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PREFACE

From several years' experience in teaching classes in statistics and

giving advice at various times to experimentalists, I have come to the

conclusion that there is a distinct need for more than one type of text-

book. On the one hand there are many who are interested only in

knowing something of the theory and principles. In this class we find

students who are endeavoring to obtain a broad knowledge of all sub-

jects related to science and art, practicing technicians such as doctors

of medicine and technical advisers in agriculture, and adminislirators of

research activities. It would be idle to set students of this type to

work on laborious practical examples. It would probably discourage
them at the start, and by absorbing time would reduce the possibility of

teaching them some of the very attractive philosophical phases of the

subject. In a maze of calculations the principles might be lost sight of

completely, and the student would emerge with a technique for mechan-
ical operations and no ability to solve actual problems. At the begin-

ning it is not training in actual methods that is required, but the build-

ing up of a sound knowledge of fundamental principles.

On the other hand, we have an increasing number of students who,

having had some elementary training in statistics and some experience
in research work, come to the point finally of requiring a practical

knowledge of methods of analysis and some facility in the devices of

calculation. There is no denying the fact that two or three years spent
in studying the principles and theory of statistics will not fit the student

to solve practical problems. To do so is to ignore the many complica-
tions that are involved and that training in facility is necessary in order

that statistical computations may be attacked with determination and

completed in a reasonable length of time. One of the objections very
often raised to the use of statistical methods is the time necessary to do
the routine work. Frequently this sort of thing can be Attributed to

insufficient training in the actual methods that should be employed and
a lack of organization of the work.

The basis of this book, therefore, is the supplying of a textbook in

statistics for students who have passed the elementary stage; who have

studied a fair amount of theory and principles and now wish to equip
themselves for actual statistical work in their own field of research

activities. The experiment station agronomist, the cereal chemist, the

plant breeder, and the economic entomologist are all examples of research

workers who require a practical knowledge of statistical methods, and

undoubtedly there are many others in the same class. It has been my
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experience that to acquire this knowledge the student must work

through a comprehensive series of actual examples, and these should

not be miniature examples as they are likely to give him a wrong impres-
sion of what will actually be required of him at a later date. Most of

the various examples and exercises in this book are therefore of actual

size, but every effort has been made to keep them within such limits as

will enable the student to work through a representative set in one

academic year.

This is not to say that a course in statistical methods should ever be

given without emphasis on principles, and this applies particularly to

the principles of experimental design. When studying practical meth-

ods, the opportunity is prime for the student to acquire a solid ground-

ing in this important phase of the subject. The discussions in the

greater part of the book, therefore, are worked out so that they have a

direct bearing on the principles of the design of experiments. The first

half, for example, while containing material that involves a repetition

of elementary work that has already been covered, is nevertheless written

so that, in reviewing, the student is brought into contact immediately
with the structure of actual experiments. Also in this portion of the

book are certain routine calculations which are designed mainly to give

the student some facility in calculation before he comes to the heavier

problems in the latter part.

There are many to whom I owe thanks in the preparation of this

book, but in the first place I must acknowledge a very great debt to

Professor R. A. Fisher, who has been mainly responsible for the develop-

ment of the methods that are set forth. Furthermore, he has been very

generous of his own time in explaining how new problems may be solved

and in clearing up doubts as to the exact application of previously estab-

lished methods. I wish also to thank the staff of the Statistical Labora-

tory at Ames, Iowa, for advice and suggestions, especially Dr. G. W.

Snedecor, who in addition has given me permission to use, wholly or in

part, any of the tables or material in his excellent new textbook,
"
Sta-

tistical Methods." Thanks are due to many who have called attention

to errors in the preprint edition, and to ways in which the explanations

and examples could be improved. This applies particularly to my stu-

dents, who have taken a special interest in suggesting improvements of

this kind. They have also taken a particular interest in checking the

calculations in order that the book should be as nearly perfect as possi-

ble in this respect. In typing the manuscript I must acknowledge the

untiring assistance of Misses E. J. Stewart and M. G. White.

C. H. GOULDEN.
February, 1939.
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METHODS OF STATISTICAL ANALYSIS

CHAPTER I

INTRODUCTION

1. The Logic of Statistical Methods. Applying statistical methods
to experimental work involves the use of certain logical ideas appropriate
to experimental procedure. The problems of statistics are, therefore, not

entirely mathematical problems; in fact they are very largely problems
based on the technique and requirements of the research worker. This

important point has not always been clearly understood and hence we

find, in the history of the development of statistical methods^ various

attempts to solve the problems of the experimentalist by the application

of purely mathematical methods of reasoning and derivation. Thus we
find prodigious attempts being made to apply the method of inverse prob-

ability to the testing of the significance of results obtained in experi-

ments. This theory has to do with the evaluation of the probability of

the occurrence of certain specified events on the basis of what has hap-
pened in some previous event. For example, if 8 balls are drawn from

an urn containing black and white balls, and are found to consist of 3

white and 5 black balls; to derive from this result an exact statement of

the probability of obtaining a white ball in drawing another single ball

is a problem in inverse probability. Everyone will agree that, on the

basis of the ratio of white to black balls in the sample drawn, in drawing
another ball one's expectation tends towards black, but very few will

agree that this expectation can be put in the form of an exact statement

of mathematical probability. On first thought, one might be inclined

to think that this type of problem is the same as the statistical one of

taking samples and reasoning from these samples to the populations
from which they were drawn. We shall see, however, that there is a

very essential difference between the two situations; that to regard
these two situations as the same is merely to misunderstand the true

nature of the methods of obtaining new information by experimental
methods. To illustrate these points in further detail we shall follow

through the procedure of operating a very simple experiment, in which

the statistical method will arise as a natural consequence of the efforts

of the investigator to get the most out of his experiment.
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2. A Simple Experiment in Identifying Varieties of Wheat. This

hypothetical experiment is modelled after the famous tea-tasting

experiment described by R. A. Fisher (1), but in some respects the pro-

cedure is simplified. Fisher's hypothetical experiment will undoubtedly

remain as a classic in statistical literature, and after following through

the experiment described here the student will do well to make a similar

study of the tea-tasting experiment as it discusses certain aspects of this

type of problem that cannot be presented here.

A wheat expert claims that, if he is presented with grain samples of

two particular varieties which we shall designate as A and B, he can

distinguish between them. He does not claim the ability to identify

either one of the varieties, if they are presented to him separately, and

further there is no special mention of an ability to differentiate between

these samples at all times and under all conditions with perfect accuracy.

The claim is for a certain power of differentiation, and we must proceed

in the. planning of the experiment accordingly; that is, we must plan

the experiment in such a way that any reasonable power of differentia-

tion possessed by the operator will be demonstrated. With this

knowledge we can proceed to set up the experiment.

It will be obvious with a little study that, in order to plan the experi-

ment correctly, it will be necessary to anticipate the possible results.

Suppose that we presented the operator with only one pair of samples

and he classified them correctly. Without any knowledge whatever of

wheat varieties he could, by pure guesswork, name the varieties cor-

rectly in 50 per cent of the cases. This follows from the fact that there

are only 2 ways of classifying them, and if the operator has no power of

differentiating them, these 2 ways are equally likely. Thus in about

half of the cases he would place them correctly, and in the remainder of

the cases incorrectly. Our conclusion must be that 1 pair of samples

would not be sufficient to produce a clear-cut result, regardless of the

efficiency or the inefficiency of the operator. What will be the effect of

increasing the number of pairs of samples? Obviously, the operator

would be much more unlikely to place several pairs of samples correctly

than he would just 1 pair. Can this statement be put in more definite

terms? Let us assume that 6 pairs are being used and see if we can

calculate the probability of a correct result, or, in other words, the

proportion of the cases in which the operator, without any power of

differentiation of the samples, could be expected to reach a correct

placing. If there are 6 pairs of samples, each pair may be placed either

rightly or wrongly, so that there are just 7 different kinds of results.

These are: 6 right, 5 right, 4 right, 3 right, 2 right, 1 right, and none

right. The pairs may be thought of as being presented to the operator
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one at a time, so there are 2 ways of placing the first pair (right or

wrong), 2 ways of placing the second pair, and so forth for all the pairs.

Each result for a pair may occur with either result for another pair, so

that for 2 pairs we would have 2X2 possible combinations of placings.

These are: both right; first pair right and second pair wrong; second

pair right and first pair wrong; and both wrong. Continuing with this

reasoning, it turns out that for 3 pairs the possible number of combina-

tions of placings is 2 X 2 X 2; and, finally, for 6 pairs the total number
is 26 = 64. If now the operator places all 6 pairs of samples correctly,

we are in a position to place an evaluation on this result. There is only

1 way of placing all pairs correctly, so that if the operator has no knowl-

edge whatever of wheat varieties he would be expected to place them

correctly in only 1 out of 64 trials. This would be a rather odd chance,

and we would therefore be inclined, in the event of a successful placing,

to attribute it to the ability of the operator in differentiating the

varieties. Another way to regard this is to consider the consequences of

adopting as a standard, in the examination of a large number of opera-

tors, that all pairs must be placed correctly. Then in 1 out of 64 cases

we could be expected to attribute to the operator a power of differentiat-

ing the varieties that he did not actually possess. This would seem to be

a fairly safe standard. In fact it would undoubtedly be argued from

the standpoint of the operators being tested that the standard was

much too high. In general practice, it is usual to adopt a ratio of 1/20
as an arbitrary level for discriminating between real and chance effects.

That is, an event is not regarded as significant unless it would only
occur by chance variation in not more than 1 out of 20 trials.

We now have to consider the interpretation that would be made if

the operator were to obtain such a result as 5 pairs right and 1 pair

wrong. In the above case there was only 1 way of placing 6 of the

pairs correctly, but the situation is different now in that any one of the

6 pairs may be the one that is incorrectly placed, making a total of 6

ways, out of the grand total of 64, in which the samples may be placed
5 right and 1 wrong. Then, in considering the experiment from the

standpoint of the possibility of its indicating a power of differentiation

on the part of the operator, we must also take into consideration the

number of ways of placing 6 pairs correctly. That is, we must enumer-

ate the number of ways in which the operator can place 5 pairs of samples

correctly, or any other result more favorable to his claim. This makes

a total of 1 + 6 = 7 out of 64 ways in which such a result or one more

favorable to the operator could occur, and if the operator has no power
of differentiation this result will be expected to occur in just that pro-

portion of the cases. In approximate figures the ratio 7/64 is equal to
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1/9; and we note that this is larger than the ratio 1/20, which, as pointed

out above, is accepted as a general level of significance. To accept

the ratio of 1/9 as indicating a power of differentiation would be to

take the risk of being wrong in 1 out of 9 similar trials, and this would

probably be too great a risk for most investigators to accept. It might,

however, be taken as a sufficient indication to justify further experi-

mentation.

It will be found convenient, in experiments of this type, to set up in

the form of a table all the possible results with the corresponding

number of ways in which each can occur. Another column of the table

may be used to show the ratio that we have taken above to indicate the

significance of each result. The figures for this experiment are given in

Table 1. Why do we not give more values in the third column?

TABLE 1

POSSIBLE RESULTS, NUMBER OF COMBINATIONS, AND RATIO OF SIGNIFICANCE,

FOB A SIMPLE EXPERIMENT IN DIFFERENTIATING Six PAIRS OF SAMPLES

The procedure in this simple experiment may now appear to be

quite clear and apparently straightforward in every respect. The
reader will then be surprised to learn that we have been guilty of a very
serious omission. We have said that, if the operator has actually no

power of differentiation, the 64 ways of arranging the pairs are all

equally likely to occur. Suppose now that the samples are presented to

the operator in pairs with variety A to his left hand and variety B to

his right hand. On the off chance that there may be such a systematic

arrangement of the pairs, the operator decides to guess this order and
then adhere to it throughout the experiment. The result is that the

most probable arrangements are 6 right, or 6 wrong, and our theory as

to the probable frequency of the different possible results is completely
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broken down. Another possibility that we have omitted to consider

so far is that the 2 samples may show differences as to weight or quality
which are actually quite independent of the variety characteristics.

Here again the operator may, by guessing, obtain a result that is either

all wrong or all right. We could go on and point out a number of factors

that would tend to upset our calculations, and in the end the reader

might despair as to the possibility of carrying through any experiment
that would lead to valid conclusions. Why not take into consideration

such factors as we have mentioned and work out the theoretical fre-

quencies of the different combinations accordingly? A little thought
will show that this is quite impossible. The vagaries of the minds of

operators, for example, in taking advantage of certain orderly arrange-

ments of the pairs, would be quite beyond the possibility of definite

enumeration. The situation is not hopeless, however, as there is

always at hand an extremely powerful method of overcoming this

difficulty. The method is to arrange all factors that may enter into

the results, completely at random. Thus, in presenting the pairs to the

operator, a random arrangement would be followed that would be

determined beforehand by throwing coins, drawing cards, or from a

book of random numbers. It could then be stated with absolute con-

fidence that, on the hypothesis that the operator has no knowledge of

differentiating the samples, all possible arrangements would be equally

likely to occur. It would be possible, for example, to use different

colors of trays as containers for the samples. In each pair 1 tray might
be red and 1 blue, and, if the varieties are assigned to the trays at

random, it will still be true that all possible arrangements are equally

likely. Of course a word of caution is needed here. Different colored

trays, or any other disturbing influence on the ability of the operator to

differentiate the samples, are not recommended, as they tend to reduce

the efficiency of the test ; but at the same time if such factors are properly

randomized they do not affect the validity of the test of significance.

3. Defining Some Statistical Terms. In describing our simple

experiment, statistical terms were avoided as much as possible. Such

terms are, however, a kind of shorthand and will be found very convenient

as we proceed to the consideration of more intricate problems. The

6 pairs of samples of grain constitute in themselves ^SW^ in the true

statistical sense. We were Aot particularly interested in what the

operator did with the 6 pairs except in so far as it indicated his ability

to differentiate the varieties in general. In other words, we were trying

to obtain an estimate of what would happen if he were presented with a

very large group of such pairs. This l^
number of pairs might be said to constitutetEepopulcrfton that we are
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sampling. The general problem, of statistics, therefore, is the estimation

of values for populations by means of determinations made on samples
drawn at random from these populations. Assuming that the final

result of our experiment was 5 pairs of samples placed correctly, the best

estimate we would have for what our operator might do with a very large

sample is that he would place f of the pairs correctly. This value is the

mean number of successful placings that the operator would make in a

population of similar pairs. A value such as this, calculated from a

sample, is said to be a statistic. The population value of which the

statistic is an estimate is referred to as a parameter. Statistics are sub-

p5^"Tb^va^ ^U ge{. (jfffg^t results with different

samples. The populations sampled are regarded for convenience as

being infinite; and therefore for any one variabk, such as the number of

successful placings, there is only 1 value of the parameter.

In all experiments there is a hypothesis to be tested. It will have

been noted that in the description oTflieljimple experiment we repeatedly

used the words ''if the operator has no power of differentiation.
"

This

points to the fact that the hypothesis we were testing was just that. In

statistical parlance our hypothesis is now, owing to the pertinent sug-

gestion of Professor Fisher (1), referred to as the null hypothesis. This

null hypothesis was the basis for the calculation of the number of ways
out of the total that certain results would be obtained, it being assumed,

owing to randomization of the experiment, that all the possible ways
were equally likely, v

4. Summary of Principles. We have now worked through an actual

experiment, which, although it was extremely simple, has introduced us

to the main principles of the statistical method and has allowed us to

obtain an easy introduction to many of the common statistical terms.

It will be convenient after this discussion to return to some of the gener-

alizations of Section 1.

It will have been noted that the logic employed in tests of significance

is clearly that of the experimentalist. This is true whether or not the

experimenter has any knowledge of mathematics. Always, if he is

critical of his results, he asks himself whether or not they could have

arisen as a chance variation, and on this basis arrives at some conclusion

as to their significance. The statistical method, therefore, does not

introduce anything new in this sense, but merely supplies him with the

technique for planning his experiment so that it is justifiable to ask such

a question, and then furnishes him with a method of measuring the

confidence to be placed in the findings.

The results from one sample are not used to obtain a statement as

to the probability of obtaining a given result in drawing another sample,
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but they are used to obtain an estimate of the population from which the

sample was drawn.

A test of significance is, essentially, the use of the data provided by
the sample to test any hypothesis that may be set up. In such tests we

do not always realize that a hypothesis is involved, but nevertheless this

is true. When we ask the question, "Is my result due to some real

effect or to a chance variation?" we can answer this question only by

setting up the hypothesis that there is no effect; and determining whether

or not the results agree or disagree with the hypothesis.

The mathematical derivations involved in statistical tests arise

from attempts to state the proportion of cases, according to a given

hypothesis, in which the results obtained will occur. Thus, in the

experiment described above, the hypothesis was that the operator had

no power of differentiating the varieties; and on this basis we inquired as

to the proportion of cases in which a result of 6 right would occur. The

order in which the samples were presented having been randomized, it

was possible to state that all placings were equally likely; and hence we

were able to derive by strictly mathematical methods the proportion of

cases in which a given placing would occur.

5. The Functions of Statistical Analysis. The chief functions of

statistical analysis as applied to experimental procedure may now be

enumerated as follows:

(a) To provide a sound basis for the formulation of experimental

designs.

(6) To provide methods for making tests of significance and

trustworthy estimations of the magnitude of the effects indicated

by the results.

(c) To provide adequate methods for the reduction of data.

The discussion of the previous sections will have given a reasonably

clear picture of the manner in which the principles of statistics are made
use of in designing experiments. Since this is the most recent develop-

ment in this field, it is natural that -it is with respect to experimental

design that the beginner is most likely to err. Frequently an elementary

knowledge of statistics, consisting merely of an outline of the facts of

variability and the various methods of measuring this variability, is

taken as a sufficient knowledge for applying statistical methods to

experimental work. The results of this practice are often disastrous.

It is the reason why the consulting statistician is frequently presented

with a set of data collected from an experiment which has been very

badly designed. At the best, in such an experiment, there will be a loss
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of precision and information; but in addition there may be a decided

bias in the results and as a consequence the whole or at least a part of the

data may have to be discarded. It is not exaggeration, therefore, to

state that to the experimentalist a study of statistical methods is futile

unless he endeavors to apply these methods not only to the analysis of

data but also to the structure of proposed experiments.

The necessity for tests of significance has already been dealt with,

but very little emphasis in the above discussion was placed on methods of

estimation. It was pointed out, however, in the hypothetical example,

that, if the operator's result was 5 right placings out of a possible 6, this

would have to be taken as the best estimate available of the proportion of

correct placings the operator could be expected to make if presented with

a large series of samples. Obviously the experiment was so small that

this may not be very close to the proportion that the operator would

actually accomplish, and hence in this respect the experiment was not

sufficiently extensive. The methods of statistics are concerned very

vitally, therefore, with methods of estimation; and here again we cannot

avoid noting the importance of experimental design, in that by careful

design we can very largely determine beforehand the accuracy with which

a particular estimate can be made.

The necessity for the reduction of data is perfectly obvious, but it

may not be clear as to the various methods employed in statistics for

bringing this about. It is impossible to list these here, but we can

classify them into three general groups: viz., tables, graphs, and statistics.

The tables are usually prepared first, and from these we draw graphs to

illustrate the main features of the data, and calculate statistics. The

statistics are single expressions such as the mean or average which

express the general characteristics of the samples studied.

REFERENCE
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Edinburgh, 1937.



CHAPTER II

THE ARITHMETIC MEAN AND STANDARD DEVIATION-
FREQUENCY TABLES AND THEIR PREPARATION

1. The Arithmetic Mean. This is our first example of a. statistic. It

is called a statistic because we regard it in statistical practice as a value

calculated from a sample, and an estimate of the mean of the population
from which the sample was drawn. Values for the means of samples will

be expected to vary from sample to sample, and areJherefore not essen-

tially different from individual variates in that rqspect. It is for this

reason that it is not consistent terminology to speak of the mean or any
other statistic calculated from a sample as a constant. The only con-

stant values in statistical theory and practice are the values representing

the infinite populations from which the samples are drawn. These, as

we shall see later, are usually referred to in modern statistical litera-

ture as parameters.

It is often said of the arithmetic mean that it is the best single value

that can be applied to the sample as a whole. Thus we find that the

agronomist refers to the average yield of a variety, and not to the indi-

vidual yields of a series of plots. Many other instances of this kind could

be cited; in fact, it is an everyday usage and needs no further explana-

tion.

For a sample of N variates where z, represents any one variate, the

mean is given by:

Xl + X2 + Xz + + Xi + " + Xn

which for the sake of abbreviation is written :

* -
IT (1)

If the values for three variates are 6, 8, and 1, the mean is obviously:

6 + 8 + 1 _ 15

3
~

3
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Using the short formula means simply that the summation of the three

quantities is understood, and, instead of writing out all the values and

connecting them with plus signs, we merely write 15/3 = 5. According
N

to strict mathematical usage, S(z) should be written S(aQ, to show that

N values are summated, but the simpler form may be used when the

number of summations is obvious.

f One of the most interesting properties of the mean is that the sum of

the deviations of all the individual variates from the mean is zero.

Again representing an individual variate by #,-, an individual deviation

from the mean will be (a:,- x). Then summing all these we get:

2 (a -*) =
(a?i

-
$) + (x2 -*) + ...

=
(Xl + X2 + . . . + Xw)

- NX
And since

N
It is clear that

S(3 - )
=

Using the summation sign to shorten the algebra we would have

2(s - $) = 2(x)
-

2(4) = 2(x)
- NX

And since

It is again clear that

2(s - x) =

2. The Standard Deviation. In using the mean of a sample to

represent the sample as a whole, it must occur to us that the reliability

of this method will depend on the degree of variation among the indi-

vidual variates that make up the sample. If there is no variation the

mean would represent the whole set perfectly; but as the variation

becomes greater the single value of the mean is less and less descriptive

of the entire group, and it becomes more and more necessary in order to

iescribe the sample completely that we have some measure of variability.

rhe average deviation from the mean might suggest itself, but we have

jeen that the sum of the deviations from the mean is zero, and from this

t follows that the mean deviation is also zero. For this reason the sta-

istic that has been adopted as a measure of variability is the root mean

iquare deviation, commonly known as the standard deviation. The



THE STANDARD DEVIATION 11

formula for the standard deviation, which is usually represented by the

Greek letter sigma (<r), is:

<r = (2)

The direct method of calculating the standard deviation is to find all the

deviations from the mean, square them, summate, divide by N, and
then extract the square root. For example, if we have the three figures

6, 8, and 1, for which the mean is 5, the standard deviation would be:

I
2 + 32 + 42 26

3
=
Vy

When there are more variates in the sample, and especially when the

deviations contain decimal figures, a much shorter method can be used.

The main part of the work is to find the sum of squares of the deviations,

and it can be shown very easily that:

l^WJ /n\
\pj

Applying this to our miniature example we have:

- '

2(a?
-

z)
2 = (6

2 + 82 + I2)
- 152/3 = 26

This formula is especially useful for machine calculation and is now used

almost exclusively in statistical laboratories.

We now have to consider a point which is very important in the prac-

tical application of statistical methods, and one over which there is often

a great deal of confusion. It was pointed out above that the mean of a

sample is taken as the best possible estimate of the mean of the parent

population. This practice of estimating values for parent populations is

the main object of calculating values for samples. With a little thought
this point should be quite clear. We determine the reaction of a crop to

a given fertilizer on a sample of plots which may not be more than 6 to 10

in number. It cannot be stated, even by the wildest stretch of the

imagination, that we are primarily interested in the reaction to the

fertilizer on those 6 to 10 plots. What we are attempting to find out is

the general reaction to the fertilizer under fanning practice, and bence

we must picture a very large population of plots for the mean reaction of

which we are trying to obtain an estimate. If we let this population, for

purposes of clarity of thinking, be regarded as infinite, it follows that the
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mean and thes^ are fixed values and

henSTw^call them parameters. If the mean of the parent population

isjlenoted
bv m> then x, jthe mean of thfl s^mpl^ is nn Pst.ima.te ^f jhe

parameter m._ Similarly if <r is the standard deviation of the parent

population, the value which we calculate from the sample must also be

the best possible estimate of <r. Actually this estimate is not the root

mean square deviation that we have defined above. This arises from

the fact that, if m is the mean of the parent population, the test estimate

ofcris:

^ _,_,-- m)
2

N

but since we do not know m we use x instead, and it can be shown by a

simple algebraic derivation that the best estimate of a is given by:

(4)

wherein we put this expression equal to sin that it is not <r but the best

possible estimate of a. We keep to this symbolism throughout in order

to distinguish the standard deviation calculated from a sample from the

true value which is a parameter of the parent population. The divisor

(N 1) is known as the number of degrees of freedom available for

estimating the standard deviation. We shall learn more of this term in

later chapters.

3. Standard Deviation of a Sample Mean. If we take a series of

samples and determine a mean for each one, it is obvious that the means
for these samples will vary from sample to sample, and that the degree
of variation among these means will be related to the degree of variation

among the individual variates. If one particular sample is taken, the

exact relation is given by the equation:

(5)*~ VN
where * is the standard deviation of the mean of the sample, s is the

standard deviation for the sample as a whole, and N is the number in the

sample. The standard deviation of a mean is therefore inversely

proportional to the square root of the number in the sample.
4. The Frequency Table. This is a table which shows, for the

sample of variates studied, the frequencies with which they fall into

certain clearly defined classes. If the sample is very small the frequency
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table may not be necessary, and even if prepared may not mean very

much; but for moderately large samples it is usually desirable to begin
the reduction of the data with a table of this kind. The frequency table

provides the values for easy graphical representation," and from it such

Statistics as the fog&tt Md^tttmdltttf' deviation 'may"TRT calculated with

much greater ease than from the, original set of individual values.

6. Selection of Class Values. Frequency tables may deal with

either continuous or discontinuous variables. A continuous variable is

one in which a single variate may take any value within the range of

variation. Thus the yield of a plot of wheat may take any value within

the range from the lowest-yielding plot to the highest. A discontinuous

variable can take only certain specified values. For example, in tossing

5 coins we can have 5, 4, 3, 2, 1, or heads, and no other values can occur.

A frequency table for the number of heads in tossing 5 coins 100 times

might be as follows:

Class Values Frequency

5 heads 3

4 heads 16

3 heads 28

2 heads 31

1 heads 17

heads 5

Total = 100

The class values to be selected for such a table are obvious, and this is

usually true for discontinuous variables. In some examples, however,
it may be necessary to form the class values such that the class interval

is greater than unity. In tossing coins 20 at a time, we might use the

classes 0-2 heads, 3-5 heads, and so forth.

If the variable is continuous, the classes for which the frequencies are

to be determined must be chosen arbitrarily, the choice depending on the

accuracy required in the computation of statistics from the table, the

range of variation which is, of course, the difference between the lowest

and the highest value of the sample the number in the sample or total

frequency, and the facility with which these classes can be handled in

computation. In the first place, the greater the number of classes the

greater the accuracy of the calculations made from the table. But there

must be a limit to the number of classes we can handle conveniently,

and these two opposing factors must be balanced up. A good general

rule is to make the class interval not more than one-quarter of the stand-

ard deviation. Of course we do not as a rule know what the standard

deviation is before the table is made up, but it is possible to make a
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rough estimate of its value from the range of variation. Tippett (3)

has published detailed tables on the relation between the range of varia-

tion and the standard deviation, and these have been summarized in a

short table prepared by Snedecor (2). The following values are taken

from Snedecor's table after rounding off the figures to two significant

digits. V--

TABLE 2

VALUES OF THE RATIO, RANGE DIVIDED BY THE STANDARD DEVIATION (SD) t

FOR SAMPLE SIZES FROM 20 TO 1000

Now suppose that we have a sample of 500 variates and the range of

variation is 0.25 to 2.63. The difference is 2.38, and if we were to

divide this by the standard deviation our table tells us that we would get

a quotient of approximately 6.1. In order to make the standard devia-

tion about one-quarter of the class interval, it is clear that its magnitude
will have to be about 2.38/6.1 X 4 = 0.098. It is more convenient to

have an odd number for a class interval than an even one, since it means
that the midpoint of the interval does not require one more decimal

place than we have in the values that define the class range. In the end

we should probably decide in this case on an interval of 0.11. In making

up the classes it is usual to begin with the lower boundary of the first

class slightly below the lowest value, so that our classes and midpoints
would finally be set up somewhat as follows:

Class Range

0.19toO 29

0.30 to 0.40

0.41 to 0.51

0.52 to 0.62

etc.

Class Value, or Midpoint
of Class Range

0.24

0.35

0.46

0.57

etc.

By following the above rules we ensure a sufficient degree of accuracy
in any statistics that are calculated from the frequency table; but, if

the frequency table is required mainly for the preparation of a graph as
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described below, this method may give classes that are too small, in that

some of the classes may contain only very small frequencies or perhaps
none at all. It is desirable in such cases to make the class interval from

one-half to one-third of the standard deviation.

In statistical literature one may come across references to Sheppard's

corrections for grouping. These are designed to remove bias from

certain statistics that are calculated from grouped data instead of from

the individual values. Thus, in calculating S(x x)
2/N 1, it has

been shown that the bias is positive and equal approximately to 1/12 of

the class interval. In the tests for abnormality described in Chapter

III, and in certain other specific calculations, it is necessary to make the

adjustments, but in general practice they are usually ignored and in

many tests of significance it is more correct to omit them altogether.

The student should note carefully at this point that Sheppard's cor-

rections are for the purpose of removing a definite bias and in no sense do

they make allowance for inaccuracies introduced by using groups that

are too large.

6. Sorting out the Variates and Formation of the Frequency Table.

Sorting is greatly facilitated by writing the value of each variate on cards

of a convenient size for handling. The class ranges are first written out

on cards and arranged in order on a table. The sorting can then be done

rapidly, and after it is finished it is very easy to run through the piles

and obtain a complete check on the work. It is very important to have

perfect accuracy at this point. In a series of studies a misplaced card

may give a great deal of trouble at a later stage in the work. The fre-

quency table is finally made up by entering the frequencies opposite the

corresponding class values.

Table 3 is a sample of a frequency table. It represents data on the

carotene content of the whole wheat of 139 varieties. The class values

are in parts per million of carotene in the whole wheat. In this instance

a great deal of accuracy in the calculations was not desired, and it will

be noted that the class values are larger than they would be if the rules

for the formation of these values as outlined above had been followed.

Check this point by reference to Table 2.

TABLE 3

FREQUENCY TABLE FOR PARTS PER MILLION OF CAROTENE IN THE
WHOLE WHEAT OF 139 VARIETIES OF WHEAT
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7. Graphical Representation of a Frequency Table. Graphs of two

types are in general use. The best type of graph and the one most

commonly used is the histogram. It is a diagrammatic representation of

a frequency table in which the class values are represented on the hori-

zontal axis, and the frequencies by vertical columns erected in their

appropriate positions on the horizontal axis. The histogram is most

useful when a curve for some theoretical distribution is being fitted. The
nature of any disagreement between the theoretical distribution and the

actual frequencies can be located readily when the theoretical curve is

35

30

25

90 101 112 123 134 145 156 167 178 189 2OO 211 222

CAROTENE - PARTS PER MILLION

FIG. 1. Histogram for the data of Table 3.

superimposed on the histogram. As an example the histogram for the

data of Table 3 is shown in Fig. 1.

The other type of graph is usually known as a frequency polygon. A
straight line is erected for each frequency at the midpoint of the corre-

sponding class value, and the ends of these connected in sequence by
straight lines. It does not give as accurate a picture for the sample as

the histogram, but tends in its shape towards the smooth curve of the

population from which the sample was drawn.

8. Calculation of the Mean and Standard Deviation from a Frequency
Table. After the frequency table has been formed, we add two more
columns as indicated in the small example given below:
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On summating the last three columns we get N, (#), and S(x
2
), which

are the values necessary for the calculation of the mean and the standard

deviation. The mean is given by:

N
and the standard deviation by :

m =
N- I

(6)

It will be noted that the numerator of the standard deviation is

2(x x)
2

,
and that to obtain it we have made use of the identity given

in formula (3).

The class values are very frequently numbers containing two to four

digits, in which case a great deal of labor can be saved by replacing them

by the series of natural numbers 1, 2, 3, 4, etc. By this method we
obtain a mean and a standard deviation that we shall designate by x'

and s
f

, respectively. These can be converted into the true values by
means of the following identities:

s = s'i (8)

where i is the class interval and X i is the first true class value.

9. Coefficient of Variability. This is the term applied to the stand-

ard deviation when it is expressed in percentage of the mean of the

sample. It is a statistic of very limited usage owing to the difficulty of

determining its reliability by statistical methods. The formula is

obviously:

C (coefficient of variability)
= a(\ (9)
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10. Exercises.

1. Substitute the natural numbers 1, 2, 3, 13 for the class values of Table 3,

and calculate the mean and the standard deviation. Convert the calculated values to

actual values using formulas (7) and (8).

5.597 1.406 s' = 2.196 8 = 0.2416

2. Table 4 gives the yields in grams of 400 square-yard plots of barley. Make

up a frequency table and histogram for these yields, using a class interval of 11, and

make the first class 14 to 24.

3. The areas in arbitrary units of 500 bull sperms are given in Table 5.
1

Prepare

the frequency table and histogram, using 16 classes, making the first class 123 to 125.

4. For either one of Exercises 2 and 3 above, calculate the mean and the standard

deviation from the frequency table, using actual class values. Then replace the

actual class values by 1, 2, 3, 4, ,
and recalculate the mean and the standard

deviation.

Ex. 2
' = 13.055 x = 151.60 s

f = 2.880 s = 31.68

Ex. 3 z' = 7.852 144.56 s' 2.576 7.728

6. For the data in Tables 4 and 5, determine the class values that should be used

to give a high degree of accuracy in the calculations.

6. Prove the identity:

S(* - x)
2 - 2(*

2
)
-

I2(z)]
2
/tf

TABLE 4

YIELDS IN GRAMS OF 400 SQUARE-YARD PLOTS OF BARLEY

\
1 Data by courtesy of A. Savage, Department of Animal Pathology, t[niversity

of Manitoba.
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TABLE 5

AREAS IN ARBITRARY UNITS OF 500 BULL SPERMS

REFERENCES

1. R. A. FISHER. Statistical Methods for Research Workers. Oliver and Boyd,
London and Edinburgh, 1936.
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CHAPTER III

THEORETICAL FREQUENCY DISTRIBUTIONS

1. Characteristics of Frequency Distributions of Biological Variates.

A frequency table may be used to furfcish an estimate of the frequency
distribution of the population from which the sample has been taken.

For example, we could take any one of the frequency tables of Chapter
II and draw a smooth curve through the upper ends of the columns of the

histogram. We would draw a smooth curve because the parent popula-
tion is assumed to be infinite and each point on the base line could be

represented by a frequency, or, to be more specific, the height of the

perpendicular line from any point on the base line to the curve would

represent the proportion of the total frequency of the population having
the value represented by the point. This method, however, would not

be very satisfactory, as the position of the curve would be, to a consider-

able extent, a matter of individual judgment. Also, the sample studied

might indicate, owing to errors of sampling, certain irregularities and

lack of symmetry which might be entirely absent in the population.

Furthermore, to be consistent in our logic, it follows that we are not so

much interested in drawing a curve that fits the sample as we are in

setting up a theoretical curve as a hypothesis and then determining

whether or not the data of the sample agree with the theoretical fre-

quencies. In setting up our theoretical curve, it is of course natural

that we set up one that is likely to agree fairly well with the data of the

sample, and this is only saying in other words that we should set up a

reasonable hypothesis. We could set up a whole series of theoretical

curves, the majority of which would have no resemblance whatever to

the histogram of the sample; but obviously this would be a mere waste

of time. To deduce a theoretical distribution into which our sample is

likely to fit, it is necessary to study the characteristics of the frequency
tables for biological variates as a whole and work out a logical theory for

setting up the theoretical values. If we examine the histograms of

Chapter II for three different kinds of biological variates, we find that

they have certain characteristics in common. Close to the mean, the

variates occur with much greater frequency than they do at some dis-

tance from the mean; but the reduction in the frequencies from the mean
to the extreme tails of the distribution is not uniform, with the result that

20
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if a smooth curve i& drawn through the tops of the columns of the histo-

grams it is seen to resemble an isosceles triangle but with a rounded top

and very much flattened base. A curve of this type is found to resemble

very closely a definite type of mathematical curve; but to understand

more easily the reasoning behind the derivation of this curve it is neces-

sary for us to look into the characteristics of another theoretical dis-

tribution that is appropriate for discontinuous variables.
'
2. The Binomial Distribution. In Chapter I we derived a theoretical

distribution for the experiment on identifying varieties of wheat. This

will be found in Table 1. Each theoretical frequency was derived by the

direct application of elementary theorems of probability, and if, instead

of dealing with specific numbers of pairs of samples, we had dealt with

the problem as a general one for any number of pairs of samples we
would have derived the binomial distribution. Thus the theoretical

frequencies of Table 1 can be written out at once from the terms of the

expansion of the expression ( + ^)
6

. These are:

JL A i 15 L
64 64 64 64 64 64 64

wherein we note that the theoretical frequencies are stated as propor-

tions of the total number and express directly the probabilities of par-

ticular combinations. In general for similar problems where there are

alternative possibilities such as right or wrong placings of pairs of

samples, heads or tails in the tossing of a coin, an ace or any other num-
ber in the throwing of a die, etc., the theoretical distribution can be

written down directly by expanding the binomial (p + g)
n

,
where n is

the number of events in any 1 trial, p is the probability of the occurrence

of the event in 1 way, q is the probability of the occurrence of the

event in the alternative way, and p + q = 1. If p = we obtain a

symmetrical distribution, but if p is not equal to q the distribution is

asymmetrical or skewed.

There are many applications of the binomial distribution in statistical

analysis, and one application of particular interest will be dealt with in

Chapter X. For the present it is sufficient to note that the form of the

distribution is somewhat similar to the actual distributions of Chapter

II, which we have concluded are fairly typical for biological variables in

general. However, the binomial distribution is not suitable as a theoret-

ical distribution for continuous variables, as in itself it is essentially

discontinuous; so that if we make any use of it for continuous variables

it must be as a stepping stone to some more general type of distribution.

The biological variables we have studied indicated from the samples for

which histograms were made that the parent populations were essen-
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tially symmetrical. The comparable situation for the binomial dis-

tribution would occur when p =
q. Starting from this point, therefore,

let us suppose that n is infinitely large; and, in graphing the histogram
for the theoretical distribution, the columns which will also be infinite

in number are represented by vertical lines only. The result will be a

smooth curve, and by carrying through this procedure algebraically and

making certain approximations we can arrive at an equation for a

smooth curve. This is the expression for what is commonly known as

the normal frequency distribution.

3. The Normal Distribution. Most variables dealt with in biological

statistics show in their actual distributions only minor deviations from

the theoretical normal distribution defined by:

y = N

where <r is the standard deviation of the population, N is the total num-
ber of variates, e is the base of the Napierian system of logarithms, and

y is the frequency at any given point x, where x is measured from the

FIG. 2. Sketch of a normal curve, the base line measured in units equal to the

standard deviation (<r).

mean of the population. ^The curve expresses, therefore, the relation

between y and #, with y as the dependent variable. Figure 2 is a sketch

of a normal curve. It illustrates the measurement of x from the mean
of the population which is located at the point where the dotted line has
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been erected. For the value of x taken, y is the perpendicular distance

from that point to the curve.

Equation (1) may be written:

2)V ZTT

and putting z for y (<r/N) we have:

and since x/a varies in actual practice only from to 6, the values of z

have been tabulated for all the values of x/0 from to 6 proceeding by
intervals of 0.01. Any given value of z can then be transformed to y by

multiplying by N/v for the particular population with which we are

dealing. In other words, for a given population for which N and <r are

known, we can proceed with a set of tables to plot the theoretical smooth

curve.

A smooth curve plotted by the above method is an estimate of the

form of the infinite population from which the sample has been drawn;
but what we often require is the theoretical frequency distribution corre-

sponding to the actual frequency distribution of the sample. That is,

we require the theoretical normal frequencies for the arbitrarily chosen

class values of the actual distribution. For this purpose, if N is taken

as 1, equation (1) becomes:

y =

which can be integrated from x = minus infinity to x = any assigned

value. This gives the area under that portion of the curve, and we will

represent it as -^(1 + a). The integration is started at x = minus

infinity, because the normal curve never actually touches the base line

although, at a* = 6, y is an exceedingly small value. The reason for

expressing the area as ^(1 + ) or ^ + ^a will be seen from an exam-

ination of Fig. 3. For any assigned value of x the area within the

limits of x is represented by a. Therefore, from x = minus infinity to

x = any assigned value, if the total area of the curve is 1, the area is

The tabulated values of z and ^-(1 + a) for values of x/cr from to 6

are given in Sheppard's
"
Tables of Area and Ordinate in terms of

Abscissa." These are commonly referred to as Sheppard's tables of the
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probability integral. The detailed application of these tables to a prac-

tical example is described below under Section 4.

4. Methods of Calculation.
v

FIG. 3. Sketch of a normal curve showing ordinates erected at x/a =4-1, and

x/tr 1. The unshaded area = a, and the shaded area =
(1 ).

Example 1. The calculations necessary to fit a normal curve to an actual

frequency distribution and to determine the normal frequencies corresponding to

the actual frequencies are given in Table 6. The data are for the transparencies of

400 red blood cells taken from a patient suffering from primary anemia (4). The

transparency is taken as the ratio of the total light passing through the cell to the

area of the cell. For this distribution
' = 7.06 and a = 2.45.

The calculations can best be described by considering each column of the table.

The columns have been numbered at the head of the table for convenient reference.

Column (1): The class ranges are as described in Chapter II. Note that

unit class intervals have been used. This is necessary in obtaining y, but makes
no difference to the remainder of the calculations. After setting up the class

ranges, the actual frequencies may be entered as in column (10), but it is of no

consequence when these are entered as they are not used in the calculations.

Column (2): In order to understand clearly the meaning of the class limits,

refer to any histogram as in Chapter II, Fig. 1, or Exercises 2 and 3. The limits

correspond with the lines bordering the columns of the histogram. The mean of

the sample is placed according to the class range in which it falls. In this case

the mean is 7.06 and must be placed opposite the class range 6.6-7.5. The limits

are then entered by passing in both directions from the mean. The class in

which the mean falls will have two limits, but for each of the others we take only
the one farthest from the mean.
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TABLE 6

CALCULATION OF ORDINATES FOE FITTING A NORMAL CURVE, AND
THEORETICAL NORMAL FREQUENCIES

Column (3): The deviation of the class limit from the mean. Note that this

corresponds to x in the discussion above.

Column (4) : Figures in previous column divided by the standard deviation.

The latter is calculated using tmit class intervals, and from the formula

Column
Column
Column
Column
Column

(5):

(6):

(7):

(8):

(9):

N

Values of z from Sheppard's "Tables."

Corresponding z values multiplied by N/<r.

Values of j|(l -f a) from Sheppard's "Tables."

Corresponding |(1 + a) values multiplied by N.

Differences between consecutive values in column (8). Begin

at 400 at each end and go towards the center. At the center the two differences

are added. Note that the theoretical frequencies are not kept in line with the

values in column (8), but are lined up with the corresponding actual frequencies

in column (10).

Column (10) : The actual frequencies.



26 THEORETICAL FREQUENCY DISTRIBUTIONS

8. Probability Calculations from the Normal Curve. We have

observed from the previous exercises and examples that most biological

variables tend to follow the normal distribution and that methods are

available for making, for any particular sample, an estimate of the form

of the normal distribution from which the sample was drawn. Since

the normal distribution can be expressed by a mathematical equation,

the area of any section of the curve cut off by an ordinate can be deter-

mined readily by integration of the equation, and for all practical

problems this work has been performed and tabulated in Sheppard's

1/2(1-'-)- 0228

FIG. 4. Sketch of a normal curve showing the proportions of the total area below

and above the ordinate erected at d/o- = -f- 2.

"Tables." It remains to show how these facts form the basis for tests of

significance in statistical problems.

If a variable is normally distributed and the mean and standard

deviation of the population are known, we can draw the curve and erect

an ordinate at any point. Suppose that such an ordinate is erected at a

point which is at a distance, on the positive side of the mean, exactly

equal to twice the standard deviation. Thus d/v =
2, and from

Sheppard's "Tables" we find that (! + a) = 0.9772. Taking the total

area of the curve as 1, the area to the left of the ordinate is 0.9772, and

that to the right of the ordinate is (1 0.9772) = 0.0228. Assuming
a population of 1000 variates, it is obvious that 22.8 of these variates

would be greater than the mean by an amount equal to 2 or more times

the standard deviation. Hence if one variate is selected at random from
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the 1000, it is obvious that the probability that this variate will exceed

the mean to the extent of 2 or more times the standard deviation is

22.8/1000. Reference to Fig. 4 will make this point clear.

Looking at the same problem from another angle, we inquire as to

the probability, in selecting a variate at random, that this variate shall

fall outside the limits of plus or minus twice the standard deviation.

We erect two ordinates, one at d/a *
2, and one at d/<r

= + 2; and

our problem is to find the area in both tails of the curve. Obviously
this will be [1

-
|(1 + a)] X 2 -

(1
-

0.9772) X 2 = 0.0456. The

probability that a single variate selected at random will deviate by an

amount equal to or greater than db2 is 45.6/1000, or approximately

1/22.

Probability results are sometimes expressed in terms of odds. If the

probability is 1/22, the odds are 1 out of 22, or, as usually stated, 1 to 21.

For the case above, where the deviations in both directions are con-

sidered, note that the probability is given directly by [1 (! + )] X
2 = 1 a. The odds are given by a/ (1 a) : 1.

Some examples follow that should make the whole procedure per-

fectly clear.

Example 2. The mean (ra) of a population is 26.4, and the standard deviation (?)

is 2.0. Find the probability that a single variate selected at random will be 29.4 or

greater.

The deviation (d) 29.4 - 26.4 - + 3.0. Hence d/<r - f - 1.5. For d/<r - 1.5,

J(l -f a) = 0.9332. The probability (P) <= (1
- 0.9332) - 0.0668.

Example 3. For the above population, find the probability that a single variate

selected at random will deviate from the mean to the extent of 3.5 or more.

d - 3.5 - - - 1.75
<r 2

For d/<r
- 1.75, (1 + a) 0.9599. a - (0.4599 X 2) =-.0.9198

Hence P - (1
- a) - (1

- 0.9198) - 0.0802.

Example 4. Determine the value of d/a corresponding to P = 0.05.

p _ (i
_ a)

= 0.05

a (1
-

0.05) - 0.95

j(l + )
- (0.5 + 0.4750) - 0.9750

From Sheppard's "Tables," <*/<r'= 1.96.

6. Tests of Departure from Normality.* The x
2 test of Chapter

IX, Example 19, on the goodness of fit of actual to theoretical normal

* Students studying statistics for the first time are advised to pass over the

remainder of this chapter and come back to it at a later date.
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frequencies is a general test of the normality of a distribution, and, by

noting those classes that make the greatest contribution to x2 ,
we can

come to some decision as to the type of departure from normality. The

test described here is one that involves the calculation of two statistics

that are direct measures of the type and degree of abnormality, Fisher

a).

Types of Abnormality. Frequency distributions that depart signifi-

cantly from the normal may be divided roughly into three classes:

(a) Skew Distributions. The degree of skewness of a given distribu-

tion is indicated approximately by the measure

Mean Mode
Skewness =-

0*

where the mode is the position on the base line, or x ordinate, of a per-

pendicular line drawn to the maximum point of the curve. This

measure is obviously zero for the normal distribution, as the curve is

symmetrical and the mean and the mode coincide. When the mode is

greater than the mean we have negative skewness, and when less than

the mean, positive skewness.

(b) Platykurtic, or flat topped. The shoulders of the curve are filled

out and the tails depleted.

(c) Leptokurtic, or peaked. At the center the curve is higher and

more pointed than the normal, and the tails are extended.

In certain distributions we may have skewness as well as kurtosis as

indicated by (6) and (c).

Test for Abnormality. The type of abnormality of a distribution can

be determined directly by calculating two statistics known as g\ and 02.

These are calculated from the k statistics fci, fez, 3, and fc4 ,
that are in

turn derived from the sums of the powers up to 4 of the deviations from

the mean.

One of the most convenient methods for the calculation of the k

statistics is to obtain first a series of values a\ a^ defined as follows :

From ai a*, we calculate a series of statistics Joiown as the momenta

(vi 04), which in this form are unconnected for grouping in the fre-

quency table.
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The k statistics are then given by:

N \

N2

|f3

=
Ar2

4 " r

-
2) [(AT

-
1) (TV

-
2) # - 3

Two of the k statistics 2 and 4 require correction for the interval of

grouping of the frequency distribution. For a unit interval the cor-

rected values are given by :

&2 = k2 ^ ,
and &4 = &4

Corrections for other intervals will, of course, not be necessary; as it is

always possible to use a unit interval for the purpose of calculating the fc

statistics.

The measures of curve type g\ and #2 are given as follows, with their

standard errors:

^ - 2) (N + 1) (# + 3)

9z
=

7^>
= J

>f -
3) (JV

-
2) (JV + 3) (JV + 5)

For normal distributions both gi and g% are zero. The former is a

measure of symmetry and has the same sign as (mean mode). Figure 5

illustrates positive and negative skewness as indicated by positive and

negative values of gi. A positive value of #2 indicates a peaked curve,

and a negative value a flat-topped curve. These two types are also

illustrated in Fig. 5 (see page 31).
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Example 6. We shall take as an example to which to apply the test for normality

the frequency distribution given in Table 7, which also contains the necessary cal-

culations. We get:

0i
= + 0.184 SEgi =0.227

02 - + 0.0188 0.451

The signs of g\ and g% indicate that the curve departs slightly from normality in

having a slight positive skewness and in being slightly peaked, but the values of

g\ and g% are very much less than twice their standard errors so we conclude that

there is no evidence of a significant departure from normality.

When the number of classes is fairly large it is desirable to calculate the k statistics

using an assumed mean. We measure x in terms of the deviations from the assumed

mean and proceed exactly as in Table 7. Table 8 is an example of the calculation

of the k statistics by this method, using the same data as in Table 7.

TABLE 7

CALCULATION OF THE k STATISTICS

3007 17,607

0.697

(2.4265)*

0.111

(2.4265)
2

+0.184

= + 0.0188

SEgi = 0.227

0.451

110,023
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MO ME

POSITIVE SKEWNESS

ME MO

NEGATIVE SKEWCSS

LEPTOKURTIC PLATYKURTIC

FIG. 5. Illustrating types of abnormality in frequency distributions.

MO = mode, and ME = mean.

TABLE 8

CALCULATION OF k STATISTICS USING AN ASSUMED MEAN
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7. Exercises.

1. Calculate the ordinates (y) and the theoretical normal frequencies for the

frequency distribution of either Chapter II, Exercise 2, or Chapter II, Exercise 3.

Totalling the theoretical frequencies will provide a check on the calculations.

2. Make two graphs for Exercise 1.

(a) Histogram of actual frequencies and smooth normal curve.

(6) Histogram of theoretical frequencies and smooth normal curve.

3. Examine equation (1) in Section 3 above, and show how the value of <r affects

the shape of the curve.

4. If the mean of a population is 21.65 and <r is 3.21, determine the probability
that a variate taken at random will be greater than 28.55 or less than 14.75.

P - 0.03.

6. If, for the population described in Exercise 4, the standard deviation of the

mean of a sample of 400 variates is <r/\/400, find the probability that the mean of

any one sample of 400 taken at random will fall outside the limits 21.33 to 21.97.

P = 0.045.

6. Determine d/a values corresponding to the P values of 0.001, 0.01, 0.02, 0.10,

0.20, and 0.50.

7. Test the following distributions for departure from normality.
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CHAPTER IV

TESTS OF SIGNIFICANCE WITH SMALL SAMPLES

1. The Estimation of the Standard Deviation. In Chapter II, Sec-

tion 2, it was pointed out that the best estimate of the standard deviation

of a population from which a sample has been drawn is A/S(x m)2
/N,

where m is the mean of the population and N is the number in the sample.
Since we never know the value of w, we use x instead

;
but the substitu-

tion of x in the above formula will not give us the best possible estimate

of a; actually it will give us an estimate that is too small. In other

words, if we take a large number of samples and calculate a standard

deviation for each one, the average value of our standard deviations will

be low, and this will be true regardless of how many samples we take.

As a matter of fact, if we take a large enough number of samples, we can

predict with accuracy the extent of the negative bias in the average of

the standard deviations. To the beginner these facts often appear

somewhat mysterious, particularly the fact that the bias, in our estimate,

can be removed, as pointed out in Chapter II, by using the formula

v S(x x)
2/N 1. It may seem peculiar that the bias can be

removed in so simple a manner. Now, it is easy enough to work out

this proposition algebraically, but this does not settle the question

necessarily for the beginner, as it is quite possible to work through a

derivation and follow all the steps without really understanding the

situation. Consequently, we shall not use the algebraic method here,

but will try instead to point out why a bias should exist and why it is

reasonable that it should be removed by dividing the sum of squares of

the deviations from the sample mean by 1 less than the number in the

sample.
In the first place, we have noted already that the sum of the devi-

ations from the mean of a sample or of a population is zero (Chapter II,

Section 1). We shall now note that the sum of the squares of the devia-

tions from the mean is a minimum. If the mean of the population is m
and we take a large number of samples of size N and in each case we
determine 2(x m)

2
,

it follows that the sum of all these will be the

same as if we had merely gone through the whole population without

considering any portion of the variates as a sample. Then, on dividing

this total sum of squares by the total number and extracting the square
33
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root, we would have the value of <r for the whole population. It obvi-

ously does not matter whether we divide the population into samples
and determine cr for each one and then average, or merely take the whole

population as one sample. However, this procedure is possible only in

theory, as m is actually unknown. For each sample, therefore, suppose

that we calculate V 2(x x)
2/N and then average. Now, since the

sum of the squares of the deviations from the mean is a minimum, the

use of x will give a minimum value for the sample; but, since the values

of x vary from sample to sample, it is perfectly clear that S(x x)
2 for

any one sample will be as large as S(x m)
2 for the same sample only

if x happens to be equal to m. No matter how slightly x varies from w,
the sum of the squares of the deviations from the mean of the sample will

be smaller than the sum of the squares of the deviations from the popu-
lation mean, and hence the value of the standard deviation is under-

estimated by the formula which has N as a, divisor. Now let us con-

sider the extent of the bias and how it may be removed. There are N
values in a sample, and in theory each of the N variates contributes

equally to the estimate of the standard deviation; but in calculating

S(# x)
2 we use one value, x, which is determined by the sample, and

hence the effective weight of the sample is equal to N 1 instead of N.

All the values of one sample may be large, and if we could calculate

S(x m)2 these values would contribute more to the total sum of

squares than a set of values in another sample which are closer to m.

Actually, since we take the deviations from the mean of the sample, the

first sample would not necessarily contribute any more than the second

sample. This brings out the idea that the mean used is fixed by the

sample and to the extent of reducing the effective weight of the sample

by 1. Thus we have the term introduced by R. A. Fisher, "degrees of

freedom." When a sample ofN variates are used for purposes of estima-

tion, its weight is only that of the number of degrees of freedom. For

every statistic calculated from the sample and utilized in forming the

estimate, there is a loss of one degree of freedom. Thus, in the present

example of estimating the standard deviation, the statistic calculated

from the sample is x, and there is a corresponding loss of one degree of

freedom. This principle will be found to hold throughout all statistical

procedure.

2^Terminology and Symbols for Populations and Samples

Introducing the Term Variance. As pointed out above, we speak of

population parameters which are true and undeviating values, and
statistics which are estimates, from the samples, of the population para-
meters. The statistics we have discussed so far are the mean x and the

standard deviation s; and the corresponding parameters are m and <r.
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Very frequently in statistical procedure the square of the standard devia-

tion, usually referred to as the variance, is the more convenient of the

two statistics. Most tests of significance can be made by means of the

variance, in which case the extraction of the square root in order to

obtain the standard deviation is an unnecessary operation. In general,
all discussions of methods of estimation refer equally to the standard
deviation and the variance, and consequently in Example 6 below we
confine our attention to the variance.

Before proceeding with Example 6 it may be of assistance to sum-
marize the symbols and terms that have been used up to this point, and

any others that have not been used but are relative to those already dis-

cussed. This summary is as follows:

PARAMETEKS STATISTICS

Mean ra Mean x
Standard deviation <r Standard deviation s

Standard deviation of a mean. <r m Standard deviation or stand-

Variance a* or V ard error of aliiean s^
Variance of a mean <r or Vm Variance or mean square .... s

2 or v

Variance of a mean s| or t

Number in sample N or n'

Degrees of freedom n

Special notice should be taken of the term standard error, which is coming into

general use in place of the standard deviation of a sample mean.

Example 6. The Use of Degrees of Freedom in Estimating the Variance.
In Table 9 we have a set of random numbers taken from Tippett's tables (6), arranged
in 10 groups of 20 numbers each. The variation in these numbers may be assumed
to be made up of two portions: (1) within the groups, and (2) between the groups.
But if the numbers have been selected at random these two sources of variation will

be equally balanced. They would be unbalanced if, for example, some groups had
all small numbers and the other groups a.11 large numbers. The random selection

of the numbers ensures that this shall not be the case. In terms of variance, the
above statement with respect to variation is simply that the variances for within

groups, between groups, and the total variance will all be equal within the limits of

random sampling. Now, if for a particular set of numbers, as in this set, the variance

for between groups is adjusted until it is almost exactly equal to the total variance,
it follows that the variance within groups must also be almost exactly equal to the

total. We can determine, therefore, the variance within each group, and if our
method is correct these should give an average value very close to that for the whole

sample.
The calculation of the variances within groups has been performed in Table 10

by two methods. There are 20 numbers in each group, so that in each group we
have 19 degrees of freedom for the estimation of the variance. In column (7) of

Table 10 the sums of squares are divided by the degrees of freedom, but in column (8)

they are divided by 20, the number in the sample. At the foot of the table the total

variance is again calculated by two methods. In the first case we divide by 199 and
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TABLE 9

in the second case by 200. We have, therefore, four determinations of the variance

as shown below. Note that the last line is calculated independently and does not

come from totalling the values above except for columns (2) and (3).

By the first method we obtain for the average variance within groups a value

that is 99.94% of the total. By the second method the average variance is only

95.43% of the total, and therefore underestimates the true value by 4.57%. Where N
is the number of variates in a sample, it follows therefore that the correct estimate

of the variance is given by 2(x x)
2/N 1.

3. The Distribution of the Estimates of the Standard Deviation. If

a large population is being sampled and each sample contains 100

variates, we will get a series of varying values for the standard deviation

calculated from these samples. But, if, instead of taking samples of

100 variates, we take samples of 10, it is to be expected that in the second

case we will get values for the standard deviation fluctuating more widely
than in the first case. This is the same as saying that the distribution

of the standard deviation is dependent on the number of degrees of

freedom in the sample. In this respect it is very much the same as a

mean. In order to obtain from one sample a value for the mean that



DISTRIBUTION OF ESTIMATES OF STANDARD DEVIATION 37

TABLE 10

CALCULATION OF VARIANCE VALUES OF FIGURES IN TABLE 9

BY GROUPS OF 20 AND FOR WHOLE GROUP

Average within Groups .

Total

Method (1)

Using Degrees
of Freedom

147.66

147.74

Method (2)

Using Number
in Sample

140.28

147.00

is quite close to the mean of the parent population, we must take a large

sample. Small samples will give us unbiassed estimates, but they will

be more variable estimates.

Now in Chapter II we observed that, if a population is normally dis-

tributed and we know its standard deviation and mean, we can make a

direct calculation of the probability of drawing from that population a

sample with a mean of a given magnitude. This is, in a sense, a test of

the significance of the mean of a particular sample, since if the prob-

ability is very small we should conclude that the sample was not drawn

from the population in question, but from some other population.

However, the standard deviation of the population cannot be deter-

mined, and the only value we have is the estimate s which has been cal-

culated from the sample and varies from sample to, sample. This

brings us therefore to the general question of making tests of significance

from the data of samples of any size.
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4. Tests of Significance. The method of Chapter II for making

probability determinations arose from our knowledge that the ratio of a

mean of a sample to the standard deviation of the population from which

the sample is drawn is normally distributed. This follows, of course

because, if the mean is normally distributed and the standard deviation

is constant for the population, the ratio of the two will also be normally
distributed. Suppose, however, that we take the ratio of the mean of a

sample to the estimate of the standard deviation s. Since s is more vari-

able for small samples than for large ones, the ratio will obviously have

a distribution that is dependent on the size of the sample, and, in order to

determine the probability of the occurrence of any particular value of

this ratio, we must know its distribution. This was worked out by
"Student" (4) in 1908, and for the first time practical statisticians had

placed in their hands a tool which could be applied in tests of significance

for samples of all sizes. "Student" gave first a set of tables for the

distribution of x/s, which he designated by the letter Z. Later he

prepared a table based on the distribution of t, which is x/s^. Fisher,

in "Statistical Methods for Research Workers," gives a compact table of

t for degrees of freedom varying from 1 to 30, and the probability levels

P = 0.01, 0.02, 0.05, 0.10, and 0.90. These are the most convenient for

general use, and are reproduced in part in Table 94.

Example 7. Two varieties of wheat are compared in 4 pairs of plots, there being
1 plot of each variety in each pair. Referring to the two varieties as A and B, we
determine the difference in yield A-B for the 4 pairs of plots, and the results are as

follows in bushels per acre:

Pair 1234
A-B 2446

The differences are all positive and are therefore in favor of the variety A, but we
wish to make a test so as to be able to state whether or not the data are in agreement
with any hypothesis that we may set up. The obvious hypothesis here is that the

varieties are not different in yielding quality, and consequently our theoretical dis-

tribution is built up on that basis. If the varieties are not different, the data will

be expected to give a value of t that is not improbable. If they are different, we will

expect the data to give a value of t which will occur by random sampling in only a
small proportion of the cases. Let us proceed to the calculation of t.

We note first thai the mean difference is 4, and that the sum of the squares of the

deviations of the individual values from the mean is 8. We then have 2 * 8/3,

the numerator being the number of degrees of freedom available for estimating the

standard deviation s. Then s = Vs/3, and 8% Vs/3 X 4, which simplifies to

\/2/3. Finally t = 4 X Vi/2 = 4.87. Now if we examine Table 94 it is observed

that the 5% value of t for 3 degrees of freedom is 3.18, and the 1% value of * is 5.84.

Thus the value of t given by the data would occur according to the hypothesis in
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less than 5% and somewhat more than 1% of the cases. Our conclusion is that the

difference observed is due to a real varietal effect, and is not a chance occurrence.

It may be argued that in an example such as tfce above we are not actually

testing the significance of the mean difference, because we are basing it on the distri-

bution of 2, wherein an exceptional value of t may be due to extreme deviations in

either the mean difference or the standard error. This point is actually only of

academic interest, because in either case the two samples are proved to be different

regardless of which factor brings about the exceptional value of t. When we consider

the actual problem of testing the difference in yield of two varieties, it is obvious

that a real difference in the variation of the yields from plot to plot is so unlikely a

factor that in general we can disregard this viewpoint, and assume that the significant

value of t is at least mainly due to a significant difference in the mean yields.

5. Fiducial Limits. Stress has already been laid on the principle of

estimation; and we come now to a method of setting up limiting values

according to given probability levels, such that it can be said with a

reasonable degree of certainty that the true value which is being esti-

mated lies between these limits. In the example above, the difference

between the yields of the two varieties was found to be significant; but

no attempt was made to set up two limiting values, one on each side of

the mean difference of 4 bushels, and to state that according to a given

probability level, the true mean difference was between these limits.

If we can perform such an operation it will obviously be of great prac-

tical value, because in the end we are not really concerned with being
able to say only that one variety is a higher yielder than the other.

Unless we can make a reliable estimate of this difference our experiment
is not contributing information of value in actual practice.

It was emphasized in Chapter I that a test of significance involves

setting up a hypothesis and determining the agreement between the

hypothesis and the data of the experiment, and furthermore that any

hypothesis whatever can be set up. In the example above, the hypoth-
esis was that the mean difference in yield between the varieties was zero,

and what we actually did was to find the value of t from the expression

( m)/Sj, where m
t
the mean of the parent population according to

the hypothesis, was taken to be zero. We can, however, take m equal
to any value that we please, and we might choose for example to take m
equal to 2. Then t = (4

-
2) X \/3/2 =

2.46, and this value is less

than the 5% point. The inference from this test is that there is no

definite evidence that the true difference is greater or less than 2. We
begin to see therefore that, though our difference is significant, we cannot

specify very closely the range within which the true value lies. Suppose
now that we can locate a lower limit such that, if we substituted it for m
in the t test, the value of t obtained would be exactly equal to its 5%
point, and we determine in addition a similar upper limit. The observed
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difference could then be said to differ significantly from either of the

limiting values, and we could say with a reasonable degree of certainty

that the true value lies between these limits. The procedure is simple,

as all we have to do is to set up the equation for t with m as an unknown
and t equal to its value at the 5% point. Thus:

3.18 - (4
- m) X

Solving for m we get an answer of 1.40, and our limits are 0.60 to 3.40.

It is now clear that, although our experiment gave a significant result, it

did not enable us to estimate very accurately the true difference in yield

between the two varieties. These limiting values have been very aptly

termed by R. A. Fisher the fiducial limits, and in the present example we

would describe them as the fiducial limits at the 5% point.

6. General Methods for Testing the Significance of Differences.

One of the most common problems in statistics is the testing of the sig-

nificance of a difference between two means. The reasoning behind

such tests involves picturing an infinite population of differences for

which the mean is zero. We have two samples for which the means are

different; and we wish to know in what proportion of the cases on the

average, in the procedure of taking pairs of samples, we will get a differ-

ence as large as or larger than the one observed. Tests of this kind fall

into two classes:

(a) Samples are distinct and the variates are not paired in any way.
If there are two blocks of land and we take the yields of a group of plots

from each block, and we wish to test the significance of the difference

between the means for the blocks, we have a problem that falls into

this class. The number of variates in the two samples may be either

the same or different. Let the samples be designated as 1 and 2; then:

xi = mean of sample 1.

X2 = mean of sample 2.

1 2 = mean of difference to be tested.

n\ = degrees of freedom for sample 1 which contains,

therefore, n\ + 1 variates.

nz = degrees of freedom for sample 2 which contains,

therefore, n% + 1 variates.

The calculations are carried out as follows:

S(xi xi)
2 = sum of squares for sample 1.

S(XL> x%)
2 = sum of squares for sample 2.
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n\

+n2 + 2

(3)

We enter the table of t under n = ni + n2- If the samples contain an

equal number of variates, we have:

(m + 1)
= (n + 1)

= N

and =
x/

1

2(N _
t)

^
(4)

(5)

The table of t is entered under n = 2(N 1).

Example 8. Let i 196.42 and x2
= 198.82; then (xi

- x2)
= 2.40. The

samples are taken independently, and consequently there is no reason for assuming
that xi and 22 are correlated. In sample 1 we have taken 9 variates, and in sample 2

we have 7 variates. Hence HI = 8 and n% = 6. We calculate first S(#i i)
2

and 2(^2 a)
2

. We will assume that this is done, and we get:

-i) 2 = 26.94

-22)
2 = 18.73

Then:

and

Entering the table of / under n = 14 we find that a J value of 2.62 corresponds almost

exactly with a P value of 0.02. Between the means of the tw.o samples a difference

of 2.40 would occur by chance in only 2 cases out of 100.

(6) Variates are paired; that is, each value of x\ is associated in some

logical way with a corresponding value of #2- Thus, if two varieties of a

field crop are being tested in pairs of plots, each pair containing one plot

of both varieties, we would have a problem of this kind. There will,
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of course, be the same number of variates in the two samples so that,

if there are N pairs, there will be N 1 degrees of freedom available

for the comparison. This follows logically from the fact that we are

now dealing with individual differences and there is one difference for

each pair of variates.

The calculations are :

(Ti
- r2 )

2
.

s = \/ Z(zi X2)
2

T- /N 1 (6)N

t =-
,
same as formula (3)

If the student should be confused to find later that s
2 as computed

above is not the same as when obtained by the analysis of variance, it

may be just as well to adopt the following method, which is identical

with that of the analysis of variance. The value of t obtained by the

two methods is, of course, the same.

(8)

t = same as formula (3).

Example 9. In this example assume that the variates are paired, as in a feeding

experiment where a series of animals are paired up according to initial weight.
One animal in each pair is given ration 1 and the other one ration 2. There are

10 pairs of animals, and the difference between the mean gains per 100 pounds of

feed at the end of the feeding period is 1.42 pounds. We shall assume that

- xzY - '

r

= 15 08
L 2^ J

Then

s =
^ / ~ = 1 30

and

1 422 /10 _
0\ 2130V-

244
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Entering the t table under n =
9, we find that the P value is between 0.05 and 0.02,

but closer to the former. We can take P = 0.05 as approximately correct, so that

the difference between the two means could only occur by chance in about 1 out of

20 trials.

7. Exercises.

1. The figures below are for protein tests of the same variety of wheat grown in

two districts. In district 1 the average for 5 samples is 12.74, and in district 2, the

average for 7 samples is 13.03. If these are the only figures available, test the

significance of the difference between the average proteins for the two districts.

District 1 12.6 13.4

District 2 13.1 13.4

Protein Results

11.9 12.8 13.0

12.8 13.5 13.3 12.7 12.4

t = 1.04 P = 0.3, approximately.

2. Mitchell (2) conducted a paired feeding experiment with pigs on the relative

value of limestone and bonemeal for bone development. The results are given in

Table 11 below.

TABLE 11

ASH CONTENT IN PERCENTAGE OF SCAPULAS OF PAIKS OF PIGS

FED ON LIMESTONE AND BONEMEAL

Determine the significance of the difference between the means in two ways: (1) by
assuming that the values are paired, and (2) by assuming that the values are not

paired. On the basis of your results, discuss the effect of pairing.

(1) Paired: t - 4.42, P

(2) Unpaired: t - 2.48, P
less than 0.01.

> approximately 0.02.

3. In a wheat variety test conducted over a wide area, the mean difference

between two varieties was found to be 4.5 bushels to the acre. The standard error
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of this difference s^ was 1.5 bushels per acre, and was determined from 100 pairs of

plots. Set up the fiducial limits at the 5% probability level for the mean difference

in yield between the two varieties.

Note that t can be taken as 1.96, then fiducial limits are 1.56 to 7.44.
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CHAPTER V

THE DESIGN OF SIMPLE EXPERIMENTS

1. What is Experimental Design? In Chapter I some ideas relative

to experimental design were presented, but in view of what we have
now learned of the t test it should be worth while at this point to repeat
some of these ideas, and at the same time introduce any new concepts
that have arisen out of later discussions. An experiment can be said to

have a definite design if it has been carefully planned in advance, and if

due attention has been paid to possible results and their interpretation.

The latter point is probably the most frequently neglected. A great
deal of time may be spent on the various details of procedure, and full

preparations made for carrying the experiment through to completion.
This may be assumed to be sufficient to ensure a successful experiment,
but a long list of such experiments that contribute neither positive nor

negative information is good evidence that careful planning of the pro-

cedure is in itself incomplete. Only by thinking in terms of the various

types of results that an experiment can yield is it possible to obviate

some very costly mistakes. If these possibilities are thoroughly worked
out it is self-evident that a complete failure is impossible.

2. Planning to Remove Bias. Qne of the commonest mistakes in

experimental design is the failure to guard against biased results. Such

experiments may give good results but their great weakness is that they
are not beyond criticism; and regardless of the truth and importance of

the results obtained the investigator may never feel quite happy about

presenting them with conviction. Let us examine hypothetical plans of

experiments that are subject to a bias of some sort.

Suppose that we are to conduct an experiment on the value of feeding

milk to school children. There are two neighboring schools, and milk is

given to the children in one of the schools and not to those in the other.

At the end of the experiment the children are compared on the basis

of height, weight, etc., by means of the t test. The children from the

school in which milk was given are found to be significantly heavier than

those from the other school. The error in design is so obvious here that

it is scarcely necessary to point it out. The experiment has shown that

the children of the two schools are significantly different in weight, but

this might easily have been the case if no milk had been given or even if

45
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the order of giving the milk had been reversed. In fact the experiment
is not at all what it seemed to be at first. It consists actually of just

two variates which are the two schools, and no determination of the

error of such an experiment is possible.

Now let us endeavor to improve the plan, and we will confine the

giving of milk to pairs of boys or girls, one getting the milk and the other

not. The pairs are selected at random, and in each pair the milk is

given to the younger and not to the elder child. The reader will object
that we are again introducing a bias in that the difference observed might
easily be due to age and not to the effect of milk in the diet. This is

perfectly true, so in order to overcome this defect we decide to give it to

the younger child in one case and the elder child in the second case,

alternating in this way throughout the entire group. Now the experi-
ment seems to be perfect, and in truth it is much improved, but with a

little thought it should be clear that we have succeeded in removing only
the gross defects those that are obvious to us at the outset and which

anyone can remove with a little thought and a general knowledge of the

problem being investigated. The chief trouble with our design is not

that we have knowingly allowed some factor to bias the experiment, but
that we have not planned it in such a way that it is impossible for bias to

enter in. A definite method is available for this purpose, which has

already been referred to in Chapter I. It involves merely assigning at

random which member of each pair of children is to receive milk. This is

a simple device and one which is absolutely trustworthy in the matter
of removing bias.

Numerous examples may be cited of experiments that are designed
so that bias may enter in. One of the most common is the field plot test

in which the varieties or treatments are arranged systematically in the

blocks or replications. It is not possible to discuss this particular prob-
lem and deal with it fully until we have made a study of the methods of

the analysis of variance, but we can consider the simple type of experi-
ment in which only two varieties or treatments are being tested and they
are arranged in pairs of plots. Here we are dealing with a series of

differences, and we set up a hypothesis as, for example, that the mean
difference is normally distributed about zero. On the basis of this

hypothesis we can determine the proportion of the trials in which a dif-

ference as great as or greater than the one observed will occur. The
validity of our test depends on its being designed so that if the hypoth-
esis is true the distribution of the results from a large number of trials

will be normal and will have a mean of zero. What would anyone after

a little thought say of an experiment designed so that, if the varieties

being tested are actually equal in yield, the result turns out according
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to a large series of tests, either definitely positive or definitely negative?
Yet this is just the kind of result that may be expected if the principle

of randomization is not used in setting up the experiment. This applies

particularly to the position of the varieties or treatments in the pairs.

3. Designs that Broaden the Scope of the Experiment This is

another subject than cannot be treated fully at this stage, but a few of

the general principles may be pointed out. Suppose that the all-inclu-

sive subject of the experiment is the effect of milk in the diet of young
animals. Most of us would reject this as a proper subject for experi-

mental investigation at once, because we can see that it is one for which

there is no possibility of obtaining a resolt that will be of practical value.

In one group of animals the milk may be beneficial and in another group
it may be of no value or even harmful, so that unless the experiment is

repeated with all possible kinds of animals and the results with each

kind studied separately we cannot expect to gather any valuable infor-

mation. The decision with regard to an experiment of this type is likely

to be that we should select one kind of animal in which we are particu-

larly interested, and then confine the tests to a limited age group. In

the first case the subject of the investigation called for an experiment of

such enormous scope that the entire proposition was absurd. Now we
have limited the scope of the experiment, but we have not gone as far

as we might. Let us suppose that the investigator decides on pigs as

the kind of animal to be tested, then he decides to use pigs of one age

within the limits of one week, and finally that they shall be from the

same litter. He has now gone to the other extreme and has set up an

experiment such that, no matter how significant the results, they will

not be of any value except within a very narrow range. It cannot be

assumed that the results will apply to other age groups, to other breeds,

or perhaps even to other litters, as it may easily be that the litter selected

is peculiar in some respect with regard to the reaction of the individuals

of the litter to milk in the diet. No amount of mathematical knowledge
will help the investigator over the difficulty encountered here, of setting

up an experiment that will not have too great a scope but will at the

same time give results that can be interpreted on a fairly wide basis.

Only his own experience and general knowledge of the problem that is

to be investigated will give the clue to the correct form for the experi-

ment to take. In this instance there may be one breed of pigs that is

predominant in the area in which the investigator is interested, and con-

sequently it is quite justifiable to confine his experiment to this breed.

Again, there will be a definite range in age at which farmers will be con-

cerned with feeding milk, and only this range need be represented. It

will not be wise, however, to use only pigs from one litter; in fact it
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would seem to be desirable to have as many litters as possible represented

in order that the experimental material will be representative of pigs as

a whole in the area in which they are being raised. An obviously de-

sirable plan will be to take pairs of pigs of nearly equal weight and con-

dition from a number of litters, assign the alternative diets at random

to the members of each pair, and then feed the pigs individually so that

in<Jptdual records may be kept of food eaten and gains made.

4. Replication and the Control of Error. The value of replication

in experimental design is easily understood. In the first place, replica-

tion increases the accuracy and scope of the experiment; in the second

place, it enables us to determine the magnitude of the uncontrolled varia-

tion that is usually referred to as the error; and in the third place it

allows for designs that give us an effective control over error. The in-

crease in accuracy due to replication is expressible in terms of a mathe-

matical equation. In Chapter II, Section 3, we noted that the standard

deviation of a mean is reduced in proportion to the square root of the

number in the sample. In ordinary experiments any one treatment is

represented by a sample which is made up of one unit in each replication.

Therefore in general the accuracy of an experiment, as expressed by the

standard error of a mean of any one treatment, is increased in proportion

to the square root of the number of replications. This statement should

not be interpreted to mean that results of twice the value are obtained

by multiplying the replications by 4. This depends on what we mean

by the value of the results. In terms of work done or energy expended
on an experiment to bring about a given reduction in the standard error

this is true, but it may be that the expenditure of additional energy in

order to increase the accuracy of the experiment is unnecessary, in which

case the value of the results is not enhanced. More will be said on this

subject later; but for the present we should note that replication is the

primary tool at our disposal for increasing the accuracy of the experi-

mental results.

Another phase of the increased accuracy due to increased replication

arises from the distribution of t for different-degrees of freedom. From
Table 94 we note that, for 1 degree of freedom, t at the 5% point is

12.706 while for 60 degrees of freedom the corresponding value of t is

2.00. In the first case a much larger difference would be necessary to

represent a significant effect than in the second case. In a paired ex-

periment the number of degrees of freedom available for estimating the

error of the experiment is equal to 1 less than the number of pairs. Sup-

pose then that we have one experiment with 3 pairs and another one

with 10 pairs. For the first experiment we would require for significance

a difference that is 4.30 times the error, and for the second experiment a
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difference that is 2.26 times the error, these being the values of t at the

5% point for 2 and 9 degrees of freedom respectively. It is important
for the beginner to note carefully that this increase in accuracy due to

increased replication is entirely distinct from that discussed above which

results from dividing the standard error of the experiment by the square
root of the number of replications in order to determine the standard

error of a mean. Both factors act together and in the same direction

but they arise from different sources.

The manner in which replication increases the scope of the experi-

ment will be evident from the discussion of Section 3. In the example
discussed there it was decided purposely to make the replications some-

what different, in order that the results might be of general application.

The importance of this is sometimes overlooked, and we will find field

plot investigators looking for an exceptionally uniform patch of soil on

which to carry out an experiment and putting all the replications on this

same patch. No criticism is offered of this procedure provided that the

investigator is not under the impression that by doing so he is necessarily

improving the experiment. Within each replication it is desirable to

have as much uniformity as possible, but between the replications it

does not improve matters to have a great deal of uniformity; and from

the standpoint of increasing the scope of the experiment it may even be

harmful. To put these ideas into concrete form let us assume that two
soil treatments are being compared in paired plots. On the field that

is available for the experiment there are several types of soils, and we
shall assume for the purpose of argument that all the soil types are

present that occur in the area for which the results of the experiment are

to apply. The investigator has three choices. The pairs of plots can

be placed all on one soil type, an equal number of pairs on each type, or

at random over the field. Placing the pairs all on one soil type and

close together in the field has in its favor compactness and economy of

space; but the results obtained on the one type of soil may not apply
to the other types, and consequently to get full information on the

problem a separate test must be planned for each condition. This

may be beyond the scope of the facilities of the investigator, so he turns

his attention to the other possibilities. Placing an equal number of

pairs on each soil type has decided advantages. For example, if there

are at least four pairs in each location it is possible to regard each set

as an individual but very rough experiment, capable of yielding an

approximate measure of the particular reaction of the two treatments

on the soil type represented. The average yields of the two treatments

over the whole field will, however, be representative for the whole area

in which the results are to be put to practical use only if in that area
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there are about an equal number of acres belonging to each type. This

statement, of course, implies that the treatments will give different

results under the various substratum conditions, but experience tells us

that this is very likely to be the case. We turn now to the third method,
that of randomizing the pairs of plots over the whole field. The process

of randomization will ensure that the various soil conditions represented

in the field will have an equal chance of being used in the experiment.

As nearly as possible, therefore, we are obtaining a random sample of

the infinite population for which we are endeavoring to obtain an un-

biassed estimate of the difference between the two treatments. The

only possible criticism of this method is that some of the soil types will

not be represented, and hence certain information will be lost. The
answer is that with a given type of experiment we cannot perform two

functions at once. Without enlarging it considerably we cannot design

an experiment that will give us a general average result for the whole

area under consideration, and at the same time give us detailed informa-

tion on the reactions of the treatments under varying conditions. In-

formation regarding the whole area is not lost, but gained, by placing

the pairs at random and perhaps missing some of the types. On the

assumption that the field is representative of the larger area being sam-

pled it gives us a more correct measure than if we assumed without

proper information that each of the types is equally represented.

This somewhat theoretical discussion does not bear precisely on the

practical problem with which the investigator is faced, because it is im-

possible to obtain a field that is really representative of a large area.

However, it serves to bring out some very important points that may
be put into practice in tests of this kind. Any investigator who gives

the problem serious thought will take note of the limitations of one test

carried out under very uniform conditions, and at the same time will

realize the importance of replication in widening the scope of field plot

experiments.

The second important function of replication is to enable us to obtain

a measure of the experimental error. This follows directly from the

principles of the t test. If there is only one plot of treatment A and

one of B there can be only one difference, and the number of degrees of

freedom available for estimating the standard error is zero. In non-

statistical terms there is only one value, the difference between the two

plots, and this difference is the only measure we have of both soil varia-

tion and the effect of the treatments. We cannot compare a difference

with itself; therefore, we say that there are no degrees of freedom avail-

able for estimating the error of the difference. This defect in an experi-

ment is obviously overcome as soon as we introduce replication. Even
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if we have only two plots of A and two of B we have at least one degree
of freedom available for estimating the error, and by means of the i

test an unbiassed comparison of the treatments can be made.

The third function of replication has to do with the control of error.

Another hypothetical example will make this clear. Again we can sup-

pose that two soil treatments are being compared in paired plots. The
measure of error is determined from the variation in the differences

within the pairs. Suppose now that the plots are all distributed at

random over the field, and the pairs are made up simply by taking the

two plots of A and B that happen to fall together in another random
selection. This can have only one effect, and that is to increase the

variability of the differences, and consequently the accuracy of the test

is reduced. A question that may be asked here is whether or not the

method that increases the variability of the differences will also increase

the average difference between the two treatments. Yes, the average
difference will also be increased but it must be remembered that this is

due in actual practice to two components. A part is due to the real

difference between the treatments and a part to the variability of the soil.

The latter component will be increased in the same proportion as the

error, but the former will not, and consequently the precision of the

experiment becomes correspondingly less as the error component
increases.

The benefits to be obtained from the arrangement of treatments in

replications wherein each replication contains one of each of the treat-

ments is fairly well known to experimentalists, especially in agronomic
research. Variety trials are therefore arranged in compact blocks so

that the plots within the blocks are as nearly alike as possible. There

are, of course, many applications of the same principle in other types of

experimentation; but this subject will be discussed more fully under the

heading of the analysis of variance.
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CHAPTER VI

LINEAR REGRESSION

1. General Observations. In the previous discussions emphasis was

placed on the variations that occur in any one variable, such as the yield

of wheat plots, the weight of animals, or the height of students. Some-
times the values of one variable are classified in two or more ways, in

which case we may be interested in the joint variation of the pairs or

groups of values so formed. For example, in Chapter V a problem was

discussed in which pairs of plots of two varieties were arranged in differ-

ent ways over a field. The interest there was largely in the differences

between the members of pairs, but it was also pointed out that if the

plots were close together they would tend to yield alike, or in other

words they would vary together. The present chapter, however, deals

with examples wherein there are paired variates but of two different

kinds of variables, and in general one of the variables may be regarded
as independent and the other as dependent. In a study of the effect of

rainfall on yields of field crops, we would have a typical example of a

dependent and an independent variable, in that the interest would lie

in the degree to which rainfall, acting as an independent variable, would
have an effect on yield, the dependent variable. It would be useless,

of course, to think of this problem in any other terms, as we could not

imagine the yield of field crops having any effect on rainfall.

It is not difficult to see that, for any set of data for paired variates,

it should be possible to obtain a measure of the physical relation between
the two variables. Suppose that the data are arranged as in Fig. 6,

which shows graphically the average yields of groups of plots of Marquis
wheat for given percentages of infection with stem rust. It would not

be difficult to draw a straight line so that it would represent the general
trend of decreasing yield with increasing percentages of infection, and
we could then read off the approximate decrease in yield for a given
increase in infection. This, of course, would be a very crude method,
as the fitting of the line would be purely a matter- of eye judgment and
different individuals would place the line in slightly different places.

Then to develop from the graph a general expression for the relation

between the two variables, from which the line could be reconstructed

at any time and which could be used for predicting the effect on yield
52
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of given percentages of infection, it would be necessary to draw out the

graph very accurately and make an average of a number of measure-

ments. In order to arrive at a more precise method of fitting the line,

recourse is had to the
" method of least squares." This means that

a line is fitted such that the sum of the squares of the deviations of the

points in the graph from the straight line is a minimum. It gives us

a statistic known as the regression coefficient, which expresses the in-

crease or decrease in the dependent variable for one unit of increase

in the independent variable. From the regression coefficient we can set

up a regression equation, which can be used to make predictions; and

also it defines the straight line known as the regression straight line.
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FIG. 6. Regression graph for yields of Marquis wheat on degree of

infection with stem rust.

The essential difference between the treatment of different kinds of

variables that are thought to be related and pairs of variables that

merely vary together will now be clear. In the first case our concern is

to determine a function, in the present case a straight-line function, that

will express the average relation between the two variables. In the

latter case the function will obviously not be of very much value; we
will probably be better satisfied with some expression giving the com-

bined effect of the variables on each other or perhaps, if we cannot think

in such terms, the degree to which both variables are acted upon by
outside influences that cause them to vary together. Of this second

condition we shall learn more in the next chapter.

2. Fitting the Regression Line. Let the two variables be represented

by x and y, where x is independent and y dependent. Then, if the



54 LINEAR REGRESSION

relation between x and y can be represented by a straight line, the equa*

tion of the line will be of the form:

Y = a + bx (1)

where a and 6 are constants and F represents the values of y estimated

from the equation. For any one value of z, say x t-, the corresponding

value of y estimated will be F,-, and the error of estimation will be

(|/* F). The value of y* would be represented on the graph as in

Fig. 6 by one of the points, and the corresponding estimated value F,-

would be a point on the straight line. To fit the line, it is required that

the sum of the squares of the errors of estimation 2(y F)
2 shall be a

minimum. It is best to begin with x and y measured from their means,

so that our regression line is actually:

(F - y)
= a + b (x

-
x) (2)

whence the error of estimation is given by 2[(F y) (y y)]
2 =

!Z(y F)
2

,
the same as before. Minimizing by the method of least

squares for S(?/ F)
2

,
we obtain the equations:

l

Na + S(z - x)b = S(y - y)

S(z - x)a + S(z - x)
2b = 2(y

-
t/)(z

-
x)

and solving we have:

a =

2(y - y)(s
-

f) ...
6 =

srr _ r\ (3)
Li\X X)

In equation (3) we note the expression S(y y)(x x), which is

usually referred to as the Bum of products. For two variables, it is the

expression that corresponds to the sum of the squares of the deviations

from the mean for one variable. We know that the variance for a single

variable is given by:

N -I

and now we learn that the covariance for two variables is given by:

<.

1 For the method-of-least-equares technique see any good textbook on elementary
calculus. If it is confusing to apply these methods to expressions containing the

summation sign, 2), write out one or two sets of values and proceed with them con-

secutively. The procedure for the entire set of values summated will then be clear.
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In (3) if the numerator and denominator are divided by N 1 the

equation becomes:

___
Covariance (xy)

Variance (x)

Going back now to (2) above:

Y -
y =

frfcr
-

x)

and: Y = g + b(x
-

x) .~
, f (6)

or: Y =
(y
-

bx) + bx
'***

(7)

the last being the form in which this expression is most frequently used.

It is known as the linear regression equation, and b in the equation is the

regression coefficient.

3. Properties of the Regression Coefficient. In the equation
Y = y + b (x x), b expresses the probable relation between x and y
in terms of the values in which x and y are measured. The coefficient in

this equation is usually represented as bvxj which means that it is the

regression coefficient for the regression of y on x\ and thus in any sample
of paired variates studied it represents a kind of average of the increase in

y for a given increase in x. Thus if y is bushels per acre and x is tons of

fertilizer applied, byx is an estimate of the increase in yield to be expected
from one ton of fertilizer.

For every example where we study the regression of y on x, there is

also the theoretical possibility of studying the regression of x on y] but as

stated above the theory of linear regression is best confined to examples
where we can think clearly in terms of the effect of one variable on the

other, and consequently the investigator is concerned with only one

aspect of the regression.

The regression coefficient is a measure of the slope of the regression

line, but only relative to the class values of the two variables and their

range of variation. Suppose that, in a study of the effect of rainfall on

yield, the rainfall varies from to 9 and the yields from 20 to 30, and

the mean yield is 25 and the mean rainfall 5. In a graph such as Fig. 6

the units could be of the same length for the two variables, and if the

regression coefficient is 1 the regression line would go from one diagonal

to the other and would have a slope of 1
;
that is, it would lie at an angle

of 45 degrees. However, if rainfall varied from to 20 the slope would

be less than 1, even for the case where yield is completely dependent on

rainfall.

4. Tests of Significance of the Regression Coefficient. The sam-

pling error of the regression coefficient is related to the error of estimation
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measured by 2(y F)
2

. Thus we have the standard error of estimate

given by:

and the standard error of the regression coefficient by:

sb
= se/?(x -

)* (9)

The value of S(y F)
2 can best be calculated by equating it to

-
)
2 - 62S(x -

x), or S(y - y)
2 - bV(y - y)(x

-
), depend-

ing on which form is the more convenient at the time. In these equali-

ties it is understood that the regression coefficient is bvx .

Then to make the test of significance t is given by:

Sb Se

and the table of t is entered under N 2 degrees of freedom. There are

N 2 degrees of freedom because both y and 6yx are statistics calculated

from the sample.

The test for the significance of the difference between two regression

coefficients is based on their respective standard errors. For the two

regression coefficients bi and &2, with standard errors calculated as in (9)

above, the standard error of the difference would be:

i-2 = V? + 4 (11)

and

t = (bl
"

&2)
(12)

Sl-2

The two coefficients may be calculated from different numbers of paired

values, so that there would be a total of (N\ 2) + (N% 2) degrees

of freedom available for the comparison of the coefficients, where Ni
and N% are the numbers of pairs respectively from which 61 and &2 are

calculated.

A special case arises when there are two sets of values of the depend-
ent variable. If these are y\ and 1/2, there are two regression coefficients

6
tfl

and 6y2X ;
and it may be necessary to test the significance of the

difference between them. The simplest and most direct method is to

form a new variable from (y\ 3/2) and calculate b
(vi

^. v^ xt which may
be tfcsted in the ordinary way.

6. Methods of Calculation. It will be remembered from formula

(3) that the numerator of the regression coefficient is the sum of products
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of the deviations from the means of the two variables, and is expressed

algebraically as S(i/ y)(x ). The denominator of the coefficient

is the already familiar sum of squares of the deviations from the mean,
for the independent variable usually indicated by x. Our problem,

then, is to learn the most convenient method of calculating the sum of

products. The method follows from the identity:

~
(13)

where ^(xy) is the sum of the products of the original'values of x and y,

taken of course by pairs, and Tx and Ty are the totals for all the original

values of x and y, respectively. The latter are somewhat more conveni-

ent symbols for the familiar S(x) and S(2/). Given a series of paired

values, therefore, for which a regression coefficient is to be calculated,

the first step is to determine Tx and Ty . Then each value of x is multi-

plied by each value of y (or vice versa), and the sum of the products
accumulated in the machine. This gives us %(xy), and if we subtract

from this TxTy/N y
the remainder is the required sum of products of the

deviations. 2 (re x)
2

is, of course, calculated in the manner indicated

in Chapter II.

In many examples the labor of calculation can be reduced by coding

the data. This involves either subtracting a uniform quantity from the

values of each individual variate or dividing by a constant quantity, or in

certain cases both devices are employed at the same time. Supposing
that the actual values are as given below on the left; the values on the

right are examples of how the coding may be carried out.

The regression coefficient having been calculated, the next step is to

determine the regression equation, Y =
(y bx) + bx. The portion
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(y bx) is constant and is computed once and for all. Putting the

result for this portion equal to a, we have the working equation:

F = a + bv*x (14)

from which all the Y values that are necessary can be obtained.

It must be remembered that, if the regression equation is calculated

from coded data, the resulting equation itself must be decoded before it

can be used for prediction purposes. If the data have been coded by
subtraction only, the only correction required is to the means of x and y
and this correction must be made while the equation is in the form given
in equation (7). If in the coding the x and y values are divided by a

different constant value, then a correction must be made to the regression

coefficient as well as to the means of x and y. For example, if x has been

divided by A and y by B, then the regression coefficient calculated from

the coded data must be multiplied by B/A.

Example 10. Calculation of the Regression Coefficient and Regression Equa-
tion from a Small Series of Paired Values. In a hypothetical example the values

from 10 pairs of variates are as given below:

9 8 7 7 6 5 3 3 1 1 T
7
* = 50

9 9 8 6 6 5 4 3 1 1 !Ty
= 52

Values for the totals are given at the end of each line and N = 10. To find the sum
of products, and the sum of squares of x, we proceed as follows:

(9 X 9) + (8 X 9) + (7 X 8) + + (1 X 1)
- 335.0

TXTV/N (50 X 52) /10_- 260.0

Then by, 75.0/74 - 1 014. 50/10 5.0. y - 52.0/10 - 5.2.

Also a (5.2 - 1.014 X 5.0) 13.

Finally the regression equation is F = 0.13 -p- 1.014*.

In order to use this equation for predicting values of y from given values of x,

it is only necessary to insert the required value for x and determine the resulting

value of F. For example, if we take x equal to 2 the calculated value of F is

0.13 -f 1.014X 2 - 2.158.

Example 11. Calculation of the Regression Coefficient and Regression Equa-
tion from a Large Series of Paired Values. When dealing with large numbers of

variates, we found that it was convenient to make up a frequency table in order to

summarize the data and reduce the labor of calculating the mean and the standard

deviation. Similarly, in regression studies, if a large series of paired values is avail*

able it is desirable to make up a ttJble which is a combination of the frequency dis-

tributions of the two variables. From long usage such a table has become known as
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a correlation table, and we shall see in the next chapter that it is likewise of value for

calculating the correlation coefficient.

To prepare a correlation table the best plan is to copy the paired values on cards

of a size that can be handled conveniently. Thus, if we decided to make up a table

for the yields of plots in adjacent rows of Table 4, Chapter II, we would make our

cards as follows:

First card

x 185

y 162

Second card

and proceed until all the pair? had been entered. After deciding on the class values

in very much the same mannei as described in Chapter II, Section 5, we would dis-

tribute the cards for one of the variables and then distribute each pile for the second

variable. Table 12 is the final result of distributing all the cards for the yields of

adjacent plots as taken from Table 4. The classes here are somewhat larger than

they should be, in order to save space and to make the table more convenient to use

as an example. The cards were first distributed for x, giving the frequency distribu-

tion as shown in the last row of the table. The 4 cards falling in the first class were

then distributed in the vertical column according to the values of y, and so on for

each pile. When all the piles were distributed, the cards in each small pile were

counted, and the frequencies entered in the table Notice also that the natural num-
bers have been inserted in the table to replace the class values. This is the device

introduced in Chapter II for reducing the labor of calculating the mean and standard

deviation from frequency tables. It may be used here in the same way, in order to

reduce the labor of calculating the regression coefficient. It will be noted that this is a

form of coding, and consequently the regression coefficient and the regression equa-
tion will require correction if they are calculated from a table of this kind.

The next step is to prepare Table 13, in which the first four columns are entered

directly from the correlation table. For the column headed "
totals for y arrays

"

we proceed to obtain the totals for each array as follows, where the first array of y is

the distribution in the y classes of the variates that fall in the first class for x.

1st array (2 X 3) + (1 X 6) + (1 X 8) - 20

2nd array (2 X 3) + (4 X 4) + (5 X 5) + (1 X 6) + (1 X 7) 60

The total for this column is obviously TV) the grand total of y. In the same way we

proceed to obtain the totals for the x arrays and T*, the grand total of x. There are

two columns headed 2(xy), the object being to calculate S(xy) in two ways BO as to

have a complete check on the calculations. The entries in these columns are obtained

by multiplying the totals for the y arrays by the corresponding class values of x, and

the totals for the x arrays by the corresponding class values of y. Summating at the

foot of the columns we obtain S(#y).

Finally from the correlation table we have to calculate S(x
2
), and the method is

the same as in Chapter II for any frequency distribution. Tabulating our calcula-

tions we have:

2(xy) 5448

S(x
2
)
- 3952

Tx - 850

Ty
- 1246

N -200
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Then: 1,(y
-

g)(x
-

) 5448 - (850 X 1246)/200 - 152.50

And: 2(x -
f)

2 - 3952 - 8502
/200 =339.50

The regression coefficient is given by bvx
= 152.50/339.50 = 0.4492

TABLE 12

CORRELATION TABLE FOR THE YIELDS OF ADJACENT BARLEY PLOTS

x
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TABLE 13

CALCULATION OF THE REGRESSION COEFFICIENT

In order to set up the regression equation, the means of x and y are required. These

are x = 850/200 = 4 25, and y -= 1246/200 = 6.23, and the regression equation is

written:

Y = (6 23 - 4492 X 4.25) + 0.4492*

= 4.3209 -0.4492z

Since the regression equation has been calculated from coded values, the necessary
corrections must be applied. To correct the means we apply formula (7), Chapter I/,

obtaining:

y (6.23
-

1) X 23 + 31 - 151.29

x (4.25
-

1) X 23 + 77 = 151.75

Since the class value is 23 for both variables, the regression coefficient does not

require any correction, so the new equation is:

Y = (151 29-0 4492 X 151.75) - 0.4492s

= 83 12 - 0.4492z

In order to plot tjie regression straight line, we require only two points on the graph,

preferably as far apart as possible. It is simpler to use the coded regression equation
to find any values of Y required, and also the graphing may be done in the coded

values and the actual values inserted when everything is completed. The end

points of the line are

Yi - 4.3209 - 0.4492 X 1 - 4.77

F2 - 4.3209 - 0.4492 X 7 - 7.46
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The graph is finally as in Fig. 7. If such a graph is required in the final presentation
of the results, it would be necessary only to substitute the actual class values for the

assumed values. The means of the y arrays are, of course, obtained by dividing the

totals for the y arrays by the corresponding frequencies. These may be converted

Means of

y arrays

5 00

4.62

5 65

6.40

6.56

6.93

7.00

1234567
YIELD

FIG. 7, Regression graph for yields of adjacent plots showing regression

line and means of y arrays.

to actual values by means of the formula for correcting means as described in

Chapter II, and used above for finding the true values of x and ?/.

To test the significance of the regression coefficient we find

S,
=

j
t =

b\"2(x 0.4492V339.50

41 7.42 - 0.4492
2 X 339.50

198

rt0= o 2o.

1.3275

se 1.3275

from which it is clear that the regression coefficient is highly significant.

6. Exercises.

1. Table 14 gives the results obtained in an experiment with 25 wheat varieties

on the number of days from seeding to heading and the number of days from seeding

to maturity. Calculate the regression equation for the regression of days to mature

on days to head, and test the significance of the regression coefficient. Code the

data before beginning your calculations by subtracting 50 from the days to head

and 85 from the days to mature. Find the fiducial limits at the 5% point of the

regression coefficient, and decide as to the practicability of using days to head to

replace days to mature on the basis of the data provided by this sample.

Regression coefficient = 105.23/125.68 - 0.8373. (Coded data.)
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TABLE 14

DATA ON DAYS TO HEAD AND DAYS TO MATURE OF 25 WHEAT VARIETIES

2. Table 15 contains data on the carotene content determined by two methods for

139 wheat varieties. By one method carotene was determined on the whole wheat,
and by the other method, on the flour. The figures for carotene in the wheat are

lower than for carotene in the flour, which is of course the reverse of the actual

condition. This was due to a different method of extraction used for the whole

wheat which gave lower but relative results.

Make out cards, one for each pair of values, and prepare a correlation table,

letting the flour carotene represent the dependent variable y. In order to reduce

the labor of calculation make the classes fairly large; for example, let the first class

for x be 0.85 to 0.95, and the first class for y be 1.33 to 1.49. Also do not forget to

replace the actual class values by the natural numbers, beginning at 1, before going
ahead with the calculations. Determine the regression equation and prepare a

graph similar to Fig. 7. byx - 438.39/665.96 = 0.6583. (Coded data.)

3. Prove: (a)
-

*)

(b) Sfc,
-
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TABLE 15

CAROTENE CONTENT OF FLOUR AND WHOLE WHEAT FOR 139 VARIETIES



CHAPTER VII

CORRELATION

1. Covariation. This is a term that is very expressive with respect

to the fundamental situation regarding two variables, from which the

methods of correlation arise. In the previous chapter it was pointed
out that, when two variables are so related that one may logically be

considered as being dependent on the other one, the method of regression

is completely applicable to a study of this relation; but when the two

variables cannot be considered in the light of dependence and inde-

pendence, the method of regression does not appear to be satisfactory.

Suppose that a study is to be made of the relation between the heights of

brothers and sisters. It would not be logical to consider the height of

one member of the pair as being dependent on the height of the other

one, yet we may be fairly certain that there is a relation of some sort

and we may wish to estimate what this relation is. The question that is

asked with respect to two such variables seems to be this. "To what
extent do the heights of brother and sister vary together"? Thus we
have the term covariation, and the conventional statistic for the measure-

ment of covariation is the correlation coefficient.

2. Definition of Correlation. In Table 16 there are three sets of

figures that may be taken as measurements on two variables that we
shall designate as x and y. On examining these three sets of values it

will be noted that the relation between x and y is different in each case.

In set 2 we have high values of x associated with high values of y> and
in set 3 we have high values of x associated with low values of y. In

both cases there is an obvi ous relation but one is the reverse of the other.

In set 1, on the other hand, there is no apparent relation between the

two variables. These sets may be regarded as samples from infinite

parent populations of paired variates. In the population from which

set 2 is drawn, whenever a pair of variates is selected, we expect to find,

if the pair contains a high value of x, that there will be a high value of y
associated with it. In the population represented by the sample in

set 3 it is to be expected that high values of x will be found associated

with low values of y. These two opposite situations are referred to as

positive and negative correlation. Set 1 represents still another situa-

tion. High values of x do not appear to be associated with either high
65
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TABLE 16

THREE SAMPLES OF PAIRED VARIATEB ILLUSTRATING THE

PHENOMENON OF CORRELATION

or low values of y. In other words, we shall expect that in the parent

population the two variables vary independently. A graphical picture

of the results with these three samples is given in Fig. 8, For each

sample we have prepared what is usually known as a dot diagram. The
values of y are represented as ordinates and the values of x as abscissae,

so that each pair can be represented by a dot on the diagram. The final

SET I SET 2

9
8
7

6

Y 5
4
3
2

I

123456789
X

I 23456789
X

SET 3

9
8
7

6
Y 5
4
3
2
I

I 23456769
X

FIG. 8. Dot diagrams for the sets of values given in Table 16.

result is a figure which represents in a general way, by the scatter of the

dots, the relation between the two variables. For set 1 the dots are

scattered more or less uniformly over the whole surface. For sets 2

and 3 there is a definite relation between the variables, as shown by the

tendency for the dots to arrange themselves in a straight line along the

diagonals of the square. We are reminded here of the regression graphs
of the previous chapter. The difference is that we are not now studying
the effect of one variable on the other, but rather the degree to which
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the variables vary together owing presumably to influences that are

common to both. If such measurements represented heights of brothers

and sisters, it is apparent that this common influence might be the simi-

larity of their genes.

This rough illustration is sufficient to give a general idea of the nature

of correlation, but it is not adequate to give a complete picture of cor-

relation as it occurs in nature. The student who is specially interested

in this subject should make a thorough study of the references given at

the end of this chapter. Each writer on this subject presents the situa-

tion in a somewhat different manner, and after a study of several view-

points the student will begin to grasp the fundamental points very

clearly. We are concerned here mainly with the viewpoint that cor-

relation is a measure of the degree to which two variables vary together,

as we believe this to be the most useful viewpoint from the standpoint
of the research worker. Since we have become acquainted with the

variance and the standard deviation as measures of variability, it is of

interest now to inquire how the combined variation of two variables can

be measured, and how much of the variability of one variable is tied up
with the variability of some other variable. In the first place, however,
we must consider a few points that are fundamental to the methods of

measurement that will be employed.
The dot diagrams given in Fig. 8 will result from combining the fre-

quency distributions of two variables. Since they represent samples

only, they give merely an estimate of the combined frequency distribu-

tions of the two variables in the parent populations. The single or

univariate distributions are represented by a curve, but the combined or

bivariate distributions must be represented by a surface. On extending

the diagrams of Fig. 8 to much larger samples it is evident that the dots

will begin to form into swarms of some definite shape, depending on the

degree of correlation between the variables. If the correlation is high

the swarm will evidently be of the greatest density along the diagonal

of the figure; if there is no correlation the swarm is likely to be almost

circular in shape. The theoretical bivariate frequency distribution will

obviously be represented by a volume, in contradistinction to that of

the univariate distribution which is represented by an area. These

points give us some clue as to how we may obtain a measure of corre-

lation.

3. The Measurement of Correlation. Figure 9 illustrates the shape

of the swarm in a correlation surface for three different degrees of cor-

relation. The circular swarm at (a) represents zero correlation. In (c)

the swarm falls entirely on the diagonal and must represent perfect

correlation. In (b) we have a condition between the other two extremes.
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Now each surface is divided into quadrants by lines erected at the posi-

tions of the means, and in each quadrant are plus and minus signs that

represent the signs of the products of the x and y deviations from their

means. Thus in the upper right-hand quadrant (1) the deviations of

x and y are both positive so that the product of the deviations is positive.

Therefore we have positive products in quadrants (1) and (3) and nega-

FIG. 9. Correlation surfaces showing the variation in the shape of the swarm
with increasing correlation.

tive products in quadrants (2) and (4). Now if we obtain the sum of

the products it is obvious that in (a) the plus and minus products will

cancel each other and the sum will be zero. In (c) all the products will

be positive so that their sum will be a maximum. In (6) the condition

is intermediate between (a) and (c). The plus products are greater than

the negative products; hence we have a positive but not a perfect

correlation.

Let us consider now the sets of figures in Table 16. If we calculate

the sum of the products S(a? x)(y y) for each set we should find an

agreement with the theory outlined above. To carry out these calcula-

tions we shall make use of the identity:

-x)(y-y} =
(1)

where Tx is the total of the x values, Ty the total of the y values, and N is

the number of pairs. Our calculations then come out as follows :

Set 1.

Set 2.

Set3.

262

335

186

TXTV/N
260

260

260

-
y)

2

75

-74

The result is in perfect agreement with the theory that the sum of

products is a measure of correlation.
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The sum of products is an absolute measure of correlation but will

not serve as a relative measure, since it is dependent on several factors

that have nothing to do with the correlation between the two variables

with which we are concerned. It depends on the number of pairs of

measurements or variates, on the units in which the two sets of variates

are measured, and on the variability of both of the variables. The first

objection can be overcome by dividing by the number of pairs of vari-

ates, and we now find that we have 2 (a* x)(y y)/N, which was

defined in the previous chapter as the covariance cv of x and y. The

covariance, however, is still not a relative measure of correlation, as it is

affected by the units of measurement and the variability of x and y. To
overcome this difficulty it is clear that the covariance must be divided by
some factor which measures the variability of x and y and is expressible

in terms of the units in which these variables are measured. The first

factor which suggests itself is the product of the two standard deviations,

and this actually gives the formula for the correlation coefficient, usually

designated by the symbol r. Thus we have:

- y)/N

Another formula can be given using the variances of x and y in place of

their standard deviations. This must of course be:

Z(x - x)(y
- y)/N

xy / W

where vx is the variance of x and vy is the variance of y. Formula (3)

shows also the algebraic relationship between the regression coefficient

byx and the correlation coefficient. Since:

it follows that:

and is obviously the regression coefficient bxy where x is taken as the
vv

dependent variable instead of y. Of course in all regression problems

there are two regression coefficients, although, in the type of problem we

have referred to in the chapter on regression, one of these will be of

theoretical interest only. The correlation coefficient is finally:

(4)
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In other words, it is merely the geometric mean of the two regression

coefficients.

A brief inspection of the formula of the correlation coefficient will

show that it has a maximum value of + 1 and a minimum value of 1

under conditions that we would ordinarily take to represent perfect

correlation. (1) Let yi
= kxit where y* and #,- represent any pair of

values of y and x, and k is a constant. We have therefore a constant

positive relationship between x and y.

Then

(yi if)
= (kxi **) = k(*i *)

and

(yi

Hence

S(x
Also

Therefore

And finally

<r<ry fctr, 0%

(2) Let y+
~ kx>. Here we have a constant negative relationship

between x and y. Then

(2/
-

#)
= - (tei

-
kx) = - k(xi

-
x)

and

(y<- #(*<-*) ^-^C^-x) 2

Hence

S(x - x)(y
-

y)

Also

S(2/
-

J/)
2

Therefore

iry
5= ka

Finally

f)(y
- y)/N -

These two conditions that we have postulated are those for which we
should expect a satisfactory coefficient to give us a maximum value of

+1 and a minimum value of 1. Between these two extremes we
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should expect the coefficient to give us values varying between +1 and

1, and this is what it actually does. Our proof as given above indicates

this also, but it is not a rigid proof in that particular respect.

Having satisfied ourselves that when we have perfect positive corre-

lation the coefficient will be +1, and when we have perfect negative
correlation the coefficient will be 1, it remains to decide how the

coefficient will measure correlations that fall within this range. As a

matter of fact it is easy to state this proposition, but quite difficult to

explain it in a simple and satisfactory manner. Perhaps the best inter-

pretation arises from considerations that actually are more closely

related to the theory of linear regression than that of correlation. For

example, if we take y to be the independent variable, then we can work

out the relation between the correlation coefficient and the two vari-

ances, the total for t/, and the variance of the errors of estimation. As

pointed out in the previous chapter, the sum of squares of the errors of

estimation is S(y F)
2

,
where Y represents points on the regression

straight line corresponding to each value of y. The variance of the

errors of estimation is therefore given by:

Now the variance of y is related to the above variance in the manner

indicated by the following equations:

J f-f (6)

(1
-

r*)2(y
-

g)
2

"' = AT^2 <7)

From which it follows that the ratio of the two variances is:

On tne same basis, if we examine the relation between vv and the variance

due to the regression function, the latter being given by:

= lfcS(z
-

f)
s
/l or i*

vy

t

y/
(9)

we find that:

, _
j) (10)
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Finally, the ratio Vb/ve is given approximately by:

v* r2

ve (1
- (N - 2) (11)

The variance ve is frequently taken as representing that portion of the

variation in y which is independent of x\ hence we note that from this

standpoint equation (8) is the most important. If ve is expressed in per-

centage of vv ,
then it is clear from (8) that thip percentage is almost pro-

portional to (1 r2). This is another way 01 expressing the commonly
known fact that differences between high correlation coefficients are

much more significant than similar differences between small correla-

tion coefficients. As a measuring stick for general use it is therefore

much more convenient to think in terms of r2 than in terms of r. For

example, if we have a correlation coefficient of 0.5, the ratio ve/vv = 0.75,

and the ratio does not fall to 0.5 until r reaches 0.75.

Considerable space might be devoted to further viewpoints on the

interpretation of the correlation coefficient, and the student who is

especially interested in this phase of statistics should refer to the discus-

sions in the references cited at the end of this chapter. Special notice

should be taken of the discussions by R. A. Fisher (1) of the distribution

of the correlation coefficient; by G. W. Snedecor (4) of the relation

between "common elements" and the correlation coefficient; and by
A. E. Treloar (6) of many phases of the entire subject of correlation.

** 4. Testing the Significance of the Correlation Coefficient. R. A.

Fisher (1) has shown that for small samples the distribution of r is not

sufficiently close to normality to justify the use of a standard error or a

probable error to test its significance. A more accurate method has

been developed by Fisher, based on the distribution of t. For a correla-

tion coefficient:

r\/n
t = v

. (12)

where n = the number of degrees of freedom available for estimating the

correlation coefficient. The degrees of freedom can always be taken

equal to N 2, because there is a loss of one degree of freedom for each

statistic calculated from the sample in order to obtain r. These are y
and bvx (the regression coefficient). Although bvx may not actually have

been calculated, it is involved in the formula of the correlation coefficient

through the sum of products 2(x x)(y y). This point will be

clear from a consideration of equation (8) which shows that the ratio

vjvv is a function of the correlation coefficient. Now ve measures the
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discrepancies between individual values of y and the corresponding
values of Y estimated from the regression equation. It follows from

this that the correlation coefficient can measure only that portion of the

relation between x and y which is represented by the regression equation.

Since the use of t provides a correct method of testing the significance

of a correlation coefficient regardless of the size of the sample, in general

practice one uses this method for samples of all sizes. For large samples
one might calculate a standard error of r, but even this procedure would

be subject to criticism if the value of the correlation coefficient was

high.

For testing the significance of the difference between two correlation

coefficients t is not suitable, and Fisher (1) has developed an accurate

method which involves transforming the values of r as follows :

z' = i{log.(l + r) -loged -r)} (13)

The values of z
r

can be shown to be normally distributed even for small

samples and with a standard deviation given by:

(14)

To test the significance of the difference between two correlation coeffi-

cients ri and T2, we proceed as follows:

I + ri) logcd ~ n) }

z i Z2
= difference

/
1

'.-i
~
\ N _ - 3

(15)

where Ni and N% are the numbers in the two samples from which ri and

TZ respectively have been calculated. Finally :

The table of t is entered under N\ + N^ 6 degrees of freedom.

6. Calculation of the Correlation Coefficient. From the previous

chapter, the methods for calculating the sum of products

S(x )(y y}, either directly from paired values or from a correla-

tion table, will have been noted. It is sufficient therefore to note that
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the formulae given in (2) and (3) may be written as follows in convenient
form for calculation.

r

-
xy

rxv >
....... ""

':"" ,= (JO)

Formula (17) is the most direct, but (16) and (18) are perhaps better

suited to machine calculation. In (18) there are no divisions in either

the numerator or the denominator; and after all the preliminary calcu-

lations of the values of 2(xy), Tx,
Tv, S(z

2
), and S(i/

2
) have been per-

formed, each of the three factors in the formula may be obtained without

removing any figures from the machine and recording them elsewhere.

The methods of calculating 2(xy), Tx,
TV1 2(z

2
), and S(r/

2
) will of

course be the same as described in Chapters II and VI. They may be

calculated either from the correlation table or directly from the paired
values. For N = 50 or less it is probably best to proceed directly, as

setting up the correlation surface is not likely to save any time. When
the numbers are fairly large it is nearly always best to have a correlation

table, as we shall learn later of a test to determine the agreement between
the actual data and the straight line fitted by the regression equation,
and to carry out this test the correlation table must be set up.

Example 12. Direct Calculation of the Correlation Coefficient from Paired
Values. For the sets of paired values given in Table 16 the calculations of 2(xy)
were performed and the results given in Section 3 of this chapter. Let us assume
that we wish to calculate the correlation coefficients using formula (17).

Set 1. 2(Xy) - TSTV/N 262 - 260 - 2.0

S(x
2
)
- Tl/N 324 - 250 74.0

- Tl/N - 360 - 270.4 - 79.6

2.0
-+ 0.026

V74.0X79.6

Set 2. Z(Xy) - TXTV/N - 335 - 260 76.0

- TS/tf
Same as Set 1

= +0.997
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Set 3. *L(xy)
- TXTV/N - 186 - 260 - - 74.0

ISame as Set 1

rzy

~74 '

= - - 0.964
V74.0X79.6

To calculate r^ for Set 2 using formula (18) we would write directly:

10 X 335 - 50 X 52

V(10 X 324 - 502)(10 X 350 - 522
)

and performing one operation with the machine for each factor we obtain:

750

A/740 X 796

By one more operation we find the denominator and have:

Example 13. Calculation of the Correlation Coefficient from a Correlation Table*

Suppose that we wish to calculate the correlation coefficient for Table 12, Chapter VI.

The first step is to prepare Table 13, which we have already used in Example 11 to

calculate the regression coefficient. From this table we have:

- 5448 Ts - 850

- 3952 Ty
= 1246

8180

And making use of formula (18) above we calculate:

200 X 5448 - 850 X 1246
T*V

V(200 X 3952 - 8502)(200 X 8180 - 12462)

30,500 _ 30,500 _^
X/67,900 X 83,484

260.58 X 288.94

Example 14. Tests of Significance. Although the correlation coefficients cal-

culated in Example 12 were for only 10 pairs of values, the t test will give a reliable

measure of their significance. The t values are determined as follows:

Setl. rxv
** + 0.026 t

y
== - 0.07

Vl - 0.0262

0.977V8
Set 2. rxy -+ 0.977 t ,

v - 129.7
Vl-0.9772

0.964\/8
Set 3. r* - - 0.964 t -

,

v - 102.5
VI- 0.9642
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Turning to Table 94 we note that for n = 8 and P 0.05 the value of t required

is 2*3,06. The coefficient 0.026 is therefore quite insignificant, but the other two are

highly significant.

Example 16. The Significance of Differences between Correlation Coefficients.

In a study of the relation between the carotene content of wheat flour and the crumb

color of the bread, Goulden, et al. (2), obtained the following results with 139

varieties.

Carotene in whole wheat with crumb color, ri = 0.4951

Carotene in flour with crumb color, f2 0.5791

The most accurate method for this test is to make use of Fisher's z' transformation.

For the z
f
test we write:

z\ . | {log. (1 + 0.4951) -
log* (1

-
0.4951)}

- % (log, 1,4951 - log, 0.5049)

" * loge
vFo

" * loge 2 * 9612 "
logl 2 * 9612 x 1 '

= 0. 47147 X 1.1513 - 0.5428

4 - i (tog. 1.5701 - log. 0.4209)

| log, 3. 7517 0.57423 X 1.1513 - 0.6611

it
-

z\
- 0.6611 - 0.5428 = 0.1183

0.1213

Since the difference is less than its standard deviation it is not significant.

Note that in writing out the formula for z' we pay no attention to the sign of r

as it is the numerical difference between the coefficients that we are testing.

6. Exercises.

1. The figures in Table 17 are the physics and English marks
1
for home economics

students in the University of Manitoba. Determine the correlation coefficient for

the relation between the marks in the two subjects. Use the direct method, and

test the significance of the coefficient. r + 0.705.

2. For the same 50 students the correlation coefficient for the marks in art and

clothing is +0.7300, and for art and physics it is +0.6491. Is this a significant

difference?

3. Determine the correlation coefficient for days to head and days to mature of

25 wheat varieties, using the data from Table 14. Find the fiducial limits at the

5% point for this coefficient. r + 0. 946.

1 By courtesy of the Registrar, University of Manitoba.
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TABLE 17

MARKS IN PHYSICS AND ENGLISH OF 50 STUDENTS IN HOME ECONOMICS
OF THE UNIVERSITY OF MANITOBA

REFERENCES

1. R. A. FISHER. Statistical Methods for Research Workers. Oliver and Boyd,

London, 1936. Reading: Chapter VI, Sections 30, 31, 33, 34, 35, 36.

2. C. H. GOULDEN, W. F. GEDDES, and A. G. 0. WHITESIDE. Cereal Chem.,

11:557-566, 1934.

3. RAYMOND PEARL. Medical Biometry and Statistics. W. B. Saunders Co.,

Philadelphia, 1923. Reading: Chapter XIV, first section.

4. G. W. Snedecor. Statistical Methods. Collegiate Press, Inc., Ames, Iowa,

1937. Reading: Chapter VII.

5. L. H. C. TIPPETT. The Methods of Statistics. Williams and Norgate, Ltd.,

London, 1931. Reading: Chapter VII, Sections 8.1, 8.2, 8.21, 8.22.

6. A. E. TRELOAR. An Outline of Biometric Analysis. Burgess Publishing Co.,

Minneapolis, 1936. Reading: Part I, Chapters X, XI, XII, XIII.

7. G. UDNY YULE. The Theory of Statistics. Charles Griffin and Company, Ltd.,

London, 1924. Reading: Chapter IX.



CHAPTER VIII

PARTIAL AND MULTIPLE REGRESSION AND
CORRELATION

1. The Necessity for Dealing with More Than One Independent
Variable. In many regression problems the investigator is concerned

purely with the effect of one variable on another, and this holds true

regardless of other complicating factors. Suppose that a new rapid

method has been developed for determining the protein content of
grain

samples and this method is to be compared with an older and thoroughly
tested method which is known to give very accurate results. The two

methods are used on a large series of samples and for the entire series

the linear regression equation is determined for the regression of protein

by the old method on protein by the new method. Regardless of how
these two variables are related, from the practical standpoint of studying
the efficiency of the new method as a substitute for the old method, it is

clear that the investigator is concerned purely with the closeness of the

relationship between the two variables. The new method may not ac-

tually measure protein content but some other factor that is so closely

associated with protein content that if we know one we know the other.

Hence, although the relation between the two variables may be indirect,

it is the total relation with which we are concerned, as we require merely
a measure of the accuracy with which we can predict one variable from

individual measurements of the other variable. In examples of a some-

what different nature it may be quite misleading to study only the total

relation between two variables. Suppose that we find a correlation of

+0.60 between the yield of wheat and temperature. Can we conclude

from this result that, if all other conditions remain constant, there will

be an increase in yield with increases in temperature? The answer is

no, because temperature may be associated with some other factor in-

fluencing yield and this second factor may be the one that is actually

causing the variations in yield. Suppose that the second factor is rain-

fall, which is probably the most important of the meteorological factors

influencing the yield. If rainfall is itself associated with temperature,
it is clear that there must also be a correlation between yield and tem-

perature. The latter correlation, however, does not provide us with

any information of a fundamental nature with respect to the actual

78
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changes in yield brought about by changes in temperature. What we

require here is a measure of the association between yield and tempera-
ture when the rainfall remains constant. To the extent that the rela-

tions between the three variables in a problem of this kind can be ex-

pressed by linear functions, the measure that we require can be obtained

by the method of partial regression or partial correlation. Thus the

partial correlation of yield and temperature will measure the degree of

covariation for these two variables with a constant rainfall. The partial

regression coefficient for yield and temperature will give the actual in-

crease in yield for one unit of increase in temperature when the rainfall

is constant. If the correlation coefficients for the three variables are

as follows:

Tv t (yield and temperature) = + 0.60

ryr (yield and rainfall) = + 0.82

r tr (temperature and rainfall)
= + 0.78

the partial correlation coefficient for yield and temperature with rainfall

constant may be represented by ry t. rj in which the variable placed after

the period is the one that is held constant. Applying the partial corre-

lation method as illustrated below we find ryt . r
= + 0.09. Therefore

the actual effect of temperature when rainfall is constant is practically

nil.

It is just as well to emphasize by means of this example that the

method of partial regression and partial correlation as we are considering

it here has to do only with the linear relation between the variables. If

the effect of temperature on yield is not the same for a constant low

rainfall as it is for a constant high rainfall, then the linear measures are

inadequate to express the actual relation.

2. Derivation of Partial Regression and Partial Correlation Methods.

The method of simple correlations is derived from the regression equa-
tion :

y y = t>vx(x
-

)

where byx is the regression coefficient. Similarly, when there are three

variables y, x, z, the regression equation is:

V
-

y = bvz(x
-

x) + bvt (z
-

z)

In order to simplify the writing of these equations we use x\ for the

dependent variable and x%, x$ xn for the independent variables.

Also 612 represents the regression coefficient for xi on #2, and to abbrevi-
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ate further we write xi for (x\ xi) and x2 for (x2 #2). Hence the

general regression equation for n variables is:

+ 613X3 + 6i4X4 + ' ' ' + 6lwX (1)

The error in estimating x\ from this regression equation will be:

(Xl 612X2 613X3 6l nXn)

and it is required to find values of the regression coefficients such that

the sum of the squares of these errors is a minimum. That is, we must

find values of the regression coefficients such that

2(Xl
- 6l2X2 6l3X3 ' ' -

6lnXn)
2

is a minimum. For 4 variables this leads by mathematical treatment

to the following "Normal Equations"

2(xix2) = 6i 22(z2)
2 + 6i 32(x2x3) + 6i 42(z2x4)

2(xix3) = 6i22(x2x3) + 6i32(x3)
2 + 6i4S(x3x4) (2)

2(xix4 )
= 6i22(x2x4) + 6i 3S(x3x4) + 6 142(x4 )

2

For a set of n variables there are (n 1) simultaneous equations for

which the sums of squares and sums of products are known, and by

solving these we arrive at the values for the regression coefficients.

Any partial correlation can then be determined as follows :

^12-3.. n = V 612.3- --n X621 .3 ... w (3)

For three variables xi, X2, X3, the normal equations are as follows:

2(xjx2 )
= 6i 22(z2)

2 + 6i32(x2x3)

2(X!Z3) - 6i22(x2x3) + 6132(a;3)
2

from which it can be proved that

7*12
""

7*13 '7*23

7*12.3 =

Similarly

ri3.2 =
/

*" == (4)V (1 r
2
2)(l

-

and

T23 T\2'T]

-
r?8)
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This is the most rapid method of obtaining the partials for only
three variables. For four or more variables it is best to make use of the

fact that the normal equations can be written as follows, taking as an

example the equations for five variables:

7*12 = ft 12 + ft 137*23 + 0147*24 + 0157*25

7*13
= 012723 + 013 + 0147*34 + 0157*35

(5)

7*14 = 0127-24 + ^137-34 + 014 + 0157*45

7*15
= 0127*25 + 0137*35 + 0147-45 + 015

The correlation coefficients are the known values, and the beta (0) Values

the unknown. The latter can be used as illustrated below to compute
the partial correlation coefficients.

Tabular methods of solving these equations for the beta values have

been devised which reduce the labor to a minimum. The beta values

are defined by:

6l2.3 - n = ( I 012-3 - -

\ff2/

(6)

\ff2/

and

&21-3 n =
I ) 021-3 - . n (7)

\*1/

Hence, on referring to equation (3) above, we find that :

012-3 - . n'021-3 . . . w = ( ) &12-3 - . n X (
~

) &21-3 n

\*1/ \**J

= bl2-3 - - n* i>21.3 - n =
1*12-3 - - - n (8)

And hence:

v 012-3 n' 021*3 - n ~
7*12.3 n (9)

In order to obtain all the beta values, it is necessary to rewrite the

normal equations in different ways and solve. For example, in order to

obtain 02i, the equations for five variables must be written.

7*21
= 021 + 0237*13 + 0247*14 + 0257*15

7-23
=

0217*13 + 023 + 0247*34 + 0257*35

7*24
=*

0217*14 + 0237"34 + 024 + 0257*45

T25 = 0217*15 + 0237*35 + 0247*45 + 025
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Correlation coefficients are often referred to as coefficients of the

pth order, where p is the number of variables held constant. Thus the

simple coefficient r\% is of zero order, arid the partial coefficient ri2-345 is

of the third order.

3. Example 16. Calculation of Partial Regression and Partial Correlation

Coefficients. The simple correlation coefficients in Table 18 were obtained in a study

(2) of the effect of the physical characteristics of wheat on the yield and quality of

flour,

TABLE 18

SIMPLE CORRELATION COEFFICIENTS FOR THE
RELATIONS BETWEEN Six VARIABLES

In order to use the above method to determine the effects on yield of flour of any
one of the forms of damage or of weight per bushel, it is necessary to determine the

partial correlation coefficients:

f12 -3466, ^13- 2456, ^14-2356, ^15-2346, H6.2345

For which we will require

012 *021, 018* 031, 014-041, 015-061, 010-061

We solve for these by the method illustrated in Table 19. It is a tabular method of

solving the simultaneous equations and is best understood from a study of the table.

Note that the calculations of Table 19 give 0i2, 0i8, 0n, 0is, and 0i, and that in

order to obtain the other beta values the simple correlation coefficients must be

rearranged and the calculations repeated. The rearrangement in the order 6; 5, 4, 3,

1, 2, will give 2i, 023, 024, 025, 020. The next logical rearrangement is 6, 5, 4, 1, 2, 3,

giving 032, 031, 034, 035, 030- We continue rearranging the simple correlation coefficients

until all the beta values have been calculated. Then they are put together in a table

and we select those necessary in order to give the required partials.

The following instructions will be found useful in carrying through the tabular

method of solving the equations.

(1) Rule a sheet of paper as in Tabb 19.

(2) Enter all the correlation coefficients as indicated in lines 1, 3, 7, 12, and 18.
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(3) Sum the correlation coefficients to obtain values given in column S.

Note that the first sum, line 1, is rei + ^2 4- rea + r4 + r& + fee* the sum in line

3 is rgi + f62 + fas + r&4 + *"65 + 7*58, the sum in line 7 is ru -f r& + r& + f"44 +
+ f46 + f4, etc.

The S column provides a check for all the preceding work. The values 1.0662

and 1.1789 must check with the sum of the values in lines 5 and 6 respectively.

There are similar checks in the S column of lines 10 and 11, 16, and 17, and 23

and 24. All these checks are approximate, and therefore the values obtained in

the check column will not agree with those calculated from the body of the table

to the last decimal figure.

(4) The last value calculated in line 24 is ftn with its sign changed. It is

written below in line 1 of the reverse with the correct sign, and also in column 2

line 1 of the reverse. The remaining values in column 1 come from lines 17, 11,

6, and 2, of the same column but with their signs reversed.

In column 2 the values are:

Pi2 X (17 -2)

fci X (11 -2)

012 X (6-2)

012 X (2. 2)

In line 2 (reverse) add from right to left and obtain /Sis, then the remaining
values in column 3 are:

ft* X (11 -3)

0wX(6-3)

Pit X (2*3)

In line 3 (reverse) add from right to left and obtain 14, then the remaining
values in column 4 are:

0u X (6.4)

014 X (2.4)

In line 4 (reverse) add from right to left and obtain 0i&, then the remaining
value in column 5 is:

016 X (2.5)

In line 5 (reverse) add from right to left and obtain 0i.

After completing the calculations as in Table 19 the correlation coefficients are

arranged in the order 6, 5, 4, 3, 1, 2, in a new table and the calculations carried out as

before. For 6 variables there will be 6 tables to calculate, each table giving 5 of the

total of 30 beta values. When the latter have all been calculated they can be tabu-

lated, and all that remains is to work out the partials. It is convenient to make a

table such as Table 20 for entering the beta values and the corresponding partial

correlation coefficients.
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TABLE 20

BETA VALUES AND PABTIAL CORRELATION COEFFICIENTS

4. Tests of Significance. The t test is applicable to partial correla-

tions in the same way as to simple correlations but the degrees of free-

dom are different. If p is the number of variables held constant, for

partial correlation coefficients we have

t (10)

6. Multiple Correlation. In our example, if we consider not the

separate but the total effect of weight per bushel and the different forms

of damage on the yield of flour, the problem is one of multiple correlation.

Since all these variables have some effect on flour yield the more infor-

mation we have on them the more closely we can predict the flour yield

of a particular sample of wheat.

A simple correlation coefficient measures the relation between a de-

pendent and one independent variable. A multiple correlation coeffi-

cient measures the combined relation between a dependent variable and
a series of independent variables.

Equation (1):

is in reality a multiple regression equation as it may be used to predict

values of*x\ from the known values of #2, #3, 4 xn .

6. Calculation of Multiple Correlation Coefficients. Two methods

are in use for the calculation of the multiple correlation coefficient.

These arise from the two equations (11) and (12) below:

1 - ?.23 . . . . - (1
-

f*2)d - f*8.2)(l
-

1*4-28X1
-

>*?5.234) . - -

(1- 1*1.28.... -l) (ID

R2
012 'fl2 + 018 TIB + 014T14 + . . + 01* 'fin (12)
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Method (11) can be used only when all the partial correlation coeffi-

cients of the first, second, third, to the (n 2) order are known, and

hence it is impossible when the partials have been obtained by solving

the normal equations. It is very useful, however, when only three

variables are being studied. For three variables we have:

Method (12) is directly applicable when the partial correlation coeffi-

cients have been obtained by solving the normal equations for the beta

values.

7. Testing the Significance of Multiple Correlations. It should be

noted that, in equation (11) above, any one of the factors such as

1 i^ia.a cannot be greater than unity, since the square of a correlation

coefficient cannot be less than zero. Hence if we compare

(1
- R?.28 . . . ) and (1

-
r?2)

giving

-Bl-23 . . 1 > ff2
"~

or

Similarly for any other factor on the right of the equation; hence:

72i-23 n > *12, r!3'2> M23 n~l

The multiple correlation coefficient is greater therefore than any of

the constituent coefficients; and its minimum value is zero and not

1, as is the case with a simple or partial coefficient. For this reason

a special table must be used for testing the significance of multiple cor-

relations. 1 The calculation of t values, standard errors, or probable

errors will give entirely erroneous results. Two tables that may be used

are in the references given below.

8. Exercises.

1. Complete the calculation of the partial correlation coefficients begun in

Example 16. The following values will assist in checking the work:

TIJ.MW "" 0.3177

ri6 . 2846 0.3367

fas- 1240 = 0.0393

rw-iaai - -0.1373

1 A test is described in Chapter XIII that is baaed on the analysis of variance.
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2. IfN is 36, determine the minimum value of a fourth order correlation coefficient

that is significant. Put r in terms of t and the number of degrees of freedom.

The value obtained should be 0.3493.

3. Calculate the multiple correlation coefficient #1.23456 for the same data as in

Example 16, and determine its significance. R - 0.7936.

4. Write the simultaneous equations for three variables in the same form as (5)

above. Then prove:

f12 ' 3
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CHAPTER IX

THE x2 (CHI-SQUARE) TEST

1. Data Classified in Two Ways. On reviewing the types of prob-

lems that have been presented in the previous chapters, it will be recalled

that they have dealt with data of two kinds. In the first place we
studied an example in which an operator attempted to classify grain

samples according to variety. The samples were placed either rightly

or wrongly, and there was no intermediate condition. The power of

the operator to differentiate the samples was therefore measured in

terms of the number of samples placed correctly. With a little thought
it will be clear that a great many problems must occur in which the data

are of this type. Thus, in describing the health of a population, an

obvious criterion will be the proportion of the population that are ill, or

perhaps the percentage dying within the year. Again, a set of varieties

of a cereal crop may be differentiated by the number of seeds that are

viable, and so forth. In further examples the data were of a different

type as in the case of yields of wheat plots, weights and heights of men,
and degree of infection. We may be reminded, by these remarks, of

the classification of variables as continuous and discontinuous, wherein

the distinction between the two is fairly clear cut. Will data arising

from discontinuous variables always fall into the first class mentioned

above, and data from continuous variables into the second class? The
answer is that they will not be so easily separated in this way, as we can

easily imagine a situation in which data for a continuous variable may
be treated by the two methods. We may take as an example a com-

parison of the yields of two varieties of wheat. In the first place, if

there are a sufficient number of plots we may compare the two varieties

according to the number of plots that fall into an arbitrarily determined

low-yielding class, or an arbitrarily determined high-yielding class; or

better still we may compare the numbers of plots falling into both

classes. In the second case we may simply compare the average yields

of the two varieties on all the plots. Which method shall we use? This

question is also very easily answered, as it will be clear that the first

method applied to an example of this kind is cumbersome and unwieldy,
and will be used only when the numbers are fairly large and the method

88
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of classifying the plots according to yield is only approximate. For

example, in a comparison of two varieties as grown by farmers it may
be impossible to obtain accurate yields, but it may be possible to classify

the fields quite accurately into the groups low-yielding and high-yielding.

Then, with a fairly large number of fields to work with, a good com-

parison of the varieties may be made simply by determining the number

in each group. For discontinuous variables, on the other hand, com-

parisons will usually be found to be most conveniently made by the first

method, and this is particularly true if the character with which we are

concerned is definitely not measurable in a quantitative manner. Thus

people may be classified only as dead or alive
;
and although there may be

a theoretical situation existing for a short period in which this classi-

fication is uncertain, it is certainly of no practical significance in describ-

ing what has happened to two populations as a result, say, of their

having received two different treatments.

In this chapter we are concerned mainly with methods of applying <

tests of significance in examples where the data are in the form of fre- '

quencies as in the first class mentioned above. Snedecor (4) has very

aptly used the term enumeration data to describe data of this type.

2. Tests of Goodness of Fit. In many problems the test that is

, required is a comparison of a set ofactual frequencies with a correspond-

ing set of theoretical frequencies. Thus in experiments in genetics an 2

population may be classified into two groups, as in a wheat experiment
in which the F% population of 131 plants is classified as 106 that are

resistant to rust and 25 that are susceptible. The predominance of

resistant plants can be explained by the well-known theory of dominance

of the genes for rust resistance coupled with the supposition that rust

reaction is determined by only one pair of genes, one parent having con-

tributed the gene for rust resistance and the other parent the gene for

susceptibility. This is plainly an hypothesis which gives a general

explanation of the results, and as such may be subject to testing in the

same manner as the familiar null hypothesis of Chapter I. The pro-

cedure of this test follows from the following considerations.

In a population for which the hypothesis is true, if a large number of

samples of 131 plants each are taken, these will be found to vary around

a mean value for the frequencies of resistant and susceptible plants

which will be directly calculable from the hypothesis. Thus in the

present example it is easily demonstrated that the mean of such a popu-

lation will be 98.25 resistant plants and 32.75 susceptible plants. In

taking samples from this population, it is to be expected that owing to

random variation some of these samples will exhibit quite wide varia-

tions from the mean of the population, but a large proportion of them
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will, of course, be fairly close to the mean of the population. If we
knew the theoretical distribution of such samples around the mean, we
could calculate for samples the same size as ours the numbers of resistant

and susceptible plants which would occur as the result of random varia-

tions in only 5% of the trials. This would establish for us the 5% level

of significance that is, if our actual sample fell outside of the range of

this_5% level wejsmuIcLiay that the dat^
h^rgothesis, in fact it is fairly convincing evidencfTtlmt the hypQthesisJs
not true. If our sample fell welljwithin the 5% level we would then

say that there was good agreement between the data and the hypothe-

sis, but the hypothesis would not necessarily be proved Now the dis-

tribution of the samples can be calculated directly by methods similar

to those used in Chapter I, and we shall see in Chapter X that if the

sample is small it may be advantageous to proceed on this basis. How-

ever, for general application a much easier method is available. This

method involves the calculation for the data of the sample a statistic

known as x
2
(chi square) which is distributed in a known manner depend-

ing on the number of degrees of freedom available for its estimation.

For the general case x
2

is given by:

where a represents the actual frequencies and t the corresponding theoret-

ical frequencies. Thus in the present example the actual frequencies

are 106 and 25, and the corresponding theoretical frequencies are 98.25

and 32.75. The two values of a t are therefore both equal to 7.75,

and x2 = 7.752/98.25 + 7.752/32.75 = 2.445. 1 The number of degrees

of freedom available for the estimation^)? x
2

is 1. In this respect the

problem is similar to the t test for the differences between paired values.

Here we have two pairs of differences as represented by the two values of

a t, and consequently there is only one degree of freedom. Another

concept of the degrees of freedom arises from the fact that there are

only two classes, resistant and susceptible. The total number in the

sample being fixed, if the number in any one class is fixed the number in

the other class must also be fixed. There is therefore only one class

1 For simple ratios a direct formula suggested by F. R. Immer for calculating

X
2
may be used. This formula is:

xN

where the theoretical ratio is x : 1, ai is the actual frequency corresponding to x

and 02 is the actual frequency corresponding to 1. N is the total frequency.
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which can be arbitrarily assigned a given frequency, and this means that

there is only one degree of freedom.

The next step in the test is to examine the tables that give the dis-

tribution of x
2 and find the value at the 5% level for one degree of

freedom. We enter Table 95 and find that the value of x2 at the

5% point is jyS^L., Our conclusion is thatJfa

ca^^ Of course, we can if necessary go
further and determine approximately in what proportion of cases such

a result as ours would be obtained. The x
2 value of 2.445 falls between

the two values of x
2 that correspond to the 10 and 20% levels of P. By

interpolation our value is found to correspond to the 13% point, and

consequently we can say that a sample showing a deviation from the

theoretical as great as or greater than the one observed would be expected
to occur in 13% of the trials. The observed deviation is therefore not

very important and does not in any sense disprove the hypothesis.

It should be noted at this point that the possible deviations from the

theoretical may occur in both directions, and that in the test of signifi-

cance both these possibilities have been taken into account. Since

there is very often a good deal of confusion on this point, it may be just

as well to emphasize here that it is absolutely necessary, in testing the

hypothesis set up, to take into account possible deviations in both

directions. Our hypothesis involves picturing a population deviating

about a mean of 98.25 resistant to 32.75 susceptible plants. Accord-

ing to the theory, deviations of 7.75 in either direction are equally likely,

and in our sample the deviation happened to be positive for the resistant

group and negative for the susceptible group. If we should determine

the proportion of the trials in which a positive deviation as great as or

greater than the one observed would occur, it is clear that this proportion
would be exactly half of the proportion determined above, or about 6|%.
But this would not be a test of agreement with the hypothesis, any
more than it would be to determine the proportion of the trials, say,

in which a deviation of +7.75 to + 8.00 would occur. The proportion

would be very small, but it would in no way indicate disagreement with

the hypothesis. Another way to consider this problem is to examine

the possible consequences of accepting as a test of significance the 5%
level, taking into account positive deviations only. On a large series

of samples the investigator would expect to classify 5% of the samples
as giving a significant disagreement with the hypothesis, even when the

hypothesis is true. If positive deviations only are considered he would

classify only 2f% of the samples in this way, and consequently would

not be setting up the level of significance at the 5% but at the 2^%
point. In certain cases, as we shall see later in the next chapter, it is
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legitimate as a test of significance to take into consideration the devia-

tions at one end of the distribution only; but these are special cases and

not comparable to the example given above.

Example 17. In a cross of two wheat varieties. Reward and Hope, the following

results were obtained for the frequencies of resistant, semi-resistant, and susceptible

plants in the Fa generation.

Resistant 111

Semi-Resistant 232

Susceptible 1181

The theoretical frequencies according to two hypotheses are as follows:

If we wish to test the two hypotheses by comparing the actual with the expected

frequencies in each case, the work may be set up and carried through as follows:

Single Factor

Hypothesis

Complementary and Inhibiting

Factor Hypothesis

X
2 =2239.7 n - 2 P - 0.0000 x

2- 0.857 n - 2 P - 0.65

We have two degrees of freedom in each case, and we find for the first case that such

a large value of x
2
is not given in the table. The largest value under n = 2 is 9.21,

which corresponds to a P of 0.01. We can conclude, therefore, that the probability
of obtaining deviations, due to chance variation, as great as or greater than those

observed is too remote .to be considered. In the second case, x
2 a 0.857 and this

corresponds approximately to P * 0.65. The fit here is very good since deviations

as great as or greater than those observed may be expected in at least 50% of the

cases. The final conclusion is that the single factor hypothesis is quite inadequate
to explain the type of segregation observed, but there is good evidence to support the

second hypothesis baaed on a pair of complementary factors and an inhibiting factor.
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Example 18, In an assumed cross between parents of the constitution BBcc and

bbCC, the F* population is classified as follows:

BC

1260

Be

625

Cb_

610

cb

5

Total

2500

According to a theoretical 9:3:3:1 ratio, the theoretical frequencies would be:

BC
Bc_ Cb_ cb_

Total

1406 469 469 156 2500

The actual results differ very widely from the expected as indicated by calculating

x
2

. In this case we find x
2 = 255.60 and referring to Table 95 and entering at

n * 3 we note that 11.34 is the highest value given. It is clear that the fit is very

poor; so we proceed to analyze the data for the source of the disturbance, and develop
a hypothesis more in accordance with the facts. In the first place the assumption is

made when the 9 : 3 : 3 : 1 ratio is built up that the ratio of B to 6 is 3 : 1, and that of

C to c is also 3:1. A discrepancy in either one of these ratios will result in a poor fit

to the 9 : 3 : 3 : 1 for the whole set. Consequently we set up the two actual ratios

and calculate x
2 for each.

B
jb_

1885 615

(1885
- 3 X 615)

2
/3 X 2500

0.2133

1870 630

(1870~3X630) 2/3X2500

0.0533

Now x
2 values may be added together or separated into components. In this case we

can add the two x
2
values, obtaining a new x

2
of 0.2666. Similarly we add the

degrees of freedom, obtaining n = 2. On looking up the tables we find that the P
value is between 0.95 and 0.50 but closer to the latter, hence the fit is good and the

discrepancy of the actual from the theoretical 9:3:3:1 ratio is not due to the segre-

gation of the individual pairs of factors, but to the behavior of the factor pairs in relat-

ion to each other. In other words, there must be a tendency for the factors to be linked

in inheritance. It is a common procedure in such cases to calculate the linkage

intensity. An approved method (1) for examples of this type gives 9% of crossing

over, and on that basis we can determine a new set of expected frequencies. These are

set up below with the actual frequencies and another value of x
2 determined.
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The theoretical frequencies in this table have been calculated on the basis of 9%
crossing over, a value which was determined from the sample itself. Therefore, we

lose one degree of freedom and must enter the table under n = 2. In this case we

find P approximately 0.90. There is a very close agreement between the two sets

of frequencies, but it would not be correct to consider this a very satisfactory fit.

Such close agreement could only occur by chance on the basis of the hypothesis

being tested in 10% of the cases. However, the agreement is not sufficiently close to

prove that the original data were selected to give a good fit. If we had obtained a

P of 0.95, it would have been worth while investigating the data to determine the

reason for the very unusual agreement.

Example 19.
*

The goodness of fit test may be useful in determining the agree-

ment between actual and theoretical normal frequency distributions. In Chapter III,

Example 1, we calculated the normal frequencies corresponding to the actual fre-

quencies for the transparencies of 400 red blood cells. In Table 21, these two dis-

tributions are repeated, and the third column gives the calculation of x
2

.

TABLE 21

ACTUAL AND NORMAL FREQUENCIES FOR TRANSPARENCIES

OF 400 RED BLOOD CELLS, AND CALCULATION OF x
2

In connection with a test of this kind, two important points should be noted.

(1) At the tails of the distribution the theoretical frequencies and corresponding

actual frequencies are grouped. The object is to avoid very small theoretical values

which, if present, to some extent invalidate the x
2
test. The general rule is to avoid

having theoretical frequencies less than 5. This point is discussed in greater detail in

the following chapter on tests of goodness of fit and independence with small samples.

(2) The theoretical frequencies are determined from the total frequency and the mean
and standard deviation of the sample, so we must deduct one degree of freedom for

each. Thus three degrees of freedom are absorbed in fitting, and since there are 13

classes we have 10 degrees of freedom for the estimation of x
2

.
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In the present example we enter the *
2 table therefore under n = 10, and note

that a x
2 of 7.9377 corresponds approximately to a P value of 0.65. Consequently

the fit may be considered a very good one.

3. Tests of Independence and Association. From a cross of two
wheat varieties 82 strains were developed and tested for their agronomic
characters. One set of data for these strains is given in Table 22. On

TABLE 22

CLASSIFICATION OF 82 STRAINS OF WHEAT FOR

YIELD AND CHARACTER OF AWNS

examining the frequencies in the 3X2 table, we note that there seems

to be a tendency for the awned types to give higher yields than the

awnless ones. To test the significance of such a result, we have to

determine the probability of its occurrence if the two characters are

entirely independent. For this particular problem we have to find the

percentage of cases in which the above distribution, or one emphasizing
still more the difference in yield of the two classes of varieties, would be

obtained if there were no tendency whatever for awned varieties to

yield higher or lower than awnless ones. Such a test could be applied

by calculating x
2

if we could obtain the theoretical frequencies for each

cell representing complete independence of the two characters. A
reasonable basis for the calculation of these theoretical frequencies is to

assume that, if the distributions are independent, they will be distributed

within the table in the same proportion as they are in the totals. Thus

in the cell in Table 22 containing 6 strains, we should have, on the basis

of complete independence, x strains where x : 24 : : 34 : 82. Hence

x = (24 X 34)/82. In the cell below, x = (24 X 48)/82. In the same

manner all the theoretical frequencies can be calculated, and then we
can proceed to the calculation of x

2
. This is the direct method of cal-

culating x
2

;
but a shorter method for general use is given below under

Section 5.
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4. Degrees of Freedom in X2 Tables. In goodness of fit tests where

the theoretical frequencies are determined according to some chosen

hypothesis, the degrees of freedom can usually be equated to (N 1)

where N is the number of cells in the table. In certain cases, however,

as in Example 19 above, additional statistics calculated from the sample

are utilized to determine the theoretical frequencies, and one degree

of freedom must be subtracted for each of such statistics.

In tests of independence or association, the subtotals of the classes

into which the variates are distributed are used to determine the theoret-

ical frequencies, and obviously these must be treated as statistics, so

far as they themselves absorb degrees of freedom. Examining Table 22,

we note that originally we have 5 degrees of freedom in the table, but 1

of these is absorbed by the awning subtotals and 2 for the yield sub-

totals. Therefore we have finally only 2 degrees of freedom left for the

estimation of x
2

- Another method of determining the degrees of free-

dom is to make an actual count of the number of cells that can be filled

up arbitrarily. To do this we must assume that the subtotals are

chosen first. Then, as in Table 22, any two cells such as those contain-

ing 6 and 7 may be filled up arbitrarily but all the rest are fixed. The

two cells that can be filled arbitrarily represent 2 degrees of freedom.

In m X n fold tables the degrees of freedom can be equated to

(m l)(n 1) for the general case with which we are dealing. Special

cases will of course arise where this rule will not hold, but usually it is

easy in such cases to arrive at the correct number by some such method

as that described above.

6. Methods of Calculation for Independence and Association Tests.

(a) For (m X n) fold tables. The generalized x2 table may. be repre-

sented as follows:

C
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In order to determine x2 we must calculate the theoretical frequency for

each cell. For cell 11 we find t (Tc\-TBi)/T, and for cell 12,

i = (TC2-TBi)/T, and so forth for all the cells. We then set up the

theoretical frequencies with the corresponding actual frequencies and
calculate x

2 = S[(a - t)*/t].

(6) For (8 X ri) fold tables. A table of this type may be represented
as follows :

1 2 3 n

We can calculate x
2 for this table in exactly the same manner as for the

(m X ri) fold table above, but a short-cut method giving x2 directly

without calculating the theoretical frequencies is given by Brandt and

Snedecor, as follows:

Each frequency in either of the rows is squared and divided by the cor-

responding subtotal. These are summated and the correction term

subtracted as shown in the formula. The remainder is multiplied by
the quotient of the square of the total frequency by the product of the

two subtotals on the right. This formula shows as each value of

b2/T8 is calculated the contribution of each pair to the value of x2 -

(c) For (2 X *) fold tobies. Representing the (2 X 2) fold table

as follows:

h bt

Cl

n

X2 is givefa by (3)

We multiply diagonal frequencies and find the difference between the

two products. The difference is squared and multiplied by the grand

total, and the result is divided by the product of the subtotals.
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6. Coefficient of Contingency. It will have been noted that the

methods employed in tests of independence and association are com-

parable to the method of correlation, with this essential difference, that

in the former the categories are either descriptive or numerical. If the

categories are numerical and of equal magnitude, we can calculate a

correlation coefficient for any of the tables to which we usually apply x
2

with the reservation that if the categories are very broad we will get

only an approximation to the true value of the correlation coefficient

even if corrections are made for grouping. The necessity for the use

of x
2

arises, therefore, from material which can be classified, at least

for one character, only in descriptive categories, or in numerical cate-

gories that are not of equal magnitude. For tables to which only x2

methods can be applied, some investigators feel that in addition to the

X
2
test, which is essentially a test of significance, they should have some

measure of association comparable to the correlation coefficient. A
measure of this type is Pearson's coefficient of contingency (C) given by:

where N is the total number of observations (not the number of classes).

Since it is a function of x
2

.
the significance of the coefficient of con-

tingency must be the same as for x
2

- It is not necessary, therefore, to

have a standard error of C in order to test its significance.

7. Exercises.

1. Test the goodness of fit of observation to theory for the following ratios:

(1)

(2)

(3)

(4)

2. In an F% family of 200 plants segregating for resistance to rust, if resistance is

dominant and susceptibility recessive, find the ratio that gives a P value of exactly

0.05 when fitted to a 3 : 1 ratio.

There are two possibilities, the ratios being 138 : 62 or 162 : 38.
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3. In a certain cross the types represented by BC, Be, bC, and be are expected to

occur in a 9 : 3 : 3 : 1 ratio. The actual frequencies obtained were:

BC Be bC be

102 16 35 7
Determine the goodness of fit, and if the fit is poor analyze the data further to dis-

close the source of the discrepancy.

X
2 = 9.86; P is less than 0.01. Hence the fit is poor.

In further analysis, test the segregation for each factor separately.
4. Test the goodness of fit of the actual to the theoretical normal frequencies for

either of the distributions from Chapter II, Exercise 2, or Chapter II, Exercise 3.

Watch the grouping of the classes at the tails of the distributions in order that the

theoretical frequency in any one class is not less than 5.

For Exercise 2, x
2 = approximately 10.

For Exercise 3, x
2

as5 approximately 2.6.

6. Table 23 gives the data obtained during an epidemic of cholera (3) on the

effectiveness of inoculation as a means of preventing the disease. Test the hypothesis
that in the inoculated group the number of persons attacked is not significantly less

than in the not inoculated group, and the number not attacked is not significantly

greater. Note carefully how this hypothesis is worded.

TABLE 23

FREQUENCIES OF ATTACKED AND NOT ATTACKED
IN INOCULATED AND NOT INOCULATED GROUPS

Not attacked Attacked

Inoculated

Not inoculated

6. Calculate x
2 and locate the approximate P value for Table 22 given in Section

3 above. x
2 = 15.87.

7. The data in Table 24 were obtained in a cross between a rust-resistant and a

susceptible variety of oats. The ^3 families were compared for reaction to rust in

the seedling stage, and in the field under ordinary epidemic conditions.

TABLE 24

CLASSIFICATION OF SEEDLING AND FIELD REACTIONS
OF 810 Fs FAMILIES OF OATS

Seedling Reaction

Resistant Segregating Susceptible

Resistant

Field Reaction Segregating

Susceptible
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Test the significance of the association in this table, and calculate the coefficient of

contingency.

X2 - 1127.87. (This result will vary according to the accuracy with which

the t values are calculated. To check approximately with the value given here

calculate the t values to at least two decimal figures.)
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CHAPTER X

TESTS OF GOODNESS OF FIT AND INDEPENDENCE WITH
SMALL SAMPLES

1. Inadequacy of the x2 Criterion and the Correction for Continuity.
The method of x2 is based on the smooth curve of a continuous distribu-

tion and, when the numbers are large, gives probability results that are

very close to the true values. When the numbers are small, and espe-

cially when only one degree of freedom is involved, the x
2 method is

quite inaccurate. One reason for this will be clear from an examination
of Fig. 10, representing the distribution obtained by expanding the

RATIO

FIG. 10. Frequency distribution of (| + f )
8 and corresponding smooth curve.

Shaded areas indicate the need for a correction to x
2
for smaD samples.

binomial $ + -|)
8

. Given a theoretical ratio of 1 : 1, say, for the suc-

cess or failure of an event, the binomial distribution as in Fig. 10 would

give the theoretical frequency of the successes through the total range
from to 8. If we wished to determine the probability of obtaining
6 or more successes in 1 trial of 8 events, we would find the ratio of the
dotted area of the figure to that of the whole. A x

2
test of the 6 : 2

ratio, however, would be based on the smooth curve shown in Fig. 10,
and the probability would be the ratio of the cross-hatched urea to the
whole. The cross-hatched area is obviously less than the dotted area,

101
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by an amount equal approximately to one-half the area of the 6 : 2 ratio

column. Consequently the x
2 test will give a probability result that is

too low.

In order to correct for the above-mentioned discrepancy in the x2

test, Yates (8) has suggested a correction which he proposes to call the

correction for continuity. In the ordinary case x2 is given by S(a t)
2
/t,

where a represents the actual and t the theoretical frequencies. Yates's

correction is applied by subtracting | from each value of (a t), but it

must always be subtracted in the direction that reduces the numerical

value of (a t). In Fig. 10 the application of the correction would

result in extending the cross-hatched area to the line bordering the col-

umns representing" the 5 : 3 and 6 : 2 ratios, and must obviously bring

about an improvement in the estimate of probability.

It should be noted in connection with tests of significance applied

to ratios that the x2 method is exactly equivalent to the use of the

standard deviation to determine the significance of a deviation from

the mean. Likewise the correction for continuity must be made when
the numbers are small. As will be evident from Fig. 10, the correction

is simply a matter of subtracting f from the deviation from the mean.

To test the significance of a 6 : 2 ratio when the theoretical is 1 : 1 or

4 : 4, we would take the deviation equal to (6
_

4 ^)
= 1.5. The

standard deviation of a binomial distribution is Vpgn = Vf X ^ X 8 =

1.4142, and we can test in the usual way, using tables of the probability

integral.

The x
2 test for ratios is also inaccurate when applied to samples from

populations having a definitely skewed distribution. In the case of

ratios of successes to failures where the theoretical ratio is not 1:1, this

inadequacy of the x
2 test becomes obvious. Table 25 gives the true

probabilities calculated from the binomial distribution of obtaining from

16 to successes when each trial consists of 16 events. These are worked

out for two cases: (1) when the theoretical ratio is 1 : 1, and (2) when the

theoretical ratio is 3 : 1. The corresponding \P l values obtained by

calculating x
2 with and without Yates's correction are given in the same

table. For the symmetrical binomial distribution it will be noted that

the |P values for x'
2 with Yates's correction agree very well with the

correct values except at the extreme tails of the distribution where x'
2

tends to overestimate the probability. For the asymmetrical distribu-

tion the agreement is not good anywhere in the range. In both cases it

1
|P is used here to indicate that the probability is calculated from the area of

only one tail of the distribution. As the problem is stated in terms of "15 or more

successes," etc., it is obvious that only one tail of the distribution must be considered.
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will be observed that x
2 uncorrected gives a very decided underestimate

of the probability through practically the whole range.

TABLE 25

PROBABILITY OF n SUCCESSES IN A SAMPLE OP 16 EVENTS

In probability tests applied to 2 X 2 frequency tables, the same
difficulties arise with regard to the application of x

2 as for testing the

goodness of fit of simple ratios. Since only one degree of freedom is

involved, the number of possible combinations of the frequencies of

unlike probability is relatively small and the theoretical distribution is,

therefore, definitely discontinuous. The error is not significant when
the frequencies are large, but with small frequencies it is very decided.

The skewness factor is not so important for 2 X 2 tables as for simple

ratios, as the x
2 curve adopts itself within certain limits to the shape of

the theoretical distribution. After correction for continuity the remain-

ing discrepancy may be regarded as due to the comparison between a

histogram and a smooth curve which gives an approximate fit.

The method of making the correction for continuity is to determine

the larger of the two products &iC2 and &2Ci, and for the larger subtract-

ing 0.5 from the two factors, and for the smaller adding 0.5 to the two
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factors. After making these corrections the usual formula may be

applied.

Table 26 has been prepared to show the relation between the values

of |P calculated for the 2 X 2 table:

using (a) a direct method for determining the exact probability, (b) x
2

without correction, and (c) x'
2

>
or that obtained by using the correction

for continuity. The direct method was devised by R. A. Fisher (1) and

will be described below under "Methods of Calculation." The prob-

ability value for the modal frequency has been omitted since it may be

considered as belonging to either tail of the distribution.

It will be noted that at the extreme tails of the distribution x2 tends

to overestimate the probability, but that in the range where significance

may be in doubt the agreement is fairly good. On the other hand, as

indicated by the %P values for x2 >
unless the correction for continuity is

made there is a very decided underestimation of the probability through-

out the whole range.

For 2X3 frequency tables, the correction for continuity is not so

important as for 2 X 2 tables. With 2 degrees of freedom the number
of possible combinations is much greater than for 1 degree of freedom,

and the agreement between the smooth curve and the histogram must be

much better. With more than 2 degrees of freedom the correction for

continuity would hardly be necessary in any case. It must be remem-

bered, however, that the tendency, especially when the numbers are

small, is to underestimate the probability; and it may be necessary in

certain cases to check the probability by direct calculation, or if this is

impractical, by an analytical study of the larger table made by breaking

it up into parts or condensing it into a single 2X2 table. The direct

calculation of probabilities, even in a 2 X 3 table, is slightly complicated;

so that in most cases the best practice is to endeavor to make an applica-

tion of x
2 such that we are reasonably sure of a fair approximation to the

true probability.
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TABLE 26

PROBABILITIES FOE ALL THE COMBINATIONS OF A 2 X 2 TABLE

2. Methods of Calculation. Example 20. In a study of the blood groups of

some North American Indians, Grant (2) obtained the results given in the following

table:
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It appears that pure Indians tend towards a very high percentage of individuals

having the blood group O, but the group at Fond du lac had an obviously larger

percentage of white blood as indicated by other characteristics. The essential prob-

lem in this case is to test the significance of the distribution of the two bands into

two main groups, O and not O. We form, therefore, a 2 X 2 table, as below:

O notO

Fond du lac

Chipewyan

Either the x
2
test with the correction for continuity or the direct probability method

would be applicable to this table. In order to indicate the methods of calculation we
shall apply the test in both ways.

(a) x
2 corrected for continuity. If a 2 X 2 table is represented as follows*

the corrected value of x
2
is given by

where T/2 always reduces the numerical value of (6iC2 <

equivalent to the method described on page 103.

Applying the corrected formula to our example, we have

9 (13 X 11 - 18 -

(1)

This is of course

31 X 12 X 14 X 29
3.0499

Using Yules table of "P for divergence from independence in the fourfold table"

(9), we look up
X
2 - 3.0 P - 0.08326

X2 - 3.1 P - 0.07829

Difference - 0.00497

and by direct interpolation P - 0.08077 and J P - 0.0404.

In order to obtain P more accurately we can make use of the fact that the dis-

tribution of x
2

is normal for one degree of freedom, and V x
2

? t the value for

Catering tables of the probability integral. Here Vx2 - V3.0499 - 1.7464, and in

Sheppard's table of the probability integral we look up
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I m 1.74 J(l + a) - 0.9590705

t - 1.75 (1 -f- a) 0.9599408

Difference - 0.0008703

and interpolating directly for t = 1.7464 we have $(1 -fa)- 0.959,6275. Since

we want | P we take $ P - 1 - f (1 -f a) - 0.04037.

(6) Direct probability method for a 2 X 2 table. Representing a 2 X 2 table

as above, R. A. Fisher (1) has shown that, for any particular combination of 61,

&2, ci, C& the direct probability of its occurrence is given by

t H ^ :W \
(2)

Tl / V&i! W d! c*!/

The easiest method of performing the calculations is by means of a table of

logarithms of factorials. The different combinations that can occur are as follows:

and so forth

all other combinations having the same probability and occurring with equal fre-

quency with one of the above. In this case, therefore, we require the sum of the

separate probabilities of the first two combinations. These are given by:

"31IX 12! X 29! X 14!

43!

"31 !X 12! X 29! X 14!

X
18! X 11! X 13!_

1

L 43! 17! X 14! X 12!J

When a series of such terms are to be calculated, labor is saved by first calculating

the logarithm of the constant factor. The logarithms of the terms are then obtained

by subtracting the logarithms of the factorials in the numerator of each term.

In this example, log constant factor 31.701,1593

The logs to be subtracted are 33.201,7770 and 34.171,8139, giving:

log term 1 - 2.499,3823 Term 1 - 0.031,578

log term 2 - 5.529,3454 Term 2 - 0.003,338

The values of

Total - $P - 0.0349

obtained by the two methods are in fairly close agreement.
1

1 The student may use this example in order to straighten out in his mind the

reason why for certain tests it is correct to base the decision on the value of $P
instead of P. Actually the hypothesis being tested here is that Indians having an

admixture of white blood do not contain a greater percentage of individuals with the

blood group O than Indians that are relatively pure. If the hypothesis is stated

differently for example, that the two groups of Indians are random samples drawn

from the same population with respect to the distribution of the blood group O
then it would be necessary to use the full value of P in order to make the test. The
test based on the value of \ P arises from the knowledge that the Fond du lac group
had an obviously larger percentage of white blood than the Chipewyans.
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Example 21. For a certain disease we will assume that it has been shown that

recovery or death is a certainty and that without treatment about half of the patients
recover. A new treatment tried out in 16 cases gives 12 recoveries and 4 deaths.

Is this a significant demonstration of the efficacy of the treatment?
This problem can be solved by the direct calculation of probabilities according

to the binomial distribution, or since the theoretical distribution is symmetrical the

X2 test corrected for continuity will give a fairly close approximation. Both methods
will be used in order to demonstrate methods of calculation.

(a) x
2
corrected for continuity. For ratios the short formula for determining

X
2 as in Chapter IX, Section 2, is modified as follows to correct for continuity.

- 02*

where the theoretical ratio is x : 1, a\ is the actual frequency corresponding to x, and
02 is the actual frequency corresponding to 1. AT is the total frequency or (ai+ 02),

and ~
always reduces the numerical value of (ai a$t). In the present example:

From Yule's table of P we find \ P - 0.0401. The odds are about 25 : 1 against the
occurrence of a 12 : 4 ratio due to chance alone.

(6) Direct probability from the binomial. Let p represent the probability of

recovery and q the probability of death. We know that p = q ^, and we require
the first five terms of the expansion of (p + 9)

n where n 16. The expansion of

(P + 0)
n

is given by:

(P + 5)
n - P

n + nCip"-
l
q + nC2p

n-y + - + Cwg
n

(4)

where nCr
n(* " 1)(" "

2) ' " (n
~ r + *> * !

1-2-3 -T r!(n-r)I
In our example we have:

u

In each term we have the constant factor ()16
. We determine the logarithm of this

factor in the ordinary way and proceed to determine the logarithms of the coefficients

by means of a table of the logarithms of factorials. The work is as shown in Table 27,
which is self-explanatory with the possible exception of the last column. The term
values give the probabilities of obtaining in one trial the number of recoveries (or

deaths) shown in the same line. In general, however, we do not ask that question.
We inquire, for example, as to the probability of obtaining 12 or more recoveries in a

sample of 16, and hence we must add the probabilities for 12, 13, 14, 15, and 16
recoveries. These summations have been performed and are given in the last column
under the heading |P. Again, since we have summated for one tail of the distribu-
tion only, we represent the probability by ^P.

The answer to our problem is given in the line representing 12 recoveries. The
corresponding value of \P is 0.0384, and this compares reasonably well with

|P - 0.0401, obtained by the %* method*
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TABLE 27

CALCULATION OF PROBABILITIES FROM THE BINOMIAL

Example 22. In the example above, let us assume that without treatment the

ratio of recoveries to deaths is 3 : 1 instead of 1 : 1, and in the group of 16 patients

receiving treatment the actual ratio is 14 : 2. Test the significance of the treatment.

This problem differs from the first, in that the theoretical distribution is skewed,

and what has been said about the x2 method being remembered, it may be taken for

granted that x
2
will not give a good approximation to the true probability. We must

solve this problem, therefore, by a direct calculation of the probability from the

binomial distribution.

Since the ratio of recoveries to deaths is 3 : 1, p = f and q =*
^, and we must

calculate the first three terms of the expansion of (f + )
16

. Using the formula given

we have:
6 16!/3\ 16/1\ 16!3 1\ 16 /3V

4
+ V

~ W
Noting for convenience in calculation that:

6 "
3

*

The factor (J)
16

is constant, and when several terms are to be calculated this trans-

formation results in a saving of labor.

The calculations are given in Table 28. In the JP column representing 14 recov-

eries we have |P = 0.1971, or the odds are only about 5 : 1 that the treatment is

beneficial. This is an indication of a beneficial effect but it cannot in any sense be

TABLE 28

CALCULATION OF PROBABILITIES FROM THE BINOMIAL (f + J)
16
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considered a proof. It would be sufficient evidence to warrant further investigation,

but the practical aspect of such a problem must not be lost sight of, in that the actual

gain in recoveries is very small and further investigation might best be directed

along the line of trials with other treatments.

3. Selection of Method for Tests of Significance. Some confusion

may arise as to when to apply x
2 and when to apply the direct method

of calculating probabilities. Also when applying x
2 the question arises

whether or not the correction should be applied. In general these points

can be made clear by the consideration of some hypothetical examples.

Example 23. The following is a 2 X 4 fold table of frequencies

A B C D

I

II

The numbers are large, and the theoretical frequencies in each cell are large.

The x
2 criterion may be applied to the whole table, and no correction is required.

Example 24. If some of the numbers in a 2 X 4 fold table are small, as in the

table below, the table must be rearranged.

B

1

II

Obviously the classification of the I and II frequencies into C and D is meaningless,

and the rearrangement is either a matter of adding these frequencies to B or elimi-

nating them altogether. Assuming that they can be eliminated we have a 2 X 2 table

To this table it is perfectly legitimate to apply the x2
test, and, although the numbers

are fairly large, the correction for continuity will improve the results slightly. Obvi-

ously it would be very laborious to make a direct calculation of the probability, BO we

would not even consider the method in this case.
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Example 25. We have a 2 X 2 table in which the numbers are small:

111

For this case the direct method is the most accurate and is not difficult.

Example 26. Given a theoretical ratio of 1 : 1 for the occurrence of A and B in a

series of events, we obtain in 100 trials 60 A 's and 40 B's. What is the significance of

this result?

The numbers are large so that the direct calculation of the probability will be

very cumbersome. Therefore, we use x
2 with the correction for continuity, or we

calculate the ratio of the deviation (also corrected for continuity) to its standard

deviation and get the probability from tables of the probability integral. The cor-

rection for continuity is not important, but it is bound to give a slight improvement.

Example 27. In a test of the goodness of fit of a ratio, we have a very skew

distribution. For example, the theoretical ratio of successes to failures is 15 : 1, and
the actual results are 5 failures out of 160 events. The direct method is the only one

that will give an accurate probability result in this case, and we must calculate the

last six terms of the expansion of (15/16 + 1/16)
180

. When the numbers are large,

the calculations are somewhat laborious, but in most cases it is sufficient to determine

whether the result is or is not significant; and it will only be necessary in working
from one end of the distribution to calculate enough terms such that their sum (F)
is 0.05. If the observed deviation is within that range it is not significant. If the

deviations in both directions are to be considered, we work from both ends of the

distribution until the sum of the terms at each end is equal to 0.025.

Example 28. The theoretical ratio gives a skew distribution, but the numbers
are small. Calculate the probability by the direct method as in Example 27.

4. Exercises.

)
8 and (f -f f )

12
,
and calculate the value of1. (a) Expand the binomials (f

each term.

(6) If there is an equal probability of the birth of male and female rabbits de-

termine the probability in a litter of 8 of the occurrence of 2 females and 6 males.

(c) Plot the histogram for the expansion of (f 4- i)
12

- A bag contains white

and black balls in the ratio of 3 white to 1 black. Show that, if a sample of 12 balls

is taken at random, the probability of obtaining 12 white balls is different from that

of obtaining 6 or more black balls, although both cases represent an equal deviation

from the expected 9 white to 3 black.

(a) In order to check the work add all the terms and the sum should be

very close to 1.000.

(6) p == 0.1094. (Note that this is not a test of significance. It is merely
a question of determining the probability of the occurrence of one particular ratio.)

(c) Illustrates the problem of making tests of significance in skew distributions.

2. Koltzoff (3) performed an experiment on the control of sex in rabbits. Sperms
were placed in a physiological solution in a tube and an electrical current passed
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through the tube. A female impregnated with sperms taken from the anode produced

6 females and males, and another female impregnated with sperms from the cathode

produced 1 female and 4 males. Test the significance of this result.

Using the direct method P is 0.0152.

3. From a study of the position of the polar bodies in the ova of the ferret,

Mainland (4) gives the frequencies in the following table:

Similar Different

!OM apart

More than 10;* apart ....

Test the significance of the apparent association between similarity and position

of the polar bodies. JP - 0.025 calculated by the direct method.

4. Neatby (6) studied the association, in a random sample of lines from a wheat

cross, of resistance to different physiologic forms of the stem rust organism. Two
tables from his results are given below. Test the significance of the association in

each case.

Form 21 Form 21

SR S SR S

Form R.

27 8R.

= 0.93

R (resistant) # (semi-resistant) S (susceptible)

x
2 - 13.50

5. Twenty-two animals are suffering from the same disease, and the severity of

the disease is about the same in each case. In order to test the therapeutic value of a

serum it is administered to 10 of the animals and 12 remain uninoculated as a control.

The results are as follows:

Recovered Died

Inoculated

Not inoculated ....

Determine the probability in such an experiment of obtaining this or a result more
favorable to the treatment. By the direct method \P * 0.0456.

6. An experiment is conducted similar to that in Exercise 5 but no uninoculated

animals are available for a control. Previous results, however, indicate very strongly
that the proportion of recoveries to deaths without treatment is 1 to 3. Again, the

result is 7 recoveries to 3 deaths when 10 animals are treated. Test the significance

of this result, and explain why it differs from that obtained in Exercise 5.

\P m 0.0035.

In the problem of Exercise 5 the theoretical ratio is itself estimated from the

sample.
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CHAPTER XI

THE ANALYSIS OF VARIANCE

1. The Heterogeneity and Analysis of Variation. If we consider

the variation in such a character as stature in man, it is obvious that

this variation in general is not homogeneous. Two races may differ

decidedly in their average stature, and the individuals of each race will

vary around a common mean. Also, with reference to the variation

within each race, there are regional and genetic differences between cer-

tain groups so that even within the race the variation is not strictly

homogeneous. In actual fact we can conclude with a reasonable degree
of certainty that variation cannot be strictly homogeneous unless it is

purely random, i.e., caused by a multiplicity of minor factors that cannot

be distinguished one from another. In experimental work the hetero-

geneity of variation is usually predetermined by the plan of the experi-

ment. One set of results is obtained, for example, under a given set of

conditions and another under distinctly different conditions, the object

being to compare the two groups of results. Here the heterogeneity of

the variation is the factor that is being tested, and the degree of its ex-

pression determines the significance of the findings of the experiment.
It would seem to be a necessity, therefore, in studies of variation, to be

able to differentiate the variation according to causes or groups of causes,

especially in experimental work where such differentiation is an essential

part of the analysis of the results. The analysis of variance supplies the

mechanism for this procedure and in addition sets out the results in a

form to which tests of significance can be applied.

The points mentioned above may be made more obvious by the con-

sideration of a theoretical exainple. Suppose that, for two races of men
that we shall designate as A and 5, the mean stature of race A is 66

inches and that of race B is 68 inches. Histograms are prepared for

the frequency distributions of stature for the two races, and one histo-

gram is superimposed on the other. The two distributions will undoubt-

edly overlap, but are very likely to show two distinct peaks at the means
of the two populations. The variation over all the individuals com-

prising the two races could then be fairly definitely described as hetero-

geneous. We might now endeavor to picture what the situation might
be if we were dealing with several races instead of only two. There

might be a number of peaks, perhaps as many peaks as there are races;

114
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but it is more likely that some of the groups will so nearly coincide as

to be indistinguishable. Now that we have in mind several races, how-

ever, it is probably easier to think in terms of the total variability of

all the individuals concerned being divided up into two portions. One

portion is that which occurs within all the races. To get a mental pic-

ture of this, we might suppose the frequency distributions for all the

races superimposed on one another in such a way that the means of the

different races would coincide. The resulting distribution would be a

sort of average of all the separate distributions. The second portion
of the variability would be that resulting from the differences between

the means, and if we had a sufficient number of these means we could

make up another frequency distribution for them. For each type of

distribution a standard deviation or a variance could be calculated, and

it becomes clear at once that a comparison of two such statistics would

be valuable in coming to a conclusion as to the degree of heterogeneity.

To make this point still more obvious, let us imagine a series of samples

being taken from a homogeneous population. As we have already

learned, these samples will have different means, but these differences

will result merely from random sampling. They will be large or small

according to the magnitude of the variation in the population from which

they are drawn. This is a very important generalization and one which

is fundamental to an understanding of the analysis of variance. If the

original population has a very small variation, the means of the samples
drawn from it will also have a small variation. If the population has

a large variation, it is to be expected that this will be reflected in the vari-

ations of the means of the samples. In fact, without going into the in-

tricacies of an algebraic proof it seems reasonable to assume that, on

the average, the variance of the means of the samples will be equal to

that in the original population, provided of course that we multiply this

variance by the number in the samples. Thus, if the variance of the

population is v, the variance of the sample means is expected to be v/n,

where n is the number of individual determinations entering into each

mean.

The next step in the development of these ideas is to consider what
the situation would be if, in taking a series of samples, we did not know
that they were being taken from a homogeneous population. The
variance of the population is unknown; hence it must be estimated

from the values in the samples. The most logical estimate is that aris-

ing from the variations within each sample, from its own mean. Sup-

pose that this estimate is vi and the estimate of the variance of the

sample means is v*/n. Multiplying the latter by n we have t>2, which

we shall expect to be very dose to v\ if the population is homogeneous,
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but which may be very much larger than vi if the population is hetero-

geneous and this heterogeneity has corresponded with the method of

taking the samples. This suggests to us that there may be a technique

here for making a test of significance. The null hypothesis is that all

the samples have been drawn from the same population, and therefore

that V2 does not differ significantly from vi. For example, if we take

the ratio V2/vi, a test of significance could be made if, for a given example,
we could determine the proportion of the trials in which a value as large

as or larger than v%/v\ would be obtained owing entirely to random sam-

pling fluctuations. We are indebted to Dr. R. A. Fisher for many of the

recent developments in statistical methods, but especially for the solu-

tion of this particular problem. If there are only two samples it will be

noted that we have already discussed a solution, in that we may apply
the t test to the significance of the difference between the means. How-

ever, if there are more than two samples the t test does not apply, and we
must use the technique of the analysis of variance as developed by R. A.

Fisher (3). The details of this technique are best learned by the con-

sideration of actual data.

2. Division of "Sums of Squares"
1 and Degrees of Freedom. As

pointed out in previous chapters the variance is a measure of variation,

and it consists of a sum of squares of deviations from the mean divided

by the corresponding degrees of freedom. In a set of observations, if

the total sum of squares of the deviations from the mean can be divided

up according to some scheme suggested by the data, and the degrees of

freedom can be divided correspondingly, it is clear that a variance can

be calculated for each group as well as for the total. It is through the

comparison of such variance values that we obtain a true picture of the

variation in the entire set of observations.

With respect to the division of sums of squares, the best way to ob-

serve this and to follow the method is to deal with actual data. The

figures given below are yields in bushels per acre of 6 plots of wheat.

Three of these plots are of variety A and three of variety J5.

A 27.6 32.4 23.4

n 19.2 18.6 16.5

The total sum of squares is made up of the sum of the deviations of the 6

plots from the general mean. A logical division of this total is to sepa-

rate it into one part due to variation within the varieties, and another

1 "Sums of squares'
1

written thus is an abbreviation for (sums of squares of devi-

ations from the mean), but in general throughout this book the quotation marks are

omitted.
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part due to variation between the varieties. Let the general mean be #,

which in this case is 137.7/6 = 22.95. And the mean of A is =
27.8,

and the mean of B is x* = 18.1. Then subtracting 22.95 from each

value, squaring and summating, we have:

2(z - x)
2 = 185.715

i

6

where S indicates that 6 deviations are summated. Now, to obtain

the sum of squares for within the varieties, we must repeat the above

operation for each variety and add the two sums of squares together.

Thus for A we subtract 27.8 from each of the A values and square and

summate . This gives :

S(o:
- xa)

2 = 40.560
i

and for B we have

l(x - xb)
2 = 4.020

2 3

Then SSO -
x*)

2 = 40.560 + 4.020 = 44.580, where the double
i i

summation indicates the process of adding together the two sums of

squares, and represents the mean of one group.

The next step is to calculate the sum of squares for between the

varieties. This is given by

3 X [(27.8
-

22.95)
2 + (18.1

-
22.95)

2
]
= 141.135

Note that we obtain the deviations of the means of A and B from the

general mean and then square and summate, but we multiply the whole

sum by 3 because each value such as 27.8 represents the mean of 3 single

plots.
2

The formula for this sum of squares will be 3 S( )
2

-

Now if we add the sums of squares

Within Between Total

44.580 -f 141.135 - 185.715

S S(* -
*<)

2 + 3 Z(*< - *)
2 - SO* - *)

2

11 i i

we note that the within and between sums are exactly equal to the total.

That the sums of squares can always be divided in this way is very
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easily proved for the general case. A set of observations classified in

one direction may be represented as follows

1

2

Groups 3

Xn 12 13 ln

21 22 23 X2n

Xn 82 33 3n

Xkl XkZ XkZ Jkn

where there are k groups and n single observations in each group.

For any one observation, say xn, we can write

(xn -
)
= (xn -

xi) + (ft
-

x)

where ft is the mean of group 1. Then

(xn - x)
2 = (xn - xi)

2 + (xi
-

)* + 2(xu - xiXft - x)

And summating for all the values in group 1 we have

n
tn(n^t ^*|2 I . O/'5* ^1^5'i'y ^*i^
7l\Xl X) ^T 4\Xl Xjt\X X\)2(x - 2(x - xi)

2

i

The last term is zero because the sum of the deviations from the mean
must be zero and each deviation is multiplied by a constant factor.

The second last term is written n(xi )
2 because the factor (ft x)

2

is constant and we merely summate it n times. Finally we have

n(ft -

Now we repeat this for each 'group, and summating over all the k

groups we have

n* In k

1 1 1

which is exactly equivalent to the equation given above with the actual

sums of squares.

The division of degrees of freedom corresponding to the sums of

squares follows easily. In the example for two varieties we have a

total of 5 degrees of freedom, for within varieties we have 2 in each

group making a total of 4, and for between varieties we have only 1.

Thus
Total Within Between

5 .44-1
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In the general case as outlined above the degrees of freedom correspond-

ing to the sums of squares of equation (1) are

Total Within Between

(nk - 1) k(n - 1) + (k
-

1)

3. Setting up the Analysis of Variance. For the practical example
with two varieties we can now set up an analysis of variance as follows:

As would be expected from the difference between the means of A and

By the variance for between varieties is very high as compared to that

for within varieties. Reference to Chapter IV on tests of significance

with small samples will recall that the variance for within varieties is

the variance which is converted into a standard error in order to test

the significance of the difference between the means. This variance

can be termed, therefore, the error variance and can be used as a measure

of the significance of the variance for between varieties.

4. Tests of Significance. In the typical analysis of variance we
have an error variance with which we wish to compare one or more other

variances. Strictly speaking, all these variances are estimates of the

true value, and this is, of course, the reason why to obtain them we must

divide the sums of squares by the degrees of freedom. In order to under-

stand the test of significance it is necessary to consider in the first place

the condition that would obtain on the average if the variance we are

testing is subject to exactly the same source of variability as the error

variance. Let the sum of squares for error be represented by Si and

the sum of squares for the variance to be tested by $2. The correspond-

ing degrees of freedom are n\ and n?, and the estimates of variance are :

= Si = S2

HI n%

and let F =
V2/vi.

Suppose that t>2 represents the variance for between the varieties

A and B as in the actual example above. If there is no real difference

between A and B, the differences between the means that occur will be
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due to soil heterogeneity which is the sole cause contributing to the

error variance. On the average, therefore, vi =
t>2, or F *= 1. But if

the experiment, still assuming that A is not different from $, is repeated

a number of times, F will be subject to random fluctuations and will be

distributed in some regular manner. Thus in any one experiment if

F =B 2.6 we could judge the significance of this value if we could deter-

mine the exact percentage of cases in which an F of 2.6 would occur as

the result of random sampling fluctuations. The problem is therefore

one of determining the distribution of F and tabulating the results in such

a way that they can be used to determine probabilities. R. A. Fisher (3)

has worked out the distribution of F and in tests of significance re-

places it by z % log F. The distribution of z depends entirely on

the degrees of freedom n\ and n^ from which the variances are estimated.

Its use therefore does not involve any assumptions regarding the popu-
lation and is equally applicable for large and small samples. Tables

have been prepared giving the values of z at the 5% and the 1 % points

for different values of n\ and n^ In comparing v\ and 02, if we find that

z is equal to the value given at the 5% point, this means that the observed

F value would occur owing to random sampling fluctuations in only 5%
of the cases.

Snedecor (11) has calculated tables of F for the 5% and 1% points,

and this enables us to make a test of significance directly without looking

up logarithms. Table 96 is a copy of Snedecor's table of F.

5. Multiple Classification of Variates. In the simple example we

have considered, the variates were classified according to variety only.

They may, however, be classified in several ways, and it is only rarely

that they are not classified in two or three ways. We shall consider

two-fold classifications first. The general case may be represented as

follows:

Classes

1 2 3 - n

in which,the variates are in k groups and n classes. The essential dif-

ference1>etween this arrangement and that illustrated under Section 2
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above is that the variates in any one class have something in common
in that they can be logically placed together and recognized as a definite

unit. In field experiments the groups may be varieties and the classes

blocks or replicates. In a chemical experiment the groups may repre-
sent formulae and the classes different temperature or moisture condi-

tions under which the formulae are tried. In medical or nutritional

work the groups may be different foods and the classes different quanti-
ties or times of feeding.

The equations representing sums of squares and degrees of freedom

for the twofold classification are as follows:

Within Groups Between Between
Total and Classes Groups Classes

nt Jt n

)2 + n (*< -*? + k 2(. - *)
2

(2)

where xq is the mean of a group and xc is the mean of a class. Note that

in this case the sum of squares for within groups and classes is rather

complex and in corresponding form to equation (1) should be written

with a triple summation. The form used, however, is more convenient

and expresses the idea successfully. It is customary in analyses of

experiments to refer to the within sum of squares as that due to error

as it gives rise to the variance with which the other estimates of variance

can be compared.
In order to picture a threefold classification, we can assume that in

the previous example there are m classes and n subclasses. Graphically
the arrangement will be :

m
1 2---n 1 2---n 1 2---n 1 2-

The analysis of data of this type introduces a new factor in the sums of

squares, in that we must consider the interactions of the three classes

with one another. This is best studied, however, from actual examples,

and the same applies to still more complex types of classifications.
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6. Selecting a Valid Error. Significance is a relative and not an

absolute term. Differences are found to be significant or insignificant

in relation to the variability arising from a source which is arbitrarily

selected according to the interpretation that is to be put on the result.

To make these points clear let us assume that an experiment is being

conducted involving chemical determinations. Two kinds of material

are being tested; the method is to draw samples from each kind of

material, and in the laboratory each sample is being tested in duplicate,

obviously here we have two sources of error. The first arises from

sampling the material, and the second from differences between the

results for duplicate determinations arising purely from errors in the

laboratory technique. These two sources of error are independent and

therefore may be of the same magnitude or widely different. If 20

samples are taken from each kind of material the analysis of variance

will be of the following form :

DF Variance

Materials (A and B) 1 m
Between A samples 19

] QC a
>oo

Between B samples 19
j

b

Between duplicates 40 d

Total 79

For the purpose of this discussion it can be assumed that the variances

a and b are of the same magnitude and can be considered together, say
as variance s. Now we wish to test the significance of the difference

between the two kinds of materials, and we will suppose that d is very
small in comparison to s. It is not difficult to see that the variance m
is contributed to by the variability in the samples, or in other words

that on the average if there is no difference between the two materials

the variance m will be equal to the variance s. Since d is very small

it is clear that to use it to test m is quite erroneous, as even when there

is no difference between the materials the ratio of m to d will be quite

large. What will the situation be, however, if d is much larger than s?

With a little thought it will be plain that this would be a very unlikely

situation as s is in itself contributed to by the factors that result in the

variance d. Putting it another way, if there is no variation whatever

due to sampling, s will on the average be equal to d. The question

therefore has no point, and we must consider the only other possibility,

and that is that d and s are of about equal magnitude. The inference,

then, is that s results largely from the differences between the duplicates,

and that the sampling error is in itself insignificant. The obvious

course here is to use d in order to test w, and at the same time we take
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advantage of the greater precision due to d being represented by a larger

number of degrees of freedom than s.

Another hypothetical experiment may be considered in which the

situation is slightly different. Again two materials are being compared,

but it can be assumed that the material is sufficiently homogeneous that

the sampling error is negligible. There is a possibility of error in the

laboratory technique and also there is a possibility of personal error in

that no two operators can be expected to get exactly the same results.

In making out the plan of the experiment it is decided that six different

operators shall be used, all of whom perform exactly the same test on

the same two materials. Also each operator makes his determination

in triplicate in order that a measure may be obtained of the error in the

technique. The analysis of variance for the results will be as follows:

DF Variance

Materials 1 m
Operators 5 o

Error due to operators 5 e

Error of determination 24 d

Total 35

The variance e now requires some consideration in order to note its rela-

tion to the significance of the results. If we set up the mean results for

each operator in a table it will be of the following form :

Operators123456
A

Materials

B

where 01, for example, represents the mean of three determinations made

by operator 1 on material A.

Now the variance e results from differences between such values as

(ai bi) and (02 62). There being 6 of these values, there are

5 degrees of freedom available for estimating the variance. If each

operator gets the same result for the difference between A and Bj the

variance e will be zero
;
but if the operators get widely varying differ-

ences the variance e will be very high. Suppose now that the experiment
is presumed to be a sample of a large population of operators making
similar determinations on these same two materials, then the variance

m, which represents the difference between the two materials, will be
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contributed to by the factors that produce e\ and hence, if there is no

difference between the materials, m will be equal to e. In sampling
such a population, therefore, and testing the significance of the results,

it will be necessary to use e as an error variance to test the significance

of m. This fact may be more obvious if we consider the disastrous

results of not using the variance e as a measure of error. The variance d

may be quite low owing to extreme care in the standardization of the

technique as applied to any one individual operator, and we shall assume

that it is much lower than e. Using d as an error we find that, although
m is very little greater than e, it is very significant if compared with d.

The results are used therefore to prove that, for example, A gives a

much larger result than 5, and on this basis the two materials are util-

ized in some industry for manufacturing purposes. The manufacturers,

however, in utilizing the material may have to employ a large number of

operators; and hence the error that was neglected in the laboratory

creeps in and it turns out in actual practice that the two materials give

the same result, and the so-called carefully controlled experiment of the

laboratory is discredited. This mistake would have been avoided if the

investigator had carefully considered the exact nature of the population
that was being sampled and made his test of significance accordingly.

Of course it might happen that only one operator was used in the experi-

ment, in which case the reader will recall the discussion of Chapter V on

the scope of experiments and will realize that this would be another

example of an experiment so planned that it did not have sufficient

scope to answer the questions that it was supposed to answer.

A point that may now be raised is this. If the error resulting from

the determinations made by individual operators is not to be used to

test the significance of the difference between the materials, what benefit

is to be derived from making the determinations in triplicate and includ-

ing the variance d in the analysis? The answer to this is that if there

is an appreciable error in the determinations, the variance e will be con-

tributed to by this source of variation, and hence, if there is no variation

due to the operators, on the average e will be equal to d. The variance

d, therefore, enables us to apply a test of significance to e; and, further-

more, if d is appreciable, it reduces the precision of the experiment by
making its contribution to e. In the latter case, improvement in the

technique of the determination may result in a considerable improve-
ment in the precision of the experiment.

A variance such as e in the hypothetical example given above is

usually referred to as an interaction variance. It gets this name because

if it represents a fairly large effect it may be taken as an indication

of an interaction between the two factors that are concerned. In con-

sidering operators and materials, for example, we may conclude if e is
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very large that the materials respond quite differently in the hands of

different operators. As a matter of fact, if we are willing to use more

than one word to describe such an effect, it might be more appropri-

ate to speak of an interaction as a differential response. Let us assume

that, in general, material B gives a higher result in the determinations

that are being made than material A. This may appear more rea-

sonable if we assume that A and B are not different in quality but

in quantity, in which case it is customary to refer to A and B as repre-

senting two different levels of one of the interacting factors. The
more appropriate symbolism then would be to represent A and B by
such symbols as X \ and X%, the same letter indicating that there

are no qualitative differences between the two, and the subscripts

indicating that this factor is at two different levels. Now if Xz gives a

higher value in the determinations than Xi 9
this is plainly a case of

response to quantity, and if there were several levels of X instead of only

two the result would recall the phenomena observed in the study of

regression. It is now easy to visualize what is meant by a differential

response. Some of the operators may be able to obtain the maximum

response whereas others may obtain a much smaller response. In

certain instances it may easily turn out that with some operators the

response will be positive and with other operators it will be negative.

This type of effect would be likely to result in a very large interaction

variance.

The meaning of interactions will be discussed in further detail in the

consideration of actual examples. For the present it will suffice for the

student to have a clear conception of the idea of differential responses,

and to realize that frequently an interaction variance is in reality a true

error variance and therefore must be used to test the significance of the

results of the experiment.

Example 29. Simple Classification of Variates. Table 29 given the yields of

four plots each of three varieties of wheat. We shall use the analysis of variance to

determine the significance of the differences between the varieties.

TABLE 29

YIELDS OF 4 PLOTS EACH OF 3 VARIETIES
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The first step is to decide on the form of the analysis and to allocate the degrees of

freedom to each component according to the scheme decided upon. In this case we
are concerned merely with comparing the variety variance with a variance for error,

and the most logical error variance is one arising from within the varieties. The
form of the analysis is therefore

Sum of Squares DF
Between varieties 2
Within varieties (error) 9

Total 11

The second step is to calculate the sums of squares. The best plan is first to obtain

the total sum of squares. A formula has been given above, but this is not the best

formula for actual calculation. It is much better to make use of the identity

nk nk 77
J

2(* -
f)

2 = 2(*
2
)
- -~

(3)
i i nk

nk

where Tx is the total of all the values of x or 2 ($)
i

Therefore we merely square and summate the actual values and subtract from

this sum the square of the grand total divided by the number of variates. The

figures are

Total sum of squares 9452.50 - 8976.27 = 476.23

The calculation of the sum of squares for between varieties is carried out with the

assistance of a similar identity

% 2(*<) m2

i n nk

where jT represents the total for a variety. The formula consists therefore of squar-

ing and summating the totals, dividing by the number of variates entering into each

total, and then subtracting the same term as for the total sum of squares. The

figures are

Between varieties = 9269.16 - 8976.27 = 292.89

To determine the sum of squares for within varieties we can perform a separate

calculation for each variety:

Within 4 - 3441.12 - 115.6 2
/4 100.28

" B 4290.23 - 129.9 2
/4 71.73

" 0=1721.15- 82.7 2/4= 11.33

Total within = 183.34

Actually it was not necessary to calculate the last sum of squares as we could have

obtained it by subtracting the sum of squares for between varieties from the total.

Thus:

Total Between Within

476.23 -292.89 - 183.34

However, when possible it furnishes a very easy check on the calculations to obtain

the error sum of squares directly and indirectly.
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The third step is to set up the analysis of variance and make the tests of sig-

nificance. This is performed in Table 30.

TABLE 30

ANALYSIS OF VARIANCE

In Fisher's tables we look up the 5% point of z for n\ = 2 and nz ~ 9. The value

is 0.7242, so that the variety differences here are quite significant. Using Snedecor's

tables of F (Table 96) we find that the 5% point for F is 4.26, and we of course reach

exactly the same conclusion.

Example 30. Twofold Classification of Variates. In a swine-feeding experiment

Dunlop (2) obtained the results given in Table 31. The three rations, A, B, and C
differed in the substances providing the vitamins. The animals were in 4 groups of

3 each, the grouping being on the basis of litter and initial weight. For our purpose
we shall assume that the grouping is merely a matter of replication.

TABLE 31

GAINS IN WEIGHT OF SWINE FED ON RATIONS A, B, C

I II III IV Totals

Ration

29.5

The form of the analysis is

48.0 35 48.0 160 5

Sum of Squares DF
Rations 2

Groups 3
Error 6

Total

Calculating the sums of squares we have

11

2316.75 - (160.5)
2
/12 - 2316.75 - 2146.6875 - 170.0625

- 54.1250
+ 48 . 0*)/3

- 2146 . 6875 - 87 . 7292
remainder - 28.2083

Total

Rations - (47. 0* + 66.51 + 48.0)/4 - 2146.6875

Groups - (29.5*4-
Error
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This givee us an analysis of variance as follows:

The variance for rations is just significant. The meaning of the significance of

the variance for groups depends on the manner in which the classification into groups
has been made. We have assumed here that the groups are merely replications, in

which case the error variance is a result of variations within groups not due to the

rations. It is therefore valid to consider this variance as an error variance with

which the others can be compared. The group variance, since it results from the

plan of the experiment, is an expression of error control. If the arrangement had

been other than in groups we would have had a simple classification into within and

between rations. The variance for within rations would have been much larger than

it is according to the present arrangement, and consequently the experiment would

have been less precise.

Example 31. Selecting a Valid Error. A series of 5 wheat varieties were grown
at 4 stations and baking tests made on the flour. A sample of each variety was taken

from each station and milled into flour. Two loaves were baked from each sample.

The error of determination was given, therefore, by the differences between the loaf

volumes of the duplicate loaves. These data were supplied by courtesy of the

Associate Committee on Grain Research of the National Research Council dfcCanada.

TABLE 32

DUPLICATE LOAF VOLUMES FOB 5 VAEIETIES OF WHEAT GROWN AT 4 STATIONS

(Loaf volumes in cc. 500)/10

Stations

II III IV Totals

Varieties

Totals

1

2

3

4

5

106.2 149.5 129.5 200.3 585.5

On examining the form that the analysis of variance will take, we note first that

we must have a station variance represented by 3 degrees of freedom, and a variety
variance represented by 4 degrees of freedom. There must also be an interaction
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effect which may be regarded as the differential response of the varieties at the

different stations. The rule for finding the degrees of freedom for an interaction is to

multiply the degrees of freedom for the interacting factors. The interaction variance

must therefore be represented by 3 X 4 12 degrees of freedom. There is a total

of 40-determinations, so that there is a total of 39 degrees of freedom. The remaining
20 degrees of freedom must represent the error of duplicate determinations, and we
have a check on this because there are 20 pairs of loaves and since each pair gives us 1

degree of freedom there must be 20 in all. The final form of the analysis is:

Variance DF
Stations 3
Varieties 4
Interaction 12
Error 20

Total.

To obtain the sums of squares another table as given below is required. This

table gives the values of (x y) and (x + y), where x and y are taken to represent

the paired values.

1

2

fe-ir) 3

4

5

II III IV

fe+y)

Totals

1

2

3

4

5

II III IV

106.2 149.5 129.5 200.3

Totals

585.5

The first half of this table may be used fo> calculating the error sum of squares. A
general rule for the sum of squares for differences within paired values is to use the

identity

Total minus between pairs |S(a; y)
2

The two expressions on the left are SGc
2
)
- Tf/N and S(x -f yf/2 - Tf/N* On

subtracting and simplifying we obtain \ S(a?
-

y)\ The calculations give

Within pairs (error) - (93.33) - 46.66
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From the second half of the calculation table we determine

20566.13 585. 5
Between pairs 2 40

10283.065 - 8570.256 - 1712.81

This procedure gives us a general rule for the calculation of interaction sums of

squares. In the table considered we find the total and subtract the sum of squares
for the two interacting factors. The remainder is the interaction.

The analysis of variance is as follows

We now have to decide whether we should use the variance from the duplicate
loaf volumes or the interaction variance to test the significance of the differences

between stations and varieties. If the purpose of the experiment is to determine

which of the varieties will give the highest loaf volume over the whole area that the

stations sample, it will be necessary to use the interaction variance because in this

light the stations are merely replications of the experiment. The error from dupli-

cate loaf volumes will give an indication merely of the accuracy of the laboratory

technique. If it is large it will reduce the significance of the differences, because it

raises the value of the interaction variance.

On comparing the variety variance with the interaction variance we get an F
value of 2.66; and since the 5% point is 3.26, we must conclude that, considering the

whole ares being sampled, the differences in loaf volume are not significant. In other

words, the variation in the order of the mean loaf volumes of the varieties, from

station to station, is so great that the differences between the means for the whole

area may easily be accounted for by this variation.

The interaction variance is very much higher than that arising from differences

between duplicate loaf volumes. This means that the laboratory error is not an

appreciable factor affecting the precision of the results in this experiment.
Since variety tests are conducted in replicated plots at each station, it follows

that if loaf volume determinations had been made on each plot another measure of

error could have been obtained. This error would have measured the variation due
to soil heterogeneity; and, if the variety variance for the whole area was significant

when compared to the pooled error due to soil heterogeneity, this would indicate that

in general at each station the differences between the means of the varieties were
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greater than could be accounted for by such sampling variation. This would not,

however, alter our conclusion based on the test using the interaction as an error.

Example 32. Threefold Classification of Variates. In testing out a machine
for molding the dough in experimental baking, Geddes, et al. (5), used 3 adjustments
of the machine, designated A, B, and C, and tried them out on a series of 5 flours

baked according to 2 formulae. The loaf volume data are given in Table 33.

TABLE 33

LOAF VOLUME RESULTS IN A TEST OF A MACHINE FOR MOLDING THE DOUGH
(Loaf volume in cc. - 500) /10

On working out the form of the analysis we find that there is an additional com-

plication here as compared to those that have been worked out previously. The
6 rows in Table 33 represent 2 classifications, but for the present we shall consider

them as 6 classes giving us a simple twofold classification. The form of the analysis
is then:

Flours 4 DF
Classes 5 DF
Interaction (a) 20 DF

Total 29 DF

But the 5 degrees of freedom for classes must be split up into:

Machine settings ABC 2 DF
Formulae SB 1 DF
Interaction ABC X SB 2 DF
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Hence interaction (a) in the first analysis is an interaction of the above three factors

with the flours. Realizing this, we can then write out the form of the analysis in full:

Flours (1 ... 5) 4 DP
Machine settings (ABC) 2 DF
Formulae (SB) 1 DF
Interaction (ABC X SB) 2 DF

(1... 5 X ABC) SDF
"

(1 ... 5 X SB) 4DF
"

(I ...5 X ABC X SB)... SDF

Total 29 DF

The last interaction is known as a triple interaction. In this case it represents the

degree to which the interaction of (ABC X SB) is different for the different flours.

If the interaction (ABC X SB) is the same for each flour, the triple interaction will

be zero.

To determine the sums of squares for the components set out above it is necessary

to set up 3 calculation tables as below:
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The calculations are 1

Total

Flours (1- -5)

Settings (ABC)
Formulae SB

- 6618.43 -
394.32

30
- 6618.43 - 5182.42

34,152.33/6 - 5182.42

51,890.41/10-5182.42 -
(268.6 - 125.7)

2
/30

- 1436.01

509.64

680.68

Interaction (ABCXSB) m S(S--B)
2
/10 - 680.68 - 6817.97/10 - 680.68 - 1.12

Interaction (1
-
-5) X (ABC)

Total for table - 11,436.57/2 - 5182.42 - 535.86

Flours (I--- 5) - 509.64

Settings (ABC) 6.62

Remainder (1 -5) X (ABC) - 19.60

Interaction (1 -5)X (SB) - S(S - #)
2
/6 - 680.68 - 5369.05/6 - 680.68 - 214.16

Interaction (1
- -5 X ABC X SB) remainder 4.19

The analysis of variance when set up in detail is as follows:

It is of interest to make a detailed study of Example 32 from the

standpoint of the selection of a valid error. We note first that the

determinations were not made in duplicate so that we have no real

measure of the error in the technique; and, if such an error is the one

that should be used throughout for tests of significance, we shall have

to select one of the other variances that gives us a close approximation
of what the error of duplicate loaf volumes would be. In the second

place it must be remembered that the primary object of the experiment
is to study the differences in the loaf volumes due to the different settings

of the machine and the differential responses due to these same settings.

For this reason the analysis of variance has been separated into two

1 Note the method used to calculate interactions for a series of paired values.

This will be explained in more detail in the next example.
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portions. The three effects in the first group are of no particular in-

terest, as previous experience would have enabled the cereal chemists

to predict that just such results would be obtained. The separation

of these three effects into one group is not a result of the data obtained in

the experiment, but was preconceived, and it was decided before the

experiment was operated that this would be done.

Considering the variance due to the settings, the first question to be

asked is whether or not it should be tested against a variance representing

purely laboratory error or against the interaction of the settings with

the flours. The answer follows from the fact that we are concerned

not so much with the interaction of the settings with the flours as with

attempting to find out the best single setting of the machine for all

purposes; and therefore we do not anticipate that, in differentiating a

set of flours, all the settings that have been tried here will be used.

Actually our measure of significance in this experiment must be based

on the usual experimental error of the laboratory, because, if the machine

settings cause differences significantly greater than those resulting from

experimental error, it is obvious that before the machine is used for

general purposes the most desirable setting must be worked out. In

other words we ought to see to it that the machine does not introduce a

greater error into the determinations than already exists as the result of

the ordinary procedures of the laboratory.

On this basis it follows that the triple interaction is the most logical

error to use, as it is the least likely to represent a significant effect and

is not likely to be lower than the error due to differences between dupli-

cate loaf volumes. The latter statement is the same as saying that, if

there is no actual triple interaction effect, the variance will be equal to

the error that would have resulted from using duplicate determinations.

The F values with their 5% points are given in the analysis, and with

their aid the results may be summarized very quickly. The flour and
formula differences as well as the interaction between them are very

large in comparison to the experimental error and may be dismissed

with that statement. The primary interest in the experiment is in the

settings of the machine and the interaction of the settings with the other

factors. The settings are significant in relation to experimental error,

and glancing at the totals we note that this must be due to the fact that

the C setting gives a somewhat lower loaf volume than A or B. The
interaction of ABC with the formulae (SB) is not significant, indicating

that the differences between thfc settings are reasonably consistent for

both methods of baking. The interaction of the flours with the settings

is significant, and we can conclude that the results with the flours are

to a certain extent changed by the machine settings. From an inspec-
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tion of the results this would seem to be due to flour 4, as for this flour

the B and C settings depress the loaf volume to a greater extent than

for the others.

7. Summary of Methods of Calculating Sums of Squares. After

the form of analysis has been worked out, the greatest difficulty that

confronts the student of the methods of this chapter is the calculation

0f the sums of squares. Most of the methods have been dealt with in

the above examples, but it would seem to be desirable to summarize

them under one heading.

(a) Total for a set of n single variates. xi, #2, #

Tl
2(* - )*

- Z(a) -
i i n

We square each value and summate, then subtract the square of the

total divided by the number of variates.

(6) For a set of k groups when each group is made up of n variates.

It there are k groups we can represent the totals for the groups as T\ t

T%, 2Y T*; and the means for the groups by 1, fe, x - -
*.

i n kn

We square each total, summate, and then divide by the number of

variates entering into each total. From this we subtract the square of

the grand total divided by the number of variates.

(c) For a set of k groups when the number of variates is not the

same for each group. If we represent a particular series with the corre-

sponding number of variates in each group as follows :

We calcfulate:

Group totals Ti t
T2 ,

T3 , T*

Numbers a, 6, c, d

Tf
,
If Tl Tl T*

I

_
j_ _j

...abed (a + 6 + c + d)

In this case we square each total and divide by the number entering into

it. The quotients are summated, and from this sum we subtract the

square of the grand total divided by the total number of variates.

(d) For within and between pairs. If a set of paired values are

represented as follows:
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1 2 3 4---n Totals

The sum of squares for between pairs is:

Z(s + y)
2

2

And for within pairs it is:

2n

If each x and y value represents k variates we have :

%(x + y)* T2

Between = --

Within

(e) For two groups only. The totals for the groups may be Ts and
as above in (d) . The sum of squares is :

where N is the total number of variates.

(/) Simple interaction in a 2 X n table. The table is as in (d), in

which each value of x and y represents k variates. The interaction

(1, 2, 3, n) X (x2/) is given by:

S(z - 2V)
2

2kn

(g) Simple interaction for a 2 X 2 table. The following is a 2 X 2

table in which each value of x is a total for k variates.

A B
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The interaction (AB X I II) is given by

4k

(h) Simple interaction for a k X n fold table. A table of this type is

illustrated in Section 5 above, and equation (2) shows how the sums of

squares and degrees of freedom are broken up. The sum of squares
for within groups and classes is the same as for the interaction and can

be calculated by subtracting the two terms on the right from the total.

The procedure therefore is as follows:

Total - S(z
2
)
- Tl/kn

For n classes - Z(T?)/* - Tl/kn

For k groups = S(Tj)/n - Tl/kn

Interaction = Difference

(i) Triple interaction. In more complex analyses it is sometimes

necessary to calculate triple interactions. We shall illustrate the method
for the simple case of 2 X 2 tables: 1

The interaction to be calculated is (XYZ X I II X AB). Assume each

value to be made up of k variates; then for each of the above tables we

have :

For X (I II X AB) =
(xi + *3 - x2 - x*)

2
/4k

Y (I II X AB) =

Z (I II X AB}

+ x3 - x2 -

+ z3 ~ x2 -

Summating these gives us the sum of the interactions of (I II X AB) 9

taking each X, Y
y
and Z group separately. Next we find (I II X AB)

for X, Yt
and Z combined, having set up another 2X2 table.

1 If the three factors have only two levels the triple interaction is also represented

by only one degree of freedom and may therefore be calculated from a difference

between two correctly chosen totals. The method of building up these totals will

be clear after a study of the methods of the following chapter.
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X + Y + Z

A B

II

XI

For X, Y, and Z, (I II X AB) = (xi + x3 - x* - x*)
2
/12k, which,

when subtracted from the sum obtained for the three tables above,

gives the triple interaction (XYZ X I II X AB).

According to the same principle, triple interactions may be calculated

for any three factors. Note that there are three different ways in which

the calculations may be carried out, as repeated calculations of any one

of the three simple interactions will finally give the triple interaction.

Always examine the three possible methods and decide which one will

require the least amount of labor.

8. Exercises.

1. Table 34 taken from data by Crampton and Hopkins (1) gives the gains in

weight of pigs in a comparative feeding trial. The 5 lots of pigs represent 5 different

treatments, and there were 10 pigs in each lot. Make an analysis of variance for

the data, and test the significance of the treatment differences.

TABLE 34

GAINS OF PIGS IN A COMPARATIVE FEEDING TRIAL

The error variance in this experiment works out to 84S.6.

2. In a study of hog prices in Iowa, Schultz and Black (9) have given prices by
months, years, and districts. The districts are obtained by dividing the state into 4.

A portion of the data is given in Table 35. After completing the analysis of variance

for these data, devise graphical means of illustrating the interaction of months with
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years. It is not necessary in this exercise to make tests of significance of the results,

as it is being used here merely to show how the technique of the analysis of variance

can be used to separate out the various effects in a set of data.

Sum of squares for months X years =* 83.3418.

3. In agronomic trials of varieties of cereal crops it is desirable to conduct the

trials at various points in the area under consideration and to carry them on for a

period of 2 or more years. Immer, et al. (8), have given data on barley yields at

several stations in Minnesota over a period of 2 years. Table 36 gives the yields at 3

of the stations for 2 years for 6 varieties. Analyze the results.

Note that the blocks are numbered 1, 2, and 3, but this does not mean that block

1 at University Farm has any relation to block 1 at Waseca or any other station.

Consequently the sum of squares and degrees of freedom for blocks are worked out at

each station and lumped together in the final analysis. A common error that

beginners make in sorting out the degrees of freedom for an experiment of this kind

is to regard the blocks as a factor occurring at three levels and thus they have such

expressions in their analysis as these:

Blocks X Stations
" X Years
" X Stations X Years

etc.

These expressions obviously have no meaning as the block numbers do not represent

definite levels that are uniform at all stations. The correct procedure is therefore

to calculate the block sum of squares for each experiment and add all these sums of

squares together in order to show them in the final analysis.

The following values for the sums of squares will assist in checking the calculations.

Total.............................. 11,504.61
Varieties........................... 1J5MM
Varieties X Stations X Years .........

TABLE 35

HOG PRICES PAID TO PRODUCERS IN IOWA 1928-29 TO 1930-31
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TABLE 36

YIELDS IN BUSHELS PER ACRE OF 6 VARIETIES OF BARLEY GROWN AT 3 STATIONS

IN EACH OF 2 YEARS

4. Find the 5% points of F for the following values of n\ and n2 :

ni

3
6
4
12
7

11
16
18
17
36
28

51
43
92
195
36
64
39
215
19
28
154
42
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5, Prove: (1) That S(s*) - T%/n - S(a?
- S)

2
.

i i

(2) That the interaction for a 2 X 2 table is given by (x\ + a*
-

a*
-

xt)*/kn. See Section 7(0).

(3) That the sum of squares for the two subtotals Ta and 7*6 is given

by (Ta - Ttf/N. See Section 7(e).

(4) That in a series of pairs the sum of squares for within pairs is

given by 1 2(x - y)*. See Section 7(d).
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CHAPTER XII

THE FIELD PLOT TEST

GENERAL PRINCIPLES AND STANDARD DESIGNS

1. Soil Heterogeneity. The fact of soil heterogeneity as it affects

the yields of crops has been commented on by various writers. In the

agronomic test it is the chief source of error in comparing varieties, soil

and fertilizer treatments, and factors of a similar type. If soil hetero-

geneity was practically non-existent a single pair of plots would be suffi-

cient to make a comparison of two varieties, but even then it is doubtful

whether that condition would be highly desirable. By a sufficient

expenditure we might render a piece of soil completely homogeneous,
but by doing so we would partly defeat the purpose of the test which

is to determine the behavior of varieties and treatments under a limited

range of conditions. We would have selected one particular soil type
for our experiment and therefore restricted the area to which our results

would apply. The ideal agronomic test is one conducted on a piece of

land in which the range in soil type, etc., is the same as that in the dis-

trict to which the results are to be applied. Usually agronomic tests are

on soil that is much less subject to variation than the surrounding dis-

trict so that in general the results from them are considered as applicable

over too wide an area. This is not to argue that more variable soils

should be selected, for that might again defeat the purpose of the test

by rendering the results insignificant, but rather to point out the limita-

tions of the tests as ordinarily conducted and that the ideal cannot be

reached by any method of increasing the uniformity of the soil.

2. Replication. In order to obtain greater accuracy in field experi-

ments, the most effective method is to increase the number of replica-

tions. Increasing the plot size is also effective, but increasing replication

is much more so. In previous pages it has been pointed out that the

standard error of a mean is given by s/\/n, where s is the standard error

of a single determination and n is the number of determinations averaged.
It follows, therefore, that, in replicating field plots, the decrease in the

standard error of the mean of one variety or treatment is proportional
to the square root of the number of replications. This rule applies only if

the variation due to the replicates themselves is removed from the error,

but, as will be pointed out below, this follows naturally from the plan of

the test and the use of the analysis of variance.

142
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A most important consideration in the use of replications is that they
furnish an estimate of the error of the experiment, and this estimate can

be obtained in no other way. The error of the experiment arises from

the differences between plots of the same variety or treatment that are

not due to the average differences between the replicates. From this it

is clear that, if there is only one complete set of plots of all the varieties

or treatments, there is no possibility of obtaining a measure of random

soil variability that can be used as an error in tests of significance. In

terms of the theory which has been emphasized repeatedly in the previous

pages, the variance of the variety or treatment means is subject to test-

ing on the hypothesis that it has arisen purely from random variations

in the fertility of the field. Since the only way in which we can form a

reliable estimate of these random variations is to replicate the experi-

ment, it follows that without replication there is positively no method

of making a test of the significance of the variety or treatment differ-

ences.

3. Randomization. As pointed out above, the estimate of error is

taken from differences between plots that are treated alike. R. A.

Fisher states that
" an estimate of error so derived will only be valid

for its purpose if we make sure that in the plot arrangement, pairs of

plots treated alike are not nearer together, or further apart than, or in

any other relevant way, distinguished from pairs of plots treated differ-

ently." This point is obvious if we consider a simple replicated experi-

ment containing, say, 4 varieties, that we shall designate as A, B> C, and

D. Suppose, merely for purposes of argument, that the plots are square

and the arrangement of the plots in the field is as follows:

Replicate 1 A B C D
Replicate 2 A B C D
ReplicateS A B C D
Replicate 4 A B C D

The form of the analysis will be:

DF Variance

Replicates 3 r

Varieties 3 v

Error 9 e

Total 15

and now, if there are no variety differences it can be expected that on

the average the variance v will be equal to the error e, and unless our

experiment is designed to make this true it is unbalanced, or in the



usual terminology it is subject to a bias. On this basis it is possible to

picture the situation with respect to bias in this simple experiment, on

varying the location of the plots with respect to distances between plots

of the same variety and plots with different varieties. In the first place,

suppose that the replicates are only 1 foot apart so that there is for ex-

ample only a space of 1 foot between the plot of A in the first replicate

and the plot of A in the second replicate. Then between the plots of

different varieties there are 6-foot buffer plots of some other crop. This

situation presents a very obvious bias in that the plots of different

varieties are farther apart than plots of the same variety. The result is

that, if there are no differences between the varieties, the variance v will

on the average be larger than e. This very proposition was recognized

by agronomists at an early stage in the development of field plot tests,

and as a remedy for it suggestions were made as to the distribution of the

plots in a systematic manner over the whole field. These suggestions,

however, did not take into consideration the possibility of a bias in the

opposite direction to that of the design outlined above. That such a

bias is a distinct possibility has been shown by Tedin (10), in an exten-

sive study of data from uniformity trials. A bias in the direction that

tends to make the error too large, and the variety or treatment variance

too small, is in effect just as disastrous as the opposite type of bias, as

it means that, on the average, certain significant effects will be over-

looked.

A systematic type of distribution of the plots might be as follows:

A B C D
C D A B
A B C D
C D A B

and it will be noted that the plots of the same variety are scattered

widely over the field. This is the type of arrangement that is likely to

result in an error that is too large, but, disregarding that point, there

is another type of bias common to all systematic arrangements. This

may be referred to as an intravarietal bias, in that comparisons between

different pairs of varieties are not of equal precision. For example, in

both of the systematic arrangements that we have outlined above, the

varieties A and B occur on adjacent plots in every replication while

the varieties A and D are on the average farther apart. This is a very
undesirable feature of such experiments, for if a single error is used for

the whole experiment it means that real differences between the varieties

that are close together may be overlooked and other differences that

actually do not exist may be judged significant.
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From the above discussion it may appear to the reader that the

field plot test is extremely complicated and difficult to set up in such a

way that there is no bias. Actually, all these difficulties may be very

easily overcome by the simple process of arranging the varieties at ran-

dom in each replication. Thus, instead of either of the arrangements
that have been outlined, we would make up one as follows, in which the

positions of the varieties are determined entirely at random.

D C A B
C B A D
B C D A
A D B C

Then, regardless of the size or shape of the plots, it can be proved either

mathematically or by actual trial that, in a series of such tests, using a

different random arrangement each time, the variance v will on the aver-

age be equal to the variance e. Details of the methods used for randomi-

zation are given in Chapter XVI.
4. Error Control. In replicated experiments, the differences between

the plots of any one treatment are due in part to experimental error and

in part to the average differences between the replicates. The latter is

not relevant to the comparisons we wish to make, as each treatment is

represented by one plot in each replicate or block. The variance due

to blocks is therefore removed from the error, and, the larger the propor-

tion of the total variability that is removed, the more accurate the experiment.

This has a very important bearing on the plan of an experiment, espe-

cially in relation to the shape of the blocks and of the plots. The differ-

ences between long narrow plots, when they are placed side by side, are

usually less than those between square plots, and similarly for blocks,

and since we want the differences between plots as small as possible and

the differences between blocks as large as possible, the ideal plan is one

which combines long narrow plots with square blocks. Practical con-

siderations limit the shape of the plots, however, and consequently limit

also the shape of the blocks; but, if we keep this fundamental principle

in mind in drawing up experiments, the greatest possible efficiency will

be obtained.

The arrangements for error control by means of replication differ

according to the plan of the experiment. There are two fundamental

plans, randomized blocks, and the Latin square. Others that will be

described later may be referred to as special types in that they are to a

certain extent modifications of the fundamental types, and especially

adapted to certain purposes.
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. Randomized Blocks. This plan is the simplest of all the types in

which any measure of error control is obtained. It is illustrated in the

following diagram, which represents an experiment with 8 treatments

in 4 blocks.

II

III

TV

In the general case let k represent the number of blocks and n the number
of treatments. Then the equation for sums of squares is:

(D (2) (3) (4)

n (1)

where Xb is the mean of a block and xv is the mean of a treatment. The

n*

last term on the right is actually S(x Xb v + x)
2

,
but is abbre-

viated for convenience. The corresponding equation for degrees of

freedom is:

(D (2) (3) (4)

tit - 1 = (t
-

1) + (n
-

1) + (n
-

1)(*
-

1) (2)

In calculating the sums of squares the following formulae are the most
convenient.

(1) Total 2(s - x)
2 = S(x

2
)
- T2

/nk

(2) Blocks n 2(#&
-

x)
2 = 2(T?)/ - !T

2M
i i

(3) Treatments k 2(fc- x)
2

Z(T?)/t - T2
/nk

i i

(4) Error

T = grand total

for all plots

Tb
= total for

one block

Tv = total for

one treat-

ment

Subtract
blocks and

treatments

from total.
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The analysis of variance is set up in the usual way.
The standard error of the experiment is given by

and for the mean of one treatment

(3)

(4)

6. The Latin Square. The following diagram illustrates a 5 X 5

Latin square where the letters represent the treatments.

E B C D A
A C D E B
D E B A C
C D A B E
B A E C D

Note that the plots are arranged in 5 rows and 5 columns, and that there

must be the same number of treatments as rows and columns. The
treatments are placed at random, subject to the restriction that a treat-

ment can occur only once in any row or column.

Let n represent the number of rows, columns, and treatments, and

the equations for the sums of squares and degrees of freedom are as

follows:

25(s
-

1

r
-

x)
2 + nZ(*c -

x)
2 + n S(z, - x)

2 +11 11 (5)

where xr and xc represent the means of rows and columns respectively.

(n
2 -

1)
= (n

-
1) + (n

-
1) + (n

-
1) + (n

-
2) (n

-
1) (6)

The calculations for sums of squares are:

(1) Total 25(*
-

z)
2 = S(z

2
)
- T2

/n
2 T = grand total of

all plots

(2) Rows nS(xr
-

x)
2 = S(!T

2
r)/n

- T2
/n* Tr

(3) Columns S(xc
-

x)
2 - 2(T*)/n - T2

/n
2 Tc

total for one

row

total for one

column
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(4) Treatments n S( ,
-

)
2 = Z(T?)/n - T2

/n
2 Tv

= total for one

treatment

(5) Error S(d
2
)
=

(1)
-

(2)
-

(3)
-

(4) Subtract, rows,
1

columns, and

treatments
from the
total.

The standard error in a Latin square is given by

n
'

(n
-

2) (n
-

1)

And for the mean of one treatment

(7)

(8)

The Latin square gives error control in two directions across the field,

so that soil gradients are always taken care of. For a few treatments it

is a very efficient type of experiment, and it is very doubtful that a

better one can be devised. When the number of treatments are more

than 8 the Latin square is cumbersome and a point is soon reached

where the increase in accuracy does not warrant the added labor.

Moreover, as the number of treatments are increased the rows and col-

umns become longer in proportion to their width and a point is reached

finally where further accuracy through error control is not obtained.

Example 33. Randomized Blocks. Table 37 gives the yields of 6 wheat varieties

obtained in an experiment consisting of 4 randomized blocks. The marginal totals

are given in the table so as to facilitate calculation.

TABLE 37

YIELDS IN BUSHELS PER ACRE BY BLOCKS
OF 6 WHEAT VARIETIES
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Calculating the sums of squares we have:

Total SO&
2
)

- T*/nk - 16,460.05 - 15,085.12 - 1374.93

Blocks S(n2
)/n- T*/nk - 15,252.48 - 15,085.12 - 167.36

Varieties *L(Tf)lk - T2
/nfc - 16,147.87 - 15,085.12 - 1062.75

Error - 1,374.93
- 167.36 - 1062.75 - 144.82

The analysis of variance is then as follows:

The block and variety differences are seen to be significant, and if we wish to compare

any two varieties we make use of the standard error.

3.122
V9.655 - 3.122 1.561

The standard error of a difference between the means of any 2 varieties is then

1.561 X \/2 2.21. Now suppose that we wished to compare varieties D and F
for which the means are 16.2 and 24.1 respectively. The difference is 7.9 and we have

-=-
From Table 94 we note that for 15 degrees of freedom t 2.95 at the 1% point,

so that the difference between the 2 varieties is very significant. We take t for

15 degrees of freedom corresponding to the number of degrees of freedom available

for estimating the error variance. Unless the degrees of freedom are decidedly
limited a short cut can be employed for testing significance. From Table 94 we
note that t at the 5% point is approximately 2. Therefore a significant difference

will be 2 X \/2 X sm * 2.82 m . Roughly a significant difference is 3 sm .

Example 34. The Latin Square. The following is a plan of a Latin square
which was used to test the efficiency of different methods of dusting with sulphur
in order to control stem rust of wheat. The key to the treatments is given with the

plan-

Columns KEY TO TREATMENTS

12345
I

II

Rows III

IV
V

A = Dusted before rains.

B Dusted after rains.

C Dusted once each week.

D Drifting once each week.

E - Check (undusted).
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All applications were 30 pounds to the acre at each treatment. Drifting means
that the dust was allowed to settle down over the plants from above. In the ordinary

procedure the sulphur is forced down among the plants by a blast of air.

The plot yields in bushels per acre are given in Table 38. The figures in the table

correspond with the position of the plots in the above plan.

TABLE 38

PLOT YIELDS IN BUSHELS PER ACRE

I

II

Rows III

IV
V

Column
Totals

TREATMENT
TOTALS

A 34.2

B 32.3

C 65.6

D 39.8

E 24.6

36.4 39.7 41.0 45.1 34.3 196.5

In order to obtain the treatment totals we must select the yields according to

the position of the treatments in the plan. Thus for treatment B we have 4.9 + 7.6

+ 6.2 4- 6.0 4- 7.6 - 32.3. Finally we have all the treatment totals as given in

Table 38.

The calculations are as given below:

(1) Total Sfce
2
)

- T*/n
z - 1829.83 - 1544.49 - 285.34

(2) Rows

(3) Columns

S(T
2
)/n - T*/n

2 - 1591.16 - 1544.49 - 46.67
i

S(!T
2
)/n - TVn2 - 1558.51 - 1544.49 - 14.02

(4) Treatments 2J(T!)/n - TVn1 - 1741.10 - 1544.49 - 196.61
i

(5) Error - d)-(2)- (3)~(4)

Then the analysis of variance is:

28.04
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7. Factorial Experiments. As the name denotes, in factorial experi-

ments, an attempt is made to study the various treatment factors. Thus
an experiment designed to study, at the same time, rate and depth of

seeding of a cereal crop would be a factorial experiment in which the 2

factors, rate and depth of seeding, are represented at 2 or more levels.

We may use, for example, 3 rates and 3 depths, giving us in all 9 treat-

ment combinations. Usually, there are more than 2 factors, as it is

easily seen that the greater the number of factors the greater the scope,

and inductive value of the experiment. The experiment on rates and

depths, for example, might well be conducted with more than 1 variety,

AS it is conceivable that results obtained with 1 variety might not apply
to others. In factorial experimentation, therefore, the study of the

interactions is a very important consideration and, until the advent of

the development of a suitable technique, was very frequently completely
overlooked.

The introduction of factors is of course limited by space and the cost

of experimentation, and, in addition, it is easy to add so many factors

that the analysis becomes rather complex. If we have to study all the

possible combinations in an experiment with 4 factors at 3 levels each,

we must have 81 different combinations. The addition of another factor

at 3 levels would increase the number of combinations to 243, at which

point the experiment would become extremely unwieldy, and since the

blocks would be very large, error control would not be highly efficient.

If all the factors are of equal importance, the obvious method is to

make up the total number of combinations and randomize them indis-

criminately in each block. We shall see later that with this plan con-

siderable increases in precision can be obtained by a process of splitting

up the replicates into smaller units and confounding with these smaller

blocks certain relatively unimportant degrees of freedom. In many
cases the factors are not of equal importance and very efficient use can

be made of the split plot design, in which more than one error variance

is obtained, each one appropriate for testing certain comparisons.

8. Split Plot Experiments. An experiment was conducted in 1932 on

the experimental field of the Dominion Rust Research Laboratory, which

is a good example of the split plot type. This particular study was de-

signed to determine the effect on the incidence of root rot, of variety of

wheat, kinds of dust for seed treatment, method of application of the

dust, and efficacy of soil inoculation with the root-rot organism.

The plan of the experiment with the key to the treatments is given

below and is sufficient to indicate hotf the experiment was worked out.

Two varieties of wheat, Marquis and Mindum, were used. These vari-

eties were planted in 4 blocks, half of each block being sown to one variety
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and half to the other. The strips were then divided into 10 plots each.

With 5 different kinds of dust and 2 methods of application, dry and wet,

there were 10 different treatments, and one of these was assigned at

random to each plot in each strip. The plots were then divided length-

wise and on one half the seed was sown with inoculated soil and on the

other half with uninoculated soil. The final result was as shown in the

plan of the experiment. It will be noted that the disposition of varieties,

dust treatments, and soil treatments is purely at random throughout
the experiment.

In order to analyze this experiment it is necessary to sort out the

degrees of freedom corresponding to the various components of the test.

In the first place, for the 160 plots there is a total of 159 degrees of free-

dom. The 160 plots are in pairs, one of each pair being inoculated (I),

and one uninoculated (U). A convenient initial classification of the

degrees of freedom (DF) is to consider the field as made up of 80 pairs

of plots, and since there is one DF within each pair, we have

Between 80 pairs

Within (9)

Total 159 DF

Then, proceeding to the splitting up of the DF of these two components,
and dealing first with the 79 DF for between pairs, we note that the units

now are plots exactly twice the size of the original plots, and the DF can

be analyzed out without any reference whatsoever to the fact that the

plots are divided into I and U portions. If the experiment is considered

first as a test of 10 treatments replicated 8 times, the analysis would be as

follows:

Blocks 7DF
Treatments 9 DF (10)

Error 63 DF

But the experiment is not actually replicated 8 times, as 4 of these blocks

PLAN OF A SPLIT PLOT EXPERIMENT2345678 10

Marquis

Mindum
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PLAN or A SPLIT PLOT EXPERIMENT Continued

1 23456 789 10

Marquis

Mindum

Mindum

Marquis

Mindum

Marquis

Key to Treatments

I SB Inoculated soil.

U = Uninoculated soil.

1. Dry, Ceresan.

3.
" Semesan.

5.
"

DuBay.
7.

" Check.

9.
" CaCo8 .

2. Wet, Ceresan.

4.
" Semesan.

6.
"

DuBay.
8.

" Check.

10.
" CaCo8 .

II

III

IV

are sown to Marquis wheat and 4 to Mindum wheat. The 7 DF for

blocks contain, therefore, 1 DF for varieties and 3 DF for the interaction

of varieties with blocks, where the blocks consist now of two sets of all

the treatments, one set with Marquis wheat and one set with Mindum
wheat. The 3 DF for the interaction of varieties with blocks obviously

represent the error for determining the significance of the differences

between the varieties. The final disposition of the 7 DF as given in

(10) is therefore:

Blocks 3 DF
Varieties 1 DF (11)

Error (1) 3 DF

We take next the 9 DF as given in (10) for treatments. The key to

treatments shows that there are 4 different dusts and 1 check, so that
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we have 4 DF for treatments. Then each dust is applied dry (D) and

applied wet (W), so that we must have 1 DF for D W. The remaining

4 DF represent the interaction of dusts with D W, so that the 9 DF are

finally split up as follows:

Dusts

DW
Interaction

4DF
IDF
4DF

(12)

The effect of the varieties (V) on the factors given in (12) must also be

considered; therefore we must have in the 63 DF for error given in

(10):

V X Dusts 4 DF
V X D W IDF (13)

V X Dusts X D W 4 DF

The 9 DF represented in (13) must obviously come out of the 63 DF for

error as given in (10), so that there are actually only 54 DF representing

true error. Finally the complete disposition of the 79 DF for between

pairs of plots can be shown as follows:

Blocks 3 DF
Varieties 1 DF Group (1)

Error (1) 3 DF\

Dusts 4 DF]
DW IDF
Dusts X D W 4 DF
V X Dusts 4 DF

\ Group (2)

V X D W 1 DF
V X Dusts X D W 4 DF
Error (2) 54 DF

Total 79 DF

Error (2) is applicable to all the factors in the second group.

TABLE 39

PLOT YIELDS IN A SPLIT PLOT EXPERIMENT123456789 10
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PLOT YIELDS IN A SPLIT PLOT EXPERIMENT Continued23456789 10

Considering now the 80 DF for within pairs, the first point to note is

that, since these 80 DF represent only differences between members of

pairs of adjacent plots, they do not contain any direct effects due to

blocks, varieties, or dust treatments. The differences between such

plots do represent, however, the effect of I and U corresponding to 1 DF.
The first split up of the 80 DF is therefore :

IU
Remainder

Total

IDF
79 DF

80

(14)

The 79 DF for the remainder must contain the DF representing the inter-

action of I U with all the other factors as given in Groups (1) and (2) ;

hence we can set these down in order.

I U X V 1 DF
I U X Dusts 4 DF
I U X D W 1 DF
I U X Dusts X D W 4 DF
I U X V X Dusts 4 DF
ITJXVXDW IDF

Total 15 DF

(15)

Note that we have left out (I U X Blocks) and the quadruple interaction

(I U X V X Dusts X D W). The former belongs to error, and the latter

is very unlikely to be significant, and even if it might turn out significant,

its interpretation would probably be too complex to have any practical
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bearing on the use of the treatments. The final analysis of the 80 DF
for within pairs can now be written down :

I U 1 DF
I U X V IDF
I U X Dusts 4 DF
I U X D W IDF
I U X Dusts X D W 4 DF
I U X V X Dusts 4 DF
IUXVXDW IDF
Error (3) 64 DF

(Group (3)

Total 80 DF

The three groups may be placed together as one complete analysis or

dealt with separately. It will usually be found most convenient in

checking calculations to consider the three groups together in one com-

plete analysis.

After completing the sorting out of the DF the next step is to draw

up the tables from the actual data that are necessary for calculation of

the sums of squares. In the first place a table such as Table 39 is

required, giving the data for the individual plots in a plan corresponding

to the plan of the experiment. Comparing the table and the plan we

can then draw up Table 40, which is a series of small tables required for

calculating the sums of squares.

The following is an outline of the analysis of variance for the whole

experiment, with figures in the fifth column indicating the calculation

tables from which the corresponding sums of squares are obtained.

From Table 39 we calculate the total sum of squares for all the plots.

Then from the calculation Table 12, for the differences within pairs of

plots, we determine the sum of squares for the 80 DF representing within

pairs. Subtracting this from the total sum of squares gives the sum of

squares for 79 DF representing Groups (1) and (2).

We proceed next to calculate, from the tables, the sums of squares as

indicated in the outline of the analysis of variance, leaving items error

(2) and error (3) to the last. From the sum of squares representing

within pairs for 80 DF, we subtract the first seven items in Group (3).

The remainder is the sum of squares for error (3). From the sum of

squares for between pairs (79 DF) we subtract the total for group (1)

and the first six items in Group (2). The remainder is the sum of

squares for error (2).

The method of calculation of triple interactions has been described in

a previous chapter.



SPLIT PLOT EXPERIMENTS 157

Number

(D

TABLE 40

SERIES OF SUBTABLEB FOB CALCULATING SUMS OF SQUARES

Blocks

I II III IV

(2)

(3)

10,739

10,739
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Number

(4)

(5)

(6)

(7)

(8)

(9)

TABLE 40 (Continued)

SERIES OF SUBTABLES FOB CALCULATING Sous OF SQUARES

Blocks

D W

4,988

5,751

Ma Mi

10,739

Ce Se Du Ch Ca

5,438

5,301
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TABLE 40 (Continued)

SERIES OF SUBTABLES FOR CALCULATING SUMS OF SQUARES

159
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CONFOUNDING IN FACTORIAL EXPERIMENTS

9. Orthogonality and Confounding. F. Yates (16) has given the

following definition of orthogonality. It is
"
that property of the design

which ensures that the different classes of effects shall be capable of

direct and separate estimation without any entanglement/' Thus, in

a randomized block experiment, the treatments are orthogonal with

blocks in that the effects of each are capable of direct and separate esti-

mation. This orthogonality is accomplished in the design by seeing to

it that each block contains the same kind and number of treatments.

If by any chance some of the plots in one or more of the blocks are lost,

non-orthogonality is introduced, and special methods may be required

in order to separate the treatment and block effects. These methods,

which have been worked out and described in some detail by Yates,

require additional computation, and sometimes the whole procedure may
be rather laborious. Consequently in designing an experiment we make

every effort to keep within the requirements of orthogonality. In simple

experiments this presents no difficulty, but in more complex ones for

which a new design is being worked out it is quite easy unwittingly to

introduce an element of non-orthogonality. New designs, therefore,

require careful scrutiny before they are put into practice.

In factorial experiments involving a fairly large number of combina-

tions, non-orthogonality is sometimes introduced deliberately, and this

process is now referred to as confounding. The purpose of confounding
in general, as we shall see later in more detail, is to increase the accuracy

of the more important comparisons at the expense of the comparisons
of lesser importance. In many instances, however, although a certain

portion of the information concerning the comparisons of lesser impor-
tance is sacrificed, the precision with which all the effects are estimated

is increased to a point such that even the partially confounded compari-
sons are more accurately estimated.

The student should at this point make quite certain of the meaning
of confounding, and a few elementary illustrations may be of assistance.

Suppose that three fertilizers AT, P, and K are being compared at 2 levels

of each, so that we have 8 different combinations that we shall designate

by Wotfo, NoP*Ki, Wi^o, #iPoXo, NoPiKi, NiPoKi, N^Ko,
and NiPiKij where the subscript numbers refer to the amounts or dosage
of each kind of fertilizer. Since NoPoKo means that no fertilizer is

applied, and NoPoKi means that only K is applied, these terms may be

abbreviated to 0, K, P, N, PK, NK, NP, and NPK. In these 8 com-
binations it will be noted that we have 4 without N and 4 with N. If
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now we divide the blocks ordinarily containing 8 plots into halves such

that one half contains the treatments 0, K, P, PK and the other half

N> NK, NP, NPK, then the effect of N which may be represented

algebraically by (Ni Wo) is completely confounded with block effects.

The other main effects are still orthogonal with the blocks. For example,
in earh block we have 2 plots containing P and 2 plots that do not

contain P. We would not consider a design of this type in actual

practice, as it defeats what is obviously one of the main purposes of

the experiment. Assuming, however, that accuracy can be gained by

reducing the size of the blocks, it may be worth while to examine all the

comparisons to see whether certain of these may be deemed sufficiently

unimportant to be sacrificed in order to increase the precision of the re-

maining comparisons.

The treatment effects may be set out as follow with the correspond-

ing degrees of freedom.

N IDF
P 1 DF Main effects, 3 DF
K IDF

NXP IDF
NX K I DF Simple interactions, 3 DF
PX K 1 DF

NX PX K I DF Triple interaction, 1 DF

To the best of our judgment the triple interaction N X P X K would

seem to be the least important. At least, even if significant in effect it is

the most difficult to interpret in terms of actual fertilizer practice. We
shall decide, therefore, to confound this one degree of freedom with

blocks, and it remains only to determine the distribution of the treat-

ments ih the blocks in a manner which will confound this one comparison
and leave all the others intact. Algebraically, all the treatment effects

can be represented as follows

N = (Ni
- No) (Ki + Ko) (Pi + Po)

P = (Ni + No) (Ki + K ) (P l
- Po)

K = (Ni + No) (K, - Ko) (Pi + Po)

N X P = (Ni
- No) (K, + Ko) (Pi

- Po)

N X K - (N! - No) (Ki - Ko) (Pi + Po)

P X K = (Ni + No) (^ - Ko) (Pi
- Po)

N X P X K = (Ni
-

tfq) (Ki
- Ko) (Pi

- Po)
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and on expanding the last expression we have

+^ po#i + tfiPitfi + NoPiKo +N X P X K
|
- jv Po#o - NiPiKo - NoPiKi -

\+K + NPK + P + N
01

1-0- NP - PK - NK

This means simply that, if we let the symbols represent the actual yields

from the corresponding plots, the sum of squares for the triple inter-

action will be given by

-~
[(N + P + K + NPK) - (0 + NP + PK + NK)]2

where k is the number of plots represented in each total such as (0 + NP
+PK + NK). Now if we divide each replication into 2 blocks and in

one of these put the treatments 0, NP, PK, NK, and in the other,

N
t P, K, NPK, then the above sum of squares will contain not only the

triple interaction effect but also the effect of the blocks. The 1 degree of

freedom for triple interaction will have been completely confounded

with blocks. The analysis of variance for the experiment, assuming
4 replications, will be of the form

Blocks 7DF
Main effects 3 DF
Simple interactions 3 DF
Error 18 DF

Total : 31 DF

Since 7 DF have been utilized for error control instead of 3 as in an

ordinary randomized block experiment, with a moderate degree of soil

heterogeneity, it may be expected that the remaining effects will be

estimated more accurately by the confounded experiment than by the

randomized blocks.

10. Partial Confounding and Recovery of Information. The pro-

cedure illustrated above resulted in the complete sacrifice of the infoi^

mation on the triple interaction, and it may be argued that, regardless

of the apparent unimportance of the information sacrificed, this is not

good experimental procedure in that the experimenter is taking too much
for granted in attempting to forecast a result on which he has no previous

information, and using this as a basis for the experimental design. The

difficulty can be overcome by a process known as partial confounding,
which amounts to confounding different degrees of freedom in different

replications and using the resultsTfronTtEe blocks in which the particular
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effects are not confounded to recover a portion of the information de-

sired. In order to partially confound the experiment described above

and at the same time recover a portion of the information on all the com-

parisons, we shall require at least 4 replications. In each replication

we can confound with blocks a degree of freedom from one of the inter-

actions. The method of laying out the treatments in the blocks is ob-

vious if we expand algebraically each of the expressions for the inter-

actions. Thus

^^ NK)

NK+ P+NPK\
III (NXK) -(Ni-Nt)(Pi+Pd(Ki-K*)- N K-NP- PR)

/4-0-f PK+ N+NPK\
iv (PXK)

-(Ni+NMPi-Pd(Ki-Kti-{+p^ KINpL NK)

Then in the first replication we can confound the triple interaction and

conserve it in all the remaining replications. In the second replication

we can confound the simple interaction N X P and conserve it in all

the remaining replications. With 4 replications we can confound each

interaction in 1 replication and conserve it in all the others.

In recovering information with respect to the interactions it will, of

course, be necessary to make the desired comparisons only in those

replications in which the particular interaction is not confounded. Thus

if we are computing the sum of squares forNXP we omit replication

II entirely and make up our totals from the other three. The final

analysis will be of the form :

Blocks ........................ 7 DF
Main effect* ................... 3 DF
Simple interactions ............. 3 DF
Triple interactions .............. I DF
Error ......................... 17 DF

Total ..................... 31 DF

The result of this procedure is to sacrifice one-quarter of the information
on each interaction, but the main effects and that portion of the informa-
tion with respect to the interactions that is recovered may be estimated
with greater accuracy.

Using a set of figures from uniformity data the procedure for designing
and analyzing a partially confounded 2X2X2 experiment is illus-

trated in Example 35.



164 THE FIELD PLOT TEST

Example 36. Partial Confounding in a 2 X 2 X 2 Experiment.

TABLE 41

PLAN OF FIELD SHOWING LOCATION OF TREATMENTS AND CORRESPONDING YIELDS,

FOR A PARTIALLY CONFOUNDED 2X2X2 EXPERIMENT

Table 41 gives the location of the treatments in the field and the corresponding

yields. The latter were taken from uniformity data as the results from an actual

experiment were not available. Note that the replicate numbers (actually two

replicates) correspond with the numbers given opposite the expansion of the inter-

actions on page 163. Thus in replicate I the triple interaction NXPXK is con-

founded with blocks, and so forth for the other interactions in the remaining replica-

tions. Within each block the treatments are assigned to the plots at random.

In Table 42 the treatment totals are arranged in a convenient form for the

calculation of sums of squares. For example, in calculating the triple interaction
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TABLE 42

TREATMENT TOTALS REQUIRED TOR CALCULATION
OF SUMS OF SQUARES

N X P X K we must use the totals from the replicates in which this interaction ia

not confounded. These are given in the third column, and we find

NXPXK** (1021 + 1037 + 1199 + 1089 - 970 - 1135 - 1155 - 1151)
2
/48 - 88

Similarly the interaction P X K is calculated from the totals in the sixth column

P X K - (1219 + 917 + 1045 + 1187 - 971 - 1172 - 1106 -
1203)

2
/48 147

The main effects are of course calculated from all the replicates, so we make use of

the totals in the second column.

TABLE 43

COMPLETE ANALYSIS FOR PARTIALLY CONFOUNDED
2X2X2 EXPERIMENT



166 THE FIELD PLOT TEST

11. Splitting up Degrees of Freedom into Orthogonal Components.
Before considering the problem of confounding in experiments of a more

complex type, the student should acquaint himself with the methods

of separating effects representing more than 1 degree of freedom into

component parts that are mutually independent and therefore may be

separately estimated from the data. Thus if we have 3 levels of nitrogen

in a fertilizer experiment, there are 2 degrees of freedom representing

the effect of nitrogen. These 2 degrees of freedom may be separated

with their appropriate sums of squares in an infinite number of ways,

but unless the separation is a purely formal one we will probably wish

to separate them in some way such that they will represent definite facts

relative to the interpretation of the experiment. In the case of the 3

levels of nitrogen Ni, N%, and N$, the 2 degrees of freedom can be

expressed by

(a) #3 - Ni

(b) 2N* -Nt-N*

and in this form (a) represents the linear effect of N on yield, and (6) the

quadratic effect. If the yields are represented graphically, (6) will be

zero if the 3 points lie exactly on a straight line. These two expressions

merely bring out the fact that any 2 points can be fitted by a straight line

function, and any 3 points by a quadratic function. Any other division

of the degrees of freedom that we might make would probably not have

as valuable a meaning as this one, although if one felt quite certain that

#3 was a decided overdose of nitrogen one might wish to measure the

linear effect by N% N\ 9
and the quadratic effect by 2ATa Ni #2.

In general, however, the expressions such as (a) and (b) are the most

useful.

If we have 4 levels of nitrogen the 3 degrees of freedom may be

divided:

(c) 3N* + N* - N2
- 3Ni Linear term

(d) Nt - ^r

3
- N9 + Ni Quadratic term

(e) N* - 3N3 + 3#2
- Ni Cubic term

The rule for writing out the expressions for the division of degrees of

freedom is to see to it that in each expression the sum of the coefficients is

zero, and for any pair of expressions the sum of the products of the
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corresponding coefficients is zero. Thus, in the set immediately above,
the sums of the coefficients are

(c) 3 + 1-1-3 =

(d) 1-1-1 + 1 =

(e) 1-3 + 3-1 =

Then multiplying the coefficients:

(cXd) 3-1 + 1-3 =

(cXe) 3-3-3 + 3 =

(dXe) 1+3-3-1 =

We must remember, however, that if we wish to write the polynomial

expressions as has been done here there is only one set that can be

written.

The sum of squares for any one of the above expressions may be cal-

culated by means of a simple rule. For example, if we have the expres-

sions (a) and (6) the sums of squares are

(a)
i

(N* - Ntf (b) ^ (2N2 -Ni- Ntf

where the numerical portion of the divisor comes from summing the

squares of the coefficients within the bracket. The value of k comes

from the number of units entering into each subtotal. For example, in

(6), NI, N2, and N$ may represent subtotals from 8 plots, whence the

complete divisor is 48.

An actual example of the division of 3 degrees of freedom according
to the scheme outlined above is given by Yates (17). The figures are

for response to nitrogen, and the results of the analysis are reproduced
below:

DF SS

Linear term 1 19,536.4

Quadratic term 1 480.5

Cubic term 1 3.6

Total 3 20,020.5

When compared with the error of the experiment, the quadratic term

turned out to be insignificant, and the cubic term was below expecta-

tion. Undoubtedly, this type of result is quite usual in agricultural

experiments, and since we can separate out not only main effects in the
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above manner but also interaction effects, it follows that if a portion of

the degrees of freedom for an interaction effect is to be sacrificed by
confounding it is desirable in general to sacrifice that portion that is least

likely to be significant. At any rate, it may be wise to ensure that at

least the interaction between linear effects may be partially recovered

from the confounded experiment.

If the interaction between nitrogen at 2 levels and potash at 2 levels

can be represented by (N2 Ni) (K% K\) it follows that, if there are

3 levels of nitrogen, the interaction N X K can be broken up into two

parts:

(K* - Ki) (N3
- Ni) and (K2

- KI) (2N2
- NI - N*)

where the second expression represents the interaction of the quadratic

effect of nitrogen with potash. This point may be more obvious if we

consider (2A^ NI Nz) as representing deviations from linear

regression instead of the quadratic response, and hence the interaction

may be written as K regression X N deviation or KT X Nd . Now if we
have 3 levels of potash as well as 3 levels of nitrogen the 4 degrees of

freedom for the interaction N X K may be broken up as follows:

NrXKr

Nr XKd

Nd X Kd

(#3~

(2Nz~-

-K$
-Ki)

- NZ)(2K* -Ki- JRT8)

IDF
IDF
IDF
IDF

NXK 4DF

and it may be of interest to do this from the standpoint of obtaining

complete information with respect to the interaction. Yates (17) has

given a useful table for calculating the sums of squares, which is repro-

duced below in Table 44.

TABLE 44

GUIDE FOR CALCULATING SUMS OF SQUARES FOR THE

INTERACTIONS IN A 3 X 3 TABLE

Nr XKd NdXKr Nd XKd

Divisor 4Jc 12k 12k

k Number of units in each cell.

36A-
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To use the table it is necessary to set up a table of subtotals in the same
form as the above squares. The subtotals are added or subtracted

according to the signs in the appropriate table. Thus if the subtotals

are represented by
X\ X2 3

y\ 2/2 2/3

Z\ Z2 Z3

we get the sum of squares for Nd X Kr by

1

12k
(22/I

" -f

In certain cases it may not be necessary to divide up the degrees of

freedom into orthogonal components that have any definite meaning, in

which case we refer to the division as a purely formal one. A 3 X 3

table, for example, may be represented as follows:

Pi P2 P3

and from knowledge that has been derived from a study of the properties

of the Latin square, Fisher, (2), it can be shown that the 4 degrees of

freedom representing the interaction N X P can be split up into two

orthogonal components by making up totals from the diagonals of the

above square. Thus 2 degrees of freedom of the interaction is repre-

sented by the differences between the totals (11 + 22 + 33), (21 + 32 +
13), (31 + 12 + 23), and the other 2 by the differences between the

totals (11 + 32 + 23), (21 + 12 + 33), (31 + 22 + 13). As a matter of

fact this provides a very useful method of calculating the interaction in

a 3 X 3 table as it is a direct method and the total sum of squares cal-

culated independently from the same table may be used to obtain a

perfect check on all the calculations. 1 The division of the 4 degrees of

freedom is, however, purely formal. In other words, we would expect

that on the average the two components would give us equal estimates

of the interaction variance.

1 Note that the second set of totals can be obtained most easily by setting up the

numbers in the first three totals in the form of another square, and taking from this

square the same diagonals as were used in the first instance.
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12. Confounding in a 3 X 3 X 3 Experiment. We shall now con-

sider the possibilities of confounding in a 3 X 3 X 3 experiment. The

3 main factors can be represented by JV, K, and P, and since each

of these occurs at 3 levels there are 27 different combinations. The 26

degrees of freedom for treatments can be subdivided at first as follows:

N 2DF]K 2 DF
[
Main effects 6 DF

P 2 DF\

NXK 4DF]NX P 4 DF
[Simple

interactions 12 DF
KXP 4 DF\

NXKXP 8 DF Triple interaction 8 DF

Now if we wish to conserve the main effects and the simple interactions

we must have at least 9 plots in each block. That is, the 3 levels of

each fertilizer must each be represented by 3 plots, and the 9 combina-

tions of each pair of fertilizers must each be represented by 1 plot. The

required combinations to fulfill these conditions are given by a 3 X 3

Latin square in which the rows may be taken to represent the 3 levels

of nitrogen, the columns the 3 levels of potash, and the Latin letters

(here replaced by numbers) the 3 levels of phosphate. R. A. Fisher,

in introducing this solution, points out that there are only 12 solutions

of this 3X3 square and that these 12 fall into 4 sets such that in any one

set the other 2 may be generated by cyclic substitution of the numbers in

the square. The entire 12 solutions are reproduced below.

132
II 3 2 1

2 1 3

1 2 3

III 3 1 2

2 3 1

1 3 2

IV 2 1 3

3 2 1

To make the meaning of these squares perfectly clear, suppose that we
consider the treatments represented by the square I (a). These are,

^ etc. In any one replica-
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tion we must have all the treatments of one complete set such as I, II,

III, or IV, and within the replication the division of the treatments into

blocks is according to the division of the sets into (a), (6), and (c). In a

single replication we have 2 degrees of freedom for blocks, and these

must represent 2 degrees of freedom of the triple interaction that have

been confounded, as we have seen to it that the main effects and the

simple interactions have all been conserved. It follows also that it is

impossible, if the main effects and the simple interactions are conserved,

to confound more than 2 out of the 8 degrees of freedom of the triple

interaction. Such being the case, we shall still have, after confounding,
6 degrees of freedom for the triple interaction, which we may use to test

the significance of the residual portion of this effect.

The actual procedure of confounding in an experiment of this kind is

to set up the treatments and divide them into blocks according to one of

the cyclic sets. The same division of the treatments into blocks is

retained throughout the remaining replications. In analyzing the

results, if set I has been used for confounding, then sets II, III, and IV
are used to build up the treatment totals from which the sum of squares
for the triple interaction is calculated. The details of this are given in

Example 36.

13. Partial Confounding in a 3X3X3 Experiment. By the

methods described above we are able to divide the 8 degrees of freedom

for the triple interaction into 4 sets of 2 that are mutually independent
and therefore may be separately estimated from the data. But these

sets represent purely formal differences, and although we confound only
2 of them and conserve 6, we are not able to separate out particular

effects such as that represented by Nr X Kr X Pr for particular study.

To do this we must adopt the method of partial confounding which

results from using each of the cyclic sets once, one for each replication.

We require therefore a minimum of 4 replications. Space is inadequate
here to go into detail regarding the method of separating out the particu-

lar components, but the student interested in these further aspects of

confounding will be able to obtain further information from R. A.

Fisher's "The Design of Experiments," and from the monograph by
F. Yates, "Factorial Experimentation."

Example 36. A Confounded 3X3X3 Experiment. In the preparation of this

example, data from a uniformity trial have been used. It serves therefore merely
to show the technique of setting up and analyzing a 3 X 3 X 3 experiment in .which

2 degrees of freedom from the triple interaction have been confounded with blocks.

As indicated in Table 45 giving the treatment numbers and the corresponding

yields, the distribution of the treatments into the 3 blocks of each replication is

according to cyclic set I as described above. In order to abbreviate, only the sub-

script numbers of the treatments are given, it being assumed that the three ingredient*
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such as NKP are in the same order in each case. Within the blocks the treatments

are, of course, randomized.

Table 46 is obtained by collecting the plot yields from Table 45. It is used for

calculating the main effects and the simple interactions. At the foot of this table are

given the treatment totals from which the sum of squares for the 6 degrees of freedom

for the triple interaction is calculated. These treatment totals may be obtained very

quickly by the combined use of the cyclic sets as given on page 170 and the 3X3
tables for N and K, one for each level of P. Knowing that set I has been used for

confounding, we obtain our treatment totals for calculating the triple interaction,

from the application of sets II, III, and IV, to the data given in Table 46. For

example, taking set II we note that the 1's in group (a) correspond in Table 46 (a)

with 1604, 1523, and 1912; the 2's correspond inJTable 46 (6) with 1893, 2030, and

1845; and the 3's in Table 46 (c) with 1741, 1838, and 1917. Adding all these values,

we obtain 16,303. Then to obtain the next total the same process is repeated, using

the square indicated by II (5), and finally the third square, II (c), gives the third

total. The sets III and IV are then used in a similar manner to obtain the remaining

totals. The sum of squares is calculated for each set of 3 totals and these are added

to give the sum of squares for the 6 degrees of freedom of the triple interaction.

Mainly as an exercise, the sums of squares for the individual degrees of freedom

as represented by the regression and deviation from regression effects have all been

calculated and are shown in the analysis of variance Table 47. These calculations

are very simple if one makes use of Yates's diagram as given on page 168. A few of

the calculations are reproduced below for further guidance:

N, (15,393 - 16,900)
2
/144 = 15,771.17

Nr X Kr (5403 + 5706 - 5376 - 4894)
2
/96 = 7,332.51

Nd X Pr (2 X 5244 + 5057 + 5596 - 4812 - 5667 - 2 X 5297)
2
/288 = 16.06

Nd X Kd (5403 -f 5376 + 4 X 5436 + 4894 + 5706 - 2 X 5520
- 2 X 5096 - 2 X 5818 - 2 X 5074)

2
/864 - 13.25

METHODS FOR TESTING A LARGE NUMBER OF VARIETIES

14. General Principles. In factorial experiments, when the total

number of combinations is fairly large, we have seen that greater accu-

racy can be obtained by confounding with blocks certain of the degrees

of freedom for the higher-order interactions. In variety experiments the

numbers are frequently quite large and we again meet with the problem
of insufficient accuracy owing to the large size of the blocks. In order

to overcome this difficulty Yates has developed methods that, by a pro-

cedure analogous to confounding in factorial experiments, enables us to

divide up the replications into much smaller blocks, and these are used

as error control units. Since the small blocks contain only a fraction

of the total number of varieties, they are referred to as incomplete blocks.

Yates (20) in a preliminary examination of uniformity data concluded

that incomplete block experiments would give increases in efficiency over

randomized blocks of 20 to 50%. Goulden (6) arrived at practically

the same conclusion after a fairly extensive study.
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TABLE 45

TREATMENT NUMBERS AND CORRESPONDING PLOT YIELDS FOR 3X3X3 EXPERI-
MENT. THE SAME Two DEGREES OP FREEDOM FROM THE TRIPLE INTERACTION

CONFOUNDED IN ALL REPLICATES
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TABLE 46

TREATMENT TOTALS COLLECTED FROM TABLE 45 FOB CALCULATION
OF SUMS OF SQUARES

(a) Pi

(6)

tfi

Nt

AT,

(e)

Pi
N3 ) P2

K,)
AT,

+ JVo +
K*

(a)

(*>)

to

48,323 48,323 48,323
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TABLE 47

ANALYSIS or VARIANCE FOB 3X3X3 EXPERIMENT SHOWING SUMS OF SQUARES
FOR INDIVIDUAL TREATMENT DEGREES OF FREEDOM

16. Incomplete Block Experiments. There are a number of different

types of incomplete block experiments, and only those are described here

that would seem to be of the greatest practical value in agronomic tests.

The type which can probably be regarded as the most elementary is

known as the two-dimensional quasi-factorial with two groups of sets. By
extending this type to three groups of sets we have a somewhat greater

degree of complexity, and this complexity continues to increase with the

number of groups of sets until we reach the point of using all possible

groups of sets, wherein the entire process of analysis suddenly becomes

very much simplified. The latter type may be referred to as a symmet-
rical incomplete block experiment. Quasi-factorial experiments of the
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three-dimensional type are also possible, and one of the simplest of these

will be described.

In discussing the general principles involved in incomplete block ex-

periments we shall consider an hypothetical experiment with only 9

varieties. With such a small number of varieties it would probably not

be worth while to use these methods, but a small example of this kind

will be quite sufficient to illustrate the general principles. First, we

take 9 numbers to represent the varieties and write them down in the

form of a square. These are two-figure numbers, the first figure rep-

resenting the row and the second the column of the square.

11 12 13

21 22 23

31 32 33

If we suppose now that this square represents, instead of 9 different

varieties, 9 combinations of 2 factors at 3 levels as in a simple 3X3
factorial experiment, the degrees of freedom can be divided as follows:

A (factor for which levels are indicated by first figure of two-figure numbers) 2 DF
B (factor for which levels are indicated by second figure of two-figure numbers) 2 DF
A X B (interaction) 4 DF

Furthermore, since the 4 DF for the interaction can be separated into

two orthogonal components, each represented by 2 DF, the total of

8 DF can be split up into 4 pairs. Then if the 9 combinations making

up a complete replication are divided into 3 blocks, either one of the

above pairs of degrees of freedom may be confounded with blocks. If

we should decide to confound the A factor with blocks, the degrees of

freedom for one replication will be apportioned as follows:

Blocks 2 DF
B 2DF
AXB 4DF

and the method of confounding would be merely to put the treatments

together in the same block that occur in the rows of the square given
above. Similarly the B factor may be confounded by putting the treat-

ments in the same block that occur in the columns of the square. Then
from our knowledge of the properties of a Latin square it is clear that

if the interaction A X B is to be confounded it is only necessary to put
the treatments together in the same block that occur in the diagonals
of the square. In one replication we can confound only 2 out of the 4
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degrees of freedom. For example, in one replication the arrangement
of the treatments in the blocks might be as follows:

Block 1 11 22 33

Block 2 21 32 13

Block3 31 12 23

and the degrees of freedom will be divided in the following manner:

Blocks 2 DF
A 2DF
B 2 DF
A X B 2DF

Alternative to the above scheme 2 degrees of freedom from the inter-

action may be confounded with blocks by this arrangement:

Block 1 11 32 23

Block 2 21 12 33

Blocks 31 22 13

Finally, it works out that in each replication a different pair of degrees

of freedom may be confounded with blocks, in which case the analysis

of variance will be of the following form:

Blocks 11 DF
A 2DF
B 2DF
AX B 4DF
Error 16 DF

By a process of partial confounding all the degrees of freedom for the

9 treatment combinations can be recovered, and at the same time error

control has been improved by the use of smaller blocks. The loss of

information due to partial confounding is seen to be exactly ^, since

each pair of degrees of freedom has been confounded in 1 replication and

conserved in 3. In other words, both the main factors and the inter-

action are determined with % of the precision that would have resulted

if there had not been any confounding. The presumption, of course,

is that the error will be sufficiently reduced by confounding to more
than make up for the loss in precision.

Returning now to the testing of 9 different varieties, it should be

obvious that, if the varieties are designated by numbers and arranged
in a square as above, we can go through the same procedure of partial

confounding as has been outlined above for a 3 X 3 factorial experiment,
and theoretically the same increase in accuracy due to confounding will

be obtained. The method of analysis will also be clear from these con-
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siderations, as we work it out in the first place as though it is a factorial

experiment and, after finding the sums of squares for the imaginary
factors and their interaction, we combine these to form the variety sum
of squares.

The fact that the variety numbers are first arranged in the form of a

square simulating a two-factor experiment is the basis of the term " two-

dimensional." The number of groups of sets is based on the number of

groups of degrees of freedom that are confounded with blocks. In the

quasi-factorial 3X3 experiment, for example, the 8 DF for the 9 treat-

ments can be divided orthogonally into 4 pairs, and if we confound only

2 of these pairs, the experiment is said to consist of
" two groups of sets."

With 9 varieties we have seen that 4 pairs of degrees of freedom can

be confounded, in which case we might refer to the experiment as one

with "four groups of sets," but as pointed out above it is usual to refer

to experiments of this type as symmetrical incomplete block experiments.

In a quasi-factorial experiment with only two groups of sets it will

be obvious that all comparisons are not made with the same precision.

Suppose, for example, that the blocks are made up out of the rows and

columns of the square, in which case the analogous factorial experiment
would be outlined as follows:

Blocks 5 DF (assuming 2 replicates only)
A 2DF
B 2DF
AX B 4 DF
Error 4 DF

In which the imaginary factors A and B are confounded in one replicate

and conserved in the other, while the interaction A X -B is conserved

in both replicates. The main factors A and B are determined with

only ^ the precision with which the interaction is determined, and

transferring these ideas to a variety experiment it becomes clear that the

varieties that occur in the same row and in the same column are compared
more accurately than those that do not occur at all in the same block.

Another point that we should note here is that in estimating the result

for any one treatment combination of the partially confounded factorial

experiment, or of one variety in the quasi-factorial experiment, it will

be necessary to make a correction for the blocks in which they occur.

The actual totals are partially confounded with blocks. One variety

may occur mainly in low-yielding blocks and another one in high-

yielding blocks, and therefore the actual yield of the first variety must
be increased and the yield of the second variety lowered, in order to

make the two variety yields comparable. The details of this method
of correction are given below.
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16. Two-Dimensional Quasi-Factorials with Two Groups of Sets.

Assuming that only 9 varieties are to be tested, the first step is to take

9 numbers to represent the varieties, as pointed out above, and arrange
them in the form of a square. The next step is to arrange the varieties

in sets according to the rows and columns of the square. These are

given below and the first group of sets is referred to as group X and the

second group of sets as group F.

Group X Group Y

11 12 13 11 21 31

21 22 23 12 22 32

31 ,32 33 13 23 33

The varieties in the sets are those that are assigned to the incomplete

blocks, and each group makes up a complete replication. The varieties

occurring in the same block are, of course, those that are between the

same set of parallel lines in the above figure. The groups can now be

repeated as many times as we wish in order to bring up the replicates

to the required number. The varieties are randomized within each

block, but the blocks themselves may be placed in any order. 1

Figure 11 illustrates diagrammatically the set up of the experiment

assuming 4 complete replications. The yields may be arranged in a

form somewhat similar to this for convenience in calculation. After

setting up the original yields they must be combined for each group and

then for both groups. The marginal totals are then obtained for each

group and for both groups combined, and we are ready to proceed with

the calculation of the sums of squares and the corrected variety means.

The calculation of the variety sum of squares follows from the analogy
to a factorial experiment.

DF
In Group Y A = 2(Yl)/np - Y2

./np* p~l

In GroupX B~ Z(X?f)/np - X2
./np* p-1

Group X + Group Y(A X B) - 2(T2.)/2n - 2(Tl)/2np
- Z(T?t)/2np + T?../2np*

1 In certain cases the experimenter may decide, even after conducting the experi-

ment as a quasi-factorial, to use the actual yields or some other character of the

varieties, without correction. For example, he may wish to make quality or other

testa on composite samples made up from ail the replicates. For this purpose it is

somewhat better to have the incomplete blocks randomized within each replication.
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Group X

11 12 13

21 22 23

31 32 33

11 12 13

21 22 23

31 32 33

Group Y

X. v Y.v

T..

FIG. 11. Representation of a miniature example of a two-dimensional quasi-factorial

experiment with two groups of sets.

where p is the number of varieties in one set and n is the number of

repetitions of each group.
Yates (20) gives a direct method of calculating the sum of squares for

varieties which is probably quicker than the one used above. Yates's

formula is

Varieties (SS) = Z(Tl)/2n+I,(Xu .

-
F..)

2/2np+S(Z., - F..)
2
/2np

(X.. Y..)
2
/2np

2
[S(X.) + ^/(Y^^/np

We next calculate the total sum of squares for all the plots and for the

blocks, and obtain the error sum of squares by subtraction. The sum-

marized analysis is of the form Df,

Blocks 2np 1

Varieties p
2

1

Error (p l)(2np p
-

1)
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Just as in the factorial experiments that have been confounded all

comparisons must be made within blocks. This means that to compare
2 varieties directly we cannot use the actual variety totals but must

prepare for these varieties ratings based on their behavior as compared to

other varieties in the same blocks. The least squares method gives us

as the best rating for any variety uv, the following expression which we
shall refer to as a corrected variety mean.

^ - 5= +~ (X.. - F.v ) + -i- (Fu .

- X*.)
2n 2np 2np

If a large table of yields is to be corrected it may save time to set up the

corresponding portions of the correction in the margins of the table. If

we let C. v =~ (X. v
-

F.,) and C. =~ (Yv .
- Xu .), then C.i will be

2np 2np

the portion to be added to all the variety means in the first column, and

Ci. will be the portion to be added to all the variety means in the first

row.

In this as in all other quasi-factorial arrangements the error variance

must be multiplied by a factor depending on the type of experiment, to

give the variance for comparing 2 varieties by their corrected means.

If s 2
is the error variance, the variance of the difference between the

corrected means of 2 varieties that occur in the same set is

For 2 varieties not having a set in common the variance of the difference

The mean variance of all comparisons is

and when p is not too small we may use the latter variance for all com-

parisons without appreciable error.

Example 37. Two-Dimensional Quasi-Factorial with Two Groups of Sets.

Using uniformity data and assuming a test of 25 varieties in 4 replications this
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example has been worked through in detail in order to show the methods of calcula-

tion. Setting up first the specifications of the test:

Varieties in each set (p) 5
Varieties (v)

- p
2 = 25

Sets () * 2p =10
Replications of each group (n)

* 2

Replications (r) 2n = 4
Blocks (6) = 2np =20
Total number of plots (N) 2wp

2 =100

The variety numbers are first written down in the form of a square:

11
21
31
41
51

12
22
32
42
52

13
23
33
43
53

14
24
34
44
54

15
25
35
45
55

and the 10 sets in 2 groups of 5 taken from the rows and columns of the square. The
varieties in these sets are then randomized in the blocks as indicated in Table 49.

Here the groups are repeated twice so that (n 2) and (r ** 4), and the groups are

separated in the field. It might be wise if there is a marked difference in variability

in different parts of the field to randomize the blocks over the whole field instead of

keeping them together as complete replications, but in general this would seem to be

unnecessary and it is a decided convenience from the standpoint of making observa-

tions on the plots to have all the plots in one replication together.

After obtaining the block totals and the grand total the next step is to set up
Table 50, the construction of which should present no difficulty. Note that the

marginal totals XVf and Y,v are those in which variety and block effects are con-

founded.

By the shortest method the sum of squares for varieties is calculated as follows

Z(Ti)/2n - 1,961,637.50

X(XU .
- Fv .)

2
/2np - 81,162.50

2(X.V
- Y.9)*/2np - 117,817.50

-(Z-. -
F..)

2
/2np

2 -- 61,076.50

+ S(F.J)} /np - -2,058,800.00 (Groups -f Sets -f Mean)

Total = Varieties (SS) . 50,741.50

The total sum of squares for all plots is 630,266.00 and for blocks is 467,586.00.

Having obtained these, we can set up the analysis of variance.

TABLE 48

ANALYSIS OF VARIANCE

Two DIMENSIONAL QUASI-FACTORIAL Two GROUPS OF SETS
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In order to obtain the corrected variety yields we calculate

C.v -^ (JT..
- Y.v) for 9 - 1, 2, 3, 4, 5

C. - ~ (F. - Xu .) for u -
1, 2, 3, 4, 5

These are entered in the margins of a (5 X 5) table as in Table 51 and added to the

actual means of corresponding cells in the table.

To obtain a further check on the sums of squares for varieties we can now calculate

it in another way using the formula

Varieties (SS) **2(tuV -Tuv)
- S(fw.-Z.) -

Sfl.,, F.,)

where ti. t
for example, is the mean of all the luv values in the first row of Table 51

and LI is the mean of the first column.

To make comparisons between the corrected means we may if we wish to be exact

take into consideration whether or not the varieties being compared occur in the same
set. To compare varieties 21 and 22, for example, we calculate the variance accord-

ing to the formula

F<fc-W-;^;-^y-X=)-lM
SEfa -

IK) = V 1199.3 = 34.63

_ 161.50 - 123.75
'

34.63
- 1 '99

To compare varieties 11 and 54 we would have

38.Q 7\
- 1399.23

'1399.23 =37.41

135.25 - 170.25 ^
37.41

0.94

We would obviously not be very far wrong, even with a p value as low as 5, to use

for all comparisons the mean variance for the difference between 2 varieties. This

would be

- 1332.6
n

5^m - Vl332.6 - 36.50

* The t used here is, of course, the statistic defined by R. A. Fisher in "Statistical

Methods for Research Workers.
11
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TABLE 49

POSITION OF VARIETIES IN THE FIELD AND CORRESPONDING PLOT YIELDS.

TWO-DIMENSIONAL QUASI-FACTORIAL EXPERIMENT
WITH Two GROUPS OF SETS

TABLE 50

YIELDS OF VARIETIES BY GROUPS, AND TOTAL YIELDS FOR BOTH GROUPS

Values of x*v

Group X
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TABLE 50 Continued

Values of yuv

Group 7

Y.v 2375 1640 1200 1165 1610
| 7,990 - F.,

Values of Tw

Group X
+

Group Y

1

2
3
4
5

X.v - Y.v

-1300
- 555

145
30

- 580

~XU .

180
1030
65

635
350

(X..
-

F..) -2260 (Y..
-

X..) - 2260

TABLE 51

CALCULATION OF CORRECTED VARIETY MEANS (*)

C.v -65.00 -27.75 7.25 1.50 -29.00

C.i - -1300/20 - -65.00

Ci. - 180/20 - 9.00

17. Two-Dimensional Quasi-Factorials with Three Groups of Sets.

A possible criticism of the quasi-factorial method with two groups of

sets as described above is that there is too great a discrepancy between

the estimates of the error variance for comparing varieties in the same
and in different sets. This can be partly overcome by increasing the
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number of groups, and hence the type with three groups of sets is theo-

retically an improvement over the previous type. It requires, however,
more computation, and the number of replications must be a multiple

of 3. Details for setting up and analyzing such experiments may be

found in the reference of Yates (20).

18. Three-Dimensional Quasi-Factorial^ with Three Groups of Sets.

In the two-dimensional types the varieties were represented by two-

figure numbers corresponding to the two dimensions of a square. In

the three-dimensional types the varieties are represented by three-figure

numbers (uvw) corresponding to the three dimensions of a cube. Thus
in a cube with p numbers on a side we can represent jfl varieties, and

taking these numbers in sets of p by slicing in three directions we can

make up 3p
2

sets. There will be three groups of p
2
sets, each one cor-

responding to a direction in which the cube is sliced. At this point

the student should draw up a cube, put in the numbers, and practice

writing out the sets. It will then be noted that the sets can be written

out directly for any value of p by expanding the sets given below for

p = 3.

When the number of varieties is very large, say 216 or more, there

are decided advantages in using this type of experiment, as with any
other type the blocks would still be rather large.

The details of setting up and analyzing a three-dimensional experi-

ment may be obtained from Example 38.

Example 38. Three-Dimensional Quasi-Factorial Experiment with Three Groups
of Sets. The specifications are:

Varieties (v) p* = 27
Sets () - 3p* - 27

Replications of each group (n) 2

Complete replications (r)
= 3n 6

Total number of blocks (6) = 3np* - 64
Total number of plots (N) - 3np - 162

After forming the (3X3X3) cube we can write out the sets as follows:

Group X ( vw) Group Y(u
- w) Group Z(uv

-

)

Set No. Set No. Set No.

1 111 211 311 1 111 121 131 1 111 112 113

2 112 212 312 2 211 221 231 2 121 122 123

3 113 213 313 3 311 321 331 3 131 132 133
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After the distribution of the blocks over the field and the randomization of the

varieties within the blocks we have such an arrangement as is shown in Table 53,

in which the individual plot yields corresponding to the varieties are given. In this

case the blocks are distributed at random over the whole field, but it would have been

more convenient to keep them together in complete replications.

The calculations are carried out in tabular form in Table 54. The data are first

collected by groups so that the yield of any one variety in one group will be a total

of n plots. The marginal totals are obtained as indicated in three directions, and it

will be noted that X.w, FM .W ,
and Zuv . represent the totals for the sets. The complete

variety totals represented by Tuv are entered next and all the marginal totals of these

obtained.

For calculating the corrected variety means ft,**) the most convenient formula is

T
tuvw **

*7| h C'-tw "I" Cv'W + Cuv
on

where

- T.v . -{- 3F.V.)

(pTu*v> 3pFw .tt> T. .w -f- 3Z. .

wip~
Thus

C.u - (3 X 2735 - 9 X 340 - 9875 -f 3 X 3635) - 57.176

M - -;L (3 X 3330 - 9 X 1385 - 9645 + 3 X 3105) - -25.972
108

Cn. = ~~
(3 X 3305 - 9 X 1185 - 9470 + 3 X 3180) = - 6.296

Having obtained all the correction terms, we check by obtaining the total, which in

this case comes to +0.001. This is a sufficiently close check.

The corrected means are obtained by adding the corresponding correction terms

to the actual means. For example, ui- 151.667+57.176-25.972- 6.296 176.575.

To obtain the sum of squares for varieties we first average the corrected means in

three directions to give t.w, tv .w , and *. To illustrate this:

<.ii - | (176.575 + 190.001 + 164.723) - 177.100

h-i - I (176.575 + 192.222 + 224.028) - 197.608

hi- - $ (176.575 + 180.556 + 197.917) - 185.016

The sum of squares for varieties is then given by

\rn<M*s>4t*\<M fQ Qf\ -L ^F*/f T* % ^PfY 4 \ *$*fV 4 \ V/5P l \Varieties (p>) *
(tuvw -luvw) Zt(JL.Vv't"w>)

~~ ^i^u-wht-tp; (iuv.-tuv.)

which in this case is

5,847,432.06
-

5,754,971.44 - 92,460.62
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Then after calculating the total and block sum of squares from Table 53, we can set

up the analysis of variance.

TABLE 52

ANALYSIS OF VARIANCE

THREE-DIMENSIONAL QUASI-FACTORIAL EXPERIMENT
WITH THREE GROUPS OF SETS

The variances and standard errors for comparing the varieties are as follows.

It will be noted that such comparisons now fall into three groups that can be de-

termined from the variety numbers.

2s2

5

.2_
2X2889

X 13 = 1391

2889

2889

X 31 =1658

** 37.30

= 40.72

~ 42.02
-, (2p*+3p+6)

- r X 33 - 1766
onp 64

And the mean variance of all comparisons is

^X^-1630

19. Symmetrical Incomplete Block Experiments. It will be remem-

bered from the discussion of Section 15 that, if all the possible groups of

degrees of freedom are not confounded, certain of the comparisons are

determined with less precision than others. For this reason in using
the quasi-factorials we have two or more standard errors depending on

the
"
dimensions

"
of the experiment. This difficulty can be overcome

by confounding all the possible groups of degrees of freedom or in other

words by using all the possible groups of sets. We then have a design

that is perfectly symmetrical and not only do we have equal precision

for all comparisons but also the calculations are considerably simplified.

The chief problem in setting up the design of a symmetrical experi-

ment is in writing out the sets. For this purpose we can conveniently
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TABLE 63

POSITION OP VARIETIES IN THE FIELD AND CORRESPONDING PLOT YIELDS THREE-
DIMENSIONAL QUASI-FACTORIAL EXPERIMENT WITH THREE GROUPS OF SETS

divide such experiments into two types: (1) where the number of vari-

eties (v)
= p

2
;
and (2) where v = p

2
p + 1. There are, of course,

other types, but the two mentioned are likely to be of the most value in

field experiments. Considering the first type, (v
= p

2
), it is obvious

that the variety numbers can be written in the form of a square. Sup-

pose that we have 9 varieties; then the square is

11

21

31

12

22

32

13

23

33

The first two groups of sets are written as for a two-dimensional quasi-

factorial, from the rows and Columns of the square. Two more groups

may then be written from the diagonals of the above square. These are

11

21

31

22

32

12

33

13

23

11

21

31

32

12

22

23

33

13
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the second one being written from the diagonals of the first. This must

be all the groups, as we know from a study of the degrees of freedom in

a Latin square, and also from the fact that, if we repeat the process on

the last square written, the original square is regenerated. The maxi-

mum number of groups that can be written is always p + 1. On exam-

ining these sets we note that each variety occurs once and once only in

the same set with any other variety. Taking variety 11 the sets in

which it occurs are

(11 12 13), (11 21 31), (11 22 33), (11 32 23),

and in these four sets all the other varieties have occurred once.

If p is a prime number the above method of writing out the sets will

work for the type (v
= p

2
). If p is not a prime number we must mak^

use of a completely orthogonalized square, if such a square can be pre-

pared. For p = 6 the orthogonalized square is impossible, so that we
cannot write more than three groups of sets. This is the same as saying

that a Latin square is possible for any number of rows and columns,

but Graeco-Latin squares are impossible for certain numbers, Fisher (2).

A completely orthogonalized 4X4 square is given below, and further

squares are given in R. A. Fisher's "Design of Experiments," 1937.

Completely Orthogonalized 4X4 Square

111 234 342 423

222 143 431 314

333 412 124 241

444 321 213 132

This square may be used to show how the sets for 16 varieties can be

made up.

The first two groups of sets are obtained from the rows and columns

of the square of variety numbers in the usual way, and the orthogonalized

square is used to write out the remaining groups. Assuming that the

square of variety numbers is as follows :

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

and is superimposed on the orthogonalized square, we note, considering

the first of the three-digit numbers only, that 1 corresponds with the

variety numbers 11, 22, 33, 44; 2 with the numbers 21, 12, 43, 34; 3

with 31, 42, 13, 24; and 4 with 41, 32, 23, 14. These are the sets for the

third group, and we make up two more groups by using the second and

third figures of the orthogonalized square.
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To write the sets for the type v = p
2 p + 1, it is only necessary

to modify the above procedure. Suppose that t; = 13; then p = 4 and

p 1 = 3. A convenient method of designating the varieties is as

follows:

01 02 03 04

11 12 13

21 22 23

31 32 33,

and if the sets are written for the 9 numbers in the square, the sets for the

13 varieties are obtained by making one set out of 01, 02, 03, 04, and the

remaining sets by adding one of these to the sets of each group formed

by the other 9 numbers. The sets finally are as follows :

If the number of varieties is 21, the numbers would be written out as

below:
01 02 03 04 05

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

and we would have to use a completely orthogonalized 4X4 square in

order to make up the 20 sets for the 16 numbers in the square, to which

the remaining numbers would be added as described above.

Special mention should be made of the fact that, as the sets are

written out by the methods described above for the v = p
2

p + 1

type, the blocks cannot be arranged so that they form complete replica-

tions. There is a method of making up the sets (Youden's square) by
means of which all the blocks are placed side by side and all the plots in a

single row from one end of the field to the other would form a complete

replication. This method is likely to be of considerable value in labora-

tory experiments, but in field plot experiments it is not likely that the

long narrow strips one plot wide would be of any value in error control.

Example 39. A Symmetrical Incomplete Block Experiment for 25 Varieties and
6 Replications* The sets have been written out by the method described above, and
those for each group have been kept together to form complete replications. This

will be obvious from Table 55, and it will be noted also that no attempt has been

made to randomize the blocks* All the randomization is of the varieties within

blocks. It is convenient to enter on the plan of the field the individual yields and
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the block totals. The variety totals are obtained by collecting the individual yields
as in Table 56. These are denoted by Tuv . The figures in the column headed

are obtained by adding for any one variety the totals for all the blocks in which that

variety occurs. Thus from Table 55 for variety 11 we have

Sn - 257 + 181 4- 177 + 265 + 271 + 303 - 1454

The second last column is obtained as indicated, and this can be checked by adding,

as the total for all the (pTuv - 2ttt)) values is zero. The last column gives the cor-

rected variety means (*) which are given by the formula

where m is the general mean of the whole experiment and v is the number of varieties.

The sum of squares for varieties is given simply by

Varieties <SS) -

The analysis of variance can then be set up as at the foot of Table 56. The

method is also given for calculating the variance of a difference between two cor-

rected means. The general formula is

Vm - (-^ )r \ p /

where r is the number of replications.
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TABLE 55

LOCATION OF THE VARIETIES IN THE FIELD AND CORRESPONDING YIELDS. SYM-
METRICAL INCOMPLETE BLOCK EXPERIMENT FOR 31 VARIETIES AND 6 REPLICATIONS

Replicate VI

Replicate V
Replicate total = 949

Replicate IV
Replicate total = 642

Plot No.

Variety

Yields

Block

totals

Replicate III
Replicate total = 639

Replicate II
Replicate total = 851

Plot No.

Variety

Yields

Block

totals

Replicate I
Replicate total - 826

Replicate total - 1387

Grand total = 5294
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TABLE 56

YIELDS OF SINGLE PLOTS BY VARIETIES, VARIETY TOTALS, VALUES OF 2wt, AND THE
CORRECTED MEANS ftn>). SYMMETRICAL INCOMPLETE BLOCK EXPERIMENT FOR 25

VARIETIES AND 6 REPLICATIONS

pv

324,354

125
= 2594.83

Replications 2 (a:
2
)

I 83,531
II 32,228

III 34,039
IV 19,029
V 19,568
VI 40,367

Total = 228,762.00
CT 186,842.91

5294

150

S(7V)/5
CT

Blocks

35.29

1,088,496/5 217,699.20
186,842.91

30,856 29

= 41,919.09
Analysis of Variance
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2 X 88.21
Vmd - X() -36.28

5.94
I

Example 40. A Symmetrical Incomplete Block Experiment for 31 Varieties in

6 Replications. The sets were written out by setting up the variety numbers as

follows:

01 02 03 04 05 06

writing out the 6 groups of sets for the 5X5 square and adding, to each, one of the

numbers in the first row. An additional set was then made up from the numbers in

the first row, giving 31 sets in all. The blocks were arranged as indicated in Table

58, after randomizing the varieties within the blocks. The variety totals are collected

as in Table 59, and it is convenient for this purpose and for obtaining the values of

Zvv to make up a table similar to Table 60 giving the sets with their corresponding

numbers and block totals. Then, to collect the yields of, say, variety 23, we can

locate it in each group, note the numbers of the sets, and then proceed from the

table of individual yields to obtain the total. Similarly to obtain ^23 we add the block

totals in the same line as 23 throughout the table.

From this point the calculations are exactly as in Example 39 for 25 varieties,

except that, since this experiment is of the v = p
2

p + I type, the variance for

the difference between two corrected variety means is

Vm 1

r \P*-P

The analysis of variance is given in Table 57.

TABLE 57

ANALYSIS OP VARIANCB

INCOMPLETE BLOCK EXPERIMENT FOR 31 VARIETIES IN 6 REPLICATIONS
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TABLE 58

LOCATION OF THE VARIETIES IN THE FIELD, CORRESPONDING PLOT YIELDS, AND
BLOCK TOTALS. SYMMETRICAL INCOMPLETE BLOCK EXPERIMENT WITH 31 VARIETIES

AND 6 REPLICATIONS
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TABLE 59

YIELDS OF SINGLE PLOTS BY VARIETIES, VARIETY TOTALS, VALUES OF 2 r, AND THE
CORRECTED MEANS i*,. SYMMETRICAL INCOMPLETE BLOCK EXPERIMENT WITH 31

VARIETIES AND 6 REPLICATIONS
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TABLE 60

SETS ARRANGED IN ORDER OF NUMBERS WITH CORRESPONDING BLOCK TOTALS.

INCOMPLETE RANDOMIZED BLOCK EXPERIMENT

7

8

9

10

11

12

13

14

15

02 11 21 31 41 51 1635

02 12 22 32 42 52 1500

02 13 23 33 43 53 1655

02 14 24 34 44 54 1295

02 15 25 35 45 55 1390

03 11 22 33 44 55 1240

03 21 32 43 54 15 625

03 31 42 53 14 25 375

03 41 52 13 24 35 405

03 51 12 23 34 45 620

21

22

23

24

25

26

27

28

29

30

31

05 11 42 23 54 35 1465

05 21 52 33 14 45 915

05 31 12 43 24 55 845

05 41 22 53 34 15 820

05 51 32 13 44 25 1255

06 11 52 43 34 25 1585

06 21 12 53 44 35 1355

06 31 22 13 54 45 1255

06 41 32 23 14 55 1050

06 51 42 33 24 15 945

06 01 02 03 04 05 1395

Grand Total 34,960
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20. Choosing the Best Type of Incomplete Block Experiment for a

Given Test After a study of the various incomplete block experiments
it will be noted that each has certain limitations. On account of general

simplicity the symmetrical incomplete blocks are to be preferred to the

quasi-factorials, and in addition all comparisons are made with equal

precision. However, for the symmetrical types we must have, when
v = p

2
, p -f- 1 replications, and when v = p

2
p + l,p replications.

For a test of 121 or 133 varieties we require 12 replications, and if the

number of varieties is greater than this it is obvious that in general the

test will be more expensive than is usually warranted in such cases. At
a certain point, therefore, it would seem that the quasi-factorials should

be extremely useful. On account of its relative simplicity the two-

dimensional quasi-factorial with two groups of sets is preferable to the

three-dimensional type, but the latter will probably be the most efficient

if the number of varieties is quite large. These points can now be used

as a basis for setting up a general schedule as to the type of experiment
best suited to a given number of varieties. For this purpose Table 61

has been prepared, taking as a basis the number of varieties that can be

tested by at least one of three types.

In Table 61 the dotted lines indicate the range through which the

methods are generally recommended. The two-dimensional quasi-

factorial can be used at the point where the number of replications for

the symmetrical type becomes too large. For very large numbers the

three-dimensional quasi-factorial is probably the most efficient, but,

since it can be applied easily only to numbers that are cubes, the two-

dimensional type must be extended to include fairly high numbers.

A possible objection to incomplete block experiments in general may
be that certain numbers of varieties cannot be tested and hence the

experimenter may feel that it is still necessary to use randomized blocks.

However, it would seem to be desirable where possible to suit the num-
ber of varieties to the experiment even if it involves using "dummy"
varieties. Also, for those who wish definitely to use other numbers than

those listed here, Yates (20), has developed methods for laying out and

analyzing quasi-factorials in which the dimensions are not equal. Thus
instead of a 12 X 12 quasi-factorial for 144 varieties we might use a

12 X 11 for 132 varieties. These modifications, however, require addi-

tional computations and will be avoided if possible.
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TABLE 61

VALUES OF p AND r REQUIRED FOR DIFFERENT NUMBERS OF VARIETIES

AND RANGES THROUGH WHICH THE THREE GENERAL TYPES OF

INCOMPLETE BLOCK EXPERIMENTS ARE RECOMMENDED

etc.

Two-Dimensionai

Quasi-Factorial

p r

15 2n

Three-Dimensional

Quasi-Factorial

p r

2 3n

3n

3n

3n

3n

etc.

* p mm number of plots in one block.

r *> number of replications.

f Completely orthogonaliased squares greater than (9 X 9) have not yet been written, and

therefore we cannot if we wished go beyond this point at the present time.
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TABLE 62

YIELDS OF OAT VARIETIES IN AN EXPERIMENT ON THE EFFECT
OF SOIL INOCULATION WITH A ROOT ROT ORGANISM
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21. Exercises.

1. The results of a randomized block experiment are given in Table 62. Ten
varieties of oats were tested for their reaction to root rot. The plots were arranged
in pairs of which one plot was inoculated with the root-rotting organism and one

plot uninoculated. Analyze the results. State in words the meaning of a significant

interaction between varieties and the soil inoculation.

DF MS
Replicates 3 2,042.08
Varieties 9 2,654.19
Error (1 ) 27 270.54

Treatments 1 12,226.51
Varieties X Treatments 9 401.32
Error (2) 30 232.30

2. In a fertilizer experiment conducted In an 8 X 8 Latin square, the yields of

wheat given in Table 63 were obtained. The fertilizer combinations are designated

N, P, K, NP, NR, NPK, 0. In the table the yields are in the exact position of the

plots in the field, and above each yield figure is the fertilizer treatment which the

plot received. Work out the analysis of variance for this experiment, and, by means
of the standard error, compare:

(a) Yields for plots receiving N with those receiving no N.

(6) Yields for plots receiving K with those receiving no K.

(c) Yields for plots receiving P with those receiving no P.

The results for the sums of squares are given below to provide a check on the work,

but the sum of squares for the treatments must be split up to correspond to individual

degrees of freedom.
SS DF

Rows , 102.20 7
Columns 84.24 7
Treatments 513.79 7
Error 91.99 42

3. Complete the analysis of the split plot experiment described in Section 8,

above. Assume that the plan of this experiment is to be rearranged so that the

most accurate comparison is to be between D and W, and make the plan accordingly.

The sums of squares for the three errors as given below will provide a com-

plete check on the calculations.

Error (1) 647.6 Error (2) 1059.1 Error (3) 931.1

4. Assuming that the following sets of figures represent the response to fertilizer

at 4 levels, for each set work out the sums of squares for the total and then for the

linear, quadratic, and cubic responses. Graph the actual yield results as given below,

and then point out the relation between the shape of these graphs and the results

obtained for the sums of squares.
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The sums of squares are

Quadratic .

Cubic

6. Table 64 gives the plan of a field for a 3 X 3 X 3 confounded experiment,

with treatment numbers and plot yields. The numbers such as 123 and 321 represent

NiKzPs and NtKJPi. Cyclic set II was used to confound 2 degrees of the triple

interaction N X K X P with blocks. Work out the complete analysis of variance

for this experiment giving the results for treatment effects by individual degrees of

freedom.

The following excerpts from the results for the sums of squares will assist in

checking the calculations.

Total for treatments. . .2,434.93
NT ..' 9.46

Nr X Kd 4.73

Kd XPr 438.90
N X K X P 149.98 (for one pair of DF)
Error 5,770.81

6. Table 65 gives the plan of the field with variety numbers and corresponding

plot yields for a two-dimensional quasi-factorial experiment with two groups of sets.

Make a complete analysis of the results.

The variety sum of squares is 253,538.

7. Table 66 gives the plan of the field with variety numbers and corresponding

plot yields for an incomplete block experiment with 21 varieties. Analyze the results,

and make a test of the significance of the mean difference between the varieties

01 and 04.

8. Prepare plans for the layout of:

(a) Two-dimensional quasi-factorial experiment to test 36 varieties.

(b) Symmetrical incomplete block experiment to test 31 varieties.

(c) Three-dimensional quasi-factorial experiment to test 125 varieties.
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TABLE 63

YIELDS OF WHEAT IN AN 8 X 8 LATIN SQUARE FERTILIZER EXPERIMENT
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TABLE 64

PLAN OF FIELD AND PLOT YIELDS FOE A (3 X 3 X 3) CONFOUNDED EXPERIMENT
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TABLE 65

PLAN OP A FIELD WITH VARIETY NUMBERS AND CORRESPONDING PLOT YIELDS FOR
A TWO-DIMENSIONAL QUASI-FACTORIAL EXPERIMENT WITH 49 VARIETIES
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TABLE 66

PLAN OF FIELD WITH VARIETY NUMBERS AND CORRESPONDING PLOT YIELDS FOR

A SYMMETRICAL INCOMPLETE BLOCK EXPERIMENT WITH 21 VARIETIES
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CHAPTER XIII

THE ANALYSIS OF VARIANCE APPLIED TO LINEAR
REGRESSION FORMULAE

1. Significance of the Regression Function. If, in a series of paired

values, y is the dependent and x is the independent variable, the regres-

sion of y on x is represented by the linear equation Y = y + b(x ),

where b is the regression coefficient and Yi is a value of y estimated from

the equation for x = rr t . Now if the equation is used to estimate each

value of y from the corresponding values of x, it can be shown that

- F)
2

And since S(y #)
2 =

(1 r2)2(y $)
2 + r22(^/ )

2
,
it is obvious

that, if the total sum of squares for the dependent variable is broken up
into two parts, one part 2(t/ F)

2
, representing deviations from the

regression function, and another part S(F )
2

, representing that

portion of the total variability that is accounted for by the regression

function, these two parts are proportional to (1 r2) and r2
, respectively.

It should be clear that S(y F)
2
represents deviations from the regres-

sion function because for each value of y we are taking the square of the

deviation of that value from the corresponding F value on the regression

line. Similarly 2(F y)
2

represents the regression function itself

because for each value of y we take the square of the difference between

y and the corresponding point on the regression line. As the slope of

the regression line increases, 2(F y)
2 must increase also, and as the

y values approach more closely to the regression line the value of

2(y F)
2 decreases correspondingly.

The direct relation between 2(F y}
2 and the regression equation

may be shown by equating it to

2(F -
y)

2 = 2{y + b(x
-

x)
-

y}
2 = b2Z(x - x)

2
(2)

In the expression on the right S(x x)
2

is obviously independent of the

correlation so that any variations in S(F y)
2 are due entirely to b.

This is an important concept as it shows that, since the value of

210
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2(F ij)
2 for any given distribution of y is dependent on a single

statistic 6, it must represent only 1 degree of freedom. Hence the

analysis of variance corresponding to equation (1) will be:

where n' is the number of pairs of values of x and y.

In calculating the sum of squares b2 S(x x)
2

it is frequently con-

venient to make use of the equality

(3)

If b has already been obtained it is of course just as convenient to mul-

tiply S(z - x)
2
by b2 .

If the correlation coefficient has been determined, a short method

of determining the significance of rxy which is exactly comparable
to determining the significance of bvx arises from the substitution of

(1
- r2 ) S(i/

-
y)

2 for 2(y - F)
2

,
and r^(y - y)

2 for Z>
2
S(z - z)

2
,
in

the sum of squares column of the analysis of variance. Then F works out

to r2 (n
r

2)/l r2
, and this is all the calculation necessary. In other

words, for a total correlation or a regression coefficient, F = 2
,
and

tables either of F or of t may be used to test their significance. Refer

here to Chapter VII, equation (11), and note that F = Vb/ve .

2. Test for Non-Linearity. When correlation data are set up in the

form of a correlation table the total sum of squares may be split up into

two portions, one part representing differences between the means of

arrays and the other representing differences between values within

arrays. The equation is

-
y)

2 = ,(& - y)
2

Between Within

where np is the number in an array and yr is the mean of an array. The

second summation in the term on the right means that the sums of

squares are first computed for each array and these are summated.
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The equation for the corresponding degrees of freedom is as follows:

n1 - 1 =
(q
-

1) + (*'
-

q) (5)

where q is the number of arrays in the table.

If we picture the sum of squares for between arrays as being due to a

set of means running diagonally across the table following in general the

regression straight line, it is obvious that the sum of squares for between

arrays includes the sum of squares 62S(x x)
2

,
worked out above for

deviations due to the regression function, and that the remainder will be

due to deviations of the means of arrays from the regression line. The

equation is

Sn,(fr
-

y)
2 = 2n,(k - F)

2
(6)

Between Deviations

of means of

arrays from

regression line

Due to linear

regression

If the means of arrays fall directly on the regression line, ^,np(yp F)
2

will be zero, and correspondingly its value will increase as the trend

of the mean values gets farther away from the trend of the straight

regression line. Then since the sum of squares for within arrays

measures the random variability in the values of y a comparison of the

estimates of variance obtained from SnP (yP F)
2 and 22 (y yp )'

2

should provide a measure of the linearity of regression, or the goodness

of fit of the regression straight line to the data in question.

The equation for the degrees of freedom corresponding to equation

(6) will be (q
-

1)
=

(q
-

2) + 1.

The complete analysis of variance may be represented as follows:
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For the purpose of testing linearity, however, it suffices to set up;

There are various methods of obtaining the sums of squares for the

above analysis, but one of the most convenient and direct is first to

calculate Sn,,(j?p t/)
2

, making use of the identity

(7)y)

We square the total of each array and divide by the number in the

array. These are summated, and from the sum we subtract the square

of the y total divided by the number of paired values. Then we calcu-

late b22(x x)
2
and, S(y t/)

2
being known, the two sums of squares

required can be obtained by subtraction. The procedure is obvious by
reference to the outline of the analysis of variance above.

Example 41. Significance of a Regression Function. In Chapter VII, Ex-

ample 13, we determined the correlation coefficient for the yields of adjacent barley

plots and in Chapter VI, Example 11, ^e determined the regression line. Using the

same data and the analysis of variance to test the significance of the regression

function we should get a similar result. The sums of squares are

2(* -
*)

2 3952 - 8502/200 339.60

-
*)* - 0.44922 X 339.60 - 68.60

-
)
2 - 8180 - 12462/200 417.42

- K)
2 - 417.42 - 68.60 - 348.92

Then the analysis of variance is as follows:

The F value is well beyond its 6% point, indicating a high degree of significance.
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Example 42. The Test for Non-Linearity. We shall again use the data of

Chapter VI, Table 12, for this test. Since we already have 2(y - #)
2
(Example 41,

above) the first step is to calculate ^np(yp #)
2

. In Chapter VI, Table 13, the

totals for the y arrays are given, so we proceed as follows:

Between arrays ....... 202
/4

-

Linear regression ..... 622(x -
)

Deviations from regres-

2np(yp F)
2

-f 602
/13 + - - + 422/6 - 12462/60 78.70

- fV ~ 0.44922 X 339.50 - 68-/50

sion Difference

Total &\y y)~

Between arrays 2np(yp - ,

Within arrays S2(t/ yp)
2 = Difference

Setting up the analysis of variance, we have:

68.50

- 10.20

= 417.42

= 78,70

= 338.72

The F value does not approach its 5% point, so we conclude that there is no evidence

of non-linear regression.

3. Significance of Multiple Correlations. In multiple correlation

where x\ represents the dependent variable and x2 and x$ two independ-
ent variables the regression equation is

bi 2 (x2 (8)

and this may of course be extended for any number of variates. The
normal equations corresponding to (8) are

Zzi(a;2
- x2) = bnZfa - x2)

2

Sxi(x3
-

ft) = bi22x2 (x3
-

ft)

and from these we can derive the solution

x3)
2

-
i)

2 = - Xi)
2 + 6i2Sxi(x2

-
ft) +

(9)

-
ft) (10)

This equation corresponds to (1) above where the first term on the right

represents the portion of the sum of squares for x\ that is independent

of x2 and #3. The other two terms on the right represent the portion of

the sum of squares for xi that is dependent on x2 and X&. These terms

may of course be written b\2TZ(x2 x2)
2 and 6132(0:3 ft)

2
,
in which
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form they correspond to 62S(x x)
2 as above in equation (2), Equa-

tion (10) may also be written

(11)

where R is the multiple correlation coefficient. Also

- Zi)
2

,
and

= bi22xi(x2 fe) + 6132x1(0:3 a).

It follows from (10) and (11) that a multiple regression can be

expressed as an analysis of variance as follows :

where p is the number of independent variables. To test the significance

of a multiple correlation therefore it is only necessary to find

(12)

and look up the 5% point of F corresponding to n\ = p and

n> = n 1

p 1.

Example 43. The Significance of a Multiple Correlation. Let /?1.2345
= 0.6457,

and it has been obtained from a series of 84 values of x\, xi, x$, #4, und x&. We have

_ /a416928\/79\

\0.583072/\4/

For p = 4 and n' p 1 = 79, the 1% point of F is 3.56, so that the multiple

correlation is highly significant.

4. Special Applications. The analysis of variance can be used to

determine the significance of the additional information obtained in cal-

culating multiple correlation coefficients. This method was used by
Geddes and Goulden (2) in a practical problem in cereal chemistry.

Correlations were first determined between loaf volume of wheat flour

and the percentage of protein. In later studies the protein was sep-

arated into two portions, peptized and non-peptized, and using these two
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portions as variables the multiple correlation for their combined effect on

loaf volume was calculated. If the proportions of the two kinds of pro-

tein have an important effect on loaf volume the multiple correlation

should be significantly higher than the simple correlation for total pro-

tein and loaf volume. A method of comparing the two correlations

would determine therefore the practical significance, for purposes of

predicting flour quality, of knowing the amounts of peptized and non-

peptized protein in addition to the total protein.

If we let x\ represent loaf volume, #2 the peptized protein, x& the

non-peptized protein, and xp the total protein, the corresponding simple

and multiple correlation coefficients are r\p and Ri.23- The total pro-

tein is of course (0:2 + 3), the sum of the two fractions.

Assuming these correlations to be determined from 20 pairs of values,

the sums of squares representing deviations from the regression function

are proportional to (1 r\p) and (1 #1.23)) respectively, and the

corresponding degrees of freedom are 18 and 17. The effect of using

more variables to estimate x\ as in the case of multiple regression is to

decrease the sum of squares due to deviations from the regression func-

tion, but for each additional variable introduced 1 degree of freedom is

lost and unless the reduction of the sum of squares is more than propor-

tional to the loss in degrees of freedom there is no gain in precision. An

analysis may therefore be set up as follows:

Applying the z test to the mean squares (1) and (2), using (1) as an

error, we can determine the significance of the gain in information due to

the addition of another variable.

In one actual experiment for a series of 20 flours from No. 2 Northern

wheat r\p 0.511 and #1.23 = 0.732. The analysis gives:
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In this case there was a decided gain in information owing to the

separation of the protein into two components.
In the general case to which this method may be applied note that

(1 r2) represents (n
f

2) degrees of freedom and (1 R2
),

(n
f

p 1) degrees of freedom. The difference between the two
sums of squares will be represented therefore by (ri 2)

(n' p 1) s (p l) degrees of freedom.

6. Exercises.

1. For the data in Chapter VI, Table 15, determine the significance of the re-

gression function by means of the analysis of variance, where the flour carotene is

taken as the dependent variable. F 159.5.

2. For the same data as in Exercise 1 above, test for linearity of regression.

F - 3.21.

3. Apply the test for non-linearity to the data in Table 67 for the relation between

loaf volume according to a standard baking formula and the percentage protein of

wheat flour. If there is evidence of non-linearity calculate the regression equation
and make a graph showing the regression line and the means of the arrays.

TABLE 67

CORRELATION SURFACE TOR RELATION BETWEEN PROTEIN AND LOAF VOLUME

Protein in Percentage

11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5

950

900

850

800

Loaf 750

volume

in cc. 700

650

600

550

500
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4. For n' = 40, determine the multiple correlation #1.234 that is just significant.

6. Determine the significance of the gain in information through the calculation

of multiple correlations in the examples given below. For each comparison, state

your conclusion in words.

n '

40 ri2 0.7643 #L234 - 0.8031

n 1 = 62 r12 = 0.8744 #1.2345 - 0.9664

n' = 20 n2 = 0.7621 #03 - 0.7635

n' = 20 na = 0.7316 #1.23456 - 0.7329
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CHAPTER XIV

NON-LINEAR REGRESSION

1. An Example of Non-Linear Regression. In Chapter XIII,
Section 5, Exercise 3, a test for non-linearity was applied to a correlation

surface for the relation between protein and loaf volume of wheat flour

in a baking experiment. The non-linearity is significant, and on plotting

the means of the arrays we find that with increasing protein there is at

first a very rapid increase in the loaf volume, but with higher protein

flours the increase in loaf volume is slower and finally there are indica-

tions that the loaf volume is actually decreasing. Here we have a

typical example of non-linearity, and it is obvious that, in such cases,

methods for the prediction of values of the dependent variable from

specific values of the independent variable cannot be based on a straight-

line equation.
2. The Correlation Ratio. In cases of non-linear regression the

correlation ratio (1) is sometimes used to represent the relation between

the two variables. The correlation ratio is defined by

y)
2

and its relation to the correlation coefficient will be obvious from the out-

line of the analysis of variance of Chapter XIII, Section 2. The corre-

lation coefficient may be defined as follows if we take into account its

numerical value only:
-

y)
2

(2)
y)

2

and it is clear that in the correlation ratio the numerator contains the

sum of squares S(F y)
2
plus the sum of squares due to deviations of

means of arrays from the regression line. Hence rj
2
is always greater than

r2 unless the means of the arrays fall exactly on the regression line. The

correlation ratio measures the total variability of the means of arrays,

and this may be due in part either to a linear relation between the vari-

ables or to some other type of relation. It does not, however, represent

a relation that can be expressed by a mathematical equation, either

219
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linear or curvilinear. The correlation ratio is therefore not a very satis-

factory statistic as it cannot be used to predict one variable from another.

Its use must be confined to a measurement of the significance of the

total variability of the means of the arrays and in this respect must be

interpreted in terms of the analysis of variance. Thus in Chapter

XIII, Section 2, the analysis of variance test will involve a comparison
of the variance between arrays with the variance within arrays.

The popularity of the correlation ratio was occasioned partly by
the use of Blakeman's criterion (r/

2 r2) as a test for linearity (1).

R. A. Fisher (3) has shown that this test is not satisfactory and that the

analysis of variance can be used as described in Chapter XIII to provide
an accurate test. The correlation ratio as such is therefore not much
used at the present time. It may frequently be necessary to apply a

test of significance to the variance for the means of arrays in a correlation

surface, but this does not necessitate the actual calculation of the corre-

lation ratio. Elaborate methods have been developed for testing the

significance of the correlation ratio, but these are now unnecessary as

the problem has been completely solved by Fisher's z distribution and

the analysis of variance. The test, as we have noted in the previous

chapter, is now quite simple.

3. Types of Regression Equations. The procedure in making a

critical study of the relation between two variables when this relation is

non-linear is to endeavor to find some type of mathematical equation
that will give a good fit. This is obviously not always a simple problem
as there are a number of types of equations to choose from and in each

case the method of making an accurate test of the goodness of fit must

be considered. The first step is to examine the trend of the values in the

regression graph and from its general characteristics decide as to the

type of equation to be used. After the type has been selected the

actual equation must be determined by direct methods.

The simple straight-line equation that we have dealt with previously

Y = y + b^(x - *) fl
-

and since y bvx is a constant we can write this equation in the form

Y = GO + cix

where CQ = y bva and c\ = &, the regression coefficient. This is a

convenient form with which to represent the various kinds of regression

equations, which in general are of two types: (1) polynomials, and (2)

logarithmic. Typical examples are as follows:
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POLYNOMIALS LOGARITHMIC

Y *= CD + cix Y co + ci log x
Y = co + cix + C2Z

2
log F *= co + ciz

Y = co + cix -f C2X
2 + cjar

8
log F -= co -f ci log x

etc. etc.

Of the polynomials the first is the simple straight-line equation, the

second is the simple parabola or quadratic, and the third is the cubic.

The simple parabola has only one maximum or minimum point, and
there are no points of inflection. The cubic has both a maximum and a

minimum point and one point of inflection. Curves of higher degree
have more maximum and minimum points and tend to twist oftener and

more rapidly. A most interesting characteristic of the polynomial

equations is one that has already been noted in Chapter XII, in dealing

with the separation of sums of squares corresponding to individual

degrees of freedom. The effects represented by the polynomials of

different degree are independent, and we refer to them as the orthogonal

polynomials. This property is of particular value in curve fitting as it

simplifies materially the problem of testing the goodness of fit at each

stage of fitting.

Logarithmic curves may be regarded as modifications of the other

types. Thus the straight-line equation Y = CQ + c\x may be changed
to a logarithmic equation by replacing x by log x. The result of this

change is a crowding together of the x ordinates farthest away from zero.

A straight line with a positive slope is changed therefore to a curved line

which has a very decided slope at the origin but changes rapidly as x

increases and reaches a point finally where the slope is fairly constant

but much less than that of the original straight line. Logarithmic

curves, in addition, cannot be used to represent negative values, and in

this respect are therefore much more limited in their application than

the polynomials.

The characteristics of the different types of equations are most easily

learned by working out the F values for some imaginary equations and

plotting the curves on graph paper.

4. A General Method of Fitting Polynomials. With the data such

as those of Table 67, Chapter XIII, before us in the form of a correla-

tion surface, we may inquire as to the possibility of expressing the rela-

tion between protein and loaf volume by some simple mathematical

equation, the end result of our inquiry being to obtain the best method

available for predicting the loaf volume that will be obtained from the

flours of a given protein content. The selection of the best type of

equation is fairly easy in this case. First we prepare a graph of the

means of the y arrays as in Fig. 12, connecting the points with a dotted
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line. The general trend of the points seems to follow fairly closely

the first half of the second degree parabola, or of the portion of a third-

degree curve up to the maximum point. There is very little resemblance

to a logarithmic curve as the first portion of it is nearly straight and with

10

9

8

7

6

Y 5

4

3

2

3456789 10

FIG. 12. Graph of means of y arrays; data of Table 67.

a greater curvature towards the end. Of course polynomials of higher

degree may give a better fit than those of the second degree or third

degree, and the problem resolves itself therefore into the selection of a

polynomial that will give the greatest degree of precision in predicting y

from particular values of x.

SELECTION OF EQUATION GIVING THE BEST FIT

The problem of selecting an equation of the degree that gives the

greatest precision for prediction purposes is of paramount importance
in curve fitting and one which may easily be overlooked in a maze of

technical details leading to the fitting of curves of a high order. Unless

we can be sure that a curve fits better than a straight line it would be

better not to use the curve. In certain cases the improvement in fit due

to one equation over another is clearly visible by inspection, but this is

certainly not generally true. For example, in comparing second and

third-degree curves, the latter often appear to fit better than the former,

but a critical test may show that the situation is definitely otherwise.
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In the methods of curve fitting described below, particular attention

is given to the problem of determining goodness of fit. We begin by

fitting a straight line or a curve of low degree and follow up with addi-

tional stages of fitting. At each stage one degree of freedom is utilized

in fitting, and the variance represented by this degree of freedom is tested

against the error of regression. As a general rule, when a curve has

been obtained that passes reasonably well through the points, and if in

making use of an additional degree of freedom there is no gain in preci-

sion, the curve of lower degree fitted previously is taken as giving the

best fit.

METHOD

The fitting of polynomials is an application of the method of least

squares. Where Y represents the values of y estimated from the regres-

sion equation for given values of z, the type regression equation is as

follows :

Y = co + ax + c2x2 + + cmxm (3)

and consequently the error of estimation is given by

- F) = S(y - Co
- cix - c2z2 - - cmx)2

(4)

The best values for substitution in the equation for co, ci, 02, *cm are

taken as those that give a minimum value to S(y F)
2

. Minimizing
the expression on the right in (4) we obtain a set of m + 1 simultaneous

equations, where m + 1 is the number of unknowns and m is the highest

power of x in the polynomial equation to be derived. These simultane-

ous equations are known as the normal equations, owing to the sym-
metrical nature of the coefficients. For the general case they are as

follows, where x and y are measured from their means:

nco

Z(*)co

S(z
2
)co + Z(x*)ci + S(:r

4
)c2 + - - - + S(^+2

)cw = 2(x
2
?/) (5)

-f + %(x*
m
)cm = 2(x

m
y)

The symmetrical nature of the coefficients allows for a method of

solution commonly known as the Doolittle method wherein the total

amount of calculation involved is very considerably reduced as com-

pared with the ordinary method of solving a set of simultaneous equa-

tions. After Co, Ci, C2, cm have been solved for, the setting up of the
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regression equation is merely a matter of substituting the values of these

statistics in equation (3)

TESTING THE GOODNESS OF FIT

The method of testing the significance of the variance corresponding

to each degree of freedom used in fitting is merely an extension of the

method described in Chapter XIII for testing the significance of a

straight-line regression function.

Let flo = Zfo - #)
2

, Ri =
S(J/

-
Fi)

2
,
and S(Fi -

#)
2

is the

sum of squares due to the regression function for one degree of fitting.

The analysis is of the form:

88 DF

If a second statistic is fitted the residual R\ will be reduced by an amount

equal to the difference between the sums of squares for the two regres-

sion functions, i.e., by S(F2 y)
2

S(Fi t/)
2

,
which for conve-

nience we will put equal to S(Fi F2)
2

. The new residual may be

represented by #2, and the analysis will be:

88 DF

Obviously this process can be continued indefinitely, providing at each

stage a test of the significance of the additional statistic fitted in the

regression equation. Isserliss has shown how the sums of squares for

each regression coefficient can be obtained simultaneously with the so-

lution of the equations for the unknowns. His method involves solving

for the regression coefficients CQ, ci, Cm, by means of algebraical

formulae, and since this method appears to be somewhat laborious, the

work in the following examples is performed in tables by a technique
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similar to that used in solving the equations for partial regression and

correlation coefficients. It is shown also how the sums of squares

required for the tests of significance may be obtained directly from

these tables.

The analysis of variance test as used here should not be confused

with the test for non-linearity as described in Chapter XIII. The

regression straight line may not be a good fit, but, if it is a better fit than

the horizontal line representing the mean of y, the test we use here will

show it to be significant. At the same time, the test for non-linearity

will indicate significant deviations of the means of the y arrays from the

regression line. As a matter of fact, after fitting a straight line it is

desirable to apply the test for linearity. If there is no evidence of

non-linearity there is no object in proceeding to the fitting of a curve of

higher degree.

Example 44. For this example we shall use the data of Table 67 and fit poly-

nomials by successive stages up to the third degree.

The first step in the procedure of fitting regression lines is to obtain the values of

the coefficients for the normal equations. These are best obtained as in Table 68,

which is divided into sections, each section representing the data necessary for cal-

culating one additional constant. Thus Section A is necessary for fitting a straight

line; if we wish to fit a second-degree curve we proceed with Section B, and so forth.

This is continued until it is obvious that further fitting is unnecessary. In actual

practice we will probably not have to go beyond fitting to the third degree.

Note that the actual classes for both y and x are replaced by 1, 2, 3, .. .9. This

reduces the labor a great deal, and, when the Y values have finally been calculated

for drawing the curve, they may be converted to actual values by the method de-

scribed in Chapter II, Section 8, for converting means; or the whole equation may be

converted to actual values by methods similar to those described in Chapter VI,

Section 5.

The easiest method for calculating the sum of the powers of x is by continuous

multiplication. First, Nxvx is calculated for each array, and to obtain the figures in

Nx-ifi?
1 we simply multiply each of the Nxvx values by x. When we reach the last

column of one section it is good practice to check this column using a table of powers
of x. This checks all the previous calculations of the powers of x.

Having carried out the calculations as in Table 68, Section A, we write the normal

equations for fitting a straight line. For the general case these are

(6)

and substituting the actual coefficients we have

164co + 851ci - 1014

851 ro + 5181ci - 5695
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TABLE 68

CALCULATION OF COEFFICIENTS FOB FITTING A POLYNOMIAL UP TO THE

THIRD DEGREE

Section A
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SUMMARY OF COEFFICIENTS

The solution of these equations is carried out as in Table 69, the method being

identical with that described in Chapter VIII for partial regression and correlation

coefficients. Note the "check sum" column, which is used for checking the calcula-

tions as you proceed, and in addition the "check line" just below the "reverse," that

gives a complete check on all the calculations including those in the reverse. In

Table 69 the check line is obtained as follows:

164 X 3.244,175 + 851 X 0.566,340 = 1014

It is merely a substitution of the statistics CQ and ci in the first equation of (6).

At the foot of Table 69 we have the analysis of variance for testing the significance

of the degree of freedom due to the regression straight line.

obtained from Table 68, using the equality

2(2,
-

RQ S(y y)
2

is

jO
2
is then obtained from the solution of the normal equations by multiplying

the figure in line 5, column 1 (5,1), by the square of the figure in line 6, column

A'(6,A
r

)
2

. The difference is the sum of squares 2(y Fi)
2 = RI, and may be taken

to represent the error of regression and is therefore appropriate for testing the sig-

nificance of the variance due to the regression line. In the example, we find that

the regression is decidedly significant but we proceed to the second stage in order to

determine whether or not greater accuracy can be obtained.

Proceeding to the fitting of a polynomial of the form Y = Co + c\x -f czx
2

, we
write the normal equations

n'co-f 2(*)ci

S(:r)co -f 2(x
2
)ci

-f S(

(7)

-f

and the necessary data for solving the equations are obtained as in section B of Table

68. The solution of the equations is performed according to Table 70, and note that in

this table columns (0) and (1) can be copied directly from Table 69, and column K
can be copied as far as line 6. The reverse and the check line are calculated in the

usual way. For the analysis of variance RI is brought forward from Table 69, and

S(Fi - F2)
2

is calculated by multiplying (10,2) by (ll,^)
2
,
where the numbers in
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TABLE 69

SOLUTION OF NORMAL EQUATIONS FOR FITTING A STRAIGHT LINK

Line 1 K Sum

the brackets correspond to line and column respectively. The difference between

the two sums of squares is R%, which can now be taken to represent the error of

regression. In the example we find that the variance due to the additional degree
of freedom used in calculating the second-degree curve is quite significant, so we can

conclude that a real gam in precision has been made.

If the method of procedure up to this point has been thoroughly understood it

will be found that the fitting of additional statistics can be carried forward without

difficulty. The work involved in fitting to the third degree in the present example
has been performed in Table 71. Note that the columns 0, 1, and 2, can be copied

directly from previous calculations and that column K can be copied as far as line 11.

The analysis of variance indicates that the variance due to the additional degree
of freedom used in fitting a polynomial of the third degree is insignificant. It is, in

fact, less than the variance due to error of regression. The conclusion is that the

third-degree curve, although it fits the data satisfactorily, is less useful for predicting

loaf volume from protein than the second-degree curve. In making use of another

degree of freedom to determine a new regression function, precision has actually been

lost.
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5. Fitting Logarithmic Curves. The procedure is best illustrated by
means of an example.

Example 45. The data given in Table 72, and presented graphically in Fig. 13,

were obtained in a study by Geddes (4), of the effect of time of heating on the baking

quality of wheat flour.

100

80

60

1 40

012345678
TIME IN HOURS (X)

FIG. 13. Relation between time of heating and baking quality of wheat flour.

From an examination of Fig. 13 it is obvious that a straight line cannot give a good
fit to the results. It is also obvious by inspection that a polynomial cannot be

expected to give a good fit as the curve tends to flatten out and run parallel to the

TABLE 72

INFLUENCE OF THE TIME OF HEATING AT 170 F. ON THE BAKING QUALITY OF

STRAIGHT GRADE FLOUR

Time in Hours

0.25

50

0.75

1.0

1.5

2.0

3.0

4.0

6.0

8.0

Baking Quality

Single Feature Estimate

93

71

63

54

43

38

29

26

22

20

zero axes at both ends. From x to x 4, the curve might be fitted fairly well

by a second-degree polynomial, but as x increases from that point, the curve flattens

out and runs almost parallel to the x axis. This is typical of logarithmic curves and
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decidedly not typical of polynomials. We decide therefore that a logarithmic curve

will give the best fit.

The next step is to examine the three principal types of logarithmic curves, as

given on page 221
,
and make a preliminary determination of their goodness of fit to

the results by plotting the three pairs of variables, y and log y, log y and x, log y and

log x, against each other in a rough graph and noting which of the three give points

that fall most nearly in a straight line. As illustrated in Fig. 14, the set of points

falling most nearly in a straight line are those given by log y and log x, so we proceed

to fit a curve of the type log Y CQ + c\ log x.

The calculations, using log y and log x as variables, are exactly the same as

in fitting a straight line. These are given in Tables 73 and 74, together with the

analysis of variance to determine the significance of the fit of the regression line.

X
LOG X -6-4-20 2 4 .6 8

FIQ, 14. Result of preliminary test to determine the logarithmic equation giving

the best fit to the data of Table 72.

Note that the goodness of fit is determined on the basis of the logarithms of y and Y,

and not on the basis of the actual values. Thus the error of regression is given by

Sflog y log F)
2

. This can be taken as a general rule, i. e., that when the regression

equation gives logarithmic values, the test of goodness of fit must be in terms of the

logarithms estimated. It arises from the fact that logarithms express the relative

differences between numbers and not their absolute differences. With two numbers

such as a and 6, their absolute difference is a 6, but log a log 6 is log a/6, and if a

and 6 are variables and a given percentage increase in a results in a similar percentage

increase in 6, log a/6 is constant and the relation between the logarithms can be ex-

pressed by a straight-line equation. To test this fact it is essential that we deal with

logarithms throughout and not with actual values.

For graphical purposes it is suitable to express the results of fitting a logarithmic

equation as in Fig. 15, where the actual values of x are plotted against the anti-

logarithms of log F, and a smooth curve drawn through the points. The small

circles in Fig. 15 represent the original values of y and x.
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I 2345678
TIME IN HOURS

FIG. 15. Logarithmic curve for the equation

log Y = co + ci log x,

fitted to the data of Table 72.

TABLE 73

CALCULATION OF COEFFICIENTS FOR THE CURVE LOG Y co + ci log x

2.209,600

2.601,671

6.085,600

0.355,642,8

4.169,362
= 3.703,453

Z(y -
)2

= 0.465,909 = RQ

i
o<.led by subtracting 1 .
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TABLE 74

CALCULATION OF STATISTICS AND TEST OF GOODNESS OF FIT FOR THE CURVE

Log Y -
co + c\ log x

Line K S

Equation log Y = 1.71196 - 0.46797 log x.

6. Fisher's Summation Method of Fitting Polynomials. When the

y values are, or can be assumed to be, of equal weight and are given for

equal intervals 1 of x, the method of fitting polynomials developed by
R. A. Fisher provides a very decided short cut from the actual to the

theoretical polynomial values. The arithmetical labor is likewise easy

as it consists largely of a process of continuous summation. The pro-

cedure will be illustrated by an example.

A summary of formulae for fitting polynomials is given below, and in

Tables 79, 80, and 81 the constant factors in the formulae have been

calculated for n = 5 to 20 and r = to 6, where r represents the degree

of fitting.

1 Professor Fisher has now developed this method for application to the case

wherein the y values are of unequal weight. See the references at the end of this

chapter.
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SUMMARY OF FORMULAE FOB FITTING POLYNOMIALS BY THE SUMMATION METHOD

1. Si, St, 3, 4, 5, 5$,
' ' *Sr + i (by summation)

2. a -
Si a' - a

n

2 6' - a - 6
n(n + 1)

24
<*' - a - 66 + lOc - 5d

'n(n + l)---(n+3)

120
5

n(n-f l)...(n + 4)'

720

a - 106 + 30c - 35d + 14e

126c - 42/,

'

. where the rule for the formation of the coeffi-
'
"

'\r ~r
cients is to multiply successively byr

n(n + l).-.(n + r) r(r + 1) (r
-

1) (r + 2) (r
-

2) (r + 3)

1.2
'

2.3
'

3.4
and so on, until the series terminates.

3. Coefficients

Yi =+ 1 X (a
1 +W + &' + 7d' + W + llf) 135 7 9 11

A
Dl

Yi - -
7
--

(6
; + 5c' + 14d' + 30e' + 55f) 1 5 14 30 55

(n 1)

60
c
' + 7d/ + 27e/ + 77/') 1 7 27 77

(n
-

1) (n
-

840

Each formula is seen to be composed of two parts that are best cal-

culated separately. For the component on the right Fisher gives the

coefficients for fitting curves to the tenth degree. They are reproduced
here for fitting up to the fifth degree. The factors on the left are of
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alternate positive and negative signs and in generalized form are as

follows:

-2.3 3.4.5__-4.5 6.7 (r -f 1) (r +2)- -(2r+l)

n - 1
'

(n
-

1) (n
-

2)
'

(n
-

1) (n
-

2) (n
-

3)
'"''

(n
-

1) (n - 2)- -(n- 4)

4. Polynomial values Y\ Yz Fa, etc., by process of summation. 1

Example 46. The y values in Table 75 represent the percentages of cars of

smutty wheat graded at Winnipeg, Manitoba, for the years 1925 to 1933 (6). The

* values are therefore years and can be replaced by the numerals 1 to 9. We shall

use these data in order to show the procedure of fitting a curve of the fifth degree.

Such a curve would probably be of very little practical value for analyzing data of

this kind but it is quite suitable as a numerical example. Summing the y values

from top to bottom we write down the sum showing on the machine after each value

is added. This process is repeated in succeeding columns, the sums of the columns

being designated Si, $2, etc., and if we are fitting a curve to the fifth degree we must

go as far as S&. At this point the summations must be very carefully checked.

This is accomplished simply by adding all the columns and noting that the last

figure in any one column must correspond with the sum of the column on the left.

The second step is to calculate values that are denoted by the letters a, 6, c, dt e,

f, and from these obtain a', 6', c', d'
t e', and /'. The formulae for these calculations

are given on page 235. In our example we have

a - 53.1/9 = 5.900,000 a' - 5.900,000

6 - 253.3/45 = 5.628,889 V - 0.271,111

c - 790.8/165 - 4.792,727 c' - - 1.401,213

d - 2020.8/495 - 4.082,424 d' - 0.358,184

e = 4577.5/1287 = 3.556,721 e' = 0.302,174

/ = 9543.6/3003 - 3.178,022 /'
- 0.088,117

The third step is the calculation of Y\ the polynomial value of y corresponding
to x 9, and five other values known as the first, second, third, fourth, and fifth

differences. From FI and the differences represented by the symbols

the polynomial values are built up by a process of summation as illustrated in

Table 76. For Y and the differences we get

FI - 1.000,000 X 0.888,833 - 0.888,833

Dl
Yi - - 0.750,000 X 2.162,125 - - 1.621,594

- 1.071,428 X 11.035,206 - 11.823,429

- - 2.500,000 X 6.238,530 - - 15.596,325

Z)
4
Fi - 9.000,000 X 1.271,461- 11.443,149

IfYi - -49.500,000 X 0.088,117 - - 4.361,792

1 If necessary the actual equation may be written. Details of the calculations are

given by Snedecor in "Statistical Methods."
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The summation process as illustrated in Table 76 is started in the lower right-

hand corner. Beginning with D4Fi we add successively the value of D5
Fi. The

other columns are then built up merely by starting with the first figure at the bottom

and adding the figures in the same row in the column to the right. The values in

the last column on the left are the calculated polynomial values of y. Note that in

the second column only five values are required but we require one more in each

column as we proceed to the left and also that if only two decimal places are required

for the polynomial values the number of decimal places are reduced by one for each

column after the second. A final check on all the work following the calculation

of Si t $z, -$6 is to add the last column. This should give us S, the total for all the

values of y.

The summation method is particularly well adapted to fitting by successive

stages and to the application of the analysis of variance at each stage. Assuming at

the outset that fitting will probably be carried to the fifth degree we first calculate

$1, 2
- -#6 as in Table 75 and the constants a', b', c

f

, d', e', /'. For each stage of

fitting we require only Yi and the corresponding differences. If desirable we can

determine the significance of each degree of freedom used in fitting before we go to

the trouble of actually calculating the polynomial values and in this way save our-

selves the labor of calculations that are not going to be of any value. The formulae

for the sums of squares represented by each additional degree of freedom used in

fitting are as follows:

Degree of

Fitting (r) Sum of Squares

S\/n na'2 (Represents fitting of the mean)

' + 8 ' >

,(n - 1) (n
-

2) (n
-

3)

,(n - 1) (n -2)---(n -
4)

.11
,,(n

-
1) (n

-
2)- "(n -

5)

(2r
(n
-

1) (n -2)--.(n - r)

2

For the exairple that has already been fitted to the fifth degree the sums of squares
and corresponding analyses of variance are given in Table 77. \fter fitting to the

second degree there is no further gain in precision, consequently in actual practise
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we would proceed direct to the calculation of the polynomial values for a second-

degree curve. This calculation is given at the foot of Table 77.

TABLE 75

CALCULATION OF Si, $2, 3, 4, S$, AND St FOR FITTING A POLYNOMIAL OF THE

FIFTH DEGREE BY THE SUMMATION METHOD

TABLE 76

CALCULATION OF POLYNOMIAL VALUES

Example 47. The whole process of fitting by successive stages may be carried

out in tabular form as in Table 78. The data are for the relation between pH and

the activity of the enzyme asparaginase (5). Note that three columns are required

for fitting to the first degree and thereafter each additional column provides the

data for fitting one additional constant. Lines 14 and 15 determine the degree to

which the curve should be fitted. In the example it is obvious that the fitting should

be carried to the fourth degree; consequently, the remainder of the work applies to

a fourth-degree curve only.
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TABLE 77

ANALYSES OF VARIANCE SIGNIFICANCE OF DEGREES OF FREEDOM USED IN

FITTING TO THE FIFTH DEGREE IN SUCCESSIVE STAGES

Y l
= IX (5.900,000 -f 3 X 0.271,111 - 5 X 1.401,213) = -0.292,732

= -0.75 X (0.271,111 - 5 X 1.401,213)

D2 Yi = 1.071,428 X -1.401,213

x

1

2

3

4

5

6

7

8

9 -1.501,30

Total 53.1
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(1) r+i values entered as columns are summated.

(2) Divisor for Sr+i values, taken from Table 79.

(3) Division of line 1 by line 2 gives the constants a, b, c
t d,

(4) The constants a', 6', c', d', . . .are calculated from a, 6, c, d, . . .as indicated in

summary on page 235.

(5) Squares of a', &', c', d',....

(6) Factor taken from Table 80.

(7) Line 5 multiplied Ijy line. 6 gives the sum of squares S(Fr -i Fr)
2
repre-

sented by 1 DF. For each DF utilized in fitting this is the reduction in the sum of

squares due to error of regression.

(8) Enter S(j/)
2 in first column.

(9) Repeat S(Fr-i - Fr)
2
values.

(10) Subtracting 9 from 8 in the first column gives the remainder in line 10. Then

subtract the values in line 9 successively, putting down the remainders in line 10.

(11) The DF for error of regression are entered here. The DF for the sums of

squares in line 9 is 1 in each case so that they do not need to be entered.

(12) Line 9 repeated, reducing to 4-figure accuracy.

(13) Line 10 divided by line 11.

(14) F - *fa.

(15) Enter 5% points from Table 96

(16) Calculate as in section 3 of summary of formulae.

(17) Enter factors from Table 81.

(18) Line 16 multiplied by line 17.

CALCULATION OF POLYNOMIAL VALUES FOB FOURTH-DEGREE CURVE

7. Exercises.

1. Calculate the correlation ^atio for the data of Table 67, Chapter XIII, and by
means of the analysis of variance test the significance of the variance for the means

of the arrays.
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TABLE 79

FOR USE IN CALCULATION OF o, 6, c, d, e,f-

Degree of Fitting (r)

TABLE 80

- - FOR CALCULATION OF SUMS OF SQUARES
n -

l) (n -2)---(n -
r) J

Degree of Fitting (r)
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TABLE 81

FOB CALCULATION OF Y\ AND "DIFFERENCES"

Degree of Fitting (r)

2. For the following equations, calculate the values of Y for x 1 to x = 20,

and plot the curves on graph paper.

(a)

(b)

(c)

(d)

Y = 2. 58 -f 0.84 x

Y = 2.58 + 8. 4 logs

Log Y = 0. 258 + 0.058*

Log Y = 0.213 + 0.662 log x

Describe the effect of the logarithmic transformation of equation (a) into equa-

tions (b) and (c).

3. Using the data given in Table 85, determine the type of logarithmic curve that

should be fitted to the data. Having selected the type of curve proceed with the

fitting as in Tables 73 and 74. Prepare two graphs, one showing the fit of the

straight-line logarithmic equation to the logarithms of y, and another showing the

curve for the actual values of Y estimated from the regression equation. Table 82

may be used for a similar exercise.

4. Table 83 gives the values of y, Nyx ,
and Tyx from a correlation surface for the

area and head length of 500 bull spermatozoa, Isa (7). The three columns are

similar to the first three columns of Table 68 and provide all the data necessary

for calculating polynomial regression equations. Find the regression equation that

gives the best fit to the data. Then calculate the Y values and construct a graph
similar to Fig. 15, showing the means of the arrays and the regression line.
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6. Using the data for x and y given below, determine the goodness of fit of curves

up to the sixth degree. Select the curve to which the data should be fitted, and

proceed accordingly to the calculation of the polynomial values. Graph your results.

# I 2 3 4 5 6 7 8 9 10 11 12 13 14

y 12.6 13.8 14.1 13.9 12.3 7.2 4.8 2.8 2.4 2.1 3.7 5.3 7.8 8.3

6. In economic analysis, methods of curve fitting are very frequently utilized

in order to study secular trend in a time series. Secular trend means the smooth

long-term movement of a series of statistical values and is entirely distinct from

seasonal and cyclical fluctuations. Cyclical fluctuations are not as periodical as the

seasonal ones but as a general rule have sufficient regularity to show definite swings
above and below the normal through periods of depression and prosperity. Curve

fitting may, on the one hand, be used to measure the secular trend of a statistical

series, and, on the other hand, using the fitted curve as a normal, we can plot the

deviations from the normal in such a way as to bring out the characteristics of

cyclical fluctuations.

Take the data given in Table 84 of the bank clearings in New York City for the

years 1860 to 1923 and combining them in 4 year groups obtain 16 points to which a

curve may be fitted. Determine the best-fitting polynomial and graph your results

on a large sheet of graph paper giving the 16 calculated values and the actual bank

clearings for individual years. Measure off the deviations of the values for individual

years from a smooth curve drawn through the 16 calculated points, and graph these

deviations on another sheet showing them as deviations from a straight horizontal

line.

TABLE 82

HBAT or HYDRATION IN CALORIES AND WATER IMBIBED PER GRAM OF FLOUR

Cc. Heat of

Water Imbibed Hydration

0.012 2.3

0.025 5.7

0.039 7.4

0.049 9.2

0.064 10.7

0.073 12.4

0.091 14.6

0.099 15.1

0.123 16.8

0.146 17.8
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TABLE 83

DATA FROM CORRELATION SURFACE FOR AREA (y) AND HEAD LENGTH (x) OF

600 BULL SPERMS

y

I

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Frequency
of y for

x Arrays

2

7

7

14

12

22

36

70

112

133

69

2

2

1

Total = 500

Totals for

y Arrays

6

24

63

247

618

939

1038

897

557

311

82

29

41

29

7

TABLE 84

BANK CLEARINGS IN NEW YORK CITY (1860-1923)

Figures in thousands of millions
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TABLE 85

MOISTURE CONTENT AND HEAT OF HYDRATION OF FIFTH MIDDLINGS FLOUR (6)

Per Cent

Moisture

<y)

1.7

2.9

4.2

5.6

6.6

8.1

9.0

10.8

11.6

14.0

16.3

Heat of

Hydration
in Calories

(*)

18.3

16.0

12.6

10.9

9.1

7.6

5.9

3.7

3.2

1.5

0.5
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CHAPTER XV

THE ANALYSIS OF COVARIANCE

1. The Heterogeneity of Covariation and the Principle of Covariance

Analysis. We have noted from our study of the analysis of variance

that for a single variable the variation is frequently heterogeneous and

may be sorted out into components determined largely by the way in

which the data are taken. The same is true for the correlated vari-

ability or covariation of two variables, and the mechanism for sorting

out the covariance effects is known as the analysis of covariance. In

order to think in terms of actual values, we may suppose that the two

variables are yields of grain and straw from cereal plots. The total

covariance for grain and straw yields is made up in part by the covari-

ance for the means of the treatments and in part by the covariance within

the plots of the same variety. The degree of correlation may be differ-

ent for the two components and hence the total correlation is hetero-

geneous. In the same way we may consider the covariance for the

replicate means as another component. In fact the components may
be taken as exactly equivalent to those according to which the data may
be classified for an analysis of variance of either variable.

2. Division of Sums of Products and Degrees of Freedom. Just as

the analysis of variance arises from the fact that the sums of squares and

degrees of freedom may be subdivided according to the way in which the

data are classified, the analysis of covariance arises from the fact that

the sums of products of the deviations and corresponding degrees of

freedom can be subdivided in the same manner.

Representing a set of data for two variables as follows :

k groups
X2iy2 *222

in which there are k groups of n pairs of variates of x and y. Then

(arii )
= On xi) + (x\ x)

and (y\i y)
= (yn yi) + (yi 2/)

247
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Multiplying to obtain a single product of the deviations:

(xn x) (yn j/)
= (xn xi) (yn yi) + (xi

-
x) (y\ y)

+ (xn xi) (yi y) + (xi
-

x) (yn
-

#1)

On summating for all the pairs in the first group the last two terms dis-

appear and we have :

n n
^?* ( nf &

J ( it _ '//) ^ T -T-i it'll 1*7 1 | I W ( *Y -i *T*I I 1*7 1 l"7l
A/V'*' *'/\fir y) & *' J'i)\y yi) i /H-*'! ^) \y\ y)

Then summating over the A: groups:

nk I f n 1 *

^iT or*) (-1/ V/i ~~~ T5^l 'Vfl* /
T* I i7/ -

')"/ I I I 'M ^V i
/y* r '1*1 (fl"7

fT/\ ill
z/v**- *'/ \y y) ^LZ/V**' *'*/ \y y&> j < i^z^\^g ^j \yg y/ v 1 /

where xg and ft are group means for x and y. This is the fundamental

equation for the sums of products on which the analysis of covariance is

based. If the same data are divided into n classes as well as k groups,

the equations for sums of products and degrees of freedom are:

iik nl

2(:r
-

x)(y
-

y)
= 2(x - xt

- xc + x)(y
-

ft
-

yc + J7)

(nk
-

1) (n
-

l)(fc
-

1)

+ n S(x*
-

x)(ft
-

y) + k 2(4,
-

x)(ft
-

y) (2)

+ (fc
-

1) + (n
-

1) (3)

The method of calculating the sums of products is not according to

these formulae but by means of equalities similar to those used for cal-

culating sums of squares. These equalities are described below under

Example 48.

3. Coefficients of Correlation Corresponding to Sums of Products

and Squares. Considering the simple classification of the pairs of

variates into k groups of n pairs, we have the sums of products and corre-

sponding sums of squares of x and y as follows :

n* n* t

2 OF -x)(y -y) = 2(z - xg)(y
-

ft) + n 2(xg
-

x)(ft
-

y)

2 OF
-

x)
2 = 2(x - xg )

2 + n S(xg
-

x)
2

y*)
2 + n 2(ft

-
y)

2

(4)
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It is now clear that each vertical set represents the factors necessary to

calculate correlation or regression coefficients. Hence we can write:

rxv (total)
=

-
x)(y

-
g)

y)
2

nt

-0
*

nfc

2(x-

DF = nk - 2

(within)

- sf)(#
-

gf)

k(n
-

1)

(between) = n2(^ -
x)(yg

-
y)

(5)

DF = k - 2

Note that for each component the degrees of freedom for estimating the

coefficients are one less than for the corresponding estimates of the

variance.

Since it can be proved that the variances and covariances for between

and within groups are unbiassed estimates of the true values for the

population sampled, it follows that the corresponding coefficients of

correlation and regression are also unbiassed estimates of the correla-

tion and regression parameters of the population. They can be used,

therefore, to test the significance of the covariance effects represented by
the various components for which they are calculated. One practical

application of this principle will be seen at once. Total correlation

coefficients are obviously incapable of definite interpretation if they

represent heterogeneous covariance effects, and tests of significance
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applied to them cannot give a clear-cut answer. The coefficients

calculated from each component, however, are capable of definite inter-

pretation. In the simple case of covariance within and between groups,

if the total covariance is made up largely of the covariance between the

means of the groups, the total correlation is often referred to as contain-

ing a spurious effect. By the covariance method this effect is taken

care of in the calculation of the covariance between the means and is

completely removed from the covariance within the groups. Thus the

so-called spurious effect is not only removed but completely evaluated as

a distinct component of the total.

4. Applications of the Covariance Method to the Control of Error.

One of the most important applications of the analysis of covariance is

in the control of errors that arise at random throughout the experiment
and cannot be taken care of by replication. In the case, for example, of

number of plants per plot for such crops as mangels and sugar beets,

the variations in number of plants arise at random throughout the

experiment and, so far as they affect the yields of single plots, add to the

experimental error. Correction of the yields on the basis that yield is

directly proportional to the number of plants is a frequent practice, but

it is not difficult to demonstrate that yield is rarely if ever proportional

to the number of plants per plot, and that such an adjustment is likely

to exaggerate the yields of plots in which plants are missing. Correction

on the basis of the exact relation between yield and number of plots as

indicated by the data is, however, perfectly justifiable, and the method of

making such a correction is a natural development of the covariance

technique. Numerous applications of the same method will undoubt-

edly occur to workers in other fields.

In order to demonstrate the control of error by the covariance

method, wo shall represent a covariance analysis algebraically as follows,

in which the experiment is presumed to be a randomized block field plot

test.
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In the column headings, x is written for (x x), y for (y y), bvs for the

regression coefficient of y on z/and S(t/'
2
) indicates a sum of squares for

y adjusted by the regression coefficient in the same line.

The calculations are complete in each line of the table. The regres-

sion coefficient is B/A, and the adjustment in the sum of squares for y is

bB or B2
/A. In the last line we are considering only treatments and

error so that At = AI + A 2 ,
B t

= B\ + B2 and Ct = Ci + C2 .

The second step in the procedure is indicated as follows :

DF S (sq.) Variance

- 62) 1 biBi + 62B2
- b tBt V*

The first sum of squares for treatments is obtained by differences and,

since it has not been adjusted by the treatment regression coefficient, is

still represented by q degrees of freedom. The second treatment sum of

squares is written down from the first table and is represented by q 1

degrees of freedom, as it has been adjusted by the treatment coefficient.

On subtracting the second treatment sum of squares from the first, we
have a sum of squares given by biBi + 62^2 b tB t ,

and it is not diffi-

cult to prove the following equality:

biBi + b2B2
- btB t

= b\Ai + b
2
2A 2

- b?A t
=~^~

(bi
- 62)

2
(6)

Ai + A 2

It follows that when 61 = b2 this sum of squares is zero, and that a test of

significance of the corresponding variance (4) is a test of the significance

of the difference between the error and treatment regression coefficients.

The test of significance of the treatment differences after adjustment
for the regression of y on x involves a comparison of the variances V2 and

V\. The fact that Fi may contain a significant effect due to (bi fo)

does not vitiate the meaning of the test, as such an effect is obviously due

to some factor characteristic of the treatments. In the case of yield and

number of plants per plot, the variety regression coefficient (61) might
be higher than (62), and this will contribute to the significance of Vi, but

62 represents the regression of yield on number of plants within varieties,

and may be taken as a true measure of the effect of number of plants on

yield. If the treatment regression coefficient is higher this probably
reflects an additional genetic relationship, and one that should contribute

to the significance of the differences between the varieties. A further
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test may be applied, however, to Vs, and by a comparison of the signif-

icance of Vz and V* a complete picture of the variety effects is obtained.

The value of such an analysis, if, for example, number of roots has a

significant effect on yield, is that the error variance and variety variance

will be reduced proportionately with a consequent increase in the signif-

icance of the variety differences, if such differences exist. If the anal-

ysis of the unadjusted yields shows significant differences when the

adjusted yields do not, this simply means that the original differences

were due to number of roots and not to the yielding characteristics of the

varieties as measured by average yield per root.

R. A. Fisher (4) has pointed out that an appropriate scale for measur-

ing the effectiveness of methods of reducing the error is the inverse of

the variance. This is sometimes called the invariance and is represented

by 1/V. In measuring the reduction of error by means of the covariance

analysis, this scale is particularly useful. Example 48 is a good illus-

tration of this point. The original error variance is about three times as

large as the final error variance obtained by adjusting the sums of squares

for two associated variables. In other words, in the original form with-

out any adjustment about three times as many replications would be

required to give the same accuracy as the adjusted values. One should

not reason from this that the significance of the differences between the

treatments will be increased accordingly, as it must be remembered that

at the same time differences between the treatments due to the associ-

ated variables are also being removed.

The test of significance having been applied as outlined, the next step
is to make an actual correction of the variety means. Since the regres-

sion coefficient in the error line may be considered as representing the

actual effect of number of roots on yield, this regression coefficient

should be used for making corrections. The corrected means should

then be the best possible estimates of what the means would have been

if they had not been affected by variations in number of roots. The

regression equation will be of the form :

Fi =
fr
- M*i -

*) (7)

where x\ is the mean of x for one variety, y\ is the mean of y for the same

variety, bvx is the regression of y on x in the error line, and Yi is the

estimated mean of the variety.

To compare two corrected means such as Yp and Yq we must use for

the standard error of the difference between two means
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where s2 is the variance in the error line of the analysis of covariance

table (for example, in Table 87 it will be 7681.3/35 = 219.5), A is the

sum of squares for x in the same line, r is the number of replications, and

(xp xq) is the difference between the two means used in the two

expressions for calculating Yp and Yq . Thus

YP
= yp byx(xp

-
x) and Yq

= yq byx(xq x)

In comparing two means corrected for two variables x\ and X2 we

calculate the standard error of a mean difference as follows

2 u~B 2uvP + v2A
_ +

^B _ p2

where A and B are the sums of squares in the error line for x\ and #2-

P is the sum of products for x\ and X2 in the error line.

u =
(XI P i0), difference between xi means,

v = (fep 29), difference between X2 means.

The method of error control by means of two or more associated

variables is described in Example 48.

6. A Test of the Heterogeneity of a Series of Regression Coefficients.

The analysis of covariance provides a unique technique for testing the

significance of the differences between two or more regression coefficients.

tJsing the same symbolism as in the previous section, the procedure is as

given below.
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The last sum of squares may be shown to be

P pC*/
^ T i-
Ot&i Li \

"
i
- bk )

2

+ A 2 -h + -

where 6y and fyt represent all possible pairs of the regression coefficients and Aj
and Ak all possible pairs of the corresponding sums of squares for x.

The comparison of V\ and V% by means of the z test furnishes therefore

the required test of the heterogeneity of the regression coefficient.

Example 48. For the sake of brevity this one example will be used to demonstrate

most of the important applications of the covariance technique. Data are given by

Crampton and Hopkins (1) on weights, gains, and feed consumption in a comparative

feeding trial. These data are reproduced in Table 86 for initial weight, feed eaten,

and final weight. The analysis is concerned with expressing the results for final

weight corrected for variations in initial weight, corrected for variations in feed

eaten, and corrected for initial weight and feed eaten. The last is an application of

the method of partial regression which is described in detail in the paper by Crampton
and Hopkins. In addition a test will be illustrated of the significance of the dif-

ferences between the regression coefficients for each treatment.

(1) Effect of Initial Weight on Final Weight. The analysis of covariance is set

up in the form shown in Table 87. In performing the calculations for such a table,

it is recommended that the sums of squares, sums of products, and totals be obtained

by treatments, as it is necessary to keep these separate if certain tests are to be

employed at a later stage. In obtaining the sums of products it should be noted

that a procedure may be followed exactly analogous to that for obtaining sums of

squares. With k replications of n treatments, the sums of products are given as

follows:

Total -
x)(y

-
y)

- TXTV/N

Between means of treatments k 2 (*<
-

x)(g t
-

y) * 2(^*7%)A - TxTy/N

k k

Between means of replicates n 2(xr
-

)(&.
-

g) = SC^rx^rv)/^
- TxTy/N

Residual or error Total (treatments) (replicates).

Where Ttx and Tty are treatment subtotals for x and y

and Trx and Trv are replicate subtotals for x and ^/.
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ŝ
3
05

'3
HH t

COCOCOCOCOCOCO<MCO<N

I-H to t;- T < O OO GO
f*~> o^ OO O5 ^5 C> ""*

CM i 1 T"-" T-H O4 CS1 C^-l

^i--
O^> C^i cO <y? O *O !> co CO CO
co co co CD t>- co co co r co

Cy>t^.QOOCTst OOOO50O

^t* CIO i i^HtC^COCi
cO co cO cO

^OQOCMt^-
t -COCOCO
*O cO cO CO

Oi-HrHCOt^^OOiOOCOCO<N<MCO<MM(M<M<M<M



256 THE ANALYSIS OF COVARIANCE

TABLE 87

ANALYSIS OF COVARIANCE FINAL WEIGHT AND INITIAL WEIGHT

zs initial weight x\ * final weight

(1) DF for unadjusted sums of squares.

(6) 613 = item in col. (3) divided by item in col. (2).

(6) 6isS(ziz3) - col. (5) X col (3) or col. (3)
2
/col. (2).

(7) S(y'
2
)
= adjusted sums of squares = col. (4) col. (6).

(8) DF for adjusted sums of squares.

(9) Correlation coefficient (unnecessary for tests of significance).

From Table 87 we can proceed to the test of significance of the treatment dif-

ferences adjusted for initial weight and of the difference between the treatment and

error regression coefficients

DF S (sq.) Variance 5% Point

Since the difference between the* error and treatment regression coefficients

(6, bi) is obviously insignificant the tests of significance are not carried any
further.

To adjust the means of the treatment final weights for the initial weights we use

the equation given above which in terms of the symbols now being used will be

(2) Effect of Feed Eaten on Final Weight. The procedure is exactly the same as

above so will be given in tabular form only.
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TABLE 88

ANALYSIS OF COVARIANCE FEED EATEN AND FINAL WEIGHT

#2 feed eaten x\ final weight

There is an indication here of a difference between the regression coefficients for

treatments and error but it is hardly significant.

(3) Effect of Initial Weight and Feed Eaten on Final Weight. After obtaining the

separate sums of squares for each variable and the sums of products for the three ways
in which the variables can be paired the next step is to determine the partial regression

coefficients. For three variables the sums of squares and products give two simul-

taneous equations as illustrated in Chapter VIII. These equations contain the

partial regression coefficients as unknowns and can be most easily solved by the

normal equation method, also described in Chapter VIII. The remainder of the

calculations are as in Table 89.

TABLE 89

ANALYSIS OF COVARIANCE- ~EFFECT OF INITIAL WEIGHT AND FEED EATEN
ON FINAL WEIGHT
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TABLE 89 Continued

ANALYSIS OF COVARIANUE EFFECT OF INITIAL WEIGHT AND FEED EATEN
ON FINAL WEIGHT

The final result is rather unusual in that the treatment variance corrected by
its own regression coefficient is significant while the treatment variance as obtained

by differences is insignificant. This seems to be traceable to the relations between

x\ and 23 where, as will be noted in Table 87, the difference between the regression

coefficients is much less than would be expected on the basis of random sampling.

The equation for correcting the mean final weights will now be

where 3612 and 2^13 are the partial regression coefficients for the error covariance.

(4) Test of Heterogeneity of Covariation or the Significance of the Differences

between Regression Coefficients Calculated for Each Group. If for the above example
we have kept our raw sums of squares and products separate for each treatment

we can very quickly set up the results as in Table 90, showing the sums of squares
and products for 21 and 0-3, the regression coefficients for each group, and finally the

adjusted sums of squares for x\.

TABLE 90

TEST OF HETEROGENEITY OF REGRESSION BETWEEN TREATMENTS
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TABLE 90 Continued

TEST OF HETEROGENEITY OP REGRESSION BETWEEN TREATMENTS

For the test of significance we summate the adjusted sums of squares for each

treatment and subtracting from the total obtain a sum of squares corresponding to

4 degrees of freedom representing differences between the 5 regression coefficients.

In this example there is no evidence of significant heterogeneity of regression.

6. Exercises.

1. The data given in Table 91 are grain and straw yields given by Eden and Fisher

(2) for 8 manurial treatments and 8 replicates of each. Calculate the correlation and

regression coefficients for treatments, replicates, and residual. Test the significance
of the grain yield differences for the treatments after correction for straw yield. Test
the significance of the difference between the regression coefficients for treatments
and residual, and apply the test for heterogeneity to the regression coefficients

calculated for each treatment.
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CHAPTER XVI

MISCELLANEOUS APPLICATIONS

I. THE ESTIMATION OF MISSING VALUES

1. Reasons for Estimating Missing Values and Principles of Esti-

mation. In most experimental work, and especially in field plot studies,

the results of one or more observations are occasionally lost or distorted

by some disturbing factor in such a way as to make the particular

observations useless. In the laboratory it may be possible to repeat a

portion of the experiment and obtain new values for those that are miss-

ing, but in field experiments repetition is impossible and one has to make
the best of the results available. In other biological experiments
it is frequently impossible to repeat under the identical conditions

of the original experiment, and methods of estimating missing or

distorted values are preferable to discarding the whole or a portion of

the data.

A method of estimating the yields of missing plots in field experiments
on a strictly statistical basis was first developed by Allan and Wishart

(1). Their methods were developed for the estimation of one missing

yield; but more recently Yates (3) has extended their methods to the

estimation of the yields of several missing plots. Since the methods

developed by Yates are of general application, we shall use them through-

out, although for single missing plots they are identical with those of

Allan and Wishart. The mathematical basis of the method of estimat-

ing missing values is the substitution of a value for the one missing that

will make the*sum of the squares of the deviations from the mean a mini-

mum. Equations are written for the sum of squares substituting x

for the missing value; and after minimizing, the equations are solved

fora:.

2. Estimation of Missing Yields in Randomized Block Experiments.

The data are first arranged in a table according to treatments and

blocks. Table 92 is an example of an experiment with 6 treatments

in 4 randomized blocks, and 1 plot of treatment B of block II is miss-

ing.

261
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TABLE 92

Treatments

In the generalized formula for x, the yield of the missing plot :

p = number of treatments,

q = number of blocks,

P = total of all the plots receiving the same treatment as the

missing plot,

Q = total of all the plots in the same block as the missing plot,

T = total of all plots.

The formula is:

x = pP + qQ - T
(i)

In Table 93 we have the same data as in Table 92 except that now
three plots are missing.

TABLE 93

Treatments

The procedure in such an example where more than one observation

is missing is first to substitute approximate values for all the missing

values except the one to be estimated. We then apply the missing-

plot formula as given above. The same process is in turn applied to all

the missing plots. The results given are first approximations, and the
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whole process is repeated until the estimated values become practically
constant.

The methods are illustrated below for the estimation of the missing
values in Table 93.

FIRST APPROXIMATION

Average yield = 334.4/11 =
15.9,

The T = (334.4 + 2 X 15.9) = 366.2.

Here the average yield of the plots is used as an approximation of the

yields of two of the three missing plots.

A. P = 45.6 Q = 81.5

x = (6 X 45.6 + 4 X 81.5 - 366.2)/ 15 = 15.6

B. P = 50.9 Q =
(54.0 + 15.9) = 69.9

x = (6 X 50.9 + 4 X 69.9 - 366.2) / 15 = 14.6

Note that here we have to substitute a value for D and that the mean of

all the plots is taken as the best approximation.

D. P = 50.1 Q = (54.0 + 14.6) = 68.6

x = (6 x 50.1 + 4 X 68.6 - 366.2)/15 - 13.9

Here we have to substitute a value for
,
and the previously estimated

value is taken as the best approximation.

SECOND APPROXIMATION

A. T =(333.4 + 14.6 + 13.9) = 362.9; P = 45.6; Q =- 81.5;

x = (6 x 45.6 + 4 X 81.5 - 362.9)/15 = 15.8.

In all the approximations after the first a new value for T is worked out

for the estimate of each plot, using the estimates from the previous

approximation. To get P and Q it is best to substitute for the missing

plot values where necessary, the latest values obtained.

3. Estimation of Missing Yields in a Latin Square. The best

arrangement of the data is in a table such that the positions of the figures

correspond with the positions of the plots in the field. The treatments

should also be indicated on the table in the exact positions that they

occur.

The formula for estimating x the yield of a missing plot is :

P(Pr + Pc + P|) - 2T
X

(p
-

l)(p
-

2)
()
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where Pr
= total of row containing the missing plot.

PC = total of column containing the missing plot.

Pt = total of treatment containing the missing plot.

T = total of all plots.

p = number, of rows, columns, and treatments.

If more than one plot is missing, we proceed exactly as for randomized

blocks, substituting approximate values for the plots not being estimated

and making continuous applications of formula (2).

4. Correction to Analysis of Variance Due to Estimation of Missing
Values. The estimation of missing values for a set of results introduces

a complication in the analysis of variance. In the first place, one DF
must be removed from the total for each missing value

;
and in the sec-

ond place a correction must be applied to the sums of squares for treat-

ments or any other component in the analysis, the significance of which

is to be tested against the error. An exact mathematical solution of this

problem for all cases has been provided by Yates (3), but except for

randomized block experiments, and for Latin square experiments with

only one missing plot, it is rather complicated for general practice.

In a randomized block experiment as in Table 93, for which three of

the missing plot yields were estimated, the following scheme for the

analysis of variance shows how the correction is applied to the treatment

variance. In this scheme the "original" values refers to those for the

21 plots as given in Table 93, and the "completed" values refers to those

in Table 93 with the addition of the three that were estimated.

DF Sum of Squares Calculated from

The procedure for calculation is as follows:

(a) Obtain the sums of squares for blocks, treatments, and error

from the completed yields.

(6) Obtain total sum of squares for original yields.

(c) Obtain sum of squares for blocks from original yields, noting
that not all the blocks contain 6 plots.
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(d) Set up the analysis of variance as above, obtaining the sums of

squares first for blocks + treatments and then for treatments by
subtraction from the known quantities.

For Latin square experiments with only one plot missing the simplest

method of determining the correction to the treatment sum of squares is

to use the formula

1 -
1)P,

- Pr - PC -
(p
-

l)*(p
-

2)
2

which gives the correction directly The scheme of analysis using a

6X6 Latin square would then be ah follows :

DF Sum of Squares Calculated from

6. Correction of Treatment Means and Standard Errors. The

treatment means that contain estimated values for missing plots are in

effect corrected means and further corrections are not required. The
standard errors of such means, however, require a definite correction,

and for methods of doing this accurately the reader should refer to the

paper by Yates (3). For general purposes it is probably sufficient to

make a correction for the number of plots averaged, i.e., if there are r

replications and one plot is missing the standard error of the mean of the

treatment containing the missing plot will be

H. METHODS OF RANDOMIZATION

Randomization can be effected by tossing coins, drawing cards out of

a shuffled deck, throwing dice, etc., but these methods are too slow and

in genera] too inaccurate for actual practice. The problem has been
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greatly simplified by the preparation of Tippett's "Random Sampling
Numbers" (2), and these numbers are now in general use.*

If we have a series of numbers 1, 2, 3, n, the problem of random-

ization is to arrange these numbers in such a way that in forming the

arrangement any one of the numbers has an equal chance with any other

number of being placed in a given position. A procedure that is fre-

quently followed in arranging field plot tests may now be described

briefly.

Suppose that the numbers representing the varieties are 1, 2, 3, 4, 5,

6, 7, 8, 9. Turning to page XI of Tippett's "Tables" (the usual prac-

tice being to open the book more or less at random), we find that begin-

ning at the upper left-hand corner we can take a series of random two-

figure numbers as follows, 40, 81, 89, 58, 87, 74, etc. Assume now that

there are 9 places to be filled up by the numbers 1 to 9, and the first one

is selected by dividing the first two-figure number by 9 and taking the

remainder. Thus for 40/9, the remainder is 4, and number 9 is placed

in the fourth place. The second number to be placed is 8 and we divide

the second two-figure number by 8; 81/8 gives a remainder of 1, and 8 is

placed in the first place. The third number is 7, and dividing it into 89

the remainder is 5, and 7 is placed in the fifth space counting only those

that are empty. This procedure is followed until all the numbers have

been placed and we get finally the following arrangement :

8, 3, 5, 9, 4, 6, 7, 2, 1

The same procedure can be modified for application to a Latin square,

but in that case it is only necessary, starting with a given Latin square

which may be made up systematically, to randomize the rows, columns,

and treatments.
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TABLE 94

TABLE OP t*

* The greater portion of this table taken from R. A Fisher's "Statistical Methods for Research
Workers," with the permission of the author and his publishers, Oliver and Boyd, London
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TABLE 95

TABLE OF x
2*

* Taken from R. A. Fisher's "Statistical Methods for Research Workers," with the permission
of the author and the publishers, Oliver and Boyd, London.
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INDEX

Abnormality, chi-square tests for, 27,

28, 94

tests for, 28-31

types of, 28

Allen, F. E., 261-266

a, alpha, 23

Analysis, of covariance, 247-259

of variance, 114-138

applied to linear regression formu-

lae, 210-217

division of degrees of freedom in,

116-119

division of sums of squares in,

116-119

interaction effects in, 124-125

multiple classification of variates

in, 120-121

simple classification of variates in,

125

tests of significance in, 119-120

three-fold classification of variates

in, 131-133

two-fold classification of variates

in, 127-128

of variation, 114-116

Arithmetic mean, 8

calculation of, 9, 16

decoding of, 17

properties of, 10

Association tests for, 95

6, linear regression coefficient, 55

Batchelor, L. D., 209

ft, beta values, 81

Bias, in field plot tests, 43, 144

intravarietal, 144

planning to remove, 45

Binominal distribution, 21

probabilities from, 108-109

Bivariate frequency distributions, 67

Blakeman, J., 220, 246

Brandt, A. E., 97

Chi square, correction for continuity,
102

from mXn-fold tables, 96-97

from 2Xn-fold tables, 97

from 2 X 2-fold tables, 97

Chi-square tables, degrees of freedom

in, 96

Chi-square tests, 88, 113

of goodness of fit, 89-94

of independence and association,

95

Classification of variates, multiple, 120-

121

simple, 125-126

three-fold, 131-133

two-fold, 127-128

Cm, non-linear regression coefficients,

220-221

Class range, 14

Class value, selection of, 13-14

Coding, 57

Coefficient, of contingency, 98

of correlation, 65-77

of partial correlation, 78-83

of partial regression, 80-81

of variability, 17

Confounding, in a 2X2X2 experi-

ment, 160-162

in a 3X3X3 experiment, 170-171

in incomplete block experiments, 175,

178

partial, 162-165

Control of error, by covariance method,

250, 253

Correction, of treatment means due to

missing values, 265

to analysis of variance due to miss-

ing values, 264-265

to chi-square for continuity, 102

Corrections, for grouping, 15

to means, in covariance analysis,

252-253

273
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Corrections to means, in incomplete
block experiments, 193

in quasi-factorial experiments, 181,

183, 187

Correlation, definition of, 65

measurement of, 67-72

partial and multiple, 78

Correlation coefficient, 65

calculation of, 73-75

from correlation table, 75

from paired values, 74

interpretation of, 71-72

relation to regression coefficient, 69

test of significance of, 72-73

z transformation for, 73

Correlation coefficients in co-variance

analysis, 248-250

Correlation ratio, 219-220

Correlation table, 75

Covariance analysis, 247-259

corrections to means, 252-253

division of degrees of freedom, 247-

248

division of sums of products, 247-248

principles of, 247

with three variables, 254-258

Covariance method applied to the

control of error, 250-253

Covariation, 65

heterogeneity of, 247

Crampton, E. W., 138, 141, 254, 259

cv, covariance, 54-55

Degrees of freedom, 12, 34

division of, in analysis of variance,

116-119

in covariance analysis, 247-248

in chi-square tables, 96

in estimating the variance, 12

in linear regression, 56

in non-linear regression, 224

in partial correlation, 85

splitting into orthogonal components,
166-169

Departure from normality, tests for,

27, 31

Design of experiments, 45

Differences, methods for testing signifi-

cance of, 40-42

Discontinuous variables, 13

Distribution, binominal, 21

normal, 22

of F, 120

of t, 38

of z, 120

"Student's," 38

Distributions, leptokurtic, 28

platykurtic, 28

Dot diagram, 66

Dunlop, G., 127, 141

Eden, T., 259

Enumeration data, 89

Error, control of, 48

Error control, by confounding, 160

by covariance technique, 250-253

in field plot tests, 145

in incomplete block experiments, 172

Error variance, 122-125

Estimating, missing values, 261-265

the variance, 35

Estimation, 6

of missing yields in randomized

block experiments, 261-263

of standard deviation, 33-34

Experiment, hypothetical, 2

Experimental design, 45-51

Ezekiel, M., 63, 246

F, distribution of, 120

table of, 269-272

Factorial experiments, 151

confounding in, 160-165

Fiducial limits, 39

Field plot tests, 142-208

Fitting, of logarithmic curves, 231-234

of normal curve, 24-25

Fitting polynomials, 221-230

by summation method, 234-243

summary of formulae, 235-236

Fitting the regression line, 53-55

Fisher, R. A., 2, 6, 8, 19, 32, 40, 44, 51,

63, 72, 77, 87, 100, 107, 113, 116,

120, 141, 143, 170, 171, 191, 209,

218, 234, 246, 252, 259

Frequency distribution, binomial, 21-22

normal, 22-24

Frequency polygon, 16

Frequency table, formation of, 15-16

graphical representation of, 16
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01, measure of symmetry, 29

gz, measure of kurtosis, 29

Geddes, W. F., 87, 131, 141, 215- 218,

231

Goodness of fit, 89-94

of polynomial equations, 224

tests with small samples, 101

Goulden, C. H., 77, 141, 172, 209

Graeco-Latin square, 191

Grant, J. C. B., 105, 113

Graphical representation of frequency

table, 16

Greenwood, M., 100

Grouping,

Sheppard's corrections for, 15

Hanna, W. F., 246

Heterogeneity, of covariation, 247

of soil, 142

of variation, 114-116

Heterogeneity test for regression co-

efficients, 253-254

Histogram, 16

Hypothesis, null, 6

i, class interval, 17

Immer, F. R., 90, 139, 141, 209

Incomplete block experiments, 175,

178

choosing the best type of, 200-201

symmetrical, 188-193

Independence, and association, tests

for, 95

tests for, with small samples, 101

Interaction effects in analysis of vari-

ance, 124-125

Invariance, 252

Isa, J., 243, 246

Koltzoff, N. K., Ill, 113

Kurtosis, 28

k statistics, 28-29

Large number of varieties, methods for

testing, 172-201

Latin square, 147-149

estimation of missing yields in, 263-

264

Linear regression, 52

Logarithmic curves, method of fitting,

231-234

Logic of statistical methods, 1

Mainland, D., 112, 113

Mean, adjusted for associated vari-

ables, 252-253

arithmetic, 8

calculation of, 16-17

of a population (m), 35

of a sample (F) ,
35

variance of, 35

Mean difference, test of significance,

40, 42

Mean square (s
2
), 35

Methods of randomization, 265-266

Miscellaneous applications, 261, 266

Missing values, correction for, in analy-
sis of variance, 264-265

in treatment means, 265

estimation of, 261-265

Missing yields, estimation of, in a

Latin square, 263-264

in randomized block experiments,

261-263

Mitchell, H. H., 44

Multiple classification of variates, 120-

121

Multiple correlation coefficient, 78

calculation of, 85

test of significance for, 86

Multiple regression, 78

significance of, 214-215

n, degrees of freedom, 35

n', number in sample, 35

N, number in sample, 35

Neatby, K. W., 112-113

Non-linear regression, 219, 245

Non-linearity, test for, 211-213

Normal curve, calculation of prob-

ability from, 26

fitting of, 24-25

Normal distribution, 22

definition of, 22

Normal equations, for fitting poly-

nomials, 223

for partial and multiple regressions,

80-81
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Normal frequencies, calculation of,

24-25

Null hypothesis, 6

Numbers, random, 266

Orthogonal squares, 191-192

Orthogonality, 160

Parameter, 6, 34^
Partial confounding, 162-165

in a 2X2X2 experiment, 162-165

in a 3X3X3 experiment, 171-172

Partial correlation coefficient, 78

calculation of, 82

test of significance, 85

Partial regression, 78

Partial regression coefficients, calcula-

tion of, 80-81

Pearl, Raymond, 32, 77

Pearson, Karl, 32

Polynomial equations, testing of good-
ness of fit of, 224

Polynomials, method of fitting, 221-

230

summary of formulae for fitting, 235-

236

tables for fitting, 242-243

tabular method of fitting, 240-241

Population, 5

Probability, calculations from normal

curve, 26

from binomial distribution, 108-109

inverse, 1

Quasi-factorial experiments, three-di-

mensional with three groups of

sets, 186-188

two-dimensional, with three groups
of sets, 185-186

with two groups of sets, 179-185

r, correlation coefficient, 65

R, multiple correlation coefficient, 86

Random numbers, 266

Randomization, 46

methods of, 265-266

of field plot tests, 143-145

Randomized blocks, 146-148

estimation of missing yields in, 261-

263

Ratio of variances, 132, 137

Recovery of information, 162-165

Reduction of data, 7

Regression, non-linear, 219-245

partial and multiple, 78

Regression coefficient, 53

methods of calculation, 56-58

properties of, 55

relation to correlation coefficient, 69

standard error of, 56

test of significance, 55-56

Regression coefficients, test of hetero-

geneity, 253-254

Regression equation, 53

linear, 54

multiple, 80

partial, 80

Regression equations, types of, 220-221

Regression function, tests of signifi-

cance of, 210-211

Regression graphs, 53

Regression straight line, 53

fitting of, 53-55

Replication, 48, 51, 142, 143

s, standard deviation, estimated from

a sample, 35

s b, standard deviation of regression co-

efficient, 35

, standard error of estimate, 35

*, standard error, 35

Sample, 5

Sample mean, standard deviation of,

12

Savage, A., 32

Sayer, W., 209

Schultz, T. W., 138-141
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broaden, 47

of an experiment, 48

Selecting a valid error, 122-125

Sheppard's corrections for grouping, 15

Sheppard's tables of the probability

integral, 23

a, sigma, standard deviation of popula-

tion, 11, 12, 35

2, summation, 10

Significance, of abnormalities in dis-

tributions, 29

of chi square, 90
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Significance, of correlation coefficient,

72-73

of differences between means, 40-42

corrected for associated variables,

252-253

in incomplete block experiments,
193

in quasi-factorial experiments, 181,

183, 187

of differences between regression co-

efficients, 56, 253

of linear regression coefficient, 56

of multiple correlation coefficient,

214-215

of non-linearity, 211-213

of partial correlation coefficients, 85

of regression function, 210-211

tests of, 38

Simple classification of variates, 125-

126

Simple interaction, method of calcu-

lation, 136

Skewness, 28

Small samples, tests of significance

with, 33-42

Snedecor, G. W., 14, 19, 44, 63, 72, 77,

89, 97, 100, 120, 127, 141, 246, 259

Snedecor's table of Ft 127, 269

Soil heterogeneity, 142

Split plot experiments, 151-159

Standard deviation, 10

a measure of variability, 10, 11

calculation of, 11

estimation of, 33-34

of a sample mean, 12

of large samples, 10-12

of small samples, 10-12

Standard error, 35

of regression coefficient, 56

Statistical analysis, functions of, 7

Statistical methods, logic of, 1

Statistical terms, definition of, 5

Statistics, 6, 34

"Student," 38, 44

"Student's" distribution, 38

Sum of products, as a measure of cor-

relation, 67-68

Sum of products, calculation of, 57

division of in covariance analysis,

247-248

Summation method of fitting poly-

nomials, 234-243

Sums of squares, division of, 116-119

methods of calculation, 135

Tedin, O., 144, 209
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87, 100, 113, 141, 218, 246, 266

Treloar A. E., 72, 77

Valid error, selection of, 122-125

Variability, coefficient of, 17

Variance, 35

analysis of, 114-138

estimation of, 35

heterogeneity of, 114-116

of a mean, 35

Variation, heterogeneity of, 114-116

Varieties, methods for testing large

number of, 172-201
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Wiebe, G. A., 209

Winkler, C. A., 246

Wishart, J., 87, 209, 259

x, value of a single variate, 9-10

f
mean of a sample, 9-10

Y, estimated value of dependent vari-

able, 54-55

y, individual value of a variate of de-

pendent variable, 53-54

Yates, F., 102, 113, 160, 167, 171, 172,

200, 209, 261, 266

Yates's correction for continuity, 102

Youden, W. J., 192

Youden's square, 192

Yule, G. Udny, 32, 77, 113
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