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PREFACE.

IN writing the following pages I have had two objects in

view : first, to present the fundamental principles and pro

cesses of the Method of Least Squares in so plain a manner,

and to illustrate their application by such simple and practical

examples, as to render it accessible to Civil Engineers who

have not had the benefit of extended mathematical training;

and secondly, to give an elementary exposition of the theory

which would be adapted to the needs of a large and con

stantly increasing class of students.

Hence the work falls into two parts, the first practical

and the second theoretical, but each illustrating and sup

plementing the other. The numbering of the articles renders

reference from one to the other easy ;
and the more thorough

acquaintance the engineer makes with the second part the

better will he adjust his observations, while it is only after

much exercise with practical problems that the student can

become thoroughly grounded in the theory.

Should the book, then, be taken up by students un

familiar with the subject, let me suggest to them, that even

if their aim be only to acquire a knowledge of its theory,

the shortest and best way to do it is to become first familiar

with the practical applications of Part I.; this attained, the

rest follows naturally and easily.
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IV PREFACE.

As I have not written for mathematical experts, they
will doubtless find considerable in the book at which to

grumble. The idea of mean error does not appear. The
term &quot;equations of condition&quot; has been, in accordance with

the sensible German practice, divided into &quot;observation

equations&quot; and &quot;conditional
equations&quot; (Beobachtungsglei-

chungen and Bedingungsgleichungeri), and each is used in its

proper place. GAUSS development of the law of probability
of error has been followed as the best adapted to an element

ary presentation, and if this be objected to as defective,

I claim at least the credit of knowing and of pointing out

(Art. 66) just what and where those defects are.

In preparing these pages I have consulted and freely
used all the works upon the subject within my reach.

The list of Literature and the historical notice at the end

of the book will be of interest and value to all.

If this little elementary work should meet with a

favourable reception from the scientific public, it may be

followed by another containing extended applications of the

method to higher geodetic surveying, and to numerous other

problems arising in physical science, which have here been

necessarily left unnoticed.

MANSFIELD MERRIMAN.

SHEFFIELD SCIENTIFIC SCHOOL,

NEW HAVEN, CONN., U.S.A., Feb. 5, 1876.
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PART I.

THE ADJUSTMENT AND COMPARISON OF ENGINEERING
OBSERVATIONS.

CHAPTEK I.

INTRODUCTION.

ART. 1. When a quantity is observed with a view to

determining its magnitude a number is obtained as the result

of the operation. This number, expresses how many units

and parts of a unit are, according to the measurement, con

tained in the observed quantity, and is hence a measure of

its magnitude. The word observation will be used in this

book to express such numerical measures as well as the

operation by which they are deduced.

Every engineer is cognizant of the fact, that, when several

observations or sets of observations are made to determine
the magnitude of a quantity (for example, the length of a

line) the results do not agree. Since the quantity can have

only one value all of these results cannot be correct, and
each one of them can be regarded only as an approximation
to the truth. The absolutely true value of the quantity in

question, we can never obtain or at least be never sure that

we have obtained, and instead of it we must accept and use

a value, derived from the combination of our observations,
which may perhaps not exactly agree with any one of them,
but which however shall be the most probable value (Art. 9).

Part I. of this work will be devoted to the presentation
and illustration of the methods now in use among scientific

men for the adjustment and comparison of observations, and
the determination of the most probable values of observed

M. 1



INTRODUCTION.

ies, with sufficient mathematical reasoning to ex

emplify the main principles of these methods in a clear light
to the general reader. Part II. will contain a full develop
ment and discussion of the theories upon which they are

founded. The first is designed more particularly for the use

of those who [have little time to devote to the niceties of

mathematical theory, but who are desirous of learning the

fundamental principles and practical applications of the

science; the second is intended for the use of students

taking up the subject from a theoretical point of view. Each

part, however, will be to some extent dependent upon the

other, and hence for convenience of reference the correspond

ing articles and formulae will be marked by corresponding
nuihbers.

Errors of Observations.

2. Constant Errors are those which always under the

same circumstances have the same value, and which there

fore strictly speaking are not errors, but the results of law.

As such we may mention : theoretical errors like the effects

of refraction in increasing the size of a vertical angle, or

the effects of temperature upon the length of rods used in

measuring a base line, which effects when their causes are

understood may be computed beforehand, and are hence no

longer to be classed as errors
;
instrumental like those arising

from an incorrect graduation of the limb of a theodolite, or

an imperfect adjustment of the line of collimation in a tele

scope, which may be also removed by calculation or by a

proper mode of using the instrument; and personal errors

which arise, in very delicate observations .and are due to

the habits of the observer, who may for instance in reading
a vernier always give the number of records too large or too

small by a constant quantity, and which may be corrected by
the application of a &quot;

personal equation.&quot;

Such errors being capable of elimination need no further

consideration in the discussion of our subject.

3. Mistakes are a class of errors committed by inex

perienced and occasionally even by the most skilled observers,

arising from mental confusion. As such are; mistakes in
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measuring an angle arising from sighting at the wrong
signal ;

mistakes in reading an angle by noting 54 instead
of 46, etc. This class of errors sometimes admits of cor
rection by comparison with other sets of observations : it will
receive no further notice in this book.

4. Accidental Errors are those that still remain after all

constant errors and mistakes have been carefully investigated
and eliminated from the numerical results. Such, for ex

ample, are the errors in levelling arising from sudden ex

pansions and contractions of the instrument or from the
effects of the wind, or those often observed in sighting across
a river arising from the anomalous and changing refraction
of the atmosphere. More than all, however, such errors arise

from the imperfections of our touch and sight, which render
it impossible for us to handle our instruments delicately, or

estimate accurately small divisions of their graduation. These
are the errors which appear in our numerical results, however

carefully the measurements be made, and which form the

subject of the following pages. Although at first sight it

would seem that such irregular errors could not come within
the province of mathematical investigation, it will be seen
in the sequel that they are governed by a wonderful and very
precise law, viz. the law of probability (Art. 11).

Principles of Probability.

5. We must therefore, as preliminary to our subject,
state and exemplify the mathematical definition of probability
and of the words &quot;most probable&quot; which we have used in

Art. 1.

If a coin be tossed up into the air, it is said in common
language that the chances are equal that it will turn up
head or tail, or that the occurrence of head or tail is equally

probable. Bo if a die marked in the usual manner be

thrown, it is said that the odds are one to five in favour of

throwing the ace, or five to one against throwing the ace.

This is the statement in popular language of the idea of

probability; its mathematical expression is but slightly
different. In throwing the coin we recognise that there are

two possible cases, either head or tail may turn up, and one

12



4 INTRODUCTION.

is as likely to occur as the other
;
and hence we express the

probability of throwing a head by the fraction -
,
and the

probability of throwing a tail also by ^ . So with the die

there are six equally probable cases, one of which may be
the ace, and hence the probability of throwing the ace in

1 5
one trial is

^ ,
and the probability of not throwing it is

^
.

The probability of the occurrence of an event is, then, always
a fraction whose denominator denotes the whole number of

2)ossible cases (each supposed equally probable) and whose

numerator denotes the number of cases favourable to its occur

rence.

Thus if there be in a bag 30 red and 20 white balls, and

a ball is drawn at random, it will be either red or white
;

both events are equally possible but not equally probable;
*?n

for the probability of drawing a red ball is vr: and that of
ou

I T. 20 3
1
2

+ 1

drawing a white ^A ,
or - and = respectively,ou o o

The mathematical expression of the probability of the

occurrence of an event is, then, a numerical measure of our

degree of confidence that it will occur. As a fraction may
have any value from to 1, so our confidence may range

from impossibility to certainty ; a small fraction like

denotes a very small probability, and a large one like

denotes a very large probability or almost a certainty.

6. If there be 18 red balls in a bag, and one is drawn
1 S

out, the probability that it is red is
|o
=

l&amp;gt;
that is, it is

certain that such a one will be drawn. Therefore : Unity is

the mathematical symbol for certainty. Hence if the proba

bility of the happening of an event be known, the probability
that it will not happen is unity minus the first probability.
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Thus the probability of throwing an ace in one trial is -
,

the probability of not throwing it is 1 ;
=

-. ,
as shown

otherwise in the preceding article.

7. If there be in a bag 20 red, 16 white, and 14 black

balls, and one is to be drawn out, the probability that it will

20 16
be red is ^ , that it will be white

,
and that it will be

o\) ou
14

black v. If however we ask the probability of drawing50

either a red or white ball, we have 36 favorable cases out of
O/* )O &quot;I

C*

the 50 total cases, and the answer is or ~-
-f s . Hence.

oO oO oO

if an event may happen in different independent ways, the

probability of its happening is the sum of the separate proba
bilities. Thus in tossing a coin, the probability of throwing

either head or tail is -4-- = !, that is, one is certain to be
ij LJ

thrown.

8. Let there be two bags, one of which contains 7 black

and 9 white balls, and the other 4 black and 11 white balls.

The probability of drawing a black ball from the first bag is

7 4
,
that of drawing one from the second . What now is

lo ^

the probability if I draw from both bags at the same time

that both balls drawn will be black ? Since each ball in the

first bag may form a pair with each one in the second, there

are 16x15 possible ways of drawing two balls; and since

each of the 7 black balls may be associated with each of the

4 black balls to form a pair, there are 7x4 cases favorable

to drawing two black balls. The required probability is

hence --
v - and since this is equal to x we have the

16 x lo 16 lo

principle that the probability of the happening of several in

dependent events is equal to the product of their respective

probabilities.



INTRODUCTION.

Thus if three dice be thrown, the probability that all will

be aces is x x x -_ = - -

&quot;

,
a small fraction.666

9. Suppose two coins to be thrown up at the same time,

they may both turn up heads or both tails, or one may be a

head and the other a tail. We wish to determine the re

spective probabilities. Let us call the two coins A and B,
then the, cases which may happen are

1. A head and B head,

2. A head and B tail,

3. A tail and B head,

4. A tail and B tail
;

and each of these cases being equally likely to occur, has for

its probability 7 . Hence the probability that both will be

heads is -.
, that one will be head the other tail -.- + --=-,

4 442
and that both will be tails -

. The sum of the probabilities

7 +
g&amp;gt;

-f 7 is unity, as should be the case (Art. 6), since one of

the events is certain to occur.

In like manner if there be ten coins thrown up at the
same time there may occur the following groups, having the

respective probabilities as annexed. (For an easy method of

computing these probabilities for 10 or any number of coins,
see Part II., Art. 9.)

All 10 coins may be heads, probability ln ;&amp;gt;r
;

JL W^TC

9 may be heads and 1 tail, fh-M

2
45

8 2
1024

120
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210
6 may be heads and 4 tails, probability ~.

;

5



8 INTRODUCTION;

2. A bag contains 100 balls, 50 are red, 12 are white,
and the rest are black. What is the probability of drawing
either a white or a black ball in one trial?

3. The probability of throwing an ace with a single die in

two trials is ^. What is the probability of not throwing it?

4. The probability that A can solve a certain problem
2 1

is
^ , the probability that B can solve it is 7 . What is the

3
probability that it will be solved if both try ? Ans. -

.

4

5. A bag contains 3 red, 4 white, and 5 black balls.

Required the probability of drawing 2 red balls, the ball first

drawn not being replaced before the second trial. Ans. ^ .

6. Six coins are tossed up. What is the probability that

4 of them will be heads and 2 tails ? Ans. ~ .

04

7. A coin is tossed up four times in succession. What
is the probability that all will be heads ?

The Probability Curve.

10. We may now proceed to consider the law of the

probability of errors of observation.

If a person accustomed to the use of the rifle, shoot 500
times at a target, all the balls will not hit tne central bull s-

eye, and some perhaps will not even hit the target. The
deviation of each bullet from the centre of the target is an

error, and furthermore an accidental error (Art. 4) produced

by changes in the wind, imperfections in the aim of the

marksman, etc.
;

for all constant errors, such as the effect of

gravitation, are assumed to be eliminated in the sighting of

the rifle. An examination of the bullet marks on the target
shows us, however, that these errors are arranged around the

central point in a very regular and symmetrical manner.

First we observe that small errors (that is, deviations from
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the centre) are more frequent than large ones
; secondly that

they are arranged symmetrically around the centre so that at

equal distances, above, below, and in every direction from that

centre, the number of marks in a square inch is the same
;

and thirdly we recognise the fact that very large errors, for

instance, a deviation from the centre of half a mile, do not

occur. Further, we observe that the greater the skill of the

marksman, the nearer are the marks to the centre point.

Again, suppose an engineer to measure an angle a hundred

times, each time with equal care. The readings will disagree,
the differences between the true value of the angle and each

of his results will be an error
;
and we recognise that these

errors, like those of the marksman, will be subject to three

laws
;

viz. 1st, small errors will be more frequent than large

ones
; 2nd, errors of excess and deficiency (that is, results

greater and less than the true value) will be equally numerous,
and 3rd, large errors like those of 2 do not occur. Further,

the more skilled the engineer in the measurement of angles,

the nearer will be his readings to the true value of the angle,

and the smaller will be his errors.

These three axioms or fundamental laws form the founda

tion of the science of the adjustment of observations.

11. In any set of carefully made observations, then, the

probability (Art. 5) of a small error is greater than that of a

large one, the probability of an error in excess of the true

value is the same as that of an equal error in deficiency, and

the probability of a very large error is zero. Thus the pro

bability of an error is a, function of the error, so that if x repre

sent any error, and y its probability,
* we may express the

relation between these quantities by the equation

(1) y=f(x),

which is read, y equals a function of x
t
that is, y is dependent

upon x for its value.

If we take then y as an ordinate, and x as an abscissa, we

may regard this as the equation of a curve, which must be of

a form so as to agree with the three laws adopted above
;

viz., its maximum ordinate OA must correspond to the error 0;

it must be symmetrical with respect to the axis of Y, since
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equal positive and negative errors are equally probable, as x
increases numerically the value of y must rapidly decrease,

Fig. l.

and when x becomes very large y must be zero. Fig. 1 repre
sents such a curve, OP and OM being errors, and PB and
MC their corresponding probabilities. Further, since dif
ferent observations have different degrees of accuracy, each
set of observations will have a distinct curve of its own,
whose particular dimensions will depend upon the precision
of the measurements, but whose general form must be that
of Fig. 1.

In Part II. we have given GAUSS method of determining
the equation of this curve from the principles of the theory
of probabilities (Arts. 5, 9), the fundamental axioms of Art. 10,
and the rule of the arithmetical mean or average (Art. 23).
Its equation is

or as it is usually written

(12) y
in which e denotes the base of the Napierian system of log
arithms or 271828, and c and h are constants which depend
upon the accuracy of the observations, and which determine
the dimensions of the curve for any particular case. Regard
ing for the present both c and li as unity, and attributing
values to x, we may by logarithms find the corresponding

9 A
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values of y. The following table gives a few of these values,
from which the reader may construct a curve to scale and
observe its correspondence in form with that given in Fig. 1.

_ _J_ 1
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exhibits the number of errors less numerically than OP. In

Fig. 1 we have drawn the ordinates so that the areas OABP,
PBGM, and MCX represent 125, 45, and 80 errors respec

tively.

Probability of Errors. (22) P =~ d (Jix).

foe
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cessive values OP, OH, etc. will be fractions, proportional to

the number of errors less than those values of x. The preced

ing table, which may be computed by the methods of Part II.,

is taken from the Berliner Jahrbuch for 1834, and gives the

areas on both sides of the axis Y corresponding to successive

numerical values of fix, x being the error, and h the measure

of precision, referred to in Art. 11.

13. To use this table it is necessary to know the value

of the constant h. Methods will be hereafter given (Arts.

24, 38) by which its value may be found for any given ob

servations. Granting for the present that it may be deter

mined, the following example will show the use of the table,

and exemplify the accordance of theory and practice.

BESSEL in his Fundamenta Astronomiae discusses 470 ob

servations made by BRADLEY upon the right ascensions of the

stars Sirius and Altair, and determines the measure of pre

cision to be /& = ;vr~&quot;^7C Now let it be required to find the

number of errors less than 0&quot; 2, 0&quot; 4, 0&quot; 6, etc. For the

number less than 0&quot; 2 we must take x = 0&quot; 2, and

and for the number less than 0&quot; 4, 0&quot; 6, etc., hx will be the

successive multiples of 3616 by 2, 3, etc. We find then

from the table,

for x = 0&quot;-2 with hx = 362 the area P = 39102,

... a = 0-4
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comparing them with the actual number of errors as given
by BESSEL, we have

theoretical no. of errors less than 0&quot; 2 is 184, actual no. was 182,

0-4. ..320,. ...318,

8
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we can never be sure that any adjustment that we may
make will give us the absolutely true values of the lines.

The most we can do is to determine approximate results,
which shall be the most probable values (Art. 9), and more
over be rendered the most probable value by the existence

of the observations themselves.

The preceding principles of the probability of error afford

us a general rale for the determination of the most probable
values of observed quantities. To deduce it in its simplest
form, let us suppose that the observations are equally good,
that is, that they are made with exactly the same precision ;

then the constants c and h (Art. 11) which measure that

precision will be the same for all observations. Let us

designate by s, t, u, etc. the quantities whose values are to

be derived from the measurements, and by J/
t , Mz ,

M
3 , etc.

the results of those measurements, which are made either

directly (Art. 18) upon s, t, u, etc., or indirectly (Art. 19) upon
other quantities related to them. If our measurements were

perfect, Mlt
M

z ,
etc. would be absolutely true values, and

there would be no discordance in the results found for s, t, u,

etc.
;
but being imperfect the results do not agree, and hence

errors (Arts. 4, 10) exist. Let those errors, which are the
differences between the measurements M

lt
M

2 ,
M

s , etc., and
the corresponding true values be denoted by x

iy
x

&amp;gt;2

,
#

3 ,
etc.

Now if x be any error and y its corresponding probability,
the law of the probability of errors (Art. 1 1) gives us

(12) y = ce- h**\

Hence for the errors actually committed we have

Prob. of the error x^ = ce ^^,

Now by Art. 8 the probability of committing all tbese

errors is the product of these respective probabilities : hence

it is

Designating this product by P, the expression becomes

(23) P = cxcxcx etc. x e~r
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in which c, e and h are constants. Now what the true values

of 5, t, u, etc. are, we cannot hope to find, and must hence be
content with determining their most probable values

;
and the

most probable system of values is that which has the greatest

probability (Art. 9). Each of the errors, x
l9

a?
2 ,

o*
3 , etc., is

dependent upon (is a function of) the quantities s, t, u, and
the most probable system of values for the latter corresponds
to the most probable system of errors.

The most probable system, then, is that for which P is a
maximum (Art. 9), and P in the above expression will be a
maximum when the exponent of e is a minimum, that is, when

(24) x? -f x* + x* -f x? + etc. = a minimum,
and as these terms are the squares of the differences or

errors, we have the principle that, the most probable values of
quantities, ivhich are the object of measurement, are those

which render the sum of the squares of the errors a minimum.

15. To illustrate the application of this principle, let us

suppose that the measurements M^, M^ J/3 ,
etc. are made

directly upon the same quantity M whose true value is z.

Then we have committed the errors

Now by the preceding principle the most probable value for

z is that which renders

(24) (z
- My + (z

-My + - My -f etc.

a minimum. If n be the number of observations, the last

term of this expression will be (z MJ*. Applying the usual
method for determining maxima and minima we differentiate

the expression thus:

place it equal to zero and divide the equation by %dz, giving

(s-j/j + (*- j/,) + (z- J/
3) + ... + (*-ig = o.

Solving this equation and denoting the resulting value
of z by z

ot
we have
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that is, the most probable value of z is the average of the n
measurements (Art. 23)*.

From the principle of Art. 14 arises the name &quot;Least

Squares
&quot;

to express the method now universally in use for
the adjustment of observations.

The Comparison of Observations.

16. In Art. 10 we observed that the greater the skill of
the marksman the nearer are the bullets to the centre of the

target, and also that the more skilled the engineer, the less
will be the deviations of his readings from the true value of
the angle. In Art. 11 our law of the probability of error,

(12) y = ce-*,
contained two constants, c and k, dependent upon the pre
cision of the observations. The accuracy of different sets of
observations may then be compared by comparing their mea
sures of precision given by h, or by comparing other constants
related to h. The one usually employed for this purpose is

called the probable error r, which we define as the error which
has such a value that the number of errors greater than it is

the same as the number less than it. Thus in the probability
curve, Fig. 1, the total area XBABX denotes the total num
ber of errors in a set of observations (Art. 12), and if the area
PBABPl,Q one-half of that total area, one-half of the errors
will be less than OP, and hence by our definition OP is the

probable error. Now since r is of such a value that if r = OP,
the area PBABA is J when the total area is unity, we have
only to find from the table (Art. 13) the value of hx = hr for
which P = 5. By interpolation between the values hx=Q 4&amp;lt;6

and /^=0*48, we find that P =0 5 when hx = (H769. Hence
we have

3} hr = 0-4769, orr=^^,
* The above is not strictly a demonstration of the law of the average or

arithmetical mean, for the equation of the probability curve (Art. 11) is

deduced upon the assumption that in direct observations the average is the
most probable true value

;
and hence the above is really reasoning in a

circle. It serves, however, to illustrate to the reader that the principle of

least squares is in agreement with the universally adopted method of taking
the arithmetical mean of equally good observations. See Art. GO.

M. 2
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from which we see that the values of h and r are always

reciprocally proportional.

To render more definite our conception of the measure of

precision h and the probable error r, let us consider the case

of two sets of observations made with different degrees of

accuracy. Let the measure of precision of the first be hlt and
of the second h

2 ;
then for the probability of errors in the

first set we shall have a curve whose equation is

(19) y = h
l
iir-*e- h&,

and for the second a curve given by

(19) y = h^7r-h-
Jl^

,

in which t is a very, very small constant, independent of h,

and TT is the number 3 1416. Now let us suppose that the

second set is twice as accurate as the first, so that A
x
= h and

A
2
= 2h

j
then the equations will be

e- h^ and y =

If for purposes of comparison we consider h and i as unity
and compute the values of y corresponding to successive

Fig. 2.
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numerical values of x, we may obtain two tables similar to
that of Art. 11, from which the two corresponding curves
may be plotted. Fig. 2 shows these curves, XB^A&X being
the one for the set of observations whose measure of precision
is li

v
or h, and XB

zAJ3ti

X the one for the set whose measure
of precision is h

z
or 2h. These curves show at a glance the

relative probabilities of corresponding errors in the two sets;
thus the probability of the error is twice as much in the
second as in the first set, the probability of the error OP

l
is

nearly the same in each, while the probability of an error
twice as large as OP

1
is much smaller in the second than in

the first set. Now if we draw the lines P^, P2
J5

2 , so that
the areas P^Aff^ and P,BZA,BZ

P
Z are respectively one-half

of the total areas of their corresponding curves, the line OP
will be the probable error of an observation in the first set)
and OP

2
the probable error of one in the second set. If we

represent these by the letters ^ and r
a , we must in each case

have the constant relation

(28) 7^ = 0-4769, V = 0-4769;

and since \ is twice \, it follows that r
2
must be one-half

of r
lt

as is represented in Fig. 2.

Thus we see that the probable error is an error of such
a magnitude that it is as likely as not that any assigned
error will exceed it or fall short of it. Hence the probability

that any error x taken at random will be less than r is i
,

and that it will be greater than r also ^. It is then an even
2S

wager that any error x will be greater or less than the pro
bable error r.

Referring now to the case of the 500 bullet-marks on
the target, let us imagine a circle described from the centre
which shall include exactly 250 of those marks. The radius
of this circle is the probable error of the marksman. If

he is to aim and shoot once more, it will be an even chance
that the bullet will strike within the circle, that is, that his

error x will be less than his probable error r. If another

rifleman, less skilful than the first, shoot also 500 bullets at

the target, and we draw another larger circle which includes

22
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250 of them, the radius of this circle will be his probable
error. If the circle of the first marksman be 4 inches and

that of the second 12, we recognise from our constant rela

tion between h and r, that the precision of the first is three

times that of the second
;
and while we can afford to wager

one to one that a shot of the first man will fall within 4

inches of the centre, we can only for the second man afford

to make an even wager that it will fall within 12 inches of

the centre.

Methods will be hereafter given (Art. 24) by which h,

and consequently r, may be determined for any given ob

servations. For the present we give the following numerical

example, illustrating more fully the practical use of the pro
bable error.

17. Let an angle be measured ten times equally care

fully by a theodolite reading to
10&quot;,

and again be measured

the same number of times with a transit reading only to 1 .

Suppose the results to be the following :

Observation.
|

By Thi-odolite.
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Art. 24, the probable error of the mean of the theodolite
observations is

3&quot;1, and of that of the transit 13&quot; 8, so that
the results may be written

by the theodolite, 24 13 36&quot; + 3&quot;-l
;

by the transit, 24 13 24&quot; 13&quot; S.

The meaning of these results is, that our confidence in
the work of the theodolite is such that we could make an
even wager that the true value of the angle is

between 24 13 36&quot; + 3&quot;! and 24 13 36&quot;
-

3&quot; l,

but that as far as the transit work is concerned we could

only afford to bet one against one that it is

between 24 13 24&quot; + 13&quot; 8 and 24 13 24&quot;
-

13&quot;-S.

The range of probable error in the first is only about
one-fourth of that in the second, and hence we recognise
that the theodolite average is four times as precise as that
of the transit. Also, if these ten observations were to be

again repeated, with equal carefulness, it will be an even

wager that the new averages will differ from the true value
of the angle by the respective quantities 3&quot; l and 13&quot; S.

In like manner we may find that the probable error of

a single observation is by the theodolite 9&quot; 7, and by the
transit 43&quot; 5, and these observations signify that before the
observations were taken, errors greater and less than those

quantities were equally probable. That this is sustained
in practice the reader may assure himself by assuming the

averages in the above example as the true values of the

angle and then computing the errors, and he will find in

the one case 4 errors greater and 6 less than 9&quot; 7, and in the
other 4 greater and 6 less than 43&quot; 5 ; which, considering that

this is not an actual example but one written down at

random, is a remarkably close agreement.

The probable error then furnishes us with the means of

comparing observations. The smaller that quantity the

better and more reliable are the measurements. Since the

probable error r is inversely proportional to the measure of

precision h (Art. 16), we see that if the probable error of

one set of measurements is one-half that of a second set,
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its precision is twice as great; a glance at the curves of

Fig. 2 shows this graphically to the eye. The probable error

gives moreover an absolute measure of our confidence in the

accuracy of the work.

Kinds of Observations.

IS. Direct observations are those which are made di

rectly upon the quantity whose magnitude is to be deter

mined. Such are, measurements of a line by direct chaining,
of an angle by direct reading with a transit, etc. They occur
in the daily practice of every engineer.

19. Indirect observations are not made upon the quantity
whose size is to be measured, but upon some other quantity
or quantities related to it. Such are, measurements of a
line through a triangulation by means of a base and observed

angles, of an angle by regarding it as the sum or difference
of other angles, the determination of the difference of level
of two points by readings upon graduated rods set up at
different places, the determination of latitude by observing
the altitude of stars, etc. In fact the majority of observa
tions in engineering and physical science generally belong to

this class.

20. Conditioned observations may be either direct or

indirect, but are subject to some rigorous requirement or
condition. As such may be mentioned : the three measured

angles in a plane triangle must be so adjusted that their
sum shall be exactly 180, the sum of all the percentages in
a chemical analysis must equal 100, the sum of the northings
must equal the sum of the southings in any traverse which

begins and ends at the same point, etc.

21. Measurements which are subject to no such rigorous
conditions are called independent, meaning thereby that the
observed quantities have no mutual dependence, so that all

systems of values are in thought equally possible, and a
variation of the value of one quantity need not necessarily
affect the values of the others. In conditioned observations,

however, all systems of values are not in thought equally
possible, but only those can be admitted which exactly satisfy
the rigorous conditions.
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As an illustration of these classes let us consider the

angles A OB and BO C having their vertices at the same

point (Fig. 3). If we set up a transit at the point 0,
and measure the angle AOB or BOG, each of these measure
ments is a direct observation. If however in order to deter-

mine these angles we clamp the instrument so that its zero

point has some arbitary direction OM, and then measure the

angles MOA, MOB and M G, the observations are indirect.

Moreover, whether observed directly or indirectly, the values

obtained for AOB and BOO are independent of each other.

But if we measure the angles AOB, BOOsmd A 00 by either

of the above methods, these observations are conditioned, or

subject to the rigorous requirement that when finally ad

justed AOB plus BOG must equal A 00, and no system of

values can be adopted for these three angles which does not

exactly satisfy this condition.

These kinds of observations suggest the division of our

subject into three parts, and we shall accordingly treat in

Chapter II. of the adjustment and comparison of direct ob

servations upon a single quantity; in Chapter III. of in

dependent observations, either direct or indirect, upon several

quantities ;
and in Chapter IV. of conditioned observations.



CHAPTER II.

DIRECT OBSERVATIONS UPON A SINGLE QUANTITY.

22. THE principle of the arithmetical mean has been

from a very remote antiquity employed to obtain the ad

justed value of an unknown quantity, which is the object of

direct measurement. Its universal acceptance as an axiomatic

rule for adjusting such observations, and the simplicity of the

process itself, would seem to require that it should be placed
at the foundation of any system for the combination of nu
merical measures. We must however warn the reader that

the principle of the average is not applicable to any observa

tions except those of equally good direct measurements upon
a single quantity, and that it cannot be used for the combina
tion of either direct or indirect observations upon several

related quantities. A single illustration will show the danger
of its indiscriminate use, and satisfy the reader that care is

required to limit it to its proper sphere.

Let A and B be two points whose elevations above a

given datum are to be determined, and suppose, in order

that the observations may be equally good, ;that these three

points are situated at the vertices of an equilateral triangle.
Now let a level be set up between and A and measure

ments taken which show A to be 10 feet higher than 0, then

let it be moved to a point between and B, and readings
taken which show B to be 15 feet higher than 0; and lastly

let it be set between A and B, and readings taken showing B
to be 4 feet above A.

These observations, it will be at once seen, are discordant,

and we ask, how shall they be adjusted? Many persons

would, we are afraid, proceed to apply the law of the average
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thus : for the elevation of A we have by one route 10 feet,

and by the other 1 1 feet, and hence A must be taken as the

average 10^ feet
;
also by one route B is 15, and by the other

14 feet, and hence B should be called 14| feet. This however
is entirely wrong; as a moment s consideration will show, for

by this adjustment the measurement between and A has

been corrected from 10 to 10|, that between and B has
been corrected from 15 to 14 J, while that between A and B
remains 14*^ 10J = 4, or has not been corrected at all. The

principle of the average does not therefore apply to such

observations, or in fact to any except equally good observations

upon a single quantity. The proper adjusted heights of A
and B, we may mention, are to be determined by the methods
of the next chapter and are 10J and 14| feet respectively,
results which suppose the correction of each observation by
an equal amount.

The Arithmetical Mean.

23. The average or arithmetical mean has always been

accepted and used as the best rule for combining direct

observations of equal precision upon one and the same quan
tity. The following reasoning may be given to justify its use.

Suppose a certain angle is to be measured, and let its

true but unknown value be z. A single reading taken by a

transit gives the value M
t
. This being the only measurement,

its value M
t
must be accepted as the most probable result,

and used instead of the true value z. Now let a second

reading be taken with the same instrument and under the

same circumstances, which gives the value J/
2
. Then since

there is no reason for preferring one result to the other, we
consider that errors in excess and deficiency from the true

value are equally probable (Art. 10), and hence combine the

results so that the differences z M
t
and & M

z
are nume

rically equal, and this gives

and this value of z we must accept as the most probable and

must use it as representing, as far as our observations go, the

true value.
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In like manner if we have n observations giving the

values M^ Mz ,
M

5
... Mn ,

errors greater and less than the

true value are equally probable, and in a large number of

observations will be equally numerous, and the algebraic
sum of all such errors should be zero, or

? _M
2) + (z-M2) + ... -f (z

-
JfJ = 0.

The solution of this equation will give us, as far as our n
measurements are concerned, the value of z, but those mea
surements being limited in number and discordant, we cannot

regard it as absolutely true, but only as probably true, and
we call it the most probable value. Designating it by Z

Q
we

have from the above equation

(29) ^
Hence in any series of equally precise observations upon a

single quantity, the arithmetical mean is the most probable
value, that is, the most accurate value deducible from those

observations. See Art. G6.

Problem. The bearing of a line is taken five times with
a solar compass giving the values,

N. 12 E, N. 7 E, ;
N, 2 W., N. 12 W., N. 5 E.

;

what is the adjusted bearing ?

Ans.

12 +7-2-12+5^^^

Probable Error of a Single Observation and of the

Arithmetical Mean.

24. Let one and the same quantity, for example an
angle, be measured n times with equal care

;
let z be the

average or arithmetical mean of the measurements

M
I}
M

z ,
M

3 , etc.

Let each measurement be subtracted from the average z
,
and

let the differences or residuals be called v
l}

v
2&amp;gt;

v
z , etc., so that

(31) v
l
= z - MI , v

t
= Z

Q
- IT

2 ,
v
3
= Z

Q
- M

s ,
etc.
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Also let 2fl
2 denote the sum of the squares of these

residuals, or

Then, as proved in Part II., the probable error of a single
observation is

(42) r = 0-6745

and the probable error of the arithmetical mean z
a is

(47) r = -Tr= 0-6745 A /
^

_

Jn V n (Ti-1)

To find then the probable errors r and r
,
we have to find

the average, subtract from it the several measurements thus

forming the residuals, then to square each of these and add
the products, and then to use the above formulae.

The reader should particularly observe the distinction

between the residual v and the error x (Arts. 11, 14) ;
the

former is the difference between the most probable result and
a single observation; the latter is the difference between the

true value and an observation, and of course can never be

exactly known since we can never be certain of having found
the true value. Thus if z be the true value of an angle, and
z the average of the observations M

19
M

2 ,
M

3 , etc., the errors

are (z M^ (z M
z), etc., while the residuals are (z M

1 ),

etc.

25. The probable error gives us the means of comparing
the precision of our observations, and of determining the

degree of confidence which we can place in them. An illus

tration of its use has already been given in Art. 17. We
append another example worked out in full.

In the U. S. Coast Survey Report for 1854, the following
24 measurements are given of the angle Quaker-Pocasset-

Beacon, taken at the station Pocasset in Mass., each observa

tion being the result of an equal number of repetitions and of

the same precision or weight.

We first determine the average or the most probable
value of the angle by adding the readings and dividing the
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sum by 24. This is 116 43 49&quot; G4. Then subtracting the

first reading from this we have the residual v
1
= 5 19 which

Xo.
| Reading.
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and the probable error of the mean Z
Q
is

r = 0-6745

Hence the adjusted value of the angle may be written

11643 49&quot;-640&quot;-275.

If then these 24 observations were to be repeated under
the same circumstances, it would be an even wager that

there would be 12 errors greater and 12 less that 1&quot; 349, and
also an even wager that the mean would differ from the true

value of the angle by 275. Our confidence then in the

above mean 116 43 49&quot;*64 is such that we regard 0&quot; 275
as the error to which it is liable, that is, it is an even wager
that the mean is within 0&quot;*275 of the true value, and of

course also an even wager that it exceeds the true value by
that amount.

26. From the above values given for the probable errors

we observe that

If we denote the measures of precision corresponding to

r and r by h and h
, we have (Art. 16)

0-4769 , 0-4769
(28) ^-audr.--^-;

and inserting these in the expression above, we find

(46) A = Ww,
that is, the precision of the arithmetical mean increases as the

square root of the number of observations.

In order then to make the value of the angle in the

above examples twice as precise, that is, make the probable

error of the mean one-half as large, we must have four times

as many observations, or 96. Let the reader test this rule

by taking at random any six of those observations, and find

the probable errors. The probable error of the mean will

be approximately twice that given above, or

2 xO&quot;-275=0&quot;-55,
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while the probable error of a single observation will remain

nearly the same as before, or 1&quot; 35.

Problems. 1. A base line is measured five times with

a steel tape reading to hundredths of a foot, and also five

times with a chain reading to tenths of a foot, with the

following results:

By the tape. By the chain.

74117 feet 741 2 feet

741-09 ... 741-4 ...

741-22 ... 741-0 ...

741-12 ... 741-3 ...

741-10 ... 741-1 ...

What are the averages and their probable errors ?

Ans. By tape, 74114 + O OIG.

2. A line is measured five times, and the probable error

of the mean is 016 feet. How many additional measure

ments of the same precision are necessary in order that the

probable error of the mean shall be only 004 feet?

Weights of Observations. The General Mean.

27. We have thus far considered our observations as

equally precise, that is, as made with the same instrument,
and under exactly the same circumstances. We now come
to the case of observations of unequal precision, or as

we usually say of unequal weight. The sense in which we
use this word we will try to make clear by a practical

illustration. Suppose a line to be measured 20 times

with the same chain, 10 measurements giving the value

934-2 feet, 7 giving the value 934*0 feet, and 3 giving
934*4. The adjustment of these results is effected by the

above method of the average, by writing the first value

10 times, the second 7 and the third 3, adding the numbers
and dividing their sum by 20

;
this process is evidently the

same as multiplying each value by the number of times it

occurs, and dividing the sum of the three products by 20, or

10 x 934-2 + 7 x 934-0 + 3 x 934-4

934-0 + = 93*16.
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Now if the 10 measurements, instead of giving each time
934-2 feet, had given 10 results whose mean was that

number, 10 would be the weight of 934 2, or considering
934 2 as a single observation, 10 is said to be its weight.
Also 7, 3, and 20 are the weights of 934 0, 934 4, and 93416:
the first being the equivalent of 7, the second of 3, and the
third of 20 observations, each equally good.

By the term weights, then, we mean numbers related to

the accuracy of the measurements, so that an observation of

the weight 8 is to be regarded as equal to 8 observations of

the weight 1
;
and observations having the same weight are

to be considered as equally good. The average of n equally
good observations, being the equivalent of those observations,
has thus a weight of n.

The combination of weighted observations is to be made

by the process illustrated by the above numerical example ;

thus if gv &amp;lt;72 ,
&amp;lt;/3 ,

etc. be the weights of the measurements
M

lf M^ M3 , etc., the adjusted value is

or, the most probable value of the measured quantity is found
by multiplying each observation ~by its weight, and dividing
the sum of the products by the sum of the weights. This value

Z is called the General Mean to distinguish it from the arith

metical mean z
of which is only to be used when all the

weights are equal.

Weights should be carefully distinguished from measures

of precision (Art. 16): the former are relative numbers, which
are usually so taken as to be free from fractions; the latter

are absolute quantities. The relation between them will be

shown in the next article.

Problems. 1. An angle is measured 20 times with the

same theodolite. The mean of 6 readings is 27 34 32&quot;,
the

mean of 10 is 27 34 40&quot;,
and of the other 4 is 27 34 48&quot;.

What is the adjusted value ? Ans. 27 34 39&quot; 2.

2. The bearing of a certain line is taken as N. 89 45 W.,
and as S. 89 45 W. If the weight of the first observation
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is 13, and that of the second 2, what is the most probable
value of the bearing ? Ans. N. 89 49 W. whose weight is 15.

28. To establish the relation between weights and pro
bable errors, let us consider n observations upon the same

quantity, giving the results M
lt
J/

2 ,
M

3 , etc. whose measures
of precision are h

lt
h

2 ,
h
3 ,

etc. If z is the true value of the

quantity, the errors are (a JI/J =a?
1 , (z J/

2)=#2 ,
etc.

Then from Art. 11,

Prob. of the error x
1 =y1

= c
x

etc., etc.

From Art. 8 the probability P of committing all these errors

is the product of the probabilities ylt yv y3 , etc., or

and the most probable value of z is that for which P is

a maximum (Art. 9), and in order that P should be a

maximum, the quantity,

(2G) hfa* + hfa* + 7?X + etc,

must be a minimum. Inserting in this the values of x
lt

#
2 , x^ etc. in terms of z, we have

/i,

2

(z
-
J/J

2 + h
t (z M

z)

z + h
a (z

- 1T
3)

2 + etc. = a minimum.

Differentiating it with reference to z, dividing by 2dz and

placing the derivative equal to zero, we have

V (z
- iy + V (z

- Jl/
a) +V (*

-
Jl/i) + etc. = 0.

Solving this equation, and denoting the resulting value of

z by Z, we find the most probable result to be

_ V^+V^ +^
The value of ^ given by this expression must be the same
as that given by the general mean in Art. 27. Comparing
the two expressions, we see that
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or,
the^ weights of observations are proportional to the squares

of their measures of precision.

A direct application of these principles can be made to
the very common case of different sets of observations of

unequal precision, arising from measurements by different
instruments of one and the same quantity. Let the number
of observations in the first series be n

lt
in the second n

2 ,
in

the third n
3 , etc.; let the mean as given by the first series

be
2?j, by the second z^ by the third z

s , etc.; and let the

weights of these be #,, #2 ,
&amp;lt;/3 , etc.; and the corresponding

measures of precision be h
lf h^ h

3 ,
etc. Then from the above

principle

(49) ffl
:

ff,
: gz

:: V : V : h,\

Inserting in these the values of h
lt

h
&amp;gt;2

, etc., which are
determined in Part II., we have (after striking out the
common factor 2)

(52) q q - a ^IV&quot;
1
! . ^fa- 1

) . &quot;, fa - 1)V I ffi .9,
-

ff, 2^ &quot;Sv

&quot; ~
-2t,

&quot;&amp;gt;

in which 2v
2
denotes the sum of the squares of the residuals

in the first set, 2t/
2
in the second, etc. (Art. 24). We have

then in such a case to find the average of each set, next the

weights of these averages by the proportion just given, and
then the most probable value of the measured quantity by
the general mean (Art. 27) of the several arithmetical

means, that is, by the formula

(50) ^=^J- .

To illustrate this very common case we give the follow

ing example and problems.

A certain line was measured by three different surveying

parties, using three different chains
;
the first party measured

it 5 times with the results given in column I. below, the
second 6 times with results as in column II., and the third
4 times as shown in column III. What are the relative

weights of the three means and the most probable length of
the line?

M. 3
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&quot;VVe first determine the three means ,, and z . then
a

subtracting each observation from its mean, find the residuals

I.
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By the theodolite.
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puted the probable errors of two arithmetical means, the

relative weights can be immediately found, and the two

means then combined by the general mean.

Thus in Art. 17 we have a case where the same angle is

measured by a theodolite and by a transit, giving the means
and probable errors,

by the theodolite, 24 13 36&quot; 3&quot;!
;

by the transit, 24 13 24&quot; 13&quot;S.

Designating the weights of these by gi
and g2 ,

we have

from the above principle,

#1 : 9* : 2 :: 119 : 6 nearly;

and the most probable value of the angle then is

Problems. 1. What is the most probable value of the

base line in Prob. 1 of Art. 26, as given by the two sets of

observations ? Ans. 741146.

2. Three sets of observations upon the same quantity

give the following averages and probable errors,

803-4 0-4
;

803 2 3
;

SOS l O OS.

What is the adjusted value of the quantity ?

Probable Error of the General Mean.

30. Having determined the adjusted value of observa

tions of unequal weights by the preceding methods, we next

inquire what is our degree of confidence in that result, or

what is its probable error (Art. 16).

Let n be the number of observations, or sets of measure

ments, fflt g2 , #3 , etc. their relative weights; let Z be the

general mean as found by Art. 27, and G its weight. Also

let v
lt

v
2 ,

t
3 , etc. be the residuals or differences between

the general mean and each observation, and 2yv
z
the sum
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#iv i

2

+#A2

+#3v3

2 + etc - tnat ig
&amp;gt;

tne sum of the quantities
formed by multiplying the square of each residual by its cor

responding weight. Then, as proved in Part II., the probable
error of an observation whose weight is unity is

(65) r = 0-6745 .

Having found r, the probable error of the general mean,
or of any observation, may be found by the principle of
Art. 29. If G be the weight of the general mean and R its

probable error, g^ the weight of a given observation and r

its probable error, we have

(53) G:^ :!::!: 1:1,
|

from which we find

(56) E = - and r
1
=-;

that is, the probable error of an observation whose weight is

known, is equal to the probable error of an observation of the

weight 1, divided by the square root of the given weight. The

weight 6r of the general mean is always equal to

9\ + 92 +#3 + etc - (^rt - 2^)-

If we have then several sets of measurements as in

Art. 28, whose averages are zv z
2 ,

z
s , etc., we have to find

their relative weights glt g2 , g8 , etc., and their general mean
Z. Subtracting each average from the general mean gives us

the residuals v
lt
v
a , etc.; multiplying the square of each by its

weight and adding the products gives us the sum ^,gv\ Then
n being the number of sets, the above formulas furnish us with

the probable errors. Further, if we have found the probable
errors r

lt
r

2 ,
etc. of the averages z

l9
z
2 , etc., the principle of

Art. 29 gives us for the probable error of the general mean

(54) E = ^

which may in some cases be more convenient to use than the

formulae above. The following examples and problems will

illustrate the application of the formula.
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1. Suppose that the observations in the example of
Art. 25 are given as in the following column ^, the mean of
the first five being 48&quot; 81 with the weight 5, the mean of the
next four 48&quot;76 with the weight 4, and so on. Then the

operation for finding the probable error of the general mean
is thus exhibited:

9-
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which agrees sufficiently well for most practical comparisons
with that found before.

2. In Prob. 1 of Art. 28 the probable error of the theodo

lite mean is 1&quot; 4, of the transit 23&quot; 3, and of the sextant 5&quot; 8,

and their relative weights are nearly 288, 1 and 16. Hence
the probable error of the general mean is by our second

formula

The first formula gives a less result, as n is only 3. Strict

agreement in such results cannot be expected, since the

theory upon which the formulae are deduced supposes n to be

a large number, and in our examples illustrating their appli
cation we are obliged to choose cases involving but few

observations.

Problems. 3. What is the general mean of the observa

tions on the base line in the question of Art. 26, and its

probable error ? Ans. 741146 012.

4. Eight observations of a quantity give the results 769,

768, 767, 766, 765, 764, 763 and 762, whose relative weights
are 1, 2, 3, 4, 5, 6, 7 and 8. What is the probable error of

the general mean, and the probable error of each obser

vation ?

Recapitulation.

31. We have now given and illustrated the methods for

adjusting and comparing direct observations upon a single

quantity. They fall under three heads :

1st. If all the observations are equally good or of equal

weight, the average is the most probable result (Art. 23).

The degree of confidence which we can place in one of those

observations, or in the average, is shown by their probable
errors (Art. 24).

2nd. If there are several sets of observations made under

different circumstances or by different instruments, the most

probable result is given by the general mean (Art. 27), and

in order to obtain that result the relative weights of the



40 DIRECT OBSERVATIONS UPON A SINGLE QUANTITY.

several averages must be deduced by the proportion of
Art. 28. The precision of the several means and of the final

general mean is also shown by their probable errors (Art. 30).

3rd. If we have single observations which are known to
be of unequal precision, we have no means of finding their

weights as in the preceding case, but must assign to them
such weights as they seem to deserve in our judgment.

Thus^if
an angle be measured once by a theodolite reading

to
20&quot;, and once by a transit reading to 1

, we recognise that
the first is the more reliable, and should, in finding the
mean, give it a weight of about 9 times as much as the second.

By taking series of observations with two such instruments,
their relative weights may be found and recorded for use in
cases where single measurements arise. When such know
ledge does not exist, weights may be assigned, and then the
general mean found as in Art. 27. The assigning of weights

. in such case is of course a matter requiring experience and
judgment.

The combination of direct observations upon different but
related quantities is considered in the two following chapters.The most simple cases of such adjustments, such as finding
the length of a base line, which has been measured in several

portions, are referred to in Arts. 41 and 42, in connection with
the discussion of their probable errors.



CHAPTER III.

INDEPENDENT OBSERVATIONS UPON SEVERAL QUANTITIES.

32. IN Arts. 18 and 19 we divided observations into

direct and indirect, the former being made upon the quanti
ties to be determined, and the latter upon other quantities
related to them. The line of demarcation between the two
is however not very distinct, nor is it necessary that we
should be able to point it out clearly. For practical purposes

independent observations need only to be distinguished as

those upon one quantity, which have been already considered,

and as those involving more than one quantity, which we are

now to take up. The methods and formula of the preceding

chapter which treat of one quantity, although for convenience

given separately, are indeed but particular cases of those now
to be developed.

Independent observations, whether direct or indirect,

which are made to determine the magnitudes of quantities,
are generally represented by equations which we shall call

observation equations. To illustrate how they arise let us

consider the following practical case. Let Fig. 4.

(Fig. 4) represent a given bench-mark, o

and S, T, U three points whose elevations f~~ *---__
above are to be determined. Let five

,,&amp;gt;9

lines of levels be run between these points
as indicated by the dotted lines of the

figure, giving the following results :

Observation 1. S above = 10 feet,

2. T S= 7 ...

3. T 0= 18 ...

4. T U= 9 ...

,. 5. U below S= 2 ...
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It will be at once perceived that the measurements are

discordant
;

if we take observations 1 and 2 as correct, the

height of S is 10 feet and T is 17 ;
if 2 and 3 are correct, S

is 11 and Tis 18 feet, etc. : and in general it will be found

impossible to find a system of values which will exactly satisfy
all the observations. If we designate the elevations of the

points S, T and Z7by the letters s, t and u, the observations

furnish the following equations :

5 = 10,

t-s= 7,

1*18,
t-u= 9,

s-u = 2,

each one of which is an approximation to the truth, but all

of which cannot be correct. The number of these equations
is 5, the number of the unknown quantities is 3, and hence
an exact solution cannot be made by algebraic processes.
It being impossible then to find values of s, t, and u which
will satisfy all the equations, we must be content with deter

mining their most probable values (Art. 9).

So, in general, independent observations upon several

quantities give rise to independent observation equations

greater in number than the unknown quantities to be deter

mined
;
and our problem is, to find, out of the many systems

of values, all equally possible, which may be assigned to the

unknown quantities, a system which is the most probable, and
hence the best.

Solution of Observation Equations.

33. We take up first the case of measurements of equal

precision or of equal weight. Let M
lf
M

z ,
M

s ,
etc. be the

numerical results of the observations which are n in number,
and which are made upon quantities related to the quantities
s, t, u, etc., whose values are to be found. Let the observa
tions give rise to the following observation equations :

\
s + bf + CjU + etc. = M

lt

(66) ajt + 1.} + c
2
u + etc. = M

9 ,

a
3
s + Ij + c

3
u -f etc. = J/

3 ,

etc., etc.,
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in which a
l9
a

2 , b
lt 2 ,

etc. are the known coefficients of the
unknown quantities. The number of the measurements is n,

and if the number of unknown quantities were also n the
solution of the equations could at once be made. But as we
have seen the number of the latter is usually less than n, and
an exact solution is impossible. We must therefore be content
with finding the most probable values of s, t, u, etc.

Whatever system of values is chosen for s, t, u, etc. it will

not exactly satisfy each of the above equations, since the
measurements M

lt
M

2 ,
M

3 , etc. are imperfect. If then we
consider s, t, u, etc. as representing the true values of the

quantities, the above equations may be written

a^s + If + c^u + etc. M
:
= x

lf

(67) a
2
s + Ijt + c

2
M + etc. M

2
= ar

2 ,

a
z
s + bjt.

4- c
3
u + etc. J/

3
= a?

8 ,

etc., etc.,

that is to say, they do not reduce exactly to zero for any values

of the unknown quantities, but leave small differences or

errors x
lt
x

2 ,
a?

3 ,
etc. Now by our general principle of Art. 14

the most probable values of the unknown quantities are those

which make the sum of the squares of the errors a minimum,
and hence the most probable values of s, t, u, etc. are those

which make x* + as* + x* -f etc. the least possible. We pro-
cede to develope a method for finding those quantities.

Let us first consider what is the most probable value of

the unknown quantity s. As we need only to regard s, let

us denote the terms in the above equations, independent of s,

by the letters N
lt N^, NB ,

etc. Then they become

etc.

Squaring both terms of each of these equations and

adding the results, we have

+ etc. = + x + x*+ etc.

According to the principle above stated this quantity is

to be made a minimum to give the most probable value of s.
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Differentiating it Avith respect to s, placing the first differen

tial coefficient equal to zero, and dividing by 2, we have

! (a,s + NJ + a
2 (ai2

s +N2) + a
3 (a3

s +N
3) + etc. = 0,

and this is the equation which furnishes us with the most

probable value of s. Hence we have the principle : To form
the equation which gives the most probable value for one of the

unknown quantities as s, we multiply each of the observation

equations by the coefficient of s in that equation and add the

results. In the same way, to find the equation for t we

multiply each observation equation by the coefficient of t in

that equation and add the results. The equations thus
formed are called normal equations; they will be the same in

number as the number of the unknown quantities, and will

be satisfied by only one system of values of the unknown
quantities, which will therefore be the most probable system.

34. For illustration, let us suppose that four measure
ments upon three unknown quantities have given the obser

vation equations
s-t+2u= 3.: ................... (1),

= 5 ..................... (2),

= 21 ..................... (3),

-5 + 3^+3^ = 14 ..................... (4),

from which it is required to find the best system of values

of 5, t, and u. To form the normal equation for s, we must

multiply each equation by the coefficient of s in that equa
tion and add the results; hence multiplying equation (1) by 1,

equation (2) by 3, equation (3) by 4, and equation (4) by
1, we have

.

and adding these, we have the first normal equation

27*+6* = 88 ..................... (5).

We must now perform the same operation for t : multi

plying equation (1) by 1, equation (2) by 2, equation (3)
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by 1, and equation (4) by 3, and adding the results, we have
the normal equation for t, viz.

In like manner, we multiply equation (1) by 2, equation
(2) by 5, equation (3) by 4, equation (4) by 3, and add the
results to form the normal equation for u, viz.

+ 54^ = 107 (7).

By this process we have three normal equations (5), (6)
ami (7), containing only three unknown quantities, and

solving these by any of the algebraic methods, we find

s = 2-4702, t = 3-5509, u =1-9157.

If we substitute these values in equations (1), (2), (3)
and (4) we shall find that they will not reduce to zero, but

give the residuals

^ = -0-2493, v
2
= - 0-0661, v

3
= 0945, ^ = -00704,

the sum of whose squares is 0804. (Note, the student
should not forget the distinction between the errors C

1 ,

#
2 , etc. and the residuals v^, v

2 ,
etc. See Art. 24.) This

quantity 0*0804 is less than the sum of the squares of the
residuals resulting from any other values of s, t, and u. Let
the reader test this by trying other values, for instance

s = 2f t = 3f, and u = If
To solve observation equations of equal weight, we have

then the following : For each of the unknown quantities form
a normal equation by multiplying each observation equation

by the coefficient of that unknown quantity in that equation

(taken with itsproper sign], and adding the results. Then there

will be as many normal equations as unknown quantities, and
their solution will give the most probable values of those

unknown quantities. In forming the normal equations it

should be particularly noticed that the signs of the coeffi

cients (+ or
)
are to be observed in performing the multi

plications ;
and also that when the unknown quantity under

consideration does not occur in an observation equation its

coefficient is 0. For further illustration we give an addi

tional example, and a couple of problems as exercises for

the student.
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If we have given the observation equations

s = 14,

* - s = 7,

*= 20,

the coefficient of s in the first is 1, in the second -
1, and

in the third 0. Hence multiplying each equation by these
numbers and adding the results, we have

25 - t = 7

as the normal equation for s. Also the coefficient of t in the
first equation is 0, in the second 1, and in the third 1, and
in like manner the normal equation for t is

2t - s = 27.

Solving the two normal equations, we find as the best values

* = 13, and =
20J.

Problems. 1. Form the normal equations, and find the
most probable values of s, t and u from the observation
equations stated in Art. 32.

Ans. The normal equations are

3s t u = 5,

from which s = lOg, t = I7f, and u = SJ feet.

2. Find the most probable values of x, y, and z from
the observation equations

0=5,

+ ?/ + # = 13,

z + y x = 4.

Ans. a? = 4f, etc.

Adjustment of Independent Observations of equal weight.

35. The preceding principles furnish us with the follow
ing method of adjusting independent observations, either
direct or indirect, upon several quantities.
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1st. Represent each quantity to be determined by a

symbol s, t, u, etc., and for each observation write an observa

tion equation (Art. 32).

2nd. From the observation equations form the normal

equations (Arts. 33, 34), which will be as many as there are

unknown quantities.

3rd. Solve the normal equations by any convenient

algebraic method; the resulting values of the unknown
quantities will be their most probable values (Art. 33), that

is, the best values which can be deduced from the given
observations.

The following examples will illustrate the application
of the method to cases arising in ordinary engineering

practice.

I. Adjustment of level lines. In the Report of the II. 8.

Geological and Geographical Survey of the Territories for

1873, Mr J. T. GARDNER gives the following measurements
as deduced from an examination of railroad profiles and
coast survey levels.

1. S above 0, 573 OS feet, by Coast Survey, and Canal

levels, via Albany.

2. T S, 2*60 Observations on surface

of Lake Erie.

3. T 0, 575-27 Coast Survey and R R.

levels, via Albany.

4. U T, 167-33 R R. levels.

5. X U, 3*80

6. X T, 170-28 via Alliance and

Crestline,

7. X Y, 425-00

8. Y 0, 319-91 R R. and Coast Survey
levels, via Phil.

9. Y 0,319-75 R.R. levels, via Baltimore.

In which

is the mean surface of the Atlantic Ocean,
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S is tlie mean surface of Lake Erie at Buffalo,

T is Cleveland city datum plane,

V is Depot track at Columbus, Ohio,

X is Union Depot track at Pittsburg,

Y is Depot track at Harrisburg.

It is required to find the most probable elevations of
each of these points above the datum 0, as given by these
nine observations, supposed here to be of equal reliability or

weight.

We represent the unknown heights of S, T, U, X and Y
by the letters s, t, u, x and y. Then the observations give
us the equations

t-s= 2-60,

= 575-27,
- t = 107-33,

x -u= 3-80,

*- = 170-28,

x-y = 425-00,

y = 319-91,

y = 319-75.

All the coefficients of the unknown quantities are either
+ 1 or 1. Multiplying each equation in which s occurs by
its coefficient in that equation, and adding the products, we
form the normal equation for s

;
then multiplying each equa

tion in which t occurs by its coefficient, etc., gives us the
second normal equation. Thus we have the five normal
equations

2s- t =570-48 =.4,
- s+4- u- x =240-26 = 5,

-
t + 2u- x =163-53 = C,

- t- u + 3x- ?/= 599 08 = .Z),

- a; + 3y = 214-66 = #,

containing only five unknown quantities. By whatever pro
cess these equations be solved, the values found for s, t, u, etc.
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willbe the same. We leave the reader then to choose his
own process, simply remarking that the method of indeter
minate multipliers will prove the shortest. Representing the
numerical terms by the letters A, B, G, D and E, we find

51s =32.4 + 135+ 11(7 4- 9D + 3^=29213-27,
5lt = 13^4 + 265 + 22(7+ 1SD + 6^= 2933214,

= IIA + 225 + 500+ 27D + 9E= 3784470,
= 3A+ 65 + 9(7+ 12D + 4E= 12672-37,
= A+ 25 + 3(7+ 4 + 7E=5440-53;

hence we have

s = 572-81, while Mr GARDNER gives 573-08,
= 575-14, 575-68,

w = 742-05, 742-60,

a = 745-43, 746-00,

y = 320 05, 319-91.

The discrepancy in the results is mainly due to the fact
that Mr GARDNER has considered the observations as of very
unequal weight, taking s and t for instance, as given by 1
and 2 alone without reference to the other measurements
(see Arts. 37 and 40).

If these values be substituted in the observation equations,
the residuals and their squares will be

From our values. From GABDNEK S values.

No.
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The sum 0769 of the squares of the residuals is the least

arising from all the systems of values which can be attributed

to s, t, u, etc. Mr GARDNER S values, although exactly satisfy

ing three of the equations, give the corresponding sum 1704,

The above process, though simple, can be considerably

abridged in the numerical operations by assuming approxi
mate values for the heights of S, T, etc., and regarding the

unknown quantities as corrections to be applied to those

assumed values. We see at once from the observations that

573 and 575 feet would be approximate heights for S and T.

If then we place

t = 575 + 1\

u = 742 + u
,

in which s
, t, u, etc. are corrections to be applied to the

approximate elevations 573, 575, 742, etc., we may insert

these expressions for s, t, u, etc. in the observation equations
above and obtain

s = 0-08,

t -s = 0-60,

* = 0-27,

u - t = 0-33,

af-u = 80,

x -t = 0-28,

x -y= 0-00,

y = - 0-09,

From these we form the normal equations by the same

process as before, and have

2s - * = -0 52=.4
,

- +2tt - x =-0-47=0 ,

- * - u + 3x ~ y = 1-08=1? ,
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and their solution gives
51* = 324 + 135 + 11(7 + 9Z7 + 3^ = - 973,
51* = 13^ + 265 + 22(7 + 18Z&amp;gt; + 6^ =

7-06^
etc., etc,

from which

s = -019, $ = 014, w = 0-05, a? =0-43, / = 0-05
;

and adding these to the assumed approximate values, we have
s = 573 - 019 = 572-81,
t = 574 + 014 = 57514,
u = 742 + 0-05 = 742-05,
x = 745 + 0-43 = 745-43,

y = 320 + 0-05 = 320-05,
which are the same as obtained by the longer method.

II, Adjustment of Angles taken at a point. At a station
there were measured the following horizontal angles, each

being the average of an equal number of readings.

Fig. 5.

= 58 56
42&quot;,

AOD = 76 43 6
,

50(7=13 14 15
,

BOD = 17 46 26
,

BOE=34&amp;gt; 14 17
,

COD = 4 32 7 ,

DOE=16 27 54 ,
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and it is required to find the most probable values of all the

angles AOB, BOG, etc. In the solution of such a problem
it will be found most convenient to take as the unknown

quantities the direction angles AOB t, A 00 = x, A OD = y,

and A OE = z. Then the observation equations will be

&amp;lt;

= 5S 56 42&quot;,

3,
= 76 43 6 ,

a-* = 13 14 15 ,

y-t = !7 46 26
,

z- *=34 14 17 ,

y-x= 4 32 7 ,

z-y = 16 27 54 .

In order to avoid large numbers in the calculation, let us,

as in the previous example, assume from the observations

approximate values of the angles and designate by t , y
f

, etc.,

the corrections to be applied to those approximate values.

Thus if we place
t = 58 56 42&quot; + tf,

a = 72 10 57 +x ,

y = 76 43 6 +y ,

2 = 93 10 58 +* .

Then, by substituting these in the observation equations

above, we get the simpler forms

* =0,

in which the numerical terms include seconds only. From
these we form the normal equations (Arts. 33, 34)

4j _ a/_ 2/_ =
-3&quot;,

-
y = 2,

-t - + 2*
f = 3.
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and by their solution find

$ = -0&quot;l, a = rO, 2/
= 01, and s = l-5;

hence the most probable values of the direction angles are

i=58 56 41&quot;-9 = AOB,
a = 72 10 58 Q = AOC,

2/=76 43 6 -9 = A 0V,

z = 93 10 59 -o =

from which by simple subtraction we may find any required
angle as BOG, COD, etc. (Strictly speaking, this problem is

a case of conditioned observations, Chap. IV. By taking,
however, a limited number of unknown quantities, the idea
of condition need not enter the work until the final operation
of deducing any angle from the direction angles by subtrac

tion
; then, of course, the whole must equal the sum of its

parts.)

Problems. 1. To determine the elevations of two points
A and B above a datum 0, measurements were made which

give, A above = 12 3 feet, B above = 27 feet, and A
below B = 14*1 feet. What are the most probable elevations

of A and B ? Ans. B = 26 S feet, etc.

2. In the preceding example of the adjustment of

angles, what are the best values if the sixth and seventh

measurements were not taken ?

Ans. J. 6&amp;gt; (7 = 72 10
57&quot;,

etc.

Observations of Unequal Weight.

36. Suppose that four observations give each time the

equation

and that five other observations give each time

The most probable values of s and t will be determined

by writing the first equation four times, the second five

times, and then by Art. 34 forming and solving the normal
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equations. Considering for convenience only the unknown
quantity s, we may write the equations

a^s + Nt
= 0, 4 times repeated,

a
2
s + N2

= Q, 5 times repeated.

Forming from these the normal equations for s (Art. 33),
we have

4^ (at
s + NJ + 5a

2 (a2
s + JV

2)
= 0.

If, instead of writing the observation equations 4 and 5

times respectively, we should multiply the first by A/4 and
the second by A/5, giving

and then considering each of these as representing a single
observation, form the normal equation for s by multiplying
the first by /4 a

lt
the second by */5 az ,

and adding the results,
we would have

=
0,

which is the same as that found before.

To solve observation equations of unequal weight, we
have then the following : Multiply each observation equation
by the square root of its weight ; then from these form and
solve the normal equations as before.

For illustration, let us suppose that four observations

upon three unknown quantities hate given the equations,

x + y + z 5*5 with the weight 3,

x= 0-053 .............. . ...... 3,

y= 0-003 .............. ...... 3,

s= -0-043 ..................... 1,

that is, the last equation is the result of only one measure

ment, but each of the others of three. Multiplying each

equation by the square root of its weight, we have

5-5 ^3,

x/3 x = 0-053 /3,

0-003 ,/3,

-0-043.
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Multiplying each equation in which x occurs by its co

efficient, viz.
^/3.

we form by addition of the results the
normal equation for x

;
thus we have

= 16-659,

= 16-509,

= 16-457,

which being solved give

# = 0-9675, y = 0-9175, ^ = 27005,

which is the best system of values obtainable from the

observations.

37. To adjust observations of unequal weight we have

then, to write the observation equations, multiply each by
the square root of its weight and from the reduced equations
derive and solve the normal equations. The following

examples will render the whole process clear.

I. Level Lines. The nine observations of Example 1,

Art. 35, upon the elevations of the points S, T, etc. are of

unequal weight. The least trustworthy is No. 9, because

it is not known that mean tide at Baltimore is the same
as the mean surface of the ocean, and we call its weight 1.

Nos, 3 to 8 inclusive are ordinary railroad levels and may
with reference to No. 8 be given a weight of 4. Nos. 1

and 2, being the result of carefully conducted government
and canal levels extending over many years, are the most

reliable of all, and we give them a weight of 25. The
observation equations are the same as before

; multiplying
each by the square root of its weight, we have

, 55 = 2865-40,

55 - 5* = 13-00,

2^=1150-54,
2tt-2*= 334-66,

2#-2w= 7 60,

2#-2= 340-56,

2tf-2y= 850-00,

2y= 639-82,

&amp;lt;y= 31975.
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From these we form the normal equations by the usual

method,
50s - 25* = 14262-00,

-4w- 4.2 = 1015-64,

+ 8u - 4x = 654-12,

y = 2396-32,

= - 100-61.

Before solution these may be simplified by dividing the

first by 25, and the third and fourth by 4. The resulting
elevations are

a = 572-98,

2=575-48,
u = 742-36,

tf = 745-72,

# = 320-25.

A comparison of these values with those deduced in

-Art. 35 will be interesting to the reader, as showing the

influence of the weights and the closer agreement with

Mr GARDNER S values. (See also Art. 40.)

II. Adjustment of Angles. In order to determine the

angles AOB and BOG, Fig. 6, the instrument was set with

its zero point in the direction OM and the following ob

servations were taken.
. Fig. 6.

MOA = 46 53 29&quot;-4, weight 4,

3/05= 83 14 36 -3, 16,

JlfOa=135 27 11 7, 9;
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the first being the mean of 4 readings, the second of 16, and
the third of 9. What are the most probable values of MOA,

Let x, y and z
represent the

required angles, arid to
avoid using large numbers place

a? = 46 53 aO&quot;.+ a/,

^ = 36 21 7 +y ,

2 = 52 12 35 +ss t

then the observation equations are

x=- 0&quot;-6 with weight 4,

y + aj = -0 7 10,

/+y + x = -0 3 ....... 9.

Applying the weights, forming and solving the BormaJ.

equations, we find

# = -0&quot; 6, 2/
=

0&quot; 24 and s = -Q&quot;-54,

and hence
tf = 46 53 29&quot; 4

# = 36 21 7 24

z = 52 12 34-46 =

are the adjusted results.

In the formation and solution of normal equations involv

ing large numbers of observations, the computer will derive

much assistance from the notation of GAUSS, wjiich we have

given in Part II., Arts. 37 and 58. In all cases the solution

should be effected by independent methods, in order to check
the accuracy of the work.

Problem. Levels are taken to determine the elevation of

three points A, B and above- the datum 0. The mean of

five measurements - show A to be 3 426 feet above 0, the
mean of nine show B to be 1O328 above A, the mean of four

.give G 2 47l above B: and lastly, one measurement gives B
13762 feet above 0. What are the most probable elevations

of the three points .?. Ans. A = 3 4283, etc-.
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Probable Errors and Weights.

38. The preceding methods are sufficient for the adjust
ment of any common indirect observations-. We now come to

the question, What degree of confidence can we place in the

values of the quantities deduced from such measurements,

or, in other words, to what degree of precision have we
attained ? This will be shown by the probable errors of those

quantities (Art, 16).

Let n be the number of the measurements, having the

relative weights g^ g^ g9 ,
etc,: the number of observation

equations will also be n. Let q denote the number of un
known quantities s, t, u, etc. whose values are to be deter

mined, and Gs , Gt , etc. their respective weights. When the

most probable values of s, t, u, etc. have been found by the

solution of the normal equations, let them be substituted in

the observation equations (not in those equations after multi

plication by the square roots of their weights) ; they will not

reduce these equations to zero, but leave the residuals v
lf
v
2 ,

v3l etc.

Let Zgv? denote the sum gp* -f gji* 4-g* + etc., that is,

the quantity formed by multiplying the square of each residual

by the weight of the corresponding equation, and taking the

sum of the products. Then, as proved in Part II., the pro
bable error of an observation of the weight unity is

(87) r

hence (Art. 30) the probable error of an observation of the

y
weight &amp;lt;7j

is r= The probable errors of the adopted values

V0i
of s, t, u, etc. are also

(81)
B.-jy, A-^.to,

to determine which we must compute r, and the weights
Glt Gt ,

etc. The weights glt gz ,
etc. will be given by the con

ditions of the measurements. If, as in Art. 34, the observa

tions are of equal weight, we have only to make all # s equal
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to 1. The weights Gg) Gt ,
of the determined quantities are as

yet unknown : to find them GAUSS method, as explained in

the next article, may be employed.

39. As demonstrated in Part II., the weights of the

values of the unknown quantities may be thus found. After

each observation equation has been multiplied by the square
root of its weight, and thus all reduced to the same unit of

weight (Art. 36), let the normal equations be formed (Art. 33).
These will be of the form

AjS + Bf + C
t
u + etc. = A,

(80) A
z
s + Bj + C

2
u + etc. = B,

A
B
s + B.f + C

3
u + etc. = (7,

etc., etc.,

the first being the normal equation for sf the second for t, the

third for u, etc.
;
A

lt
A

z
... B^, B^ etc. being numerical co

efficients of the unknown quantities, and A, B, G the absolute

terms. The solution of these equations will give

s = a^A -h a
z
B + a

d
C + etc.,

(92) t=0^ + 13^+ 13,0+ etc.,

u = y1
A + j2

B + y3C+ etc.,

etc., etc.,

that is, each unknown quantity will be given in terms of

the absolute terms A, B&amp;gt; C, etc. with the numerical coeffi

cients
ctj,

a
2 , /3lt /32 ,

etc. Then the weight of s is
,
the

weight of t is
-^- , the weight of u is

,
and so on.

Stated in words the method is : Place instead of the

absolute terms in the normal equations the letters A, B, C, etc.,

and solve the equations. Then the weight of any unknown

quantity as s is the reciprocal of the coefficient of the absolute

term A in the value of s, the weight of t is the reciprocal of the

coefficient of the absolute term B in the general value of t, etc. ;

it being understood that A is the absolute term in tha normal

equation for s, B the absolute term in the normal equation
for t, and so on.
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Thus in Art. 35, Example 1, we have the normal equa
tions

2s- t =A,
-sit-u-x = B,

etc.,

whose solution gives

etc. ;

and hence the weights .of the values of $, t, etc. are

51 51

32 26
(

Problem. Given the observation equations

2s + t = 7 with weight 3,

........ , ...... 4,

to find the values and weights of s and t

Ans. 5 = 3 with weight 15*43,
= 1 .., .......... 14-53.

40. To illustrate in full -the determination of weights
and probable errors of indirectly observed quantities, let us

take the example of Art. 37, iii which the observation

equations are
,,-

No. 1. s = 573-08 with weight 25,

... 2. t-s= 2-60 .......... ..... 25,

... 3. = 575-27 .............. 4,

... 4. u- = 167-33 ............... 4,

... 5. x-u= 3-80 ............... 4,

... 6. x- = 170-28 ............... 4,

... 7. #-y = 425-00 ............... 4,

... 8. y = 319-91 ............... 4,

... 9.
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and the normal equations are

505 - 25 = 14262-00 = A t

= 1015-64 = 5,
= 654-12 =C,

-4y = 2396-32 = D,
-

4&amp;gt;x + 9y = - 100-61 =E,
and it be required to find the probable error of each ob

servation and the weights and probable errors of the values of

t and x.

Placing the absolute terms equal to A, B, C, etc. and

solving the equations by any algebraic method (the method

of indeterminate multipliers is the shortest), we find

37.4 + 745 + 64(7+ 54Z&amp;gt; + 2

_

1341

36.4 + 725+ 171(7+ 270D + 12 _ ^ _
1788

By the rule of Art. 39, the weight of t is the reciprocal of

the coefficient of the absolute term B in the normal equation
for t, or

1341

likewise the weight of x is the reciprocal of the coefficient

of D, or

(Note. If the object be merely to determine the weight of

t, it is evident that it is unnecessary to retain A, C, I) and
E in the algebraic work

; they may be placed equal to zero.

So in finding the weight of x, it is only necessary to retain

D in the computation.)
We can now find the probable errors. The values of the

quantities s
} t, u, etc. as given by the normal equations are

5 = 572-98,
* = 575-48 with weight 18-12,
u= 742-36,
x = 745-72 with weight 6 62,

y = 320-25.
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Inserting these in the observation equations, the re

mainders or residuals v
lt v# etc. are placed in the third

column below, their squares in the fourth, and the product
of each square by its corresponding weight in the fifth.

No.
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It is then, as far as these observations show, an even

wager that 575*48 feet does not differ from the true eleva

tion of the Cleveland datum by 0153, and also an even

wager that 74572 expresses the true height of the Pittsburg

depot within 248 feet. The first is therefore much the

more accurately determined.

Problem. Find the weights and probable errors of the

values of s, u, and y in the preceding example.
Am. s = 572-98 0-116 feet, etc.

Other Applications.

By making q = 1 in the formula of Art. 38, they reduce

to those of Arts. 24 and 30. Direct observations upon a

single quantity are then only a particular case of indirect

ones, and the methods of the present chapter are sufficient

for their complete adjustment. Thus if there be only one
unknown quantity z, and the measurements be made directly

upon it, the observation equations are

z =M
t ,

z M
zt
z==M

5
...z =Mn .

The normal equation formed from these will be

and this gives at once the rule of the average. By Art. 39

the weight of the value of z will be n
t as in fact is implied

in our definition of weight (Art 27).

41. It is often the case that a quantity is measured
in several parts, then of course its most probable value is

the sum of the adjusted values of its parts. Thus, if we
have measured by independent ways three parts of a base

line, and find for them the values z
lt

z
2 ,

z
3 ,

the value to be

taken for the whole line is

If r
lt
r
2
and r

a
are the probable errors of z

t , z^
and z

3 , the

probable error of Z is

(100) R = Jr* + rf + rf.

In like manner, if a quantity Z is equal to any simple
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function of the sum or difference of independently observed

quantities, z
lt

z
2 ,

z
s , etc., that is, if

Z= z^ z^ z
&amp;gt;2

etc.,

then having found the probable errors rv r# etc. of z
lf 2 , etc.,

the probable error of Z is given by the relation

(100)
2 =

r,
2 + r

2

2 + r
3

2 + etc.

As an example illustrating this, let us take a case of

levelling. In order to determine the difference of level

between two points A and B, a level was set up halfway
between them, and 20 readings taken, on rods held at those

points with the following results :

Eod at A. Rod at B.

7 readings gave 7*229 feet; 3 readings gave 9 806,

8 7-230 ... 12 9-807,

5 7-231 ... 5 9-808.

What is the most probable difference of level between

the two points and the probable error of the determination 1

The general mean (Art. 27) of the readings at A is

7-2299, and of those at B, 9-8071 feet. Hence the difference

of level is

9-8071 - 7-2299 = 2-5772 feet.

To find its probable error, we have to find the probable
errors of the two general means by Art. 30. For the mean

7-2299, we find

20tf = 0-0000118, n = 3, # = 20, hence ^==0-00037,

and for the mean 9*8071, we have

2#v
2 = 0-0000078, n = 3, G = 20, hence E

z
= 0-00031.

Then from the above principle the probable error of

the difference 2 5772 is

^0-00037* + 0-00031
2 = 0*00048.

Hence the adjusted results are

Reading at A = 7*2299 0-00037,

Beading at B = 9 8071 0*00031,

Diff. of level = 2*5722 0*00048.
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Problem. The north decimation of a star is

8 = 19 30 14&quot;-8

with a probable error of 0&quot; 8. The zenith distance of the
same star is observed f= 21 17 20&quot; 3 with a probable error

of 2&quot; 3. The latitude of the place of observation is = S + f.

What is its probable error ?

Ans. &amp;lt;

= 4047 35&quot;l2&quot;-44.

42. If we have two quantities Z and z
t
connected by

the relation

X-4*,.,
in which ^4 is a constant, and if by measurement we find

the value of z
t
and its probable error r, the probable error of

Z is given by

(101) R = Ar^.

Thus, the circumference of a circle is 3 1416 times its

diameter. If we measure the latter and find its value
z

l
= 1000 + 0*2, the value and probable error of the former

will be Z= 3141-6 63.

So in general if we have a quantity Z whose relation
to the independent quantities z

lt z^, zv e^c - ^s given by

Z=Az^ + Bz^ + Cz
3 + etc.,

and if we find the values of z^ z
2 ,

etc. and their probable
errors r

lf
r
a ,

r
3 , etc. the probable error of Z is given by

(102) R* = A r* + ffrf + OV
3

2 + etc.

We have here given merely the statement of these im

portant relations
;

the proof is presented in full in the
second part of this work.

Miscellaneous Problems. 1. A chronometer is rated at
a certain date and found to be 9

m
. 12S

*3 fast with a probable
error of O s&amp;gt;

3. Ten days afterwards it is again rated and
found to be 9m . 21 8&amp;gt;4 fast with the same probable error.

What is the probable error of the mean daily rate ?

The rate in the whole interval is

9m. 21 8&amp;gt;4-9m .

M.
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with a probable error (Art. 41) of

9 8&amp;gt;

1
The mean daily rate is then

-yr-
=08 91 and its probable

error (Art. 42) is

The clock gains then, daily, 9 s! Os 042.

2. Given the observation equations (all of equal weight)

2x- + z= 3,

5x + 2y + 3^ = 5,

to find the best values of x, y, and z, and their probable
errors.

Ans. x =1-916 0-026,

y = 3 551 + 0-052, etc.

3. A block of cast iron weighing 100 Ibs. rests upon
a horizontal table also of cast iron. A horizontal force is

applied to the block and it is observed that it begins to

move when the force is 15 5 Ibs. If the probable error in

the determination of this force is 5 Ibs., what is the pro
bable error of the coefficient of friction p ?

Ans.
fj,
= 0-155 0-005.

4. The following levels were taken to determine the

elevations of five points T, U, W, X and Y above the

datum :

T above = 115-52, X above W= 632-25,

U ...... T= 60-12, X ...... F= 211-01,

U ...... 0=177-04, Y ...... Z7=596-12,

W...... T = 234-12, Y ...... W= 42718.

W...... U= 171-00,

What are the adjusted elevations ?

Ans. T= 115-61, U= 176-95, etc.
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5. An angle is measured by a theodolite giving the
value 37 16 13&quot; with a probable error of

5&quot;,
and also by a

sextant giving 37 16 10&quot; with a probable error of 3&quot;. What
is the adjusted value and its probable error ?

Further examples illustrating the adjustment of indirect
observations which arise in physical investigations are given
in Chapter V.

52



CHAPTER IV.

CONDITIONED OBSERVATIONS.

43. ALL the observations thus far considered have been

independent, so that an error committed in one measurement

has had no connection whatever with those arising from the

Fig. 7.

others. Thus in measuring the angles AOB and BOO, whe

ther it be done directly or indirectly (Art. 21), each reading

or observation has been entirely independent of those pre

ceding and following, and a variation in ,the value of A OB
does not necessarily require a corresponding one in BOC.

But if a third observation be made upon A 00, the values of

A OB, BOG and AOC are no longer independent, for since

the whole must equal the sum of its parts, the relation

AOC=AOB + BOC exists, and it is impossible to suppose

the value of BOC to vary without a corresponding variation

in the value of AOG or AOB.

We have then a new class of equations, viz. conditional

equations, which must be exactly satisfied by the values

adopted for the unknown quantities,
since they are the

expression of axioms and rigorous laws. The number of
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these equations is always less than the number of unknown

quantities, for if they were as many in number, the values

of the latter would be determined by their solution without

the necessity of measurement. From these conditional equa
tions and from the observation equations the values of the

unknown quantities are to be found*.

Observations of equal weight.

44. The conditional equations being less than the

number of unknown quantities may be satisfied in various

ways. The observation equations cannot however be all

exactly satisfied, and hence, as in the preceding chapter, the

best system of values must be found. This is done (Arts. 16,

33) by making the sum of the squares of the residuals a
minimum. Hence we have to determine the values of the

unknown quantities in such a way that they shall be the most

probable values for the observation equations and shall at the

sanie time exactly satisfy the conditional equations.

Thus in the case of the last Article suppose that the mea
surements give the values

.408 = 36 24
30&quot;,

BOC =W 52 20,

.40(7=84 17 10.

If the value of AOG were exactly equal to the sum of the

other two values, the quantities would need no correction.

As they stand, however, the results are discordant and must
be adjusted. Let the unknown values of AOB be x, of BOC

t

y, and of A C, z, then we have the observation equations

&amp;lt;c

= 36 24
30&quot;,

y = 47 52 20,

z = 84 17 10,

* In most books upon this subject, the term &quot;equations of condition&quot;

is applied indiscriminately to both of these very distinct classes, and is a
cause of some perplexity to the student. The excellent distinction of the

Germans, Beobachtungsgleichung and Bedingungsgleichung, ought certainly
to come into use.
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and the rigorous conditional equation

x + y = z,

and we must determine the values of #, y and z so that they
will exactly satisfy the latter and, at the same time, be the
most probable values for the former. If for z, in the last

observation equation, we place its value x + y from the con
ditional equation we have

# = 36 24
30&quot;,

# = 47 52 20,

x + y = 84 17 12,

or simply three observation equations, each one of which is

now independent of the other, and which can be solved in

the usual way (Arts. 33, 34). Multiplying the first and
third by 1 and adding them, we have the normal equation
for x, doing the same for the second and third we have the
normal equation for y}

or

2x 4-^ = 120 41
40&quot;,

x + 2^ = 132 9 32.

The solution of these gives

x = 36 24 36&quot;, y = 47 52 26&quot;,

and hence
z = x + y = 84 17

3J&quot;.

The process here exhibited has already been illustrated

in some of the examples of the preceding chapter, in which,
instead of stating the conditional equations, we have simply
written them as observation equations, omitting the addi

tional unknown quantity. (See Art. 35. Example 2.) We
may therefore give the following as the statement of a

method for adjusting conditioned observations of equal

weight.

1st. For every observation, whether direct or indirect,

write an observation equation (Art. 32). Let n equal the

number of such equations, and q the number of unknown

quantities involved.

2nd. For each rigorous condition, write a conditional

equation (Art. 43), and let p equal their number.
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3rd. From the conditional equations find the values of

p unknown quantities in terms of the others, and substitute

them in the observation equations. There will then be n
such equations containing q p unknown quantities, each of

which will represent an independent observation.

4th. From these observation equations, form and solve

the normal equations (Arts. 33, 34); the resulting values

will be the most probable. Then the values of the remain

ing unknown quantities may be directly found from the

conditional equations.

As a fuller illustration we choose the following. At the

points A, B and C, there are measured the angles

s = 91 27 40&quot;,

t = 43 52 50,

u = 44 39 50,

sum = 180 20,

&amp;lt;/

= 20 15
10&quot;,

z = 64 55 10,

Fig. 8.

A C

subject to the geometrical conditions that at the point A

and that in the triangle ABC
s + t + u = 180.

To avoid the use of large numbers we adopt the method

employed to some .extent in the last chapter of assuming
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approximate values for the angles and regarding the cor

rections to be applied to those values as the unknown quan
tities

;
thus if we place

s = 91 27 + s\

t = 43 52 + t ,

etc.

and substitute the values in the above expressions, we have

u = 50,

y = 10,

z = 10,

in which the numbers represent seconds only. From the

two conditional equations we take the values of any two

unknown quantities in terms of the others, for example,

and substitute them in the observation equations, giving

t = 50,

u = 50,

y = 10,

y + ^ = 70.

From these we form the normal equations

2t + w =130,

M +2y = 80,

whose solution gives

* = 41&quot;-25, M
f =

47&quot;-5, y =
16&quot; 25.

Then from the conditional equations we have the remain

ing quantities
/ &quot;
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These are the corrections to be added to the approximate
values assumed, that is, the number of seconds to be taken
instead of the observed values. Hence the adjusted results

are

s = 91 27 31&quot; 25

$= 43 52 41 -25 w = 4439 47&quot; 50

M= 44 39 47 -50 # = 20 15 16 25

sum = 180 z = 64 55 3 75

which exactly satisfy the two geometrical conditions.

Problem. The three angles of a triangle were measured
as follows :

x = 98 17 22&quot;, y = 70 9
56&quot;,

and z = 11 32 52&quot;.

What are the adjusted values ?

Ans. # = 98 17 18&quot;-67, etc.

45. The preceding method is general, and may be

applied to any number of observations subject to any num
ber of conditions. Although the simplest in theory, it is not

always so in practice, particularly when the number of con
ditional equations is large. The process in most common use

is &quot;GAUSS method of correlatives,&quot; which we will now proceed
to state and exemplify, referring the reader to Part II. for

the proof and the fuller algorithm of the method.
1st. Let the observations be adjusted by the methods

of Chapter II., without reference to the conditional equations,
and the results be called the measured values.

2nd. For each rigorous condition write a conditional

equation (Art. 43). If the measured values exactly satisfy
these they will need no correction; if not, a further adjust
ment is necessary.

3rd. Let s , t , u, etc. be corrections to be applied to

these values to make them satisfy the conditional equations.
Let the conditional equations expressed in terms of these
corrections be of the form

(104) / + / +0y + etc. =
N&quot;,

7i + 72
* + %X + etc. = N

&quot;,

in which a, ft 7, etc. and N denote known constants.
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4th. For each one of the unknown quantities s
,
t

, u, etc.,

write an equation of correlative containing as many new

auxiliary unknown quantities as there are conditional equa
tions. Let them be of the form

+ etc. =

(110) o^ + ftJT, + j2
K

3 + etc. =

etc. etc.

in which K
lt
K

2 , Kz ,
etc. are the new auxiliary unknown

quantities, K^ having the same coefficients as in the first con

ditional equation, Kz
the same as in the second, etc.

;
so that

the first vertical row of coefficients corresponds to the first

horizontal row in the conditional equations. There will be

as many equations of correlative as there are unknown quan-
tities s,t ,u ,

etc.

^

5th. From the equations of correlative let the normal

equations (Art. 33) be formed, thus

(
a

!

2 + C + etc
-) -^i + (

aA + &quot;A + etc )KZ + etc.

(109) =/ +a/+etc. =# ,

(a^ + a
2/32 + etc.) Kv

+ (ft
1 + ft

2 + etc.) ./f
2 + etc.

which will be as many in number as there are conditional

equations, and whose absolute terms will be Nr

,
N&quot; , etc. as

given by the conditional equations. Solving these we find

the values ofKv Kz , etc.

6th. Substituting these values of K
lt K^ etc. in the

equations of correlative, we find the values of s
,
t , u, etc.

which will exactly satisfy the conditional equations, and be

the most probable corrections to the observed quantities.

This process will be better understood, and its simplicity

over that of the preceding Article be seen, by a consideration

of some practical examples. We take first that of Fig. 9, in

which there are only two equations of condition.
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At the points A, B and C there are measured five angles,
each measurement having the same weight,

s = 91 27 40&quot;

t= 43 52 50 w=44 39 50&quot;

M= 44 39 50
2/
= 20 15 10

z = 64 55sum =180 20 10

Fig. 9.

A C

The rigorous geometrical conditions are

^=180,
and since these are not satisfied by the measured angles, an

adjustment is necessary. We assume the measured values

as approximate, and take s
,

t
} u, etc. as corrections to be

applied to those values, then the conditional equations are

u +y -z = 10&quot; (1),

s + $ + M = -20 (2),

We next assume two unknown auxiliary quantities K^
and 7T

2 ,
and for each unknown quantity write an equation of

correlative, thus

K^s (3),

-K. = z

(5),

(6),

(7),
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the coefficients of A^ and K
z
in (3) being the same as those

of s in (1) and (2), viz. and 1 : in (5) the same as those of u
in (1) and (2), viz. 1 and 1: in (7) the same as those of z in

(1) and (2), viz. - 1 and 0. From these we form the normal

equations (Art. 33) for K^ and K
2 ;

viz.

= u +y -z = 10,

s -f t
f

-M/ = -20;
from which we have

KI = 6&quot; 25 and K
2
= -

8&quot;75,

Substituting these values in (3), (4), (5), etc. we have

s = _8&quot;75, =-875, ^ =-2-50, / = 6 25, s =-6 25.

Applying these corrections to the measured angles, they
become

s = 91 27 31&quot;-25

t = 43 52 41 -25 u = 44 39 47&quot; 50

u = 44 39 47 -50 y = 20 15 1625

sum = 180 00- z = 64 55 375

or the same as deduced from the longer process of the pre
ceding article.

46. As a second example we choose a case occurring in

the common practice of every engineer, viz. the

Adjustment of the angles of a Quadrilateral. In order to

determine the distances WZ,ZY, etc. (Fig. 10), the base line

w
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WX was measured and nine angles of the quadrilateral ob

served as follows (X denoting the large angle at the corner

X, and X
1
and X

z
the small ones at the same corner, as shown

in the sketch) :

W = 106 T 30&quot; X = 66 34 9&quot;

X
v
= 36 34 21 Y;

= 49 17 23

,= 37 18 12 W
2
= 64 8 34

sum = 180 3 sum = 180 6

Z = 84 7 18

F,= 41 58 47

F
2
= 53 53 50

sum = 179 59 55

In each of the four triangles which make up the figure,
the sum of the measured angles differs from 180. It will

also be seen that at the corner W, the sum of the two small

angles does not equal the large one, thus

F
t
= 41 58 47&quot;

F
2
= 64 8 34

sum = 106 721 while W = 106 7 30&quot;;

and the sum of the four quadrilateral angles is not 360.
The problem before us is, to adjust these angles so that in

every triangle the sum of the three angles shall be exactly
180, so that at every corner the large angle shall equal the

sum of the two small ones, so that the sum of the four qua
drilateral angles shall be exactly 360, and further, so that

the adjusted values shall differ from the measured values by
the least possible amounts.

We assume the above measured values as approximate
ones, and take as unknown quantities the corrections to be

applied to those values. Thus, at the corner W we designate
the measured value of the large angle by Wy the correction

to be applied to it by w, and the required adjusted value by
XWZ, so that

,
ZWY= W, + wl}

WZX=Z
Z + z, etc.,

and the problem is to determine the corrections w, wv z^ etc.
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In order to avoid too many equations we select any corner
as W, and take the three triangles WXZ, ZWY, and XYW
which meet at that point as the three triangles for correction :

the angles of the fourth triangle XYZ will be found by
simple addition and subtraction as soon as those of the other
three are determined.

The conditional equations for these three triangles are
next to be stated. In the triangle WXZ the corrections to

be applied to the measured angles are w, x^ and z
2 ;
and since

the measured angles add up to 180
3&quot;,

the algebraic sum
of the three corrections must equal 3&quot;

;
and hence the first

conditional equation,

w + a^ + s^-3 (1).

Next, in the triangle ZWY the corrections are z, wlt
and y2 ,

and they must exactly balance the discrepancy between 180
and the sum of Z, Wlf

and Y
2 ,

or

* +
i + #2

= 5 (2).

Likewise in the triangle XYW, we must have

x + Vt +w^-G (3).

Also at the corner W the corrections w, w
l
and w

2
must

exactly balance the discrepancy of 9&quot; between w and the

sum of w
v
and w

2 ,
or we must have

W! + w2
-w = 9 (4).

These are the four geometrical conditions which the cor

rections must exactly satisfy. From these four equations we
must find the values of the nine unknown quantities in such

a way that they shall exactly satisfy the conditional equa
tion, and be the most probable system of corrections. This

may be done either by the method of Art. 44, or by that of

Art. 45. By the former we could write nine observation

equations (viz. w = 0, x
l
= 0, 2

2
= 0, etc.), then from the five

conditional equations find the values of five unknown quan
tities in terms of the other four, and substitute them in the

observation equations, then from those nine equations deduce

the four normal equations, and by their solution find the

required corrections. We shall however follow the &quot; method
of correlatives,&quot; since it is by far the easier and shorter.
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Our conditional equations are then the following :

,

w + +^ =-3 ................... (1),

(3),

(4).

We assume four auxiliary unknown quantities K^ KI2 ,
K

% ,

and Kv and for each unknown quantity write an equation of

correlative, thus

+ K, -JT
4
= ................. (5),

+ K, +Kt
= Wi ................. (6),

the coefficients of K
r being the coefficients of the correspond

ing unknown quantities in equation (1), the coefficients of K
3

being those of the unknown quantities in equation (3), and
so on. From these equations we form the normal equations
for Kv K2 , etc., viz.

37T
2 + K, = + 5, = etc.

-
KI +K2 + K3 + Z

whose solution gives

IT,
= 0-389, K^ 0-278,

Substituting these in the equations of correlative (5), (6),
etc. we have
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w =
JK;

- K^ = -
3&quot;-78,

^ = ^
2 + 7f

4
= 4-44,

w
z
=K

3 + K^= 078,
* = #

3
= -

3-39,

x
l
= K^ = 8-39,

#1
=

3̂
= -

3*39,

y2
= #

2
= 0-28,

* = Zr
2

= 0-28,

z
2
= ^ = 0-39.

Applying these corrections to the measured angles, they
become

W + w
1
= 106 T 26&quot; 22

JT
i
+ ^ = 36 34 21 -39

Z
2
+ z

2
= 37 18 12 -39

sum = 180 -0

X+x = 66 34 5&quot;-61

Y
l
+ y1

= 49 17 19 -61

F
2 + ^

2
= 64 8 34 -78

sum = 180 O O

Z + z = 84 7 18&quot;-28

+ ^,= 41 58 51 -44

+ yf
= 53 53 50 -28

sum = 180 00 -0

^ + w,= 41 58 51&quot;-44

F
2 + w

9
=64 8 34 78

&quot;

sum ^106 7 26 22

= W + w.

The three triangles WXZ, ZWY, and XYW are hence

exactly adjusted, as are also the angles at the corner W.
The remaining angles are obtained by simple addition and
subtraction of those already found, thus

Y + y =
(F, + y.) + ( F, + y.)

= 103 H 9&quot; 89
-

(
Z

l
+ 2 )

= 46 49 5 -89

^=(X +x) -
^
+ sj = 29 59 44 22

sum = 180 00 -0

and the angles of the quadrilateral also add up exactly to

360.

The above adjustment is sufficient for cases arising in

common engineering practice. In extensive triangulations,

however, where the sides are many miles in length, a fifth
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conditional equation is necessary. This arises from the fact

that we have not considered the relation existing between

Fig. 10.

the sides and angles, so that if with the above adjusted

angles we were to compute from the base WX the side ZY,
through the triangles WZX and ZYX, and again through
the triangles WYZ and WZY, the two results would not

exactly agree. In such triangulations, therefore, as are made
in our Coast Survey, besides the conditional equations
between the angles, others called side equations are intro

duced. We proceed to illustrate the development and ap
plication of this relation between the sides to the case of the

above quadrilateral.

Designating the adjusted angles by the same notation as

before, we have the condition that in each of the three tri

angles WZX, WZY and WYZ, when adjusted, the sides

must be proportional to the sines of their opposite angles, or

WX_ sin WZX WZ _ sin WYZ WY_ sin WXY
WZ~sm WXZ&amp;gt; 1VY~ sin WZY WX~ sin WYX&amp;gt;

multiplying these equations together, member by member,
we have

sin WZX sin TFF^sin WXY
sin WXZsm WZY sin WYX

which is the fifth equation of condition. To adapt it to

numerical computation, we write it

sin WXY sin WYZ sin WZX = sin WXZ sin WYZ sin WZY.

M. 6
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Now WXY, WYZ, etc. are the adjusted values of the

angles, or

WXY=X+xt
WYZ=Y

9 + ytt etc.;

hence the equation is

sin (X+ x) sin (
F

2 4- ya)
sin (Za + z

2)

= sin (Xt
+ ajj sin (Yl +y^) sin (Z+z),

in which x, ?/2 ,
&c. are the unknown corrections. Applying

logarithms, the equation becomes

log sin (X + x) + log sin
(
F

2
+ y2) + log sin (Z2 + *

a)

= log sin (J^ + a?j) 4- log sin
(
F

x
+ yj + log sin (^T+ ^).

Now the corrections x, y2 ,
^
2 ,

&c. are very small, each

being only a few seconds of arc. Therefore very nearly

log sin (X + x)
= log sinX + x log. diff.

1&quot;,

log sin (F2+?/2)
= log sin F

2+ y9 log. diff.
1&quot;, etc.,

in which log. diff. 1&quot; denotes the tabular logarithmic differ

ence for 1&quot; corresponding to the measured values X, F2 ,
etc.

Hence, inserting these values and transposing, our equation
becomes

= log sin X^ + log sin Y
L
+ log sin Z- log sinX-

log sin 7
2

log sinZ

The logarithmic sines of the measured angles and their

tabular differences may then be taken from a table and

arranged as below :

Angle
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Substituting these values the equation is

0-00000091aj + O OOOOOl54y2 -f etc.

= 29-65251SG5 - 29 65251343
;

or after multiplying by 10000000 to avoid decimals,

91a? + 15%2 + 277^-284^ - 181^-21* = 522 ...... (5)

which is the conditional equation, that any side computed
from the measured base shall always be of the same length,
whatever set of triangles be employed.

The four conditions between the angles are the same as

before; and we have to determine the nine unknown cor
rections so that they shall be the best values, and at the
same time exactly satisfy the five conditions,

w + ^ + ^ = -3 ........................ (1),

z + /!+# = 5 ........................ (2),

X +yi+W2 =-Q ........................
( 8)&amp;gt;

w^ + w2
-w = 9 ............. , .......... (4),

910 + 154y2 + 277z
2
-

284*7,
-
181^ - 21s = 522. ..(5).

This we perform as before by the method of correlatives.

Assuming five auxiliary unknown quantities, KI}
K

2 , etc.,
the equations of correlatives are

the coefBcients of K^ being those of the corresponding un
known quantities in the conditional equation (1), the coeffi-

62
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cients of K
5 being those of the corresponding unknown quan

tities in equation (5), etc. From these equations the normal

equations for K
I}

AT
2 ,

etc. are formed, viz.

3J3T,
-tf

4
- 7/f5 = -3,

3/C, + K.+ mfiT
8
= 5,

3K
3+K^- 90/iT

5 =-6,
- #,+ #

2
+ #

3 + 37f
4

= 9,

-7-ffi + mK,- 90.K; + 222584/f
5
= 522.

Solving these equations by any algebraic method, we
have

Kt = 0-393, Jr
8=0-238,K3

= - 3 366, A&amp;gt;4174,X5
= 0-000855.-

Substituting these in the equations of correlative we get

the values of the required corrections, viz.

^ 4-41,

,= 0-81,

-29,

= 7^-284^= 15,

-52,

-37,

=K
9
- 21/iT

5
= -22,

= 2777r= -63.

These values exactly satisfy the conditional equations

(1), (2), (3), and (4), and almost satisfy (5)! Applying them

to the measured angles we have the adjusted values, which

differ by only one or two-tenths of a second from those

determined without the use of the side equation, but which

conform equally well to the geometrical requirements of the

angles, and which in delicate computations will give no dis

cordant results in the lengths of the sides.

The student who verifies the above results will have

acquired some idea of the processes involved in the adjust

ment of extensive triangulations, for the method here given

is that employed by the computers of the U. S. Coast Survey
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Office. As the number of triangles increases the number of

conditional equations and unknown quantities rapidly mul

tiplies, and their proper solution requires great skill and

patience. In the U. S. Coast Survey Report for 1854 men
tion is made of the adjustment of a triangulation involving

sixty-five conditional equations. In such cases, we ought to

say, the work is reduced to a routine by means of the algo
rithm exhibited in Part II., Arts. 37 and 60, and the results

are obtained independently by different computers. In fact,

it would be well-nigh impossible to deal with such a large
number of equations, without performing the numerical

operations by a systematic routine, and employing frequent
checks to test the accuracy of the work.

As an exercise in operating with side equations we give
the following problem, which requires no angle equations
and only one side equation, which will be similar in form to

that of the preceding example. The answers to the pro
blem may be seen in the U. S. Coast Survey Report for 1854,

Appendix, p. 82.

Problem. In the quadrilateral WXYZ, Fig. 10, five

angles were measured as follows :

Fig. 10.

w
X = 66 34 2&quot; 745,

y;
= 49 17 21 -310,

F
2
= 53 53 54 -075,

Z
l
= 46 49 5 -167,

Z = 37 18 11 -542.
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What are the adjusted values, so that in computing any
side from the measured base WX, it shall always be of the
same length whatever set of triangles be employed ?

OBSERVATIONS OF UNEQUAL WEIGHT.

47. A general method of adjusting conditioned obser
vations of different weights follows directly from the pro
cesses of Arts. 37 and 44. It may be thus stated :

1st. For each of the n observations write an observation

equation (Art. 32) in terms of the unknown quantities.

2nd. For each rigorous requirement write a conditional

equation (Art. 43).

3rd. From the conditional equations find the values of

p unknown quantities in terms of the others, and substitute

them in the n observation equations, each of which will then
be independent (Art. 44).

4th. Multiply each observation equation by the square
root of its weight (Art. 37).

5th. Form and solve the normal equations (Arts. 33, 34),
thus obtaining the most probable values of the unknown

quantities.

For example, suppose that at the point 0, Fig. 11, four

angles are measured as follows :
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AOB = 40 52 37&quot; weight 16

JSOC = 92 25 41 4

= 80 6 15 3

35 20 1

sum = 359 59 53

the angle AOB being the mean of 16 observations, B00 of

4, etc.

We assume the measured angles as approximate, and
take w

t x, y, and z as corrections to be applied to those

values. Then the observation equations are

$0 = with weight 16,

x =
,, 4,

y = o 3,

2 = i,

and the rigorous conditional equation is

Taking from this the value of z
t inserting it in the obser

vation equations, and multiplying each by the square root of

its weight, we have

to + x + y = 0.

From these the normal equations are

+ x+ y = 7,

to + 5v + y = 7,

w+
from which we find

u; = 0&quot;-27, fl? = l&quot;-06, .y
= r-42, and hence ^ = 4

/r

-25.
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Adding these to the measured values, we have

AOB = 40 52 37&quot; -27

BOG = 92 25 42 -06

COD =80 6 16 -42

DOA = 146 35 24 -25

sura = 360 -(T

Problem. To determine the angles of the triangle ABC
the following measurements were taken.

Fig. 12.

ACB= 91 27 35&quot; weight 4,

CBA = 43 52 42 9,

MAC= 64 55 5 2,

=20 15 15 2.

What are the adjusted results ?

Ans.
CBA =43 52 41-43, etc.

48. As in the case of equal weighted observations,
GAUSS method of correlatives may be advantageously em
ployed when the number of unknown quantities or condi

tional equations is greater than two or three. Although the

process of Art. 47 is perfectly general and applicable to all

cases, it is not in practice of so easy application as the

method of correlatives, which is hence generally employed.
The following is the statement of the process to be fol

lowed :
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1st. Combine the observations by the methods of Chap
ters IT. and III., and find their most probable values, and

their weights.

2nd. Let ,
t
f

, u, etc. be the best system of corrections

to be applied to those values to make them conform to the

conditional equations, which expressed in terms of those

corrections are of the form,

+ + + etc -
= ^

&amp;gt;

3rd. Let gs , gt ,
etc. be the weights of the values to

which s, t
,

etc. are corrections, and for each of these cor

rections write an equation of correlative, thus

etc.)
= *

,

9s \ .
*

(110)
J.
(of, + f3f, + y,K, + etc.)

= {,
Ut \ /

.)

= u
, etc.,etc.

i/w

in which K^ K
2)

etc. are new auxiliary quantities, K^
having the same coefficients as in the first conditional equa
tions, K2

the same as in the second, etc.

4th. From these form the normal equations, for K^ K^
etc. (not regarding , , etc., as coefficients of K# Kz , etc.).

9s 9t
Then the second terms of these normal equations will be

N , N&quot;, etc., as in the given conditional equations.

5th. Solve the normal equations, and then substitute

the resulting values of K
I}
K

z , etc. in the correlative equa
tions, thus finding the best system of corrections,

Although somewhat tedious to state, this method is of

very rapid application. As a first example we choose a case

involving but three conditional equations.

At the points A, B, 0, and D, Fig. 13, there are mea
sured the following seven .angles. ......
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Fig. 13.

BAC= 35
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The weights of s, t, u, w, x, y and z are 2, 3, 5, 7, 4, 6
and 1, corresponding to the weights of the measured angles
to which they are corrections. The equations of correlative

are then

)=*-

the coefficients of /^ being those of the corresponding
unknown quantities in equation (1), those of K

z
from those

of (2) and so on. From these we form the normal equations

or after reduction

67T
3
= 96,

28 7^ + 35 ^, + 83^3 = -140,

irom which we have by solution

Z = - 5-601, ^T
a
=
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Substituting these values in the correlative equations,
we have

x = 0-49, y=0-50, z=3 01.

Adding these to the measured values we obtain

BAC= 35 2 7&quot; 20 04 = 109 52 7&quot; 49

CBA= 40 12 15 -13 CAD= 45 29 50

45 37 -67 .4/&amp;gt;&amp;lt;7
= 25 7 23 01

sum = 180 O O sum =180

DCB = 145 22 14&quot;-S5

.405 = 104 45 37 67

DCA = 109 52 7 47

sum = 360

Which is the best system of adjusted angles?

Problems. 1. In a quadrilateral WXYZ the four angles

are measured as follows :

W= 65 11 54&quot; with weight 5,

X = 6G 24 15-5 10,

F= 87 2 247 12,

Z =141 21 20- 1.

What are the adjusted angles?

Ans. F=65 11 54&quot; S4, etc.

2. In a spherical triangle XYZ the three angles were

measured

X=93 48 15&quot; 22 with weight 30,

F=51 55 18 19,

^=34 16 49 72 13.

The spherical excess is 4 //&amp;gt;054. What are the adjusted

angles ?
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The conditional equation is

4&quot;-054,

or taking #, y^ and z as corrections, it is

x + y + z = -l&quot;*066,

The correlative equations then are

K. K, , K,
30=^ IS^ andjg

-*.

From which the normal equation is

and hence the corrections are

0- = - 0-217, # = -0-347, z = - 0*503,

which applied to the measured angles, will adjust them so as

to agree with the geometrical condition for a spherical

triangle.

3. To adjust the percentages of the following chemical

analysis of pig iron, so that the sum shall be 100.

Carbon 2*30 per cent. weight of determination = 1

Silicon 1-36 5

Phosphorus 1*02 5

Sulphur 0-61 5

Iron 94-93 ^
Manganese 81 1

Ans. Sulphur = 0*594. Iron = 94*11 etc.

4. A base line AC is found by one measurement to be

1599 feet; by another measurement it is chained in two parts,

and AB found to be 791, and BC 806 feet. Considering the

first as of weight 2 and each of the others as of weight 5,

what is the adjusted length?
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PROBABLE ERRORS.

49. The determination of the weights and probable
errors of conditioned observations follows directly from the

method of Art. 38, since all such observations can be reduced

to independent ones.

Let n denote the number of observations, q the num
ber of unknown quantities involved, and p the number of

conditional equations. Let glt g2 , g3 ,
etc. be the weights of

the several measurements, and v
lt v,2 ,

v
3 , etc. the residuals

arising from subtracting the observed and adjusted values, and

%gv
2
the sum of gjs* + gz

v* + g3
v* + etc. Then the probable

error of an observation whose weight is unity is

(111) r=Q-G745 Jv V n-

and the probable error of an observation of the weight gl
is

-= (Art. 30). Also if G8 ,
G

t&amp;gt;

etc. be the weights of the

adjusted values of s, t, etc. their probable errors are

(81) B

to determine which we must first find r, and the weights
G8 ,

Gt ,
etc. If as in Arts. 44 and 45 all the observations

are of equal weight, we have only to make g, glt gz ,
etc.

unity or simply omit them from the formulae. To find the

weights Gs ,
Gt) etc. we have only to form the independent

observation equations by elimination of unknown quantities

from the conditional equations (Art. 44), and then having

multiplied each by the square root of its weight, proceed

with the normal equations by the method of Art. 39. A
single example will render the whole operation clear to the

reader.

We take a case of levelling involving but one conditional

equation. There are three points A, B, and C, situated at

nearly equal distances apart, but upon different levels. In

order to ascertain with accuracy their relative heights, a

levelling instrument was set up between A and B, and
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readings taken upon a rod held at those points, with the

results,

On Kod at A
t 8*7342 feet mean of 12 readings,

B, 2-3671 9

The instrument was then moved to a point between B
and (7, and the observations taken

On Rod at Bt
5 0247 feet mean of 7 readings,

C, 11-2069 4

Lastly, the level was set up between C and A, and the
rods observed

On Rod at (7, 0*4672 feet mean of 5 readings,

A, O oolO ,, 3

It is required to find the adjusted values of these read

ings and their probable errors, also the most probable dif

ferences of level between the points and their probable
errors.

First let us arrange these measurements as they would
be written in an engineer s level book, and assuming the
elevation of A as 0*0, find the heights of the other points.

Sta.
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If we represent the back sights upon A, B, and C by
8, T, and W, and the fore sights upon B, G, and A by X,
Y, and Z, the rigorous conditional equation is

Since this condition is not exactly fulfilled by the ob
served values, they must be corrected so as to cause the dis

crepancy of O OOll to disappear. To avoid the use of large
numbers let us take the measured values as approximate,
and represent by s

y t, w, etc. the corrections to be applied to

S, Ty W, etc. Then our conditional equation is

s + t + w x y z = O OOll.

The weights of s, t, w, x, y, and z are 12, 7, 5, 9, 4, and

3, corresponding to the weights of the observations to which

they are corrections. The most probable values of the un
known quantities which will exactly satisfy the conditional

may then be found, either by the method of Art. 47 or by
that of Art. 48. The latter is much the shorter and simpler.

Leaving the solution as an exercise for the student, we give

merely the results, viz.

s = - 0-00008, t = - 0-00014, w = - 00020,

x = 0-00011, y = 0-00024, z = 0-00033.

Applying these to the observed values we have the ad

justed results, viz.

Sta.
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Remembering that s, t, etc. are corrections to the ob
served values, the observation equations are

5 = weight 12, x weight 9,

= 7, y = 4,

^ = 5, 2 = 3,

and the conditional equation is as before

s + t + w - x-y - 2 = - 0-0011.

Taking from this the value of y in terms of the other un
known quantities, inserting it in the observation equations,
and multiplying each by the square root of its weight (Art.

36), we have

J\2s = 0,

J7 1 = 0,

Jow 0,

3# = 0,

v/3 z = 0,

2s + 2t + 2w-2x-2z = - 0022.

From these we have the normal equations (Art. 34),

16* + 4* -f 4w - 4a? - 4s = - 0044 = A,

4s + llt + 4&amp;lt;w- 4z-4z = - 0-0044 = B,

4s + 4$ + 9M7- 4ic - 4^ = - 0-0044 = C,

-4s- 4-4w&amp;gt;+13#+42 = 0-0044 = D,

z = 0-0044 = .E
7

the first being the normal equation for 5, the second for t,

the third for w, the fourth for x, and the fifth for z.

To determine the weight of 5, we place the absolute

terms in the normal equations, equal to A, B, C, D, and E,
and then solve the equations by any algebraic method,
Then the weight of s will be the reciprocal of the coeffi

cient of A in the value of s, and the weight of x will be the

reciprocal of the coefficient of D in the value of x (Art. 39),
The solution gives

M. 7
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3921
s = ^ + terms irl

#&amp;gt; Q A and ^ = -
0-00008,

212
n

A&amp;gt; B&amp;gt;
C and

Hence the weiht of the value of s is

=. 12-96
&quot;

3921

and the weiht of the value of x is

.

212
-

The original weights of the observed values of S and X
were 12 and 9. The adjustment has then increased each of

these by nearly unity. (In finding the weight of s, if we
do not at the same time wish to find the value of s, the
terms B, C, D, and E may be made zero, and the numerical
work thus shortened.)

We can now find the probable errors. The residuals

vv vv V
3*

e*c - are i*1 tnis case our corrections s, t, w, etc. :

squaring these and multiplying each square by the weight of

its corresponding observation, we obtain

:%v
2 = 0-000001079.

Since there are six observation equations, six unknown

quantities and one conditional equation, we have n q+ p = 1.

The probable error of an observation whose weight is unity,
that is of a single reading of the rod, is then

r = 0-6745 yO-000001079 = 0-000701,

and the probable error of any observation is this value
divided by the square root of its weight. Hence the pro
bable error of the adjusted reading $=873-412, whose

weight we have found to be 12 96, viz.

1
=0

J 12-96
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and the probable error of the adjusted reading X whose
weight we have found to be 9 99, is

-2*=-^ = 0-00022.
-s/10

The elevation of B is the difference of the readings S
and X or

B = 873412 - 2-36721 = 6-36691.

Hence (Art. 41) its probable error is

+ M? = 0-00029.

The adjusted values may then be written

Back sight on -4=873412 O OOOIQ,

Fore sight on B = 2*36721 + 0*00022,

Height of B above A = 6 36691 + 00029.

In the same way the probable errors of the other adjusted
measurements and the probable error of the elevation of C
may be deduced.

Problems. 1. In the preceding example what is the
probable error of the observed readings 87342 and 2 3671,
and the probable error of the elevation 6 3671 ?

2. The three angles of a triangle were measured as
follows, all having the same weight,

x = 98 17 22&quot;, y = 70 9 56&quot;,
= 11 32 52&quot;.

What are the adjusted angles and their probable errors?

Ans. #=98 17 18&quot;-677 1&quot; 007.

7-2



CHAPTER Y.

THE DISCUSSION OF PHYSICAL OBSERVATIONS.

50. IN the preceding pages we have given the methods
of adjusting and comparing such simple observations as

arise in the common practice of the civil engineer. It is,

indeed, in the delicate measurements of higher Geodesy and

Astronomy that these methods of combination find their

most extended application, but it would interfere with the

plan of this book to introduce examples of such cases. One
or two applications, which we have not yet exemplified,
are however of such great use, not only to engineers, but to

all who cultivate the physical sciences, that we shall devote
a few pages to their development and illustration.

The Deduction of Empirical Formulae.

51. Observations are frequently made to discover the

laws which govern phenomena. It is one of the most

happy applications of the method of least squares, that it is

often able to determine from such observations the relations

between the observed quantities, and to deduce formula

expressing these relations in a convenient form for use.

When such formulae merely represent the particular obser

vations from which they are deduced, they are called empi
rical, but when they are applicable to all phenomena of the

same class they become physical laws. The discussion of

observations to deduce empirical relations thus often leads

to the discovery of important laws by which our physical
theories are extended and improved.

To illustrate, let us suppose that the law of falling

bodies is unknown, and that in order to discover the relation
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between the time of falling and the space passed over, we
construct an apparatus by which a body can be allowed to

fall certain given distances, and the times of its descent be

accurately registered. Suppose that with this apparatus the

following observations are made at New York.

1. A body starts from rest and falls 10 feet in 788 seconds.

2.
,, 20 1-115

3. 30 1-367

4. 40 1-577

5. 50 1-763

Now what relation or law exists between the space s and
the time t ? First we observe that as the space increases so

does the time, but the first very much faster than the second.

The relation between s and t cannot therefore be expressed

by such an equation as s = At where A is a constant, but s

must depend upon higher powers of t. In like manner we

might try in succession the hypotheses that s=Atf, s=At+Af,
etc. Of course in this simple case the reader will at once

recognize the relation which exists. In most cases, however,
like those that will be hereafter given, the relation cannot be

determined by inspection or even by the trial of hypotheses.
In our ignorance, then, of whether s depends upon t, t

2

,
or t

8

,

or upon a combination of these, it is best to write

(112) 8 = At + B? + Ct\

in which A, B, and C are constants to be determined, and as

yet unknown. Then our first observation gives s = 10,

t = 078S, the second gives s = 20 and t = 1*115, etc. Substi

tuting then in the assumed formula, we have

1. 10 = 0788 A + 07882 B + 07888

C,

2. 20 = 1-1154+ 1-115*5+ 1-115* (7.

etc. etc.

There will be as many observations as there are obser

vations each containing the unknown constants A, B, and C.

They are then the observation equations (Art. 32) from
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which we may derive a normal equation (Art. 34) for each
of the unknown quantities, and by their solution find the
values of A, B, and C. In the case before us this process
will give

A =
0, 5 = 16-08, and (7 = 0,

and hence the assumed formula becomes

5=16-08^.

With reference to the five observations this is an empi
rical formula, but as it is found to represent all such obser
vations made at New York, it is hence also an expression of
the law of falling bodies at that place.

52. A very large class of physical phenomena may be

represented by the general equation

(112) y = A + Ex + Cx2 + Dx3 + etc.

in which y and x are two related quantities of different kinds
and A, Bt C, etc. constants. As such we may indicate many
of the relations between space and time, space and velocity,
volume and temperature, pressure and density, etc. It in

cludes hence many of the empirical formulae of hydraulics,
of the theory of heat, and of other branches of physics. No
general rules, however, can be laid down to show when and
where it is applicable.

Temperature of the Earth at depths below the surface*.
It has long been known that as we descend ,below the surface

of the earth the temperature increases. Geologists formerly
supposed that the increase was nearly uniform, and at the
rate of about 1 degree Centigrade to every 30 metres in

depth. The observation at the artesian well at Grenelle near

Paris, showed however that the increase was not at so rapid
a rate. The observations there taken were the foliowingy;

* From VON FREEDEN S Praxis der Methode dcr Kleinsten Quadrate.
Braunschweig, 1863.

f If F= Fahrenheit degrees and C = Centigrade degrees, F =

1 meter= 3 -28087 English feet= 3-28071 U. S. feet.



THE DISCUSSION OF PHYSICAL OBSERVATIONS. 103

Mean yearly temperature of the surface = 10 60 Centigrade.

1. Temperature at a depth of 28 meters = 11 71
9
*&quot;&quot;

6-

7

Let us represent the mean temperature of the surface by
T, and the temperature at any depth by t : also let as be any
depth. &quot;We then assume that the temperature increases with

the depth according to the approximate law,

66
i,
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173, etc., and adding the products, we have the normal equa
tion for A, viz.

29599-23 = 900706 A + 404557966 B.

Also multiplying the first equation by 282

, the second by
66

2

, etc., and adding the products, we find

13068985-39 = 404557966 A + 19341 0001814B
as the normal equation for B. Combining these two normal

equations we have the values

A = 0-042096, B = - 0-000020558,

and hence the empirical formula is

t = 10-6 + 0-042096 x- 000020558 x\

Thus by this formula the temperature t at any depth x

may be found, x being in meters and t in Centigrade degrees.
The negative sign of the term containing #* shows that the

increase of temperature is not so rapid as the depth. If in

this formula we substitute x = 28, x = 66, etc., and compute
the corresponding values of t, the accuracy of the formula

may be seen by comparing the computed and the observed

temperatures. The following table is such a comparison.

Depth.
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increase. At a depth of 1000 metres the observed tempe
rature was about 43 C, while that computed by our formula

is only 32&quot;13, and it can hence be regarded only as empi
rical, and as representing the Grenelle observations. A dis

cussion of the results from this deep boring at Speremberg
may be seen in Nature, Oct. 21, 1875, where it is claimed

that after a depth of about 5000 feet the temperature is

uniform, and probably not more than 49 Centigrade or 120
of Fahrenheit s scale.

Problem. Volume of water at different temperatures. In

MULLER S Lehrbuch der Physik, Vol. n. p. 505, the following
are the relative volumes of water at temperatures from 4 C.

to 25 as derived from experiments by DESPRETZ :

At 4 Centigrade the volume is 1*

6 1-0000309,

,,
8 1-0001216,

10 1-0002084,

15 1-0008751,

20 1-0017900,

25 1-0029300.

Required a formula to represent these experiments.

Let V represent the volume at any temperature t. Then

by the same process as that of the preceding example, we
find

F= 1 - 0-000061045 1 + 0-0000077183 2 - 0-00000003734 f.

Although agreeing tolerably well with the observations

this formula does not hold for temperatures much higher than

25 C. From 25 to 50 MiJLLER gives

F= 1 - 0-000065415 1 + 0-0000077587 &amp;lt;&quot;- 0-00000003541 1
3
.

It appears then that the law connecting the volume and

temperature of water is not yet understood, and hence that

the above formulae are merely empirical.

53. Another large class of phenomena may be repre
sented by the general equation
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(114) y A + B. sin - aj+J52 cos -xm m

-f G. sin 2x + C9 cos 2# + etc.

in which as x increases y passes though repeating cycles.
As such may be mentioned the variation of temperature

throughout the year, the changes of the barometer, the ebb

and flow of the tides, the distribution of heat on the surface

of the earth depending on latitude, and in fact all pheno
mena which repeat themselves like the oscillations of a pen
dulum. The letters A, Bv 1?

2 ,
etc. represent constants which

are to be found from the observations by the method of least

squares, while m is the number of equal parts into which the

whole cycle is divided, and must be taken in terms of the

same unit as x. If the several cycles are similar and regular,

only the first three terms are required to represent the

variation, if not, additional terms are necessary.

Declination of the magnetic needle. The magnetic needle

has always in the New England States since the earliest

records pointed to the west of true north. Its declination

has moreover been slowly changing. Numerous observations

from all parts of the country have been collected and care

fully discussed by Mr SCHOTT of the U. S. Coast Survey*,
from which it has been established that the decimation

passes through a recurring cycle of about 250 or 300 years.

If we divide a horizontal line into equal parts representing

years, and erect verticals giving the declination at various

times, we shall have a curve, such as is roughly represented

Fig. 14.

600 JTOO JSOO 1900

in the annexed figure. Thus in Connecticut the westerly
declination was in the year 1600 gradually increasing; it

* See U. S. Coast Survey Reports, 1855, 1858 and 1859.
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attained a maximum of 11 or 12 about 1675, then again
decreased until it reached a minimum of 5 about 1800, and
has since been steadily but not uniformly increasing.

If then we have observations enough to determine the

equation of this curve, we shall riot only have an empirical
formula representing those observations, but an expression of

the law of the change. At any place where observations

extending over fifty years exist, an approximate formula may
be found.

At Hartford, Conn., we have the following records :

In 1786 the declination was 525 W = + 5 42,

,,
1810 4 46 = 4 77,

1824 5 45 = 5 75,

1828 6 3 = 6 -05,

1829 6 3 = 6 05,

1859 8 4 = 8 -07.

We assume the expression

360 a 360 aD = A + B. sin - - t + B9 cos - -
t,m m

as a sufficient approximation to the law of the declination,
in which D is the value of the declination at any time t, t

being the number of years counted from an assumed epoch,

say the year 1830, m the number of years in the cycle, and

-4, B1
and B

2
constants to be determined. The value of m

is not exactly known, and must be adopted from observations

at other places, or be determined by trial. Mr SCHOTT finds

its most probable value to be 288 years for Hartford. Then
our equation is .

D = A + B1
sinl-25t + B^ cos 1-25 t.

The first observation is D = 5 0&amp;gt;42 for t = 44, the second

J9 = 477 for = -20, the last D = 8 07 for * = + 29 6,

t being the number of years counted from 1830 as an

origin, and hence negative for the years preceding that epoch
and positive for those following. The first observation equa
tion is then

5-42 = A - 0-819 B
l + 0-574

2 ,
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and the five others are similar. (The sign of the sine and
cosine of a negative arc should be carefully regarded.)

From the six observation equations we form and solve

the normal equations, and find

.A = S -60, ^ = 2-54, 2 =:-2-54,

hence our formula is

D = 8-60 + 2-54 sin l-25-2-54 cos l-25 *,

which agrees very closely with the observations. This equa
tion may be discussed like that of any algebraic curve, and
the times and values of the maximum and minimum decli

nation found. Thus, according to the formula, the last mini
mum at Hartford was 5 01 for t = 34, or in the year 1796

;

the next maximum will be 12 0&amp;lt;19 for = 110, or in the year
1940. The formula therefore extends the law of the varia

tion with a fair degree of accuracy to times considerably

preceding and following the observations. As indicated in

Part II. it may be placed under the forms

D = S-60 + 3 59 sin (1 25 t - 45),

D = 8-60 - 3-59 cos (1 25 t + 45),

either of which is more convenient for discussion than that

given above
;
and the latter of which is the form given by

SCHOTT*.

54. Other general empirical and theoretical formulas

such as

y = A + Bx 1 + Cx% + etc.

y = A + B sin mx + C sin
2

m%&amp;lt;+ etc.,

are sometimes used in discussing physical phenomena. Rarely
also coefficients such as A*, IF, etc. are introduced, but their

determination is generally laborious (see Part II. Art. 59).

Exactly what formula will apply to a given set of obser

vations, so as to agree well with them, and at the same time

be of use in other similar cases, can only be determined from

theoretical considerations or by trial. The computer must,

first, from his knowledge of physical laws, assume such an

* U. S. Coast Survey Report, 1859, p. 298, or Am, Journal of Science,

1860, p. 335, where declination formulae for many other places are given.
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expression as seems most plausible, then deduce the con
stants by the method of least squares, and test them by
comparing the observed with the calculated results. If the

agreement is not sufficiently close, he must assume another

expression and try again. In this way hypotheses may be

tested, and often important physical laws be discovered.

The precision of such empirical formulae may be ascer

tained not only by their agreement with the observations,
but by computing the probable errors of the constants,
which the methods of least squares has deduced (Art. 38).
The probable errors of the calculated results may also be

found, but for such computations we must refer the reader
to the larger and more complete treatises upon the subject,
a list of which will be found in the Appendix.

Problem. The following observations have been made
in different parts of the earth, upon the length of the
second s pendulum.

Place.
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patience and labour required in such processes, and will be
interested in looking over BOWDITCH S admirable discussion,
which is in Vol. n. p. 481 of the above-cited work. The
formula which he adopts as the best is

I = 39-01307 + 0-20644 sin
8

&amp;lt;,

in which the constants and I are in inches, while those of our

problem are in meters*. IVORY S interesting papers in the
London Philosophical Magazine for 1826 may also be referred

to in this connection.

Probability of Errors.

55. In Arts. 12 and 13 we have stated a property of the

probability curve, and given a table of the probabilities of

errors, which has many interesting applications in various

branches of science. That table gives the areas of the
curve on both sides of the axis of Y, corresponding to suc

cessive numerical values of hx, h being the constant measure
of precision and x any error, or, more strictly, it gives the

number of errors comprised between the limits x and + x,

when the whole number of errors is unity. As the fre

quency of an error is proportional to its probability (Art. 5),

the numbers in the columns Pr

denote also the probabilities
that an error will be comprised between the assumed limits.

Thus if in the figure representing the probability curve,
we lay off the positive error OM equal to the negative error

OM, and draw the ordinates MC and MG, the are&MCACM
is (if the total area be unity) a fraction expressing the

probability that an error will lie between the limits OM and
-f OM, or be numerically less than OM. &amp;gt;o also if the area-

PBAPB be 5, OP is the probable error (Art. 16), or the

error such that the probability of an error less or greater
than it is ^. If we were to lay off an abscissa positively
and negatively equal to three times OP, the corresponding area

would be 957, and the probability that an error taken at

* 1 meter= 39-37044 English inches= 39 36852 U.S. inches. I do not
know whether the above formula is in English or United States inches.

This annoying difference between our own measures and those of England
is one of the strongest reasons why we should throw both of them overboard
and adopt a reasonable system.
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random would be less than 3.OP is y^; ,
and that it would

43
be greater

-j
;
so that it would be a wager of 957 to 43,

or of nearly 22 to 1, that any error is less than three times
the probable error.

In discussing the probabilities of errors and the accuracy
of sets of observations, it is hence convenient to have a
table giving the numbers P in terms of r instead of I.

The following is such a table, which we have taken from
CHAUVENET S Treatise on Least Squares, and which gives
these areas or probabilities, P corresponding to successive

/Vl

numerical values of
,
x being any error and r the probable

error. To illustrate its use let us consider some practical

examples.

1. Suppose that we have measured an angle with two
instruments A and B, and find for the results

with A 37 42 13&quot; 9 + 0&quot; 4,

with B 37 42 13&quot;-8
0&quot;-2,

the probable error of the first being twice that of the second,
and hence its precision one-half as great (see Fig. 2, Art. 16).
The probability that the result A does not differ from the
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Probability of Errors. (115). P=~= t = to=0-4769-.

X

r
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true value of the angle by 0&quot; 4 is -
, and the probability

that the result B does not differ by 0&quot;*2 is also -
. Now

what are the respective probabilities that these results are
correct within 0&quot; l ? We take then x =

0&quot;*1,
and have

- A x O l , a? 01
f r ^

r
=

0-4
= 2 and fOT B

&amp;gt;

r
=
0^

= 5
;

hence from the table

for - = 0-25, P
f = 0134, and for - =

5, P = O264.
r r

The probability that the result A is within 0&quot; l of the truth
134 264

is
,
and that B is within the same limit r- or nearly

twice as much. Hence for A we could wager 134 to 866 or

1 to 5 that the result was within 0&quot; l of the truth, and for

B 264 to 736 or 1 to 2 8 that such was the case. Again,
what are the respective probabilities that these results are
within 0&quot;-6 of the truth? We have

. x 6 , n x 0*6 _ _
for A

r
=

(fi
= 1 and for B

&amp;gt;

r
=

0^2
= 3

and then from the table

for - = 1-5, P = 0-688, and for
-^
=

3, P 1 = 957.

The probabilities are then and
^AAn respectively ;

and we could afford to lay a wager of 688 to 312 or of about
2 to 1 that A is within 0&quot; 6 of the truth, and one of 957 to

43 or of more than 22 to 1 that B is within the same limit.

2. A series of 64 observations upon an angle gives for

the probable error of a single observation 1&quot;*5. What is the

probability that the mean is correct within 0&quot; 75 ?

1*5
The probable error of the mean will be -= = 0&quot;*185.

v ^4

M. 8
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Then - =^= = 4 05, for which F= 994.
T O loD

The required probability is hence
&amp;gt;

and it is a wager of

994 to 6 or of 166 to 1 that the mean is within 0&quot;75 of the

true value.

3. An angle is measured with an instrument graduated
to 1 . The error which is liable to occur in a single measure

ment (that is, the probable error r) is 45&quot;. How many obser

vations are necessary in order that it shall be a wager of 9 to

1 that the mean is within 5&quot; of the truth ?

9
A wager of 9 to 1 corresponds to a probability of^ . For

P = 9 we find from the table - = 2 44, in which r, being the

45&quot;

probable error of the average, is equal to ~ . Then we
tjn

have

2-44 -~^ ^&amp;gt;
orJn = 21 96, and n = 482,

r 45 4o

and hence 482 observations are necessary.

Problems. 4. The average of several observations gives

for the value of an angle 33 17 30&quot; 8 0&quot; 3. What wager
can we afford to lay that 33 17 30&quot; 8 is within 1&quot; of the true

value ? Ans. 39 to 1.

5. A line is measured 500 times. If the probable error

of each observation is 6 centimeters, how many errors will

be less than 1 centimeter and greater than 4 centimeters?

6. An angle is measured by an instrument graduated to

quarter degrees, the probable error of a single reading^ being
12 minutes: how many observations are necessary that it may
be a wager of 5 to 1 that the mean is within one minute of

the truth? Ans. 22 observations.

7. The length of a line was estimated by 16 persons of

equal skill. If the probable error of each is 4 centimeters,
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what is the probability that the mean of their guesses is

within 2 centimeters of the truth ?

56. The preceding examples illustrate the great value of

large numbers of observations even when made with poor
instruments, provided only that no constant cause of error

exists (Art. 2). The preceding table is thus of the greatest
assistance in discussing statistics of social science, even when
those statistics are confessedly inaccurate, provided only that

they are numerous and taken by unprejudiced observers. It

is however not the place here to give examples of such appli
cations, and we would refer the reader desirous of looking up
such investigations to the admirable work of QUETELET (No.
17 in our list of literature in Art. 64 of the Appendix), in

which numerous interesting examples of such discussions may
be seen.

The principles of probability of error here set forth are, it

must be borne in mind, only applicable after all constant

errors (Art. 2), and all mistakes (Art. 3) have been elimi

nated from the numerical results. If a single cause of con
stant error exists it may sometimes be detected by a com

parison of the results with those obtained by a more accurate

instrument. The following illustration may in this connection
be interesting.

Suppose that an angle is laid out with very accurate in

struments and tested in many ways so that its true value may
be regarded as exactly 90. Let 25 observations be taken

upon it with a transit whose accuracy we wish to test, and
let the mean of those measurements be 89 59 57&quot; + 0&quot; 8.

Then we see it is extremely probable that a constant error of

about 3&quot; exists in the instrument. To find the numerical

expression of this probability let us suppose that the true

value of the angle was unknown, and let us ask the proba
bility that the mean is within 2&quot; of the truth. Then for

~ =
-^

= 2-5 we find F = 908, so that it is a wager of 908

to 92 or of almost 10 to 1 that the mean is between the
limits 89 59 55&quot; and 89 59 59&quot;. Hence since the angle is

known to be 90, it must be the same probability and the

same wager that there is a constant error lying between the

82
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limits V and 5&quot;. So also if we take x = 3&quot; we can show
that it is a wager of 39 to 1 that there is a constant error

between 0&quot; and 6&quot;.

Problem. The capacity of a certain large vessel is un
known: 1600 persons guess at the number of gallons of water
which it will hold and the average of their guesses is 289

gallons. The vessel was then measured by a committee and
found to hold 297 gallons. If we regard the probable error

of a single guess as 50 gallons and also consider it impossible
that there can be any constant source of error in guessing,
what is the probability that the committee made an error in

their measurement of between 3 and 13 gallons?
993

Ans. - or a waer of 142 to 1.

The Rejection of Doubtful Observations.

57. It not unfrequently happens that in a set of measure
ments there are certain values which seem to be so much at

variance with the majority, that the observer rejects them
in adjusting the results. This procedure however, unless

governed by proper rules, is a dangerous one and not to be re

commended. A conscientious observer having conscientiously
made several series of measurements will give each its proper

weight (Art. 28) and deduce the most probable result, and

give to it the confidence which its probable error shows that

it deserves. The too common practice of taking twenty
measurements (for instance, readings of a levelling rod) and
then throwing away all except two or three which happen to

agree, is one which cannot be strongly enough condemned.
After making such measurements and eliminating all known
constant errors (Art. 2), no results except those which are

unquestionable mistakes (Art. 3) should be rejected. All

remaining discrepancies will then fall under the class of

irregular errors (Art. 3), and the adjustment of such observa

tions should be made in accordance with the principles

governing them, the methods for which we have presented in

the preceding Chapters.
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We must mention, however, that for very delicate and

precise observations such as sometimes arise in Astronomy,
the principles of probability itself furnish a means of deter

mining whether or not a given observation may be rejected.
The discovery of this important criterion is due to Prof.

PEIRCE of Harvard University, and presented in the Cam
bridge Astronomical Journal for 1856. The student wishing
to inform himself concerning its theory and application, may
consult the original paper in that Journal or the works Nos.
28 and 34 quoted in the list of literature given in Art. 64 of

our Appendix. The use of this criterion is not necessary ex

cept in some very accurate astronomical investigations.

Concluding Remarks.

58. The student who has carefully read the foregoing

pages and has verified the examples and solved the problems
presented, will have acquired a fair knowledge of the princi

ple of Least Squares and of its simpler applications to engineer

ing practice, and will be prepared to study the more complete
theory of the subject with interest and profit. The second

part of this book will afford him an introduction to the theory,
which has been prepared with especial reference to the needs
of beginning students. He will also be prepared to take up
the adjustment of Geodetic and Astronomical observations

involving large numbers of observations, and as excellent

books for study and consultation in this connection, we would
refer him particularly to the works of CHAUVENET, VON
FREEDEN, DIENGER and HELMERT, whose titles will be found
in the list of literature appended in Art. 64. The brief his

tory of the origin and development of the science given
in the Appendix will also prove suggestive in directing his

further studies.

We take occasion to again call attention to the fact that

the formulae given for probable errors are all based upon the

supposition that the number of measurements is large.
Hence in using different formulae a perfect agreement in the

results is not to be expected, unless sufficient observations
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have been taken to exhibit the several errors in proportion to

their respective probabilities, and this would require a very

large number. We would also again mention that the whole

theory is based upon the supposition that only accidental or

irregular errors (Art. 4) affect the measurements.

Although we have only given methods for the adjustment
of observations involving equations of the first degree they
are sufficient for the discussion of all cases

; for, by the pro
cess of Art. 59 (Appendix), equations of higher degrees can

always be reduced to linear equations, and the observations

thus be brought under the rules which we have presented.
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PART II.

THE THEORY OF LEAST SQUARES AND PROBABLE
ERRORS.

CHAPTER VI.

DEDUCTION OF THE FUNDAMENTAL PRINCIPLES.

1. IN Part I. we have presented the rules and methods
for the adjustment and comparison of ordinary observations

and have illustrated their application by numerous practical

examples and problems. We shall now take up the subject
from a more mathematical point of view, and give demon
strations of all the formulae which have been there employed
without proof, and also discuss the method in a more com

plete and algebraic manner. While the previous chapters have
been written with more especial reference to the wants of

practical computers, the following pages will be designed
to meet the requirements of students who wish to acquire
a tolerably thorough knowledge of the theory of the subject.

Although each Part may be read independently, each is

in fact a supplement to the other, and hence in order to

render reference easy, we use the same numbers to mark the

corresponding paragraphs and formulae.

Since all measurements even when made with the utmost

precision give discordant results, all of which cannot be

true, it is evident that we can never be sure that we have
found the absolutely true value of a quantity, which has

been the object of measurement. In combining then such

measures or observations, we seek a method which shall

furnish us with the most advantageous or most probable
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result, that is, a result which (as far as our observations go)
we can regard as the nearest approximation to the true

value. Such is the method of Least Squares, the theory
of which we are to develope. Further, as we cannot regard
our adjusted result as absolutely true, we must also establish

what degree of confidence it is entitled to, and this involves

the theory of probable errors. The first treats then of the

adjustment, the second of the comparison of observations.

When we measure several times a quantity and obtain

discordant results, we recognise that each measurement is

probably incorrect. The difference between the true and
an observed value is called an error; it is taken as positive
if the true value exceeds, and negative if it is less than

the observed one. Since the true value cannot be exactly

determined, these errors can never be definitely known,
nevertheless they can be made the subject of mathematical

investigation.

2. Constant errors which always affect our observations

by the same amount and whose causes are understood, are

no longer errors, as they may be always eliminated from

our numerical results. They are not the errors which we
are to discuss.

3. Mistakes, whose distinguishing feature is that they
&quot;admit of conjectural correction,&quot; are also not included

among the errors of which we are to treat.

4. Accidental or irregular errors are those discrepancies
which remain after all constant errors and mistakes have

been eliminated, and are hence those produced by irregular

and varying causes whose degree or manner of action cannot

be estimated. The word error, as used in this book, means

therefore &quot;discordance, of which the cause is unknown.&quot;

These errors being produced by many causes, all unknown
as to their laws, are governed by the principles of pro

bability.

Probability.

5. We give therefore, by way of introduction, the de

finition and some of the first principles of probability.
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The word probability as used in mathematical reasoning
means a number less than unity, which is the ratio of the

number of ways in which an event may happen or fail to

the total number of possible ways. Thus if an event may
happen in a ways and fail in b ways, and each of these ways
is equally likely to occur, the probability of its happening is

,-
, and the probability of its failing is = . Thus

a + b J a+b
probability is always expressed by an abstract fraction,

and is a numerical measure of the degree of confidence

which we have in1 the happening or failing of an event.

If the fraction is it denotes impossibility, if J it denotes

that the chances are equal for and against its happening,
and if it is 1 the event is certain to happen.

6. Hence unity is the mathematical symbol for certainty.
And since an event must either happen or not happen, the

sum of the probabilities of happening and failing is unity.
Thus if P be the probability that an event will happen,
1 P is the probability of its failing.

7. If an event may happen in a ways and also in a

ways and fail in b ways, the probability of its happening

is, by Art. 5, -,
,

-

T and since this is the sum of the

probability of happening in a ways and of that of happening
in a ways, it follows that if an event may happen in different

independent ways the probability of its happening is the

sum of the separate probabilities.

8. Let us now ask the probability of the concurrence

of two independent events. Let the first be able to happen
in a

t ways and fail in b
l ways, and the second happen in

a
2
and fail in 6

2 ways. Then there are for the first event

a
i
+ ^i possible gases, and for the second a

?
+ &

2
: and each

case out of the a + &
t

cases may be associated with each,

case out of the a
2 + 6

2 cases, and hence there are for the two
events (al

+ b
l)(a2 + b^) compound cases each of which is

equally likely to occur. In a^2
of these cases both events

happen, in bfi2
both fail, in a

{
b
2
the first happens and the

second fails, and in a
z
b

l
the first fails and the second

happens. Thus we have for two independent events
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Probability that both happen

Probability that both fail

Probability that the first happens and the second fails

Probability that the first fails and the second happens

and the sum of these is unity since one of the four events

is certain to occur. Now considering each event alone the

probability of the first happening is -

*--, and of the

second *-r , and since

we have established the important principle, that the pro

bability of the concurrence of several independent events,

is equal to the product of the separate probabilities.

Thus if there be four events and Pv P2 ,
P

8
and

P&amp;lt;

be

the respective probabilities of happening,, the probability

that all the events will happen is P^FJP^ and the pro

bability that all will fail is (1
- PJ (1

- P
2) (1

- P
8) (1

- P
4).

The probability that the first happens and the other three

fail is P, (1
-P

2) (1
- P

a) (1
- P

4) ;
and so on.

9. If there be several events whose separate proba
bilities are known, what is the case most likely to occur ?

Let P be the probability of the happening of an event in

one trial and Q the probability of its failing so that

p + Q = l : and let there be n such events. Then by
the preceding Art. the probability that all will happen is
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P&quot;;
the probability that one assigned event will fail and

n 1 happen is Pn~l

Q, and since this may occur in n ways
the probability that one will fail and n 1 happen is nPn~l

Q.

Similarly the probability of two assigned events failing
and ?i 2 happening is Pn~z

Q, and since this may be done

in
^
- ways*, the probability that 2 out of the whole

(ft (M ,-,-_
j j

number will fail and w 2 happen is --- -Pn~z
Q

2
.

If then (P + Q)
n
be expanded by the binomial formula,

thus,

--...-
1.2.3...m ^

the first term is the probability that all will happen, the
second that n I will happen and 1 fail, and the m + 1

th

term is the probability that n m will happen and m
fail.

To determine then the most probable case we have only
to find the term in this series which is the greatest. If we
consider that n coins be thrown, P = Q = -%,

and the series

becomes

(fr+^+!^^
n(tt-l)(K-2)...(tt-m+l)-

.....m
in which if n is even the middle term is the greatest, and if

n is odd there are two equal middle terms greater than any
other. Thus if n = 9, the series is

J_+JL,_36
84

,

512 512 512 512 512

126 84 36 9 1
*
512

+
512

+
5l2

+
5l2

+
512*

* See TODHUNTEB S Algebra for Schools and Colleges. London, 1870,
p. 288, p. 455.
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and hence if 9 coins be thrown - is the probability that

all will be heads, the probability that 8 will be heads and

1 tail, and so on. Since one of these 10 groups must happen
the sum of the series is unity. The most probable group is

that whose probability is the greatest, and this is the one
126

corresponding to --, viz. 5 heads and 4 tails, or 4 heads and

5 tails.

If then we have several events either simple or com
pound we recognise that the most probable case is that whose
mathematical probability is the greatest. Hence if in given
sets of observations various adjusted values of the measured

quantity have different probabilities, the one to be chosen is

that which has the maximum probability (Arts. 11, 15).

Law of the Probability of Error.

10. Although it would seem at first sight that acci

dental errors of observation could hardly be made the subject
of mathematical reasoning, yet the very fact of their irregu
larity brings them under the laws of probability. Moreover
we recognise that they must be subject to the following
fundamental laws of arrangement : 1st, Small errors are
more frequent than large ones

; 2nd, Positive and negative
errors (that is&amp;gt;

measurements greater and less than the true

value) are equally probable, and hence in, a large number of

observations are equally frequent; 3rd, Very large errors do
not occur, so that in every set of observations there is a limit

I, such that all the positive errors are included between and
+ 1 and all the negative ones between and I.

These are the three fundamental axioms which, in connec
tion with the principles of probability, are the foundation of

all our following reasoning.

11. Therefore, different errors are not equally probable ;

for in a large number of observations a small error occurs

more frequently than a large one, and hence has a greater
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probability, and an error greater than the limit I has a pro
bability of or is impossible. Hence the probability of an
error is a function of that error, so that calling x any error

and y its probability, the law of probability of error is repre
sented by the equation

(i) y=fW,
and will be determined if we can find the form of/ (x).

Although practically there is a limit in the graduation
and use of instruments by which x can have only definite

numerical values (thus if an observer reads a theodolite to

10&quot;, the values of x can only differ by 10&quot; or some multiple
of

10&quot;),
we must in our mathematical treatment regard x as

a continuous variable. This is evidently perfectly allowable,
since as the precision of our observations increases the suc
cessive values of x are separated by smaller and smaller
intervals. Taking y then as a continuous function of x the

equation (1) represents a curve whose form we are to deter
mine. The axioms of Art. 10 show that its general form

JP M
must be that of Fig. 1, for by the first small values of so

must have the largest probabilities y, by the second f(x)
must equal /( x) or the curve be symmetrical to the axis of

Y, and by the third y must be zero for all values of x
greater than + I. This last requirement is one which ex

tremely embarrasses the mathematical treatment of the sub-
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ject, since it is impossible to determine a continuous function

of x which shall &quot;become zero for x I and also be zero for

all values of x from + I to +00. But since this limit I can

never be accurately assigned we shall extend our limits to

+ oo
,
and shall determine our curve in such a way that the

value of yy although not zero for large values of x, will be so

very small as to be practically inappreciable.

For determining the equation of this curve we give two

demonstrations, the first for the case of direct observations

(Art. 18), and the second for the more general case of indirect

ones (Art. 19), both of which lead to the same result. These

demonstrations are due to GAUSS (see Art. 65).

11 a. Let one and the same quantity, for example the

angle M, be measured n times with equal care, giving the

values M^ M2 ,
M

3
... Mn. If z is the true value of the angle

the errors (* JQ, (z M^, .... (z
- Mn)

have been com

mitted, and their respective probabilities are

(1) y^fb-Mj, y,-/(-^ - y.=/(- JO,

that is, if n is the whole number of errors, and the error

77

(z M^ occurs n
2 times, yz

= 2

f(z
- M^ ;

and we suppose

enough observations to be taken to exhibit the several errors

in proportion to their respective probabilities. Now the pro

bability of committing all these errors is by Art. 8 the

product of the separate probabilities, or if P denote this

quantity

(2) P=yiy*yt...y=f(*-MZf(*-W...f(*-MJ.
This probability P depends upon z the true value of the

quantity, which is unknown. If we give to z various values

we shall have corresponding values of P; and in the impossi

bility of finding the true value of z we can only find its most

probable value as given by the n observations, and the most

probable value of z is that for which P is a maximum

(Art. 9). To find the value of z which makes P a maximum
we take the natural logarithm of each member of (2), giving

(3) log P = log/ (z
- MJ + log/(*

-
JfJ+ r
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and by the usual rules find the value of z for which log P is

a maximum. Differentiating (3) and placing it equal to zero,

we have

P
~
f(z

- jtfJ / (z
- JQ / (z

-Mn)

or since

df(z
- MJ =

(*
-

Jig f(z
- jg d (z

-
JfJ,

df (z
-
j\g

=
&amp;lt;/&amp;gt;(*-

1/
2) f(z

- jg d(z- J/
2),

(in which $ (z JlfJ, (j&amp;gt;
(z Jf

2),
etc. denote new functions of

the errors) we have

Hence the value of z which makes (2) a maximum is that

which satisfies the equation

(6) (z-Mj +
&amp;lt;j&amp;gt; (*

+ (z
- Mn]

= 0.

And this equation will furnish us with the most probable
value of z, provided that we can determine the form of the

function
&amp;lt;f&amp;gt;.

Now it is universally accepted as an axiom* that in direct

observations made upon one quantity, the average or arith

metical mean furnishes the most probable result, that is, the

most probable value of z in the case under consideration is

found by taking the sum of M
lt
M

2
... Mn and dividing it by

n the number of measurements, or

n

This equation may be written

ws = Jlf
x
+ if

2 + J/
8 + . . . +Mn ,

which by transposition becomes

(7) (z
- MJ + (z-Mz)

+ (z-MJ) + ... +(- MJ =
0,

* See Art. 66, p. 195.



128 DEDUCTION OF THE FUNDAMENTAL PKINCIPLES.

that is to say, the arithmetical mean requires that the
algebraic sum of the differences or errors shall be zero.

Comparing now (6) and (7) we see that the symbol &amp;lt;

means merely the multiplication by a constant, since the
value of z must be the same in both

; hence

(8) (a -J/J+0 (*-;[/,) + etc.

= k (z
- M^ + k(z- If

2) + etc.,

where k is any constant. Inserting in this the values of
etc. from (5), we have

_ _ _ __-
} +

+ k (z-Mz) + etc.

And since this is true for any number of observations, it

must be true for one, or two, or three. Hence the corre

sponding terms in the two members must be equal. If then
x be any error, and y its corresponding probability, so that

(l) y =/(*),
we have from (8*)

f(\\ df(ac) , dy ,
7

(9) .

,
= kx, or -^ = kxdx.

f(x) dx y

Integrating this we obtain

^/v.2

(10) logy = *!-
+ ,

in which k is the constant of integration, and the logarithm
is taken in the Napierian system. Passing from logarithms
to numbers we have

(11) y

in which e is the Napierian base, and the constant e* is placed

equal to c. Now y is to be positive, and is to decrease as x
increases either positively or negatively, hence the constant

k is negative. Placing then ^k Ti^) we have

(12) y = ce~
hv

as the equation of the curve represented in Fig. 1.
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This equation satisfies the conditions imposed at the

beginning of our investigation, for y is a maximum when
x = 0, it is symmetrical with respect to the axis of Y, since

equal positive and negative values of x give equal values for

y ;
and when x becomes very large y is very small. The

constants c and h will be particularly considered hereafter.

Let us now consider the more general case of
indirect observations in which the quantities s, t ... z are to

be determined by measurements of a related quantity
M=f(s,t..,z}. Let n observations be made giving the
values M

lt
M

2
... Mn ,

and it be required to find from these
results the most probable values of s, t ... z. The measure
ments being imperfect the results M^ M2 , etc. cannot be

perfectly accurate. CompariDg each with the corresponding
true value the differences will be errors (Art. 4) which we
represent by a?

t ,
#

2 ,
#

3
... a?n ,

each of which is a function of

(s,t...z). Then from our equation (1) we have for the
several errors

(i) y,=/W, y, =/(*,) -y. =/(*.).

And by Art. 8 the probability of committing the given
system of errors is

Applying logarithms to this expression it becomes

(3) logP = log/) + log/ (*,) + .,.+ log/ (&amp;gt;).

Now the most probable values of the unknown quantities
5, t ... z are those which render P a maximum (Art. 9), and
hence the derivative of P with respect to each of these
variables must be equal to zero. Indicating the differentia

tion we have then the following equations :

df(xn] _~

etc.

M.
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the first being differentiated with reference to 8, the second

with reference to t, the last to z, and so on. If in these

we place

(5) df(xj = $ fo)/ (O dx
l9 df(x^ = &amp;lt; (xjf )

dte
a , etc.

they become

(4)

etc. . etc.

and being as many in number as there are unknown quan
tities they will determine the values of those unknown

quantities as soon as we know the form of the function $.

Since these equations are general and applicable to any
number of unknown quantities the form of the function

$ may be determined from any special but known case.

Such is that in which there is but one unknown quantity
and the observations (8) taken directly upon that quantity.
Thus if there be only the quantity s and the measurements

give for it the values M
19
Jf

2
... Jfn ,

the errors are

x
l
= s MV #

2
= s M

2
. . . xn = s - M

n&amp;gt;

from which

dx,_dxz _ _dxn _
7
-

7

&quot; -
* *

/
-

*&amp;gt;

as as as

and the first equation in (4) becomes

(6) (*,) + * fo) + $ (*.) + . . . + ^ (arj
= 0.

In this case also the arithmetical mean is the most

probable value, and the algebraic sum of the errors will

be zero (Art. lla), or

(7) se
l + x

t + x
a +...+xn

= Q,

and equations (6) and (7) can only agree when

(8) (X) + (/&amp;gt; (x^ + ... + &amp;lt; (a?J
=

fat + Tea, + ... + A? (a?.),
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in which k is any constant. Keplacing from (5) the values of

&amp;lt;j&amp;gt; (x ) ,
6 (x ), etc., it becomes

and since this is true whatever be the number of observa
tions, the corresponding terms in the two members are equal.
Hence if x be any error and y =f(x), we have

\ / 7

j(x)dx ydx

Multiplying both members by dx and integrating, we obtain

which by passing from logarithms to numbers becomes

(11) y

As shown before the constant k must be essentially
negative ; replacing it then by - 2h2

,
and also placing & c,

we have

(12) y = ce-&quot;
9

as the equation of the probability curve, x being the

abscissa, y the ordinate, and c and h constants depending
upon the precision of the observations. Considering c and
h as unity the values of y corresponding to a few values
of x are given in Part I. from which Fig. 1 has been con
structed, the vertical scale being double the horizontal in
order to exhibit more clearly the form of the curve.

The ordinate of the curve for x is y = c
t and hence

c is the probability of the occurrence of the error x. The
probability of committing any given error x is from the

equation y=ce~^x!Z
,
and this probability will be smaller as

h is larger. Hence h is a measure of precision of the mea
surements. The more accurate the observations, the greater
is h.

12. For all kinds of observations, then, the law of the

probability of error is expressed by the equation

(12) y = ce-*,

92
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which corresponds to the curve of Fig. 1. In discussing
^

the

properties and the consequences of the law, it is convenient

to know the values of the constants c and h. We proceed

to find c (for h, see Arts. 25, 30).

Let &J, #
2 ,

x
z
...xn be a series of errors, x

: being the

smallest, #
2
the next following, and xn the last, the differ

ences between the successive values being equal (thus if

the measurement be made by a rule graduated to millimeters,

x
2

is lmm greater than x
lt
x

3
is lmm. greater than x

2 ,
and so

on). Then by Art. 7, the probability of committing one

of these errors, that is, the probability of committing an

error lying between aj
t
and xn,

is the sum of the separate

probabilities ce~ ll^\ ce~ l1

&quot;^, etc., or if P denote this sum

(13) P = c (e-
h^ + e-h

-x * + e-W** + . . . + e^2
*&quot;

2

),

which may be written

(13) P =
cSa-* ***i

which denotes the sum of the probabilities of all the errors

from x
v
to #

7i
inclusive. P denotes then the probability

that an error* lies between the limits x^ and xn . Now if

i denote the small interval between the successive values

of x, and if our observations are accurate enough so that

x may be regarded as a continuous variable, i will be very

small and equal to dx. Then

(14) 2r
from which by comparison with (13) we have

(1 5) P = c2 e-*** = **&quot;&quot;*V dx
&amp;gt;

which expresses the probability that an error will lie between

the limits x^ and xn . Now it is certain that the error will

lie between - oo a&quot;nd + oo
,
and as unity is the symbol for

certainty (Art. 5), we have

(16)
1 = **

dx,
V J
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from which the value of the constant c will be known as

soon as we find the value of the integral between these

limits. The integral calculus gives
*

(17)

r+oo

J-oo
6 dx

h

* The most convenient method of determining this integral is the geo
metrical one due to POISSON. I give the process nearly as presented by
STURM in his Cours d*Analyse, Paris, 1857, Vol. n. p. 16.

Since y= e~Wx2 is the equation of a curve of the same form as shown

in Fig. 1, the integral jydx= /e~^2x
2
expresses the area between that curve

and the axis of x
;
and since the curve is symmetrical to the axis of Y, that

integral between the limits - oo and + oo will be equal to double the integral
between the limits and +00 . Placing also hx=t, we have

=?-
n J o

and we have to determine the integral in the second member.

Fig. 15.

If we take three co-ordinate rectangular axes OT, 017, and
OF&quot;, and

change t into u, we have

A = I e~Pdt=B,re& between curve VtT and axes,

A =
J^

e~^du = area between curve VuU and axes,

and A 2 =
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and hence from (16),

cjir hi

inserting this in (12), we have for the equation of the pro

bability curve, or the law of the probability of error,

(19) y hiTT ~*e~ 7Ac2
,

in which x is any error, y its probability, h the measure of

precision (a quantity so that = is a concrete number of the

same kind as x), and i is the smallest graduated division

in the instrument of measurement, and hence a quantity

of the same kind as x or y- . The probability y is then an ab

stract number, as of course it ought to be.

Inserting also the value of c in equation (15), we have

(20) P =
j

which expresses the probability that an error will fall between

the limits x
1
and xn. Also since the integral between the

Now v= e~t
2
is the equation of the curve VtT and v=e~^ is the equation

of VuU, and if either of these curves revolves about the axis of V it gene
rates a surface whose equation is v= g-t2-it2 . Hence the double integral A&quot;*

is one-fourth of the volume included between that surface and the hori

zontal plane. If we suppose a series of cylinders concentric with the axis V
to form the volume, the area of the ring included between two whose radii

arerandr+ dr is 2-jrrdr, and the corresponding height is v= e~^~~u
2=e~ r2.

Hence one-fourth of the volume is

which, since fe~^2rdr=.-e~^,
is equal to

^.
Therefore we have

and hence, finally,

(17)
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limits x and + x is twice the integral from x to or from

to + x, we have

7, r+x 97, rx

(21) P =
-7= e-^dx = 2L

TTJ -x TrJo

as the probability that an error taken at random is between
the limits x and + x, or is numerically less than x.

Now (19) is the equation of the probability curve, and the

area between the curve and the axis of x is

ydx = -.1 le-v^dx.

Hence if (1C) be multiplied by i it will be the total area of

the curve, and if (21) be multiplied by i it will be the area

between the limits, a? and + x. Hence expressions (16),

(20) and (21) are proportional to the areas of the probability
curve corresponding to those limits, and if we regard the

total area as unity, the partial area between the limits x
and + # will be a fraction given by P in equation (21).

Further, since errors are committed in proportion to their

probabilities, these integrals and their corresponding areas

are proportional to the number of errors which we should

expect to find between those limits. If then we compute
values of P corresponding to successive numerical values ofx
in equation (20) they will be fractions proportional to the

number of errors numerically less than x., and at the same
time express the probabilities of committing an error less

than x. As however the constant h depends upon the pre
cision of the measurements, and hence varies in different sets

of observations, we write equation (21) under the form

9 rhx 9 rt

(22) P = -f- e-^d.lix=^ e-*dt,
VTT^O JTTJO

and compute the values of P corresponding to successive

numerical values of hx or t, by the usual methods of the

integral calculus*. A table of these values is given in

Part I.

*
Developing e~t2 into a series by MCLAURIN S theorem, multiplying by

dt and integrating, we get
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13. Thus from our table we see that the probability of an
error corresponding to hx = oo is 1, that is, it is certain that

all errors will be less than oj =
-y. For 7*# = r24 we have
ru

Pr

0*9205, that is, the probability that an error will be
1*24 9205

committed less than x =
-j

is
100Q()

. Or in other words, if

we have 10000 observations we should expect that in 9205
of them the errors would be less and the remaining 795

greater than -~-
.

The Principle of Least Squares.

14. The law of the probability of error represented by
the equation of the probability curve leads directly to import
ant results. The equation is

(12) y = ce- 1*x
\

in which y is the probability of committing the error x, and
c and h are constants independent of x. Now, considering
the general case of independent indirect observations (Art.

19), letw equally good observations be made upon a quantity

which is convenient for small values of t. For large values we integrate Ly
parts, thus

and since / e~t*dt = ~- as shown in the preceding footnote, we have
Jo 2

2 Jt

1.3 1.3.5

From these two series the values of P can be found to any required
degree of accuracy for all values of t or hx.
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M=f(st
t ... z] for the purpose of determining the magnitude

of s, t ... z, and let the observed results be M
lt
M

2
... MJ each

of which is a certain function of s,t ... z. Subtracting each
observed value from the corresponding true value there

result the errors x
lt
x

a
...x

n , having the respective proba
bilities

(12) y^-ce-
]^\ y^ce-

1**? ...... yn
= ce~ h&amp;lt;1Xn\

Now, by Art. 8, the probability of committing all these

errors either simultaneously or successively is the product
of the separate probabilities, or

(23) P = ce- 1**? ce~Wx? ...... ce
Wx^ = c

n

in which ^x* denotes the sum of the squares of the n

errors, or

(24) 2#2 =^ + x* + x* + . . . + x*.

Now each of these errors is a function of the quantities

s, t . . . z, which we are to determine. Their true values we
can never be sure of having obtained however accurate be
the measurements. Moreover, in equation (23) the proba
bility P will vary with these quantities, or as 2a?

2
takes

different values, and hence out of the many systems of values

which many be assigned to s, t ... z, we must take the most

probable as approaching nearest to the true system, that is

the system for which P is a maximum (Art. 9), and P is a
maximum when ^x2

is a minimum. Hence the most probable

system of values of observed quantities is that which renders

the sum of the squares of the errors a minimum.

This is the fundamental principle of least squares for ob
servations of equal precision. If they are not equally good,
the constants c and h are different in each observation or set

of observations, and we have

(12)

as the respective probabilities of the errors x
lt
x

a ,... xn . Then
as before the probability P of the total system of errors is

(25) P = c
x
c
2
c
3

. . . cH
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and the most probable system is that for which P is a maxi

mum, or that for which

(26) 2/iV = h*x* + h*x* + . . . + h*x* = a minimum.

Hence in measurements of unequal precision, the square of
each error must be multiplied by the square of its measure

ofprecision and the sum of the products be made a minimum.
If h is the same for all errors this evidently reduces to the
rule previously given. Thus arises the term &quot;Least

Squares.&quot;

15. Thus if all the observations are equally good and
made directly upon one and the same quantityM whose true

value is z
}
the errors are

and the expression (24) is to be made a minimum, or

(24) 2 (a MY = a minimum.

By the usual process for determining minima this gives

2 (z M} = 0, from which z = -
,n

which is merely the expression of the law of the arithmetical

mean, or of the equation (7),.
which we took as the founda

tion of our reasoning.

The Measure of Precision and tJie Probable Error.

16. Let us consider two series of observations, one having
the measure of precision h^ and the other h

?
. The probability

that a single error in the first series will lie between the

limits x
t
and + x^ will be expressed by the integral

(21) P,
=

*;V

and the probability that an error in the second series will fall

between the limits sc
z
and + x is also

(21) P;=-
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These two integrals are equal when h
l
^

1 =h^2
. If the first

series is three times as precise as the second, we have h
t
= 3/t

2 ,

and hence the integrals will be equal when x
2
= 3^, that is,

the probability of committing an error less than x
2
in the

first series is the same as that of committing three times as

large an error in the second series. Hence the accuracy of

different sets of observations is directly proportional to their

measures of precision.

Owing however to the circumstance that h is a quantity

of the same kind as -
,
and hence expressed in terms of an in

convenient unit, it is usual to employ other constants for the

comparison of the accuracy of sets of measurements. The
one in most common use is called the probable error, which

is an error of such a value that the probability (22) is - : and
Zi

is hence an error such that it is an even wager that an error

taken at random will be greater or less than it. The proba
ble error is then the- value of x given by the equation

(27) l^-*
A

By interpolation from the table in Part I. Art. 13, we
find

for hx =0-4769, P = 5;

hence denoting this value of x by r, we have for the probable
error

,9QN , A/1^ n 0-4769
(28) Jir = 0-4769 or r = ,

-

.

Hence if in Fig. 1 we lay off the abscissae OP and -f OP
equal to the probable error r, and draw the ordinates PB and
PB, the area PBABP will be one-half of the total area of
the curve, and in any series of observations we may expect
that one-half of the errors will be less numerically than r,

and the other half greater than r.

17. If then we have two sets of observations whose
measures of precision are \ and /&

2
and probable errors r

x

and r
2 ,
we have

(28) V1
= 0-4769,
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and hence \r^ = hj\2 . Now if the precision of the first series

is three times that of the second /^
= 3A

2 ,
and hence r

2
=

3r,,
that is, the probable error of the first series is one-third that
of the second. Hence the probable error serves to compare
the accuracy of measurements equally as well as measures of

precision. The smaller the probable error, the better are the
observations. Thus if two sets of observations give for the

length of a line in centimeters

L^= 427-32 + 0-04 and Z
2
= 427 31 0-16,

in which O04 and 0*16 are the respective probable errors, the

meaning is that it is an even wager that the first is within
O04 of the truth, and also an even wager that the second
is within 016 of the true value

;
and the precision of the

measurements in the first set is four times that of those in

the second.

We have now given the fundamental theory of least

squares and probable errors, and shall proceed in the next

Chapter to develope its practical features.



CHAPTER VII.

DEVELOPMENT OF PRACTICAL METHODS AND FORMTJLJE.

18. WE distinguish the following kinds of observations :

Direct observations upon a single quantity, in which the

measurements are made directly upon that quantity.

19. Indirect observations upon one or more quantities
s, t ... z by the measurement of functions of those quantities

(Arts, lib and 14).

20. Conditioned observations, which considered singly
are independent, but which collectively are subject to rigor
ous requirements or conditions. They may be either direct

or indirect.

21. Independent observations, which are also either

direct or indirect, but between which there exists no con
ditional requirements.

Thus if the sides and angles of a field are measured, each
observation taken alone is direct. If we find its area from
the sides and angles the measurement of that area is in

direct. Further, any two sides considered are independent
of each other, but if we consider all the sides and angles

they must fulfil the condition that when plotted they shall

form a closed figure.

Direct Observations upon one Quantity.

22. We take up first the case of direct observations

of equal precision upon one and the same quantity. These
are combined by the use of the principle of the average
or the arithmetical mean, whose use is limited to this single
class.
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23. As stated in Art. 11 a, the most probable value of
a quantity which is measured n times with the results M^
J/

2
... Mn is the arithmetical mean, or

n

From the second fundamental axiom of Art. 10, which
asserts that in a great number of observations positive and
negative errors are equally probable, it would seem that
the average was also the true value of the measured quan
tity. As far as our observations show, this is the case, for

it is the most accurate value deducible from them, and must
be used as if it were the true value. For an infinite number
of measurements the average would be the absolute true
value

;
for a limited number it can only be regarded as

the most probable value, that is, as the nearest approxima
tion we are able to make to the true value.

24. Probable errors. Having taken the average of n

equally precise measurements upon a single quantity, we
next proceed to investigate the accuracy or precision of

the result.

Let the observations give the values M
lt
M

2
... Mn whose

mean is
,
and whose corresponding true value is e. Let

the errors committed in the several observations be

so that

(30) XI=Z-MV x
z
= z-M

z
...xn

=z-Mn .

Also let v
lt
v
z
...vn be differences resulting from sub

tracting each observed value from the arithmetical mean, or

(31) ,
= -.;, v,

= i.-Mt
...vn &amp;lt;=t,-lfn .-

If z were the true value of the quantity, or z = z^ then
the errors x would be the same as the differences v. But
as we can never be sure that z represents the true value,
we can never determine the errors

a^,
#

2
... xn . The values

v
lt v

2
... v

n ,
which are readily found in any particular case,

we call residuals; they should be carefully distinguished
from errors.
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Each of our measurements M^ M2
...Mn is probably

incorrect, as likewise the arithmetical mean z . The degree of

confidence which we can place in each of these results will

be shown by their probable errors (Art. 16). Considering
h as the measure of precision of a single observation and
r as its probable error, the relation between them is given by

(28) r-
lit

and hence to determine r we have only to find h. There

is, however, no known method of finding the exact value

of h: the best that we can do is to determine an approxi
mate value, which moreover shall be the most probable one

(Art. 9).

25*. The probability of the occurrence of any error

x is

(19) #

and the probability of the occurrence of the system of errors

x^ x
2
...xn is by Art. 8 the product of the separate pro

babilities. If then h is the same for each of the n observa

tions, we have as in Art. 14,

(32) P=y1 y,.-

where S#2
denotes the sum

Now in this expression h is unknown, and further, we have
no means of finding its exact value. But whatever be its

value, P must be a maximum in order to give the most

probable value of the measured quantity z. We are there

fore led to conclude that for a given system of errors the

most probable value of h is that which renders P a maxi
mum. Differentiating (32) with reference to h, and putting
the first differential coefficient equal to zero, we have

(33)
~ = nhn~l

i
n
ir-*

n e-h^x* - 2hZx? e~h^ hn
i
n
7r- n =

;

*
Simplified and considerably altered from the demonstration given by

DIENGER in his Ausgleichung der Beobactungsfehler, Braunschweig, 1857,

p. 59.
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dividing this equation by hn
~l

,
i
n
,

?r&quot;

in and e~h~^, we obtain

(33) n - 2A22^2 =
0,

from wbich

(34)

We have thus the value of h in terms of 2#2

, which,

however, we have no means of obtaining, since the errors

xv #
2

. . . xn depend upon the unknown true value z. If

the number of observations were infinite 2#2 would equal
2v

2

(Art. 23), and as the latter value is determinate h would
be known. In a large number of observations, therefore,

the equation

7,2
_ n

will always give a close approximation to the value of

h. But as the sum ^v2
is always less than See

2

(since from

the principle of least squares, Art. 14, the first is the mini

mum value of the second) we may place

(35) x? =

in which &2
is a constant to be determined, and then our

value of h will be correctly given by inserting in (34) the

value of S#2 from (35). As however 2#2 cannot be exactly

found, we cannot hope to find the exact value of A;
2

,
but

must be content with determining an approximate one.

Now the probability of committing the system of errors

(32) P = c
n

or, inserting for $#2
its value from (35),

(36) P = c
n
e~ hz

&amp;lt;

2v2 +*2) = c
n
e~ h e~m\

Placing in this the constant terms equal to c, it is

(36) P = ce~m\

Hence the law of the probability of any value & is the same

as that of an error x, as shown by (12). We may regard then

(36) as the equation of a curve of the same form as Fig. 1,
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and, as in Art. 12, we may show that c = /mr&quot;
1
, where i is a

small constant of the same kind as k. Hence the equation

(37) P = /7r-,e-^3

shows the probability P of a value L Now in this equation
both h and k are unknown, and, as we have said before, we
can only expect to determine their most probable values.

The value of k2

although unknown is fixed and definite, and
hence we conclude as before that the most probable value of
h will be that which makes P a maximum (Art. 9). Differ

entiating then the equation (37) with reference to h and

placing the first differential coefficient equal to zero, we have

(38)
~ = ITT- &amp;gt; e~m &quot; - 2/ifcV**9

hiir-* = 0.
CLIb

Dividing this by i, ?r~ i and e- A2fta

,
we have

(38) 1 - 2ra2=
0,

from which

(39) .

.: F=A. .

.;.-;
.

Therefore for the equation (35), we have

(40) 2^=2 +
1j-1

,;

as the nearest possible approximation. Since from (33) the

value of 2#2
is

, we have accordingly j

from which we find the most probable value of Ji in terms of

the known sum of the squares of the residuals (31), or

(41)

M. 10
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Inserting this value in (29) we have as the- probable error of

a single observation,

(42) r- 04709 ^
= 0-6745

The above is only one of the many demonstrations of the

formula for the probable error r. None of them are, from

the nature -of the -case, entirely satisfactory, since it is im

possible to find the exact value of h. In Art. 30 we give
another demonstration which may be readily applied to the

case here considered by making # = 1, or regarding the

measurements as of equal precision.

2G. The formula (42) just deduced gives the probable
error of a single measurement M. We next inquire, what is

the probable error of the arithmetical mean of the n measure

ments ?

The probability of the arithmetical mean is the proba

bility of committing the system of errors v
lt
v
z
...vn or

(23) P = c
n
e- h^\

and the probability that the true value of z is z -f x[ is the

probability of the system of errors v
x + x, v

2 + a?
, etc., or

(43) Px
. = c*e-

K* (v+*
P.

Since S (v + x
)~
= Sv* 4- 2a/ Sv + nx z and S# = 0, this be

comes

(43) fi

. = c e
-

Hence we have

(44) P : Pj :: e~ 1fSfft
:

that is, the probability of the error in the arithmetical

mean is to that of the error x as 1 is to e~nh
&quot;x
\ For a single

observation whose error is x, we have however from (2)

(45) yc
: y. :: 1 : &amp;lt;r&quot;

V!
,

or the probability of the error in a single observation is to

that of the error x as 1 is to e~ h
**. Hence comparing (44)
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and (45) we see
tliat_if

h is the measure of precision of a

single observation, *Kk must be the measure of precision of
the arithmetical mean zv Therefore, h

Q denoting the measure
of precision of Z

Q ,
we have

(46) h =h^7i.

Denoting by r the probable error of Z
Q ,

(28) 7i. r = 0-4769 and hr = 4769.

Inserting from these the values of h and h in (46) we have
Al

r _, that is, the probable error of the arithmetical mean is
Vil

equal to the probable error of a single observation divided by the

square root of the number of observations. Hence from (42)

(47) r.- = 0-0745 ^~f?~ ,

which is the expression used without proof in Part I.

27. We take up next the adjustment of direct ob
servations of unequal precision. If the several observations

give the results M^ ,
M

2
. . . Mn whose measures of precision are

h
lt h^...hnt the principle of least squares requires that the

quantity

(26) hfx* + hfxf + ...+
7*,&amp;gt;7;

= a minimum.

If z be the true value of the quantity the errors are

and the expression to be made a minimum is

(26) V(*

Bv differentiation, we find that the value of z which makes
this a minimum is

1C 2
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Owing however to the fact already alluded to in Art. 16,

that h is expressed in terms of an inconvenient unit it is

usual to employ numbers having the same ratios; thus if

(49) ff,
:

&amp;lt;72
: gn :: V - V - h

n&amp;gt;

the expression (48) becomes

(50)

The numbers ^ &amp;lt;72 # are called the weights of the ob

servations Mlt
M

2
... MnJ and are merely relative numbers pro

portional to the absolute quantities h*, h? ... hn*. If, as m
Art. 23, all the observations are of equal precision, we take g

as 1, and the formula (50) agrees with the law of the arithme

tical mean (27). The weights of measurements are then

numbers proportional to the number of single observations

to which each is equivalent. Thus if M^ is the equivalent of

q single observations of the weight unity
its weight is glt

&quot;and as the arithmetical mean z is the equivalent of n single

observations its weight is n. The weight of Z, which we call

the general mean, is then gl
+ #2

+ ... + gn.

28 If we have different sets of measurements of unequal

precision upon one quantity, the first giving the average z
v

from n, measurements,
the second giving z

2
from n

%
measure

ments, the adjusted value is furnished by

(50) *-% ,

and the weights gl9 g, ...gn must be found from the propor

tion (49). The measures of precision of the several averages

being h
t&amp;gt;

h
t , etc., we have from equations (41) and (46)

(ol)

in which 2?/
2 denotes the sum of the squares of the residuals

in the first set, 2v&quot;

z
in the second, and so on. Inserting these

in (49) and omitting the common factor 2, we have

(52)
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from which we may find the relative weights, and then the

general mean by (50). The weight of the general mean is

of course ^g.

29. If the probable errors of the averages of different

sets of measurements have been found by (47), their relative

weights are easily determined by (49). For if the measures

of precision be /^,/t2
... hn ,

and the corresponding probable
errors be r

lf
r
3

... rn ,
we have

l 2

inserting these in (49) and omitting the common factor

4769, we have

ffl
: g, :

&amp;lt;73
: ~* *&amp;gt;

that is, the weights of observations are inversely proportional
to the squares of their probable errors.

30. We now proceed to find the probable error of the

general mean. Let Z be the general mean, G its weight,
and R its probable error, also let r

t
and r

2
be the probable

errors of observations of the weights g^ &amp;lt;/2
. Then from the

above principle

(53) G : g, : g, :: ^ : ~* ^ &amp;gt;

from which we find

(54) Jp_L.(SL ..0.

Also since G=gt + gz + ... -f gn ,
we have from (53)

(55) K*
=s

^ +^ + &quot; +^
Hence, having by (46) found the probable errors r

lt

r
2
...rn ,

the probable error of Z may be found by (55), or,

having by (52) found the weights /71 ,^2 ..-^B &amp;gt;

whose sum
is Gy

we may by (54) also find the probable error of Z.
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As however the computation of all the weights or all

the probable errors is sometimes laborious, we shall deduce
another formula. Let, as before, G be the weight of the

general mean, and R its probable error, and let r be the

probable error of an observation whose weight is unity.
Then we have

(58)
_

o 1 1**$. .;, ;:

from which

(5G) E = -
.

Hence havingfound the probable error r of an observation

whose weight is unity, the probable error of a result whose

weight is G is found by dividing r by the square root of G.

We proceed to develope a method for finding r.

Let n be the number of observations or sets of measure

ments, h
iy

7i
9

... hn their measures of precision, and gt , &amp;lt;72
... gn

their relative weights. Also let h be the measure of pre
cision of an observation whose weight is unity. Then
from (49)

fc:.fc5&quot;l ::V: V *&quot;

and hence

(57) V =^ . i,
1-^1

...
ft.*

= &/
The law of the probability of error gives for the corre

sponding errors x
it
x

z
. . . xn ,

(19) yi
=

V&amp;gt;~*
e~ hW, ya

=
7y&amp;gt;-*

&amp;lt;r
W

etc.,

or from (57),

2/i
= h Jy~i \ -* J e-*g

rt, y,
= h Jg2 i,

TT-
J e-*** .

Hence in general if x be any error, g the weight of its

corresponding observation, and h the measure of precision
uf an observation of the weight unity, we have

(58) y = hgi7r-i

as the probability y of any error x, whose measure of pre

cision is hjy, or as the probability of any error x *Jg whose

measure of precision is A.
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Now n observations being made, it is evident that the

quantity

(59)V n

will have a certain definite value; the probability of the
occurrence of gjc* will be yt ,

of g^c* will be y2 ,
etc. : and

each term in the numerator will occur a number of times

proportional to its probability, provided that n is a very
large number. Hence g^x* occurs nyl times, y2

.r
2

2
occurs

nya times, and- the quantity (59) becomes

But when n is a very large number, the errors will be
distributed according to the law of the probability curve
from oo to + GO

,
and if the measurements are accurate,

i in (58) will be dx. Hence we have, by inserting for y its

value,

(60)
!:

ry
-

Taking in this hx Jg = t as the unit variable, it may
be written

(60)

and as the value of the integral is
v

,

7
* we have

* From the foot-note to equation (17) we have

10

Placing t=tfj7, this becomes

Differentiating this equation with reference to s, and regarding t as con

stant, we have
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.

which gives the value of h in terms of the sum
^&amp;lt;jx

z
.

Now let v
lt

v
2
~-vn denote the residuals or differences

between the general mean Z and each observation. Then
the sum 2^ic

2
is greater than 2gv*, since the second is

the minimum of the first. If we place then

(62) S^-S^ =
tf,

and suppose 2##
2
to have all possible values greater than

2//v
2

,
and each to be repeated a number of times proportional

to its probability, we may consider the mean of all the values
thus found for k* as the best approximation attainable to

its value. The law of the probability of these values of k
is as in (36) given by the equation

F &amp;lt;*-**

and if n be the number of possible values of k* the value
k* will occur nY

t times, k* will occur nF
2 times, and hence

the mean of all the possible values will be

(63) StfY= 4-
^TT

If then we place in (63) for 2gx* its value from (62) and
for k2

the value just found, we have

(63) S
from which we find for h

Hence from (29) we have the probable error of an ob
servation of the weight unity

0*4769
(6 )

r =
~~JT

=

Dividing this by -ds and making s= l, we obtain

- f*?-dt = ?-= one-hall of the integral in (GO).
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which being computed, the probable error of the general
mean is found at once by (56).

If in (64) and (65) we place g = 1, they reduce to the

expressions (41) and (42) obtained in Art. 25 by an entirely

different method. Moreover in that case G becomes n, and

the expression (56) coincides with (47). Both methods of

reasoning thus lead to the same results.

31. The above includes the whole theory of direct

measurements upon a single quantity. Observations upon
several quantities will be investigated in the next section;

and it is interesting to observe that all the preceding methods
are but particular cases of the more general theory of in

direct observations, as we shall show in the following articles.

Independent observations upon several quantities.

32. Independent observations are those which are sub

ject to no conditions except those imposed upon them by
the measurements themselves, so that, before taking the

observations, all systems of values are equally probable.
The manner of measurement may be either direct (Art. 18)
or indirect (Art. 19), but for convenience we shall consider

only the latter, of which the first is a special case.

Indirect observations being made upon functions of the

quantities to be determined, require in general the statement

of equations between the measured quantities and those re

quired. Thus if in order to determine the magnitude of the

quantities s, t ... z we make observations upon the related

quantities M,M ,
which are connected with the first by the

relations

M-f(s,t...e),

and find the values M
lt
l/

2 , M^, M2 , etc., each observation

furnishes us with an equation, which we call an observation

equation. The number of these equations is the same as the

number of observations, and generally greater than the num
ber of unknown quantities s

} t ... z which we are to determine.
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Hence in general no system of values can be found for s, t . . . z

which will exactly satisfy the observation equations. They may
however be approximately satisfied by many sytems of values,
and we propose then the problem to find out of these systems,
all equally possible, the one which is the most probable, and
hence the best.

The equations between the observed and unknown quanti
ties may be either linear or non-linear, exponential or trans

cendental
;
but we shall treat only of linear equations, to

which all the others can always be reduced by the methods
of Art. 59.

33. Taking up first the case of observations of equal

weight, let the equations between the observed and the

measured quantities be of the form

in which s,t...z are the unknown quantities to be deter

mined, a,b..,l, constants given by theory and absolutely

known, and M the measured quantity. For each observation

we shall have a similar equation, and in all the following n

equations

(6G)

the first of which arises from the first observation, the second

from the second, and the last from the 7i
th

.

Now as the number of these observation equations is

greater than that of the unknown quantities, they will not

be exactly satisfied for any system of values we may find.

Hence if s, t ... z denote the true values of the quantities to

be determined, the general form

is only approximately correct, for the equations do not re

duce exactly to zero. Let us designate then by xv x
z

... xn ,
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the errors which thus arise when for s, t ... z in (66) we place
their true values. Then we have strictly

a
2
s + bnt + ... + l^z

- J/
2
= oc

z ,

(67)

ans +M + ... + lnz-Mn=xn .

Now in the impossibility of finding the true values of

s, t ... z from these equations, we must determine their most

probable values as the nearest attainable approximation to

the truth. The most probable system of values is, by the
fundamental principle of Art. 14, that which makes the sum
of the squares of the errors a minimum, that is which makes
x

\
+ X

2 + + xn a minimum. By the use of this principle
we have in Part I. deduced a method of finding the most

probable values. We give here a more general proof which
follows directly from our demonstration of Art. lib.

From equations (8) and (9) of that Article we have

(a?,)
= kx

lt $ (x2)
=&&... (O = lcxn ,

in which k is any constant. Substituting these in the differ

ential equations (4) and dividing each by k, we obtain

flx dx
9 dx dx

v. J +o?2
-,

2 + #, -T&quot;
+ ... + ^l -T--

= 0,1
&amp;lt;ls

2 ds 3 ds n ds

dx dx dx dxn- - 3 -

dx, dxa dx dx ..

X
I -J

A + a-o-^-f x*-r*+ + ^n^r
n = 0.

1
dg 2 dz 3 dz n dz

Now by differentiating equations (66) with reference to each

variable, we obtain

dx. dx, dxn-~ = a., -j te. ...
7

-- = an ,

ds 1 ds ds
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which, substituted in (G8) give

a^ + a
2
tf

2 + a
3
x

3 + . . . + an
xn =0,

(70)

which are the conditions for determining the most probable
values of s, t ... z, since they render equation (2) a minimum,
and which are as many in number as the number of those un
known quantities. If in these we substitute for x

v ,
x

2
. . . x

n

their values from (67), we have then the equations from which

s, t ... z can be determined. These final equations we call

normal equations, and we see by (70) that the first is formed

by multiplying each observation equation by the coefficient

of s in that equation and adding the results. Inserting in

the first of (70) the values of a?
1
a?

a
... a^from (67), we have as

the first normal equation, or the equation for s,

f
2 + ...+ anMn]

=
;

and in like manner we form a normal equation for each of

the other quantities t, u ... z. To abbreviate the expression
of these equations let us place

(72) 2aZ = a^ + a
2
?
2 + a,l, + ...+ anln ,

etc. etc. etc.

and then the normal equations (71) may be written
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. s + ^ab . t + . . . + 2al. e = S

(73) 2ac . 5 + 2t&amp;gt;c . t

The coefficients of the unknown quantities, it will be re

marked, present a curious symmetry ;
thus the coefficients of

the first horizontal row are the same as those of the first

vertical row, those of the second horizontal row the same as

those of the second vertical row, and so on. The period placed
between each coefficient and its unknown quantity shows that

the sign 2 extends only to the former.

34. Thus if we have n observations for determining q
unknown quantities, the most probable values of the un
known quantities are obtained by writing n observation

equations as in (66), then forming the q normal equations as

in (73), whose coefficients 2&2
, %ab, etc. are given by (72) ;

then the solution of these normal equations wifl furnish the

most probable values of s, t ... z. In the most common
cases the coefficients in the observation equations (66) are

+ 1, 1 or 0, and in the formation of the sums (71) the signs
must be carefully regarded. Stated in words, the process for

forming the above normal equations is the same as given by
the rule deduced in Part I.

35. To adjust indirect independent observations of equal

weight, we have then only to form and solve the normal

equations, thus obtaining the best system of values for the

unknown quantities.

The solution of the normal equations may be effected by
any algebraic method. When there are only two or three

equations the usual methods of substitution or addition are

perhaps the quickest, but for many equations they are tedious.

A process of solution by substitution, assisted by the notation

of (71), which is due to GAUSS, is here valuable to the com

puter (see Art. 60). The method of indeterminate multipliers
is likewise often of quick application. As this method is not

presented as fully as it ought to be in the common text-books

in Algebra, we think it worth while to give an example illus-
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trating its use, particularly as we shall have occasion to refer

to it again in another connection.

We take the five normal equations given in Part L Art.

35, viz.

25 -t = A,

-s+4ttux =#,

-t + Zu-x =
&amp;lt;7,

t-u+ox-y =Z&amp;gt;,

and to solve them by the method of indeterminate multipliers,
we multiply the first by a number /3, which is as yet un

known, also the second by a number /32 ,
the third by /33 ,

the

fourth by /34 ,
and the fifth by /35 . We then add the resulting

equations and place together the terms containing like un
known quantities, thus

-
ft) s + (-ft + 4/32

_
ft
-

ft) + (- ft + 2/33
-

ft) u

H-(-ft-ft+3ft-ft)*

+ (- ft 4 3ft) y = ft4 + &B + ft(? + ft/) + ftE

Now if we wish to find the value of y we have only to require
such relations to exist between these multipliers that all of

the terms of the first member shall disappear except that

containing y, that is, we must have

2ft -ft =0,

-ft + 4ft- ft -ft =.0,

-+S-ft =0,

and then we nod

_
y ~

Now @lt /S2 ,
etc. may have any values which will satisfy the

four imposed conditions. If then we take /3 t

=
1, the first of

these conditions gives /32
=

2, and the other three become
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7 -ft- ft =0,

-2+2/33 -/34 =0,

-2-ft+3ft-ft = 0.

Solving these equations by the common algebraic method of

addition we find fis
=

3, /3&
=

4, and /53
= 7. Hence our value

of y is

In like manner if we wish to find the value of s, we re

quire that all the terms shall disappear except the first, or

that

and then we have

+ 3E

and as the multipliers may have any values which will satisfy

the four conditions, we take /35
= 1 from which /34

= 3, and
11 IS S2

hence from the other three (3S
= -^ , Pz

= -^ ,
and /3 X

=
^- .

o o o

Then

Thus by the operation of indeterminate multipliers we
reduce in this case the five given equations to three much
simpler equations whose solution is readily effected by the
common methods. The values of the other unknown quanti
ties can now be either found directly from the normal equa
tions by inserting for s and y their values, or by imposing
new conditions and finding new sets of values for the indeter

minate multipliers.
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36. Observations of unequal weight next claim our atten
tion. As before, let the observations be represented by the

equations (66), the measure of precision of the first being h
lt

of the second h
z , etc. and their corresponding weights^, g2 , etc.

Then the errors being xv x^...xn ,
we may as in (67) write

them

a^ + lj + .., + ljZ M^ = x
t
with weight g^

+ bnt + ... + ln
z -Mn

= x
n with weight gn .

Now by the principle of least squares (Art. 16), the most

probable values of the unknown quantities s, t, z are those

that make

(26) h?x? + h*x* + . . . + hn\* = a minimum.

But if in this we place

(57) V =
%,&amp;gt; A,

f = AV,-V =^
in which h is the measure of precision of an observation whose

weight is unity, it becomes

(75) h*(g,x? + gjcf + ^3
^
3

2 + . . . +^7nO = a minimum,

so that we have to render a minimum the quantity

(76) ^gx
n = gtf + g,x? + .

Eemembering that cc?, x* are functions of the variables

s,t...z as given by equations (74), we must to determine the

minimum differentiate Uga? with reference to each of those

variables and place the several differential coefficients equal
to zero; thus, after dividing by 2,

*i + .A*k4 ..

dx. dx
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Next differentiating (74) with reference to each variable,
fij sy* /V^y

we have the coefficients
-j-

l = av -^ = a
,

etc. exactly as in
CfcS CtS

(69), and, inserting these in (77), we have the conditions

5Wi + #2% + ...+ gnanxn = 0,

(78) 0^ +
gj&amp;gt;&

+ . . . -f ^A*. = 0,

which will be as many as there are unknown quantities
s, . . . z. If in these we place for xv x

ii

...x
n their values

from (74), we have the final normal equations which de
termine the most probable values of the unknown quantities.
As in Art. 33, we abbreviate the expressions of these equa
tions by placing

+...+gnan*,

(79)

etc. etc. etc.

And thus have the normal equations

%a2
. s + ^ab .t+ ... + ^al. z =

(80)

+ gll . t + . . . + gl\ z =

by whose solution we find the values of 5, t ... z.

If all our observations are of equal weight, we may place
&amp;lt;7

= 1, and then our equations (77), (78), (79) and (80)
reduce to (68), (70), (72) and (73), as determined for that
case by another method.

37. The notation above exhibited is very useful as a

guide in dealing with large numbers of observations, and
in reducing the numerical operations to a routine for coin-

11



102 DEVELOPMENT OF PRACTICAL METHODS

puters. To illustrate its uses, suppose we have five ob
servations giving the following equations :

25 - 2t + 3w = 5- with weight 3,

s+2t+ u= 9 ............... 2,

3s - t+ u= 12 .................. 5,

4*-3z* = 5 ............... 1,

-s- t + 2u = -7 ...... .......... 4,

from which we wish to find the most probable values of

*, t and u.

Comparing these with (74), we have

&amp;lt;/3 =5,

1 ben we have

0^=3^) a^ = -4, ^c^- 6 a
4
J
4 =*0, etc.,

and hence from (79) we form the sums

Zga^gtf + fj& +gp* +g^ + gp* = 63,

Zgab = g l
a

l
l

l
4-&& + ^S

o
8
6
8 +^^J

4 4- ^5
a
5
^
3
= -

27,

a^ 4- gz
a

z
c
z
+ ^a4

c
4
+#5

a
5
r
5
= 43,

=-39,
= 52,

and inserting these in (80), we have the normal equations

G3s- 272 + 43^ = 200,

-27** 456-89* -6,
= 52

rtj
= 2,
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whose solution will furnish the most probable values of s, t

and u. For GAUSS method of still further employing the
notation in the solution of the normal equations, see Art. GO
of the Appendix.

The student will observe that the above process is iden
tical with that of multiplying each observation equation by
the square root of its weight, and then forming the normal
equations by the method used in Part I.

38. To determine the probable errors of the determined
quantities s, t... z

y
we let Gg , Gt

... Gz denote their weights,
and R8 ,

Rv ... R
z
their probable errors. Then if r be the

probable error of an observation whose weight is unity^ we
have

from which we find

Hence in order to find the probable errors of s, t ... z, we
have only to determine the probable error of an observation
of the weight 1, and the weights G

s ,
G

t
..... #,. And in

general, if r
x
be the probable error of a measurement whose

weight is g^. r is equal to r divided by the square root of

fft (Art. 30).

To find the probable error of an observation whose
weight is unity we give the following reasoning.

Suppose that we have formed and solved the normal
equations (80), and found the most probable values of the
unknown quantities. Let those most probable values be
represented by s,t...z, and the corresponding true values
by s + &s, t + Bt . . . z + z, in which 85, &t...8z are small
unknown corrections. Now if in (74) we substitute the
values s,t...z, they will not reduce to zero, but leave the
residuals vv v

a
...vn . Thus

112
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a
i
s +^ + + fyz -Mi

=
flj

with weight glt

(82) a
2s+l2t+...+l,z-M2

= v
2 (7.,

a
7t
s + 6

n + . . . + lnz
-Mn

= vn with weight #n ,

while if the corresponding true values are inserted, we shall

have the errors x^ x
2

... xn . Thus

a
: (s + Bs) + \ (t 4- &) + ... - J/j

= ^,

(83) a
2 (s + &) + ^

2 (t + &) + ... - J/
2
= a?

2 ,

Now each one of the latter equations may be written in

the form

as + lt + ... + lz M,

+ . . . + oz = x,

and as (82) are of the form

as + It + . . . 4- Iz -M =
v,

the equations (83) will reduce to

v
1
+ a^s + bfit + . . . + Ifa

= x
i weight glt

(84) r
a + 2

3s + 5
2
8i + . . . + l&amp;gt;z

= x
&amp;gt;2

......... #2 ,

vn -f an3s + ln%t+ . . . +^ = x
n weight ^M .

Now the principle of least squares requires that the

expression

(70) g

shall be made a minimum to give the most probable values

of 5, t...z, and by the solution of the normal equations
we have for its minimum value the sum %gv

2
. From the

residual equations (84), we may find a relation connecting
the two sums

2&amp;lt;/v

8 and ^gx
z

by squaring both members of
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each of those equations, multiplying each by its corresponding

weight, and then adding the results. Without actually per

forming these operations, we see that if the squares and

products of 8s, 8t . . . 8z be neglected as small in comparison
with Ss, St ... 8z, the result will be of the form

(85) 2gv* + ks + kt + . . . + k
q&t
= ^gx\

in which Tev k
2
...kq are coefficients of the unknown correc

tions, and dependent only upon the known constants a
x ,

b
lt

etc. If the number of unknown quantities is
gt

there will

be q of these terms. Placing

ks = k*, kt =
kf, etc.,

we write the relation

(85) V* + 2 + lef + +V = %^2
.

Now the probability of the occurrence of the error x
l

whose measure of precision is h
lt

and whose weight is glt

is by (19) and (57),

(58) y^hJgAir-ie-****,

in which h is the measure of precision of an observation of

the weight 1. And hence by exactly the same reasoning as

in Art. 30 we may show that when n is a large number,

(61) V =
2^-

Further, if we suppose that all the q unknown quantities

s, t ... z except one are zero, the equation (85) being true for

any number q, will hold good for q
=

1, and will contain then

only one tf, whose value as shown in Art. 30 is^ Hence

since each of these tf is a constant, the value of each must

b*3 Ya whatever be their number. Hence the equation
Z/i

(85) is
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and since there are q terms whose value is - 7 ,
it is

from which we find

(86)

rTherefore from the constant relation between h and .

(28) the probable error of an observation of the weight
unity is

(87) r= 0-6745
n

&amp;lt;i

In the above we have followed closely the reasoning of

Art. 30. The student can also readily apply the method of
Art. 24 to produce the same result, by finding from (58) the

product P of the simultaneous existence of the errors
#p #2 ... xn , and then determining h by differentiation.

If in (87) we make q = 1, or consider only one measured

quantity, it reduces to formula (65), and if we make# = l,

or regard the observations as of equal weight, it becomes (42).
Thus measurements upon one quantity are but a special case
of the more general one of indirect observations.

39. The probable errors of the values of s, t ... z can
now be found from (81) as soon as the weights G

lt
G

t , etc.,

are known. We now proceed to determine .these.

The observations (74) -upon the quantities Mlt
M

z
... J\/

u

furnish the -normal equations (80). The solution of these

equations gives the values of s, t ... z in terms of MVMZ
...

Mn and coefficients independent of those quantities. Suppose
the general solution to give

s = &amp;lt;r

t

(88) t = T& + r
2
.

2 + r
3
M

3 + . . . + rnMn)
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in which the coefficients cr, r . . . f depend only upon the con
stants a, I ... I and the weights g in (80). Then if E

s
is the

probable error of s and r
lt
r
2
...rn the probable errors of

M
I}
3/

2
... Mn) we have, by a principle to be proved in Art. 42,

since the measurements are independent,

(102) B,*
=

ff. r, + o-.V,
1 + . . . + =

2&amp;lt;rV.

Now 6r
s being the weight of s, and glf ga

... gn the weights of

the measurements M ,
M ...Mn , we have from (53) and

(54)

and by substitution in equation

(90) J2
(
= (?fJ

9

from which we find

(91) ^=-

in which the usual notation for sums is followed. In like

manner we may show that the weight of t
t

is the reciprocal

of 2 ,
and that the weight of z is the reciprocal of

Owing however to the labour of finding the coefficients

&amp;lt;r, r...? it is better to deduce these expressions under a

different form. Let us suppose the normal equations (80)
to be solved, giving

(92)
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in which a, /3 ... X are coefficients independent of M
lt
M

2
...Mn . Then the respective weights of s, t ... z will

2

be

the last unknown quantity and q the

number of unknown quantities). In order to prove this let

us find the weight of t. By comparison of (88) and (92) we
have

TI
=&& a, + fagfr + . . . +0^,

Squaring each of these equations, dividing each by its g and
adding the results, we have

2 =
/9, (P^ya? + frSgab +... + fr

u

(94) . + /92

+ /39

Now if we were to solve the normal equations (80) by the
method of indeterminate multipliers (Art. 35), we mi^ht

multiply the first by a number /3 ,
the second by /92 ,

the q
th

by (3q ,
and add the results

;
then if upon these multipliers we

impose the conditions

+ ... + frugal = 0,

(95) /3

+ . . . + p^g? =
0,

all the terms except those involving t will reduce to zero,
and the value of t will be the same as given by the second of

equations (92). Comparing then (94) and (95), we have

(96) 2^ = A. r ^ = = (?
&amp;lt;-

y 2
9

Hence the weight of t is -

Q
-

,
which was to be proved.

Pa
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Although we have here supposed the solution to be made

by the method of indeterminate multiplers, it is evident that

the same result will be reached whatever be the method

employed. Therefore to find the weights of the values of

the unknown quantities, we have only to solve the normal

equations preserving the absolute terms in literal form; then

the weight of s is the reciprocal of the coefficient of the

absolute term in the normal equation for s occurring in the

general value of s, the weight of t is the reciprocal of the

corresponding absolute term in the general value of t, and

so on.

40. Thus in the example of Art. 35 we have found the

17
general values of y and s. The weight of y is then -=-

,
the

reciprocal of the coefficient of E in the value of y ;
and the

weight of s is^ , the reciprocal of the coefficient of A in the
o^

value of s.

If there be but one unknown quantity, the observation

equations will be

a^z
= M^ a

2
z =M

2
. . . anz = 1T

S ,

and if the weights of these be g , gz ..*gn ,
the single normal

equation is 2#a
2

. z ^gaM. If a
t
=

2
=

1, the observations
S* 1/7&quot;

are made directly upon M, and the equation gives z = -i-
-,

which agrees with the general mean (50). By Art. 39 the

weight of z must be the reciprocal of =-
,
or

as shown otherwise in Art. 27. Further, if g = 1 the normal

equation becomes nz =^M
t , agreeing with the law of the

arithmetical mean (27). Thus is the correctness of our
methods verified by these mutual checks.

41. The probable errors of functions of independently
observed quantities will next be investigated. Let us take
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first the most simple function of two independently measured

quantities, viz.

in which z
l
and z

2
are the measured quantities ;

then it is

evident that if ^ and
2
are the most probable values found,

the most probable value of Z is the sum or difference of ^
and z

a ,
as the case may be. Let the errors arising in the

measurements be

for z
t ; x^ v&quot;, x&quot;

,
etc.

;

for z
2 ; a-/, o-

2 &quot;, a*./&quot;,
etc.

;

then the errors of Z will be

V rr 4- ^ Y T &quot;

-J- T
&quot; Y T

&quot;

4- T
&quot;

OtP^V
t

X
1 X^ , Aa&quot; ^i ^ j )

- 1
3

~&quot; J
i

^
2

CLL -

Squaring and adding these errors, we have

X? + A
r

2

2 + etc. = +
&amp;lt;;

2 + &amp;lt;T
+ etc.,

or developing and adding

(97) 2X2 = S^
2 + 2 S^a?, + 2^ .

In a great number of observations there will probably
-be as many positive as negative products of the form o^, a?

8 ,

and hence we shall have ^x^2
= 0. Hence (97) becomes

(98) 5ATa = 2a-
1
+ :S*

8

a
.

Denoting the measures of precision of Z, z
l
and z

z by

//, h^ and A
2 ,

this ^becomes by (34)

n n n

2JET &quot;2V

+
2y

Denoting the probable errors by E, r^ and r
2 ,
we have

(28) tfU = Vi =V8
= 47G9

&amp;gt;

and hence this relation in connection with (98) gives us

(99) JZ-^r^ + r,
1

.
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In like manner, if we have a function of the sum or

difference of several independent observed quantities, viz.

the probable error of Z will fee given by the relation

(100) tf = r* + r
2

2 + r
3

2 + . . . + rn\

42. Next let Z be a function connected with an ob

served quantity z
i} by the constant relation

Then if the probable error of z^ is rr it is evident, since an
error x

l
in the measurement of ^ gives to Z an error Ax

lt

that the probable error of Z is

(101) H = Ar
l9

oT-lf =A\a
.

Hence combining this with the principle deduced in

the previous Article, if

Z= Az
l
+ Bz^ -f Cz

s
4- etc.

and if z
lf

z
2 ,

etc. are independently observed with the pro
bable errors

i\,
r

2 ,
r
3 , etc., the probable error of Z is given by

(102) R* = A\z + B\* + CV
3

2 + etc.

Thus if z
l , 2 ,

z
s

. . . zn are several observed values of the

same quantity, the probable error of their sum is

and by (101) the probable error of -th of this sum is

Jnr
2

r

which is the probable error of the arithmetical mean, as

has been otherwise shown in Art. 26.
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Conditioned Observations.

43. In all that precedes we have supposed that the

quantities to be determined by observation were independent
of each other. Although they have been related to each
other through the observation equations, and have been
required to satisfy approximately those equations, they have
been so far independent, that any one unknown quantity
might be supposed to vary without affecting the values of
the others. The methods above developed show how, out
of the many equal possible systems of values, we can deter
mine the most probable.

We now come to a second class of observations in which
all systems of values are not equally possible owing to the
existence of conditions which must be exactly satisfied.

Thus having measured two angles of a triangle, the adjusted
value of one is entirely independent of that of the other,
but if the third angle be measured, the three angles are

subject to the rigorous geometrical condition that their

sum must be exactly 180. We have then in conditioned
observations two classes of equations, observation equations
and conditional equations, the number of the first being
generally greater than the number of unknown quantities,
and that of the latter always less.

44. The number of observation equations we designate
as before by n, the number of unknown quantities by q,
and the number of conditional equations by p. If no con
ditional equations existed, the principle of least squares
(Art. 14) would require that the adjusted system of values
should be the most probable for the n independent observa
tion equations. But here these n equations are conditioned

by p conditional equations. The p conditional equations
being less in number than the q unknown quantities, may be
satisfied in various ways, and further, the final adjusted

system of values must exactly satisfy them. Hence we
conclude that of all the systems of values which exactly satisfy
the p conditional equations, that one is to be chosen as the best
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which in the n observation equations makes the sum of the

squares of the residuals a minimum.

We may then reduce the problem of conditioned obser

vations to that of independent ones, by finding from the

p conditional equations the values of q unknown quantities
in terms of the remaining q p quantities and substituting
them in the n observation equations. There will thus result

n observation equations, containing, however, only q p in

stead of q unknown quantities, and each of these equations
will represent an independent observation. From these

equations we proceed to form the normal equations (73),

whose solution will give us the most probable values of the

q p unknown quantities. Substituting these values in the

p conditional equations, we find the values of the remaining

q unknown quantities. Thus the system of values will

exactly satisfy the conditional equations, and at the same
time be the most probable system for the observation equa
tions. This, therefore, is a general solution of the problem.

45. Although this is perfectly general and simple in

theory, it gives rise in practice to tedious computations, for

we have first from the p conditional equations to eliminate

q unknown quantities, and again solve the normal equations
to find the values of the remaining q p quantities. The

process generally used by computers is GAUSS Method of
Correlatives, which in Art. 45 of Part I. is fully illustrated by
examples of conditioned observations of equal weight, and
which in Art. 48 we shall proceed to develope for the more

general case of unequal weights. To apply the proof to

those of equal precision or weight, we have only to place

g = 1, that is, omit g from the formulas.

47. The method of Art. 44 is perfectly general, whether
the observations be of equal or unequal weight. We have
in the latter case to find from the p conditional equations
the values of any q unknown quantities in terms of the

remaining q p quantities, and substitute their values in

the n observation equations (74), each of which is then in

dependent ; then, applying the weights we form the normal

equations (80), whose solution gives us the best system of

values for the q p quantities. The remaining p quantities
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are then directly fcnand from the p conditional equations.
The method of correlatives is however greatly to be preferred
for simplicity in the numerical operations ;

and this we now
proceed to develope for the ordinary case of linear con
ditional equations, to which all others may always be
reduced.

48.* Let n observations be made to determine the
values of q unknown quantities, which are subject to p
rigorous conditions. Whether the measurements be direct
or indirect, let them first be supposed independent, and let

them be adjusted by the methods of Chapters n. and in.,
and let the resulting values be $, T ... Z, having the weights
ga , gt ...gK Let the most probable system of values which
we are to find be

,&amp;lt;?,

t ... z, and the conditional equations
which they are to exactly satisfy be

(103)

Then if the values 8, T ... Z exactly satisfy these equations
no further adjustment is necessary. If not, let s, t ... z be
a system of corrections which applied to 8, T . . . Z will make
them equal to s, t ... z, so that

s = S + s
, t = T+t ...z =

Then substituting these in (103) they reduce to

(104)

/3/ = N, - faS + 0, T +...) = K&quot;,

*
Essentially the demonstration given by CHAUVENET in his excellent

Treatise on Least Squares, the Appendix to his Spherical and Practical

Astronomy, Philadelphia, 1867.
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in which s
,

t ... z are the unknown quantities, and N*
, N&quot;,

etc. constants depending upon the theoretical constants

N
lt
N

z ,
etc. and the observed values S, T ... Z. The number

of these equations is p.

Now the n approximate observation equations are

&amp;lt;?

= #, t = T...z = Z,

which we may write

(105) 8-8=8 =Q, t-T=t = Q ...2-Z=z=fy

whose respective weights are gs,pt ...gz }
and the values

which we are to determine for s
,

t ...z. must not only

exactly satisfy the conditions (104), but also be the most

probable set of values for (105). Since s, t .... z are them
selves the residuals in the observation equations, this- latter

requirement is by our fundamental principle (26) satisfied

when the quantity

(76) 2&amp;gt;

2 = gs
s

2 + gt
t

z +...+ gz
z

2 = a minimum.

Putting then the differential of this quantity equal to zero,

we have

(106) g.s ds + gj dtf + . . . + gz z dz = 0.

Now if s
,

t ... z were independent of each other, the differ

ential coefficient of %gv
2

(76) with respect to each of the

variables would necessarily be zero (as in Art. 36) ;
and then

s, t ... z being each zero, the most probable values of

s, t ... z would be their adjusted or observed- values S, T ... Z.

But this expression (106) is conditioned by the equations

(104), and no values of s, t ... z can be admitted which do not

exactly satisfy those equations. If then we differentiate

(104) we have the equations

a^ds +a.z
dt + ... + a

9
dz =

0,

(107) /fyfe + &dt + . . . + /3g
dz = 0,

\ds + \dt + ...+\
with which (106) must agree and coexist.
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The number of the equations (107) is p, the number of
the differentials ds

, dt ... dz is q, and since from the nature
of the case q is greater than p, we can from (107) find the
values of p differentials in terms of the remaining q p
differentials. Let us suppose this elimination to be per
formed, and that the values of p differentials found in terms
of the others are then substituted in (106) ;

we shall thus
have an equation in which the remaining q p differentials

will be independent, and the coefficients of each of these

q p differentials will therefore be severally equal to zero.

Without actually performing this process in each particular
case we can arrive at the general result of such an elimina
tion and substitution as follows. Multiply the first equation
of (107) by the indeterminate number K

lt
the second byK

z , ... the last byJTp ,
and also the equation (106) by 1,

and form the sum of these products. Then if K
lt
K

2
... K

p

be determined so that p differentials shall disappear (Art. 35),
the final equation will contain only the remaining q p
differentials. But these being independent, their coefficients

will be severally equal to zero; and hence we have in all

q conditions that the coefficients ds , dt ... dz in that sum
shall be each equal to zero, viz.

(108)

If now we multiply the first of these by
- 1

, the second
7 *

by , ... the last by --, and add the products, we have by
e/ & z

comparison with the first equation of (104),

9 9

in which we have the usual notation for sums, or
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R
In like manner multiplying the first by , the second

13

9i

by
-

, etc. we form a second normal equation. Thus we
c/ 2

have in all^ normal equations containing thep new auxiliary
unknown quantities, viz.

99
(109) 2

a
.J

s

The solution of these equations will give the values of

K^K^^.K^ which being substituted in the correlative

equations (108) will furnish the values of the required cor
rections s, t . . . z

;
thus

(110) f = (a1

c/

etc. etc.

and these values will not onlv exactly satisfy the conditional

equations (104) but will make the sum 2^0*A minimum, and
hence are the best attainable system of values. Adding
these corrections to the observed values $, T...Z, we have
finally the adjusted values s,t...ss, and these will exactly
satisfy the conditional equations (103).

M.
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49. The Probable Errors of conditioned observations

follow directly from the formulae of Art. 38, and the general
solution of Art. 44.

Since the n observation equations contain q unknown

quantities, and by elimination from the p conditional equa
tions we reduce that number to q p independent unknown

quantities, we have only in the formula (87) to replace q by
q p. Therefore the probable error of an observation of the

weight unity is

(111) r = 0-6745.7 ^ ,V n-q+p
and tlie probable errors of observations or values whose

weights are glt
G

t ,
etc. are

If we have determined the probable values of s, t...z

by means of corrections s, t ...z to the observed values

S,T...Z, the sum ^gv
z
is simply

in which gg , gt
... g, are given by the observations themselves

or by adjustment as in Arts. 28 and 39. The final weights
@

t , Gt &amp;gt;

etc - f tne values s
&amp;gt;

e
&amp;gt;

etc - are f und by exactly the

same process as developed in Art. 39. An example illus

trating the operation in full is given in Part I.

TJie Discussion of Observations.

50. The above methods constitute the whole science

of Least Squares as applied to observations involving linear

equations, to which all others may be reduced (Art. 59) ;
and

the most common formulae and methods for investigating

probable errors. The determination of probable errors of

functions of dependent quantities has not been given, as

such investigations are rarely needed in practical discussions,

and would be out of place
in an elementary text-book. A
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few points in Chapter V. require perhaps further notice and

explanation,

51. Tlie Deduction of Empirical Formulae by the discus

sion of observations, is one of the most extensive applications
of the foregoing methods. Having given the numerical
results of a series of physical observations, we have only to

assume a general algebraic expression, which includes the

law of the phenomena in terms of the observed quantities
and undetermined constants. Then inserting the numerical

results, we have a series of observation equations from which
we deduce the normal equations, whose solution gives the
most probable values of the constants. The choosing of the

proper algebraic expression is usually the most difficult part
of this process. For this, no general rules can be given.
The best plan is to assume convenient horizontal and vertical

units and plot the results of the observations, thus obtaining
a curve which represents them graphically to the eye. A
comparison of this curve with similar curves whose equations
are known, will then often enable us to determine the

general form of a convenient algebraic expression.

52. If the plotted curve resembles a parabola or hyper
bola, it may be represented by the equation

(112) y = A + Bx + Cx2 + etc.

in which the absolute term A may often be directly de^

termined by choosing a proper origin for the values of y
and x.

53. If however the plotted curve repeats itself like the
curve of signs, the general equation

(11 3) y =A+B sin f?-

6~ x + ff^ + C sin (

8

V m J \ m
+ etc.

will be applicable. Here also the constants A, B ,
C may

often be omitted by choosing a proper point as the origin
of the co-ordinates x and y. The value of m is generally to

be assumed from the inspection of the plotted curves, or

122
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its probable value be found by successive approximations.
If this formula be expanded, we have, considering only the

terms involving A and B,

360 jy , ,,
360 . jy

y = A + Bsm - x cos B + B cos - x sin B + etc.,m m
and if in this we place

JBcoaff = B
lt

siri =
2 ,

it becomes

360 360
(114) y = A + B, sin x + J5

2
cos - - x + etc.

v m w

which is a more convenient form for computation. Inserting

in this the values of y and x from the observations, we form

the normal equations, and deduce the probable values of

A, Bv and B
z

. Then by means of the above relations which

furnish

B.B= Jji; + J*;t
cos& = -, and sin B =

-^
,

the derived equation (114) can, if desired, be reduced to the

form (113), which is often more convenient for subsequent
discussion.

54. Formula involving undetermined constants like the

case of the pendulum given in Part I. occasionally arise in

theoretical investigations ;
and if observations enough exist,

the constants may be deduced.

The determination of the probable errors of such formula

is rarely necessary, as the comparison of the computed and

observed results indicate their precision sufficiently well to

enable us to decide upon the degree of confidence to which

they are entitled. The weights and probable errors of the

deduced constants can in all cases be found by the methods

of Arts. 38 and 39. The probable errors of the results de

duced from such formula (for example, the probable errors

of the values found for y in (113) after A, B, etc. have been

determined) cannot however be found from the relation given

in (102) because the separate terms are not independent. For
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methods applicable to such, cases we must refer the reader
to the larger and more complete treatises upon the subject,
a list of which is given in Art, 64.

55. The discussion of the probability of errors or of the

accuracy of observations is of importance in delicate mea
surements. This we have hitherto done by means of the

Probable Error, or the error such that is an even wager that

the result is within that amount of the truth (Art. 1C). It

is perhaps unfortunate that this particular error has been
chosen as the one for comparison, for the mind is better

satisfied with considering an error such that the probability
99

of an error being less than it is ^ or some higher fraction

instead of ^. Such comparisons are readily made by the
2

Table given in Part I.,, and we have only to explain the

manner in which it is calculated. In Art. 12 we have shewn
that the expression

(22) F=

expresses the probability that an error will be included

between the limits x and +x. If in this we place

0-47690
hx = - =

t,
r

we may write it

(115) F =
J

and by the methods explained in the foot-note to equation

(22), its value may be found for successive numerical values

of t = hx. But if we wish instead of h to employ r, we can
rp /) nr*

compute it for successive values of - =
T^I^TTQ

&amp;gt;

that is, in

the Table in Art. 13, Part I, we have only to divide the

numbers in the column hx by 4769 in order to reduce
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/y

them to the values -. Then by interpolation the Table is

easily written as in Art. 55.

If then we have made n observations which give a mean
z with a probable error r

, we can easily find the probability
that z is within + x of the truth by taking from the table

the fraction corresponding to T , And conversely, if we

ask what is the error x, such that it is a wager of 99 to 1

that z is comprised within the limits z x and z + x, we

have only to take the number - corresponding to P 99.
r
o

56. The table may also be used to investigate the pro
bability of constant errors, and to discuss numerous questions
arising in the study of statistics, into which, however, the

plan of our book forbids us to enter.
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APPENDIX.

58. The elementary applications and the theory of Least

Squares has now been given and exemplified. A few other

applications and extensions valuable to the computer, and
a brief notice of the history and literature of the subject,

interesting to all who have studied the science^ will next be

presented.

Observations involving non-linear Equations.

59. In all that precedes, we have supposed that the

observations can be represented by equations of the first

degree : if this is not the case, but higher equations are

involved, they can readily be reduced to linear ones by the

following method.

Let the quantities to be determined be represented by
s, t ... z, and the measured quantities by MvM2

... Mn,
and

the observation equations have the general forms,

n being the number of observations. These may be written

fc-/&amp;gt; *..:)- Jt-&amp;lt;

(116) $, -/,(,...)- #,= &amp;lt;&amp;gt;,
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Now let approximate values of s, t ... z be found either

by trial or by a solution of a sufficient number of these

equations, and let them be denoted by S, T ... Z, and let

s
,
t ... z be the most probable system of corrections to these

values, so that

8 = S + s , t=T + t
f

...z = Z+z.

Developing then the expressions (116) by TAYLOR S

theorem, we have, neglecting the products and higher powers
of the corrections s, t ... z

,

(117)

Designating the constant term ft (S, T ... Z} by N^ etc.,

these become

(110) *, +* f + ... +*,= J/,_ i,

etc. etc.

where -p ,

59a
t etc. are simply the differential coefficients

uS ut

found by differentiating each of the equations (116) with

reference to each of the variables and then substituting

S,T ... Z for s, t . . . z, and are hence constants. Denoting
them then by av b

lf etc., we have

(119)
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in which all the letters except s
,
t ... z denote known quanti

ties. These equations are exactly like those of (66) or (74),
and from them we form the normal equations, whose solution

gives us the most probable values of the corrections s ,t ... /,

and hence the best system of values for the observed quantities

s, t ... z.

If non-linear conditional equations are also given, we have

only to find approximate values for the unknown quantities,
and assume a system of corrections. Then the functional

conditional equations may be developed as above by TAYLOR S

theorem, and reduced to linear equations of the same form

as (104), which may be treated by the method of correlatives

and the most probable system of corrections determined,
which applied to the approximate values will give the

adjusted results. If these do not satisfy the original condi

tional equations with sufficient accuracy, a new system of

corrections may be assumed and the process again repeated.

In Art. 46 is exhibited the reduction of a transcendental

conditional equation to a linear one, by the use of the tabular

logarithmic differences, which is more convenient than the

treatment by TAYLOR S theorem. The latter, however, must
be used for higher algebraic or exponential equations.

Gauss Method for the Solution of Normal Equations.

60. The formation and solution of normal equations is

the most laborious part of the practical reduction of observa~

tions. In dealing with large numbers of these equations,

computers usually follow the method of GAUSS, by which the

work is reduced to a systematic routine. This method con

sists in solving the equations by substitution so as to preserve

throughout the work the symmetry which exists in the

coefficients of the normal equations. To illustrate it, it will

be sufficient to consider a case involving but three unknown

quantities arising from observations of equal weight. Let
the n observation equations be

(66) a^s + bf + cp ~Miy

cy + lj&amp;gt;
+ c

2
u = Mv etc.
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The three normal equations formed from these will be

2&2
. s + 2a& . t + Sac . u =

(73) 2ab.s + 2bz .t+2bc.u=

2ac . s + 26c . t + 2c
2

. u = Self,

in which

(72) 2b*=b? + b*+... + bn\

Jc + &c
2 + . . . + 6ncn &amp;gt;

etc.

The coefficients of the unknown quantities are symmetri
cal, the first horizontal and vertical rows being alike, the

normal equation for s being distinguished by the presence of

2a2

,
that for t by 262 and that for u by Sc

3
. Now let us

proceed to find the value of u from these equations. The
value of s from the first equation is

,-c,AN .

(120) . =w -
s

-

?
.*-

Placing this value of s in the second and third equations, they
become

(121) 2,6
s

. * + 2
x
&c . u = 2,61^

2
1
6c.^ + 21

c
2^ = 2

1c.,

provided that we place,

(122)

^ ^S
tOJI|

= Self-
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The two equations (121) are then exactly similar in form
to the second and third original normal equations, except
that the terms containing s have disappeared, and each

coefficient is marked with the index 1. From the first of

these we take

and substitute it in the second, giving

(124) V- M==

in which, as before, we preserve the symmetry of the coeffi

cients by writing
V ju

V r2 _ V 2 _ ^G V -L

(125) T ^ ^

and hence we have for u,

(124) u =

Inserting this in (123) we have the value of t, and then
from (120) the value of s.

The expressions (125) and (122) which result from the

abridged notation are called auxiliaries. To deal with

equations by this method, we may as Art. 37 form the sums

(72) and the normal equations (73), then having obtained the

coefficients 2a2

,
etc. we insert them in (122) and have the

first auxiliaries S
x
a2

, S^afc, etc., which being substituted in

(125) give the second auxiliaries 2
2
c
2

, etc., and lastly, from

(124), (123) and (120) the values of u, t and s. By the

process as thus followed the work is reduced to a routine,

which may be followed by one ignorant of the theory of the

method. As a check upon the work, the normal equation
for s may be taken as the final one and a new set of auxiliaries

written, and the values deduced in the reverse order s, t, u.

Other checks upon the accuracy of the work are also afforded

by the properties of the normal equations, which will readily



183 APPENDIX.

occur to all computers. In common calculations, however,
the use of such routines is not to be recommended.

61. In Art. 39 we have shown that the weight of any
unknown quantity as u is the reciprocal of the absolute term
in the normal equation for u contained in the general value
of u. Now in solving the normal equations as above, it is

evident that the absolute term in the normal equation for u
is unaffected by substitutions of t and s from the other equa
tions. Hence in the above example S

2
c
2
is the weight of the

value of u.

In this manner, the values of the unknown quantities
and their weights may be found, and thus the results obtained

by the process of Art. 39 be checked by an independent
method. In fact, in all calculations where large numbers of

observations enter, the solutions should be made by separate
methods, and if possible by independent computers.

Other Formula for Probable Errors.

62. The formation of the squares of the residuals involves

in practice considerable labour, when the residuals are so

large that tables of squares cannot be used. Formulae have
hence been deduced for probable errors in which only the

residuals themselves are employed. We give here, without

demonstration, two such formulae for the common case of

direct observations of equal weight (Arts. 23 26). Let n
denote the number of measurements, and 2,v the sum of the

residuals v
lt

v
z
...vn ,

all being taken with the positive sign, then
if n is a large number, the probable error of a single observa

tion is, approximately,

(126) r = Q-8453??,
71

or more
nearly,

(127) r = 08453

Thus in the example of Art. 24 we have 24 observations,

arid the sum of the residuals all taken positively
is 37&quot; 48,
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The formula (126) gives r = 1&quot; 32 and (127) gives r= 1-344,

while from the stricter formula (42) we found r = T34&amp;lt;9.

With a larger value of n, a closer agreement might be

expected. The probable error of the arithmetical mean found

by dividing r by the square root of n, will in the above

example be practically the same by all three formulae. For
values of n less than 24 it is best to hold fast to the more
exact formula (42), and even that cannot for such cases be

expected to give precise results, since the hypothesis of its

development supposes that enough observations have been
taken to exhibit the several errors in proportion to their

respective probabilities. The formula (127) is due to PETERS.

The Mean Error.

63. The choice of the probable error as a means of com

parison of different series of observations is, as we have before

mentioned (Art. 55), entirely arbitrary, although it seems to

be the most natural one from its middle position in the series

of errors (Art. 16). Another error very commonly employed
for the same purpose is called the mean error, whose defini

tion is, the error whose square is the mean of the squares of all

the errors. Hence, the mean error is the square root of the

2x2

quantity (59), and is consequently that part of the pro

bable error included under the radical sign. If then e be the

mean and r the probable error,

To transform then our expressions for probable error into

those for mean error, we have only to omit the constant

factor 6745. In Fig. 1. the abscissa OP denotes the pro
bable and OM the mean error. It is a probability of ^, or a

wager of 1 to 1 that an error taken at random is less than

the probable error ; it is a probability of -rA-XK or a wager of

2 14 to 1 that it is less than the mean error.
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In this book we have chosen to employ only the probable
error as being the simplest in theory, and the one in most
common use. For the sake of uniformity, it is certainly to

be desired that the mean error should be discarded and the

former only employed.

List of Literature.

64. The following list gives the titles of some of the

most important memoirs and books upon the Method of

Least Squares and the law of errors of observations. It

is intended to include not only the best text-books, but also

those works which are of the greatest historical value. The

arrangement is chronological.

It would be easy to greatly extend the limits of this

list. The titles have in fact been selected from a list of

about four hundred which I hope sometime to publish, ac

companied by historical and critical notes. But as an aid

to the general reader, a selection such as here given will

prove of greater value than if the number were increased

tenfold.

1. COTES. Estimatio errorum in mixta mathesi ...;

Harmonia Mensurarum (Cantabridgiae, 1722, 4to.), pp. 2

22.

2. BOSCOVICH. De littera expeditione per Pontificiam
ditionem ad dimetiendos duos meridiani gradus ; Romae, 1755,

4to., pp. xxii, 516.

3. SIMPSON. An Attempt to show the Advantage of

taking the Mean of a Number of Observations...; Miscel

laneous Tracts (London, 1757, 4to.), pp. 64 75.

4. LAPLACE. Determiner le milieu que Ton doit prendre
entre trois observations... . Mem. Acad. Paris par divers

savans [etrangers], 1774, Vol. VI. pp. 634 644.

5. BERNOULLI (Daniel). Dijudicatio maxime probabilis

observationum discrepantium atque verisimillima inductio

inde formanda; Acta Acad. Petrop. for 1777, Pt. I. pp,
323.
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6. LAPLACE. Chap. v. Book in. of Tmiti de mecanique
celeste, Paris, 1799, 4to.

7. LEGENDRE. Nouvelles mtihodes pour la determination

des orbites des cometes; Paris, 1805, 4to., pp. viii, 80.

8. ADRIAN. Research, concerning the probabilities of the

errors which happen in making observations
; Analyst, 1808,

No. iv. pp. 93109. See Amer. Jour. Sci. 1871, Vol. I.

p. 412.

9. GAUSS. Determinatio orbitao observationibus quotcun-
que quam proximo satisfacientis

;
Theoria motus corporum

codestium (Hamburgi, 1809, 4to.), Lib. II. Sect. in. pp.
205224.

10. LAPLACE. Theorie analytique des Probabilites ;

Paris, 1812, 4to., pp. 464. Third ed. with supplements,
1820, pp. cxlii, 506, 34, 50,. 36.

11. GAUSS. Bestimmung der Genauigkeit der Beobach-

tungen; Zeitsclir. f. Astr., 1816, Vol. I. pp. 185197.
12. PAUCKER. Die Anwendung der Methode der Jclein-

sten Quadratsummen aufphysikalische Beobachtungen: Mitau,

1819, 4to., pp. 32.

13. GAUSS. Theoria combinationis observationnm

erroribus minimis obnoxise
;
Comment. Soc. Gotting., 1819

22, Vol. V. pp. 3390.
14. IVORY. On the Method of the Least Squares :

Phil. Mag., 1825, Vol. LXV. pp. 310, 81, 161 168
j 1826,

Vol. LXVIII, pp. 161165.
15. GAUSS. Supplementum theoria3 combinationis ob-

servationum...
;
Comment. Soc. Gotting., 1823 27, Vol. vi.

pp. 5798.
16. PoissON. M&noire sur la probability des resultats

moyens des observations
;
Connais. des Temps, 1827, pp. 273

302 ; 1832, pp. 3 22.

17. ENCKE. Ueber die Begriindung der Methode der

kleinsten Quadrate; Abhandl. Acad. Berlin, 1831, pp. 73 78.

18. ENCKE. Ueber die Methode der kleinsten Quad
rate

;
Berliner Jahrbuch, 1834, pp. 249312; 1835, pp. 253

320
; 1836, pp. 253308,
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19. HAGEN. Grundzuge der WahrscheinlichJceitsrech-

nung; Berlin, 1837, 8vo. Second ed. in 1867, pp. x, 187.

20. BESSEL. Untersuchungen Uber die Wahrscheinlich-
keit der Beobachtungsfehler ; Astr. Nachr., 1838, Vol. XV.
col. 369404.

21. BESSEL and BAEYER. Gradmessung in Ost-Preus-

sen...; Berlin, 1838, 4to. pp. xiv, 452.

22. GERLTNG. Die Ausgleichungsrechnung der practi-
schen Geometrie... ; Hamburg, 1843, 8vo., pp. xix, 409.

23. ELLIS. On the Method of Least Squares ; Trans.
Cam. Phil Soc.; 1844, Vol. vm. pp. 204219.

24. GALLOWAY. On the application of the Method of

Least Squares to ... a Portion of the Ordnance Survey of

England ; Mem. Astr. Soc. Lond., 1846, Vol. XV. pp. 23 69.

25. QUETELET. Lettres...sur la Thfarie des Proba-

lilites; Bruxelles, 1846, Svo., pp. iv, 450.

26. HERSCHEL (J. F. W.). QUETELET on Probabilities.

Edinb. Rev., 1850, Vol. xcn. pp. 157.
27. ELLIS. Remarks on an alleged Proof of the Method

of Least Squares. Phil. Mag., 1850, Vol. xxxvu. pp. 321

328, 462.

28. VERDAM. Verhandeling over de methode der Jcleinste

quadraten; Groningen, 1850, Vol. I. large 4to. pp. xxi, 409.

29. DONKIN. Sur la theorie de la combinaison des ob
servations

;
Jour, de Math&m. 1850, Vol. XV. pp. 297 322.

30. BiENAYME. Sur la probability des erreurs d apres la

methode des moindres Carres
;
Jour, de Math. 1852. Vol. xvil.

pp. 3378.
31. LIAGRE. Calcul des probabilitys et la theorie des

erreurs; Bruxelles, 1852, Svo.

32. BERTRAND. Methode des moindres carres. [Trans
lations of GAUSS memoirs] ; Paris, 1855, Svo. pp. 167.

33. SCHOTT. Adjustment of horizontal angles of a

triangulation... etc. U.S. Coast Survey Rep., 1854, pp. 70
95.

34. DIENGER. Ausgleichung der Beobachtungsfehler
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nach der Methode der kleinsten Quadratsummen ; Braun

schweig, 1857, 8vo. pp. vii, 168.

&amp;gt;^
35. BITTER. Manuel theorique et practique de Vapplica-

tion de la methode des moindres carres : Paris, 1858, 8vo.

86. AIKY. On the Algebraical and Numerical Theory
of Errors of Observation ...

; Cambridge, 1861, 8vo. pp. xvi,

103. Second Edition in 1875.

37. FREEDEN. Die Praxis der Methode der kleinsten

Quadrate: Braunschweig, 1863. 8vo. pp. viii, 114.

X 38. CHAUVENET. Method of Least Squares. Appendix to

his Astronomy (Philadelphia, 1864, 8vo.), Vol. II. pp. 464
566. Also as separate reprint.

,39. DE MORGAN. On the Theory of Errors of Observa
tions

;
Trans. Camb. Phil. 8oc., 1864, Vol. x. pp. 409427.

40. TODHUNTER. A History of the mathematical Theory
of Probability from the time of Pascal to that of Laplace;
Cambridge and London, 1865, 8vo. pp. xvi, 624.

41. MULLER-HAUENFELS. Hohere Markscheidekunst ;

Wien, 1868, Svo. pp. xii, 291.

42. HANSEN. Anwendung der Methode der kleinsten

Quadraten auf Geoddsie : Leipzig, 1868, Svo. pp. 236.

43. TODHUNTER. On the Method of Least Squares;
Trans. Camb. Phil. Soc., 1869, Vol. XL pp. 219238.

44. CROFTON. On the Proof of the Law of Errors of

Observations; Phil. Trans., 1870, pp. 175188.

45. HELMERT. Ausgleichungsrechnung nach der Methode
der kleinsten Quadrate : Leipzig, 1872, Svo. pp. xi, 348.

46. GLAISHER. On the Law of Facility of Errors of

Observations, and on the Method of Least Squares ; Mem.
...Astr. Soc. Lond., 1872, Vol. xxxix. Pt. n. pp. 75124.

47. GLAISHER. On the Rejection of Discordant Ob
servations; Month. Not... Astr. Soc. Lond., 1873, Vol. xxxni.

pp. 392402.
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On the History of the Method of Least Squares.

C5. In the following brief sketch constant reference is

understood to be made to the preceding list of literature.

The average or arithmetical mean has always from the
earliest times been employed for the combination of direct

observations of equal precision made upon a single quantity.
Out of this arises so naturally the idea of weights and of
the general mean (Art. 27), that it is probable that both were
in extensive use long before any attempt to deduce general
rules based upon scientific principles. The first recorded
discussion of indirect observations with a view of establishing

a general method of adjustment seems to be that of COTES,
who about the year 1714 introduced the idea of observation

equations, or, as they are often called, equations of condition.

He took up the simple case of determining a quantity z

from measurements upon the related quantity M=az, and

representing each measurement by an equation, obtained

a^z M
t
= 0, a

2
z M

2
=

0, etc. Without here entering into

the details of his reasoning, we may say that his method
consisted essentially in adding the several equations, and
from their sum finding the value of z

y
which value he re

garded as the most advantageous or plausible. This process
involves the principle that the algebraic sum of the errors

shall be zero, and since this coincided with the practice
of the arithmetical mean, when the constants a

lt
a

2 , etc.

were equal, it seemed to be the proper adjustment of such
cases. It afforded, however, no means for the combination
of equations containing more than one unknown quantity.
The next step appears to have been made by Pater

BOSCOVICH, who being deputed by the Pope to measure an
arc of the meridian, published his results in 1755, and who
introduced the plan of adjusting observations by introducing,
in addition to the principle of COTES, the condition that the
sum of the errors all taken positively should be a minimum.
These two principles rendered possible the adjustment of

indirect observations involving several unknown quantities,
and appears to have been considerably employed by subse

quent writers, particularly by LAPLACE, who in 1799 gave
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an exhaustive discussion of observations upon the length
of the* second s pendulum and the resulting ellipticity of the

earth. This method, although incorrect, served to prepare
the way for a better one.

The first published application of the method of Least

Squares is due to LEGENDRE, who in 1806 stated, without

demonstration, the principle that the sum of the squares
of the errors should be a minimum, and gave an example
illustrating its use in determining the orbits of comets.

The honour of its discovery and introduction is however

universally conceded to GAUSS, who as early as 1795 had
used the method in his computations, and had communicated
it to his astronomical friends, and who in his Theoria motus

corporum, published in 1809, gave first its development and

demonstration. This proof has been followed by the great

majority of subsequent writers, and being the best adapted
for an elementary presentation of the subject is also used

in this book. To GAUSS is also due the development of the

algorithm of the method, the formulas for probable error,

the determination of weights, the method of correlatives,

and many other features of the subject, as well as numerous

practical applications with which his writings abound. Very
few branches of science owe so large a proportion of subject
matter to the labours of one man. In 1812 LAPLACE in his

treatise on Probabilities took up the subject, and gave an

entirely different demonstration of the fundamental principle
that the sum of the squares of the errors should be a mini

mum, and in 1826 GAUSS in his Supplementum, etc. again
returned to the subject with a second demonstration.

The method thus thoroughly established spread among
astronomers with wonderful rapidity. The theory was sub

jected to rigid analysis and discussion by IVORY, POISSON,

ENCKE, and others, while the labours of HANSEN, BESSEL,
and GERLING developed its practical applications to astrono

mical and geodetical observations. The works of BESSEL

may be particularly mentioned as establishing the processes
since universally employed in extensive trigonometrical

surveys. Our partial list of literature indicates the thorough
ness with which the subject has been treated by German
and French scientists. In this connection we may be



19G APPENDIX,

allowed to mention as a guide to the student, that Nos. 14,

23, 27 and 46 in that list give interesting critical discussions

of the theory of the subject, and that No. 25 is a popular
and interesting presentation of the law of probability of

error. The Method of Least Squares is now universally

employed in all branches of physical science where ac

curate observations arise, and it is perhaps not too much
to say that the precision of astronomical tables is due in

great part to its use.

Remarks on the Theory of Least Squares.

66. The proof which we have given of the Method of

Least Squares is the one presented by GAUSS in 1809 and
followed by the great majority of subsequent writers. It

first establishes the law of the probability of error repre
sented by the equation (12) y = ce~ h x2

,
from which the

principle of the method immediately follows. The whole

reasoning is thus dependent upon the theory of proba

bility and upon the particular law of error y = ce~ h ~x
\ In

the demonstration of this law of error in Art.
11Z&amp;gt;,

there are

two defects, which I now proceed to point out.

The first is the assumption that the average or arith

metical mean furnishes, for direct observations of equal

weight, the most probable value of the quantity sought. In

the strict mathematical sense of the words &quot;most
probable,&quot;

as defined in Art. 9, this is not true, or, if true, has never

yet been proved. In the common sense of the words the

arithmetical mean may perhaps be regarded as most correct,

most advantageous, most plausible, or even as most probable,
but I am unaware that it has ever been shown that the

a priori mathematical probability of the average is the

greatest out of all the probabilities of all the assignable
values. Hence in equation (8) it is not really known that

the letter z represents the same quantity on both sides of

the sign of equality.

The second is the transition from equation (8) to equa
tion (9). Granting that in (8) the value of z is the same
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in both members, it follows that the corresponding terms

are equal each to each. But the quantities (z -IfJ (2 M
2),

etc. in that equation are not actual errors, since z is not here

the true but the probable value of the measured quantity.
Hence equation (9), in which x represents the actual true

error, does not strictly follow from (8) unless we grant that

the same law of error which occurs in the particular case (4)

obtains also in the general case (3), that is, unless the law

which is true for the residual is true also for the error.

These two difficulties have puzzled mathematical students

since the year 1809, and they cannot be bridged over or

avoided, but will always exist in this mathematical develop
ment of the law of probability of error. And I think for

this reason
;

it is distinctly conceivable and hence a priori

possible that in different classes of observations different

laws of error might exist, therefore we ought not to expect
that from merely theoretical considerations a single definite

law of error should result. And so we introduce an element

derived from experience, viz. the arithmetical mean, which
we know in a large number of observations gives a very
near approximation to the measured quantity, and which
in an infinite number of observations would give us its true

value. At the limit then when n is infinite, all the equa
tions of Art. 11 are in strict agreement, and one law of

error obtains.

The demonstration of LAPLACE given in his Theorie

analytique des Probabilites employs very different reasoning.
It shows that the sum of the squares of the errors must
be made a minimum in order to furnish the most ad

vantageous (not the most probable) values of the quantities

sought, without any reference to the law of probability of

error. The proof is stated by him and by other writers

to be entirely general, &quot;whatever be the law of probability
of error. This point I do not propose to discuss, but will

mention as a curious circumstance that AIRY (No. 36 of

our list of literature), who follows that method, finds no

difficulty in deducing an expression which agrees in every
respect with our equation (19), y hi7r~* e~h

&quot;x
*. I may say

also that LAPLACE S reasoning supposes the number of ob
servations to be infinite. This demonstration is followed
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as far as I am aware by only three authors, viz. by POISSON,
by DE MORGAN and by AIRY; it is severely attacked by
IVORY, who proves conclusively, as he says, that it involves
the particular law of error deduced by GAUSS method, and
it is defended by ELLIS, who however does not show that
IVORY was wrong.

IVORY himself gives no less than three demonstrations
of the method of least squares, which are entirely indepen
dent of any idea of probability, and which although untenable,
furnish extremely interesting reading and deserve to rank
high as mathematical curiosities.

A critical and exhaustive discussion of these and other
proofs of the Method of Least Squares is given by GLAISHER
in a memoir published in 1872. (See No. 46 of the above
list of literature.)

In conclusion, I may say that another difficulty some
times found in GAUSS proof does not exist as here pre
sented. In the equation (19) y = Mir-^ e^2x

\ the probability
y is an infinitesimal if x is a continuous variable, owing to
the presence of the letter i, and is an abstract number as it

ought to be (see Art. 12). The law as given by most writers
is y = hir- e~ h2jc

\ which is absurd, since y is then not only
a concrete number but finite, and hence the probability of
an error lying between any two assigned limits must be
infinity, a conclusion which those authors take care to avoid

by an ingenious but questionable artifice.
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THE NUMBEKS INDICATE PAGES.

Accidental errors, 3, 120

Adjustment, see Observations, etc.

Angle, adjustment of, 29, 36, 38, 56

Angles around a point, 51, 57, 86

,, of a triangle, 73, 78, 88, 99

,, of a quadrilateral, 76, 92
Arithmetical mean, 17, 25, 127, 142,
194

,, probable error of, 26, 147

Axioms, 9, 124

Base line, 33, 39, 63, 93
BESSEL S observations, etc., 13, 195

Borings at Grenelle, 102

,, at Speremberg, 104

BOSCOVICH, historical notice of, 194
BOWDITCH S formula for pendulum,

109.

Certainty, 4, 121

Chemical analysis adjusted, 93

Chronometer, rate of, 65

Cleveland, Ohio, elevation of, 48, 62, 63
Coast Survey Eeports, 27, 85, 108

Coins, throwing of, 3, 5, 6, 123

Columbus, Ohio, elevation of, 48

Compass bearings, 26, 31

Compass, declination, 106
Conditional observations, 22, 68, 172
Constant errors, 3, 115, 120

Correlatives, method of, 73, 88, 173

COTES, historical notice of, 194
Criterion for doubtful observations,

117, 196
Curve of Probability, 11, 125

Declination, magnetic, 106
Direct observations, 22, 24, 41, 141

Earth, temperature of, 102

Empirical formula?, 100, 179

Equations, conditional, 68, 172

correlative, 73, 88, 173

normal, 44, 74, 156, 161,
185

,, observation, 41, 153

,, of prob. curve, 10, 131

Errors, 9, 15, 26, 120

,, accidental, 3, 120

,, constant, 2, 115, 120

,, mean, 189

,, probability of, 11, 110, 124,
181

,, see Probable Error

Foot, English and U.S., 110 n.

Formulae empirical, 100, 179

Friction, coefficient of, 66

Function, defined, 9

GARDNEB S report on levels, 47
GAUSS law of errors, 10, 126

,, method for weights, 59
,, ,, for correlatives, 73,

88, 173
,, historical notice of, 195

General mean, 31, 148

prob. error of, 36, 149
Gravity at New York, 101

Guessing, problem on, 116

Harrisburg, Penn. elevation of, 48
Hartford, Conn, magnetic declina

tion, 107

History of Least Squares, 194

Independent observations, 22, 46,153
Indeterminate multipliers, 157
Indirect observations, 22, 46, 153,

194
Instrumental errors, 3



SCO ALPHABETICAL INDEX.

Integrals determined, 133 n. , 135 n.

Iron, Cast, coefficient of friction, 66

,, Pig, analysis of, 93

IVORY, on pendulum, 110

,, on theory of least squares, 198

Lake Erie, elevation of, 48

LAPLACE, historical notice, 194, 197

Latitude, determination of, 65

Law of gravity, 101
Law of probability of errors, 8, 124, 181

Laws, discovery of, 100
Least Squares, critical remarks, 196

history of, 194

,, method of, 14

,, principle of, 17, 136

,, literature of, 190

Levels, adjustment of, 24, 41, 47, 55,

57, 64, 60, 94
Linear equations, 118, 183

Lines, see Base line

Literature, list of, 190.

Magnetic declination, 106

Mean, arithmetical, 17, 25, 141

,, general, 31, 148
Mean error, 189
Measure of Precision, 10, 19, 131, 138

Meter, length of, 102 n., 110

Mistakes, 2, 120
&quot;Most Probable,&quot; 1, 7, 123

Normal Equations, 44, 46, 156, 1G1,
185

Observation denned, 1

,, equations, 41, 42, 45, 153

Observations, adjustment of, 14, 46

,, comparison of, 17

,, conditioned, 22, 24, 70,

172

direct, 22, 24, 41, 141

,. discussion of, 100, 177

doubtful, 116

,, errors of, 2, 120

,, independent, 22, 153

indirect, 22, 153, 194
kinds of, 22, 141

PEIRCE S Criterion, 117

Pendulum, second s, 109
Personal equation, 2

Pittsburgh, Penn. elevation of, 48, 62

Precision, measure of, 10, 18, 131,
138

Probable error, 17, 138
of arith. mean, 29, 146, 171

,, of general mean, 36, 149

,, of indirect observations, 60,

163

, ,
of conditioned observations ,

18, 139

,, of single observations, 26,

142, 188

,, of functions, etc. 64, 169

Probability, defined, 4, 121

,, curve of, 8, 10, 125

Probability of errors, law of, 7, 124,
181

table of, 12,112

Probability, problems on, 7

Quadrilateral, adjusted, 80, 85, 92

Eesiduals, 27, 142

SCHOTT, on magnetic declination, 106,
108

Sets of observations, 36, 148

Temperature of Earth, 102

Triangles, plane, 73, 78, 88, 99

,, spherical, 92

Triangulation, 84, 89

United States Coast Survey Reports,

27, 85, 108
United States and English feet, 110 n.

Water, volume and temperature of,

105

Weights, 30, 148

Weights of averages of sets, 25, 148

,, of indirect observations, 60,
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cloth. New Edition, is.

Mayor (John E. B.) FIRST GREEK READER. Edited
after KARL HALM, with Corrections and large Additions by Pro
fessor JOHN E. B. MAYOR, M.A., Fellow and Classical Lecturer
of St. John s College, Cambridge. New Edition, revised. Fcap.
8vo. 4x 6d.

BIBLIOGRAPHICAL CLUE TO LATIN LITERATURE.
Edited after HiiBNER, with Large Additions by Professor JOHN
E. B. MAYOR. .- Crown 8vo. 6s. 6d.

&quot;An extremely useful volume that should be in the hands of all

scholars.
&quot; ATHENAEUM.

Mayor (Joseph B.) GREEK FOR BEGINNERS. By the
Rev. J. B. MAYOR, M.A., Professor of Classical Literature in

King s College, London. Part I., with Vocabulary, is. 6d. Parts
II. and III., with Vocabulary and Index, 3.5-.

6d. t complete in one
vol. New Edition. Fcap. 8vo. cloth, 4^. 6d.

Nixon. PARALLEL EXTRACTS arranged for translation into

English and Latin, with Notes on Idioms. By J. E. NIXON,
M.A., Classical Lecturer, King s College, London. Part I.

Historical and Epistolary. Crown 8vo. 3-r. 6d.

A FEW NOTES ON LATIN RHETORIC With Tables and
Illustrations. By J. E. NIXON, M.A. Crown 8vo. 2s.

Peile (John, M.A,) AN INTRODUCTION TO GREEK
AND LATIN ETYMOLOGY. By JOHN PEILE, M. A., Fellow
and Tutor of Christ s College, Cambridge, formerly Teacher
of Sanskrit in the University of Cambridge. Third and Revised
Edition. Crown 8vo. lew. 6d.

A very valuable contribution to the science o/ language.&quot; SATURDAY
REVIEW.

PlatO.- THE REPUBLIC OF PLATO Translated into English,
with an Analysis and Notes, by J. LL. DAVIES, M.A.,and D. J.

VAUGHAN, M.A. Third Edition, with Vignette Portraits of Plate

and Socrates, engraved by JEENS from an Antique Gem. i8mo.

4*. 6d.

Plautus . THE MOSTELLARIA OF PLAUTUS. With Notes

Prolegomena, and Excursus. By WILLIAM RAMSAY, M.A., for-

merly Professor of Humanity in the University of Glasgow.
Edited by Professor GEORGE G. RAMSAY, M.A., of the University
of Glasgow. 8vo. 14^.
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PottS, Alex. W., M.A. HINTS TOWARDS LATIN
PROSE COMPOSITION. By ALEX. W. POTTS, M.A.,iLL.D.,

late Fellow of St. John s College, Cambridge ; Assistant Master in

Rugby School ;
and Head Master of the Fettes College, Edinburgh.

New Edition, enlarged. Extra fcap. 8vo. cloth. 3*.

Roby. A GRAMMAR OF THE LATIN LANGUAGE, from

Plautus to Suetonius. By H. J. ROBY, M.A., late Fellow of St.

John s College, Cambridge. In Two Parts. Second Edition.

Part I. containing : Book I. Sounds. Book II. Inflexions.

Book III. Word-formation. Appendices. Crown 8vo. %s. 6d.

Part II. Syntax, Prepositions, &c. Crown 8vo.
ips.

6d.

&quot;Marked by the clear andpractised insight of a master in his art. A
book that would do honour to any country.&quot; ATHEN^UM.

Rust. FIRST STEPS TO LATIN PROSE COMPOSITION.

By the Rev. G. RUST, M.A. of Pembroke College, Oxford,

Master of the Lower School, King s College, London. New
Edition. i8mo. is. 6d.

Sallust. CAII SALLUSTII CRISPI CATILINA ET JUGUR-
THA. For Use in Schools. With copious Notes. By C.

MERIVALE, B.D. New Edition, carefully revised and enlarged.

Fcap. 8vo. 4s. bd. Or separately, 2s. 6d. each.

TacitUS. THE HISTORY OF TACITUS TRANSLATED
INTO ENGLISH. By A. J. CHURCH, M.A., and W. J.

BRODRIBB, M.A. With Notes and a Map. New and Cheaper

Edition. Crown 8vo. 6s.

&quot;A scholarly andfaithful translation.&quot; SPECTATOR.

TACITUS, THE AGRICOLA AND GERMANIA OF. A Revised

Text, English Notes, and Maps. By A. J. CHURCH, M.A
and W. J. BRODRIBB, M. A. New Edition. Fcap. 8vo. 3*. 6rf.

Or separately, 2s. each.

&quot;A model of careful editing, being at once compact, complete, and

correct, as well as neatly printed and elegant in style&quot;
ATHENAEUM.

THE AGRICOLA AND GERMANIA. Translated into English

by A. J. CHURCH, M.A., and W. J. BRODRIBB, M.A. With

Maps and Notes. Crown 8vo. New Edition in the press.

TACITUS. THE ANNALS. Translated, with Notes and Maps, by

A. J. CHURCH and W. J. BRODRIBB. Crown 8vo. 7s. 6d.

Theophrastus. THE CHARACTERS OF THEO-

PHRASTUS. An English Translation from a Revised lext.
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With Introduction and Notes. By R. C. JEBB, M.A., Pro
fessor of Greek in the University of Glasgow. Extra fcap. 8vo.
6s. 6d.

&quot;A very handy and scholarly edition&quot; SATURDAY REVIEW.

Thring.Works by the Rev. E. THRING, M.A., Head Master
of Uppingham School.

A LATIN GRADUAL. A First Latin Construing Book for

Beginners. New Edition, enlarged,with Coloured Sentence Maps.
Fcap. 8vo. 2s. 6d.

A MANUAL OF MOOD CONSTRUCTIONS. Fcap, 8vo. is. 6d.

A CONSTRUING BOOK. Fcap. 8vo. 2s. 6d.

Thucydides. THE SICILIAN EXPEDITION. Being Books
VI. and VII. of Thucydides, with Notes. New Edition, revised
and enlarged, with Map. By the Rev. PERCIVAL FROST, M.A.
Fcap. 8vo. 5j.

Virgil. THE WORKS OF VIRGIL RENDERED INTO
ENGLISH PROSE, with Notes, Introductions, Running Analysis,
and an Index, by JAMES LONSDALE, M.A. and SAMUEL LEE,
M.A. Second Edition. Globe 8vo. 3*. 6d.

; gilt edges, 4^. 6d.
&quot; A more complete edition of Virgil in English it is scarcely possible to

conceive than the scholarly work before us.&quot; GLOBE.

Wright. Works by J. WRIGHT, M.A., :
late Head Master o&amp;lt;

Sutton Coldfield School.

HELLENICA ; OR, A HISTORY OF GREECE IN GREEK, as

related by Diodorus and Thucydides ; being a First Greek Reading
Book, with explanatory Notes, Critical and Historical. Third

Edition, with a Vocabulary. I2mo. 3$. 6d.

A HELP TO LATIN GRAMMAR ; or, The Form and Use of Words
in Latin, with Progressive Exercises. Crown 8vo. 4^. 6d.

THE SEVEN KINGS OF ROME. An Easy Narrative, abridged
from the First Book of Livy by the omission of Difficult Passages ;

being a First Latin Reading Book, with Grammatical Notes.
Fifth Edition. With Vocabulary, 3*. 6d.

FIRST LATIN STEPS; OR, AN INTRODUCTION BY A
SERIES OF EXAMPLES TO THE STUDY OF THE
LATIN LANGUAGE. Crown Svo. 5*.

ATTIC PRIMER. Arranged for the Use of Beginners. Extra fcap.
Svo. 4-r. 6d.
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MATHEMATICS.
Airy Works by SIR G. B. AIRY, K.C.B., Astronomer Royal :

ELEMENTARY TREATISE ON PARTIAL DIFFERENTIAL
EQUATIONS. Designed for the Use of Students in the Univer
sities. With Diagrams. New Edition. Crown 8vo. cloth.

5J. 6d.

ON THE ALGEBRAICAL AND NUMERICAL THEORY OF
ERRORS OF OBSERVATIONS AND THE COMBINA-
TION OF OBSERVATIONS. New edition, revised. Crown
8vo. cloth. 6s. 6d.

UNDULATORY THEORY OF OPTICS. Designed for the Use of
Students in the University. New Edition. Crown 8vo. cloth.
6s. 6d.

ON SOUND AND ATMOSPHERIC VIBRATIONS. With the
Mathematical Elements of Music. Designed for the Use of Students
of the University. Second Edition, Revised and Enlarged.
Crown 8vo. 9-r.

A TREATISE OF MAGNETISM. Designed for the use of
Students in the University. Crown Svo. gs. 6d.

Airy (Osmund). A TREATISE ON GEOMETRICAL
OPTICS. Adapted for the use of the Higher Classes in Schools.

By OSMUND AIRY, B.A., one of the Mathematical Masters in

Wellington College. Extra fcap. Svo. 3^. 6d.

Bayma. THE ELEMENTS OF MOLECULAR MECHA
NICS. By JOSEPH BAYMA, S. J., Professor of Philosophy,
Stonyhurst College. Demy Svo. cloth. IDS. 6d.

Beasley. AN ELEMENTARY TREATISE ON PLANE
TRIGONOMETRY. With Examples. By R. D. BEASLEY,
M.A., Head Master of Grantham Grammar School. Fourth

Edition, revised and enlarged. Crown Svo. cloth. 3-y. 6d.

Blackburn (Hugh). ELEMENTS OF PLANE
TRIGONOMETRY, for the use of the Junior Class of Mathematics
in the University of Glasgow. By HUGH BLACKBURN, M.A.,
Professor of Mathematics in the University of Glasgow. Globe

Svo. is. 6d.

Boole. Works by G. BOOLE, D.C.L., F.R.S., late Professor of

Mathematics in the Queen s University, Ireland.

A TREATISE ON DIFFERENTIAL EQUATIONS. New and

Revised Edition. Edited by I. TODHUNTER. Crown Svo. cloth.
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Boole continued.

A TREATISE ON DIFFERENTIAL EQUATIONS. Supple-
mentary Volume. Edited by I. TODHUNTER. Crown 8vo. cloth.

8*. 6d.

THE CALCULUS OF FINITE DIFFERENCES. Crown 8vo.
cloth. los. 6d. New Edition, revised by J. F. MOULTON.

Brook -Smith (J.) ARITHMETIC IN THEORY AND
PRACTICE. By J. BROOK-SMITH, M.A., LL.B., St. John s

College, Cambridge ; Barrister-at-Law ; one of the Masters of
Cheltenham College. New Edition, revised. Complete, Crown
8vo. 4.5-.

6d.

&quot;A valuable Manual of Arithmetic of the Scientific kind. The best

we have seen.&quot; LITERARY CHURCHMAN.

Cambridge Senate-House Problems and Riders,
WITH SOLUTIONS :

1848-1851. RIDERS. By JAMESON. 8vo. cloth, js. 6d.

1857. PROBLEMS AND RIDERS. By CAMPION and
WALTON. 8vo. cloth. 8s. 6d.

1864. PROBLEMS AND RIDERS. By WALTON and WIL-
KINSON. 8vo. cloth. IQS. ftd.

1875. PROBLEMS AND RIDERS. By A. G. GREENHILL,
M.A. Crown Svo. 8j. 6d.

CAMBRIDGE COURSE OF ELEMENTARY NATURAL
PHILOSOPHY, for the Degree of B.A. Originally compiled by
J. C. SNOWBALL, M.A., late Fellow of St. John s College.
Fifth Edition, revised and enlarged, and adapted for the Middle-
Class Examinations by THOMAS LUND, B. D. Crown Svo. cloth. $s.

Candler. HELP TO ARITHMETIC. Designed for the use of

Schools. By H. CANDLER, M.A., Mathematical Master of

Uppingham School. Extra fcap. Svo. zs. 6d.

Cheyne. Works by C. H. H. CHEYNE, M.A., F.R.A.S.

AN ELEMENTARY TREATISE ON THE PLANETARY
THEORY. With a Collection of Problems. Second Edition.
Crown Svo. cloth. 6s. 6d.

THE EARTH S MOTION OF ROTATION, Crown 8vo.

y. 6d.

Childe. THE SINGULAR PROPERTIES OF THE ELLIP
SOID AND ASSOCIATED SURFACES OF THE NTH
DEGREE. By the Rev. G. F. CHILDE, M.A., Author of
&quot;

Ray Surfaces,&quot;
&quot;

Related Caustics,&quot; &c. Svo. los. 6d.
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Christie. A COLLECTION OF ELEMENTARY TEST-
QUESTIONS IN PURE AND MIXED MATHEMATICS ;

with Answers and Appendices on Synthetic Division, and on the
Solution of Numerical Equations by Homer s Method. By JAMES
R. CHRISTIE, F.R.S., Royal Military Academy, Woolwich.
Crown 8vo. cloth. 8-r. 6d.

Gumming.- AN INTRODUCTION TO THE THEORY OF
ELECTRICITY. By LINNAEUS GUMMING, M.A. With Illus

trations. Crown Svo. Si. 6d.

Cuthbertson EUCLIDIAN GEOMETRY. By FRANCIS
CUTHBERTSON, M.A., LL.D., Head Mathematical Master of the

City of London School. Extra fcap. Svo. 4^. 6d.

Dalton. Works by the Rev. T. DALTON, M.A., Assistant
Master of Eton College.

RULES AND EXAMPLES IN ARITHMETIC. New Edition.

i8mo. cloth, zs. 6d. Answers to the Examples are appended.

RULES AND EXAMPLES IN ALGEBRA. Part I. i8mo. zs.

Part II. i8mo. 2s. 6d.

Day. PROPERTIES OF CONIC SECTIONS PROVED
GEOMETRICALLY. PART I., THE ELLIPSE, with
Problems. By the Rev. H. G. DAY, M.A., Head Master of

Sedburgh Grammar School.* Crown Svo. 3^. 6d.

DodgSOn. AN ELEMENTARY TREATISE ON DETER-
MINANTS, with their Application to Simultaneous Linear

Equations and Algebraical Geometry. By CHARLES L. DODGSON,
M.A. Small 4to. cloth, los. 6d.

Drew. GEOMETRICAL TREATISE ON CONIC SEC-
TIONS. By W. H. DREW, M. A., St. John s CoUege, Cambridge.
Fitth Edition, enlarged. Crown Svo. cloth. 5-r.

SOLUTIONS TO THE PROBLEMS IN -DREW S CONIC
SECTIONS. Crown Svo. cloth. 4*. 6d.

Edgar (J. H.) and Pritchard (G. S.) NOTE-BOOK ON
PRACTICAL SOLID OR DESCRIPTIVE GEOMETRY.
Containing Problems with help for Solutions. By J. H. EDGAR,
M.A., Lecturer on Mechanical Drawing at the Royal School of

Mines, and G. S. PRITCHARD. Third Edition, revised and

enlarged. Globe Svo. 3J.

Ferrers. AN ELEMENTARY TREATISE ON TRILINEAR
CO-ORDINATES, the Method of Reciprocal Polars, and the

Theory of Projectors. By the Rev. N. M. FERRERS, M. A., Fellow

and Tutor of Gonville and Caius College, Cambridge. Third

Edition, revised. Crown Svo. 6s. 6d.
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Frost. Works by PERCIVAL FROST, M.A., formerly Fellow
of St. John s College, Cambridge ; Mathematical Lecturer of

King s College.
AN ELEMENTARY TREATISE ON CURVE TRACING. By

PERCIVAL FROST, M.A. 8vo. 12s.

THE FIRST THREE SECTIONS OF NEWTON S PRINCIPIA.
With Notes and Illustrations. Also a collection of Problems,

principally intended as Examples of Newton s Methods. By
PERCIVAL FROST, M.A. Second Edition. 8vo. cloth, los. 6d.

SOLID GEOMETRY. A New Edition, revised and enlarged, ot

the Treatise by FROST and WOLSTENHOLME. In 2 Vols. Vol.

I. 8vo. i6j.

Godfray. Works by HUGH GODFRAY, M.A., Mathematical

Lecturer at Pembroke College, Cambridge.
A TREATISE ON ASTRONOMY, for the Use of Colleges and

Schools. New Edition. 8vo. cloth. 12s. 6d.

AN ELEMENTARY TREATISE ON THE LUNAR THEORY,
with a Brief Sketch of the Problem up to the time of Newton.
Second Edition, revised. Crown 8vo. cloth. $s. 6d.

Hemming. AN ELEMENTARY TREATISE ON THE
DIFFERENTIAL AND INTEGRAL CALCULUS, for the

Use of CoUeges and Schools. By G. W. HEMMING, M.A.,
Fellow of St. John s College, Cambridge. Second Edition, with

Corrections and Additions. 8vo. cloth. gs.

Jackson. GEOMETRICAL CONIC SECTIONS. An Elemen

tary Treatise in which the Conic Sections are denned as the Plane
Sections of a Cone, and treated by the Method of Projection.

By J. STUART JACKSON, M.A., late Fellow of Gonville and Caius

College, Cambridge. 4^. 6d.

Jellet (John H.) A TREATISE ON THE THEORY OF
FRICTION. By JOHN H. JELLET, B.D., Senior Fellow of

Trinity College, Dublin ; President of the Royal Irish Academy.
8vo. Ss. 6d.

Jones and Cheyne. ALGEBRAICAL EXERCISES. Pro-

gressively arranged. By the Rev. C. A. JONES, M.A., and C. H.
CHEYNE, M.A., F. R. A. S., Mathematical Masters of Westminster
School. New Edition. i8mo. cloth. 2s. 6d.

Kelland and Tait. INTRODUCTION TO QUATER
NIONS, with numerous examples. By P. KELLAND, M.A.,
F.R.S. ; and P. G. TAIT, M.A., Professors in the department
of Mathematics in the University of Edinburgh. Crown 8vo. Js.6d.

Kitchener A GEOMETRICAL NOTE-BOOK, containing
Easy Problems in Geometrical Drawing preparatory to the Study
of Geometry. For the Use of Schools. By F. E, KITCHENER,
M. A., Mathematical Master at Rugby. Third Edition. 4to. 2s.
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Morgan. A COLLECTION OF PROBLEMS AND EXAM
PLES IN MATHEMATICS. With Answers. By H. A.
MORGAN, M.A., Sadlerian and Mathematical Lecturer of Jesus
College, Cambridge. Crown 8vo. cloth. 6s. 6d.

Newton s PRINCIPE. Edited by Professor Sir W. THOMSON
and Professor BLACKBURN. 4to. cloth. 31*. 6d.

&quot;

Undoubtedly the finest edition of the text of the Principia which has
hitherto appeared.&quot; EDUCATIONAL TIMES.

Parkinson. Works by S. PARKINSON, D.D., F.R.S., Tutor and
Prselector of St. John s College, Cambridge.

AN ELEMENTARY TREATISE ON MECHANICS. For the
Use of the Junior Classes at the University and the Higher Classes
in Schools. With a Collection of Examples. Fifth edition, revised.
Crown 8vo. cloth, gs. 6d.

A TREATISE ON OPTICS. Third Edition, revised and enlarged.
Crown 8vo. cloth. IO.T. 6d.

Phear. ELEMENTARY HYDROSTATICS. With Numerous
Examples. By J. B. PHEAR, M.A., Fellow and late Assistant
Tutor of Clare College, Cambridge. Fourth Edition. Crown
8vo. cloth.

5-r. 6d.

Pirie. LESSONS ON RIGID DYNAMICS. By the Rev. G.

PIRIE, M.A., Fellow and Tutor of Queen s College, Cambridge.
Crown 8vo. 6s.

Pratt. A TREATISE ON ATTRACTIONS, LAPLACE S
FUNCTIONS, AND THE FIGURE OF THE EARTH.
By JOHN H. PRATT, M.A., Archdeacon of Calcutta. Fourth
Edition. Crown 8vo. cloth. 6s. 6d.

Puckle. AN ELEMENTARY TREATISE ON CONIC SEC-
TIONS AND ALGEBRAIC GEOMETRY. With Numerous

Examples and Hints for their Solution ; especially designed for the

Use of Beginners. By G. H. PUCKLE, M.A. New Edition,
revised and enlarged. Crown 8vo. cloth. Js. 6d.

Rawlinson. ELEMENTARY STATICS, by the Rev. GEORGE
RAWLINSON, M.A. Edited by the Rev. EDWARD STURGES,M. A.
Crown 8vo. cloth. 4^. 6d.

Reynolds. MODERN METHODS IN ELEMENTARY
&quot;GEOMETRY. By E. M. REYNOLDS, M.A., Mathematical

Master in Clifton College. Crown 8vo. 3$. 6d.

Routh. AN ELEMENTARY TREATISE ON THE DYNA-
MICS OF THE SYSTEM OF RIGID BODIES. With
Numerous Examples. By EDWARD JOHN ROUTH, M.A., late

Fellow and Assistant Tutor of St. Peter s College, Cambridge ;

Examiner in the University of London. New and enlarged Edition

in the press.
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WORKS
By the REV. BARNARD SMITH, M.A.,

Rector of Glaston, Rutland, late Fellow and Senior Bursar
of St. Peter s College, Cambridge.

ARITHMETIC AND ALGEBRA, in their Principles and Appli-
cation ; with numerous systematically arranged Examples taken
from the Cambridge Examination Papers, with especial reference
to the Ordinary Examination for the B.A. Degree. Thirteenth

Edition, carefully revised. Crown 8vo. cloth, los. 6d.
&quot; To all those whose minds are sufficiently developed to comprehend the

simplest mathematical reasoning, and who have not yet thoroughly
mastered the principles of Arithmetic and Algebra, it is calculated to

be of great advantage&quot; ATHEN/EUM. &quot; Mr. Smith s work is a most

useful publication* The rttles are stated with great clearness. The
examples are well selected, and worked out with just sufficient detail,
without being encumbered by too minute explanations : and thereprevails
throughout it that just proportion of theory and practice which is the

crowning excellence ofan elementary work&quot; DEAN PEACOCK.

ARITHMETIC FOR SCHOOLS. New Edition. Crown 8vo.
cloth. 4J. 6d. Adapted from the Author s work on &quot;

Arithmetic
and Algebra.

&quot;

&quot;

Admirably adaptedfor instruction, combining just sufficient theory
with a large and well-selected collection of exercises for practice&quot;

JOURNAL OF EDUCATION.

A KEY TO THE ARITHMETIC FOR SCHOOLS. Tenth
Edition. Crown Svo. cloth. 8s. 6d.

EXERCISES IN ARITHMETIC. With Answers. Crown Svo.

limp cloth, zs. 6d.

Or sold separately, Part I. u. ; Part II. u.; Answers, 6d.

SCHOOL CLASS-BOOK OF ARITHMETIC. i8mo. cloth. 3*.
Or sold separately, Parts I. and II. lod. each; Part III. is.

KEYS TO SCHOOL CLASS-BOOK OF ARITHMETIC. Com-

?lete

in one volume, i8mo. cloth, 6s. 6d.; or Parts I., II., and
II., 2s. 6d. each.

SHILLING BOOK OF ARITHMETIC FOR NATIONAL AND
ELEMENTARY SCHOOLS. i8mo. cloth. Or separately,
Part i. 2d. ; Part II. 3^.; Part III. Jd. Answers, 6d.

THE SAME, with Answers complete. i8mo. cloth, is. 6d.
KEY TO SHILLING BOOK OF ARITHMETIC. i8mo. cloth.

4-r. 6d.

EXAMINATION PAPERS IN ARITHMETIC. i8mo. cloth.

is. 6d. The same, with Answers, i8mo. is. gd.

KEY TO EXAMINATION PAPERS IN ARITHMETIC.
i8mo. cloth. .?. 6d.
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Barnard Smith continued,

THE METRIC SYSTEM OF ARITHMETIC, ITS PRINCIPLESAND APPLICATION, with numerous Examples, written
expressly for Standard V. in National Schools. Third Edition.
i8mo. cloth, sewed. $d.A CHART OF THE METRIC SYSTEM, on a Sheet, size 42 in.
by 34 in. on Roller, is. 6d. t mounted and varnished, price ^s. 6d.
Fourth Edition.

&quot; We do not remember that ever we have seen teaching by a chart more
happily carried out.&quot; SCHOOL BOARD CHRONICLE.
&amp;gt; Also a Small Chart on a Card, price id.
EASY LESSONS IN ARITHMETIC, combining Exercises in

Reading, Writing, Spelling, and Dictation. Part I. for Standard
*. I. in National Schools. Crown 8vo. gd.
Diagrams for School-room walls in preparation.
&quot; We should strongly advise everyone to study carefully Mr. Barnard

Smith s Lessons in Arithmetic, Writing, and Spelling. A more excel

lent^
little work for a first introduction to knowledge cannot well be

written. Mr. Smith s larger Text-books on Arithmetic and Algebra are
already most favourably knoivn, and he has proved now that the difficulty
ofwriting a text-book which begins ab ovo is really surmountable ; but we
shall be much mistaken if this little book has not cost its author more
thought and mental labour than any of his more elaborate text-books.
Theplan to combine arithmetical lessons with those in reading and spelling
is perfectly novel, and it is worked out in accordance with the aims of our
National Schools ; and we are convinced that its general introduction in
all elementary schools throughout the country will produce great educa
tional advantages&quot; WESTMINSTER REVIEW.

EXAMINATION CARDS IN ARITHMETIC. (Dedicated to Lord
Sandon. ) With Answers and Hints.
Standards I. and II. in box, is. 6d. Standards III. IV. and V. in

boxes, ij. 6d. each. Standard VI. in Two Parts, in boxes, is. 6d.
each.

A and B papers, of nearly the same difficulty, are given so as to

prevent copying, and the Colours of the A and B papers differ in each
Standard, and from those of every other Standard, so that a master or
mistress can see at a glance whether the children have the proper papers.

Snowball. THE ELEMENTS OF PLANE AND SPHERI
CAL TRIGONOMETRY ; with the Construction and Use of
Tables of Logarithms. By J. C. SNOWBALL, M.A. Eleventh Edition.
Crown 8vo. cloth. Js. 6d.

SYLLABUS OF PLANE GEOMETRY (corresponding to Euclid,
Books I. VI.) Prepared by the Association for the Improvement
of Geometrical Teaching. Second Edition. Crown 8vo. is.

Tait and Steele. A TREATISE ON DYNAMICS OF A
PARTICLE. With numerous Examples. By Professor TAIT and
Mr. STEELE. New Edition, enlarged. Crown 8vo. cloth, los. 6d.
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Tebay. ELEMENTARY MENSURATION FOR SCHOOLS.
With numerous Examples. By SEPTIMUS TEBAY, B.A., Head
Master of Queen Elizabeth s Grammar School, Rivington. Extra

fcap. 8vo. 3-r. 6d.

WORKS

By I. TODHUNTER, M.A., F.R.S.,

Of St John s CoUege, Cambridge.
*

&quot; Mr. Todhunter is chiefly known to students of Mathematics as the

author of a series ofadmirable mathematical text-books, which possess the
rare qualities of being clear in style and absolutely free trom mistakes,

typographical or other.&quot; SATURDAY REVIEW.
THE ELEMENTS OF EUCLID. For the Use of Colleges and

Schools. New Edition. i8mo. cloth.
3.5-. 6d.

MENSURATION FOR BEGINNERS. With numerous Examples.
New Edition. i8mo. cloth. 2s. 6d.

ALGEBRA FOR BEGINNERS. With numerous Examples. New
Edition. i8mo. cloth. 2s. 6d.

KEY TO ALGEBRA FOR BEGINNERS. Crown 8vo. cloth.

6s. 6d.

TRIGONOMETRY FOR BEGINNERS. With numerous Examples.
New Edition. i8mo. cloth, zs. 6d.

KEY TO TRIGONOMETRY FOR BEGINNERS. Crown 8vo.
8s. 6d.

MECHANICS FOR BEGINNERS. With numerous Examples.
New Edition. i8mo. cloth. qs. 6d.

ALGEBRA. For the Use of Colleges and Schools. Seventh Edition,

containing two New Chapters and Three Hundred miscellaneous

Examples. Crown 8vo. cloth. JS. 6d.

KEY TO ALGEBRA FOR THE USE OF COLLEGES AND
SCHOOLS. Crown 8vo. los. 6d.

AN ELEMENTARY TREATISE ON THE THEORY OF
EQUATIONS. Third Edition, revised. Crown 8vo. cloth.

js. 6d.

PLANE TRIGONOMETRY. For Schools and CoUeges. Fifth
Edition. Crown 8vo. cloth. $s.

KEY TO PLANE TRIGONOMETRY. Crown 8vo. los. 6d.

A TREATISE ON SPHERICAL TRIGONOMETRY. Third
Edition, enlarged. Crown 8vo. cloth. 4^. 6d.

PLANE CO-ORDINATE GEOMETRY, as applied to the Straight
Line and the Conic Sections. With numerous Examples. Fifth

Edition, revised and enlarged. Crown 8vo. cloth. Js. 6d.



14 D OCATIONAL BOOKS.

Todhunter (I.) continued.

A TREATISE ON THE DIFFERENTIAL CALCULUS. With
numerous Examples. Seventh Edition. Crown 8vo. cloth. loj. 6d.

A TREATISE ON THE INTEGRAL CALCULUS AND ITS
APPLICATIONS. With numerous Examples. Fourth Edition,
revised and enlarged. Crown 8vo. cloth, icxr. 6d.

EXAMPLES OF ANALYTICAL GEOMETRY OF THREE
DIMENSIONS. Third Edition, revised. Crown 8vo. cloth. 4^.

A TREATISE ON ANALYTICAL STATICS. With numerous

Examples. Fourth Edition, revised and enlarged. Crown 8vo.

cloth, i CM. 6d.

A HISTORY OF THE MATHEMATICAL THEORY OF
PROBABILITY, from the time of Pascal to that of Laplace.
8vo. i8j.

RESEARCHES IN THE CALCULUS OF VARIATIONS,
principally on the Theory of Discontinuous Solutions : an Essay
to which the Adams Prize was awarded in the University of Cam
bridge in 1871. 8vo. 6s.

A HISTORY OF THE MATHEMATICAL THEORIES OF
ATTRACTION, AND THE FIGURE OF THE EARTH,
from the time of Newton to that of Laplace. 2 vols. 8vo. 24^.

&quot; Such histories are at present more valuable than original work.

They at once enable the Mathematician to make himselfmaster of all that

has been done on the subject, and also give him a clue to the right method

of dealing with the subject in future by showing him thepaths by which

advance has been made in thepast . . . It is with unmingled satisfaction

that we see this branch adopted as his special subject by one whose cast of
mind and self culture have made him one of the most accurate, as he cer

tainly is the most learned, of Cambridge Mathematicians&quot; SATURDAY
REVIEW.

AN ELEMENTARY TREATISE ON LAPLA.CE 8, LAME S,

AND BESSEL S FUNCTIONS. Crown 8vo. los. 6d.

Wilson (J. M.) ELEMENTARY GEOMETRY. Books

I. II. III. Containing the Subjects of Euclid s first Four Books.

New Edition, following the Syllabus of the Geometrical Associa

tion. By J. M. WILSON, M. A., late Fellow of St. John s Col

lege, Cambridge, and Mathematical Master of Rugby School.

Ex:ra fcap. 8vo. 3*. 6d.
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SOLID GEOMETRY AND CONIC SECTIONS. With Appen
dices on Transversals and Harmonic Division. For the use of

Schools. By J. M. WILSON, M.A. Second Edition. Extra fcap.
8vo. 3-y. 6J.

Wilson (W. P.) A TREATISE ON DYNAMICS. By
W. P. WILSON, M.A., Fellow of St. John s College, Cambridge,
and Professor of Mathematics in Queen s College, Belfast. 8vo.

gs. 6d.

&quot;This treatise supplies a great educational need.&quot; EDUCATIONAL
TIMES.

Wolstenholme. A BOOK OF MATHEMATICAL
PROBLEMS, on Subjects included in the Cambridge Course.

By JOSEPH WOLSTENHOLME, Fellow of Christ s College, some
time Fellow of St. John s College, and lately Lecturer in Mathe
matics at Christ s College. Crown 8vo. cloth. Ss. 6d.

&quot;

Judicious , symmetrical, and well arranged&quot; GUARDIAN.

SCIENCE.

ELEMENTARY CLASS-BOOKS.

ASTRONOMY, by the Astronomer Royal.
POPULAR ASTRONOMY. With Illustrations. By SIR G. B.

AIRY, K.C.B., Astronomer Royal. New Edition. l8mo.

cloth. 4.?. 6d.

Six lectures, intended &quot;to explain to intelligent persons the principles

on which the instruments of an Observatory are constructed, and the

principles on which the observations made with these instruments are

treatedfor deduction oj the distances and weights of the bodies of the

Solar System&quot;

ASTRONOMY.
ELEMENTARY LESSONS IN ASTRONOMY. With
Coloured Diagram of the Spectra of the Sun, Stars, and

Nebulae, and numerous Illustrations. By J. NORMAN LOCKYER,
F.R.S. New Edition. iSmo. $s. 6d.

&quot;

Full, clear, sound, and worthy of attention, not only as a popular expo

sition, but as a scientific Index
&quot; ATHEN^UM. &quot; The most fasci

nating of elementary books on the Sciences&quot; NONCONFORMIST.
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Elementary Class-Books continued.

QUESTIONS ON LOCKYER S ELEMENTARY LESSONS
IN ASTRONOMY. For the Use of Schools. By JOHN FORBES-
ROBERTSON. i8mo. cloth limp. \s. 6d.

PHYSIOLOGY.
LESSONS IN ELEMENTARY PHYSIOLOGY. With
numerous Illustrations. By T. H. HUXLEY, F.R.S., Professor
of Natural History in the Royal School of Mines. New Edition.
i8mo. cloth. 4j. 6d.

&quot; Puregold throughout. &quot;GUARDIAN. Unquestionably the clearest
and most complete elementary treatise on this subject that we possess in

any language.&quot; WESTMINSTER REVIEW.

QUESTIONS ON HUXLEY S PHYSIOLOGY FOR SCHOOLS.
By T. ALCOCK, M.D. i8mo. is. 6d.

BOTANY.
LESSONS IN ELEMENTARY BOTANY. By D. OLIVER,
F. R. S.

,
F. L. S.

,
Professor of Botany in University College, London.

With nearly Two Hundred Illustrations. New Edition. i8mo.
cloth. 4^. 6d.

CHEMISTRY.
LESSONS IN ELEMENTARY CHEMISTRY, INORGANICAND ORGANIC. By HENRY E. ROSCOE, F.R.S., Professor of

Chemistry in Owens College, Manchester. With numerous Illus
trations and Chromo-Litho of the Solar Spectrum, and of the Al
kalies and Alkaline Earths. New Edition. i8mo. cloth, qs.bd.

&quot; As a standard general text-book it deserves to take a leadingplace.&quot;
SPECTATOR. &quot; We unhesitatingly pronounce it the best of all our

elementary treatises on Chemistry.&quot; MEDICAL TIMES.

A SERIES OF CHEMICAL PROBLEMS, prepared [with Special
Reference to the above, by T. E. THORPE, Ph.D., Professor of

Chemistry in the Yorkshire College of Science, Leeds. Adapted for

the preparation of Students for the Government, Science, and

Society of Arts Examinations. With a Preface by Professor
ROSCOE. i8mo. is. Key. is.

POLITICAL ECONOMY.
POLITICAL ECONOMY FOR BEGINNERS. By MILLICENT
G. FAWCETT. New Edition. i8mo. 2s. 6d.

&quot;

Clear, compact, andcomprehensive.
1 DAILY NEWS. &quot; The relations

of capital and labour have never been more simply or more clearly

expounded&quot; CONTEMPORARY REVIEW.

LOGIC.
ELEMENTARY LESSONS IN LOGIC ; Deductive and Indue-

tive, with copious Questions and Examples, and a Vocabulary of
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Elementary Class-Books continued.

Logical Terms. By W. STANLEY JEVONS, M. A. , Professor of Logic
In University College, London. New Edition. i8mo. 3*. 6d.

11
Nothing can be better for a school-book GUARDIAN.

&quot; A manual alike simple, interesting, and scientific.&quot; ATHENAEUM.
PHYSICS

LESSONS IN ELEMENTARY PHYSICS. By BALFOUR
STEWART, F.R.S., Professor of Natural Philosophy in Owens

College, Manchester. With numerous Illustrations and Chromo-
liths of the Spectra of the Sun, Stars, and Nebulae. New Edition.

i8mo. 4^. 6d.
&quot; The beau-ideal of a scientific text-book, clear, accurate, and thorough&quot;

EDUCATIONAL TIMES.

PRACTICAL CHEMISTRY.
THE OWENS COLLEGE JUNIOR COURSE OF PRAC
TICAL CHEMISTRY. By FRANCIS JONES, Chemical Master
in the Grammar School, Manchester. With Preface by Professor

ROSCOE, and Illustrations. New Edition. i8mo. 2s. 6d.

ANATOMY.
LESSONS IN ELEMENTARY ANATOMY. By ST. GEORGE
MIVART, F.R.S., Lecturer in Comparative Anatomy at St. Mary s

Hospital. With upwards of 400 Illustrations. i8mo. 6s. 6d.

&quot;It may be questioned whether any other work on Anatomy contains

in like compass so proportionatelygreat a mass ofinformation.
&quot; LANCET.

&quot; The work is excellent, and should be in the hands of every student of
human anatomy.&quot; MEDICAL TIMES.

STEAM. AN ELEMENTARY TREATISE. By JOHN PERRY,
Bachelor of Engineering, Whitworth Scholar, etc., late Lecturer in

Physics at Clifton College. With numerous Woodcuts and
Numerical Examples and Exercises. i8mo. 4^. 6a.

&quot; The young engineer and those seeking for a comprehensive kno^vledge

of the use, power, and economy of steam, could not have a more useful

work, as it is very intelligible, well arranged, and practical throughout&quot;

IRONMONGER.
PHYSICAL GEOGRAPHY.

ELEMENTARY LESSONS IN PHYSICAL GEOGRAPHY.
By A. GEIKIE, F.R.S., Murchison Professor of Geology, etc.,

Edinburgh. Withfnumerous Illustrations. i8mo. [Shortly.

MANUALS FOR STUDENTS.
Flower (W. H.) AN INTRODUCTION TO THE OSTE-

OLOGY OF THE MAMMALIA. Being the substance of

the Course of Lectures delivered at the Royal College of Surgeons
of England in 1870. By W. H. FLOWER, F.R.S., F.R.C.S.,

Hunterian Professor of Comparative Anatomy and Physiology,
With numerous Illustrations. Second Edition enlarged. Crown

8vo. ioj. 6J.
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Foster & Balfour. THE ELEMENTS OF EMBRYO
LOGY. By MICHAEL FOSTER, M.D., F.R.S. & F. M. BALFOUR,
M.A. Part I. crown 8vo. Js. 6d.

Foster & Langley. A COURSE OF ELEMENTARY
PRACTICAL PHYSIOLOGY. By MICHAEL FOSTER, M.D.,
F.R.S.

, andj. N. LANGLEY, B.A. Crown Svo. 6s.

Hooker (Dr.) THE STUDENT S FLORA OF THE
BRITISH ISLANDS. By J. D. HOOKER, C.B., F.R.S.,
M.D., D.C.L., President of the Royal Society. Globe Svo.

lew. 6d.
&quot; Cannotfail to perfectly fulfil thepurpose for -which it is intended&quot;

LAND AND WATER. &quot;

Certainly the. fullest and most accurate

manual of the kind that has yet appeared .&quot; PALL MALL GAZETTE.

Huxley & Martin. A COURSE OF PRACTICAL IN
STRUCTION IN ELEMENTARY BIOLOGY. By Professor

HUXLEY, F.R.S., assisted by H. N. MARTIN, M.B., D.Sc. Second

Edition, revised. Crown Svo. 6s.
&quot;

It is impossible for an intelligent youth, with this book in his hand,

placing himself before any one of the organisms described^
and carefully

following the directions given, to fail to verify each point to which his

attention ^s directed.&quot; ATHENvEUM.

Oliver (Professor). -FIRST BOOK OF INDIAN BOTANY.
By DANIEL OLIVER, F.R.S., F.L.S., Keeper of the Herbarium

and Library of the Royal Gardens, Kew, and Professor of Botany
in University College, London. With numerous Illustrations.

Extra fcap. Svo. 6s. 6d.
&quot; // contains a well-digestedsummary of all essential knowledgepertain

ing to Indian botany, wrought out in accordance with the best principles

of scientific arrangement. &quot;ALLEN S INDIAN MAIL.

Other volumes of these Manuals willfollow.

NATURE SERIES.
THE SPECTROSCOPE AND ITS APPLICATIONS. By J.

NORMAN LOCKYER, F.R.S. With Coloured Plate and numerous

Illustrations. Second Edition. Crown Svo. 3-r.
6d.

THE ORIGIN AND METAMORPHOSES OF INSECTS. By
SIR JOHN LUBBOCK, M.P., F.R.S., D.C.L. With numerous

Illustrations. Second Edition. Crown Svo. 3^. 6d.

&quot; We can most cordially recommend it to young naturalists&quot; ATHE-

N-ffiUM.

THE TRANSIT OF VENUS. By G. FORBES, M.A., Professor of

Natural Philosophy in the Andersonian University, Glasgow.

Illustrated. Crown Svo. 35. 6d.

THE COMMON FROG. By ST. GEORGE MIVART, F.R.S., Lec

turer in Comparative Anatomy at St. Mary s Hospital. With

numerous Illustrations. Crown Svo. 35. 6d.
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Nature Series continued.

POLARISATION OF LIGHT. By W. SPQTTISWOODE, F.R.S.
With many Illustrations. Second Edition. Crown 8vo. *s. 6d.

ON BRITISH WILD FLOWERS CONSIDERED IN RELA
TION TO INSECTS. By SIR JOHN LUBBOCK, M.P., F.R.S.
With numerous Illustrations. Second Edition. Crown 8vo. 4^ 6d.

Other volumes to follow.
Ball (R. S., A.M.) EXPERIMENTAL MECHANICS,

A Course of Lectures delivered at the Royal College of Science
for Ireland. By R. S. BALL, A.M., Professor of Applied
Mathematics and Mechanics in the Royal CoUege of Science
for Ireland. Royal 8vo. i6s.

Blanford. THE RUDIMENTS OF PHYSICAL GEO
GRAPHY FOR THE USE OF INDIAN SCHOOLS ; with a

Glossary of Technical Terms employed. By H. F. BLANFORD,
F.R.S. Fifth edition, with Illustrations. Globe 8vo. 2s. 6d.

Gordon. AN ELEMENTARY BOOK ON HEAT. By
J. E. H. GORDON, B.A., Gonville and Caius CoUege, Cambridge.
Crown 8vo. 2s.

Reuleaux. THE KINEMATICS OF MACHINERY. Outlines
of a Theory of Machines. By Professor F. REULEAUX, Translated
and Edited by Professor A. B. KENNEDY, C.E. With 450
Illustrations. Medium 8vo. 2is.

Roscoe and Schorlemmer. CHEMISTRY. A Complete
Treatise on. By Professor H. E. ROSCOE, F. R. S., and Professor
C. .SCHORLEMMER, F.R.S. With numerous Illustrations. Medium
8vo. [Nearly ready.

SCIENCE PRIMERS FOR ELEMENTARY
SCHOOLS.

Under the joint Editorship of Professors HUXLEY, ROSCOE, and BAL-
FOUR STEWART.
These Primers are extremely simple and attractive, and thoroughly

answer their purpose of fust leading the young beginner up to the thresh

old of the long avenues in the Palace of Nature &quot;which these titles

suggest&quot; GUARDIAN. &quot;

They are &quot;wonderfully clear and lucid in

their instruction, simple in style, andadmirable in flan.&quot; EDUCATIONAL
TIMES.
PRIMER OF CHEMISTRY. By H. E. ROSCOE, Professor of

Chemistry in Owens College, Manchester. With numerous Illus

trations. i8mo. is. New Edition. With Questions.
&quot; A very model of perspicacity and accuracy&quot; CHEMIST AND

DRUGGIST.
PRIMER OF PHYSICS. By BALFOUR STEWART, Professor of

Natural Philosophy in Owens College, Manchester. With
numerous Illustrations. i8mo. is. New Edition. With Questions.

B 2
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Science Primers continued.

PRIMER OF PHYSICAL GEOGRAPHY. By ARCHIBALD
GEIKIE, F.R.S., Murchison-Professor of Geology and Mineralogy
at Edinburgh. With numerous Illustrations. New Edition.
i8mo. is.

&quot;Everyone of his lessons is marked by simplicity , clearness, and
correctness.

&quot; ATHENAEUM.
PRIMER OF GEOLOGY. By PROFESSOR GEIKIE, F.R.S. With

numerous Illustrations. New Edition. i8mo. cloth, is.

&quot;ft is hardly possible for the dullest child to misunderstand the

meaning of a classification of stones after Professor Geikie^s explanation&quot;
SCHOOL BOARD CHRONICLE.

PRIMER OF PHYSIOLOGY. By MICHAEL FOSTER, M.D.,
F.R.S. With numerous Illustrations. New Edition. i8mo. is.

&quot; The book seems to us to leave nothing to be desired as an elementary
text-book.

&quot; ACADEMY.
PRIMER OF ASTRONOMY. By J. NORMAN LOCKYER, F.R.S.

With numerous Illustrations. New Edition. i8mo. is.
&quot; This is altogether one of the most likely attempts we have ever seen to

bring astronomy down to the capacity of the young child.&quot; SCHOOL
BOARD CHRONICLE.
PRIMER OF.BOTANY. By J. D. HOOKER, C.B., F.R.S., Presi

dent of the Royal Society. With numerous Illustrations. New
Edition. i8mo. is.

&quot; To teachers the Primer cvill be of inestimable value, and not only
because of the simplicity of the language and the clearness with which the

subject matter is treated, but also on account of its comingjrom the highest

authority and so furnishing positive information as to the most suitable

methods of teaching the science of botany.&quot; NATURE.
PRIMER OF LOGIC. By PROFESSOR STANLEY JEVONS, F.R.S.

i8mo. is.

In preparation
INTRODUCTORY. By PROFESSOR HUXLEY. Sc. &&amp;lt;r.

SCIENCE LECTURES AT SOUTH KEN
SINGTON.

With Illustrations. Crown 8vo. 6d. each.

SOUND AND MUSIC. By Dr. W. II. STONE.
PHOTOGRAPHY. By Captain ABNEY, R.E.
KINEMATIC MODELS. By Professor KENNEDY, C.E.
OUTLINES OF FIELD GEODOGY. By Professor GEIKIE, F.R.S.
ABSORPTION OF LIGHT, AND FLUORESCENCE. By Pro

fessor STOKES, F.R.S.
Others to follow.

MANCHESTER SCIENCE LECTURES FOR
THE PEOPLE.

Eight Series, 1876-7. Crown 8vo. Illustrated. 6d. each.

WHAT THE EARTH IS COMPOSED OF. By Professor ROSCOE,
F.R.S.

THE SUCCESSION OF LIFE ON THE EARTH. By Professor

WILLIAMSON, F.R.S
Others to fol!(nu.
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MISCELLANEOUS.
Abbott. A SHAKESPEARIAN GRAMMAR. An Attempt to

illustrate some of the Differences between Elizabethan and Modern

English. By the Rev. E. A. ABBOTT, M.A., Head Master of the

City of London School. New Edition. Extra fcap. 8vo. 6s.
&quot;

Valuable not only as an aid to the critical study of Shake

speare, but as tending
1

to familiarize the reader with Elizabethan

English in general&quot; ATHENAEUM.
Barker. FIRST LESSONS IN THE PRINCIPLES OF

COOKING. By LADY BARKER. New Edition. j8mo. u.
&quot; An unpretending but invaluable little work .... The plan is

admirable in its completeness and simplicity ; it is hardly possible that

anyone who can read at all can fail to understand the practical lessons on
bread and beef, fishand vegetables .&quot; SPECTATOR.
Berners. FIRST LESSONS ON HEALTH. By j. BER-

NERS. Seventh Edition. i8mo. u.

Breymann. Works by HERMANN BREYMANN, Ph.D., Pro
fessor of Philology in the University of Munich.

A FRENCH GRAMMAR BASED ON PHILOLOGICAL
PRINCIPLES. Second Edition. Extra fcap. 8vo. 4*. 6d.

&quot; A good, sound, valuable philological grammar.&quot; SCHOOL BOARD
CHRONICLE.
FIRST FRENCH EXERCISE BOOK. Extra fcap. Svo. 4*. 6d.

SECOND FRENCH EXERCISE BOOK. Extra fcap. Svo. 2s. 6d.

Calderwood. HANDBOOK OF MORAL PHILOSOPHY.
By the Rev. HENRY CALDERWOOD, LL.D., Professor of Moral

Philosophy, University of Edinburgh. Fourth Edition. Crown
Svo. 6s.

&quot;A compact and useful work .... will be an assistance to many
students outside the author s own University.&quot; GUARDIAN.
Delamotte. A BEGINNER S DRAWING BOOK. By p. H.

DELAMOTTE, F.S.A. Progressively arranged. New Edition,

improved. Crown Svo. 3-r. 6d.
&quot; A concise, simple, and thoroughly practical work&quot; GUARDIAN.

Fawcett. TALES IN POLITICAL ECONOMY. By MILLI-
CENT GARRETT FAWCETT. Globe Svo. 3*.

&quot; The idea is a good one, and it is quite wonderful what a mass of
economic teaching the author manages to compress into a small

space&quot;

ATHENAEUM.
Fearon. SCHOOL INSPECTION, By D. R. FEARON, M.A.,

Assistant Commissioner of Endowed Schools. Second Edition.

Crown Svo. 2s. 6d.
&quot; The work is admirably adapted to serve the purpose for which it has

been written. It is calculated to be eminently useful, and to have a

Powerful influencefor good on our elementary education&quot; ATHEN^UM.
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Fleay A SHAKESPEARE MANUAL. By F. G. FLEAY,
M.A., Head Master of Skipton Grammar School. Extra fcap.
8vo. 4-y. 6d.

&quot;A valuable contribution to the study of Shakespeare.&quot; SATURDAY
REVIEW.

Goldsmith. THE TRAVELLER, or a Prospect of Society;
and THE DESERTED VILLAGE. By OLIVER GOLDSMITH.
With Notes Philological and Explanatory, by J. W. HALES, M.A.
Crown 8vo. 6d.

Hales. LONGER ENGLISH POEMS, with Notes, Philological
and Explanatory, and an Introduction on the Teaching of English,
Chiefly for use in Schools. Edited by J. W. HALES, M.A.,
Lecturer in English Literature and Classical Composition at King s

College School, London, &c., &c. Third Edition. Extra fcap.
8vo. 4^. 6d.

&quot; The notes are very full and good, and the book, edited by one of our
most cultivated English scholars, is probably the best volume of selections

ever made for the use of English schools&quot; PROFESSOR MORLEY S First
Sketch of English Literature.

Hole A GENEALOGICAL STEMMA OF THE KINGS OF
ENGLAND AND FRANCE. By the Rev. C. HOLE. On
Sheet, is.

Jephson. SHAKESPEARE S &quot;TEMPEST.&quot; with Giossanai
and Explanatory Notes. By the Rev. J. M. JEPHSON. Second
Edition. i8mo. is.

Literature Primers. Edited by JOHN RICHARD GREEN.
Author of &quot;A Short History of the English People.&quot;

ENGLISH GRAMMAR. By the Rev. R. MORRIS, LL.D., Presi

dent of the Philological Society. New Edition. i8mo. cloth, is.

&quot;A work quite precious in its way. . . . An excellent English
Grammar for the lowestform. EDUCATIONAL TIMES.
THE CHILDREN S TREASURY OF LYRICAL POETRY.

Selected and arranged with Notes by FRANCIS TURNER PALGRAVE.
In Two Parts. i8mo. is. each.

ENGLISH LITERATURE. By the Rev. STOPFORD BROOKE, M.A.
New Edition. Kmo. is.

&quot;

Unquestionably the best short sketch of English literature that has

appeared.
&quot; ATHENAEUM.

PHILOLOGY. By J. PEILE, M.A. i8mo. u.

In preparation :

LATIN LITERATURE. By the Rev. Dr. FARRAR, F.R.S.
GREEK LITERATURE. By PROFESSOR JEBB, M.A.
SHAKSPERE. By PROFESSOR DOWDEN.
BIBLE PRIMER. By G. GROVE, D.C.L.
CHAUCER. By F. J. FURNIVALL, M.A.



MISCELLANEOUS. 23

Martin. THE POET S HOUR : Poetry Selected and Arranged for

Children. By FRANCES MARTIN. Second Edition. i8mo. zs. 6d.

SPRING-TIME WITH THE POETS : Poetry selected by FRANCES
MARTIN. Second Edition. i8mo. 3*. 6d.

Masson (Gustave). A COMPENDIOUS DICTIONARY
OF THE FRENCH LANGUAGE (French-English and English-
French). Followed by a List of the Principal Diverging Deriva

tions, and preceded by Chronological and Historical Tables. By
GUSTAVE MASSON, Assistant-Master and Librarian, Harrow
School. Third Edition. Square half-bound, 6s.

&quot;A book which any student, -whatever may be the degree of his ad
vancement in the language, -would do well to have on tke table close at
hand while he is reading.&quot; SATURDAY REVIEW.

Morris. Works by the Rev. R. MORRIS, LL.D., Lecturer on

English Language and Literature in King s College School.
HISTORICAL OUTLINES OF ENGLISH ACCIDENCE,

comprising Chapters on the History and Development of the

Language, and on Word-formation. Third Edition. Extra fcap.
Svo. 6s.

&quot;

It marks an era in the study of the English tongue&quot; SATURDAY
REVIEW. &quot;A genuine and sound book&quot; ATHEN/EUM.
ELEMENTARY LESSONS IN HISTORICAL ENGLISH

GRAMMAR, Containing Accidence and Word-formation. Second
Edition. i8mo. zs. 6d.

PRIMER OF ENGLISH GRAMMAR. i8mo. is.

Oliphant. THE SOURCES OF STANDARD ENGLISH.
By J. KINGTON OLIPHANT. Extra fcap. Svo. 6s.

&quot; Comes nearer to a history of the English language than anything
that we have seen since such a history could be written without confusion
and contradictions&quot; SATURDAY REVIEW.

Palgrave. THE CHILDREN S TREASURY OF LYRICAL
POETRY. Selected and Arranged with Notes by FRANCIS
TURNER PALGRAVE. i8mo. 2s. 6d. Also in Two Parts. i8mo.
is. each.

&quot; While indeed a treasure Jor intelligent children, it is also a work
which many olderfolk will be glad to have.

&quot; SATURDAY REVIEW.

Pylodet. NEW GUIDE TO GERMAN CONVERSATION:
containing an Alphabetical List of nearly 800 Familiar Words
followed by Exercises, Vocabulary of Words in frequent use,

Familiar Phrases and Dialogues ;
a Sketch of German Literature,

Idiomatic Expressions, &c. By L. PYLODET. i8mo. cloth limp.
2J. 6d.

A SYNOPSIS OF GERMAN GRAMMAR. By L. PYLODET.
i8mo. 6d.
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Reading Books. Adapted to the English and Scotch Codes for

1875. Bound in Cloth.

PRIMER. i8mo. (48pp.) 2d.

BOOK I. for Standard I. i8mo. (96pp.)
II.

III.

IV.
V.
VI.

II. i8mo. (144 PP-) $&amp;lt;*

III. i8mo. (i6opp.) 6d.

IV. i8mo. (176 pp.) 8^.
V. i8mo. (380 pp.) is.

VI. Crown 8vo. (430 pp. ) zs.

Book VI. is fitted for higher Classes, and as an Introduction to

English Literature.
&quot;

They are far above any others that have appeared both in form
and substance. . . . The editor of the present series has rightly seen
that reading books must aim chiefly at giving to the pupils the power
of accurate, and, if possible, apt and skilful expression; at cultivating
in them a good literary taste, and at arousing a desire of further
reading* This is done by taking care to select the extracts from true

English classics, going tip in Standard VI. course to Chaucer, Hooker^
and Bacon, as well as Wordsworth, Macaulay, and Froude
This is quite on the right track, and indicates justly the ideal which we
ought to set before us.&quot; GUARDIAN.

Skeat. SHAKESPEARE S PLUTARCH. Being a Selection
from the Lives in North s Plutarch which illustrate Shakespeare s

Plays. Edited with Introduction, Notes, Index of Names, and
Glossarial Index. By the Rev. W.W. SKEAT, M. A. Crown 8vo. 6s.

Sonnenschein and Meiklejohn. THE ENGLISH
METHOD OF TEACHING TO READ. By A. SONNENSCHEIN
and J. M. D. MEIKLEJOHN, M. A. Fcap. 8vo.

COMPRISING :

THE NURSERY BOOK, containing all the Two-Letter Words in

the Language. id. (Also in Large Type on Sheets for

School Walls. 5J.)

THE FIRST COURSE, consisting of Short Vowels with Single
Consonants. $d.

THE SECOND COURSE, with Combinations and Bridges, con

sisting of Short Vowels with Double Consonants. 40.
THE THIRD AND FOURTH COURSES, consisting of Long

Vowels, and all the Double Vowels in the Language. 6d.
&quot; These are admirable books, because they are constructed on a principle,

and that the simplest principle on which it is possible to learn to read

English.
&quot; SPECTATOR.

Taylor. WORDS AND PLACES ; or, Etymological Illus

trations of History, Ethnology, and Geography. By the Rev.
ISAAC TAYLOR, M.A. Third and cheaper Edition, revised and

compressed. With Maps. Globe 8vo. 6j.
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Tegetmeier THE SCHOLAR S HANDBOOK OF HOUSE-
HOLD MANAGEMENT AND COOKERY, SUITABLE FOR
ELEMENTARY SCHOOLS. With an Appendix of Recipes
used by the Teachers of the National School of Cookery. By
W. B. TEGETMEIER. Compiled at the request of the School Board
for London. i8mo. is.

Thring. Works by EDWARD THRING, M.A., Head Master of

Uppingham.
THE ELEMENTS OF GRAMMAR TAUGHT IN ENGLISH.

With Questions. Fourth Edition. i8mo. 2s.

THE CHILD S GRAMMAR. Being the Substance of &quot;The

Elements of Grammar taught in English,&quot; adapted for the Use of

Junior Classes. A New Edition. i8mo. is.

SCHOOL SONGS. A Collection of Songs for Schools. With the
Music arranged for four Voices. Edited by the Rev. E. THRING
and H. RICCIUS. Folio. 7*. 6d.

Trench (Archbishop). Works by R. C. TRENCH, D.D.,
Archbishop of Dublin.

HOUSEHOLD BOOK OF ENGLISH POETRY. Selected and

Arranged, with Notes. Extra fcap. 8vo. 5-y. 6d. Second Edition.
&quot; The Archbishop has conferred in this delightful volume an import

ant gift on the whole English-speaking population of the world.&quot; PALL
MALL GAZETTE.
ON THE STUDY OF WORDS. Lectures addressed (originally)

to the Pupils at the Diocesan Training School, Winchester.
Sixteenth Edition, revised. Fcap. 8vo. 5^.

ENGLISH, PAST AND PRESENT. Ninth Edition, revised

and improved. Fcap. 8vo. 5-r.

A SELECT GLOSSARY OF ENGLISH WORDS, used formerly
in Senses Different from their Present. Fourth Edition, enlarged.

Fcap. 8vo. 4^. 6d.

Vaughan (C. M.) A SHILLING BOOK OF WORDS
FROM THE POETS. By C. M. VAUGHAN. i8mo. cloth.

Whitney. Works by WILLIAM D. WHITNEY, Professor of San
skrit and Instructor in Modern Languages in Yale College ;

first

President of the American Philological Association, and hon.

member of the Royal Asiatic Society of Great Britain and Ireland ;

and Correspondent of the Berlin Academy of Sciences.

A COMPENDIOUS GERMAN GRAMMAR. Crown 8vo. 6s.

A GERMAN READER IN PROSE AND VERSE, with Notes and

Vocabulary. Crown Svo. 7-f. 6d.

Yonge (Charlotte M.) THE ABRIDGED BOOK OF
GOLDEN DEEDS. A Reading Book for Schools and General

Readers. By the Author of &quot;The Heir of Redclyffe.&quot; i8mo.

cloth, is.
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HISTORY.
Freeman (Edward A.) OLD -ENGLISH HISTORY.

By EDWARD A. FREEMAN, D.C.L., late Fellow of Trinity
College, Oxford. With Five Coloured Maps. Fourth Edition.
Extra fcap. 8vo. half-bound. 6s.

&quot; The book indeed is full of instruction and interest to students of all

ages, and he must be a well-informed man indeed who will not rise from
its perusal with clearer and more accurate ideas ofa too much neglected

portion of English History&quot; SPECTATOR.
Green. A SHORT HISTORY OF THE ENGLISH PEOPLE.

By JOHN RICHARD GREEN. With Coloured Maps, Genealogical
Tables, and Chronological Annals. Crown 8vo. 8.r. 6d.

Forty- third Thousand.
&quot;

Stands alone as the one general history of the country , for the. sake of
-which all others, i/ young and old are wise, will be speedily and surely set

aside.
&quot; ACADEMY.

Historical Course for Schools. Edited by EDWARD
A. FREEMAN, D.C.L., late Fellow of Trinity College, Oxford.

I. GENERAL SKETCH OF EUROPEAN HISTORY. By
EDWARD A. FREEMAN, D.C.L. Fifth Edition, revised and en

larged, with Chronological Table, Maps, and Index. i8mo. cloth.

3-r. 6d.
tl It supplies the great want of a good foundation for historical teach

ing. The scheme is an excellent one, and this instalment Juts been

executed in a way that promises much for the volumes that are yet to

appear&quot; EDUCATIONAL TIMES.
II. HISTORY OF ENGLAND. By EDITH THOMPSON. Fifth

Edition. i8mo. 2s. 6d.
&quot; Freedom from prejudice, simplicity of style, and accuracy of statement,

are the characteristics of this little volume. It is a trustworthy text-book

and likely to be generally serviceable in schools.&quot; PALL MALL GAZETTE.
&quot;

Upon the whole, this manual is the best sketch of English history for the

use of young people we haveyet met with&quot; ATHEN^UM.
III. HISTORY OF SCOTLAND. By MARGARET MACARTHUR.

Second Edition. i8mo. 2s.
&quot; An excellent summary, unimpeachable as to facts, andputting them in

the clearest and most impartial light attainable.
&quot; GUARDIAN. &quot; Miss

Macarthicr has performed her task with admirable care, clearness, and
fulness, and we have now for the first time a really good School History

of Scotland&quot; EDUCATIONAL TIMES.
IV. HISTORY OF ITALY. By the Rev. W. HUNT, M.A. i8mo.

3*-
&quot; It possesses the same solid merit as its predecessors .... the same

scrupulous care about fidelity in details. . . . It is distinguished, too, by

information on art, architecture, and social politics, in which the writers

grasp is seen by the firmness and clearness of his totuh.&quot; EDUCATIONAL
TIMES.
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Historical Course for Schools continued.

V. HISTORY OF GERMANY. By J. SIME, M.A. i8mo. 3*.
&quot; A remarkably clear and impressive History of Germany. Its great

events are wisely kept as centralfigures, andthe smaller events are carefully

kept, not only subordinate and stibservient, but most skilfully woven into

the texture of the historical tapestry presented to the eye.
&quot; STANDARD.

VI. HISTORY OF AMERICA. By JOHN A. DOYLE. With Maps.
i8mo. 4?. 6d.

&quot;Mr. Doyle has performed his task with admirable care, fulness, and
clearness, andfor thefirst time we havefor schools an accurate and inter

esting history of America, from the earliest to the present time&quot;

STANDARD.
The following will shortly be issued :

FRANCE. By CHARLOTTE M. YONGE.
GREECE. By J, ANNAN BRYCE, B.A.

History Primers. Edited byJOHN RICHARD GREEN. Author
of &quot;A Short History of the English People.

ROME. By the Rev. M. Creighton, M.A., Fellow and Tutor of
Merton College, Oxford. With Eleven Maps. New Edition.

i8mo. is.
&quot; The Author has been curiously success/ul in telling in an intelli

gent way the story of Rome from first to last.&quot; SCHOOL BOARD
CHRONICLE.

GREECE. By C. A. Fyffe, M.A., Fellow and late Tutor of Uni
versity College, Oxford. With Five Maps. New Edition. i8mo.
Is.

&quot; We give our unqualified praise to this little manual.&quot; SCHOOL
MASTER.

EUROPEAN HISTORY. By E. A. FREEMAN, D.C.L., LL.D.
With Maps. New Edition. i8mo. is.

&quot;A marvel of clearness.
&quot; ACADEMY.

CLASSICAL ANTIQUITIES. I, OLD GREEK LIFE, By the

Rev. J. P. MAHAFFY, M.A. Illustrated. i8mo, is.

CLASSICAL GEOGRAPHY. By H. F. TOZER, M.A. i8mo. is.

GEOGRAPHY. By GEORGE GROVE, D.C.L. With Maps. i8mo.
I.T.

In preparation :

ENGLAND. By J. R. GREEN, M.A.
FRANCE. By CHARLOTTE M. YONGE.

Michelet. A SUMMARY OF MODERN HISTORY. Trans-

lated from the French of M. Michelet, and continued to the Present

Time, by M. C. M. Simpson. Globe Svo. qs. 6d.
&quot; We are glad to see one of the ablest and most useful summaries of

European history put into the hands of English readers. The trans

lation is excellent.&quot; STANDARD.
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Otte. SCANDINAVIAN HISTORY. By E. C. OTTE. With

Maps. Globe 8vo. 6s.

&quot;A readable, well-arranged, complete, and accurate volume. -

LITERARY REVIEW.

pauli._PICTURES OF OLD ENGLAND. By Dr. R. PAULI.

Translated with the Sanction of the Author by E. C. C

Cheaper Edition. Crown 8vo. 6s.
.

Yonge (Charlotte M.) A PARALLEL HISTORY OF

FRANCE AND ENGLAND : consisting of Outlines and Dates.

By CHARLOTTE M. YONGE, Author of &quot;The Heir of Redclyffe,

&quot;Cameos of English History,&quot;
&c. &c. Oblong 4to. y. M.

We can imagine few more ^^y^^^^.Z^f
study for a young mind than going carefully and steadily through Miss

KT&amp;gt;VCATIOVALTLUtt.onrs,xceeH*..
CAMEOS FROM ENGLISH HISTORY. From Rollo to Edward

IL By the Author of &quot;The Heir of Redclyffe.&quot;
Extra fcap.

8vo. Third Edition, enlarged. $J. . .

Instead oj dry details, we have livingpictures, faithful, vivid, ai

FROM ENGLISH HISTORY.
jtcoiNiJ 0*^1^3 v ^,***.,*.^~~ rjxwivj.

THE WARS IN FRANCE. Third Edition. Extra fcap. 8vo. y.

Though mainly intended for young readers, they will, if we mistake

not be found very acceptable to those of more mature years and the

life and reality imparted to the dry bones of history cannot fail to be

attractive to readers of every age.&quot; JOH* Jl
u1
^- T TCTT TT TqTO T? v

A THIRD SERIES OF CAMEOS FROM ENGLISH HISTORY.

THE WARS OF THE ROSES. Extra fcap Syo. 5*. .

EUROPEAN HISTORY. Narrated in a Series of^ Historical Selec-

tions from the Best Authorities. Edited and arranged by KM
SEWELL and C. M. YONGE. First Series, i3-54. Third

Edition. Crown 8vo. 6s. Second Series, 1088-1228. Cro

W* know of^arcd^hing which is so likely to raise to a high*

level the average standard of English education. -GUARDIAN.

DIVINITY;
* * For other Works by these Authors, see THEOLOGICAL CATALOGUE.

&quot;KK ,
E
i.,1,tES.,^^

B
i&quot;-

DAVID S AT ABERGWILLY.
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Arnold. A BIBLE-READING FOR SCHOOLS. THE
GREAT PROPHECY OF ISRAEL S RESTORATION (Isaiah, Chapters
xl. Ixvi.). Arranged and Edited for Young Learners. By MAT
THEW ARNOLD, D.C.L., formerly Professor of Poetry in the

University of Oxford, and Fellow of Oriel. Fourth Edition. i8mo.
cloth, is.

There can be no doubt that it will be found excellently calculated to

further instruction in Biblical literature in any school into -which it may
be introduced; and we can safely say that whatever school uses the book,
it will enable its pufrits to unaersiand Isaiah, a great advantage compared
with other establishments which do not avail themselves of it&quot; TIMES.

Arnold. ISAIAH XL. LXVI. With the Shorter Prophecies
allied to it. Arranged and Edited with Notes by MATTHEW
ARNOLD. Crown 8vo. $s.

Golden Treasury Psalter. Students Edition. Being an
Edition of &quot;The Psalms Chronologically Arranged, by Four
Friends,&quot; with briefer Notes. iSmo. 3-r. 6d.

Hardwick. A HISTORY OF THE CHRISTIAN CHURCH.
Middle Age. From Gregory the Great to the Excommunication
of Luther. Edited by WILLIAM STUBBS, M.A., Regius Professor

of Modern History in the University of Oxford. With Four Maps
constructed for this work by A. KEITH JOHNSTON. Fourth Edition.

Crown 8vo. ios. 6d.
&quot; As a manual for the student of ecclesiastical history in the Middle

Ages, we know no English work which can be compared to Mr.
Hardwick s book.&quot; GUARDIAN.
A HISTORY OF THE CHRISTIAN CHURCH DURING THE

REFORMATION. By ARCHDEACON HARDWICK. Fourth

Edition. Edited by Professor STUBBS. Crown 8vo. I or. 6d.

Maclear. Works by the Rev. G. F. MACLEAR, D.D., Head
Master of King s College School.

A CLASS-BOOK ^OF OLD TESTAMENT HISTORY. Ninth

Edition, with Four Maps. i8mo. cloth. 4^. 6d.

&quot;A careful and elaborate though brief compendium oj all that modern

research has donefor the illustration of the Old Testament. We know

of no work which contains so much important information in so small

a compass.
&quot; BRITISH QUARTERLY REVIEW.

A CLASS-BOOK OF NEW TESTAMENT HISTORY, including
the Connexion of the Old and New Testament. With Four Maps.
Sixth Edition. iSmo. cloth. 5*. 6d.

&quot;A singularly clear and orderly arrangement of the Sacred Story.

His work is solidly and completely done.&quot; ATHEN/EUM.

A SHILLING BOOK OF OLD TESTAMENT HISTORY,
tor National and Elementary Schools. With Map. i8mo.

cloth. New Edition.
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Macl ear contimied.

A SHILLING BOOK OF NEW TESTAMENT HISTORY,
for National and Elementary Schools. With Map. i8mo.
cloth. New Edition.

These -works have been carefully abridged from the author s larger
manuals.
CLASS-BOOK OF THE CATECHISM OF THE CHURCH OF

ENGLAND. New and Cheaper Edition. i8mo. cloth, is. 6d.
&quot; It is indeed the work of a scholar and divine, and as such, though

extremely simple, it is also extremely instructive. There are few clergy
men who would not find it useful in preparing candidates for Confir
mation ; and there are not a few who would find it useful to themselves

as weii LITERARY CHURCHMAN.
A FIRST CLASS-BOOK OF THE CATECHISM OF THE

CHURCH OF ENGLAND, with Scripture Proofs, for Junior
Classes and Schools. i8mo. 6d. New Edition.

A MANUAL OF INSTRUCTION FOR CONFIRMATION AND
FIRST COMMUNION. With Prayers and Devotions. Royal
32mo. cloth extra, red edges. 2s.

&quot; It is earnest, orthodox, and affectionate in tone. The form of self-

examination is particularly good.&quot; JOHN BULL.

THE ORDER OF CONFIRMATION, WITH PRAYERS AND
DEVOTIONS. 32mo. 6d.

FIRST COMMUNION, WITH PRAYERS AND DEVOTIONS
FOR THE NEWLY CONFIRMED. 32mo. 6d.

Maurice. THE LORD S PRAYER, THE CREED, AND
THE COMMANDMENTS. A Manual for Parents and School-

masters. To which is added the Order of the Scriptures. By the

Rev. F. DENISON MAURICE, M.A. i8mo. cloth limp. is.

Procter. A HISTORY OF THE BOOK OF COMMON
PRAYER, with a Rationale of its Offices. By FRANCIS PROCTER,
M.A. Twelfth Edition, revised and enlarged. Crown 8vo.

I0.r. 6d.

Procter and Maclear. AN ELEMENTARY INTRO
DUCTION TO THE BOOK OF COMMON PRAYER.
Re-arranged and supplemented by an Explanation of the Morning
and Evening Prayer and the Litany. By the Rev. F. PROCTER
and the Rev. Dr. MACLEAR. New Edition. i8mo. 2s. 6d.

Psalms of David Chronologically Arranged. By
Four Friends. An Amended Version, with Historical

Introduction and Explanatory Notes. Second and Cheaper
Edition, with Additions and Corrections. Crown 8vo. 8s. 6d.

&quot; One of the most instructive and valuable books that has been published

for many years
&quot; SPECTATOR.
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Ramsay. THE CATECHISER S MANUAL; or, the Church
Catechism Illustrated and Explained, for the use of Clergymen,
Schoolmasters, and Teachers. By the Rev. ARTHUR RAMSAY,
M.A. Second Edition. i8mo. is. 6d.

Simpson. AN EPITOME OF THE HISTORY OF THE
CHRISTIAN CHURCH. By WILLIAM SIMPSON, M.A.
Fifth Edition. Fcap. 8vo. 3*. 6d.

Swainson. A HANDBOOK to BUTLER S ANALOGY. By
C. A. SWAINSON, D.D., Canon of Chichester. Crown 8vo.
is. 6d.

Trench. SYNONYMS OF THE NEW TESTAMENT. By
R. CHENEVIX FRENCH, D.D., Archbishop of Dublin. Eighth
Edition, revised. 8vo. 12s.

WestCOtt. Works by BROOKE FOSS WESTCOTT, D.D.,
Canon of Peterborough.

A GENERAL SURVEY&quot; OF THE HISTORY OF THE
CANON OF THE NEW TESTAMENT DURING THE
FIRST FOUR CENTURIES. Fourth Edition. With Preface
on &quot;

Supernatural Religion.&quot; Crown Svo. iQs. 6d.
&quot; As a theological work it is at once perfectly fair and impartial, and

imbued with a thoroughly religious spirit; and as a manual it exhibits,
in a lucid form and in a narrow compass, the results of extensive

research and accurate thought. We cordially recommend it&quot; SATUR
DAY REVIEW.
INTRODUCTION TO THE STUDY OF THE FOUR GOSPELS.

Fifth Edition. Crown Svo, IQJ. 6d.
&quot; To learning and accuracy which commands respect and confidence,

he unites what are not always to befound in union with these qualities, the
no less valuablefaculties of lucid arrangement and graceful and facile ex

pression&quot; LONDON QUARTERLY REVIEW.
THE BIBLE IN THE CHURCH. A Popular Account of the

Collection and Reception of the Holy Scriptures in the Christian
Churches. New Edition. i8mo. cloth. qs. 6d.

&quot;We wouldrecommend every onewho loves and studies the Bible to read
and ponder this exquisite little book. Mr. Westcotfs account of the
* Canon* is true history in its highest sense&quot; LITERARY CHURCHMAN.
THE GOSPEL OF THE RESURRECTION. Thoughts on its

Relation to Reason and History. New Edition. Crown Svo.
6s.

Wilson. THE BIBLE STUDENT S GUIDE to the more Correct

Understanding of the English translation of the Old Testament,
by reference to the Original Hebrew. By WILLIAM WILSON,
D,D., Canon of Winchester, late Fellow of Queen s College,
Oxford. Second Edition, carefully Revised. 4to. cloth. 2$s.
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&quot; For all earnest students of the Old Testament Scriptures it is a

most -valuable Manual. Its arrangement is so simple that those who
possess only their mother-tongue, if they will take a little pains may
employ it with great profit&quot; NONCONFORMIST.

Yonge (Charlotte M.) SCRIPTURE READINGS FOR
SCHOOLS AND FAMILIES. By CHARLOTTE M. YONGE,
Author of &quot;The Heir of Redclyffe.&quot; FIRST SERIES. Genesis
to Deuteronomy. Globe 8vo. is. 6d. With Comments. Second
Edition. 3J-. 6d.

SECOND SERIES. From JOSHUA to SOLOMON. Extra fcap.
8vo. is. 6d. With Comments, 3^. 6d.

THIRD SERIES. The KINGS and the PROPHETS. Extra fcap.
8vo. i s. 6d. With Comments, y. 6d.

FOURTH SERIES. The GOSPEL TIMES. is. 6d. With Comments
Extra fcap. 8vo. 35-. 6d.

Actual need has led the author to endeavour to prepare a reading book con

venientjor study with children, containing the very words ofthe Bible, with

only afew expedient omissions, and arranged in Lessons ofsuch length as by
experience she hasjound to suit with children s ordinarypower of accurate
attentive interest. The verse form has been retained, because of its con
veniencefor children reading in class, and as more resembling their Bibles ;
but the poeticalportions have been given in their lines. When Psalms or

portionsfrom the Prophets illustrate or fall in with the narrative they are

given in their chronological sequence. The Scripture portion, with a very
few notes explanatory of^

mere words, is bound up apart, to be used by
children, while the same is also supplied with a brief comment, the purpose
of which is either to assist the teacher in explaining the lesson, or to be

used by more advancedyoungpeople to whom it may not be possible to give
access to the authorities whence it has been taken. Professor Hitxley, at a

meeting of the London School Board, particularly mentioned the selection

made by Miss Vonge as an example of how selections might be made from
the Bible for School Reading. See TIMES, March 30, 1871.

LONDON: R. CLAY. SONS, AND TAYLOK, JPRJNTKRS.
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