Geol. Survey

4.GS: 2IR 427

> STATE OF ILLINOIS DEPARTMENT OF REGISTRATION AND EDUCATION

MINERAL ZONATION OF WOODFORDIAN LOESSES OF ILLINOIS

John C. Frye H. D. Glass H. B. Willman

ILLINOIS GEOLOGICAL SURVEY LIBRARY

ILLINOIS STATE GEOLOGICAL SURVEY John C. Frye, Chief URBANA CIRCULAR 427 1968 Digitized by the Internet Archive in 2012 with funding from University of Illinois Urbana-Champaign

WUNCHS GLULUSICIA

http://archive.org/details/mineralzonationo427frye

ILLINOIS GEOLOGICAL SURVEY, LIBRARY.

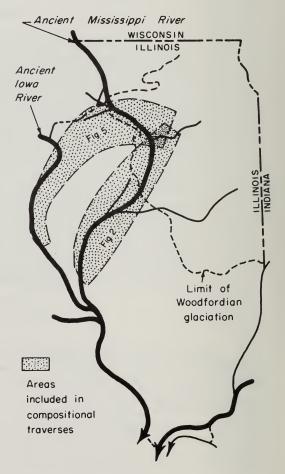
MINERAL ZONATION OF WOODFORDIAN LOESSES OF ILLINOIS

John C. Frye, H. D. Glass, and H. B. Willman

ABSTRACT

The Woodfordian loesses of central and western Illinois are zoned on the basis of their clay-mineral composition. These zones are related to the composition of outwash in the major source valleys. In the Illinois Valley, three zones are distinguished by successively higher amounts of illite. In the Mississippi Valley of western Illinois, low amounts of illite and high amounts of montmorillonite occur in the bottom and top zones with a middle zone characterized by higher amounts of illite. In the north-central part of the state, a still higher zone, characterized by high amounts of montmorillonite, overlies the other zones. The relative degree of mineral alteration in the modern soils is evaluated by the development of a "heterogeneous swelling index." The data suggest that surface soils in west-central Illinois loess have formed during about 12,000 ± 1000 radiocarbon years, and those of the central Illinois Valley region have formed during about 14,000 ± 1000 radiocarbon years.

INTRODUCTION


Three-fourths of the surface of Illinois is underlain by loess that commonly ranges from a few feet to more than 50 feet in thickness. It rests on both glacially derived deposits and on bedrock, and because of its position just below the surface, it is important in construction projects, as fill material, as the parent material for much of the state's soil, and locally for such uses as ceramic raw material. The Illinois State Geological Survey has studied the stratigraphy and mineral composition of the surficial loesses (Frye, Glass, and Willman, 1962; Frye and Willman, 1963; Glass, Frye, and Willman, 1964), and this report gives the results of studies of the mineralogical zonation of the youngest, or uppermost, loess units. Because the zonation of the Woodfordian loess is limited to those areas where it is quite thick, this study was made in the belts of thick loess adjacent to the Illinois and Mississippi Valleys (fig. 1). The objective has been to define not only the recognizable zones in the loess, but also to relate the mineral composition and stratigraphy of these zones to that of Woodfordian tills that resulted from the repeated glacial advances and retreats (Frye, Willman, and Black, 1965).

The mineral compositions of the Woodfordian tills of northeastern and central Illinois contrast with the compositions of the Illinoian and Kansan tills of the state (Willman, Glass, and Frye, 1963; 1966), and within the Woodfordian tills there are two clay-mineral compositional groups. Within the Illinois Valley region, the tills from the Shelbyville, at the base, upwards through and including the Bloomington are characterized by higher percentages of expandable clay minerals and lower percentages of illite than are the tills overlying the Bloomington. As the outwash was the primary source of loess in the Illinois Valley region, this compositional change should be, and is, detected in

the loess deposits.

With the exception of this one change in the clay-mineral composition of the loess, the other changes are attributed to modifications in major drainage lines caused by glacial diversions (Glass, Frye, and Willman, 1964). Thus, it is necessary to briefly review the drainage history of central and western Illinois as a basis for understanding the mineral zonation of the Woodfordian loesses.

The major stream during Farmdalian time (Frye, Willman, and Black, 1965) was the Ancient Mississippi River that occupied the position of the present Mississippi in northwestern Illinois (fig. 1). From there, it flowed eastsoutheast from the vicinity of Cordova and Erie, by way of the now buried Princeton Valley, to the area of the Big Bend of the Illinois Valley near Hennepin. From the vicinity of Hennepin, it flowed southward along the Illinois Valley to the Mississippi Valley. Thus, the Ancient Mississippi Valley was in a position to receive and carry outwash from the advancing early Woodfordian glaciers from as far north as eastern Minnesota and northwestern Wisconsin. In north-central Illinois it was joined by outwash carrying streams from the Lake Michigan lobe. As a result, the composition of the loess deposited during earliest Woodfordian time along the

Illinois Valley is a blend of sediments from a broad region to the north, northwest, and northeast.

In contrast, that part of the present Mississippi Valley below Rock Island County received outwash only from the earliest Woodfordian glaciers advancing into the Des Moines lobe of north-central Iowa. This valley was part of a drainage system, called the Ancient Iowa, that originated in north-central Iowa and south-central Minnesota and occupied the present valley of the Mississippi from near Muscatine southward to the St. Louis area.

This regional drainage pattern persisted until the glacier advancing toward the west from the Lake Michigan lobe blocked the Princeton Valley and diverted the Ancient Mississippi River across the high bedrock in the Moline-Rock Island area (Shaffer, 1954; MacClintock and Willman, 1959). After this diversion, the Mississippi Valley above St. Louis was receiving outwash from the headwaters of the Ancient Mississippi Valley, from the region of north-central Iowa, and from the Lake Michigan lobe through the reversed Princeton Valley.

After this blockage and diversion, determined to be approximately 21,000 radiocarbon years B.P. (Glass, Frye, and Willman, 1964), the lower Illinois Valley portion of the Ancient Mississippi Valley was deprived of all outwash except that originating from the Lake Michigan lobe itself.

After the Woodfordian glaciers retreated from the position of the Bloomington Moraine, which extended across the Princeton Valley, northeastern outwash no longer was fed into the Mississippi Valley. By then, the present Mississippi River was established, and it continued to receive outwash from the Des Moines lobe glaciers of north-central Iowa, as well as from northeastern Minnesota and northwestern Wisconsin.

The Illinois Valley, on the other hand, lost its source of outwash by late Woodfordian time because of the formation of Lake Illinois (Willman and Payne, 1942), and, subsequently, Lake Chicago. These lakes, through which flowed the meltwater from the glaciers, served as a trap for outwash and effectively eliminated the Illinois Valley as a source of loess. In contrast, outwash continued to be carried down the Mississippi Valley to serve as a loess source, perhaps to as late as Valderan time.

Each of these changes in drainage pattern, as well as the change in composition of the Lake Michigan lobe tills, should be reflected in the composition of the loess deposits along the major valleys. The analytical data presented here show the relation of the recognizable compositional zones in the loess to this glacial history.

The Woodfordian loesses of Illinois are classed in three stratigraphic units (Frye and Willman, 1960). Beyond the limits of Woodfordian glacial advance, all loess of this age is included within the Peoria Loess. Within the region of glacial tills of Woodfordian age, the loess that occurs stratigraphically above Farmdale Silt and is overlain by glacial till is called the Morton Loess, and the loess that occurs above these tills is called the Richland Loess. The mineralogically distinctive zones that will be described are subdivisions of these stratigraphic units.

The clay minerals in loess may be considered as complex assemblages of four primary clay minerals—montmorillonite, illite, chlorite, and kaolinite—and the secondary clay mineral, vermiculite, formed as an alteration product of both illite and chlorite. The vermiculite is most difficult to evaluate or quantify, as it occurs in all stages of alteration through complex mixed-lattice clay minerals to material that expands with ethylene glycol treatment and is indistinguishable from montmorillonite. It should be noted that in this report, the terms montmorillonite and vermiculite refer to specific clay minerals, whereas the term expandable clay minerals refers to mixtures of montmorillonite and vermiculite. The clay minerals in loess reflect the primary source area materials, as well as their alteration products formed at the source, during transport, and by weathering after deposition.

It has been shown (Willman, Glass, and Frye, 1963) that tills deposited by glaciers entering Illinois from the northeast have illite as the dominant clay mineral with lesser amounts of chlorite-vermiculite, whereas tills deposited by glaciers entering Illinois from the northwest have montmorillonite as the dominant clay mineral with minor amounts of kaolinite and illite, with chlorite usually absent. The mineralogy of the loess, therefore, is related to the varying contributions from the glaciers in the source areas that furnished outwash to the major valleys, and secondarily to any "blow-over"effects from areas to the west by the prevailing winds.

The various factors that contribute to clay-mineral composition of the loess create problems in the tabulation of data, as some zone boundaries are transitional whereas others are extremely sharp. Within the individual zones, composition may be essentially homogeneous or completely gradational. The compositions are here expressed and tabulated as three values, which respectively indicate the percentages of expandable clay minerals (montmorillonite and vermiculite), illite, and kaolinite plus chlorite in the less-than-two micron fraction. In order to present the most significant data to supplement the principles discussed, tabulations are made showing the compositions with the maximum or minimum amount of illite for all zones. The nature of the zonal contact, whether sharp or transitional, is also indicated. Also shown in the tables is the diffraction intensity ratio (D.I. ratio). This ratio is a numerical value that shows the relationship in the loess of illite to chlorite plus kaolinite (Frye, Glass, and Willman, 1962, p. 7).

The mineralogical data used in this study are given at the end of the report in table 1. The location and the description of the stratigraphic position and lithology are given in the measured geologic sections included at the end of this report for all previously unpublished sections. The descriptive sections that have been published previously are indicated by reference to the report in which each was published.

ZONATION IN THE ILLINOIS VALLEY

The traverse along the Illinois Valley (fig. 1) extends from Greene County at the south to LaSalle County at the north and is based on analytical data from 20 measured sections. The traverse crosses the boundary of the area glaciated during Woodfordian time. Nine of the sections used are beyond this glacial limit and, therefore, deal with the Peoria Loess, whereas 11 occur within the area of Woodfordian tills and are concerned with the Morton and Richland Loesses. Physical and mineralogical continuity extends from the Peoria into the Morton and the Richland, which makes it possible to establish the physical relations of the loess zones to the various till sheets.

The relations of the recognizable compositional zones within the loess to the tills along this traverse are shown diagramatically in figure 2. Zone I at the base is characterized by relatively high montmorillonite and low illite (fig. 3; tables 2 and 3), and its source was the outwash carried by the Ancient Mississippi River during the period of advance of the Woodfordian glaciers. These glaciers, advancing from the Keewatin center, crossed the montmorillonite-rich Cretaceous rocks, and thus the valley primarily received montmorillonite from the northwest. In north-central Illinois, outwash rich in illite, chlorite, and vermiculite, derived from the Paleozoic rocks to the north and northeast, was mixed with the northwestern outwash. The outwash was further diluted with additional high-illite sediments, also from Paleozoic rocks, southward along the valley.

The termination of the deposition of Zone I and the initiation of the deposition of Zone II in the Illinois Valley was relatively sudden because it was produced by the diversion of the northwestern outwash by the Woodfordian glacier advancing from the northeast. The sediment source for Zone II was the outwash from early Woodfordian glaciers of the Lake Michigan lobe. Deprived of the dominantly montmorillonite source from the northwest, Zone II is characterized by a decrease in expandable clay minerals and an increase in the amount of illite in contrast to Zone I below. Zone II contains some montmorillonite from the west because the eastern feather edge of the Mississippi Valley loess extended to the Illinois Valley (figs. 3 and 4; table 3).

This sharp change in composition occurs in the Morton Loess below the Shelbyville till (Glass, Frye, and Willman, 1964). The compositional change takes place in a few inches vertically, although it is not detectable in the field by physical appearance. The data presented here permit the southward tracing of this compositional change within the Peoria Loess more than 100 miles beyond the Shelbyville Moraine. Southward from the Shelbyville Moraine, dilutions by eolian trans-

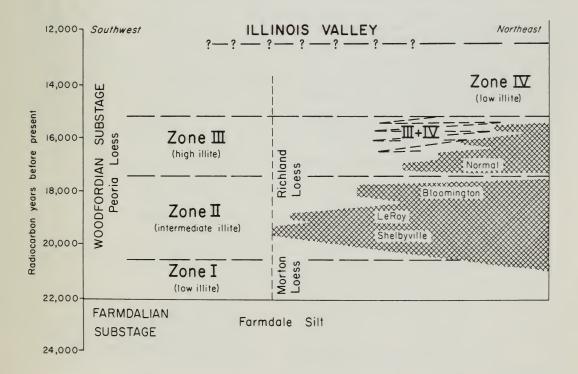


Figure 2 - Generalized diagram showing relation of compositional zones along Illinois Valley.

port from the west, by additional outwash from the northeast, and by mixing during outwash transport serve to blur the boundary of the two zones and they become transitional in the lower Illinois Valley.

Zone II is present not only within the upper part of the Morton Loess and the lower part of the Richland Loess (fig. 4) but is also differentiated within the Peoria Loess southward along the Illinois Valley (fig. 3; tables 2 and 3).

As the contact of Zones I and II indicates the point in time when the Ancient Mississippi was permanently blocked, its dating is quite significant. On the basis of radiocarbon data then available, Glass, Frye, and Willman (1964) proposed a date of 21,000±500 radiocarbon years B.P. It now seems reasonable to suggest a narrower range of 20,500 to 21,000 radiocarbon years B.P.

Zone III, relative to Zone II, is characterized by an increase in abundance of illite and a decrease in expandable clay minerals (table 3). The correlation of this sharply defined zone boundary, recognizable throughout the lower and middle Illinois Valley, with the glacial sequence has been more difficult than for the lower boundary of Zone II because it is not related to a major disruption of drainage and attendant change in source. This problem of correlation was attacked first by claymineral analyses of Richland Loess resting on progressively younger tills in order to find the youngest till on which Zone II could be recognized, and second by analyses of the tills from the Lake Michigan lobe in search of changes that might be reflected in the composition of the derived loess. Both approaches proved successful and complemented one another.

On the earlier Woodfordian tills, Shelbyville, LeRoy, Bloomington, and Metamora, loess of Zone II was found at the base overlain by loess of Zone III. However, in Richland Loess resting

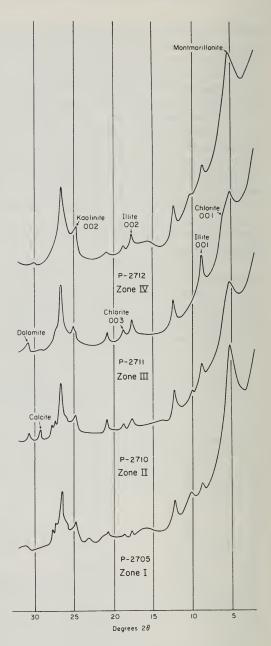


Figure 3 - Typical X-ray diffraction curves of Peoria Loess from the Pekin South section showing the compositional zones of the Illinois Valley.

TABLE 2 – SELECTED ANALYSES OF PEORLA LOESS ALONG ILLINOIS VALLEY TRAVERSE

	Kaolinite and chlorite (%)	11	6	11	10		7			
IV	(%) (ənlav əzəwoi) əjili	27	27	25	22		25			
Zone	(%) sisrənim ysis əldabnaqxA	62	64	64	68		68			
	D. I. ratio	1.5	2.1	1.8	1.5		2.2			
	*snoijslei josjnoo enoZ	IJ	ა	ა	ც		ც			
	Kaolinite and chlorite (%)	10	13	13	12	6	11	6	20	11
III	(%) (אווני (גיפאלאין אווני) (%)	47	61	45	45	37	34	31	48	33
Zone	Expandable clay minerals (%)	43	26	42	43	54	55	60	32	56
	D. I. Tatio	3.4	3.3	2.6	2.3	2.1	2.0	2.3	1.6	2.3
	*snoijslei josjnoo enoZ	S	S	S	S	S	S	s	S	G
II	Kaolinite and chlorite (%)	11	15	11	10	13	10	8	18	15
	(%) (əulav deagid) ədilil	28	31	26	24	21	25	21	27	24
Zone	Expandable clay minerals (%).	61	54	63	66	66	65	71	55	61
	D. I. ratio	1.7	1.4	1.5	1.5	1.0	1.6	1.8	1.0	1.0
	*snoijalja josjnoj enoZ	ß	ც	ც	ს	ს	G	G		
	(%) stirolds and chlorite (%)	6	11	11	18	16	14	12		
еІ	(%) (sulsv teswol) stilli	7	21	15	16	15	15	13		
Zone	Expandable clay minerals (%)	87	68	74	66	69	71	75		
	D. I. ratio	0.7	1.0	6.0	0.6	0.6	0.7	0.8		
	Section	Pekin South	Sister Creek	Sepo	Jules	Frederick South	Rushville (0.4W)	Perry East	Hillview	Eldred

* G=gradational; S= sharp

MINERAL ZONATION OF WOODFORDIAN LOESSES

7

	boundary
	zone
	below
	and
rp	above
S=shar	ately
•?	immediately abo
G=gradational	Samples
k -	

			~	~	~	~	~	~	_	~	_				1
	Kaolinite and chlorite (%)		12	6	12	8	80		11		11				
e IV	(%) (ənlar teadue) (%)		24	24	20	13	14	26	23	25	28				
Zone	Expandable clay minerals (%)		64	67	68	79	78	99	99	99	61				
	D. I. ratio		1.4	1.3	1.1	1.1	1.3	2.1	1.6	2.0	1.6				
	×εποί3είε τεlations*		ს	ს	ს	ც	უ	ს	ი	ც	ს				
	(%) είτας εμιοτίτες (%)		11	11	12	11	10	10	11	13	11				
III	(%) (əulav deafgid) ədilli		31	38	29	36	47	77	39	77	9†				
Zone	(%) slærənim yalə əldabnaqxI		58	51	59	53	43	46	50	43	43				
	D. Ι. τατίο		1.8	2.2	1.6	2.3	3.2	2.8	2.2	2.2	3.0				
	*snoijalsi josinos snož						s	S	S	S					
	(%) əjiroldə bus əjinilosX						10	10	10	11			19	21	27
II a	(%) (əulsv teahgih) ətilil						27	24	27	25			32	29	42
Zone	Expandable clay minerals (%)						63	99	63	64			49	50	31
	Ο. Ι. τατίο						1.5	1.6	1.9	1.5			1.1	1.1	1.2
	*snoijsly josjnoj enož												S	S	S
	Kaolinite and chlorite (%)												17	17	23.
в	(%) e1111												21	17	27
Zone	Expandable сіау тілегаіз (%)												62	99	50
	D. I. ratio												0.9	0.6	0.8
	Section	RICHLAND LOESS	Bradford East	Granville	Mt. Palatine	Varna	Partridge Creek	10-mile School	Farm Creek	Marquette Heights	Studyvin School	MORTON LOESS	Richland Creek	Farm Creek	Danvers

TABLE 3 - SELECTED ANALYSES OF RICHLAND AND MORTON LOESSES ALONG ILLINOIS VALLEY TRAVERSE

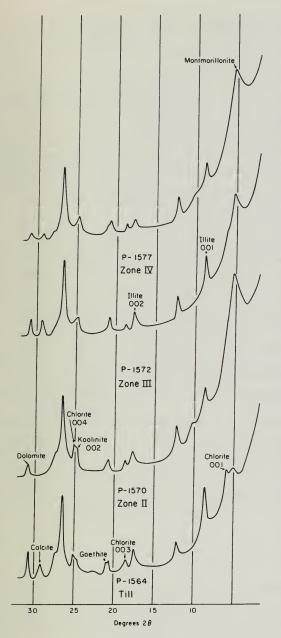


Figure 4 - Typical X-ray diffraction curves of Richland Loess and underlying till at the 10-mile School section showing the compositional zones above Woodfordian age till.

on Normal, Cropsey, Farm Ridge, Marseilles, and younger tills, Zone III loess was found in contact with the till.

Analyses of the compositions of the many Woodfordian tills show two distinct groupings. The tills from the earliest Woodfordian up through the pink Bloomington-Metamora contain a higher percentage of vermiculite and lower content of illite than the gray Normal and younger tills of the Lake Michigan lobe. This change in composition results from the major withdrawal and readvance of the Lake Michigan lobe glacier (Willman and Payne, 1942). Therefore, by both stratigraphic tracing and compositional matching, the boundary between Zones II and III is placed in the glacial sequence between the Bloomington-Metamora and Normal till sheets, with a probable radiocarbon age of 16,500 ± 1000 B.P.

The boundary between Zones II and III is also characterized by a pause in loess deposition, or reduced rate of deposition, as indicated by minor soils. It also must be coincident with a significant glacial retreat and readvance accompanied by the change in glacial flow pattern that gave rise to the compositional change of the tills. The distinctive color change between the tills is not apparent in the loess.

The termination of deposition of Zone III is difficult to date directly. Inconclusive radiocarbon data suggest a probable termination by about 15,000 radiocarbon years B.P. However, an indirect method is available. As the Woodfordian glacial termini retreated into the LaSalle County area and farther east, extensive lakes formed in the Illinois Vallev. When the Lake Michigan lobe glaciers retreated still farther, they discharged into Lake Chicago. These lakes served as an effective trap for outwash sediments, and it seems improbable that any significant amount of loess could be derived from the Illinois Valley after about 15,000 radiocarbon years B.P.

The lowermost part of the loess on the Inner Cropsey Moraine is the youngest that appears to be derived from the Illinois Valley. The age of the Cropsey Moraine is not accurately known, but appears to be between 15,000 and 16,000 radiocarbon years B.P.

A thin organic-rich zone found in the lower part of the loess on the Farm Ridge Moraine, but not present in the thinner loess on the younger Marseilles Moraine (Willman and Payne, 1942), may be the contact of Zones III and IV. If so, its age would be represented by the advance of the Marseilles ice.

At the northern end of this traverse, primarily in Putnam, LaSalle, and Bureau Counties, a still higher zone, designated Zone IV, is present at the top of the Richland Loess (figs. 2, 3, and 4). Southward along the valley, thin, and perhaps discontinuous, Zone IV occurs above Zone III at least as far south as Cass County (table 2). This zone is characterized by relatively high montmorillonite and low illite contents and has a composition somewhat similar to Zone II. The loess of Zone IV was blown from the extensive outwash surfaces in Whiteside and Rock Island Counties and adjacent Iowa that were fed from the glacial lobes in northern Iowa, eastern Minnesota, and northwestern Wisconsin. Outwash from the northwest continued to be carried through the Mississippi Valley throughout Woodfordian time and served as a continuing source of loess after the termination of the northeastern loess source. In the area of Putnam and southern LaSalle Counties, this zone overlies Zone III (table 3). Westward in Bureau County, immediately above Bloomington till, the composition of Zone III is modified by the admixture of high montmorillonite material, blown from the outwash area to the west (table 4). This western influence on the composition of Zone III diminished eastward. Also, because the high illite source diminished as a result of formation of Lake Illinois in the Illinois Valley, the percentage of western-derived high montmorillonite sediment increased, so that the boundary between Zones III and IV in this region is gradational. Westward, Zone III is gradationally replaced by high montmorillonite loess from the western source, so that in the Mississippi Valley, Zone IV contains in its lower part the stratigraphic equivalent of Zone III of the Illinois Valley (fig. 5).

Zone IV occurs as a thin veneer on the tills of Marseilles and younger age to the northeast—tills that are younger than the top of Zone III. This stratigraphic position, together with radiocarbon dates from near the Mississippi Valley, establish Zone IV as the youngest unit of the Woodfordian loesses in Illinois.

ZONATION IN THE MISSISSIPPI VALLEY

The second traverse (fig. 1) follows the belt of thick loess along the Mississippi Valley in extreme western Illinois and then eastward through the thick loess along the southern margin of the Green River Lowland to the Big Bend of the Illinois River in Bureau and LaSalle Counties, where it overlaps the Illinois Valley traverse. The zones defined in this body of loess are shown diagrammatically in figure 5. The analytical data for this traverse (fig. 6; tables 4 and 5) are based on 14 sections.

Along this traverse the loess and till do not intertongue, and radiocarbon dates are not abundant, as in the Illinois Valley traverse. In order to establish age relations, it is necessary to correlate the compositional zones of the Mississippi Valley with the zones of the Illinois Valley and to relate the compositions of the zones to the drainage history. Fortunately, a few radiocarbon dates are available from the upper part of the loess along the Mississippi Valley.

		Kaolinite and chlorite (%)	8	7	ø
	e IV	(%) (əuisv əzəwoi) əlilli	6	12	16
	Zone	Expandable clay minerals (%)	83	81	76
		D. I. ratio	0.8	1.0	1.5
RICHLAND AND PEORIA LOESSES IN BUREAU COUNTY		*anoijalji jostnoo enoZ	ß	IJ	C
		(%) əjiroldə bns əjinilosX	12	6	12
	III	(%) (эυίεν τεράβιά) эτιίΙ	26	24	40
	Zone	(%) Expandable clay minerals (%)	62	67	48
		D. Ι. τατίο	1.4	1.7	2.2
AND PEOR		*snoijslei jostnos enoZ			S
CHLAND		(%) əfiroldə bna əfiniloxX			12
RI	II ət	(%) (əulav izəngin) əiilli			24
	Zone	Expandable clay minerals (%)			64
		Ο. Ι. ταίίο			1.2
		Section	RICHLAND LOESS Buda East	Walnut SE	PEORLA LOESS Neponset

TABLE 4 - SELECTED ANALYSES OF

*G=gradational; S=sharp

MINERAL ZONATION OF WOODFORDIAN LOESSES

11

In the southern part of the Mississippi Valley traverse, the lowest zone of the Woodfordian Peoria Loess is called Zone I. Although it is essentially equivalent in age to Zone I of the Illinois Valley, it had a source in the Ancient Iowa drainage system and was derived largely from the high montmorillonite outwash from the Des Moines lobe of Iowa (table 5). The composition of this zone is similar to Zone I in the Ancient Mississippi Valley of northwestern Illinois, which also received high montmorillonite outwash from the northwest. Zone I in the Illinois Valley contains more illite and less montmorillonite than Zone I of the Mississippi Valley.

The boundary between Zone I and Zone II in the Mississippi Valley is less sharp and distinct than the comparable contact in the Morton Loess of the Illinois Valley. This contrast reflects the diversion of the Ancient Mississippi River by the early Woodfordian glacier. As the northwestern drainage was excluded rather suddenly from the Illinois Valley, the change in source is immediately reflected in the loess composition. On the other hand, the compositional change along the Mississippi Valley was caused by a progressively increasing admixture of higher illite outwash from the Green River lobe of the Lake Michigan glacier, and thus the compositional change in the loess was gradational. As Zone II of the Mississippi Valley continued to receive a significant increment from the northwest, its illite content is distinctly below that of Zone II in the Illinois Valley (figs. 3 and 6; tables 2 and 5). Also, the top of Zone II in the Mississippi Valley traverse is transitional

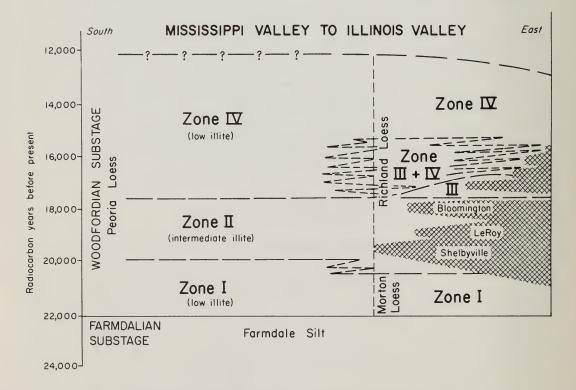


Figure 5 - Generalized diagram showing relation of compositional zones along the Mississippi Valley of western Illinois and their relation to the Illinois Valley.

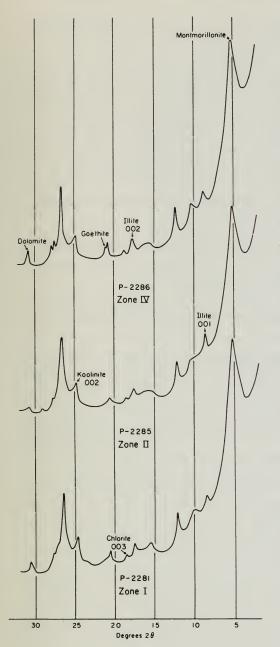


Figure 6 - Typical X-ray diffraction curves of Peoria Loess from the Kirkwood section showing the compositional zones of the Mississippi Valley. Sample P-2286 is at the position of a radiocarbon date of 16,000 ±340 (I-1719).

because this eastern outwash source diminished gradually.

Along all of this traverse, except in the overlap area with the first traverse in the region of the Big Bend of the Illinois, Zone II is directly overlain by Zone IV (fig. 5; table 5). Zone IV shows the return to the high montmorillonite source in the outwash from the Des Moines lobe, augmented by a source, also high in expandable clay minerals, from the headwaters region of the Mississippi River.

The age of Zone IV in the Mississippi Valley is indicated by two radiocarbon dates given to us by Prof. Herman Wascher of the Department of Agronomy of the University of Illinois. A date of 16,000 ± 340 (I-1719) was obtained from the lower part of the zone at the Kirkwood section, and a date of $13,700 \pm 230$ (I-1720) was obtained from the middle of the zone at the Baldbluff section. These data indicate that the upper part of the calcareous Peoria Loess along the Mississippi Valley of western Illinois is younger than the upper part of the calcareous Peoria Loess along the central Illinois Valley (fig. 5).

INFLUENCE OF SURFACE SOILS ON ZONES

In the surface soil profiles developed on loess, identification of zone boundaries is commonly difficult, if not impossible. Most clay minerals are altered by the effect of weathering. To evaluate the changes produced by weathering, closely spaced samples were taken for analysis from the ground surface downward through the soil profile at several of the sections studied (Buda East, Neponset, Studyvin School, Varna South, Granville). A series of X-ray diffraction curves through the surface soil profile at the Buda East section is shown in figure 7.

Distortion of the indigenous claymineral composition is greatest in the A-, B_1 -, and B_2 -zones, but some modification TABLE 5 - SELECTED ANALYSES OF PEORIA LOESS ALONG MISSISSIPPI VALLEY TRAVERSE

	Kaolinite and chlorite (%)	6		80	6	13	9	7	9	6	6	6	
IV	(%) (sulsv jeswol) sjill	11		12	10	13	7	10	7	10	10	6	
Zone	(%) sisrənim yalə əldabnaqxI	80		80	81	74	87	83	87	81	81	82	
	D. I. ratio	0.8		1.0	0.8	0.6	0.8	1.1	0.8	0.7	0.7	0.6	-
*snoijeler josjnoo enoZ				U	Ċ	U		U	U	U	U	ც	
	(%) stirolds bus stiniloxX	10	11	12	10	10		ŝ	7	11	6	11	
Zone II	(%) (əuisv teahgih) ətilli	24	21	22	20	16		19	16	18	17	18	-
	Expandable clay minerals (%)	66	68	66	70	74		76	77	71	74	71	
	D. I. ratio	1.7	1.2	1.3	1.4	1.0		2.3	1.5	1.2	1.4	1.4	
	*snoijafisi josinos enol				U	U		U	U	ი		ი	-
	(%) ətiroldə bas ətinilosX	7	8	6	80	11		8	9	12		6	
н	(%) (sulsv taswol) siill	10	6	6	10	12		12	7	13		13	-
Zone	(%) sisrənim ysic əldsbnaqxA	83	83	82	82	77		80	87	75		78	
	D. I. ratio	0.9	0.7	0.6	0.7	0.6		0.9	0.6	0.7		0.8	=sharp
	Section	Morrison	Rapid City (B)	Bernard School	Case Creek	Wanlock	Baldbluff	Little York	Kirkwood	Dallas City	Marcelline	North Quincy	*G=gradational; S=sharp

14 ILLINOIS STATE GEOLOGICAL SURVEY CIRCULAR 427

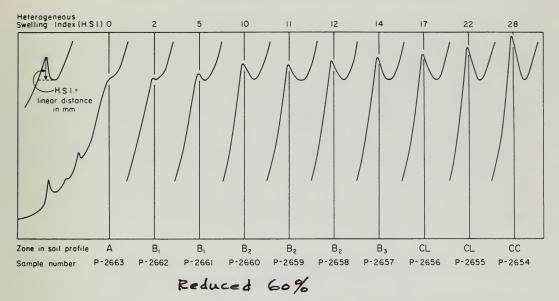


Figure 7 - Sequence of X-ray diffraction curves from the Buda East section showing the mineral alteration through the surface soil profile in Richland Loess.

extends down to the B_3 -zone and the CL-zone. The most apparent effect of the weathering is the broadening and rounding of the 17 Å peak for montmorillonite on the X-ray diffraction curves. In the A- to B_2 -zones of some of these loess soils, this "peak" is rounded to the extent that it appears only as a broad swell on the curve, and, thus, calculations of the amounts of the clay-mineral constituents are not comparable to analyses of the unweathered materials. Such analyses are not included in table 1.

The development of this weathering effect in swelling clays has been discussed (Frye, Willman, and Glass, 1964; Willman, Glass, and Frye, 1966) and has been called heterogeneous swelling material or "B-clay." It is not our purpose here to discuss its origin, other than to re-emphasize that it occurs in the parts of the soil profiles where the less than .5 micron clay is most abundant.

Our method of calculation of the percentages of clay minerals gives misleading results where heterogeneous swelling material is present because the decrease in intensity of the 17 Å peak produces an apparent decrease in montmorillonite and an apparent increase in the other clay minerals, which is an artifact. X-ray diffraction analyses of closely spaced samples permit an evaluation of the relative degree of modification. The heterogeneity of expandable clay minerals in soil profiles, as expressed by the broadening of the first order diffraction peak, is inversely proportional to the vertical linear distance from the commencement of this peak to its maximum height. That is, the smaller the vertical linear distance, the greater the development of heterogeneous swelling material, assuming the parent material was uniform. This heterogeneous swelling index (H.S.I.) is demonstrated in figure 7. Not only is the broadening of the diffraction peak apparent, but the decrease in vertical linear distance as well. The heterogeneous swelling index through the various zones in the soil profile is tabulated in table 6.

The large differences in the shape of the curves are related to the development of heterogeneous swelling material both by in situ weathering and downward illuviation of clay from the upper part of the profile. Diffraction curves that show a decrease in H.S.I. upward through a soil profile should not be used in calculation of clay minerals percentages. The index is significant only in relation to a series of samples in a single profile as a relative estimate of the degree of weathering.

Other modifications in composition are suggested by the apparent minor upward decrease in illite through the B_2 -zone, the modification of chlorite through the B-zone, and, in some cases, the apparent pedogenic increase of kaolinite, and perhaps also of vermiculite, in the A-zone.

These facts all lead to the conclusion that compositional data for identification of zones in the loess must be based on samples from below the zone of clay accumulation in the surface soil profile. As a result, the zone descriptions here are based primarily on analyses of loess that contain some carbonate minerals or are from the lower part of the CL-zone. No samples from the B-zone of the surface soil profiles were used in the evaluation of stratigraphic zones.

Sample	Soil zone	H.S.I.(in mm)
P-2663	A	-
P-2662 P-2661	B ₁ B ₁	2 5
P-2660 P-2659	B ¹ ₂	10 11
P-2658	B1 B2 B2 B2 B3 CL	11 12
P-2657 P-2656	B ₃	14 17
P-2655	CL	22
P-2654	CC	28

TABLE 6 — HETEROGENEOUS SWELLING INDEX MEASURED FROM X-RAY DIFFRACTION CURVES FOR BUDA EAST SECTION

As the time interval that was available for the development of surface soils in Woodfordian loess adjacent to the central Illinois Valley is about 14,000±1000 radiocarbon years, and the time interval for soil development on Zone IV about 12,000±1000 radiocarbon years, comparisons can be made with the degree of mineral alteration shown by the major interglacial soils (Willman, Glass, and Frye, 1966). In the Sangamon Soil, illite decomposition has progressed to a much more advanced degree and to a much greater depth in the profile. The same generality can be drawn for chlorite. In the B-zones of in situ Sangamon Soils, the heterogeneous swelling material commonly dominates, whereas in the slowly accumulating clay of the accretion-gley soils, pedogenic processes have reconstituted the degraded clay material (heterogeneous swelling material) to sharply definitive montmorillonite and vermiculite. Although it is not possible to translate these differences into years, the time interval required for the development of the Sangamon Soil was many orders of magnitude greater than for the surface soils in the top of loess of Woodfordian age.

In some sections along the Illinois Valley (Cottonwood School, Jules, Frederick South, and others), from one to three minor, or incipient, A-C soils have been observed in the upper part of the loess. Although the observed A-zones have not been completely leached of their carbonate minerals, some leaching has taken place, accompanied by the secondary development of small nodules of CaCO₃ below the A-zone. The degree of mineral alteration has been quite minor except at the top of the A-zone. A clay-rich B-zone has not been observed in these soils. At the Jules section, analyses were made of closely spaced samples to determine the relation of these soils to the compositional zones. The soils commonly occur at or near the contact of Zones II and III and clearly represent only a brief period of nondeposition of loess, accompanied by soil formation. In this and other sections along this part of the valley, field observations and minerological data suggest several cyclic pauses in deposition in the upper part of the Peoria Loess.

REFERENCES

- Frye, J. C., H. D. Glass, and H. B. Willman, 1962, Stratigraphy and mineralogy of the Wisconsinan loesses of Illinois: Illinois Geol. Survey Circ. 334, 55 p.
- Frye, J. C., and H. B. Willman, 1960, Classification of the Wisconsinan Stage in the Lake Michigan glacial lobe: Illinois Geol. Survey Circ. 285, 16 p.
- Frye, J. C., and H. B. Willman, 1963, Loess stratigraphy, Wisconsinan classification and accretion-gleys in central-western Illinois: Illinois Geol. Survey Guidebook Series No. 5, 37 p.
- Frye, J. C., and H. B. Willman, 1965, Illinois part of INQUA Guidebook for Field Conference C, Upper Mississippi Valley: C. B. Schultz and H. T. U. Smith, eds., Nebraska Acad. Sci., Lincoln, Nebraska, p. 81-110.
- Frye, J. C., H. B. Willman, and R. F. Black, 1965, Outline of glacial geology in Illinois and Wisconsin, in The Quaternary of the United States: Princeton University Press, p. 43-61.
- Frye, J. C., H. B. Willman, and H. D. Glass, 1964, Cretaceous deposits and the Illinoian glacial boundary in western Illinois: Illinois Geol. Survey Circ. 364, 28 p.
- Glass, H. D., J. C. Frye, and H. B. Willman, 1964, Record of Mississippi River diversion in the Morton Loess of Illinois: Illinois Acad. Sci. Trans., v. 57, p. 24-27.
- Gore, Dorothy, 1952, Differentiation of the Peorian Loess in the Peoria region: University of Illinois, Masters thesis.
- Leonard, A. B., and J. C. Frye, 1960, Wisconsinan molluscan faunas of the Illinois Valley region: Illinois Geol. Survey Circ. 304, 32 p.
- MacClintock, Paul, and H. B. Willman, 1959, Geology of the Buda Quadrangle, Illinois: Illinois Geol. Survey Circ. 275, 29 p.
- Shaffer, P. R., 1954, Extension of Tazewell glacial substage of western Illinois and eastern Iowa: Geol. Soc. America Bull., v. 65, p. 443-456.
- Willman, H. B., H. D. Glass, and J. C. Frye, 1963, Mineralogy of glacial tills and their weathering profiles in Illinois: Part I. Glacial tills: Illinois Geol. Survey Circ. 347, 55 p.
- Willman, H. B., H. D. Glass, and J. C. Frye, 1966, Mineralogy of glacial tills and their weathering profiles in Illinois: Part II. Weathering profiles: Illinois Geol. Survey Circ. 400, 76 p.
- Willman, H. B., and J. N. Payne, 1942, Geology and mineral resources of the Marseilles, Ottawa, and Streator Quadrangles: Illinois Geol. Survey Bull. 66, 388 p.

SELECTED GEOLOGIC SECTIONS

The following are 20 formerly unpublished measured geologic sections from which samples were collected for this study. Samples were also used from 18 additional measured geologic sections that have been published previously. The sample numbers used, for example P-2291, are those used in the tables. The sections are arranged alphabetically by name.

BALDBLUFF SECTION

Roadcut and auger boring in $NE\frac{1}{4}$ $NE\frac{1}{4}$ $SE\frac{1}{4}$ sec. 20, T. 12 N., R. 4 W., Henderson County, Illinois.

> Thickness (feet)

Pleistocene Series Wisconsinan Stage Woodfordian Substage

- Peoria Loess

- Loess, coarse, with some very fine sand, calcareous, light tan to yellowish light tan; interbedded with thin zones of fine sand. Sample P-2296, 1 foot below top; P-2297 to P-2299 downward at 1-foot inter-
- vals; P-2300 at base 5.5
 Sand, with some coarse silt, light tan, calcareous, indistinct bedding. Sample P-2301, 1 foot below top; P-2302 to P-2305 downward at 1-foot intervals to bottom of auger hole. (A previous auger boring near this point penetrated 20 feet of sand without going through it) . . .5.0

Total . . 17.0

BERNARD SCHOOL SECTION

Roadcut and auger boring in $SW_4^1 SW_4^1 NW_4^1$ sec. 31, T. 18 N., R. 3 E., Henry County, Illinois.

> Thickness (feet)

Pleistocene Series Wisconsinan Stage Woodfordian Substage Peoria Loess 4. Loess, coarse to very coarse, massive, tan to light yellow-tan, calcareous except in the surface soil at top; contains nodules of CaCO₃ in lower part; gradational contact at base. Samples P-3013 to P-3017 from 5 feet above base upward at 5-foot inter-3. Loess, coarse, massive, rusty brown to tan and brown streaked, weakly calcareous; sharp contact at base, gradational at Farmdalian Substage Farmdale Silt 2. Silt, black to dark gray with organic streaks, leached; contains local secondary CaCO₃ nodules; gradational at base. Sample P-3011 top, P-3010 Altonian Substage Roxana Silt 1. Silt, becoming clayey downward, dark gray be-

downward, dark gray becoming light gray streaked with rusty brown downward, leached; contains nodules 19

Thickness (feet)

of secondary CaCO₃. Samples P-3009 to P-3005 at bottom of auger hole . . . <u>3.5</u> Total . . 36.5

BRADFORD EAST SECTION

Roadcut in center sec. 24, T. 14 N., R. 8 E., Bureau County, Illinois.

Pleistocene Series

Wisconsinan Stage Woodfordian Substage

Richland Loess

- Loess, leached, tan and brown; surface soil in top. Sample P-1870, 1 foot above base 5.0
- Loess, calcareous, tan, massive; bottom ¹/₄-foot contains a few pebbles. Samples P-1869 to P-1866 top to bottom 1.5

Metamora Drift

1.	Till, ca	lcar	eous	, pinł	<.			
	Sample	P-18	865 is	s top	3			
	inches	• •	••	• •	•••	•	•	2.0
				To	otal			8.5

BUDA EAST SECTION

Roadcutin $SE_4^{\frac{1}{4}} SE_4^{\frac{1}{4}} SW_4^{\frac{1}{4}}$ sec. 31, T. 16 N., R. 8 E., Bureau County, Illinois.

Pleistocene Series

Wisconsinan Stage

Woodfordian Substage

- Richland Loess
 - Loess, leached, dark gray to black, granular structure; A-zone of surface soil. Sample P-2664, 0.2 foot below top; P-2663, 0.7 foot below top . . . 1.0
 Loess, leached, dark gray
 - with some ash-gray plates, platy structure, tough; B₁-zone of surface soil. Samples P-2662 upper, P-2661 lower 1.0

(feet) 6. Loess, leached, light brown to yellow-tan, clayey, tough, indistinct blocky structure; grading to yellow-tan in lower part; B2-zone of surface soil. Samples P-2660 upper, P-2659 middle, P-2658 lower 1.5 5. Loess, leached, yellowtan to reddish tan, massive; B₃-zone of surface soil. Sample P-2657. . . . 0.5 4. Loess, leached, massive, compact, light tan-brown; CL-zone of surface soil. Sample P-2656 and P-2025 upper, P-2655 lower, P-2024 base 1.0 3. Loess, calcareous, yellowtan, massive, friable. Samples P-2654 upper to P-2648 base (P-2023-P-2019 top Bloomington Drift 2. Gravel and sand, dominantly dolomite and limestone pebbles with a variety of igneous rocks; indistinctly bedded, calcareous, gray; strongly oxidized to brown at west end of exposure but no indication of leaching 4.0 1. Till (Providence Moraine), massive, calcareous, pinkish tan; sandy till with abundant cobbles and small boulders to level of road ditch. Sample P-2018 4.0

Total . . 16.2

Thickness

CASE CREEK SECTION

Roadcuts in NE $\frac{1}{4}$ NW $\frac{1}{4}$ NW $\frac{1}{4}$ sec. 4, T. 16 N., R. 1 W., Rock Island County, Illinois.

Pleistocene Series Wisconsinan Stage Woodfordian Substage Peoria Loess

21

	Thickness (feet)
6.	Loess, leached; surface soil in upper part. Sam- ple P-2345, 1 foot above
5.	base 7.0 Loess, yellow-tan, cal- careous, massive; con- tains fossil snail shells, some rusty banding and black flecks. Sample P-2344 top, and at 1-foot intervals downward P-2343
4.	to P-2334 at base
Altoni	an Substage
	na Silt
3.	Loess, brown, leached, massive. Sample P-2333
2.	top 2.0 Silt, with some sand and a few small pebbles, leached, brown, massive; colluvium 0.7
Tildeede	
	an Stage Sangamon Soil, B-zone, developed in till, red- brown, clayey; exposed to bottom of road ditch
	Total 20.2

GRANVILLE AUGER SECTION

Road ditch at NW corner sec. 15, T. 32 N., R. 1 W., Putnam County, Illinois (samples P-2000 to P-2017). Supplementary section sampled in roadcut 200 yards north (samples P-2670 to P-2681).

Pleistocene Series

- Wisconsinan Stage Woodfordian Substage
 - Richland Loess
 - Loess, leached, massive, surface soil in top. Samples P-2015 base, P-2016 ¹/₂-foot above base, P-2017 1 foot above base. (Supplemental samples from adjacent roadcut starting 2

Thickness (feet) inches below surface and downward at $\frac{1}{2}$ -foot intervals: P-2681 to P-2679, A-zone; P-2678 to P-2676, B-zone; P-2675 to P-2674, CL-zone. At this location the CL-zone is 4 feet 2. Loess, calcareous, tan and gray, massive. Samples P-2003 to P-2014 distributed evenly from bottom to top. (Supplemental samples from top downward at $\frac{1}{2}$ -foot intervals: P-2673 to P-2670) 4.5 Cropsey Drift 1. Till, calcareous, gray, clayey. Samples P-2000 lower; P-2001, P-2002

upper 0.8 Total . . 10.3

JULES SECTION

Roadcut in SE_4^1 SE_4^1 NE_4^1 sec. 13, T. 18 N., R. 4 W., Cass County, Illinois.

Pleistocene Series Wisconsinan Stage Woodfordian Substage Peoria Loess 8. Loess, leached, surface soil at top. 3.0 7. Loess, light yellow-tan, calcareous, massive, friable. Samples P-1629 to P-1622 from top down at $\frac{1}{2}$ -foot intervals; P-1620 base; P-1621, $\frac{1}{4}$ -foot above base 4.0 6. Loess, weakly developed A-C soil profile, gray, weakly calcareous; contains small caliche nodules in middle and lower part; incipient columnar structure in upper part. Samples P-1619 to P-1611 from top to bottom at $\frac{1}{4}$ foot intervals 2.0

Thickness Thickness (feet) (feet) 5. Loess, calcareous, yelthroughout; radiocarbon low-tan, massive. Samdate on shells 1 to 2 feet ples P-1602 to P-1610 below top is 16,000 ±340 upward from base at $\frac{1}{2}$ -(I-1719). Samples P-2288 foot intervals. 4.5 through P-2281 from top 4. Not accessible for samdownward at 1-foot inter-4. Loess (basal transition Section below is sampled in zone), brown to yellowlower part of roadcut. brown, weakly calcareous. 3. Loess, tan to gray streaked Sample P-2280 1.0 with rusty tan, calcareous, massive, compact. Sam-Farmdalian Substage ples P-1635 to P-1639 from Farmdale Silt 3. Silt, non-calcareous, gray base upward at 1-foot intervals; P-1640, 9 feet above to dark gray grading downbase; P-1641, 13 feet above ward to yellowish brown at base. Sample P-2279 top, 2. Loess (transition zone at P-2278 lower 1.5 base of Peoria Loess), cal-Altonian Substage careous, pale pinkish tan Roxana Silt to light gray-purple. Sam-2. Silt, sandy with a few very ple P-1633, $\frac{1}{2}$ -foot above small pebbles, noncalcarebase; P-1634, 1 foot above ous, brown to gray-brown, base 2.0 massive. Sample P-2277 top, P-2276 middle, P-2275 Altonian Substage bottom 1.5 Roxana Silt 1. Loess, leached, pink, mas-Illinoian Stage sive, to bottom of exposure. 1. Sangamon Soil developed Samples P-1632 to P-1630 in till; strongly developed from top downward at 1-foot red-brown B-zone, contains abundant Mn-Fe pellets and Total . .47.5 clay. To bottom of auger hole. Samples P-2274 to P-2270 downward at 1/3foot intervals 1.3 KIRKWOOD SECTION Total . . 16.3 Roadcut and auger boring in road ditch in SW¹/₄ SE¹/₄ SW¹/₄ sec. 32, T. 11 N., R. 3 W., Warren County, Illinois. LITTLE YORK SECTION Pleistocene Series

Wisconsinan Stage Woodfordian Substage

Peoria Loess

6. Loess, leached, tan to

5. Loess, calcareous, tan,

light brown; surface soil

in top. Sample P-2289,

massive, compact; con-

tains fossil snail shells

l foot above base; P-2290,

2 feet above base 4.0

Roadcutand auger hole in NE $\frac{1}{4}$ NE $\frac{1}{4}$ NE $\frac{1}{4}$ Sec. 19, T. 12 N., R. 3 W., Warren County, Illinois.

Pleistocene Series Wisconsinan Stage Woodfordian Substage Peoria Loess

- Loess, calcareous, tan, massive; contains a few

Thickness (feet)

fossil snail shells in lower			
part. Samples P-2318 to			
P-2314 upper to lower		•	6.0
. Loess, sandy, calcareous,			
tan. Samples P-2313 to			
P-2309 upper to lower	,		5.0
147 16 11.			

Pre-Woodfordian

2

MORRISON SECTION

Overburden of limestone quarry as it existed on August 3, 1966, in SW_4^1 SE_4^1 sec. 7, T. 21 N., R. 5 E., Whiteside County, Illinois.

Pleistocene Series

- Wisconsinan Stage
 - Woodfordian Substage

Peoria Loess

- Loess, coarse, massive, yellow-tan, calcareous below deeply developed surface soil; locally, sandy zones in lower part. Samples starting l¹/₂ feet above base distributed upward through calcareous loess at l¹/₂-foot intervals HK-109-11 to 28 37.0

Altonian Substage

Roxana Silt

6. Silt with clay and some fine sand, chocolate brown, leached, microblocky structure below top ¹/₂-foot; microblocky peds are capped with thin layer of white very fine quartz sand, to coarse silt; lower 1 foot is sandy and clay skins are present; has general appearance of

Thickness (feet) A_2 - to B_1 - zone below top $\frac{1}{2}$ -foot. Sample HK-109-6 is $\frac{1}{2}$ -foot above base; HK-109-7 to 9 spaced at 1-foot intervals upward 4.0 Illinoian Stage Loveland Silt 5. Sangamon Soil developed in silt and fine sand: A-zone, dark brown to reddish brown, gradational at top and bottom, micro-blocky, leached; some clay skins. Sample HK-109-5 0.7 4. Sangamon Soil developed in silt and fine sand: B2zone, red-brown, microblocky with well developed clay skins and small pellets of Mn-Fe 1.0 Liman Substage Mendon Drift 3. Sangamon Soil developed in till: B2-zone, redbrown, micro-blocky with well developed clay skins and pellets of Mn-Fe. Sample HK-109-4 at top . . . 1.5 2. Sangamon Soil developed in till: B3-zone, reddish tan-brown, indistinct blocky structure, a few small pellets of Mn-Fe. Sample HK-109-3 middle . . 1.5 1. Till, leached, tan-brown, massive to platy; CL-zone of Sangamon Soil; leached; resting on dolomite at top of quarry face. Samples HK-109-1 at base; HK-109-2, $2\frac{1}{2}$ feet above base 4.0 Total . . 50.7

MT. PALATINE AUGER SECTION

Road ditch in $SW_{\frac{1}{4}}SE_{\frac{1}{4}}^{\frac{1}{4}}NE_{\frac{1}{4}}^{\frac{1}{4}}$ sec. 1, T. 31 N., R. 1 W., Putnam County, Illinois.

Pleistocene Series Wisconsinan Stage Thickness (feet)

Woodfordian Substage

acu	liana Lo	ess					
3.	Loess,	leac	hed,	sur	face		
	soil in	top.	Sam	ple	P-19	99	
	middle						.4.5

Cropsey Drift

1. Till, calcareous, gray, clayey. Samples P-1994, P-1995, P-1996 0.8 Total . .6.5

NEPONSET SECTION

Roadcutin $NW_{\frac{1}{4}}SW_{\frac{1}{4}}NE_{\frac{1}{4}}$ sec. 34, T. 16 N., R. 6 E., Bureau County, Illinois.

Pleistocene Series

Wisconsinan Stage

Woodfordian Substage

Peoria Loess

- Loess, leached, mottled dark gray and brown; B₁zone of surface soil. Sample P-2646 0.5
- Loess, leached, clay-rich, brown to tan-brown; B₂zone of surface soil. Sam-

- Loess, calcareous, tan, massive; contains a few small Mn-Fe pellets in upper part. Samples P-2639 to P-2635 at ¹/₂-foot inter-

PARTRIDGE CREEK SECTION

Roadcut in $SE_{\frac{1}{4}} NE_{\frac{1}{4}} NE_{\frac{1}{4}} sec. 33$, T. 28 N., R. 3 W., Woodford County, Illinois.

Pleistocene Series

- Wisconsinan Stage Woodfordian Substage Richland Loess

 - Metamora Drift
 - Sand and gravel outwash, gray sand interzoned with brown to rusty brown sand and gravel; some nodular caliche in upper part. Samples P-1548, ¹/₂-foot down; P-1547, 1¹/₂ feet down . . . 2.5
 - 1. Till, calcareous, pink-tan. Sample P-1546 0.5

Total . . 10.5

PEKIN SOUTH SECTION

Roadcut and auger boring in $NW\frac{1}{4}$ $NW\frac{1}{4}$ $SW\frac{1}{4}$ sec. 30, T. 24 N., R. 4 W., Tazewell County, Illinois.

Pleistocene Series Wisconsinan Stage Woodfordian Substage Peoria Loess Thickness (feet)

5.	Loess, gray, granular, leached; A-zone of surface		0.0
4.	Loess, red-brown, blocky, clayey, grading downward into tan-brown, massive,	•	0.8
	leached; B-zone and CL- zone of surface soil. Sam- ple P-2714, $\frac{1}{2}$ -foot below top; P-2713, 2 feet below top; P-2712, $3\frac{1}{2}$ feet below top.		4.2
3.	Loess, massive, tan, cal- careous; contains some tu- bules of limonite and some mottling with gray. Sample P-2711, 1 foot below top; P-2709, $6\frac{1}{2}$ feet below top; P-2709, $6\frac{1}{2}$ feet below top; P-2708, $13\frac{1}{2}$ feet below top; P-2707, $14\frac{1}{2}$ feet below top; P-2706, $15\frac{1}{2}$ feet below top; P-2705 to P-2703 at $\frac{1}{2}$ -foot	•	
Alton	intervals	. 1	7.0
	ana Loess		
2.	Loess, pink to pink-tan, massive, weakly calcare-		
	ous, locally leached; con- cretions of $CaCO_3$ common in upper half. Samples P-2702 to P-2697 distributed from top downward at $\frac{1}{2}$ -foot intervals		3.5
Roxa	na Silt—Zone I		
1.	Silt, with some fine sand and clay, a few small peb- bles in lower part, leached, tough, gray-tan to tan. Samples P-2696 top, P-2695		
	middle, P-2694 bottom		0.5
	Total .	. 2	6.0

RAPID CITY (B) SECTION

Fresh cuts along north side of interchange to Interstate 80 across Mississippi River in SE $\frac{1}{4}$ sec. 3, T. 18 N., R. 1 E., Rock Island County, Illinois.

Pleistocene Series Wisconsinan Stage

			ckr eet	ess :)
Wood	fordian Substage			
	la Loess			
9.	Loess, leached; surface soil in upper part. Sam- ple P-2361, B ₂ -zone;			
8.	P-2360, B ₃ -zone Loess, tan, calcareous, coarse, massive; contains some mottling and limonita tubules and sparse snail shells. Sample P-2453 to P-2452, 6 feet above base P-2451, 2 feet above base (In next cut south, sample P-2359 to P-2353 from top to bettem at 2 ¹ foot space	e p; ;; ;;	•	8.0
7.	to bottom at $2\frac{1}{2}$ -foot spac- ing)Loess, gray, calcareous, coarse, massive; contains fossil snail shells. Sam- ple P-2450 upper, P-2449 lower. (In next cut south P-2352 middle)	•	. 2	2.0
	alian Substage dale Silt			
	Loess, dark tan, noncal- careous, massive. Sampl P-2448	e •	•	0.9
5.	Silt, with some fine sand, dark gray, leached, mas- sive; contains charcoal flakes. Sample P-2447 upper, P-2446 lower. (In next cut south, P-2351 up per). In cut to south, cry oturbations are prominent developed	 		2.0
Sang	amon Soil			
4.	Sangamon Soil accretion- gley; clay, gray with in- distinct streaks of dark gray, massive; a few small pebbles through- out; noncalcareous. Sam-			
	ples P-2445 to P-2443 top to bottom	•	•	3.5
	an Stage			
Lima 3.	n Substage Till, oxidized and leached irregular contact at base.	1,		

Samples P-2442 to P-2439

from top to bottom 3.5

Thickness (feet)

2.	Till, oxidized, calcareous,	
	massive, tan-brown; gra-	
	dational at base. Samples	
	P-2438 to P-2436 from top	
	to bottom	3.5

STUDYVIN SCHOOL SECTION

Roadcut in $NE\frac{1}{4}SW\frac{1}{4}NW\frac{1}{4}$ sec. 22, T. 23 N., R. 4 W., Tazewell County, Illinois.

Pleistocene Series Wisconsinan Stage

Woodfordian Substage

Richland Loess

- Loess, coarse, gray, leached, platy structure lower part; A-zone of surface soil. Sample P-2743X 0.6
- 7. Loess, coarse, tan-brown, with gray streaks and coating of gray very fine sand on surface of peds, prismatic to irregularly blocky; B₁-zone of surface soil; gradational top and bottom. Sample P-2742X 0.6

5. Loess, coarse, reddish

tan-brown, grading downward to tan with mottles of pale pinkish tan-brown, leached, massive; B3-zone of surface soil. Samples

Thickness (feet) P-2738X upper, P-2737X middle, P-2736X lower . . . 3.0 4. Loess, coarse, calcareous, tan, massive. Samples P-2735X upper, P-2734X middle, P-2733X base . . . 2.5 3. Loess, sandy, calcareous, tan, massive, gradational top and bottom. Sample P-2732X 1.5 2. Sand, fine, calcareous, tan, massive. Samples P-2731X upper, P-2730X middle, P-2729X lower 3.8 LeRoy Drift 1. Till, calcareous, gray, massive; sandy and loose in upper part. Sample P-2728X top, P-2727X $l\frac{1}{2}$ feet below top. Irregular erosional contact at top of till; locally, with boulders, cobbles, gravel and sand with thin stringers of till and blocks of silt in low areas of unconformable surface. Sample P-2726X. . . 2.0 Total . . 17.0

10-MILE SCHOOL SECTION

Roadcutin $SE_{4}^{1} NW_{4}^{1} SW_{4}^{1}$ sec. 12, T. 26 N., R. 4 W., Tazewell County, Illinois.

Pleistocene Series

Wisconsinan Stage Woodfordian Substage Richland Loess

> 2. Loess, yellow-tan to tan, tan-brown in upper part, massive, calcareous below surface soil in top, which has been truncated by erosion; the basal $\frac{1}{2}$ foot deposited in water as indicated by presence of Lynmaea and Gyraulus, but the aquatic snails disappear upward and are replaced by terrestrial forms (Leonard and Frye, 1960).

Thickness (feet) Sample P-1565 at base; lower part; calcareous, P-1566 to P-1578 at $\frac{1}{2}$ foot intervals upward from base to $6\frac{1}{2}$ feet 8.0 Bloomington Drift 1. Till, pink, calcareous, massive. Sample P-1564 at top; sharp contact with overlying loess 10.0+ Total . . 18.0+ VARNA SOUTH SECTION Roadcutin $SW_{4}^{\frac{1}{4}}NE_{4}^{\frac{1}{4}}NW_{4}^{\frac{1}{4}}$ sec. 33, T. 30 N., R. 1 W., Marshall County, Illinois. Pleistocene Series Wisconsinan Stage Woodfordian Substage Richland Loess 7. Loess, leached, dark gray to black, granular structure; A-zone of surface soil. Sample P-2693 top, P-2692, $\frac{1}{2}$ -foot below top. . . 0.8 6. Loess, leached, dark gray mottled with some brown to light brown, indistinct blocky structure; B₁-zone of surface soil; sharp contact at base. Sample 5. Loess, leached, brown, tough, indistinct structure; contains krotovenas in upper and middle part; B₂-zone of surface soil. Sample P-2690 upper, P-2689 lower (also P-1993) . . 0.8 4. Loess, leached, tan-brown, compact, massive; CL-zone of surface soil. Sample P-2688 (also P-1992). . . . 0.8 3. Loess, calcareous, tan to yellow-tan with some mottling, massive, compact. Samples P-2687 to P-2685, top to bottom (also P-1991 to P-1988) 1.5

2. Loess, with some pebbles; pebbles more abundant in

tan. Sample P-2684 (also P-1987) top, P-2683 (also P-1986) bottom 0.5 Cropsey Drift 1. Till, calcareous, gray, massive; to level of road ditch. Sample P-2682 (also P-1985) 1.0 Total . . 6.0 WALNUT SE AUGER SECTION NE¹/₄ NW¹/₄ NW¹/₄ sec. 1, T. 17 N., R. 8 E., Bureau County, Illinois. Pleistocene Series Wisconsinan Stage Woodfordian Substage Richland Loess 5. Loess, leached, tan; surface soil in top. Sample P-2438A at base 6.5 4. Loess, calcareous, yellowtan with some mottling of gray to gray-tan; contains a few limonite tubules; sparse fossil snail shells in lower part. Samples P-2437A upper to P-2431A lower 5.5 3. Loess, sandy, calcareous, tan. Sample P-2430A upper, P-2429 lower 1.0 Bloomington Drift 2. Sand and gravel, calcareous, tan to brown. Sample P-2428 upper, P-2427 middle, P-2426 lower. 1.5 1. Till, calcareous, pink-tan, to bottom of auger hole. Sample P-2425 0.5 Total . .15.0

27

Thickness

(feet)

WANLOCK SECTION

Pit in NE $\frac{1}{4}$ NW $\frac{1}{4}$ SE $\frac{1}{4}$ sec. 4, T. 14 N., R. 2 W., Mercer County, Illinois.

Thickness (feet)

Pleistocene Series Wisconsinan Stage Woodfordian Substage Peoria Loess

- 6. Loess, surface soil in top, tan to tan-brown with some mottling of gray, compact, massive; calcareous and contains sparse fossil snail shells in lower part. Samples P-2324 to P-2332 from base upward at 1-foot intervals to 6 feet from top. .14.0
- 5. Loess (transition zone at base of Peoria Loess), weakly calcareous to noncalcareous, dark tan to light brown; gradational at top. Sample P-2323 . . 1.0

Altonian Substage

Roxana Silt

 Silt, leached, brown; contains some zones of char-

Thickness (feet) coal flakes and locally some fine sand, compact. Sample P-2322 upper . . . 2.0 Roxana Silt-Zone I 3. Silt, sandy, with a few small pebbles, leached, brown to reddish brown, massive. Samples P-2320 lower, P-2321 top 1.5 Illinoian Stage 2. Sangamon Soil developed in till; B-zone leached, red-brown, clayey, tough, Mn-Fe streaks and pellets; grading downward to gray, leached till. Sample P-2319, 2 feet below top. Lower part of bed penetrated in auger hole 6.5 1. Sand, leached, tan-brown, penetrated in auger hole . . 1.0 Total . . 26.0

		s per ond	t -		ent of c	lay	snc
Sample no.	Calcite	Dolomite	D. I. ratio†	Expandable clay minerals	Illite	Kaolinite plus chlorite	Heterogeneous swelling index
BALDBLUFF SECTI	ON						
P-2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305			* 0.7 0.7 0.7 0.8 0.8 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.5 1.0	* 80 86 85 85 87 86 82 80 80 80 80 67 64 83	* 10 7 8 8 7 8 11 13 12 13 13 21 25 10	* 10 7 7 7 6 6 7 7 8 7 12 11 7	17 28 35 37 37 44 41 35 34 33 36 39 23 23 23 35
BERNARD SCHOOL	SECTION						
P-3017 3016 3015 3014 3013 3012 3011 3010 3009 3008 3007 3006 3005	13 6 8 6 - - - - - - - - - - - - - - - - -	18 14 23 22 21 - - - - - - -	1.1 1.0 1.3 1.3 1.1 0.6 0.3 0.4 0.3 0.3 0.3 0.6 0.6	80 71 67 66 65 82 64 70 70 60 58 59	12 17 22 22 22 9 12 12 12 10 14 16 20	8 12 11 12 13 9 24 18 20 26 26 26 21	22 16 15 14 12 28
BRADFORD EAST S	ECTION						
P-1870 1869 1868 1867 1866 1865	- - 8 8 20	8 9 20 20 25	1.4 1.4 2.0 1.8 2.1 3.1	71 64 60 58 60 28	19 24 30 31 30 59	10 12 10 11 10 13	16 15 16 11 14
BUDA EAST SECTI	ON		44	-	*	ale .	
P-2664 2663	_	_	*	*	*	*	0

TABLE 1 - X-RAY DIFFRACTION ANALYSES

30 ILLINOIS STATE GEOLOGICAL SURVEY CIRCULAR 427

		s per ond	+		cent of cinineral	lay	snc	
Sample no.	Calcite	Dolomite	D. I. ratio†	Expandable clay minerals	Illite	Kaolinite plus chlorite	Heterogeneous swelling index	
BUDA EAST SECT	ION Cont	•		· · · · · · · ·				
P-2662 2661 2660 2659 2658 2657 2656 2655 2654 2653 2652 2651 2650 2649 2648 2025 2024 2023 2022 2021 2020 2019	 15 13 16 19 16 12 40 22 21 22	 10 11 17 11 21 17 23 23 32 26 31 40	* * * * 0.8 0.8 0.9 0.9 1.6 1.7 1.0 1.6 1.7 1.0 1.6 * 1.0 1.1 1.2 1.2 1.3 1.4	* * * * 82 83 79 76 77 74 80 73 * 77 71 74 80 73 * 77 71 74 73 75 62	* * * * 10 9 11 14 16 19 12 19 * 14 18 17 18 17 26	* * * * 8 8 10 10 7 7 8 8 * 9 11 9 9 8 12	2 5 10 11 12 14 17 22 28 26 24 23 24 27 20 9 16 18 19 16 19 14	
2018	50	58	3.2	16	69	15		
CASE CREEK SEC	TION		1.6	74	17	0	0.0	
P-2345 2344 2343 2342 2341 2340 2339 2338 2337 2336 2335 2334 2335 2334 2333 DALLAS CITY SE (Frye, Glass			1.5 1.1 1.4 1.4 0.9 0.8 0.9 1.4 1.1 1.3 0.7 0.4 962)	76 76 74 75 76 81 76 72 69 70 82 76	16 15 18 15 13 10 14 19 20 20 10 10	8 9 8 10 11 9 10 9 11 10 8 14	23 22 23 20 23 21 22 23 21 21 21 25	
P-1248 1247	Ξ	12 12	0.7 0.8	76 80	13 11	11 9	17 19	

		ts per cond	+-	Percent of clay mineral			sno	
Sample no.	Calcite	Dolomite	D. I. ratio†	Expandable clay minerals	Illite	Kaolinite plus chlorite	Heterogeneous swelling index	
DALLAS CITY SE	ECTION CO	ont.						
P-1246 1245 1244 1243 1242 1241		18 16 21 22 5 —	0.8 0.7 1.1 1.2 0.7 0.4	80 81 71 75 69	11 10 18 18 13 11	9 9 11 11 12 20	23 23 18 15 20	
DANVERS SECTIO (Glass, Frye		illman, 19	964)					
P- 558 1339 1338 1337 1336 1335 1334 1333 1332	10 7 6 7 7	145 90 180 110 85 115 130 120 90	1.5 1.0 1.2 1.1 0.8 0.9	10 28 42 37 31 50 52	67 49 34 41 42 27 27	23 23 24 22 27 23 21	6 10 8 8 12 10	
1331 1330		90 80	0.8 0.8	50 52	28 26	22 22	15 12	
1329 1328 1327 1326 1325		135 55 45 55 40	0.6 0.5 0.5 0.8	52 54 60 66	22 21 19 20	26 25 21 14	13 13 14 15	
ELDRED SECTION (Frye, Glass		illman, 19	962)					
P- 944 943 942 941 940 939 938 937 936		10 11 15 10 7 12 12 12 17 	2.3 1.9 2.0 1.2 1.2 1.6 1.4 1.0 0.7	57 57 58 63 57 62 61 61	33 32 33 27 24 30 26 24 19	10 11 15 13 13 12 15 20	9 11 10 11 12 11 10 5	
FARM CREEK SEC (Gore, 1952)								
P-2186 2185	_	=	1.6 1.6	66 66	23 24	11 10	8 9	

32 ILLINOIS STATE GEOLOGICAL SURVEY CIRCULAR 427

	r						
		s per ond	+	m	ent of c ineral	lay	sno
Sample no.	Calcite	Dolomite	D. I. ratiof	Expandable clay minerals	Illite	Kaolinite plus chlorite	Heterogeneous swelling index
FARM CREEK SEC	CTION Con	t.					
P-2184 2183 2182 2181 2180		- - - -	2.3 2.2 2.2 1.8 1.9	60 63 50 63 67	31 29 39 27 24	9 8 11 10 9	6 8 8 12 9
2179 2178 2177 2176 2175 2174		14 14 15 17 16	1.1 1.0 0.9 0.8 0.7 0.9	58 56 58 59 60	27 27 24 23 21	15 17 18 18 19	11 10 13 13 16
2173 2172 2171 2170 2169 2168 2167 2166 2165 2164	- - 6 3 - - -	15 14 13 9 12 	0.6 0.7 0.7 0.6 0.3 0.4 0.2 0.2 0.2	66 63 59 60 63 66 67 70 77 56	17 19 22 21 18 11 11 7 6 6	17 18 19 19 23 22 23 17 38	16 14 12 11 12
2163 2162	_	_	0.2	42 51	13 11	45 38	
FREDERICK SOUT (Frye, Glass			62)				
P- 600 599 598 597 596 595 595		22 10 9 9 10	* 2.1 1.9 1.0 1.0 0.6 0.6	* 54 66 65 69 55	* 37 34 21 21 15 22	* 9 12 13 14 16 23	4 5 10 16 16 12
GRANVILLE SECT	NOII						
P-2681 2680 2679 2678 2677 2676 2675			* * 1.0 1.1 1.2 1.4	* * 72 75 71 70	* * 17 16 19 20	* * 11 9 10 10	0 5 8 14 14 14 12

		ts per cond	tiot	m:	ent of cl ineral		leous
Sample no.	Calcite	Dolomite	D. I. ratio†	Expandable clay minerals	Illite	Kaolinite plus chlorite	Heterogeneous swelling index
GRANVILLE SEC	FION Cont						
P-2674 2673 2672 2671 2670	- 7 11 - 7	8 11 12 13	1.2 1.8 1.5 1.2 1.2	69 70 70 67 67	20 22 21 21 21 21	11 8 9 12 12	12 17 17 18 18
2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000	- - - 21 - - 3 - 3 - 13 14 18 17	- 25 20 30 18 30 32 32 28 30 25 25 25 28 25 36 36	$ \begin{array}{c} 1.1\\ 1.0\\ 1.1\\ 1.3\\ 1.6\\ 1.5\\ 1.5\\ 1.3\\ 1.9\\ 1.6\\ 1.7\\ 2.2\\ 2.3\\ 1.8\\ 2.1\\ 6.9\\ 5.1\\ 6.7\\ \end{array} $	74 72 67 69 62 70 67 62 59 62 51 56 52 59 8 7 9	16 17 21 24 22 26 21 22 28 29 27 38 34 35 31 84 83 83	10 11 12 9 9 12 9 11 10 12 11 11 10 13 10 8 10 8	20 21 18 17 14 12 17 16 14 11 15 11 11 10 12
HILLVIEW SECTI (Frye, Glass		.11man, 19	962)				
P- 933 932 931 930 929 928 927 926		12 15 8 14 16 12 13	1.6 1.0 0.7 0.9 1.5 1.5 1.1 0.5	32 55 56 58 50 57 64 63	48 27 22 25 35 30 23 17	20 18 22 17 15 13 13 20	6 8 9 9 9 8 8
JULES SECTION							
P-1629 1628 1627 1626 1625 1624	6 6 7 	17 13 11 12 11 21	1.5 1.6 2.0 1.8 1.8 1.8	68 67 61 59 55 55	22 23 29 30 33 33	10 10 11 12 12	18 17 16 14 13 9

34 ILLINOIS STATE GEOLOGICAL SURVEY CIRCULAR 427

	Counts per second		+		cent of c nineral	lay	sno
Sample no.	Calcite	Dolomite	D. I. ratio†	Expandable clay minerals	Illite	Kaolinite plus chlorite	Heterogeneous swelling index
JULES SECTION (Cont.						
P-1623 1622 1621 1620 1619 1618 1617 1616 1615 1614 1613 1612 1611 1610 1609 1608 1607 1606 1605 1604 1603 1602		15 17 20 18 18 11 15 10 15 7 12 10 14 11 15 13 14 12 16 12 15 14	1.7 2.1 2.3 2.0 1.7 2.2 1.9 1.5 1.9 1.9 2.1 1.6 1.6 1.6 1.9 2.9 3.1 2.3 2.3 3.0 2.6 4.0 3.4	53 42 43 46 66 62 65 56 61 56 61 56 63 67 50 37 39 30 44 41 31 35 34	34 44 45 26 28 24 33 29 34 26 23 37 53 50 57 43 48 55 56 55	13 14 12 8 10 8 10 11 11 10 10 11 13 13 11 13 13 11 14 9 11	10 9 6 8 14 15 15 14 12 14 10 14 17 8 5 4 3 7 5 3 3 4
1641 1640 1639 1638 1637 1636 1635 1634 1633 1632 1631 1630 KIRKWOOD SECTIO		18 40 35 26 26 22 25 8 — — —	$ \begin{array}{r} 1.5 \\ 1.6 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.4 \\ 0.6 \\ 0.6 \\ 0.4 \\ 0.5 \\ 0.5 \\ \end{array} $	60 65 62 66 67 68 66 64 66 72 72 72 73	27 25 27 24 23 22 23 17 16 13 13 12	13 10 11 10 10 10 11 19 18 15 15 15 15	3 11 10 15 15 15 9 12 14
P-2290 2289 2288 2287 2286 2285 2284	 14 	 12 11 13 15 19	* 0.9 0.8 0.8 0.9 1.5 0.9	* 89 86 82 87 77 82	* 7 10 7 16 11	* 4 7 8 6 7 7	22 39 37 31 34 31 30

		Counts per second		second + mineral				lay	sn
Sample no.	Calcite	Dolomite	D. I. ratio†	Expandable clay minerals	Illite	Kaolinite plus chlorite	Heterogeneous swelling index		
KIRKWOOD SECTI	ON Cont.	•							
P-2283 2282 2281 2280 2279 2278 2277 2276 2275 2274 2273 2272 2271 2270		7 14 14 	$\begin{array}{c} 0.7 \\ 0.7 \\ 0.7 \\ 0.6 \\ 0.3 \\ 0.3 \\ 0.3 \\ 0.3 \\ 0.3 \\ 0.3 \\ 0.3 \\ 0.4 \\ 0.3 \\ 0.4 \\ 0.4 \\ 0.4 \\ \end{array}$	83 86 87 81 83 80 68 63 62 63 63 63 65 65 65 67	8 7 9 5 6 9 12 12 12 11 12 13 12 12 12	9 7 6 10 12 14 23 25 26 26 26 25 22 23 21	30 41 37 27		
LITTLE YORK SE	CTION								
P-2318 2317 2316 2315 2314 2313 2312 2311 2310 2309 2308 2307 2306		- - 13 8 7 9 8 7 -	1.1 1.4 1.3 2.3 1.1 1.1 1.0 0.9 0.9 0.9 0.9 0.9 0.8 0.9 1.3	83 80 84 76 74 77 77 76 80 80 80 62 70 64	10 14 10 19 16 14 14 14 12 12 21 18 24	7 6 5 10 9 9 9 10 8 8 8 17 12 12	28 23 32 24 25 25 26 27 30 11 19 19		
MARCELLINE SEC (Frye and Wi		L965)							
P-1234 1233 1232 1231 1230 1229 958 957 956 955			* 1.3 0.7 1.3 1.2 0.6 0.8 0.8 1.4 0.5	* 79 74 69 69 47 80 81 74 58	* 14 13 20 20 26 11 10 17 18	* 7 13 11 11 27 9 9 9 9 24	11 27 20 21 18 19 25 23		

	Counts per second		tot	m	ent of c ineral		leous
Sample no.	Calcite	Dolomite	D. I. ratio†	Expandable clay minerals	Illite	Kaolinite plus chlorite	Heterogeneous swelling index
MARQUETTE HEIG (Gore, 1952)		ION					
P-2201 2200 2199 2198 2197 2196 2195 2194 2193 2192 2191 2190 2189 2188 2187	- - 6 5 12 8 4 13 8 12 12		* 1.0 1.2 1.2 1.6 2.0 1.9 1.8 2.2 2.2 2.2 2.2 1.5 1.2 2.3	* 69 65 68 66 58 59 50 46 49 43 64 67 28	* 19 21 23 25 31 30 39 42 39 44 25 21 56	* 12 10 12 9 9 11 11 11 12 12 13 11 12 16	0 5 7 8 15 18 15 18 12 11 8 7 16 19
MORRISON SECT	LON	10			11	0	26
HK-109-28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 8 7 6 5 4	9 6 12 11 19 21 17 11 10 13 16 10 20 10 10 10 13 - - - - - -	12 13 10 4 14 18 17 12 17 19 15 10 7 16 16 16 11 8 8 8 — — — — — — —	$\begin{array}{c} 0.8\\ 1.0\\ 1.3\\ 1.2\\ 1.3\\ 1.4\\ 1.2\\ 1.6\\ 1.7\\ 1.7\\ 1.2\\ 1.2\\ 1.3\\ 1.2\\ 1.3\\ 1.2\\ 1.3\\ 1.2\\ 1.3\\ 1.2\\ 1.0\\ 0.9\\ 0.9\\ 0.5\\ 0.5\\ 0.5\\ 0.4\\ 0.4\\ 0.7\\ 3.0\\ \end{array}$	80 80 77 77 77 75 74 69 66 72 72 72 72 72 72 72 72 75 69 83 83 83 80 74 77 68 26	11 12 15 15 16 16 18 22 24 18 18 17 16 18 18 15 18 10 7 8 10 9 16 61	9 8 8 8 7 9 8 9 10 10 10 10 10 10 10 10 10 10 10 10 10	26 25 20 25 22 19 16 17 13 10 15 16 16 16 17 15 17 18 17 24

		ts per cond	+		cent of c nineral	lay	sno
Sample no.	Calcite	Dolomite	D. I. ratiof	Expandable clay minerals	Illite	Kaolinite plus chlorite	Heterogeneous swelling index
MORRISON SECTI	ION Cont.						
HK-109-3 2 1			3.1 3.2 0.4	37 29 46	52 59 22	11 12 32	
MT. PALATINE	SECTION						
P-1999 1998 1997 1996 1995 1994	 14 13 15	30 27 43 48 30	1.1 1.6 1.5 3.4 4.2 4.6	68 59 59 7 3 5	20 29 28 78 84 83	12 12 13 15 13 12	10 13 14
NEPONSET SECTI	ION						
P-2647 2646 2645 2644 2643 2642 2641 2640 2639 2638 2637 2636 2635 2634 2633 2632 2631 2630 2629 2628 2627 2626	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	* * * * 1.3 1.5 1.3 1.6 1.4 1.4 2.0 2.2 2.0 1.8 2.2 2.0 1.8 2.2 2.0 1.9 1.2	* * * * 71 76 73 68 71 71 64 57 49 47 48 52 48 52 48 46 64	* * * * * 19 16 18 23 20 20 27 33 38 39 40 37 39 40 24	* * * * 10 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	1 3 7 9 10 13 11 15 21 19 16 14 14 14 12 13 10 9 7 6 6 7 12
NORTH QUINCY S (Frye, Glass		illman, l	962)				
P-1223 1222 1221 1220	 25 10	10 20 21 20	0.7 0.6 1.0 1.1	82 79 72 73	9 10 17 17	9 11 11 10	26 22 17 18

	T		$\frac{1}{1}$				
	Count		+-		ent of cl ineral	.ay	sn
Sample no.	Calcite	Dolomite	D. I. ratio†	Expandable clay minerals	Illite	Kaolinite plus chlorite	Heterogeneous swelling index
NORTH QUINCY SE (Frye, Glass,			2)				
P-1219 1218 1217 1216 1215 1214	27 7 — —	22 25 10 5 —	1.3 1.4 1.2 0.9 0.8 0.4	71 76 76 78 73 62	18 16 15 13 14 15	11 8 9 9 13 23	16 25 27 24 20
PARTRIDGE CREEK	SECTIO	N					
P-1560 1559 1558 1557 1556 1555 1554 1553 1552 1551 1550 1549 1548 1547 1546		8 11 9 13 15 15 15 18 17 15 15 38 36 26	* 1.2 2.2 2.3 2.6 3.2 2.4 1.5 1.5 1.6 1.8 2.0 3.0 3.7 4.0	* 71 58 57 54 43 55 63 64 67 66 60 22 18 17	* 19 32 36 47 35 27 26 23 25 30 64 70 71	* 10 10 11 10 10 10 10 10 10 10 10 10 10	14 15 13 10 13 10 13 13 10 17 19 13
PEKIN SOUTH SEC	TION						
P-2715 2714 2713 2712 2711 2710 2709 2708 2707 2706 2705 2704 2703 2702 2701 2700 2699		 17 17 8 	* 2.1 2.3 3.4 1.5 1.7 0.9 0.9 0.8 0.7 0.9 0.8 0.6 0.6 0.6 0.6	* 57 64 43 60 61 82 82 82 86 87 86 80 84 78 80 82	* 33 28 47 28 28 10 10 8 7 8 11 7 10 9 8	* 10 8 10 12 11 8 8 6 6 6 6 9 9 9 12 11 10	3 11 12 18 6 10 9 23 29 33 31 32 28

	Counts per second		+		ent of cl	.ay	sno
Sample no.	Calcite	Dolomite	D. I. ratio†	Expandable clay minerals	Illite	Kaolinite plus chlorite	Heterogeneous swelling index
PEKIN SOUTH SI	ECTION Co	nt.					
P-2698 2697 2696 2695 2694			0.7 0.6 0.6 0.6 0.6	80 81 69 77 80	10 8 14 10 9	10 11 17 13 11	
PERRY EAST SEC (Frye and W		965)					
P-1953 1952 1951 1950 1949 1948 1947		 12 25 	2.3 1.8 0.8 0.7 0.8 0.8 0.8 0.5	60 71 71 69 75 75 59	31 21 16 13 13 17	9 8 13 15 12 12 24	14 18 15 16 17 16
RAPID CITY (B)) SECTION						
P-2361 2360 2359 2358 2357 2356 2355 2354 2353 2352 2351	- - - - 6 12 28 -	5 19 22 19 10 10 15 13	* * 1.4 1.5 1.2 1.1 0.8 1.3 1.0 0.5	* 72 71 73 75 70 73 66 82 77	* 19 20 18 16 19 15 22 11 9	* 9 9 9 11 12 12 7 14	10 13 11 15 17 20 16 19 15 27
$2453 \\ 2452 \\ 2451 \\ 2450 \\ 2449 \\ 2448 \\ 2447 \\ 2446 \\ 2445 \\ 2445 \\ 2444 \\ 2443 \\ 2442 \\ 2441 \\ 2440 \\ $	12 14 9 9 - - - - - - - - - - - - - -	18 18 29 16 	1.2 1.2 1.2 0.7 0.7 0.4 0.3 0.4 - 0.2 0.3 0.4 1.0 1.4	68 67 69 80 83 74 74 74 71 87 80 77 24 18 14	21 20 10 9 8 11 - 4 8 30 49 58	11 12 11 10 8 17 18 18 13 16 16 46 33 28	17 13 14 25 29

	Counts per second		t.		cent of c nineral	lay	suc
Sample no.	Calcite	Dolomite	D. I. ratio†	Expandable clay minerals	Illite	Kaolinite plus chlorite	Heterogeneous swelling index
RAPID CITY (B)) SECTIO	N Cont.				•	
P-2439 2438 2437 2436 2435 2433 2432 2431 2430	- - 14 - 12 22 15		0.9 0.9 1.1 1.2 1.0 1.3 1.0	31 35 37 33 37 36 28 35	41 38 37 41 41 39 48 39	28 27 26 26 22 25 24 26	
2430 RICHLAND CREE				35	39	20	
(Glass, Fry P- 566 1354 1353 1352 1351 1350 1349 1348 1347 1346 1345 1344 1343	e, and W 20 14 38 58 18 - 5 10 - 6 - 6 -	illman, 19 105 280 265 185 90 220 185 135 200 125 240 100 150	64) 1.2 1.1 1.2 1.1 0.9 1.0 1.1 1.0 1.1 1.1 1.0 0.9	6 41 43 49 62 62 61 60 61 61 61 64 64	64 37 36 34 21 22 24 24 25 25 25 22 21	30 22 23 19 17 16 15 16 14 14 14 14	9 9 9 13 15 16 13 16 16 12 16 19
RUSHVILLE (0. (Frye and W							
P- 673 672 671 670 669 668 667 666 665 664 663 626A SEPO SECTION		- - 11 11 10 12 11 17 8 15 -	* 2.3 2.2 2.0 2.0 1.6 1.3 1.0 0.7 0.8 0.7 0.4	* 66 68 55 62 65 64 56 62 65 71 72	* 26 25 34 28 25 24 26 20 19 15 11	* 8 7 11 10 10 12 18 18 18 16 14 17	2 10 10 8 7 10 9 10 11 13 12
(Frye, Glas P- 884 883	s and Wi — —	11man, 196 	52) * 1.9	* 66	* 25	* 9	4 8

				T			
		s per ond	1		cent of c mineral	lay	snc
Sample no.	Calcite	Dolomite	D. I. ratiof	Expandable clay minerals	Illite	Kaolinite plus chlorite	Heterogeneous swelling index
SEPO SECTION C	ont.						
P- 882 881 880 879 878 877 876 875 876 875 874 873 872 871 870 869 868 869 868 865			1.8 1.9 2.1 2.2 2.6 1.9 1.5 0.9 0.9 0.9 0.9 0.9 0.9 0.9 1.0 1.1 1.1 1.1 0.8 0.4	62 63 60 42 48 56 63 69 66 70 71 68 74 70 70 69 63 64	27 27 30 45 41 33 26 18 20 17 17 19 15 15 18 19 20 20 20 14	11 10 10 13 11 11 11 13 14 13 14 13 12 13 11 12 13 11 11 12 11 11 17 22	5 7 7 3 7 6 9 12 12 12 12 20 19 22 20 18 20 15
SISTER CREEK S	ECTION						
(Gore, 1952) P-2154 2153 2152 2151 2150 2149 2148 2147 2146 2145 2144 2143 2142 2144 2143 2142 2141 2140 2139 2138 2137 2136 2135 2134 2133 2132 2131 2130			* * 2.2 2.1 2.3 2.4 2.1 2.8 3.0 2.5 3.3 1.4 1.3 1.1 1.4 1.0 1.3 1.4 1.2 1.3 1.4 1.2 0.6 0.6	* * 63 64 47 42 47 32 27 35 26 54 54 65 59 65 55 65 65 65 65 65 67 68 55 63 70 71	* * 28 27 41 45 40 55 60 52 61 31 31 23 26 23 27 23 22 21 30 24 14 14	* * 9 9 12 13 13 13 13 13 13 13 13 13 13 13 13 13	4 5 7 16 12 6 7 6 6 3 3 0 8 9 11 10 9 11 10 9 11 11 15 8 8 8

			T	r			
	Counts per second		+		cent of mineral	clay	sn
Sample no.	Calcite	Dolomite	D. I. ratioŤ	Expandable clay minerals	Illite	Kaolinite plus chlorite	Heterogeneous swelling index
STUDYVIN SCHOO	L SECTIO	N					
P-2743X	_	_	*	*	*	*	3
2742X	_	_	*	*	*	*	3 9 8 8
2741X	_	_	*	*	*	*	8
2740X	_	-	*	*	*	*	8
2739X	_	_	*	*	*	*	10
2738X	-	-	*	*	*	*	13
2737X 2736X	-	-	3.0	* 62	* 31	* 7	14 14
2735X 2735X	_	11	2.5	49	40	11	
2734X	_	10	3.0	43	46	11	8
2733X	_	10	2.4	46	42	12	8 8 5 6 5
2732X	-	15	3.0	48	42	10	5
2731X	-	10	3.0	47	43	10	6
2730X 2729X	8	14 19	2.4	48 33	41 58	11 9	C
2728X	13	22	4.9	22	68	10	
2727X	12	25	4.6	22	68	10	
2726X	-	8	1.1	70	19	11	
10-MILE SCHOOL	SECTION	I					
P-1578	_	17	2.1	66	26	8	17
1577	_	10	2.2	65	27	8	12
1576	_	12	2.1	61	30	9	15
1575	12	17	2.3	63 63	28	9	18 16
1574 1573	13 17	16 25	2.2	57	27 34	10 9	15
1572	14	14	2.8	46	44	10	7
1571	8	12	1.6	66	24	10	16
1570	-	20	1.3	70	20	10	21
1569	-	15	1.4	72	19	9	20
1568 1567	 5	16 12	1.5 1.5	72 73	19 19	9 8	21 21
1566	_	18	1.6	70	21	9	20
1565	12	35	3.1	52	40	8	9
1564	25	45	4.9	19	71	10	
VARNA SOUTH SE	ECTION						
P-2693	_	_	*	*	*	*	0
2692	-	-	*	*	*	*	2
2691	-	-	*	*	*	*	12
2690	-	-	0.9	81	10 13	9 10	20 19
2689	-	-	0.9	77	13	10	12

		s per cond	+		ent of cl ineral	ay	sn
Sample no.	Calcite	Dolomíte	D. I. ratio†	Expandable clay minerals	Illite	Kaolinite plus chlorite	Heterogeneous swelling index
VARNA SOUTH SI	ECTION Co	ont.					
P-2688 2687 2686 2685 2684 2683 2683	 7	9 15 15 13 20 9	1.1 1.2 1.4 1.3 2.0 2.3 3.9	79 72 67 68 54 53 3	13 18 23 22 35 36 83	8 10 10 11 11 14	22 18 17 16 11 12
1993 1992 1991 1990 1989 1988 1987 1986 1985	- 10 - 13 9 10		1.1 1.7 1.5 1.4 1.9 1.4 2.3 2.1 4.7	76 68 61 59 53 63 37 48 3	15 23 27 28 34 25 49 40 85	9 9 12 13 13 12 14 12 12	15 15 14 13 11 14 8 10
WALNUT SE SECT	TION						
P-2438A 2437A 2436A 2435A 2434A 2433A 2432A 2431A 2430A 2429 2428 2427 2428 2427 2426 2425	- - 10 15 13 13 8 - - 7 21	10 10 10 14 17 20 27 17 20 25 25 25 19 37	1.0 1.0 1.2 1.3 1.2 1.4 1.5 1.8 1.7 1.7 1.5 2.2 2.8	84 81 81 80 76 74 74 68 67 63 63 55 21	10 12 12 13 15 17 18 23 24 27 26 34 64	6 7 7 9 9 9 8 9 9 10 11 11 11	28 30 33 29 30 24 27 26 19 21 13 12 10
WANLOCK SECTION	NC						
P-2332 2331 2330 2329 2328 2327 2326 2325		 9 17	* 0.9 1.0 0.8 0.6 0.6 0.8 1.0	* 71 71 66 72 74 72 74	* 17 18 13 13 15 16	* 12 16 15 13 13 10	16 21 22 19 22 22 22 17

	Counts per second						lay	snc
Sample no.	Calcite	Dolomite	D. I. ratio†	Expandable clay minerals	Illite	Kaolinite plus chlorite	Heterogeneous swelling index	
WANLOCK SECTIO	N Cont.							
P-2324 2323 2322 2321 2320 2319		17 	0.7 0.6 0.4 0.4 0.3 0.4	77 74 71 58 52 37	12 13 10 15 16 25	11 13 19 27 32 38	21 17	

TABLE 1 - CONTINUED

[†]Diffraction intensity ratio = counts per second for illite (10Å) divided by counts per second for kaolinite plus chlorite (7.2Å). *Weathered material in soil profile; not calculated.

Illinois State Geological Survey Circular 427 44 p., 7 figs., 5 tables, app., 1968

Printed by Authority of State of Illinois, Ch. 127, IRS, Par. 58.25.

.

URBANA

ILLINOIS STATE GEOLOGICAL SURVEY

CIRCULAR 427