right) \times\left(A^{\prime} C^{\prime} \sin A^{\prime} C^{\prime} B^{\prime}\right) \times \sigma \\
& ={ }_{6}^{1} C C^{\prime} . B^{\prime} C^{\prime} . A^{\prime} C^{\prime} \sin A^{\prime} C^{\prime} B^{\prime} \times \sigma \\
& ={ }_{3}^{3} \gamma \Delta \sigma,
\end{aligned}
$$

and simitarly $w_{1}, w_{2}=\frac{1}{3} \alpha \Delta \sigma$ and $\frac{1}{3} \beta \Delta \sigma$ respectively; whence $P={ }_{12}^{1} \Delta \sigma(2 \alpha+\beta+\gamma)$ as before.]

To find the moment of inertio of a triangle $A B C$ about any straight line $P Q$ in its plane.

Let the triangle $A B C$ be rotated through a small angle θ about the line $P Q$ into the position $A^{\prime} B^{\prime} C^{\prime}$. Then if $d S$ be a small area of the triangle at R, and if R^{\prime} be the position of R after the rotation, and if p be the perpendicular from R on $P Q$, the required moment of inertia is

$$
\int p^{3} d S=\int \frac{R R^{\prime}}{\theta} \cdot p d S=\frac{1}{\theta} \int p \cdot\left(R R^{\prime} \cdot d S\right)=\frac{K}{\theta}
$$

where K is the moment of the volume

$$
\text { of the solid } A B C C^{\prime} B^{\prime} A^{\prime} \text { about } P Q \ldots \ldots \text { (1). }
$$

This solid may be divided into the three tetrahedra $A A^{\prime} B^{\prime} C^{\prime}$, $A B B^{\prime} C, A B^{\prime} C^{\prime} C$. 'The bases of these tetrahedra, viz., $A^{\prime} B^{\prime} C^{\prime}$, $A B C, A B^{\prime} C^{\prime}$ are, by orthogonal projection, each equal to Δ, the area of $A B C$, if we neglect $\theta^{\prime \prime}$ and their heights to the same order of small quantities are respectively $A A^{\prime}, B B^{\prime}$, $C C^{\prime}$, or $\alpha \theta, \beta \theta, \gamma \theta$, where α, β, γ are the perpendiculars from A, B, C on $P Q$. Hence their volumes are respectively $\frac{1}{3} \Delta \alpha \theta, \frac{1}{3} \Delta \beta \theta, \frac{1}{3} \Delta \gamma \theta$; and, since the centre of gravity of a tetrahedron is the same as that of particles, each equal to one-fourth of its weight, placed at the angular points, the moment of the figure $A B C^{\prime} C^{\prime} B^{\prime} A^{\prime}$ about $P Q$ is the same as that of particles each equal to

$$
\begin{aligned}
& \frac{1}{12} \Delta \alpha \theta \text { at } A, A^{\prime}, B^{\prime}, C^{\prime}, \\
& \frac{1}{12} \Delta \beta \theta \text { at } A, B, B^{\prime}, C, \\
& \frac{1}{12} \Delta \gamma \theta \text { at } A, B^{\prime}, C^{\prime}, C,
\end{aligned}
$$

which is
$(2 \alpha+\beta+\gamma){ }_{12}^{12} \Delta \alpha \theta+(2 \beta+\gamma+\alpha) \frac{1}{12} \Delta \beta \theta+(2 \gamma+\alpha+\beta) \frac{1}{12} \Delta \gamma \theta$.
Hence, by (1), the required moment of inertia is

$$
\frac{1}{3} \Delta\left[\left\{\frac{1}{2}(\alpha+\beta)\right\}^{2}+\left\{\frac{1}{2}(\beta+\gamma)\right\}^{2}+\left\{\frac{1}{2}(\gamma+\alpha)\right\}^{3}\right],
$$

which is the moment of inertia about $P Q$ of particles placed at the mid-points of the sides of $A B C$, each equal to onethird of the mass of the triangle.

A NON-ABEHIAN GROUP WHOSE GROUP OF ISOMORPIISMS IS ABELIAN.

By G. A. Miller.

In the "Second report on recent progress in the theory of groups of finite order," published in volume ix. (1902) of the Bulletin of the American Mathematical Society, it was stated, on page 116 , that "no one seems to have investigated the question whether a non-abelian group can have an abelian group of isomorphisms." In the Appendix of Hilton's Finite Groups (1908), page 233, the question whether a non-abeliam group can have an abelian group of isomorphisms is placed among "a few interesting questions still awaiting solution." In what follows we shall give a very simple example of a non-abelian group which actually has an abelian group of isomorphisms.

Let s_{1} be an operator of order 8 and let s_{2} be an operator of order 2 which transforms s_{1} into its fifth power. The group $\left\{s_{1}, s_{2}\right\}$, which is generated by s_{1} and s_{2}, is clearly a non-abelian group of order 16 . We extend this group by means of an operator s_{3} which is of order 2 and is commutative with each of the operators of $\left\{s_{1}, s_{2}\right\}$. Finally, we extend this group just obtained by adding an operator s_{4} which is also of order 2 and which satisfies the following conditions:

$$
s_{4}^{-1} s_{1} s_{4}=s_{1}, \quad s_{4}^{-1} s_{2} s_{4}=s_{3} s_{2}, \quad s_{4}^{-1} s_{3} s_{4}=s_{3} .
$$

The group $\left\{s_{1}, s_{2}, s_{3}, s_{4}\right\} \equiv G$ is of order 64 and its central is of order 8 , being generated by $s_{1}{ }^{3}$ and s_{3}.

The co-sets (Nebengruppe) of G with respect to its central will be called central co-sets of G, and we shall first prove that each of these central co-sets is invariant under the group of isomorphisms I of G. This is equivalent to proving that every operator of the group of inner isomorphisms of G is invariant under I. 'This group of imner isomorphisms is of order 8 and it contains seven operators of order 2. Four of these operators correspond to operators of order 8 in G, one corresponds to operators of order 4 , while each of the remaining two corresponds to a co-set involving four operators of each of the orders 2 and 4.

One, and only one, central co-set of G is composed of eight operators of order 8 , each of which is transformed monder the group of inner isomorphisms of G only into itself and into its tifth powers. 'These are the 8 operators of order 8 contained
in $\left\{s_{1}, s_{3}\right\}$. Hence this central co-set, which we shall denote hereafter by C_{1}, is invariant under I. It is evident that G is generated by C_{1} and its two central co-sets C_{2}, C_{3}, each of which involves four operators of each of the orders 2 and 4.

As one of the two central co-sets C_{2}, C_{3} is composed of operators which are commutative with each operator of C_{1}, while the other co-set does not have this property, it results that each of the two co-sets C_{2}, C_{3} must be invariant under $I_{\text {. }}$. As each of the three co-sets C_{1}, C_{2}, C_{3} is invariant under I and as these co-sets generate G, it has been proved that every central co-set of G is invariant under the group of isomorphisms of G.

We shall now prove that each of the three operators of order 2 in the central of G is also invariant under I. In fact, one of these operators is the fourth power of each of the 32 operators of order 8 contained in G, and hence it is invariant under I. A second one of these three operators of order 2 is the commutator of every pair of non-commutative operators of order 2 contained in G. Hence this one is also invariant under I. As two of these three operators of order 2 are invariant under I, the third must also have this property.
'Two of the operators of order 4 in the central of G are the squares of the operators of C_{1}, and hence these two operators are transformed among themselves under I. It is now easy to find the order of I. In fact, the operators of C_{1} cannot be transformed in more than eight different ways under I since they must be transformed into themselves multiplied by operators of the central of G. These eight ways correspond to pormutations of the operators of C_{1}, which constitute the abelian group of order 8 and of type $(1,1,1)$.

The four operators of order 2 in each of the central co-sets C_{2}, C_{3} can be transformed into themselves multiplied only by the operators of the central whose orders divide 2. Hence these operators are transformed separately according to the group of order 4 and of type $(1,1)$. The order of I can therefore not exceed 128. Moreover, G admits 127 isomorphisms of order 2 since the given transformations of the operators of C_{1}, C_{3}, C_{3} are independent of each other. This completes a proof of the fact that l is abelian. In fact, it is the abelian group of order 128 and of type $(1,1,1, \ldots)$. Hence G is a non-abelian group of order 64 which has an abelian group of isomorphisms of order 128.

A GROUP OF ORDER p^{m} WHOSE GROUP OF ISOMORPHISMS IS OF ORDER p^{a}.

By G. A. Miller.
In the Appendix to Hilton's Introduction to the theory of groups of finite order (1908), page 233, the following question appears as number eight of a list of "a few interesting questions still awaiting solution": "Can a group of order" $p^{\text {a }}$ have a group of automorphisms whose order is also a power of p ?" When $p=2$ the infinite system of abelian groups of order $p^{m \prime \prime}$ which contain no two equal invariants is composed of groups whose groups of isomorphisms have orders of the form p^{a}, but when p is an odd prime number there is no abelian group of order p^{m} whose group of isomorphisms has an order which is of the form p^{a}. We proceed to construct a nou-abelian group of order p^{9}, p being any odd prime whatever, whose group of isomorphisms has an order of the form p^{a}.

Let s_{1}, s_{2}, and s_{3} be three operators of orders p^{4}, p^{3}, and p^{3} respectively, p being any odd prime number, and suppose that these operators satisfy the following conditions:

$$
s_{1}^{-1} s_{3} s_{1}=s_{1}^{p^{2}} s_{3}, \quad s_{3}^{-1} s_{3} s_{2}=s_{3}^{p+1}, \quad s_{1}^{-1} s_{3} s_{1}=s_{2}^{p^{2}+1}
$$

The central of the group G generated by s_{1}, s_{2}, s_{3}, is of index p^{3} : and it is generated by $s_{1}^{p}, s_{2}{ }^{p}, s_{3}{ }^{p}$. The central quotient group is abelian because each commutator of G is invariant under G, and this quotient group is of type $(1,1,1)$. The sub-group of order p generated by $s_{1} p^{3}$ is a characteristic subgroup of G becanse it is generated by each operator of order p^{4} contained in G. The sub-group of order p^{2} generated by $s_{1}^{p^{3}}$ and $s_{Q^{p^{2}}}$ is also a characteristic sub-group, because it involves all the operators of order p which are generated separately by the operators of order p^{3} centained in G.

The sub-group of order p^{3} generated by the three operators $s_{1}^{p^{3}}, s_{2}^{p^{2}}, s_{3}^{p}$ is composed of all the operators of G whose orders divide p, and hence it is also a characteristic sub-group of G. 'Ihese three characteristic sub-groups will be denoted by H_{1}, H_{2}, and H_{3} respectively. By adjoining to H_{3} the operator $s_{1}^{2^{2}}$ there results a characteristic sub-group H_{4} of order p^{4}, since it involves all the operators of order p^{2} contaned in G which generate separately the characteristic sub-group H_{1}.

By extending H_{4} by s_{2}^{p} and then extending the group thus obtained by s_{3} there result two more characteristic sub-groups H_{5} and H_{6} of orders p^{5} and p^{6} respectively. The latter of these is composed of all the operators of G whose orders divide p^{2}, while the former may be distinguished by the fact that it contains no operator of order p^{2} which generates s_{3}^{p}.

T'wo additional characteristic sub-groups may be obtained by extending H_{6} by means of s_{1}^{p} and then extending by means of s_{2} the group thus obtained. These two characteristic subgroups will be denoted by H_{2} and H_{8} respectively. The former contains the $p^{\text {th }}$ powers of the operators of highest order contained in G, while the latter is composed of all the operators of G whose orders divide p^{3}. The series of characteristic sub-groups $H_{\mathrm{t}}, H_{2}, \ldots, H_{\mathrm{s}}$ satisfies the condition that each includes all those which precede it.

To prove that the order of the gronp of isomorphisms I of G is of the form p^{α} it is only necessary to prove that in every possible isomorphism of G the operators of H_{a} are transformed into themselves multiplied by operators of $H_{a-1}(\alpha=1,2$, $\ldots, 8$ and $H_{0}=1$), and that all the operators of G which are not in H_{8} are transformed into themselves multiplied by operators of H_{8} by each of the operators of I.* In other words, we have to prove that every isomorphism of G is a p-isomorphism.

We shall now prove that if s_{1} is transformed into $t_{0} s_{1}$ under I, then t_{0} and s_{1} must be commutative. All the operators of order p^{4} which transform each operator of H_{6} into itself multiplied by a power of s_{1} must correspond to each other under I, and these operators constitute a sub-group of order p^{5}. Some of the operators of this sub-group transform operators of H_{a} into themselves multiplied by operators of H_{3}, while other operators of this sub-group do not have this property. As s_{3} is one of the latter operators and as s_{2} is not contained in the sub-group of order ν^{8} composed of those operators of G which transform each operator of H_{6} into itself multiplied by an operator of H_{1}, it has been proved that s_{1} corresponds only to operators which are commutative with s_{1} in every possible automorphism of G.

Suppose that, in some automorphism of G, s_{1} corresponds to $s_{1}{ }^{\text {a }}$, where α has one of the values $1,2, \ldots, p-1$. Let s_{3}^{\prime} correspond to s_{3} in the same automorphism. Since

$$
s_{1}{ }^{-\alpha s_{3} s_{1} s^{\alpha}}=s_{1} \alpha p^{3} s_{3} \text { and } s_{1}^{-\alpha s_{3}} s_{1}{ }^{\alpha}=s_{1} \alpha p^{3} s_{3}^{\prime},
$$

[^29]it results that s_{3}^{\prime} is equal to the product of s_{3} and some operator which is commuative with s_{1}. That is, s_{3} corresponds to itself multiplied by some operator of H_{5} whenever s_{1} corresponds to $s_{1}{ }^{a}$. In the same automorphism s_{2} must correspond to itself multiplied by some operator of M_{7}^{2}, since the operator which corresponds to s_{2} must transform the operator which corresponds to s_{3} into itself multiplied by $s_{3}{ }^{p}$ into some operator of H_{2}.

It is now easy to prove that $\alpha=1$. From the fact that s_{1} transforms s_{2} into itself multiplied by $s_{2}^{p^{2}}$, it results that $s_{1}{ }^{\text {a }}$ transforms the operator which corresponds to s_{2} in this automorphism into itself multiplied by $s_{2}^{p^{2}}$ into some operator of H_{1}. This cannot be equal to $s_{2}{ }^{a p^{2}}$ into some operator of H_{1} unless $\alpha=1$. Hence s_{1} cannot correspond to any power of itself, except the first power, in any automorphism of G. Since these arguments were based upon the way in which s_{1} transforms G, it has been proved that, in all the possible automorphisms of G, s must correspond to itself multiplied by an operator of the central of G.

It may be observed that the commutator sub-group of H_{8}, is composed of the powers of $s_{3}{ }^{p}$, and hence s_{3} generates a characteristic sub-group of order p. It must therefore correspond to itself multiplied by operators of H_{3} in every automorphism of G. As it has been proved that, in every possible automorphism of G, the operators which can correspond to the three generators of G, s_{1}, s_{2}, and s_{3} respectively, are obtained by multiplying these operators by operators which appear in a smaller sub-group of the series $H_{1}, H_{2}, \ldots, H_{s}, G$, it has been proved that the order of the group of isomorphisms of G is of the form p^{a} for every value of the odd prime number p.

For the sake of simplicity we confined our attention, in what precedes, to the case when p is an odd prime number. In this case the $p^{\text {th }}$ power of the product of any two operators of G is the product of their $p^{\text {th }}$ powers, while this is not always true when $p=2$. The series of sub-groups H_{1}, H_{2}, \ldots, H_{8} is, however, composed of characteristic sub-groups even when $p=2$. Hence the order of the group of isomorphisms of G is a power of p even in this special case. We have therefore proved that G is a group of order p^{9} whose group of isomorphisms is of the form p^{a} when p is any prime number whatever.

NOTE ON THE EQUATION $s=f(z)$.

By J. R. Wilton, M.A., B.Sc., Assistant Lecturer in Mathematics at the University of Sheffield.
THe general form of a pseudo-sphere can be obtained, when the measure of curvature is small, to any required degree of accuracy. If R_{1} and R_{2} are the principal radii of curvature, we have $R_{1} R_{2}=-a^{3}$, and, as is well known, the problem of determining the form of the pseudo-sphere is, by Bonnet's theorem, reduced to the solution of the differential equation

$$
s=\frac{\partial^{z} z}{\partial x \partial y}=\frac{1}{u^{2}} \sin z \ldots \ldots \ldots \ldots \ldots(1),
$$

where $x=$ constant, $y=$ constant are the asymptotic curves on the surface and z is the angle between them.*

If the measure of curvature is smatl, a is large, and it is easy in this case to obtain successive approximations to the solution of (1). Thus, if a were intinitely great (corresponding to the particular case of the developable surface), we should have $s=0$ and $z=X+Y$, where X and Y are arbitrary functions of x and y respectively. Substituting this value of z in the right-hand side of (1), we find

$$
s=\sin (X+Y)=\sin X \cos Y+\cos X \sin Y
$$

and thercfore $z_{1}=X+Y+\frac{1}{a^{2}}\left(X_{1} Y_{y}+X_{2} Y_{1}\right)$,
where

$$
\begin{aligned}
X_{1} & =\int \sin X d x, \quad Y_{2}=\int \cos X d x, \\
Y_{1} & =\int \sin Y d y, \quad Y_{2}=\int \cos Y d y,
\end{aligned}
$$

is a first-order approximation to the solution of (1) when a is large. Substituting $z=z_{1}+\zeta$ in equation (1), we have

$$
\frac{\partial^{2} \zeta}{\partial x \partial y}=\frac{1}{a^{4}}\left(X_{1} Y_{2}+X_{2} Y_{1}\right) \cos (X+Y)
$$

i.e.,

$$
\begin{aligned}
z_{2}= & z_{1}+\frac{1}{a^{4}}\left\{\int X_{1} \cos X d x \int Y_{2} \cos Y d y+\int X_{2} \cos X d x \int Y_{1} \cos Y d y\right. \\
& \left.-\int X_{1} \sin X d x \int Y_{2} \sin Y d y-\int X_{2} \sin X d x \int Y_{1} \sin Y d y\right\}
\end{aligned}
$$

is a second-order approximation to the value of z. We may

[^30]evidently repeat the process until z is obtained to the required degree of accuracy.

It is clear that the solution will be of the form

$$
\begin{gathered}
z=X+Y+\sum_{m=1}^{\infty} \frac{1}{a^{3^{m}}} S_{m}, \\
S_{m}=\sum_{n=1}^{2 n} X_{m n} Y_{m m},
\end{gathered}
$$

where X and Y are arbitrary, but $X_{m, n}$ is a function of x whose form depends on that of X, while $Y_{m m}$ is a function of y whose form depends on that of Y. Substituting in (1), we have

$$
\begin{aligned}
\sum_{m=1}^{\infty} \frac{1}{a^{2 m}} \sum_{n=1}^{2 m} X_{m n}^{\prime} Y_{m n}^{\prime} & =\sin (X+Y)\left\{1-\frac{\Sigma^{2}}{2!}+\frac{\Sigma^{4}}{4!}-\ldots\right\} \\
& +\cos (X+Y)\left\{\Sigma-\frac{\Sigma^{3}}{3!}+\cdots\right\}, \\
\text { ere } & \Sigma=\sum_{n=1}^{\infty} \frac{1}{a^{2 m}} S_{m} .
\end{aligned}
$$

It is clear that there are sufficient equations to determine the forms of the functions $X_{m n}$ and $Y_{m n}$. We have already obtained the first six of each.

It is, however, sufficient to assume for z a form apparently less general. Let

$$
z=X+\sum_{n=1}^{\infty} \frac{(y-b)^{n}}{n!} X_{n},
$$

where b is a constant and X_{n} is a function of x, whose form depends on that of X. Substituting this value of z in (1), we find*

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{(y-b)^{n-1}}{(n-1)!} X_{n}^{\prime} & =\sin X\left\{1-\frac{\Sigma^{2}}{2!}+\frac{\Sigma^{4}}{4!}-\ldots\right\} \\
& +\cos X\left\{\Sigma-\frac{\Sigma^{3}}{3!}+\ldots\right\} \ldots \ldots(2)
\end{aligned}
$$

where

$$
\mathbf{\Sigma}=\sum_{n=1}^{\infty} \frac{(y-b)^{n}}{n!} X_{n}
$$

The coefficient of $\frac{(y-b)^{n-1}}{(n-1)!}$ on the right-hand side of (2)

[^31]is readily obtained by the multinomial theorem. It is, however, somewhat complicated in form, and it will be sufficient to call it F_{∞}. We then have
$$
X_{n}=\int_{c}^{x} F_{n} d x+Y^{(n)}(b)
$$
where c is a constant, the same for all values of n, and $Y^{(n)}(b)$, the value of the $n^{\text {th }}$ differential coefficient of a function Y when $y=b$, is an arbitrary constant. We thas have, as the general solution of the equation
\[

$$
\begin{gather*}
s=\sin z \\
z=X+Y-Y(b)+\sum_{n=1}^{\infty} \int_{c}^{x} \frac{(y-b)^{n}}{n!} F_{n} d x \tag{3}
\end{gather*}
$$
\]

where Y is a function of y, expansible by 'Taylor's theorem in the form

$$
Y=Y(b)+\sum_{n=1}^{\infty} \frac{(y-b)^{n}}{n!} Y^{(n)}(b)
$$

and the series on the right-hand side of (3) will be convergent for sufficiently small values of $y-b$.

The relation (3) furnishes us with a formally complete solution of the equation $s=\sin z$, such that

$$
\begin{gathered}
z=X \text { when } y=b \\
z=Y+X(c)-Y(b) \text { when } x=c .
\end{gathered}
$$

It is, however, on account of its complicated form, of very little practical importance, though of some interest from a purely theoretical standpoint.

It is evident that precisely the same method will furnish us with a solution of the more general equation

$$
\begin{equation*}
s=f(z) \tag{4}
\end{equation*}
$$

provided that $f(z+h)$ may be expanded by 'Taylor's theorem.
As before, we assume

$$
z=X+\sum_{n=1}^{\infty} \frac{(y-b)^{n}}{n!} X_{n},
$$

and we find

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{(y-b)^{n-1}}{(n-1)!} X_{n}^{\prime} & =f(X+\Sigma) \\
& =f(X)+\Sigma f^{\prime}(X)+\ldots \frac{\Sigma^{n}}{n!} f^{(n)}(X)+\ldots
\end{aligned}
$$

Pick out the coefficient of $(y-\zeta)^{n-1} /(n-1)$! on the righthand side ; let it be F_{n}. Exactly as before we have

$$
X_{n}=\int_{c}^{x} F_{n} d x+Y^{(n)}(b)
$$

and the equation (3), with the new value of F_{n}, represents the solution of (4).

It is always possible to find the form of F_{n}, but the result is in general complicated; and it is only in very special cases that the sequence equation for X_{n} can be solved. For instance, even in the simple case,

$$
s=z^{2},
$$

this sequence equation is

$$
X_{n+1}=n!\int_{c}^{x} \sum_{m=0}^{n} \frac{X_{m}}{m!} \frac{X_{n-m}}{(n-m)!} d x+Y^{(n+1)}(b)
$$

where $X_{0}=X$.
As a particular example of the method, consider the equation

$$
\begin{equation*}
s=z . \tag{5}
\end{equation*}
$$

On substituting

$$
z=X+Y(b)+\sum_{n=1}^{\infty} \frac{(y-b)^{n}}{n!} X_{n}
$$

in this, we find

$$
\begin{aligned}
X_{n}=\int_{c}^{x} \int_{c}^{x} \ldots & \int_{c}^{x} X(d x)^{n}+\frac{(x-c)^{n}}{n!} Y(b) \\
& +\frac{(x-c)^{n-1}}{(n-1)!} Y^{\prime}(b)+\ldots(x-c) Y^{(n-1)}(b)+Y^{(n)}(b),
\end{aligned}
$$

and the general solution of (5), such that

$$
\begin{aligned}
& z=X+Y(b) \text { when } y=b \\
& z=Y+X(c) \text { when } x=c
\end{aligned}
$$

is

$$
\begin{aligned}
z=X+Y+\sum_{n=1}^{\infty} \frac{(y-b)^{n}}{n!}\left\{\int_{c}^{x} \int_{c}^{x} \cdots \int_{c}^{x}\right. & X(d x)^{n} \\
& \left.+\sum_{m=1}^{n} \frac{(x-c)^{m}}{m!} Y^{(n-m)}(b)\right\} .
\end{aligned}
$$

The general solution of equation (5) is, of course, well known, but I am not aware that it has been given in this form.

It is clear that the equation

$$
\begin{equation*}
r=f(q) \tag{6}
\end{equation*}
$$

which is of some importance in the theory of conduction of heat, * may be treated in the same manner. We take

$$
z=Y+\sum_{n=1}^{\infty} \frac{(x-c)^{n}}{n!} Y_{n},
$$

and substituting in (6), we have

$$
\begin{aligned}
\sum_{n=0}^{\infty} \frac{(x-c)^{n}}{n!} Y_{\alpha+2} & =f\left\{Y^{\prime}+\sum_{n=1}^{\infty} \frac{(x-c)^{n}}{n!} Y_{n}^{\prime}\right\} \\
& =f\left(Y^{\prime}\right)+\Sigma f^{\prime}\left(Y^{\prime}\right)+\ldots \frac{\Sigma^{n}}{m!} f^{(n)}\left(Y^{\prime}\right)+\ldots
\end{aligned}
$$

Whence Y and Y_{1} are arbitrary, and by equating the coefficients of powers of $(x-c)$, we find

$$
\begin{aligned}
& Y_{2}=f\left(Y^{\prime}\right) \\
& Y_{3}=Y_{1} f^{\prime}\left(Y^{\prime}\right) \\
& Y_{4}=Y_{3} f^{\prime}\left(Y^{\prime \prime}\right)+Y_{1}^{2} f^{\prime \prime}\left(Y^{\prime}\right), \& c .
\end{aligned}
$$

On the other hand, solving for q, we may write (6) in the form

$$
q=F(r)
$$

and if we assume

$$
z=X+\sum_{n=1}^{\infty} \frac{(y-b)^{n}}{n!} X_{n},
$$

we have

$$
\begin{aligned}
\sum_{n=0}^{\infty} \frac{(y-b)^{n}}{n!} X_{n+1} & =F\left\{X^{\prime \prime}+\sum_{n=1}^{\infty} \frac{(y-b)^{n}}{n!} X_{n}^{\prime \prime}\right\} \\
& =F\left(X^{\prime \prime}\right)+\Sigma F^{\prime}\left(X^{\prime \prime}\right)+\ldots \frac{\Sigma^{n s}}{m!} F^{(m)}\left(X^{\prime \prime}\right)+\ldots
\end{aligned}
$$

Whence X is arbitrary, and

$$
\begin{aligned}
& X_{1}=F\left(X^{\prime \prime}\right) \\
& X_{2}=X_{1} F^{\prime \prime}\left(X^{\prime \prime}\right) \\
& X_{3}=X_{2} F^{\prime \prime}\left(X^{\prime \prime}\right)+X_{1}^{2} F^{\prime \prime}\left(X^{\prime \prime}\right), \& c .
\end{aligned}
$$

Either form of solution is general.

* Differentiating (6) with regard to y, and taking q as the new dependent variable, we have $\frac{\partial^{2} q}{\partial x^{2}}=f^{\prime}(q) \frac{\partial q}{\partial y}$, which is the equation of conduction of heat when the conductivity is a function of the temperature q.

SOME 'IIEOREMS CONCERNING DIRICHLET'S SkRIES.

By G. H. Mardy and J. E. Littlewood.
1.

1. The present paper is intended as a supplement to a series of papers published during the last few years in the Proceedings of the London Mathematical Society.

These papers have been concerned, in the main, with what we have called "I'anberian" theorems, theorems whose general character is the same as that of 'Tauber's well-known converse of Abel's theorem on the contimity of a powerseries. The most typieal Trauberian theorems have, as one of their hypotheses, a hypothesis of the type

$$
\begin{equation*}
a_{n}=O\left(n^{a}\right), \tag{1.1}
\end{equation*}
$$

where a_{n} is the general term of the series considered. It is a matural conjecture that there must be analogues of these theorems in which this hypothesis is replaced by one as to the convergence of a series of the type

$$
\begin{equation*}
\Sigma n^{\beta}\left|a_{n}\right|^{\gamma} ; \tag{1.2}
\end{equation*}
$$

and the fundamental importance of such hypotheses in the theory of Fonrier's series suggests that theorems of this character might prove to be very interesting.

One snch theorem has been proved ahready by Fejér.* Fejér shows that
if (i) the series $\Sigma{\epsilon_{n}}_{n}$ is summable ($C 1$), (ii) the series $\Sigma n\left|a_{n}\right|^{2}$ is convergent, then the series Σa_{n} is convergent.

This theorem is the amalogne, in the direction indicated ahove, of the simplest case of what we have called the "general Cesaro-'lamber theorem," from which it differs in that the hypothesis that $a_{n}=O(1 / 11)$ is replaced by the hypothesis (ii).
2. We do not propose now to work out systematically a whole theory analogous to that contained in our former papers. We shall contine ourselves to proving the analognes of two of our simplest theorems, viz.: (i) if $a_{n}=O(1 / n)$ and $f(x)=\Sigma \|_{n} x^{n}$ tends to a limit as x tends to 1 through real ralues less than 1 , then Σa_{n} is convergent; (ii) if $a_{n}=O(1 / u)$,

[^32]$b_{n}=O(1 / n)$, and the series $\Sigma a_{n}, \Sigma b_{n}$ are convergent, then the product series Σc_{n}, formed in accordance with Cauchy's rule for multiplication, is convergent: or rather of the generalisations of these two theorems which hold for Dirichlet's series and Dirichlet's multiplication.

One preliminary remark is required. In our previons researches there was a sharp distinction between "general" theorems, theorems whose hypotheses involve an O, and "special" theorems, theorems whose hypotheses involve an o. This distinction now disappears: the theorems which we shall prove are of a "special" character, and their proots involve none of the characteristic difficulties of those of the "general" theorems; nor do they appear to be capable of any generalisation analogous to the passage from the "special" to the "general."
3. In what follows we shall, as usual, denote by $\left(\lambda_{n}\right)$ an arbitrary increasing sequence of positive numbers, tending to infinity with n, and we shall be concerned with series Σa_{n} ? such that the series

$$
\begin{equation*}
\Sigma\left(\frac{\lambda_{n}}{\lambda_{n}-\lambda_{n-1}}\right)^{p}\left|a_{n}\right|^{p+1} \tag{3.1}
\end{equation*}
$$

where p is a positive number, is convergent: this series reduces to $\Sigma n^{p}\left|a_{n}\right|^{p+1}$ whell $\lambda_{e}=n$. It will be convenient to write $\lambda_{0}=0$.

It slould be observed first that the convergence of the series (3.1) for any particular value of p neither implies, nor is implied by, its convergence for any other value of p. We caln see this by considering the special case in which $\lambda_{n}=n$. Suppose first that

$$
a_{n}=\frac{1}{n(\log n)^{a}},
$$

where $0<\alpha \leq 1$. Then the series (3.1) is convergent if

$$
p>(1 / \alpha)-1,
$$

so that its chance of convergence is increased by an increase in p. If on the other hand we suppose that $a_{n}=v^{-a}$ when $n=\nu^{\beta}, \alpha$ and β being positive integers, of which the latter is the greater, and that $a_{n}=0$ when n is not a perfect $\beta^{\text {th }}$ power, the series (3.1) assumes the form

$$
\leq v^{p \beta-(p+1) \alpha},
$$

and is convergent if

$$
p<\frac{\alpha-1}{\beta-\alpha} .
$$

'Ilhe in this case the chance of convergence is diminished by :un increase in p.

Secondly, we observe that if the series (3.1) is convergent, the series ¿u $_{n} n^{n-\lambda_{n}{ }^{s}}$ is absolutely convergent for all positive values of s. 'The proof' of this depends on an inequality on which much of our subsequent analysis will depend, viz., the inequality

$$
\begin{equation*}
\Sigma a b \leq\left(\Sigma a^{p+1}\right)^{1 /(p+1)}\left(\Sigma b^{(p+1) / p}\right)^{p /(p+1)}, \tag{3.2}
\end{equation*}
$$

known as the "generalised inequality of Schwarz." In this inequality the a 's, the b 's, and p are positive.*

We have

$$
\begin{aligned}
& \sum_{1}^{n}\left|a_{\nu}\right| e^{-\lambda_{\nu} s}=\sum_{1}^{n}\left(\frac{\lambda_{\nu}}{\lambda_{\nu}-\lambda_{\nu-1}}\right)^{p /(p+1)}\left|a_{\nu}\right|\left(\frac{\lambda_{\nu}-\lambda_{\nu-1}}{\lambda_{\nu}}\right)^{p /(p+1)} e^{-\lambda_{\iota} s} \\
\leq & \left\{\left.\underset{1}{n}\left(\frac{\lambda_{\nu}}{\lambda_{\nu}-\lambda_{\nu-1}}\right)^{p}\left|a_{\nu}\right|\right|^{p+1}\right\}^{1 /(p+1)}\left\{\frac{n}{1}\left(\frac{\lambda_{\nu}-\lambda_{\nu-1}}{\lambda_{\nu}}\right) e^{-\{(p+1) / p\} \lambda_{\star} s}\right\}^{p /(p+1)} .
\end{aligned}
$$

Also

$$
\begin{gathered}
\stackrel{n}{\Sigma}\left(\frac{\lambda_{\nu}-\lambda_{\nu-1}}{\lambda_{\nu}}\right) e^{-\{(p+1) / p\} \lambda_{\nu} s} \leq \frac{1}{\lambda_{1}} \Sigma_{1}^{n}\left(\lambda_{\nu}-\lambda_{\nu-1}\right) e^{-\{\{p+1) / p\} \lambda_{\nu} s} \\
\quad<\frac{1}{\lambda_{1}} \int_{0}^{\lambda_{n}} e^{-\{(p+1) / p\} t s} d t<\frac{p}{(p+1) \lambda_{1} s} .
\end{gathered}
$$

From these inequalities our assertion follows immediately.
4. Theorem A. Suppose that the series

$$
\Sigma\left(\frac{\lambda_{n}}{\lambda_{n}-\lambda_{n-1}}\right)^{p}\left|a_{n}\right|^{p+1}
$$

is comvergent, and that the series $f(s)=\Sigma a_{n} e^{-\lambda_{n} s}$, then certainly absolutely comergent for $s>0$, tends to a limit A as $s \rightarrow 0$. Then the series Σa_{n} is convergent to the sum A.

Choose m so that

$$
\sum_{m+1}^{\infty}\left(\frac{\lambda_{\nu}}{\lambda_{\nu}-\lambda_{\nu-1}}\right)^{p}\left|a_{n}\right|^{p+1}<\epsilon^{p+1},
$$

and s so that $s=1 / \lambda_{n}$, where $n>m$. Then, if

$$
a_{1}+a_{2}+\ldots+a_{n}=A_{n},
$$

we have
say. 'Then

$$
\begin{gathered}
A_{n}-f\left(\frac{1}{\lambda_{n}}\right)=\sum_{1}^{m} a_{\nu}\left(1-e^{-\lambda_{\nu} s}\right)+\sum_{m+1}^{n} a_{v}\left(1-e^{-\lambda_{v} s}\right)-\sum_{n+1}^{\infty} a_{\nu} e^{-\lambda_{v} s} \\
=S_{1}+S_{2}+S_{3}
\end{gathered}
$$

[^33]\[

$$
\begin{gathered}
\left|S_{2}\right|<s \sum_{m+1}^{n} \lambda_{\nu}\left|a_{\nu}\right| \\
\leq s\left\{\left.\sum_{m+1}^{n}\left(\frac{\lambda_{\nu}}{\lambda_{\nu}-\lambda_{\nu-1}}\right)^{p} \right\rvert\, a_{\nu}{ }_{\nu}^{\prime p+1}\right\}^{1 /(p+1)}\left\{\sum_{m+1}^{n} \lambda_{\nu}^{1 / p}\left(\lambda_{\nu}-\lambda_{\nu-1}\right)\right\}^{p /(p+1)} \\
<\epsilon s\left\{\sum_{1}^{n} \lambda_{\nu}^{1 / p}\left(\lambda_{\nu}-\lambda_{\nu-1)}\right)\right\}^{p /(p+1)}<\epsilon s \lambda_{n}=\epsilon .
\end{gathered}
$$
\]

Also

$$
\begin{gathered}
\left|S_{3}\right| \leq\left\{\sum_{n+1}^{\infty} \frac{\left|a_{\nu}\right| p+1}{\left(\lambda_{\nu}-\lambda_{\nu-1}\right)^{p}}\right\}^{1 /(p+1)}\left\{\sum_{n+1}^{\infty}\left(\lambda_{\nu}-\lambda_{\nu-1}\right\} e^{-\{(p+1) / p\} \lambda_{\nu} s}\right\}^{p /(p+1)} \\
<\epsilon \lambda_{n}-p /(p+1)\left(\int_{0}^{\infty} e^{-\{(p+1) / p\} t s d t)^{p /(p+1)}}\right. \\
=\epsilon\left(\frac{p}{p+1}\right)^{p /(p+1)}<\epsilon .
\end{gathered}
$$

Finally it is evident that, if n is large enough in comparison with m, we have $\left|S_{1}\right|<\epsilon$, and so

$$
\left|A_{n}-f\left(\frac{1}{\lambda_{n}}\right)\right|<3 \epsilon ;
$$

and the theorem is therefore proved.
In particular the convergence of $\Sigma n^{p}\left|a_{n}\right|^{p+1}$, and the existence of Abel's limit lim $\Sigma a_{n} x^{n}$ when $x \rightarrow 1$, involve the convergence of $\Sigma \alpha_{n}$. Finally, since the summability ($C \cdot v$) of Σa_{n} involves the existence of Abel's limit. a series Σa_{n}, such that $\bigcup_{n} n^{p}\left|a_{n}\right|^{p+1}$ is convergent, camnot be summable $\left(C_{r}\right)$ unless convergent. For $p=1, r=1$, this reduces to Fejér's result.
5. Theorem B. If $\boldsymbol{\Sigma} a_{n}, \Sigma b_{n}$ converge to sums A, B, and

$$
\Sigma\left(\frac{\lambda_{n}}{\lambda_{n}-\lambda_{n-1}}\right)^{p}\left|\dot{a}_{n}\right|^{p+1}, \quad \Sigma\left(\frac{\lambda_{n}}{\lambda_{n}-\lambda_{n-1}}\right)^{q}\left|b_{n}\right|^{q+1}
$$

are convergent, then the Dirichlet's product of the two series, formed according to the rule associated with Dirichlet's series of type $\left(\lambda_{n}\right)$, converges to the sum $A B$.

The proof of this theorem is a modification of that of the theorem of which it is the analogue, given in one of our former papers.*

[^34]We shall use the notation

$$
U(x)=\sum_{n \leq x} u_{n}
$$

to denote the sum of those terms of a series $u_{1}+u_{2}+\ldots$ whose rank is not greater than a positive number x, not necessarily an integer. We shall denote by $\lambda(x)$ a continnous and steadily increasing function of x, which assumes the value λ_{n} for $x=n$, and by $\left(y_{r}\right)$ the sequence $\left(\lambda_{n}+\lambda_{n}\right)$, arranged in ascending order of magnitude.

The product series is Σc_{r}, where

$$
c_{r}=\underset{\lambda_{m}+\lambda_{n}=\nu_{r}}{\Sigma} a_{m} b_{n} .
$$

'Thus

$$
C(r)=\Sigma a_{m} b_{n},
$$

where the summation is bounded by the inequalities

$$
m \geq 1, \quad n \geq 1, \quad \lambda_{m}+\lambda_{n} \leq \nu_{r}
$$

Let us draw the curve whose equation is

$$
\lambda(x)+\lambda(y)=v_{r},
$$

and take on the point P whose coordinates are

$$
x_{r}=\bar{\lambda}\left(\frac{1}{2} \nu_{r}\right), \quad y_{r}=\bar{\lambda}\left(\frac{1}{2} \nu_{r}\right),
$$

where $\bar{\lambda}$ is the function inverse to λ. Then $C(r)$ is the sum of all products $a_{m} b_{n}$ such that (m, n) lies in or on the boundary of the region $S^{\prime \prime} Q^{\prime} Q^{\prime}$, and $A\left(x_{r}\right) B\left(x_{r}\right)$ the sum of all such

$$
(1,0)
$$

that (m, n) lies in or on the boundary of $S R P R^{\prime}$. Hence

$$
C(r)-A\left(x_{r}\right) B\left(x_{r}\right)=\sum_{(D)} a_{m} b_{n}+\sum_{\left(D^{\prime}\right)} a_{m} b_{n},
$$

where D and D^{\prime} denote the regions $P Q R, P^{\prime} Q^{\prime} R^{\prime}$, the boundaries of these regions being reckoned as part of them, except in so far as they are formed by the lines $P R, P R^{\prime}$. It is plainly sufficient for our purpose to show that (e.g.)

$$
\sum_{(D)} a_{m} b_{n} \rightarrow 0 .
$$

as $r \rightarrow \infty$.
Now

$$
\sum_{(D)} a_{m} b_{n}=\sum_{\frac{1}{2} \nu_{r}<\lambda_{m} \leq \nu_{r}} a_{m} B\left\{\bar{\lambda}\left(\nu_{r}-\lambda_{m}\right)\right\},
$$

the modulus of which is less than a constant multiple of

$$
\underset{\frac{1}{2} \nu_{r}<\lambda_{m} \leq \nu_{r}}{\Sigma}\left|a_{m}\right| .
$$

We can choose r so that

$$
\underset{\frac{1}{2} \nu_{r}<\lambda_{m \leq} \leq \nu_{r}}{ }\left(\frac{\lambda_{m}}{\lambda_{m}-\lambda_{m-1}}\right)^{p}\left|a_{m}\right|^{\mid p+1}<\epsilon^{p+1} ;
$$

and then

$$
\begin{gathered}
\Sigma\left|a_{m}\right| \leq\left\{\Sigma\left(\frac{\lambda_{m}}{\lambda_{m}-\lambda_{m-1}}\right)^{p}\left|a_{m}\right| p^{p+1}\right\}^{1 /(p+1)}\left(\Sigma \frac{\lambda_{m}-\lambda_{m-1}}{\lambda_{m}}\right)^{p /(p+1)} . \\
<\epsilon\left\{\underset{\frac{1}{2} \nu_{r}<\lambda_{m} \leq \nu_{r}}{\Sigma} \frac{\lambda_{m}-\lambda_{m-1}}{\lambda_{m}}\right\}^{p /(p+1)} .
\end{gathered}
$$

But

$$
\sum_{\frac{1}{2} \nu_{r}<\lambda_{m} \leq \nu_{r}}^{\Sigma} \frac{\lambda_{m}-\lambda_{m-1}}{\lambda_{m}}<1+\int_{\frac{1}{2} \nu_{r}}^{\nu_{r}} \frac{d t}{t}=1+\log 2 .
$$

Hence
and so

$$
\begin{aligned}
\sum_{\frac{1}{2} \nu_{r}<\lambda_{m} \leq \nu_{r}}\left|a_{m}\right| & \rightarrow 0, \\
\sum_{(D)}^{\sum} a_{m} b_{n} & \rightarrow 0,
\end{aligned}
$$

as $r \rightarrow \infty$.
6. A comparison of the argument which precedes with that of our previous paper shows at once that a series Σa_{n} for which

$$
\Sigma\left(\frac{\lambda_{n}}{\lambda_{n}-\lambda_{n-1}}\right)^{p}\left|a_{n}\right|^{p+1}
$$

is convergent may be multiplied by a series Σb_{n} for which

$$
b_{n}=o\left(\frac{\lambda_{n}-\lambda_{n-1}}{\lambda_{n}}\right) .
$$

Whether o may be replaced by O in this result we cannot say.
In another of our papers* we showed that our theorem concerning the multiplication, by Canchy's rule, of series whose general terms are of order $1 / n$ is a corollary of another theorem. viz., that a series Σa_{n}, for which $a_{n}=O(1 / n)$, if summuble by uny of Cesinro's means, is summable $(C,-1+\delta)$ for all positive values of δ. It is naturally suggested that this theorem also has an analogue, and we have in fact proved the following result.

Theorem C. If $\Sigma \alpha_{n}$ is summable (Ck) for any value of k, and

$$
\Sigma n^{p}\left|a_{n}\right|^{p+1}
$$

is convergent, then Σa_{n} is summable $\left(C,-\frac{p}{p+1}+\delta\right)$ for all positive values of δ.

In order to prove this theorem, we observe \dagger that the necessary and sufficient condition that a series Σa_{n}, known to be summable $(C, r+1)$, shall be summable $(C r)$, is that

$$
t_{n}^{r}=o\left(n^{r+1}\right),
$$

where

$$
t_{n}^{r}=\binom{r+n-1}{r} a_{1}+\binom{r+n-2}{r} \geq a_{2}+\ldots+\binom{r}{r} n a_{n} .
$$

Plainly

$$
t_{n}^{r}=O\left\{n^{r}\left|a_{1}\right|+(n-1)^{r} 2\left|a_{2}\right|+\ldots+n\left|a_{n}\right|\right\} .
$$

We divide the expression inside the brackets into the two parts

$$
S_{1}=\sum_{\nu=1}^{m}(n-v+1)^{r} v\left|a_{v}\right|, \quad S_{2}=\sum_{m+1}^{n}(n-v+1)^{r} v\left|a_{v}\right| ;
$$

and we choose m so that

$$
\sum_{m+1}^{\infty} v^{p}\left|a_{v}\right|^{p+1}<\epsilon^{p+1} .
$$

[^35]Then

$$
\begin{aligned}
\left|S_{2}\right| & \leq\left(\sum_{m+1}^{n} \nu^{p}\left|a_{\nu}\right| p+1\right)^{1 /(p+1)}\left\{\sum_{m+1}^{n}(n-v+1)^{\{(p+1) r\} / p} \nu^{1 / p}\right\} p /(p+1) \\
& <\varepsilon\left\{\sum_{1}^{n}(n-v+1)^{\{(p+1) \cdot\} ; p} \nu^{1 / p}\right\}^{p}(p+1)<\epsilon K n^{r+1},
\end{aligned}
$$

where K is a constant. Also

$$
\left|S_{1}\right|<n^{r} \sum_{1}^{m} v\left|a_{\nu}\right|<\epsilon n^{r+1},
$$

if n is large enough in comparison with m. These inequalities obviously suffice to establish Theorem C.

II.

7. The theorem with which we shall conclude this paper is of a deeper character.

We have shown* that if $f(x)=\Sigma a_{n} x^{n}$ is a power series, all of whose coefficients are positive, and which is convergent when $0<x<1$, and if

$$
f(x) \sim \frac{A}{(1-x)^{\alpha}} \quad(A>0, \alpha>0)
$$

as $x \rightarrow 1$. then

$$
A_{n}=a_{1}+a_{2}+\ldots+a_{n} \sim \frac{A n^{\alpha}}{\Gamma(1+\alpha)} \cdot \dagger
$$

Further, we showed that the hypothesis that $a_{n} \geq 0$ may be replaced by the more general hypothesis that $a_{n}>-\bar{K}_{n}^{\alpha-1}$.

8. We shall now prove

'Theorem D. If $f(s)=\Sigma a_{n} e^{-\lambda_{n} s}$ is a Dirichlet's series convergent for $s>0$, of type $\left(\lambda_{n}\right)$ such that

$$
\frac{\lambda_{n+1}}{\lambda_{n}} \rightarrow 1
$$

* Proc. London Math. Soc., vol. 13. 'This paper has not yet been published.
\dagger In the paper referred to above we consider relations of the type

$$
f(x) \sim \frac{A}{(1-x)^{a}}\left\{\log \left(\frac{1}{1-x}\right)\right\}^{a_{1}}\left\{\log \log \left(\frac{1}{1-x}\right)\right\}^{a_{2}} \ldots
$$

The differences introduced into the proof by the adoption of the more general hypothesis are of the nature of trivial complications, and we shall confine ourselves now to the case in which $a_{1}=\alpha_{2}=\ldots=0$. The reader will easily satisfy himself of the truth of the more general results which are at once suggested.
a.s $n \rightarrow \infty$, and with prositive coefficients; if further.

$$
f(s) \sim A_{s^{-a}} \quad(A>0, \alpha \geq 0)
$$

as $s \rightarrow 0$: then

$$
A_{n}=a_{1}+a_{2}+\ldots+a_{n} \sim \frac{A \lambda_{n}^{\prime \prime}}{\Gamma(1+a)}
$$

as $n \rightarrow \infty$.
We shall base our proof on the following lemma.
Lemma D1. If the series

$$
F(s)=\Sigma a_{n} \int_{\lambda_{n}}^{\lambda_{n+1}} e^{-s x} d x
$$

is convergent for $s>0$; if further $a_{n} \geq 0$ and

$$
\begin{gathered}
F(s) \sim A s^{-a} \quad(A>0, \alpha>0) \\
-F^{\prime}(s) \sim A \alpha s^{-a-1} \\
G(s)=\frac{F(s)}{s}
\end{gathered}
$$

as $s \rightarrow 0$, then
Let
then
$s G^{\prime}(s)=F^{\prime \prime}(s)-\frac{F(s)}{s}=-\Sigma a_{n} \int_{\lambda_{n}}^{\lambda_{n+1}} x e^{-s x} d x-\frac{1}{s} \Sigma a_{n} \int_{\lambda_{n}}^{\lambda_{n+1}} e^{-s x} d x$
plainly decreases steadily as $s \rightarrow 0$. Hence, by a theorem of Landau,*

$$
\begin{aligned}
& G^{\prime}(s) \sim \frac{d}{d s}\left(A s^{-\alpha-1}\right)=-A(\alpha+1) s^{-\alpha-2}, \\
& -F^{\prime}(s)=-\frac{F(s)}{s}-G^{\prime}(s) \sim A \alpha s^{-\alpha-1}
\end{aligned}
$$

There is also another lemma which we shall find useful, although it is of no particular intrinsic interest.

Lemma D2. If ζ and ρ are positive, and

$$
\zeta \rightarrow 0, \quad \rho \rightarrow \infty, \quad \zeta^{2} \rho \rightarrow \infty,
$$

then

$$
\frac{1}{\Gamma(\rho+1)} \int_{0}^{\rho(1-\zeta)} e^{-u} u u^{\rho} d u \rightarrow 0, \quad \frac{1}{\Gamma(\rho+1)} \int_{\rho(1+\zeta)}^{\infty} e^{-u} u^{\rho} d u \rightarrow 0 .
$$

[^36]Consider the second integral, for example. It is

$$
\begin{aligned}
& \frac{1}{\Gamma(\rho+1)} \int_{\rho(1+\zeta)}^{\infty} u u^{\rho} e^{-u /(1+\zeta)} e^{-\zeta u /(1+\zeta)} d u \\
&<\frac{\{\rho(1+\zeta)\}^{\rho} e^{-\rho}}{\Gamma(\rho+1)} \int_{\rho(1+\zeta)}^{\infty} e^{-\zeta u /(1+\zeta) d u} \\
&<\Pi \frac{(1+\zeta) \rho}{\zeta \sqrt{\rho} \rho} e^{-\zeta \rho} \\
&=\frac{K}{\zeta \sqrt{ } \rho} e^{-\rho\{\zeta-\log i 1+\zeta)\}} \\
&<\frac{K}{\zeta \sqrt{ } \rho},
\end{aligned}
$$

where K is a constant. That the other integral tends to zero may be proved in a similar manner.
9. Before proceeding to the proof of the main theorem we add the following preliminary remarks.
(i) Our argument will involve three variables, ζ, r, and s. Of these ζ and r are definite functions of one another, and $\zeta \rightarrow 0, r \rightarrow \infty, \zeta^{3} r \rightarrow \infty$. We may, for example, suppose that $\zeta^{3} r=1$. 'The choice of a value of s will always be subsequent to that of ζ and r.
(ii) We shall make a number of assertions of the type

$$
|f(\zeta, r, s)|<\epsilon,
$$

or, more generally,

$$
\phi(\zeta, r, s, \epsilon)<0 .
$$

All such assertions are to be interpreted as follows: "given any positive number ϵ, we can choose r_{0} so that, when any definite r greater than r_{0} is taken, we can then choose s_{0} so that $\phi<0$ for $0<s \leq s_{0}$, or for all such values of s as satisfy some further condition or conditions previously laid down."

It follows, of course, that when ε occurs in each of a succession of inequalities it must not be regarded as a definite number having the same value in each inequality.
(iii) We may plainly take $A=1$.
10. We observe first that

$$
\begin{gather*}
A_{n}=O\left(\lambda_{n}^{a}\right) ; \tag{10.1}\\
A_{n}<e \sum_{1}^{n} \alpha_{\nu} e^{-\left(\lambda_{\nu} / \lambda_{n}\right)}<e f\left(\frac{1}{\lambda_{n}}\right) .
\end{gather*}
$$

since

Next, we have

$$
f(s)=\Sigma a_{n} e^{-\lambda_{n} s}=\Sigma \Sigma A_{n}\left(e^{-\lambda_{n} s}-e^{-\lambda_{n+1} s}\right)=s \Sigma A_{n} \int_{\lambda_{n}}^{\lambda_{n+1}} e^{-s x} d x,
$$

and so

$$
\Sigma A_{n} \int_{\lambda_{n}}^{\lambda_{n+1}} e^{-s x} d x \sim s^{-\alpha-1}
$$

Hence, by Lemma D1,

$$
\text { (10.2) } \Sigma A_{n} \int_{\lambda_{n}}^{\lambda_{n+1}} x^{r} e^{-s x} d x \sim \frac{\Gamma(\alpha+r+1)}{\Gamma(\alpha+1)} s^{-\alpha-r-1}
$$

for any value of r.
We shall suppose that r and s are such that

$$
\frac{r+\alpha}{s}=\lambda_{m},
$$

and we shall denote by $\lambda_{m-\nu}$ and $\lambda_{n+\nu}$ the last and first respectively of the λ 's such that

$$
\begin{equation*}
\lambda_{m-\nu}<(1-\zeta) \lambda_{m}, \quad \lambda_{m+\nu}>(1+\zeta) \lambda_{m} . \tag{10.3}
\end{equation*}
$$

It is important to observe that it is possible to choose r and s so that either $m-v$ or $m+v$ shall be equal to any assigned large integer p. For example, $m-\nu=p$ if

$$
\lambda_{p}<\frac{(1-\zeta)(r+\alpha)}{s}, \quad \lambda_{p+1} \geq \frac{(1-\zeta)(r+\alpha)}{s}
$$

and we can certainly choose r and s so that these inequalities shall be satisfied. 'Thus $m-v$ and $m+v$ may be regarded as variables which assume all integral values, from a certain point onwards, as they tend to ∞.

Now

$$
\begin{aligned}
\sum_{m+\nu}^{\infty} A_{n} \int_{\lambda_{n}}^{\lambda_{n+1}} x^{r} e^{-s x} d x & <K \sum_{m+\nu}^{\infty} \lambda_{n}^{a} \int_{\lambda_{n}}^{\lambda_{n+1}} x^{r} e^{-s x} d x \\
& <K \int_{\lambda_{m+v}}^{\infty} x^{r+\alpha} e^{-s x} d x \\
& =K s^{-r-\alpha-1} \int_{s \lambda_{m+\nu}}^{\infty} u u^{r+\alpha} e^{-u} d u
\end{aligned}
$$

where K is a constant. The lower limit is greater than $(1+\zeta)(r+\alpha)$. Hence, by Lemma D2, we have

$$
\begin{equation*}
\unrhd_{m+\nu}^{\infty} A_{n} \int_{\lambda_{n}}^{\lambda_{n+1}} x^{r} e^{-s x} d x<\epsilon \Gamma(r+\alpha+1) s^{-r-\alpha-1} \tag{10.4}
\end{equation*}
$$

and a similar argment shows that
$(10.5) \sum_{1}^{m-\nu-1} A_{n} \int_{\lambda_{\pi}}^{\lambda_{n+1}} x^{r} e^{-s x} d x<\epsilon \Gamma(r+\alpha+1) s^{-r-\alpha-1}$,
11. From (10.2), (10.4), and (10.5) it follows that

$$
\begin{equation*}
\sum_{m-\nu}^{m+\nu-1} A_{n} \int_{\lambda_{n}}^{\lambda_{n+1}} x^{r} e^{-s x} d x>(1-\epsilon) \frac{\Gamma(r+\alpha+1)}{\Gamma(\alpha+1)} s^{-r-\alpha-1} \tag{11.11}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{n-\nu}^{m+\nu-1} A_{n} \int_{\lambda_{n}}^{\lambda_{n+1}} x^{r} e^{-s x} d x<(1+\epsilon) \frac{\Gamma(r+\alpha+1)}{\Gamma(x+1)} s^{-r-\alpha-1} . \tag{11.12}
\end{equation*}
$$

But, since $a_{n} \geq 0, A_{n}$ is a steadily increasing function of n. Hence

$$
\begin{aligned}
& A_{m-\nu} \int_{\lambda_{m-v}}^{\lambda_{m+v}} x^{r} e^{-s x} d x<(1+\epsilon) \frac{\Gamma(r+\alpha+1)}{\Gamma(\alpha+1)} s^{-r-\alpha-1}, \\
& A_{m+\nu} \int_{\lambda_{m-v}}^{\lambda_{m+v}} x^{r} e^{-s x} d x>(1-\epsilon) \frac{\Gamma(r+\alpha+1)}{\Gamma(\alpha+1)} s^{-r-\alpha-1} .
\end{aligned}
$$

In virtue of Lemma D2, we may replace the limits in these integrals by 0 and ∞. The tirst inequality then gives

$$
\begin{align*}
& A_{m-\nu}<(1+\epsilon) \frac{\Gamma(r+\alpha+1)}{\Gamma(r+1) \Gamma(\alpha+1)} s^{-\alpha}, \\
& A_{m-\nu}<\frac{1+\epsilon}{\Gamma(\alpha+1)}\left(\frac{r}{s}\right)^{\alpha}, \\
& A_{m-\nu}<\frac{1+\epsilon}{\Gamma(\alpha+1)} \lambda_{m}{ }^{a} . \tag{11.2}
\end{align*}
$$

Now $\quad \lambda_{m-\nu}<(1-\zeta) \lambda_{m}, \quad \lambda_{m-\nu+1} \geq(1-\zeta) \lambda_{m}$,
and

$$
\frac{\lambda_{n+1}}{\lambda_{n}} \rightarrow 1 . .^{*}
$$

Hence

$$
\begin{equation*}
A_{m-\nu}<\frac{1+\epsilon}{\Gamma(\alpha+1)} \lambda_{m-\nu}^{\alpha} ; \tag{11.3}
\end{equation*}
$$

and similarly we can show that

$$
A_{m+\nu}>\frac{1-\epsilon}{\Gamma(\alpha+1)} \lambda_{m+\nu}^{a} .
$$

[^37]It now follows from the remark made early in § 10 that, given any positive ϵ, we can choose p_{0} so that

$$
\frac{1-\epsilon}{\Gamma(\alpha+1)} \lambda_{p}{ }^{a}<A_{p}<\frac{1+\epsilon}{\Gamma(\alpha+1)} \lambda_{p}^{a}
$$

for $p>p_{0}$, and the proof of the theorem is accordingly completed.
12. It is easy to deduce from Theorem D) a more general theorem.

Theoren E. The conclusion of Theorem D is still valid when $\alpha>0$ and the condition that a_{n} is positive is replaced by the more general condition

$$
a_{n}>-K \lambda_{n}^{a-1}\left(\lambda_{n}-\lambda_{n-1}\right) .
$$

Let

$$
\phi(s)=\Sigma \lambda_{n}^{\alpha-1}\left(\lambda_{n}-\lambda_{n-1}\right) e^{-\lambda_{n} s_{0}}
$$

Then it is easily proved that the series is convergent for $s>0$ and that

$$
\phi(s) \sim \Gamma(\alpha) s^{-\alpha}
$$

as $s \rightarrow 0$. ${ }^{*}$
The series $\quad g(s)=f(s)+K \phi(s)=\Sigma b_{n} e^{-\lambda_{n} s}$,
where

$$
b_{n}=a_{n}+K \lambda_{n}^{\alpha-1}\left(\lambda_{n}-\lambda_{n-1}\right),
$$

satisfies the condition

$$
b_{n} \geq 0, \quad g(s) \sim\{A+K \Gamma(\alpha)\} s^{-\alpha} .
$$

Hence

$$
\sum_{1}^{n} b_{v} \sim\left\{\frac{A}{\Gamma(\alpha+1)}+\frac{K}{\alpha}\right\} \lambda_{n}^{a} ;
$$

and since

$$
\sum_{1}^{n} \lambda_{\nu}^{a-1}\left(\lambda_{\nu}-\lambda_{\nu-1}\right) \sim \frac{\lambda_{n}^{a}}{a}
$$

it follows that

$$
A_{n} \sim \frac{A \lambda_{n}{ }^{a}}{\Gamma(\alpha+1)} .
$$

13. 'Theorem F. The conclusion of Theorem E is still valid when $\alpha=0$.
'The proof given in the last section depends essentially on the hypothesis $\alpha>0$. 'The result is true when $\alpha=0$, but the proof is more subtle. \dagger
[^38]
We have to prove that if

$$
\begin{equation*}
f(x)=\Sigma a_{n} e^{-\lambda_{n} s} \rightarrow A, \tag{ii}
\end{equation*}
$$

as $s \rightarrow 0$, then Σa_{n} is convergent.
We have

$$
f(s)=A+o(1)
$$

and

$$
f^{\prime \prime}(s)=\Sigma a_{n} \lambda_{n}^{z} e^{-\lambda_{n} s}>-K \Sigma \lambda_{n}\left(\lambda_{n}-\lambda_{n-1}\right) e^{-\lambda_{n} s}>-K / s^{\Sigma} .
$$

Hence*

$$
\begin{gathered}
f^{\prime}(s)=o(1 / s), \\
\Sigma a_{n} \lambda_{n} e^{-\lambda_{n} s}=o(1 / s) .
\end{gathered}
$$

To this series we can apply Theorem E ; and so we obtain

$$
a_{1} \lambda_{1}+a_{2} \lambda_{z}+\ldots+a_{n} \lambda_{n}=o\left(\lambda_{n}\right) .
$$

But this equation, together with condition (ii), secures the convergence of the series $\sum a_{n} \dagger$; so that the theorem is proved. This theorem is of considerable interest as embodying the widest direct extension at present known of 'Tauber's original converse of Abel's theorem. \ddagger

[^39]\ddagger In our earlier writings on this subject we have made considerable use of the following preliminary lemma: If $f(x)$ has continuous derivatives of the first two orders, and $f^{\prime}(x)=A+o(1), f^{\prime \prime}(x)=O(1)$, as $x \rightarrow \infty$, then $f^{\prime}(x)=o(1)$. Prof. J. Hadamard has very kindly pointed out to us that this result had already been proved independently, in the course of certain dynamical investigations, by himself ("Sur certaines propriétés des trajectories en Dynamique," Journal de Mathématiqques, ser. 5, vol. 3, 1897, p. 334), and by Herr A. Kneser ("Studien über die Bewegungsvorgänge in der Umgebung instabiler Gleichgewichtslagen, Journal für Mathematik, vol. 118, 1897, p. 199). Hadamard and Kneser indeed prove the result, as Prof. Landau asks us to state, in the more general form in which it appears in his paper "Einige Ungleichungen fiir zweimal differentiierbare Funktionen" (Proc. London Nath. Soc., ser. 2, vol. 13, 1913, p. 43), where only the existence and not the continuity of $f^{\prime \prime}(x)$ is presupposed.

Both in onr own writings and in Landan's paper the theorem in question appears only as a preliminary to a series of numbered theorems, the novelty of which is in no way affected by this anticipation.

We take this opportunity of referring also to a recent paper by Mr. A. Rosenblatt ("Über die Multiplikation der unendlichen Reihen," Bulletin de l'Acarlemie dis Sciences de Cracovie, 1913, p. 603), which contains a number of ver! interesting generalisations of some of our theorems on the multiplication of series.

$$
\operatorname{ROOTS}(y) \text { OF } y^{q p^{\alpha}} \mp 1 \equiv 0\left(\bmod p^{\kappa}\right) .
$$

13y. Ltt.-Cul. Allan Cumingham, R.E., Fellow of King's College, London.
[The author's acknowledgments are due to Mr. H. J. Woodall, A.R.C.Sc., for help in reading the proof-sheets.]

1. Subject. The object of this Paper is to develop Rules for computing the complete set of proper roots (y) of the Congruences

$$
\begin{equation*}
y^{q p^{a}} \mp 1 \equiv 0\left(\bmod p^{k}\right)[a<1, \kappa>a] . \tag{1}
\end{equation*}
$$

wherein the exponent of y contains p^{a}. The Rules will be shown to be very simple.
2. Notation.
p an odd prime.
p^{κ} the modulus of the Congruences (1).
y denotes a root of $y^{q p^{\alpha}}-1 \equiv 0\left(\bmod p^{\kappa}\right)$.
$y^{\prime} \quad, \quad$, of $y p^{q p^{a}}+1 \equiv 0\left(\bmod p^{k}\right)$.
ξ means the Haupt-Exponent (Art. 4) of y modulo p^{κ}.
μ denotes the number of proper roots (y) [see Art. 4] of the Congruences (1).
$\tau(x)$ denotes the Tutient of (x), so that

$$
\begin{equation*}
\tau(p)=p-1, \tau\left(p^{a}\right)=(p-1) \cdot p^{a-1}, \tau\left(q p^{a}\right)=\tau(q) \cdot \tau\left(p^{a}\right) \tag{2}
\end{equation*}
$$

3. Fermat's Theorem [for $\bmod p^{\kappa} 7$. It is well known that-

$$
\begin{equation*}
y^{\tau\left(p^{\kappa}\right)} \equiv+1\left(\bmod p^{\kappa}\right) \text { aloays, }[y \text { prime to } p] . \tag{3}
\end{equation*}
$$

and that-

$$
\begin{equation*}
y^{x} \equiv+1\left(\bmod \nu^{k}\right) \text { requires } x=\text { a factor of } \tau\left(p^{k}\right) \text {. } \tag{4}
\end{equation*}
$$

Hence

$$
\begin{align*}
& y q p^{a} \equiv+1\left(\bmod p^{\kappa}\right) \text { requires } \\
& q p^{\alpha}=\text { a factor of }(p-1) \cdot p^{k-1} \tag{5}
\end{align*}
$$

which requires -

$$
\begin{aligned}
& q=a \text { factor of }(p-1),[q \text { may }=1 \text {, or }(p-1)] \ldots \ldots \ldots \ldots . .(5 a) \text {, } \\
& \text { a申к-1...(5b). }
\end{aligned}
$$

4. Huupt-Exponent (ξ), Residue-Index (v), Proper Root (y).

Lt.-Col. Cumningham, Roots (y) of $y^{q p^{\alpha}} \mp 1 \equiv 0\left(\bmod p^{\kappa}\right) .149$
The Haupt-Exponent* (ξ) of y modulo p^{κ} is defined to be the Least value of the Exponent x satisfying the Congruence

$$
\begin{equation*}
y^{x}-1 \equiv 0\left(\bmod p^{x}\right) . \tag{6}
\end{equation*}
$$

and-(in this case)-y is said to be a proper root of that Congruence. Also, since x, ξ are factors of $\tau\left(\mu^{\kappa}\right)$ by (4) we may write-

$$
n \cdot x=\nu_{\xi}^{\prime}=\tau\left(p^{k}\right) .
$$

so that-

$$
\nu \text { is the max. value of } n \text {, and } \xi \text { is the } m i n \text {. value of } x \ldots \ldots \ldots .(8) \text {, }
$$

and here v is styled the Residue-Index of y modulo p^{κ}.
When $x \neq \xi$ in (6), y is said to be an improper root of (6).
5. Roots y mod. successive prime-powers p^{k}. The finding of roots (y) for successive prime-power moduli $p^{k}, p^{k+1}, p^{r^{k+2}}$, \&c., depends on the following general theorem-
"If y be a root of $y^{x} \equiv+1\left(\bmod p^{\kappa}\right)$,
then y is also a root of $y^{x p} \equiv+1\left(\bmod p^{k+1}\right)^{\prime} \ldots(9)$.
For, by the hypothesis-

$$
\begin{align*}
& y^{x}=m p^{k}+1 \tag{10}\\
& \therefore y^{x p}=\left(m p^{k}+1\right)^{p} \\
& =1+p \cdot m p^{\kappa}+\text { terms containing } p^{2 \kappa} \\
& \equiv+1\left(\bmod p^{\kappa+1}\right) \text {. } \tag{11}
\end{align*}
$$

Again, since the general value of y satisfying (11) is

$$
\begin{equation*}
\Gamma=m \nu^{k}+y . \tag{12}
\end{equation*}
$$

whereby,

$$
\begin{equation*}
\boldsymbol{r}^{x} \equiv y^{x} \equiv+1\left(\bmod p^{\kappa}\right) . \tag{12a}
\end{equation*}
$$

Hence also, Y is the general form of the roots of (12) $\ldots(126)$.
In what precedes this, y, Y are not necessarily proper roots of (9) and (11). But, taking $x=\xi$ the Haipt-Exponent of y modulo p^{κ},

$$
\begin{align*}
& Y^{\xi} \equiv y^{\xi} \equiv+1\left(\bmod p^{\kappa}\right) \tag{13}\\
& \therefore \quad r^{\xi p} \equiv y^{\xi p} \equiv+1\left(\bmod p^{k+1}\right) \tag{14}\\
& \mathrm{Y}^{\frac{15}{}} \equiv y^{\frac{1 \xi}{}} \equiv-1\left(\bmod p^{\kappa}\right)[\text { if } \xi \text { be even] } \ldots \ldots . . .(13 a) . \\
& \therefore \quad Y^{\frac{15 p}{5 p}} \equiv y^{1 \xi \xi p} \equiv-1\left(\bmod p^{\kappa+1}\right)\left[\xi_{\text {eren }}\right] . \tag{133}
\end{align*}
$$

and

And here y, Y are proper roots of (13), and are also--(with rare exceptions)-proper roots of (14).

[^40]1.51 Lı.-Col.Cuminglum, Roots (y) of $y^{9 p^{n}} \mp 1 \equiv 0\left(\bmod p^{k}\right)$.
6. Simplest Cuse $[q=1, a=1]$. The proposed Congruenees (1) become simply
\[

$$
\begin{equation*}
y^{p}-1 \equiv 0, \text { and } y^{p}+1 \equiv 0\left(\bmod p^{k}\right) . \tag{15}
\end{equation*}
$$

\]

Here, since $y=+1, y^{\prime}=-1$, are the only proper roots of the above when $\kappa=1$, the general formula for the roots $\left(y, y^{\prime}\right)$ of the above (15) are-

$$
\begin{align*}
& y=m p+1, y^{\prime}=m^{\prime} p-1\left(\bmod p^{2}\right) \ldots \ldots \\
& y=m p^{\kappa-1}+1, \quad y^{\prime}=m^{\prime} p^{k-1}-1\left(\bmod p^{k}\right) . \tag{16a}
\end{align*}
$$

and the whole set of proper roots $\left(y, y^{\prime}\right)<\eta^{\kappa}$ may be obtained at once from these formulæ by simply taking

$$
\begin{equation*}
m, m^{\prime}=1,2,3, \ldots,(p-1) \text {, in succession. } \tag{17}
\end{equation*}
$$

excluding m. $m^{\prime}=0$, because $y=+1, y^{\prime}=-1$ are not proper roots of the Congruences (15) when $\kappa>1$. This shows that-

$$
\begin{equation*}
\text { The number of proper roots of (15) is } \mu=p-1 \text {. } \tag{18}
\end{equation*}
$$

6a. Properties of Roots $\left(y, y^{\prime}\right)$. Since p is odd, the two Congruences (15) co-exist, and the formule ($16,16 a$) show that the roots y, y may be paired together in two ways, so that- -

$$
\begin{align*}
& \text { 10. } m=m^{\prime} \text { gives } y-y^{\prime}=2, \quad y+y^{\prime}=2 m p^{k-1}, \quad y y^{\prime}=m^{2} p^{2 k-2}-1 \\
& 2^{\circ} . m+m^{\prime}=p \text { gives } \quad y+y^{\prime}=p^{\wedge}, \quad y y^{\prime} \equiv-1\left(\bmod p^{k-1}\right) \ldots(19 b) \text {. }
\end{align*}
$$

And, as to the sums of the roots-

$$
\begin{array}{ll}
\Sigma\left(y^{\prime}\right)-\Sigma\left(y^{\prime}\right)=2(p-1)=2 \tau(p), & \left.\Sigma\left(y^{\prime}\right)+\Sigma\left(y^{\prime}\right)=(p-1) p^{k}=\tau\left(p^{k+1}\right)\right) .(20 a), \\
\Sigma\left(y^{\prime}\right)=\frac{1}{2} \tau\left(p^{k+1}\right)+\tau(p), & \Sigma\left(y^{\prime}\right)=\frac{1}{2} \tau\left(p^{k+1}\right)-\tau(p) \ldots \ldots \ldots \ldots \ldots . .
\end{array}
$$

7. Other simple Cases $[q=1, \alpha>1$, but $<\kappa]$. The proposed Congruences (1) become

$$
y^{\cdot r^{a}}-1 \equiv 0, \quad y p^{p^{a}}+1 \equiv 0\left(\bmod p^{k}\right),[a<k] .
$$

Here since, as in the previous Case (Art. 6), $y=+1$, $y^{\prime}=-1$ are the only proper roots when $\kappa=\alpha$, the general formula for the roots (y, y) of the above (21) are

$$
\begin{aligned}
& y=m p+1, \quad y^{\prime}=m^{\prime} p-1\left(\bmod p^{*}\right),[\kappa=\alpha+1] \ldots \ldots \ldots \ldots . .(22), \\
& y=m p^{k-a}+1, y^{\prime}=m^{i} p^{k-a}-1\left(\bmod \mu^{k}\right) \ldots \ldots \ldots \ldots \ldots \ldots \ldots(22 a),
\end{aligned}
$$

and the whole set of proper roots $\left(y, y^{\prime}\right)<\kappa$ may be obtained at once from the formulæ by simply taking

$$
\begin{equation*}
m, \quad m^{\prime}=1,2,3, \ldots,\left(y^{a}-1\right) \text { in succession. } \tag{23}
\end{equation*}
$$

excluding $m=0$, and $m=$ multiple of p, because these values do not yield proper roots of the Congruenees (15) when $\kappa=\alpha$. This shows that-

The number of proper roots of (21) is $\mu=p^{a}-\mu^{a-1}=\tau\left(p^{a}\right)$
Li.-Col. Cunningham, Roots (y) of $y^{9 p^{a}} \mp 1 \equiv 0\left(\bmod \eta^{\prime \prime}\right) . \quad 151$

7 a. Pioperties of Roots (y, y). Since p is odd the two Congruences (15) co-exist, and the formulæ ($16,16 a$) shew that the roots y, y may be pared together in two ways, so that-
$1^{\circ} . m=m^{\prime}$ gives $y-y^{\prime}=2, \quad y+y^{\prime}=2 m \mu^{k-\alpha}, y y^{\prime}=m^{2} \mu^{2 k^{-}-5 \alpha}-1 \ldots \ldots \ldots$ (25a),
$2^{\circ} . m+m^{\prime}=p-1$ gives $\quad y+y^{\prime}=p^{k}, \quad y y^{\prime} \equiv-1\left(\bmod p^{k-a}\right) . .(2 \dot{b})-$
And, as to the sums of the roots-

$$
\begin{array}{ll}
\Sigma(y)-\Sigma\left(y^{\prime}\right)=2 \tau\left(p^{\alpha}\right), & \Sigma\left(y^{\prime}\right)+\Sigma\left(y^{\prime}\right)=\tau\left(p^{k+a}\right) \ldots \ldots \ldots \ldots . .(26 a) . \\
\Sigma(y)=\frac{1}{2} \tau\left(p^{k+a}\right)+\tau\left(p^{\alpha}\right), & \Sigma\left(y^{\prime}\right)=\frac{1}{2} \tau\left(p^{k+a}\right)-\tau\left(\mu^{\alpha}\right) \ldots \ldots \ldots \ldots .(26 a) .
\end{array}
$$

8. More general Case $[q>1, \alpha=1, \kappa>1]$. The proposed Congruences become

$$
\begin{equation*}
y^{q p}-1 \equiv 0, y^{q p}+1 \equiv 0\left(\bmod p^{\kappa}\right),[k>1] . \tag{27}
\end{equation*}
$$

where q is a factor of $(p-1)$, by ($5 a$).
Let η, η^{\prime} be proper roots of the auxiliary Congruences

$$
\begin{equation*}
y^{q}-1 \equiv 0, \quad y^{q}+1 \equiv 0\left(\bmod p^{k-1}\right) . \tag{28}
\end{equation*}
$$

the modulus (p^{k-1}) being therein one degree lower than that $\left(p^{*}\right)$ of the proposed Congruences.

Then-by the general Theorem (9)-the general formula for the roots $\left(y, y^{\prime}\right)$ of (27) are

$$
\begin{array}{ll}
y=m p+\eta, & y^{\prime}=m^{\prime} p+\eta^{\prime}\left(\bmod p^{2}\right) \ldots \ldots \ldots \ldots \ldots \ldots(29), \\
y^{\prime}=m p^{k-1}+\eta, & y^{\prime}=m^{\prime} p^{k-1}+\eta^{\prime}\left(\bmod p^{k}\right) \ldots \ldots \ldots \ldots \ldots . .(29 a),
\end{array}
$$

and the whole set of roots $\left(y, y^{\prime}\right)<p^{*}$ of (27) may be found by taking

$$
\begin{equation*}
m, m^{\prime}=0,1,2,3, \ldots,(p-1)[p \text { values }] \text { in succession. } \tag{30}
\end{equation*}
$$

for each sub-root η, η of the anxiliary Congruences.
But one root $\left(y, y^{\prime}\right)$ in the set of p roots y, y arising as above from each sub-root $\left(\eta, \eta^{\prime}\right)$ is really a proper root of one of the Congruences

$$
\begin{equation*}
y^{q}-1 \equiv 0, y^{q}+1 \equiv 0\left(\bmod p^{k}\right) \tag{31}
\end{equation*}
$$

of lower order than the proposed [though with same modulus $\left.\left(p^{\kappa}\right)\right]$; and is therefore to be* rejected (as not being a proper root of the proposed Congruences) : so that each sub-root $\left(\eta, \eta^{\prime}\right)$ yields effectively ouly ($p-1$) proper roots (y, y) 'This shows that-

* It is not possible to recognise these roots \dot{a} priori. A Table of the roots of (31) is in fact required.

IT): L.t-Col.Cunningham, Roots (y) of $y^{9 p^{a}} \mp 1 \equiv 0\left(\bmod p^{n}\right)$.
8u. Properties of the Roots (y, y). Two Cases arise according as q is odd, or ceven.

Case i. q odd gives the exponent ($q p$) of (27) odd, so that the two Congruences co-exist. The formulæ (29, 29a) show that the roots y, y^{\prime} may be pared together in two ways si) that-

$$
\begin{aligned}
& 1^{\circ} . m=m^{\prime} \text { gives } y-y^{\prime}=\eta-\eta^{\prime}, y+y^{\prime}=2 m p^{k^{-3}}+\left(\eta+\eta^{\prime}\right) \ldots \ldots \ldots . .(33 a) . \\
& 2^{\circ} . m+m^{\prime}=p \text { gives } y^{\prime}+y^{\prime}=p^{k} \text {. } \\
& \text { (33b). }
\end{aligned}
$$

And, as to the sums of the roots
$\Sigma(y)-\Sigma\left(y^{\prime}\right)=\Sigma\left\{m\left(\eta-\eta^{\prime}\right)\right\} \equiv-2 . \tau(p) \equiv+2(\bmod p), \Sigma(y)+\Sigma\left(y^{\prime}\right)=\tau\left(p^{k+1}\right) . .(34 a)$ $\Sigma(y)=+1, \quad \Sigma y^{\prime} \equiv-1(\bmod p)$

Cask ii. q eren gives the exponent ($q p$) of (27) even, so that the only effective Congruence is

$$
\begin{equation*}
y^{a^{p}+1 \equiv 0 \bmod p^{k} . . . ~} \tag{35}
\end{equation*}
$$

and here the roots may be paired by taking the roots equidistant from the ends (of the complete set) so that-

$$
\begin{equation*}
y^{\prime}+\text { the conjugate root } y^{\prime}=p^{\kappa} \text {. } \tag{36}
\end{equation*}
$$

And

$$
\begin{equation*}
\Sigma\left(y^{\prime}\right)=(p-1) \mu^{\kappa} \equiv \tau\left(p^{\kappa+1}\right) \tag{37}
\end{equation*}
$$

9. Nost general Case $[q>1, \alpha>1, k>\alpha]$. The proposed Congruences are now of the most general kind (1), viz.

$$
y^{4} \not v^{\alpha}-1 \equiv 0, \quad y q p^{u}+1 \equiv 0\left(\bmod p^{\kappa}\right),[\kappa>\alpha] \ldots \ldots \ldots \ldots(38)
$$

where q is a factor of ($p-1$), by (\tilde{a}).
Let $\eta . \eta^{\prime}$ be proper roots of the anxiliary Congruences

$$
y^{\prime}-1 \equiv 0, y^{q}+1 \equiv 0\left(\bmod p^{k-1}\right) . .
$$

the mothlus $\left(p^{k-1}\right)$ being therein-as in Art. 8 -one degree lower than that $\left(p^{*}\right)$ of the proposed Congruences: these foots η, η ' will (for shortness' sake) be styled Sub-roots.

Then-by the general Theorem (9)-the general formula for the roots y, y of (38) are

$$
\begin{array}{ll}
y=m p+\eta, & y^{\prime}=m^{\prime} p+\eta^{\prime}\left(\bmod p^{\kappa}\right),[\kappa=a+1] \ldots \ldots \ldots .(40), \\
y=m p^{k}+\eta+\eta, & y^{\prime}=m^{\prime} p^{k-a}+\eta^{\prime}\left(\bmod p^{k}\right) \ldots \ldots \ldots \ldots \ldots \ldots .(40 a),
\end{array}
$$

and the whole set of roots $(y, y)<p^{*}$ of (38) may be obtained from these formulie by taking-

$$
m, m^{\prime}=0,1,2,3, \ldots,\left(p^{a}-1\right),\left[p^{a} \text { values }\right] \text {, in succession....(41), }
$$

for cach sub)-ront $\left(\eta, \eta^{\prime}\right)$ of the auxiliaries.
But p^{a+1} roots $\left(y, y^{\prime}\right)$ of the set of p^{α} roots (y, y) arising as above from each Sub-root (η, η) will be found to be really

Lt.-Col.Cunningham, Roots (y) of $y^{q p^{a}} \mp 1 \equiv 0\left(\bmod p^{\kappa}\right) . \quad 153$ the complete set of roots of all kinds (both proper and improper) of one of the Congruences

$$
\begin{equation*}
y^{q \cdot p^{a-1}-1 \equiv 0, \quad y q \cdot p^{a-1}+1 \equiv 0\left(\bmod p^{k}\right) . . . ~} \tag{42}
\end{equation*}
$$

of lower order than the proposed (though with same modulus $\left(p^{*}\right)$: and are therefore to be ${ }^{*}$ rejected (as not being proper roots of the proposed Congruences) : so that each Sub-root $\left(\eta, \eta \eta^{\prime}\right)$ yields effectively only $p^{a}-p^{a-1}=\tau\left(p^{a}\right)$ proper roots (y, y). This shows that-

Number of proper roots $\left(y, y^{\prime}\right)$ of (38)

$$
\begin{align*}
& =\tau\left(p^{a}\right) \times \text { number of proper sub-roots }\left(q, q^{\prime}\right) . \\
& =\tau\left(q p^{a}\right) \text { with } q \text { odd................................ } \tag{43a}
\end{align*}
$$

Number of proper roots y^{\prime} is $=\tau\left(2 q p^{a}\right)$ with q even (43b).

9 a. Properties of the roots $\left(y, y^{\prime}\right)$. Two Cases arise according as q is odd, or even.

Case i. q odd gives the exponent $\left(q p^{a}\right)$ of (38) odd, so that the two Congruences (38) co-exist. Jhe formulæ (40, $40 a)$ show that the roots $\left(y, y^{\prime}\right)$ may be paired together in two ways, so that-

$$
\begin{align*}
& 1^{\circ} \text {. } m=m^{\prime} \text { gives } y-y^{\prime}=\eta-\eta^{\prime}, \quad y+y^{\prime}=2 m p^{k-\alpha}+\left(\eta+\eta^{\prime}\right) \text {. } \\
& \text { (44a). } \\
& \text { 2. } 2^{\circ} m+m^{\prime}=p^{a}-1 \text { gives } y+y^{\prime}=p^{k} \text {. } \tag{44b}
\end{align*}
$$

And, as to the sums of the roots

$$
\begin{align*}
& \Sigma(y)-\Sigma\left(y^{\prime}\right)=\Sigma\left\{m\left(\eta-\eta^{\prime}\right)\right\} \equiv+2(\bmod p), \quad \Sigma\left(y^{\prime}\right)+\Sigma\left(y^{\prime}\right)=\tau\left(p^{k+u}\right) \ldots(45 a), \\
& \Sigma\left(y^{\prime}\right) \equiv+1, \quad \Sigma\left(y^{\prime}\right) \equiv-1(\bmod p) \text {. } \tag{45b}
\end{align*}
$$

Case ii. q eien gives the exponent ($q p^{a}$) of (38) even so that the only effective Congruence is

$$
\begin{equation*}
y^{9 p+1} \equiv 0\left(\bmod p^{\kappa}\right) . \tag{46}
\end{equation*}
$$

and here the roots may be paired by taking roots equi-distant from the ends (of the complete set), so that -

$$
\begin{align*}
& y^{\prime}+\text { the conjugate } y^{\prime}=p^{k} . \text {. } \tag{47}\\
& \Sigma\left(y^{\prime}\right)=\tau\left(p^{a}\right) \cdot p^{k}=\tau\left(p^{k+\alpha}\right) \ldots \tag{48}
\end{align*}
$$

and
10. Divisibility of binomial factors by $p^{x}-$

Let $F(a)$ denote $\left(y^{q p^{\alpha}} \mp 1\right) \ldots \ldots \ldots \ldots \ldots \ldots(49)$.
Let $f(\alpha)$ denote $F(\alpha) \div F(\alpha-1) \ldots \ldots \ldots \ldots .(50)$, so that $F(0)$ means $\left(y^{q} \mp 1\right), F(1)$ means $\left(y^{q p} \mp 1\right), \& c \ldots(50 a)$, wherein q may $=1$ or any factor of $(p-1)$.

[^41]15t Lt.-Coi. Cunningham, Roots (y) of $y^{q p^{u}} \mp 1 \equiv 0\left(\bmod p^{n}\right)$.
Here the same sign is to be used in the symbols F, f thronghout any one research.

Then $f(0), f(1), f(2), \ldots, f(\alpha)$, are the binomial algebraic factors of $P(\alpha)$, so that-

$$
\begin{equation*}
r^{\prime}(u)=f(0) \cdot f(1) \cdot f^{2}(2) \ldots f(\alpha) ;[u+1 \text { factors }] \tag{5}
\end{equation*}
$$

Now, let y be a proper root of $F(\alpha) \equiv 0\left(\bmod p^{\kappa}\right),[\kappa>\alpha]$.
Then this involves the following important laws of divisibility of the binomials f by p and its powers,

$$
\begin{align*}
& 1^{\circ} . p \text { is a divisor of each of the }(\alpha+1) \text { binomials } f(0) \text { to } f(a) \ldots \ldots(52) \text {. } \\
& 2^{\circ} . \kappa=a+1 \text { involves that cack of the }(\alpha+1) \text { binomials } f(0) \text { to } f(a) \\
& \text { contains } p \text { once only...(52a). } \\
& 3^{\circ} . \kappa>a+1 \text { involves that } f(0) \text { contains } p^{\kappa-\alpha} \text {, } \\
& \text { and each of the } \alpha \text { binomials } f(1) \text { to } f(a) \text { contains } p \text { once only...(52b). }
\end{align*}
$$

11. Tubulation of Roots. The number (μ) of roots (y, y) being, [sce Results (18), (24), (32), (43)], $\mu=\tau\left(q \cdot p^{\alpha}\right)$ is so large, even for small values of p and α, as to preclude tabulation except for a few small primes with quite small values of α.

Some space may be saved by the simple relations between certaill associated roots y, y.

$$
\begin{align*}
& 1^{\circ} . q=1 \text { gives } y^{\prime}=y-2 \text { aluays. } . \tag{53at}\\
& 2^{\circ} . q=3 \text { gives } y^{\prime}=y-1 \text { always. } \tag{53b}
\end{align*}
$$

so that in those two Cases it suffices to tabulate one set (say y), leaving the other set $\left(y^{\prime}\right)$ to be inferred from those relations.
12. Tests. The following Tests are so simple as to admit of being rery easily applied to the results.
1°. When $q=1$ and $a=1$; then $\Sigma(y) \equiv \tau(p), \Sigma\left(y^{\prime}\right) \equiv-\tau(p)\left(\bmod p^{\kappa}\right) . .(j 4)$.
2°. When $q=1$ and $\alpha>1$; then $\Sigma(y) \equiv \tau\left(p^{a}\right), \Sigma\left(y^{\prime}\right) \equiv-\tau\left(p^{a}\right)\left(\bmod \nu^{\kappa}\right) . .(54 a)$.
3. When q is odd and >1; then $\Sigma(y) \equiv+1, \Sigma\left(y^{\prime}\right) \equiv-1(\bmod p) \ldots \ldots(5+b)$.
13. Auxiliary Congruence Solutions. The solutions $\left(\eta, \eta^{\prime}\right)$ of the Auxiliary Congruences (28, 31, 39, 42)

$$
\begin{aligned}
& y^{\prime q-1} \equiv 0, \quad y^{q}+1 \equiv 0\left(\bmod p^{k-1} \text { and } p^{k}\right), \\
& y^{2 p^{\alpha}}-1 \equiv 0, \quad y^{q p^{\alpha}}+1 \equiv 0\left(\bmod p^{k-1} \text { and } p^{k}\right),
\end{aligned}
$$

are required to form the Congruences (1) which are the subject of this Paper.

T'ables giving the complete set of proper roots modulo p^{κ}, for all values of q possible to each prime, up to $p=101$, and $\kappa=1,2$ in all eases (and for some of the smaller primes up

Lt.-Col. Cumningham, Roots (y) of $y^{q p^{a}} \mp 1 \equiv 0\left(\bmod p^{\kappa}\right) \cdot 155$ to $\kappa=5$) are given in the author's Paper on Period-Lengths of Circulates in Vol. xxix, 1900, pp. 166-179 of this Journal.

Corrigenda* in the Tables in Vol. xxix.
page 158. In the small Table, cancel two lines; -
line 10 , on left $\left[l=13, r=44, N^{t}=53^{2}, r_{t}<53\right]$.
lime 8 , on right $\left[l=35, r=60, N^{r}=71^{2}, r_{t}<71\right]$.
page 174. Table of $\rho^{35} \equiv+1$, mod 71^{2}. For $\rho^{11} \equiv 60$, Read 5030.
page 177. 'Tables of $\rho^{13} \equiv+1$, and $\boldsymbol{r}^{13} \equiv-1$, $\bmod 53^{2}$. Cancel both lines.
For $\rho^{13} \equiv+1\left(\bmod 53^{2}\right)$,
Read 752, 895, 1689, 460, 413, 1586, 1656, 925, 1777, 2029, 521, 1341.
And, For $r^{13} \equiv+1\left(\bmod 53^{2}\right)$,
Reat 2057, 1914, 1120, 2349. 2396, 1223, 1153, 1884, 1032, 780, 2288, 1468.
14. Present Tables. In the Tables following, the moduli include the powers of all the small primes $p=3$ to 19 , up to the limit $\eta^{\kappa} \ngtr 10^{4}$.

The 'Tables give the complate sets of roots $(y, y$) of the Congruences (1) for these moduli (p^{κ}) for the exponents ξ or $\frac{1}{2} \xi=q p^{a}$ as shown in the scheme below. The last line shows the number (μ) of roots of each Congruence.

Tab.	I.			II.		III.	
$\begin{aligned} & \text { Mod } p^{k} \\ & \text { Exponent } p^{c} \\ & \mu \text { of } y, y \end{aligned}$	$\begin{gathered} 3^{2} \text { to } 3^{8} \\ 3 \\ 2 \end{gathered}$	$\begin{gathered} 3^{3} \text { to } 3^{8} \\ 3^{2} \\ 6 \end{gathered}$	$\begin{gathered} 3^{4} \text { to } 3^{8} \\ 3^{3} \\ 18 \end{gathered}$	$\left\|\begin{array}{c}5^{2} \text { to } 5^{5} \\ 5 \\ 4\end{array}\right\|$	5^{3} to 5^{5} 5^{2} 20	$\left\|\begin{array}{c}7^{2} \text { to } 7^{4} \\ 7 \\ 6\end{array}\right\|$	$7^{3}, 7^{4}$ 7^{2} 42
Tab.	IV.		V.				
$\begin{aligned} & \text { Mod } p^{\kappa} \\ & \text { Exponent } p^{\alpha} \\ & \mu \text { of } y, y \end{aligned}$	$\begin{gathered} 11^{2}, 11^{3} \\ 11 \\ 10 \end{gathered}$	${ }^{3} \left\lvert\, \begin{aligned} & 11^{3} \\ & 112^{2} \\ & 110\end{aligned}\right.$	$\begin{gathered} 13^{2}, 13 \\ 13 \\ 12 \end{gathered}$	$17^{2}, 17{ }^{17}$16		$19^{2}, 19^{3}$ 19 18	
Tab.	VI.		VII.		ViII.		
Mod $\nu^{\text {K }}$ Exponent qu v^{α} μ of y, y μ of y	$\stackrel{5}{5}^{-2} \text { to } 5^{5}$	5^{3} to 5^{5} 2.3^{2} 40 40	7^{2} to 7^{+} 3.7 12 .	$11^{2}, 11^{3}$ 5.11 40 .	2.13 26	$\begin{array}{\|c} 13^{2}, 13 \\ 3.13 \\ 24 \\ \cdot \end{array}$	6.13 48

[^42]1.5) Lt.- Col. Cunninghram, Roots (y) of $\left.y^{9 p^{a}} \mp 1 \equiv 0(\bmod \eta)^{\kappa}\right)$.

Tables of $y^{p^{n}} \equiv \pm 1\left(\bmod \eta^{\kappa}\right)$.
'Т'ab. I.

$\underset{r^{n}}{m o d}$	$\xi=3$	$\frac{1}{2} \frac{1}{2}=3$	$\xi=9$						$\frac{1}{2} \xi=9$					
			y	y				y						
3^{2}	4.	2,												
33	10,19	8, 17	4,		13.		22		$\stackrel{2}{8}$,	,	11,	14.		
34	28, 55	26, 53	IO,		37,				8 ,		35.			
35	82, 163	So, 161			109,	136	190	217			10_{7}^{7},			
3^{6}	$2+4,487$	$24^{2}, 485$	82,		325.	406	508	649		161 ,	323.		566.	
$3{ }^{7}$	730.1459	-28,1457	244,				\%os				I1,			
3^{8}	2188,4375	2186,4373	30	159	1	${ }^{6} 4$	5104			45	15	64		

$\begin{gathered} \bmod \\ p^{\kappa} \end{gathered}$	$\xi=27$								
	y^{\prime}	y^{\prime}	y^{\prime}	y^{\prime}	y^{\prime}	-	y	y	y^{\prime}
$3^{4}\{$	4.	7,	13,	16,	22,	25,	31,	34,	40
	43,	49,	52,	58,	61,	67 ,	70	76	79
3^{5}	10,	19,	37,	46,	64,	73,	91.	100,	118
	127,	145,	154,	172,	18i,	199,	20S,	226,	235
	28,	55,	109,	136 ,	190,	217,	271,	298 ,	352
	379	433 ,	460,	514,	541,	595,	622,	6;6,	-03
3^{7}	82,	163.	325,	406,	568 ,	649	811,	892,	1054
	1135,	1297,	1378 ,	1540,	1621,	$1_{7} 8_{3}$	1864,	2026,	2107
3^{8}	244,	487,	9731	1216,	1702,	1945 ,	2431 ,	2054	3160
	3403 ,	3889,	4132,	4618,	4801,	5347,	5590,	6076 ,	6319

$\begin{gathered} \bmod \\ \nu^{\kappa} \end{gathered}$	y^{\prime}	y^{\prime}	y^{\prime}		$=27$	y^{\prime}	y^{\prime}	y^{\prime}	y^{\prime}
34	2,	5,	11, 50,	14, 56,	20,	23.	29.	32,	38
	41.	47,	50,	56,	59,	65	68,	74	7
35	8,	17,	35,	44,	62,	71	89,	98,	116
	125,	143 ,	152,	170,	179	197,	206,	224,	233
3^{6}	26,	53,	10%,	134,	188,	215,	269,	296,	350
	377	431,	45^{8},	512,	539,	593.	620,	6-4,	701
37	80,	161,	323,	404,	566,	647 ,	809,	Sigo,	1052
	1133,	1295.	1376	1538 ,	1619,	1781,	1862,	2024,	2105
3^{3}	2.42,	485,	971 ,	1214,	1700,	1943,	2429,	2672 ,	3158
	3401,	3887 ,	4130,	4616,	4859,	5345	5588 ,	6074 ,	6317

Lt.-Col. Cumningham, Roots (y) of $y^{q p^{\alpha}} \mp 1 \equiv 0\left(\bmod p^{\kappa}\right) .157$

$$
\text { T'ables of } y^{p^{\alpha}} \equiv \pm 1\left(\bmod p^{\kappa}\right)
$$

Tab. II.

$\begin{gathered} \bmod \\ p \end{gathered}$	$\xi=5$				$\frac{1}{2} \xi=5$			
	y	y	y	y	y^{\prime}			y
$5{ }^{2}$	6,	I 1 ,	16,	21	4,	9,	14.	19
5^{3}	26,	${ }^{1}$ I,	76,	101	24,		74.	99
54	126,	251 ,	376	501	124 ,	249	374,	
55	626,	1251 ,	18-6,	2501	624 ,	1249,	1874 ,	2499

$\bmod _{p^{K}}$	$\xi=25$									
	y	y	9	y						
$5^{3}\{$		II,	I6,	21,	31,	36,	41,	46,	56,	
	66,	7 I ,	8 I ,	86,	91.	96,	106,	I I 1 ,	116,	12 I
54	26	$5 \mathrm{I},$	76	101,	15 I ,	176,	201,	226,	276,	301
	$326,$	35 I ,	401,	426,	451,	476,	526,	551,	576,	601
5^{5}	126,	251,	376,	501,	751	376,	1001,	I I 26,	1376	1501
	1626,	1751	2001 ,	2126,	2251	$23 ; 6$,	2626,	2751 ,	28;6,	3001

$\begin{gathered} \bmod \\ p^{k} \end{gathered}$	y^{\prime}	y^{\prime}	y	y^{\prime}	$\begin{gathered} \frac{1}{2} \underset{y}{\prime}= \\ y^{\prime} \end{gathered}$	25 y	y^{\prime}	y^{\prime}	y^{\prime}	y^{\prime}
5^{3}	64	9,	14,	19,	29.	34,	39,	44,	54,	59
	64.	69,	79	84.	89,	94,	104,	109,	114 ,	119
54	2.4	49.	74.	99,	149,	174	199.	224.	274,	299
	324,	349	399,	424,	479.	474	524,	549.	574.	599
5^{5} \{	124,	$2+9$	374.	499.	749,	8:4,	999,	1124,	13,4,	1499
	1624.	1749,	I999,	2124,	2249,	2374	2624	2749.	2874,	2999

158 Lt.-Col.Cumingham, Roots (y) of $y^{97^{a}} \mp 1 \equiv 0\left(\bmod p^{\kappa}\right)$.

$$
\text { Tables of } y^{p^{\alpha a}} \equiv \pm 1\left(\bmod \nu^{k^{k}}\right) \text {. }
$$

'T'ab. III.

mod	$\xi=7$						${ }_{2}^{1} \xi=7$					
p^{κ}	y	y	y	y	y	y	y^{\prime}	y^{\prime}			y^{\prime}	y^{\prime}
7^{2}	8 ,	15.	22,		36,	43	6					41
$7{ }^{3}$	50,		148 ,		$2{ }^{2} 6$,	295	48,			195,	244	
$7{ }^{4}$	344,	687.	1030,	373,	1716,	2059	34^{2},		1028,	1371	1714	2057

$\begin{gathered} \bmod \\ p^{\kappa} \end{gathered}$	y	y	y	y^{\prime}	y^{\prime}	$\begin{gathered} =49 \\ y \end{gathered}$	y	y	y	y	y^{\prime}
7^{3}	$\begin{array}{r} 8, \\ 92, \\ 183, \\ 274, \end{array}$	$\begin{aligned} & 15, \\ & 106, \\ & 190, \\ & 281, \end{aligned}$	$\begin{aligned} & 22, \\ & 113, \\ & 204, \\ & 288, \end{aligned}$	$\begin{aligned} & 29, \\ & 130, \\ & 211, \\ & 302, \end{aligned}$	$\begin{gathered} 36, \\ 127, \\ 218, \\ 309, \end{gathered}$	$\begin{gathered} 43, \\ 134, \\ 225, \\ 316, \end{gathered}$	$\begin{aligned} & 57, \\ & 141, \\ & 232, \\ & 323, \end{aligned}$	$\begin{aligned} & 64, \\ & 155, \\ & 239, \\ & 330, \end{aligned}$	$\begin{aligned} & 71, \\ & 162, \\ & 253, \\ & 337 \end{aligned}$	$\begin{gathered} 78 \\ 169 \\ 260, \end{gathered}$	$\begin{aligned} & 85 \\ & 176 \\ & 267 \end{aligned}$
7	$\begin{array}{r} 50, \\ 638, \\ 1275, \\ 1912, \end{array}$	$\begin{array}{r} 99, \\ 736, \\ 1324, \\ 1961, \end{array}$	$\begin{aligned} & 148, \\ & 785 \\ & 1422, \\ & 2010, \end{aligned}$	$\begin{array}{r} 197, \\ 834, \\ 1471, \\ 2108, \end{array}$	$\begin{gathered} 246, \\ 883 \\ 1520, \\ 215 \% \end{gathered}$	$\begin{array}{r} 295, \\ 932, \\ 1569, \\ 2206, \end{array}$	$\begin{gathered} 393 \\ 981, \\ 1618, \\ 2255, \end{gathered}$	$\begin{aligned} & 442, \\ & 1079, \\ & 1667, \\ & 2304, \end{aligned}$	$\begin{aligned} & 491, \\ & 1128, \\ & 1765, \\ & 2353 \end{aligned}$	$\begin{aligned} & 540, \\ & 1177, \\ & 1814, \end{aligned}$	$\begin{array}{r} 589 \\ 1226 \\ 1863 \end{array}$

$\bmod _{p^{\kappa}}$	y^{\prime}	y^{\prime}	y^{\prime}	y^{\prime}	3^{\prime}	$\xi=49$	y^{\prime}	y^{\prime}	y^{\prime}	y^{\prime}	y^{\prime}
7^{3}	$\begin{gathered} 0, \\ 90, \\ 181, \\ 272, \end{gathered}$	$\begin{array}{r} 13, \\ 104, \\ 188, \\ 279, \end{array}$	$\begin{aligned} & 20, \\ & 1 \mathrm{II}, \\ & 202, \\ & 286, \end{aligned}$	$\begin{aligned} & 27 \\ & 118, \\ & 209, \\ & 300, \end{aligned}$	$\begin{aligned} & 37, \\ & 125, \\ & 216, \\ & 307, \end{aligned}$	$\begin{gathered} 41, \\ 132, \\ 223, \\ 314, \end{gathered}$	$\begin{array}{r} 55, \\ 139, \\ 230, \\ 321, \end{array}$	$\begin{gathered} 62, \\ 153, \\ 237, \\ 328, \end{gathered}$	$\begin{gathered} 69, \\ 160, \\ 251 \\ 335 \end{gathered}$	$\begin{aligned} & 76 \\ & 167 \\ & 258 \end{aligned}$	$\begin{array}{r} 83 \\ 174 \\ 205 \end{array}$
74	$\begin{array}{r} 48 \\ 636 \\ 1273 \\ 1910 \end{array}$	$\begin{array}{r} 97, \\ 734, \\ 1322, \\ 1959, \end{array}$	$\begin{array}{r} 146 \\ 783 \\ 1420, \\ 2008, \end{array}$	$\begin{array}{r} 195, \\ 832, \\ 1409, \\ 2106, \end{array}$	$\begin{array}{r} 244, \\ 881, \\ 1518, \\ 2155, \end{array}$	$\begin{gathered} 293, \\ 930, \\ 1567, \\ 2204, \end{gathered}$	$\begin{array}{r} 391, \\ 979, \\ 1616, \\ 2253, \end{array}$	$\begin{aligned} & 440, \\ & 1077 \\ & 1665, \\ & 2302, \end{aligned}$	$\begin{array}{r} 489, \\ 1126, \\ 1763, \\ 2351 \end{array}$	$\begin{aligned} & 538, \\ & \text { I175, } \\ & \text { I } 812, \end{aligned}$	$\begin{array}{r} 587 \\ 1224 \\ 1861 \end{array}$

$$
\text { Tables of } y^{p^{a}} \equiv \pm 1\left(\bmod p^{\star}\right)
$$

Tab. IV.

$\underset{p^{\kappa}}{\bmod }$	$\xi=11$									
	y									
$\begin{aligned} & 11^{2} \\ & 11^{3} \end{aligned}$	$\begin{array}{r} 12, \\ 122, \end{array}$	$\begin{array}{r} 23 \\ 2+3 \\ 2+3 \end{array}$	$\begin{array}{r} 34, \\ 364, \end{array}$	$\begin{array}{r} +5, \\ +85, \end{array}$	$\begin{array}{r} 56, \\ 606, \end{array}$	$\begin{array}{r} 67, \\ 727 \end{array}$	$\begin{array}{r} 78, \\ 848, \end{array}$	$\begin{array}{r} 89, \\ 969, \end{array}$	$\begin{aligned} & \text { 100, } \\ & \text { 1090, } \end{aligned}$	$\begin{array}{r} 111 \\ 12 I I \end{array}$
$\bmod _{p^{\kappa}}$	y^{\prime}	y^{\prime}	y^{\prime}	y^{\prime}		$=11$	y^{\prime}	y^{\prime}	y^{\prime}	y^{\prime}
$\begin{aligned} & 11^{2} \\ & 11^{3} \end{aligned}$	$\begin{array}{r} 10, \\ 120, \end{array}$	$\begin{gathered} 21, \\ 241, \end{gathered}$	$\begin{array}{r} 32, \\ 362, \end{array}$	$\begin{array}{r} 43, \\ 4^{83}, \end{array}$	$\begin{array}{r} 54, \\ 604, \end{array}$	$\begin{array}{r} 65, \\ 725, \end{array}$	$\begin{gathered} 76, \\ 8+6, \end{gathered}$	$\begin{gathered} 87 \\ 967, \end{gathered}$	$\begin{array}{r} 98 \\ 1087 \end{array}$	$\begin{array}{r} 109 \\ 1209 \end{array}$

$\bmod _{p^{\kappa}}^{\bmod }$	y	y	y	y		121 y		y	y	y
11^{3}	12,	23.	34,	45.	56,	67	8 ,		100,	III
	133,	$14+$	I55,	166,	177,	188,	199,		221 ,	232
	254,	265 ,	276 ,	28-7,		309,	320,		342 ,	353
	375.	3^{86},	397 ,	408,	419,	+30,	441 ,	45^{2},	463 ,	474
	496,	507,	518,	529,	540,	551,	562,	573,	584 ,	595
	617,	628,		650,	601,	6\%2,	683,	694.	705,	716
		749		771 ,	782,	793,	804,	815.	826,	837
	859,	870,		S92,	903,	914.			947,	958
	980,	991 ,	002,	1013,	1024 ,	1035.	$10+6$,	105\%,	1068 ,	1079
	IIO1,	III2,	123,	1134.	1145,	1156 ,	1167 ,	1178.	1189,	1200
	1222,	233.	244 ,	255,	266,	12\%\%,	288,	1299.	1310 ,	1321
$\underset{p^{x}}{\bmod }$	y^{\prime}	y'	y	y^{\prime}		$=121$	y^{\prime}	y^{\prime}	y	y^{\prime}
11^{3}	110 values $y^{\prime}=$ above $y-2$.									

160 Lt.-Col. Cumninglum, Roots (y) of $y^{9 p^{a}} \mp 1 \equiv 0\left(\bmod \nu^{\prime}\right)^{\kappa}$.

Tables of $y^{p} \equiv \pm 1\left(\bmod \eta^{\kappa}\right)$.
'Tab. V'.

modl p^{κ}	y											
13^{2}												
13^{3}	14,	27,	40,	53,	66,	79,	92,	105,	118,	131,	144,	157
170,	339,	508,	67%	846,	1015,	1184,	1353,	1522,	1691,	1860,	2029	

$\left.\begin{array}{c|rrrrrrr}\begin{array}{c}\text { mod } \\ p^{\kappa}\end{array} & y & y & y & y & y & y & y\end{array}\right] y$

$\begin{gathered} m o d \\ p^{\kappa} \end{gathered}$	y	4	y	y	$\xi=19$	y	y	y	y
19^{2} \{	2 O,	39,	58,	77	96,	115,	134	133.	172
19	191,	210,	229,	248.	267,	280,	305 ,	324.	343
19:	362,	723,	1084,	1445 ,	1806 ,	2107,	2528,	2889,	3250
	3611,	3972,	4333,	4694.	5055	5416 ,	577\%,	6138 ,	6499

$\begin{gathered} \bmod \\ p^{\kappa} \end{gathered}$	y^{\prime}	y^{\prime}	y^{\prime}	y	$\begin{gathered} \frac{1}{2} \frac{2}{2}=19 \\ y^{\prime} \end{gathered}$	y	y^{\prime}	$y^{\text {² }}$	y^{\prime}
19:	18,	37,	56,	75	94,	113,	132,	151,	170
	189,	208,	227,	246 ,	265 ,	284,	303,	322,	341
19^{3} \{	360,	721	1082,	1443,	1804 ,	2165	2526,	2887,	3248
	3609,	3970,	4331,	4692,	5053,	5414,	5775.	6136 ,	6497

Lt.-Col.Cumningham, Roots (y) of $y^{q p^{a}} \mp 1 \equiv 0\left(\bmod p^{\kappa}\right) \cdot 161$

Tables of $y^{q p^{a}} \equiv \pm 1\left(\bmod p^{*}\right)$.
'Tab. VI.

$\underset{p^{\kappa}}{\bmod }$	y^{\prime}	y^{\prime}	y^{\prime}	y^{\prime}		2.5	y^{\prime}	$y^{\text { }}$	$y^{\text { }}$	y^{\prime}
5	2,	3 ,		8,	12,	13.	17,		22,	
5	7	18 ,	32,	43,	,		82,	93.	107,	118
5	57,	68,	-	193.	307,	318,	432,		557	568
5	182,	$4+3$,	807,		1432,	1693.	.,	2318,	2682,	2943

10:) L.t.-Col. Curningham, LRoots (y) of $y^{q p^{u}} \mp 1 \equiv 0\left(\operatorname{modl} p^{n}\right)$.

$$
\text { Tubles of } y^{2 p} \equiv \pm 1\left(\bmod \eta^{\kappa}\right) \text {. }
$$

'Tab. VIl.

$\begin{gathered} \text { mord } \\ p^{\kappa} \end{gathered}$	y	y	y	?	y	$\begin{gathered} \varepsilon=5.11 \\ y \end{gathered}$		y	,	y	y
11^{2}		14,	25.	36,	47,	58,	69,	80,	91,	102,	113
	4.		26 ,	37,	48,	59,	\%o,			103,	114
	5,	16,		3^{8},	49,	60,	- 1 ,	82,	93.	104,	115
	.,	20,	31,	42 ,	53,	64,	75,	86,	97.	10x,	119
11^{3}	3,		245,	366.	487 ,	608 ,	729,	850,		1092 ,	1213
	9,	130,	251,	372 ,	493,	614,		856,	977.	1098,	1219
	27,	148 ,	269,	390 ,	511,		753,	874,	995.	1 116,	1237
	8 I,	202,	323,	444,	565,	686,	807,	928,	1049,		1291

$\underset{p^{\kappa}}{\bmod }$	y	9	y^{\prime}	\%		$=5.11$	${ }^{1}$	y	y	y	y
11^{2}	2,	13,	24,	35,	46,	57	68,	79,	90,	101,	
	$\underline{6}$	${ }^{17}$	28,	39.	50,	61,	-2,	83,	.	105,	116
	,	18,	29.	- ${ }^{\prime}$	51,	62,	73,	84,		106,	117
		19,		41,	52,	63,	74,	85	96,	107,	
11^{3}	40,	.,	282,	403,	52.4	645 ,	766,	887,	1008 ,	1129,	1250
	${ }^{9+}$	215,	336,	45%	578		820,	941 ,	1062,		1304
	112,	233,	354 ,	475		717	838 ,	959	1080,	1201,	1322
	[18,	239,	360,	481,	602,	723,	844 ,	965.	1086,	.,	1328

Lt.-Col. Cumingham, Roots (y) of $y^{q \eta^{\alpha}} \mp 1 \equiv 0\left(\bmod p^{\kappa}\right) \cdot 163$

Tables of $y^{q p} \equiv \pm 1\left(\bmod p^{\kappa}\right)$.

'T'ab. VIII.

$\begin{gathered} \bmod \\ p^{\kappa} \end{gathered}$	y^{\prime}	y^{\prime}	y	y^{\prime}	y^{\prime}	y^{\prime}	$\begin{array}{r} \frac{1}{2} \bar{\xi}= \\ y \end{array}$	$\begin{gathered} =2.13 \\ i \end{gathered}$,	y^{\prime}	y^{\prime}	${ }^{\text {j }}$	y^{\prime}	y^{\prime}
13^{2} \{	8	$\begin{aligned} & \text { 18, } \\ & 2 \mathrm{I}, \end{aligned}$	$\begin{aligned} & 3 \mathrm{I}, \\ & 34, \end{aligned}$	$\begin{aligned} & 44, \\ & 47, \end{aligned}$	$\begin{aligned} & \text { 57, } \\ & 60, \end{aligned}$;	$\begin{aligned} & 8 \\ & 80 \end{aligned}$	$\begin{array}{ll} 83, & 9 \\ 86, & \end{array}$	$96,$	$109,$	$\begin{aligned} & 122, \\ & 125 \end{aligned}$	$\begin{aligned} & 135, \\ & 138, \end{aligned}$	$\begin{aligned} & 148, \\ & 151, \end{aligned}$	$\begin{aligned} & 161 \\ & 164 \end{aligned}$
13^{3}		$2 \dot{68}$	433,	577, 606,			$\begin{aligned} & 1084 \\ & \mathrm{IH} 1 \end{aligned}$	$\begin{aligned} & 84,125 . \\ & 13,128 \end{aligned}$	$\begin{aligned} & 53, \\ & 82, \end{aligned}$		1591			$\begin{aligned} & 2098 \\ & 2127 \end{aligned}$

$\underset{p^{\kappa}}{m o d}$	$\xi=3.13$													
	y	y	y	\%	y	y	y	${ }^{\prime}$	y	y		4	?	,
$\begin{aligned} & 13^{2} \\ & 13^{3} \end{aligned}$	3, 16, 29, 42, 55, 68, 81, 94, 107, 120, 133, 9, . 35, 48, 61, 74, 87, 140, 113, 126, 139, 152, 165 22, 191, 360, 529, 698, 867, ., 1205, 1374, 1543, 1712, 18881, 2050 146, 315, 484, 653, 822, 991, ., 1329, 1498, 1667,1836, 1205, 2174													

mod p^{κ}
13^{2}

2,
6,
7,
11,

19, 188, 357, 526, 695, 864, 1033, 1203, 1371, , , 1709, 1878,2047
80, 249, , ,587, 756, 925, 1094, 1263, 1432, 1601, 1770, 1939, 2108
$89,25^{8}, 427,596,765,934,1103,1272,1441,1610$, , 1948,2117
150, 319, 488, . 826, 995, 1164, 1333, 1502, 1671, 1840, 2009, 2178

A GENERAL RESUL' IN 'THE 'THEORY OF PARTIAL DIFFERENTIAL EQUATIONS.

By II. Bateman.

1. Considerable progress has been made recently in the theory of a partial differential equation of the type*

$$
f\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right) u=0
$$

where f is a homogeneous polynomial of the $n^{\text {th }}$ degree in its three arguments.

The theory is closely eomnected with that of the algebraic curve $f\left(x_{1}, x_{2}, x_{3}\right)=0$, where x_{1}, x_{2}, x_{3} are homogeneous coordinates: the solutions of the characteristic equation

$$
f\left(\frac{\partial \theta}{\partial x}, \frac{\partial \theta}{\partial y}, \frac{\partial \theta}{\partial z}\right)=0
$$

plays a very important part.
When we pass on to the study of a partial differential equation of type

$$
\begin{equation*}
f\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}, \frac{\partial}{\partial t}\right) u=0 \tag{1}
\end{equation*}
$$

some new problems present themselves. We shall consider in this note the general problem of finding solutions of the form

$$
u=\gamma \phi(\alpha, \beta) \ldots \ldots \ldots \ldots \ldots \ldots \ldots(2),
$$

where α, β, γ are certain functions of x, y, z, t, and ϕ is an arbitrary function which possesses a suitable number of derivates.

In order that solutions of this type may exist, the equation $f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=0$ must represent either a ruled surface or a surface containing at least one straight line, the case in which the surface in ruled is, however, of chief interest ; we suppose as before that f is a homogeneous polynomial of the $n^{\text {th }}$ degree in its arguments.

[^43]To obtain a particular solution of the required type, we choose two sets of constants $l_{1}, l_{2}, l_{3}, l_{4}$ and $m_{1}, m_{2}, m_{3}, m_{4}$ such that, when λ and μ are arbitrary, the equation

$$
f\left(\lambda l_{1}+\mu m_{1}, \lambda l_{8}+\mu m_{2}, \lambda l_{3}+\mu m_{3}, \lambda l_{4}+\mu m_{4}\right)=0 \ldots \text { (3) }
$$

is satisfied identically. This may be done by taking the homogeneous coordinates of two points on the same generator for the l 's and m 's respectively. Now write $\gamma=1$ and

$$
\left.\begin{array}{l}
\alpha=l_{1} x+l_{2} y+l_{3} z+l_{4} t+a \tag{4}\\
\beta=m_{1} x+m_{2} y+m_{3} z+m_{4} t+b
\end{array}\right\} .
$$

where a and b are arbitrary constants, then it is easy to verify that the expression ($2 j$ satisties the partial differential equation (1).

I'o generalise this solution, we regare $l_{1}, l_{2}, l_{3}, l_{4}, a$ and $m_{1}, m_{2}, m_{3}, m_{4}, b$ as functions of two parameters $\alpha_{0}, \not \beta_{0}$, and cousider the double integral

$$
u=\iint \Phi\left(\alpha_{0}, \beta_{0}\right) \frac{d \alpha_{0} d \beta_{n}}{\alpha^{J}} \ldots \ldots \ldots \ldots \ldots(5),
$$

taken over some domain of the complex variables α_{n}, β_{0}. Since each element of the double integral satisfies the equation (1), it follows that u is generally a solution of (1) provided the domain of integration does not depend directly on x, y, z, t.

With a suitable choice of a domain of integration the double integral can be evalnated with the aid of Poincarés theory of the residues of double integrals.: Let us suppose that α and β both vanish when $\alpha=\alpha_{1}, \beta=\beta_{1}$, then the term in u which depends on the residue at α_{1}, β_{1} is

$$
\frac{(2 \pi i)^{2}}{J} \Phi\left(\alpha_{1}, \beta_{1}\right)
$$

where J is the value of the Jacobian $\frac{\partial(\alpha, \beta)}{\partial\left(\alpha_{0}, \beta_{0}\right)}$ for $\alpha_{0}=\alpha_{1}, \beta_{0}=\beta_{1}$. It is natural to expect that each such term will itself be a solution of the differential equation (1), and so we are led to ennaciate the following general theorem:-

Let the equations $\alpha=0, \beta=0$ be solved for α_{0}, β, giving

$$
\alpha_{0}=\alpha_{1}(x, y, z, t), \quad \beta_{0}=\beta_{1}(x, y, z, t) \ldots \ldots \ldots(6),
$$

[^44]then if JJ is the value of the Jacobian $\frac{\partial(\alpha, \beta)}{\partial\left(\alpha_{0}, \beta_{0}\right)}$ (ffter these expressions hure been substituted for α_{0}, β_{0}, the finetion
\[

$$
\begin{equation*}
u=\frac{1}{J} \Phi\left(\alpha_{1}, \beta_{1}\right) . \tag{7}
\end{equation*}
$$

\]

is a solution of the differential equation (1).
This result is difficult to prove directly in the general case, but a simple verification can be given when the differential equation (1) is the ernation of wave motion

$$
\frac{\partial^{2} u}{\partial \cdot x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}=\frac{\partial^{2} u}{\partial t^{2}} \ldots \ldots \ldots \ldots \text { (8). }
$$

In the general case it can be verified by differentiation that the functions $\alpha_{1} \cdot \beta_{1}$ are such that an arbitrary function $\Phi\left(\alpha_{1}, \beta_{1}\right)$ satisties the partial differential equation of the characteristics, viz.,

$$
\begin{equation*}
f\left(\frac{\partial \phi}{\partial x}, \frac{\partial \phi}{\partial y}, \frac{\partial \phi}{\partial z}, \frac{\partial \phi}{\partial t}\right)=0 . \tag{9}
\end{equation*}
$$

In the present case this implies that α_{1} and β_{1} satisfy the equations

$$
\left.\begin{array}{c}
\left(\frac{\partial \alpha_{1}}{\partial x}\right)^{2}+\left(\frac{\partial \alpha_{1}}{\partial y}\right)^{2}+\left(\frac{\partial \alpha_{1}}{\partial z}\right)^{2}=\left(\frac{\partial \alpha_{1}}{\partial t}\right)^{2} \\
\frac{\partial \alpha_{1}}{\partial x} \frac{\partial \beta_{1}}{\partial x}+\frac{\partial \alpha_{1}}{\partial y} \frac{\partial \beta_{1}}{\partial y}+\frac{\partial \alpha_{1}}{\partial z} \frac{\partial \beta_{1}}{\partial z}=\frac{\partial \alpha_{1}}{\partial t} \frac{\partial \beta_{1}}{\partial t} \\
\left(\frac{\partial \beta_{1}}{\partial x}\right)^{2}+\left(\frac{\partial \beta_{1}}{\partial y}\right)^{2}+\left(\frac{\partial \beta_{1}}{\partial z}\right)^{2}=\left(\frac{\partial \beta_{1}}{\partial t}\right)^{2}
\end{array}\right\} \ldots(10) .
$$

These equations may be replaced by three equations of type

$$
\begin{equation*}
\frac{\left.\partial^{\prime} \alpha_{1}, \beta_{1}\right)}{\partial(y, z)}=i \frac{\partial\left(\alpha_{1}, \beta_{1}\right)}{\partial(x, t)} \tag{11}
\end{equation*}
$$

Writing $M_{x} \cdot F\left(\alpha_{1}, \beta_{1}\right)$ for the quantity which occurs on the left-hand side and $H_{y}, F\left(\alpha_{1}, \beta_{1}\right), M I_{z} . F\left(\alpha_{1}, \beta_{1}\right)$ for analogous quantities ocenring in the other two equations, we can easily verify that the following equations are satisfied:-
$\left.\begin{array}{ll}\frac{\partial M M_{z}}{\partial y}-\frac{\partial M_{v}}{\partial z}+i \frac{\partial M_{x}}{\partial t}=0, & \frac{\partial M_{x}}{\partial z}-\frac{\partial M I_{z}}{\partial x}+i \frac{\partial M_{y}}{\partial t}=0 \\ \frac{\partial M_{y}}{\partial y_{y}}-\frac{\partial M}{\partial y}+i \frac{\partial M_{z}}{\partial t}=0, & \frac{\partial M_{x}}{\partial x}+\frac{\partial M_{y}}{\partial y}+\frac{\partial M_{z}}{\partial z}=0\end{array}\right\} \cdots(12)$.

Now it follows from these equations that $M_{x^{x}}, M_{y}, M_{z}$ are all solutions of equation (8). Hence, since the finction $F^{\prime}\left(\alpha_{1}, \beta_{1}\right)$ is arbitrary, we may conclude that if $\Psi\left(\alpha_{1}, \beta_{1}\right)$ is an arbitrary function,

$$
\frac{\partial\left(\alpha_{1}, \beta_{1}\right)}{\partial(y, z)} \Psi\left(\alpha_{1}, \beta_{1}\right)
$$

is a solution of equation (8). ()n calculating the first factor, we find that

$$
\frac{\partial\left(\alpha_{1}, \beta_{1}\right)}{\partial(y, z)} J=l_{2} m_{3}-l_{3} m_{2}:
$$

now the quantity on the right-hand side depends only on α_{1} and β_{1}, hence we have the result that if Φ is an arbitrary function an expression of type (7) satisties the differential equation (8).
2. The theorem can be generalised in several ways. l'irst of all we can introduce two sets of variables x, y, z, t; $x_{1}, y_{1}, z_{1}, t_{1}$ and write in place of (4)

$$
\begin{aligned}
& \left.\alpha=l_{1} x+l_{2} y+l_{3} z+l_{4} t+a\right) \\
& \beta=m_{1} x_{1}+m_{2} y_{1}+m_{3} z_{1}+m_{4} t_{1}+b b^{\prime} \ldots \ldots(13) .
\end{aligned}
$$

When the l 's and m's are constants connected by equation (3), it is easy to verify that $\phi(\alpha, \beta)$ satisfies the partial differential equation

$$
\begin{aligned}
f\left(\lambda \frac{\partial}{\partial x}+\mu \frac{\partial}{\partial x_{1}},\right. & \lambda \frac{\partial}{\partial y}+\mu \frac{\partial}{\partial y_{1}}, \\
& \left.\lambda \frac{\partial}{\partial z}+\mu \frac{\partial}{\partial z_{1}}, \lambda \frac{\partial}{\partial t}+\mu \frac{\partial}{\partial t_{1}}\right) u=0 \ldots(14)
\end{aligned}
$$

for all values of the constants λ, μ. Generalising this solution as before, we regard the l 's and m 's as functions of two parameters α_{0}, β_{0} and form the double integral (5). The equations $\alpha=0, \beta=0$ now give $\alpha_{0}=\alpha_{1}\left(x, y, z, t ; x_{1}, y_{1}, z_{1}, t_{1}\right) ; \quad \beta_{0}=\beta_{1}\left(x, y, z, t ; x_{1}, y_{1}, z_{1}, t_{1}\right)$ and formula (7) provides us with a solution of all the equations of type (14). Putting $\mu=0$ we see that equation (1) is satisfied, while if we put $\lambda=0$ we find that the same function also satisfies the equation

$$
f\left(\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial y_{1}}, \frac{\partial}{\partial z_{1}}, \frac{\partial}{\partial t_{1}}\right) u=0 .
$$

Hence we have a solution of (1) which depends on the two scto of variables ar, $y, z, t ; x_{1}, y_{1}, z_{1}, t_{1}$, and remains a solution when we put $x_{1}=x, y_{1}=y, z_{1}=z, t_{1}=t$.

In the case of the equation of wave motion (8) the equation (1.1) implies that the three equations

$$
\begin{aligned}
& \frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{3}}+\frac{\partial^{2} u}{\partial z^{2}}=\frac{\partial^{2} u}{\partial t^{2}} \\
& \frac{\partial^{2} u}{\partial \varepsilon^{2} u_{1}}+\frac{\partial^{2} u}{\partial y \partial y_{1}}+\frac{\partial^{2} u}{\partial z \partial z_{1}}=\frac{\partial^{2} u}{\partial t \partial t_{1}} \\
& \partial^{2} u \\
& \partial x_{1}^{2}
\end{aligned}+\frac{\partial^{2} u}{\partial y_{1}^{2}}+\frac{\partial^{3} u}{\partial z_{1}^{2}}=\frac{\partial^{2} u}{\partial t_{1}^{2}},
$$

are satisfied. With the aid of a function u of this type we can ohtain some interesting expressions for the components of the electric and magnetic forces E, H in a type of electromagnetic field in free acther. If the units are chosen so that the velocity of light is represented by unity, the electromagnetic potentials

$$
A_{x}=\frac{\partial u}{\partial x_{1}}, \quad A_{y}=\frac{\partial u}{\partial y_{1}}, \quad A_{z}=\frac{\partial u}{\partial z_{1}}, \quad \Phi=-\frac{\partial u}{\partial t_{1}}
$$

satisfy the relation

$$
\frac{\partial A_{x}}{\partial x}+\frac{\partial A_{y}}{\partial y}+\frac{\partial A_{z}}{\partial z}+\frac{\partial \Phi}{\partial t}=0
$$

and are all solutions of the wave equation; consequently the equations

$$
\begin{aligned}
& E_{x}=-\frac{\partial \Phi}{\partial x}-\frac{\partial A_{x}}{\partial t}=\frac{\partial^{2} u}{\partial x \partial t_{1}}-\frac{\partial^{2} u}{\partial x_{1} \partial t}, \\
& \cdots \\
& H_{x}=\frac{\partial A_{z}}{\partial y}-\frac{\partial A_{y}}{\partial z}=\frac{\partial^{2} u}{\partial y \partial z_{1}}-\frac{\partial^{2} u}{\partial y_{1} \partial z}
\end{aligned}
$$

may be used to specify the vectors $E, I I$ in a type of electromagnetic field in free aether. It is interesting to note that when in $n_{1}, y_{1}, z_{1}, t_{1}$ are regarded as the variables, E and $H /$ are the electric and magnetic forces in a type of electromagnetic field for which the potentials are

$$
A_{x}^{\prime}=-\frac{\partial u}{\partial x}, \quad A_{y}^{\prime}=-\frac{\partial u}{\partial y}, \quad A_{z}^{\prime}=-\frac{\partial u}{\partial z}, \quad \Phi^{\prime}=\frac{\partial u}{\partial t},
$$

3. Returning to the general theory of $\S 1$ let us write

$$
\begin{aligned}
& p_{23}=\frac{\partial\left(\alpha_{1} \cdot \beta_{1}\right)}{\partial(y, z)}, \quad p_{31}=\frac{\partial\left(\alpha_{1}, \beta_{1}\right)}{\partial(z, x)}, \quad p_{13}=\frac{\partial\left(\alpha_{1}, \beta_{1}\right)}{\partial(x, y)}, \\
& p_{14}=\frac{\partial\left(\alpha_{1}, \beta_{1}\right)}{\partial(x, t)}, \quad p_{24}=\frac{\partial\left(\alpha_{1}, \beta_{1}\right)}{\partial(y, t)}, \quad p_{34}=\frac{\partial\left(\alpha_{1}, \beta_{1}\right)}{\partial(x, t)} ;
\end{aligned}
$$

and regard the p 's as the six coordinates of a line. It is easy to see that if an arbitrary function of α_{1} and β_{1} satisfies equation (9) the functions α_{1}, β_{1} will satisfy three partial differential equations of type

$$
\begin{aligned}
& \left.\begin{array}{l}
r_{1}\left(p_{23}, p_{31}, p_{12}, p_{14}, p_{24}, p_{34}\right)=0 \\
G_{2}\left(p_{23}, p_{31}, p_{12}, p_{14}, p_{24}, p_{34}\right)=0 \\
G_{3}\left(p_{23}, p_{31}, p_{12}, p_{14}, p_{24}, p_{34}\right)=0
\end{array}\right\} \ldots \ldots \ldots(15), ~
\end{aligned}
$$

where $G_{1}=0, G_{2}=0, G_{3}=0$ are the line equations of the ruled surface $f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=0$. Conversely, if we are given three partial differential equations of type (15) for two functions α_{1}, β_{1} we can obtain a solution by finding the ruled surface $f=0$ common to the three complexes $G_{1}=0, G_{2}=0$, $G_{3}=0$, and solving a differential equation of type (9).
4. The general theory of $\$ 1$ can evidently be extended to the case in which there are $2 n$ independent variables instead of four; it is necessary, of course, to use the theory of the residues of multiple integrals. The verification used for the case of the wave equation can also be extended to the case of the equation

$$
\begin{equation*}
\sum_{m=1}^{2 n} \frac{\partial^{2} u}{\partial x_{m}^{2}}=0 \tag{1.6}
\end{equation*}
$$

the system of equations (11) being now replaced by a system of equations of type

$$
\begin{equation*}
\frac{\partial\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)}{\partial\left(x_{\lambda}, x_{\mu}, \ldots\right)}= \pm \frac{\partial\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)}{\partial\left(x_{\xi}, x_{n}, \ldots\right)} \tag{17}
\end{equation*}
$$

where the indices $\lambda, \mu, \ldots, \xi, \eta, \ldots$ are all different. The system of equations (12) is replaced by a more general system of linear equations which are of the types considered by Volterva; ${ }^{*}$ it follows from his results that the functions iI

[^45]which occur in these equations are all solutions of (16). Hence one of the Jacobians in (17), when maltiplied by an arbitrary fimetion of $\alpha, \ldots, \alpha_{n}$, represents a solution of (16). On calculating the Jacobian, we obtain the desired result.
'T'o make things clear, let us consider the case of six independent variables. We require, first of all, three functions $\alpha_{1}, \alpha_{2}, \alpha_{3}$ (which we shall call α, β, γ) which satisfy the equations
\[

$$
\begin{aligned}
& {\underset{1}{\Sigma}\left(\frac{\partial \alpha_{1}}{\partial x_{r}}\right)^{2}=0,}_{\sum_{1}^{6}\left(\frac{\partial \beta}{\partial x_{r}}\right)^{3}=0,}^{\sum_{1}^{6}\left(\frac{\partial \gamma}{\partial x_{r}}\right)^{2}=0,} \\
& \underset{1}{\in} \frac{\partial \beta}{\partial x_{r}} \frac{\partial \gamma}{\partial x_{r}}=0, \quad \sum_{1}^{6} \frac{\partial \gamma}{\partial x_{r}} \frac{\partial \alpha}{\partial x_{r}}=0, \quad \sum_{l}^{6} \frac{\partial \alpha}{\partial x_{r}} \frac{\partial \beta}{\partial x_{r}}=0,
\end{aligned}
$$
\]

Using $M I_{123}$ to denote the determinant $\frac{\partial(\alpha, \beta, \gamma)}{\partial\left(x_{1}, x_{2}, x_{3}\right)}$, we may replace the preceding equations by the following set of equations:

$$
\left.\begin{array}{ll}
\pm M_{123}=M_{456}, & \pm M_{124}=M_{536} \\
\pm M_{234}=M_{516}, & \pm M_{341}=M_{256} \\
\pm M_{125}=M_{346}, & \pm M_{126}=M_{354} \tag{18}\\
\pm M_{335}=M_{146}, & \pm M_{236}=M_{154} \\
\pm M_{246}=M_{135}, & \pm M_{136}=M_{245}
\end{array}\right\}
$$

whercin either the upper or the lower sign is taken in each case.

Now the quantities M evidently satisfy the following equations:

$$
\begin{align*}
& \frac{\partial M_{123}}{\partial x_{4}}+\frac{\partial M_{324}}{\partial x_{1}}+\frac{\partial M_{134}}{\partial x_{2}}+\frac{\partial M_{214}}{\partial x_{3}}=0 \\
& \frac{\partial M M_{123}}{\partial x_{5}}+\frac{\partial M_{395}}{\partial x_{1}}+\frac{\partial M_{135}}{\partial x_{2}}+\frac{\partial M_{215}}{\partial x_{3}}=0 \\
& \frac{\partial M_{123}}{\partial x_{6}}+\frac{\partial M_{326}}{\partial x_{1}}+\frac{\partial M_{136}}{\partial x_{2}}+\frac{\partial M_{216}}{\partial x_{3}}=0 \tag{19}\\
& \frac{\partial M_{456}}{\partial x_{1}}+\frac{\partial M M_{516}}{\partial x_{4}}+\frac{\partial M_{461}}{\partial x_{5}}+\frac{\partial M_{415}}{\partial x_{6}}=0 \\
& \partial M_{456}+\frac{\partial M_{526}}{\partial x_{4}}+\frac{\partial M_{462}}{\partial x_{5}}+\frac{\partial M_{425}}{\partial x_{6}}=0 \\
& \frac{\partial x_{2}}{\partial M_{456}}+\frac{\partial M M_{536}}{\partial x_{4}}+\frac{\partial M_{463}}{\partial x_{5}}+\frac{\partial M M_{435}}{\partial x_{6}}=0
\end{align*}
$$

Differentiating these with regard to $x_{4}, x_{5}, x_{6}, x_{1}, x_{2}, x_{3}$ respectively and making use of the equations (18), we get

$$
\sum_{r=1}^{6} \frac{\partial^{2} M_{123}}{\partial x_{r}^{2}}=0 .
$$

In a similar way it can be shown that the other quantities M satisfy this equation. If, moreover, we multiply all the quantities M by the same function $\phi(\alpha, \beta, \gamma)$ the relations (19) will still be satisfied, and so we may conclude that a function of type

$$
u=\frac{\partial(\alpha, \beta, \gamma)}{\partial\left(x_{1}, x_{2}, x_{3}\right)} \phi(\alpha, \beta, \gamma)
$$

satisfies the partial differential equation

$$
{\underset{r=1}{6} \frac{\partial^{2} u}{\partial x_{r}^{2}}=0, ~}_{\text {and }}
$$

ϕ being an arbitrary function.

ON CENTRO-SYMMETRIC AND SKEW-CENTROSYMMETRIC DETERMINANTS.

By W. H. Metzler.

1. Certain properties of these determinants have been given by Muir*, who shows that they may be expressed as the product of two factors D and D^{\prime}, and for a centro-symmetric determinant Δ of order $2 m$ he shows that it may be expressed as the difference of two squares. Thus

$$
\Delta=D \cdot D^{\prime} \equiv \frac{1}{4}\left\{\left(D+D^{\prime}\right)^{2}-\left(D-D^{\prime}\right)^{2}\right\}
$$

but this being an identity is independent of what D and D^{\prime} are. In this paper it is shown that D is the sum of two sets of minors of order m formed from the first m rows of Δ, and that D^{\prime} is the difference of the same two sets of minors, and in this way their product is the difference of two squares. The same thing is shown for skew-centro-symmetric determinants, and other interesting results are given in articles $9,10,11,12,13$.

[^46]2. 'T'wo constitnents are said to be conjugate with respect to the centre of a determinant when they lie on a line through the eentre and are equally distant from it.

A determinant is centro-symmetric when every constituent is equal to its conjugate with respect to the eentre.

I determinant is skew-centro-symmetric when every constitnent is the negative of its conjugate with respect to the centre.

It follows from this definition that a skew-centro-symmetric determinant of odd order has its centre constitnent zero.
3. Combinations and minors. Let $\alpha \equiv\left(\alpha_{1} \alpha_{2} \ldots \alpha_{n}\right)$ be a combination, m at a time, of the numbers $1,2,3, \ldots, 2 m$, such that $\alpha_{h}+\alpha_{k} \neq 2 m+1$ for all values of l and l_{i} from l to m. There are 2^{m} such combinations, for they evidently may le formed by writing the numbers $1,2, \ldots, 2 m$ in m pairs, the sum of each pair being $2 m+1$, and taking one number from each pair.

Let $\beta \equiv\left(\beta_{1} \beta_{2} \ldots \beta_{m}\right)$ be the complementary combination of α, then β is also the reflex-combination of α, that is β_{k} is the defeet from $2 m+1$ for some one of the numbers in α for each value of k from l to m. For by hypothesis the defect of α from $2 m+1$ is not found in α and therefore must be in β. It follows therefore that of the $(2 m)_{m}$ combinations of the numbers $1,2, \ldots, 2 m$ taken m at a time there are 2^{m}, the complementary and reflex of each of which are alike.

Two minors of a determinant may be called the reflex of each other when the rows and columns of one are the reflex combinations of the rows and columns respectively of the other.

T'wo minors are said to be trans-reflex of each other when the row numbers of the two are the same and the column numbers of the two are reflex combinations.

T'wo minors are said to be sub-reflex when the column numbers of the two are the same and the row numbers are reflex combinations.
4. Every centro-symmetric determinant Δ of even order is expressible as the difference of two squares.

For if we perform the following operations:

$$
\begin{equation*}
r_{1}+r_{2 m}, r_{2}+r_{2 m-1}, \ldots, r_{m}+r_{m+1} \tag{a}
\end{equation*}
$$

and
(b)

$$
c_{1}-c_{2 m}, \quad c_{2}-c_{2 m-1}, \ldots, c_{m}-c_{m+1},
$$

the resulting determinant has a square of $m^{2} z$ eros in the upper left-hand corner and therefore breaks up into the product of two determinants with binumial elements, D and D^{\prime}.

We may write

$$
\begin{aligned}
& D=\left|a_{r s}+a_{r t}\right|, \\
& D^{\prime}=\left|a_{r s}-a_{r t}\right|,
\end{aligned}
$$

where

$$
\begin{aligned}
& r=1,2,3, \ldots, m \\
& s=1,2,3, \ldots, m \\
& t=2 m, 2 m-1, \ldots, m+1
\end{aligned}
$$

The determinant D may be written as the sum of 2^{m} determinants with monomial elements, concerning which it may be observed that:
(1) For every determinant

$$
M_{a} \equiv\left|\begin{array}{c}
1,2, \ldots, m \\
\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}
\end{array}\right|
$$

there is another

$$
M_{\beta} \equiv\left|\begin{array}{c}
1,2, \ldots, m \\
\beta_{1}, \beta_{2}, \ldots, \beta_{m}
\end{array}\right|
$$

where

$$
\alpha_{k}+\beta_{k}=2 m+1 \quad(k=1,2, \ldots, m) .
$$

That is M_{α} and M_{β} are trans-reflex minors.
(2) The signs of M_{a} and M_{β}, when the columns are arranged in their natural order, are the same or opposite according as $\frac{1}{2}\{m(m-1)\}$ is even or odd.

For if there are g_{k} numbers following α_{k} smaller than α_{k}, there are g_{k} numbers tollowing β_{k} larger than β_{k}. Therefore g_{k} is the number of inversions due to the position of α_{k} in M_{α}, and $m-k-g_{k}$ is the number of inversions due to the position β_{k} in M_{β}. 'I'he sign factor, therefore, for M_{a} when the column numbers are written in their natural order is $(-1)^{g_{1}+g_{2}+\ldots+g_{m}}$ and that for M_{β} under similar circumstances is $(-1)^{m^{2}-\frac{1}{2}\{m(m+1)\}-\left(g_{1}+\ldots+g_{m}\right)}$ or $(-1)^{\frac{1}{2}[m(m-1)\}-\left(g_{1}+g_{2}+\ldots+g_{m}\right)}$. Since the exponents differ from $\frac{1}{2}\{m(m-1)\}$ by an even number the truth of the theorem appear's.
(3) There are as many positive as negative terms in the series of terims.

Considering two consecutive cases, say when $m=k$ and $m=k+1$, we see that for every term

$$
\left|\begin{array}{cc}
1,2, \ldots, k \\
\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}
\end{array}\right| \equiv M,
$$

when $m=k$, there are two terms

$$
\begin{aligned}
& \left|\begin{array}{cccc}
1, & 2 & 3, & \ldots, \\
1, & \alpha_{1}+1, & \alpha_{2}+1, & \ldots, \\
\alpha_{k}+1
\end{array}\right| \equiv M^{\prime}, \\
& \left|\begin{array}{cccc}
1 & 2 & 3, & \ldots, \\
2 k+2, & \alpha_{1}+1, & a_{2}+1, & \ldots, \\
\alpha_{k}+1
\end{array}\right| \equiv M^{\prime \prime},
\end{aligned}
$$

and
when $m=k+1$.
'The term $M I^{\prime}$ will obviously have the same sign as M, and $M^{\prime \prime}$ will have the same or opposite sign according as K is even or odd. It follows, therefore, that if there are as many positive as negative terms when $m=k$, there will be as many positive as negative terms when $m=k+1$, and since it is true when $m=2$ and $m=3$, it is true in general.
5. In the case of D^{\prime} it is obvious from the method of formation that the same 2^{m} determinants occur as in D, and the signs of the various terms will be the same as in D except that whenever there is an odd number of columns with negative elements the sign will be changed. If k be the number of such columns taken the sign factor will be multiplied by $(-1)^{k}$, and there are m_{k} such determinants. 'The number of terms changing sign on account of negative clements would therefore be $m_{1}+m_{3}+m_{5} \ldots+m_{2 h+1}+\ldots=2^{m-1}$, which is just half of the whole number of terms.
6. It follows from the foregoing that D is the sum of two sets of minors of order m, and that D^{\prime} is the difference of the same two sets of minors, and therefore Δ, which is their product, may be expressed as the difference of two squares.
7. If Δ is of odd order $2 m+1$, it still breaks up into two factors, the one factor being the sum, with proper sign, of those minors of order m, formed from the first m rows, which have for their column numbers the 2^{m} combinations the complementary and reflex of each of which are alike. The other factor consists of the sum, with proper sign, of those same minors each bordered with elements from the first $m+1$ elements of the $(m+1)$ st column and the first m elements of the ($m+1$)st row.
S. Every skew-centro-symmetric determinant of even order is expressible as the difference of two squares.

For if we perform the operations:
and

$$
r_{1}+r_{2 m}, r_{2}+r_{2 m-1}, \cdots, r_{m}+r_{m+1},
$$

$$
\begin{equation*}
c_{1}+c_{2 m 2}, c_{2}+c_{2 m-1}, \ldots, c_{m}+c_{m+1} \tag{b}
\end{equation*}
$$

the result will be seen to break up into two determinants D and D^{\prime} with binomial elements. Here as in the case of centro-symmetric determinants if the element in the $r^{\text {th }}$ row and $s^{\text {th }}$ column of D is $x-y$, then the element in the same position of D^{\prime} (or $-D^{\prime}$ if m is odd) is $x-y$, and hence the theorem follows as for centro-symmetric determinants.
9. Every skew-centro-symmetric determinant of odd order vanishes.

For, performing the operations

$$
\begin{equation*}
r_{1}+r_{2 m+1}, r_{2}+r_{2 m}, \ldots, r_{m}+r_{m+2}, \tag{a}
\end{equation*}
$$

and

$$
\begin{equation*}
c_{1}+c_{2 m+1}, c_{3}+c_{2 m}, \ldots, c_{m}+c_{m+9}, \tag{b}
\end{equation*}
$$

the result will be a determinant with a square of $(m+1)^{2}$ zeros and therefore vanishes.
10. The sum of the coaxial minors of odd order of a skew-centro-symmetric determinant is zero.

For all those which are bicoaxial, that is coaxial with respect to both principal and secondary axis, are determinants of the same type as the original and therefore vanish. Those which are not bicoaxial go in pairs which are the negative of each other, and therefore the whole sum vanishes.
11. It follows from the preceding article that the determinantal equation of a skew-centro-symmetric determinant contains ezther only even or only odd powers of the variable.
12. Vanishing aggregates for skew-centro-symmetric determinants. Since every minor of order m of a skew-centrosymmetric determinant Δ of order $2 m$ is equal to the reflex when m is even, and to the negative of the reflex when m is odd, it is evident that the known aggregate* for centrosymmetric determinants takes the following form:
where $(\overline{2 m|m| k})$ denotes the reflex of $\left(2 m|\underset{\alpha}{m}| k_{i}\right)$.

[^47]13. It may be observed that this aggregate could be stated in a somewhat more general form and not be confined to minors of order m of a determinant of order 2 m .

We might write our aggregate for a skew-centro-symmetric determinant as follows:
where, if m is greater than $\frac{1}{2}(n)$, the aggregate may be either a trivial identity (consisting of certain terms and their negatives) or the extensional of an aggregate of lower order.

Thus, if $n=6, m=4, k=2$, and $(n \mid m) \equiv 1234$, cight of the twelve terms vanish on account of identical rows or columns and the remaining four gives the trivial identity

$$
\left|\begin{array}{l}
1243 \\
1234
\end{array}\right|+\left|\begin{array}{l}
6534 \\
1234
\end{array}\right|-\left|\begin{array}{l}
1234 \\
1243
\end{array}\right|-\left|\begin{array}{l}
1234 \\
6534
\end{array}\right| \equiv 0 .
$$

If we take $n=6, m=4, k=1$, and $(n \mid m) \equiv 1234$, then four of the eight terms vanish on account of identical rows or columns and the remaining four gives the identity

$$
\left|\begin{array}{l}
1534 \\
1234
\end{array}\right|+\left|\begin{array}{l}
6234 \\
1234
\end{array}\right|-\left|\begin{array}{l}
1234 \\
1534
\end{array}\right|-\left|\begin{array}{l}
1234 \\
6234
\end{array}\right|=0,
$$

which is the extensional of

$$
\left|\begin{array}{l}
15 \\
12
\end{array}\right|+\left|\begin{array}{l}
62 \\
12
\end{array}\right|-\left|\begin{array}{l}
12 \\
15
\end{array}\right|-\left|\begin{array}{l}
12 \\
62
\end{array}\right|=0
$$

The corresponding aggregate for centro-symmetric determinants would be the same as (B) except the sign factor $(-1)^{m}$ would be omitted.

NOTE ON THE SUM OF EQUIGRADE MINORS OF A DE'TERMINAN'T.

By Thomas Muir, LL.D.

1. An expression for the sum of the co-factors of the elements in any determinant is obtained by bordering the determinant with the row

$$
0,1,1,1, \ldots,
$$

and the column

$$
0,-1,-1,-1, \ldots ;
$$

for example,

$$
\left|\begin{array}{cccc}
\cdot & 1 & 1 & 1 \\
-1 & a_{1} & a_{2} & a_{3} \\
-1 & b_{1} & b_{2} & b_{3} \\
-1 & c_{1} & c_{2} & c_{3}
\end{array}\right|=A_{1}+A_{2}+A_{3}+B_{1}+\ldots+C_{3}
$$

If instead of the co-factors of the elements we wish to have the sum of the unsigned primary minors, we border the row

$$
0,1,-1,1,-1, \ldots,
$$

and the column

$$
0,-1,1,-1,1, \ldots
$$

2. The obtaining of a like expression for the sum of the secondary minors depends on the possibility of finding values for the x 's and y 's, which will satisfy the equations

$$
\left\|\begin{array}{cccc}
x_{1} & x_{3} & \cdots & x_{n} \\
y_{1} & y_{2} & \cdots & y_{n}
\end{array}\right\|=1
$$

When n is 3 a solution with two disposable quantities is readily obtained, namely,

$$
\begin{aligned}
& \left\|\begin{array}{lll}
x_{1} & x_{2} & x_{3} \\
y_{1} & y_{2} & y_{3}
\end{array}\right\|=\left\|\begin{array}{ccc}
x_{1} & x_{1} y_{2}-1 & -x_{1} y_{3}-x_{1}+1 \\
1 & y_{3} & -y_{31}^{\prime}-1
\end{array}\right\| \\
& \text { VOL. XLIII. }
\end{aligned}
$$

İs Dr. Muir, On equigrade minors of a determinant.
For example, putting $x_{1}=1, y_{2}=2$, we have

$$
\left|\begin{array}{cccc}
\cdot & 1 & 1 & -2 \\
\cdot & \cdot & 1 & 2 \\
-3 \\
1 & 1 & u_{1} & u_{2} \\
c_{3} \\
1 & 2 & b_{1} & b_{2} \\
b_{3} \\
-2 & -3 & c_{1} & c_{2} \\
c_{3}
\end{array}\right|=u_{1}+a_{3}+a_{3}+b_{1}+b_{2}+b_{3}+c_{1}+c_{2}+c_{3} .
$$

The said solntion, however, is in a sense not more general than

$$
\left|\begin{array}{ccc}
c & -1 & 1 \\
1 & y_{2} & -y_{2}-1
\end{array}\right|
$$

or even than

$$
\left\|\begin{array}{ccc}
\cdot & -1 & 1 \\
1 & \cdot & -1
\end{array}\right\| .
$$

3. In view of the multiplicity of solutions when n is 3 , it is somewhat curious that when n is 4 there is no solution at all. There are then six equations to be satisfied, namely,

$$
\begin{aligned}
& x_{1} y_{2}-x_{2} y_{1}=1=x_{2} y_{3}-x_{3} y_{2}, \\
& x_{1} y_{3}-x_{3} y_{1}=-1=x_{2} y_{4}-x_{4} y_{2}, \\
& x_{1} y_{4}-x_{4} y_{1}=1=x_{3} y_{4}-x_{4} y_{3} .
\end{aligned}
$$

Traking in pairs the three on the left we have

$$
\begin{aligned}
& x_{1}\left(y_{2}+y_{3}\right)=y_{1}\left(x_{2}+x_{3}\right), \\
& x_{1}\left(y_{2}-y_{4}\right)=y_{1}\left(x_{2}-x_{4}\right) \\
& x_{1}\left(y_{3}+y_{4}\right)=y_{1}\left(x_{3}+x_{4}\right),
\end{aligned}
$$

whence, on multiplying by $-x_{4},-x_{3}, x_{2}$ respectively and adding, there is obtained

$$
x_{1}\left\{-x_{4}^{\prime}\left(y_{2}+y_{3}\right)-x_{3}\left(y_{2}-y_{4}\right)+x_{2}\left(y_{3}+y_{4}\right)\right\}=0 .
$$

On the other hand, if we take the remaining three, we obtain directly by addition

$$
-x_{4}\left(y_{2}+y_{3}\right)-x_{3}\left(y_{2}-y_{4}\right)+x_{2}\left(y_{3}+y_{4}\right)=1 .
$$

Dr. Muir, On equigrade minors of a determinant.
We thus have a manifest contradiction unless x_{1} be 0 . But from the three equations just used we also have

$$
\left.\begin{array}{l}
x_{2} y_{1} y_{3}-x_{3} y_{1} y_{2}=y_{1} \\
x_{2} y_{1} y_{4}-x_{4} y_{1} y_{3}=-y_{1} \\
x_{3} y_{1} y_{4}-x_{4} y_{1} y_{3}=y_{3}
\end{array}\right\},
$$

whence, if x_{1} be 0 , we obtain, with the help of the first three,

$$
\left.\begin{array}{rr}
-y_{3}-y_{3}= & y_{1} \\
-y_{4}+y_{3}= & -y_{1} \\
y_{4}+y_{3}= & y_{1}
\end{array}\right\}
$$

and therefore by addition

$$
0=y_{1}
$$

-a result which again involves a contradiction. There is therefore no solution.
4. Further, as the equations which have just been proved to be inconsistent when n is 4 make their appearance in every higher case, our conclusion is that the equations

$$
\left.\left|\begin{array}{cccc}
x_{1} & x_{2} & \ldots & x_{n} \\
y_{1} & y_{2} & \ldots & y_{n}
\end{array}\right| \right\rvert\,=1
$$

are not soluble when n is greater than 3 .
5. Before considering arrays of three rows it is desirable to call attention to the general theorem that if all the primary minors of an ($11-1$)-ly-n array be equal, the sum of each row of the array vanishes. This is readily seen to be true on using in order the multipliers $x_{n}, x_{n-1}, \ldots, x_{1}$ with the given equations and then pertorming addition; for thereby we obtain when n is 4 and c is the common value of the minots
i.e., $0=c, \Sigma x$,
and therefore

$$
0=\Sigma i .
$$

180 Dr. Muir, On equigrade minor's of a determinant.
Were we to use the y 's as multipliers instead of the x 's we should similarly find the fourth row to be

$$
y_{1} y_{2} y_{3} y_{4},
$$

the right-hand side to be
and the result to be

$$
c\left(y_{4}+y_{3}+y_{2}+y_{1}\right)
$$

$$
0=\Sigma y .
$$

6. In connection with this it is also worth noting that the data can be expressed as a set of linear equations in the elements of any row of the array, and that the determinant of the set is skew with zero diagonal. 'Thus, if

$$
\left\|\begin{array}{llll}
x_{1} & x_{2} & x_{3} & x_{4} \\
y_{1} & y_{2} & y_{3} & y_{4} \\
z_{1} & z_{2} & z_{3} & z_{4}
\end{array}\right\|=c,
$$

and we put, for shortness' sake,

$$
\left.\left|\begin{array}{llll}
y_{1} & y_{2} & y_{3} & y_{4} \\
z_{1} & z_{2} & z_{3} & z_{4}
\end{array}\right| \right\rvert\,=A, B, C, D, E, F
$$

the set of linear equations in $x_{1}, x_{2}, x_{3}, x_{4}$ is

$$
\left.\begin{array}{rl}
x_{3} A-x_{2} B+x_{1} D & =c \\
-x_{4} A+x_{2} C-x_{1} E & =c \\
x_{4} B-x_{3} C+x_{1} F & =c \\
-x_{4} D+x_{3} E-x_{2} F & =c
\end{array}\right\},
$$

7. Even if A, B, C, \ldots in these equations were unconditioned, it would follow on multiplying by $x_{4}, x_{3}, x_{2}, x_{1}$ and addiug that

$$
x_{4}+x_{3}+x_{2}+x_{1}=0 .
$$

On solving we should also have

$$
\left.\begin{array}{l}
x_{1}=c(\quad A+B+C) \div(A F-B E+C D) \\
x_{2}=c(-A+D+E) \div(A F-B E+C D) \\
x_{3}=c(-B-D+F) \div(A F-B E+C D) \\
x_{4}=c(-C-E-F) \div(A F-B E+C D)
\end{array}\right\},
$$

from which the same fact is evident.
S. As things stand, however, A, B, \ldots are such that

$$
A F-B E+C D=0
$$

and eonsequently the determinant of the set, being the square of $A F-B E+C D$, vanishes. In other like cases, namely, where n is even, the same occurs, that is to say, the pfaffian, which is the square root of the determinant, vanishes because of a relation between its elements. In the cases where n is odd, the determinant vanishes altogether from any relation between the elements on one side of the diagonal.
9. Passing now to arrays of three rows let us try to find a solution of the set of equations

$$
\left\|\begin{array}{llll}
x_{1} & x_{3} & x_{3} & x_{4} \\
y_{1} & y_{2} & y_{3} & y_{4} \\
z_{1} & z_{3} & z_{3} & z_{4}
\end{array}\right\|=1
$$

In the first place it is clear that a three-line determinant equal to 1 can readily be constructed by utilizing the result of $\S 2$. We have only got to take for two of its columus such a 2 -by-3 army as is there given, for example,

$$
\begin{array}{cc}
u & 1 \\
u v-1 & v \\
-u v-u+1 & -v-1
\end{array}
$$

and then prefix or annex another column whose sum is 1 , for example,

$$
\begin{gathered}
r \\
-r-s+1
\end{gathered}
$$

s
By both prefixing ant amnexing such a column we should have the 3-by-4 array

$$
\left|\begin{array}{cccc}
x_{1} & x_{2} & 1 & -x_{4} \\
-x_{1}-z_{1}+1 & x_{2} y_{3}-1 & y_{3} & -z_{4} \\
z_{1} & -x_{2} y_{3}-r_{2}+1 & -y_{3}-1 & x_{4}+z_{4}-1
\end{array}\right|,
$$

with two of its four primary minors already satisfying the

18\% Dr. Muir, On equigrade minors of a determinant.
required condition. This, however, can, by legitimate operations on rows, be changed into

$$
\left|\begin{array}{cccc}
x_{1} & x_{2} & 1 & -x_{4} \\
-x_{1}-z_{1}+1 & x_{3} y_{3}-1 & y_{3} & -z_{4} \\
z_{1} & \cdot & . & -1
\end{array}\right|
$$

'To secure the fulfilment of the two remaining conditions' we might formulate them and solve for x_{4} and z_{4}; but it is more promptly effective to use the fact ($\$ 5$) that the sum of each row must vanish. 'I'his gives us at once the result

$$
\left\|\begin{array}{cccc}
x_{1} & x_{2} & 1 & -x_{1}-x_{2}-1 \\
-x_{1}-z_{1}+1 & x_{2} y_{3}-1 & y_{3} & -y_{3}\left(x_{2}+1\right)+x_{1}+z_{1} \\
1 & \cdot & \cdot & -1
\end{array}\right\|=1
$$

By operating on rows, however, it may be simplified into

$$
\left\|\begin{array}{cccc}
\cdot & x_{2} & 1 & -x_{2}-1 \\
1 & x_{2} y_{3}-1 & y_{3} & -y_{3}\left(x_{2}+1\right) \\
1 & \cdot & \cdot & -1
\end{array}\right\|=1
$$

and thence into

$$
\left\|\begin{array}{cccc}
\cdot & x_{2} & 1 & -x_{2}-1 \\
1 & -1 & \cdot & \cdot \\
1 & \cdot & \cdot & -1
\end{array}\right\|=1
$$

and finally into

$$
\left|\begin{array}{cccc}
\cdot & \cdot & 1 & -1 \\
1 & -1 & \cdot & \cdot \\
1 & \cdot & \cdot & -1
\end{array}\right|=1
$$

which is also what we should have got, before operating on the rows, by merely putting

$$
x_{1}, x_{2}, y_{3}, z_{1}=0,0,0,0 .
$$

10. We have now to note that in the case of the $3-b y-5$ array, exactly as in the case of the 2-by-4 array, there is no

Dr. Muir, On equigrade minors of a determinant. 183
solution at all. In order that this may be seen, we first remark that included in

$$
\left|\begin{array}{lllll}
x_{1} & x_{3} & x_{3} & x_{4} & x_{5} \\
y_{1} & y_{2} & y_{3} & y_{4} & y_{5} \\
z_{1} & z_{3} & z_{3} & z_{4} & z_{5}
\end{array}\right|=1
$$

there are ten equations, namely, the four included in

$$
\left|\begin{array}{llll}
x_{1} & x_{2} & x_{3} & x_{4} \\
y_{1} & y_{2} & y_{3} & y_{4} \\
z_{1} & z_{2} & z_{3} & z_{4}
\end{array}\right|=1
$$

and other six which all involve the fifth column. But by reason of the first four we must have

$$
\begin{aligned}
& x_{4}=-\left(x_{1}+x_{2}+x_{3}\right), \\
& y_{4}=-\left(y_{1}+y_{2}+y_{3}\right), \\
& z_{4}=-\left(z_{1}+z_{2}+z_{3}\right),
\end{aligned}
$$

and three of the six being

$$
\left|x_{1} y_{2} z_{5}\right|=1, \quad\left|x_{1} y_{3} z_{5}\right|=-1, \quad\left|x_{2} y_{3} z_{5}\right|=1
$$

there is obtained thence by addition or subtraction

$$
\left|x_{1}\left(y_{2}+y_{3}\right) z_{5}\right|=0, \quad\left|\left(x_{1}+x_{3}\right) y_{3} z_{5}\right|=0, \quad\left|\left(x_{1}+x_{3}\right) y_{2} z_{5}\right|=0,
$$

and therefore by operating on columns and substituting

$$
-\left|x_{1} y_{4} z_{5}\right|=0, \quad-\left|x_{1} y_{3} z_{5}\right|=0, \quad-\left|x_{4} y_{2} z_{5}\right|=0,
$$

-results which are at variance with the other three of the six equations, namely,

$$
\left|x_{1} y_{4} z_{5}\right|=1, \quad\left|x_{3} y_{4} z_{5}\right|=1, \quad\left|x_{2} y_{4} z_{5}\right|=-1 .
$$

There is thus no solution for

$$
\left|\begin{array}{llll}
x_{1} & x_{3} & \ldots & x_{n} \\
y_{1} & y_{3} & \ldots & y_{n} \\
z_{1} & z_{3} & \ldots & z_{n}
\end{array}\right|=1
$$

when n is greater than 4 .
11. When the number of rows is greater than ?, the like results are obtained in similar fashion, there being no solution of

$$
\left|\begin{array}{cccc}
x_{11} & x_{12} & \ldots & x_{1, n+h} \\
x_{21} & x_{22} & \ldots & x_{2, n+h} \\
\cdots \ldots \ldots \ldots & \ldots & \ldots & \ldots . \\
x_{n 1} & x_{n 2} & \ldots & x_{n, n+h}
\end{array}\right|=1
$$

when $h>1$; and the simplest solution when $\bar{h}=1$ being got by taking equal to 1 each element of the diagonal passing through x_{11}, each clement of the last column equal to 1 , and every other element equal to 0 .

Capetown, S.A.
January $28 t h, 1914$.

THE DETERMINAN'I' OF 'I'HE SUM OF A SQUARE MATRIX AND I'S's CONJUGATE.

By Thomas Muir, LL.D.

1. If the matrix of any determinant D be increased by the matrix of the conjugate determinant D^{\prime}, the determinant of the matrix thus produced may be conveniently called the duplicant of D or of ' D '. 'Ilhus the duphicant of $\left|u_{1} b_{2}\right|$ is

$$
\left|\begin{array}{cc}
2 a_{1} & a_{2}+b_{1} \\
b_{1}+a_{3} & 2 b_{3}
\end{array}\right|
$$

and is equal to

$$
\begin{array}{r}
2\left|a_{1} b_{2}\right|+2 a_{1} b_{2}-\left(a_{2}^{2}+b_{1}^{2}\right), \\
4\left|a_{1} b_{2}\right|-\left(a_{2}-b_{1}\right)^{2} .
\end{array}
$$

2. A duplicant is necessarily axisymmetric. The duplicant of an axisymmetric determinant of the $n^{\text {th }}$ order is 2^{n} times the original. 'Ihe duplicant of a skew determinant is 2^{n} times the diagonal term of the original, and therefore is 0 when the original is zero-axial.
3. A duplicant on account of having all its elements binomials is expressible as the sum of 2^{n} determinants with monomial elements; and as each determinant of the sum has
every one of its columns taken either from D or from D^{\prime}, a convenient notation for it is obtained by simply specifying in some short way the columus of which it is composed. Thus, if we denote the columns of D by $1,2,3, \ldots$ and those of D^{\prime} by $1^{\prime}, 2^{\prime}, 3^{\prime}, \ldots$, one of the determinants of the sum would be readily recognised from the notation

$$
\left|12^{\prime} 34^{\prime} 5^{\prime} \ldots\right| \text { or } 12^{\prime} 34^{\prime} 5^{\prime} \ldots .
$$

4. Taking the case of the 3rd order we have

$$
\left|\begin{array}{ccc}
2 a_{1} & a_{2}+b_{1} & a_{3}+c_{1} \\
b_{1}+a_{2} & 2 b_{2} & b_{3}+c_{2} \\
c_{1}+a_{3} & c_{2}+b_{3} & 2 c_{3}
\end{array}\right|=\left(123+123^{\prime}\right)+\left(12^{\prime} 3+12^{\prime} 3^{\prime}\right) .
$$

The development is however more suitably arranged in the form
for since

$$
\begin{aligned}
& 123+\left(123^{\prime}+12^{\prime} 3+1^{\prime} 23\right) \\
& \quad+\left(12^{\prime} 3^{\prime}+1^{\prime} 23^{\prime}+1^{\prime} 2^{\prime} 3\right)+1^{\prime} 2^{\prime} 3^{\prime}
\end{aligned}
$$

and*

$$
123=1^{\prime} 2^{\prime} 3^{\prime}
$$

it thus assumes the altermative forms

$$
\begin{align*}
& 2\left\{\begin{array} { l l l }
{ a _ { 1 } } & { a _ { 2 } } & { a _ { 3 } } \\
{ b _ { 1 } } & { b _ { 2 } } & { b _ { 3 } } \\
{ c _ { 1 } } & { c _ { 2 } } & { c _ { 3 } }
\end{array} \left|+\left|\begin{array}{lll}
a_{1} & a_{2} & c_{1} \\
b_{1} & b_{2} & c_{2} \\
c_{1} & c_{3} & c_{3}
\end{array}\right|+\left|\begin{array}{lll}
a_{1} & b_{1} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & b_{3} & c_{3}
\end{array}\right|+\left|\begin{array}{lll}
a_{1} & a_{3} & a_{3} \\
a_{2} & b_{2} & b_{3} \\
a_{3} & c_{2} & c_{3}
\end{array}\right|\right.\right. \tag{I}\\
& 2\left\{\left|\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right|+\left|\begin{array}{lll}
a_{1} & b_{1} & a_{3} \\
a_{2} & b_{2} & b_{3} \\
a_{3} & b_{3} & c_{3}
\end{array}\right|+\left|\begin{array}{lll}
a_{1} & a_{3} & c_{1} \\
a_{3} & b_{2} & c_{2} \\
a_{3} & c_{3} & c_{3}
\end{array}\right|+\left\lvert\, \begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
b_{1} & b_{2} & c_{2} \\
c_{1} & b_{3} & c_{3}
\end{array}\right.\right\}
\end{align*}
$$

As another possible mode of viewing the construction of these expressions we may note that the first determinant in (I) is D, and that each of the last three determinants is a coaxial two-line minor of D bordered by a row of D : and that D^{\prime} forms a like basis for (I^{\prime}).

[^48]5. If we express each of the last three determinants in (I) in terms of the elements of the columns taken from D^{\prime} and their co-factors, we obtain the development
\[

2\left\{$$
\begin{aligned}
&\left\{c_{1} b_{2} c_{3} \mid+c_{3} C_{3}+c_{2} B_{3}+c_{1} A_{3}+b_{3} C_{2}+b_{3} B_{2}\right. \\
&+b_{1} A_{2}+a_{3} C_{1}+a_{2} B_{1}+a_{1} A_{1}
\end{aligned}
$$\right\},
\]

which is best written in the form

$$
2\left\{\begin{align*}
&\left|a_{1} b_{z} c_{3}\right|+\left(a_{1}, a_{2}, a_{3} \backslash A_{1}, B_{1}, C_{1}\right) \tag{II}\\
&+\left(b_{1}, l_{2}, b_{3} \backslash A_{2}, B_{2}, C_{2}\right) \\
&+\left(c_{1}, c_{2}, c_{3} \backslash A_{3}, B_{3}, C_{3}\right)
\end{align*}\right\}
$$

The same is obtained from (I^{\prime}).
6. From this is derived an interesting theorem regarding the duplicant of the adjugate of $\left|a_{1} b_{2} c_{3}\right|$. For, by (II), we have

$$
\left|\begin{array}{rrr}
2 A_{1} & A_{2}+B_{1} & A_{3}+C_{1} \\
B_{1}+A_{2} & 2 B_{2} & B_{3}+C_{2} \\
C_{1}+A_{3} & C_{2}+B_{3} & 2 C_{3}
\end{array}\right|=2\left\{\begin{array}{r}
\left|A_{1} B_{2} C_{3}\right|+\left(A_{1}, \ldots \gamma\left|B_{2} C_{3}\right|, \ldots\right) \\
+\ldots \ldots \ldots \ldots \ldots \ldots
\end{array}\right\},
$$

and as in the right-hand member we ean put

$$
\begin{aligned}
\left|A_{1} B_{2} C_{3}\right| & =\left|a_{1} b_{2} c_{3}\right|^{3}, \\
\left|B_{2} C_{3}\right| & =a_{1}\left|a_{1} b_{2} c_{3}\right|, \ldots,
\end{aligned}
$$

it follows that that member has $\left|a_{1} b_{2} c_{3}\right|$ for a factor, and that the co-factor is

$$
2\left\{\begin{array}{r}
\left|a_{1} b_{2} c_{3}\right|+\left(A_{1}, A_{2}, A_{3} \chi_{1}, b_{1}, c_{1}\right) \\
+\ldots \ldots .
\end{array}\right\} .
$$

'Ihhis, however, being identical with (II), we have the proposition that the duplicant of the adjugate of $\left|a_{1} b_{2} c_{3}\right|$ is the product of $\left|a_{1} b_{3} c_{3}\right|$ into the duplicant of $\left|a_{1}, b_{2} c_{3}\right|$.
(III).
7. In the case of the $4^{\text {th }}$ order, the initial form of development is

$$
\begin{aligned}
1234 & +\left(1234^{\prime}+123^{\prime} 4+12^{\prime} 34+1^{\prime} 234\right) \\
& +\left(123^{\prime} 4^{\prime}+12^{\prime} 34^{\prime}+1^{\prime} 234^{\prime}+12^{\prime} 3^{\prime} 4+1^{\prime} 23^{\prime} 4+1^{\prime} 2^{\prime} 34\right) \\
& +\left(12^{\prime} 3^{\prime} 4^{\prime}+1^{\prime} 23^{\prime} 4^{\prime}+1^{\prime} 2^{\prime} 34^{\prime}+1^{\prime} 2^{\prime} 3^{\prime} 4\right) \\
& +1^{\prime} 2^{\prime} 3^{\prime} 4^{\prime} .
\end{aligned}
$$

And since, as before, we have

$$
1234=1^{\prime} 2^{\prime} 3^{\prime} 4^{\prime}, \quad \Sigma 1234^{\prime}=\Sigma 1^{\prime} 2^{\prime} 3^{\prime} 4
$$

it follows that the four-line duplicant is equal to

$$
\begin{equation*}
2\left\{1234+\Sigma 1234^{\prime}\right\}+\Sigma 123^{\prime} 4^{\prime} \tag{IV}
\end{equation*}
$$

It would thus seem that in this case 2 is not a factor: it remains however to examine more closely

$$
\Sigma 123^{\prime} 4^{\prime}, \quad \text { i.e., } \quad \Sigma\left|\begin{array}{llll}
a_{1} & d_{3} & c_{1} & d_{1} \\
b_{1} & b_{2} & c_{2} & d_{2} \\
c_{1} & c_{2} & c_{3} & d_{3} \\
d_{1} & d_{3} & c_{4} & d_{4}
\end{array}\right| \text {. }
$$

Taking each of the six determinants included in it, and expanding in terms of the two-line minors formed from the columns of D and their co-factors, we ubtain an expression of thirty-six products, namely,

$$
\begin{aligned}
& \left|a_{1} b_{2}\right| \cdot|\cdot| c_{3} d_{4}\left|-\left|a_{1} c_{2}\right| \cdot\right| c_{2} d_{4}\left|+\left|a_{1} d_{2}\right| \cdot\right| c_{2} d_{3}\left|+\left|b_{1} c_{2}\right| \cdot\right| c_{1} d_{4}\left|-\left|b_{1} d_{2}\right| \cdot\right| c_{1} d_{3}\left|+\left|c_{1} d_{2}\right|{ }^{2}\right. \\
& \left|a_{1} b_{2}\right| \cdot\left|b_{3} d_{4}\right|+\left|a_{1} c_{3}\right| \cdot| |_{2} d_{4}\left|-\left|a_{1} d_{3}\right| \cdot\right| b_{2} d_{3}\left|-\left|b_{1} c_{3}\right| \cdot\right| b_{1} d_{4}\left|+\left|b_{1} d_{3}\right|^{2}-\left|c_{1} d_{3}\right| \cdot\right| b_{1} d_{2} \mid \\
& \left|a_{3} b_{4}\right| \cdot\left|b_{3} c_{4}\right|-\left|a_{1} c_{4}\right| \cdot\left|b_{2} c_{4}\right|+\left|a_{1} d_{4}\right| \cdot\left|b_{2} c_{3}\right|+\left|b_{3} c_{4}\right|^{2}-\left|b_{1} d_{4}\right| \cdot\left|b_{1} c_{3}\right|+\left|c_{4} d_{4}\right| \cdot\left|b_{1} c_{2}\right| \\
& \left|a_{2} b_{3}\right| \cdot\left|a_{3} d_{4}\right|-\left|a_{2} c_{3}\right| \cdot\left|a_{2} d_{4}\right|+\left|a_{2} d_{3}\right|^{2}+\left|b_{2} c_{3}\right| \cdot\left|a_{1} d_{4}\right|-\left|b_{2} d_{3}\right| \cdot\left|a_{1} d_{3}\right|+\left|c_{2} d_{3}\right| \cdot\left|a_{1} d_{2}\right| \\
& \left|a_{2} b_{4}\right| \cdot\left|a_{3} c_{4}\right|+\left|a_{2} c_{4}\right|^{2}-\left|a_{2} d_{4}\right| \cdot\left|a_{2} c_{3}\right|-\left|b_{2} c_{4}\right|\left|a_{1} c_{4}\right|+\left|b_{2} d_{4}\right| \cdot\left|a_{1} c_{3}\right|-\left|c_{2} d_{4}\right| \cdot\left|a_{1} c_{2}\right| \\
& \left|a_{3} b_{4}\right|^{2}-\left|a_{3} c_{4}\right||\cdot| a_{2} b_{4}\left|+\left|a_{3} d_{4}\right| \cdot\right| a_{2} b_{3}\left|+\left|b_{3} c_{4}\right| \cdot\right| a_{1} b_{4}\left|-\left|b_{3} d_{4}\right| \cdot\right| a_{1} b_{3}\left|-\left|c_{3} d_{4}\right|\right| a_{1} b_{2} \mid
\end{aligned}
$$

where necessarily the first factor of every product is a twoline minor of D and has joined to it the two-line minor which is the conjugate of its complementary. Thus, taking the second product in the first line, we note that the first factor $\left|a_{1} c_{3}\right|$ has in D the complementary minor $\left|b_{3} d_{4}\right|$; and, since the minor conjugately situated to $\left|b_{3} d_{4}\right|$ in D (and in D^{\prime}) is $\left|c_{2} d_{4}\right|$, the correctness of the product is verified. When the tirst factor is a coaxial minor of D, its complementary is not different from the conjugate of its complementary: hence the peculiarity of the products occuring in the primary diagonal above. When the first factor has none of its elements in the primary diagonal of D, its complementary is the same as its conjugate, and the conjugate of its complementary is thus itself: hence the peculiarity of the products occupying the secondary diagonal. Further, the assemblage of first factors necessarily contains all the two-line minors of D : and the assemblage of second factors being obtained as two-line minors of D^{\prime} is not a different assemblage but merely a
different arrangement of the members of the first assemblage. In fact, the second assemblage is the first rotated 180° round its secondary diagonal. On this accoment the quadriform collection of products is symmetric with respect to its secondary diaronal, and thus save for the portion

$$
\left.\left|a_{3}\right\rangle_{4}\right|^{2}+\left|a_{2} c_{4}\right|^{2}+\left|a_{2} b_{3}\right|^{2}+\left|b_{1} c_{4}\right|^{2}+\left|b_{1} d_{3}\right|^{2}+\left|c_{1} l_{2}\right|^{2},
$$

contains 2 as a factor.
These six non-repeated terms correspond to the two $-a_{3}{ }^{2}-b_{1}{ }^{2}$ in the case of the duplicant of the second order $(\$ 1)$.
S. The development of the duplicant of the $4^{\text {th }}$ order thus is

$$
2\left\{\begin{aligned}
\left|a_{1} b_{2} c_{3} d_{4}\right| & +\Sigma\left(A_{1}, B_{1}, C_{1}, D_{1} X_{1}, a_{2}, a_{3}, a_{4}\right) \\
& +\Sigma\left(\left|a_{1} b_{2}\right| \text {, сопј сомр }\left|a_{1} b_{2}\right|\right)
\end{aligned}\right\} \quad\left(\mathrm{IV}^{\prime}\right) ;
$$

and therefore, if we pass from $\left|c_{1} b_{2} c_{3} d_{4}\right|$ to its adjugate $\left|A_{1} B_{2} C_{3} D_{4}\right|$, we come on a state of affairs exactly similar to that encountered in $\S 6$, save that the common factor found is now not the first, but the second power of the priginal determinant. We thas have the theorem that the duplicant of the arjugate of $\left|a_{1} b_{2} c_{3} d_{4}\right|$ is equal to the product of $\left|a_{1} b_{2} c_{3} d_{4}\right|^{2}$ into the duplicant of $\left|a_{1} d_{2} c_{3} d_{4}\right|$.
9. Proceeding to the consideration of the $5^{\text {th }}$ order, we find, in the same manner as before, the initial development of the duplicant to be

$$
12345+\Sigma 12345^{\prime}+\Sigma 1234^{\prime} 5^{\prime}+\ldots
$$

the grouping of the thirty-two determinants with monomial elements being

$$
1+5+10+10+5+1 ;
$$

and since we know that

$$
\begin{aligned}
12345 & =1^{\prime} 2^{\prime} 3^{\prime} 4^{\prime} 5^{\prime} \\
\Sigma 12345^{\prime} & =\Sigma 12^{\prime} 3^{\prime} 4^{\prime} 5^{\prime} \\
\Sigma 1234^{\prime} 5^{\prime} & =\Sigma 123^{\prime} 4^{\prime} 5^{\prime}
\end{aligned}
$$

it follows withont firther examination that 2 is a factor. (VI).
Carrying the development a stage farther, as in the previolls calses, we have

$$
2\left\{\begin{aligned}
\left|a_{1} b_{3} c_{3} l_{4} e_{5}\right| & +\Sigma\left(\left|a_{1} b_{2} c_{3} d_{4}\right| \cdot \operatorname{conj} \operatorname{comp} \mid a_{1} b_{2} c_{3} d_{4}\right) \\
& +\Sigma\left(\left|a_{1} b_{2} c_{3}\right| \cdot \operatorname{conj} \operatorname{comp}\left|a_{1} b_{2} c_{3}\right|\right)
\end{aligned}\right\} ;
$$

and applying this to $\left|A_{1} B_{3} C_{3} D_{4} E_{5}\right|$ we find that $\left|c_{1} b_{2} c_{3} d_{4} e_{5}\right|^{3}$ is a factor of it, and that the co-factor is the duplicant of $\left|a_{1} b_{3} c_{3} d_{4} e_{5}\right|$.
10. The consideration of further cases is seen to be unnecessary, it being clear that 2 is a factor of the duplicant only when the order is odd, but that the theorem regarding the adjugate holds also when the order is even. The latter matter, be it noted, is quite unconnected with the former: to deal with it we only need to change the initial form of development

$$
123456+\Sigma 123456^{\prime}+\ldots
$$

into the more adranced form

$$
\begin{aligned}
\left|a_{1} h_{2} c_{3} d_{4} e_{5} f_{6}\right| & +\Sigma\left(\left|a_{1} b_{2} c_{3} d_{4} e_{5}\right| \cdot c o n j \text { comp }\right) \\
& +\ldots \ldots
\end{aligned}
$$

and then use the familiar theorems regarding the adjugate and its minors.
11. The matter of next importance concerns the determinants which arise from bordering a duplicant by two rows or two columus of the original determinant. In dealing with it let us at once take the fourth order, and in the first place use the same row for forming both borders, the subject of consideration thus being

$$
\left|\begin{array}{ccccc}
& a_{1} & a_{3} & a_{3} & a_{4} \\
a_{1} & a_{1}+a_{1} & a_{2}+b_{1} & a_{3}+c_{1} & a_{4}+d_{1} \\
a_{2} & b_{1}+a_{2} & b_{2}+b_{2} & b_{3}+c_{2} & b_{4}+d_{2} \\
a_{3} & c_{1}+a_{3} & c_{2}+b_{3} & c_{3}+c_{3} & c_{4}+d_{3} \\
a_{4} & d_{1}+a_{4} & d_{2}+b_{4} & d_{3}+c_{4} & d_{4}+d_{4}
\end{array}\right| .
$$

The performance of the operations

$$
\mathrm{row}_{2}-\mathrm{row}_{1}, \quad \mathrm{col}_{2}-\mathrm{col}_{1}
$$

leads to

$$
\left|\begin{array}{ccccc}
\cdot & a_{1} & a_{2} & a_{3} & a_{4} \\
a_{1} & \cdot & b_{1} & c_{2} & d_{1} \\
a_{2} & b_{1} & b_{2}+b_{2} & b_{3}+c_{3} & b_{4}+d_{2} \\
a_{3} & c_{1} & c_{2}+b_{3} & c_{3}+c_{3} & c_{4}+d_{3} \\
a_{1} & d_{3} & d_{2}+b_{4} & d_{3}+c_{4} & d_{4}+d_{4}
\end{array}\right| ;
$$

and if we multiply the last three rows of this by a_{1} and then perform the operations

$$
\operatorname{row}-\frac{l_{1}}{u_{1}} \text { row } w_{1}, \operatorname{row}_{4}-\frac{c_{1}}{a_{1}} \operatorname{row}_{1}, \operatorname{row}_{5}-\frac{d_{1}}{c_{1}} \text { row }_{1},
$$

followed by the operations

$$
\operatorname{col}_{3}-\frac{b_{1}}{a_{1}} \operatorname{col}_{1}, \quad \operatorname{col}_{4}-\frac{c_{1}}{a_{1}} \operatorname{col}_{1}, \quad \operatorname{col}_{5}-\frac{d_{1}}{a_{1}} \operatorname{col}_{1},
$$

we find our determinant

$$
\begin{align*}
& \quad \begin{array}{llll}
a_{1} & a_{2} & a_{3} & a_{3}
\end{array} \\
& a_{1} \text {. } \\
& =\frac{1}{a_{1}^{3}} a_{2} \quad . \quad 2\left|a_{1} b_{2}\right| \quad\left|a_{1} b_{3}\right|+\left|a_{1} c_{2}\right| \quad\left|a_{1} b_{4}\right|+\left|a_{1} d_{2}\right| \\
& u_{3} \cdot\left|a_{1} c_{2}\right|+\left|a_{1} b_{3}\right| \quad 2\left|a_{1} c_{3}\right| \quad\left|a_{1} c_{4}\right|+\left|a_{1} d_{3}\right| \\
& a_{4} \cdot\left|a_{1} d_{2}\right|+\left|a_{1} b_{4}\right| \quad\left|a_{1} d_{3}\right|+\left|a_{1} c_{4}\right| \quad 2\left|a_{1} d_{4}\right| \\
& =-\frac{1}{a_{1}} \text {. duplicant of }\left|\begin{array}{lll}
\left|a_{1} b_{2}\right| & \left|a_{1} b_{3}\right| & \left|a_{1} b_{4}\right| \\
\left|a_{1} c_{2}\right| & \left|a_{1} c_{3}\right| & \left|a_{1} c_{4}\right| \\
\left|a_{1} d_{2}\right| & \left|a_{1} d_{3}\right| & \left|a_{1} d_{4}\right|
\end{array}\right| \tag{VIII}
\end{align*}
$$

where instead of $-1 / a$, we should have had the co-factor $-1 / e_{1}^{n-3}$ if the basic determinant had been of the $n^{\text {th }}$ order.

Similar results follow when the bordering is done with any other row. In fact, these results are all included in this one, because, the duplicant being axisymmetric, any one of its rows can be made the first.
12. The result of the double bordering of any duplicant by one of the rows of the original is the same as the result of the like bordering with the corresponding column.
(IX).

For the determinant obtained after the performance of the first operation in $\$ 11$ needs only to have its first two rows interchanged and then its first two columns in order to become

$$
\left|\begin{array}{ccccc}
\cdot & a_{1} & b_{1} & c_{1} & d_{1} \\
a_{1} & \cdot & a_{2} & a_{3} & a_{4} \\
b_{1} & a_{2} & b_{2}+b_{2} & b_{3}+c_{2} & b_{4}+d_{2} \\
c_{1} & a_{3} & c_{2}+b_{3} & c_{3}+c_{3} & c_{4}+d_{3} \\
d_{1} & a_{4} & d_{2}+b_{4} & d_{3}+c_{4} & d_{4}+d_{4}
\end{array}\right| .
$$

which by the operation

$$
\text { row }_{2}+\text { row }_{1}, \quad \text { col }_{2}+\text { col }_{4}
$$

gives the bordering of the duplicant by

$$
a_{1}, b_{1}, c_{1}, d_{1}
$$

13. The theorem corresponding to that of $\S 11$ when we border with two different rows iustead of using the same row twice is sufficiently indicated by giving the example in which the bordering rows are

$$
\begin{array}{llll}
a_{1} & a_{2} & a_{3} & a_{4} \\
b_{1} & b_{2} & b_{3} & b_{4}
\end{array}
$$

The result then is

$$
a_{3} b_{1}\left|\begin{array}{lll}
\frac{\left|a_{2} b_{1}\right|}{a_{2}}+\frac{\left|b_{1} a_{2}\right|}{b_{1}} & \frac{\left|a_{2} b_{3}\right|}{a_{3}}+\frac{\left|b_{2} c_{2}\right|}{b_{1}} & \frac{\left|a_{2} b_{4}\right|}{a_{2}}+\frac{\left|b_{1} d_{2}\right|}{b_{1}} \\
\frac{\left|a_{2} c_{1}\right|}{a_{2}}+\frac{\left|b_{1} a_{3}\right|}{b_{1}} & \frac{\left|a_{2} c_{3}\right|}{a_{3}}+\frac{\left|b_{1} c_{3}\right|}{b_{1}} & \frac{\left|a_{2} c_{4}\right|}{a_{2}}+\frac{\left|b_{1} d_{3}\right|}{b_{1}} \\
\frac{\left|a_{2} d_{1}\right|}{a_{2}}+\frac{\left|b_{1} a_{4}\right|}{b_{1}} & \frac{\left|a_{2} d_{3}\right|}{a_{2}}+\frac{\left|b_{1} c_{4}\right|}{b_{1}} & \frac{\left|a_{2} d_{4}\right|}{a_{2}}+\frac{\left|b_{1} d_{4}\right|}{b_{1}} \tag{X}
\end{array}\right|
$$

where, it will be seen, the determinant is no longer a duplicant.
Had we bordered with the corresponding columns, namely,

$$
\begin{array}{llll}
a_{1} & b_{1} & c_{1} & d_{1} \\
a_{2} & b_{2} & c_{2} & d_{2}
\end{array}
$$

we should have obtained the same result.
14. The continuation of the investigation of § 11 naturally splits up into two branches, the one dealing with the duplicants of odd order and the other with those of even order.

In the case there taken, namely, where the duplicant which is bordered is of the $4^{\text {th }}$ order, we use the result (II) of $\$ 5011$ the co-factor of $-1 / a_{1}$ in (VIII), and the outcome is readily seen to be
$-2\left\{\begin{aligned} a_{1}\left|a_{1} b_{2} c_{3} d_{4}\right| & +\left(\left|a_{1} b_{2},-\left|a_{1} b_{3}, \quad\right| a_{1} b_{4}\right| \chi\left|a_{1} c_{3} d_{4}\right|,\left|c_{1} b_{3} d_{4}\right|,\left|a_{1} b_{3} c_{4}\right|\right) \\ & +\left(-\left|a_{1} c_{2}\right|,\left|a_{1} c_{3}\right|,-\left|a_{1} c_{4}\right| \chi\left|a_{1} c_{2} d_{4}\right|,\left|a_{1} b_{2} d_{4}\right|, c_{1} b_{2} c_{4} \mid\right) \\ & +\left(\left|a_{1} d_{2}\right|,-\left|c_{1} d_{3},\right| a_{1} d_{4}\right\rangle\left|a_{1} c_{3} d_{3},\left|a_{1} b_{2} \|_{3},\left|a_{3} b_{3} c_{3}\right|\right)\right.\end{aligned}\right\}$

In the case where the duplicant which is bordered is of the 3rd order we have from § 11
$\begin{aligned}\left|\begin{array}{cccc}\cdot & a_{1} & a_{2} & a_{3} \\ a_{1} & 2 a_{1} & a_{2}+b_{1} & a_{3}+c_{1} \\ a_{2} & a_{2}+b_{1} & 2 b_{2} & b_{3}+c_{2} \\ a_{3} & a_{3}+c_{1} & b_{3}+c_{2} & 2 c_{3}\end{array}\right| & =-\left|\begin{array}{cc}2\left|a_{1} b_{2}\right| & \left|a_{1} b_{3}\right|+\mid a_{1} c_{2} \\ \left|a_{1} b_{3}\right|+\left|a_{1} c_{2}\right| & 2\left|a_{1} c_{3}\right|\end{array}\right| \\ & =-4 a_{1}\left|a_{1} b_{3} c_{3}\right|+\left(\left|a_{1} b_{3}\right|-\left|a_{1} c_{2}\right|\right)^{2},\end{aligned}$ and from § 13

$$
\begin{aligned}
& \left|\begin{array}{cccc}
\cdot & a_{1} & a_{3} & a_{3} \\
b_{1} & 2 a_{1} & a_{2}+b_{1} & a_{3}+c_{1} \\
b_{2} & a_{2}+b_{1} & 2 b_{2} & b_{3}+c_{3} \\
b_{3} & a_{3}+c_{1} & b_{3}+c_{2} & 2 c_{3}
\end{array}\right| \\
& \quad \left\lvert\, \begin{array}{l}
\left\lvert\, \frac{\left|a_{2} b_{1}\right|}{a_{2}}+\frac{\left|b_{1} a_{2}\right|}{b_{1}}\right. \\
\left.\quad \frac{\left|a_{2} b_{3}\right|}{a_{2}}+\frac{\left|b_{1} c_{2}\right|}{b_{1}} \right\rvert\, \\
\\
\quad=-a_{2} b_{1} \left\lvert\, \frac{\left|a_{2} c_{1}\right|}{a_{2}}+\frac{\left|b_{1} a_{3}\right|}{b_{1}}\right. \\
\left.\frac{\left|a_{2} c_{3}\right|}{a_{2}}+\frac{\left|b_{1} c_{3}\right|}{b_{1}} \right\rvert\,
\end{array}\right. \\
& \quad=-2\left(a_{2}+b_{1}\right)\left|a_{1} b_{2} c_{3}\right|+\left(\left|a_{1} b_{3}\right|-\left|a_{1} c_{2}\right|\right) \cdot\left(\left|a_{2} b_{3}\right|-\left|b_{1} c_{2}\right|\right) .
\end{aligned}
$$

The last two identities may be interestingly applied in comection with a result of Cayley's on geometrical reciprocity (Collected Math. Papers, vol. i., pp. 377-382).

Capetown, S.A.,
Februcery 20th, 1914.

```
    P Messenger of mathematics
ifath
M
n.S.
V.43
```

Ahrical 3?
Anlied Scie
scrals

PLEASE DO NOT REMOVE CARDS OR SLIPS FROM THIS POCKET

UNIVERSITY OF TORONTO LIBRARY

[^0]: * (Euvres, vol. i., pp. 671-i31. † Eurres, vol. iii., pp. 189-201.

[^1]: * See also Brioschi's attempt, in 1855, in C'elle's Journ., vol. lii., pp. 133-141; and my commentary on it in the Mess. of Math, vol. xxxvii., pp. 107-111.
 \dagger "Orders of infinity," Camb. 1/uth. Tracts, No. 1"; "Propelties of logarithmicoexponential functions," Prec. Lond. 1/ath. Soc, vol. x., p. ju; "Oscillating Lirichlet's Integrals," Quarterty Journal, vol. xliv., p. 1.

[^2]: * For all this argument compare "Oscillating Dirichlet's Integrals," pp. 14-19.
 t 1-suming th nt the integral יy to infinity is not convergent. When it is, analogous results hold for the integral

 $$
 \int_{x}^{\infty} \phi e^{i \psi} d t
 $$

 As I stated in § 1, I leave the formulation of these results to the reader.

[^3]: * See Hardy and Littlewood. "Some problems of Diophantine Approximation," Transactions of the Fifth International Congress of Mathematicians, Cambridge, 1912.
 \dagger Bromwich, Proc. Lond. Math. Soc., vol. vi., p. 327 ; Hardy, ibid., vol. ix., p. 126.

[^4]: ＊W＇e here adopt the defimition given in Weber＇s Algebra，vol．ii．，p． 48.

[^5]: * H. Hilton, An Introduction to the Theory of Groups of Finite Order, p. 126.
 \dagger Frobenius and Stickelberger, Crelle, vol. lxxxvi. (1879), p. 232.

[^6]: * Ily Professor Hilton
 \dagger For in-tance, a reat orthogonal A belian group
 * It is immediately evilent that any multiplication with this invariant is of the type stated.
 § Quarterly Journal, vol xl., p 171; Messenger, vol. xli, p. 116.

[^7]: * The denominators m, n, \ldots may be taken the same for the two substitutions, the fractions having been reduced to a common denominator.

[^8]: * Rotation about $x_{1}=0, y_{1}=0$; reflexion about $x_{1}=0$. These loci of conrse are only axis and plane respectively in the three-dimensional case. In fourdimensional space the first would be a plane and the second a space of three dimensions. We retain the words "axis" and "plane" (in inverted commas) for convenience.

[^9]: * See Note XXXI., vol. xl., p. 161.

[^10]: * Cf. Osgood, l.c., p. 241.

[^11]: * Bromwich, Infinite Series, p. 434.

[^12]: * 'This condition excludes about one-half of the total number of primes $p=8 w+1$ from the list of possible divisors: this partially accounts for the comparative infrequency of divisors of that form in Mersenne's Numbers.

[^13]: * Hunpt-Eirpomert, i.c. the least exponent (ξ) giving $2^{\xi} \overline{=}+1(\bmod p)$. This is the German term: it is sometimes styled Ciaussien by the French.

[^14]: * Only 5 cases of $p<1000$, viz. $p=113,257,353,577,593$. All Fermat's Primes $F_{n}=\left(2^{2 n}+1\right),>17$ fall under this class.

[^15]: * By the present anthor and Mr. H. J. Woodall, A.E.C.se., in collaboration.
 \dagger l'ublished by Fr. Hodgson, Luadon, Iy04.

[^16]: * Prepared by the present allhor and Mr. H. J. Woodall, A.I.C.Sc., in collaboration. It is at present only in Ms.

[^17]: Les Sce Tab. IV. (at end of this Paper) for the factorisation of several of these high numbers (N^{N}).

[^18]: * This Theorem (with the -signs only) was proposed as Question 339 in the Journal Sphinx-Edipe for 1912, p. 60: this solution (by the present author) appears on $\mathrm{pp} .78,79$ of the same volume.

[^19]: * Crelle's Journal, 18:28, p. 212.
 \dagger Ibid., p. 301.
 \pm Messenger, vol. xxix., (1900), "Period length of Circnlates," table, art. 10, p. 158. Pour ce qui concerne les cas de deux r qui different l'unité voyez $\mathrm{I}, 3 \mathrm{du}$ présent mémoire.
 § Arch. d. Math. u Phys., B. 13, 1908, p. 107.
 Il Theorie des nombres, Paris, 1852, p. 295.
 T C!.R., vol. Ixxxiii., p. 1283 .
 ** Rep. British Ass., 1910, p. 530.

[^20]: * Sitz. Ber. d. Fr. Preuss Acad., vol. xxxv., 1913, p. 663.
 + Jour. f. Muth., B. 115, p. 295.
 \ddagger Ihid., B. $1 \%, \mathrm{p} .+1$.
 SInterm. d. Ihuth., 1901, p. 214.
 | Il y a des tables de raçines primitives, v. p. e., Acta Math., B 17.

[^21]: * Crelle's Journal, B. 85, p. 269.

[^22]: * F. De Boer, Archives Neérlandaises, t. xxvii.

[^23]: * We can always apply ϕ to any S_{n} for S_{n}, and in consequence $P(S)$, has no last term $]$ and be sure of raising the number of the S to the wth power.

[^24]: * See Whitehead and Russell, Principia Mathematica, vol iii., p. 170, lines i from bottom to bottom.

[^25]: * A solution of equation (4) involving an arbitrary function is given by the equation $k=f^{\prime}\left(\phi+\psi \psi^{\frac{1}{2}}\right)$, but this has no physical meaning as it makes the velocity everywhere infinite.

[^26]: * Read before the American Mathematical Society, April 26, 1913.

[^27]: * J. E. Rowe, "Important covariant curves and a complete system of invariants of the rational quartic curve," Transactions of the American Mathematical Society, vol. xii. (July, 1У11), pp, 295-6.
 \dagger Salmon, Modern Migher Algebra, Fourth Edition, p. 161.

[^28]: * W. Gross, Mahthatische Annalen, vol. 32, (1888), pp. 141-5; Grace and Young, Algebra of Incuriunts, pp. 317-8.

[^29]: * G. A. Miller, Amals of Mathematics, vol. 3 (1902), p. 180.

[^30]: * See, for example, Forsyth's Differential Geometry, p. 74. 'The determination of surfaces of constant mean curvature depends on the same equation (see p. 77 footnote).

[^31]: * We bave put $a^{2} y$ instead of y in equation (1), so that it becomes $s=\sin z$.

[^32]: * Comptes Riendus, 6th January, 1913.

[^33]: * For a proof of the inequality see, e.g., F. Riesz, Math. Annalen, vol. 69, p. 4055.

[^34]: * Proc. London Math. Soc., vol. 10, p. 399.

[^35]: * Proc. London Math. Soc., vol. 11, p. 462.
 † Proc. London Math. Soc., vol. 8, p. 304.

[^36]: * Rendiconti di Palerno, vol. 26, p. 218; see also Proc. London Math. Sor: vol. 13

[^37]: * It is interesting to observe that this is the only 1 oint in the proof at which any use is made of this hypothesis.

[^38]: * Cf. Knopp, "Divergenzcharactere gewisser Dirichlet'scher Reihen," Acta Aruthemation, vol. 34. pp. 165-20t (especially pp. 191-291).
 + Cf. P'roc. London Irath. Soc., vol. 13.

[^39]: * Proc. London Muth. Soc., l.c. supra.
 \dagger Schnee, Rendiconti di Palermo, vol. 27, p. 87.

[^40]: * This is the German term : it is often styled Gaussien by French writers.

[^41]: * It is not possible to recognise these roots \dot{a} priori. A Table of all the roots of (42) is in fact required.

[^42]: * Confirmation of the general correctness of the roots y and $y^{\prime}\left(<_{2}^{1} p^{2}\right)$ modulo p^{2} in these Tables has recently appeared in Dr. N. G. W. H. Beeger's Paper in Vol. Xlini. of this Journal. On pp. 77 to 83 , he gives the complete set of the roots $\left(<\frac{1}{2} \mu^{2}\right)$ of the Congrnence $x^{p-1} \equiv+1\left(\bmod p^{2}\right)$, up to $p=199$. In those Tables the proper and improper roots are all placed in ons list. The figures agree thronghont with the fignes in the anthor's 'Tables in Vol. xxix. (after making the corrections stated; these corrections were discovered by the author long ago).

[^43]: * See, for instance, A. R. Forsyth, Mess of Muth, vol. xxvii. (1898), p. 49. Phil. Truns, A, vol. cxci. (1898), 1. 1. Ivar Fredholu, Comptes Rendus, t. cxxiv. (1899), p. 32. Acta Math., t. xxiii. (1900). Rend. Palermo, t. xxv. (1908). d. Ie Koux, Liowille's Journal (ら), t. vi. (1900). Comptes Rendus, December 28th, 1903. H. 1. Whittaker, Monthly Notices of the Royal Astronomical Society, vol. lxii. (1902). Jath. Ann. (1903). H. Bateman, Proc. London M/ath. Soc. (2), rol. i. (1904). N. Zeilon, Lrkiv. f. Mat. Astr: o. Fys., Stockholm (1911), (1913).

[^44]: * Comptes Rendus, t. cii. (1886), p. 202. Acta Math., t. ix. (1887), p. 321. See also E. Picard and G. simart, Théorie des fonchons ulgébriques de doux variables indépendantes, t. i., Paris (1897). E. Picard, Tiaite d'unalyse, t. ii. (1905), p. 276.

[^45]: * "Sulle funzione conjugate," Rend. Lincei (4), t. v. (1889), pp. 599, 630.

[^46]: * "On skew determinants," Philosophical Magazine (1881).

[^47]: * Metzler, "On certain aggregates of determinant minors," Trans. Amer. Math. Soc, vol. ii., p. 4.

[^48]: * The theorem here used, although first published in 1888, has unfortunately not become well known. It is to the effect that "If any two determinants λ and B of the nth order be taken, and from these two sets of determinants be formed. namely, first, a set of $C_{n, r}$ determinants each of which is in rows identical with A and in the remaining rows with B, and, secondly, a set of the same number of determinants eacl of which is in r columns identical with A and in the remaining columns with B, then the sum of the first set of determinants is equal to the sum of the second set." Proc. Roy. Soc. Edinburgh, vol. xv., p. 103.

