
Distributed Applications

Microsoft RFC
Programming Guide

A NUTSHELL*

HANDBOOK

John Shirley & Ward Rosenberry

O Reilly & Associates, Inc.

Microsoft RFC Programming Guide

Microsoft RFC Programming Guide

John Shirley and Ward Rosenberry
Digital Equipment Corporation

O Reilly & Associates, Inc.

103 Morris Street, Suite A

Sebastopol, CA 95472

Microsoft RFC Programming Guide

by John Shirley and Ward Rosenberry

Copyright 1995 O Reilly & Associates, Inc. All rights reserved.

Printed in the United States of America.

ditor Andy Oram

Production Editor: Clairemarie Fisher O Leary

Printing History:

March 1995: First Edition.

O Reilly & Associates and the author specifically disclaim all warranties, expressed or implied,

including but not limited to implied warranties of merchantability and fitness for particular purpose
with respect to the diskettes and the programs therein contained, and in no event shall O Reilly &
Associates or the author be liable for any loss of profit or any other commercial damage, including
but not limited to special, incidental, consequential, or other damages.

Nutshell Handbook and the Nutshell Handbook logo are registered trademarks of O Reilly &
Associates, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed

as trademarks. Where those designations appear in this book, and O Reilly & Associates, Inc. was
aware of a trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher assumes no

responsibility for errors or omissions, or for damages resulting from the use of the information

contained herein.

This book is printed on acid-free paper with 85% recycled content, 15% post-consumer waste.

O Reilly & Associates is committed to using paper with the highest recycled content available

consistent with high quality.

ISBN: 1-56592-070-8

Table ofContents

Preface xi

Conventions xii

Book Organization xii

How to Use This Book xiii

Obtaining the Example Programs xiv

CompuServe xiv

FTP xvi

FTPMAIL xvii

BITFTP xvii

Acknowledgments xviii

Joint Venture xix

1: Overview ofan RFC Application 1

A Simple -Interface 4

Universal Unique Identifiers 5

The Interface Definition 6

Stub and Header Generation Using the MIDI Compiler 7

A Simple Client 8

A Minimal Server 11

Remote Procedure Implementation 11

A Distributed Application Environment 13

Server Initialization 18

Producing the Application 21

Microsoft RFC Libraries . .21

vi Microsoft RFC Programming Guide

Compile and Link the Client and Server Code 21

Running the Application 23

2: Using a Microsoft RFC Interface 27

Microsoft Interface Definition Language (MIDI) 28

Attributes 28

Structure of an Interface Definition 29

Interface Header Attributes 29

The Inventory Application 30

Type Definitions, Data Attributes, and Constants 30

Procedure Declarations and Parameter Attributes 38

Using the MIDI Compiler 40

Generating Client Files 42

Generating Server Files 42

Using an ACF to Customize Interface Usage 42

Selecting a Binding Method 43

Controlling Errors and Exceptions 44

Excluding Unused Procedures 44

3: How to Write Clients 45

Binding 45

Implementing a Binding Method 46

Automatic Binding Management 49

Implicit Binding Management 50

Explicit Binding Management 52

Steps in Finding Servers 55

Finding a Protocol Sequence 56

Finding a Server Host 58

Finding an Endpoint 59

Interpreting Binding Information 60

Finding a Server from a Name Service Database 6l

Finding a Server from Strings of Binding Data 64

Customizing a Binding Handle 66

Authentication 71

Error Parameters or Exceptions 72

Using Exception Handlers in Clients or Servers 72

Using Remote Procedure Parameters to Handle Errors 72

Compiling and Linking Clients 74

Local Testing 76

Table of Contents vii

4: Pointers, Arrays, and Memory Usage 79

Kinds of Pointers 79

Pointers as Output Parameters 80

Pointers as Input Parameters 82

Using Pointers to Pointers for New Output 84

Pointers as Procedure Return Values 86

Pointer Summary 87

Kinds of Arrays 90

Selecting a Portion of a Varying Array 90

Managing the Size of a Conformant Array 91

Memory Usage 94

Node-By-Node Allocation and Deallocation 96

Using Contiguous Server Memory 97

Allocating Buffers with the Client Application 97

Persistent Storage on the Server 98

5: How to Write a Sewer 99

Some Background on Call Processing 99

Initializing the Server 101

Registering Interfaces 102

Creating Server Binding Information 104

Advertising the Server 107

Managing Server Endpoints 109

Listening for Remote Procedure Calls 110

Writing Remote Procedures 112

Managing Memory in Remote Procedures 113

Allocating Memory for Conformant Arrays 116

Compiling and Linking Servers 117

6: Using a Name Service 121

Naming 122

DefaultEntry 122

Server Entries 123

Creating a Server Entry and Exporting Binding Information 125

Some Rules for Using the Microsoft Locator 126

viii Microsoft RFC Programming Guide

7: Context Handles 729

The Remote_file Application 129

Declaring Context in an Interface Definition 130

Using a Context Handle in a Client 131

Binding Handles and Context Handles 133

Managing Context in a Server 133

Writing Procedures That Use a Context Handle 134

Writing a Context Rundown Procedure 136

A: MIDI and ACF Attributes Quick Reference 13 7

B: RFC Runtime Routines Quick Reference 143

C: The Arithmetic Application 149

How to Build and Run the Application 149

Application Files 150

D: The Inventory Application 757

How to Run the Application 158

Application Files 159

E: The Rfile Application 191

How to Run the Application 191

Application Files 192

F: The Windows Phonebook Application 201

How to Build and Run the Application 201

Application Files 201

Index
. 223

Table of Contents

List ofFigures

1-1 Client-server model 2

1-2 RFC mechanism 3

1 ~3 Application development 3

1-4 Arithmetic application: interface development 5

1-5 Arithmetic application: client development 9

1-6 Arithmetic application: server development 12

1-7 Binding 13

1-8 Binding information 13

1-9 Server initializing 15

1-10 Client finding a server 16

1-11 Completing a remote procedure call 17

1-12 Arithmetic application: complete development 25

2-1 Producing an interface 41

3-1 A comparison of binding management methods 47

3-2 How a customized binding handle works 67

3~3 Producing a client 75

5-1 How the server runtime library handles a call 100

5-2 Producing a server 118

6-1 Server entries in the name service database 123

6-2 A simple use of a name service database 125

xii Microsoft RPC Programming Guide

Conventions

Throughout the book we use the following typographic conventions:

Constant width

indicates a language construct such as a MIDI keyword, a code example,

system output, or user input. Words in constant width also represent

application-specific variables and procedures.

Constant Bold

is used in examples to indicate text that is literally typed by the user.

Bold introduces new terms or concepts.

Italic in command syntax or examples indicates variables for which the user

supplies a value. Italicized words in the text also represent system ele

ments such as filenames and directory names, and user functions or RFC-

specific routines.

[] enclose attributes in interface definitions and Attribute Configuration Files

(ACFs) and are part of the syntax. Note that this is different from the com
mon convention in which brackets enclose optional items in format and

syntax descriptions.

C:\&gt; represents system prompts.

C:\SERVER&gt;

represents a server system prompt to distinguish it from a client system

prompt.

C : \CLIENT&gt;

represents a client system prompt to distinguish it from a server system

prompt.

Book Organization
This book is divided into the following seven chapters and six appendices:

Chapter 1, Overview ofan RPC Application, shows a complete, simple RPC applica

tion.

Chapter 2, Using a Microsoft RPC Interface, shows how to read an RPC interface

definition (a file ending in .idl}, which is a file that declares the remote proce
dures of an interface.

Chapter 3, How to Write Clients, discusses how to develop client programs for RPC

interfaces. Topics include binding methods, finding servers, customizing binding

handles, handling errors or exceptions, and compiling clients.

Chapter 4, Pointers, Arrays, and Memory Usage, shows how pointers and arrays

are defined in an interface and how to develop applications to use them.

Preface xiii

Chapter 5, How to Write a Server, discusses how to develop a server program for

an RFC interface. Topics include initializing a server, writing remote procedures,
and compiling servers.

Chapter 6, Using a Name Service, describes a name service database and how to

use it with distributed applications.

Chapter 7, Context Handles, shows how to maintain a state (such as a file handle)

on a specific server between remote procedure calls from a specific client.

Appendix A, MIDI and ACF Attributes Quick Reference, shows all the attributes in

the Microsoft Interface Definition Language (MIDL) and Attribute Configuration File

(ACF).

Appendix B, RFC Runtime Routines Quick Reference, shows all the RFC runtime

routines organized into convenient categories.

Appendix C, The Arithmetic Application, is a small application that shows the

basics of remote procedure calls.

Appendix D, The Inventory Application, is a somewhat richer application than that

in Appendix C, showing different MIDL data types, how to use ACFs, and how to

find servers by importing information from a name service database.

Appendix E, The Rfile Application, shows how to use context handles and how to

find servers using strings of network location information.

Appendix F, The Windows Phonebook Application, offers a simple Windows-based

client that uses RFC to get phone numbers from a database on the server.

How to Use This Book
If you are developing just a client for an existing RFC interface and server, read the

following chapters first:

Chapter 1, Overview ofan RFC Application

Chapter 2, Using a Microsoft RFC Interface

Chapter 3, -How to Write Clients

Read other chapters as needed to learn how to develop applications that use more

features of interface definitions.

If you are developing a network interface with accompanying server, read the fol

lowing:

Chapter 1, Overview ofan RFC Application

Chapter 2, Using a Microsoft RFC Interface

Chapter 3, How to Write Clients

xvi Microsoft RFC Programming Guide

Enter choice !off

Thank you for using CompuServe!

Off at 06:59 EST 11-Jan-95

Connect time = 0:06

FTP

To use FTP, you need a machine with direct access to the Internet. A sample ses

sion is shown, with what you should type in boldface.

% ftp ftp.uu.net
Connected to ftp.uu.net.
220 ftp.UU.NET FTP server (Version 6.34 Thu Oct 22 14:32:01 EOT 1992) read/.

Name (ftp.uu.net:andyo) : anonymous
331 Guest login ok, send e-mail address as password.
Password: janetv@xyz.ccm (use your user name and host here)

230 Guest login ok, access restrictions apply.

ftp&gt; cd /published/oreilly/nutshell/ms_rpc
250 CWD command successful.

ftp&gt; binary (Very important 1
. You must specify binary transfer for compressed files.)

200 Type set to I.

ftp&gt; prompt (Convenient, so you are not queried for every file transferred)

Interactive mode off.

ftp&gt; mget *

200 PORT command successful.

ftp&gt; quit
221 Goodbye.
%

Each .Z archive contains all source code and configuration information required
for building one example. Extract each example through a command like:

% zcat arith.dec94.tar.Z I tar xf -

System V systems require the following tar command instead:

% zcat arith.dec94.tar.Z | tar xof -

If zcat is not available on your system, use separate uncompress and tar com
mands.

The tar command creates a subdirectory that holds all the files from its archive.

The README.dec94 file in this subdirectory describes the goals of the example
and how to build and run it; the text is an ASCII version of the introductory mate

rial from the corresponding appendix in this book.

Preface xvn

FTPMAIL

FTPMAIL is a mail server available to anyone who can send electronic mail to and
receive it from Internet sites. This includes any company or service provider that

allows email connections to the Internet. Here s how you do it.

You send mail to ftpmail@online.ora.com. In the message body, give the FTP com
mands you want to run. The server will run anonymous FTP for you and mail the

files back to you. To get a complete help file, send a message with no subject and
the single word

"help"
in the body. The following is an example mail session that

should get you the examples. This command sends you a listing of the files in the

selected directory, and the requested example files. The listing is useful if there s a

later version of the examples you re interested in.

% mail ftpmail@online.ora. com

Subject:

reply-to janetv@xyz.com Where you want files mailed

open
cd /published/oreilly/nutshell/ms_rpc
dir

get REAEME.dec94

mode binary
uuencode (or btoa if you have it)

get arith.dec94.tar.Z

get inv.dec94.tar.Z

get rfile.dec94.tar.Z

get phnbk.dec94.tar.Z

quit

A signature at the end of the message is acceptable as long as it appears after

"quit."

All retrieved files will be split into 60KB chunks and mailed to you. You then

remove the mail headers and concatenate them into one file, and then uudecode

or atob it. Once you ve got the desired .Z files, follow the directions under FTP to

extract the files from the archive.

BITFTP

BITFTP is a mail server for BITNET users. You send it electronic mail messages

requesting files, and it sends the files back to you by electronic mail. BITFTP cur

rently serves only users who send it mail from nodes that are directly on BITNET,

EARN, or NetNorth. BITFTP is a public service of Princeton University. Here s how it

works:

To use BITFTP, send mail containing your ftp commands to BITFTP@PUCC. For a

complete help file, send HELP as the message body.

xviii Microsoft RFC Programming Guide

The following is the message body you should send to BITFTP:

FTP ftp.uu.net NETDATA

USER anonymous
PASS your Internet email address (not your bitnet address)

CD /published/oreilly/nutshell/ms_rpc
DIR

GET README

BINARY

GET arith.dec94.tar.Z

GET inv.dec94.tar.Z

GET rfile.dec94.tar.Z

GET phnbk.dec94.tar.Z

QUIT

Once you ve got the desired .Z files, follow the directions under FTP to extract the

files from the archive. Since you are probably not on a UNIX system, you may
need to get versions of uudecode, uncompress, atob, and tar for your system.

Questions about BITFTP can be directed to Melinda Varian, MAINT@PUCC on BIT-

NET.

Acknowledgments
This book can be traced back to the DCE documentation set put out by Digital

Equipment Corporation. John Shirley, working with Steve Talbott and Andy Oram
from O Reilly & Associates, wrote a DCE version of this book called Guide to Writ

ing DCE Applications. Ward Rosenberry then took it over and thoroughly revised it

to cover Microsoft RFC. While at first glance, it might seem that relatively little

effort was required to write this new version, the work put into it was nevertheless

considerable and required the cooperation and support of many individuals.

First off, I want to thank my editor at O Reilly & Associates, Andy Oram, for his

excellent advice and his persistence on this lengthy project.

For supporting this project I want to thank folks at Digital Equipment Corporation,
in particular Jeff Shrieshiem, Frank Willison, and Michelle Chambers for funding
various portions of the project. Also at Digital Equipment corporation, other major
contributors to this book include Neil Miranda, who converted several DCE appli

cations to Microsoft RPC Version 1.0 for use in this book. Riaz Zolfonoon later

modified these applications for use with Microsoft RPC Version 2.0. Riaz also pro
vided helpful advice on numerous aspects of Microsoft RPC.

Others at Digital who played central roles in developing the book include Jerry

Harrow and Will Lees, who provided painstaking reviews of various drafts of sec

tions of the book. Jim Teague provided a Microsoft RPC version of the phonebook
application which was originally written for another O Reilly book titled Distribut

ing Applications Across DCE and Windows NT. Jim is a co-author of that book.

Larry Friedman, Dick Annicchiarico, Michael Blackstock, Rob Philpott, and Andy
Ferris provided bits and pieces of technical advice along the way. I also want to

Preface xix

thank Ladan Pooroshani, Beth Benoit, and Brian Shimpf for their cooperation and

support.

Credit for logistical support goes to several folks at Digital including Gerry Fisher,

Evelyn McKay, Lisa Cozins, and Madeline Cormier, all of whom made sure I had
what I needed to get things done.

Several people at Microsoft Corporation also deserve thanks for providing various

inputs to the book. These people include Debbie Black, Dave Tanaguchi, and

Craig Link (from Microsoft s Win32 SDK forum on CompuServe).

Additional help and support for the DCE version of the book came from Tony
Hinxman, Al Simons, David Magid, Margie Showman, Ken Ouellette, Mary Orcutt,

Marll McDonald, Mark Heroux, Clem Cole, Marty Port, Ram Sudama, Diane Sher

man, Susan Scott, David Strohmeyer, Karol Mclntyre, Wei Hu, Susan Hunziker,

Vicki Janicki, Beth Martin, Dan Cobb, Lois Frampton, Steve Miller, Eric Jendrock,

Gary Schmitt, Ellen Vliet, Judy Davies, Judy Egan, Collis Jackson, David Kenney,
Suzanne Lipsky, Darrell Icenogle, Terry Tvrdik, Howard Mayberry, and John

Shirley s wife, Linda McClary.

Joe Scandora was very helpful on the Microsoft version of the book.

Book design and production credits go to lots of the folks at O Reilly & Associates

who artfully turned many pieces of a stark manuscript into a real book. Edie

Freedman designed the cover. Jeff Robbins and Chris Reilley created the figures.

Kismet McDonough, Eileen Kramer, and Clairemarie Fisher O Leary did the copy-

editing and production management. Kiersten Nauman assisted with the produc
tion work. Seth Maislin refined the index.

Finally, I want to thank Frank Willison for giving me the opportunity to work on

this book.

Joint Venture
This book was produced as a cooperative effort between Digital Equipment Cor

poration and O Reilly & Associates. While we at O Reilly & Associates frequently

work closely wr

ith vendors of hardware and software, this book gave us an oppor

tunity for much more extensive cooperation and mutual support than is custom

ary. It is a model we like, and we believe the end result testifies to the value of

sharing one s resources in this way.

In this Chapter:
A Simple Interfac

A Simple Client

A Minimal Server

Producing the

Application

Running the

Application

Overview ofan
RFC Application

A traditional application is a single program running on a single computer system,
where a procedure and its caller execute in the same address space. In contrast,

the client-server model for distributed applications embodies a client program and

a server program, usually running on different systems of a network. The client

makes a request to the server, which is usually a continuously running daemon

process, and the server sends a response back to the client (see Figure 1-1).

The remote procedure call (RFC) mechanism is the simplest way to implement
client-server applications, because it keeps the details of network communications

out of your application code. The idea is that each side behaves, as much as possi

ble, the way it would within a traditional application: the programmer on the

client side issues a call, and the programmer on the server side writes a procedure
to carry out the desired function. To convey the illusion that you are working in a

single address space, some hidden code has to handle all the networking. Many
related issues are also involved, such as converting data between formats for dif

ferent systems, and detecting communication errors.

Figure 1-2 shows the relationship between your application code and the RFC

mechanism during a remote procedure call. In client application code, a remote

procedure call looks like a local procedure call, because it is actually a call to a

client stub. (A stub is surrogate code that supports remote procedure calls. Later in

this chapter we ll discuss how stubs are created and what they do.) The client stub

communicates with the server stub using the RFC runtime library, which is a set of

standard runtime routines that supports all Microsoft RFC applications.

The server s RFC runtime library receives the remote procedure call and hands the

client information to the server stub. The server stub invokes the remote proce
dure in the server application.

Microsoft RFC Programming Guide

Request to server

Network

Server System

Server

Response from server

Figu re 1-1. Client-server model

When the server finishes executing the remote procedure, its stub communicates

output to the client stub, again by using the RFC runtime library. Finally, the client

stub returns to the client application code.

Figure 1-3 shows the three phases required to develop a distributed application.
An essential part of the RFC mechanism is an interface, which is a set of remote

procedure declarations. Given the same interface, client and server development
of an application can occur in parallel and on separate systems of the network.

In this chapter we will create an entire RFC application from scratch. Naturally,
we ll use every shortcut and simplification the system offers to accomplish this

feat. When you are done with the chapter, you will know the place of all the

major RFC features, and how an application is developed.

You may not need to develop an entire application as shown in this chapter. If the

interface and server already exist, your development may require only the client.

Chapter 1: Overview ofan RFC Application

Figure 1-2. RFC mechanism

Figure 1~3- Application development

The arithmetic example in this chapter demonstrates a very simple one-client/one-

server RFC application. Suppose a remote server system uses special hardware,

such as an array processor. In our example, the client performs an arithmetic oper
ation on arrays by calling a remote procedure that uses the array processor. The

remote procedure executes on the server system, taking two arrays as arguments
and adding together the elements of the arrays. The remote procedure returns the

results to the client in a third array argument. Finally, the results of the remote pro
cedure are displayed on the client system.

Microsoft RFC Programming Guide

The arithmetic example is deliberately limited to demonstrate the basics of a dis

tributed application implemented with RFC. We describe each portion of the appli

cation in this chapter, and Appendix C shows the complete code. The Preface tells

you how to obtain source code online for this and other examples in the book.

A Simple Interface
When writing a local application, should you start by deciding exactly what func

tions you ll call and what arguments they take? Well, if you were dividing the work

among multiple programmers and needed to clarify the interfaces between their

work, you probably would proceed that way. The same reasoning applies to a dis

tributed program: the client and server are being developed separately. Since the

boundary or interface between them is the procedure call itself, you have to spec

ify its attributes at the start.

So an interface consists of what the client and the server have to agree on; it con

tains some identifying information and a few facts about the remote procedures.
Each procedure declaration includes the name of the procedure, the data type of

the value it returns (if any), and the order and data types of its parameters (if any).

An interface definition contains a set of procedure declarations and data types.

Just as programmers select functions from libraries, client application writers use

interface definitions to determine how to call remote procedures. Server applica

tion writers use interface definitions to determine the data type of the remote pro
cedure s return value, and the number, order, and data types of the arguments.
The interface definition is like a design document that ties the client and server

application code together. It is a formal definition describing the set of procedures
offered by the interface.

You write the interface definition in Microsoft Interface Definition Language
(MIDL). The MIDL closely resembles the declaration syntax and semantics of C,

with the addition of attributes that allow information to be sent over a network.

You may think that we have introduced an unnecessary level of complexity here,

but you will see that keeping the salient features of a distributed application in

one file the interface definition makes it easier to scale up development to mul

tiple servers and many clients for those servers.

Figure 1-4 shows the utilities used and the files produced when developing the

arithmetic interface. The uuidgen utility generates a universal unique identifier

(UUID) used in the interface definition to distinguish this interface from any other

interface on the network. You use a text editor to write the rest of the interface

definition, arith.idl. When the interface definition is complete, compile it with the

MIDL compiler (midt) to generate stubs and a C header file that you use to

develop the client and server programs.

Chapter 1: Overview ofan RFC Application

Generate a universal

unique identifier.

Write an interface

definition.

uuidgen

Text

Editor

arith.idl

Compile the interface

definition to generate

the application header

and stub files.

f
midl

1
arith.h

J

Figure 1-4. Arithmetic application: interface development

Universal Unique Identifiers

When you write a new interface, you must first generate a UUID with uuidgen. A
UUID is simply a number that the uuidgen utility generates using time and net

work address information so that no matter when or where it is generated, it is

guaranteed to be unique. A UUID is like a fingerprint that uniquely identifies some

thing such as an interface across all network configurations.

An interface UUID is an excellent example of how you tie a client and server

together through the MIDL file. When a client makes a remote procedure call, its

UUID has to match that of the server. The RFC runtime library performs this check;

this way you don t get unexpected results.

Microsoft RFC Programming Guide

Generating a UUID in an interface definition template

To generate and display a UUID in a template for an interface definition, type the

following command:

C:\&gt; uuidgen -i

[

uuid(6AF85260-A3A4-10lA-BlAE-08002B2E5B76),

version (1.0)

]

interface USTTERFACENAME

In this example, the output appears at the terminal, but generally you save it in a

file with the extension .idl. Replace the template name INTERFACENAME with a

name you choose for the new interface. In the next section, we use a template like

this to develop the arithmetic interface definition.

The Interface Definition

Now we are ready to write an interface definition. Here we put data type defini

tions and procedure declarations that need to be shared between server and client.

Later, the MIDI compiler creates the header file and stubs from the interface defini

tion, for use in your application.

The interface definition includes syntax elements called attributes, which specify
features needed for distributed applications. Attributes convey information about

the whole interface or items in the interface, including data types, arrays, pointers,

structure members, union cases, procedures, and procedure parameters. For exam

ple, the in attribute specifies an input parameter for a remote procedure. You can

pick out attributes in the file because they re enclosed in square brackets.

Example 1-1 shows a simple interface definition. The text consists of a header and

body. The header contains a uuid attribute and the name assigned to the interface.

The body specifies all procedures for the interface; it contains the procedure dec

larations with their data types and constants. There is only one procedure declared

in our example. It adds two input arrays and returns the results in a third array.

Example 1-1: A Simple Interface Definition

I* FILE NAME: arith.idl */

/* This Interface Definition Language file represents a basic arithmetic */

/* procedure that a remote procedure call application can use. */

[

uuid(6AF85260-A3A4-10lA-BLAE-08002B2E5B76) , /* Universal Unique ID O */

pointer_default(ref) /* default pointer type is reference @ */

]

interface arith /* interface name is arith */

{

const unsigned short AKRAY_SIZE = 10; /* unsigned integer constant O */

Chapter 1: Overview ofan RPC Application

Example 1-1: A Simple Interface Definition (continued)

typedef long long_array [ARRAY_SIZE] ; /* array type of long integers*/

void sum_arrays (/* sum_arrays procedure does not return a value */

[in] long_array a, /* 1st parameter is passed in */

[in] long_array b, /* 2nd parameter is passed in */

[out] long_array c /* 3rd parameter is passed out */

O The uuid attribute specifies the interface UUID. The interface definition

header for any distributed application requires a uuid attribute.

RPC provides three types of pointer, offering varying levels of complexity and
overhead. Here, the pointer_default attribute specifies reference pointers as

the default, because they offer the lowest overhead and are sufficient for our

purposes.

The last part of the interface definition header contains the keyword inter
face followed by the name chosen for the interface (arith).

O You can define constants for type definitions and application code. In this

example, we define AKRAY_SIZE to set the bounds of arrays.

You can define data types for use in other type definitions and procedure
declarations. In this example, we define a data type that is an array of ten

long integers. The indexes of arrays begin at zero, so the index values for this

array range from zero to nine.

The remainder of this interface definition is a procedure declaration. A proce
dure of type void does not return a value. The in and out parameter
attributes are necessary so the MIDL compiler knows in which direction the

data need to be sent over the network.

[in] : A value is passed in to the remote procedure when it is called from the

client.

[out] : A value is passed back from the server to the calling procedure on the

client when the procedure returns. A parameter with the out directional

attribute must be a pointer or array so that the parameter can be passed to the

client stub by reference. Note that the MIDL compiler requires more complex

pointer types to have [in, out] attributes.

Stub and Header Generation Using the MIDL Compiler
When the interface definition is complete, you compile it with the MIDL compiler,

which creates the following:

AC language header file that contains definitions needed by the stubs and

your application code. You can now include the header file in client and

server application code.

Microsoft RFC Programming Guide

A client stub file, which you will link with the client portion of the applica

tion. During a remote procedure call, the client stub code is intermediate

between your client application code and the RFC runtime library.

A server stub file, which you will link with the server portion of the applica

tion. During a remote procedure call, the server stub code is intermediate

between your server application code and the RFC runtime library.

Client and server auxiliary stub files linked with the client and server portions

of the application. The auxiliary stub files convert complex data structures like

pointers to and from a data stream suitable for transmission over the network.

When you invoke the MIDL compiler, it generates the header file and intermediate

C language stub files. Although we show a midl command by itself here, we rec

ommend that you use a tool like nmake and a makefile to automate your entire

build procedure. Such tools can hide differences between different hardware plat

forms making your code more portable. They can also relieve you from the

drudgery of typing in long command strings over and over. Later, we ll show a

makefile for use in building client and server applications.

To invoke the MIDL compiler and create the header and stub files for the arith

metic interface, type the following:

C:\&gt; midl arith.idl

In this example, we generate the header file and the C language stub files of the

client and server in one operation. The MIDL compiler produces auxiliary stub files

by default, but you may suppress their generation by using appropriate MIDL com

piler options.

If you develop the client and server on different systems, copies of the interface

definition and the MIDL compiler must reside on both the client and server sys

tems. To generate code correctly for different kinds of systems, compile the inter

face definition for the client stub on the client system, and for the server stub on
the server system.

A Simple Client

We ll start our coding with the client, because it s so simple. In fact, you will not

be able to detect any difference between our client and a traditional, single-system

program! That s one of the beauties about Microsoft RFC it hides most of the net

working complexity from the client developer.

To develop a client, you must be able to read and interpret the interface definition.

To use all the capabilities of RFC, you must also know the RFC runtime routines.

The client in our simple example, however, requires no RFC runtime routines.

Figure 1-5 shows the files and utilities needed to produce a client. You write the

client application code (client. c) in C. Currently, Microsoft RFC provides libraries

only for C. Remote procedure calls in a client look like local procedure calls. (The

Chapter 1: Overview ofan RFC Application

server portion of the application implements the remote procedures themselves.)

You must include the header file (arith.h) produced by the MIDI compiler, so that

its type and constant definitions are available.

Write the client

application file.

Text

Editor

Include the header file

produced by interface

compilation.

Generate the client

application object file and

client stub object file.

midl

Create the executable client

by linking the client

application and stub object

files with the Microsoft RFC

library.

Linker

client

J

Figure 1-5. Arithmetic application: client development

After compiling client. c and arith_c.c with the C compiler, you can create the exe

cutable client by linking the client stub (arith_c.o) with the client object file and

the Microsoft RFC library. Example 1-2 shows a simple client.

Example 1-2: A Simple Client

I* FILE NAME: client. c */

/* This is the client module of the arithmetic example. */

#include &lt;stdio.h&gt;

#include &lt;stdlib.h&gt;

#include "arith.h" /* header file created by MIDL compiler O */

Microsoft RFC Programming Guide

Example 1-2: A Simple Client (continued)

long_array a ={100,200,345,23,67,65,0,0,0,0};

long_array b ={4,0,2,3,1,7,5,9,6,8};

main ()

{

long_array result;

int i;

sum_arrays (a, b, result) ; /* A Remote Procedure Call */

puts ("sums:
") ;

forfi =0; i &lt; ARRAY_SIZE; i++)

printf ("%ld\n" , result [i]) ;

/*** midl_user_allocate / midl_user_free ***/

void *
RPC.__API

midl_user_allocate /* Procedures called by the stubs */

size_t size;

{

unsigned char * ptr;

ptr = malloc (size) ;

return ((void *)ptr)

void RPC API

midl_user_free

(

obj ect

)

void *
object;

{

free (object) ;

}

O The client code includes the header file produced by the MIDL compiler.

The client calls the remote procedure sum_arrays using the two initialized

arrays as input. It then displays the elements of the resulting array.

Two programmer-supplied procedures midl_user_allocate and midl_user_

free may be called by client and server stubs for certain memory manage
ment functions. Although this simple application does not require these rou

tines, they are essential parts of many Microsoft RPC applications. Usually
these are just wrapper routines for malloc and free. Chapter 4, Pointers,

Arrays, and Memory Usage, contains more information about these proce
dures.

Chapter 1: Overview ofan RFC Application

The following section shows how to write the server for the arithmetic application.

A Minimal Server

Developing a server requires you to know the interface definition and some RFC
runtime routines. You write two distinct portions of code:

The actual remote procedures this portion is sometimes called the manager

Code to initialize the server

You make calls to the RFC runtime routines mainly in the server initialization,

which prepares the server to listen for remote procedure calls. For our arithmetic

application, server initialization is the only code that requires the use of runtime

routines.

Figure 1-6 shows the files and utilities needed to produce a server. You must write

the remote procedures (manager.c) and server initialization code (seruer.c) in C.

You need the header file (arith.h) produced by the MIDI compiler because it con

tains definitions required by the remote procedures and runtime calls.

After compiling the server application with the C compiler, you create the exe

cutable server by linking the server stub (arith_s.o) with the server application

object files and the Microsoft RFC library.

Remote Procedure Implementation
The programmer who writes a server must develop all procedures that are

declared in the interface definition. Refer to the interface definition (aritb.idl) and

the header file generated by the MIDI compilation (aritb.h) for the procedure s

parameters and data types. Example 1-3 shows the code for the remote procedure
of the arithmetic application.

Example 1-3: A Remote Procedure Implementation

I* FILE NAME: procedure. c */

/* Implementation of procedure defined in the arithmetic interface. */

ttinclude &lt;stdio.h&gt;

#include "arith.h" /* header file produced by MIDL compiler O */

void sum_arrays(a, b, c) /* implementation of sum_arrays procedure) */

long_array a;

long_array b;

long_array c;

{

int i;

for(i =0; i &lt; ARRAY_SIZE; i++)

c[i] = a[i] + b[i]; /* array elements are each added together */

12 Microsoft RFC Programming Guide

Write server application files

containing initialization code

and remote procedures.

Include the header file

produced by interface

compilation.

Text

Editor

Generate the server

application object files and

client stub object files.

Create the executable

server file by linking the

server application and

stub object files with the

Microsoft RFC library.

midl

Figure 1-6. Arithmetic application: server development

O The server code includes the header file produced by the MIDL compiler.

The procedure definition matches its corresponding declaration in the inter

face definition.

) The procedure implementation is completed.

So far, the client and server application code has been much like any other appli
cation. In fact, you can compile and link the client and remote procedures, and
run the resulting program as a local test.

Chapter 1: Overview ofan RFC Application 13

Before going on to write the server initialization code, we found it useful to dis

cuss how the arithmetic application works in a distributed environment. This is the

subject of the next section.

A Distributed Application Environment

When a client makes a remote procedure call, a binding relationship is established

with a server (see Figure 1-7). Binding information is network communication and

location information for a particular server. Conveniently, in the arithmetic applica

tion, the client stub and the RFC runtime library automatically find the server for

you during the remote procedure call. Figure 1-8 illustrates how binding informa

tion acts like a set of keys to a series of gates in the path a remote procedure call

takes toward execution.

Client

Binding

Figure 1-7. Binding

protocol *? server *? *? endpoint

sequence * host k k

Binding

Figure 1-8. Binding information

14 Microsoft RFC Programming Guide

Binding information includes the following:

1 . Protocol Sequence

A protocol sequence is an RFC-specific name containing a combination of

communication protocols that describe the network communication used

between a client and server. For example, ncacn_ip_tcp represents the pro
tocol sequence for a Network Computing Architecture connection-oriented

protocol, over a network with the Internet Protocol and the Transmission

Control Protocol for transport.

2. Server Host

The client needs to identify the server system. The server host is the name or

network address of the host on which the server resides.

3. Endpoint

The client needs to identify a server process on the server host. An endpoint
is a number representing a specific server process running on a system.

To help clients find servers in a flexible and portable manner, Microsoft RFC pro
vides a name service to store binding information. Name service is a general term

for a database service that stores information for distributed applications that is,

a service that offers the same information to applications running on different sys
tems. Using the name service, a server can store binding information that a client

on another system can retrieve later. The particular name service offered with

Microsoft RFC is called the Locator.

The RFC runtime library contains a general set of functions called name service

independent (NSI) routines. Thus, to store binding information, your server calls

an NSI routine. This routine internally communicates with the Locator to put infor

mation into the database. NSI routines are a level of abstraction above the particu
lar name service on a system, and thus can be used to access whatever name
service your system uses. For instance, if you shared a network with DCE systems,

you could configure your Microsoft RFC system to use the DCE Cell Directory Ser

vice (CDS).

Distributed applications do not require the name service database, but we recom
mend that you use it. Alternatives to using the name service are to manage bind

ing information directly in client and server code, or to create your own
application-specific method of advertising and searching for servers. These alterna

tives present more maintenance problems than if you use the name service rou

tines.

Figures 1-9, 1-10, and 1-11 show how the arithmetic application uses binding

information, and how the remote procedure call completes.

A server must make certain information available to clients. Figure 1-9 shows the

typical steps needed each time a server starts executing. A server first registers the

interface with the RFC runtime library, so that clients later know whether they are

Chapter 1: Overview ofan RFC Application 15

Client System

Figure 1-9. Server initializing

compatible with the server. The runtime library creates binding information to

identify this server process. The server places the binding information in appropri
ate databases so that clients can find it. The server places communication and host

information in the name service database. The server also places process informa

tion (endpoints) in a special database on the server system called the local end-

point map, which is a database used to store endpoints for servers running on a

given system. In the final initialization step, a server waits while listening for

remote procedure calls from clients.

16 Microsoft RFC Programming Guide

When the server has completed initialization, a client can find it by obtaining its

binding information, as illustrated in Figure 1-10. A remote procedure call in the

client application code transfers execution to the client stub. The client stub looks

up the information in the name service database to find the server system. The RFC

runtime library finds the server process endpoint by looking up the information in

the server system s endpoint map. The RFC runtime library uses the binding infor

mation to complete the binding of the client to the server. Chapter 3, How to Write

Clients, discusses variations on how to obtain server binding information.

Server System

Figure 1-10. Clientfinding a server

Chapter 1: Overview ofan RFC Application 17

As shown in Figure 1-11, the remote procedure executes after the client finds the

server. The client stub puts arguments and other calling information into an inter

nal RFC format that the runtime library transmits over the network. The server run

time library receives the data and transfers it to the stub, which converts it back to

a format the application can use. When the remote procedure completes, the con
version process is reversed. The server stub puts the return arguments into the

internal RFC format, and the server runtime library transmits the data back to the

client over the network. The client runtime library receives the data and gives it to

the client stub, which converts the data back for use by the application.

Domain Controller

Microsoft

Locator

Figure 1-11. Completing a remoteprocedure call

18 Microsoft RFC Programming Guide

Server Initialization

As illustrated in Figure 1-9, a server must make certain information available to the

RFC runtime library and clients before it can accept remote procedure calls. Exam

ple 1-4 contains the server initialization code for the arithmetic application, illus

trating the sequence of steps to initialize a typical RFC server.

Example 1-4: A Minimal Server Initialization

/* FILE NAME: server. c */

Mnclude &lt;stdio.h&gt;

ttinclude "arith.h"

#include " status .h "

main ()

/* header created by the MIDL compiler */

/* header with the CHECK_STATUS macro */

unsigned long status;

rpc_binding_vector_t *binding_vector ;

unsigned char *entry_name;

/* error status */

/*set of binding handles */

/*entry name for name service */

status =

RpcServerRegisterlf (

arith_vl_0_s_i fspec ,

NULL,

NULL

/* error status */

/* register interface with the RFC runtime O */

/* interface specification (arith.h) */

CHECK_STATUS(status, "Can t register interface", ABORT);

status =

RpcServerUseAllProtseqs (

RPC_C_PROTSEO_MAX_REQS_DEFAULT ,

NULL

/* create binding information */

/* queue size for calls */

/* no security descriptor is used */

CHECK_STATUS(status, "Can t create binding information", ABORT);

status =

RpcServerlnqBindings (/* obtain this server s binding information*/
&binding_vector

CHECK_STATUS(status, "Can t get binding information", ABORT);

entry_name = (unsigned char *)getenv("ARITHMETIC_SERVER_ENTRY") ,-

status =

RpcNsBindingExport (/* export entry to name service database O */

RPC_C_NS_SYNTAX_DEFAULT ,

entry_name,

arith_vl_0_s_i fspec ,

binding_vector ,

NULL

/* syntax of the entry name

/* entry name for name service

/* interface specification (arith.h)

/* the set of server binding handles

CHECK_STATUS(status, "Can t export to name service database", ABORT);

status =

RpcEpRegister (

arith_vl_0_s_ifspec ,

/* register endpoints in local endpoint map */

/* interface specification (arith.h) */

Chapter 1: Overview ofan RFC Application 75?

Example 1-4: A Minimal Server Initialization (continued)

binding_vector, /* the set of server binding handles */

NULL,

NULL

);

CHECK_STATUS(status, "Can t add address to the endpoint map", ABORT);

status =

RpcBindingVectorFree (/* free set of server binding handles */

&binding_vector

);

CHECK_STATUS(status, "Can t free binding handles and vector", ABORT);

puts ("Listening for remote procedure calls. . .

"

) ;

status =

RpcServerListen (/* listen for remote calls */

1, /* minimum number of threads */

RPC_C_LISTEN_MAX_CALLS_DEFAULT, /* concurrent calls to server */

NULL /* continue listening until explicitly stopped */

);

CHECK_STATUS(status, "rpc listen failed", ABORT);

}

/*** midl_user_allocate / midl_user_free ***/

void * _RPC_API
midl_user_allocate /* Procedures called by the stubs */

size_t size;

{

unsigned char * ptr;

ptr = malloc (size) ;

return ((void *)ptr) ;

void __RPC_API

midl_user_free

(

object

)

void * object;

{

free (object) ;

}

O Register the interface. Register the interface with the RPC runtime library using
the RpcServerRegisterlf routine. The arith_vl_0_s_ifspec variable is called

an interface handle. It is produced by the MIDL compiler and refers to infor

mation that applications need, such as the UUID. We describe the NULL argu
ments in Chapter 5, How to Write a Server.

20 Microsoft RFC Programming Guide

The CHECK_STATUS macro is defined in the status.h header file for the appli

cations in this book. It is used to interpret status codes from runtime calls.

(See Example 3-12 in Chapter 3.) Figure 1-9, step 1 is now complete.

@ Create binding information. To create binding information, you must choose

one or more network protocol sequences. This application, like most, calls

RpcServerUseAllProtseqs so that clients can use all available protocols. During
this call, the RFC runtime library gathers together information about available

protocols, your host, and endpoints to create binding information. The system
allocates a buffer for each endpoint, to hold incoming call information.

Microsoft RFC sets the buffer size when you use the RPC_C_PROTSEQ_
MAX_CALLS_DEFAULT argument.

@ Obtain the binding information. When creating binding information, the RFC
runtime library stores binding information for each protocol sequence. A bind

ing handle is a reference in application code to the information for one possi
ble binding. A set of server binding handles is called a binding vector. You
must obtain this information through the RpcServerlnqBindings routine in

order to pass the information to other runtime routines. Figure 1-9, step 2 is

now complete.

O Advertise the server location in the name service database. In this example, the

server places (exports) all its binding information in the name service

database using the RpcNsBindingExport runtime routine.

The RPC_C_NS_SYNTAX_DEFAULT argument tells the routine how to interpret an

entry name. (The current version of Microsoft RFC has only one syntax.) The

entry_name is a string obtained in this example from an environment variable

set by the user specifically for this application, ARITHMETIC_SERVER_ENTRY
(discussed at the end of this chapter when the application is run). The inter

face handle, arith_ServerIfHANDLE, associates interface information with

the entry name in the name service database. The client later uses name ser

vice routines to obtain binding information by comparing the interface infor

mation in the name service database with information about its own interface.

Figure 1-9, step 3 is now complete.

Register the endpoints in the local endpoint map. The RFC runtime library

assigns endpoints to the server as part of creating binding information. The

RpcEpRegister runtime routine lets the endpoint map on the local host know
that the process running at these endpoints is associated with this interface.

Figure 1-9, step 4 is now complete.

Free the set of binding handles. Memory for the binding handles was allocated

with a call to the RpcServerlnqBindings routine. When you have finished

passing binding information to the other routines, release the memory using
the RpcBindingVectorFree routine.

Chapter 1: Overview ofan RFC Application 21

O Listen for remote calls. Finally, the server must wait for calls to arrive. Each

system has a default for the maximum number of calls that a server can

accept at one time. Microsoft RFC sets this maximum default number when

you use the RPC_C_LISTEN_MAX_CALLS_DEFAULT argument. Figure 1-9, step 5 is

now complete.

Two programmer-supplied procedures midl_user_allocate and midl_user_

free may be called by client and server stubs for certain memory manage
ment functions. Although this simple application does not require these rou

tines, they are essential parts of many Microsoft RFC applications. Usually
these are just wrapper routines for malloc and free. Chapter 4 contains more
information about these procedures.

All of the server code is now complete. The compilation of the application is

shown in the next section.

Producing the Application
So far we have written the interface definition, produced the stubs and header file

from the interface definition with the MIDL compiler, and written the client and

server portions of the application. To produce the application, compile and link

the client and server separately, each on the system where you want its executable

to run.

Microsoft RFC Libraries

Microsoft RFC-distributed applications must be linked with the Microsoft RFC

libraries, which may vary depending on your system and vendor. This book uses

the following libraries for a link on a Microsoft Windows NT system:

rpcrt4 . lib

rpcns4 . lib

libont.lib

kerne!32.1ib

The rpcrt4.lib library provides Windows runtime library functions. The rpcns4.lib

library provides -name service functions. The libcmt.lib library provides standard C

library functions. The kernel32.lib library provides threads functions.

The following sections assume that your client and server files are available to the

respective client and server systems.

Compile and Link the Client and Server Code

Recall that Figures 1-5 and 1-6 show the utilities used and files produced when

developing a client and a server. Here, we show a portion of a makefile we use

22 Microsoft RFC Programming Guide

with nmake to compile and link the client and server code. The order in which
these commands execute is:

O A midl command builds .c and .h files from the jd/file.

The compiler generates object files for the client and server.

@ The linker produces client and server executables.

Example 1-5: A Makefilefor Building a Client and Server

FILE NAME: Makefile

Makefile for the arithmetic application
#

definitions for this makefile
#

APPL=arith

NTRPCLIBS=rpcrt4 . lib rpcns4.1ib libcmt.lib keme!32.1ib

Include Windows NT macros

! include &lt;ntwin32 .mak&gt;

NT c flags

cflags = -c -WO -Gz -D_X86_=1 -DWIN32 -DMT /nologo # @
NT nmake inference rules

c.obj: #

$(cc) $(cdebug) $ (cflags) $(cvarsmt) $&lt;

$(cvtomf)

#

COMPLETE BUILD of the application
#

all: client.exe server.exe # Q
#

CLIENT BUILD

#

client: client.exe

client.exe: client. obj $ (APPL)_c.obj $ (APPL)_x.obj #

$(link) $(linkdebug) $(conflags) -out: client.exe -map: client.map \

client. obj $ (APPL)_c.obj $ (APPL)_x.obj \

$(NTRPCLIBS)

#

SERVER BUILD

#

server : server . exe

server.exe: server. obj manager. obj $ (APPL)_s.obj $ (APPL)_x.obj #

$(link) $(linkdebug) $(conflags) -out.-server.exe -map: server.map \

server. obj manager. obj $ (APPL)_s.obj $(APPL)_x.obj\
$ (NTRPCLIBS)

client and server sources # Q
client. obj: client. c $(APPL).h
manager . obj : manager . c $ (APPL) . h
server . obj : server . c $ (APPL) . h

Chapter 1: Overview ofan RFC Application 23

Example 1-5: A Makefilefor Building a Client and Server (continued)

client and server stubs

$(APPL)_c.obj: $(APPL)_c.c

$(APPL)_x.obj: $(APPL)_x.c

$(APPL)_s.obj : $(APPL)_s.C

generate stubs, auxiliary and header file from the MIDL file

$(APPL).h $(APPL)_c.c $(APPL)_x.c : $(APPL).idl

midl $(APPL) .idl

O ntwin32.mak contains machine specific-variables for portability.

This line defines compiler options.

The inference rules assign values to nmake options and flags.

O This line builds client and server executables.

Link the client object files with the runtime libraries defined by S(NTRPCLIBS)

to produce the executable client application.

Link the server object files with the runtime libraries defined by S(NTRPCLIBS)

to produce the executable server application.

Compile the client and server application C source files to produce applica

tion object files. The server sources include both the remote procedure imple

mentation and the server initialization, to create the server object files.

Compile the client and server C language stub files to produce stub object

files.

Use the midl compiler to produce the client and server stub files and the

header file.

Running the Application
We designed the arithmetic application for simplicity. One of our short-cuts was to

let the client automatically find the server by using the name service to retrieve

server binding information. The client stub obtains the binding information

exported by the server to the name service database, and the client RFC runtime

library completes the remote procedure call.

To run the distributed arithmetic application, follow these steps:

1. This server exports binding information to a name service database. Make

sure a Microsoft Locator is running in your Windows NT domain.

2. Execute the server. For this example, the application-specific environment

variable, ARITHMETIC_SERVER_ENTRY, is set prior to running the server. This

variable represents a name for the entry that this server uses when exporting

the binding information to the name service database. The usual convention

for entry names is to concatenate the interface and host names. We use an

24 Microsoft RFC Programming Guide

environment variable here because the name can vary depending on which
host you use to invoke the server. If you do not supply a valid name, the

binding information will not be placed in the name service database, and the

program will fail. The prefix /.:/ (or alternatively / . . . /, represents the

global portion of a name and is used for compatibility with OSF DCE naming
conventions. For this example, assume that the server resides on the system
moxie.

C:\SERVER&gt; set ARITHMETIC_SERVER_ENrRY=/. : /arithmetic_moxie
C:\SERVER&gt; server

3. After the server is running, execute the client on the client system:

C : \CLIENT&gt; client

sums:

104

200

347

26

68

72

5

9

6

8

4. The server is still running and, for now, should be terminated by typing "C

(Ctrl-C). In Chapter 5 we ll show a way to gracefully terminate your server so

that it removes its endpoint information from the local endpoint map.

Figure 1-12 summarizes the development of the arithmetic application.

Chapter 1: Overview ofan RFC Application 25

uuidgen

Linker Linker

Figure 1-12. Arithmetic application: complete development

In this Chapter:

Microsoft Interface

Definition Language
(MIDI)

Using the MIDI

Compiler

Using an ACF to

Customize Interface

Usase Using a Microsoft
RFC Interface

As we discussed in Chapter 1, Overview ofan RFC Application, the first step in cre

ating a distributed application is to write an interface definition. This is also known
as an IDL or MIDI file because it is written in the Microsoft Interface Definition

Language and ends in the suffix .idl. This file contains definitions that the client

and server share, and a list of all the procedures offered by the server. This chap
ter explains what interface definitions need to contain.

An interface definition is usually written by the person developing the server

because it describes the procedures offered by that server. Client developers need

to read and interpret the definition. All servers that support the interface must

implement the remote procedures using the same data types and parameters. All

clients must call the remote procedures consistently.

A procedure declaration in an interface definition specifies the procedure name,
the data type of the value it returns (if any), and the number, order, and data types

of its parameters (if any).

Interface definitions are compiled with the MIDI compiler (midl) to create the

header and stub files. Use the header file with your application C code, and link

the stub files with your application object code and the RFC runtime library to cre

ate a distributed application. If you make a mistake when writing an interface defi

nition, the MIDL compiler gives useful messages to help you correct what is wrong.

27

Microsoft RFC Programming Guide

Microsoft Interface Definition Language
(MIDI)
Use the Microsoft Interface Definition Language (MIDL) to define the necessary
data types and declare the remote procedures for an interface. Declarations in

MIDL are similar to declarations in C,* with the addition of attributes.

Attributes

Interface definition attributes are special keywords that offer information to help
distribute an application. They are enclosed in square brackets in the MIDL file. All

of them facilitate network use in one way or another:

Some attributes distinguish one interface from another on a network. They
guarantee that a client finds the servers that implement the proper remote

procedures. For example, the uuid attribute declares the UUID for the inter

face.

Some attributes explicitly describe data transmitted over a network. Some
aspects of data in C that you take for granted must be described explicitly for

a distributed application. For example, a union is a data structure that allows

different data types in the same area of memory. Your application uses

another variable to keep track of which data type is valid. In a distributed

program, this additional variable must be specified in MIDL so it is transmitted

with a union parameter.

Some attributes make data transmission more efficient. In a local application,

procedures have access to both parameters and global variables so that any
amount of data can be accessed efficiently. In a distributed application, all

data used by the client and the remote procedure must be passed as parame
ters and transmitted over the network. Since most parameters are passed in

only one direction, you use attributes to specify whether each parameter is

used for input, output, or both.

Tables A-l through A-8 in Appendix A, MIDL and ACF Attributes Quick Reference,
show all MIDL attributes with brief descriptions of each. In this chapter, we discuss

the MIDL attributes so you know how to write an interface definition. But to really
understand how those attributes reflect your use of data in an application, you
have to see them along with the application s C code and that will appear in later

chapters.

* MIDL is currently designed to work with C. However, MIDL has features such as boolean
and byte data types, so that it will work in future versions for languages other than C.

Chapter 2: Using a Microsoft RFC Interface 29

Structure ofan Interface Definition

An interface definition includes some or all of the following:

The interface header

Interface header attributes

Interface name

The interface body

Import statements

Constant definitions

Data type definitions

Procedure declarations

Interface Header Attributes

Interface header attributes specify
7 RFC features that apply to an entire interface.

One is the name that you have chosen, such as arith in the application shown in

Chapter 1. But choosing a name is not enough, because someone could easily cre

ate another application called arith, and a client would be confused about which

to use. That is where the interface UUID and the version number come in.

As we saw in Chapter 1, you generate a UUID through uuidgen. This distinguishes

your arith even when someone else steals your name to create a different inter

face. But the creators of DCE and Microsoft RFC recognized that an interface does

not stay the same forever; you are likely to update it regularly. So they also allow

for a version number in the interface header. A complete version number consists

of a major and minor version number. For example, if a version number is 2.1, the

major version is 2 and the minor version is 1 .

During a remote procedure call, the following rules determine whether a client

can use an interface that a server supports:

The UUID of the client and server must match.

The major version number of the client and server must match.

The minor version number for the client must be less than or equal to the

minor version number for the server. A client minor version number that is

less than the server minor version number indicates an upwardly compatible

change to the interface on the server.

When you create new versions of an interface by adding new declarations and

definitions, increase the minor version number. Any other changes to an interface

require a major version number change, essentially creating a different interface.

30 Microsoft RFC Programming Guide

The Inventory Application

The application we use in this chapter is a simple inventory: a product database is

stored on the server system, and a client makes inquiries based on a part number.

The complete application is shown in Appendix D, The Inventory Application.

Example 2-1 shows the header in the interface definition of the inventory applica

tion.

Example 2- 1. Interface Header Attributes

I* FILE NAME: inv.idl */

[/* brackets enclose attributes O */

uuid(008B3C84-93A5-HC9-85BO-08002B147A61) ,/* universal unique identifier*/
version (1 .), /* version of this interface*/
pointer_default (unique) /* pointer default O */

] interface inventory /* interface name */

{

/* The body of an interface definition consists of iitport statements, */

/* constant definitions, data type definitions, and procedure declarations. */

O Brackets enclose attributes in interface definitions.

The uuid is a required attribute that uniquely identifies an interface. All

copies of this interface definition contain the same UUID.

The version is an optional attribute used to identify different versions of an

interface. In this example the major version number is 1 and the minor ver

sion number is 0.

O The pointer_default is an optional attribute needed by some interface defi

nitions so that pointer data is efficiently transmitted.

The keyword interface and a name are required to identify the interface.

The MIDI compiler uses this name to construct data structure names. Client

and server code use these data structures to access information about the

interface.

Table A-l in Appendix A lists and describes all interface header attributes.

Type Definitions, Data Attributes, and Constants

In C, a data type can map to different sizes on different systems. For example, a

long data type in C may be 16, 32, or 64 bits, depending on the system. The size

of a MIDI data type, however, must be the same on all systems so that Microsoft

applications can exchange data. Consequently, you might need to change data

types if you port your application code platforms with differing data type sizes.

Chapter 2: Ush^ a Microsoft KPC Interface 37

7able2-l WLi Basic Data Types

MIDL Data Type
- zc

bc/slear - -

:

byte 8 bits

zhar

void

"."1. i "i

*

e - - r _ -. -. - -_ :=_- 32 bit*

. . -_-;.--

ssall

r- ~.v

Fktttir^Pomt

Ooat 32 bits

:ic-J:le -
:

ImernatkiruJ Characters

;

..-- -.-_-_ -

-

.;.. . &gt;

MIDL_T&gt;pe Notes

byte Data is not automatics - "

i"_i:

-

32 Microsoft RFC Programming Guide

Table 2-2: Notes on MIDI Data Types (continued)

MIDL_Type Notes

void * Used with the context_handle attribute to define context

handles. It refers to opaque data, the details of which are hid

den from you. See Chapter 7, Context Handles .

handie_t Data that denotes a binding handle. Chapter 3, How to Write

Clients, describes how to use this data type to define binding
handles in an interface definition.

error_status_t Data that denotes an RFC communication status.

wchar_t 16-bit unsigned data element.

How do the MIDL data types help to distribute an application? The explanation lies

in how the client and server stubs handle data that might need to change as it

moves from one computer system to another.

During a remote procedure call, the client stub prepares input parameters for

transmission, and the server stub converts the data for use by the server applica
tion. When the remote procedure completes execution on the server system, the

server stub prepares the output parameters for transmission and the client stub

converts the data for the client application.

Marshalling is the process during a remote procedure call that prepares data for

transmission across the network. Marshalling converts data into a byte-stream for

mat and packages it for transmission using a Network Data Representation (NDR).
NDR allows successful data sharing between systems with different data formats. It

handles differences like big-endian versus little-endian (byte order), ASCII charac

ters versus EBCDIC characters, and other incompatibilities.

Data transmitted across the network undergoes a process called unmarshalling. If

the data format of sender and receiver is different, the receiver s stub converts the

data to the correct format for that system, and passes the data to the application.

Example 2-2 shows a constant and two type definitions for the inventory interface.

Example 2-2: MIDL Type Definitions

[

/* The header of an interface definition consists of interface header */

/* attributes and the name of the interface. */

] interface inventory

{

const long MAX_STRING =30; /* constant for string size O */

typedef long part_num; /* inventory part number */

typedef [string] char part_name[MAX_STRING+l] ; /* name of part*/

Chapter 2: Using a Microsoft RFC Interface 33

Example 2-2: MIDI Type Definitions (continued)

/* The remainder of the interface definition consists of other data */

/* type definitions and the procedure declarations. */

}

O Use the keyword const followed by a data type to declare a constant to use

in type definitions and application code.

@ Use the keyword typedef followed by a data type to define a new data type.

A data type is not sufficient to completely describe some kinds of data.

Attributes provide the necessary extra information. In this example, the

string attribute enclosed in brackets applies to the character array

part_name, so that it becomes a null-terminated string.

Table A-4, in Appendix A, lists and describes all the data type attributes. So far we
have seen only basic MIDI data types. Now we will explain how to construct more

complex data types in an interface definition.

Pointers

In a distributed application, a pointer does not provide the same convenience and

efficiency that it does in a local application because there is stub overhead such as

memory allocation, copying, and transmitting all the data the pointer refers to.

MIDL contains three kinds of pointers to balance efficiency with more complete

pointer capabilities.

A full pointer has all of the capabilities associated with pointers. They can be null

or point to existing data. They can contain cycles or loops and they can be aliased

to another pointer in the argument list. The full pointer attribute is the default

pointer type. You can override this setting by using the pointer_default attribute.

A unique pointer can be null or point to existing data. But unique pointers cannot

contain cycles or loops and they cannot be aliased to another pointer in the argu
ment list. In Microsoft Extension mode, the unique pointer attribute is the default

pointer type assigned to pointers that are not parameters. You can override this

setting using the pointer_default attribute.

A reference pointer is a simpler pointer that refers to existing data. A reference

pointer has a performance advantage, but limited capabilities compared to a

unique pointer. No new memory can be allocated for the client during the remote

procedure call, so memory for the data must exist in the client before the call is

made.

The unique attribute represents a unique pointer and the ref attribute represents
a reference pointer. Chapter 4, Pointers, Arrays, and Memory Usage, discusses how
to use pointers.

Microsoft RFC Programming Guide

Arrays

Array index values begin at in MIDI, as in C. For example, the array arr[10]

defined in an interface definition has elements arr[0] , arr[l] , . . . , arr[9]

when you use it in the client or server code.

Arrays are expensive to transmit, so MIDI provides some sophisticated ways to

keep down the amount of data actually sent over the network. Here are the kinds

of arrays provided:

fixed array A fixed array has constant index values for its dimensions.

This is like a standard C array.

varying array A varying array has a maximum size determined at compile

time, just like a fixed array. But it also has subset bounds

represented by variables. Only the portion of the array you
need is transmitted in a remote procedure call.

conformant array The size of a conformant array is represented by a dimen

sion variable so that the actual size is determined when the

application is running.

Chapter 4 discusses arrays in more detail.

Strings

In C code it is convenient to use strings to manipulate character data. C library

routines, such as strcpy, recognize a null character as the end of a string in the

character array. In MIDL, all characters in an array are transmitted, including null

characters. Therefore, you must explicitly define strings with the string attribute,

so that only the characters up to a null character are transmitted. Example 2-3

shows some string definitions.

Example 2~3: Defining Strings in MIDL

const long MAX_STRING = 30; /* a constant for string size */

typedef [string] char part_name[MAX_STRING+l] ; /* name of part O */

typedef [string, unique] char *paragraph; /* description of part */

To specify a string, apply the string attribute to a character or byte array. In

this example, the string size is 31 in order to accommodate the terminating

null byte, but the maximum string length is 30. The data type of the array ele

ments must be a char or byte, or defined with a type definition that resolves

to a char or byte. The data type can also be a structure whose fields all

resolve to a char or byte.

This example specifies a conformant string by applying the string attribute

to a pointer to a char or byte data type.

Chapter 2: Using a Microsoft RFC Interface 35

A conformant string has the maximum length allocated in the application code.

You can also specify a conformant string using array syntax. For example, the fol

lowing is another way to define the conformant string paragraph:

typedef [string] char paragraph^];

When you use a conformant string as an input parameter to a remote procedure,
the amount of data that is transmitted is determined from the current string length.

If the string parameter is both input and output, however, apply an array attribute

size_is or max_is to the string so the length can increase when the remote pro
cedure completes. Chapter 4 discusses array attributes in greater detail.

Enumerated types

MIDL provides an enumerated type, just as modern versions of the C language do.

The idea is to provide a set of symbolic names to make source code more self-

documenting. These names are associated by the compiler to a set of integer val

ues, but the values usually have no more significance than to distinguish one

name from another. In Example 2-4, the keyword enum, followed by a list of iden

tifiers, maps the identifiers to consecutive integers starting with 0. For this exam

ple, we use enumeration to specify more than one kind of measurement unit for

parts in the inventory. Some parts are counted as whole items, while other parts

are measured by weight.

Example 2-4: Defining an Enumerated Type in MIDL

typedef enum {

ITEM, GRAM, KILOGRAM

} part_units; /* units of measurement */

Microsoft RFC extensions allow you to attach specific integer values to identifiers

in an enumeration. In Example 2-5, flight numbers are attached to specific flights

in an air traffic application.

Example 2-5: Attaching Specific Integer Values to Enumerators

typedef enum {

BOS-CHI=716, BOS-DEN=432, BOS-SFO510 /* flight numbers */

} flights;

Structures

You define structures in MIDL the same way you do in C. In Example 2-6 the

struct keyword is followed by a list of typed members that define a structure. For

this example, two structures are shown. The structure part_price contains a

units-of-measurement member and a price-per-unit member. The part_units data

type is an enumerated type. The structure part_record represents all the data for

a particular part number. As in C, any user-defined types such as part_num must

be defined before they are used.

36 Microsoft RFC Programming Guide

Example 2-6: Defining Structures in MIDI

typedef struct part_price {

part_units units;

double per_unit ;

} part_price;

/* price of part */

typedef struct part_record {

part_num number;

part_name name ;

paragraph description;

part_price price;

part_quantity quantity;

part_list subparts ;

} part_record;

/* data for each part */

Discriminated unions

In C a union is a data structure that stores different types and sizes of data in the

same area of memory. For example, this union stores a long integer or a double

precision floating-point number:

typedef union {

long int number;

double weight ;

} quantity_t;

To keep track of what type is stored in the union, the application must use a dis

criminator variable that is separate from the union data structure. This creates a

special requirement for a distributed application. If a remote procedure call

includes a union parameter, the remote procedure has no way of knowing which
member of the union is valid unless it receives the discriminator along with the

union.

In MIDL, a discriminated union includes a discriminator as part of the data struc

ture itself, so that the currently valid data type is transmitted with the union. When
you define a discriminated union, it looks like a combination of a C union and a

switch statement. The switch defines the discriminator, and each case of the switch

defines a valid data type and member name for the union.

Example 2-7 shows how to define a discriminated union.

Example 2- 7: Defining a Discriminated Union in MIDL

typedef enum {

ITEM, GRAM, KILOGRAM

} part_units; /* units of measurement */

Chapter 2: Using a Microsoft RFC Interface 37

Example 2- 7: Defining a Discriminated Union in MIDI (continued)

O
typedef union switch (part_units units) total { /* quantity of part */

case ITEM: long int number;

case GRAM: O
case KILOGRAM: double weight;

} part_quantity;

O You begin the definition of a discriminated union data type with the key
words typedef union.

Use the keyword switch to specify the data type and name of the discrimina

tor variable, units. The data type part_units is a previously defined enu

merated type. A discriminator can be Boolean, character, integer, or an

enumerated type.

Define the name of the union, total, prior to listing the union cases.

O Use the keyword case followed by a value to specify the data type and name
of each union member. The case value is the same type as the discriminator

variable. In this example, a union defines the quantity of a part in an inven

tory. Some parts are counted as whole items while other parts are weighed.
This union offers a choice between defining the quantity as a long integer or

as a double precision floating-point number. The union case GRAM has the

same data type and name as the case KILOGRAM.

The name of the new data type is part_quantity, which you use in applica

tion code to allocate a discriminated union variable.

In application code, the discriminated union is a C structure. The MIDI compiler

generates a C structure with the discriminator as one member and a C union as

another member. Example 2-8 shows the structure in the generated header file for

the corresponding discriminated union in Example 2-7.

Example 2-8: A Discriminated Union Generated by the MIDI Compiler

typedef struct {

part_units units;

union {

/* case(s) :.0 */

idl_long_int number;

/* case(s) : 1, 2 */

idl_long_float weight;

} total;

} part_quantity;

You must set the union discriminator in the application code to control which

union case is valid at any time in the application. Example 2-9 shows how you can

use the discriminated union in application code.

Microsoft RFC Programming Guide

Example 2-9: Using a Discriminated Union in Application Code

part_record part; /* structure for all data about a part */ O

result = order_part (part. number" "& (part. quantity), account);

if (result &gt; 0) {

if (part. quantity. units == ITEM)

printf ("ordered %ld items \n" , part. quantity. total.number); O
else if (part. quantity. units == GRAM)

printf ("ordered %10.2f grams\n", part. quantity. total.weight);

else if (part. quantity. units == KILOGRAM)

printf ("ordered %10.2f kilos\n", part. quantity. total.weight);

}

O In the inventory application the part_quantity discriminated union is a

member of the part_record structure shown in Example 2-5.

The part. quantity structure member is the discriminated union. In this

example, you request a quantity of a part to order, and the remote procedure
returns the actual quantity ordered.

The part. quantity. units member is the discriminator for the union.

O The part. quantity. total member is the union, which contains number and

weight cases.

If you omit the union name (total in Example 2-7), then the MIDL compiler gen
erates the name tagged_union for you. You can access the structure members in

application code as follows:

part. quantity. units = ITEM;

part. quantity. tagged_union . number = 1;

Procedure Declarations and Parameter Attributes

At the heart of an interface definition are the procedures that a server offers. The

inventory application contains several remote procedures; you can find them in

the interface definition in Appendix D.

Each parameter of a remote procedure is declared with its own attributes. The

most important ones are the directional attributes in and out.

In the C language parameters of procedure calls are passed by value, which means

a copy of each parameter is supplied to the called procedure. The variable passed
is an input-only parameter because any manipulation of the procedure s copy of

the variable does not alter the original variable. For a variable to be a parameter, a

pointer to the variable is passed.

With a remote procedure call, we must be concerned with whether a parameter is

input, output, or both. It is more efficient if the RFC runtime library can transmit

data only in the relevant direction. The attributes in and out are used in an

Chapter 2: Using a Microsoft RFC Interface 39

interface definition to distinguish data transmission direction for a parameter. All

parameters must have at least one directional attribute. An output parameter must

be a pointer or an array, as it must be in C.

Complex pointer types must have both directional attributes (in and out). This

enables the client and server stubs to coordinate duplication of the unique or full

pointer in the server s address space.

Example 2-10 shows procedure declarations and some associated parameter
attributes.

Example 2-10: Procedure Declarations and Parameter Attributes

] interface inventory

{

/* The beginning of the interface definition body usually contains */

/* constant and type definitions (and sometimes import declarations).*/

y****************** ****** Procedure Declarations ************************/

boolean is_part_available (/* return true if in inventory O */

[in] part_num number /* input part number */

void whatis_part_name (

[in] part_num number,

[in, out] part_name name

/* get part name from inventory
/* input part number */

/* output part name */

paragraph get_part_description(

[in] part_num number

/* return a pointer to a string) */

void whatis_part_price (

[in] part_num number,

[out] part_price *price

/* get part price from inventory */

void whatis_part_quantity (/* get part quantity from inventory */

[in] part_num number,

[out] part_quantity *quantity

void whatare_subparts (

[in] part_num number,

[out] part_list **subparts

/* get list of subpart numbers */

/* structure containing the array O */

/* Order part from inventory with part number, quantity desired, and

/* account number. If inventory does not have enough, output lesser */

/* quantity ordered. Return values: l=ordered OK,

/* -l=invalid part, -2=invalid quantity, -3=invalid account.

40 Microsoft RFC Programming Guide

Example 2-10: Procedure Declarations and Parameter Attributes (continued)

long order_part (/* order part from inventory, return OK or error code */

[in] part_num number,

[in, out] part_quantity *quantity, /* quantity ordered */

[in] account_num account

);

} /* end of interface definition */

O As in C, a MIDL procedure can return a value. In this example, the

is_part_available procedure returns a Boolean value of idl_true if the part

number is available in the inventory.

Procedures defined with the void type do not return a value. Input parame
ters have the in directional attribute and output parameters have the out

directional attribute. Here, Microsoft RFC is treating this pointer to the array

element as a unique pointer because the pointer_default was set to unique
(see Example 2-1). MIDL does not allow unique or full pointers to have only
the [out] directional attribute because the client and server stubs need to

coordinate the establishment of complex pointers in the server address space.

Consequently, the directional attribute is set to [in, out] . As in C, arrays and

strings are implicitly passed by reference, so the string name does not need a

pointer operator.

Some procedures return a data structure or a pointer to a data structure. In

this example, the data type paragraph has been defined in the interface defi

nition as a char *
type. It is a full pointer to a string representing the descrip

tion of the part. This remote procedure allocates new memory on the client

side.

O Output parameters require pointers to pointers when new memory is allo

cated. Pointers to pointers are discussed in Chapter 4.

Parameters that are changed by the remote procedure call use both in and

out. In this example, a part is ordered with the part number, the quantity, and
an account number. If the input quantity units are wrong or the quantity

requested is more than the inventory can supply, the remote procedure

changes the quantity on output.

Table A-7 in Appendix A shows all parameter attributes and Table A-8 shows all

procedure attributes.

Using the MIDL Compiler
The MIDL compiler generates the header and stub files needed to incorporate the

interface in a client or server. The input for a MIDL compilation is an interface defi

nition file, ending in .idl. Figure 2-1 shows the utilities used and files produced

during interface production.

Chapter 2: Using a Microsoft RFC Interface 41

An attribute configuration file (ACF) is an optional file, ending in .acf. It contains

information that changes how the MIDI compiler interprets the interface definition.

We ll look at the ACF file later in this chapter.

Generate a universal

unique identifier.

Write an interface definition

and an optional attribute

configuration file (ACF).

uuidgen

Text

Editor

f
app/.idl

JL
appl.atf

Compile the interface

definition to generate the

application header, stub,

and auxiliary files.

T
midl

Figure 2-1. Producing an interface

Depending on which compiler options you use, the MIDL compiler produces the C

language client stub, server stub, or both sets of stub files. The stub file names
contain the _c suffix for clients and the _s suffix for servers. By default, the MIDL

compiler also produces the header file (ending in .h) which will be used by both

the client and server:

The MIDL compiler produces auxiliary files automatically when certain features are

used. Auxiliary file names contain the _x suffix for clients and the _y suffix for

servers.

Auxiliary files contain special routines required for certain complex data types,

such as unique pointers, to prepare the data for transmission. You have to link the

auxiliary object files with your application when these data types are used. The
routines are placed in auxiliary files rather than in the stub, so that you can use

the data types in other interface definitions without linking in the entire stub.

42 Microsoft RFC Programming Guide

Generating Client Files

To generate the interface header file and client stub file for the inventory interface,

type the following command:

C:\&gt; invntry&gt; midl inv.idl /server none /I explicit /out explicit

Here is an explanation of the options:

/server none This option suppresses the generation of stub none and auxiliary

files for the server.

/I explicit The /I option causes the MIDL compiler to use the additional

directory when it searches for files. For one of the clients of the

inventory application an ACF in the explicit directory is needed.

/out explicit This option places the output files in the chosen directory,

explicit.

Generating Server Files

To generate the interface header file and server stub file for the inventory inter

face, type the following command:

C:\&gt; invntry&gt; midl inventory. idl /client none

Here is an explanation.

/client none This option suppresses the generation of stub and auxiliary files

for the client.

Using an ACF to Customize Interface Usage
You can control some aspects of RFC on the client side without affecting the

server. The opposite is also true. These aspects should not be in the interface defi

nition because we do not want to force them on all clients and servers. A client or

server developer can use an optional attribute configuration file (ACF) to modify
the way the MIDL compiler creates stubs without changing the way the stubs inter

act across the network. This assures that all copies of an interface behave the same
when clients and servers interact.

The most significant effect an ACF has on your application code can be the addi

tion of parameters to remote procedure calls not declared in the interface defini

tion. For example, the explicit_handle attribute adds a binding handle as the

first parameter to some or all procedures. Also, the comm_status and

fault_status attributes can add status parameters to the end of a procedure s

parameter list. See Table A-9 in Appendix A for a complete list of ACF attributes.

If you develop both clients and servers for an interface, you can use different ACFs

(or no ACF) for the client and server. Since this can cause differences between the

Chapter 2: Using a Microsoft RFC Interface 43

header files generated for the client and server, it is good development practice to

separate the client and server output when using ACFs.

You do not specify an ACF when you compile an interface; instead, the MIDL com

piler automatically uses an ACF if one is available in the search directories. The

name of an ACF must match the name of the MIDL file it is associated with. The file

extension must be .acf.

An ACF is useful for a number of situations: selecting binding methods, controlling

errors, excluding procedures, and controlling marshalling.

Selecting a Binding Method

As will be explained in Chapter 3, three different binding methods exist. You can

choose how much to let the stub do for you and how much to control binding
within your own code.

The auto_handle ACF attribute selects the automatic binding method which

causes the client stub to automatically select the server for your client. In the arith

metic application in Chapter 1, for instance, any server found by the client stub

would be sufficient. An additional advantage offered by automatic binding is error

recovery: if server communication is disrupted, the client stub can sometimes find

another server, transparent to the application code.

The irtplicit_handle ACF attribute selects the implicit binding method which

allows you to select a specific server for your remote procedure calls. For exam

ple, if many inventory servers representing different warehouses are available on

the network, you may want your client to select a specific one.

The explicit_handle ACF attribute selects the explicit binding method which lets

you select a specific server for each remote procedure call. For example, if your
client needs data from many servers simultaneously, you need a way to control

which remote procedure call uses which server.

Example 2-11 is an ACF used by the MIDL compiler to produce the header and

stub files for the implicit client example of the inventory application.

Example 2-11: An Attribute Configuration File (ACF)

/* FILE NAME: inv.acf (implicit version)*/

/* This Attribute Configuration File is used in conjunction with the */

/* associated MIDL file (inv.idl) when the MIDL conpiler is invoked. */

[

implicit_handle (handle_t global_binding_h) /* implicit binding method O */

]

interface inv /* The interface name must match the MIDL file. */

O The irtplicit_handle attribute applies to the entire interface. A global bind

ing handle of type handle_t is established in the client stub to refer to bind

ing information a client uses to find a server.

44 Microsoft RFC Programming Guide

@ The interface name (inv) must match the interface name in the corresponding
MIDI file.

Controlling Errors and Exceptions

An exception is a software state or condition that forces the application to go out

side its normal flow of control. Such an event may be produced by hardware

(such as memory access violations) or software (such as array subscript range

checking). Microsoft RFC applications cause communication and server errors to be

raised as exceptions. Unless you design your program to handle the exceptions,
the program will exit.

An ACF can save you the trouble of writing extra layers of exception handling
code.

The coirm_status and fault_status attributes apply to procedure parameters or

procedure return results of the type error_status_t. If this attribute is present
and you ve added a variable of the data type error_status_t to the argument list

of your remote procedure call communication and server errors are communicated
to the client as values in the named parameter rather than raised as exceptions.
Error codes for comm_status and fault_status are different to allow correct

interpretation of the error codes. Chapter 3 discusses error and exception control

in greater detail.

Excluding Unused Procedures

The code and nocode ACF attributes allow you to define which procedures the

client stub supports. For example, if a client uses only four out of twenty remote

procedures declared in the interface, the client stub code does not need the over

head of the other procedures. However, all the procedures of an interface defini

tion must be implemented by the server.

In this Chapter:

Binding

Steps in Finding
Servers

Customizing a

Binding Handle

Authentication

Error Parameters or

^^0^ How to Write Clients
Compiling and

Linking Clients

In this chapter we discuss how to develop client programs for Microsoft RFC inter

faces. It is a good idea to read Chapter 1, Overview of an RFC Application, for a

complete overview of a distributed application, and Chapter 2, Using a Microsoft
RFC Interface ,

to familiarize yourself with features of interface definitions.

We discuss client development before server development because you may
develop a client for an existing interface and server. We describe server develop
ment in Chapter 5, How to Write a Server. The code for all applications is shown in

Appendices C through F.

Binding
The first question that probably comes to mind when you begin to develop a

client is: How does a remote procedure call find the server it needs? Essentially,

the client must create a binding, as described in Chapter 1, and load it with infor

mation that lets the RFC runtime library find the server.

Binding information mainly includes a communication protocol sequence, a host

name or address, and a server process address on the host (endpoint). If you are

familiar with using named pipes, these are similar to a protocol family, a computer
name, and a pipe name.

Binding information can be obtained automatically and be completely invisible to

your client application code. To the other extreme, you can obtain binding infor

mation by calling RFC runtime routines and using a binding handle as a parameter
in a remote procedure call. The level of control you need depends on the needs

of your client program.

A binding handle is the data structure that manages binding in applications. The

handle is a reference (pointer) to information for one possible binding.

45

46 Microsoft RFC Programming Guide

Microsoft RFC supplies the Locator as a simple and convenient name service

database to store names and locations of network services. Servers use RFC run

time routines to store binding information in the name service database. Clients

use other RFC runtime routines to retrieve binding information from the name ser

vice database and create binding handles for remote procedure calls.

A server s binding information can also be stored in an application-specific

database or supplied to client programs by some other means, for example, as

arguments when the client is invoked. If your client would not benefit from a

name service (or your client system does not have a running name service), you
can use RFC runtime routines in applications to convert strings of binding informa

tion to binding handles used by remote procedure calls.

Implementing a Binding Method

For each remote procedure call, the binding handle is managed in one of the fol

lowing ways.

Automatic method

The client stub automatically manages bindings after the application calls a remote

procedure. The client stub obtains binding information from a name service

database and passes the binding handle to the RFC runtime library. If the connec

tion is disrupted, new binding information can sometimes be automatically

obtained and the call is tried again.

Implicit method

A binding handle is held in a global area of the client stub. After the application

calls a remote procedure, the stub passes the binding handle to the RFC runtime

library. You write application code to obtain the binding information and set the

global binding handle with RFC runtime routine calls.

Explicit method

An individual remote procedure call in the application passes a binding handle

explicitly as its first parameter. You write application code to obtain the binding
information and set the binding handle with RFC runtime routine calls.

Figure 3-1 shows a comparison of binding methods in relation to the client code.

For each method, the top portion of the box represents the client application code

you write. The bottom portion of each box represents the client stub code that the

MIDI compiler generates. The shading represents the portion of the client where

binding handles are managed. For any given client instance, different methods

may be employed for different remote procedure calls. For example, one remote

procedure call can use the automatic method and another remote procedure call

can use the explicit method.

Chapter 3: How to Write Clients 47

Figure 3~1- A comparison of binding management methods

The automatic and implicit methods apply to an entire interface. If you use either

the automatic or implicit method for an interface, you can also use the explicit

method for some or all remote procedure calls to that interface. The explicit

method takes precedence over the automatic and implicit methods because the

binding handle is visible as the first parameter in the procedure.

If a client uses more than one interface, you can use the automatic method for all

remote procedure calls to one interface and the implicit method for all remote pro
cedure calls to the other interface. However, a client cannot use the automatic and

implicit methods simultaneously, for remote procedure calls to the same interface.

The implicit and explicit methods require that your application code obtain bind

ing information and manage the binding handles. Binding handles need to be

obtained and managed in the client application code under the following circum

stances:

The client uses a specific server.

The client needs to set authentication and authorization information for spe
cific binding handles.

The server has more than one implementation of the same remote procedure.
An application uses object UUIDs to distinguish between different remote pro
cedure implementations.

48 Microsoft RFC Programming Guide

Use an attribute configuration file (ACF) to establish a binding method with the

attributes auto_handle, irrplicit_handle, or explicit_handle.

A context handle is a special remote procedure parameter defined in an interface

definition with the context_handle attribute. Applications use a context handle in

a sequence of remote procedure calls to refer to a context (state) on a specific

server. We mention context handles briefly here with binding methods because

they carry with them binding information and thus can act as a binding handle for

remote procedure calls. When the context handle is active, it carries with it the

binding information necessary to find the same server as it did before, and the

server maintains the context for that particular client. (Chapter 7, Context Handles,

describes context handle use.)

Deciding on binding methods

Automatic binding does the most work for you, so MIDL makes it the default.

Another binding method is chosen in the following situations:

The first parameter of a procedure declaration is a binding handle (in that

case, the binding method has to be explicit)

The procedure declaration has an input context handle

An ACF establishes a different binding method

You can force explicit binding when you re sure that you want every client to

specify a server when calling a particular procedure. Make a binding handle the

procedure s first parameter in the MIDL file. A client cannot take away a parameter
declared in the interface definition, so this remote procedure cannot use either the

automatic or implicit methods. For the same reason, a context handle forces the

client to use explicit binding.

The next decision is whether to use the automatic or implicit method for other

procedures. If you re satisfied with using any valid server for your remote proce
dure calls any server that exports the interface described in your MIDL file the

automatic method should be adequate. In particular, the automatic method works

fine if the network is relatively small. However, you have no control over which

server you get, so applications that use servers scattered over a wide area may be

inefficient. If most of your remote procedure calls need to use a specific server,

the implicit method is appropriate.

Suppose you have determined that individual remote procedure calls need control

over which server each uses. For example, if you use a print server application,

one call may request a server near you to print a file. Your next call may request a

server in a different location to print another copy for your department manager. If

you have determined that you need this kind of binding control for individual

remote procedure calls, use the explicit method.

The explicit method is also necessary for clients that make multi-threaded remote

procedure calls. For example, a commodity trade application may request a

Chapter 3: How to Write Clients 49

commodity price with remote procedure calls to many locations at the same time.

This server selection control also lets you balance network load in your applica
tion. All the clients in this book are single-threaded.

Automatic Binding Management
The automatic binding management method is the simplest because you don t

have to manipulate the binding handle in your interface definition, ACF, or appli
cation code. The binding handle and the complexity of its management is hidden
from you in the client stub and the RFC runtime library. If you lose a server con

nection, the automatic method will try to rebind for you. With this method there is

a relatively short learning curve to get a distributed application running.

Many applications do not require that you control binding, so it is easier to let the

underlying RFC mechanism find a server. The server is selected from a set of

servers that support the interface. If the particular server makes no difference, use
the automatic method. For example, for a mathematics interface, the first server

that supports it is probably sufficient.

The automatic method is demonstrated in the arithmetic application and shown in

detail in Chapter 1. For this chapter, however, we use one of the clients for the

inventory application, so you can compare client development between different

methods for the same application. The application is shown in detail in Appendix
D, The Inventory Application .

Interface developmentfor automatic binding

There are no special requirements in the interface for automatic binding. If you
wish, you can use the auto_handle attribute in an ACF for documentation.

Client developmentfor automatic binding

The client requires you to:

1. Include the MIDL-generated header file with the #include compiler directive

in the client application code:

/* FILE NAME: client. C */

/****** Client of the inventory application ******/
#include &lt;stdio.h&gt;

#include &lt;stdlib.h&gt;

#include "inv.h" /* header file created by the MIDL conpiler */

50 Microsoft RFC Programming Guide

2. Link the client application object code with the client stub, client stub auxil

iary file (if available), and the following Microsoft RFC libraries:

rpcrt4.1ib

rpcns4 . lib

libcmt.lib

kerne!32.1ib

The client system must have access to a Microsoft Locator name service database

on the network. Your system administrator can tell you if you have access to a

name service.

The remote procedure call looks just like a local procedure call. The procedure
returns a Boolean value of true if the part number is in the inventory or false if

it is not:

case a : if (is_part_available (part .number)) /* Remote Procedure Call */

puts (

" available : Yes "

) ;

else

puts ("available : No") ;

break;

If your client uses the automatic method for an interface, you can override it for

specific procedures by using a binding handle as the first parameter in the call.

See Chapter 6, Using a Name Service, for more information on the name service.

Server developmentfor automatic binding

For clients to use the automatic method, a server must advertise binding informa

tion to a name service entry with the RpcNsBindingExport runtime routine in the

server initialization code.

Implicit Binding Management
Implicit binding gives you the control of binding management in the client appli

cation without a visible binding handle parameter in a remote procedure call. Use

the implicit method for applications that need the same server for all or most

remote procedure calls of an interface. An ACF defines the binding handle, and the

MIDI compiler generates it as a client-global variable in the client stub. The client

application code sets the binding handle before any remote procedure calls. Dur

ing a remote procedure call, the client stub uses the global binding handle to com

plete the call to the RFC runtime library.

In this part of the chapter, we ll develop a client for the inventory application that

uses the implicit method. The rationale is that, in this application, you may need to

choose a specific server to access the right data base. Once a server is found, the

rest of the remote procedure calls can use the same one.

Chapter j; How to Write Clients 57

Interface developmentfor implicit binding

Use the irtplicit_handle attribute in an ACF to declare the global binding handle
for the client, as shown in Example 3-1. When you compile the interface definition

with the ACF available, a global binding handle is defined in the client stub. The
stub uses the handle every time the client calls a remote procedure for this inter

face.

Example 3-1: An ACFfor the Implicit Binding Method

I* FILE NAME: inv_i.acf (implicit version)*/
/* This Attribute Configuration File is used in conjunction with the */

/* associated MIDL file (inv.idl) when the MIDL compiler is invoked. */

[

implicit_handle(handle_t global_binding_h) /* irrplicit binding method */

]

interface inv /* The interface name must match the MIDL file. */

The handle_t type is a MIDL data type that is used to define a binding handle
named global_binding_h.

Client developmentfor implicit binding

The client code includes the MIDL-generated header file, obtains a binding handle,
and assigns the binding handle to the global binding handle. (See Example 3-2.)

Example 3-2: A Client with the Implicit Binding Method

I* FILE NAME: client. c */

/***** Client of the inventory application with implicit method *****/
#include &lt;stdio.h&gt;

#include &lt;stdlib.h&gt;

ttinclude "inv.h" /* header file created by the MIDL compiler O */

do_import_binding (

"

inventory_" , &global_binding_h) ; /* seek matching */

/* uuid @ */

status = RpcBindingReset (global_binding_h) ; /* remove endpoint */

CHECK_STATUS {status, "Can t reset binding handle", ABORT);

case a : if (is_part_available(part. number)) /* */

puts ("available: Yes") ;

else

puts ("available: No") ;

break;

The MIDL-generated header file must be included with the ^include compiler
directive.

52 Microsoft RFC Programming Guide

The client must obtain binding information and assign its handle to the global

binding handle. The binding information can be obtained from the name ser

vice database as in this example, or it can be constructed from strings of bind

ing information. The do_import_binding procedure is developed later in this

chapter.

@ The Microsoft Locator included with our pre-release version of Microsoft RFC

unexpectedly returned server endpoints. Sometimes the endpoints were stale

(left from previous server instances) and caused communication problems. We
used the RpcBindingReset function which removes the endpoint, forcing the

client to look in the server host s endpoint map for a fresh endpoint. Your

application should not need this function if the Locator does not return server

endpoints.

O A remote procedure call looks just like a local procedure call.

If your client uses the implicit method for an interface, you can override it for spe
cific procedures by including a binding handle as the first parameter of the proce
dures in the MIDI file.

Server developmentfor implicit binding

Although there are no special requirements in server development, a server must

export to a name service database if the clients use a name service to find servers.

The server for the inventory application exports binding information.

Explicit Binding Management
Explicit binding manages each remote procedure call separately. The first parame
ter of the remote procedure call is a binding handle. Use the explicit method

when your application needs to make remote procedure calls to more than one

server. This method is the most visible in an application because a binding handle

is passed as the first parameter of the remote procedure. You completely control

the binding management in the client application code.

If the procedure declaration in the interface definition file has a binding handle as

the first parameter, you must use the explicit method. If the procedure declaration

does not have a binding handle parameter, you can add one by using an ACF. In

this case, after you compile the interface definition, the remote procedure is

defined in the header file with an additional binding handle as the first parameter.

We ll use another client from the inventory application to demonstrate the explicit

method.

Chapter j; How to Write Clients 53

Interface developmentfor explicit binding

An interface definition or an ACF uses the handle_t data type to define binding
handle parameters. Application code uses the rpc_binding_handle_t data type
to represent and manipulate binding information.*

Suppose we want to use the explicit method for a remote procedure that has no

explicit binding handle as the first parameter. We use an ACF with the

explicit_handle attribute, making the MIDL compiler add a binding handle as

the first parameter. At the time this book went to press, we were not able to com
pletely test the use of the explicit_handle attribute. Keep in mind that the final

release of Microsoft RFC Version 2.0 might differ slightly from the behavior
described here.

The is_part_available procedure is defined in the interface as follows:

boolean is_part_available (/* return true if in inventory */

[in] part_num number /* input part number */

);

An ACF that adds a binding handle parameter is shown in Example 3-3.

Example 3~3: Adding Binding Handles with an ACF

I* FILE NAME: inv.acf (explicit version)*/
/* This Attribute Configuration File is used in conjunction with the */

/* associated MIDL file (inv.idl) when the MIDL compiler is invoked.*/
[

explicit_handle /* explicit binding method */

]

interface inventory /* The interface name must match the MIDL file. */

When the MIDL compiler uses this ACF, all procedure declarations in the header

file have a binding handle of type handle_t added as the first parameter. If you
use the explicit_handle attribute this way, none of the remote procedure calls

to this interface can use the automatic or implicit method for this client instance.

You can also use the explicit_handle attribute on a specific procedure in the

ACF to add a binding handle as the first parameter. For example, this ACF associ

ates a binding handle parameter only with the is_part_available procedure:

interface inventory
{

[explicit_handle] is_part_available() ;

}

Example 3-4 defines a binding handle explicitly in the interface definition. Other

clients cannot use the automatic or implicit methods of binding for the procedure.

* The handle_t and rpc_binding_handle_t data types are equivalent. The handle_t data

type exists for compatibility with earlier RFC versions. The rpc_binding_handle_t data

type exists for consistency in data type naming for the RFC runtime routines.

54 Microsoft RFC Programming Guide

(The is_part_available procedure is not declared this way for the inventory inter

face.)

Example 3~4: Defining a Binding Handle in the Interface Definition

boolean is_part_available(/* return true if in inventory */

[in] handle_t binding_h, /* explicit, binding handle */

[in] part_num number /* input part number */

);

Later in this chapter we ll show how to create an application-specific, customized

binding handle in the interface definition through the handle attribute.

Client developmentfor explicit binding

Before making the remote procedure call, the client must obtain binding informa

tion and set the binding handle. The methods of obtaining binding information for

the explicit method are almost the same as for the implicit method. For the explicit

method, you use a specific binding handle instead of assigning the binding infor

mation to the implicit global binding handle.

Example 3-5: A Client with the Explicit Binding Method

/* FILE NAME: client. c */

/***** Client of the inventory application with explicit method *********/
#include &lt;stdio.h&gt;

ftinclude &lt;stdlib.h&gt;

Mnclude "inv.h" /* header file created by the MIDL compiler O */

rpc_binding_handle_t binding_h; /* declare a binding handle */

do_import_binding ("/.:/ inventory", &binding_h) ; /* find server */

status = RpcBindingReset (global_binding_h) ; /* remove endpoint O */

CHECK_STATUS (status, "Can t reset binding handle", ABORT);

case a : if (is_part_available(binding_h, part. number)) /* */

puts (

" available : Yes "

) ;

else

puts ("available : No") ;

break;

O Include the MIDL-generated header file with the tfinclude compiler directive.

Declare binding handles of type rpc_binding_handle_t in the application.

The client must obtain binding information from the name service database,
or it can be constructed from strings of binding information. Example 3-7

Chapter 3: How to Write Clients 55

shows how the application-specific procedure do_inport_binding uses the

name service database.

The RpcBindingReset function fixes a problem we discovered with the

Microsoft Locator. See Example 3-2 for more information.

The first parameter is the binding handle.

Server developmentfor explicit binding

To use explicit binding, the ACF must include the explicit_binding attribute or

the interface definition must have a binding handle parameter for the remote pro
cedure. Servers use the binding handle parameter to obtain client binding informa

tion for use in authentication and authorization.

Example 3-6 shows how to include a binding handle parameter in a server remote

procedure.

Example 3~6: Manager Procedures with the Explicit Binding Method

I* FILE NAME: manager. c */

/** Implementation of the remote procedures for the inventory application. **/
#include &lt;stdio.h&gt;

#include &lt;stdlib.h&gt;

#include " inv . h "

boolean is_part_available(binding_h, number) /* */

handle_t binding_h; /* */

part_num number;

{

part_record *part; /* a pointer to a part record */

int found;

found = read_part_record(number, &part) ;

if (found)

return (TRUE) ;

else

return (FALSE);

}

O Include a binding handle as the first parameter in a remote procedure imple
mentation..

Declare a binding handle as a parameter.

Steps in Finding Servers
Recall that Figure 1-10, in Chapter 1, shows one way to find a server. In this figure,

the client stub and the RFC runtime library handle all binding management outside

of the application code. The client stub automatically finds the server system bind

ing information in a name service database. The binding handle is set and passed
to the RFC runtime library, which finds the server process binding information

56 Microsoft RFC Programming Guide

(endpoint) in the server system s endpoint map. The RFC runtime library uses the

complete binding information to bind to the server.

The key to finding a server is to obtain a protocol sequence, a server host name or

address, and an endpoint. A binding handle for the remote procedure call is set to

point to this binding information.

The following discussion is a generalization of what happens during the server

finding process. It includes the choices you (or the RFC runtime library) have

about where to obtain the necessary binding information. Where these steps are

executed (client application, client stub, or RFC runtime library) depends on the

kind of binding handle and binding method used.

Finding a Protocol Sequence
A client and server can communicate over a network if they both use the same
network communication protocols. A protocol sequence is found in one of two

ways:

The preferred method is to use a name service database to import or look up
both a host address and protocol sequence at the same time. To set the bind

ing handle, use the RFC runtime routines that begin with RpcNsBindinglmport
or RpcNsBindingLookup . If your application uses the automatic method, the

client stub does this for you.

The other method is to use a protocol sequence string obtained from your

application or from a call to the RpcNetivorklnqProtseqs routine. Use the RFC

runtime routines RpcStringBindingCompose and RpcBindingFromString-

Binding to set the binding handle.

A protocol sequence is a character string containing three items that correspond to

options for network communications protocols. RFC represents each valid combi
nation of these protocols as a protocol sequence. The protocol sequence consists

of a string of the options separated by underscores. The only current, valid option
combinations are shown in Table 3-1.

Table 3~1: Valid Protocol Sequences

Protocol Sequence Common Name Description

ncacn_ip_tcp Connection Network Computing Architecture con-

protocol nection over an Internet Protocol with a

sequence

ncadg_ip_udp Datagram

protocol

sequence

Transmission Control Protocol for trans

port.

Network Computing Architecture data

gram over an Internet Protocol with a

User Datagram Protocol for transport.

Chapter 3- How to Write Clients 57

Table 3~1: Valid Protocol Sequences (continued)

Protocol Sequence Common Name Description

The three protocols of a protocol sequence are for RPC communication, network

host addressing, and network transport.

1. The RPC protocol for communications has two options:

Network Computing Architecture connection-oriented protocol (ncacn)

Network Computing Architecture local interprocess communication

(ncalrpc)

The network address format used as part of the binding information has three

options:

the Internet protocol (ip)

the DECnet (TM) protocol (dnet)

the NetBIOS (Artisoft s Network Basic Input Output System) protocol (nb)

2. The transport protocol for communications has five options:

Transmission control protocol (tcp)

Network services protocol (nsp)

NetBEUI (NetBIOS Extended User Interface)

5S Microsoft RFC Programming Guide

Named pipes (np)

spx (sequenced packet exchange)

Most servers should use all available protocol sequences so clients using the inter

face will have every opportunity to find and use a server.

In general, your choice of protocols on the client side should not be a big con

cern. If most traffic on your network is TCP/IP, use that protocol. When several

protocols are available to clients, you can usually just pick the one most com

monly used for communications in your network.

If you want to be selective, here are some guidelines to help you choose a suit

able protocol.

Use TCP/IP or DECnet when clients and servers must communicate over a

wide-area network (WAN). These protocols have long timeouts that can han

dle the network delays inherent in WANs. Use TCP/IP when debugging your
client during remote procedure calls. Otherwise, the process could time out

when the debugger stops it. Clients can control timeouts using the RPC run

time routines RpcMgmtSetComTimeout and RpcMgmtlnqComTimeout .

Use UDP/IP when clients need to bind to many servers. That s because this

protocol has relatively low overhead. If a remote procedure broadcasts its call

to all hosts on a local network, it must use UDP/IP. The broadcast attribute on

the procedure declaration in the interface definition declares the broadcast

capability.

Use NetBIOS over NetBEUI for local area network (LAN) connections because

it can be faster than TCP/IP or DECnet in some networks. Avoid using NetBIOS

over NetBEUI when clients and servers are separated by network routers.

Use named pipes (ncacn_np) in local area networks when you want to rely

on the security built in to named pipes. Named pipes extra security overhead

can slow down remote procedure calls, so use it only when you need secu

rity.

Use Local Windows NT RPC Communication (ncalrpc) when clients and

servers reside on the same system, because it s generally faster than other pro
tocols for interprocess communication.

Finding a Server Host

You can find a server host name or network address in two different ways:

Use a name service database to import or look up a host address and at the

same time get a protocol sequence. Use the RPC runtime routines that begin
with RpcNsBindinglmport or RpcNsBindingLookup to set the binding handle.

If your application uses the automatic method, the client stub does this for

you.

Chapter 3: How to Write Clients 59

Use a host name or host network address string obtained from your applica
tion. Use the RFC runtime routines called RpcStringBindingCompose and Rpc-

BindingFromStringBinding to set the binding handle.

A partially bound binding handle is one that contains a protocol sequence and
server host, but not an endpoint. This handle is what you get from the Microsoft

Locator. It means you have identified the server s system, but not the server pro
cess on that system. The binding to a server cannot complete until an endpoint is

found.

When a partially bound binding handle is passed to the RFC runtime library, an

endpoint is automatically obtained for you from the interface or the endpoint map
on the server s system.

Finding an Endpoint
A binding handle that has an endpoint as part of its binding information is called a

fully bound binding handle. Endpoints can be well-known or dynamic. A well-

known endpoint is a pre-assigned system address that a server process uses every
time it runs. Usually a well-known endpoint is assigned by the authority responsi
ble for a transport protocol. A dynamic endpoint is a system address of a server

process that is requested and assigned by the RFC runtime library when a server is

initialized. Most applications should use dynamic endpoints to avoid the network

management needed for well-known endpoints.

You can use your application code to obtain an endpoint, but it is best to let the

RFC runtime library find an endpoint for you. An endpoint is found in one of four

ways:

If the binding information obtained during an import or lookup of the proto
col sequence and host in the name service database includes an endpoint, the

binding handle is fully bound in one step. The name service database can be

used to store well-known endpoints. But dynamic endpoints are never stored

in the name service database because their temporary nature requires signifi

cant management of the database, which degrades name service performance.

A well-known endpoint is found that was established in the interface defini

tion with the endpoint attribute. The RFC runtime library (or your applica

tion) finds the endpoint from an interface-specific data structure.

An endpoint is found from the endpoint map on the server system. These

endpoints can be well-known or dynamic. The RFC runtime library first looks

for an endpoint from the interface specification. If one is not found, the RFC

runtime library looks in the server s endpoint map. When an endpoint is

found, the binding to the server process completes. To obtain an endpoint
from a server s endpoint map, use the RpcEpResolveBinding routine or rou

tines beginning with RpcMgmtEpEltlnq in your application.

60 Microsoft RFC Programming Guide

You can use a string from your application that represents an endpoint, and

then you can use the RFC runtime routines RpcStringBindingCompose and

RpcBindingFromStringBinding to set the binding handle. These endpoints
can be well-known or dynamic.

Interpreting Binding Information
This section reveals what goes on in the do_import_binding procedure shown ear

lier in the chapter. When you use implicit or explicit binding, you need to interpret

the binding information. To take a simple case, suppose you want to use a server

on a particular host this means you need to extract the host from the binding
handles you get from CDS and isolate the host name in each handle.

Binding handles refer to the following binding information:

Object UUID

Protocol sequence

Network address or host name

Endpoint

Network options

Object UUIDs are part of an advanced topic not discussed in this book. Network

options are specific to a protocol sequence.

Example 3-7 shows how to use RFC runtime routines to interpret binding informa

tion. You use these routines in either a server or client. The do_interpret_binding

procedure is called in the do_import_binding procedure.

Example 3~ 7: Interpreting Binding Information

/* FILE NAME: intbind.c */

/* Interpret binding information and return the protocol sequence. */

ftinclude &lt;stdio.h&gt;

#include
&lt;rpc.h&gt;

include " status .h "

void do_interpret_binding(binding, protocol_seq)

rpc_binding_handle_t binding; /* binding handle to interpret */

char *protocol_seq; /* protocol sequence to obtain */

{

unsigned long status; /* error status */

unsigned char *string_binding; /* string of binding info. */

unsigned char *protseq; /* binding conponent of interest */

status =

RpcBindingToStringBinding (/* convert binding information to string O */

binding, /* the binding handle to convert */

&string_binding /* the string of binding data */

);

CHECK_STATUS(status, "Can t get string binding :", RESUME);

Chapter 3: How to Write Clients

Example 3~ 7: Interpreting Binding Information (continued)

status =

RpcStringBindingParse (/* get components of string binding*/
string_binding, /* the string of binding data */

NULL, /* an object UUID string is not obtained */

&protseq, /* a protocol sequence string IS obtained */

NULL, /* a network address string is not obtained */

NULL, /* an endpoint string is not obtained */

NULL /* a network options string is not obtained */

);

CHECK_STATUS(status, "Can t parse string binding:", RESUME);

strcpy (protocol_seq, (char *)protseq) ;

/* free all strings allocated by other runtime routines */

status = RpcStringFree(&string_binding) ;

status = RpcStringFreef&protseq) ;

return;

O The RpcBindingToStringBinding routine converts binding information to its

string representation. The binding handle is passed in and the string holding
the binding information is allocated.

The RpcStringBindingParse routine obtains the binding information items as

separate allocated strings. The components include an object UUID, a protocol

sequence, a network address, an endpoint, and network options. If any of the

components are null on input, no data is obtained for that parameter.

The RpcStringFree routine frees strings allocated by other RFC runtime rou

tines.

Finding a Serverfrom a Name Service Database

The usual way for a client to obtain binding information is from a name service

database using the name service RFC runtime routines (routines beginning with

RpcNs). This method assumes that the server you want has exported binding infor

mation to the name service database.

The name service database contains entries of information, each identified by a

name used in programs, environment variables, and commands. Clients can use a

name called a server entry name to begin a search for compatible binding informa

tion in the database. Entries contain binding information about specific servers.

Use RFC name service runtime routines to search entries in the name service

database for binding information. The example in this section does a very simple
search. See Chapter 6 for a more detailed name service description.

Importing a binding handle

Since the same interface can be supported on many systems of the network, a

client needs a way to select one system. The runtime import routines obtain

62 Microsoft RFC Programming Guide

information for one binding handle at a time from the name service database,

selecting from the available list of servers supporting the interface.

Example 3-8 shows how an application obtains binding information from a name
service database.

Example 3~8: Importing a Binding Handle

/* FILE NAME: getbind.c */

/* Get binding from name service database. */

ttinclude &lt;stdio.h&gt;

ttinclude "inv.h"

#include " status. h"

void do_iinport_binding(entry_name, binding_h)
char entry_name [] ; /* entry name to begin search */

rpc_binding_handle_t *binding_h; /* a binding handle */

{

unsigned long status; /* error status */

RPC_NS_HANDLE import_context ; /* required to import */

char protseq[20] ; /* protocol sequence */

status =

RpcNsBindinglmportBegin (/* set context to import binding handles O */

RPC_C_NS_SYNTAX_DEFAULT, /* use default syntax */

(unsigned char *)entry_name, /* begin search with this name */

inv_Vl_0_c_ifspec, /* interface specification (inv.h) */

NULL, /* no optional object UUID required */

&import_context /* import context obtained */

);

CHECK_STATUS(status, "Can t begin import:", RESUME);

while (1) {

status =

RpcNsBindinglmportNext (/* import a binding handle */

import_context , /* context from RpcNsBindinglmportBegin */

binding_h /* a binding handle is obtained */

);

if (status != RPC_S_OK) {

CHECK_STATUS(status, "Can t import a binding handle:", RESUME);
break;

}

/** application specific selection criteria (by protocol sequence) */

do_interpret_binding (*binding_h ,protseq) ;

if (strcmp(protseq, "ncacn_ip_tcp")
== 0) /*select connection protocol*/

break;

else {

status =

RpcBindingFree (/* free binding information not selected*/
binding_h

);

CHECK_STATUS(status, "Can t free binding information:", RESUME);
}

} /*end while */

Chapter 3: How to Write Clients 63

Example 3~8: Importing a Binding Handle (continued)

status =

RpcNsBindinglnportDone (/* done with import context */

&inport_context /* obtained from RpcNsBindinglmportBegin */

);

return;

}

O The RpcNsBindinglmportBegin routine establishes the beginning of a search

for binding information in a name service database. An entry name syntax of

RPC_C_NS_SYNTAX_DEFAULT uses the syntax in the RFC-specific environment

variable DefaultSyntax.

In this example, the entry to begin the search is / . : /inventory_, which is

passed as a parameter. If you use a null string for the entry name, the search

begins with the name in the RFC environment variable DefaultEntry.

If you use a null string for the entry name, and the DefaultEntry is null, the

Locator searches for an entry name that offers the interface UUID.

In this example, an object UUID is not required, so we use a null value. The
interface handle Inv_Vl_0_c_ifspec refers to the interface specification. It is

generated by the MIDI compiler and defined in file inv.h.

Finally, the import context and error status are output. You use the import
context in other import routines to select binding information from the name
service database, or to free the context memory when you are done with it.

@ The RpcNsBindinglmportNext routine obtains binding information that sup

ports the interface, if any exists. The routine accesses the database and does

not communicate with the server. The import handle, established with the call

RpcNsBindinglmportBegin, controls the search for compatible binding han

dles.

Once binding information is obtained, any criteria required by the application

may be used to decide whether it is appropriate. In this example, the applica

tion-specific procedure, do_interpret_binding, shown in Example 3-6, is used

to interpret binding information by returning the protocol sequence in a

parameter. The do_import_binding procedure then selects the binding infor

mation if it contains the connection protocol.

O Each call to RpcNsBindinglmportNext requires a corresponding call to the

RpcBindingFree routine that frees memory containing the binding information

and sets the binding handle to null. Free the binding handle after you finish

making remote procedure calls.

@ The RpcNsBindinglmportDone routine signifies that a client has finished look

ing for a compatible server in the name service database. This routine frees

the memory of the import context created by a call to RpcNsBindinglmport

Begin. Each call to RpcNsBindinglmportBegin must have a corresponding call

to RpcNsBindinglmportDone.

64 Microsoft RFC Programming Guide

Looking up a set ofbinding handles

Runtime routines whose names begin with RpcNsBindingLookup obtain a set of

binding handles from the name service database. You can then select individual

binding handles from the set with the RpcNsBindingSelect routine or you may use

your own selection criteria. Lookup routines give a client program a little more

control than import routines because RpcNsBindinglmportNext returns a random

binding handle from a list of compatible binding handles. Use the lookup routines

when you want to select a server or servers by more specific binding information;

for example, to select a server that is running on a system in your building or to

use servers supporting a specific protocol sequence.

Finding a Serverfrom Strings ofBinding Data

If you bypass the name service database, you need to construct your own binding
information and binding handles. Binding information may be represented with

strings. You can compose a binding handle from appropriate strings of binding
information or interpret information that a binding handle refers to.

The minimum information required in your application to obtain a binding handle

is:

A protocol sequence of communication protocols

A server network address or host name

Remember that an endpoint is required for a remote procedure call to complete,
but you can let the RFC runtime library obtain one for you. To set a binding han

dle, obtain and present the binding information to RFC runtime routines.

Example 3-9 shows a procedure to set a binding handle from strings of binding
information. The rfile application uses this procedure. A network address or host

name is input for this procedure and the protocol sequence is obtained. This pro
cedure creates a partially bound binding handle, so the RFC runtime library obtains

the endpoint when a remote procedure uses the binding handle.

Example 3~9: Setting a Binding Handlefrom Strings

/* FILE NAME: strbind.c */

/* Find a server binding handle from strings of binding information */

/* including protocol sequence, host address, and server process endpoint. */

#include &lt;stdio.h&gt;

#include "rfile. h"

#include " status. h" /* contains the CHECK_STATUS macro */

int do_string_binding(host, binding_h) /*return=0 if binding valid, else -1 */

char host [] ; /
* server host name or network address input O *

/

rpc_binding_handle_t *binding_h; /* binding handle is output */

{

RPC_PROTSEQ_VECTOR *protseq_vector; /* protocol sequence list */

unsigned char *string_binding; /* string of binding information */

unsigned long status; /* error status */

Chapter 3: How to Write Clients 65

Example 3~9: Setting a Binding Handlefrom Strings (continued)

int i, result;

status =

RpcNetworklnqProtseqs (/* obtain a list of valid protocol sequences */

&protseq_vector /* list of protocol sequences obtained */

);

CHECK_STATUS(status, "Can t get protocol sequences:", ABORT);

/* loop through protocol sequences until a binding handle is obtained */

for(i=0; i &lt; protseq_vector-&gt;Count; i++) {

status =

RpcStringRindingCompose (/* make string binding from components @ */

NULL, /* no object UUIDs are required */

protseq_vector-&gt;Protseq[i] , /* protocol sequence */

(unsigned char *)host, /* host name or network address */

NULL, /* no endpoint is required */

NULL, /* no network options are required */

&string_binding /* the constructed string binding */

);

CHECK-STATUS (status, "Can t compose a string binding:", RESUME);

status =

RpcBindingFromStringBinding (/* convert string to binding handle O */

string_binding, /* input string binding */

binding_h /* binding handle is obtained here */

);

CHECK_STATUS(status, "Can t get binding handle from string:", RESUME);
if (status != RPC_S_OK) {

result = -1;

CHECK_STATUS(status, "Can t get binding handle from string:", RESUME);

}

else

result = 0;

status =

RpcStringFree (/* free string binding created*/
&string_binding

);

CHECK_STATUS(status, "Can t free string binding :", RESUME);
if (result == 0) break; /* got a valid binding */

}

status =

RpcProtseqVectorFree (/* free the list of protocol sequences*/
&protseq_vector

);

CHECK_STATUS(status, "Can t free protocol sequence vector:", RESUME);
return (result) ;

}

O The network address or host name on which a server is available is required

binding information. For this example, the information is input as a parame
ter.

66 Microsoft RFC Programming Guide

@ The RpcNetworklnqProtseqs routine creates a list of valid protocol sequences.

This example uses each protocol sequence from the list until a binding handle

is created.

The RpcStringBindingCompose routine creates a string of binding information

in the argument string_binding from all the necessary binding information

components. The component strings include an object UUID, a protocol

sequence, a network address, an endpoint, and network options.

O The RpcBindingFromStringBinding routine obtains a binding handle from the

string of binding information. The string of binding information comes from

the RpcStringBindingCompose routine or from the RpcBindingToString-

Binding routine.

When you are finished with the binding handle, use the RpcBindingFree rou

tine to set the binding handle to null and to free memory referred to by the

binding handle. In this example, another part of the application frees the

binding handle.

The RpcStringFree routine frees strings allocated by other RFC runtime rou

tines. This example frees the string string_binding allocated by the Rpc

StringBindingCompose routine.

The RpcProtseqVectorFree routine is called to free the list of protocol

sequences. An earlier call to RpcNetworklnqProtseqs requires a corresponding
call to RpcProtseqVectorFree.

Customizing a Binding Handle
The basic binding handles we have seen so far are primitive binding handles. A
customized binding handle adds some information that your application wants to

pass between client and server. You can use a customized binding handle when

application-specific data is appropriate to use for finding a server, and the data is

also needed as a procedure parameter.

For example, in an application that acts on remote files, a structure could contain

a host name and a remote filename. The application creates the necessary binding
information from the host name, and the filename is passed with the binding infor

mation so the server knows what data file to use. You can use a customized bind

ing handle with the explicit or implicit binding methods, but the automatic method
uses only primitive binding handles.

Figure 3-2 shows how a customized binding handle works during a remote proce
dure call. To define a customized binding handle, apply the handle attribute to a

type definition in an interface definition.

You can use a customized binding handle in a client just like a primitive binding

handle, but you must write special bind and unbind procedures. Your code does

not call these procedures; the client stub calls them during each remote procedure

Chapter 3: How to Write Clients 67

Figure 3~2. How a customized binding handle works

call. For a primitive binding handle, the client stub already has the necessary code
to prepare the binding information for the call. For application-specific binding

information, you must supply the code. The tasks of the bind and unbind proce
dures are to obtain a primitive binding handle and do application cleanup when
finished with the binding handle.

Manipulate the data structure in your application the same as any structure, includ

ing passing data in the remote procedure call. However, the client stub uses the

special procedures to manage the binding. The customized binding handle must
be the first parameter in a remote procedure (or the global handle for the implicit

method) to act as the binding handle for the call. A customized handle acts as a

standard parameter if it is not the first parameter.

Example 3-10 shows how to define a customized binding handle in an interface

definition.

Example 3~10: Defining a Customized Binding Handle

I* FILE NAME: search. idl */

[

uuid(2450F730-5170-10lA-9A93-08002B2BC829),
version (1.0) ,

pointer_default (ref)]

interface search /* Search remote file for data */

const long LINESIZE = 100; /* Constant for maximum line size */

6#_Microsoft RPC Programming Guide

Example 3~10- Defining a Customized Binding Handle (continued)

const long FILENAME_SIZE = 100; /* Constant for file name length */

const long BINDING_SIZE = 32; /* Constant for host name size */

const short FILE_ERROR = -1; /* Status for search file error */

const short NO_MATCH =0; /* Status for no match found */

/*
** Customized binding handle definition
** contains the file name and the string
** binding to use.

*/

typedef [handle] struct { /* customized handle type O */

unsigned char binding [BINDING_SIZE] ;

unsigned char filename [FILENAME_SIZE] ;

} search_spec; /* */

/*
** Search for a string match on the file specified
** in the customized binding handle above.

*/

short searchit(/* search a file on the server */

[in] search_spec custom_handle , /* customized binding handle*/
[in, string] char search_string[LINESIZE] , /* target string */

[out, string] char return_string[LINESIZE] , /* results */

[out] error_status_t *error /* comm/ fault status */

O Use the handle attribute in the interface definition to associate a customized

binding handle with a data type.

The file_spec data type is a structure whose members are file specifications.

This is application-specific information used by the bind procedure to obtain

server binding information.

The customized binding handle is the first parameter of a procedure declara

tion. This is an example of explicit binding.

You must implement bind and unbind procedures. Example 3-11 shows how you
can implement these procedures inside a client file.

Example 3~ 1 1: Bind and Unbind Procedures

I* FUNCTION: search_spec_bind */

handle_t RPC API

search_spec_bind(custom_handle) /* bind procedure for customized handle O */

search_spec custom_handle;

rpc_binding_handle_t binding_h;

printf ("\n\t (Selecting server binding: %s)\n\n", /* Display server binding*/

custom_handle . binding) ;

status =

RpcBindingFromStringBinding (/* Convert the character string */

custom_handle. binding, /* binding into an RPC handle */

&binding_h,

Chapter 3: How to Write Clients 69

Example 3~H: Bind and Unbind Procedures (continued)

);

CHECK_STATUS(status, "Invalid string binding", RESUME);
exit (EXIT_FAILURE) ;

return (binding_h) ;

}

/* FUNCTION: search_spec_unbind */

void RFC API

search_spec_unbind (/* unbind procedure for customized handle */

custom_handle ,

binding_h)

search_spec custom_handle;

handle_t binding_h;

{

status =

RpcBindingFree (/* Free the binding handle */

&binding_h) ;

CHECK_STATUS(status, "Can t free binding handle :", RESUME);

return;

}

O The bind procedure takes an input parameter of the customized handle data

type, and returns a primitive binding handle. You construct the procedure
name from the data type name, search_spec, to which you append _bind. In

this example searcb_spec_bind constructs a binding handle from arguments

passed on the client command line to obtain a primitive binding handle.

The unbind procedure takes input parameters of the customized handle data

type and a primitive binding handle. You construct the procedure name from

the data type name, search_spec, to which you append _unbind. In this

example search&gt;_spec_unbind calls the RFC runtime routine, RpcBindingFree,
to free the binding handle.

Example 3-12 shows how an application client can use a customized binding han

dle.

Example 3~12: A Client with a Customized Binding Handle

I* FILE NAME: client_send.c */

int

MAIN_DECL main(ac, av)

int ac ;

char *av [] ;

{

short search_status ; /* status from search */

idl_char match [LINESIZE] ; /* string to look for */

search_spec custom_handle; /* customized binding handle O */

match[0] = \0 ; /* Initialize some strings */

custom_handle . binding []
= \ ;

custom_handle.filename[0] = \0 ;

70 Microsoft RFC Programming Guide

Example 3~12: A Client with a Customized Binding Handle (continued)

I*
** There should be 4 parameters to searchit:
**

** searchit &lt;hostname&gt; &lt;filename&gt; &lt;matchstring&gt;

**

** where
**

**
&lt;hostname&gt; is the hostname where the file to be searched

** exists.
**

**
&lt;filename&gt; is the name of the file to be searched.

**

**
&lt;matchstring&gt; is the string to search &lt;filename&gt; for.

**

*/

if (ac != 4) /* Exit if not the right number of parameters */

{

printf ("\t\nUsage: searchit &lt;hostname&gt; &lt;filename&gt; &lt;matchstring&gt;\n\n") ;

exit (EXIT_FAILURE) ;

}

/*
** Set up the string binding, the filename, and the
** match string from the command line.

*/

strcpy ((char *
) custom_handle . binding, "ncacn_ip_tcp: ") ; /* */

strcat ((char *
) custom_handle . binding, av[l]);

strcpy ((char *
) custom_handle . filename , av [2]) ;

strcpy ((char *)match, av[3]) ;

/*
** Search the given file on the given host for the
** given string. . .

*/

search_status = searchit (/* Remote procedure with input */

custom_handle ,

match,

result ,

&rpc_status

O The application allocates the customized binding handle.

@ Initialize the customized binding information in the client before calling the

remote procedure. For this example, when we invoke the client, we input the

server host name, remote data filename, and search string as arguments.

The remote procedure is called with the customized binding handle as the

first parameter.

Chapter 3: How to Write Clients 77

Authentication
Authentication in a distributed environment is a broad topic that is outside the

scope of this book. Although we do not provide details on implementing security

in Microsoft RFC applications, we will mention the major aspects and some trade

offs involved in selecting various models.

Microsoft RFC can use the security features of Microsoft Windows NT which are

built into the named pipes (ncacn_np) and local RFC (ncalrpc) transports. You
must restrict your application to using one of the two listed transports to use this

security system.

You can use the Windows NT security features by specifying options to the end-

point parameter in a string binding. Options have names such as anonymous,
identification, or impersonation, controlling which level of security to use.

Alternatively, you can use RFC security available in Microsoft RFC. This form of

security is transport-independent so your application can use other transports in

addition to named pipes and local RFC. Microsoft RFC security currently uses the

Windows NT Security Service as the only supported security provider.

RFC security offers three kinds of protection: authentication, data integrity, and

data privacy. Data integrity and data privacy involve extra encryption and decryp
tion cycles which can be time consuming, so use these features only when neces

sary.

On client systems you can use RFC security by including the RpcBindingSetAuth-

Info routine in your client program. Briefly, this routine places the client s identity

information into the binding handle which is passed to the server as the first

parameter in a remote procedure call.

Servers extract the client authentication information from the client binding handle

using the RpcBindinglnqAuthClient routine. Servers use this information to verify

a client s authenticity.

The server system supplies its identity information to clients by registering it with

the RpcServerRegisterAuthlnfo routine. Clients or other servers can extract this

information to authenticate the server s identity. Use the RpcBindinglnqAuthlnfo
routine to extract server authentication information from the server binding han

dle.

To recap, using the transport level security built into named pipes and local RFC

does not necessarily add lots of new code to an application. If you want to use

security over transports other than named pipes or local RFC (for instance, TCP/IP

or DECnet), you ll need to use RFC security features which can require extra pro

gramming overhead.

72 Microsoft RFC Programming Guide

Error Parameters or Exceptions
Microsoft RFC client applications require special error-handling techniques to deal

with errors that may occur during a remote procedure call. The following discus

sion pertains to both client and server development.

Server and communication errors are raised to the client as exceptions during a

remote procedure call. RFC exceptions are similar to the RFC error status codes.

Errors have names with S as the second component, as in RPC_S_ADDRESS_ERROR.

Exceptions have X as the second component, as in RPC_X_NO_MEMORY.

Types of exceptions include the following:

Exceptions raised on the client system, such as when the client process is out

of memory (RPC_X_NQ_MEMORY).

Exceptions raised to the client application by the client stub, such as when
the stub has received bad data (RPC_X_BAD_STUB_DATA).

Exceptions raised by the client stub on behalf of the server. These errors can

occur in the server stub, in the remote procedures, or in the server s RFC run

time library. The server transport layer does not return exceptions to the

client.

A distributed application can have errors from a number of sources, so you will

need to decide whether you want to handle errors with exception handling code

or error parameters. This may simply be a matter of personal preference or consis

tency.

Using Exception Handlers in Clients or Servers

You can handle exceptions by writing exception handler code in the application to

recover from an error or gracefully exit the application. Microsoft RFC supplies a

set of macros as a framework to handle exceptions in your client or server code.

(Example 5-6, in Chapter 5, uses RFC exception handling macros.) If your applica
tion is written for Win32 only, use the Win32 versions of these macros.

Using Remote Procedure Parameters to Handle Errors

In your ACF, you can add error parameters to remote procedures in order to con

veniently handle communication and server errors. The RFC runtime library then

stores errors values in these parameters rather than raising exceptions. You can

also use a combination of exception handlers and error parameters.

When the simple arithmetic application in Chapter 1 encounters some errors, it

returns a hexadecimal number. You must convert this number to a decimal error

code number and then look it up to find out what happened. By making three

simple changes to the arithmetic application you can get it to return the actual RFC

error code:

Chapter 3: How to Write Clients 73

Add an error_status_t parameter to the remote procedure declaration in

the MIDL file.

Add an error_status_t parameter to the remote procedure implementation
in the server.

Declare the variable in the client file.

The sum_arrays procedure declaration in the following MIDL file has an [out]

parameter of the type error_status_t.

void sum_arrays (/* The sum_arrays procedure doesn t return a value */

[in] long_array a, /* 1st parameter is passed in */

[in] long_array b, /* 2nd parameter is passed in */

[out] long_array c, /* 3rd parameter is passed out */

[out] error_status_t *rpc_status /* error parameter is passed out */

We ve added the error_status_t parameter to the remote procedure in man
ager. c. The initialized status value can be changed by the stubs if an error occurs.

void sum_arrays (a, b, c, rpc_status) /* sum_arrays implementation */

long_array a;

long_array b;

long_array c;

error_status_t *rpc_status ; /* error status parameter */

int i;

rpc_status = RPC_S_OK; / initializes the status value */

for(i = 0; i &lt; ARRAY_SIZE; i++)

c[i] = a[i] + b[i]; /* array elements are added together */

The client code declares the variable along with the rest of the variables. Then a

CHECK_STATUS macro converts the RFC error code to a status message.

/* FILE NAME: client. c */

/* This is an arithmetic client module with error handling. */

#include &lt;stdio.h&gt;

#include &lt;stdlib.h&gt;

Mnclude "ari,th.h" /* header file created by MIDL compiler */

ttinclude "status. h" /* needed for CHECK_STATUS macro */

long_array a ={100,200,345,23,67,65,0,0,0,0};

long_array b ={4,0,2,3,1,7,5,9,6,8};

main ()

long_array result ;

int i;

/* declare variable and initialize */

error_status_t rpc_status=RPC_S_OK;

/* remote procedure with status */

sum_arrays(a, b, result, &rpc_status) ;

74 Microsoft RFC Programming Guide

I* report error and abort */

CHECK_STATUS (rpc_status, "ERROR:", ABORT);

puts ("sums: ") ;

for(i =0; i &lt; ARRAY_SIZE; i++)

printf ("%ld\n" , result [i]) ;

}

The CHECK_STATUS macro shown in Example 3-13 converts the RFC error code to

an error message.

Example 3~ 13: The CHECK_STATUS Macro

/* FILE NAME: status. h */

ttinclude &lt;stdio.h&gt;

ttinclude &lt;stdlib.h&gt;

#include "..\rpcerror.h" /* maps error codes to error messages O */

#define RESUME

#define ABORT 1

#define CHECK_STATUS (input_status , comment, action) \

{ \

if (input_status != RPC_S_OK) { \

error_stat = DceErrorinqText (input_status , error_string) ; \ /* */

fprintf (stderr, "%s %s\n", comment, error_string) ; \

if (action == ABORT) \

exit(l); \

} \

static int error_stat;

static unsigned char error_string[DCE_C_ERROR_STRING_LEN] ;

O The file rpcerror.h is shown in Appendix C, The Arithmetic Application.

Although Microsoft RFC does not support the DCE RFC routine

dce_error_inq_text ,
we ve emulated its function here.

Compiling and Linking Clients

Figure 3-3 shows the files and libraries required to produce an executable client.

When complex data types are used, the MIDL compiler produces the client stub

auxiliary file (appl_x.c) when the interface is compiled. Example 3-14 shows the

portion of a makefile that:

Compiles the C language stubs and client code along with the header file pro

ducing server object files

Links the server object files to produce the executable server file

Chapter 3: How to Write Clients 75

Write client

application files.

Include the header

file(s) produced by

interface compilation.

Generate client application

and stub object files.

Use the client stub and

auxiliary files produced

by interface compilation.

Create the executable client

file by linking the client

application, stub, and

auxiliary object files with

the Microsoft RFC library.

Text

Editor

Figure 3~3- Producing a client

Example 3~14: Using a Makefile to Compile and Link a Client

FILE NAME: Makefile

Makefile for the inventory application implicit client

#

definitions for this make file

#

APPL=inv

IDLCMEfcmidl

NTRPCLIBS=rpcrt4 . lib rpcns4.1ib libcmt.lib kerne!32.1ib

! include &lt;ntwin32 .mak&gt;

NT c flags

cflags = -c -WO -Gz -D_X86_=1 -EWIN32 -EMT /I. /I., /nologo

76 Microsoft RFC Programming Guide

Example 3~14: Using a Makefile to Compile and Link a Client (continued)

NT nmake inference rules

$(cc) $(cdebug) $(cflags) $(cvarsmt) $&lt;

$(cvtomf)

#

CLIENT BUILD

#

client: client.exe

client.exe: client. obj getbind.obj intbind.obj $ (APPL)_c.obj $ (APPL)_x.obj
$(link) $(linkdebug) $(conflags) -out : client . exe -map: client.map \

client. obj getbind.obj intbind.obj $(APPL)_c.obj $ (APPL)_x.obj \

$(NTRPCLIBS)

client and server sources

client. obj: client. c $(APPL).h

getbind . obj : getbind . c

intbind . obj : intbind . c

Local Testing

You can compile a local version of your client to test and debug remote proce
dures without using remote procedure calls. To do a local test, compile the client

object files and remote procedure implementations without the stub or auxiliary
files. The code that finds a server is also unnecessary for a local test. Applications
in this book use the compiler directive, /DLOCAL, to distinguish a test compilation
used in a local environment from a compilation used in a distributed environment.

Example 3-15 shows the portions of a makefile that produce the inventory applica
tion for local testing.

Example 3~15: Using a Makefile to Produce a Local Version ofan Application

FILE NAME: Makefile

Makefile for the inventory application implicit client
#

definitions for this make file

#

APPL=inv

IDLCMD=midl

NTRPCLIBS=rpcrt4 . lib rpcns4.1ib libcmt.lib kerne!32.1ib

! include &lt;ntwin3 2 . mak&gt;

NT c flags

cflags = -c -WO -Gz -D_X86_=1 -DWTN32 -EMT /I. /I., /nologo

NT nmake inference rules

Chapter j. How to Write Clients 77

Example 3~15: Using a Makefile to Produce a Local Version ofan Application (continued)

$(cc) $(cdebug) $(cflags) $(cvarsmt) $&lt;

$ (cvtomf)

#

LOCAL BUILD of the client application to test locally
#

local : Iclient . exe

lclient.exe: Iclient. obj Imanager.obj invntry.obj

$(link) $(linkdebug) $(conflags) -out: Iclient. exe -map: Iclient .map \

Iclient. obj Imanager.obj invntry.obj \

$(NTRPCLIBS)

Local client sources

invntry . obj : . . \invntry . c

$(cc) $(cdebug) $(cflags) $(cvarsmt) /DLOCAL /I. /I.. \

/Foinvntry . obj . . \ invntry . c

Iclient. obj: client. c $(APPL).h

$(cc) $(cdebug) $(cflags) $(cvarsmt) /DLOCAL /I. /I.. \

/Folclient.obj client. c

Imanager.obj : . . \manager.c $ (APPL) .h

$(cc) $(cdebug) $(cflags) $(cvarsmt) /DLOCAL /I. /I.. \

/Folmanager . obj . . \manager . c

In this Chapter:
Kinds ofPointers

Kinds ofArrays

Memory Usage

Pointers, Arrays,
and Memory Usage

In C, pointers and arrays have a close correlation due to the way applications
access the information they contain. Pointers and arrays work essentially the same
in distributed and local applications. But there are a few restrictions in distributed

applications because the client and server have different address spaces. In most
of this chapter we discuss pointers and arrays for clients. See also Chapter 5, How
to Write a Server, for a discussion of memory allocation for pointers and arrays in

remote procedures.

To make your applications more efficient, MIDL offers several kinds of pointers
and arrays to reduce network traffic and stub overhead. This chapter uses the

inventory application to demonstrate the use of pointers and arrays in distributed

applications.

Kinds ofPointers
A pointer is a variable containing the address of another data structure or variable.

As in C, you declare a pointer in an interface definition by using an asterisk (*)

followed by a variable. For example, the inventory application has the following

procedure declaration:

void whatis_part_price(/* get part price from inventory */

[in] part_num number,

[out] part_price *price

);

In a distributed application, the client and server do not share the same address

space. This means the data a pointer refers to in the client is not available in the

remote procedure of the server. The opposite is also true. Therefore, pointer data

is copied between the client and server address spaces during a remote procedure
call. For the whatis_part_price procedure, data that the pointer argument refers to

on the server is copied back to the client and placed in the memory referred to by

79

80 Microsoft RFC Programming Guide

the price pointer. This copying of pointer data does not occur during a local pro
cedure call.

MIDL has three kinds of pointers: reference, unique, and full. We ll describe them
here in order of increasing capability. Keep in mind, though, that more capabilities

result in more stub overhead.

A reference pointer is used to refer to existing data. It is the simplest kind of

pointer. Consequently, it has a performance advantage over other kinds of point
ers because stub overhead is minimal. For example, the whatis_part_price proce
dure uses a reference pointer. This procedure passes by reference a pointer to an
allocated part_price data structure. The remote procedure returns output data to

the same memory location with the part price. Thus, for reference pointers, the

data can change but not the address itself. The [ref] attribute specifies a refer

ence pointer in an interface definition.

Sometimes you need a pointer that can do more, such as handling singly-linked
lists in which the end of the list is marked with a null pointer. For this situation, a

unique pointer might be used because it can be null. A unique pointer has many
capabilities usually associated with pointers. Use unique pointers in interface defi

nitions when a remote procedure call allocates new memory for the client. In this

case, the client stub actually allocates the memory. Unique pointers cannot address

data that is also addressed by other pointers in the remote procedure, so you
should avoid using complex data structures with cycles (doubly-linked lists). The

[unique] attribute specifies a unique pointer in the interface definition.

A full pointer has all of the capabilities associated with unique pointers. In addi

tion, it allows two pointers to refer to the same address, as in a double linked list.

The [ptr] attribute specifies a full pointer in the interface definition. Full pointer

capability incurs significant stub overhead, so use full pointers only when neces

sary.

A pointer attribute must be applied where the pointer is defined with an asterisk.

For instance, if you define a typedef that resolves to a pointer, you cannot apply
the pointer attribute where you use the typedef.

The following sections discuss the use of pointers, and tell you when you need a

reference or full pointer. Table 4-1 and Example 4-5 summarize what you need to

know to declare and use pointers.

Pointers as Output Parameters

Due to the overhead of transmitting data, you have to declare MIDL parameters to

be input, output, or both. In MIDL, as in C, input parameters are passed in by
value, which means a copy of each input parameter is available in the procedure.

Passing input parameters by value makes sense for a small amount of data. This

technique offers simplicity since programmers don t have to deal with pointers or

addresses. However, passing by value also means that any change to the variable

Chapter 4: Pointers, Arrays, and Memory Usage

in the procedure cannot reflect back to the original parameter when the call com
pletes.

To fill in data for an output parameter (or modify an input/output parameter),
both C and MIDI must pass by reference a memory address using a pointer or

array parameter. During a remote procedure call, the parameter refers to existing

memory, which is passed by reference to the client stub. When the remote proce
dure completes execution, data is sent back by the server stub to the client stub,
which unmarshalls it into the memory referred to by the pointer. Therefore, the
data is available to the client application when the client stub returns to the appli
cation.

Example 4-1 shows an output parameter in the whatis_part_price procedure dec
laration from the inventory interface definition. Pointer parameters (*price) are

reference pointers by default.

Example 4-1: Defining an Output Parameter

void whatis_part_price (/* get part price from inventory */

[in] part_num number,

[out] part_price *price /* reference pointer */

);

The part_price structure must be allocated in the client prior to the remote pro
cedure call, but values are assigned in the remote procedure and transmitted back.
The whatis_part_price remote procedure call in the client looks like this:

part_record part; /* structure for all data about a part */

case p : whatis_part_price (part. number, & (part. price) } ;

printf ("price: %10.2f\n", part. price. per_unit) ;

break;

In the server, whatis_part_price reads a part record from the database for the part
number input. It then assigns the values from the part record to the price structure

members. Finally, the procedure returns and the price information is marshalled
and transmitted by the server stub. The whatis_part_price remote procedure looks
like this:

void whatis_part_price (number, price)

part_num number;

part_price *price;

{

parc_record *part; /* a pointer to a part record */

. read_part_record (number , &part) ;

price-&gt;units =
part-&gt;price. units;

price-&gt;per_unit = part-&gt;price.per_unit;

return;

82 Microsoft RFC Programming Guide

You can see from the preceding explanation that an output parameter must refer

to existing storage on the client, and therefore that it is always a reference pointer.

In fact, the MIDL compiler refuses to let you declare an output-only parameter with

the unique or ptr attribute.

Suppose we don t know how much memory should be allocated for output data,

so we want a procedure to return data in a parameter as newly allocated memory.
We cannot just allocate some memory and hope it s enough because if the data

output is greater, data will overwrite into other memory. To solve this, we pass a

pointer to a pointer. We describe how to do this later in the chapter.

A parameter used as both input and output is passed by reference. Programs com

monly modify data by passing a pointer to a data structure into a procedure,

which passes back the same pointer but with modified data. Optional (NULL)

parameters can be used as input/output parameters. This feature is described in

the following section.

Pointers as Input Parameters

Suppose our inventory interface has the following procedure declaration:

void store_parts (

[in] part_record *partl,

[in] part_record *part2

);

Assume this procedure adds new parts to the database. The procedure takes as

parameters two pointers to structures of type part_record, (already defined in the

interface) to store all data about a part.

The remote procedure call in a client can look like the following:

part_record *partl, *part2;

parti = (part_record *)malloc(sizeof (part_record)) ;

part2 = (part_record *)itialloc(sizeof (part_record)) ;

/* part structures are filled in */

partl-&gt;nuniber = 123;

part2-&gt;number = 124;

store_parts (parti , part2) ;

In this simple case, the client stub marshalls and transmits the data the pointers

refer to. (This procedure is not implemented in any applications in this book, so

no server code is shown.)

One reason reference pointers reduce overhead is that the stubs make certain

assumptions about the use of the pointer. Since pointer parameters are reference

pointers by default, one of these assumptions is that a pointer parameter points to

valid data of the type specified.

Chapter 4: Pointers, Arrays, andMemory Usage 83

Suppose we want optional parameters in our procedure definition. In this case,
the client passes a null pointer value for the parameter, so the remote procedure
knows to ignore it. For the stubs to know the parameter is a null value, the param
eter must be a unique pointer so the stubs do not attempt to copy any data for the

parameter.

Example 4-2 shows how to modify our store_parts procedure declaration so that

both parameters are unique pointers.

Example 4-2: Defining Optional Procedure Parameters

void store_parts_l (/* O */

[in, unique] part_record *partl,

[in, unique] part_record *part2

typedef [unique] part_record *part_record_ptr;
void store_parts_2 (/* */

[in] part_record_ptr parti,

[in] part_record_ptr part2

O To specify an optional parameter, use the unique attribute on an input (or

input/output) parameter.

As an alternative to method 1 for specifying an optional parameter, define a

unique pointer data type and use the data type for the procedure parameter.

The client can now supply a NULL pointer:

store_parts_l (part 1 , NULL) ;

If an input/output parameter is a unique pointer with a null value on input, it is

also null on output because the client does not have an address to store a return

value.

Microsoft RFC allows two pointers to refer to the same data. This practice is known
as pointer aliasing.

To minimize overhead, stubs cannot manage more than one reference pointer

referring to the same data in a single remote procedure call. For example, suppose
our store_parts procedure does something useful if we pass in the same pointer

84 Microsoft RFC Programming Guide

for both arguments. The following type of remote procedure call causes unpre
dictable behavior:

store_parts (parti, parti); /* WRONG do not use ref pointer aliasing */

This call will not work as expected because the parameters (reference pointers)

both point to the same address. Reference pointers and unique pointers do not

allow two pointers to refer to the same data.

If store_parts_l were used instead of store_parts, the call would work correctly,

because the arguments were specifically defined in the interface definition as full

pointers with the ptr attribute.

Using Pointers to Pointersfor New Output
A pointer refers to a specific amount of memory. For a procedure parameter to

output newly allocated memory, we use a pointer to refer to another pointer that

refers to data (or to another pointer and so on). This is also known as multiple

levels of indirection.

If you use just one pointer for a procedure parameter, you would have to make
two remote procedure calls to allocate new memory. The first remote procedure
call obtains the size of the server s data structure. Then the client allocates memory
for it. The second remote procedure call obtains data from the server and fills the

previously allocated memory. In a distributed application, using two pointers

allows the client and server stubs to allocate all the necessary memory in one

remote procedure call. The client stub must generate a copy of the memory allo

cated on the server.

The whatare_subparts procedure in the inventory application contains a parameter
with a pointer to a pointer:

[out] part_list **subparts

The procedure allocates memory for the left pointer, and the right pointer is a

parameter passed by reference to return the address of the left pointer. To accom

plish this, MIDI must use two kinds of pointers:

The right pointer is a reference pointer and the left pointer is a unique pointer.

The reference pointer by itself cannot have new memory automatically allocated

because it will point to the same address throughout the remote call. However, for

the unique pointer, the amount of memory allocated by the server is allocated

automatically by the client stub when the call returns.

When a pointer attribute is applied in an interface definition where there are

pointers to pointers, it applies only to the right pointer and does not propagate to

any other pointers.

Chapter 4: Pointers, Arrays, and Memory Usage 85

Example 4-3 demonstrates how to return data in a parameter by using two point
ers. The procedure needs to output a data structure (in this case a structure with a

conformant array). The final size of the data structure is unknown when you call

the remote procedure.

Example 4-3: Defining Pointers to PointersforMemory Allocation

pointer_default (unique) /* the pointer default is a unique pointer O */

] interface inventory

void whatare_subparts (/* get list of subpart numbers for a part */

[in] part_num number,

[out] part_list **subparts /* a pointer to a pointer) */

);

O Parameters or type definitions with multiple pointers use a pointer default to

specify the kind of pointer for all but the right one. To establish a pointer

default, use the pointer_default attribute in the interface definition header.

In this example, the unique argument establishes a unique pointer default.

If memory is allocated during remote procedure execution, output parameters

require multiple pointers. By default, the right pointer of a procedure parame
ter is a reference pointer. The left pointer must be a unique pointer. This is

accomplished through the pointer_default attribute.

The part_list structure is allocated during the remote procedure call. On the

server, the remote procedure allocates memory and assigns data. The server stub

marshalls and transmits the data back to the client. The server stub then frees the

memory allocated in the remote procedure. The client stub allocates memory and
unmarshalls the transmitted data into the new memory. The remote procedure call

in a client for whatare_subparts looks like:

part_record part; . /* structure for all data about a part */

part_list *subparts; /* pointer to parts list data structure */

case s : whatare_subparts (part. number, &subparts) ;

for(i = 0; i &lt; subpart s-&gt;size; i++)

printf (

" %ld "

, subpart s-&gt;numbers [i]) ;

printf ("\ntotal number of subparts : %ld\n ", subparts-&gt;size)

86 Microsoft RFC Programming Guide

When you finish with the data, free the memory allocated by unique pointers:

free (subparts) ;

break;

See Example 5-9 in Chapter 5 for the server implementation of the remote proce

dure whatare_subparts.

Pointers as Procedure Return Values

As we have described previously, the client must allocate memory for reference

pointer data before it is used in a remote procedure call. This simplifies the client

stub by giving unmarshalling code a place to put data after the server sends it.

Now consider the following remote procedure call in client application code:

unsigned long *a;

a = proc () ;

The address of the procedure assignment, a, is available only when the procedure

returns, and not during its execution. Therefore, we cannot use the method just

described for a reference pointer to allocate memory in the client prior to the call,

and expect the stub to complete the assignment for us. Procedures that return

pointer results always return full pointers, so that the stub allocates any necessary

memory and unmarshalls data into it for us. Example 4-4 shows a procedure that

returns a pointer.

Example 4-4: Defining a Procedure that Returns a Pointer

typedef [string, unique] char *paragraph; /* description of part O */

paragraph get_part_description(/* return a pointer to a string */

[in] part_num number

);

O A pointer attribute (unique) on a pointer data type (char *paragraph) speci

fies the kind of pointer for that data type wherever it is used in the interface.

(If a pointer data type does not have a pointer attribute, the pointer specified

with the pointer_default attribute applies.) To specify a pointer to a string,

apply the string attribute as well.

@ Procedures that return a pointer result always return a full pointer. A proce
dure result cannot be a reference pointer because new storage is always allo

cated by the client stub, which copies data into it when the call returns.

The call to get_part_description looks like:

part_record part; /* structure for all data about a part */

Chapter 4: Pointers, Arrays, and Memory Usage 87

case d : part. description = get_part_description (part. number);

printf ("description: \n%s\n" , part .description) ;

When you finish with the data, free the memory allocated by unique pointers:

if (part. description != NULL)

free (part .description) ; /* free memory allocated */

On the server, the remote procedure allocates memory that the server stub copies
and transmits back to the client. The server stub then frees the memory allocated.

Example 5-8 shows how to allocate memory in the get_part_description remote

procedure.

Pointer Summary
As reference pointers, unique pointers, and full pointers represent increases in

capability, they also require increases in stub overhead needed to manage them.

Therefore, you must differentiate among reference, unique, and full pointers in the

interface definition. Table 4-1 summarizes and compares pointer types. Example
4-5 shows how to recognize which kind of pointer applies in an interface defini

tion. A visible ref or unique pointer attribute overrides a default.

Table 4-1: A Summary ofReference and Unique Pointers

Reference Pointer Unique Pointer Full Pointer

88 Microsoft RFC Programming Guide

Example 4-5: How to Determine Kinds ofPointers

pointer_default (unique) ;

] inventory interface

/*O*/

typedef [string, unique] char *paragraph;/**/

paragraph get_part_description (

[in] part_num number,

/**/

void whatis_part_price(

[in] part_num number,

[out] part_price *price /* O */

void whatare_subparts (

[in] part_num number,

[out] part_list **subparts /* */

typedef struct {

[ref] part_num *number;

/* */

Chapter 4: Pointers, Arrays, and Memory Usage 89

Example 4-5: How to Determine Kinds ofPointers (continued)

[ref] part_quantity *quantity;

[ref] account_num *account;

} part_order;

void store_parts_l (

[in, unique] part_record *partl,

[in, unique] part_record *part2

O The MIDL compiler attempts to assign the appropriate kind of pointer to

pointers without a full, unique, or ref attribute. The pointer_default
interface header attribute specifies which kind of pointer applies when one
cannot be automatically determined. You can give the pointer_default
attribute an argument of ref, unique, or full. If a pointer attribute is not

specified for the data type, the interface requires a pointer default to specify
the kind of pointer for the following cases:

Pointers in typedefs (see callout 2)

Multiple pointers other than the right pointer (see callout 5)

Pointers that are members of structures or cases of discriminated unions

(see callout 6)

A pointer type attribute specifies the kind of pointer used. In this example, all

occurrences that use the paragraph data type are unique pointers. If none of

the pointer attributes ref, unique or full is present in the typedef, the

pointer_default attribute specifies the kind of pointer.

A pointer return value of a procedure is always a unique pointer because new

memory is allocated. The paragraph data structure is a pointer to a string.

O A pointer parameter of a procedure is a reference pointer by default. Parame
ter reference pointers must always point to valid storage (never null). (See

also callout 7.)

With multiple pointers, the pointer_default attribute specifies all pointers

except the right-most pointer. In this example, the right pointer is a reference

pointer because it is a parameter pointer. The left pointer is determined by
the pointer default. In this procedure, the left pointer must be a unique

pointer so the array of parts in the subparts structure is automatically allo

cated by the client stub when the call returns.

When a structure member or discriminated union case is a pointer, you must

assign it a unique or ref attribute, either explicitly or through the attribute

pointer_default. This interface definition specifies the structure members as

reference pointers in order to override the unique pointer default. Unique or

90 Microsoft RFC Programming Guide

full pointers are unnecessary for these structure members; therefore, it is more

efficient to use reference pointers to minimize the overhead associated with

unique pointers.

An input or input/output pointer parameter can be made an optional proce

dure parameter by applying the unique attribute. An attribute of either

unique or ptr is required if you pass a value of NULL in a call.

Kinds ofArrays
You can use the following kinds of arrays in RFC applications:

Fixed arrays contain a specific number of elements defined in the interface

definition. They are defined just like standard C declarations.

Varying arrays have a fixed size but clients and servers select a portion to

transmit during a remote procedure call. The interface definition specifies sub

set bound variables used by the clients and servers to set the bounds.

Conformant arrays have their size determined in the application code. The

interface definition specifies an array size variable that the clients and servers

use to control the amount of memory allocated and data transmitted.

Selecting a Portion ofa Varying Array
For some clients or servers you need to use only a portion of an array in a remote

procedure call. If this is the case, it is more efficient to transmit only the needed

portion of the array. Procedures or structures that use varying arrays with data

limit variables allow you to select the portion of an array that is processed by a

remote procedure call.

A varying array has a fixed size when the application is compiled, but the portion
of the array that contains the relevant, transmissible data is determined at runtime.

For example, given the varying array arr [100] , you can specify any index values

in the range &lt; L &lt; U &lt; 99, where L represents the lower data limit of the array

and (/represents the upper data limit.

An array is varying if you declare it in your interface definition with two extra

attributes: first_is to indicate where transmission starts (Z), and either

length_is or last_is to indicated where transmission stops ((/). Whether you
use length_is or last_is depends on convenience.

Suppose that the following procedure appears in an interface definition:

const long SIZE = 100;

void proc (

[in] long first,

[in] long length,

Chapter 4: Pointers, Arrays, and Memory Usage 91

[in, first_is(first) , length_is (length)] data_t arr[SIZE]

);

To select a portion of the array to transmit, assign values to the variables first

and length. For input parameters, the client sets them prior to the remote proce
dure call. Be sure the upper data limit value does not exceed the size of the array,

for example:

long first = 23;

long length = 54;

data_t arr[SIZE] ;

proc (first, length, arr);

The transmitted array portion is represented by the indices |23| . . . [76| (23 + 54 -

1). The entire array is available in the client and the server, but only the portion

represented by the data limit variables is transmitted and meaningful for the given
remote procedure call. If the data limit parameters are also output, the remote pro
cedure can set them to control the portion of the array transmitted back to the

client.

A structure is an alternate way to define a varying array in an interface definition;

for example:

typedef struct varray_t {

long first;

long length;

[first_is(first) , length_is (length)] data_t arr [SIZE] ;

} varray_t;

proc ([in] varray_t varray) ;

Managing the Size ofa Conformant Array
Conformant arrays are defined in an interface definition with empty brackets or an

asterisk (*) in place of the first dimension value.

. . . cl[*] . . .

. . . c2[] [10] . . .

The conformant -array cl [
*

] has index values [o] ... \M\ in which the dimension

variable, M, represents the upper bound of the array. The dimension variable is

specified in the interface definition and used in the application code at runtime to

establish the array s actual size.

To specify an array size variable or a maximum upper bound variable, use one of

the array size attributes, size_is or max_is, in an interface definition. These vari

ables are used in the application to represent the size of the array. You can use

either one, depending on which you find most convenient. Example 4-6 shows
how a conformant array is defined in a structure.

92 Microsoft RFC Programming Guide

Example 4-6: A Conformant Array in an Interface Definition

typedef struct part_list{

long size; /" numoer or pares in array w "/

[size_is(size)] part_num numbers [*]; /* conformant array of parts*/
} part_list;

/* list of part numbers */

/* number of parts in array O */

typedef struct part_record { /* data for each part */

part_num number;

part_name name;

paragraph description;

part_price price;

part_guantity quantity;

part_list subparts; /* Conformant array or struct must be last */

} part_record;

void whatare_subparts (

[in] part_num number,

[out] part_list **subparts

/* get list of subparts numbers for a part */

/**/

O When an array member of a structure (numbers [*]) has an array attribute, the

dimension variable (size) must also be a structure member. This assures that

the dimension information is always available with the array when it is trans

mitted. The dimension variable member must be, or must resolve to, an inte

ger.

The size_is attribute specifies a variable (size) that represents the number
of elements the array dimension contains. In the application, the array indices

are ... |size-l[. For example, if size is equal to 8 in the application code,

then the array indices are

If a conformant array is a member of a structure, it must be last so that your

application can allocate any amount of memory needed. A conformant struc

ture (structure containing a conformant array member) must also be the last

member of a structure containing it.

O Use a conformant structure and multiple levels of indirection for remote pro
cedures that allocate a conformant array. Chapter 5 implements this proce
dure.

To specify a variable that represents the highest index value for the first dimension

of the array rather than the array size, use the max_is attribute instead of the

size_is attribute. For example, the conformant structure defined in Example 4-6

can also be defined as follows:

Chapter 4: Pointers, Arrays, andMemory Usage

typedef struct part_list{

long max;

[max_is (max)] part_num numbers [*] ;

} part_list;

The variable max defines the maximum index value of the first dimension of the

array. In the application, the array indices are \Q\ . . . |max| . For example, if max is

equal to 7 in the application code, then the array indices are

To avoid making mistakes in application development, be consistent in the inter

face definitions you write. Use either the size_is attribute or the max_is attribute

for all your conformant arrays.

Conformant arrays asprocedure parameters

When you call a remote procedure that contains a conformant array, you must

pass the number of elements that are contained by the array. When a client calls

the whatare_subparts remote procedure of Example 4-3, the dimension informa

tion is available in the part_list structure. However, if an array is passed as a

parameter, the dimension information must also be an in parameter of the proce
dure.

For example, instead of obtaining an array of all the subparts for a part (as the

ivhatare_subparts procedure does) you may want only the first five subparts. This

procedure is defined as follows:

void get_n_subparts (/* get n subpart numbers for a part */

[in] part_num number,

[in] long n,

[out,size_is (n)] part_num subparts []

);

In the client, the input includes the part number, a 5 representing the number of

subparts desired, and a previously allocated array, large enough for the five sub-

part numbers. The output is the array with the first five subpart numbers. (The

get_n_subparts procedure is not defined in the inventory interface definition.)

Dynamic memory allocation for conformant arrays

Suppose the following procedures appear in interface definitions:

procl([in] long size, [in, size_is (size)] data_t arr[]);

proc2([in] long max, [in, max_is(max)] data_t arr[]);

You have to allocate memory for each array needed in the application. To allocate

dynamic memory for conformant arrays, use a scheme such as the following:

unsigned long s,m;

data_t *s_arr, *m_arr; /* pointers to some data structures */

/* some application specific constants */

s = SIZE;

m = MAX;

94 Microsoft RFC Programming Guide

I* allocation of the arrays */

s_arr = (data_t *)malloc((s)
* sizeof (data_t)) ;

m_arr = (data_t *)malloc((m+1) * sizeof (data_t)) ;

/* the remote procedure calls */

proc1 (s , s_arr) ;

proc2 (m, m_arr) ;

In this example, SIZE is defined in the client to represent an array size and MAX is

defined to represent the maximum index value of an array. Notice an array that

has the max_is attribute in its interface definition must have an extra array ele

ment allocated because arrays begin with an index value of 0.

Memory allocation for conformant structures

Structures containing a conformant array require memory allocation in the client

before they are input to a remote procedure call, because a statically allocated

conformant structure has storage for only one array element. For example, the fol

lowing is the part_list structure of the inventory interface:

typedef struct part_list{

long size;

[size_is (size)] part_num numbers [*]

} part_list;

The structure in the header file generated by the MIDI compiler has an array size

of only one, as follows:

typedef struct part_list {

unsigned long size;

part_num numbers [1] ;

} part_list;

The application is responsible for allocating memory for as much of the array as it

needs. Use a scheme such as the following to allocate more memory for a confor

mant structure:

part_list *c; /* a pointer to the conformant structure */

long s;

s = 33; /* the application specific array size */

c = (part_list *)malloc(sizeof (part_list) + (sizeof (part_num)
* (s-1)));

Notice that since the declared structure s size contains an array of one element

representing the conformant array, the new memory allocated needs one array ele

ment less than the requested array size.

Memory Usage
Distributed applications usually involve more complicated memory management
than single-system applications because the address spaces are on separate

machines. Fortunately, for many programming situations, Microsoft RPC s default

Chapter 4: Pointers, Arrays, andMemory Usage 95

memory usage method can automate most of the memory management details,

freeing programmers to concentrate on the application itself. In the default

method, memory on clients and servers is allocated automatically by the stub code

for each part of the data structure being stored.

However, while this automation is certainly convenient, it can sometimes result in

large stub code and slower performance, especially when the data structures being

managed are complex. Consequently, Microsoft RFC offers alternative memory
usage methods which can help optimize performance, decrease stub size, or let

you tailor your application to specific programming circumstances.

Before we look at specific methods, let s look at the kind of data structures that

are passed between clients and servers. Sizeable amounts of data are usually

passed between clients and servers as pointers. Simple pointer data can usually be

handled by the stub code using the default memory management scheme. But

more complex data structures such as linked lists might benefit from the use of

alternative memory management methods. Linked lists can be made up of many
nodes connected with pointers. The size of a linked list is often variable and mem
bers need to be inserted or deleted in the middle easily.

A two-dimensional linked list could represent a sparse array which your applica
tion sends to a compute server to be multiplied. Tree structures are a natural form

for parsed language data. For example, you might call a
"parse

server" with a file

name and it could return a syntax tree of the data broken down according to

grammar rules. Arithmetic expressions are often represented internally in tree

form. Graphs of nodes are used in resource allocation problems, usually represent

ing networks of computers, of cities, and so on.

In any case, linked lists consist of multiple nodes which must be allocated storage

space in both clients and servers. By default, the client and server stub code which

marshalls and unmarshalls data uses a crude but effective algorithm to manage the

pointers. It makes separate calls to midl_user_allocate and midl_user_free to allo

cate and deallocate each individual node in the data structure. While this approach
can add stub overhead to the application, it relieves you from having to concern

yourself with memory management details.

In addition to the default method, there are three other memory usage methods

which you can use by including ACF attributes or by making slight changes to the

IDL file. The methods together, are:

node-by-node allocation and deallocation (the default)

single buffer allocation

client application allocated buffers

persistent storage on the server

Of the four methods, the first two rely solely on the stubs to allocate and free

memory while the last two involve the application. In previous chapters we

96 Microsoft RFC Programming Guide

explained that you must include user-written versions of midl_user_allocate and

midl_user_free in both the client and server parts of your application. The reason

for this is that the client and server stubs or, in some cases, your application code,

calls these procedures to allocate and deallocate memory used by application

parameters.

Table 4-2 shows whether the stub code or the application is responsible for mem

ory management in each method.

Table 4-2: What Allocates Memory
Client

Stub Code Application

Node by node alloca

tion and deallocation

user allocate

Server

Stub Code Application

m idl_user^free

Single buffer alloca

tion

m idl_user_allocate

m idl_user^free

Client application-

allocated buffers

midl_user_allocate

midl_user_Jree

Persistent storage on

the server

midl_user_allocate

l_user_Jree

The following sections examine the reasoning behind each memory usage

method. The sections also describe how to use ACF attributes to select a method

for use with a given situation. All of the alternative (non-default) memory usage

methods use attributes that are extensions of DCE IDL. The use of these attributes

requires the /ext MIDL compiler switch at compile time.

Node-By-Node Allocation and Deallocation

When you are passing simple pointers back and forth between a client and a

server, you needn t worry about choosing a particular memory usage method. The

stub code, which marshalls and unmarshalls parameters, will allocate and deallo

cate memory for you on both the client and the server.

On the other hand, separate stub calls to midl_user_allocate for each node in a

complex linked list can add unnecessary stub overhead to the application. If you

Chapter 4: Pointers, Arrays, and Memory Usage 97

are worried about the overhead, perhaps you could use this method to get your

application up and running and then choose another method if you think memory
usage is a bottleneck.

Using Contiguous Server Memory
When memory on the server is contiguous, as it ordinarily is with Microsoft Win
dows NT, you might increase performance by directing the stub to allocate a sin

gle linear buffer for the entire tree or graph.

In this case, the client stub determines the size of the buffer needed by chasing all

of the pointers in the structure. This approach relieves the server stubs from mak

ing separate calls to midl_user_allocate for each node in the data structure.

Because data can be accessed sequentially, memory performance might also be

improved by using this technique.

To use this technique, apply the ACF attribute allocate (all_nodes) to the

pointer type in a typedef in the ACF file.

/* ACF fragment */

typedef [allocate (all_nodes)] pointer_name;

Allocating Buffers with the Client Application

When you know how big a data structure is, you can specify the buffer size in the

client application and pass it to the server as a parameter to the remote procedure.
This technique can help minimize the stub size on clients and servers and improve
the performance of the affected remote procedure call because the client stub

doesn t have to chase pointers. The server stub allocates the buffer space with one

call to midl_user_allocate , using the size parameter taken from the remote proce
dure call. The runtime library will raise an exception if insufficient memory is allo

cated, however. After the call completes, the server stub frees the memory with

one call to midl_user_Jree .

The client side can benefit from this technique, too. For instance, say your applica
tion has a multiplication interface that multiplies matrixes as in multiplyjnatrix
(matrix *ml *m2) . -Now let s say that the client makes many calls to this same
interface. In this case, it s probably more efficient for the client application to allo

cate and control memory directly, reusing the memory that is allocated only once,

rather than have the client stubs allocate and free memory with each call.

Even when you know the buffer size, you might not want to take the time to use

this technique. But if memory allocation causes a bottleneck in your application,

the technique may help.

This method requires two steps. First, add a size parameter to the procedure decla

ration in the IDL file, as illustrated in the following IDL file fragment in which we
include the parameter cBytes.

Microsoft RFC Programming Guide

I* IDL file function declaration (fragment) */

void GetEmployeeRecord (

[in, string] char EnployeeName [NAMESIZE] ,

[in] short cBytes,

[out, ref] P_RECORD_TYPE pRecord /* record for named employee */

);

Second, in the ACF file, apply the ACF byte_count attribute to the parameter that

will store the size of the buffer.

/* ACF file (fragment */

GetEmployeeRecord ([byte_count (cEytes)] pRecord) ;

Now the server stub will make a single call to midl_user_allocate using the cBytes

size parameter to allocate memory for this buffer.

Persistent Storage on the Server

Persistent state, or "context," offers a way to manage data on the server so that

you can reuse it from call to call, and clean it up properly after you re done with

it. One example of persistent state might be a dictionary server or a symbol table

server. You pass the server a tree which it saves away, and then you make queries

against it later. This technique can save time because your application does not

need to copy the same data into a buffer each time it s needed.

To use this method, apply the allocate(dont_free) attribute to the ACF typedef

declaration in the ACF file, as in the following usage example.

/* ACF fragment */

typedef [allocate (all_nodes, dont_free)] pointer_name;

Using this method, the server stub does not call midl_user_/ree when the remote

procedure call completes. Instead, the server application must call midl_user_Jree

when its procedures are finished using the data structure. To make the parameters

available for use by other remote procedure calls on the server, you must copy the

pointers to global variables.

In Chapter 7, Context Handles, we ll see a different way of managing server con

text through the use of context handle types. While context handles require more

programming than the simpler persistent data technique mentioned here, they

offer more automatic functions which you may want to use. For instance, context

handles track and free memory resources automatically and they can associate

server contexts with specific clients.

In this Chapter:
Some Background on
Call Processing

Initializing the

Server

Writing Remote
Procedures

Compiling and

Linking Servers HOW tO W^tC d

RPC servers are more complicated than clients at least at this introductory stage
because the servers have a more complicated role: they have to be continuously
active and be prepared to handle multiple calls in any order. This chapter uses the

inventory example as the basis for showing the various issues required by servers.

Before reading this chapter, it s a good idea to read Chapter 1, Overview ofan RFC
Application, for an overview of a distributed application, and Chapter 2, Using a

Microsoft RPC Interface, for features of interface definitions. You should also read

Chapter 3, How to Write Clients, to understand how clients use servers.

You write the following two distinct portions of code for all servers:

Server initialization includes most of the RFC-specific details including RPC
runtime routines. This code is executed when the server begins, before it pro
cesses any remote procedure calls.

The manager portion, or remote procedure implementations, include special

techniques for memory management.

Some Background on Call Processing
Chapter 1 describes how a typical distributed application works:

Figure 1-9 shows the initialization steps to prepare a server before it processes
remote procedure calls.

Figure 1-10 shows how a client finds a server using the automatic binding
method.

Figure 1-11 shows the basic steps during a remote procedure call after the

client finds the server.

99

100 Microsoft RFC Programming Guide

To understand server initialization, it is useful at this point to explain how the RFC

runtime library handles an incoming call. Figure 5-1 shows how the server system

and RFC runtime library handle a client request.

Server

Host

Server

RFC
Runtime

Library

Request

Queue

O Call is placed in

request queue

Call from client

Figure 5- 1 . How the server runtime library handles a call

A call request for the server comes in over the network. The request is placed
in a request queue for the endpoint. (The server initialization can select more

than one protocol sequence on which to listen for calls, and each protocol

sequence can have more than one endpoint associated with it.) Request

queues temporarily store all requests, thus allowing multiple requests on an

endpoint. If a request queue fills, however, the next request is rejected.

The RFC runtime library dequeues requests one at a time from all request

queues and places them in a single call queue. The server can process remote

procedures concurrently, using threads. If a thread is available, a call is imme

diately assigned to it. (Server initialization can select the number of threads

for processing remote procedure calls.) In this figure, only one thread is exe

cuting. If all threads are in use, the call remains in the call queue until a

thread is available. If the call queue is full, the next request is rejected.

) After a call is assigned to a thread, the interface specification of the client call

is compared with the interface specifications of the server. An interface speci

fication is an opaque data structure containing information (including the

UUID and version number) that identifies the interface. Opaque simply means

Chapter 5: How to Write a Server 101

the details are hidden from you. If the server supports the client s interface,

processing goes to the stub code. If the server does not support the client s

interface, the call is rejected.

When the call finally gets to the stub, it unmarshalls the input data. Unmarshalling
involves memory allocation (if needed), copying the data from the RFC runtime

library, and converting data to the correct representation for the server system.

Initializing the Server
The server initialization code includes a sequence of runtime calls that prepare the

server to receive remote procedure calls. The initialization code typically includes

the following steps:

1 . Register the interface with the RFC runtime library.

2. Create server binding information by selecting one or more protocol

sequences for the RFC runtime library to use in your network environment.

3. Advertise the server location so the clients have a way to find it. A client uses

binding information to establish a relationship with a server. Advertising the

server usually includes storing binding information in a name service

database. Occasionally an application stores server binding information in an

application-specific database, or displays it, or prints it.

4. Manage endpoints in a local endpoint map.

5. Listen for remote procedure calls.

During server execution, no remote procedure calls are processed until the initial

ization code completes execution. RFC runtime routines are used for server initial

ization. (Table B-2 in Appendix B, RFC Runtime Routines Quick Reference, lists all

the RFC runtime routines for servers.)

Example 5-1 shows the necessary header files and data structures for server initial

ization of the inventory application.

Example 5-1: Server Header Files and Data Structures

I* FILE NAME: server. c */

ftinclude &lt;stdio.h&gt;

#include &lt;stdlib.h&gt;

ftinclude &lt;ctype.h&gt;

#include "inv.h" /* header created by the MIDL compiler O */

#include "status. h" /* contains the CHECK_STATUS macro */

#define STRINGLEN 50

main (argc, argv)

int argc;

char *argv [] ;

{

error_status_t status; /* error status (nbase.h) */

/* RFC vectors @ */

102 Microsoft RFC Programming Guide

Example 5-1: Server Header Files and Data Structures (continued)

rpc_binding_vector_t *binding_vector; /* binding handle list (rpcdce.h) */

rpc_protseq_vector_t *protseq_vector; /*protocol sequence list (rpcdce.h) */

char entry_name[STRINGLEN] ; /* name service entry name */

char annotation [STRINGLEN] ; /* annotation for endpoint map */

char hostname [STRINGLEN] ; /* used to store the computer name */

EWORD hostname_size=STRINGLEN; /* required by GetComputerName */

/* For the rest of the server initialization, register interfaces, */

/* create server binding information, advertise the server, */

/* manage endpoints, and listen for remote procedure calls. */

O Always include the C language header file (created by the MIDL compiler)
from all interfaces the server uses. This file contains the definitions of data

types and structures that are needed by the RFC runtime routines.

An unsigned32 variable is needed to report errors that may occur when an

RFC runtime routine is called.

Some RFC runtime routines use a data structure called a vector. A vector in

RFC applications contains a list (array) of other data structures and a count of

elements in the list. Vectors are necessary because the number of elements on
the list is often unknown until runtime. The rpc_binding_vector_t is a list

of binding handles in which each handle refers to some binding information.

The list in rpc_protseq_vector_t contains protocol sequence information

representing the communication protocols available to a server. RFC runtime

routines create vectors, use vectors as input, and free the memory of vectors.

Many header files such as rpc.h and rpcndr.h are included in the interface header

inv.h. The rpc.h file in turn has included within it header files such as rpcdce.h,

rpcnsi.h, and rpcnterr.h. Many of these header files are associated with RFC-

specific interface definitions. These interface definitions contain data structure defi

nitions you may need to refer to in order to access structure members and make
runtime calls.

Object UUIDs are scattered throughout the RFC runtime routines as parameters for

developing certain kinds of applications. You do not need to use object UUIDs to

develop many applications so they are not covered in this book.

Registering Interfaces

All servers must register their interfaces so that their information is available to the

RFC runtime library. This information is used when a call from a client comes in,

so the client is sure the server supports the interface, and the call can be correctly

dispatched to the stub.

Before a client makes a call, it checks its interface against the one advertised in the

server s binding information. But that does not guarantee that the server supports

Chapter 5: How to Write a Server 103

the client s interface. For example, it is possible for a complex server to temporar

ily suspend support for a specific interface. Therefore, when a remote procedure
call arrives, a comparison is made between the client s and server s interface speci

fications. If the server supports the client s interface, the RFC runtime library can

dispatch the call to the stub.

Use an interface handle to refer to the interface specification in application code.

An interface handle is a pointer defined in the C language header file and gener
ated by midl. For example, the server interface handle for the inventory applica

tion is inv_Vl_0_s_ifspec. The interface handle name contains the following:

The interface name given in the interface definition header (inv).

The version numbers in the version attribute (vl_0). If the interface definition

has no version declared, version 0.0 is assumed.

The letter s or c depending on whether the handle is for the server or client

portion of the application.

The word ifspec.

The default style of interface names generated by the midl version 2.0 compiler is

compatible with names generated by the OSF DCE IDL compiler. Note that the midl

version 1.0 compiler generates another form of interface handle name such as

inv_ClientIfHandle and inv_ServerIfHandle. To generate older names that

are compatible with midl version 1.0 interface names, you must use the /oldnames

option with a midl version 2.0 compiler.

Example 5-2 is a portion of C code that registers one interface.

Example 5-2: Registering an Interface with the Runtime Library

I* The header files and data structures precede registering interfaces. */

/************************** REGISTER INTERFACE ***************************/

status =

RpcServerRegisterlf (/* O */

inv_Vl_0_s_ifspec , /* interface specification (inv.h) */

NULL,

NULL

);

CHECK_STATUS(status, "Can t register interface:", ABORT); /* */

/* For the rest of the server initialization, create server binding */

/* information, advertise the server, manage endpoints, and listen for */

/* remote procedure calls. */

104 Microsoft RFC Programming Guide

O The RpcServerRegisterlf routine is a required call to register each interface the

server supports. The interface handle, inv_Vl_0_s_ifspec, refers to the inter

face specification.

The CHECK_STATUS macro is defined in the status.h file. It is an application-

specific macro used in this book to process status values returned from RFC

runtime calls (see Example 3-12).

Multiple interfaces may be registered from a single server by calling the RpcSeruer-

Registerlfroutine with a different interface handle.

The second and third arguments to the RpcServerRegisterlf call are used in com

plex applications to register more than one implementation for the set of remote

procedures. When only one implementation exists, these arguments are set to

NULL. Also, in the event of a symbol name conflict between the remote procedure
names of an interface and other symbols in your server (such as procedure
names), you can use these arguments to assign different names to the server

code s remote procedures.

Creating Server Binding Information
Server binding information is created when you select protocol sequences during
server initialization. RFC uses protocol sequences (described in Chapter 3, How to

Write Clients) to identify the combinations of communications protocols that RFC

supports. Most servers offer all available protocol sequences so that you do not
limit the opportunities for clients to communicate with the server.

Recall that besides a protocol sequence, binding information includes a host net

work address. A server process runs on only one host at a time, so this binding
information is obtained from the system and not controlled in your server code.

When a protocol sequence is selected, an endpoint is also obtained. You have sev
eral choices when obtaining endpoints.

Using dynamic endpoints

Chapter 3 describes the difference between dynamic and well-known endpoints.
Most servers use dynamic endpoints for their flexibility and to avoid the problem
of two servers using the same endpoints. Dynamic endpoints are selected for you
by the RFC runtime library and vary from one invocation of the server to the next.
When the server stops running, dynamic endpoints are released and may be
reused by the server system.

Example 5-3 is a portion of the inventory server initialization showing the selection
of one or all protocol sequences and dynamic endpoints. For this example, invoke
the server with a protocol sequence argument to select a specific protocol
sequence. If you invoke this server without an argument, the server uses all avail
able protocols.

Chapter 5: How to Write a Server 105

Example 5~3- Creating Server Binding Information

I* Registering interfaces precedes creating server binding information. */

/****************** CREATING SERVER BINDING INFORMATION ******************/

if(argc &gt; 1) {

status =

RpcServerUseProtseq(/* use a protocol sequence O */

(unsigned char *)argv[l], /* the input protocol sequence */

RPC_C_PROTSEC_MAX_REQS_DEFAULT, /* (rpcdce.h) */

NULL /* security descriptor (not reqd) */

);

CHEOK_STATUS(status, "Can t use this protocol sequence:", ABORT);

}

else {

puts ("You can invoke the server with a protocol sequence argument.");

status =

RpcServerUseAllProtseqs (/* use all protocol sequences */

RPC_C_PROTSEO_MAX_REQS_DEFAULT, /* (rpcdce.h) */

NULL /* security descriptor (not reqd) */

);

CHECK_STATUS(status, "Can t register protocol sequences:", ABORT);

status =

RpcServerlnqBindings (/* get binding information for server*/
&binding_vector

);

CHECK_STATUS (status, "Can t get binding information:", ABORT);

/* For the rest of the server initialization, advertise the server, */

/* manage endpoints, and listen for remote procedure calls. */

O The RpcServerUseProtseq routine is called with the chosen protocol sequence

string. This call selects one protocol sequence on which the server listens for

remote procedure calls. For this example, when the server is invoked, argc is

the number. of arguments on the command line, and argv[l] is the protocol

sequence string argument. The constant RPCjC_PROTSEQjyiAX_C^LLLS_DEFAULT
sets the request queue size for the number of calls an endpoint can receive at

any given moment.

The RpcServerUseAllProtseqs routine is called to select all available protocol

sequences on which the RFC runtime library listens for remote procedure
calls.

The RpcServerlnqBindings routine is a required call to obtain the set of bind

ing handles referring to all of this server s binding information.

106 Microsoft RFC Programming Guide

Dynamic endpoints must be registered with the server system s local endpoint

map using the RpcEpRegister routine, so that clients can look them up when they

try to find a server.

Using well-known endpoints

An endpoint is well-known if it is specifically selected and assigned to a single

server every time it runs. Well-known endpoints are more restrictive than dynamic

endpoints because, in order to prevent your servers from using the same end-

points as someone else, you need to register well-known endpoints with the

authority responsible for a given transport protocol. For example, the ARPANET

Network Information Center controls the use of well-known endpoint values for

the Internet Protocols.

Well-known endpoints are often employed for widely-used applications. One
server that needs well-known endpoints is the RFC service. This service runs on

each system hosting RFC servers, maintaining the database that maps servers to

endpoints. When a client has a partially bound handle, and it needs to obtain an

endpoint for its application s server, the client RFC runtime library contacts the

server system s RFC service. In short, the RFC service is required for finding

dynamic endpoints. For clients to contact it, the RFC service itself must have a

well-known endpoint.

Although you do not need to register well-known endpoints in the server system s

endpoint map, you are encouraged to, so that clients are unrestricted in finding

your servers. Use the RpcEpRegister routine to register endpoints in the endpoint

map.

Table 5-1 shows the RFC runtime routines that create server binding information

with well-known endpoints.

Table 5-1: Creating Binding Information with Well-known Endpoints

RFC Runtime Routine Description

RpcServerUseProtseqEp Uses a specified protocol sequence and well-known

endpoint, supplied in application code, to establish

server binding information. Even though the endpoint
is not dynamically generated, clients do not have an

obvious way to get it. So the server must register the

endpoint in the server system s endpoint map.

RpcServerUseProtseqlf Uses a specified protocol sequence, but well-known

endpoints are specified in the interface definition

with the endpoint attribute. Both clients and servers

know the endpoints through the interface definition.

Chapter 5: How to Write a Server 107

Table 5-1: Creating Binding Information with Well-known Endpoints (continued)

RFC Runtime Routine Description

RpcSeruerUseAllProtseqsIf Uses all supported protocol sequences, but well-

known endpoints are specified in the interface defini

tion with the endpoint attribute. Both clients and

servers know the endpoints through the interface def

inition.

Advertising the Server

Advertising the server means that you make the binding information available for

clients to find this server. You can advertise the server by one of the following

methods:

Export to a name service database.

Store binding information in an application-specific database.

Print or display binding information for clients.

The method you use depends on the application, but the most common way is

through a name service database. Binding information and the interface specifica

tion are first exported to a server entry in the database. The information is associ

ated with a recognizable name appropriate for the application. This information

can now be retrieved by a client using this name. When the client imports binding

information, the RFC runtime library compares the interface specifications of the

client and the name service entries, to be sure the client and server are compati
ble.

Conventions for naming RFC server entries rely on associating a host computer
name with the server entry name, thereby creating a unique server entry name.

Unique server entry names allow multiple instances of a server to coexist in one

NT domain. Although it s possible for multiple servers to share use of a single

server entry, problems arise if the true owner of the entry removes the entry from

the name service; binding information for all other servers is removed as well.

Using this convention means that clients that use server entry names to find

servers will need to know which computer a server is running on. Automatic

clients usually seek servers based on the interface UUID so they are freed from

having to know the server s computer name. When NT domains do not contain

multiple instances of servers, you don t need to use the convention.

If you plan to store your entry names in DCE CDS, you can also export a group

entry name that is not associated with a computer name. The convention for nam

ing RFC group entries includes the interface name. The server entry name is added

as a member of the group. When the client imports binding information using the

group name, the group members are searched until a compatible server entry is

found. Microsoft RFC includes the API functions that control group and profile

108 Microsoft RFC Programming Guide

operations for use with DCE CDS. Note, however, that the Microsoft Locator version

1.0 does not fully support group or profile operations.

Example 5-4 is a portion of the inventory initialization code that uses the name

service database to advertise the server.

Example 5-4: Advertising the Server to Clients

I* Registering interfaces and creating server binding information */

/* precede advertising the server. */

/*************************** ADVERTISE SERVER

strcpy (entry_name,
"

/ . : /inventory_") ;

GetComputerNamet&hostname, &hostname_size) ;

strcat (entry_name, hostname);

status =

RpcNsBindingExport (/* export to a name service database O */

RPC_C_NS_SYNTAX_DEFAULT, /* syntax of entry name (rpcdce.h) */

(unsigned char *)entry_name, /* name of entry in name service */

inv_Vl_0_s_ifspec / /* interface specification (inv.h) */

binding_vector, /* binding information */

NULL /* no object UUIDs exported */

);

CHECK_STATUS(status, "Can t export to name service database:", RESUME);

/* For the rest of the server initialization, manage endpoints and */

/* listen for remote procedure calls. */

O The RpcNsBindingExport routine exports the server binding information to a

name service database. The constant RPC_C_NS_SYNTAX_DEFAULT establishes

the syntax the RFC runtime library uses to interpret an entry name. (Microsoft

RFC currently has only one syntax.) The entry name is the recognizable name
used in the database for this binding information.

The interface handle (inv_Vl_0_s_ifspec) is needed so interface information

is associated with the binding information in the name service database. The

binding vector is the list of binding handles that represents the binding infor

mation exported. (The NULL value represents an object UUID vector. For this

application, no object UUIDs are used.)

The RpcNsBindingExport routine exports well-known endpoints to the name ser

vice database along with other binding information, but, because of their tempo
rary nature, dynamic endpoints are not exported. Performance of the name service

will degrade if it becomes filled with obsolete endpoints generated when servers

restart. Also, clients will fail more often trying to bind to servers of nonexistent

endpoints. Since dynamic endpoints are not in a name service database, clients

need to find them from another source. The next section discusses how to manage
endpoints.

Chapter 5: How to Write a Server 109

Managing Server Endpoints

When the server uses dynamic endpoints, clients need a way to find them,

because neither the name service database nor the interface specification store

dynamic endpoints. The endpoint map is a database on each RFC server system
that associates endpoints with other server binding information. As a general rule,

have your server store all endpoints (dynamic and well-known) in the endpoint

map. If all endpoints are placed in the endpoint map, system administrators have

an easier time monitoring and managing all RFC servers on a host system.

When a client uses a partially bound binding handle for a remote procedure call,

the RFC runtime library obtains an endpoint from the server system s endpoint

map. (However, if a well-known endpoint is available in the interface specifica

tion, the server s endpoint map is not used.) To find a valid endpoint, the client s

interface specification and binding information (protocol sequence, host, and

object UUID) are compared to the information in the endpoint map. When an end-

point of an appropriate server is finally obtained, the resulting fully bound binding
handle is used to complete the connection at that endpoint. Example 5-5 shows
how a server registers its endpoints in the endpoint map.

Example 5-5: Managing Endpoints in an Endpoint Map
/* Registering interfaces, creating server binding information, and */

/* advertising the server precede managing endpoints. */

/*************************** MANAGE ENDPOINTS ****************************/

strcpy (annotation, "Inventory interface");

status =

RpcEpRegister (/* add endpoints to local endpoint map O */

inv_Vl_0_s_ifspec, /* interface specification (inv.h) */

binding_vector, /* vector of server binding handles */

NULL, /* no object UUIDs to register */

(unsigned char *) annotation /* annotation supplied (not required) */

);

CHECK_STATUS(status, "Can t add endpoints to local endpoint map:", RESUME);

status =

RpcBindingVectorFree (/* free server binding handles*/
&binding_vector

);

CHECK_STATUS(status, "Can t free server binding handles:", RESUME);

open_inventory () ; /* application specific procedure */

110 Microsoft RFC Programming Guide

Example 5-5: Managing Endpoints in an Endpoint Map (continued)

I* For the rest of the server initialization, listen for remote */

/* procedure calls. */

O The RpcEpRegister routine registers the server endpoints in the local endpoint

map. Use the same interface handle, binding vector, and object UUID vector

as you used in the RpcNsBindingExport routine (see Example 5-4). An annota

tion argument is not needed because Microsoft RFC provides no way to

retrieve this information from the endpoint map.

The RpcBindingVectorFree routine is a required call that frees the memory of

the binding vector and all binding handles in it. Each call to RpcServerlnq-

Bindings (see Example 5-3) requires a corresponding call to RpcBinding
VectorFree. Make this call prior to listening for remote procedure calls, so the

memory is available when remote procedure calls are processed.

The RpcEpRegister call is required if dynamic endpoints are established with the

RpcServerUseProtseq or RpcServerUseAllProtseqs runtime routines, because each

time the server is started, new endpoints are created (see Example 5-3). If well-

known endpoints are established with the RpcServerUseProtseqEp runtime routine,

you should use the RpcEpRegister routine, because even though the endpoint may
always be the same, a client needs to find the value. If well-known endpoints are

established with the RpcServerUseProtseqlf or RpcServerUseAllProtseqsIf call, they
need not be registered, because the client has access to the endpoint values

through the interface specification.

When a server stops running, endpoints registered in the endpoint map become
outdated. The RFC service maintains the endpoint map by removing outdated end-

points. However, an unpredictable amount of time exists in which a client can

obtain an outdated endpoint. If a remote procedure call uses an outdated end-

point, it will not find the server and the call will fail. To prevent clients from

receiving outdated endpoints, use the RpcEpUnregister routine before a server

stops executing.

The only way to actively manage endpoints in the endpoint map is by using Rpc
EpRegister and other RFC runtime routines in the server initialization code (see

Example 5-5).

Listeningfor Remote Procedure Calls

The final requirement for server initialization code is to listen for remote proce
dure calls.

Many of the RFC runtime routines used in this book have an error status variable,

used to determine whether the routine executed successfully. However, when the

server is ready to process remote procedure calls, the RpcServerListen runtime rou

tine is called. The RpcServerListen runtime routine does not return unless the

Chapter 5: How to Write a Server 111

server is requested to stop listening by one of its own remote procedures using
the RpcMgmtStopServerListening routine.

Any errors occurring during stub code or remote procedure execution are reported
as exceptions, and, unless your code is written to handle exceptions, it will

abruptly exit. You can use a set of RFC macros to help process some system

exceptions that occur outside the application code. The macros RpcTryExcept,

RpcExcept, and RpcEndExcept delineate code sections in which exceptions are

controlled. If an exception occurs during the RpcTryExcept section, code in the

RpcExcept section is executed to handle any necessary error recovery or cleanup
such as removing outdated endpoints from the endpoint map.

These macros are not likely to be invoked when exceptions occur within the

server application code itself; exceptions within a server usually cause the server

to abort before the exceptions are reported back to the application.

The RpcExcept section contains clean-up code that does such things as remove
outdated endpoints from the endpoint map. The RpcTryExcept and RpcExcept
sections end with the RpcEndExcept macro.

Example 5-6 is a portion of C code that shows how the inventory server listens for

remote procedure calls and handles exceptions.

Example 5-6: Listeningfor Remote Procedure Calls

I* Registering interfaces, creating server binding information, */

/* managing endpoints, and advertising the server precede listening */

/* for remote procedure calls. */

/***************** LISTEN FOR REMOTE PROCEDURE CALLS *****************/

RpcTryExcept /* thread exception handling macro O */

{

status =

RpcServerListen (/* */

1, /* process one remote procedure call at a time */

RPC_C_LISTEN_MAX_CALLS_DEFAULT ,

NULL

);

CHECK_STATUS(status, "rpc listen failed:", RESUME);

}

RpcExcept (RpcExceptionCodeO) /* error recovery and cleanup */

{

close_inventory () ; /* application specific procedure */

status =

RpcServerlnqBindings (/* get binding information */

&binding_vector

);

CHECK_STATUS(status, "Can t get binding information:", RESUME);

status =

RpcEpUnregister (/* remove endpoints from local endpoint map O */

inv_Vl_0_s_ifspec, /* interface specification (inventory. h) */

binding_vector, /* vector of server binding handles */

NULL /* no object UUIDs */

112 Microsoft RFC Programming Guide

Example 5-6: Listeningfor Remote Procedure Calls (continued)

);

CHECK_STATUS(status, "Can t remove endpoints from endpoint map:", RESUME);

status =

RpcBindingVectorFree (/* free server binding handles */

&binding_vector

);

CHECK_STATUS (status , "Can t free server binding handles:", RESUME);

puts (

" \nServer quit !
"

) ;

}

RpcEndExcept ;

} /* END SERVER INITIALIZATION */

O The RpcTryExcept macro begins a section of code in which you expect

exceptions to occur. For this example, the RpcTryExcept section contains

only the RpcServerListen routine. If an exception occurs during the remote

procedure execution, the code section beginning with the RpcExcept macro

is executed to handle application-specific cleanup.

@ The RpcServerListen routine is a required call that causes the runtime to listen

for remote procedure calls. The first argument sets the number of threads the

RFC runtime library uses to process remote procedure calls. In this example,
the RFC runtime library can process one remote procedure call at a time. If

your remote procedures are not thread safe, set this value to 1.

The RpcServerlnqBindings routine obtains a set of binding handles referring

to all of the server s binding information.

O The RpcEpUnregister routine removes the server endpoints from the local end-

point map. If the server registered endpoints with a call to RpcEpRegister, this

call is recommended before the process is removed (see Example 5-5).

The RpcBindingVectorFree routine is called to free the memory of a binding
vector and all binding handles in it. Each call to RpcServerlnqBindings

requires a corresponding call to RpcBindingVectorFree.

The server initialization code for the inventory application is now complete. All of

the server initialization code is shown in Example D-5. Table B-2 lists all the run

time routines that servers can use.

Writing Remote Procedures
When writing your remote procedures, consider the issues of memory manage
ment, threads, and client binding handles.

Remote procedures require special memory management techniques. Suppose a

procedure allocates memory for data that it returns to the calling procedure. In a

local application, the calling procedure can free allocated memory because the

procedure and calling procedure are in the same address space. However, the

Chapter 5: How to Write a Server 113

client (calling procedure) is not in the same address space as the server (remote

procedure), so the client cannot free memory on the server. Repeated calls to a

remote procedure that allocates memory, without some way to free the memory,
will obviously waste the server s resources.

You must manage memory for remote procedures by calling programmer-supplied

wrapper routines for malloc and free in remote procedures. These routines enable

the server stub to free memory allocated in remote procedures, after the remote

procedure completes execution.

Recall that the RpcServerListen routine in server initialization determines the num
ber of threads a server uses to process remote procedure calls. If the server listens

on more than one thread, the remote procedures need to be thread safe. For

example, the remote procedures should not use server global data unless locks are

used to control thread access. In the inventory application, when reading from or

writing to the inventory application database, a lock may be needed so data is not

changed by one thread while another thread is reading it. The topic of multi

threaded application development is beyond the scope of this book.

So far, we have used server binding handles and server binding information to

allow clients to find servers. When a server receives a call from a client, the client

RFC runtime library supplies information about the client side of the binding to the

server RFC runtime library. Client binding information is used in server code to

inquire about the client. This client binding information includes:

The RFC protocol sequence used by the client for the call.

The network address of the client.

The object UUID requested by the client. This can be simply a nil UUID.

To access client binding information in remote procedures use a client binding
handle. If the client binding handle is available, it is the first parameter of the

remote procedure. If you require client binding information, the procedure decla

rations in the interface definition must have a binding handle as the first parame
ter. No further details of client binding information are described in this book.

Managing Memory in Remote Procedures

In typical applications, you use the C library routines, malloc and free, or your
own allocation scheme, to allocate and free memory that pointers must refer to. In

RFC servers, when implementing a remote procedure that returns a pointer to

newly allocated memory to the client, use programmer-supplied wrapper routines

to malloc and free to manage memory in the remote procedures. The routines,

which are named midl_user_allocate and midl_user_jree, are also called by the

stub code to allocate and free memory.

114 _Microsoft RFC Programming Guide

Example 5-7 shows how you can write the wrapper routines for malloc and free.

Example 5- 7: Programmer-Supplied Wrapper Routinesfor malloc andfree

/*** midl_user_allocate / midl_user_free ***/

void * _RPC_API
midl_user_allocate

size_t size;

{

unsigned char * ptr;

ptr = malloc (size) ;

return ((void *)ptr);

}

void _RPC_API
midl_user_free

(

obj ect

)

void * object;

{

free (object) ;

}

Use the midl_user_allocate routine instead of the C library routine malloc, so

bookkeeping is maintained for memory management. This also ensures that mem
ory on the server is automatically freed by the server stub after the remote proce
dure has completed execution. Memory allocation will not accumulate on the

server and get out of control.

For reference pointers, memory on the client side must already exist, so no mem
ory management is required for remote procedures whose output parameters are

reference pointers. After you make the remote procedure call, first the server stub

automatically allocates necessary memory and copies the data for the reference

pointer into the new memory. Then it calls the implementation of the remote pro
cedure. Finally, the remote procedure completes, output data is transmitted back

to the client stub and the server stub frees the memory it allocated.

On both the client and server, more complex memory management occurs for

unique pointers than for reference pointers. If a remote procedure allocates mem
ory for an output parameter, the server stub copies and marshalls the data, then

the stub frees the memory that was allocated in the remote procedure. When the

client receives the data, the client stub allocates memory and copies the data into

the new memory. It is the client application s responsibility to free the memory
allocated by the client stub.

Example 5-8 shows how to use the midl_user_allocate routine to allocate memory
for unique pointers. The procedure get_part_description of the inventory

Chapter 5: How to Write a Server 775

application returns a string of characters representing the description of a part in

the inventory. The call in the client is as follows:

part_record part; /* structure for all data about a part */

part. description = get_part_description (part. number);

Example 5-8: Memory Management in Remote Procedures

paragraph get_part_description (number)

part_num number;

part_record *part; /* a pointer to a part record */

paragraph description;
int size;

char *strcpy () ;

if(read_part_record(number, &part)) {

/* Allocated data that is returned to the client must be allocated */

/* with the midl_user_allocate routine. */

size = strlen((char *)part-&gt;description) + 1; /* O */

description = (paragraph) midl_user_allocate ((unsigned) size) ; /* */

strcpy((char *) description, (char *)part-&gt;description) ;

else

description = NULL;

return (description) ;

O An additional character is allocated for the null terminator of a string.

The remote procedure calls the midl_user_allocate stub support routine to

allocate memory in the remote procedure.

When the procedure completes, the server stub automatically frees the memory
allocated by midl_user_aIlocate calls. When the remote procedure call returns, the

client stub automatically allocates memory for the returned string. When the client

application code is finished with the data, it frees the memory allocated by the

client stub as follows:

if (part. description != NULL)

free (part .description) ;

For more complex memory management, there is a programmer-supplied counter

part to the C library routine free called midl_user_Jree.

The only time you don t use the midl_user_allocate and midl_user_free routines

for memory management is when you use context handles. Memory allocated for

context on the server must not use these routines because subsequent calls by the

client must have access to the same context as previous calls. See Chapter 7 for

more information on context handles.

116 Microsoft RFC Programming Guide

Allocating Memoryfor Conformant Arrays
The whatare_subparts procedure of the inventory application allocates memory
for a conformant array in a structure, and returns a copy of the conformant

structure to the client. The whatare_subparts procedure is declared in the interface

definition as follows:

typedef struct part_list{ /* list of part numbers */

long size; /* number of parts in array */

[size_is(size)] part_num numbers [*]; /* conformant array of parts */

} part_list;

void whatare_subparts (/* get list of subpart numbers for a part */

[in] part_num number,

[out] part_list **subparts /* the structure containing the array */

);

Output pointer parameters are reference pointers, which must have memory allo

cated in the client prior to the call. Therefore, you need a unique pointer in order

for new memory to be automatically allocated by the client stub for the **sub-

parts structure when the whatarejsubparts procedure returns. A pointer to a

pointer is required so that the reference pointer points to a full pointer, which in

turn points to the structure.

Example 5-9 shows how to allocate memory in the remote procedure for a confor

mant structure. The call in the client is as follows:

part_record part; /* structure for all data about a part */

part_list *subparts; /* pointer to parts list data structure */

whatare_subparts (part. number, &subparts) ;

Example 5~9: Conformant Array Allocation in a Remote Procedure

void whatare_subparts (number, subpart_ptr)

part_num number;

part_list **subpart_ptr;

{

part_record *part; /* pointer to a part record */

int i;

int size;

read_part_record(number, &part) ;

/* Allocated data that is output to the client must be allocated with */

/* the midl_user_allocate stub support routine. Allocate for a part_list */

/* struct plus the array of subpart numbers. Remember the part_list */

/* struct already has an array with one element, hence the -1. */

size = sizeof (part_list)

+ (sizeof (part_num)
*

(part-&gt;subparts.size-l)) ; /* O */

Chapter 5: How to Write a Server 117

Example 5-9: Conformant Array Allocation in a Remote Procedure (continued)

*subpart_ptr = (part_list *)midl_user_allocate((unsigned) size) ; /* */

/* fill in the values */

(*subpart_ptr) -&gt;size = part-&gt;subparts.size;

for(i =0; i &lt; (*sutpart_ptr) -&gt;size; i++)

(*subpart_ptr) -&gt;numbers [i]
= part-&gt;subparts . numbers [i] ;

return;

}

O The allocated memory includes the size of the conformant structure plus

enough memory for all the elements of the conformant array. The conformant

structure generated by the MIDL compiler already has an array of one element,

so the new memory allocated for the array elements is one less than the num
ber in the array.

Use the RFC stub support routine midl_user_allocate to allocate memory so

bookkeeping is maintained for memory management, and so the server stub

automatically frees memory on the server after the remote procedure com

pletes execution.

When the data for the conformant structure is returned to the client, the client stub

allocates memory and copies the data into the new memory. The client application

code uses the data and frees the memory allocated, as follows:

for(i =0; i &lt; subparts-&gt;size; i++)

printf (

" %ld "

, subparts-&gt;numbers [i]) ;

printf ("\nTotal number of subparts:%ld\n" , subparts-&gt;size) ;

free(subparts) ; /* free memory allocated for conformant structure */

Compiling and Linking Servers

Figure 5-2 shows the files and libraries required to produce an executable server.

When complex data types are used, the MIDL compiler produces the server stub

auxiliary file (appl^y.c) when the interface is compiled. The auxiliary file contains

data marshalling procedures that can be used by other interfaces. No stub auxiliary

files are produced for the inventory application. Example 5-10 shows the portion
of a makefile that:

Compiles the C language stubs and server code along with the header file

producing server object files.

Links the server object files to produce the executable server file.

118 Microsoft RFC Programming Guide

Write server application files

containing initialization code

and the remote procedures.

Include the header files

produced by interface

compilation.

Generate client application

and stub object files.

Use the server stub and

auxiliary files produced

by compilation.

Create the executable server

file by linking the server

application, stub, and

auxiliary object files with the

Microsoft RFC library.

Text

Editor

Linker

server

Figure 5-2. Producing a server

Example 5-10: Using a Makefile to Compile and Link a Server

FILE NAME: Makefile

Makefile for the inventory application
#

definitions for this make file

#

APPL=inv

NTRPCLIBS=rpcrt4 . lib rpcns4.1ib libont.lib kerne!32.1ib

! include &lt;ntwin32.mak&gt;

NT c flags

cflags = -c -WO -Gz -D_X86_=1 -CWIN32 -EMT /nologo

Chapter 5: How to Write a Server 119

Example 5~10: Using a Makefile to Compile and Link a Server (continued)

NT nmake inference rules

$(cc) $(cdebug) $(cflags) $(cvarsmt) $&lt;

$ (cvtomf)

#

SERVER BUILD

#

server : server . exe

server.exe: server. obj manager. obj invntry.obj $(APPL)_s.obj $(APPL)_x.obj

$(link) $(linkdebug) $(conflags) -out : server . exe -map: server.map \

server . obj manager . obj invntry . obj $ (APPL) _s . obj $ (APPL) _x . obj \

$(NTRPCLIBS)

client and server sources

client. obj: client. c $(APPL).h

manager . obj : manager. c $(APPL).h
server. obj: server. c $(APPL).h

invntry.obj: invntry. c $(APPL).h

In this Chapter:

Naming
DefaultEntry
Server Entries

Some Rulesfor Using
the Microsoft Locator

Using a Name Service

We have seen in earlier chapters that clients query a name service to find a host

where a server is running. We have set up our environment in a simplistic, if not

inconvenient, manner so that we could avoid discussing details about the name
service. For instance, in Chapter 1, Overview ofan RFC Application, our arithmetic

server used a simple server entry name. While this simple name is easy to create

and use, it makes it difficult for an NT domain to accommodate other identical

servers because they ll all be exporting their binding information to the same entry

name in the name service.

In a production environment, you don t want to restrict the number of servers you
can have in a domain. That would defeat the purpose of the name service, which

is to allow servers to be moved, added, and removed without affecting end-users.

In this chapter, we discuss how to use a name service to provide multiple servers

in your domain, which increases reliability and availability. You accomplish this by

giving a server different names when it runs on different hosts. This is necessary

because each server should be uniquely identified in the name service. Towards

the end, we discuss some rules and caveats for using the Microsoft Locator.

In DCE, the Cell Directory Service uses group entries and profile entries as a way
to organize servers and control a client s search for server entries. The Microsoft

Locator Version 1.0 does not support the use of CDS group entries or profile

entries. However, Microsoft RFC includes group and profile routines in its runtime

library for compatibility with DCE, for situations when you are running on a net

work where other machines have DCE and you want to store binding information

in CDS.

121

122 Microsoft RFC Programming Guide

Naming
Microsoft RFC supplies the Locator as the name service used by Microsoft RFC

applications to locate servers. Servers store their binding information in the Loca

tor s RFC name service database where it can be retrieved by clients. Clients then

use the binding information to connect to servers.

Because so many servers can exist in a Locator s domain, the collection of names

is hierarchically organized. In DCE, this hierarchy really corresponds to the way
that the name service stores the entries in its distributed database. But with the

Microsoft Locator, the names are simply strings. The hierarchy is merely an appear

ance, just for the convenience of the users for instance, so that related servers

can have similar names. But it is still useful.

Here are examples of entry names in the Locator:

/. . . /manufacturing/services /graphics/servers/gif_server

/ . : /services/graphics/servers/gif_server

Names like those in the example can help organize servers logically so clients can

find them by using consistent naming patterns.

The above example shows two ways to name a server. The first example includes

the name of the domain, manufacturing, as part of the name. The second exam

ple avoids using the / . . . /manufacturing prefix by beginning the name with

/ . : . The domain name prefix is implicit because a Locator maintains entry names

only from its own domain in this case, the manufacturing domain. The second

example allows server portability across domains that use similar naming conven

tions.

When a server starts, it can export its name to the Locator database along with its

protocol sequence and host address. Unlike DCE, Microsoft RFC does not provide

independent tools for administrators to manage the entries. Consequently, your

applications must do any needed entry management.

DefaultEntry
Recall that if you use automatic binding, the client stub finds a server for you. By
default, a client searches the Locator for a server offering an interface with a

matching interface UUID. You can override this behavior by setting the Default-

Entry Windows NT registry value to a valid server entry name.

You can set the DefaultEntry on Windows NT client using the regedt32 program.
In the HKEY_LOCAL_MACHINE on Local Machine window, you should select

SOFTWARE/Microsoft/I^&gt;c/NameService.

If the DefaultEntry value exists in the right portion of the window, double click

on it to invoke a dialog box for typing in the server entry name. Type in the name
and then click on OK.

Chapter 6: Using a Name Service 123

If the DefaultEntry value does not exist, you can add it by pulling down the Edit

menu and clicking on Add Value In the Value Name field, type DefaultEntry.
Then click on OK. In the resulting String dialog box, type in the server entry name

and then click on OK.

You can set the DefaultEntry on Microsoft DOS and Windows 3.1 clients by

using a text editor to add a line like the following to the C:\RPCREG.DAT configu

ration file.

\Root\Software\Microsoft\Rpc\NameService\DefaultEntry=/ . : /arithmetic_RIGEL.

Server Entries

A name service server entry stores binding information for an RFC server. Figure

6-1 depicts server entries in the name service database.

Server entry

Interface identifier

Binding information

Server entry

Interface identifier

Binding information

Figure 6-1. Server entries in the name service database

A server entry contains the following information:

An interface identifier consists of an interface UUID and a version number.

During the search for binding information, RFC name service routines use this

identifier to determine if a compatible interface is found.

Binding information is the information a client needs to find a server. It

includes one or more sets of protocol sequence and host address combina

tions. Well-known endpoints can also be part of the binding information, but

dynamic endpoints cannot.

124 Microsoft RFC Programming Guide

Some applications use optional object UUIDs to identify application-specific

objects or resources.

A reasonable naming scheme for server entries combines the host system name
and a meaningful definition of what the server offers. For example, the arithmetic

interface on a host system named RIGEL can have the following name service

entry:

/ . : /arithmetic_RIGEL

In this way, using a simple convention that all servers can follow, you are assured

that each server at your site has a unique name as long as you have only one

server per host. Normally, a host should only provide one server for an interface.

You can increase the number of clients a server handles by increasing the number
of threads a server can spawn. In the unusual case in which your system has mul

tiple servers offering the same interface, you need to distinguish each server with

separate name service entries and unique entry names. For example, one server

might be / . : /arithmeticl_RIGEL, and another / . : /arithmetic2_RIGEL.

If you structure your entry names to included embedded host names, using the

host name again in the right-most part of the name is redundant. In this case, the

arithmetic application might have the following entry name:

/ . : /product_developnent/test_servers/host_RIGEL/arithmetic

When your client uses the name service to find a server, it does an import or

lookup for binding information, starting at an entry name known to be in the

database. Entry names must be supplied to you in one of two ways: by the name
service administrator who knows the name service database organization, or by
the server administrator. You use RFC name service routines to search the name
service database. These routines compare the client s interface identifier with inter

face identifiers in the database. When there is a match and the entry contains com
patible binding information, the compatible binding information is returned.

Figure 6-2 shows how the arithmetic application uses a server entry in the name
service database. The arithmetic server uses the RpcNsBindingExport runtime rou

tine to export binding information to the / . : /arithmetic_RIGEL server entry.

The arithmetic server s use of RpcNsBindingExport is shown in Example 1-4 in

Chapter 1.

The arithmetic client uses the automatic binding method, so the client stub finds

the server without using the server entry name. Instead, the automatic client

requests a binding for an interface with a matching interface UUID. When client

application code assists the search, as when using implicit or explicit binding

methods, you can set a programmer-supplied environment variable such as

ARITHMETIC_SERVER_ENTRY, to something like / . : /arithmetic_RIGEL on the

client system SIRIUS, so the client stub has a name to search for in the name ser

vice. In this example, the name service simply searches for the server entry name

Chapter 6: Using a Name Service 125

I . : /arithmetic_RIGEL. The server entry s binding information is returned, and

the remote procedure call is completed.

System SIRIUS

Import

System RIGEL

Arithmetic

Server

O Export

Figure 6-2. A simple use ofa name service database

Creating a Server Entry and Exporting

Binding Information
Microsoft RFC offers flexible ways for servers to construct server entry names. A
name can be hard-coded in the server itself, but this method makes it difficult to

change a server name because the server must be recompiled. To make your
server more portable, you can specify a server name outside the program by set

ting an environment variable used by the server. For instance, you can use a batch

file to set a server-specific environment variable and then start the server.

@REM FILE NAME: arith.bat

ECHO OFF

set ARITHMETIC_SERVER_ENTRY=/ . : /arithmetic_rigel
server

The server constructs the entry name using the WIN32 API getenv routine to read in

the environment variable. The server then uses the NSI routine RpcNsBinding-

126 Microsoft RFC Programming Guide

Export to export binding information to the name service entry. If an entry does

not already exist, the Locator creates one for you.

entry_name = (unsigned char *)getenv("ARITHMETIC_SERVER_ENTRY") ;

status =

RpcNsBindingExport (/* export entry to name service database */

RPC_C_NS_SYNTAX_DEFAULT, /* syntax of the entry name (rpcdce.h) */

entry_name, /* entry name for name service */

arith_ServerIfHandle, /* interface specification (arith.h) */

binding_vector, /* the set of server binding handles */

NULL

);

CHECK_STATUS(status, "Can t export to name service database", ABORT);

Alternatively your server can use the WIN32 API getcomputername routine to read

the computer name and append it to a string that is associated with the ARITH-

METIC_SERVER_ENTRY environment variable. This method can make servers even

more portable because you don t have to modify the .BAT file if you move the

server to a different host.

EWDRD hostname_size=STRINGLEN; /* required by GetComputerName */

strcpy (entry_name, "ARITHMETIC_SERVER_ENTRY") ;

GetComputerName (khostname , &hostname_size) ;

strcat (entry_name, hostname);

status =

RpcNsBindingExport (/* export to a name service database */

RPC_C_NS_SYNTAX_DEFAULT, /* syntax of entry name (rpcdce.h) */

(unsigned char *)entry_name, /* name of entry in name service */

inv_ServerIfHandle, /* interface specification (inv.h) */

binding_vector, /* binding information */

NULL /* no object UUIDs exported */

);

CHECK_STATUS(status, "Can t export to name service database:", RESUME);

If you expect the server to be removed from service for a long period of time or

even permanently, you should remove the server binding information from the

name service using the RpcNsBindingUnexport runtime routine.

Some Rulesfor Using the Microsoft Locator
When your Windows NT domain is large and contains several Advanced Servers,

the Locator does not always work smoothly. Changes to the database can some
times result in inconsistencies.

A Windows NT domain is a group of users and their systems sharing common
security and administration. A domain consists of one domain controller which
maintains the master copy of the domain s user and group database. The controller

also stores the master copy of the Microsoft Locator.

Chapter 6: Using a Name Service 727

Domains should also contain one or more Windows NT Advanced Servers which

maintain copies of the master databases stored on the domain controller. The Win
dows NT Advanced Servers in the domain query the domain controller every five

minutes asking whether changes have been made. The controller sends just the

changes to the requesting server, minimizing network traffic. If the domain con

troller becomes unavailable for some reason, for example it crashes, a Windows
NT Advanced Server in the domain is promoted to be the new domain controller.

If the new controller s RFC name service database is not up-to-date, missing entries

must be re-exported by their servers to the new controller. Consequently, out-of-

date data tends to stay out of date.

Domain controllers also maintain group entry information while Windows NT
Advanced Servers do not. When a server is promoted to be the new domain con

troller, group entries that existed before the promotion are lost. Consequently,
Microsoft encourages users to rely on server entries rather than group entries.

The domain controller and Windows NT Advanced Servers maintain the RFC name
service database in transient memory rather than in a file. This model cannot guar
antee the integrity of the database structure. If the domain controller crashes, all

unpropagated server entries and all group entries must be reconstructed.

In this Chapter:
The Remote_flle
Application

Declaring Context in

an Interface

Definition

Using a Context

Handle in a Client

Managing Context in

a Server

Some applications require that a server maintain information between remote pro
cedure calls. This is called maintaining context (or maintaining state). Global data

is one way a local application can maintain information between procedure calls.

In a distributed application, however, the client and server are in different address

spaces, so the only data common to each are passed as parameters. Even if a set

of remote procedures use server global data, there is nothing to prevent more than

one client from making calls that modify the data. A context handle is the mecha
nism that maintains information on a particular server for a particular client. An
active context handle refers to valid (non-null) context, and includes binding infor

mation because a specific server maintains information for a particular client.

The Remote_file Application
The rfile application is a simple file transfer example that copies text from the

client to the server. A client uses a context handle to refer to server context. The

server context is the file handle used by remote procedures to open, write, and

close the file. In this application, the filename on the server may be the same or

different from the filename on the client, but the server does not overwrite an

existing file on the server system.

If you do not select any filenames, this application uses standard input (stdiri) of

the client and standard output (stdouf) of the server to transfer a message from the

client to the server. The complete rfile application is shown in Appendix E, The

Rfile Application.

129

Microsoft RFC Programming Guide

Declaring Context in an Interface Definition
A file handle in a local application is analogous to a context handle in a dis

tributed application. The information a file handle refers to is maintained by the C

library and the operating system, not your application. You call some library rou

tines to open or close the file, and other routines to read from or write to the file.

A context handle is maintained by the stubs and RFC runtime library, not by your

application code. What you have to write is a remote procedure that returns an

active context handle, and one that frees the context when you are finished with

it. Other remote procedures can access or manipulate the active context.

Example 7-1 shows how to define context handles in the rfile interface defini

tion.

Example 7-1: Defining Context Handles

I* FILE NAME: rfile. idl */

[

uuid(A61E4024-A53F-101A-BLAF-08002B2E5B76),

version (1.0) ,

pointer_default (unique)

]

interface rfile /* file manipulation on a remote system */

{

typedef [context_handle] void *filehandle; /* O */

typedef byte bufferf];

filehandle remote_open(/* open for write) */

[in] handle_t binding_h, /* explicit primitive binding handle */

[in, string] char name[], /* if name is null, use stdout in server */

[in, string] char mode[] /* values can be "r", "w",
or "a" */

);

long remote_send(

[in] filehandle fh, /* */

[in, max_is(max)] buffer buf,

[in] long max

);

void remote_close (

[in, out] filehandle *fh /* O */

To define a context handle data type, apply the context_handle attribute to

a void *
type (or a type that resolves to void *) in a type definition. If the

client-server communication breaks down or the client fails, a context handle

data type allows the server to automatically clean up the user-defined context

with a call to a context rundown procedure. If a context handle is applied in

a type definition, then the server application developer must write a context

rundown procedure.

Chapter 7: Context Handles 737

@ At least one remote procedure initializes the context handle and returns it to

the client for later use. A procedure returning a context handle result always
returns a new active context handle. Also, if a parameter is an out-only con

text handle, the procedure creates a new active context handle.

A procedure with a context handle parameter that is input only must use an

active context handle.

When the client application is finished with the server context, the context

must be freed.

If the context handle is null upon return from a procedure, the remote procedure
on the server has freed the context and the client stub has freed the context han
dle. A remote procedure that frees a context handle requires the parameter to have

the in directional attribute so the server can free the context, and the out direc

tional attribute so the client stub can also free the client s copy of the context han
dle.

Using a Context Handle in a Client

The client uses a context handle to refer to the server context through the remote

procedure calls. In the client, the context handle refers to an opaque structure.

This means that the data is hidden and cannot be manipulated by the client appli
cation code. The context handle can be tested for null, but not assigned any val

ues by the client application. The server code accomplishes all context

modification, but the status of the context is communicated to the client through
the context handle. The client stub manipulates the context handle in the client on
behalf of the server. Example 7-2 shows a typical sequence of remote procedure
calls when using context handles.

Example 7-2: Using a Context Handle in a Client

/* FILE NAME: client. c */

#include &lt;stdio.h&gt;

#include &lt;stdlib.h&gt;

#include &lt;string.h&gt;

#include "rfile.h"

#define MAX 200 /* maximum line length for a file */

main(argc, argv)

int argc;

char *argv [] ;

{

FILE *local_fh; /* file handle for client file input */

char host [100]; /* name or network address of remote host */

char remote_name[100] ; /* name of remote file */

rpc_binding_handle_t binding_h; /* binding handle */

filehandle remote_fh; /* context handle */

buffer *buf_ptr; /* buffer pointer for data sent */

int size; /* size of data buffer */

get_args(argc, argv, &local_fh, host, (char *)remote_name) ;

Microsoft RFC Programming Guide

Example 7-2: Using a Context Handle in a Client (continued)

#ifndef LOCAL

if (do_string_binding(host, &binding_h) &lt; 0) { /* O */

fprint f (stderr, "Cannot get binding\n") ;

exit(l);

}

ttendif

remote_fh = remote_open(binding_h, remote_name, (char *)"w"); /* */

if (remote_fh == NULL) {

fprintf (stderr, "Cannot open remote file\n");

exit(l);

/* The buffer data type is a conformant array of bytes; */

/* memory must be allocated for a conformant array. */

buf_ptr = (buffer *)nialloc((MAX+1) * sizeof (buffer)) ;

while (fgets((char *)buf_ptr, MAX, local_fh) != NULL) {

size = (int) strlen((char *)buf_ptr) ; /* data sent will not include \0 */

if(remote_send(remote_fh, (*buf_ptr) , size) &lt; 1) { /* */

fprintf (stderr, "Cannot write to remote file\n");

exit(l) ;

remote_close(&remote_fh) ; /* O */

}

O Before a context handle becomes valid, a client must establish a binding with

the server that will maintain the context. For the explicit or implicit binding

methods, your application has to perform this step. For the automatic binding

method, binding occurs in the client stub during the first remote procedure
call. Then, to find the server after the context handle is established, subse

quent calls use it instead of a binding handle. The do_string_binding proce
dure is an application-specific procedure that creates a binding handle from a

host input and a generated protocol sequence. It is shown in Chapter 3, How
to Write Clients.

The symbol LOCAL is used in applications in this book, to distinguish compil

ing this client to test in a local environment, from compiling to run in a dis

tributed environment.

To establish an active context handle, a procedure must either return the con

text handle as the procedure result or have only the out directional attribute

on a context handle parameter. The context handle cannot be used by any
other procedure until it is active. For the remote_open procedure, an explicit

binding handle is the first parameter.

Procedures using only an active context handle can be employed in any way
the application requires. Note that for a procedure to use the context handle,

a context handle parameter must have at least the in attribute. The

remote_send procedure sends a buffer of text data to the server, where the

remote procedure writes the data to the file referred to by the context handle.

Chapter 7: Context Handles 133

O When you have finished with the context, free the context handle to release

resources.

Binding Handles and Context Handles

A procedure can use a binding handle and one or more context handles. How
ever, make sure all handles in the parameter list refer to the same server because a

remote procedure call cannot directly refer to more than one server at a time.

Table 7-1 shows how to determine whether a binding handle or a context handle

directs the remote procedure call to the server.

Table 7-1: Binding Handles and Context Handles in a Call

Other

Procedure Format Parameters

proc(. . .)

proc([in] bh . . .)

proc(. . . [in]ch . . .

proc(. . . [in,out]ch

No binding or con

text handles

May include context

handles

May include other

context handles but

no binding handles

May include other

input/output or out

put-only context

handles but no

binding handles or

input-only context

handles

Handle that

Directs Call

The interface-wide auto

matic or implicit binding
handle directs the call.

The explicit binding

handle, bh, directs the

call.

The first context handle

that is an input-only pa
rameter directs the call.

If it is null, the call will

fail.

The first non-null con

text handle that is an in

put/output parameter di

rects the call. If all are

null, the call will fail.

Managing Context in a Server
When more than one remote procedure call from a particular client needs context

on a server, the server stub and server application maintain the context. This sec

tion describes how to implement the procedures that manipulate context in a

server.

A server context handle refers to context in the server code. It communicates the

status of the context back to the client. From the perspective of the server

134 Microsoft RFC Programming Guide

developer, a server context handle is an untyped pointer that can be tested for

null, assigned null, or assigned any value.

Once the server context handle is active (non-null), the server maintains the con

text for the particular client until one of the following occurs:

The client performs a remote procedure call that frees the context.

The client terminates while context is being maintained.

Communication breaks between the client and server.

If the client terminates or the client-server communication breaks while the server

maintains context, the server s RFC runtime library may invoke a context rundown

procedure to clean up user data.

Writing Procedures That Use a Context Handle

Example 7-3 shows how to implement a procedure that obtains an active context

handle, one that uses the active context handle, and one that frees the context

handle.

Example 7~3: Procedures That Use Context Handles

I* FILE NAME: manager. c */

ttinclude &lt;stdio.h&gt;

ttinclude &lt;string.h&gt;

#include &lt;io.h&gt;

#include &lt;errno.h&gt;

ttinclude "rfile.h"

filehandle remote_open(binding_h, name, mode) /* O */

rpc_binding_handle_t binding_h;
char name [] ;

char mode [] ;

{

FILE *FILEh;

if (strlen((char *)name) == 0) /* no file name given */

if (strcmpt (char *)mode, "r")
== 0)

FILEh = NULL; /* cannot read nonexistent file */

else FILEh = stdout; /* use server stdout */

else if (access ((char *)name, 0) == 0) /* file exists */

if (strcmpt (char *)mode, "w")
== 0)

FILEh = NULL; /* do not overwrite existing file */

else FILEh = fopen((char *)name, (char *)mode) ; /* open read/append */

else /* file does not exist */

if (strcmpt (char *)mode, "r")
== 0)

FILEh = NULL; /* cannot read nonexistent file */

else FILEh = fopen((char *)name, (char *)mode) ; /* open write/append */

return ((filehandle) FILEh); /* cast FILE handle to context handle */

Chapter 7: Context Handles 135

Example 7-3: Procedures That Use Context Handles (continued)

long int remote_send(fh, buf, max) /* */

filehandle fh;

buffer buf;

long int max;

{

/* write data to the file (context) , which is cast as a FILE pointer */

return(fwrite(buf, max, 1, fh)) ;

void remote_close(fh) /*)*/
filehandle *fh; /* the client stub needs the changed value upon return */

{

if((FILE *) (*fh) != stdout)

fcloset (FILE *) (*fh)) ;

(*fh) = NULL; /* assign NULL to the context handle to free it */

return;

}

O Initialize data as required by later calls, and assign the application context to

the server context handle. In this example, a file handle is obtained and

assigned to the context handle when the procedure returns. Outside of the

server process this file handle is meaningless, but when the client makes sub

sequent calls, the server uses this file handle to write data or close the file.

Use the server context handle parameter defined with the in directional

attribute. This procedure must have an active context handle as input. For this

example, the buffer (buf) of max number of items is written to the file. Cast

the server context handle to the context s data type (FILE *).

) Free the context by using a procedure whose context handle parameter is

defined with the in and out directional attributes. This procedure must have
an active context handle as input. To free the context, assign null to the server

context handle and use the C library procedure free or a corresponding
method to clean up your application. In this example, before freeing the file

handle, the context is tested to be sure it does not refer to stdout. The server

context handle is cast to the context s data type.

When this procedure returns to the client, the client stub automatically frees

the context handle on the client side if the server context handle is set to

NULL.

If memory must be allocated for the context, use the C library procedure malloc or

another method. Do not use the stub support procedure midl_user_allocate
because you do not want the allocated memory to be automatically freed by the

server stub after the procedure completes.

Microsoft RFC Programming Guide

Writing a Context Rundown Procedure

A context rundown procedure allows orderly cleanup of the server context. The

server RFC runtime library automatically calls it when a context is maintained for a

client, and either of the following occurs:

The client terminates without requesting that the server free the context.

Communication breaks between the client and server.

In our example, the interface definition defines the following type as a context

handle:

typedef [context_handle] void *filehandle;

Example 7-4 shows the context rundown procedure to implement in the server

code. The procedure name is created by appending _rundown to the type name

(filehandle). The procedure does not return a value and the only parameter is the

context handle. In this example, when the context rundown procedure executes, it

closes the file that represents the context.

Example 7-4: A Context Rundown Procedure

I* FILE NAME: crndwn.c */

#include &lt;stdio.h&gt;

#include "rfile.h"

void filehandle_rundown(remote_fh)
filehandle remote_fh; /* the context handle is passed in */

{

fprintf (stderr, "Server executing context rundown\n") ;

if((FILE *)remote_fh != stdout)

fclose ((FILE *)remote_fh) ; /* file is closed if client is gone */

remote_fh = NULL; /* must set context handle to NULL */

return;

}

The context handle must be defined as a type in the interface definition in order

for the server runtime to automatically call the context rundown procedure. And if

you define the context handle as a type, then you must implement a context run

down procedure in the server.

MIDI andACF Attributes

Quick Reference

All MIDI attributes are shown in Tables A-l through A-8, and all ACF attributes are

shown in Table A-9, but not all are demonstrated in this book.

Table A-l: MIDI Interface Header Attributes

Attribute Description

uuid (uuid_string)

version (major.minor)

pointer_default (kind)

endpoint (string)

local

A universal unique identifier is generated by the

uuidgen utility and assigned to the interface to distin

guish it from other interfaces. This attribute is re

quired unless the local attribute is used.

A particular version of a remote interface is identified

when more than one version exists.

The default treatment for pointers is specified. Kinds

of pointers include reference (ref) and unique
(unique).

An endpoint is a number representing the transport-

layer address of a server process. This attribute spec
ifies a well-known endpoint on which servers will lis

ten for remote procedure calls. Well-known end-

points are usually established by the authority re

sponsible for a particular transport protocol.

The MIDI compiler can be used as a C language
header file generator. When this attribute is used, all

other interface header attributes are ignored and no
stub files are generated by the MIDL compiler.

137

138 Microsoft RFC Programming Guide

Table A-2: MIDI Array Attributes

Attribute Description

string An array is specified to have the properties of a string.

size_is(size)

max_is (max)

first_is(first)

last_is(Iast)

length_is (length)

Conformant Array Attributes

A variable is defined in the interface definition and used

at runtime to establish the array size.

A variable is defined in the interface definition and used

at runtime to establish the maximum index value.

Varying Array Attributes

A variable is defined in the interface definition and used

at runtime to establish the lowest index value of transmit

ted data. The value is not necessarily the lowest bound

of the array.

A variable is defined in the interface definition and used

at runtime to establish the highest index value of trans

mitted data. The value is not necessarily the highest

bound of the array.

A variable is defined in the interface definition and used

at runtime to establish the number of elements transmit

ted for a portion of the array.

Table A-3: MIDL Pointer Type Attributes

Attribute Description

unique A pointer is specified as a unique pointer with the unique attribute.

Unique pointers provide basic indirection and they can be null.

Unique pointers cannot contain cycles or loops.

ref A pointer is specified as a reference pointer with the ref attribute.

This attribute gives basic indirection without the implementation over

head associated with unique pointers.

string A pointer is specified as pointing to a string.

Appendix A: MIDI and ACF Attributes Quick Reference 139

Table A-4: MIDI Data Type Attributes

Attribute Description

pointer type attributes

context_handle

handle

transmit_as (type)

A data type with a visible pointer operator may be speci

fied with a pointer type attribute (See Table A-3).

A state is maintained on a particular server between re

mote procedure calls from a specific client by maintaining
a context handle as a data type. The context handle iden

tifies the state.

A defined data type is specified as a customized handle

so that the client-server binding information is associated

with it.

A data type that is manipulated by clients and servers

may be specified so that it is converted to a different data

type for transmission over the network.

Table A-5: MIDI Structure Member Attributes

DescriptionAttribute

array attributes

pointer type attributes

ignore

A structure member can have array attributes if it has ar

ray dimensions or a visible pointer operator. A structure

member that has a visible pointer operator and the

size_is or max_is attribute defines a pointer to a con

formant array, not an array structure member (see Table

A-2).

A structure member can have a pointer type attribute if it

has a visible pointer operator (see Table A-3).

Do not transfer the data in this structure member (a

pointer) during a remote procedure call. This can save

the overhead of copying and transmitting data to which

the pointer refers.

Table A-6: MIDI Union Case Attributes

Attribute i Description

pointer type attributes A union case can have a pointer type attribute if it has a

visible pointer operator. See Table A-3.

140 Microsoft RFC Programming Guide

Table A- 7: MIDI Procedure Parameter Attributes

Attribute Description

in

out

array attributes

pointer type attributes

context_handle

The parameter is input when the remote procedure is

called.

The parameter is output when the remote procedure re

turns.

A parameter with array dimensions can have array at

tributes. A conformant array is a procedure parameter

with a visible pointer operator and the size_is or

max_is attribute (see Table A-2).

A parameter with a visible pointer operator can have a

pointer type attribute. See Table A-3.

A parameter that is a void *
type can have the context

handle attribute.

Table A-8: MIDI Procedure Attributes

Attribute Description

string

ptr

unique

context handle

Procedure Result Attributes

A procedure result is specified to have the properties of a

string with the string attribute.

A procedure that returns a pointer result always returns a full

pointer. It may be specified with the ptr attribute but this is

not necessary. Full pointers provide basic indirection and they

can be null. They can also contain cycles or loops.

Unique pointers provide basic indirection and they can be

null. Unique pointers cannot contain cycles or loops. Unique

pointers can be specified with the unique attribute.

A procedure returns a context handle result in order to indi

cate a state on a particular server, which is then referred to in

successive remote procedure calls from a specific client.

Table A -9: ACF Attributes

Attribute Description

Binding Methods

auto_handle

iirplicit_handle (type name)

explicit_handle (type name)

The automatic binding method is selected.

The implicit binding method is selected.

The explicit binding method is selected.

Appendix A: MIDI and ACF Attributes Quick Reference 141

Table A-9: ACF Attributes (continued)

Exceptions as Parameters

corrm_status Names a parameter or the procedure result to

which a status code is written if a communica
tion error is reported by the client runtime to

the client stub. The client remote procedure
call must include the error_status_t data

type in its argument list. If an error is report

ed and this attribute and error_status_t da

ta type are not used, the client stub raises an

exception.

fault_status Names a parameter or the procedure result to

which a status code is written if an error is re

ported by the server runtime to the server

stub, an exception occurs in the server stub,

or an exception occurs in the remote proce
dure. If an error is reported and this attribute

is not used, the client stub raises an excep
tion.

Excluding Unused Procedures

code All or selected procedures from the interface

have the associated client stub code generated

by the MIDI compiler,

nocode All or selected procedures from the interface

do not have the associated client stub code

generated by the MIDL compiler.

RFC Runtime Routines

Quick Reference

The following tables organize the RFC runtime routines. Table B-l shows all the

routines that client applications can use, and Table B-2 shows all the routines that

server applications can use. The following abbreviations are used in RFC runtime

routine names:

Numbers next to the calls have the following meaning:

Function is limited to using Windows NT Security.

Function is supported on Microsoft Windows NT systems only.

Function acts on only the local process with Microsoft RPC Version 1.0.
4

Function provided for compatibility with DCE CDS. Not supported by the

Microsoft Locator Version 1.0.

143

144 Microsoft RFC Programming Guide

Table B-l Client RFC Runtime Routines

Appendix B: RFC Runtime Routines Quick Reference 145

Table B-l Client RFC Runtime Routines (continued)

146 Microsoft RFC Programming Guide

Table B-2 Server RFC Runtime Routines

Appendix B: RFC Runtime Routines Quick Reference 147

Table B-2 Server RFC Runtime Routines (continued)

In this Appendix:
How to Build and
Run the Application

Application Files

The Arithmetic Application

The arithmetic application makes a remote procedure call to a procedure named

sum_arrays, which adds together the values for the same array index in two long

integer arrays, and returns the sums in another long integer array.

The application demonstrates the basics of a distributed application with a remote

procedure call and includes these features:

Denning a simple array in an interface definition

Using the automatic binding method

Exporting a server to the name service

Checking the error status of RFC runtime calls

How to Build and Run the Application
To build the server of the distributed application, type the following:

C:\SERVER&gt; nmake server

To run the server of the distributed application, type the following:

C:\SERVER&gt; arith

To build the client of the distributed application, type the following:

C:\CLIENTT&gt; nmake client

To run the client of the distributed application, type the following:

C:\CLIENT&gt; client

149

150 Microsoft RFC Programming Guide

Application Files

Makefile contains descriptions of how the application is compiled. Use the compi
lation make all to create all the executable files for the application. See Example
C-l.

arith.bat is a batch file that sets the environment and executes the server. See

Example C-2.

arith.idl contains the description of the constants, data types, and procedures for

the interface. See Example C-3.

client. c initializes two arrays, calls the remote procedure sum_arrays, and displays

the results of the returned array. See Example C-4.

manager. c is the remote procedure implementation. See Example C-5.

sewer. c initializes the server with a series of Microsoft RFC runtime calls. See Exam

ple C-6.

status.h defines the CHECK_STATUS macro, which interprets error status codes that

may return from Microsoft RFC runtime calls. See Example C-7.

Example C- 1 : The Makefilefor the A rithmetic Application

FILE NAME: Makefile

Makefile for the arithmetic application
#

definitions for this make file

#

APPL=arith

IDLCMD=midl

NTRPCLIBS=rpcrt4 . lib rpcns4.1ib libcmt.lib kerne!32.1ib

Include Windows NT macros

! include &lt;ntwin32 .mak&gt;

NT c flags

cflags = -c -WO -Gz -D_X86_=1 -DWIN32 -DMT /nologo

NT nmake inference rules

$(cc) $(cdebug) $ (cflags) $(cvarsmt) $&lt;

$(cvtomf)

#

COMPLETE BUILD of the application
#

#all: local interface client server
all: lclient.exe interface client.exe server.exe

#

INTERFACE BUILD

#

interface : $ (APPL) . h $ (APPL)_c . obj $ (APPL) _s . obj

Appendix C: The Arithmetic Application 151

Example C- 1: The Makefilefor the Arithmetic Application (continued)

#

LOCAL BUILD of the client application to test locally
#

local : Iclient . exe

lclient.exe: Iclient. obj Imanager.obj

$(link) $(linkdebug) $(conflags) -out: Iclient. exe -map: Iclient .map \

Iclient. obj Imanager.obj \

$(NTRPCLIBS)

#

CLIENT BUILD

#

client : client . exe

client.exe: client. obj $ (APPL)_c.obj

$(link) $ (linkdebug) $(conflags) -out: client. exe -map: client .map \

client. obj $(APPL)_c.obj \

$(NTRPCLIBS)

#

SERVER BUILD

#

server : server . exe

server.exe: server. obj manager. obj $ (APPL)_s.obj

$(link) $ (linkdebug) $(conflags) -out : server . exe -map: server.map \

server . obj manager .obj $ (APPL) _s . obj \

${NrRPCLIBS)

client and server sources

client. obj: client. c $(APPL).h

manager. obj: manager. c $(APPL).h
server . obj : server . c $ (APPL) .h

Local client sources

Iclient. obj: client. c $(APPL).h

$(cc) $(cdebug) $(cflags) $(cvarsmt) /DLOCAL /Folclient.obj client. c

Imanager . obj : manager . c $ (APPL) . h

$(cc) $(cdebug) $(cflags) $(cvarsmt) /DLOCAL /Folmanager . obj manager. c

client stubs

$(APPL)_c. obj: $(APPL)_c.c

$(APPL)_x. obj: $(APPL)_x.c

compile the server stub

$ (APPL) _s. obj : $(APPL)_s.c

generate stubs, auxiliary and header file from the IDL file

$(APPL).h $(APPL)_c.c $(APPL)_x.c : $(APPL).idl

$ (IDLCMD) $ (APPL) . idl

clean up for fresh build
clean:

del $(APPL)_?.c
del *.obj

del $(APPL) .h

del *.map

152 _Microsoft RFC Programming Guide

Example C-1-. The Makefilefor the Arithmetic Application (continued)

del *.pdb

clobber: clean

if exist client.exe del client.exe

if exist lclient.exe del lclient.exe

if exist server.exe del server.exe

Example C-2: The Server Batch Filefor the Arithmetic Application

ECHO OFF

@KEM FILE NAME: arith.bat

set ARITHMETIC_SERVER_ENTRY=/ . : /arithmetic_serverhost

server

Example C~3: The MIDI File ofthe Arithmetic Application

/* FILE NAME: arith.idl */

/* This Interface Definition Language file represents a basic arithmetic */

/* procedure that a remote procedure call application can use. */

[

uuid(6AF85260-A3A4-10LA-BLAE-08002B2E5B76) , /* Universal Unique ID */

pointer_default (ref) /* default pointer type is reference */

]

interface arith /* interface name is arith */

{

const unsigned short ARRAY_SIZE = 10; /* an unsigned integer constant */

typedef long long_array [ARRAY_SIZE] ; /* an array type of long integers */

void sum_arrays (/* The sum_arrays procedure does not return a value */

[in] long_array a, /* 1st parameter is passed in */

[in] long_array b, /* 2nd parameter is passed in */

[out] long_array c /* 3rd parameter is passed out */

Example C-4: The Client File of the Arithmetic Application

I* FILE NAME: client. c */

/* This is the client module of the arithmetic example. */

#include &lt;stdio.h&gt;

#include &lt;stdlib.h&gt;

ttinclude "arith. h" /* header file created by IDL compiler

long_array a ={100,200,345,23,67,65,0,0,0,0};

long_array b ={4,0,2,3,1,7,5,9,6,8};

main ()

{

long_array result;

int i;

sum_arrays(a, b, result); /* A Remote Procedure Call

puts ("sums: ") ;

for(i =0; i &lt; ARRAY_SIZE; i++)

printf ("%ld\n" , result [i]) ;

Appendix C: The Arithmetic Application 153

Example C-4: The Client File of the Arithmetic Application (continued)

/it**/

/*** MIDL_user_allocate / MIDL_user_free ***/

void * _RPC_API
MIDL_user_allocate

(

size

)

size_t size;

{

unsigned char * ptr;

ptr = malloc (size) ;

return ((void *)ptr) ;

void __RPC_API

MIDL_user_free

(

object

)

void * object;

{

free (object) ;

}

Example C-5. Remote Procedure of the Arithmetic Application

I* FILE NAME: manager. c */

/* An implementation of the procedure defined in the arithmetic interface. */

#include &lt;stdio.h&gt;

#include "arith.h" /* header file produced by IDL compiler */

void sum_arrays(a, b, c) /* implementation of the sum_arrays procedure */

long_array a;

long_array b;

long_array c;

{

int i;

for(i = 0; i -&lt; ARRAY_SIZE; i++)

c[i] = a[i] + b[i] ; /* array elements are each added together */

}

Example C-6: Server Initialization of the Arithmetic Application

/* FILE NAME: server. c */

#include &lt;stdio.h&gt;

#include "arith.h" /* header created by the idl compiler */

ttinclude "status. h" /* header with the CHECK_STATUS macro */

main ()

{

unsigned long status; /* error status */

rpc_binding_vector_t *binding_vector; /* set of binding handles */

154 Microsoft RFC Programming Guide

Example C-6. Server Initialization of the Arithmetic Application (continued)

unsigned char *entry_name; /* entry name for name service */

status = /* error status */

RpcServerRegisterlf (/* register interface with the RFC runtime */

arith_vO_0_s_ifspec, /* interface specification (arith.h) */

NULL,

NULL

);

CHECK_STATUS(status, "Can t register interface", ABORT);

status =

RpcServerUseAllProtseqs (/* create binding information */

RPC_C_PROTSEQ_MAX_REQS_DEFAULT, /* queue size for calls */

NULL /* no security descriptor is used */

);

CHECK_STATUS (status, "Can t create binding information", ABORT);

status =

RpcServerlnqBindings (/* obtain this server s binding information */

&binding_vector

);

CHECK_STATUS(status, "Can t get binding information", ABORT);

entry_name -
(unsigned char *)getenv("ARITHMETIC_SERVER_ENTRY") ;

status =

RpcNsBindingExport (/* export entry to name service database */

RPC_C_NS_SYNTAX_DEFAULT, /* syntax of the entry name */

entry_name, /* entry name for name service */

arith_vO_0_s_ifspec, /* interface specification (arith.h)*/

binding_vector, /* the set of server binding handles */

NULL

);

CHECK_STATUS(status, "Can t export to name service database", ABORT);

status =

RpcEpRegister (/* register endpoints in local endpoint map */

arith_vO_0_s_ifspec, /* interface specification (arith.h) */

binding_vector, /* the set of server binding handles */

NULL,

NULL

);

CHECK_STATUS(status, "Can t add address to the endpoint map", ABORT);

status =

RpcBindingVectorFree (/* free set of server binding handles */

&binding_vector

);

CHECK_STATUS(status, "Can t free binding handles and vector", ABORT);

puts ("Listening for remote procedure calls ...");

status =

RpcServerListen (/* listen for remote calls */

1, /* minimum number of threads */

RPC_C_LISTEN_MAX_CALLS_DEFAULT, /*concurrent calls to server */

NULL /* continue listening until explicitly stopped */

Appendix C: The Arithmetic Application 155

Example C-6: Server Initialization of the Arithmetic Application (continued)

CHECK_STATUS(status, "rpc listen failed", ABORT);

/*** MIDL_user_allocate / MIDL_user_free ***/

void * RPC API

MIDL_user_allocate

size

size_t size;

unsigned char * ptr;

ptr = malloc (size) ;

return ((void *)ptr) ;

}

void RPC API

MIDL_user_free

obj ect

void * object;

free (object);

Example C- 7: The Check Error Status Macro

/* FILE NAME: status.h */

ttinclude &lt;stdio.h&gt;

#include &lt;stdlib.h&gt;

#define RESUME

#define ABORT 1

#define ERROR_TEXT_SIZE 1025

#define CHECK_STATUS (input_status , comment, action) \

{ \

if (input_status ! = RPC_S_OK) { \

error_stat = FormatMessage (FORMAT_MESSAGE_FROM_SYSTEM \

,NULL \

, input_status \

,0 \

, error_string \

, ERROR_TEXT_SIZE \

,NULL); \

fprintf (stderr, "%s %s\n", comment, error_string) ; \

if (action == ABORT) \

exit(l); \

} \

156 Microsoft RFC Programming Guide

Example C- 7: The Check Error Status Macro (continued)

static int error_stat;

static unsigned char error_string[ERROR_TEXT_SIZE] ;

In this Appendix:
How to Run the

Application

Application Files

The Inventory Application

The inventory application allows a user to inquire about, and order from, a simple

inventory. Data structures are defined for the following items:

Part number (to identify a part)

Part name

Part description

Part price

Quantity of part

Part list

Account number (to identify a user)

Procedures are also defined in the interface definition to do the following:

Confirm if a part is available

Obtain a part name

Obtain a part description

Obtain a part price

Obtain the quantity of parts available

Obtain a list of subpart numbers

Order a part

The application demonstrates many features of Microsoft RFC application develop
ment including:

Using strings, pointers, structures, a union, and a conformant array.

157

158 Microsoft RFC Programming Guide

Allocating new memory in a remote procedure for data returned to the client

using stub support routines. The get_part_description and whatare_subparts
remote procedures demonstrate server allocation of a string and a conformant

structure.

Managing protocol sequences, interpreting binding information, selecting

binding information, and using exception handler macros.

Variations on a client using ACFs and the automatic, implicit, and explicit

binding methods.

Finding a server by importing from a name service database.

How to Run the Application
To run the local test of the client, type the following:

C:\&gt; nmake local

C:\&gt; lclient.exe

To run the server of the distributed application, type the following:

C:\SERVER&gt; nmake server

C:\SERVER&gt; server.exe

To run the client that uses the automatic binding method, type the following:

C:\CLIENT&gt; nmake client

C:\CLIENT&gt; client.exe

To run a nondistributed local test of the implicit client, type the following in the

implicit subdirectory:

C:\&gt; nmake local

C:\&gt; lclient.exe

To run the implicit client of the distributed application using the automatic server,

type the following in the implicit subdirectory:

C:\CLIENT&gt; nmake client

C:\CLIENT&gt; client.exe

To run the explicit server of the distributed application, type the following in the

explicit subdirectory:

C:\SERVER&gt; nmake server

C:\SERVER&gt; server.exe

To run the explicit client of the distributed application using the explicit server,

type the following in the explicit subdirectory:

C:\CLIENT&gt; nmake client

C:\CLIENT&gt; client.exe

Appendix D: The Inventory Application 159

Application Files

Makefile contains descriptions of how the application is compiled. Some files

depend on the header file status.h from the arithmetic application for the

CHECK_STATUS macro. See Example D-l.

inv.idl contains the description of the constants, data types, and procedures for the

interface. See Example D-2.

manager. c is the implementation of all the remote procedures defined in this inter

face. See Example D-3.

invntry.c is the implementation of the inventory database. For simplicity, only
three inventory items are included. The part numbers for these are printed when
the inventory is opened. See Example D-4.

server. c initializes the server with a series of runtime calls prior to servicing remote

procedure calls. In addition to the required calls, this server also selects a specific

protocol sequence, uses exception handling macros, and does some basic cleanup
when the server quits. See Example D-5.

client. c displays the instructions for the user and processes user input in a loop
until exit is selected. Each remote procedure is exercised depending on the input
from the user. See Example D-6.

implicit\Makefile contains descriptions of how the implicit client is compiled.
Some files depend on the header file status.h from the arithmetic application for

the CHECK_STATUS macro. See Example D-7.

implicit\ inv_i.acf customizes how you use an interface. In this application it is

used to select the implicit binding method. See Example D-8.

implicit\client.c imports a binding handle from the name service database. See

Example D-9.

implicit\getbind.c contains the do_import_binding procedure, which shows how
to import a binding handle from the name service database. See Example D-10.

implicit\intbind.c- contains the do_interpret_binding procedure, which shows how
to obtain the binding information to which a binding handle refers. See Example
D-ll.

The server for the implicit client is the same as the one for the automatic client.

explicit\Makefile contains descriptions of how the explicit client is compiled. The

compilation depends on some files from the implicit client development. See

Example D-12.

explicit\inv.idl contains the description of the constants, data types, and proce
dures for the interface. All procedure declarations include a binding handle as the

first parameter. See Example D-l 3.

160 Microsoft RFC Programming Guide

explicit\manager.c is the implementation of all the remote procedures denned in

this interface. All procedure implementations include a binding handle as the first

parameter. See Example D-14.

explicit\client.c imports a binding handle from the name service database. All pro

cedures have a binding handle as the first parameter. See Example D-15.

The server s main program for the explicit client is the same as the one for the

automatic and implicit clients.

Example D-l. The Makefilefor the Inventory Application

FILE NAME: Makefile

Makefile for the inventory application
#

definitions for this make file

#

APPL=inv

NTRPCLIBS=rpcrt4.1ib rpcns4.1ib libcmt.lib kerne!32.1ib

! include &lt;ntwin32.mak&gt;

NT c flags

cflags = -c -WO -Gz -D_X86_=1 -DWIN32 -DMT /nologo

NT nmake inference rules

$(cc) $(cdebug) $ (cflags) $(cvarsmt) $&lt;

$(cvtomf)

#

COMPLETE BUILD of the application
#

all : local interface client server

#

INTERFACE BUILD

#

interface: $ (APPL) .h $ (APPL)_c.obj $ (APPL)_s.obj

#

LOCAL BUILD of the client application to test locally
#

local: lclient.exe

lclient.exe: Iclient.obj litianager.obj invntry.obj

$(link) $(linkdebug) $(conflags) -out: lclient.exe -map:lclient.map \

Iclient.obj Imanager.obj invntry.objX

$(NTRPCLIBS)

#

CLIENT BUILD

#

client: client.exe

client.exe: client. obj $(APPL)_c.obj

$(link) $(linkdebug) $(conflags) -out: client.exe -map: client .map \

client. obj $ (APPL) _c. obj \

$(NTRPCLIBS)

Appendix D: The Inventory Application 161

Example D-l: The Makefilefor the Inventory Application (continued)

SERVER BUILD

#

server : server . exe

server.exe: server. obj manager. obj invntry.obj $ (APPL)_s.obj

$(link) $(linkdebug) $(conflags) -out : server . exe -map: server.map \

server . obj manager . obj invntry . obj $ (APPL) _s . obj \

$(NTRPCLIBS)

client and server sources

client. obj: client. c $(APPL).h

manager. obj: manager. c $(APPL).h

server . obj : server . c $ (APPL) . h

invntry . obj : invntry . c $ (APPL) .h

Local client sources

Iclient.obj: client. c $(APPL).h

$(cc) $(cdebug) $(cflags) $(cvarsmt) /DLOCALX

/Folclient.obj client. c

Imanager . obj : manager . c $ (APPL) . h

$(cc) $(cdebug) $(cflags) $(cvarsmt) /DLOCAL \

/Folmanager . obj manager. c

client stubs

$(APPL)_C. Obj: $(APPL)_C.C

$(APPL)_x. obj: $(APPL)_x.c

$ (APPL) _S. obj : $(APPL)_S.C

generate stubs, auxiliary and header file from the IDL file

$(APPL).h $(APPL)_c.c $(APPL)_x.c : $(APPL).idl

midl $(APPL) .idl

clean up for fresh build

clean:

del $(APPL)_?.c

del *.obj

del $(APPL) .h

del *.map
del *.pdb

clobber: clean

if exist client.exe del client.exe

if exist lclierit.exe del lclient.exe

if exist server.exe del server.exe

Example D-2. The MIDL File of the Inventory Application

/* FILE NAME: inv.idl */

[/* brackets enclose attributes */

uuid(A6lE3FCO-A53F-10lA-BlAF-08002B2E5B76) , /* universal unique identifier */

version(l.O) , /* version of this interface */

pointer_default (unique) /* pointer default */

] interface inv /* interface name */

{

const long MAX_STRING =30; /* constant for string size */

typedef long part_num; /* inventory part number */

162 Microsoft RFC Programming Guide

Example D-2. The MIDI File ofthe Inventory Application (continued)

typedef [string] char part_naine[MAX_STRING+l] ; /* name of part */

typedef [string, unique] char *paragraph; /* description of part */

typedef enum {

ITEM, GRAM, KILOGRAM

} part_units; /* units of measurement */

typedef struct part_price { /* price of part */

part_units units;

double per_unit;

} part_price;

typedef union switch (part_units units) total { /* quantity of part */

case ITEM: long int number;

case GRAM:

case KILOGRAM: double weight;
} part_quantity;

typedef struct part_list{ /* list of part numbers */

long size; /* number of parts in array */

[size_is(size)] part_num numbers [*]; /* conformant array of parts */

} part_list;

typedef struct part_record { /* data for each part */

part_num number;

part_name name ;

paragraph description;

part_price price;

part_quantity quantity;

part_list subparts;

} part_record;

typedef long account_num; /* user account number */

********************* Procedure Declarations *************************/
boolean is_part_available(/* return true if in inventory */

[in] part_num number /* input part number */

);

void whatis_part_name(/* get part name from inventory */
[in] part_num number, /* input part number */

[in, out] part_name name /* output part name */

);

paragraph get_part_description (/* return a pointer to a string */
[in] part_num number

);

void whatis_part_price (/* get part price from inventory */
[in] part_num number,

[out] part_price *price
);

void whatis_part_quantity(/* get part quantity from inventory */
[in] part_num number,

[out] part_quantity *quantity

Appendix D: The Inventory Application __163

Example D-2. The MIDI File of the Inventory Application (continued)

void whatare_subparts (/* get list of subpart numbers */

[in] part_num number,

[out] part_list **subparts /* structure containing the array */

/* Order part from inventory with part number, quantity desired, and

/* account number. If inventory does not have enough, output lesser

/* Order part from inventory with part number, quantity desired, and */

. , */

/* quantity ordered. Return values: l=ordered OK, */

/* -l=invalid part, -2=invalid quantity, -3=invalid account. */

long order_part (/* order part from inventory, return OK or error code */

[in] part_num number,

[in, out] part_quantity *quantity, /* quantity ordered */

[in] account_num account

);

} /* end of interface definition */

Example D-3- Remote Procedures of the Inventory Application

I* FILE NAME: manager. c */

/** Implementation of the remote procedures for the inventory application. **/

#include &lt;stdio.h&gt;

#include &lt;stdlib.h&gt;

#include "inv.h"

boolean is_part_available (number)

part_num number;

{

part_record *part; /* a pointer to a part record */

int found;

found = read_part_record(number, &part) ;

if (found)

return (TRUE) ;

else

return (FALSE) ;

void whatis_part_name (number, name)

part_num number;

part_name name;

{

part_record *part; /* a pointer to a part record */

read_part_record(number, &part) ;

strncpy ((char *)name, (char *)part-&gt;name, MAX_STRING) ;

return;

paragraph get_part_description (number)

part_num number;

{

part_record *part; /* a pointer to a part record */

164 Microsoft RPC Programming Guide

Example D-3: Remote Procedures of the Inventory Application (continued)

paragraph description;
int size;

if(read_part_record(number, &part)) {

/* Allocated data that is returned to the client must be allocated */

/* with the MIDL_user_allocate stub support routine. */

size = strlen((char *) part-xJescription) + 1;

description = (paragraph) MIDL_user_allocate((unsigned) size) ;

strcpy((char *) description, (char *)part-&gt;description) ;

}

else

description = NULL;

return (description) ;

void whatis_part_price (number, price)

part_num number;

part_price *price;

{

part_record *part; /* a pointer to a part record */

read_part_record (number , &part) ;

price-&gt;units =
part-&gt;price. units;

price-&gt;per_unit = part-&gt;price.per_unit;

return;

void whatis_part_quantity (number, quantity)
part_num number;

part_quantity *quantity;

{

part_record *part; /* a pointer to a part record */

read_part_record(number, &part) ;

quantity-&gt;units = part-xjuantity. units;
switch (quantity-&gt;units) {

case ITEM: quantity-&gt;total. number = part -xguantity. total. number;
break;

case KILOGRAM:

case GRAM: quantity- &gt;total .weight = part-xjuantity. total.weight;
break;

}

return;

void whatare_subparts (number, subpart_ptr)
part_num number;

part_list **subpart_ptr;
{

part_record *part; /* pointer to a part record */
int i;

int size;

read__part_record (number , &part) ;

Appendix D: The Inventory Application _ 165

Example D-3: Remote Procedures ofthe Inventory Application (continued)

I* Allocated data that is output to the client must be allocated with */

/* the MIDL_user_allocate stub support routine. Allocate for a */

/* part_list struct plus the array of subpart numbers. Remember the */

/* part_list struct already has an array with one element, hence the -1. */

size = sizeof (part_list) + (sizeof (part_num) *
(part-&gt;subparts.size-l)) ;

*subpart_ptr = (part_list *)MIDL_user_allocate((unsigned) size) ;

/* fill in the values */

(*subpart_ptr) -&gt;size = part-&gt;subparts.size;

for(i =0; i &lt; (*subpart_ptr) -&gt;size; i++)

(*subpart_ptr) -&gt;numbers[i] = part -&gt;subparts. numbers [i] ;

return;

long int orderjpart (number, quantity, account)

part_num number;

part_quantity *quantity;

account_num account ;

{

part_record *part; /* pointer to a part record */

long error =1; /* assume no error to start */

/* Test for valid input */

if (!read_part_record(number, &part)) /* invalid part number input */

error = -1;

else if (quantity-&gt;units == ITEM) /* invalid quantity input */

error = (quantity-&gt;total. number &lt;= 0) ? -2 : error;

else if (quantity-&gt;units == GRAM I I quantity-&gt;units == KILOGRAM)
error = (quantity-&gt;total.weight &lt;= 0.0) ? -2 : error;

/* else if () invalid account, not implemented */

/* error = -3; */

if (error &lt; 0)

return (error) ;

/* convert input quantity & units if units are not correct for part */

if (quantity- &gt;units != part-&gt;quantity. units) {

if (part-xjuantity. units == ITEM) /* convert weight to items */

quantity-&gt;total. number = (long int) quantity- &gt;total. weight;
else if (quantity-&gt;units == ITEM) /* convert items to weight */

quantity-&gt;total .weight = (long float) quantity- &gt;total. number;
else if (quantity-&gt;units == GRAM && part-xjuantity. units == KILOGRAM)

quantity- &gt;total .weight /= 1000.0; /* convert grams to kilograms */

else if (quantity-&gt;units == KILOGRAM && part-xjuantity. units == GRAM)

quantity-&gt;total. weight *= 1000.0; /* convert kilograms to grams */

quantity-&gt;units = part-xjuantity. units;

/* check if enough in inventory for this order */

switch (part-xjuantity. units) {

case ITEM:

if (part-xjuantity. total. number &gt; quantity-&gt;total. number)

/* reduce quantity in inventory by amount ordered */

part-xjuantity. total.number -= quantity- &gt;total . number;
else {

166 Microsoft RPC Programming Guide

Example D-3: Remote Procedures ofthe Inventory Application (continued)

/* order all available and reduce quantity in inventory to */

quantity- &gt;total. number = part-xjuantity. total, number ;

part-xjuantity. total. number = 0;

}

break;

case KILOGRAM:

case GRAM:

if (part-xjuantity. total.weight &gt; quantity- &gt;total .weight)
/* reduce quantity in inventory by amount ordered */

part-xjuantity. total, weight -= quantity- &gt;total.weight;
else {

/* order all available and reduce quantity in inventory to 0.0 */

quantity-&gt;total .weight = part-xjuantity . total .weight ;

part-xjuantity. total. weight = 0.0;

}

break;

write_part_record(part) ; /* update inventory */

return (1); /* order ok */

Example D-4: The Inventory Implementation

/* FILE NAME: invntry.c */

/* A sample implementation of an inventory. */
* For simplicity, a few inventory items are maintained in the inventory. */
* The valid numbers are printed when the open_inventory () procedure is */

/* called so the user knows what numbers to test. */
#include &lt;stdio.h&gt;

#include &lt;stdlib.h&gt;

ttinclude "inv.h"

#define MAX_PARTS 10 /* maximum number of parts in this inventory */
#define MAX_SUBPARTS 5 /* maximum number of subparts for a part */

static part_record *rec[MAX_PARTS] ; /* array of pointers for this inventory */
static inventory_is_open =0; /* flag is reset to non-zero when open */

* Data for empty record or unknown part number */
static part_record no_part = {0, "UNKNOWN"} ;

static part_num no_subparts [MAX_SUBPARTS] ;

void open_inventory () /***** setup inventory *******************************/

int i , j ;

unsigned size;

/* Allocate memory for the inventory array. Each part gets the size of */
/* a part_record plus enough memory for a subpart list. Since the */
/* subpart list is already defined in the part_record as an array of 1, */
* the new array memory only needs to be MAX_SUBPARTS-1 in size. */

for(i =0; i &lt; MAX_PARTS; i++) {

size = sizeof (part_record) + (sizeof (part_num) *
(MAX_SUBPARTS-1)) ;

rec[i] = (part_record *)malloc(size) ;

Appendix D: The Inventory Application 167

Example D-4. The Inventory Implementation (continued)

}

/* assign some data to the inventory array (part of an exercise machine) */

rec [] -&gt;number = 102 ;

stmcpy((char *)rec[0] -&gt;name / "electronics display module" , MAX_STRIN3) ;

rec[0]-&gt;description = (paragraph) malloc(1000);

strcpy((char *)rec[0] -&gt;description,

"The electronics display module is a liquid crystal display containing\n\
a timer, counter, metronome, and calorie counter.");

rec [] -&gt;price . units = ITEM;

rec[0]-&gt;price.per_unit = 7.00;

rec [0]-&gt;quantity. units = rec [0] -&gt;price. units;

rec [0] -xjuantity. total. number = 432;

rec [0]-&gt;subparts. size = 4; /* cannot be greater than MAX_SUBPARTS */

for(i =0; i &lt; rec [0] -&gt;subparts. size; i++) /* values used are not relevant */

rec[0]-&gt;subparts.numbers[i] = rec[0]-&gt;number + 1 + i;

rec[l] -&gt;number = 203;

strncpy ((char *)rec[l] -&gt;name, "base assembly", MAX_STRHSJG) ;

rec [1] -description = (paragraph) malloc(1000);

strcpy((char *)rec[l] -xiescription,

"The base assembly rests on the floor to stabilize the machine. \n\

The arm and bench assemblies are attached to it.");

rec[l] -&gt;price. units = ITEM;

rec[l]-&gt;price.per_unit = 85.00;

recfl] -xjuantity. units = recfl] -&gt;price. units;

rec [1] -xjuantity. total. number = 1078;

rec [l]-&gt;subparts. size = 5; /* cannot be greater than MAX_SUBPARTS */

forfi =0; i &lt; rec [1] -&gt;subparts. size; i++) /* values used are not relevant */

rectl] -&gt;subparts.numbers[i] = rec [1] -&gt;number + 17 + i;

rec[2]-&gt;number = 444;

strncpy ((char *)rec[2] -&gt;name, "ballast", MAX_STRIN3) ;

rec [2] -xiescription = (paragraph) malloc (1000) ;

strcpy ((char *
) rec [2] -xJescription,

"The ballast is used to counterbalance the force exerted by the user.");

rec[2]-&gt;price.units = KILOGRAM;

rec[2]-&gt;price.per_unit = 1.59;

rec [2] -xjuantity. units = rec[2]-&gt;price.units;

rec [2] -xjuantity. total.weight = 13456.2;

rec[2]-&gt;subparts.size =0; /* cannot be greater than MAX_SUBPARTS */

for(i =0; i &lt; MAX_^UBPARTS ; i++) /* zero out subpart array */

rec [2]-&gt;subparts. numbers [i] = no_subparts[i] ;

/* fill in rest of inventory as "empty" data */

for(i =3; i &lt; MAX_PARTS; i++) {

rec [i]
= &no_part ;

for(j = 0; j &lt; MAX_SUBPARTS; j++)

rec[i]-&gt;subparts. numbers [j] = no_subparts[j] ;

}

puts ("Part numbers in inventory:");

for(i = 0; i &lt; MAX_PARTS; i++)

if (rec[i]-&gt;number &gt; 0)

printf ("%ld\n" , rec [i] -&gt;number) ;

inventory_is_open = 1;

168 Microsoft RFC Programming Guide

Example D-4: The Inventory Implementation (continued)

return;

void close_inventory () /**** close inventory /

/* Undo whatever is done in open_inventory . Free memory and so forth. */

/* (not implemented) */

return;

int read_part_record (number, part_ptr) /** get record for this part number **/

part_num number;

part_record **part_ptr;

int i;

if (inventory_is_open == 0)

open_inventory () ;

*part_ptr = &no_part;

for(i =0; i &lt; MAX_PARTS; i++)

if (rec[i] -&gt;number == number) {

*part_ptr = rec[i];

break;

/* initialize assuming no part */

/* search the inventory */

/* found the part */

if((*part_ptr) -&gt;number &gt; 0)

return (1) ;

else

return () ;

/* not a valid part

int write_part_record(part)

part_record *part;

{

int i;

update inventory for this part number *****

if (inventory_is_open == 0)

open_inventory () ;

for(i =0; i &lt; MAX_PARTS;
if (rec[i]-&gt;number == part-&gt;number) {

rec[i] = part; /* overwrite inventory with new data */
return (1) ;

}

return (0) ;

/* dump the part data to the screen.
static dump_part_record(index)
int index;

{

printf ("number input : %ld part number : %ld\n" , number, rec [index] -&gt;number)

printf ("part name: %s\n" , rec [index] -&gt;name) ;

printf ("description : %s\n" , rec [index] -Rescript ion) ;

printf ("price :%f per %s\n", rec [index] -&gt;price.per_unit,

Appendix D: The Inventory Application 169

Example D-4: The Inventory Implementation (continued)

(rect index] -&gt;price. units == ITEM) ? "item" : "gram");

printf ("quantity:
"

) ;

switchfrec [index] -&gt;quantity. units) {

case ITEM: printf ("%ld items\n", rec[index] -&gt;quantity. total. number) ; break;

case GRAM: printf ("%f grams\n", rec [index] -xjuantity. total.weight) ; break;

case KILOGRAM: printf ("%f kilos\n", rec [index] -xjuantity. total.weight) ;

break;

}

print f (

"

subparts :
"

) ;

for(i =0; i &lt; rec [index] -&gt;subparts.size; i++)

printf ("%ld
"

, rec [index] -&gt;subparts .numbers [i]) ;

printf ("\n") ;

}*/

Example D-5. Server Initialization ofthe Inventory Application

/* FILE NAME: server. c */

tinclude &lt;stdio.h&gt;

#include &lt;stdlib.h&gt;

#include &lt;ctype.h&gt;

#include "inv.h" /* header created by the IDL corrpiler */

#include "status. h" /* contains the CHECK_STATUS macro */

ttdefine STRINGLEN 50

main (argc, argv)

int argc;

char *argv [] ;

{

error_status_t status; /* error status */

/* RFC vectors */

rpc_binding_vector_t *binding_vector; /* binding handle list */

RPC_PROTSEO_VECTOR *protseq_vector; /*protocol sequence list */

char entry_name [STRINGLEN]; /* name service entry name */

char group_name [STRINGLEN]; /* name service group name */

char annotation [STRINGLEN] ; /* annotation for endpoint map */

char hostname [STRINGLEN] ; /* used to store the computer name */

DWDRD hostname_size=STRINGLEN; /* required by GetComputerName */

/************************** REGISTER INTERFACE ***************************/
status =

RpcServerRegisterlf (

inv_vl_0_s_ifspec, /* interface specification (inv.h) */

NULL,

NULL

);

CHECK_STATUS(status, "Can t register interface:", ABORT);

/****************** CREATING SERVER BINDING INFORMATION ******************/
if (argc &gt; 1) {

status =

RpcServerUseProtseq(/* use a protocol sequence */

(unsigned char *)argv[l], /* the input protocol sequence */

RPC_C_PROTSEO_MAX_REQS_DEFAULT, /* the default number of requests*/
NULL /* security descriptor (not reqd)*/

Microsoft RFC Programming Guide

Example D-5: Server Initialization ofthe Inventory Application (continued)

CHECK_STATUS(status, "Can t use this protocol sequence:", ABORT);

}

else {

puts ("You can invoke the server with a protocol sequence argument.");

status =

RpcServerUseAllProtseqs (/* use all protocol sequences

RPC_C_PROTSEQ_MAX_REQS_DEFAULT, /* the default number of requests */

NULL /* security descriptor (not reqd) */

);

CHECK_STATUS (status, "Can t register protocol sequences:", ABORT);

}

status =

RpcServerlnqBindings (/* get binding information for server */

&binding_vector

);

CHECK_STATUS(status, "Can t get binding information:", ABORT);

/*************************** ADVERTISE SERVER ****************************/

strcpy (entry_name ,

"

/ . : / inventory_") ;

GetComputerName(&hostname, &hostname_size) ;

strcat (entry_name, hostname);

status =

RpcNsBindingExport (/* export to a name service database */

RPC_C_NS_SYNTAX_DEFAULT, /* syntax of entry name */

(unsigned char *)entry_name, /* name of entry in name service */

inv_vl_0_s_ifspec, /* interface specification (inv.h) */

binding_vector, /* binding information */

NULL /* no object UUIDs exported */

);

CHECK_STATUS(status, "Can t export to name service database:", RESUME);

ENDPOINTS w***"******* * * **** *** ***
^

strcpy (annotation, "Inventory interface");

status =

RpcEpRegister (/* add endpoints to local endpoint map */

inv_vl_0_s_ifspec, /* interface specification (inv.h) */

binding_vector, /* vector of server binding handles */

NULL, /* no object UUIDs to register */

(unsigned char *) annotation /* annotation supplied (not required) */

);

CHECK_STATUS(status, "Can t add endpoints to local endpoint map:", RESUME);

status =

RpcBindingVectorFree (/* free server binding handles */

&binding_vector

);

CHECK_STATUS(status, "Can t free server binding handles:", RESUME);

open_inventory () ; /* application specific procedure */

/******************* LISTEN FOR REMOTE PROCEDURE CALLS *******************/

RpcTryExcept /* thread exception handling macro */

Appendix D: The Inventory Application _ 171

Example D-5: Server Initialization ofthe Inventory Application (continued)

status =

RpcServerListen (

1, /* process one remote procedure call at a time */

RPC_C_LISTEN_MAX_CALLS_DEFAULT ,

NULL

);

CHECK_STATUS (status, "rpc listen failed:", RESUME);

}

RpcExcept (RpcExceptionCodeO) /* error recovery and cleanup */

{

close_inventory () ; /* application specific procedure */

status =

RpcServerlnqBindings (/* get binding information */

&binding_vector

);

CHECK_STATUS(status, "Can t get binding information:", RESUME);

status =

RpcEpUnregister (/* remove endpoints from local endpoint map */

inv_vl_0_s_ifspec, /* interface specification (inv.h) */

binding_vector, /* vector of server binding handles */

NULL /* no object UUIDs */

);

CHECK_STATUS(status, "Can t remove endpoints from endpoint map:", RESUME);

status =

RpcBindingVectorFree (/* free server binding handles */

&binding_vector

);

CHECK_STATUS(status, "Can t free server binding handles:", RESUME);

puts (

" \nServer quit !

"

) ;

}

RpcEndExcept ;

} /* END SERVER INITIALIZATION */

/*** MIDL_user_allocate / MIDL_user_free ***/

void * __RPC_API

MIDL_user_allocate
"

size_t size;

{

unsigned char *
ptr;

ptr = malloc (size) ;

return ((void *
) ptr

void _RPC_API
MIDL_user_free

172 Microsoft RFC Programming Guide

Example D-5: Server Initialization of the Inventory Application (continued)

(

obj ect

)

void * object;

{

free (object) ;

}

Example D-6: The Automatic Client File of the Inventory Application

/* FILE NAME: client. c */

/******************** client of the inventory application *******************/

#include &lt;stdio.h&gt;

#include &lt;stdlib.h&gt;

#include "inv.h" /* header file created by the IDL compiler */

char instructions [] =
"Type character followed by appropriate argument (s) .\n\

Is part available? a [part_number] \n\

What is part name? n [part_number] \n\

Get part description. d [part_number] \n\

What is part price? p [part_number] \n\

What is part quantity? q [part_number] \n\

What are subparts of this part? s [part_number] \n\

Order part. o part_number quantity\n\
REDISPLAY r\n\

EXIT e\n" ;

main()

{

part_record part; /* structure for all data about a part */

part_list *subparts; /* pointer to parts list data structure */

account_num account =1234; /* a user account number */

int i, num_args, done = 0;

long result;

char input [100] , selection [20], quantity [20] ;

puts (instructions) ;

part. number = 0;

strcpy (quantity ,

" "

) ;

while Udone) { /* user makes selections and each is processed */

printf (

" Selection :
"

) ; fflush (stdout) ; gets (input) ;

num_args = sscanf (input, "%s%ld%s", selection, & (part. number), quantity);

switch (tolower (selection [0])) {

case a : if (is_part_available (part. number))

puts ("available : Yes "

) ;

else

puts (

" available : No "

) ;

break;
case n : whatis_part_name(part. number, part. name) ;

printf ("name: %s\n", part. name);

break;
case d : part . description = get_part_description (part. number);

printf ("description: \n%s\n" , part . description) ;

Appendix D: The Inventory Application 173

Example D-6: The Automatic Client File of the Inventory Application (continued)

if (part. description != NULL)

free(part. description); /* free memory allocated */

break;

case p : whatis_part_price (part. number, & (part. price)) ;

printf ("price :%10.2f\n", part. price. per_unit) ;

break;

case q : whatis_part_quantity (part. number, &(part. quantity));
if (part, quantity, units == ITEM)

printf ("total items :%ld\n", part. quantity. total. number);

else if (part. quantity. units == GRAM)

printf ("total grams:%10.2f\n" , part. quantity. total.weight);

else if (part. quantity. units == KILOGRAM)

printf ("total kilos :%10.2f\n", part. quantity. total.weight) ;

break;

case s : whatare_subparts (part. number, &subparts) ;

for(i =0; i &lt; subparts-&gt;size; i++)

printf (

" %ld "

, subparts-&gt;numbers [i]) ;

printf ("\ntotal number of subparts:%ld\n" , subparts-&gt;size) ;

free(subparts) ; /* free memory for conformant struct */

break;

case o : if(num_args &lt; 3) {

puts ("Not enough arguments");

break;

/* Assume KILOGRAM units and assign quantity input */

part. quantity. units = KILOGRAM;

part. quantity. total.weight = atof (quantity) ;

result = order_part (part. number, & (part. quant ity), account);
if (result &gt; 0) {

if (part. quantity. units == ITEM)

printf ("order :%ld items\n", part. quantity. total. number);

else if (part. quantity. units == GRAM)

printf ("order : %10 . 2f grams\n" , part . quantity . total .weight) ,

else if (part. quantity. units == KILOGRAM)

printf ("order :%10.2f kilosYn", part. quantity. total. weight) ,

else { /* error cases */

if (result == -1) puts ("Invalid part number");

else if (result == -2) puts ("Invalid quantity");

else if (result == -3) puts ("Invalid account number");

break;

case r : /* redisplay selection or bad input displays instructions */

default : puts (instructions) ; break ;

case e : done = 1; break;

} /*end case */

} /* end while */

} /* end mainO */

/****

/***

/***&lt;

MIDL_user_allocate / MIDL_user_free

****/
*** /

****/

U4 Microsoft RFC Programming Guide

Example D-6: The Automatic Client File ofthe Inventory Application (continued)

void * _RPC_API
MIDL_user_allocate

size_t size;

{

unsigned char *
ptr;

ptr = malloc (size) ;

return ((void *)ptr);

void __RPC_API

MIDL_user_free

(

obj ect

)

void * object;

{

free (object) ;

}

Example D- 7: The Makefilefor the Implicit Client

FILE NAME: Makefile

Makefile for the inventory application implicit client

#

definitions for this make file

#

APPL=inv

IDLCMD=midl

NTRPCLIBS=rpcrt4 . lib rpcns4.1ib libcmt.lib kerne!32.1ib

! include &lt;ntwin32.mak&gt;

NT c flags

cflags = -c -WO -Gz -D_X86_=1 -DWIN32 -DMT /I. /I., /nologo

NT nmake inference rules

$(cc) $(cdebug) $ (cflags) $(cvarsmt) $&lt;

$(cvtotnf)

#

COMPLETE BUILD of the application
#

all: lclient.exe interface client.exe

#

INTERFACE BUILD

#

interface : $ (APPL) . h $ (APPL) _c . obj

#

LOCAL BUILD of the client application to test locally

Appendix D: The Inventory Application 775

Example D- 7: The Makefilefor the Implicit Client (continued)

#

local: lclient.exe

lclient.exe: Iclient.obj Imanager. obj invntry.obj

$(link) $(linkdebug) $(conflags) -out: lclient.exe -map:lclient.map \

Iclient.obj Imanager.obj invntry.obj \

$(NTRPCLIBS)

#

CLIENT BUILD

#

client : client . exe

client.exe: client. obj getbind.obj intbind.obj $ (APPL)_c.obj
$(link) $(linkdebug) $(conflags) -out : client. exe -map: client.map \

client. obj getbind.obj intbind.obj $ (APPL)_c.obj \

$(NTRPCLIBS)

client and server sources

client. obj: client. c $(APPL).h

getbind . obj : getbind . c

intbind . obj : intbind . c

Local client sources

invntry . obj : . . \ invntry . c

$(cc) $(cdebug) $(cflags) $(cvarsmt) /DLOCAL /I. /I.. \

/Foinvntry . obj . . \ invntry . c

Iclient.obj: client. c $(APPL).h

$(cc) $(cdebug) $(cflags) $(cvarsmt) /DLOCAL /I. /I.. \

/Folclient.obj client. c

Imanager . obj : . . \manager . c $ (APPL) . h

$(cc) $(cdebug) $(cflags) $(cvarsmt) /DLOCAL /I. /I.. \

/FoImanager . obj . . \manager . c

client stubs

$(APPL)_c. obj: $(APPL)_c.c

$(APPL)_x. obj: $(APPL)_x.c

generate stubs, auxiliary and header file from the IDL file

$(APPL).h $(APPL)_i.acf $(APPL)_c.c $(APPL)_x.c : . . \$ (APPL) . idl

$(IDLCMD) ..\$ (APPL) .idl /acf $ (APPL)_i.acf

clean up for fresh build
clean:

del $(APPL)_?.c
del *.obj
del $(APPL) .h

del *.map
del *.pdb

clobber : clean

if exist client.exe del client.exe
if exist lclient.exe del lclient.exe
if exist server.exe del server.exe

176 Microsoft RFC Programming Guide

Example D-8: An ACF Filefor Implicit Binding

I* FILE NAME: inventory .acf (implicit version)*/

/* This Attribute Configuration File is used in conjunction with the */

/* associated .idl file (inventory . idl) when the IDL compiler is invoked. */

implicit_handle(handle_t global_binding_h) /* implicit binding method */

]

interface inv /* The interface name must match the .idl file. */

Example D-9: The Implicit Client of the Inventory Application

I* FILE NAME: client. c */

/******* Client of the inventory application with implicit method ***********/

#include &lt;stdio.h&gt;

#include &lt;stdlib.h&gt;

#include "inv.h" /* header file created by the IDL compiler */

#include "

. . \status .h"

char instructions [] =
"Type character followed by appropriate argument (s). \n\

Is part available?

What is part name?

Get part description.
What is part price?
What is part quantity?
What are subparts of this part?
Order part.

REDISPLAY

EXIT

[part_number] \n\

[part_number] \n\

[part_number] \n\

[part_number] \n\

[part_number] \n\

[part_number] \n\

o part_number quantity\n\
r\n\

e\n" ;

main()

part_record part;

part_list *subparts;

account_num account = 1234;

unsigned long status;

/* structure for all data about a part */

/* pointer to parts list data structure */

/* a user account number */

/* error status */

int i, num_args, done = 0;

long result;

char input [100] , selection [20], quantity [20] ;

puts (instructions) ;

part. number = 0;

strcpy (quantity,
" "

) ;

#ifndef LOCAL

do_import_binding (

#endif

/* find server in name service database */

&global_binding_h) ;

status = RpcBindingReset (global_binding_h) ;

CHECK_STATUS(status, "Can t reset binding handle", ABORT);

while Udone) { /* user makes selections and each is processed */

printf (

" Selection :
"

) ; fflush (stdout) ; gets (input) ;

num_args = sscanf (input, "%s%ld%s", selection, & (part. number), quantity),

switch (tolower (selection [0])) {

Appendix D: The Inventory Application 177

Example D-9: The Implicit Client ofthe Inventory Application (continued)

case a : if (is_part_available (part. number))

puts (

" available : Yes "

) ;

else

puts (

" available : No "

) ;

break;

case n : whatis_part_name(part. number, part. name);

printf ("name: %s\n", part. name);

break;

case d : part. description = get_part_description (part .number) ;

printf ("description: \n%s\n" , part .description) ;

if (part. description != NULL)

free (part. description) ; /* free memory allocated */

break;

case p : whatis_part_price (part. number, & (part. price)) ;

printf ("price :%10.2f\n", part.price. per_unit) ,-

break;

case q : whatis_part_quantity(part, number, & (part, quantity));

if (part, quantity, units == ITEM)

printf ("total items:%ld\n", part. quantity. total. number);

else if (part. quantity. units == GRAM)

printf ("total grams:%10.2f \n" , part. quantity. total.weight);

else if (part. quantity. units == KILOGRAM)

printf ("total kilos : %10. 2f \n" , part. quantity. total. weight) ;

break;

case s : whatare_subparts (part. number, &subparts) ;

for(i = 0; i &lt; subparts-&gt;size; i++)

printf (

" %ld "

, subparts-&gt;numbers [i]) ;

printf ("\ntotal number of subparts:%ld\n" , subparts-&gt;size) ;

free(subparts) ; /* free memory for conformant struct */

break;

case o : if(num_args &lt; 3) {

puts ("Not enough arguments");

break;

/* Assume KILOGRAM units and assign quantity input */

part, quantity, units = KILOGRAM;

part. quantity. total.weight = atof (quantity) ;

result = order_part (part. number, & (part. quantity), account);
if (result &gt; 0) {

If (part. quantity. units == ITEM)

printf ("order : %ld items\n" , part . quantity . total . number) ;

else if (part. quantity.units -= GRAM)

printf ("order :%10.2f grams\n ", part. quantity .total.weight);

else if (part. quantity. units == KILOGRAM)

printf ("order :%10.2f kilos\n", part. quantity. total.weight);

else { /* error cases */

if (result == -1) puts ("Invalid part number"),-

else if (result == -2) puts ("Invalid quantity");

else if (result == -3) puts ("Invalid account number");

break;

case r : /* redisplay selection or bad input displays instructions */

Microsoft RFC Programming Guide

Example D-9: The Implicit Client of the Inventory Application (continued)

default: puts (instructions); break;

case e : done = 1; break;

} /*end case */

} /* end while */

} /* end main() */

^
*** /

/*** MIDL_user_allocate / MIDL_user_free

/***/

void * __RPC_API
MIDL user_allocate

size_t size;

{

unsigned char *
ptr;

ptr = malloc (size) ;

return ((void *)ptr);

void __RPC_API

MIDL_user_free

(

obj ect

)

void * object;

{

free (object) ;

Example D-10. The do_import_binding Procedure

/* FILE NAME: getbind.c */

/* Get binding from name service database. */

#include &lt;stdio.h&gt;

#include "inv.h"

#include "

. . \status .h"

void do_import_binding(entry_name, binding_h)

char entry_name [] ; /* entry name to begin search */

rpc_binding_handle_t *binding_h; /* a binding handle */

{

unsigned long status; /* error status */

RPC_NS_HANDLE import_context ; /* required to iirport */

char protseq[20]; /* protocol sequence */

status =

RpcNsBindinglmportBegin (/* set context to import binding handles */

RPC_C_NS_SYNTAX_DEFAULT, /* use default syntax */

(unsigned char *)entry_name, /* begin search with this name */

inv_vl_0_c_ifspec, /* interface specification (inv.h) */

NULL, /* no optional object UUID required */

Appendix D: The Inventory Application 775?

Example D- 10: The do_import_binding Procedure (continued)

&import_context /* import context obtained */

);

CHECK_STATUS (status, "Can t begin import:", RESUME);

while (1) {

status =

RpcNsBindinglmportNext (/* import a binding handle */

import_context , /* context from rpc_ns_binding_import_begin */

binding_h /* a binding handle is obtained */

);

if (status != RPC_S_OK) {

CHECK_STATUS (status , "Can t import a binding handle:", RESUME);
break;

}

/** application specific selection criteria (by protocol sequence) * */

do_interpret_binding (*binding_h ,protseq) ;

if (strcmp(protseq, "ncacn_ip_tcp") == 0) /*select connection protocol*/
break;

else {

status =

RpcBindingFree (/* free binding information not selected */

binding_h
);

CHECK_STATUS(status, "Can t free binding information:", RESUME);
}

} /*end while */

status =

RpcNsBindinglnportDone (/* done with import context */

&import_context /* obtained from rpc_ns_binding_import_begin */

);

return;

}

Example D-ll. The do_interpret_binding Procedure

/* FILE NAME: intbind.c */

/* Interpret binding information and return the protocol sequence. */
#include &lt;stdio.h&gt;

#include
&lt;rpc.h&gt;

#include "

. . \status .h" .

void do_interpret_binding(binding, protocol_seq)
rpc_binding_handle_t binding; /* binding handle to interpret */
cnar *protocol_seq; /* protocol sequence to obtain */
{

unsigned long status; /* error status */

unsigned char *string_binding; /* string of binding information */

unsigned char *protseq; /* binding component of interest */

status =

RpcBindingToStringBinding (/* convert binding information to string */

binding, /* the binding handle to convert */

&string_binding /* the string of binding data */

Microsoft RFC Programming Guide

Example D- 11: The do_interpret_binding Procedure (continued)

);

CHECK_STATUS(status, "Can t get string binding :", RESUME);

status =

RpcStringBindingParse (/* get components of string binding */

string_binding, /* the string of binding data */

NULL, /* an object UUID string is not obtained */

&protseq, /* a protocol sequence string IS obtained */

NULL, /* a network address string is not obtained */

NULL, /* an endpoint string is not obtained */

NULL /* a network options string is not obtained */

);

CHECK_STATUS (status, "Can t parse string binding:", RESUME);

strcpy (protocol_seq, (char *)protseq) ;

/* free all strings allocated by other runtime routines */

status = RpcStringFree(&string_binding) ;

status = RpcStringFreef&protseq);

return;

Example D- 12: The Makefilefor the Explicit Client

FILE NAME: Makefile

Makefile for the inventory application explicit client

#

definitions for this make file

#

APPL=inv

IDLCMD=midl

NTRPCLIBS=rpcrt4.1ib rpcns4.1ib libcmt.lib kerne!32.1ib

! include &lt;ntwin32 .mak&gt;

NT c flags

cflags = -c -WO -Gz -D_X86_=1 -DWIN32 -DMT /nologo

NT nmake inference rules

$(cc) $(cdebug) $ (cflags) $(cvarsmt) /I. /I.. $&lt;

$(cvtomf)

#

COMPLETE BUILD of the application
#

all: local interface client server

#

INTERFACE BUILD

#

interface: $(APPL) .h $ (APPL)_c.obj $ (APPL)_s.obj $ (APPL)_x.obj

#

LOCAL BUILD of the client application to test locally
#

local : Iclient . exe

Appendix D: The Inventory Application J81

Example D-12-. The Makefilefor the Explicit Client (continued)

lclient.exe: Iclient.obj manager. obj invntry.obj
$(link) $(linkdebug) $(conflags) -out: lclient.exe -map:lclient.map \

Iclient.obj manager. obj invntry.obj \

$ (NTRPCLIBS)

#

CLIENT BUILD

#

client : client . exe

client.exe: client. obj getbind.obj intbind.obj $ (APPL)_c.obj $ (APPL)_x.obj
$(link) $(linkdebug) $(conflags) -out: client. exe -map: client.map \

client. obj getbind.obj intbind.obj $(APPL)_c.obj $ (APPL)_x.obj \

$ (NTRPCLIBS)

#

SERVER BUILD

#

server : server . exe

server.exe: server. obj manager. obj invntry.obj $ (APPL)_s.obj $ (APPL)_x.obj
$(link) $(linkdebug) $(conflags) -out : server . exe -map: server.map \

server. obj manager. obj invntry.obj $ (APPL)_s.obj $ (APPL)_x.obj\
$ (NTRPCLIBS)

client and server sources

client. obj: client. c $ (APPL) .h

manager. obj: manager. c $(APPL).h
server . obj : . . \server . c $ (APPL) . h

$(cc) $(cdebug) $(cflags) $(cvarsmt) /I. /I.. \

/Foserver . obj . . \server . c

getbind.obj : . . \implicit\getbind.c

$(cc) $(cdebug) $(cflags) $(cvarsmt) /I. /I.. \

/Fogetbind. obj . . \implicit\getbind. c

intbind.obj : . . \implicit\intbind.c

$(cc) $(cdebug) $(cflags) $(cvarsmt) /I. /I.. \

/Fointbind.obj . .\implicit\intbind.c
invntry . obj : . . \ invntry . c

$(cc) $(cdebug) $(cflags) $(cvarsmt) /I. /I.. \

/Foinvntry . obj . . \ invntry . c

Local client sources

Iclient.obj: client-.c $(APPL).h

$(cc) $(cdebug) $(cflags) $(cvarsmt) /DLOCAL /I. /I.. \

/Folclient.obj client. c

client stubs

$(APPL) _c. obj: $(APPL)_c.c
$(APPL)_x. obj: $(APPL)_x.c

compile the server stub

$(APPL)_s.obj : $(APPL)_s.c

generate stubs, auxiliary and header file from the IDL file
$(APPL).h $(APPL)_c.c $(APPL)_x.c $(APPL)_s.c: $(APPL).idl

$(IDLCMD) $(APPL) .idl

Microsoft RFC Programming Guide

Example D- 12: The Makefilefor the Explicit Client (continued)

clean up for fresh build

clean:

del $(APPL)_?.c

del *
. obj

del $(APPL) .h

del * .map

del *.pdb

clobber: clean

if exist client.exe del client.exe

if exist lclient.exe del lclient.exe

if exist server.exe del server.exe

Example D- 13: The MIDI File, Explicit Binding

/* FILE NAME: inv.idl */

/* brackets enclose attributes */

uuid(cbb7c850-0568-llce-b719-08002bl85ad7), /* universal unique identifier */

version(l.O) ,
/* version of this interface */

pointer_default (unique) /* pointer default

] interface inv /* interface name */

{

const long MAX_STRING = 30; /* constant for string size */

typedef long part_num; /* inventory part number */

typedef [string] char part_name [MAX_STRING+1] ; /* name of part */

typedef [string, unique] char *paragraph; /* description of part */

typedef enum {

ITEM, GRAM, KILOGRAM

} part_units; /* units of measurement */

typedef struct part_price { /* price of part */

part_units units;

double per_unit;

} part_price;

typedef union switch (part_units units) total { /* quantity of part */

case ITEM: long int number;

case GRAM:

case KILOGRAM: double weight;

} part_quantity;

typedef struct part_list{ /* list of part numbers */

long size; /* number of parts in array */

[size_is(size)] part_num numbers [*]; /* conformant array of parts */

} part_list;

typedef struct part_record { /* data for each part */

part_num number ;

part_name name;

paragraph description;

part_price price ;

part_quantity quantity;

Appendix D: The Inventory Application 183

Example D- 13: The MIDI File, Explicit Binding (continued)

subparts;part_list

} part_record;

typedef long account_num; /* user account number */

/************************ procedure Declarations *************************

boolean is_part_available(/* return true if in inventory */

[in] handle_t binding_h, /* binding handle for explicit client */

[in] part_num number /* input part number */

void whatis_part_name (

[in] handle_t binding_h,

[in] part_num number,

[in, out] part_name name

/* get part name from inventory */

/* binding handle for explicit client */

/* input part number */

/* output part name */

paragraph get_partk_description (

[in] handle_t binding_h,

[in] part_num number

/* return a pointer to a string */

binding handle for explicit client */

void whatis_part_price (

[in] handle_t binding_h,
[in] part_num number,

[out] part_price *price

/* get part price from inventory */

/* binding handle for explicit client */

void whatis_part_quantity (

[in] handle_t binding_h,
[in] part_num number,

[out] part_quantity *quantity

/* get part quantity from inventory */

/* binding handle for explicit client */

void whatare_subparts (

[in] handle_t binding_h,
[in] part_num number,

[out] part_list **subparts

/* get list of subpart numbers */

/* binding handle for explicit client */

/* structure containing the array */

/* Order part from inventory with part number, quantity desired, and
/* account number. If inventory does not have enough, output lesser
/* quantity ordered. Return values: l=ordered OK,
/* -l=invalid part, -2=invalid quantity, -3=invalid account.

long order_part(/* order part from inventory, return OK or error code */
[in] handle_t binding_h, /* binding handle for explicit client */
[in] part_num number,

[in, out] part_quantity *quantity, /* quantity ordered */
[in] account_num account

} /* end of interface definition */

Microsoft RPC Programming Guide

Example D- 14: Remote Procedures, Explicit Binding

/* FILE NAME: manager. c */

/** Implementation of the remote procedures for the inventory application. **/

#include &lt;stdio.h&gt;

#include &lt;stdlib.h&gt;

#include "inv.h"

boolean is_part_available(binding_h, number)

handle_t binding_h; /* declare a binding handle */

part_num number;

part_record *part; /* a pointer to a part record */

int found;

found = read_part_record(number, &part) ;

if (found)

return (TRUE) ;

else

return (FALSE) ;

void whatis_part_name(binding_h, number, name)

handle_t binding_h; /* declare a binding handle */

part_num number;

part_name name;

{

part_record *part; /* a pointer to a part record */

read_part_record (number, &part) ;

strncpy((char *)name, (char *)part-&gt;name, MAX_STRING) ;

return;

paragraph get_part_description(binding_h, number)

handle_t binding_h; /* declare a binding handle */

part_num number ;

part_record *part; /* a pointer to a part record */

paragraph description;

int size;

if(read_part_record(number, &part)) {

/* Allocated data that is returned to the client must be allocated */

/* with the MIDL_user_allocate stub support routine. */

size = strlen((char *)part-&gt;description) + 1;

description = (paragraph) MIDL_user_allocate((unsigned) size) ;

strcpy((char *) description, (char *)part-&gt;description) ;

else

description - NULL;

return (description) ;

}

void whatis_part_price(binding_h, number, price)

handle_t binding_h; /* declare a binding handle */

Appendix D: The Inventory Application 185

Example D- 14: Remote Procedures, Explicit Binding (continued)

part_num number;

partjprice *price;

{

part_record *part; /* a pointer to a part record */

read_part_record (number , &part) ;

price-&gt;units =
part-&gt;price. units;

price-&gt;per_unit = part-&gt;price.per_unit;

return;

void whatis_part_quantity (binding_h, number, quantity)
handle_t binding_h; /* declare a binding handle */

part_num number;

part_quantity *quantity;

{

part_record *part; /* a pointer to a part record */

read_part_record (number , &part) ;

quantity-&gt;units = part-xjuantity. units;
switch (quantity- &gt;units) {

case ITEM: quantity-&gt;total. number = part-xjuantity. total. number;
break;

case KILOGRAM:

case GRAM: quantity- &gt;total.weight = part-xjuantity. total. weight;
break;

}

return;

void whatare_subparts (binding_h, number, subpart_ptr)
handle_t binding_h; /* declare a binding handle */

part_num number;

part_list **subpart_ptr;

{

part_record *part; /* pointer to a part record */
int i;

int size;

read_part_record(number, &part) ;

/* Allocated data that is output to the client must be allocated with */
/* the MIDL_user_allocate stub support routine. Allocate for a */
/* part_list struct plus the array of subpart numbers. Remember the */
/* part_list struct already has an array with one element, hence the -1. */
size = sizeof (part_list) + (sizeof (part_num) *

(part-&gt;subparts.size-l)) ;

*subpart_ptr = (part_list *)MIDL_user_allocate ((unsigned) size) ;

/* fill in the values */

(*subpart_ptr)-&gt;size = part-&gt;subparts.size;

for(i = 0; i &lt; (*subpart_ptr) -&gt;size; i++)

(*subpart_ptr) -&gt;numbers[i] = part -&gt;subparts. numbers [i] ;

return;

Microsoft RFC Programming Guide

Example D- 14: Remote Procedures, Explicit Binding (continued)

long int order_part (binding_h, number, quantity, account)

handle_t binding_h; /* declare a binding handle */

part_num number;

part_quantity *quantity;

account_num account ;

{

part_record *part; /* pointer to a part record */

long error = 1; /* assume no error to start */

/* Test for valid input */

if (!read_part_record (number, &part)) /* invalid part number input */

error = -1;

else if (quantity-&gt;units
== ITEM) /* invalid quantity input

error =
(quant ity-&gt;total. number &lt;= 0) ? -2 : error;

else if (quantity-&gt;units
== GRAM I I quantity-&gt;units

== KILOGRAM)

error = (quantity-&gt;total.weight &lt;= 0.0) ? -2 : error;

/* else if () invalid account, not implemented */

/* error = -3; */

if (error &lt; 0)

return (error) ;

/* convert input quantity & units if units are not correct for part */

if (quantity- &gt;units != part-xguantity. units) {

if (part-xjuantity. units == ITEM) /* convert weight to items */

quant ity-&gt;total. number = (long int }quantity-&gt;total.weight;

else if (quantity- &gt;units == ITEM) /* convert items to weight */

quantity- &gt;total .weight = (long float) quantity- &gt;total. number;

else if (quantity- &gt;units == GRAM && part-xguantity. units == KILOGRAM)

quant ity-&gt;total.weight /= 1000.0; /* convert grams to kilograms */

else if (quantity-&gt;units == KILOGRAM && part-xguantity. units == GRAM)

quantity- &gt;total. weight *= 1000.0; /* convert kilograms to grams */

quantity-&gt;units = part-xguantity. units;

/* check if enough in inventory for this order */

switch (part-xguantity. units) {

case ITEM:

if (part-xguantity. total. number &gt; quantity- &gt;total . number)

/* reduce quantity in inventory by amount ordered */

part-xguantity. total. number -= quantity- &gt;total . number;

else {

/* order all available and reduce quantity in inventory to */

quant ity-&gt;total. number = part-xguantity. total. number;

part-xguantity. total. number = 0;

}

break;

case KILOGRAM:

case GRAM:

if (part-xguantity. total.weight &gt; quantity- &gt;total . weight)

/* reduce quantity in inventory by amount ordered */

part-xjuantity. total. weight -= quantity- &gt;total.weight;

else {

/* order all available and reduce quantity in inventory to 0.0 */

quantity-&gt;total .weight = part-xjuantity . total .weight ;

Appendix D: The Inventory Application 187

Example D- 14: Remote Procedures, Explicit Binding (continued)

part-xjuantity. total,weight = 0.0;

}

break;

write_part_record(part) ; /* update inventory */

return(l); /* order ok */

Example D- 15: The Explicit Client ofthe Inventory Application

/* FILE NAME: client. c */

/******* Client of the inventory application with explicit method ***********/
#include &lt;stdio.h&gt;

#include &lt;stdlib.h&gt;

#include "inv.h" /* header file created by the IDL compiler */

#include " status . h "

char instructions [] =
"Type character followed by appropriate argument (s). \n\

Is part available? a

What is part name? n
Get part description. d
What is part price? p
What is part quantity? q
What are subparts of this part? s

Order part. o

REDISPLAY r\n\
EXIT e\n" ;

[part_number] \n\

[part_number] \n\

[part_number] \n\

[part_number] \n\

[part_number] \n\

[part_number] \n\

part_number quantity\n\

main()

part_record part;

part_list *subparts;

account_num account = 1234;

unsigned long status;

handle_t binding_h;

/* structure for all data about a part */

/* pointer to parts list data structure */

/* a user account number */

/* error status */

/* declare a binding handle */

int i, num_args, done = 0;

long result;

char input [100] , . selection[20] , quantity [20]

puts (instructions) ;

part. number = 0;

strcpy (quantity,
" "

) ;

Mfndef LOCAL

do_import_binding (

"

#endif

/* find server in name service database */

&binding_h) ;

status = RpcBindingReset (binding_h) ;

CHECK_STATUS(status, "Can t reset binding handle", ABORT);

while (! done) {

printf ("Selection:

/* user makes selections and each is processed */

fflush (stdout) ; gets (input) ;

188 Microsoft RFC Programming Guide

Example D- 15: The Explicit Client ofthe Inventory Application (continued)

num_args = sscanf (input, "%s%ld%s", selection, & (part. number), quantity);

switch (tolower (selection [0])) {

case a : if (is_part_available(binding_h, part. number))

puts ("available : Yes "

) ;

else

puts (

" available : No "

) ;

break;

case n : whatis_part_name(binding_h, part. number, part. name);

printf ("name: %s\n" , part. name);

break;

case d : part. description =

get_part_description (binding_h, part .number) ;

printf ("description: \n%s\n" , part .description) ;

if (part. description ! = NULL)

free (part. description) ; /* free memory allocated */

break;

case p : whatis_part_price(binding_h, part. number, & (part. price)) ;

printf ("price :%10. 2 f\n", part.price.per_unit) ;

break;

case q : whatis_part_quantity (binding_h, part. number, &(part, quantity)) ;

if (part. quantity. units == ITEM)

print f (

" total iterns : %ld\n "

, part . quantity . total . number) ;

else if (part. quantity. units == GRAM)

printf ("total grams : %10. 2f \n" , part. quantity. total.weight);

else if (part. quantity. units == KILOGRAM)

printf ("total kilos :%10.2f\n", part. quantity. total.weight) ;

break;

case s : whatare_subparts (binding_h, part. number, &subparts) ;

for(i =0; i &lt; subparts-&gt;size; i++)

printf ("%ld
"

, subparts-&gt;numbers [i]) ;

printf ("\ntotal number of subparts:%ld\n" , subparts-&gt;size) ;

free(subparts) ; /* free memory for conformant struct */

break;

case o : if (num_args &lt; 3) {

puts ("Not enough arguments");

break;

/* Assume KILOGRAM units and assign quantity input */

part. quantity. units = KILOGRAM;

part. quantity. total.weight = atof (quantity) ;

result =

order_part (binding_h, part. number, & (part. quantity), account)
if (result &gt; 0) {

if (part. quantity. units == ITEM)

printf ("order :%ld items\n ", part. quantity. total. number);

else if (part. quantity. units == GRAM)

printf ("order : %10 . 2 f grams \n" , part . quantity . total .weight) ;

else if (part. quantity. units == KILOGRAM)
printf ("order :%10.2f kilos\n", part. quantity. total.weight);

else { /* error cases */

if (result == -1) puts ("Invalid part number");

Appendix D: The Inventory Application 289

Example D- 15: The Explicit Client of the Inventory Application (continued)

else if (result == -2) puts ("Invalid quantity");

else if (result == -3) puts ("Invalid account number");

}

break;
case r : /* redisplay selection or bad input displays instructions */
default: puts (instructions); break;
case e : done = 1; break;

} /*end case */

} /* end While */

} /* end main() */

^** ***/

/*** MIDL_user_allocate / MIDL_user_free ***/
/***************** **********************^*^^^^^^^^^^^^^^.fc

.
fc

.
fr ^.Ar

.
fr

.
fr ^^,.fc

.

fr
.
fr

.
fr^.

void * RPC API

MIDL_user_allocate

size_t size;

unsigned char *
ptr;

ptr = malloc (size) ;

return ((void *)ptr

}

void __RPC_API

MIDL_user_free

obj ect

void *
object;

free (object) ;

In this Appendix:
How to Run the

Application

Application Files

The Rflle Application

The remote file client (rfile.c) copies ASCII data from the client to the server. The
source can be a data file or the standard input of the client. The target on the

server system is either a file or the server standard output. The rfile application
demonstrates some advanced features of RFC application development including:

Using a context handle with a context rundown procedure.

Using the explicit binding method with a primitive binding handle.

Finding a server using strings of binding information.

How to Run the Application
To run the server of the distributed application, type the following:

C:\SERVER&gt; nmake server

C:\SERVER&gt; server

To run the client of the distributed application to transfer ASCII data, use an ASCII

text file as input and a new data file on the server host as output. Type the follow

ing:

C:\CLIENT&gt; nmake client

C:\CLIENT&gt; client input_file host output_file

You can also send ASCII data from the client keyboard (stdin) by using the follow

ing client command:

C:\CLIENT&gt; client "" host output_file
Using stdin. Type input:
data

data

191

Microsoft RFC Programming Guide

Application Files

Makefile contains descriptions of how the application is compiled. Some files

depend on the header file status.h from the arithmetic application for the

CHECK_STATUS macro. See Example E-l.

rfile.idl contains descriptions of the data types and procedures for the interface.

See Example E-2.

client, c interprets the user input by calling the application-specific procedure

get_args. A binding handle representing the information about a client-server rela

tionship is obtained from strings of binding information. The remote procedure

remote_open is called to open the server target file. A buffer is allocated for a con

formant array. The application loops, reading source data and sending the data to

the target with a remote procedure call to remote_send. Finally, the remote proce

dure remote_close is called to close the target file. See Example E-3.

getargs.c interprets the user input to obtain the name of a local client ASCII file of

source data, the server host to use, and the server target file. See Example E-4.

strbind.c contains the do_string_binding procedure that shows how to find a

server from strings of binding information. A host name or network address is

input, and then combined with a generated protocol sequence to create a valid

binding handle, which is returned as a parameter. See Example E-5.

crndwn.c is the implementation of a context rundown procedure. The server stub

calls this procedure automatically if communication breaks between a client and

the server which is maintaining context for the client. For this application, the con

text is a file handle of a server data file. This context rundown procedure closes

the file. See Example E-6.

manager.c is the implementation of the remote procedures defined in the rfile
interface. See Example E-7.

sewer. c initializes the server with a series of runtime calls prior to servicing remote

procedure calls. In this application, all available protocol sequences are registered.

The server is not advertised in a name service database. The server s dynamic end-

points are added to the server s local endpoint map. A client finds this server by
constructing a string binding containing a protocol sequence and the host name or

network address. See Example E-8.

Example E-l: The Makefilefor the Remote File Application

FILE NAME: Makefile

Makefile for the remote file application
#

definitions for this make file

#

APPL=rfile

IDLCMD=midl

NTRPCLIBS=rpcrt4 . lib rpcns4.1ib libcmt.lib kerne!32.1ib

Appendix E: The Rflle Application

Example E- 1: The Makefilefor the Remote File Application (continued)

Include Windows NT macros

! include &lt;ntwin32 .mak&gt;

NT c flags

cflags = -c -WO -Gz -D_X86_=1 -DWIN32 -DMT /nologo

NT nmake inference rules

$(cc) $(cdebug) $ (cflags) $(cvarsmt) $&lt;

S(cvtocnf)

#

COMPLETE BUILD of the application
#

all: interface client.exe server.exe

#

INTERFACE BUILD

#

interface: $ (APPL) .h $ (APPL)_c.obj $ (APPL)_s.obj $ (APPL)_x.obj

#

CLIENT BUILD

#

client : client . exe

client.exe: client. obj getargs.obj strbind.obj $ (APPL)_c.obj $ (APPL)_x.obj
$(link) $(linkdebug) $(conflags) -out: client. exe -map: client .map \

client. obj getargs.obj strbind.obj $ (APPL)_c.obj $ (APPL)_x.obj \

$(NTRPCLIBS)

#

SERVER BUILD

#

server : server . exe

server.exe: server. obj manager. obj crndwn.obj $ (APPL) _s. obj $ (APPL) _x. obj
$(link) $(linkdebug) $(conflags) -out : server . exe -map: server.map \

server. obj manager. obj crndwn.obj $ (APPL) _s. obj $ (APPL) _x. obj \

$(NTRPCLIBS)

client and server sources

client. obj: client. c $(APPL).h

manager . obj : manager . c $ (APPL) . h
server . obj : server . c $ (APPL) . h

crndwn.obj: crndwn.c $(APPL).h

getargs . obj : getargs . c

strbind . obj : strbind . c

Local client sources

Iclient.obj: client. c $(APPL).h

$(cc) $(cdebug) $ (cflags) $(cvarsmt) /DLOCAL \

/Foldient. obj client. c

Imanager . obj : manager . c $ (APPL) . h

$(cc) $(cdebug) $ (cflags) $(cvarsmt) /DLOCAL \

/Folmanager . obj manager. c

194 Microsoft RFC Programming Guide

Example E-l: The Makefilefor the Remote File Application (continued)

client stubs

$(APPL)_c.obj: $(APPL)_c.c

$(APPL)_x.obj: $(APPL)_x.c

compile the server stub

$(APPL)_s.obj : $(APPL)_s.c

generate stubs, auxiliary and header file from the IDL file

$(APPL).h $(APPL)_c.c $(APPL)_x.c : $(APPL).idl

$(IDLCMD) $(APPL).idl

clean up for fresh build

clean:

del $(APPL)_?.c

del *.obj

del $(APPL) .h

del *.map
del *.pdb

clobber: clean

if exist client.exe del client.exe

if exist lclient.exe del lclient.exe

if exist server.exe del server.exe

Example E-2: The MIDI File of the Remote File Application

/* FILE NAME: rfile.idl */

[

uuid(A6lE4024-A53F-101A-BlAF-08002B2E5B76) ,

version (1.0) ,

pointer_default (unique)

]

interface rfile /* file manipulation on a remote system */

{

typedef [context_handle] void *filehandle;

typedef byte buffer [] ;

filehandle remote_open(/* open for write */

[in] handle_t binding_h, /* explicit primitive binding handle */

[in, string] char name[], /* if name is null, use stdout in server */

[in, string] char mode[] /* values can be
"r", "w" , or "a" */

);

long remote_send(

[in] filehandle fh,

[in, max_is(max)] buffer buf,

[in] long max

);

void remote_close (

[in, out] filehandle *fh

Appendix E: The Rflle Application 195

Example E~3: A Client File of the Remote File Application

/* FILE NAME: client. c */

Mnclude &lt;stdio.h&gt;

#include &lt;stdlib.h&gt;

#include &lt;string.h&gt;

#include "rfile.h"

#define MAX 200 /* maximum line length for a file */

main(argc, argv)

int argc;

char *argv [] ;

{

FILE *local_fh; /* file handle for client file input */

char host [100]; /* name or network address of remote host */

char remote_name[100] ; /* name of remote file */

rpc_binding_handle_t binding_h; /* binding handle */

filehandle remote_fh; /* context handle */

buffer *buf_ptr; /* buffer pointer for data sent */

int size; /* size of data buffer */

get_args(argc, argv, &local_fh, host, (char *)remote_name) ;

#ifndef LOCAL

if (do_string_binding(host, &binding_h) &lt; 0) {

fprintf (stderr, "Cannot get binding\n") ;

exit(l);

}

#endif

remote_fh = remote_open(binding_h, remote_name, (char *)"w");

if (remote_fh == NULL) {

fprintf (stderr, "Cannot open remote file\n");

exit(l) ;

}

/* The buffer data type is a conformant array of bytes; */

/* memory must be allocated for a conformant array. */

buf_ptr = (buffer *)malloc((MAX+1) * sizeof (buffer));

while(fgets((char *)buf_ptr, MAX, local_fh) != NULL) {

size =
(int)strlen((char *)buf_ptr); /* data sent will not include \0 */

if(remote_send(remote_fh, (*buf_ptr), size) &lt; 1) {

fprintf (stderr, "Cannot write to remote file\n");

exit(l) ;

remote_close(&remote_fh) ;

}

Example E-4-. The get_args Procedure

/* FILE NAME: getargs.c */

ttinclude &lt;stdio.h&gt;

#include &lt;stdlib.h&gt;

#include &lt;string.h&gt;

get_args(argc, argv, local_fh, host, remote_name)
int argc ;

Microsoft RFC Programming Guide

Example E-4-. The get_args Procedure (continued)

char *argv[] ;

FILE **local_fh;

char host [] ;

char remote_name [] ;

{

char local_name[100] ;

switch (argc) {

case 1:

case 2: printf ("Usage: %s [local_file] host [remote_file] \n" , argv[0])

puts ("Use \"\" for local stdin.");

exit(O);

break;

case 3: strcpy (local_nanie, argv[l]); /* use the same file name */

strcpy (remote_name , local_name) ;

strcpy (host , argv [2]) ;

break;

default : strcpy (local_name , argv [1]) ;

strcpy (host , argv [2]) ;

strcpy (remote_name , argv [3]) ;

break;

}

if (strlen(local_name) ==0) {

(*local_fh) = stdin;

puts ("Using stdin. Type input:");

}

else

if(((*local_fh) = fopen(local_name, "r"))
== NULL) {

puts ("Cannot open local file");

exit (1) ;

}

return;

Example E-5: The do_string_binding Procedure

/* FILE NAME: strbind.c */

/* Find a server binding handle from strings of binding information */

/* including protocol sequence, host address, and server process endpoint. */

ttinclude &lt;stdio.h&gt;

#include "rfile.h"

ttinclude " status. h" /* contains the CHECK_STATUS macro */

int do_string_binding(host, binding_h) /*return=0 if binding valid, else -1 */

char host[]; /* server host name or network address input */

rpc_binding_handle_t *binding_h; /* binding handle is output */

{

RPC_PROTSEQ_VECTOR *protseq_vector; /* protocol sequence list */

unsigned char *string_binding; /* string of binding information */

unsigned long status; /* error status */

int i , result ;

status =

RpcNetworklnqProtseqs (/* obtain a list of valid protocol sequences */

&protseq_vector /* list of protocol sequences obtained */

Appendix E: The Rflle Application 197

Example E-5: The do_string_binding Procedure (continued)

);

CHECK_STATUS(status, "Can t get protocol sequences:", ABORT);

/* loop through protocol sequences until a binding handle is obtained */

for(i=0; i &lt; protseq_yector-&gt;Count; i++) {

status =

RpcStringBindingCompose (/* make string binding from components */

NULL, /* no object UUIDs are required */

protseq_vector-&gt;Protseq[i] , /* protocol sequence */

(unsigned char *)host, /* host name or network address */

NULL, /* no endpoint is required */

NULL, /* no network options are required */

&string_binding /* the constructed string binding */

);

CHECK_STATUS(status, "Can t compose a string binding:", RESUME);

status =

RpcBindingFromStringBinding (/* convert string to binding handle */

string_binding, /* input string binding */

binding_h /* binding handle is obtained here */

);

CHECK_STATUS(status, "Can t get binding handle from string:", RESUME);
if (status != RPC_S_OK) {

result = -1;

CHECK_STATUS(status, "Can t get binding handle from string:", RESUME);

}

else

result = 0;

status =

RpcStringFree (/* free string binding created */

&string_binding

);

CHECK_STATUS(status, "Can t free string binding :", RESUME);
if (result == 0) break; /* got a valid binding */

}

status =

RpcProtseqVectorFree (/* free the list of protocol sequences */

&protseq_vector

);

CHECK_STATUS(status, "Can t free protocol sequence vector :", RESUME);
return (result) ;

}

Example E-6: The Context Rundown of the Remote File Application

/* FILE NAME: crndwn.c */

#include &lt;stdio.h&gt;

#include "rfile.h"

void filehandle_rundown(remote_fh)
filehandle remote_fh; /* the context handle is passed in */

{

fprintf (stderr, "Server executing context rundown\n") ;

198 Microsoft RPC Programming Guide

Example E-6: The Context Rundown of the Remote File Application (continued)

if ((FILE *)remote_fh != stdout)

fclose ((FILE *)remote_fh) ; /* file is closed if client is gone */

remote_fh = NULL; /* must set context handle to NULL */

return;

}

Example E- 7: Remote Procedures of the Remote File Application

I* FILE NAME: manager. c */

#include &lt;stdio.h&gt;

#include &lt;string.h&gt;

#include &lt;io.h&gt;

#include &lt;errno.h&gt;

ttinclude "rfile.h"

filehandle remote_open(binding_h, name, mode)

rpc_binding_handle_t binding_h;
char name t] ;

char mode [] ;

{

FILE *FILEh;

if (strlen((char *)name) == 0) /* no file name given */

if (strcmp((char *)mode, "r")
== 0)

FILEh = NULL; /* cannot read nonexistent file */

else FILEh = stdout; /* use server stdout */

else if (_access ((char *)name, 0) == 0) /* file exists */

if (strcmp((char *)mode, "w")
== 0)

FILEh = NULL; /* do not overwrite existing file */

else FILEh = fopen ((char *)name, (char *)mode) ; /* open read/append */

else /* file does not exist */

if (strcmp((char *)mode, "r")
== 0)

FILEh = NULL; /* cannot read nonexistent file */

else FILEh = fopen ((char *)name, (char *)mode); /* open write/append */

return((filehandle) FILEh); /* cast FILE handle to context handle */

long int remote_send(fh, buf, max)

filehandle fh;

buffer buf;

long int max;

{

/* write data to the file (context) , which is cast as a FILE pointer */

return(fwrite(buf, max, 1, fh)) ;

void remote_close(fh)
filehandle *fh; /* the client stub needs the changed value upon return */

{

if((FILE *) (*fh) != stdout)

fclose ((FILE *) (*fh));

(*fh) = NULL; /* assign NULL to the context handle to free it */

Appendix E: The Rflle Application 199

Example E- 7: Remote Procedures ofthe Remote File Application (continued)

return;

}

Example E-8: Server Initialization ofthe Remote File Application

/* FILE NAME: server. c */

ttinclude &lt;stdio.h&gt;

#include "rfile.h" /* header created by the idl compiler */

#include " status. h" /* contains the CHECK_STATUS macro */

main ()

{

unsigned long status; /* error status */

rpc_binding_vector_t *binding_vector; /* binding handle list */

status = /* error status */

RpcServerRegisterlf (/* register interface with the RFC runtime */

rfile_vl_0_s_ifspec, /* handle for interface specification */

NULL,

NULL

);

CHECK_STATUS (status, "Can t register interface", ABORT);

status =

RpcServerUseAllProtseqs (/* establish protocol sequences */

RPC_C_PROTSEO_MAX_REQS_DEFAULT, /* queue length for remote calls */

NULL /* no security descriptor */

);

CHECK_STATUS(status, "Can t establish protocol sequences", ABORT);

status =

RpcServerlnqBindings (/* get set of this server s binding handles */

&binding_vector

);

CHECK_STATUS(status, "Can t get binding handles", ABORT);

status =

RpcEpRegister (/* add endpoint to local endpoint map */

rfile_vl_0_s_ifspec, /* handle for interface specification */

binding_yector, /* vector of server binding handles */

NULL, /* no object UUIDs to register */

(unsigned char *) "remote_file server" /* annotation (not required) */

);

CHECK_STATUS(status, "Can t add endpoints to local endpoint map:", ABORT);

puts ("Listening for remote procedure calls...");

RpcTryFinally

{

status =

RpcServerListen (/* listen for remote calls */

1, /* Minimum number of threads */

RPC_C_LISTEN_MAX_CALLS_DEFAULT, /* Maximum number of threads */

NULL

);

CHECK_STATUS(status, "rpc listen failed:", RESUME);

200 Microsoft RFC Programming Guide

Example E- 8: Server Initialization of the Remote File Application (continued)

RpcFinally

{

puts ("Removing endpoints from local endpoint map.");

status =

RpcEpUnregister (/* remove endpoints from local endpoint map */

rfile_vl_0_s_ifspec, /* handle for interface specification */

binding_vector, /* vector of server binding handles */

NULL /* no object UUIDs to unregister */

);

CHECK_STATUS(status, "Can t remove endpoints from endpoint map:", RESUME);

status =

RpcBindingVectorFree (/* free set of binding handles */

&binding_vector

);

CHECK_STATUS (status , "Can t free binding handles and vector", ABORT);

}

RpcEndFinally

}

/*** MIDL_user_allocate / MIDL_user_free ***/

void * __RPC_API

MIDL_user_allocate

size_t size;

{

unsigned char *
ptr;

ptr = malloc (size) ;

return ((void *)ptr

void __RPC_API

MIDL_user_free

(

object

)

void *
object;

{

free (object) ;

In this Appendix:
How to Build and
Run the Application

Application Files

The Windows
Phonebook Application

The phonebook application demonstrates a simple Windows client interface to a

Microsoft RFC application. The Windows client looks up names in a phonebook
database file maintained by the phonebook server (phnbkd.exe). The client does

not use the Microsoft Locator name service, so you need to supply the server host

name or address to a dialog box in the client interface.

How to Build and Run the Application
To build and run the server of the distributed application, type the following:

C:\SERVER&gt; nmake phnbkd.exe

C:\SERVER&gt; phiibkd

To build and run the Windows client of the distributed application, type the fol

lowing:

C:\CLIENT&gt; nmake phnbk.exe

C:\CLIENT&gt; phnbk

Enter a hostname or address into the Server Host Name dialog box. Try the browse
feature first to see some names. Then enter names into the Search String dialog
box.

Application Files

Makefile contains descriptions of how the application is compiled. See Example
F-l.

phnbk.idl contains descriptions of the data types and procedures for the interface.

See Example F-2.

207

202 Microsoft RFC Programming Guide

pbnbk.acf is an attribute configuration file that specifies implicit binding as the

client binding method. See Example F-3.

wclient.c provides a Windows user interface to the server (phnbkd.exe). The client

invokes remote procedure calls based on user actions. See Example F-4.

wpbnbk.defis a Windows module definition file. It defines the name of the appli

cation, the type of image to be produced, and other attributes of the application.

See Example F-5.

wphnbk.h is a header file that defines constants used in wphnbk.c and in the

resource file wpbnbk.rc. See Example F-6.

wphnbk.rc is a Windows resource file. It describes the size and appearance of the

Windows dialog box and of the controls (such as buttons and edit boxes) used by
the application. See Example F-7.

manager, c is the implementation of the remote procedures defined in the phnbk
interface. The remote procedures look up names contained in the phnbk.txt
database file. See Example F-8.

server. c initializes the server with a series of runtime calls prior to servicing remote

procedure calls. This application specifies to use the TCP/IP protocol sequence.
The server is not advertised in a name service database. The server s dynamic end-

points are added to the server s local endpoint map. A client finds this server by
constructing a string binding containing a protocol sequence and the host name or

network address. See Example F-9.

phnbk.txt is an ASCII file containing the database of names used by the phonebook
server. We created it using a text editor. You can add your own lines to this file.

Make sure lines are under 100 characters in length. See Example F-10.

Example F-l: The Makefilefor the Windows Phonebook Application

#

#

Build phnbk client and server for Windows NT
#

#

! INCLUDE &lt;ntwin32.mak&gt;

includes = -I.

all : phnbk.exe phnbkd.exe

#

Link simple client

#

phnbk.exe: wclient.obj wphnbk.obj phnbk_c.obj
$(link) $(linkdebug) $(guiflags) -out:phnbk.exe \

wclient.obj phnbk_c.obj wphnbk.obj \

rpcrt4.1ib rpcns4.1ib rpcndr.lib $(guilibs)

Appendix F: The Windows Phonebook Application 203

Example F-l: The Makefilefor the Windows Phonebook Application (continued)

Link server

#

phnbkd.exe: server. obj manager. obj phnbk_s.obj

$(link) $ (linkdebug) $(conflags) -out: phnbkd.exe \

server. obj manager. obj phnbk_s.obj \

rpcrt4.1ib rpcns4.1ib rpcndr.lib $(conlibs)

#

.RES

#

wphnbk . obj : wphnbk . re

re -r wphnbk. re

cvtres -$(CPU) wphnbk. res

#

Compile simple client source code

.

wclient.obj: wclient.c phnbk.h

$(cc) $(cflags) $(cvars) $(scall) $ (includes) wclient.c

#

Compile server source code

#

server. obj: server. c phnbk.h

$(cc) $(cflags) $(cvars) $(scall) $ (includes) server. c

manager. obj: manager. c phnbk.h
$(cc) $(cflags) $(cvars) $(scall) $ (includes) manager. c

#

Compile client stubs

#

phnbk_c.obj : phnbk_c.c phnbk.h
$(cc) $(cflags) $(cvars) $(scall) $ (includes) phnbk_c.c

##

$(cc) $(cflags) $(cvars) $(scall) $ (includes) phnbk_x.c

#

Compile server stubs

#

phnbk_s.obj : phnbk_s.c

$(cc) $(cflags) $(cvars) $(scall) $ (includes) phnbk_s.c

#phnbk_v.obj : phnbk_y.c
$(cc) $(cflags) $(cvars) $(scall) $ (includes) phnbk_y.c

#

Generate stubs and header file from interface definition
#

phnbk.h : phnbk.idl phnbk.acf
midl phnbk.idl

#

Clean up for fresh build
#

clean :

Microsoft RFC Programming Guide

Example F-l: The Makefilefor the Windows Phonebook Application (continued)

del phnbk_*.*
del *.obj

del phribk.h

#

Clean up all byproducts of build

#

clobber : clean

del phnbk.exe
del phnbkd.exe
del *.res

Example F-2: The MIDI File of the Windows Phonebook Application

/*
** Interface definition file for irrplicit phnbk client

*/

uuid(F2FE85AO-OC28-1068-A726-AA0004007EFF) ,

version (1.0) ,

pointer_default (ref)]

interface phnbk

{

/*
** Constant for maximum line size

*/

const long LINESIZE = 100;

/*
** Flag for hitting end of phonebook file

*/

const short END = -1;

/*
** Flag for normal completion of operation

*/

const short NORMAL = 0;

/*
** Define all possible operations on phonebook file

*/

typedef enum

{

FIRSTMATCH,

NEXTMATCH,

BROWSE,

RESET,

BROWSE_RESET

} operations;

/*
** Perform some operation on the phonebook

*/

short

lookup

Appendix F: The Windows Phonebook Application 205

Example F-2: The MIDI File ofthe Windows Phonebook Application (continued)

(

[in] short operation,

[in, string] char search_string [LINESIZE] ,

[out, string] char return_string [LINESIZE]

);

}

Example F~3: The ACF File of the Windows Phonebook Application

[inplicit_handle (handle_t xhandle)] interface phnbk {}

Example F-4: Client File of the Windows Phonebook Application

/*
**

**

** MODULE: wclient.c

** PROGRAM: Windows wphnbk application
**

**

**

**

*/

ttinclude &lt;windows.h&gt;

ttinclude &lt;stdlib.h&gt;

#include &lt;string.h&gt;

#include &lt;ctype.h&gt;

Mnclude "phnbk. h"

#include "wphnbk. h"

int lookup_status ; /* lookup return status */

error_status_t status; /* rpc status */

unsigned char input [LINESIZE] ; /* find search string */

char output [LINESIZE] ; /* string returned from database */

char oldmatch [LINESIZE] ;/* previous find string */

unsigned char server [80]; /* string binding for server */

short operation; /* operation requested */

short no_handle; /* handle not initialized flag */

unsigned char hostname [32]; /* phnbk server host name */

long FAR PASCAL WndProc (HWND, WORD, WDRD, LONG) ;

int

PASCAL WinMain

(

HANDLE hlnstance,

HANDLE hPrevInstance,
LPSTR IpszCmdLine,
int nCmdShow

206 Microsoft RFC Programming Guide

Example F-4: Client File ofthe Windows Phonebook Application (continued)

char szAppName [] = "WPHNBK"

HWND hwnd ;

MSG msg;

WNDCLASS wndclass ;

/*
** Initialize strings

*/

input [0]

output [0]

oldmatch[0] =

server []
=

hostname []
=

no_handle = TRUE;

/*
** Standard Windows stuff.

*/

if (IhPrevInstance)

wndclass

wndclass

wndclass

wndclass

wndclass .

wndclass .

wndclass .

wndclass .

wndclass .

wndclass .

style

IpfnWndProc
cbClsExtra

cbWndExtra

hlnstance

hlcon

hCursor

hbrBackground

IpszMenuName

IpszClassName

CS_HREDRAW I CS_VREDRAW;

(WNDPROC) WndProc ;

=

DLGWINDOWEXTRA ;

hlnstance ;

Loadlcon (hlnstance, szAppName) ;

LoadCursor ((HINSTANCE)NULL, IDC_ARRCW)

(HBRUSH) (COLORJWINDOW + 1) ;

NULL ;

szAppName ;

RegisterClass (&wndclass) ;

hwnd = CreateDialog (hlnstance, szAppName, 0, NULL)

ShowWindow (hwnd, nCmdShow) ;

SetFocus (GetDlgltem (hwnd, HOSTNAMEBOX)) ;

/ *

** Start accepting messages
*/

while (GetMessage (&msg, NULL, 0, 0))

TranslateMessage (&msg) ;

DispatchMessage (&msg) ;

return msg.wParam ;

short

InitHandle

HWND hwnd

Appendix F: The Windows Phonebook Application 207

Example F-4: Client File of the Windows Phonebook Application (continued)

I*
** Read server host name

*/

GetDlgltemText (hwnd, HOSTTSIAMEBOX, hostname, 16) ;

/*
** Warn user if they haven t specified a host name

*/

if (hostname [0] == \0)

{

MessageBox

(

hwnd,

"Please enter server host name",

"ERROR",

MB_OK

);

SetFocus (GetDlgltem (hwnd, HOSTOAMEBOX)) ;

return (-1) ;

/*
** Build server string binding
*/

strcat (server, "ncacn_ip_tcp:
"

) ;

strcat (server, hostname) ;

/*
** Convert the character string binding into an RFC handle

*/

status = RpcBindingFromStringBinding

(

server,

&xhandle

if (status)

{

MessageBox

hwnd,

"Invalid string binding",

"ERROR",

MB_OK

exit (EXIT_FAILURE) ;

}

no_handle = FALSE;

return (0);

208 Microsoft RFC Programming Guide

Example F-4-. Client File of the Windows Phonebook Application (continued)

void

ShowResult

HWND hwnd

)

{

/*
** Display lookup results, based on the context of
** the requested operation
*/

if (operation == BROWSE)

/*
** BROWSE return next entry
*/

if (lookup_status == NORMAL)

/*
** Everything ok, display next entry
*/

SetDlgltemText (hwnd, RESULTSBOX, output) ;

else

/*
** Otherwise, we hit end of file...

*/

SetDlgltemText (hwnd, RESULTSBOX, " "

) ;

SetDlgltemText (hwnd, INFOBOX, "No more entries");

else

/*
** Operation was a Find or Find Next. . .tailor message
** syntax to reflect the operation.
*/

if (lookup_status == NORMAL)

{

/*
** Print results

*/

SetDlgltemText (hwnd, RESULTSBOX, output) ;

/*
** Determine if this was first match, or subsequent match
*/

if (operation == FIRSTMATCH)

SetDlgltemText (hwnd, INFOBOX, "Match found") ;

else

SetDlgltemText (hwnd, INFOBOX, "Another match found") ;

Appendix F: The Windows Phonebook Application 209

Example F-4: Client File of the Windows Phonebook Application (continued)

else

/*
** Hit end of file during search

*/

if (operation == FIRSTMATCH)

SetDlgltemText (hwnd, INFOBOX, "Match not found") ;

else

SetDlgltemText (hwnd, INFOBOX, "No other matches found") ;

}

return;

long
FAR PASCAL WndProc

(

HWND hwnd,

WORD message,
WORD wParam,

LONG iParam

/*
** We switch cursors to the hourglass during
** a lookup RPC. This is for saving the
** regular pointer.

*/

HCURSOR OldCursor;

/*
** First thing, save the match string from last time around

*/

strcpy (oldmatch, input) ;

/*
** Switch on the incoming message type (standard Windows
**

programming)

*/

switch (message)

{

/*
** Got a button pushed
*/

case WM_COMMAND:

switch (wParam)

{

/*
** Either a Find or a Find Next

*/

case FINDBUTTON:

if (no_handle)

if (InitHandle(hwnd)) break;

210 Microsoft RFC Programming Guide

Example F-4: Client File ofthe Windows Phonebook Application (continued)

/*
** Clear current text

*/

SetDlglterrtText (hwnd,RESULTSBOX,
" "

) ;

SetDlgltemText (hwnd, HSJFOBOX,
" "

) ;

/*
** Read the search string
*/

GetDlgltemText (hwnd, SEARCHBOX, input , 32) ;

/*
** Make sure user entered a search string
*/

if (input[0] == (unsigned char) \0)

{

MessageBox

(

hwnd,

"Missing Search String!",

"ERROR",

MB_OK

);

/*
** Set focus back to SEARCHBOX so user can
** enter search string
*/

SetFocus (GetDlgltem (hwnd, SEARCHBOX)) ;

else

/*
** Search string is present. Save existing
** pointer and display hourglass
*/

OldCursor = SetCursor (LoadCursor (NULL,IDC_WAIT)
ShowCursor (TRUE) ;

/*
** Determine desired operation
*/

if (strcmpfoldmatch, input))

operation = FIRSTMATCH;
else

operation = NEXTMATCH;

/*
** Perform the requested operation
*/

lookup_status = lookup

(

operation,

input ,

output

Appendix F: The Windows Phonebook Application 211

Example F-4: Client File of the Windows Phonebook Application (continued)

/*
** Restore pointer cursor

*/

ShowCursor (FALSE) ;

SetCursor (OldCursor) ;

/*
** Display lookup results

*/

ShowResult (hwnd) ;

break;

/*
** BROWSE return next entry
*/

case BROWSEBUTTON:

if (no_handle)

i f (InitHandle (hwnd)) break ;

/*
** Clear existing text and display status

*/

SetDlgltemText (hwnd, RESULTSBOX,
" "

) ;

SetDlgltemText (hwnd, SEARCHBOX, ""

) ;

SetDlgltemText (hwnd, INFOBOX, "Browsing. . .

"

) ;

/*
** Switch to hourglass cursor

*/

OldCursor = SetCursor (LoadCursor (NULL,IDC_WAIT)
ShowCursor (TRUE) ;

operation = BROWSE;

/*
** Perform the requested operation
*/

lookup_status = lookup

(

operation,

input,

output

/*
** Restore pointer cursor

*/

ShowCursor (FALSE) ;

SetCursor (OldCursor) ;

212 Microsoft RFC Programming Guide

Example F-4: Client File of the Windows Phonebook Application (continued)

** Display operation results

*/

ShowResult (hwnd) ;

break;

/* 1

** User has requested a RESET. This clears all
** text and rewinds the phonebook file

*/

case RESETBUTTON:

if (no_handle)

if (InitHandle(hwnd)) break;

/*
** Clear all text

*/

SetDlgltemText (hwnd, RESULTSBOX,
" "

) ;

SetDlglteinText (hwnd, INFOBOX,
" "

) ;

SetDlgltemText (hwnd, SEARCHBOX, " "

) ;

input [0] = \0 ;

operation = RESET;

/*
** Perform the requested operation
*/

lookup_status = lookup

(

operation,

input ,

output

);

break;

return ;

/*
** User has closed the application
*/

case WM_DESTROY:

if (!no_handle)

{

/*
** Free binding handle, post quit message and leave
*/

status = RpcBindingFree
(

&xhandle

PostQuitMessage (0) ;

Appendix F: The Windows Phonebook Application 213

Example F-4: Client File ofthe Windows Phonebook Application (continued)

return ;

/*
** Ignore other messages
*/

default :

return DefWindowProc (hwnd, message, wParam, iParam) ;

Example F-5: Window Module Definition File

; WPHNBK.DEF module definition file

NAME WPHNBK

DESCRIPTION Windows RFC Phonebook

EXETYPE WINDOWS

STUB WINSTUB.EXE

CODE PRELOAD FIXED DISCARDABLE

DATA PRELOAD FIXED MULTIPLE

HEAPSIZE 8192

STACKSIZE 8192

EXPORTS WndProc

Example F-6: Header File

#define SEARCHBOX 102

#define RESULTSBOX 104

#define INFOBOX 106

#define FINDBUTTON 113

#define BROWSEBUTTON 112

#define RESETBUTTON 110

ttdefine HOSTNAMEBOX 109

Example F- 7: Resource File

ttinclude &lt;windows.h&gt;

#include "wphnbk.h"

WPHNBK DIALOG 15, 33, 315, 102

CAPTION "Windows RFC Phonebook"

STYLE WS_OVERLAPPED | WS_BORDER I WS_CAPTION I WS_SYSMENU I WS_MINIMIZEBOX
CLASS "WPHNBK"

BEGIN

CONTROL "Search String:", 100, "static", SS_LEFT I WS_CHILD,
13, 18, 47, 10

CONTROL "Input", 101, "button", BS_GROUPBOX I WS_TABSTOP I WS_CHILD,
5, 3, 173, 32

CONTROL
"", 102, "edit", ES_LEFT I WS_BORDER I WSJTABSTOP I WS_CHILD,

63, 17, 108, 12

CONTROL "Search Results:", 103, "static", SS_LEFT | WS_CHILD,
6, 50, 58, 7

CONTROL
"", 104, "edit", ES_LEFT | WS_BORDER | WS_TABSTOP I WS_CHILD,

64, 48, 239, 12

214 Microsoft RPC Programming Guide

Example F- 7: Resource File (continued)

CONTROL "Status:", 105, "static", SS_LEFT I WS_CHILD, 6, 80, 26, 8

CONTROL
"", 106, "edit", ES_LEFT I WS_BORDER I WSJTABSTOP I WS_CHILD,

30, 78, 133, 12

CONTROL "Output", 108, "button", BS_GROUPBOX I WS_TABSTOP I WS_CHILD,

4, 36, 305, 31

CONTROL "Information", 111, "button", BS_GROUPBOX I WS_TABSTOP I WS_CHILD,

4, 68, 305, 31

CONTROL "Find / Find Next", 113, "button",

BS_PUSHBUTTCN I WSJTABSTOP I WS_CHILD, 192, 6, 112, 14

CONTROL "Reset", 110, "button", BS_PUSHBUTTON I WS_TABSTOP I WS_CHILD,

192, 22, 50, 14

CONTROL "Browse", 112, "button", BS_PUSHBUTTCN I WS_TABSTOP I WS_CHILD,

258, 22, 46, 14

CONTROL
"", HOSTNAMEBOX, "edit", ES_LEFT I WS_BORDER | WS_TABSTOP I WS_CHILD,

228, 78, 76, 12

CONTROL "Server Host Name: ",107, "static", SS_LEFT I WS_CHILD,

166, 80, 62, 8

END

Example F-8: Remote Procedures

/*
**

MODULE: manager. c

* PROGRAM: phnbk application

I

**

**

**

**

*/

#include &lt;stdio.h&gt;

#include
&lt;string.h&gt;

ttinclude &lt;malloc.h&gt;

#include &lt;stdlib.h&gt;

ttinclude "phnbk. h"

#ifdef WIN32

#endif

extern FILE *filehandle; /* Phonebook file filehandle */
extern short previous_operation; /* Keeps track of previous operation */
/*
**

** FUNCTION: getfileline
**

** PURPOSE:
** Retrieve Lines from input file

Appendix F: The Windows Phonebook Application 215

Example F-8: Remote Procedures (continued)

*/

int

getfileline

(

line,

phone

)

unsigned char * line;

FILE * phone;

{

/*
** Each call of this routine returns a line of the
** phonebook file. On EOF, it returns -1.

*/

char ch;

while ((ch = fgetc (phone)) != \n && ch != EOF)

{

/*
** Tabs are unpredictable, so substitute
** three spaces if you run across a tab. . .

*/

if (ch == \t)

{

*line++ =
;

*line++ =
;

*line++ =
;

}

else

*line++ = ch;

*line++ = \0 ;

if (ch == EOF)

return (END) ;

else

return (NORMAL) ;

}

/*
**

** FUNCTION: lookup
**

** PURPOSE:

Look up entries in database
**

*/

short

lookup

(

op,

stringin,

Microsoft RFC Programming Guide

Example F-8: Remote Procedures (continued)

stringout

)

short op;

unsigned char stringin[LINESIZE] ;

unsigned char stringout [LUSESIZE] ;

{

unsigned char buf [LINESIZE] ;

/*
** Switch on requested operation

*/

switch (op)

{

case RESET:

/*
** Reset context

*/

printf ("Phonebook: \tRESET\n") ;

rewind (filehandle) ;

previous_operation = FIRSTMATCH;

return (NORMAL) ;

break;

case FIRSTMATCH:

/*
** Look for first match of a string, starting at the
** beginning of the file...

*/

printf ("Phonebook: \tFIRSTMATCH\n") ;

rewind (filehandle) ;

break;

case NEXTMATCH :

/*
** Nothing special here, fall out and continue search

*/

printf ("Phonebook: \tNEXTMATCH\n") ;

break;

case BROWSE :

/*
** A BROWSE operation just returns the next entry...
**

** If the last operation was a BROWSE that got an EOF,
** then rewind and start cycling through again.

*/

printf ("Phonebook: \tBROWSE\n") ;

if (previous_operation == BROWSE_RESET)

rewind (filehandle);

Appendix F: The Windows Phonebook Application 217

Example F-8: Remote Procedures (continued)

if ((getfileline(buf,filehandle)) != -1)

{

/*
** If not EOF, then just return next entry.

*/

strcpy ((char *
) stringout , (char *

) buf) ;

printf ("Phonebook: \tFound %s\n", buf);

previous_operation = BROWSE;

return (NORMAL) ;

}

else

{

/*
** This allows the client to flag "no more entries"

** before cycling through the file again on
** another BROWSE request.

*/

previous_operation = BROWSE_RESET;

return (END) ;

/*
** Keep track of previous operation in p_context
*/

previous_operation = op;

/*
** Either return the line of the file that contains a string
** match, or return -1...

*/

while ((getfileline(buf,filehandle)) != -1)

{

if ((strstrf (char *)buf, (char *)stringin)) != (char *) NULL)

{

printf ("Phonebook: \tFound %s\n" , buf);

strcpy ((char *) stringout, (char *)buf) ;

return (NORMAL) ;

return (END) ;

Example F-9: Server Initialization

/*
**

**

** MODULE: server. c
**

218 Microsoft RFC Programming Guide

Example F-9: Server Initialization (continued)

**

** PROGRAM: phribk application
**

**

**

**

**

*/

#include &lt;stdio.h&gt;

#include &lt;string.h&gt;

ttinclude &lt;stdlib.h&gt;

#include &lt;malloc.h&gt;

#include "phnbk.h"

#ifdef WIN32

#define MAIN_DECL _CRTAPIl

#else

#define MAIN_DECL
#include &lt;dce/rpcexc.h&gt;

#endif

#define IFSPEC phnbk_vl_0_s_ifspec

FILE * filehandle; /* File handle used for phonebook file */

short previous_operation; /* Keeps track of previous phonebook operation */

int

MAIN_DECL main

(

ac,

av

)

int ac;

char *av [] ;

{

unsigned int i;

error_status_t status ;

unsigned char *string_binding;
RPC_BINDING_VECTOR *bvec;

/*
**

**
Specify TCP/IP as a protocol sequences

*/

status = RpcServerUseProtseq
(

"ncacn_ip_tcp" ,

5,

NULL

);

if (status != RPC_S_OK)

Appendix F: The Windows Phonebook Application_ 219

Example F-9: Server Initialization (continued)

printf("No available protocol sequences\n ");

exit (EXIT_FAILURE) ;

}

/*
** register the server interface

*/

status = RpcServerRegisterlf

(

IFSPEC,

NULL,

NULL

);

if (status != RPC_S_OK)

{

printf ("Can t register interface \n");

exit (EXIT_FAILURE) ;

}

/*
** find out what binding information is actually available

*/

status = RpcServerlnqBindings

(

&bvec

);

if (status != RPC_S_OK)

{

printf ("Can t inquire bindings \n");

exit (EXIT_FAILURE) ;

}

/*
** register with endpoint mapper
*/

status = RpcEpRegister

(

IFSPEC,

bvec,

NULL,

(unsigned char *)"phnbk endpoint"

);

if (status != RPC_S_OK)

{

printf ("Can t register endpoint \n ");

exit (EXIT_FAILURE) ;

** Get the string bindings and print them

*/

for (i = 0; i &lt; bvec-&gt;Count; i++)

220 Microsoft RFC Programming Guide

Example F-9: Server Initialization (continued)

** For each binding, convert it to a
** string representation

*/

status = RpcBindingToStringBinding

(

bvec-&gt;BindingH [i] ,

&string_binding

);

if (status != RPC_S_OK)

{

print f ("Can t get string binding \n");

exit (EXIT_FAILURE) ;

}

printf (

"

%s\n" , string_binding) ;

}

/*
** Open the phonebook file

*/

filehandle = fopen ("phnbk . txt "

,

" r "

) ;

/*
** Server is all ready to start listening for client
** requests. . .

*/

status = RpcServerListen

1,

2,

if (status != RPC_S_OK)

printf ("Error: rpc_server_listen () returned \n") ;

return (EXIT_FAILURE) ;

}

#ifdef WIN32

/*** MIDL_user_allocate / MIDL_user_free ***/

void * __RPC_API

MIDL_user_allocate

size_t size;

{

unsigned char *
ptr;

Appendix F: The Windows Phonebook Application 221

Example F-9: Server Initialization (continued)

ptr = malloc (size) ;

return ((void *)ptr) ;

void _RPC_API
MIDL_user_free

object

void *
object;

free (object) ;

#endif

Example F- 1 0: Sample Input Data

Mickey Mouse 555-2345

Donald Duck 555-2342

Pluto 555-4564

James T. Kirk 555-2342

Fred Flintstone 555-2342

Spider Man 555-2345

Bat Man 555-2342

George Jetson 555-2342

Peter Pan 555-4312

John Doe 555-8888

Charlie Brown 555-2374

Index

[] (brackets) in MIDL, 30

ACF (attribute configuration file), 42-44

automatic binding, 49

binding handles, 53

binding methods, 48

controlling errors, 44

example of, 43

exceptions, 44

explicit binding, 53

implicit binding, 51, 176

separating client/server output, 42

windows phnbk application, 205

(see also binding methods)

ACF attributes

autojiandle, 43, 48-49, 140

byte_count, 98

code, 44, 140

comm_status, 44, 140

context_handle, 139-140

dont_free, 98

explicit_handle, 43, 48, 53, 140

fault_status, 44, 140

implicit_handle, 43-44, 48, 51, 140

nocode, 44, 140

(see also MIDL attributes)

active context handles (see context handles)

address, host network, 104

advertising the server, 107-109

aliasing, pointer, 83, 87

allocating memory
buffers, 97-98

for conformant arrays, 93-94

for context handles, 135

freeing, 87

inventory application, 158

node-by-node, 96-97

(see also memory management)

applications

arithmetic, 3, 149-156

distributed, 149

files, 150-156

inventory, 30, 157-189

managing, routines for, 145, 147

memory management, 96

producing and running, 21-24

rfile, 129, 191-200

arith.bat, 150

arith.idl, 150

arithmetic application, 3, 149-156

CHECK_STATUS macro, 155

client file, 153

initialization, 153

interface, 152

Makefile, 150

remote procedure, 153

server shell script, 152

array attribute, 137-138

arrays, 34, 79, 90-94, 149

conformant, 90-94, 116-117

as procedure parameters, 93

managing size of, 91-94

223

224 Microsoft RFC Programming Guide

arrays, conformant (cont d)

memory allocation, 93-94

fixed, 34, 90

limiting transmission of, 34

max_is, 35

MIDI attributes of, 137-138

size_is, 35

specifying size of, 91-93

varying, 90-91

attribute configuration file (see ACF)
attributes

ACF (see ACF attributes)

array, 137-138

binding methods, 48

data, 30-38, 139

dont_free, 98

header, 29, 137

interface definition, 28

MIDI (see MIDL attributes)

pointer types, 138

procedure, 139-140

structure member, 139

union case, 139

authentication, 71

binding information, 47

managing, routines for, 43, 147

authorization information, 47

automatic binding, 49-50

finding server, 122

(see also binding methods)

autojiandle attribute, 43, 48-49, 140

auxiliary files, MIDL compiler, 41

bind procedure, 68-69

binding handles, 20, 45-70

bind/unbind procedures, 68-69

client, 113

context handles, 133

customized, 66-70

designing, 67

defining, 53-54

endpoints in, 59

fully bound, 59

importing, 61-63

looking up, 64

managing, 46-55

by clients, 47

routines for, 43, 144

partially bound, 59

server initialization, 112

binding information, 45-48

client authentication, 47

client, in server code, 113

context handles, 48

creating

for servers, 104-107

routines for, 43, 146

exporting, 20, 125-126

finding servers, 64-66

host network address, 104

in server entry, 123

interpreting, 60-6 1

inventory application, 158

NSI routines, 14

server endpoint map, 109

to name service, 108

with dynamic endpoints, 104-106, 123

binding methods, 13-17, 46-55

applying to interface(s), 47

attributes, 48

automatic, 46-50

finding server, 122

overriding, 50

choosing, 48-49

comparison of, 46

establishing, 48

explicit, 46, 52-55

implicit, 46-47, 50-52

and ACF, 51

overriding, 52

selecting with ACF, 43-44

BITFTP, xix

buffers, allocating, 97-98

byte_count attribute, 98

case keyword, 37

Cell Directory Service (CDS), 14, 121

char data type, 34

CHECK_STATUS macro, 73-74, 104, 150, 155

client files, generating, 42

/client none, MIDL compiler, 42

client.c, 150

clients

allocating buffers in, 97-98

authentication information, 47

authorization information, 47

binding handles, 113

binding information, 113

Index 225

clients (cont d)

interpreting, 6l

managing handles, 47

building, 149

compiling, 21-23, 74-77

context handles in, 131-133

copying text to server, 129

developing
for automatic binding, 49-50

for explicit binding, 54

for implicit binding, 51-52

development, errors in, 72-74

example of, 9

exception handling, 72

finding from strings, 64-66

inventory application file, 172

linking, 21-23, 74-77

managing, routines for, 43, 145

of arithmetic application, 152

phonebook application, 205

producing, 74

protocol sequences for, 58

rfile applications, 195

server communication break, 134, 136

using discriminated unions, 38

using name service, 6l

writing, 45-77

(see also servers)

close_inventory procedure, 111

code attribute, 44, 140

communication breakdown, client/server,

134, 136

comm_status attribute, 44, 140

compiler, MIDL (see MIDL compiler)

compiling

clients, 21-23, 74-77

interfaces, 40-42

of interface definition, 7

servers, 21-23, 117-119

CompuServe, xvi

conformant arrays, 34, 90

allocating memory, 93-94, 116-117

dynamic, 93

as procedure parameters, 93

managing size of, 91-94

MIDL attributes, 138

conformant strings, 34-35

conformant structure, 92, 94

const keyword, 33

constants, MIDL file, 33

context handles, 48, 129-136

active, 129, 134

allocating memory for, 135

establishing active, 132

freeing, 133, 135

in clients, 131-133

in interface definition, 130-131

in servers, 133-136

opaque structure, 131

with binding methods, 132

writing procedures with, 134-135

context rundown procedures, 130, 197

writing, 136

context storage, 98

context_handle attribute, 130, 139-140

contiguous server memory, 97

conventions for entry names, 23

crndwn.c, 192

customizing

binding handles, 66-70

interface with ACF, 42-44

data

describing with MIDL attributes, 28

limiting transmission, 34

marshalling, 32

privacy/integrity (see authentication)

sharing between formats, 32

structures. 101-102

data attributes, MIDL, 30-38

user-defined, 33

datatypes, 139, 150

DCE Cell Directory Service (CDS), 107, 121

debugging remote procedures, 76

DECnet, protocols with, 56

DefaultEntry, 63

directory service, 14

discriminated unions, 36-38

application code example, 37

pointers as, 89

distributed applications, 149

do_import_binding, 54, 60, 62, 159, 178

do_interpret_binding, 60, 63, 159, 179

domain controllers, 126-127

dont_free attribute, 98

do_string_binding, 64, 68, 132, 196

dynamic endpoints, 59-60, 110

exporting, 108

226 Microsoft RFC Programming Guide

dynamic endpoints (cont d)

in binding information, 104-106, 123

endpoint attribute, 106, 137

endpoint map
local, 15

system, 109-110, 112

endpoints

dynamic, 104-106

exporting, 108

finding, 59-60

managing
in server, 109-110, 112

routines for, 43, 144, 146

server process, 14

well-known, 106-107

with client call requests, 100

entry names, conventions, 23

enum keyword, 35

enumerated types, 35

errors, 155

ACF control, 44

handling, 72-74

reporting, routines for, 102

(see also exceptions)

error_status_t, 73, 140

data type, 31, 44

exceptions

ACF, 44

as parameters, 141

handling, 43, 72-74

routines for, 145, 147

listening for RPCs, 111-112

(see also errors)

explicit binding, 52-55

inventory application, 180

MIDI file, 182

remote procedures, 184

(see also binding methods)

explicitjiandle attribute, 43, 48, 53, 140

exporting

binding information, 20, 125-126

endpoints, 108

servers to name service, 147

fault_status attribute, 44, 140

filehandle_rundown procedure, 136

finding servers, 13, 55-66

with name service, 61-64

nrst_is attribute, 90, 138

fixed arrays, 34, 90

floating-point numbers (see discriminated

unions)

free routine, 113

FTP (file transfer program), xviii

FTPMAIL, xix

full pointers, 33, 80, 86-90, 140

fully bound binding handle, 59

get_args, 131, 195

getargs.c, 192

getbind.c, 62

get_part_description, 115, 158

group entries, RFC, 107

handle attribute, 66, 139

handles

binding (see binding handles)

context (see context handles)

interface (see interfaces, handles)

handle_t data type, 31, 43, 51, 53

handling

errors (exceptions), 72-74, 145

inventory application, 158

exceptions, 111-112

header

attributes, 137

interface, 29-30

files, 101-102

generating a, 7

header files, 102

host network address, 104

/I option, MIDL compiler, 42

IDL (Interface Definition Language), 4

(see also MIDL)
ifspec, 103

ignore attribute, 139

implicit binding, 50-52

ACF file for, 176

(see also binding methods)

implicitjiandle, 43-44, 48, 51, 140

in attribute, 38-40, 140

indirection, multiple levels of, 84

initializing

arithmetic application, 153

context handles, 132

inventory application, 169

Index 227

initializing (cont d)

servers, 15, 18-19, 99-112

advertising, 107-109

creating binding information, 104-107

header files, 101-102

listening for RPCs, 110-112

managing endpoints, 109-110, 112

registering interfaces, 102-104

input parameters, pointers as, 82-84

intbind.c, 61

interface definition, 4-7, 27-44

attributes, 28

binding methods, 48

compiling, 7

declaring varying array, 90

defining conformant arrays, 91

defining context handles, 130-131

definition of, 4

explicit binding and, 52

generating UUID in, 6

inventory application, 157

language (IDL), 4

specifying array size in, 91-93

structure of, 29

template for, 6

interfaces

applying binding methods, 47

array attributes, 137

attributes of procedure parameters, 139

compiling, 40-42

customizing with ACF, 42-44

data type attributes, 139

data types, 150

defining binding handle, 54

defining strings in, 34

definition of, 2

developing
for automatic binding, 49

for explicit binding, 53-54

for implicit binding, 51

handles, 19, 103

header attributes, 29-30, 137

identifying (naming), 30, 123

information management routines, 43,

145-146

inventory application, 16 1

pointer type attributes, 138

procedure attributes, 140

registering, 102-104

simple, 4

specification, client call, 100

structure member attributes, 139

union case attributes, 139

international character types, 31

Internet, protocols with, 56-57

inv.h, 101

inventory application, 30, 157-189

ACF file, 176

automatic binding, 172

do_import_binding, 178

do_interpret_binding, 179

explicit binding, 183

how to run, 158

inventory implementation, 166

Makefile, 160, 174

MIDL file of, 161

remote procedures, 163, 184

server, 169

invntry.c, 159

ISO_LATIN_1, 31

ISO_MULTI_LINGUAL, 31

ISOJJCS, 31

LAN for protocol sequences, 58

last_is attribute, 90, 138

length_is attribute, 90, 138

levels of indirection, 84

libraries for Microsoft RFC, 21

linked lists, 95

linking

clients, 21-23, 74-77

servers, 21-23, 117-119

listening for RPCs, 110-112

local attribute, 137

local endpoint map, 15

local RFC (ncalrpc transport), 58

LOCAL symbol, 132

locating servers, 13, 55-66

with name service, 61-64

Locator (see Microsoft Locator)

long integers (see discriminated unions)

maintaining context, 129-136

in servers, 133-136

Makefile, 150, 159-160, 192

implicit client, 174

Windows phnbk application, 202

malloc, 113, 135

228 Microsoft RFC Programming Guide

manager code (see remote procedures)

manager, c, 150

max_is attribute, 35, 91-93, 138

memory management, 94-98

allocating

buffers, 97-98

for conformant arrays, 93-94

conformant arrays, 116-117

context handle, 135

contiguous server, 97

in remote procedures, 112-115

inventory application, 158

node-by-node allocation, 96-97

persistent storage, 98

routines for, 145, 147

Microsoft Locator, 14, 52, 126-127

group operations, 108

(see also name service)

Microsoft RFC, 46

libraries, 21

Microsoft Windows NT, 97

MIDL (Microsoft Interface Definition Lan

guage)

arithmetic application, 152

brackets in, 30

constants, 33

data types, 30-38

arrays, 34

denning new, 33

discriminated unions, 36-38

enumerated types, 35

international, 31

pointers, 33

strings, 34-35

structures, 35-36

void, 40

default names, 103

definition of, 4

file of, phonebook application, 204

generating template, 6

handle_t data type, 51

naming an interface, 30

/oldnames option, 103

parameter attributes, 38-40

pointers (see pointers)

procedure declarations, 27, 38-40

rfile application, file of, 194

type definitions, 30-38

MIDL attributes, 28

array, 137-138

context_handle, 130, 139-140

data type, 139

endpoint, 106, 137

first_is, 90, 138

handle, 66, 139

in, 38-40, 140

interface header, 137

interface keyword, 30

last_is, 90, 138

length_is, 90, 138

local, 137

max_is, 35, 91-93, 138

out, 38-40, 140

pointer_default, 30, 137

pointer types, 138

procedure parameter, 139-140

ptr, 140

ref, 33, 138

size_is, 35, 91-93, 138

string, 34, 138, 140

structure member, 139

transmit_as, 139

union case, 139

unique, 33, 138, 140

uuid, 30, 137

version, 30, 103, 137

(see also ACF attributes)

MIDL compiler, 7-21, 40-42, 141

auxiliary files, 41

client, 74

/client none option, 42

generating client/server files, 42

/I option, 42

inv.h, 101

/out option, 42

/server none option, 42

specifying ACF, 43

stub files, 41

midl_user_allocate, 19, 95, 113-115, 135

midl_user_free, 19, 95, 113-115

multi-threaded RFC, 48

multiple levels of indirection, 84

name service, 46, 50-54, 56, 121-127

advertising servers, 107

definition of, 14

entries, 122

finding servers, 61-64

Index 229

name service (cont d)

importing from, 61-63

independent (NSI) routines, 14

managing, routines for, 144-147

names in, 122

selecting binding handles, 64

server entries, 123-126

named pipe (np transport), 58

nbase.h, 102

ncacn_dnet_nsp protocol, 56

ncacn_ip_tcp protocol, 56

ncacn_nb_nb protocol, 57

ncacn_nb_tcp protocol, 57

ncacn_np protocol, 57

ncacn_spx protocol, 57

ncadg_ip_udp protocol, 56

ncalrpc protocol, 57

ncalrpc transport (local RFC), 58

NetBEUI transport, 57

NetBEUI, NCA connection using, 56

NetBIOS, NCA connection using, 56

network

address

finding, 58-59

host, 104

RFC binding, 14

services protocol (nsp), 57

Network Computing Architecture (NCA),

56-57

Network Data Representation (NDR), 32

nocode attribute, 44, 140

node-by-node allocation, 96-97

np transport (named pipe), 58

NSI (name service independent) routines, 14

nsp (network services protocol), 57

null pointers, 80, 83

object types, managing, 43, 147

opaque structure, 100, 131

open_inventory procedure, 109

out attribute, 38-40, 140

/out option, MIDL compiler, 42

outdated endpoints (see endpoints, manag
ing)

output parameters, pointers as, 80-82

parameter attributes, 38-40

partially bound binding handle, 59

pass by

reference, 7

value, 38

persistent memory storage, 98

phnbk.txt, 202

phonebook (phnbk) application, 201-221

ACF file, 205

client file, 205

header file, 213

input, 221

Makefile, 202

MIDL file of, 204

remote procedures, 214

resource file, 213

server, 217

window module definitions, 213

pipes, NCA connection using, 56

pointer attributes, 80, 86

pointer_default attribute, 30, 85, 137

pointers, 33

aliasing, 83, 87

as input parameters, 82-84

as output parameters, 80-82

as procedure return values, 86-87

default, 85, 89

definition of, 79

differentiating between, 87-90

full. 33. 80, 86-90. 140

interface handles, 103

managing, 87-90

in remote procedures, 113-115

MIDL attributes, 138

multiple, 89

multiple levels of indirection, 84

null, 80, 83

reference, 80, 114, 138

server context handles, 133

to other pointers, 84-86

to strings, 138

unique, 80, 83, 114-115, 138

privacy, data, 71

procedures
conformant arrays as parameters, 93

context rundown (see context rundown

procedures)

declaration, 27, 38-40

contents of, 4

excluding unused, 44

parameter attributes, 139-140

230 Microsoft RFC Programming Guide

procedures (cont d)

remote (see remote procedures)

returning pointers, 86-87

with context handles, 134-135

protocol sequences, 56

definition of, 14

finding, 56-58

inventory application, 158

LAN for, 58

RFC routines, 43, 145

selecting at server initialization, 104-107

timeouts for, 58

WAN for, 58

protocol, selecting a, 58

ptr attribute, 140

queue, client request, 100

ref attribute, 33, 138

reference pointers, 33, 80, 84, 87-90, 114

registering server interfaces, 102-104

remote file applications (see rfile applica

tions)

remote procedures

calls, multi-threaded, 48

handling errors, 72-74

implementing, 11-12

inventory application, 163

managing memory in, 112-115

multiple implementations, 104

of arithmetic application, 153

phnbk application, 214

renaming in server code, 104

returning context handle, 130

rfile applications, 198

testing and debugging, 76

with binding handles, 133

with context handles, 133-135

writing, 112-117

remote_close RFC, 133

remote_open RFC, 132

remote_send RFC, 132

rfile applications, 129, 191-200

client, 195

context rundown procedures, 197

do_string_binding, 196

get_args, 195

how to run, 191

interface, 194

Makefile, 192

MIDL file, 194

remote procedures, 198

server, 199

RFC (remote procedure calls)

client binding information in, 113

finding servers, 55

group entries, naming, 107

handling, 99-101

(see also servers, initializing)

listening for, 110-112

multi-threaded, 48

runtime library

context runtime procedures, 136

handling client request, 100-101

registering server interfaces, 102

role of, 17

runtime routines, 143-147

interpreting binding information, 60

name service database, 61-64

reporting errors, 102

RpcBindingFree, 63, 66, 68-69

RpcBindingFromStringBinding, 56,

59-60, 66

RpcBindinglnqAuthClient, 71

RpcBindinglnqAuthlnfo, 71

RpcBindingReset function, 51

RpcBindingSetAuthlnfo, 71

RpcBindingToStringBinding, 61

RpcMgmtlnqComTimeout, 58

RpcMgmtSetComTimeout, 58

RpcNetworklnqProtseqs, 56, 66

RpcNsBindinglmport, 56, 58

RpcNsBindinglmportBegin, 63

RpcNsBindinglmportDone, 63

RpcNsBindinglmportNext, 63

RpcNsBindingLookup, 56, 58, 64

RpcNsBindingSelect, 64

RpcProtseqVectorFree, 66

RpcStringBindingCompose, 56, 59, 66

RpcStringBindingParse, 61

RpcStringFree, 6l, 66

vector data structure, 102

security, 71

(see also authentication)

selecting array portion, 90-91

service, server s, 106

rpc_binding_handle_t, 31, 53

RpcBindingVectorFree, 19, 110, 112

Index 231

rpc_binding_vector_t, 102

RPC_C_NS_SYNTAX_DEFAULT, 63, 108

RPC_C_PROTSEQ_MAX_CALLS_DEFAULT,
105

rpcdce.h, 102

RpcEndExcept macro, 111-112

RpcEpRegister, 19, 106, 110

RpcEpUnregister, 110, 112

RpcExcept macro, 111-112

rpc.h, 102

RpcMgmtStopServerListening, 110

RpcNsBindingExport, 19, 108, 125

RpcNsBindingUnexport, 126

rpc_protseq_vector_t, 102

RpcServerAllProtseqlf, 110

RpcServerlnqBindings, 105, 112

RpcServerListen, 19, 110-113

RpcServerRegisterlf, 19, 104

RpcServerUseAllProtseqs, 105

RpcServerUseAUProtseqsIf, 106

RpcServerUseProtseq, 105

RpcServerUseProtseqEp, 106, 110

RpcServerUseProtseqlf, 106, 110

RpcTryExcept macro
,
111-112

running applications (see applications)

search_spec_bind, 69

search_spec_unbind, 69

security, 71

selecting binding method (see binding meth

ods)

sequences, protocol (see protocol

sequences)
server entries, 123-126

creating, 125-126

naming, 124

server files, generatiJng, 42

/server none, MIDL compiler, 42

server.c, 150, 159

servers

advertising, 107-109

binding information

automatic, 50

client, 113

creating, 104-107

explicit, 55

implicit, 52

interpreting, 61

with binding handles, 133

building, 149

client communication break, 134, 136

compiling and linking, 21-23, 117-119

context handles, 133-135

contiguous memory, 97

copying text from clients, 129

data structures, 102

developing, 11

errors in, 72-74

endpoint map, 106

finding/locating, 13

from strings, 64-66

host, 58-59

particular, 45-66

with name service, 61-64

handling
client request, 100-101

exceptions, 72

header files, 102

initializing, 15, 18-19, 99-112, 153

data structures, 101-102

header files, 101-102

inventory application, 169

managing endpoints, 109-110, 112

rfile applications, 199

selecting protocol sequences, 104-107

listening for RPCs, 110-112

managing
context in, 133-136

routines for, 147

naming conventions, 107

naming multiple, 122

phnbk application, 217

producing, 117

registering interfaces, 102-104

remote procedure implementations, 99

stub auxiliary file, 117

using discriminated unions, 38

writing, 99-119

(see also clients)

size_is attribute, 35, 91-93, 138

spx transport, 58

SPX, NCA connection using, 57

status.h, 74, 150

strbind.c, 192

string attribute, 34, 138, 140

strings, 34-35

pointers to, 138

struct keyword, 35

232 Microsoft RFC Programming Guide

structure members

attributes, 139

pointers as, 89

structures, 35-36

stubs

code for memory management, 96

data transmission, 32

definition of, 1

generating, 7

with MIDL compiler, 41

support routines, 113

sum_arrays, 11, 149

switch keyword, 37

tcp, 57

TCP/IP, protocols with, 56

testing remote procedures, 76

text variables (see strings)

threads

for processing client requests, 100

for RPCs, 112-113

timeouts, protocol sequences, 58

transmission control protocol, 57

transmit_as attribute, 139

transport protocol, 57

in RPC binding, 14

type definitions, MIDL, 30-38

typedef keyword, 33

unbind procedure, 68-69

union case attributes, 139

unique attribute. 33, 138, 140

unique pointers, 33, 80, 84, 87-90

allocating memory, 114-115

unsigned32 variable

reporting errors, RPC, 102

UUID (universal unique identifier)

definition of, 5

management routines for, 43, 144, 146

uuid attribute, 30, 137

uuidgen, use of, 5

varying arrays, 34, 90-91

declaring, 90

MIDL attributes, 138

selection portion of, 90-91

vectors, 102

version attribute, 30, 103, 137

version number, interface, 30

void data type, 40

WAN, protocol sequences, 58

wchar_t data type, 31

well-known endpoints, 59-60, 110, 137

creating binding information with, 106

exporting, 108

in binding information, 123

server binding information with, 106-107

whatare_subparts, 11 6, 158

Windows NT, Microsoft, 97

security, 71

Windows phonebook application, 201-221

wphnbk.def, 202

wphnbk.h, 202

wphnbk.rc, 202

writing

clients, 45-77

procedures, 134-135

remote, 112-117

servers, 99-119

About the Author

John Shirley is a consultant in the development of software and documentation,

particularly in the field of distributed computing. He earned a B.A. from Alfred

University with a dual major in mathematics and geology, an M.S. in geology from

Miami University with a specialty in structural geology, and an M.S. in computer
science from Pace University. John lives in Newtown, Connecticut.

Prior to consulting, John s career included six years in the oil industry as a geophys-
icist and international explorationist. His work included the analysis of seismic data

from New Zealand, Australia, Turkey, Norway, the Dominican Republic, Jamaica,
and the United States. He also worked as a software engineer developing programs
for scientific instrument manufacturers.

Ward Rosenberry is a technical writing consultant and author concentrating on
distributed computing and computer networking technologies. Ward has distin

guished himself writing about the Open Software Foundation s Distributed

Computing Environment since 1989, when he helped write Digital Equipment
Corporation s original DCE design documents. He has since co-authored two other

O Reilly books about distributed computing: Understanding DCE and Distributing

Applications Across DCE and Windows NT. He continues his close DCE involvement

designing and developing DCE information both at Digital and at OSF and now
operates a consulting firm, Rosenberry Associates, in Chelmsford, Massachusetts.

Ward graduated from the University of Lowell in 1979 with a B.A. in English. Ward,
his wife Patricia Pestana, and their two children, William and John, live in North

Chelmsford, Massachusetts.

Colophon

The animal on the cover of MicrosoftRFCProgramming Guide is a starfish, a marine

invertebrate animal of the phylum Echinodermata, class Asteroidea. The approxi

mately 1500 known living species of starfish are found throughout the world, at all

ocean depths, and range in size from 1 cm to 68 cm wide. Most starfish have five

arms, but can have as few as four or as many as 50.

Starfish are equipped with five double rows of outgrowths called tube feet. These
tube feet, which are usually tipped with "suction

cups," function in the respiratory

process, enable the starfish to move, and are used to catch prey. The tube feet are

connected via a water-vascular system unique to echinoderms. A ring canal in the

disc-shaped body trunk connects to a radial canal in each arm, through which

gaseous exchange takes place.

When a starfish needs to move, pressure in the water-vascular system causes the

tube feet to become erect, lifting up the body. The tube feet then take small steps,

moving the starfish slowly forward. One arm takes the lead in movement; when the

direction changes, the lead shifts to another arm. Most of the time, however, starfish

are sedentary creatures who prefer to stay anchored in one place. They will move

to search for food, or if there is a change in external conditions.

The majority of starfish are predators, feeding on bivalves, crustaceans, and other

echinoderms. By anchoring its arms on the sea floor, the starfish is able to use the

suction pull of the tube feet to pry open the shells of bivalves. The starfish can then

extrude its stomach through its mouth and into the tiny crevice of the bivalve shell,

and begin the digestive process outside of its body.

Many species of starfish can reject an arm if it is injured in an attack. The body will

generate a new arm, but this is a slow process that can take more than a year to

complete. In a few speciess, the arm that has broken off will generate a body trunk

and four new arms. At least one species of starfish eschews sexual reproduction in

favor of this asexual mode, and has developed the ability to break off an arm at will.

Starfish usually reproduce by releasing eggs and sperm into the waves. The fertilized

eggs form free-swimming larvae, although the female adult will provide some form

of brood care in colder regions.

Edie Freedman designed the cover of this book, using a 19th-century engraving from
the Dover Pictorial Archive. The cover layout was produced with Quark XPress 3.3

using the ITC Garamond font.

The inside layout was designed by Edie Freedman and Jennifer Niederst and imple
mented in gtroff by Lenny Muellner. The text and heading fonts are ITC Garamond

Light and Garamond Book. The illustrations that appear in the book were created in

Aldus Freehand 4.0 by Chris Reilley. This colophon was written by Clairemarie Fisher

O Leary, with assistance from Kiersten Nauman.

FORM
Books from O Reilly & Associates, Inc.

Fortran/Scientific Computing

Fall/Winter 1994-95

Migrating to Fortran 90

ByJames F. Kerrigan

1st Edition November 1993

389pages, ISBN 1-56592-049-X

Many Fortran programmers do not know

where to start with Fortran 90. What is new

about the language? How can it help them?

How does a programmer with old habits

learn new strategies?

This book is a practical guide to Fortran 90

for the current Fortran programmer. It

provides a complete overview of the new

features that Fortran 90 has brought to the

Fortran standard, with examples and suggestions for use.

The book discusses older ways of solving problems both

in FORTRAN 77 and in common tricks or extensions and

contrasts them with the new ways provided by Fortran 90.

The book has a practical focus, with the goal of getting the

current Fortran programmer up to speed quickly. Two dozen

examples of full programs are interspersed within the text,

which includes over 4,000 lines of working code.

Topics include array sections, modules, file handling,

allocatable arrays and pointers, and numeric precision.

Two dozen examples of full programs are interspersed

within the text, which includes over 4,000 lines of

working code.

"This is a book that all Fortran programmers eager to

take advantage of the excellent feature of Fortran 90 will

want to have on their desk." FORTRANJournal

High Performance Computing

By Ketin Dou d
1st EditionJune 1993

398pages, ISBN 1-56592-032-5

HigT
Performance

Computing

High Performance Computing makes

sense of the newest generation of work

stations for application programmers
and purchasing managers. It covers

everything, from the basics of modern

workstation architecture, to structuring

benchmarks, to squeezing more perfor

mance out of critical applications. It also

explains what a good compiler can do

and what you have to do yourself. The book closes with a look

at the high-performance future: parallel computers and the

more
"garden variety"

shared memory processors that are

appearing on people s desktops.

UNIX for FORTRAN Programmers

By Mike Loukides

1st Edition August 1990

264pages, ISBN 0-937175-51-X

This handbook lowers the UNIX entry

barrier by providing the serious scientific

programmer with an introduction to

the UNIX operating system and its tools.

It familiarizes readers with the most

important tools so they can be productive

as quickly as possible. Assumes some

knowledge of FORTRAN, none of UNIX or C.

FOR INFORMATION: 800-998-9938 707-829-0515; NUTS@ORA.COM

C Programming Libraries

POSIX.4

By Bill Gallmeister

1st Edition Winter 1994-95 (est.)

400pages (est.), ISBN 1-56592-074-0

POSIX.4

A general introduction to real-time

programming and real-time issues,

this book covers the POSIX.4 standard

and how to use it to solve "real-world"

problems. If you re at all interested in

real-time applications which include

just about everything from telemetry

to transation processing this book is

for you. An essential reference.

POSIX Programmer s Guide

By Donald Lewine

1st Edition April 1991

640pages, ISBN 0-937175-73-0

POSIX
PROGRAMMER S

GUIDE

Most UNIX systems today are POSIX

compliant because the Federal govern

ment requires it for its purchases.

Given the manufacturer s documenta

tion, however, it can be difficult to

distinguish system-specific features

from those features defined by POSIX.

The POSIX Programmer s Guide,

intended as an explanation of the

POSIX standard and as a reference for

the POSIX. 1 programming library, helps you write more

portable programs.

"If you are an intermediate to advanced C programmer and

are interested in having your programs compile first time on

anything from a Sun to a VMS system to an MSDOS system,

then this book must be thoroughly recommended."

Sun UK User

Understanding and Using COFF

By Gintaros R. Gircys

1st Edition November 1988

196pages, ISBN 0-9371 75-31-5

COFF Common Object File Format is

the formal definition for the structure of

machine code files in the UNIX System V

environment. All machine code files are

COFF files. This handbook explains COFF

data structure and its manipulation.COFF

Using C on the UNIX System

By Dave Curry

1st EditionJanuary 1989

250pages, ISBN 0-937175-23-4

This is the book for intermediate to

experienced C programmers who want

to become UNIX system programmers.

It explains system calls and special library

routines available on the UNIX system. It

is impossible to write UNIX utilities of any

sophistication without understanding the

material in this book.

"A gem of a book.... The author s aim is to provide a guide to

system programming, and he succeeds admirably. His balance

is steady between System V and BSD-based systems, so readers

come away knowing both." SUN Expert

Practical C Programming

By Steve Oualline

2nd EditionJanuary 1993

396pages, ISBN 1-56592-035-X

C programming is more than just getting

the syntax right. Style and debugging

also play a tremendous part in creating

programs that run well. Practical C

Programming teaches you not only the

mechanics of programming, but also

how to create programs that are easy

to read, maintain, and debug. There

are lots of introductory C books, but

this is the Nutshell Handbook! In this edition, programs

conform to ANSI C.

"This book is exactly what it states a practical book in

C programming. It is also an excellent addition to any C

programmer s
library." Betty Zinkarun, Books & Bytes

Programming with curses

ByJohn Strung

1st Edition 1986

76pages, ISBN 0-937175-02-1

Curses is a UNIX library of functions for

controlling a terminal s display screen

from a C program. This handbook

helps you make use of the curses

library. Describes the original Berkeley

version of curses.

TO ORDER: 800-889-8969 (CREDIT CARD ORDERS ONLY); ORDER@ORA.COM

C Programming Tools

Software Portability with imake

By Paul DuBois

1st Edition July 1993

390pages, ISBN 1-56592-055-4

imake is a utility that works with make
to enable code to be compiled and

installed on different UNIX machines.

imake makes possible the wide portability

of the X Window System code and is widely

considered an X tool, but it s also useful

for any software project that needs to be

ported to many UNIX systems.

This Nutshell Handbook the only book available on

imake is ideal for X and UNIX programmers who want

their software to be portable. The book is divided into two

sections. The first section is a general explanation of imake,

X configuration files, and how to write and debug an Imakefile.

The second section describes how to write configuration files

and presents a configuration file architecture that allows

development of coexisting sets of configuration files. Several

sample sets of configuration files are described and are

available free over the Net.

Managing Projects with make

By Andrew Oram & Steve Talbott

2nd Edition October 1991

152 pages, ISBN 0-937175-90-0

make is one of UNIX s greatest contribu

tions to software development, and this

book is the clearest description of make
ever written. It describes all the basic

features of make and provides guidelines

on meeting the needs of large, modern

projects. Also contains a description

of free products, that contain major
enhancements to make,

"I use make very frequently in my day to day work and

thought I knew everything that I needed to know about it.

After reading this book I realized that I was wrong!
Rob Henley, Siemens-Nixdorf

"If you can t pick up your system syp Makefile, read every

line, and make sense of it, you need this book."

Rootjournal

Checking C Programs with lint

By Ian F. Darwin

1st Edition October 1988

84pages. ISBN 0-937175-30-7

The lint program checker has proven

time and again to be one of the best tools

for finding portability problems and certain

types of coding errors in C programs, lint

verifies a program or program segments

against standard libraries, checks the

code for common portability errors, and

tests the programming against some tried

and true guidelines. Linting your code is

a necessary (though not sufficient) step in writing clean,

portable, effective programs. This book introduces you to lint,

guides you through running it on your programs, and helps

you interpret lint s output.

"I can say without reservation that this book is a must for

the system programmer or anyone else programming in C."

Rootjournal

lex & yacc

ByJohn Letine, Tony Mason & Doug Brown

2nd Edition October 1992

366pages, ISBN 1-56592-000-7

Shows programmers how to use two

UNIX utilities, lex and yacc, in program

development. The second edition contains

completely revised tutorial sections for

novice users and reference sections for

advanced users. This edition is twice the

size of the first, has an expanded index,

and now covers Bison and Flex.

Power Programming with RPC

ByJohn Bloomer

1st Edition February 1992

522 pages, ISBN 0-937175-77-3

RPC, or remote procedure calling, is the

ability to distribute the execution of func

tions on remote computers. Written from

a programmer s perspective, this book

shows what you can do with RPCs, like

Sun RPC, the de facto standard on UNIX

systems. It covers related programming

topics for Sun and other UNIX systems

and teaches through examples.

FOR INFORMATION: 800-998-9938, 707-829-05 15; HUTS@ORA.COM

Multi-Platform Programming

Guide to Writing DCE Applications

ByJohn Shirley, WeiHu & DavidMagid

2nd Edition May 1994

462 pages, ISBN 1-56592-045-7

A hands-on programming guide to OSF s

Distributed Computing Environment (DCE)

for first-time DCE application programmers.

This book is designed to help new DCE

users make the transition from conventional,

nondistributed applications programming

to distributed DCE programming. In addi

tion to basic RFC (remote procedure

calls), this edition covers object UUIDs

and basic security (authentication and authorization).

Also includes practical programming examples.

"This book will be useful as a ready reference by the side of

the novice DCE programmer." ;login

Distributing Applications Across DCE
and Windows NT

By Ward Rosenbeny &Jim league

1st Edition November 1993

302 pages. ISBN 1-56592-047-3

This book links together two exciting

technologies in distributed computing

by showing how to develop an application

that simultaneously runs on DCE and

Microsoft systems through remote proce

dure calls (RFC). Covers the writing of

portable applications and the complete

differences between RFC support in the

two environments.

Understanding DCE

By Ward Rosenbeny, DavidKmney & Gerry Fisher

1st Edition October 1992

266pages, ISBN 1-56592-005-8

A technical and conceptual overview of

OSF s Distributed Computing Environment

(DCE) for programmers, technical

managers, and marketing and sales

people. Unlike many O Reilly & Associates

books, Understanding DCE has no hands-

on programming elements. Instead, the

book focuses on how DCE can be used

to accomplish typical programming tasks

and provides explanations to help the reader understand all

the parts of DCE.

Encyclopedia of Graphics File Formats

ByJames D. Murray & William vanRyper

1st Edition July 1994

928pages (CD-ROM included), ISBN 1-56592-058-9

The computer graphics world is a veri

table alphabet soup of acronyms; BMP

DXF, EPS, GIF, MPEG, PCX, PIC, RTF,

TGA, RIFF, and TIFF are only a few of

the many different formats in which

graphics images can be stored.

The Encyclopedia ofGraphics
File Formats is the definitive

work on file formats the

book that will become a classic

for graphics programmers and

everyone else who deals with the low-level technical details

of graphics files. It includes technical information on nearly

100 file formats, as well as chapters on graphics and file

format basics, bitmap and vector files, metafiles, scene

description, animation and multimedia formats, and file

compression methods.

Best of all, this book comes with a CD-ROM that collects many

hard-to-find resources. We ve assembled original vendor file

format specification documents, along with test images and

code examples, and a variety of software packages for MS-

DOS, Windows, OS/2, UND(, and the Macintosh that will let

you convert, view, and manipulate graphics files and images.

Multi-Platform Code Management

By Kevin Jameson

1st Edition August 1994

354pages (two diskettes included), ISBN 1-56592-059-7

For any programmer or team struggling

with builds and maintenance, this

book and its accompanying software

(available for fifteen platforms,

including MS-DOS and various UNIX

systems) can save dozens of errors

and hours of effort. A "one-stop-shop

ping"
solution for code management

problems, it shows you how to structure

a large project and keep your files and builds under control

over many releases and platforms. The building blocks are

simple: common-sense strategies, public-domain tools that

you can obtain on a variety of systems, and special utilities

developed by the author. The book also includes two

diskettes that provide a complete system for managing

source files and builds.

TO ORDER: 800-889-8969 (CREDIT CARD ORDERS ONLY); ORDER@ORA.COM

Database

Understanding Japanese Information Processing

By Ken Lutuie

1st Edition September 1993

470pages. ISBN 1-56592-043-0

UnderstandingJapanese Information

Processing provides detailed information

on all aspects of handling Japanese text

on computer systems. It brings all of the

relevant information together in a single

book and covers everything from the

origins of modern-day Japanese to the

latest information on specific emerging

computer encoding standards. Appendices

provide additional reference material, such as a code conver

sion table, character set tables, mapping tables, an extensive

list of software sources, a glossary, and more.

"A programmer interested in writing a computer program
which will handle the Japanese language will find the book

indispensable." Multilingual Computing

"Ken Lunde s book is an essential reference for everyone

developing or adapting software for handling Japanese text.

It is a goldmine of useful and relevant information on fonts,

encoding systems and standards."

Professor Jim Breen, Monash University, Australia

Business

Building a Successful Software Business

By Dare Rodin

1st Edition April 1994

394pages, ISBN 1-56592-064-3

This handbook is for the new software

entrepreneur and the old hand alike.

If you re thinking of starting a company
around a program you ve written and

there s no better time than the present

this book will guide you toward success.

If you re an old hand in the software

industry, it will help you sharpen your
skills or will provide a refresher course. It covers the basics

of product planning, marketing, customer support, finance,

and operations.

"A marvelous guide through the complexities of marketing

high-tech products. Its range of topics, and Radin s insights,

make the book valuable to the novice marketeer as well as

the seasoned veteran. It is the Swiss Army Knife of high-tech

marketing." Jerry Keane, Universal Analytics Inc.

ORACLE Performance Tuning

By Peter Corrigan & Mark Gurry
1st Edition September 1993

642pages, ISBN 1-56592-048-1

The ORACLE relational database

management system is the most

popular database system in use today.

Organizations, ranging from government

agencies to small businesses, from large

financial institutions to universities,

use ORACLE on computers as diverse

as mainframes, minicomputers, work

stations, PCs, and Macintoshes.

ORACLE offers tremendous power and flexibility, but at

some cost. Demands for fast response, particularly in online

transaction processing systems, make performance a major
issue. With more organizations downsizing and adopting

client-server and distributed database approaches, perfor

mance tuning has become all the more vital.

Whether you re a manager, a designer, a programmer,
or an administrator, there s a lot you can do on your own

to dramatically increase the performance of your existing

ORACLE system. Whether you are running RDBMS Version 6

or Version 7, you may find that this book can save you the

cost of a new machine; at the very least, it will save you a

lot of headaches.

"This book is one of the best books on ORACLE that I have

ever read.... [It] discloses many Oracle Tips that DBA s and

Developers have locked in their brains and in their planners....

I recommend this book for any person who works with

ORACLE, from managers to developers. In fact, I have to keep

[it] under lock and key, because of the popularity of it."

Mike Gangler

FOR INFORMATION: 800-998-9938 707-829-0515; NUTS@ORA.COM

O Reilly & Associates-

GLOBAL NETWORK NAVIGATOR
The Global Network Navigator (GNN) is a unique kind of information service that makes the Internet easy and enjoyable

to use. We organize access to the vast information resources of the Internet so that you can find what you want. We also help

you understand the Internet and the many ways you can explore it.

GlobalNetwork Navigator
Charting the Interj%M.

In GNNyou llfind:

Navigating the Net with GNN
The Whole Internet Catalog contains a

descriptive listing of the most useful Net

resources and services with live links to those resources.

The GNN Business Pages are where

you ll learn about companies who have

established a presence on the Internet and use its worldwide

reach to help educate consumers.

The Internet Help Desk helps folks who

are new to the Net orient themselves and

gets them started on the road to Internet exploration.

News

NetNews is a weekly publication that

reports on the news of the Internet, with

weekly feature articles that focus on Internet trends and

special events. The Sports, Weather, and Comix Pages round

out the news.

Special Interest Publications

Whether you re planning a trip or are just

interested in reading about the journeys
of others, you ll find that the Travelers Center contains a

rich collection of feature articles and ongoing columns about

travel. In the Travelers Center, you can link to many helpful

and informative travel-related Internet resources.

The PersonalFinance Center is the place

to go for information about money manage
ment and investment on the Internet. Whether you re an old

pro at playing the market or are thinking about investing for the

first time, you ll read articles and discover Internet resources

that will help you to think of the Internet as a personal finance

information tool.

All in all, GNN helpsyou get more valuefor the

timeyou spend on the Internet.

S The Best of the Web

GNN received "Honorable Mention" for

Best Overall Site," "Best Entertainment Service,"

and "Most Important Service Concept."

The GNN NetNews received "Honorable Mention"

for "Best Document
Design."

Subscribe Today

GNN is available over the Internet as a subscription service.

To get complete information about subscribing to GNN,

send email to info@gnn.com. If you have access to a World

Wide Web browser such as Mosaic or Lynx, you can use the

following URL to register online: http : / /gun . com/

If you use a browser that does not support online forms,

you can retrieve an email version of the registration form

automatically by sending email to form@gnn.com.
Fill this form out and send it back to us by email, and

we will confirm your registration.

TO ORDER: 800-889-8969 (CREDIT CARD ORDERS ONLY); ORDER@ORA.COM

O Reilly on the Net-

ONLINE PROGRAM GUIDE
O Reilly & Associates offers extensive information through our online resources. If you ve got Internet access, we invite you to

come and explore our little neck-of-the-woods.

Online Resource Center

Most comprehensive among our online offerings is the O Reilly

Resource Center. Here, you ll find detailed information and

descriptions on all O Reilly products: titles, prices, tables of

contents, indexes, author bios, software contents, reviews... you
can even view images of the products themselves. We also supply

helpful ordering information: how to contact us, how to order

online, distributors and bookstores world wide, discounts,

upgrades, etc. In addition, we provide informative literature in

the field: articles, interviews, and bibliographies that help you

stay informed and abreast.

^-M The Best of the Web
The O Reilly Resource Center was voted "Best Commercial

Site" by users participating in "Best of the Web 94."

Ora-news

An easy way to stay informed of the latest projects and products
from O Reilly & Associates is to subscribe to "ora-news," our

electronic news service. Subscribers receive email as soon as

the information breaks.

To subscribe to "ora-news":

Send email to:

listproc@online.ora.com

and put the following information on the first line of your message
(not in

"Subject"):

subscribe ora-news
"your

name" of
"your company"

For example:

subscribe ora-news Jim Dandy of Mighty Fine Enterprises

To access ORA s Online Resource Center:

Point your Web browser (e.g., mosaic or lynx) to:

http : / /gnn . com/ora/

Email

Many customer services are provided via email. Here s a few of

the most popular and useful.

For the plaintext version, telnet or gopher to:

gopher . ora . com

(telnet login: gopher)

FTP

The example files and programs in many of our books are

available electronically via FTP.

To obtain exampleflies andprograms
from O Reilly texts:

ftp to:

ftp.ora.com

or

ftp.uu.net

cd published/oreilly

nuts@ora.com

For general questions and information.

bookquestions@ora.com
For technical questions, or corrections, concerning
book contents.

order@ora.com

To order books online and for ordering questions.

catalog@ora.com
To receive a free copy of our magazine/catalog, "ora.com

(please include a postal address).

Snailmail and phones

O Reilly & Associates, Inc.

103A Morris Street, Sebastopol, CA 95472

Inquiries: 707-829-0515, 800-998-9938

Credit card orders: 800-889-8969 (Weekdays 6a.m.- 6p.m. PST)

FAX: 707-829-0104

FOR INFORMATION: 800-998-9938 707-829-0515: NUTS@ORA.COM

O Reilly & Associates-

LISTING OF TITLES
INTERNET
!%@:: A Directory of Electronic Mail

Addressing & Networks

Connecting to the Internet: An O Reilly Buyer s Guide

Internet In A Box

The Mosaic Handbook for Microsoft Windows

The Mosaic Handbook for the Macintosh

The Mosaic Handbook for the X Window System

Smileys

The Whole Internet User s Guide & Catalog

SYSTEM ADMINISTRATION

Computer Security Basics

DNS and BIND

Essential System Administration

Linux Network Administrator s Guide (Winter 94/95 est)

Managing Internet Information Services

Managing NFS and NIS

Managing UUCP and Usenet

sendmail

Practical UNIX Security

PGP: Pretty Good Privacy (Winter 94/95 est.)

System Performance Tuning

TCP/IP Network Administration

termcap & terminfo

X Window System Administrator s Guide: Volume 8

The X Companion CD for R6 (Winter 94/95 est.)

USING UNIX AND X
BASICS

Learning GNU Emacs

Learning the Korn Shell

Learning the UNIX Operating System

Learning the vi Editor

MH & xmh: Email for Users & Programmers

SCO UNIX in a Nutshell

The USENET Handbook (Winter 94/95 est.)

Using UUCP and Usenet

UNIX in a Nutshell: System V Edition

The X Window System in a Nutshell

X Window System User s Guide: Volume 3

X Window System User s Guide, Motif Ed.: Vol. 3M

X User Tools (with CD-ROM)

ADVANCED

Exploring Expect (Winter 94/95 est.)

The Frame Handbook

Learning Perl

Making TeX Work

Programming perl

sed&awk

UNIX Power Tools (with CD-ROM)

PROGRAMMING UNIX,
C, AND MULTI-PLATFORM

FORTRAN/SCIENTIFIC COMPUTING

High Performance Computing

Migrating to Fortran 90

UNIX for FORTRAN Programmers

C PROGRAMMING LIBRARIES

Practical C Programming

POSIX Programmer s Guide

POSIX.4: Programming for the Real World

(Winter 94/95 est)

Programming with curses

Understanding and Using COFF

Using C on the UNIX System

C PROGRAMMING TOOLS

Checking C Programs with lint

lex & yacc

Managing Projects with make

Power Programming with RPC

Software Portability with imake

MULTI-PLATFORM PROGRAMMING

Encyclopedia of Graphics File Formats

Distributing Applications Across DCE and

Windows NT

Guide to Writing DCE Applications

Multi-Platform Code Management

ORACLE Performance Tuning

Understanding DCE

Understandingjapanese Information Processing

BERKELEY 4.4 SOFTWARE
DISTRIBUTION
4.4BSD System Manager s Manual

4.4BSD User s Reference Manual

4.4BSD User s Supplementary Documents

4,-iBSD Programmer s Reference Manual

4.4BSD Programmer s Supplementary Documents

4.4BSD-Lite CD Companion

4.4BSD-Lite CD Companion: International Version

X PROGRAMMING
Motif Programming Manual: Volume 6A

Motif Reference Manual: Volume 6B

Motif Tools

PEXlib Programming Manual

PEXlib Reference Manual

PHIGS Programming Manual (soft or hard cover)

PHIGS Reference Manual

Programmer s Supplement for Release 6 (Winter 94/95 est)

Xlib Programming Manual: Volume 1

Xlib Reference Manual: Volume 2

X Protocol Reference Manual, R5: Volume

X Protocol Reference Manual, R6: Volume

(Winter 94/95 est.)

X Toolkit Intrinsics Programming Manual: Vol. 4

X Toolkit Intrinsics Programming Manual,

Motif Edition: Volume 4M

X Toolkit Intrinsics Reference Manual: Volume 5

XView Programming Manual: Volume 7A

XView Reference Manual: Volume 7B

THE X RESOURCE
A QUARTERLY WORKING JOURNAL FOR

X PROGRAMMERS

The X Resource: Issues through 13

(Issue 13 available 1/95)

BUSINESS/CAREER
Building a Successful Software Business

Love Your Job!

TRAVEL
Travelers Tales Thailand

Travelers Tales Mexico

Travelers Tales India (Winter 94/95 est)

AlTDIOTAPES
INTERNET TALK RADIO S

"GEEK OF THE WEEK" INTERVIEWS

The Future of the Internet Protocol, 4 hours

Global Network Operations, 2 hours

Mobile IP Networking, 1 hour

Networked Information and

Online Libraries, 1 hour

Security and Networks, 1 hour

European Networking, 1 hour

NOTABLE SPEECHES OF THE INFORMATION AGE

John Perry Barlow, 1.5 hours

TO ORDER: 800-889-8969 (CREDIT CARD ORDERS ONLY): ORDER@ORA.COM

O Reilly &Associates-

INTERNATIONAL DISTRIBUTORS
Customers outside North America can now order O Reilly & Associates books through the following distributors. They offer our

international customers faster order processing, more bookstores, increased representation at tradeshows worldwide, and the high-

quality, responsive service our customers have come to expect.

EUROPE, MIDDLE EAST, AND AFRICA

(except Germany, Switzerland, and Austria)

INQUIRIES

International Thomson Publishing Europe

Berkshire House

168-173 High Holborn

London WC1V7M
United Kingdom

Telephone: 44-71-497-1422

Fax: 44-71-497-1426

Email: ora.orders@itpuk.co.uk

ORDERS

International Thomson Publishing Services, Ltd.

Cheriton House, North Way
Andover, Hampshire SP10 5BE

United Kingdom

Telephone: 44-264-342-832 (UK orders)

Telephone: 44-264-342-806 (outside UK)

Fax: 44-264-364418 (UK orders)

Fax: 44-264-342761 (outside UK)

GERMANY, SWITZERLAND, AND AUSTRIA
International Thomson Publishing GmbH
O Reilly-International Thomson Verlag

Attn: Mr. G. Miske

Konigswinterer Strasse 418

53227 Bonn

Germany

Telephone: 49-228-970240

Fax: 49-228-441342

Email: anfragen@orade.ora.com

ASIA

(except Japan)

INQUIRIES

International Thomson Publishing Asia

221 Henderson Road

#05 10 Henderson Building

Singapore 03 15

Telephone: 65-272-64%

Fax: 65-272-6498

ORDERS

Telephone: 65-268-7867

Fax: 65-268-6727

AUSTRALIA

WoodsLane Pty. Ltd.

Unit 8, 101 Darley Street (P.O. Box 935)

MonaValeNSW2103

Australia

Telephone: 61-2-979-5944

Fax: 61-2-997-3348

Email: woods@tmx.mhs.oz.au

NEW ZEALAND
WoodsLane New Zealand Ltd.

21 Cooks Street (P.O. Box 575)

Wanganui, New Zealand

Telephone: 64-6-347-6543

Fax: 64-6-345-4840

Email: woods@tmx.mhs.oz.au

THE AMERICAS, JAPAN, AND OCEANIA
O Reilly & Associates, Inc.

103A Morris Street

Sebastopol, CA 95472 U.S.A.

Telephone: 707-829-0515

Telephone: 800-998-9938 (U.S. & Canada)

Fax: 707-829-0104

Email: order@ora.com

FOR INFORMATION: 800-998-9938, 707-829-0515; NUTS@ORA.COM

Here s a page we encourage readers to tear out...

Please send me thefollowing:

Q ora.com

O Reilly s magazine/catalog,

containing behind-the-scenes

articles and interviews on the

technology we write about, and

a complete listing of O Reilly

books and products.

G GlobalNetwork Navigator

Information and subscription.

Which book did this card come from?

Please print legibly

Where did you buy this book?

Q Bookstore Q Direct from O Reilly

Q Bundled with hardware/software LI Class/seminar

Your job description: G SysAdmin G Programmer

Q Other

What computer system do you use? Q UNIX

QMAC QDOS(PC) LI Other

Name Company/Organization Name

Address

Citv State Zip/Postal Code Country

Telephone Internet or other email address (specify
7

network)

vineteenth century wood engraving

&gt;f the horned owl from the O Reilly

i Associates Nutshell Handbook

.earning the i.MX Operating System

NO POSTAGE

NECESSARY IF

MAILED IN THE

UNITED STATES

BUSINESS REPLY MAIL
FIRST CLASS MAIL PERMIT NO. 80 SEBASTOPOL, CA

Postage will be paid by addressee

O Reilly & Associates, Inc.

103A Morris Street

Sebastopol, CA 95472-9902

O Reilly & Associates, Inc.

Microsoft RFC Programming Guide

Remote Procedure Call (RFC) is the glue that holds together MS-DOS, Windows 3.x, and

Windows NT. It is a client-server technology a way of making programs on two different

systems work together like one. The advantage of RFC over other distributing

programming techniques is that you can link two systems together using simple C calls,

as in a single-system program.

The most common use for client-server technology is to combine the graphical display

capabilities of a desktop PC with the database and number-crunching power of a large

central system. But peer-to-peer programs can run equally well.

Like many aspects of Microsoft programming, RFC forms a small world of its own, with

conventions and terms that can be confusing. But once you understand the purpose
behind each feature, programming with RFC is not difficult. This book lays out the

concepts and the programming tasks so that you can use this powerful API.

Microsoft RFC is a new technology based on the RFC used in the Distributed Computing
Environment (DCE). This book builds on O Reilly s successful DCE series. It provides a

solid foundation for programmers learning to use Microsoft RFC, including:

Controlling communications through the Microsoft Interface Definition Language
(MIDL) and the Attribute Configuration File (ACF)

How the server advertises itself

How a client chooses a server (binding)

Types of pointers and arrays

Memory management

Administration tasks for an RFC server

Maintaining state through context handles

This edition covers version 2.0 of Microsoft RFC. Four complete examples are included.

ISBN 1-56592-070-8 RepKover,

90000

Printed on Recycled Paper

9 781565 920705---1 ISBN 1-56592-070-8

