\qquad我

 \% Un
\%
Whatamat

DO NOT REMOVF FROM LIBRARY

DO NOT RCMMY: FARM LIBRARY
-

MINUTES OF PROCEEDINGS

THE INSTITLUTIUN

OF

CIVIL ENGINEERS;

WITH

A BSTRACTS OF THE DISCUSSIONS.

Vol. XXXI.

SESSION 1870-71.-PART 1.

Edited by
James Forrest, Assoc. Inst. C.E., Secretary.

$$
\text { Index, Page } 417 .
$$

> LONDON :
> flublishè by the $3 n$ titntion, 2.5, GREAT GEORGE STREET, WESTMINSTER, S.W. 1871.

ADVERTISEMENT.

Tue Institution is not, as a body, responsible for the facts and opinions advanced in the following Papers read, or in the abstracts of the conversations which have occurred at the Meetings dining the Session.

$$
130^{\circ} 35.2
$$

CON TEN'S.

$\begin{gathered} \text { Nus. } \\ \text { of } \\ \text { Papers. } \end{gathered}$	Suljects.	Authors of Papers.	Date.	rage.
1,229	List of Officers	-•	1871	291
	Election of Members .	\cdots	Jan. 10	295
	Admission of Students .	-•	\cdots	294
	Floating Docks ($\mathrm{p}^{\text {plates }}$) . . .	G. B. Renuie -	-•	295
	Appendix A: Vessels lifterl on Wooden $\left.\begin{array}{c}\text { Floating Dock at D'ola . }\end{array}\right\}$	-•	.	310
	B: Vessels taker on and off Iron Floating Duck at Cartagella	\cdots	\cdots	312
1,239	Discussion on ditto	\cdots	-	313
	Lock Gates (4 woodents).	W. R. Browne .	" 17	317
	Discussion on ditto (14 woodeuts)	\cdots	.	339
1,284	Train Resistance on Railways (1 plate)	W. B. Adams -	" 24	358
	Discussion on ditto (3 woodents)	-•	.	378
	Election of Members	-•	Feb. 7	415
	Admission of Students	-	\cdots	415
	Index	-•		417

THE

I NSTITUTION

of

CIVIL ENGINEERS.

SESSION 1870-71.

Norember 8, 1870.
CHARLEA B. VIGNOLES, F.R.S., President, in the Chair.

No. 1,148.-"Deseription of the Cofferdams used in the execution of No. 2 Contract of the Thames Embankment." By Thomas Dawson Ridley, Assoc. Inst. C.E.
In this Paper it is proposed to deseribe the Cofferdams which were constructed for the purpose of excluding the water from that portion of the Thames Embankment wall which extends from the landing-pier at Waterloo Dridge to the eastern end of Temple Gardens, a length of 1,970 feet. Also, to give a brief account of the canses and considerations which were influential in determining the kind of dams that should be adopted, and their position, with an epitome of the calculations from which the stalility of the dams was deduced; and lastly, to allude to the mamer in which the removal of the piles and puddle was effected, after the dams had served their purpose.

The works upon this contract were let, by the Metropolitan Buard of Works, to Mr. A. W. Ritson, in January, 1864, and were luegun in March of the same year. Mr. J. W. Bazalgette (M. Inst. C.E.) was the Engineer under whom the works were executed, and Mr. Edmund Cooper (MI. Inst. C.E.) was the Resident Engineer ; the Author having charge of the work for the Contractor.

At the eastern end of Temple Gardens, the new river wall encroaches 200 feet upon the Thames; opposite Arundel Street
the breadth of reclaimed land is 270 feet; whilst at the western end of the contract, where the terrace of Sumerset Honse projected beyond the old shore line, the embankment wall is only 110 feet from the existing quay. The depth of water, when the tide is low, varies along the line of the face of the new wall from 1 foot to 6 feet, being deepest in front of the Temple steamboat pier. The borings showed, that the bed of the river consisted of sand and gravel, resting upon clay, at depths varying from $27 \cdot 58$ feet to $33 \cdot 10$ feet below Ordnance datum, which is 6 feet above low-water mark. The depth of the fomblation for the river wall and the Temple pier was in all cases designed to be 20 feet below Ordnance datum.

In the specification, the responsilility was laid upon the Contractor of construeting such dams as would exclude the water, power being reserved to the Engineer of the Board to adopt either cofferdams or caissons; but no plan was given of either, and when the works had been let, the Contractor was called upon to submit a plan for approval. In preparing such a plan, the following points were carefirlly considered:-(1.) The material to be used-wood or iron? The experience of the Author having been chiefly in dams of timber and elay, he may have been somewhat prejudieed in their favour ; but careful calculations led lim to the conclusion, that in this case a dam of caissons would be much more costly, and could not le so rapidly construeted as a timber dam. (2.) The depth of the water, and the consequent strength of the dam to resist its pressmre. The general depth of the water, when the tide is low, in front of the wall, is about 2 feet, and for a very short space only does it exceed 3 feet 6 inches. As the rise of spring tides is 18 feet 6 inches, it was considered that a depth of 22 feet of water would form a safe basis for the ealeulation. (3.) The position of the dam in reference to the wall. It was considered desirable that the dam should be placed at such a distance from the fomdation trench, that the shoring should not extend aeross the wall. Strutting, when it erosses work in course of construction, offers considerable hindrance to its progress, and interferes with its economical execution. The shores have also to be removed as the work rises, and their removal is frequently followed ly a slight yjelding of the dam, and a consequent settlement of the pmilile. It was therefore decided to place the dam so that its inner face shomld be at a distance of 25 feet from the foundation trench. (4.) 'The depth to which the piles should be driven. The "יִer surface of the day, which molerhes the sand and gravel in the bed of the river, was shown to be at an average depth of more
than 30 fect under Ordnance datmm, or about 42 feet 6 inches under high-water mark. To have piles, therefore, which would stand 4 feet alnowe high-water mark, and reach 4 feet into the clay, would repuire timber averaging 50 feet 6 inches in length. 'To provide a sufficient momber of logs of such a length would bee a matter of great difficulty ; and it was considered that as the dam would be at some distance from the foundation, it would not be. necessary to driar the pikes more than 12 feet into the gromed, nor to carry the pulde more than 4 feet blow the bed of the river. The weight of the puthle wall resting on the sandy sulnstratum, added to the effect of the ellay banks to be deposited at the front and hack of the dan, would, it was thomght, remeler any leakage under the bottom of the piles of small accomst.

In pursmance of these comsiderations, a plan (Plate 1) was prepared and sulmitted to the Engineer, who, however, after having examined it, decided that the outer face of the dam shombl not be more than 15 feet from the foundation trench, and that the piles and pudtle should reach to the clay. The plan was at once modified to suit these conditions, and the work was begm.

The Temple steamboat pier, in length 40 feet, is the most important work in this section of the Embankment, and comprises as much granite, brickwork, and concrete as the remaining 1,500 feet of river wall. It was therefore essential to lay its fomndation dry as soon as possille, and it was determined to construct, in the first place, a short dam at each end of the pier. Each of these dams completely enclosed a short length of the river wall, and served as an abutment for the large dam in front of the Temple pier, and for the earth filling, which reached back to the shore, and cut off the water from behind the foumbation.

The dam at the western end of the 'Temple pier, called No. 1 Dam (Plate 1), was first hegun. With the view of saving time, the ground was not dredged before the piles were driven, and the driving was in consequence a slow and diffienlt operation. In many cases it was all but impossible to force the piles down, and about one-sixth of the whole number pitched, having, in the process of driving, appeared to have failed, were drawn, and other piles were substituted. Whenever a pile was observed to show symptoms of fililure in driving, it was drawn; and in this dam ninety-five piles were so removed and replaced. Generally, the piles when drawn were found to have east their shoes, and their $p^{\text {wints }}$ were lorised into a mass of tangled shreds. The failure msually occured whilst the point of the pile was passing through a led of close compact sand containing fragments of shells, which
rested on coarse open gravel. Beneath the gravel, and resting on the clay, was a layer of septaria, which presented a serious ohstruction to the passage of the piles. Once through this stratmen and into the clay, the driving became comparatively easy. Notwithstanding the precantions which were taken to draw and replace ingured piles, it was afterwards ascertained, when the foundations were excavated inside this dam, that about one-fourth of the piles which remained were bruised and broken, and had not penetrated the clay.

The internal dimensions of this dan were 111 feet 6 inches by 25 feet, with a clear space of 6 feet hetween the piles for puddle. The piles were of whole timbers, in lengths of from 40 feet to 48 feet, and from 12 inches to $1+$ inches square. They were shod with east-iron shoes, weighing 70 lls s. each, and were driven, or were intended to be driven, 4 feet into the clay. Cast-iron shoes were used in preference to those of wrought iron, as giving, at an equal cost, a much larger base for the timber. Where the driving was very diffieult, shoes having east-iron bases and wrought-iron straps were employed. The piles were secured by three rows of walings, of whole timbers, 13 inches to $1+$ inches square, through which, and passing through the puddle space, were bolts, $2 \frac{1}{2}$ inches in diameter in the lower waling, and 2 inehes in diameter in the middle and upper walings. These bolts were placed at an average distanee of t feet 6 inches apart in each waling. Their heads and muts pressed against east-iron washers, 8 inches square and $2 \frac{1}{5}$ inches thick, with splayed edges. The washers were afterwards made circular, 9 inches in diameter and 23 inches thick, and it was frequently form that the pressure of the puddle had forced them into the waling to the full extent of their thickness. To avoid the diffieulty of proeuring long timbers, the heads of the piles were driven below the level of the top of the dam, which was finished to 4 feet alove high-water mark. Lengthening pieces were half-lapped to the heads of the piles at short intervals, and were holted to each other aeross the puddle space by bolts $1_{\ddagger}^{\frac{1}{t}}$ inch in diameter. Between these lengthening pieces deals were filled in, longitudinally, up to the level of the top of the puddle. 'Temporary walings, of half timbers, to guide the piles in driving, were fixed to the inner faces of the gauge piles by bolts $1 \frac{1}{4}$ inch in dimmeter, and were removed before the puddle was deposited.

The 6 -feet space between the piles was dredged to the level of the elay, by means of a lagg and spoon, and the puddle, which had been previously prepared, was filled in. It was composed of

London clay, from the exarations of the Metropolitan liailway near smithfield, mixed with one-sixth part of its bulk of gravelly loam, forming, when well wrought and tempered, a consistent and tenacious mass. Part of the clay which was used for pulde, and all that which was deposited against the onter face of the dam, were supplied by the Conservators of the Thames, who dredged it from the bottom of the river. Before the puddle was raised above the level of low-water mark, a sluice, formed of elm planks, $4 \frac{1}{2}$ inches thick, and having an internal section of 8 inches ly 8 inches, was fixed through the river side of the dam, and rested on the lower waling. It was closed at the onter end by a hanging flap door, to which a ring and chain were attached, to lift it when required.

The transverse struts, of which there was a tier to each waling. were of whole timbers, and were 8 feet aprart in the length of the dam. Those in the upper tier were secured by angle-plates and bolts reaching through the piles, the puddle, and the walings. The struts abutting against the middle and lower watings were kept in their places by woolen cleats, bolted to the timbers. Too preserve the vertical position of the whole dam, that was, to hinder it from swerving, either towards the river or towards the land, back-stays were fixel, which had angle plates attached to them, holted through the thickness of the dam to the corresponding plates of the upper row of struts. The tide was excluded from this dam on September 19, 1864, and the foundation stone was laid two months later.

As soon as the construction of No. 1 Dam was fairly in operation, No. 2 Dam was legun. It was precisely similar to No. 1 Dam, but was a few feet longer. It was completel, and the tide excluded, on December 9, $18: 4$.

Whilst these two dams were in progress, the filling-in of the foreshore was going on, so as to embank the space from one to the other behind the Temple pier. The dredging of a trench for the Temple l'ier Dann, called also No. 3 Dam (1late 1), was in operation, the work leing executed by one of the dredgers belonging to the Conservators of the Thames. No difficulty was in this case experienced in driving the piles, and the beneficial effect of the dredging was at once apparent. The Temple pier is irregular in outline, portions of it projecting into the river upwards of 30 feet beyond the line of the ordinary wall, and it was necessary to push out the dam so as to enclose the greatest projection. The wall here is also of considerable thickness, the breadth from front to hack of the foundation trench along the central part leing

57 feet. To avoid the necessity of having to use a large number of struts of this length, it was determined to strengthen the dam by means of buttresses, similar in principle to those which had heen used in the cofferdam constructed for the Grimsby Docks. ${ }^{1}$? These huttresses were placed at intervals of 20 feet, and were 11 feet in hearth from the walings of the dam. They were tied together by three walings, corresponding in level with the walings which were fixed to the piles of the dam. The walings of the huttresses were secured bey long bolts, which passed through to the outer face of the dan. The seantlings of the timber used in this dam were similar to those described for No. 1 Dam, except the walings, which were from 14 inches to 15 inches square.

Two sluices were fixed in this dam, and rested on the lower waling. They were formed of American elm planks, $4 \frac{1}{2}$ inches thick, with lolts and stays of wrought iron. Their length was about a foot greater than the thickness of the dam, and each harl an internal section, 3 feet hiyh and 1 foot across. The volume of water to be discharged ley these sluices during the elljing of the tide was $986,0: 31$ culic feet, or 164,388 cubie feet per homr ; and this discharge was effected in such a mamer, that the difference in level between the water inside and the water ontside was always less than 2 feet.

As som as the pudde was raised to the level of low-water mark, the spaces which had heen dredged at the fromt and back of the dam were filled with a mixture of gravel and clay, to prevent the pressure of the puddle from breaking the piles between the lower walings and the solid ground into which they were driven. This backing was carried mp to the level of the lower walings, and was of great value in increasing the stability of the dam. Before the tide was exeluded. one horizontal strut and one raking strut. both stretching across the line of wall, were fixed against cach buttress. They ahutted against pairs of piles. driven into the solid gromed, and backed with large ruldle stones. This dam, which was 481 feet ${ }^{5}$ inches in length, was completed, and the tide exelnded, on March 24,1865 . Ganges were fixed at four points along the upper waling, and at high water the dam was olservel to have vidhed 3 inches, $3 \frac{1}{2}$ inches, $1 \frac{3}{4}$ inch, and $3 \frac{1}{2}$ inches, at the several peints of observation.

It was found that the trench, which had been excarated for this dan liy the 'Thames Conservators' dredger, was much too wide, and was, therefire, oljectionalle, b, th on the seore of economy, and as

[^0]regarded the stalility of the dim. Fur No, 4 Dim, therefore, and for all the dams subsequently constructel, the trench was ilredged ly means of a bag and spon, wronght hy a small stemengine. The engine was fixed mon a timber framework having flanged wheeds, which tratelled mon raiks laid upon the stage from which the piles were to be driven. This dredging machine, which was fomen to be very efficient and economical, was fitted up, under the direction of Mr. B. Corke, at the worksheps of the Contractor. As sown as a sufficient length of trench lad been dredged, the piling of No. + 1)an was begm. In it, and in every dam except that for the 'Temple pier, the inner row of piles was placed so as to conincide with the river face of the concrete in the fomdation of the wall. The mede of strutting adopted in No. 4 Dam was as follows:Across the breadth of the wall the struts were horizontal, and abutted against walings of whole timbers, holted to pairs of piles driven into the solid gromed behind the fomdation of the wall. These compled piles were phaced at intervals of 18 feet from centre to centre, and were strengthened by three back struts to each pair, two of which were horizontal, and one was raking. These back struts rested against a row of piles driven into the slope of the embankment filling, and to the piles deals were fixel, so as to admit of their being backed up with carth and clay to the level of the upper struts. Immediately behind each pile, a mass of rubble stones was ronghly built, to give further stahility, and to divide the pressure over a larger surface of the earth filling. A shace, whose internal dimensions were 3 feet by 1 foot, and two swaller sluices, each 8 inches by 4 inches, were fixed in this dam. The sluices were slint, and the tide excluded, on Jme 26, 1865. The dam yielded at high water, along the line of the upper waling, $2 \frac{1}{2}, 2 \frac{3}{4}, 2 \frac{1}{2}, 4 \frac{1}{2}, 4 \frac{1}{2}$, and $4 \frac{1}{2}$ inches, at the several points where the ganges were fixed. The internal length of this dam was 382 feet 3 inches.

On September 26, 1865, the tide was shat out from No. 5 Dam, which was 347 feet 6 inches long, and was precisely similar in all its details to the dam last described. The amount which it yielder at high water, along the line of the inper waling, varied from 1 inch to t inches. The yielding of the dams was, in every instance, due to the fact that the ground behind the back piles, against which the struts abutted, was not sufficiently compact to resist the enormons pressure of the tide. The mbble stones behind the piles distributed this pressure over a considerable surface, but the new filling material, having been thoronghly saturated with tidal water could, not resist the force of the thrist without a slight yielding.

In executing these works, it was foumd that the level of the upper surface of the elay, moterlying the sand and gravel which form the bed of the Thames, was nearly uniform thronghont the extent of this contract, and was not so low as appeared from the borings, being generally about 24 feet under Ordnance datum.

The eross dams, which hounded the western ends of Nos. t and 5 Dams, were formed of piles and puddle, reaching down to the clay for a length of 26 feet, being 2 feet more than the breadth of the wall foundation. The piles for the remaining portion of these dams became much shorter as they rose up, the slope of the earth filling, and were only used for the purpose of holding up a pudde wall, whose base rested upon the slope of the bank, and whose top corresponded in level with the puddle of the dam, and united it with the earthwork behind. Notwithstanding that the puddle was carried down to the clay in these cross dams for a distance of 26 feet only from the front dam, the leakage throngh the gravel, around the end of each puldle wall, did not appear to be greater than at any other part of the foundation.

There was sonne delay in eompleting No. 6 Dam at the eastern end of the contract, on accomnt of difficulties with the adjoining wharfingers, which rendered it necessary to make some ehange in the plan, and not until June 6, 1866, was the water excluded from this dam, which was similar to Dams Nos. 4 and 5. The return dam shown upon the plan at the western end of the contract was not constructed, and the works there remained in abeyance, until the front line of Dam No. 5a had leen joined by the dam constructed for the works of the adjacent contract.

Two pump-wells, formed of cast-iron cylinders, 8 feet in dianeter. were sumk in the Temple Pier Dam, to a depth of 4 feet below the fommation level; and one such well was sunk to a similar level in each of the Dams Nos. 4, 5, 5., and 6. The sinking of these eylinders was carried on so as to have the pmaps ready for work as soon as the sluices were closed and the tide shat ont. The (fuantity of water to be dealt with in the Temple Picr Dam varied from 620 gallons per minute, to upwards of 1,200 gallons per minnte, which was the volume passing throngh the pmops when a large area of the lowest level of the fom posed. In the other dams, a much smaller volume of water was lifted ont of the fomdations; and as soom as the wall in any of the dams had heen raised 6 feet alove low-water mark, no further pmining was found necessary. In such cases, all the water which gathered whilst the tide was alove the level of the shices, was passed through them into the river when the tide was low.

Murray's chan-pumps were used for draining the fimmations and dams throughout these works, and were fom to answer admirally. They are seldom ont of ordm, are easily repaired, and lift mud as readily as water.

From the lower waling to the solid gromed at the bottom of the trench which was dredged for the piles, the depth was comsiderable, and all this depth being under low-water mark, no bolts could be applied to lowd together the two sides of the dam. In two instances, where the filling of the drenged space, or the imer face of the dam, had not heen carefully attended to, a bulging ont of the piles ocemred, from the pressme of the pmblle. Solid material was immediately deposited against the priles where the symptoms of weakness were seen, and further injury was prevented. But on exeavating the fom dations at hoth these places, it was fom that several piles were fractored, and were forced about a font out of the vertical line. Careful timbering, in carrying down the extavation, was sufficient to prevent any further movement.

In depositing the puddle, a tic-loolt failed in three or fom instances. In these cases, cither a new bolt was substituted, or two new bolts were passed thongh the dam, one on cach side of that which had failed. It was always a work of some diffienty to fix a bolt through the dan a ter the pudde had been deposited, lint a little practice soon increased the proficiency of the workmen in this matter. In tidal streams, on account of the ever varying pressure of the water, cofferdams are seldom in a state of rest, and one consequence of their continual motion is a settlement of the puddle, producing thereby chamels monderneath the bolts, alomg which leakages are of frequent oceurence. To remerly such defects, and to ensure the safety of the dams generally, a man was appointed, whose sole duty was to examine the dams carefully once a day throughout their entire length. He attended to the repair of any defects, stopped leaks, and was charged to report immediately any movement, or appearance of weakness. When any leakage shewed itself in the dam, a hole was bored by a 3 -inch anger through the inner pile, immediately helow the bolt where the leakage appeared, and through this hole eylindrical pellets, formed of clay and si whinst, were forced by means of a wooden staff driven by a mallet. Pellet after pellet was driven into the puddle, until any racant spaces aromd the bolt were thoroughly filled up, and the leakage was subdued.

The quantities of materials used in the construction of these dams were as follows:-In Dams Nus. 1 and 2, timber 117 enbic feet, iron 202 lbs., and puddle 9 cubic yards, per lineal foot of dan,
measured along the centre of the puddle. In the Temple Pier Dam, the timber amomited to 152 eulnce feet, the iron to 28511 s , and the pudtle to 9 culic yards, per lineal foot of dam. In Dams Nos. 4 and 5 , the quantities of timber, iron, and puddle, were almost identical with those in the Temple Pier Dam. The staging from which the piles were driven consmmed $19 \cdot 6$ culie feet of timber, and 13 llos . of iron per lineal foot. The total length of dam construeted was a little over 2,500 feet.

The pile-driving was execnted partly by mannal labour and partly by steam power. It was fomd most advantageons to drive the gange piles by hand machines, and likewise to piteh, by the same machines, the piles which were to he driven by the steam engines. The steam pile-drivers used in the execution of the works were supplied by Sissons and White, of Hull, and by Applelyy Brothers, of London. Those mannfactured by Sissons and White eost $\mathfrak{£ 2 9 0}$ each, and were very efficacions, driving from cight to ten piles daily, where the ground hat heen tredged. Messrs. Applehy's machines were less costly, lut not so rapid in their action as those of Sissons and White. The cost of driving the piles, for labour ant steam power only, was rather less than fourpence a enbic foot where the gromel was dredged, lat varied from sixpence to eighteenpence a culic foot where the ground was not dredged. These prices are for the quantity of timber in the full length of the pile, and not for the length driven. They are exclusive of hire of plant and of snperintendence. The preparation of the piles cost seven-eighths of a penny per enbic foot, and the fixing of the walings and shores cost formpence halfpenny per eubic foot for labour, exclusive of the fixing of the tie-bolts.

The timber used was from Memel, Dantzie, and Riga. For the long struts in the Temple Pier Dam, American red pine was employed, and where the driving was very diffienlt, in Jams Nos. 1 and 2, a considerable number of piles of American elm were used.

In earrying down the excavation of the foundations, eareful shoring was required to smpport the dam ; but as this was similar to the timbering used for supporting the sitles of exeavations in the London clay, it has not been thonght necessary to deseribe it.

In estimating the pressure of the water to be resisted, and the requisite strength of the dam, the following calculations were made:-
$l^{\prime}=$ the pressure of the water in lls. to be resisterd.
$d=$ the repth of water $=2 \because$ feet.

Taking 62.5 lhs. as the weight of a culbic foot of water-

$$
\begin{align*}
\mathrm{I}= & \frac{62 \cdot 5 d^{2}}{2}=\frac{125 d^{2}}{4}=15,125 \mathrm{lls.}=6 \cdot 752 \text { tons } \mathrm{p}^{2} \text { er lineal foot } \\
& \text { of dam } . \quad . ~(1) \tag{1}
\end{align*}
$$

$M=$ the moment of water tending to overthrow dam $=P \times \frac{d}{3}$

$$
\begin{equation*}
\therefore \mathrm{M}=\frac{125 d^{2}}{4} \times \frac{d}{3}=\frac{125 d^{3}}{12}=110,916 \tag{2}
\end{equation*}
$$

Let $w=$ the specific gravity, or the weight, of a cubic foot of the dam, whieh, where there are 2 feet of timber and 6 feet of puddle, may be taken at 100 lbs.
$h=$ the height of the dam above the ground $=26$ feet.
$t=$ the thickness of the dam $=8$ feet.
$\mathrm{D}=$ the moment of the dam, considered as a wall, or as a mass of clay in a box or coffer, to resist overthrow

$$
\begin{equation*}
=\frac{h t^{2} w}{2}=83,200 \tag{3}
\end{equation*}
$$

To produce equilibrimm, D must equal M, or equation (2) must equal equation (3); that is, $\frac{h t^{2} w}{2}=\frac{125 d^{3}}{12}$.

In this case, $t=5 d \sqrt{\frac{5 d}{6 h w}}=9.23$ feet
That is, with a thickness of $9 \cdot 23$ feet, the dam would exactly balance the pessure of the water, and any increase in depth would produce overthrow.
$p=$ the thickness of the outer row of piles $=12$ inches.
$p_{1}=$ the thickness of the imer row of piles $=12$ inches.
$r=$ the lreaking load of a piece of timber of similar quality to the giles, 1 inch square and 1 foot between the supports $=400 \mathrm{ll} / \mathrm{s}$.
$R=$ the resistance of the piles to fracture at the gromnd-line per lineal foot of dam, in respect to a force acting at the centre of pressure of the water $=r\left(p^{2} \times 12+p_{1}{ }^{2} \times 12\right)$

$$
\begin{equation*}
\div \frac{4 d}{3}=\frac{9 r\left(p^{2}+p_{1}^{2}\right)}{d} \tag{5}
\end{equation*}
$$

In this case $p=p_{1}$, and the equation becomes $18 \frac{p^{2} r}{d}=47,127 \mathrm{ll} \mathrm{s}$.
If $\frac{r}{3}$ be taken as the factor of safety, $\mathrm{R}=15,709$, whilst the pressure of water is 15,125 lhs.
$s=$ the height above the gromed at which any strut ahnts against the dam.
$\theta=$ the angle which such strut makes with the horizon.
$l=$ the distance which the struts are ajart $=18$ feet.
$\mathrm{L}=$ the load upon any strut in jomets

$$
\begin{equation*}
=\frac{l \mathrm{M} \sec \theta}{s}=\frac{125 \pi^{3} 7 \sec \theta}{12} \tag{i}
\end{equation*}
$$

For the lower strut, which is horizontal, and therefore sec $\theta=1$. let $s=s_{1}=4$ feet.

$$
\mathrm{L}=\frac{125 d^{3} l}{12 s_{1}}=499,12511 \mathrm{ss}=222 \cdot 82 \text { tons. }
$$

For the middle strut, also horizontal, let $s=s_{2}=11 \cdot 5$ feet.

$$
\mathrm{L}=\frac{125 d^{3} l}{12 s_{2}}=173,608 \mathrm{lbs}=77 \cdot 5 \text { tons. }
$$

For the upper strut, $\theta=12^{\circ}$, and $\sec \theta=1 \cdot 022$, let $s=s_{3}=19$ feet.

$$
\mathrm{L}=\frac{12.5 d^{3} l \sec \theta}{12 \varepsilon_{3}}=107,388 \mathrm{lbs}=47 \cdot 94 \text { tons. }
$$

The whole pressure has been calculated as depending upon each strut; lut as the struts are of equal scantling, the load should lee alike on each.

Let $x=$ the loarl mon each strut when all are exerting the same thirust.

$$
\begin{gathered}
s_{1} \cdot x+s_{2} x+\frac{s_{3} x}{\sec \theta}=l \mathrm{M} \\
\therefore 4 x+11 \cdot 5 x+\frac{19 \cdot x}{1 \cdot 022}=18 \times 110,916 \\
x=58,50311 \mathrm{~s}=26 \cdot 14 \text { tons. }
\end{gathered}
$$

Therefore, the whole weight of the water, if distributed equally wer these three strotr, will exert a pressure of $26 \cdot 14$ toms on cach. According to l'rofessor Aloseley, the load which a strut of Dantzie timber, 26 feet long and 13 inches spuare, will sustain, is -

$$
7 \cdot 81 \times \frac{1: 3^{1}}{26^{2}} \text { tons }=: 329 \cdot 97 \text { tons. }
$$

According to Professor liankine, the breaking load wond be-

$$
\frac{3,006,000 \times 13^{4}}{2,240 \times 312^{2}}=392 \cdot 9 \text { tons. }
$$

If onc-tenth off "acll result l_{c} taken as at factor of satety, then 3299 toms on 3929 tons will represent a salfe luad, according as one

 Author beards him to think that louth resin ts are tor high.
'There are therefore, three fores trading to give stability to the dam, the amount of earl of whirl has len calculated. (I) The vex inscribe of the dim comsindererl as a wall standing on its lase; (2) 'Th strength of the piles to resist fracture at the gromer-line; and (: $)^{\prime}$ 'The resistance of the struts. 'The first force cannot be depended upon to its full extent as calculated, because cofferdams are scarcely ever quite perpendicular ; and the second force cannot le properly exerted males the ground le perfectly firm and solid. Wherefore, it was considered prombent to have the struts sufficiently strong to resist the whole pressure of the water.

No satisfactory data could be ascertained by the Author, from which the pressure of the puddle upon the tie-bolts could be catenated with precision. It was, however, assumed, that the proldle would not press more heavily than an equal volume of water. On this supposition, with louts at $2 \times$ feet, 14% feet, and 7 feet below the top of the puddle, and with 8 feet horizontal intervals, the approximate pressures and requisite sizes of the bolts would be-

On the lower bolts the pressure $=2: 2 \times 7.75 \times 8 \times 62.5=85,2.50 \mathrm{lh}$. Taking the cohesive strength of iron at 56,000 lbs. per square inch, and one-third of this as a safe board, the sectional area required for the lower bolts is

$$
\frac{85,250 \times 3}{56,000}=4 \cdot 54 \text { inches }
$$

$2 \frac{1}{2}$-inch round iron has a sectional area of $4 \cdot 9$ inches.
For the middle row of bolts, the pressure on each is, 14.5×7.5 $\times 8 \times 62.5=54,375$ lbs., and the required section is 2.91 inches; 2 -inch round iron has a sectional area of $3 \cdot 14$ inches.

In the upper row of bolts, the pressure on each will be 7×10.75 $\times 8 \times 69 \cdot 5=: 37,625 \mathrm{lhs} .$. and the required sectional area is 1.99 inch.

When the dams had server their purpose it became necessary to clear them away, and before the completion of the whole series the removal of those first constructed had been begun. As the piles stood so near the wall and reached to some depth below its formation, the Contractor was not permitted to draw them, but was directed to cent them off at ecrtain depths, all under low water. 'Those in front of the ordinary wall were to he cut off at a level of $: 3$ feet under low-water mark, and those in front of the Temple Pier, where a greater depth of water was required for steam-boat
traffic, were to be eut off 7 feet under low-water mark. The removal of the piles and puddle was effected in the following manner :

Upon the tops of the piles of each side of the dam half beams were fixed, and upon these rails were laid so as to form a roal upon which the steam eranes and dredging machines to be usel in the removal of the puddle could travel, and upon which the pile-cutter could also be moved. These machines were suecessively placed in position, and the work was legun. For the first 15 feet in depth the puddle was filled into skips, and hoisted by means of steam cranes. Delow that depth it was dredged by the machines which had been uscl for excavating the trench. When the puddle had been cleared away to the requisite depth, the pileeutter followed and performed its part of the work. This machino consisted of a platform upon a stont frame, resting upon four wheels, which travelled upon the rails before mentioned, and carrying a steam-engine with the requisite machinery for driving a circular-saw which was fixed at the lower end to an upright spindle, and adjusted to the proper level. The spindle was placed between the two rows of piles, and revolved in guides at the end of movalle arms so arranged that it would shift to either side of the dam by turning a handle, and by the same motion it could be pressed towards the pile which was being operated upon until it was severed by the saw. Two piles were usually cut off on each side before the machine required to be moved backwards on the rails. When the way was clear for the pile-cutter, and a sufficient length of dam dredged, sixty piles eould lee eut off in a day, but the excavators could not keep pace with the pile-cutter, and the average number of piles actually cut off did not exceed thirty-six daily. The machine was devised by Mr. Charles Murray, of Loman Street, Southwark, and the Author, lut the motion which regulated the position of the spindle was the invention of Mr. Murray alone, and was patented by him. The total cost of the removal of the dams was $\mathfrak{\& 1} 4 s$. per lineal foot, made up thas: clearing out puldle, 1 Bs. 6d.; dredging outside of dam, 7 s . $6 d$. ; eutting off piles, 3s. per lineal foot.

The commmication is accompanied by five Drawings, from which I'late I. has been compiled.

Mr. Vigyoles, President, said the details of this work were extremely interesting, and he recommended the Members, and the Stulents in particular, to read the Paper at their leisure and compare it with the drawings. They were deeply indelited to the Anthor for giving these details. It reminded him how much the enginecrs of this country were indebted to the zealons scientifie industry of the Contractors, who did, in fact, a great deal of the work which ought to be done by engineers, if they wished to understand their business, lut whith more frequently than not fell to the lot of the Contractors.

Mr. Memaxs, Vice-President. saill that though a cofferdam was apt to he looked upon as a temporary expedient of a rugged appearance in the progress of works, and as mere rublish on their completion, yet it was, when conlucted on a large scale, a work of engineering importance. For the last three or four years there had been a length of several miles of these cofferdams alung the river Thames. which had heen extremely important and successfnl. Having to sustain a tidal pressure of from 18 feet to 20 feet they were, and always had been, worthy of the stuty of engineers. From his experience in other places, he helievel the contract price per lineal foot of such cofferdams could not be less than from £25 to $£ 30$. He had noticed this dam whilst it was in course of erection, and it did great creslit to the Contractor's agent who designed it and carried it out, as the construction of a dam 50 feet deep, close to the work it had to protect, was a difficult operation. If the available width in the front of the work had heen 2.5 feet. it could no doult have been done at less cost. He knew the difficulty of driving piles from 45 feet to 50 feet long through gravel. They broke and tore up at the bottom, though the operation was successful in this particular case. It would be interesting to compare the cost of this plan with that of the wronght-iron caissons which had been adopted in the construction of No. 1 Contract of the Thames Embankment by another Contractor, Mr. Furness (Assoc. Inst. C.E.). The latter, it was true, involved a great deal of costly plant, and unless the work was a large one it would not pay to have such a quantity of wrought iron in use ; hut it was desirable that a careful comparison should be made letween the cost of the pile system and that of the caisson system. He believed these caissons had heen sunk, in some cases, to a depth of 40 feet. Where the hottom was unknown, and where horings conld not he relied upon to show it, caissons were very valuable, as affording ready means of getting the water out, either ly pumping or by pneumatic pressure, and actnally allowing the strata to he seen.
[1870-71. s.s.]

He hoped some one would analyse the respective merits and cost of the old-fashioned timber dam, like that used by the Author and also by Mr. Welister (Assoc. Inst. C.E.) 'on the other side of the river, constructed with great rapidity and carried out with great suceess, and of the caisson dam at considerable depth and with a heavy head of water upon it.

Mr. J. Phillips agreed that, to make the Paper complete, a careful résumé of the cost per foot lineal of the dam should be given, including that of eutting off and removing the piles. The object of a Paper like this was to elncidate the proper means, and the most economical method, of earrying on a large contract, where a great length of cofferdam was required. There might be various forms and designs, and each might have some particular merit; but the most meritorions in the eyes of the Contractor would be that which was the most economical in the long rum. He thonght the Paper showed that there was a limit to the economical use of timber dams, and though this one had served its purpose admirably, the injury it was stated so many of the piles received during the driving, and the fact that, after all, ninety-four were found, on promping out the water, to be bruised, and to have failed to penetrate to the elay, showed the system was not altogether satis-factory-that it involved great risk and in some eases a chance of failure. It was his opinion that, in the ease of a long length like this, an iron dam would have been more economical than a timber one, as well as much safer, and of greater advantage to the permanent work.

He had been told that an iron dam conld be not made so cheaply as a timber one, and he knew that length for length it was not always possible to do so. It was not a question of cost only, however, but how to utilize the materials over again. Cofferdams were often looked upon as a bore by Contractors. They were expensive, and the feeling was to get them made and out of hand as soon as possible, and hence sometimes that which was commenced hurriedly for cheapness proved in the end the dearest. In the present day, when contracts were eut very fine and close, the cost of everything had to be considerel, involving that of all temporary works, which required to be made as much a study as though they were part of the permanent work. If an iron dam was used, it entailed careful consideration and carrying out, but he believed that in all cases like the Thames Embankment works, or others of a similar nature, he should be alle to show at a future time, that iron must inevitably supplant wood for dams, as it had done in other matters.

Mr. G. B. Bruce observed that when Contractors came hefore the Institution with the deseription of a work like this, they naturally might not care to give the detailed cost. He therefore felt a considerable amount of gratitude to the Author for stating the exact cost of driving the piles and of eutting them off, and if he added to that the cost of the dam as a whole, the Institution wonld feel doully grateful to him. The kind of timber of the piles which had broken, twisted, or turned in the driving had not been mentioned. If it was ordinary Memel timber he was not surprised at the troulle it had given. Alout twenty-three years ago, when driving piles for the Royal Border Bridge over the Tweal, ${ }^{1}$ under Mr. Iarrison (V.P. Inst. C.E.), he had found it impossilhe to get the ordinary Memel timber into gravel similar to that in the led of the Thames, and it was only by using piles of American rock elm that the difficulty was overcome. The description of shoes used was a detail of importance. He had foum east-iron shoes were the best in many instances, and preferable to the malleable iron that was generally used for the purpose. He was oldfashioned enongh to believe that timber dams, in a case like this, would be cheaper than iron caissons. Where, however, there was a place for removing the iron to, and where it could be used again, the cost might be reduced considerably, and if often used be in the end cheaper than wood; but in nine cases out of ten, when an iron dam was done with there was no further use for it, whereas timber was always useful.

Mr. Bramwell gathered from the Paper, that the Author considered the cofferdam as competent to resist part of the pressure of the water by its weight, treating it as a wall; for he said that had this dam been $9 \cdot 2 \cdot 3$ feet wide, in lieu of 8 feet wide, it would have been sufficiently strong to balance the pressure of the water without the aid of strutting. He thought this was an erroneous view. The sides of the dam were made of piles, which, from their great height, were competent to bend, and the interior of the dam was made of puddle, which was plastic. That being so, the dam must be looked upon not as a rigid wall, nor as a rigid trough filled with a weighty body, but as a flexible wall, and one both the sides and the interior of which were capable of bending under pressure. In his opinion any one who trusted to the resistance of the dam as a wall, to take a part of the strain, leaving the remainder alone to be supported by the struts, would find that the whole of the weight would come upon the struts, and that, if
${ }^{1}$ Vide Minutes of Proceedings Inst. C.E., vol. x., p. 219.
the necessary provision for this state of things were not made in the calculations, and the struts were not prepared to support the whole of the weight, the dam would give way.

Mr. A. Oillvie remarked that the dam in question appeared to have been well constructed. If he had been the Contractor, instearl of having the outside piles of the full length of the rise of the tide, he would have had them about half-tide, and the inside piles of the dam caulked and a sloping wall of elay put on the top. It would have saved timber, and the Contractor's pocket too.

Mr. Beandmone said, if it was required to drive a dam accurately and economically in gravel, it was important previonsly to clear away the substratum, as it was commonly most difficult to drive through gravel or fine running sand; and the larger the scantling, or the closer the piles, the more difficult did this process become. The dam shoml he pitched in a trench made by bag and spoon, and the puddle shonk afterwards be filled ontside the piles as well as between them, and the trench should he narrow compared with the width of the dam, as by that means the outside clay hecame wedged into its place. The first experiment with the Thames lredger did not answer so well, becanse too large a trench was seooped out. involving an mmecessary expenditure of clay and loss of holding, or anchoring, power in the deeper or main piles.

From a long experience in dams, where sands and gravels prevailed, he would never attempt driving the piles more than was absolutely necessary. The pile-heads and shoes were soon punched and rendered useless by the friction being greater than the strength of the timber could support.

In substituting a close row of whole piles for the north wing wall of the West India Dock entrance, which had failed in running sand, a Nasmyth engine was used for a long period with disastrous loss and failure. Rock elm piles were used when other materials failed, and it was at last found that part of the oll brick wall, which had become huried in the quicksand, was being punched through, and the work had to he removed by divers. If the hag and spoon had been used before the driving was commenced, there would have been a great saving, and all olistructions might have been got out of the way. From the Author's calculations of the actual pressure in relation to the moment of resistance, it appeared that there was a pressure of 49 toms, and a moment of 37 toms, so that, in reality, there was an available force of 12 tons in excess of the resistance; but that was assisted ly the solid piled counterforts or struts, and by the tenacity of the lolts, so that the work was safe. Nothing short,
howerer, of the most careful strutting would have stuod with su near a halance of the resistance to pressure as $15,70!1$ to 16,125 , where one-thind was taken as the fiutor of safety. In such a catse, including the danger of even a movement due only for elastidity, the dam wats sumer its final resistance that it was almost afloat; which, at extreme tides, was freguently the case with dans in the most critical period of their use. As to the bolting tugether of the two rows of piles ; each thromgh bolt was $\frac{2}{2}$ inches in diameter, amd the resistance was 85,000 lhs., or 42 tons; but it was possible that more than this force might be thrown upon one boit by the slacking of those arjacent. Ilence it often happened that, unless great care was taken in bolting together with most efficient wales, the throngh bolts were liable to burst, and this inevitably caused the failure of the dam in a greater or lesser degree; and it must be recollected that a small failure often cansed a disastrons loss.

In the ease of the embankment dam at Hungerford bridge a portion burst, and the tie-bolts were torn like threads. If in any given tier of bolts, some were a little looser than others, the bursting force and accumulated weight of puddle would be thrown upon one place, and the pressure due to three bolts was thrown uon one, it might easily give way; thus it was advisable to have a predominant size and strength for the bolts of a dam amd for their heads, so as to prevent them drawing into the wales. It was generally fuund that the greatest strength was required where theory pointed out, viz., at one-third from the ground level.

An interesting point, well-known to practical men, was the tendeney of puddle to settle and leave a gap under the bolt ; this action marle it impossible to apply internal wales in a coffer-dam. Many of these difficulties were avoided when a dam was made with only one row of piles. When shores conld he easily applied, and the depth of water did not much exceed 20 feet, a single dam could be constructed with economy and efficiency. In this case ordinary caulking took the place of puddle, and stability was ohtaince by shoring, and afterwards strutting the work as it alvanced. But although he had used this plan with great snecess, the late Mr. James Walker, Past l'resident, toh a story of one that a Contractor made across the West India Dock entrance which suceeeded well at first, but suddenly lifted and floated away with a man, costing him his life. This accident happened at a high spring. tide, but, although partly the to the floating power of the dam, it was probahly due to the fuicksand at that spot which gave so much trouble when the wing wall slipper in forty-five years later, as before referced to. He imagined that the caldenlations of : trength,
given in the Paper, did not take into account the tendency of the dam to float, taken as an empty area with fluid outside,-a tendency which was increased when once excited by an undue pressure or slight movement of the structure. Hence the necessity for guard piles and other contrivances, if a dam was liable to be struck ly ships or other heary vessels. This floating power was very evident in the case of sinking iron cylinders or caissons, such as those lately used in the fom other structures.

His own rule, in every kind of cofferdam, whether single or double, was to have a certain proportion of gange piles, longer than those afterwards driven, so as to obtain a hold on the soil; for piles at 10 feet spaces were easily driven, and gave a stability to the finished work that could not be so readily obtained, as the piles drew closer together in a more advanced stage of the work.

Mr. Marrison, Vice-President, said Mr. Beardmore had mentioned one difficulty which the Author had also referred to, viz., the leakage which occurred where the bolts were put through the dam. He had been accustomed, from the earliest time, to a practice which quite overcame the difficulty of bolt leakage. The plan, which was not his, was this:-Take a plate of thin sheetiron 12 inches to 15 inches square, and make a hole in it near the upper edge to fit the bolt which was to bind the two sides of the dam together. When the bolt was put in slip one, or in some eases two, of these plates along the bolt, so that the plates hung down, and when the puddle settled the flow of water along the bolt would thus be stopped. It would be interesting to be informed of the particulars of cost, in each case, of the different varieties of form that had been applicd to the construction of the dams for the Thames Embankment. There was no doubt that engineers were in the habit of throwing the responsibility of the construction of dams, considering them as temporary works, entirely upon the Contractor; but at the same time the question of these dams was one of great importance, and as capable of scientific and practical solution as any other point of engineering.

The construction of river walls, such as the Thames Embankment, was, independently of the question of cofferdams, a sulject of great interest. He harl lately designed a quay wall, where there was a depth of 20 feet at low-water, and he had adopted the plan of building it entirely upon cylinders, and arches between the cylinders, with sheet piling of cast-iron at the back. He found he could by these means construst a wall without the liabilities
which attached to cofferdams; and he helieved the time was not far distant when qualy walls would generally be constructed upon cylinder fomblations without the use of cofferdams. Mr. Bateman was carrying ont the same principle in the construction of guay walls at Glasgow.

So far as lie was aware there was no instrument for driving piles that could he compared in efficiency with the Nasmyth hammer. Where they were being driven through gravel-which should he aroiled if possible - or through sand, which was quite as difficult, it could he most effectually done with a Nasmyth hammer, striking sixty to eighty blows per mimute; and he believed Contractors would find the Nasmyth hommer, in such cases as that which had been described, where a large amomit of piling was involver, the lest pile-driving machine that could be employed.

Mr. Redman remarked that one point hat been ineidentally tonched mon, with reference to the eomparative advantages of wrought-iron and cast-iron cofferdams and the old method of timber piling. It would add to the interest of the Paper, if statistics were given to show the reason for the introduction of the old-fashioned timber cofferdam in this great wall instead of the caisson system, which was used at the commencement. Thirty years ago a Paper was laid before the Institution by the late Mr. Grant Stair Dahrymple, ${ }^{1}$ giving a description of the cofferdam in front of the first length of the Thames Embankment and the foundation walls of the Honses of Parliament, in many of its details similar to the one under disenssion. Now these cofferdans could not ordinarily he constructed for less than from $£ 25$ to $\mathfrak{£} 30$ per lineal foot, equal in many cases to the cost of the wall. so that it was evident that a less costly form of construction of cofferdams was a want in the practice of engineering. Combubtedly the method adopted in the Thames Embankment, viz., using cofferdams and shutting ont the tide, was the most practical for this special work, and spread over the vast cost of the wall itself, and considering the large areas reclaimed from the foreshore, was the most economical. But when wharf walls were reruiret, with a limited frontage and area, the question of cofferdams would in some cases almost negative the work. The cost of the cofferdam would equal that of the wall itself. He had put in wharf walls in the lower reaches of the Thames by tide work without cofferdams; but in a large work like this that would have been to

[^1]some extent speculative and hazadous. A series of cylimlers under the area of the wall base, supporting a platform formel by groined arching at the level of low water, would in most cases form a good foundation. Some years ago Mr. D. Stevenson had presented to the Institution a Paper upon the cofferdams employed in the Ribble, ${ }^{1}$ and Mr. Neate had also given a description of the eofferdan emplored ly the late Mr. Rendel at the Grimsby ducks. ${ }^{2}$ In the latter case was first introduced the counterforts of sheet piling, and the difficulty of leakage by through bolts was overcome by driving three rows of liles with two trenches of pudde, and through bolts of the ordinary length, lreakiug joint with one another, so that there was no bolt hole through the dam. This, however, was a most costly expedient.

Mr. G. Furness said that Mr. Ridley had given the cost of driving the piles. puddling, and cutting off the piles, but had made no comparison between that and the caisson system. As shown by the borings supplied by the Metropolitan Boand of Works, clay was reached at an average depth of 30 feet helow the datum line, whereas it was not more than ahout 22 feet below that level, which made a material difference in the use of timber piling. Had the foundations of the dam been carried to the depth suggested by the borings, it would have been a grave question whether timber piling could have been used successfully for the dam, so as to exclude the water from the inside.

Mr. Rumer said that he agreed with Mr. Harrison as to the efficiency of the Nasmyth hammer in pile driving, but in a long wall such as this, where three or four such machines would have been necessary, the question of cost arose: the price of those machines was $£ 1,800$ or $£ 2,000$ each, and on the score of economy the cheaper pile-driving machines were used. With regard to the depth of foundation, he had driven two short experimental dams, each about 100 feet in length, and when he had found ont the actual depth of the clay, he had proceded with full confilence. As regarded the staging, it must he noted that the materials employed therein were used, again and again, for successive lengths of the dam. In the item for dredging the whole cost of the greration was not charged, allowance being made for the samd and gravel prodnced, the value of which repaid a considerahle fart of the outlay. With respect to timber, the Comtractor was restricted to no particular description, and he was

[^2]bound by no specification, either as to quality or scantling. The kind most extensively nsel was white fir from lantzic and Riga, a small proportion only of Memel or Dantzic red fir heing employed, and where the piles were exceedingly hard to drive American rock elm was used. The white-wood cost 6iss., the red-wood 80s., and the elin 100s. a load. The average cost of the whole quantity, after making ample allowance for waste, was not more than $1 s . \mathrm{I}_{\mathrm{l}}$. per culic fout. The cost of the labour on the piling, waling, and shoring, including the fixing of the tie bolts and other efuipments, and covering all contingencics, was $7 d$. per cubic foot; and if to this was added $4 d$. for the use and depreciation of plant, the total cost to the Contractor was $2 s .6 d$. per eubic foot of timber in the finished work. The greater part of the clay used for puddle, and half of that employed for the filling against the outer and inner faces of the dam, were not only delivered to the Contractor free of cost, but he received a payment for the deposit.

The following were the details of the cost per lineal foot of all the dams, except that at the Temple pier :-

In the Temple pier dam, where more timber and iron were used than in the other dams, the cost was £20 $15 s$. per lincal foot, and the average of the whole series was within a fraction of $£ 18$. On accomit of the return and cross dams, the cost of the total length constructed was about one-fourth greater than the actual length of wall built, and tharefore the cost of the dams when measured by the net length of the wall was $£ 2210 \mathrm{~s}$. per lineal foot. The total average cost of all the work, inchuting the wall, the filling of the foreshore, the sewers, and the dam, was $£ 125$ per lincal fout.

He was still of opinion that the cofferdams were theaper, and were more expeditionsly constrmeted, than the caisson dams, and he was confirmed in this opinion by the fact, that although the caisson dams were at first employed upon No. 1 Contract, cofferdans were afterwards resorted to, and were extensively used on that section of the Embankment. And on all the contracts subsequently executed cofferdams alone were employed.

Lieut.-Col. Clarke, R.E., said, the question had occurred to him during the reading of the Paper, why were engineers dealing with first principles in relation to these works? When he went into the library, he found that there were no good books to put into the hands of students in regard to this subject, which was employing a great number of engineers; in fact, it had been entirely neglected. With the exception of a little book, by Mr. Dobson,' there was really no treatise on cofferdams. Plate 2 , Figs. 1 and 2, represented part of the works in progress in the Medway at Chatham, where he had to construct two locks and entrances, and a portion of river wall. Ile first of all went into the calenlation whether he should construct an ordinary timber dam for these works, somewhat similar to that described in the Paper; but he formed the cost came out at E22 $10 s .8 d$. per lineal foot. He then fell back upon the plan which Mr. 1'hillips had referred to, and had worked it ont, when he found the cost would be reduced to $\pm 1517 s$. per lineal foot. He was on the point of offering the contract when the local Engincer, Colonel lasley, suggested that there were certain conditions, imposed by the Thames Conservancy, which did not apply to the Medway; such as that the pile dams in the Thames must be confined to a certain line so as not to interfere with the navigation, in addition to which the material to be dealt with was different; so that a comparison of cost in the Thames and the Medway conld not be made. If the Thames Conservancy conld have assented to the Metropolitan Board of Works being similarly unfettered by conditions, a great saving might have been effected by a modification of their dams, by carrying them more into the stream than they were. He lad construeted the clam simply with the material taken out of the excavations of the basins at Chatham, its lengtle being between 1,100 feet and 1,200 feet. Under ordinary circumstances, it could have been executed for $£ 1115 s$. 3rl. per lineal foot, but it was costing far less, as convict labour was employed. He might state that the river wall at Chatham cost $£ 35$ or $£ 36$ per

[^3]lineal foot. It was a suggestion worked out successfully, which he owed to the officer in charge of the work.

Besides the works at Chatham, there was another large dam constructed at Portsmonth. In this case there were 4,500 feet of dam, enclosing a space of 95 acres. It had heen constructel for three or four years, standing in some parts in from 25 feet to 30 feet of water, and at spring tides the lamd within the dam was covered with a depth of 7 feet of water. No difficulty had arisen with regard to the gravel : but beds of cement stome had been encomentered which were as difficult to deal with as gravel banks, though there was not the same underflow of water into the imer works as was the case with the works on the Thames. An area of nearly 9 acres was enclosed in that part of the dam in which the whole of the work had heen done, and the water had been kept down with very little troulle. This dam was more expensive than that at Chatham. Taking the outer, the inner, and the cross dams, and spreating the cost of these over the whole work, it was, nevertheless, a cheap form of construction. The cost of the onter dam was about $£^{2} \bar{Z}$, and of the imer dam abont $\mathfrak{£ 1 0} 10 \mathrm{~s}$. per lineal foot. The outer wall cost abont $£ 50$, and the imner basin wall $£ 34$ per lineal foot. From these facts might be computed the relative proportion of the cost of the dam to that of the permanent work constructed inside it. No dredging was required. The actual form of the dam was that of an inverted mushroom, and differed from that dednced from theory. The foreshore was fine silt and mud, and was always afloat; and the rise of the tide was 18 feet.

Mr. C. Ne.re sail, that he believed the cofferdam at the Grimshy docks was the first instance in which counterforts of solid piling had been introduced, and he pointed to their particular value in that position where the tam, of which the length was 1,500 feet, stood much exposed, springing from the extremities of two embankments which projected five-eighths of a mile from the shore, and being entirely self-supported. He might mention that the shields to prevent leakage under tie bolts, described by Mr. Harrison, were used throughout at Grimsly, being made in this case of cast iron. The mass of the cofferdam was more than sufficient to withstand the pressure of the water, its width being about 18 feet. Altogether he believed it was one of the finest works of the kind ever carried out.

There were eases where it was not requisite to depend so largely upon weight as that just referred to, and where the structure, being literally a coffer-or box--dam, might be strutted across from side to side, or where it might le shored from some solid
mass behind it. In such cases, and more particnlarly when the permanent depth of the water was considerable as eompared with the rise and fall of the tide, he believed that the use of single-sheet piling, tongued and grooved, might be resorted to with advantage, as being cheaper, more expeditious and more convenient than a puddle dam. ITe had successfully applied the system under circumstances of the kind. On one occasion, in the construction of a quay wall, he had put down a length of 100 feet of single dam in juxtaposition with a similar length of ordinary puddle dam, and being satisfied with the result, had adopted it on another part of the same work for three sides of a cofferdam surrounding an old pier which had to be demolished and reconstructed. Here the length of single piled dam was between 200 feet and 300 feet, the bottom of the excavation being about 25 feet below low-water, and 30 feet below high-water. The ground was silty clay; the piles used were both of hardwood and of creosoted pine, and the tongues were of bar-iron welded up in one length (Plate 3). Although the work was not on a large scale he thought it worth recorting, as an example of the successful application of this system. He was not aware, till Mr. Beardmore stated it, that the plan had been tried by Mr. Walker at the West India docks.

Mr. Abernethy remarked that local circumstances, such as depth of water, nature of soil, \&c., were matters which affected the comparative cost of dams, and therefore the Paper was of little importance as affording practical information.

In the year $18+6$, he had to construct a dam in the centre of the harbour of Aberdeen, which would allow passages for vessels on eath side. 'The dam was required for the lock works. It was 390 feet long and 150 feet wide, composed of two rows of whole piles, driven 15 feet into silty clay, these rows being 8 feet apart. After driving the two rows of piles, the space between them was dredged out with spoon and bag through gravel down to the silty clay. In the dam, sufficient sluices were provided for the ingress and egress of the water. When the four sides of the dam were completed, the water leang level within and without, brace piles were floated on the surface of the water, and were secured to the piles at regular intervals within the dam. A powerful pumping engine was next employed to lower the water, and three other sets of braces were floated and fixed in the same way. Upon these braces, tramways were lath, on which travelling eranes worked, and the masomry was thas set from the braces. 'They afforded also sreat facility for driving the piles, as the whole of the fondation

of Single piles at custom house quay works (1866) rio de janeiro.

\qquad

of the loek rested upon piles is feet apart from centre to ceatre, and 3 feet apart under the sills and floors. By adepting this plan, the use of the ordinary pile-driving mathine was avoidel, mere sliding frames heing used. 'The dan proved successful, exeept a rertain amount of leakage, cansed loy internal waling pieces, and the settlemont of the clay puldle hencath the tie-lolts. It was a work which answered its purpose well, both as a dam and as a means for setting the masonry of the lock.

Mr. W. A. Droons stated that he had constructed a dam at Northumberland dock, in the river Tyne, on what was considered a bad foumlation, being nothing but seat-sand 60 feet decp. The dam was composel of two rows of 13 -inch fir piles, 5 feet apart, filled in with clay puddle to the depth of about 4 feet below the level of low water of spring tides. That dam, with a hear of water of 14 feet, on the receding of the tide, was perfectly tight. It was several thousand feet in length, and enclosed a dock of the largest description. He attributed its successful accomplishment to the great care with which the piles were driven by the Contractor, which piling, by compression of the sand, rendered the latter impervious to the passage of water under the head before alluded to. The coffer-piling was strengthened by deposits of clay and gravel, faced with rubble, forming slopes to the river and the dock, but, as they were only formed on the surface of Jarrow sand, they had no share in preventing a seour from taking place under the piling of the cofferdam. A careful record was taken of the depth to which each pile was driven, and it was found that nono penetrated the sand to a less depth than 18 feet below low water of spring tides.

Mr. R. l. Brereton observed that in February, 1864, the contract having been taken in the previous month, the Contractor consulted him with respect to the description of cofferdam that would be appropriate for this particular work. At that time, a commencement had been made in the employment of iron dams in the adjoining portion of the Thames Embankment. After full consideration, he came to the conclusion that the circumstances in this instance were not such as to necessitate the use of iron for the dams; either timber or iron would have been feasible; the subject was one rather of comparative cost, convenience, and time of executing the work. If the foundation of the wall had involved a depth of 80 feet or 90 feet, such as at Chepstow or at Saltash, the use of timber would have been nearly impracticable. His own opinion, and that of Mr. Ritson's officers, appeared nearly to coincide in this respect, although Mr. Ritson's engineer-a man
of experience, and an able mathematician-thought that a dam might be constructed of clay and piles sufficiently strong to stand as a wall, without requiring any large amount of shoring. In the Paper it was assumed, that if the thickness of the dam as executed had been increased only 1 foot 3 inches, it would have stood alone as a wall, without any assistance from struts or shoring, and that the piles alone would have been sufficient to resist the pressure of the water before being broken off at the ground line; and it might appear from this as if the Author was under the impression, that the use of heary and expensive shoring might have been dispensed with. The risk that would have been incurred in such a proceeding had been shown in an instance where it had been attempted to construct a dam without shoring or similar precautions. A lock entrance had to be put in, and a dam constrncted, in the deep, water of a dock basin. The Engineer of the work had proposed that the dam should be supported by rubble slopes on either side to keep it up; but as this would have required a considerable length, and have occupied with its slopes so much of the half tide basin, and would have been expensive to remove after the work was completed, the Contractor adopted the plan which had been referred to as that which was employed at the Grimsby docks, viz., with deep counterforts of solid timber. These were placed at 18 feet apart, and were 14 feet in depth of solid timber piles, the width of base being, with the dam itself, 22 feet. The piles were driven 25 feet into the ground, or 18 feet into the silt below the original bottom of the basin. It was computed that this would be sufficient to support the dam. When the dam was being tested, and when only 15 feet head of water had been attained, the line of pressure still being within the puddle wall, the dam heeled over, and leaked so much that it became necessary to let the water in to save it, when it was found that the dam and counterforts had permanently turned over to the extent of 3 feet at the top. It was then well shored from behind to the old dock wall, the disturbed puddle was restored, and it served for getting in some of the outside apron work of the new lock. When the time arrived for putting in the entrance, and the old dock wall and shores against it had to be removed, other mcans of supporting the dam had to be devised. Being requested by the Contractor to advise as to the course that should be adopted, he suggested that a rubble slope against the inner side would have a tendency to turn the dam outwards when the water was let out of the basin, and that a rough mbble wall of masonry should be built behind the dam, between the timber counterforts. The wall was 13 feet thick,
and concreted behind. The entrance had since been bnilt, and no further mischicf had occurred. He could not agree with the suggestion in the laper, that if the dam had been a font or two thicker it would have been sufficient, withont shoring, for the purposes for which it was intended. He had heard nothing to alter his opinion, that the kind of dam which had been used was that best adapted for the work. The Contractor had himself large experience of works across hays of the sea for dock purposes, with dams such as had been deseribed by Colonel Clarke for Chatham, viz., large earthwork embankments tipped without dredging or pudde walls. These had been remarkably suceessful. It was, however, not considered that this description of dam would have been appropriate to the circumstances of the Thames Embankment.

Mr. Vignoles, President, said it had been truly remarked by Colonel Clarke that there were at present no text-hooks upon cofferdams. He was afraid there were but few upon any branch of engineering for systematic adoption in tuition. Almost all experience, particularly of cofferdams, was what was gained by Contractors, who had not published it : and each in succession was obliged to form his own conclusion as to the best mode of effecting his object. That was one of the misfortmes of the present mode of carrying on engineering. A work was first of all completed, and then rules deduced from it. This had often been considered and disenssed, and it presented a remarkable contrast between the engineering practice of this comtry and the theoretical researches of other countries. It was clear, ì priori, that no rules could be laid down for cofferdams, because the circumstances varied. It had been stated that one of the Members of the Institution was about to introduce the system of iron cylinders for the purpose of building walls upon, and it was further mentioned that Mr. Bateman, instead of having cylinders of iron, proposed to have them of brick. Probably centuries ago, the Hindoos built the foundations of river walls in that way, and brick cylinders, or wells, of about 3 feet diameter, had so been in use in India almost from time immemorial. He had no doubt the adoption of cylinders of iron or brick would eventually supersede the ordinary methods of forming cofferdams, and he lelieved would be universally adopted. The simplest contrivance for had foundations was to surround the area with a ring of timber, sufficient to resist the ordinary floods: then to lay within a heary bottom of concrete, and to build thereon up to the ordinary level of the tide. That he had seen practised, and had himself practised. He once
hat a triple cofferdam, of enormous size, carried away by flooks, broken in two, and each part lodged upon a lank, like the wrecks of two large vessels. It was impossible to recover that dam, though he had saved some others by large harges filled with stones, which he brought upon the piles, and kept there white the dam was being repaired.

Noveminer 15, 1870.

CHARLES B. VIGNOLES, F.R.S., President, in the Chair.

No. 1,255. - " On the Water Supply of the Town of Paisley, lienfrewshire." ${ }^{1}$ By Aleyander Leslie, Assoc. Inst. C.E.

In the year 1835 parliamentary powers were ohtained to bring in water, for the supply of laisley, from the districts of Gleniffer and Harelaw lying to the south of the town, having respectively drainage areas of 624 arres and 166 aeres. The works were executed muler the direction of the late Mr. R. Thom, M. Inst. C.F., who made careful experiments, extending over a period of three years, to ascertain the amount of water flowing from the Gleniffer district, by means of which the quantity actually available was found to be $70,354,769$ cubic feet per annum, which is equivalent to $31 \cdot 06$ inches, out of a depth of $46 \cdot 13$ inches of rain over an area of 27,189,063 superficial feet, leaving a loss by evaporation and absorption of $15 \cdot 07$ inches. The whole of the water from the drainage area was not available for the use of the town, as onefourth was reserved for compensation to bleachfields situated on the natural water courses. This amounted to $22,267,735$ cubie feet per annum, leaving $66,803,206$ eubic feet available, being $18: 3,022$ eubie feet per day, or $127 \cdot 1$ enhic feet per minute.

The works consist of a reservoir at Harelaw, having a capacity of $14,248,000$ cubic feet, with a conduit leading from thence to Stanely, where there are two other reservoirs, one, to act as a subsiding pond, eapable of holding $28,340,000$ eulic feet, the othor for clear water, with a catacity of $7,194,000$ cubic feet, with regulating sluices for turning the water into either. 'The open conduit

[^4]between IIarelaw and Stanely is the principal feeder for the Stanely reservoirs; in its course it intercepts the burns flowing from Gleniffer braes, which are almost all pasture ground.

There are self-acting compensation sluices at the outlet of the lower of these reservoirs, designed by Mr. Thom to insure an miform delivery with a varying heal of water in the rescrvoir, which are reported to work satisfactorily. From thence the water is conveyed by a masonry conduit, 2 feet by 1 foot 6 inches, to filters and a covered tank, on an elevation at the southern end of the town. The population in 1853 was about 50,000 , so that the supply of water for each person, inchuling manufactories, was $22 \frac{1}{2}$ gallons per day.

The growing wants of the town rendered it necessary for the authorities to look out for increased supplies, and, after examining various sources, Parliament was applied to in 1853 for power to bring in the water of the Rowbank burn, which rises on the borders of Renfrewshire and Ayrshire, and which is one of the tribntaries of Castle Semple Loch. The average height of the land selected for the reservoir is 500 feet above the ordnance datum, rising in undulating ridges to 700 feet at the water-shed. At this time the water works were the property of a eompany; but in the year 1855 they were transferred to the Town Comncil, and the claims of the company were settled by arbitration at an anmual payment of $6 \frac{2}{3}$ per cent. on the capital. The power obtained in the year 1853 having lapsed, another nearly similar Act was procured in 1866, with the privilege in addition to supply the town of Johnstone and the village of Elderslie, having together a population of nearly 10,000 persons.

The drainage area aequired by the Paisley Water Commissioners contains 1,220 acres, and is partly arable, partly pasture, and $\frac{1}{13}$ th of the whole, amounting to 94 acres, is moorland, the water from which is rather mossy at times, but this will be diverted from the store reservoir, making it however available for compensation. Two rain gauges were placed in the neighbourhood, of which a careful register was kept. One of these was at Springside 540 feet above the sea, and the other at Murhead at a height of 490 fect above the sea. Of the drainage area the rainfall of 700 acres is represented by the Springsido gange, and the Muirhead gange represents the rainfall of the remaining 520 acres.

The following table shows the amount of rainfall registered in these ganges from December 1865 to December 1866 :-

The quantity of rain falling on 700 acres, the depth being $64: 39$ inches, is equal to $163,614,990$ cubic feet, and on 350 acres, the depth of rain being $50 \cdot 7!$ inches, $64,528,695$ culic feet. The average depth of rain over the whole area is 59.86 inches, or $228,143,685$ cubie feet, and subtracting the amount measured by the weirs, subsequently mentioned, $179,662,325$ cubic feet, there remain for loss by evaporation, \&e., $48,481,360$ eubic feet, which is equal to 12.72 inches of the rainfall, leaving $51 \cdot 67$ inches available for the high gromnd and 38.07 inches for the low ground. There now remain 170 acres with a rainfall of 38.07 inches to be added, which yield $23,492,997$ cubic feet of water per annum, raising the total to $203,155,322$ cubic feet per annum. A store reservoir was constructed at Nethertrees on the Rowbank or Birkcraig burn, abont 3 miles south-east of Lochwinnoch; the water area is 100 acres, and the greatest depth 35 feet. The pipes were constructed to carry 184 cubic feet of water per minnte, and the compensation water was fixed by the Act of 1866 at 92 cubic feet per minute. Storage was provided for one hundred and eighty days, or six months of this whole quantity, being about 77,000,000 cubic feet.

To test the flow of water into the Rowbank reservoir four gauge weirs were erected on the tributaries, and the water flowing over them was measured every day. These gauges were constructed of battens and stakes carefully levelled and made watertight, with a free overfall, and with sufficient still water behind to prevent inaccuracy from initial velocity. No. 1 was 5 feet long, No. 2 was 2 feet 4 inches, No. 3 was 1 foot 4 inches, and No. 4
was 1 foot long. The depths being taken, were calculated by the formula $Q=4 \cdot 904 b d \frac{3}{2}$, where

$$
\begin{aligned}
& \mathrm{Q}=\text { culic feet per minute. } \\
& b=\text { breadth in feet. } \\
& d=\text { depth in inches. }
\end{aligned}
$$

Dischafge over Weir No. 1.		
1865.	December	Cubic Feet. 11,868.501
1866.	January	27,920, 143
	Februar	20,615.473
	March	5,295,857
	April	2,806,319
	May	$2,457,603$
	June	682,548
	Julc	1,395,731
	August.	12,035.485
	September	19,509,420
	October.	8.nis,6016
	November	15,108,363
	Total	129,484,049

Discharge over $W_{\text {eir }}$ No. 3.
Cubic Feet.

1865.	December	$\begin{aligned} & \text { Cubic Feet. } \\ & 724,632 \end{aligned}$
1866.	January	1,573,001
	February	1,095,960
	March	426,618
	April	261,213
	May	142,191
	June	66,155
	July	108,320
	Angust.	537,995
	September	753,857
	October .	528,143
	November .	1,044,194
	Total	7,262,279

Discharge over Weir No. 2.
Cubic Feet.
1865. December . . 3.663.190
1866. January . . 8,362,040

February . . 5,5ニフ,766
March . . . 1,935,562
April . . . 1,193,935
May . . . 706,027
June . . . 282,342
July . . . 606,69.
Angust. . . 3,815, 273
September . . 5,452,18s
October . . 2,563, sit
Norember . . $4,250,171$
Total . . 38,359,063

Dtecharge orer Weir No. 4.
Cubic Feet.
1865. December . . 391,684
1866. January . . $\$ 21,538$

February . . 558,440
March . . . 208,062
April . . . 135,557
May . . . Sti,192
June . . . 58,152
July . . . 104, 125
August . . . 695,941
September . 726,494
October . . 313,352
Norember . . $\quad 457,397$
Total . . 4,556,934

The total flow per annum over all the weirs was :-
Cubic Feet.

A conduit $6 \frac{1}{3}$ miles lonor conducts the water to the Stanely filters.
whence it is conveyed to laisley by a 16 -inch pipe. A branch pipe leaves the main :3 miles west of Paisley to supply the towns of Johnstone and Elderslic; and a set of filters and a tank were constructed at Craigenfeoch for filtering the water supplied to these places. Another set of filters and a tank are placed on the high ground to the south of the original reservoirs at stanely, with a hanch pipe leading down to them, to make up any deficiency that may oecur in the old works.

Srore Reservor at Nethertrees.

'To impound the water it was found necessary to construct three embankments; the largest of which is situated across the bed of the burn. The first operation consisted in the formation of a bye-wash chamel, to divert the water of the Reivoch burn from the reservoir during the construction of the bank, as it was from this hurn that floods were apprehended; and it now serves for carrying the water of that burn past the reservoir, should it be at all impure owing to floods. When this was finished the outlet tumnel (Plate 4, figs. 5-7) was proceeded with. The prurpose of this was, in the first place, to discharge the waters which would have accumulated during the construction of the bauk, and to receive the two outlet pipes, one of which carries the compensation water, and the other the water for the town. The tumnel is 426 feet long. a length of 150 feet of which. at the lower end, was open at first, and afterwards covered in, the remaining 276 feet being tunnelled through rock. The interior dimensions of the tumel are 5 fect 6 inches by 5 feet 6 inches. It has vertical side walls and a semicircular roof. The whole length of the arch was built of moulded brick. Where in open cutting the side walls were 15 inches thick, and the arch was built of the same thickness, set in mortar, with a rubble stone arch outside, 9 inches deep; and where in tumnel the side walls, for a length of 236 feet, were built of brick, and the space between the wall and the rock was filled in with close-packed rulible stone set in mortar. A length of 40 feet at the inner end, where the rock was friable whin, was luilt wholly of lorick set in cement, the brickwork filling up the entire space to the rock. This portion had a brick invert varying from 9 inches to 15 inches in thickness set in cement. the remainder of the floor of the tumel being natural rock. dressed off as smoothly as possible. The rock varied in quality from what is locally called Osmond, being like the hardest whinstone, to a soft
grey, granulated, sedimentary substance, easily cut with a knife. It required blasting, and in some places the roof had to be supported until the building was finisher. At the lower end of the tumnel is the sluice house (Plate 4, figs. 8-11), 10 feet sifuare, with an arched roof 10 inches thick, and side walls 3 feet thick, in which are placed three sluices for directing the water into the town, or for diverting it into the burn. At the inner end of the tunnel is a horseshoe-shaped recess of masomry (Plate 4, figs. 1-4), in which is placel the iron upstand or sluice shaft. This recess is 10 feet 9 inches lung ly 5 feet 9 inches broad, with walls 2 feet 6 inches thick. Across the front are lintels 2 feet 6 inches loy 1 foot 3 inches in section, and, again, in front of these is a groove for holding a wooden grating, which may be replaced ly stop planks, when access to the sluices is required. Across the hottom, and 2 feet 6 inches above the floor, is a stone 3 feet by 1 foot 9 inches in section, on which stands the iron shice-shaft, and below which passes the pipe conveying the compensation water. For a length of 17 feet at the upper end, the tumnel is of larger dimensions, being 7 feet 6 inches by 5 feet 6 inches, and tapering to 5 feet 6 inches liy 5 feet 6 inches (Plate 4, fig. 12). 'This portion was filled up with masonry round the pipes, after the embankment was completed, to make it watertight; and round the upstand, up to the level of the ground, it was filled in with elay puddle and covered with pitching. Leading to this upstand is a channel 5 feet 9 inches wide (Plate 4 , fig. 1), with side walls varying from 2 feet 6 inches to 3 feet 6 inches thick, with cross lintels 1 foot square to keep the walls apart, and the bottom is pitched with 9 -inch pitching set on a bed of concrete 6 inches thick. The ashlar was procured from Shillford quarries, 4 miles sonth-cast from the reservoir. Provision was made in the contract for filling up the tumel with tlay round the outside of the pipes, but this has not been required as the solid masonry at the upper end is watertight.

The greatest depth of the principal bank is 60 feet (Plate 4 , fig. 19), and the length 500 feet along the top, which is 5 feet above high-water level, and is 10 feet broad. The slopes are 3 to 1 inside and $2 \frac{1}{2}$ to 1 outside. The puddle is 8 feet loroad at the top, and inereases with a batter of 1 in 8 on each side down to the level of the ground, from which point it diminishes to one-half that width at the bottom of the trench. The puddle trench is 62 feet deep at the deepest part. 'To form a proper foundation, all soft material was stripped off the site of the hank, including a considerable accumulation of peat and silt at the bottom of the valley, whith
was excavated down to the clay or rock before the hank was commenced. The greatest depth muder the surface of the valley was 17 feet on the outer, and 22 feet on the immer side. During the excavation it was fomed that the moss, on the imer side, was so soft that it would not stand even with a moderately flat slope; and it was also threatening to canse a leak in the temporary bank across the valley. 'To olsiate this, and to enable the moss and silt to be readily cleared out, a row of piles was driven at the inner toe of the embankment. The lroken nature of the rock forming part of the pudde trench rendered it necessary to excavate the hills on both sides to a considerable depth.

The material for the lank was foum on the site of the reservoir, and consisted of clay, which, when mixed with the rock taken from the excaration of the putdle-trench, formed a gook and substantial lank. To facilitate the work, a short tramway was laid from the north end of the bank to the place where tho materials were proemed. The wagons were worked by a small locomotive engine, and the stuff, having been tipped on a loading bank, was removel in common tip carts. The hanks were then formed with a slope inwards towards the trench of 1 in 12. Care was taken to spread all stones and keep them separate, so that earthy matter might fill up the interstices. The layers, each 6 inches thick, were pressed and trodden down by earts and horses passing frequently over them, and were pounded with heaters where the carts could not work. No planks or rails were allowed in forming the banks, and in dry weather water was poured over the whole surface to make it settle.

The wagons for conveying the pudlle were also worked hy the locomotive engine. A staging, earrying rails, having been formed along the side of the trench, the wagons ran along it by their own gravity, and the clay puddle was tipled into the trench; it was then spread in thin layers, mixed with water, and properly cut and worked up by heing tramped on by navvies. After undergoing this process, it formed a compact mass quite impervious to water. When the slopes of the lank had been made according to specification, and had settled, the inside slope was covered with a layer of broken stones, over which was laid pitching of hard blue whinstone. On the outer slope, and on the top of the loank, was laid a layer of stones 3 inches deep to keep out moles and rats, over which a layer of soil was dressed off, and sown with ryegrass and clover seeds. The nathral slopes between two of the lanks were pitched with rough pitching, set on a layer of broken stomes.

The other banks were formed in the manner already deseribed, but they were of smaller dimensions, one being 230 feet long, and 14 feet deep, and the other 815 feet long, and 18 feet in dep,th.

The waste weir at the sonth end of the large hank was 40 feet long, leing at the rate of 1 foot in length for every 30 acres of drainage area. The side walls are 3 feet high on each side of the weir, and the channel, which has a gradient of about 1 in 6 , has been cut out of the solid rock, with a width at the bottom of 10 feet.

It was originally intended to strip the entire surface of the inside of the reservoir, as the presence of vegetable matter was considered objectionable ; lut the cost led the Commissioners to dispense with the operation. The quality of the impounded water, however, has been decidedly deteriorated by the omission of this operation, though in the course of time the prejudieial effects of the presence of organic matter in the bottom of the reservoir will probably cease to be felt.

When the lank and waste weir were finished, two parallel lines of 21 -inch pipes were laid throngh the tunnel; at the inner end one was commected to the bottom of the east-iron upstand shaft, and the other passed under the stone carrying the shuce shaft, and was bolted to the sluice for giving ont compensation water. The space under the stone was then built up. These pijes, which were in 12 -feet lengths, were lowered by a crane on a bogie at the sluice-honse end of the tumel ; a tramway having: been laid through it, the pipe was then run up to the place required, and, when on the bogie, it was used as a ram to drive the preceding pipe tight home.

The sluice-unstand, in the horseshoe recess, is made of east iron (Plate 4 , fig. 1). It is 2 feet 6 inches in interior diameter, of $\frac{3}{4}$-inch metal, cast in five picces, with flanges bolted together. It is about 35 feet high, and there are four sluices at different levels. The sluice openings are 17 inches square, and are fitted with double hrass faces. The pipe for the town supply is commected to this cylinder, and at a lower level is the pipe for the compensation water, with the rod for working the sluice on the end of it, passing up in front of the iron cylinder. The sluices are worked by a moveable brass nut working on a $2 \frac{1}{4}$-inch serew. The compensation water is discharged into the burn, across which is placed a gauge weir, to measure the amount of water. The water for the town is discharged into a cast-iron well with an overflow to take the pressure off the clay pipe, which leads from it towards Paisley.

Pife Track.

The total length of pipe track from Rowbank reservoir to Stanely is 11,126 yards. For a distance of 3,872 yarls this track has a gradient of 1 in 700 . and is laid with 3,021 yards of 21 -inch elay pipes, 76 yards of iron pipes in moss, with a few iron pipes at the loun crossings, and there are 765 yards of masonry aqueduct where the track is in deep cutting. The second portion of the track is supplied with cast-iron pipes, of which 3,986 yards are 18 inches in diameter, and 367 yards 16 inches. The third portion has 16 -inel clay pipes for 2,700 yards. laid at a gradient varying from 1 in 140 to 1 in 70 , and 200 gards of iron pipes. The portion from Stanely to laisley, 2,895 yards in length, has 16 -inch iron pipes. The pipe for supplying Johnstone and Elderslie leaves the 18 -inch main near Craigenfeoch, and is 8 inches in diameter to the filters, from thence it is 10 inches to Thome, from which place there is a branch to Johnstone 8 inches in diameter, and another to Elderslie 5 inches in diameter. The traek for the pipes was excavated 1 foot wider at the bottom than the extcrior diameter of the pipe, with slopes varying aecording to the quality of the material ; opposite each fancet a clear space of 6 inches was left all romd, to permit of the proper jointing of the pipes. When the cutting was in rock, the pipes were laid on a bed of earth 3 inches deep. Where the elay pipe track was through a porons material, the pipes were surrounded with clay puddle 12 inches thick. The clay pipes were jointed in the following manner:-Two strands of rope-yarn, steeped in thin cement, were wrapped round the spigot and caulked in after leeing inserted into the fancet; then the remainder of the faucet was carefully and closely filled up with cement, which was levelled out from the end of the faucet along the outside of the pipe, with a slope of 1 to 1 , and when practicable, as in the case of the 21 -inch and 16 -inch pipes, a boy was sent in to point the inside of the joint with cement.

Nany engineers of experience have a prejndice against the use of elay pipes; but the successful results obtained in this, as well as in many similar places, warrant a word being said in their favour, wherever there is a constant fall and no pressure on the pipes. They should be found to answer the purpose well, provided sufficient care is taken in selecting those perfect in form and without eracks or flaws, especially at the neck where the fancet is fastened on to the body of the pipe, and where a crack is likely to he found. C'are must be taken, too, that they are properly jointed, and that
the thin cement is not shaken out of its place dmring the operation of refilling the track, a probable result if it is done before the cement has lad time to set. Above all, they shomld not he laid in too deep entting, as the smperimposed material is certain to lreak and ernsh them; nor should they be sulbjected to any pressure from a head of water.

The great fanlt found in the pipes was a liability to crack at the junction of the fancet with the body of the pipe. A method was devised in order to test their somdness, when that conld not be ascertained by ordinary inspection. The pipes were placed on a wooden platform, with the fancets downwarls, and inserted in a thin bed of clay carefully worked so as to be water-tight. The pipes were then filled with water obtained from a pit elose by. With a head of 3 feet of water some of them were found to leak, thongh the greater nmmber were perfectly tight. The cracks in those which leaked were carefully pointed with Portland cement inside and ontside. When the cement had set, they were again subjected to the water test, and for the most part they were now fonnd to be water-tight; those that still leaked were rejected.

Where elay pipes were used in cnttings above 9 feet deep, at relieving arch of rough rubble was formed over them to proteet them from crushing. Where the depth of cutting exceeded 12 feet, a masonry acpueduct was sulstituted for the clay pipe, the sectional area of which was 3 feet hy 2 feet (Plate 4 , figs. $16-18$). The soles were of Thormhill pavement abont 3 inches thick, which was set flush in mortar on a bed of levellings and well pointed. The sides consisted of parapet ashlar, procmed from Shillford quarries, ! inches broad, with the faces scabbled and the backs left (fuarryfaced; ant the covers were of pavement from 3 inches to 5 inches thick, with a rest of 6 inches on each wall. Where part of the conduit was in treacherous ground, the soles and covers were checked, so as to keep the walls apart should there be any tendency to force them together. Great care was taken in filling the space behind the ashlar with clay and soft material, and a depth of 1 foot 6 inches to 2 feet of earth was placed on the top of the covers to protect them in filling in the cut, which in most cases was in rock. Where the track passes under streams an iron pipe is substituted for the clay pipe. 'Ihis is built romd with mblule, over which is placed hammer-dressed pitching 10 inches or 12 inches deep, and in the centre, over the pipe, pavement is laid of a thickness and extent depending on the size of the stream. One stream is crossed by a bridge of 16 -feet span (Ilate 4 , figs. $1: 3-15$). The
arch stomes are 15 inches deep, and the side walls are tied tuge ther with bond stomes with a hold of 12 inches at each cond.

The elay pipes were provided ly Messus. Brown, Ferguslie Fire Clay Works, mar l'aisley, and were of the following dimensions, all being 3 feet long, exclusive of the fancet:-

Internal diameter. 1 •) incles	Thickness. 1 inch	Depth of faucel 4 inches.
12 inches.		4 inches.
15 ,	1 ,	4 "
16 ",	$1 \frac{1}{4}$,	$4 \frac{1}{4}$ "
21 ,	12 ${ }^{\frac{1}{2}}$	$4 \frac{1}{2}$ "

The fancets are of 1 ? inch greater diameter than the outsite of the pipes, and are ${ }_{x}^{1}$ inch thicker than their body; the shomkler is $\frac{1}{4}$ of an inch thicker than the body of the pipes, and both spigot and fancet are grooved to make them hold the cement.

The iron pipes were smpplied by Messrs. D. Y. Stewart and (o., of Glasgow, and were 12 feet long exclusive of the fancet. 'The prineipal dimensions and weights of these pipes were as follow: -

Interior Diameter.	Lensth of l'ıse, exclusive of Faucrt.	Lenglh of l'ipe, inclusive of Fiancet.	Thickness of Body of Pipe.	Weight of each Length.
luchis.	lert.	Feet. inches.	Inch.	Cwis. grs. Ibs.
-	12	I2 4	$\frac{1}{2}$	$\begin{array}{llll}3 & 0 & 15\end{array}$
8	12	1241	竞	$\begin{array}{llll}5 & 1 & 26\end{array}$
8	12	$124 \frac{1}{2}$		6 O 15
10	12	$124 \frac{1}{3}$	5	$7 \quad 36$
10	12	$12+\frac{1}{2}$	11	$\begin{array}{lll}8 & 1 & 13\end{array}$
1 1;	12	124	$\frac{3}{4}$	1 ± 15
17	12	124	$\frac{3}{4}$	15) 0 I6
1s	12	124	$\frac{3}{4}$	1600
15	12	124	13	17 175
$\because 1$	12	12 5	$\frac{13}{16}$	$20 \quad 0 \quad 22$
2.2	13	125	1	2600

The pipe-joints were, for the most part, turned and bored, and the pipes were laid in the following manner:-'The spigots were wiped elean, and were eoated with fresh Portland cement of the consisteney of paint made n_{1} immediately before being nsed. 'They were then inserted into the fancets and the pipe driven home by repeated blows, in the case of the smaller pipes from a wooden mallet, and in that of the larger pipes with the next one slung as a ram, in which case a piece of wood was interposed to keep, the iron from striking iron. 'The lead and yarn joints were made after tha spigot was inserted, ly canlking the fancet hard with somud rope-yarn up to within $2!$ inches of the ontside, and filling
the remaining space with melted lead, which was hard staved so as to be water-tight.

The pipes were tested with the pressure of a column of water, which for a pipe

5 inches in diameter and $\frac{1}{2}$				$\frac{1}{2}$ inch thick, was 6		600 feet high.	
8	"	"	$\frac{9}{16}$,	"	300	,
8	"	"	$\frac{5}{8}$	"	",	600	"
10	,	"	$\frac{5}{\square}$	"	"	300	"
10	"	"	116	"	"	600	"
16	"	"	$\frac{3}{4}$	"	"	300	"
17	"	"	$\frac{3}{4}$,	,	300	"
18	"	,	$\frac{3}{4}$	"	"	300	",
18	"	"	$\frac{13}{16}$	"	"	400	"
21	,	"	$\frac{13}{10}$	"	,	300	"
22	,	"	1	"	"	400	"

While under pressure they were repeatedly struck with a hand hammer, and any pipes sweating or leaking were rejected. The uniformity of their thickness was also tested by calipers designed for the purpose.

Filiters.

Two filters for the supply of Johnstone and Elderslie were construeted at Craigenfeoch, each 45 feet loy 32 feet, and the tank was 50 feet by 26 feet and 13 feet deep (Plate 5, figs. 1- 3).

The walls of the filters and tank have a foundation course 8 inches thick, and are built of good flat rubble bedded in mortar, and the face stones of the tank and of the filters above the level of the sand are of chisel-draughted ashlar. The tank walls are 3 feet 6 inches thick, at the level of the platform, and the filter walls are 3 feet thick; both have a batter on the inside of 1 in 12 .

As the excavation consisted for the most part of porons roek, the whole area of the building was well grouted with mortar run into every crevice, and the floor of both filters and tank, including half way through the walls over the foundation course, was covered with a layer of elean gravel, 4 inches thick, grouted flush with Portland cement. The retaining walls were brought up with a void of 4 inches in the heart, with two dovetailed recesses to form a tie opposite each other 12 inches by 6 inches by 6 inches for every square yard of surface. These voids were filled with clean gravel in layers of 6 inches comnected with the concrete of the floor, and each layer was grouted with Portland cement. The result was an exeellent water-tight wall, the only objection being the cost, which amomed to from 408 . to 508 . per culic yard. The floor of the tank was covered with pavement 3 inehes thick, laid
flush in mortar and pointed with cement, and an area of 6 square yards monder the inlet pipe was laid with ashlar 9 inches deep, caulked on the joints with iron-rust cement. 'There are two semicircular wells at the outlet of the filters, with slnices for regulating the head of water over the filters during filtration. The filters lave each a 12 -inch clay pipe along the centre, with branches and 4 -inch cross-pipes laid with open joints to admit the water, and with an iron air-pipe at the end of each. The filtering material consists of a bed 2 feet deep of coarse gravel, small enongh to go through a 2 -inch ring, but not throngh a $\frac{3}{1}$-inch ring; the upper surface is in ridges and furrows 6 inches deep and over that is a layer 6 inches deep of elean gravel which will go through a $\frac{8}{4}$-inch screen, but not through a $\frac{3}{8}$-inch sereen; over this is a layer of slate chippings 6 inches deep, then a layer of coarse sand 6 inches deep, and lastly a bed 18 inches thick of fine clean sharp sand, dressed into the prescribed form of ridges and furrows (l'late 5, fig. 3). The water is admitted into the filters ly feeding troughs along the side farthest from the tank, from which it passes through sluices and feeding chests into the feed pipe, and is delivered from a trumpet month at the level of the sand, which prevents any disturbance of the filtering material.

The roof of the tank is of wrought iron with \mathbf{T} har rafters and struts, and round tie and suspension rods, 6 feet apart, braced diagonally, resting on and bolted to a cast-iron wall plate, and having L lathes $8 \frac{1}{2}$ inches apart for the slates. The slates, which are Welsh seconds, 20 inches by 10 inches, are fastened on liy copper wire to the lathes, overlapping 3 inches.

The mortar employed was Arden lime well burned and ground, mixed in the proportion of two and a half parts of lime to two of sand and one of mine dust.

The high level filters and tank erected at Stanely are of the following dimensions: three filter beds each 90 feet by 60 feet, and a tank 138 feet by 38 feet and 14 feet deep. They are constructed on the same principle as those above described, the only difference being that the walls of the tank are 4 feet 6 inches thick at the top; all the walls inside batter 1 in 10 , but for economy the concrete groove was dispensed with, and on the outside of the walls clay puddle was substituted for it.

Of the original plan, the low level filters below Stanely but higher than the present old filters at Calside, which are of insufficient area and on too low a level, have not been executed.

The Engineer for the works was Mr. James Leslie, M. Inst. C.E.

The Contractors for the reservoir at Nethertrees were Messrs. Alexander Wilson and Son, Granton, and the cost, inclusive of sluices and iron-work, was $£ 17,433$. The same Contractors executed the filters for Johnstone and Elderslie, and also the branch pipe from the main aqueduct, at a cost of $£ 7,554$. Mr. John Pollock, Bathgate, was Contractor for the pipe track from Rowhank to Stanely, which cost $£ 15,414$, and for the Stanely filters, which are not yet eompleted. Messrs. D. Y. Stewart and Co., Glasgow, made the iron pipes for all the pipe tracks, and laid that portion between Stanely and Paisley.

The total cost of the scheme, including price of land, way leave, parliamentary and engineering expenses, amounts to about £70,000.

The communication is accompanied ly a series of Drawings. from which Plates 4 and 5 have been compiled.

APPENDIX.

Cost of Constricting Filters.

These were constructed with built walls. The Glencorse and Torduff filter-beds were banked without building, and belong to the Edinburgh Water Works.

The east of the service tanks was:-
Craigenfeoch 15,600 enbie feet, cost $£ 809=1 \mathrm{~s}$. per eubie foot.

The cost of filters, incluling all nceessary works for storage, \&e. :-
Craigenfeoch . . . £3 1G per square yard.
Stancly 710 "
Sometimes reservoirs are estimated at sn much per $1,000,000$ cubic feet, or gallons impounded. A referenee to the aecompanying Table will show how uncertain and msatisfactory any such mode of procedure must be :-

Contents.	Name.	Catchment.	Banking.	Puddle.	Total.
Cubic Feet. 2.5,000,000	Crossword*	$\begin{aligned} & \text { Acres. } \\ & \mathbf{2}, \mathbf{1 1 3} \end{aligned}$	Cubic Yards. 51,856	Cubic Ids. :29,7:39	Cubic Yds. 81,595
32,000,000	Crombie Went.		152,031	22,671	84,702
70,000,000	Paisley .	1,220	A 53, 208	7,082	
			(3) 2,714	1,066	
			C 10,190	3,646	
			66,107	11,791	77,901
6,560.000	Dunfermine \dagger.	370	23,864	6,971	:30, 83.)
26,000,000	Craigton, New		142,977	31,544	174,521
18, 100,000	${ }^{\text {Thorduti* }}$ - ${ }^{\text {c }}$	868	153,397	17,915	171,312
10,500, 0600	Clublie Dean*.	235	53,413	11,519	64,9\% 2
8,500,000	Bonally*************	109	25,277	8,018	33, 26,
19,000,000	Logan Lea*	1,426	82,430	15,108	97,538
$90,000.000$	Harperris*	4,217	:88,587	12,46t	61,051
$\begin{array}{r} 136,000,000 \\ 65,000,000 \end{array}$	Greenock, Upper " Lower	$\left.\begin{array}{r}1,904 \\ 796\end{array}\right\}$			
27,000,000	Harelaw*	2,700 3,934	128,605	29,817	158,605

* 'Torduff' Embankment, one-fourth of contents.
* Clubbie Dean " one-sixth ",
* Bonally " one-ninth "
* Crosswood " one-cleventh "
\dagger Crombie Den ,, one-fourteenth .,
Rowbank " onc-thirty-ninth "
* Harperrig ", one-sixty-fourth ",

Those marked (*) belong to the Edinburgh Water Works, and those marked (\dagger) belong to the Dundee Water Works.

Mr. J. Glaisher remarked that, although more or less familiar with the rainfall in every part of the country, yet he was best acquainted with that in the distriet of the Royal Observatory at Greenwich. He would in the first place direct attention to a table showing the annual rainfall at the Royal Observatory for each of the years from 1815 to the end of 1869 :-

Year.	Rain.								
15	Inches. $20 \cdot 5$	1826	Inches. $23 \cdot 0$	1837	Inches.	18.4	Inches.	1859	Incbes.
1816	$30 \cdot 1$	1827	$24 \cdot 9$	1838	$23 \cdot 8$	1849	$23 \cdot 7$	1860	$32 \cdot 0$
1817	$29 \cdot 0$	1828	31-5	1839	$29 \cdot 6$	1850	$19 \cdot 7$	1861	$20 \cdot 3$
1818	$25 \cdot 7$	1829	$25 \cdot 2$	1840	$18 \cdot 3$	18.51	$22 \cdot 7$	1862	$26 \cdot 5$
1819	$31 \cdot 1$	1830	$27 \cdot 2$	1841	$33 \cdot 3$	1852	$34 \cdot 2$	1863	$19 \cdot 8$
1820	$27 \cdot 7$	1831	$30 \cdot 8$	1542	$22 \cdot 6$	1853	$29 \cdot 0$	1864	$16 \cdot 8$
1521	$34 \cdot 5$	1832	$19 \cdot 3$	1843	$24 \cdot 6$	1854	$18 \cdot 7$	1865	$28 \cdot 6$
1822	$27 \cdot 7$	1833	$23 \cdot 0$	1844	$24 \cdot 9$	1855	$21 \cdot 1$	1866	$30 \cdot 1$
1823	$27 \cdot 1$	1834	$19 \cdot 6$	1845	$22 \cdot 1$	1856	$22 \cdot 2$	1867	$28 \cdot 5$
1824	$36 \cdot 3$	1835	$24 \cdot 9$	1846	$25 \cdot 3$	18.57	21.4	1568	$25 \cdot 2$
1825	$24 \cdot 6$	1836	$27 \cdot 1$	1847	$17 \cdot 8$	1858	$17 \cdot 8$	1869	$24 \cdot 0$

It would le observed that there was a great difference in the fall of rain at Greenwich between one year and another, and even of consecutive years, and the difference was relatively as great in all other parts of the country. In 1824 the amount registered was 36.3 inches, whilst in 1864 it was only 16.8 inches. The average fall of all the years was 25.3 inches, and at times, for several consecutive years, as from 1819 to 1824, the fall for cach year was above the average; and at other times, as from 1854 to 1858 , the fall for each year was below the average. Now, no reservoir had been made which would balance the rainfall for more than three years, so that the falls of rain in conseentive wet years could not be impounded under any circumstances; in faet, very heavy falls of rain were of no use, either to millowners or anybody else, as such rain took the shortest course to the sea. Evidently, therefore, the quantity to be dealt with must be less than the average. 'Ihe safest principle appeared to be to treat with the amount of the water fallen in three consecutive years yielding the least. This amount was found to be nearly the average of all the years reduced by one-sixth. Thus at Greenwich the sum of the falls of rain in the three years ending 1857, viz., $61 \div 4$ inches, being smaller than in any other three years in the period, or 20.5 inches on an average of these years, the average, $25 \cdot 3$ inches, reduced by $\frac{1}{6}$ th, or $4 \cdot 2$ inches, was $21 \cdot 1$ inches, differing from the observed by 0.6 inch. Taking this as a base, the capacity of storage reservoirs should be for two hundred days. But as water was growing more important
and more valuable the need was lecoming greater and greater for conomising it, in order to supply large towns with continued service. He would refer especially in this respect to the tuwn of Norwieh. 'The late Mr. lrooke had told him that, many years ago, when the quantity drawn wats equal to 40 gallons per head per day, the supply was insufficient, and the water was slunt off from 8 p.m. to 6 A.M., and the eompany were obliged to send persons round at night to be in readiness in case of fire. 'The contrast at present was great indeed. In 1868 the city had a constant service, and the quantity of water used was only 16 gallons or 17 gallons per head, ineluding what was consmmed for trade purposes. 'This was entirely the result of coonomising.

He wonld next call attention to another table of each rainfall at Greenwich which had amounted to at least 1 inch per day during the last fifty-five years:-

Year and Date.			$\begin{aligned} & \text { Amount } \\ & \text { Rainfall. } \end{aligned}$	Year and late.			Amount of Rainfall.	Year and Date.			$\begin{aligned} & \text { Amount } \\ & \text { of } \\ & \text { Rainfall. } \end{aligned}$
			In.				1 ln .				1 n .
1816	June	28	$1 \cdot 32$	1831	Sept.	28	$1 \cdot 09$	1853	July	14	$2 \cdot 63$
1818	May	10	$1 \cdot 34$	1832	Mar.	14	$1 \cdot 21$,	July	28	$1 \cdot 11$
	Sept.	26	$1 \cdot 30$,"	July	12	$1 \cdot 01$		Oet.	27	$1 \cdot 05$
1819	Sept.	29	$1 \cdot 00$		Oct.	7	$1 \cdot 47$	1854	Ang.	3	$1 \cdot 40$
	May	5	$1 \cdot 10$	1833	Aug.	30	1-14	1855	July	11	1-42
1820	Jan.	20	$1 \cdot 13$		Dec.	23	$1 \cdot 10$,	July	26	$1 \cdot 15$
-	May	16	1-10	1834	July	29	$1 \cdot 44$		Oet.	30	$1 \cdot 06$
,	July	31	$1 \cdot 51$	1835	May	13	$1 \cdot 00$	1856	Juue	20	$1 \cdot 00$
	Sept.	18	1-38	",	Oct.	25	$1 \cdot 14$	1857	Aug.	14	$1 \cdot 12$
1821	June	8	$1 \cdot 17$	\because	Oct.	30	$1 \cdot 00$	"	Sept.	8	$1 \cdot 00$
1822	April	16	$1 \cdot 11$	1837	Jan.	26	$1 \cdot 10$,	Sept.	11	$1 \cdot 16$
"	July	5	$1 \cdot 40$		Aug.	23	$1 \cdot 10$		Oct.	22	$2 \cdot 57$
,	Oet.	19	1. 16	1838	Sept.	27	$1 \cdot 10$	1858	June	5	$1 \cdot 16$
	Nov.	16	$1 \cdot 12$	1839	Nov.	27	$1 \cdot 20$	1859	Sept.		$1 \cdot 26$
1823	Jan.	29	$1 \cdot 07$	1841	June	24	1.03	1861	May	11	$1 \cdot 07$
"	July	25	$1 \cdot 05$,	Sept.	23	1.03	,	Nov.	13	$1 \cdot 29$
,	Oct.	1	1.15		Oct.	27	$1 \cdot 03$	1ste	Nov.	22	$1 \cdot 00$
	Oct.	31	$1 \cdot 15$	1842	Aug.	10	$1 \cdot 10$	18632	April	9	$1 \cdot 10$
1824	Feb.	14	$1 \cdot 18$	1843	Aug.	23	$2 \cdot 16$		Ang.		1-27
,	May	16	$1 \cdot 25$	1844	Oct.	15	$1 \cdot 38$	1863	June	19	$1 \cdot 46$
	Aug.	14	$1 \cdot 63$		Nov.	8	$1 \cdot 03$	1865	Jan.	27	$1 \cdot 25$
1825	May	13	$1 \cdot 40$	1846	Sept.	23	$1 \cdot 18$	"	May	23	$1 \cdot 03$
	Sept.	17	$1 \cdot 37$	1848	June	12	$1 \cdot 43$,	June	30	$1 \cdot 39$
1826	Mar.	7	$1 \cdot 00$	1849	May	28	$1 \cdot 15$,	Ang.	23	1.79
	July	24	$1 \cdot 97$	1851	Max.	15	$1 \cdot 45$	"	Oct.	19	$1 \cdot 06$
1828	July	22	$1 \cdot 21$		July	23	$1 \cdot 44$	186	Oct.	22	$1 \cdot 11$
,	Aug.	8	$1 \cdot 00$	1852	June	9	$1 \cdot 36$	1866	Jan.	11	$1 \cdot 61$
	Ang.	14	$1 \cdot 21$		July	25	$1 \cdot 99$		June	4	$1 \cdot 34$
1829	April	9	$1 \cdot 00$		Angr.		$1 \cdot 08$	1867	July	26	$3 \cdot 67$
1830	June	3	$1 \cdot 38$,	Oct.		$1 \cdot 01$	1868	Jan.	22	$1 \cdot 21$
1831	Feb.	7	$2 \cdot 89$		Nov.		$1 \cdot 00$	"	May	29	$1 \cdot 08$
"	Sept.	1	$1 \cdot 16$	1853	June		$1 \cdot 15$				

In this period there were eleven years in which the daily rainfall did not amount to 1 inch. The fall exceeded 1 inch, on five days in 1852 and on six days in 1865 . Only one instance occurred in which the fall exceeded 3 inches, viz., on July 26th, 1867, when it reached 3.67 inches. The mean monthly fall of rain at Greenwich was least in Febrnary and largest in October, whilst at Aberdeen the least was in May and the greatest in November; and in fact the month of least rain proceeded from Greenwich going northwards in March, April, and May successively. The monthly fall of rain at Greenwich and at Aberdeen was-

The distribution of rain at times differed greatly from the average. At Greenwich in the year 1868, in which there was an average fall, there were ten months of deficient rainfall, and the balance was made up by a great excess in the months of Jammary and December.

By taking five-yearly means during the period from 1815 to 1869, he found a generally decreasing rainfall at Greenwich till the year 1859, but since then there had been an increase:-

				Inches.	
In the five years ending	1819	the meau annual fall was	$27 \cdot 68$		
$"$	$"$	1824	$"$	$"$	$30 \cdot 67$
$"$	$"$	1829	$"$	$"$	$25 \cdot 84$
$"$	$"$	1834	$"$	$"$	$23 \cdot 98$
$"$	$"$	1839	$"$	$"$	$25 \cdot 28$
$"$	$"$	1844	$"$	$"$	$24 \cdot 74$
$"$	$"$	1849	,$"$	$"$	$23 \cdot 98$
$"$	$"$	1854	$"$	$"$	$24 \cdot 64$
$"$	$"$	1859	,	$"$	$21 \cdot 68$
$"$	$"$	1864	$"$	$"$	$23 \cdot 08$
$"$	$"$	1869	$"$	$"$	$27 \cdot 28$

The defieiency to 1859 was therefore in no way attributalle to an
excess of drainage or clearance of trees, for the amomit of dranage within the last few years was greater than at any preeeding period.

Respecting evaporation, from all the experiments he had scen, it appeared to amount to from 13 inches to 15 inches per ammm: therefore in the three driest years all the available water would be the difference between the mean of those years and from 13 inches to 15 inches, which wonld leave but little in one of those years to work upon.

Mr. (i.J. Snows had been an observer of rainfall for many years, but had not specially inquired into the accuracy of the Cireenwich register till a short time since, when, at the request of Mr. Dines, who hat detected certain inaccuracies, he examined into the correctness of the early portion of the series of observations given in the table produced by Mr. Glaisher. His remarks applied to a period anterior to that at which Mr. Glaisher leeame comected with the Royal Onservatory. Mr. Beardmore had referred to the early portion of that register in terms which were not altogether expressive of confidence. ${ }^{1}$ 'The remarks of Mr. Beardmore referred to the total ammal rainfalls, whilst the point which he had examined into was the daily fall. With regarl to the table of heary daily rainfalls at Greenwich, he might remark that the only way in which a list of that sort conld be reliable, and useful, was where it was certain that the gange was visited and emptied every day. Whenever that was done the numbers were comparable amongst themselves and with others. If there was any possibility of the fall of two lays having been entered as one, the value of these numerical data was entirely destroyed. Upon the point which he was required to investigate were dependent a series of calculations made by Mr. Glaisher, also by Mr. Dines at Cobham, and by Mr. Chace in America, as to the influence of the moon's age upon rainfall. On examining into these cally daily returns, it was found that the number of days on which rain was recorded to have fallen, during the ten years from 1820 to 1830 , was abont thirty-five per annum less than the average of the whole period. That might be due to something peculiar in the climate of those ten years. He had therefore compared this result with the registers of rainfall at Chiswick, at Cobham, at the Royal Suciety, and with Howard's register at Tottenham; and they all agreed in indicating a larger number of days of rainfall in those years than were recorded at Greenwich. Again, if a long-continued register like this of fiftyfive years was taken, and the total rainfall during a month divided

[^5]by the number of entries, it would give the mean fall of each day on which rain was reported to have fallen. He applied that process to the Greenwich observations for the month of January during the fifty-five years, and the mean daily quantity during that period was ahout $0 \cdot 15$ inch; but during the period from 1820 to 1830 or 1831 the amount ran up to nearly 0.30 inch; consequently the average fall on each day of entry was nearly twice as great as at any other period. That implied that the small amounts during those periods were not registered separately. This did not show whether the rainfall was systematically taken at longer intervals, for instance, if the rain-gange was emptied regularly once a week; but by tabulating the entries he found that that was not the case; consequently it was not an alteration in the rule that the rainfall should be measured every day, but negligent observance of it. One further test applicable to this case was the regular measuring of small quantities. Again, referring to the register of rainfall in Jannary, there were on an average four or five days in the month on which a depth of 0.05 inch or less than that quantity was recorded; but from 1820 to 1829 or 1830 he found there was not an average of more than one day or a day and a half. These different investigations all tended to show, that the small quantities were not registered, lout that they were allowed to accumulate till they became large ones; and, in fact, they proved what had been previonsly suspected, that the early records of rainfall at Greenwich were unworthy of confidence. He agreed with Mr. Glaisher as to the shifting of the epoch of minimum monthly fall of rain travelling north from London to Aberdcen; but the case was different in momntainons districts. In the hill districts of Cumberland or Wales, and even in Derbyshire, instead of the maximum rainfalls occurring in July and October, they vecurred in December and Jannary. ${ }^{1}$

He thonght that a great deal of confusion had arisen with respect to the use of the term evaporation, as applied to the loss of water. A certain amount of rain fell on a gathering ground, and a certain amount was stored: the difference between the two was not necessarily due to evaporation from the surface, but arose to some extent from percolation.

Mr. J. Glaisher said he had every reason to believe, from the records that were left, that every rainfall between 1820 and 1830 was registered at the Royal Observatory at Greenwich. The

[^6]gange was made by Tronghton with the ntmost eare, and was as aecurate in its construction as it was possible to be, and that was more than could be said of other ganges used at that distant date.

Mr. S. C. Homersinam sail, in the neighbourhood of the metropolis there were extensive districts, embracing an area exceeding 4,000 square miles, where all the rain that fell was absorbed by the chalk formation. lailway engineers could bear te-timony, that large valleys in chalk districts were freqnently crossed without there heing any necessity for a single culvert. The rain was absorbed by the chalk as fast as it fell, though it might be as much as 3 inches in an hour. Over a water-shed consisting of 200 square miles, distant not 30 miles from London, not a drop of rain that fell appeared on the surface in the shape of springs or streams. The olservations of Mr. Glaisher would not apply there beeanse the whole of the water. whether in a wet year or in a dry year, was ahsorbed and stored under gromed in the pores of the chalk. If there was a heary rain, followed by very hard frost, then a fall of snow, and then a sudden thaw, water might flow off the surface in chalk distriets; but such a concurrence of circmastances was very rare. The surface of the gromed must be saturated, the water must be frozen, a fall of show must cover the frozen surface, and sudden thaw take place with rain ; then there were floods off those districts he was speaking of, otherwise there was no flow of water off the surface.

The question of the natural storage of subterrancun water in the chalk, the lower green sand, the oolite, the red samdstone, and other similar formations, was one of great importance. Those were the formations which gave water of the best quality for domestic purposes, and with which surface water imponded in natural lakes or artificial reservoins conld bear no comparison. It was free from organic matters, and was of an miform temperatire the whole year throngh, and it could he artificially rendered as soft as any water that conld be supplied to a town.

Mr. Hanksley, Vice-l'resident, said, before entering into the particular merits of the Paper and its very general sulject-matter, which was far more important than the mere description of the works which had been made for the supply of l'aisley with water, he would refer to the statement of Mr. Homersham. The P'aper related to the supply of water from gathering sromids, ly means of large storage reservoirs. Now the chalk district was not a gathering ground, and no storage reservirs were ever made in such districts. The conserguence was, though the olservations of Mr. Homersham were perfectly correct in themselves, yet they hat
no bearing upon the subject-matter of the Paper. Excellent discussions might be raised upon the means of obtaining water from chalk distriets, but that had nothing to do with momntainous water-sheds.

The first thing which presented itself to an Engineer, charged with the duty of obtaining a supply of water for a large community, was to ascertain the quantity of water which could be obtainer from any of the gathering grounds in the neighbourhood. That was an important inquiry, and an inquiry about whieh many mistakes had been made. Formerly it was thought possible that, by means of reservoirs, the arerage of all the rainfall of a long period of years might be calculated ripon for use hy the community, with the exeeption of a small deduction to he made for what had been called 'loss,' but which was in general nothing more than evaporation. Now, in the course of years, it was found, in tho first place, that the allowance for evaporation had been considerably too small; and next, that it was impossible to store the floods of a series of wet years, or even, very frequently, of one year only. The endearom had therefore heen matle to discover what were the real facts of the case, and what was the law by which Nature dealt with this important sulbectmatter. It was fomd, after long experience, and after laying down in eurves the results of the observations over long periods-observations which had been afforded by the ontlay of millions of money, in some cases successfully, but in the majority of cases more or less unsuccessfully-that in general, lut not as an invariable rule, there were situations in which reservoins conld be made that would deal with the available rainfall of three conseentive minimum years, The next thing was to ascertain what was the law of the minimum ; and this singular thing came out, which was true within the smallest possille fraction of all long series of rain-gauge oloservations extending over not less than twenty years, - that if the average of say twenty years was taken, and from that average one-sixth was deducted, the average of three minimum dry years would be obtained, within the fraction of a single inch. 'That quantity might then be relied on as the probable rainfall. The amount of loss or evaporation had then to lie ascertained, according to the particular district. That loss varied in these islands from 10 inches per annum as a minimum to 18 inehes as a maximum. The minimum ocourred very rarely-indeed only in the case of bare precipitons momatains, consisting of nonalswhent rock, such as slate or granitic rock. From that surface all the min that fell conld be gathered, with the exception of about 10 inches. But the case was very different where the surface was
covered with soil and peat, where it became flat mour-land on the summit, and, more so, where the land was cultivated and thrown into the character of a sponere. In general, however, with mountain water-sheds, where the intomeliate comblion existerl, the actual ascertaned loss amomed to from $1: 3$ inches to 15 inches per annmm, aceording to the sitnation and some local eircumstances, and might be taken at a mean of abont $1+$ inches per ammum. As a practical illustration, he would take perhaps the most important one that had ever presented itself in this kinglom, the case of sheffieh. In that instance a popmation of a puarter of a million was entirely dependent upon momntain water-sheds. There were correct recorls for forty years, from which it was known that, upon the arerage, the fall of ran had been $30 \frac{1}{2}$ inches anmally. Deducting one-sixth, there remained about $3: 3$ inches; and taking from that 14 inches as the loss from what was called evapuration, there were left 19 inches, which was the actual quantity received into the storage reservoirs on a mean of three dry years. From that again had usually to be deducted, Jefore the water coukd arrive at the town, a very large amonnt for the supply to the millers on the stream on which the reservoirs were made. Furmerly, the legislature was in the habit of giving too large a proportion ; but after longer experience, that had now been fixed at one-third of the available quantity. That, in the case of sheffield, would have been $6 \frac{1}{3}$ inches, leaving $12 \frac{2}{3}$ inches for the use of the town. However, in consequence of the law of the dednction of one-sixth not having leen known, and the loss by evaporation having heen underrated-only a small doduction being made for loss-the legislatme had given the millers 12 inches, thus reversing the proper figmres, and leaving only 7 inches for the town. Under those circmonstances it could not be wondered at that the town fell periodically short of water. He harl been thas precise in dealing with this particular case, hecanse it was typieal of a great nmmber of other cases, and becanse it was owing to mistakes mon this point that three-fourths-nay, five-sixths of all the large towns dependent upon gathering gromels had been left short of water, sometimes for many weeks together ; and, at all events, their daily supply had been diminished for two or three months whenever the rainfall was less than the average.

After having ascortained, by a process of that kind, the actual, as distinct from the theoretical, quantity which could be depended upon from the rainfall, the Engincer had next to consider the magnitude of the basins which unst be provided for impounding that sulply. As was well known, rain fell very irregularly; so
that if there were not large storage reservoirs, the floods would rush away at one period of the year, and the town would be left dry, with the exception of the little rills formed by permanent springs at another periol. That was the condition in which, forty or fifty years ago, the towns in the mountainous districts of this kingdom really were. Engineers began with the idea that it was impossible a drought could last in England more than 100 or 120 days, so reservoirs were made capable of holding a supply equal to the requirements of from 100 to 120 days. That plan having failed, the reservoirs were increased in size so as to store a supply for 140 days, and subsequently for 160 days, when the failures, although not so numerons, still vecurred in the majority of cases. An inquiry was then instituted to ascertain whether there was any law particularly applicable to the case; and, by dint of perseverance and of an extensive range of ohservation, it was found that the least proportionate storage was necessary in those parts of the kingdom where there was the greatest rainfall, and that the largest amount of storage was necessary in those parts of the kingdom where the least quantity of rain fell. The reason of this was-that where the greatest quantity of rain fell there was the greatest number of wet days, and where the least quantity fell there was the least number of wet days. Moreover, where the greatest quantity of rain fell, as a rule there was the least evaporation; and where the least quantity fell, as a rule, but not without some exceptions, there was the greatest amount of evaporation. Therefore it became apparent that a rule which was applicable to one part of the kinglom would not be available in another part of the kingdom. It was then discorered that when the rainfall amomented on the average, as at Sheffich, to 40 inches per annum, storage must be provided for more than 180 days' consmmption, and then the reservoirs would he just rmo out at the end of the longest drought. Coming farther south, and taking Leicester by way of example, where the rainfall was somewhat moder 30 inches, a supply for 180 days would not last; and it had been found by olservation that there was no re-elevation of the surface of the water in these reservoirs for 2.50 consecutive days. In the east of England, where there was a still less fall of rain, a continnons supply of water to the towns could not be depended upon unless there was :300 days' storage. In places where the rainfalls exceed 40 inches, smaller reserviirs in proportion were required; while in the very driest parts of the kingdom, where the rainfall was only 22 inches, it was nocessary to impound a supply for a longer period. The result was, it had been fomed, according to observa-
tion in England, that where the greatest quantity of rain fell a supply must be provided for 150 days; and where the least quantity of rain fell, 300 days' storage was absolutely necessary.

The determination of the quantity of water to be calculated upon as the use and waste of the town was one of the most serious of all the calenlations, because that quantity had to be multiplied by $150,180,200$, or 300 days, as the case might be, and the reservoirs must he made larger exactly in proportion to the quantity of water which it was probable would be consumed in the place, while, of course, there must also be a larger area of catehment ground. Now, the facts upon that question were most extraordinary. The consumption varied in large cities, where there was a constant supply, day and night, and every person drawing as much or as little as he pleased, between 15 gatlons per head per diem and 100 gallons per head per diem, including in both cases the supply for mannfacturing and sanitary purposes. No more water was wanted in the city where the quantity was 100 gallons per head per diem than in the town which was served with 15 gallons per head per diem. 'The camse of the difference was simply in the management of the undertaking. In many places the company or the corporation, or whoever might be the parties supplying the water, merely turned the water into the pipes, and left the care of the internal fittings and the mode of their application entirely to the consumer, or to the builder, or to the landord, as the case might be. The result was, as a rule, the worst possible character of fittings, and every cistern supphied with an overflowpipe; and where there was an overflow-pipe, as a matter of course the ball-cock, which let in the water, was never attendel to, becanse, whether it was right or wrong, nobody on the premises suffered the least inconvenience. The consequence was the ballcock got out of order; it would not rise to shat off the water, and the water ran down the waste-pipe day and night. The sime thing happened with regard to those abominations called soil-pans, and also to water-closets, the handles of which were propped up, moder the idea of "doing good to the drains." The result was the water ran away without anyhody leing sensible of the loss. But when the consequences were considered, it would be at once apparent how important it was that those sources of waste should be suppressed ; for, as a rule, every million gallons per day supplied to a city from a gathering ground cost in caprital about $£ 120,000$, and ought to be capable of supplying 50,000 people. Nuw, there were places, particularly in Scotland, where the consumption amounted to 50 gallons per heal per diem; so that, to
supply the same number of people, an outlay would be required of $£ 300,000$. And it must be remembered that the taxation for the supply of water must, of course. he in proportion to the outlay. But there were still more important difficulties. It frequently happened that it was not possible to obtain in the neighbourhood of the town a sufficient supply to meet that amount of waste, and hence it had to le brought from a long distance. The area of the gathering ground must also be two or three times as great, and the rescrvoirs mist be two or three times as large, or two or three times as many as would otherwise have lieen necessary ; and altogether the affair became so onerous, that it was not surprising that in general there was great reluctance to encom ter the expense, and still greater reluetance to support the taxation which that expense necessitater. All this could be remedied, but it was alnost impossible to convince pmblic bodies of this fact. At the present time many places were in great difficulty, by reason of the supposed want of a sufficient quantity of water, but where in reality there was plenty of water to effect every olject which the law required, if only this extravagant waste was suppressed. There was still a further evil. In the majority of cases, where a constant supply was not enforced by law, the companies and the corporations, and particularly the local boards, refused to give the constant supply hecanse of the enormity of the waste with which it was frequently attended.

In the metropolis the three millions of inhabitants were receiving more than 20 gallons of water per head per diem-a quantity far more than was necessary-and yet the water was rarely supplied for more than half an homr, and scarcely ever for more than one hour, out of every twenty-four hours. If the necessary care were taken, and improved fittings were applied, there might be a constant service during the whole of the twenty-four hours, and everybody might have all he wanted, although less than 30 gallons per head per diem would be used.

With respect to the tables which had been supplied by Mr. Glaisher, he regarded them as leing of the ntmost importance. One showed the average rainfall at Greenwich over a period of fifty-five years, and gave a good idea of the great variability of this climate ; it also applied relatively to the case of the mountain gathering gromuds in the north of England.

In reply to the question why the water taken into the honses shombld not be supplied by meter, rather than by the present defective system, Mr. Hawksley ohserved that the reason was a very plain and a very powerful one--the law did not allow it. It
had been the policy of the legislature, erer since the formation of companies under legislative anthority, to require that houses should be supplied for a payment proportionate to their rentals. It had been endearoured, a great many times, to induce the legislature to adopt the system of supply by meter with respeet to water, as in the case of gas. The legislatme had invariably refused: and the reply always made to the application was, that it would not tend to the goorl and comfort of the people, or to their health. but that on the contrary it would be injurions to the poor if water were sold hy measure. Water was allowed to be sold by meter fir manufacturing and other non-domestic uses; but with regard to domestic purposes, the legislature was ohdurate.

Mr. S. C. Honersinam sail there was no male without an exception. Mr. Hawksley had said positively that the legislature would nut allow water for domestie purposes to be sold by meter. Now he harl oltained an Act in 1862 to construct works to supply a large distriet near London. The Act allowed the domestic supply to be by meter, and water had been supplied ever since by meter. The company charged aceording to rental, and if any person exceeded a certain quantity he was chargel $2 s$. per 1,000 gallons in excess.

Mr. J. A. Lovgridee stated that he was anxious to get water by meter, and had applied to the Lambeth Water Works Company for this purpose in vain. 'They did not tell him that it was not allowed to do so by the Act, but they said that they would not. He thought if there was no Aet of Parliament against it, and if water companies complaincd of the great waste of private consumers, there conld be no reason why a man who was willing to pay for what he got should not be allowed to do so.

Mr. Beammore expressed his doubt as to the practieal success of meters for private houses. He thought they would canse dissatisfaction generally. The charge for supply to the poor would be greatly increased by the rental of the meter, and there would be perpetual quarrels as to damages; but they wero used in the East of London and other places for manufacturing purposes.

Mr. Intmison, Vice-President, observed that when he was a member of the Royal Commission for reporting on the question of the water supply of London, no subject which had come before them was of greater importance than the general want of a goorl and sufficient water supply for the poor. From the returns of the large towns they found that wherever there was a superabundant supply of water there was large waste. In the case of Glasgow the consmption was 50 gallons per head per dar; but in some
places where the strictest economy was used the supply was under 20 gallons per head. He felt satisficd that, if strict economy were observed, which could only be effected by strict supervision, 20 gallons per head would be found to lee a full and sufficient supply in nearly every ease. But it was next to impossible for any private company to exercise that inquisitorial supervision of the supply, which was so necessary, in private houses, to ascertain where the waste took place; and thoroughly efficient supervision could only be exercised by placing the water supply in the hands of the publie themselves.

Mr. Hawhsley, Vice-President, said, the result of an immense amount of experience in the management of water companies was, that only in one was the water supply managed ceonomically by a publie body; while there were an immense number of eases in which they were managed very economically by private companies. At Norwich, where there was a private company, the supply of water was mlimited; yet the consumption did not exceed from 15 to 16 gallons per head per diem. That was only typical. Glasgow was in the hands of a pulbic body, and there the constimption of water was 50 gallons per head per diem; and that was only typical again. Many publie bodies were in the same position. The water ran to waste, through water-closets and overflowpipes, for which there was no use; but public electoral bodies were exactly the people who dared not go into the houses of the electors to stop the waste which a company was ahle to suppress.

Mr. Benmone said that the rainfall was as variable as the climate of England itself. Where the country was flat the fall was more uniform than where it was hilly, and generally in mueli less quantity.

There was perhaps no other science so difficult as meteorology whence to generalize from observed facts, and those who had to apply meteorological records to elucidate practical questions of water supply, drainage, and the economy of rivers, should be very cautions in accepting isolated facts. A long serics of olservations over wide ranges of country was required to develope the law of rainfall in respect to its periodical variations.

It was very donbtful, for instance, what provision should be made for floods, in earrying out engineering works-what was the maximun beyond which it was a waste of lathour to provide; and where the line should he drawn between floods which might be controlled and extraordinary débecrles which overwhelmed all the works of man, and against which it was usclens for the Engincer to contend. It was not safe to assume that the highest
flood or the most severe drought in any man's experience would not be exceded even in this country; and this was still more likely to be the case in India and Anstralia. Nor conld he aecede to the deduction of broad generalizations from the Greenwich series of rainfall observations, since there might he instances in the future when the resnlts dedneed from selected exceptional periods of the past might he nullified ly conditions of which there was no present experience. For instance, in November 1852, there were nine days of constant rain in the Midland and South Eastern districts of England, and this rainfall was considered to be mpreecedented. At that time the Great Northern, and some other neighbouring railways, hat been but recently opened, and it was found that sufficient provision had not been made for the safe passage of the flood waters. Yet subsequent events proved that the magnitude of that flood might be, indeed had been, greatly exceeded in the distriets served by those railways.

Intelligence had just been received that the Chey-Air bridge on the Madras railway had been carried away by a flood. The spans were large, and doubtless every reasonable provision was made ; yet the experience of the past had been insuffieient, and a time had come when the victorions waters had proved the peril of trusting to deductions from data extending over a limited period.

The time ocenpied in the fall of rain had an important learing both on the replenishing of reservoirs and on the regulation of floods. There might be a year of abmond rainfall, yet, from its occurring in oceasional heavy storms, and in summer, the water supply might still be deficient.

The years 1857 and 1858 were certainly the driest in modern times, taking into consideration the wide area over which the absence of rain was experienced. On the Continent the deficieney was chiefly felt in 1857, but in England in 1858; and the fall in some places did not reach 60 per cent. of the average. That drought extended over the whole of Central Europe, and was most severe over the area including the sources of the Weser, the Elbe, the Rhine, and the Danube. The fomdations of a Roman bridge were laid bare on the latter river, the existence and presumed locality of which were only previonsly known from the writings of Pliny. And the springs suffered so greatly in Westphalia that they did not recover their full volume till three years after. Similarly the drought of 1868 , which did not at the time seriously affect the flow of water in the English rivers, was probably one cause of the want of water in the past summer of 1870.

Seasons had a certain tendency to run in cycles, and one of
about eleven years seemed to show more uniform maxima and minima than any other grouping.

The ridge of hills south of Paisley extended from the frith of Clyde opposite Arran to a point about 4 miles south of Glasgow, and these hills were subject to a very heavy rainfall, but this was confined to a limited area, probably not exceeding 2 miles in breadth.

Mr. Hawhsler, Vice-President, olserved, that the apparatus which had been adopted for rendering the constant supply of water successfnl, by suppressing the waste, to which otherwise it would be subject, was distinct from the apparatus used for intermittent service. In constant service pressure was applied to the pipes during the whole twenty-four hours, instead of only during a very small portion of that time. Now, if a service pipe in the interior of a house would bear pressure for half an hour, it wonld bear the same pressure for half a year; but in the case of the constant supply forces came into operation which did not usually operate in the intermittent system, or only to a small extent; for where the supply was intermittent, the draught during the short time the water was on, owing to the majority of the ball-cocks in the honses being open, very much diminished the pressure; and besides that there were few or no shocks. But upon the system of constant supply the pipes were suljected to all the shocks occasioned by the rapid closing of the cocks, whereby the column of water was suddenly arrested when in rapid motion. That brought on a considerable amount of impulsive action which was unknown, or little known, in the case of an intermittent supply; and it was constantly found that the pipes leading into the houses, and distributed through the houses, although perfectly competent to bear the pressure of the intermittent supply, would not bear that of the constant supply when it became introduced in place of the intermittent supply. From this it followed that wherever the constant supply had been introdnced, either voluntarily or by the pressure of the legislature, it had been fom necessary to adopt rules and regulations for determining the magnitude and thickness of the pipes; also the mode in which the pipes should be united, and the kind of tap and ball-cock and water-closet apparatus to be used in connection with the constant pressure.

The rules and regulations now found to le necessary, and very generally adopted, were reduced to writing. ${ }^{1}$ Formerly miver-

[^7]sally, and still in most cases where the intermittent supply was used, a common plug tap was generally applied. This had the
lead or other branches extending from their main pipe to the side of the public highway in which such main pipe is situate; and will, at their own cost, carry the pipe through the frontage wall (if there be one), and six inches beyond, or otherwise equivalently allow fifteen inches in length for the owner's or oecupier's plumber to connect his work to.
"2.-The owner or occupier must, at his own expense, lay down and maintain all the pipes and apparatus upon his premises or for his use, and of the strengths and descriptions, and subject to the rules following, that is to say :-
"A.-Such pipes must, unless otherwise agreed, be of lead, and of not less than the following weight, namely :-

NOTE.-Detective or warning pipes may, if desired, be used of lighter weights than the foregoing.
"B.-The drawing (bib) stop and ball cocks must be strong and of hard brass, and the better to secure watertightness, of the kinds from time to time sanctioned and approved by the Committee; and unless and until due notification to the contrary, the drawing cocks must be of the best and most approved kind of those called 'screw down cocks,' and in principle as manufactured by Messrs. Guest and Chrimes, and in courts of houses and other exposed places, must be protected by an iron casing, and be made to open with keys. And the ball taps must also be of the best and most approved kind, and in principle as manufactured by Messrs. Lambert and Sons. Till otherwise notified, no other description of cock must be used without the previons and express permission of the Water Works Committee.
"C.-Every cistern must be absolutely watertight, and be provided with a ball cock, and proper means of access and inspection, but must not have an overflow or uaste pipe; and if any such should exist, the same must be removed, or be effectually and permanently closed before the water is turned on ; but neverthelcss, as exceptional instances will occasionally occur in which it will be necessary to provide against the possibility of over-filling, the Corporation will, in such exceptional instances, allow a detective or warning pipe to be attached to the cistern, provided that in every such case a written consent must be first obtained from the Manager of the Water Works, stating the fact of such consent, and the position in which the detective or warning pipe must be fixed; and in every such case the work must be executed under the immediate superintendence of an officer of the Corporation, and in the manner stated. On no account whatever can the water of the Corporation be allowed to communicate with any cistern or place intended or used for the reception of rain water.
"D.-Water Closets.- Every pan closet must be provided with a full
and complete apparatus, comprising a ball cock and a survice cistern, fitted
effeet, on rapid closing, of suddenly arresting the column of water in the lead service pipe, and gave rise to two or three
with a boot or division, to be carried as ligh as the top of the cistern, and capable of containing not more than one and a half gallons of water, when filled within three inches of the top, and two proper valves, so arranged as to let down not more that one bont or division full of water at each pull, or be capable of allowing the water to run to waste either by intention or neglect; and must also have a down pipe of lead from the cistern to the basin of not less than $1_{\frac{1}{4}}$ inch in diameter, and weighing 9 lls . to the yard run; and a proper basin, seatterer, weighted lever, pan, trap, and other appliances, needful to prevent such water closet from becoming a nuisance, and thereby inducing an undue consumption of water; and the valves must be worked by brass rods insteal of by wires or chains. Every self-acting, or pull-down uater closet, must be of a description approved by the Water Works Committee, and must have either a lead cistern similar to a pan cluset, or a double valve cast-iron service box, of a kind approved by the Committee, and fitted with a proper cover to serew on, and interual apparatus in all respects similar to that of the boot of the pan closet above described, and a similar down pipe of lead or cast iron, and must have a proper wide-rim flushing basin and trap, of a kind approved by the Committee. No wire will be allowed to be usel in the construction of these water closets.
" NOTE.-No pipe will be suffered, under any pretence whatever, to communicate directly or indirectly with the basin, or trap, or otherwise than with the cistern or service box of a water closet or soil pan, and the same shall be so constructed and used as to prevent the waste or undue consumption of water, and the return of foul air, and other noisome or impure matter, into the mains or other pipes of the Corporation.
"E.-Every bath must be constructed without an overflow or waste pipe, and must be provided with a well-fitted and perfectly water-tight apparatus, to prevent the water from flowing into and out of the bath at the same time. With the view to prevent damage from accidental overfilling a detective or warning pipe will be permitted, subject to the regulations and conditions hereinbefure-mentioned with respect to cisterus.-(See regulation C.)
"F.-No pipe must be laid through, in, or into any sough, drain, ash pet, manure hole, or other place, from which, in event of decay or injury to such pipe, the water of the Corporation might be liable to become fouled, or to escape without observation, or without occasioning the necessity of immediate repair. In every case in which auy such sough, drain, ash pit, manure hole, or other place as aforesaid, shall be in the unavoidable course of the pipe, such pipe shall be passed through an exterior cast-iron pipe, or box, of sufficient length and strength to afford due protection to the water pipe, and to bring any leakage or waste within the means of easy detection.
" G.-Every pipe and apparatus laid and fixed by, or for the use of the consmer, must be inspected by an officer of the Corporation before it is connected to the works of the Corporation: and, if found not in accordance with the regulations of the Committee, must be forthwith removed or altered.
violent reactions. In time the lead pipe expanded into a sort of ancurism, and ultimately burst by a long slit, exactly as an

Abstract

" II.-Every meter (imless otherwise specially agreed) mast be provided with a separate and distinct intet pipe, leading from the main or other pipe of the Corporation-upont which inlet pipe no stop coek, except the stop cock (if any) immediately attaehed to the meter, branch, drawing eock, or other ontlet, leading to or comected with the premises for the supply of which such meter is fixed, will be permitted. "I.-No pipe will be suffered, under any circumstanees whatever, to

 commonieate direetly with a steam boiler."3.-The water supplied must not be allowed to run to waste, either wilfully or by neglect; nor must it be used for any other purpose, or to any greater extent, than shall have been agreed for.
"4.-No pipe must be attached to the works of the Corporation, or to any pipe or apparatus comnected therewith; nor most any alteration be wade in any existing pipe or apparatus, without due notice being given to, and the consent of the proper officer of the Corporation being first obtained.
" 5 .-The supply and use of water for the purpose of trade and manufacture must be open to inspeetion and admeasurement whenever required; and such information must be from time to time afforded, as will be sufficient to enable the Committee to obtain a satisfactory account of the quantity of water actually consumed; and of the pipes, cocks, cisterns, and other apparatus, and conveniences for delivering, receiving, and using such water.
" 6 .-The Corporation will, if, and when so desired, execute all kinds of plumbers' work eonnected with the supply of water to their tenants, but are nevertheless desirous that the private business of the consumers of water shall be open to all the plumbers of the town; as, however, it is essential to the protection of the interest of the consumers, as well as of the Corporation, that such work shall be well and soundly exceutel, and that the Water Works Committee shall possess a full and satisfactory knowledge of the state of the undertaking in all its departments, it is announced that no plumber or other workman will be allowed to do or perform any work connected with the supply of water, till he shall have been admitted, enrolled, and published by the Committee, as 'an anthorized water works plumber,' and shall have entered into a written engagement to eonform to and eomply with the rules and regulations of the Committee in relation to the construction and management of the works and fittings to which such rules and regulations shall from time to time apply; and all respousible master plumbers, on expressing their willingness to comply with such rules and regulations, will be admitted immediately on signing an undertaking to that effect. If at any time afterwards any such plumber shall be found guilty of wilfully breaking or evading the said rukes or regulations, either by himself or his workmen, or shall refuse to communicate any intormation required of him in regard to any work doue by him, or his workmen, or under his superintendenee, or on his responsibility, his name shall be erased from the list of 'authorized plumbers,' and will be forthwith advertised as having been so struck off.
" 7 .-No person is to be employed in or about the Water Works, or any pipe or apparatus connected therewith, who has not been admitted 'an authorized plumber;' or whose name shall have been struck off' the list as aforesaid.
[1870-71. n.s.]
artery under similar circumstances burst in the human body. Thus the introduction of constant supply led to the flooding of honses, damage of furniture, and destruction of property in many ways. But that had been entirely got over, and a cure established by the introduction of a screw-down cock in lien of the old plug tap. This closed slowly against the pressure of the water, and prevented recoil. Also, by reasom of the looseness of the face, the leather, which was interposed for the purpose of making a perfect valve, did not turn romb on its face with the revolution of the serew ; and consequently it was not ground or wom away as when the leather turned round with the serew. These valves did not leacl to the bursting of the pipes, and were besides perfectly water-tight, which other valves were not ; consequently the continuous trickle, which was often observed in other valves, and amomited to a serions quantity, did not occur. Moreover, the leathers conld be replaced at about the cost of a penny, and so the cocks would last, with very little expense to the householder, for a considerable number of years. Probably, however, nine-tenths of the whole waste of water arose in the water-closets, and in every case where the constant supply had been attempted without a special apparatus to prevent the enormous waste which otherwise oceured in the water-closets, there had been a failure of the constant service system. In cases where there had not been total failure the leakage had brought up the supply from under 20 gallons per head per diem to 50 gallons or more ; and in one town, with which he was well acquainted, the amount of water distributed and wasted through water-closets had amomed to 110 gallons per head per diem. Now an apparatns had been arranged, and was largely in
" 8 .-The Committee will pay a reward of tuenty shillings to any person who will give such information as shall lead to the conviction of any person who shall fraudulently attach anty pipe or pipes to the pipes of the Corporation; or to any pipe, cistern, or apparatus connected therewith; or to or into which the water of the Corporation shall flow or proceed; or who shall fraudulently use or otherwise misappropriate the water of the Corporation, or who shall knowiugly permit the same to be fraudulently used or otherwise misappropriated.
"The Committee will also adequately remunerate any person (not being interested therein) who will communicate timely information to their officers of any leakages or wastes of water, and whether the same be accidentally, negligently, or wilfully oceasioned or suftered.
" 10.-The Corporation do not permit their officers, servants, workmen, or agents, to solicit or receive any fee or gratuity whatsoever, and desire to be informed with respeet to any infraction of this regulation; and also in respect to any act of incivility, or any neglect of attention on the part of such officers, servants, workmes, and agents, or atry of them."
use, that had eompletely removed this difficulty. The vessel might he of any size, and of any material. The water was introduced into the vessel in the usual manuer loy means of a ball-enck; and the ressel was divided into two parts, one of which hell a regulated quantity of water. By a particular contrivance two valves were worked, so that one valve always closed hefore the wther valve opened. When the valve opened from the larger division, the water passed ont of it into the smaller divisiom, and was ready to be drawn for the use of the water-closet. On pulling the wire, the valve in the larger division deseended, and closed the aperture; and no more water conld therefore pass from the larger division into the regulating division. All this was done in an instant; but the wire heing now pulled a little farther, the other valve began to open, and a flush of water immediately descended and cleared out the hasin, leaving the regulating vessel empty. The down pipe leading to the lasin was of considerable size to admit of a powerful flush of water, but the regulating cistern was only refilled when the pull-wire was allowed to return to its original position. The apparatus was not necessarily expensive, and might be made of iron for cottages at a cost of 35 s. At Norwich, where this apparatus was in general use, the reduction of the expenditure of water had been from 40 gallons per head per diem to 15 gallons per head per diem; and no one had ever found fault with its action.

There was another apparatus suitable for supplying water to manufactories, railways, and numerous large establishments. The water in these cases was formerly supplied by contract: noburly knew the quantity that was taken; and, as a matter of course, owing to the waste pipes and to general negligence, much more water was allowed to run to waste than was paid for. Years ago, howerer, it became apparent that some means must be contrived for measuring the water. For this purpose numerons meters had been invented. Many of them resembled a small highpressure steam-eugine, and some of them, particularly Kennedy's meter, measured the water with considerable accuracy. But they were exccedingly cumbersome: they produced in many cases considerable shocks; and when they got out of order, often allowed the water to pass by without measurement. One beautiful instrument had been invented by Mr. Siemens, M. Inst. C.E., but that instrument. was not strictly a meter, but rather an indicator; for it was made upon the principle of the turbine, and the quantity of water measured was determined by the mmber of revolutions of a wheed put in motion by the water itself. That meter was very uscful

 The moter had aperfores flawe it, wheh allowed the water to gass. whether therowhtion of the whed was acomphished er mot:

 from the wator. the meter worked slower. athd at last sppped.
 then rowister the gatatity of wator whith passed fhronsth it.

 it had wot the dwecte of which he had spoken. 'The primeiple out whi h if worked was that of the commentas metor reversed. In

 amd the water, comering the metors was sompeltat to pate wer the

 prosente on the ables the pipes and uther appasathe within the

his premises. 'There was alse a pmblie reasom why this shomlal los

 viohont manil harl sum a noisy rlied that pente were provented shopling in their Jeats. It was by mams of lhese few arrangementis that meaty the whale af the waste wherwise incident to the eon-

 vithes of suft and hatd water. Jor towns in which watere was used
 where elathing materials were manmardmed, of where, as in hathrashire, there was a geot deal of dyange it was exaedingly desilable that solt water, amd expeeially momatain water, shombly

 longevity in the plames where moderately hat wator was used, than where the water was particularly soft. Spart from that, water free from colome wats a beverage gromatly preferme to wator which was coloured: hat colomed waters were for the most part those very solt waters of which he was speakiner ; lor the soft waters had an extramblinary avidity for colomsing matter, which they fook יु from peat and from heather, abd other vegrtable organie mallers. 'I'hat tingert the water bown and made it disacrecable fo place on lha hallas of most persons. On the whole, thero was mo mle whatever by which it conld be distinelly nald whether hated or soft water onght to be adopted : the ocerpations of the perple amd their hatits mast be regarded, and in those cases in which solt water was wanterl for mable them for obtain their livelihoorl, solt water onght to be introduced, white in other cases there was at beast no ohjection to water of a harder class. 'Ihere wat, too, this important comsideration-fom-tifthe of the lamd of the earth's surface, and far more of the pepmlated part of the lame, yidfed hard water. It was herefore nomanse foray that water which I'rovidence had supplice in surh superabundance, while the
other was only an exceptional water, should not be supplied for the use of man.

With respect to the construction of embankments for impounding water, there was an idea prevalent that they might he made with slopes, dependent on the nature of the material, hut independent of the consideration of height. If an embonkment 20 feet or 30 feet high would stand at a slope of $1 \frac{1}{2}$ to 1 , why should not an embankment 200 feet or 300 feet high stam? at the same slope? Theoretically it would; and if no other circumstance than the mere question of slope entered into the consideration, there was no doubt the same slope might be arlopted in the one case as in the other. But water-works embankments were usually made of necessity across valleys, which sometimes had a rather sharp fall downwards. As the embankment increased in height, so the weight inercased: and the weight of the upler part of the embankment was much more considerable than the weight at the foot of the cmbankment. That, per se, would not make any difference: but it usually happened that the site of the embankment was more or less of a treacherous character, and that under the embankment there was some material or other of a compressible kind, or that would yicld under a heavy pressure. The result of that was, and particularly if the base of the lank was liable to become wet, that the pressure at the centre compressed that particular stratum, and threw it ont at the foot, the centre sank down, and perhaps the embankment was lost. That was provided against by flattening the slope or by adding a step at the lower part, which threw out a considerable amonnt of weight. That give the necessary stability, and resisted the tendency to sink of the upper part of the bank.

The magnitude of floods was one of the most important things which the civil engineer had to consider-not only in the construction of water-works, but in the construction of bridges, and many other works. That sulgect, it was true, was dealt with empirically, but in this respect it was like nine-tenths of the rule; which governed the actions, the contrivances, and the schemes of civil engineers. They were founded on long-continued observations, and if those observations were correctly arranged and properly plotted, a curve which represented the law in that particular instance could always be obtainel. With regard to floods in this climate, it had been foumd that those which ram from any district were governed in part by the geologieal charater of the district--for which an allowance could be made; by the
more or less precipitate character of the dstrict, for which an allowance eould also fe made; and further, by the maximum amont of rain which fell in that district. In Englam the maximum falls of rain of short duration were nearly everywhere the same.

It was well known that from very small areas as moch as 1 cubic fint of water per acre would come off in a second: from larger areas $\frac{8}{4}$ of a culic foot would dhow off : and $\frac{1}{2}$ or a $\frac{1}{4}$ of : cubie foot from still wider areas; for the water required a comsiderable time to descend to the puint where the reservoirs were to be made. Now by making a horizontal line. which repesented acres, and by plotting up the ohserved volumes of flewhls, which there were many opportmities of measming on a great seale, it was possil)le to find points amongst which a curve could be drawn; and that eurve would give the law which an engineer might safely, and, at all events, reasonably, apply with regard to the guantity of water which would flow over the weirs of reservoirs. This methorl had led to important determinations, which Mr. Hawksley promised to explain on a future vecasion.

November 2! and 2!9, 1870.
CHARLES B. VIGNOLEs' F.R.S., I'resident, in the Chair.

The discussion upon the I'aper Nor, 1,25.5, "On the Water suply of Paisley," by Mr. A. Leslie, ocenpied both evenings.

December 6, 1870. Charles B. Vignoles, F.R.S., President, in the Chair.

The following Candidates were balloted for and duly elected:Crawford James Campbell, Join James Carey, William Bellinghim Carter, Walton Wimte Evans, Alexander Fraser, Willim Fiederick March Pimlipis, Join Arthur Phllips, Arthur Ports, Joseril Quick, jum., Whlilam Robert Robinson, and Edward Welsif, as Members; Ciarles Augustus Alberga, Stud. Inst. C.E., John Phlip Cortlandt Anderson, Thomis Ashtov, Robert Wiliham Peregrine Birch, Stud. Inst. C.E., James Bisset, Joneph Bourne, John Chirles Coone, Stud. Inst. C.E., Charles Cowan, Capt. Arthiur Edward Downing, Fhemerick Dresser, Fraxcis Fox, Thomas Whlon Grindle, Join Falshay Hobson, Arthur Lucas, Jaines Chatburn Madeley, William Matthews, George Palmer, Alexander Rhodes, Willini George Scott, Peter Sonmes, Herbert Unwin, Thomas Finsbury Septinus Wakley, William Thomas Walker, Efhard Orange Wildmay Wimtehouse, Charles Memry Wilis, Joun Hatton Wilson, as Associates.

It was amounced that the Council, acting under the provisions of Sect. III. Cl. VII. of the Bye-Laws, had transferred the following Associates to the class of Member:--Herbert Louis Augustus Davis, Thomas Minson Rimer Jones, and Mevry Sheld.

Also that the following Candidates, having been duly reeommended, had been admitted by the Council, under the provisions of Sect. IV. of the Bye-Laws, as Students of the Institution:Arthur Turnour Atciison, James Thomas Atchison, Edward Kynaston Burstal, Ednund Emson, Walter Freeth, Cinarles Johy Goodman, Arthur Grose, Arden Hardwicke, Fletcher Janes Ivens, Frederick Jackson, Walter Roberts Jones, Join Merman Merivale, Join Nowlan, Willian Patterson Orcilard, Erinest Ebward Sawyer, Gilbert Stiff, Thomas Sugien, Josepil Caliste Grosveror du Vallov, and Charles Edifaid Sabine Younghusbind.

No. 1,224.-"On the 'Theory and Details of Construction of Metal and Timber Arches." By Jules Gaubahd, Civil Engincer, Lausanne. (Transkated from the French by William Pole, F.R.S., M. Inst. ('.E.)

1. Elastic arches supporting a road or railway are connected to the horizontal platform hy pillars and filling pieces, occupying the spandrels. The office of these parts is to transmit the load of the platform to the resisting arch; no other function is usmally attributed to them, and the arch is the important member on which the whole rests. The spantrel, however, forming always a rigid filling or system, contributes powerfully to inerease the resistance of the structure, so that it would be justifiable to consider as the chief member, not the isolated areh, but the framework, more or less complex, constituted by the arch, the spandrel filling, and the longitudinal horizontal piece placed at the level of the platform. L'nder this point of view, the arch would no longer be restricted to a rigid whole ; it might be reduced to a chain of articulated segments. Now in all bridges hitherto constructed, the arches are rigid at the same time that the spandrels present a certain resistance; there is a superabundance of organs, and consequently an uncertain distribution in the functions assigned to each of them. The calculation is only rendered determinate by means of an arbitrary hypothesis of this distribution. Usually the spandrels are neglected, and the arch is assumed to resist without their aid. But there is nothing to prevent the system beingassimilated to an articulated form. Hence the two modes of calculation which will now be examined.

Fig. 1.

2. Articulated System.-Suppose the form represented in Fig. 1. It is necessary to choose a single triangulation, where every picee
is essential ; for otherwise, if, for example, two diagonals were introduced in each lay, the calculation would become indeterminate. At the summit C the two half-spans are joined by a simple point of articulation, like those of the other summits of the triangulation. The piece $B \mathrm{D}$ is useless in theory: and in practice it would le desirable to provide it with a free sliding joint, in order that nothing might impede the expansion of the fixed portion.

Tuder these conditions, the elements of statics furnish easily the stresses on all the pieces. If, for example. it be asked what is the stress t of the segment $E F$ of the arch? Let fall A G perpendicular to E F, then $t \times A \mathrm{G}$ is the moment of resistance. ly virtue of which the piece E F prevents the piroting round the point A. By making this equal to the bending moment relative to the same point, there will result an equation which gives the value of t. The bending moment in question comprehends the sum of the moments of the forces applied to the portion A E II I. If. for example, there is a weight $=P$ applied to the point K, and if the reaction of the abutment I is decomposed into a rertical force $=\mathrm{Q}$, and a horizontal thrust $=T$, the equation giving t will be

$$
t \times \overline{\mathrm{AG}}=\mathrm{Q} \times \overline{\mathrm{AI}}-\mathrm{T} \times \overline{\mathrm{II}}-\mathrm{P} \times \overline{\mathrm{AK}}
$$

If the second number is positive, t is a tension; if it is negative the purtion E F of the arch will be eompressed.
The calculations are the same for the lengitutinal I B. For example, the piece K A ought to prevent the solid E K I II from pivoting round E.
3. When the stresses in the rarions parts of the arch or of the longitudinal are known. the stresses in the spandrel bars can be deduced from them bes simple graphic decompositions. based on the equilibrium of the summits of the system. For example, the point E is sulject first to two known furces exerted hy E L and E F'; construct the resultant of these two furees, and then decompose it between the given directions E A and E li: there will thus be olitained lines equal and opposite to the forces which the pieces E A and E K ought to exert upon the point E, in order to maintain it at rest.

These forces may also be ohtained directly hy calculation. Traking a rertical section such as M N , note down the equilihrimm of rertical tramslation of the protion of the solid situated to the left of MI N. intronding there the reactions proceding from the sogmest th ihe right: that is the sity the atresses of the serereat

lorizontal). 'This ammonts to saying that the vertical projertion of the reguired stress of the bar K E, added to the projection of the known stress of E L , onght to equilibate the sheorimef fore
 I'aplicd between I and the section M N').
4. Witherto the reactions () and 'T have been regmeded as known. In fact their preliminary ealemation is casy, aceording to the emilibrim of the entixe system. Ising the notations of Fig. 2 , and

Fig. 2.

designating by Σ the sums extended to the whole span, then $' \mathrm{~T}=\mathrm{T}^{\prime} ; \mathrm{Q}+\mathrm{Q}^{\prime}=\Sigma \mathrm{I}$; and $2 a Q=\Sigma \mathrm{P} b$. The fometh equation necessary will be furnished by the equilibrimm of rotation of one half-span round the summit $\left(\right.$ ', i.e., $\mathrm{V} h=0 a-\Sigma \mathbf{V}^{\prime} \mathrm{P}(b-a)$; the accent here put on Σ 'indicates that this sun only embraces the terms arising from the half-span considered.
5. If the mutnal thrust be required of the two half-spans at $($, it can be as readily ascertained N^{\prime} and $\mathrm{N}^{\prime \prime}$ being the horizontal and vertical components, it suffices, Q and 'T being already calenkater, to write down the equations of equilibrimm of translation of the half-span, i.e., $N^{\prime}=' T$, and $N^{\prime \prime}=Q-\Sigma^{\prime} P$. The vertical com$\mathrm{l}^{\text {onent }} \mathrm{N}^{\prime \prime}$ will be mull if there is complete symmetry of form and of load round the summit (.

The pieces requiring most strength are those near the summit. The Author wonld be inclined, in the execution of the framing before mentioned, to place the summit C notably lower than the line of the longitudinal, or to adopt a central portion of solid plate.
6. For a determined fixed load, there may he given to the areh the form of a funicular polygon, a figure of equilibrium such that the articulated chain may maintain itself in prsition without the intervention of the other picces of the framework. In a bridge the load varies, lont it is desirable that the figure of the arch shomld approach that of equilibrimm corresponding to the complete loarl. This form would be the eme called the catemory for an areh of uniform section earying omly its own weight. It will be the parabola for an arch loaded miformly per mit of length on at
horizontal line. This latter case is that of suspension bridges, and also of bridges with compressed metallic arches, for the weight of the arch and of the spandrels has lint little influence, proportionally to that of the horizontal platform and its test load.

The theory of MI. Yvon Villarcean fumishes differential equations for determining the figmre of equilibrimm, and the variable thickness of the joints, of an arch of equal resistance submitted to a fixed load. The reason why the circular shape is generally preferred to these theoretical forms is. in the first place, the simplification of the design and of the execution, and also the consideration that the theoretical figure only satisfies rigoronsly a single arrangement of the loard, and not all those to which the arch may he exposed.
7. Rigid Arches.-The second mode of calenlation referred to in Art. 1, consists in restricting the spandrels to simple supports for transmitting the load; the arch is then more strained, and ought to be rigid, for the funicular form only gives an instable equilibrimm, corresponding to a partienlar state of the load. As soon as this state is changel, the arch no longer suffers simple compression, lut is disposed to bend, i.e., to change its figure.

In an arch of masomy, the effect of the mortar is neglected, and the roussoirs are regarded as blocks placed in juxtaposition without adherence, having the power of pivoting one on the other, rom the edge either of the intrados or of the extrados; that is what is called a system of alternative articulation. The centre of pressures, i.e., the point of application of the resultant of the elementary reactions of the joint is considered for each joint. The locus of these centres, or the eurve of pressures, ought not to pass ontside the thickness of the arch, or the pivoting of certain of the vonssoirs would take place; the eurve ought even to keep within a zone more limited than that of the arch, for fear of endangering the crushing of the stones.

An elastic areh is subject to other conditions. If the connections are very good, as is (or ought to le) the case with plate iron, the arch forms an entire piece, suitable to resist buth tension and compression. If it is treated as an arch by the curve of pressures, this curve will no longer be required to remain within the arch.
8. Let F be the total reaction on a juint C D (Fig. 3), and O its point of application, lying in the curve of pressures. Let $\mathrm{OG}=x$ the distance from this point O to the centre of gravity or of elasticity (mean fibre) of the section CD. The force \mathbf{F} is decomposed into a normal pressure F^{\prime} anl a shearing stress $\mathrm{F}^{\prime \prime}$ which, acting in the direction C 1, tends to shear the solid. The longitudinal force F^{\prime} may be applied at the centre of elasticity G ,
provided that we combine with it a couple whose moment $=\mathrm{F}^{\prime} x$, which will be the bending moment. Then the fibre most strained,

Fig. 3.

i. ${ }^{\circ}$. (in the case of the figure, will be suljected to a pressure

$$
\mathrm{R}=\frac{\mathrm{F}^{\prime}}{\omega}+\frac{v \mathrm{~F}^{\prime} x}{\mathrm{I}}
$$

per unit of surface: ω is the area of section, I its moment of inertia, and v the distance $\mathrm{C} G$. The formula supposes that, under the stress mentioned, the section C D has slightly piroted while remaining plane.
9. When the arch rests upon the alutments by an extended sustaining surface, being keyed by a range of wedges, there is nothing to prevent eertain of these wedges heing driven tighter than others. This will then modify the point of concentration of the thrust upon the abutment, and consequently also all the other points of the curve of pressures. Hence arises the meertainty which generally aftends the methon of the curve of pressures, these pressures only being determined by arlitrary data in regard to the original keying-up, or the yielling of the materials. An infinite number of eurves are possille. It is not known which is effectively realizel, lout suppose the material system to seek, in the first place, its equilibrimm at the cost of the least resistruce (Moseley's principle); then certain edges are compressed and oblige the curve of pressures to modify itself continnously, until it arrives at a stable condition. If no stable comlition is met with, the system soon exhansts the series of eonditions possible, and ends at the extreme limit, which is then the curve of the greatest resistances, beyond which the failure of the structure takes place. According to that a curve of any $p^{\text {nessmes }}$ whatsoever, arlitrarily chosen among all those compatille with the equilibrim, will give a strong presumption of stability, if it only submits the edges to
pressures offering all practical secmity ; for, in the alisence of any other stable combition, the system onght to stop at that, if the velocity acquired is inscusible. Thus is justified the method of Méry, notwithstanding that it appears strange at first sight to hase confidence on the existence of a certain curve, at the same time that there is no assurance that this curve will be effectively realizal.

By these considerations, the safety is established, but it may be so in different degrees; and there is another consideration to bring into the question-that of economy. Now these two conflicting oljects, the economy of material and the stability, lead the play or field open to the virtual oscillations of the curve of pressures to be confined within just limits. The amplitude of this play, if it is great, will give a superahmondance of safety, and if it is small, it will testify to great boldness of design. M. Durand Claye has ('Amales des l'onts et Chanssées, 1868') indicated a methor of appreciating the degree of boldness-a method of which the following résmé will present the essential features for the case of elastic arches, not excluding the action of tension.
10. Two preliminary remarks may he offered:-

1st Remark.-1n Art. 8, is stated the formula of resistance which gives the stress R on the fibre most strained in a joint C D. Suppose that this stress attains precisely the limit imposed by practical safety, it becomes a given datum, and the muknown quantity is the corresponding normal pressure F in respect of abscissa $C O=x$ of its point of application. Now $\mathrm{F}^{\prime}=\frac{\mathrm{RI} \omega}{\mathrm{I}+\omega v x}$, so that, considering the line representing the force F^{\prime} as an ordinate, $\mathrm{OM}=y$ ($\mathrm{Fig} . \frac{1}{4}$), answering to the abscissat Fig. 4.

(1) $=x$, the erometrical locns of the prints M will la a lnentrh of
an equilateral hyperbola ML, of which D C, being prolonged, represents an asymptote. Beyond the point L, which correspomis to $x=\mathrm{O}$, the first hyperbola ceases to apply, and is replaced by another $\mathrm{L} m$; seeing that, when the centre O of the pressures passes to the other side of the centre of clasticity C, it is no longer the fibre C which is the most strained, hut the filre D .

For an arch capalle of extension R and F^{\prime} may be admittel to be negative, which leats to a second hyperbolic conton M' $\mathrm{L}^{\prime} \mathrm{m}^{\prime}$; but this case rarely demands attention.

These different curves define generally the exigencies of the section C D. If a curre of pressures lorings on this joint a resulting normal reaction F^{\prime}, excecling the ordinate, such as O M, or in other worls, whose summit passes outside the contour MLLm... $m^{\prime} \mathrm{L}^{\prime} \mathrm{I}^{\prime}$, this curve onght to be rejected, as involving a pressure, R , greater than the limit admitted.

2nd Remark. - In orter to trace a curve of pressures, the voussoirs, such as $\mathrm{C}_{0} \mathrm{D}_{0} \mathrm{DC}(\mathrm{Fig} .5)$ are considered as departing from the ver-

Fig. 5.

tical joint of the crown $\mathrm{C}_{0} \mathrm{D}_{0}$ and stopped successively at varions joints C D. Let the case of an arch be considered which is symmetrical both as to figme and load, so that the thrust at the crown is horizontal. Take the centres of pressure O_{0} and O (arbitiary if they do not result from constructions alrearly existing) ; through O° draw the horizontal $\mathrm{O}_{0} \mathrm{E}$ which will cut in E the vertical from the centre of gravity of the roussoir $\mathrm{C}_{0} \mathrm{D}_{0} \mathrm{DC}$ and of its load: draw a length EF equal to the weight, join EO, and draw FI horizontal. The three forces which maintain the equilibrium are represented by the three sides of the triangle EFI; the weight $=\mathrm{EF}$, the thrust at the crown $=\mathrm{FI}\left(\right.$ but applied at $\left.\mathrm{O}_{0}\right)$, and lastly the reaction of the joint CD equal to I E, and applied at O. This force may be transferred to $O P=E I$, and the normal component of it OM taken, which is that called ahove \mathbf{F}^{\prime}.

Inversely, this pressure OMI may be assumed à priori, and its point of application O, in order to arrien therefrom at the thrust
on the crown. In effect, take $O K$ vertical and equal to the weight EF; draw K P horizontal, and MP paralled to DC; then join the point of intersection P to O ; prolong P O to E , where it encounters the vertical of the centre of gravity, and draw $E O_{0}$ horizontal. O_{0} is thins known, and the value of the thrust at this point is measured ly K P. It may be transferred to $\mathrm{O}_{0} \mathrm{~N}=\mathrm{KP}$, and a point N will be derived from II. The constructions should he modified in the case of non-symmetry, for then the thrust at the crown is not horizontal.
11. Now, let there be chosen successively for M all the points of the hyperlolic contom M L m of Fig. 4. The points N corresponding to them at the crown, will deseribe certain curves $\alpha \beta \gamma$ (Fig. 6), which will represent at the crown the exigencies of any

$$
\text { Fig. } 6 .
$$

joint C D. A thrust $\mathrm{O}_{0} \mathrm{~N}$ will only be admissille if its summit N falls mon the contom $a \beta \gamma$, or in the interval between the hranches $\alpha \beta$ and $\beta \gamma$. But the joint $\mathrm{C}_{0} \mathrm{I}_{0}$ possesses, by the same title as $\left(1 \mathrm{D}\right.$, itsown limiting eontomr $\mathrm{H}_{0} \mathrm{~L}_{0} m_{0}$ formed of hyperbolic ares. Severally, then, the smmmits N of the thrusts $\mathrm{O}_{0} \mathrm{~N}$ admissille at the crown ought to fall in the interior of the space cross-shaded in Fig. 6 , in order to satisfy the simmltaneons exigen cies of the joints $\mathrm{C} D$ and $\mathrm{C}_{0} \mathrm{D}_{0}$.

Repeat the constructions for the joints other than (1), transferring everything to the crown joint $\left.\mathrm{C}_{0} \mathrm{I}\right)_{0}$. The varions crosshatched spaces will contract more or less among themselres, and their common lart alone must be taken into consideration, in order to obtain the thmsts at the crown, or the cmrves of pressure, compatible with the limiting resistance R imposed simultanemsly at all the various joints.

If it is now desired to compare the boldness of two works, it will suffice to seck for each of them, liy trial and error, the limiting stress la for which the various eures of pressure realizalle become reduced to one only, or the cross-shaded space becomes reduced to a single point. The value thus found will be a well-characterized definition of the hohluess sought. Such is the method of M. Jurand Claye.
12. Bridges with three pirots.-A metallic arch might he provided with three pivots or linges, one at the smmit, the other two at the smports. The axis of these pivots would determine necessarily the centres of pressure at the crown and at the abutments, and then mothing would be arbitrary in tracing the curve of pressures, or in the methods of calculation. The calculations of the reactions. and conserfucntly those of the resistances of the arch, would le simple and certain; the expansion would have free play, withont straining the metal. These three pirots have been proposed, lint hitherto, as far as the Author is aware, no one has rentured to apply them to large works, for fear that the too great molility should favour the dislocation in certain parts. There have only been employed two pivots at the supports, an imovation introduced by M. Mantion in an iron bridge of the St. Denis Canal. Withont doult, for an isolated arch, a pivot at the crown would have the effect of a spherical knee, provoking the structure to turn over ; but in a bridge sufficiently wide relatively to the opening, it would seem that the comection together of several arches might be sufficiently well arranged to realize in the whole a long joint, resisting effectually any tendency to bending, at least for an ordinary road, where the rolling weight is less than on a railway.

Bridges with two pirots. With two pivots at the supports, the expansion is sulject to some constraint, because it ought to angment a little the rise of the arch, on the hypothesis that the supports are rigidly fixed. This effect contributes in certain cases to inerease the stress of the material; it is sought to lessen this by reducing the dimensioms of the middle of the piece.

The reactions of the abutments can no longer be oftained by simple statics, as in Art. + , for the last equation of this Article contains the rise h. which would be monown, as it onght to be measured to the miknown centre of pressme of the middle joint. If no supplementary equation existed, the problem might be deemed indeteminate, and a choice le arbitrarily made of the centre of pressure of the smmnit, as. for example, the middle of tho joint ; this is the process of M. Méry.
[1870-71. ड.s.]

In reality, however, the equation does exist; it depends on the deformation or on the yiclding of the material of the arch, for this deformation must conform to certain conditions, as, for example, with respect to the primitive invariable situation of the points of support.

Now, when treating of an apparatus not homogeneous, the expression of such a delicate condition must be abandoned, and reliance must be placed upon MI. Méry's process, notwithstanding its vague nature. Such is the case of an areh of masonry, a heterogencous agglomeration of stones and mortar; and further, as there ean be no question here of pivots at the supports, the same uncertainty prevails as to the point of concentration of the thrust upon the abutments. Such would also be the case with an arch of carpentry, the wood yielding much, leing very sensitive to atmospheric inflnence, having a texture full of knots and other irregnlarities, and finally only allowing imperfect jointing. Arehes of tast iron, even, are not rigoronsly homogenems; they consist of several vonssoirs fitted more or less exactly one on the other, and the material assumes irregnlarities of texture in the casting. A certain indecision seems, therefore, legitimate for such works, even in the case of two pivots at the supports. Further, it camot he believed that a metallic arch would be menaced with failure by the simple fanlt of its having been calculated by the process of M.Méry; the great gnarantee in construction always being the wise precantion of keeping at a respectful distance from the stresses of rupture.

There only remain, therefore, arches in a single piece of homogeneons metal, to which the theoretical calculations of deformation may be applied with confidence. Arches in solid wrought-iron plate may be considered to belong to this category, the metal having been well worked, and the eomections being as solid as the contimons parts. The theory of these arches has been the object of the researches of M. Bélanger, and subsequently of MI. Bresse, who has entered into great details respecting them in his Treatise on Applied Mechanics (Stabilité des Constructions). His principal formule will be indicater.
13. The equilibrium of the entire system furnishes always, as in Art. 4, the three statical equations $T=T^{\prime}, Q+Q^{\prime}=\Sigma P$, and $2 a Q=\Sigma \mathrm{l} b$, the P 's expressing the weights or vertical forces (Fig. 7). The equation of deformation, which will express the invariability of the chord $2 a$, is the equation following (see Art. 27 of the Author's Memoir on the Strength of Materialsj.'

[^8]$$
2 \tau a+\int_{0}^{2 a}\left(\frac{\mu y}{E I} \frac{d s}{d x}+\frac{\mathrm{N}}{\mathrm{~F} \omega}\right) d x=0 .
$$

Fig. 7.

The co-ordinate axes are $\mathrm{O} x, \mathrm{O} y$, the origin being taken at one of the supmots: s expresses a length of the curved mean fibre, and $d s$ its differential. The elastic arch may be more or less strained by expansion or keying; τ expresses the linear clongation resulting from these causes independent of the loads P . At the point M of the mean firre, lefined by the aliscissa x and the ordinate y, let us imagine a transverse section: ω is the area of this section; I its moment of inertia with respect to the horizontal axis through its centre of gravity ; μ is the bending moment, and N the total normal pressure, to which it is sulject. The shearing stresses (parallel to the section), which have but little influence on the deformation, may he neglected. The letter E is the coefficient or motulns of clasticity; the section being supposed homogencous, $\mathrm{E} \omega$ is what is called the longitulinal spring (ressort lomgitudinal), and E I the moment of flexibility.

The three statical equations will give $\mathrm{T}^{\prime}, \mathrm{Q}$, and Q^{\prime}, then T , which alone remains unknown, ought to le derived from the last equation, where it enters implicitly. In order to show this, put $\mu=\mu_{1}-\mathrm{T} y$, and $\mathrm{N}=\mathrm{N}_{1}-\mathrm{T} \frac{d x}{d s}$; then the moment μ_{1} and the longitudinal stress N_{1} are known, since they no longer take account of the mannown quantity T put aside; hence

$$
\mathrm{T}=\frac{2 \tau a+\int_{0}^{2 a} \frac{\mu_{1} y}{\mathrm{EI}} \frac{d s}{d x} d x+\int_{0}^{2 a} \frac{\mathrm{~N}_{1}}{\mathrm{E} \omega} d x}{\int_{0}^{\cdot 2 a} \frac{y^{2}}{\mathrm{EI}} \frac{d s}{d x} d x+\int_{0}^{2 a} \frac{1}{\mathrm{E} \omega} \frac{d x}{d s} d x}
$$

Such a formula is, indeed, alarming for practical application. especially when the calculation must be several times repeated for
different cases of loading. However, by relucing it to the most essential terms, these may be taken approximately

$$
\mathrm{T}=\frac{2 \tau a+\int_{0}^{0} \frac{\mu_{1} y}{\mathrm{EI}} d s}{\int \frac{y^{2}}{\mathrm{EI}} d s}
$$

and further, the two integrals or quadratures alone retained, and taken between the limits O and S (equal to the total length of the arch), may cach he calculated by the approximate method of Thomas Simpson, whatever be the figure of the given arch whose stalility it is desired to verify. Dividing the arch into an equal number of equal parts, the values of $\frac{\mu_{1} y}{\mathrm{EI}}$ and of $\frac{y^{2}}{\mathrm{E} I}$, may be determined for each point of division, and Simpson's formula may be applied.
14. For a symmetrical arch symmetrically louded, the axis of y may be transferred to the axis of symmetry passing through the summit of the areh, and then the gencral formula for T will be

$$
\mathrm{T}=\frac{\tau a+\int_{0}^{a} \frac{\mu_{1} y \frac{d s}{\mathrm{E} I} d x}{d x+\int_{0}^{a} \frac{\mathrm{~N}_{1}}{\mathrm{E} \omega} d x}}{\int_{0}^{a} \frac{y^{2}}{\mathrm{EI}} \frac{d s}{d x} d x+\int_{0}^{a} \frac{1}{\mathrm{E} \omega} \frac{d x}{d s} d x} .
$$

If such an areh is rigidly fixed by building in (encustré) at the extremities, the abutment will exereise reactions Q , T , which may always be regarded as applied to the point situated upon the mean fibre, provided there is combined with it a couple or moment of encastrement σ, destined to maintain in variable the angle between the crown joint and the joint at the origin. This couple will then appear in μ, from which it is disengaged ly making $\mu=\mu_{2}-\mathrm{T} y+\sigma$. Then the theory of M. Bresse furmishes these two equations for determining \mathbf{T} and σ, the origin of the co-ordinates being in the middle of the span.

$$
\begin{gathered}
\sigma \int_{0}^{a} \frac{1}{\mathrm{EI}} \frac{d s}{d x} d x-\mathrm{T} \int_{0}^{a} \frac{y}{\mathrm{EII}} \frac{d s}{d x} d x+\int_{0}^{a} \frac{\mu_{2}}{\mathrm{EI}} \frac{d s}{d x} d x=0 \\
\mathrm{~T}_{0}\left(\int_{0}^{a} \frac{y^{2}}{\mathrm{EI}} \frac{d s}{d x} d x+\int_{0}^{a} \frac{1}{\mathrm{E} \omega} \frac{d x}{d s} d x\right)-\sigma \int_{0}^{a} \frac{y}{\mathrm{NI}} \frac{d s}{d x} d x \\
=\tau a+\int_{0}^{a} \frac{\mu_{2} y}{\mathrm{KII}} \frac{d s}{d x} d x+\int_{0}^{a} \frac{\mathrm{~N}_{1}}{\mathrm{~K} \omega} d x
\end{gathered}
$$

15. Circular Arches of uniform section.-M. Bresse has further ardanced the study of circular arches of uniform section, for which ω and I are constant, and $y=$ the ordinate of the are of a circle. The following are the more important formula for the case of simple smports withont enctstrement.

Let ρ bo the radins of the circle, $a=\rho \sin \phi$, the demi-chord, ϕ the half angular amplitude $S(C A$, hetween the crown and the origin A, Fig. 8.

Let there he considered first the isolated action of a single weight P , applien to a point I defined by the angle $\mathrm{S}_{\mathrm{C}} \mathrm{C} \mathrm{M}=\theta$. 'I he integrals will be calculated after having expressed μ_{1} and N_{1} which change on either side of M . The vertical components of the reactions of the abutments will be

$$
Q=\frac{\mathrm{I}}{2}\left(1+\frac{\sin \theta}{\sin \phi}\right), y^{1}=\frac{\mathrm{T}}{2}\left(1-\frac{\sin \theta}{\sin \phi}\right)
$$

and the horizontal thrust will be

$$
\mathrm{T}=\mathrm{T}^{1}=\Gamma \cdot \begin{gathered}
2 a^{2} \Lambda-r^{2} \sin ^{2} \phi\left(\sin ^{2} \phi-\sin ^{2} \theta\right) \\
2 a^{2} B+2 r^{2} \sin ^{2} \phi(\phi+\sin \phi \cos \phi)
\end{gathered} ;
$$

r designates the radins of gyration $=\sqrt{\frac{1}{\omega}}$ of the uniform section. Further, for the sake of abridgment, let A designate the quantity

$$
\frac{\sin ^{2} \phi-\sin ^{2} \theta}{2}+\cos \phi(\cos \theta+\theta \sin \theta-\cos \phi-\phi \sin \phi)
$$

and B the (quantity, $\phi+2 \phi \cos ^{2} \phi-3 \sin \phi$ cus ϕ.
As a general form, the preceling thrust T may be expressed :-

$$
\mathrm{T}=1 \frac{A}{1 ;} \cdot \frac{1-\lambda \frac{r^{2}}{a^{2}}}{1+\lambda^{\prime} \frac{y^{2}}{a^{2}}}
$$

Now, the principal coefficient $\frac{A}{\mathrm{~B}}$ is furnished ready calculated by the Table I. of M. Bresse's 'Mecanique Appliquée' for different values of $\frac{2 \phi}{\pi}$ and of $\frac{\theta}{\phi}$. The Table IV. gives the coefficient of correction

$$
\frac{1-\lambda \frac{r^{2}}{a^{2}}}{1+\lambda^{1} \frac{r^{2}}{a^{2}}}
$$

for a series of values of $\frac{2 \phi}{\pi}$, and of $\frac{r^{2}}{a^{2}}$. The factor λ is equal to $\frac{\sin ^{2} \phi\left(\sin ^{2} \phi-\sin ^{2} \theta\right)}{2 \mathrm{~A}}$, but differs little from $\frac{\pi^{2} \sin ^{2} \phi}{4 \phi^{2}}$. And on the other hand, $\lambda^{1}=\frac{\sin ^{2} \phi(\phi+\sin \phi \cos \phi)}{\mathrm{B}}$ may be replaced approximately by $\frac{15 a^{2}}{f^{2}}, f$ designating the rise or height of the arch.
16. Now, leave P aside, and only consider a simple dilatation τ per running metre. This will produce no vertical reaction, but it simple horizontal thrust

$$
\mathrm{T}=\frac{2 a^{2} \mathrm{E} \mathbf{I} \sin ^{3} \phi}{a^{2} \mathrm{~B}+r^{2} \sin ^{2} \phi(\bar{\phi}+\sin \phi \cos \phi)} \cdot \tau .
$$

Writing $\mathrm{T}=\frac{\mathrm{D}}{1+\lambda^{\prime} \frac{r^{2}}{a^{2}}} \cdot \frac{\mathrm{E} I \tau}{a^{2}}$, there will be found the principal coefficient D in the tables of M. Bresse. In the absence of tables, approximately $\mathrm{T}=\frac{15 \mathrm{E} \mathrm{I} \tau}{15 r^{2}+8 f^{2}}$, if the arch is sufficiently flat.
17. For the third case, a uniform load p per metre of lenyth of the arch (such as the weight of the arch itself). Supposing it applied to the entire arch, of length $=\mathrm{S}$, the vertical reactions will be $Q=Q^{\prime}=\frac{p S}{2}$, and the thrust;
$\mathrm{T}=p \rho \times$
$a^{2} \phi\left(\frac{1}{2}-5 \cos ^{2} \phi\right)+\frac{9}{2} a^{2} \sin \phi \cos \phi-r^{2} \sin ^{2} \phi\left(\frac{1}{2} \phi+\frac{1}{2} \sin \phi \cos \phi-\phi \cos ^{2} \phi\right)$.

$$
a^{2} \mathrm{~B}+r^{2} \sin ^{2} \phi(\phi+\sin \phi \cos \phi)
$$

This expression is of the form ' 1 ' $=2 \rho \rho \phi \cdot D^{\prime} \cdot \frac{1-\lambda \frac{r^{2}}{a^{2}}}{1+\lambda^{\prime} \frac{r^{2}}{a^{2}}}$, and
the coefficient 1) hats also heen calculated in the tables eited. In the anence of tables, the following aproximate formuka will suffice for a flat arch:

$$
\mathrm{J}=\frac{4 f \rho \rho \phi}{7 a}\left(\frac{7 \pi^{2}-3 f^{2}}{8 f^{2}+15 r^{2}}\right)
$$

18 Finally, for a uniform luat pler wnit of lenyth on the horizontal line (waight of the platform). As the moving load may only be partill, let θ_{1} and θ_{2} be the angles amalogous to θ (Fig . s) which limit the purtion of the areh loaded. 'Then 'I'will be given ly the folloving equation:
$\frac{\mathrm{I}}{1}\left[2 a^{2} \mathrm{~B}+\underline{2} r^{2} \sin ^{2} \phi(\phi+\sin \phi \cos \phi)\right]$
$=a^{2}\left(\operatorname{sn} \theta_{2}-\sin \theta_{1}\right)\left(3 \sin ^{2} \phi-2-2 \phi \sin \phi \cos \phi\right)-\frac{a^{2}}{3}\left(\sin ^{3} \theta_{2}-\sin ^{3} \theta_{1}\right)$
$+\frac{a^{2} \cos \phi}{2}\left(\theta_{2}-\theta_{1}+2 \theta_{2} \sin ^{2} \theta_{2}-2 \theta_{1} \sin ^{2} \theta_{1}+3 \sin \theta_{2} \cos \theta_{2}-3 \sin \theta_{1} \cos \theta_{1}\right)$
$-r^{2} \sin ^{2} \phi\left[\sin ^{2} \phi\left(\sin \theta_{2}-\sin \theta_{1}\right)-\frac{1}{3}\left(\sin ^{3} \theta_{2}-\sin ^{3} \theta_{1}\right)\right]$.
When pextends to the entire length, make $\theta_{1}=-\phi, \theta_{2}=\phi$, and consemently we have
$\mathrm{T}=1 a^{\frac{1}{6} \sin ^{2} \phi\left(7 a^{2}-B a^{2} \phi \cot \phi-4 r^{2} \sin ^{2} \phi\right)+\frac{1}{2} a^{2}(\phi \cot \phi-1)} a^{2} \mathrm{~B}+r^{2} \sin ^{2} \phi(\phi+\sin \phi \cos \phi)$,
B desgmating, as above, the quantity $\phi+2 \phi \cos ^{2} \phi-3 \sin \phi \cos \phi$.
Thes last expression for the thrust differs little from

$$
\mathrm{T}=\frac{ \pm f p}{7}\left(\frac{7 a^{2}-f^{2}}{8 f^{2}+15 r^{2}}\right)
$$

But it may also, without altering its value, be written meder the frm $\mathrm{T}=2 p a \mathrm{D}^{\prime \prime} \frac{1-\lambda \frac{r^{2}}{a^{2}}}{1+\lambda^{\prime} \frac{r^{2}}{a^{2}}}$, and $\mathrm{D}^{\prime \prime}$ sought in the talles of 11 .

Iresse. The vertical reactions are $Q=Q^{\prime}=p a$ (in the ease of tie complete load). If the parabolic form for the areh had been alopted, the horizontal thrust would be, as with suspension hridges,

$$
\mathrm{T}_{1}=\frac{p u^{2}}{2 \dot{f}}
$$

19. When once the determination of the reactions of the abutments has been arrived at, there is no further difficulty in applying the formula of resistance to any seetion whatsoever. The conplete bending moment μ and the longitudinal foree N are ealculated from the known forces, then the formula $\mathrm{R}=\frac{\mathrm{N}}{\omega}+\frac{v \mu}{\mathrm{I}}$ gives the stress R per superficial unit on the most strained fibre in the section $(v=$ distance of this fibre from the neutral axis, $\omega=$ area of section, and $I=\omega r^{2}$ its moment of inertia). Consilering successively various sections, the section will be found where the stress F attains the highest value. This maximum maximorum of stresses is obtained rapidly in the ease of a load p ler ruming horizontal metre on the entire length, by multiplying $\frac{p a}{\omega}$ by a coefficient β, which M. Bresse's Table V. gives ready calcuated for a series of values of $\frac{r^{2}}{a^{2}}$, of $\frac{2 \phi}{\pi}$, and of $\frac{h}{a}\left(\right.$ or $\left.\frac{2 v}{a}\right)$. This applies always to a circular areh of miform section, this section being also symmetrical relatively to the neutral axis, which oceupis the middle of its height h.
20. The best ratio $\frac{f}{2}$ a to adopt between the rise f anl the opening 2 a depends on $\frac{r^{2}}{a^{2}}$; it would be, for example-

For $\frac{r^{2}}{u^{2}}$	$=0.0001$	0.0002	0.0003	0.0005	0.0008	0.0010	0.015
$\frac{f}{2 a}=$	0.124	0.150	0.158	0.176	0.198	0.212	0.211

Goul sections to adopt for arches are those which make $\frac{r}{h}$ large i.e., which have a large radins of gryation or moment of inertia withont too great height.
21. The tables prepared by M. Bresse simplify eonsiderahly thr calculation of eircular arches with a miform section. The eirenla: form is, indeed, that which is ordinarily chosen in practice; bu, the rastriction to miform section is more troublenome, for there is a domble motive to vary the section. By diminishing the middl: of the areh the play of the expansion is facilitated (in the absenco
of a pivot at the summit), and by enlarging the section near the almoments the strength is inereased where the pressures berome greater. It is hetter to give to a structure the form which is practically most adrantageoms rather than that which most facilitates the theoretial calculatioms. If, then, in the case of a variable areh, either from want of time or of skilfnl ad, the general formmat for 'l' (Art. 1:3) be thonght too eomplicaterd, the method of M. Méry may be adopted, by choosing arbitrarily the eentre of pressme at the erown: lont in this case it will be atvisable to make say two alenlations insteal of one with sitnations motally different from the arhitrary print. If these operations imlieate advantageons results for the two hypotheses (repeated in the varions cases of loading" presmed to be dangerons), dondthess the saletry of the work may be consilered as sufficiently established.

If the joints of attachment at the abutments are keyed at sereral prints, instead of being pivoted, it wonld be illusive, as in a masomry arch, to pretend to make a rigoroms theoretical ealentation : for it conld not be ascertained that the keys were all driven equally in the first instance, or that in tonehing them afterwards, in case of derangement, the resistance of the structure had not been altered. Further, the wedging-up ly mmerons keys shomld be considered oljectionalle. If the eentre of pressure of the extreme section, which is not adherent to the support, passes certain limits (noyan central) a key of the extradus or the intrados will become loosened, while the oppusite one will suffer excensive strain. T'u avoid these evils it would be necessary to have recomse to bolting or encastroment, often diffienlt to alply, or of little utility.

Arcies of Different Materlals. Detalls of Construction.

22. Structures in timber are the most economical in many comtries, but their dmability is limited. This may be prolonged by snceessive renewals of the parts deteriorated ; but such reparation is costly, and it tends to augment the general deformation or giving way, becanse every new piece introduced in a space shortened by previous alterations shortens it further when it takes its share of the work.

Metals, cast iron, wrought iron, or steel, promise generally a greater durability.

Arches in Timber do not form entire strnctures so well commeeted together as to admit of the application of M. Bresse's formula, nor of the adoption of pivots. It is, therefore, necessary to proceed mearly as for a vault of stome, ly the curve of pressmes. The
difference only lies in the form of section of the arch, and in a different mode of distribution of the loads

As the wood alters and twists by hygrometrical variations, it is generally desirable to give a slight rise (camber) to the phatform. Doubtless, at first, if the bridge has many spans, this camber may be slightly visible to the eye, and may appear as a series of convex curves breaking the continuity of the horizontal line of the platform ; but this appearance is certainly less disagreeable than the hollows, signs of sinking, which, even while the solidity is undoubted, impress the public with an idea of danger.
23. The principal type of timber arches appears to be that inaugurated at Yvry (Seine) by M. Emery, namely, that where the arches are composed of strong pieces of carpentry superposed to the number of three, for example. But it is preferred in many cases to leave open the intervals botween the several pieces in order to allow better ventilation, and to prevent them from heating; and further, hecause this plan gives an increase of depth to the areh, and consermently a more ample field to the oscillations of the curve of pressures. The sketch (Fig. 9) will recall the type referreel to.

Fig. 9.

The horizontal and the hanging members are comected together (Fig. 9a) ly obliquely-ent joints, forming sliding planes, so that the bolts produce a reeiprocal tightening of all the pieces bronght together. With all surfaces in contact, moisture and heating are to be feared; but it is advisable to apply layers of coal-tar here as well as in other internal surfaces where the parts are fitted together'. 'The iron-work should be as much as possible in the
form of straps and stirrups, clasping the wood round without priereing it. In the butt-joints of the segments of the arch it is useful to interpose plates of colper, or of very hard wood, in order

Fig. 9re.

to prevent the mutual penetration of the fibres. If it is absolutely necessary to use wood imperfectly seasoned, it ought not to be painted till a year or two after the construction.

Certain timber bridges present a compressed arch, a tensile tiebar, and vertical conneeting-rods (Fig. 10). This system is allied to the bowstring form, which will be referred to hereafter.

Fig. 10.

The flat arehes of Wiebeking (Bavaria) and those in thin layers of planks superposed (Emy) would appear only suitable for roofing purposes, being too subject to deformation for lridges.

Among the American forms of trellis framework for straight beams, capable of competing with arched openings, the system of Howe, having iron vertical tie-rods, deserves special mention (Fig. 11). Two observations may be made, Fig. 11.
 by way of digression on this system.
A. It permits, within certain limits, of the correction of toy
much deflection by simply tightening the screws of the ties. In effect this operation shortens the rods which the flexure has elongated. Further, the tightening compresses the cross pieces in the diagonal which has distended, and may even, if pushed further, compress this simple diagonal more than the other, of which the section is doulde; these effects are contrary to those of the load, which has deformed the beam. In practice this resource is lout limited, especially in bridges of several spans with continuons girders. A britge on this system, constructed on the Rhone, near st. Maurice, in Switzerland, has suffered considerable deformation, resulting, at length, in requiring the application of thick packing pieces to level the rails; this work, luilt with green timber, and painted prematurely, has required almost complete reconstruction within three or four years after its first erection ; the successive replacement of the pieces of timber, during the working of the railway, has not heen possible withont aggravating the deformation already produced by the load.
B. The association of two different materials, wood and iron, in one and the same resisting system, is not free from inconvenicuce. The tightened joints of the cross pieces occasion shocks under the vibrations of the trains; besides, it has been sometimes remarked, that the lowering of the temperature in winter may unduly contract and fracture the iron rods.
24. Constructions in Mctal.-Steel is the material of the future for large lridges; for it sustains twice as much as iron, and the dead weight is diminishel. It is, moreover, a material homogeneons and elastic, and little affected by vibrations. Fngland has ahready for some time inaugurated the use of steel in bridges. ${ }^{1}$

Cast iron resists compression well, lut tension bally. It makes good arches in the cases where the curve of pressures does not pass out of a certain central zone, and where the flexure is nothing or insensille; and on the condition that there are no powerful vibrations, i, e., that the dead weight is large compared to the moving load. This last consideration leads, in the case of railways, to the spreading of a thick layer of ballast on the platform, in spite of the increase of load resulting therefrom. This has been done enpecially on the bridge of Taraseon, over the Rhone, a great work of seven arches of 62 mètres (203 feet) cach. Cast iron is less costly than wronglit iron, for equal weights, and it may easily lue used, under compression, up to a practical coefficient of 6 kilogrammes per square millimètre ($3 \cdot 8$ tons 1 er square inch) and

[^9]upwards. The stress on the mean fibre in works constructen, generally approaches $: 3$ kilogrammes (1.9 ton), the vonssoirs are applied one on the other hy flanches related and bolted together. It is desirallde to a void thicknesses less than 2 centimetres (0.8 inch nearly), and also too abrupt variations in the thickness of the same piece, to avoid inecpalities in cooling, and differences of texture.

Wrought iron is preferable to cast iron, in spite of its higher price, whenever there is reason to fear the effects of flexure in certain parts, or when it is desired to make a light structure, withont loading of hallast. The rivetted joints render the picce as strong as if it were rolled entire ;' there is the opportmity of alopting pivoted smports, and of calculating the thrust aceording to the thenetical defumation. However, this conclusion is not alsolutely true for trellised arehes, which it is necessary to use in the case of very large spans. Such, for example, is the bridge at Coblenz over the lhine, consisting of three arehes, each 96.70 mitres (317 fect) span (Fig. 12). In this hridge the pirot applien to the abutments is interposed between two east-iron plates, one

Fig. 12.

bedded with cement on the masonry, the other provided with boxes or jaws to receive the feet of the arch, which are lent to converge
${ }^{1}$ Not always; rivetted joints are often badly designed, and worse made. -Tr.
to this point. The arch, however, has not been reduced in depth, the triangular parts have leen preserved, and sustained by ordinary keying, in order to diminish the mobility. This may be justified for a work of this lind, with a trellised arch, but in the case of a solid plate web, the pivot alone without keys would appear better.

In general, a solid plate web is preferable to trellis-work for arches of morlerate dimensions. In effect, the flexure is small, and the longitudinal pressure mueh predominates; the solid plate acts, consequently, more usefully than in a straight beam, which presents nentral fibres. Moreover, it will only be necessary to employ rivets at considerable intervals in the parts outside the joints.

To satisfy the alvantageous condition named in Art. 20, i. e., a large moment of inertia, without too great depth, it is desirable to adopt for the section a domble T with large wings. For large openings, however, a box section (Fig. 13) appears to be preferred.

Fig. 13.
 The lateral stiffness will depend essentially on the cross framing which comects together the different arch ribs of the same span. Where this resource is wanting, i.e., where an isolated arch rib must maintain itself alone, the oval section, analogous to that of the arches of the gigantic bridge at Saltash, presents itself as one of the most favourable.
25. Wromght and cast iron may be associated in the same work. This combination has been adopted, for example, in a lridge of three arches constructed in the Park at Neuilly, near Paris. Fig. 14 indicates the gencral aspect of a semispan of this work, many details of which have been suggested by the new Westminster Bridge. All the pieces essentially under compression, i.e., the spandrels and the portions of the arch near the abutments, have, for the sake of economy, been made of cast iron, while the central portion of the arches and the longitudinal hearers of the platform are of plate iron. The summit of the arch is very flat, which exposes it to sensible flexure; at certain parts of the crown the stress of tension may attain 4 kilogrammes per square millimetre. The longitudinal hearer is, moreover, destined to act as an anchoring tie, in order to mite the three prarts into a solid whole, securely fastened to the masomry; and this is extended to the almoments on either side. The resistance of such a structure is undoubtedly considerable, hat it is difficult to estimate, with any certainty, the internail strans which may arise from expansion.

Arehed bridges are, on principle, often more eoonomical than those formed with girders; they armit leetter of an angmentation of the dean weight, for the purpose of deadening the vibrations and increasing the proballe darability. Bat it is nevessary that sufficient height shomh tre avialable, aml that the abmoments shomlil le able to resist the thrusts. When the work is low and the gromel solicl, it is casy to give the abmoments the necessary stability, without too much expense. The compression, tending to close the molecules of the metal, appears to promise to such works a longer duration than would be due to pieces in tension, which threaten, after a long period, to lue subject to enervation. These considerations in farour of arched bridges are, it is true, somewhat comenterbalanced by the greater complication of the forms.

Bow and String Bridees.

26. The girders called by this name are, as the words imply, arches provided with a tie-rod which receives the thrust upon the extremities, withont the intervention of supports; so that the abutments are freed from the effect of these thrusts, and only exert reactions in a vertical direction.

The most remarkable example
 is the bridge at Saltash, of two great spans of 139 metres each.

The arch, being single, had to be kept at the two ends at the height ahove the romway necessary to leave a free passage for the trains; and this led the eminent designer, Mr. Bruncl, to adop,t a curved tie, and to suspend the platform at a lower level.

When there are two arches, one on each side of the road, there is nothing to prevent their extremities deseending to the level of the platform ; the tie is then straight, and being strengthemed in order to serve as a longitudinal bearer, it may support the roadway. An example of this disposition is the bridge of Andenarde, on the Scheldt. Between the arch and the tic, there is fixed a framework composed of vertical hars more or less strong, and of lighter diagonals. The office of these pieces is analogoms to that of the spandrels in ordinary arched hidges, with this difference, that the tensions predoninate, or are the only forces present. The attachment of the tie to the ends of the arch ought to be very strong.

When the low or arch of such a structure is made very stiff, the rertical hars may be considered as simple suspending-rods, and the diagomals as stiffening bars hearing scarcely any strain. If, on the other hand, the areh requires to be stayed at intervals, then, for the sake of precantion, the trellis may he calcmlated as in the case where the arch might be made of artionlated hars. This hypothesis does not entail so much expense as might be thonght at first sight, inasmuch as certain practical exigencies otherwise lead already to the vertical rods leing given a somewhat stronger section. Λs to the diagonals, they may remain slender, on condition that they are calculated for stresses of tension, i.e., in the case where rods exist following the two diagonals of each interval, duty must only be expected from that which is lronght into tension by the load considered. If the arch is paralolic, it maintains its figure of ennilibrimm under a niform loat per rmming metre of the platform, extended to its whole length; then the diagonals only work moler partial loads, extending orer omly a portion of the roalway. The vertical bars, like portions of the trellis opposed to the deformations of the arch, fulfil the office of compressed members, but at the same time they act as suspembing rolls under tension; it may be eomecived, therefore, that the resulting stress on them will always remain as a stress of temsion, and that in every case their accidental compressiom, if such oceur, will be but small. Also, the stiffening of these picces at the price of an increasel sedion, would bedetemined, not so much by the chance of compression, as by the need of seeking in them fixed
points of attachment for the stiffening or gusset-pieces necessary to prevent turning over.

In a work pullished in 1865 (Étude comparative sur les Pomts en Fer: published by Lacroix), the Author of the Paper has given formula (Chap. XII.) expressing the stresses on the various parts of low and string girders, as well as the comparison between this and other systems of construction.

APPENDIN.

1. Application to a Desian for an Irom Arch Dritge orer the Rhone. near St. Maurice, for the Westem Railuay of Suitnerland. (Plate 5^{-1}.)
2. The Author had the honome a shor time ago to submit to the Institution a memoir on Arch-Bridges in Metal and Timber. It may be olgected to that essar that it is confined to the rague terms of general theory: and for this reason. the Author. having received a commission from the West of Switzerland Pailway Company to design an iron arch-bidge, to le sulstituted for the temporary wooden structure at st. Mamree, lelieves the Institution worla be interested to receive a résume of the calculations he has made for this design. A particular aplication. in spite of its imperfections. or eben by reason of its imperfections. may smetimes better show the difinculties of the problem. and better illustrate certain facts conected with it, than mare generd investiontions.

The accompanting plate gives the principal features of the proposed arch. The skew-openimes is ${ }^{2}$ erg metres between the abutments: the ehord of the arch is metres, measured between the extremities of the mean fibre. these extremities leing kered on a muclens of steel. shaped as a segment of a circle to serre as a pirot. as shomn in detail No. 6. Pr virtne of these pivots the bending moment will be alwars $=0$ at the supports or extremities of the mean fibre.

The two arch-ribs are constucted as for a square bidge, and abut on normal smporting faces: but thes are placed one in adrance of the other, to provide for the sket. The crossegirders and rertical supports are normal to the axi of the work (see transrerse section. Fig. 5). Tu aroid the complication of oblique joints.
2. The load on each of the two arch-ribs of the bridge. per monning metre on the horizontal, is estimated as follows:-

Kil.

Permanent dead lual
Live, or moving luad
Maximum total loal. . .

[^10]The areh receives the load in a discontinnons mamer hy the vertical struts: but these being tolerally munerous, it is permis.sible to regard the distribution of weight as sensibly unifum. In prineiple, the only difference between a continum- load and a luad applied at points some distance apart is that in the latter case the locus of the bending moments is polygonal, in-tead of being eurrilinear.

The mean fibre is an are of a circle (Fig. i) presenting a chord of 69 metres $=2 a$, with a rive $t=750$ motres. Consequently. its radins $r=\frac{a^{2}+f^{2}}{2 f}=82.3 .52$ metres.

The rertical compment Q of the raction of the abutment, in the care of the complete lond. is $Q=4500 \times \frac{69}{\underline{2}}=150250$ kil.

To obtain the horizontal thrust T, which depents on the deformation of the arch. recourse must be hat to the following complicated formula, due to Messrs. Pelanger and Brese:

$$
\mathrm{T}=\frac{2 \tau a \mathrm{E}+\int^{\frac{\mu_{1} y}{\mathrm{I}}-d s+\int_{2} \frac{\mathrm{~N}_{1}}{1 \cdots} d x}}{\int_{2}^{y^{2}} \frac{1}{\mathrm{I}} d s+\int \frac{1}{\omega} \frac{d x}{d s} d x} .
$$

and in which the integrals are defined for the whole length of the are or of the chord.
$\mathrm{E}=14.000 .000 .000$ is the motulus of elasticity of the metal. assumed homagencous.
$\tau=$ elongation, per unit of length, due to caures independent of the lead. such as expansion by heat, or an artificial wedging-up.
$\omega=$ area. and $I=$ moment of inertia of the nomal section of the arch it the $p^{m} \cdot \boldsymbol{t}(a)$) of the mean fibre.
$d s=$ elementary are $: \frac{d x}{d s}$ is the cosine of the angle α of the normal with the rertical.
$\mu_{1}=$ partial bending moment exerted round the point (x, y) by the weight and the reaction Q considered alone; or. in other words, the moment determined solely according to the rertical forees, abstraction being made of T. so that the complete moment μ should be $=\mu_{1}-\mathrm{T} y$. The moment is regarded as positive when it tends to tum from $0 x$ to $0 y$ (i.e., in a direetion contrary to that of the hands of a watch), the portion of the solid situated to the right of the section under consideration.
$\mathrm{S}_{1}=$ longitudinal force which stretches the seetion considered. always exchang the action of T. Thus the true total normal
tension will be $\mathrm{N}=\mathrm{N}_{\mathrm{l}}-\mathrm{T} \cos a$; that is, the sum of the components, normal to the section, of the forces acting between this section and one extremity of the solid. The term 'tension' is purposely employed here, for the formula is written under this hypothesis. It is therefore necessary to remark that in the bridge arches, where \mathbf{N} acts by compression, this force must be given a negative value. This will be seen, indeed, by inspection of the formula; for if N_{1} shortens the arch, it ought to diminish the thrust T. Similarly, τ would be negative if it were a question of contraction by cold, tending to loosen the arch from its abutments.
3. The expression for T comprises quadratures which will be approximately effectuated here by dividing, with this view, the arch into an arbitrary number of finite parts, not necessarily corresponding to the vertical struts, as the load is assumed continuous. If, for example, the semi-arch is sublivided into twelve parts of equal amplitude $=2^{\prime} 3^{\prime} 50^{\prime \prime}$, the abscisse and ordinates will have the value given in the annexed table (p. 101). For an angle α with the vertical, the abscissa, measured from the middle, is $x^{\prime}=r \sin \alpha$; and, reckoned from the extremity 0 (Fig. 7), it becomes $x=a \pm r \sin \alpha$. The ordinate will be $r(1-\cos \alpha)$ starting from the tangent at the summit; it becomes $y=f-r+r \cos \alpha$, measured above the chord, f being the rise or versed sine. The length Δs of the equal divisions taken on the are is $=\pi r \frac{2^{\circ} 3^{\prime} 50^{\prime \prime}}{180^{\circ}}=2 \cdot 9664$ metres.

In this table will be found two kinds of abscisse, those x^{\prime} measured from the middle of the opening, and those x reckoned from the left extremity 0 (Fig. 7). In order to designate any particular point, the value corresponding to x^{\prime} may be used, if treating of a symmetrical load; but in the case of a load unequal on the two halves of the arch, recourse must be had to the abscisse x to specify, without the embarrassment of sign, which of the two symmetrical points is intended. The table establishes clearly the correspondence of x, x^{\prime}, y, and a.

The table also contains other columns, the mode of calculating which is as follows :

The bending moments μ_{1} being estimated solely according to the vertical forces, neglecting the horizontal thrust 'T, are independent of the ordinate y; they have the same values as they would have for a straight beam. They may be obtained graphically, for whatever load, knowing that their geometric locus is the funicular polygon. For the present case of uniform and complete load, they

are represented by the ordinate of a parabola, or by
$\mu_{1}=\frac{p+p^{\prime}}{2}\left(a^{2}-x^{\prime 2}\right)=2250\left(1190 \cdot 25-x^{\prime 2}\right)$, the formula from which they have been calculated.

The longitndinal forces N_{1} are caleulated by $\left(p+p^{\prime}\right)(a-x) \sin a$, which will always give negative values, regarding the angle a as negative when taken to the left of the vertical of the smmmit, in which case $x<u$. This expression may also be written

$$
\begin{aligned}
& M_{1}=-\left(p+p^{\prime}\right) \frac{x^{\prime 2}}{r}=-\frac{4500}{82 \cdot 352} \cdot x^{\prime 2} \\
& \text { or simply }-\left(p+p^{\prime}\right) r \sin ^{2} u .
\end{aligned}
$$

Passing on to the ealculation of the areas ω, and of the moments of inertia $\left[\right.$ of the sections: at ${ }^{\text {resent }}$ the arch has been only irtroduced loy the figure of its mean fibre, and by a rough estimate of its weight, which enters into the valuation of the dead load p. But it is now desirable to give entirely, is priori, the dimensions of this member; the calculations only take the form of a verification \bar{a} posteriori, not of a direct solution of the problem.

As a basis for the preliminary hypothesis, it may be considered in the first place what section would be necessary if the flexure were $=0$ in the cave of the complete load, i.e., if the arch had the parabolic form. The thrust T would then be expressed by the simple formula of the suspension hridge-
$\frac{\mu+p^{\prime}}{2 f} a^{2}=\frac{4500 \times \overline{3+5} 0^{2}}{2 \times 7575}=354$ toms, and the total ollique thrust against the alrutment would become $\sqrt{35-t^{2}}+(45 \times 3+50)^{2}=386$ tons. These stresses would require a section at the summit $=0.0006$ metres, and at the springing $=0.055$, making the metal do a duty of 7 lilogranmes per square millimètre.

It will be necessary to adop, stronger sections, possessing a moment of inertia sufficient to resist the flexures due to the nonparabolic form, and partieularly to the displacements of the load, and to the expansion ly heat. It might he desimble perhaps to double the preceding sections, if the object were to realize a constant thickness for the webs or sole-plates. But it will be preferable only to add slightly to these dimensions; the calculations of verification may then probably discover some points which are too weak, and it will thess suffice to apply strengthening plates solely to the defective parts, in imitation of what is done with straight beans.
4. Let the section at the summit, drawn in Fig. 8, and whose arca is $=0.0728$, he tried. It is for convenience of execntion that
this somewhat irregular form has been adopted; it will, however, be remarked that the mass of matter is distributed symmetrically above and below the nentral axis, in order that this axis may occupy the middle of the height. 'The part in sumplus of the lower member is compensated for ly an incurality of the horizontal plates, in such wise that the section may theoretically be assimilated to Fig. 9, which is perfectly symmetrical. Its moment of inertia will be

$$
\begin{aligned}
& I=\frac{0.9 \times \overline{0.748^{3}}-0.58 \times \overline{0^{-3}}-0.258 \times \overline{0.672^{3}}-0.042 \times \overline{0.5^{3}}}{12} \\
&=0.0078728
\end{aligned}
$$

Departing from this section at the key, the mean fibre is traced with the radins $r=8.352$ metres, and the curve of the intratos with a radius $r^{\prime}=79$ metres only. These two curves are not concentric ; their distance apart $\frac{e}{2}$, measured on the normal to the mean fibre, depends on the distance apart b of the centres of the two eircles and on the variable angle a of the normal under consideration. It is calculated by the formula

$$
\begin{gathered}
\frac{e}{2}=r-b \cos \alpha-\sqrt{r^{\prime 2}-b^{2} \sin ^{2} \alpha}=82 \cdot 352-3 \cdot 002 \cos \alpha- \\
\sqrt{62+1-(3 \cdot 002 \sin \alpha)^{2}} .
\end{gathered}
$$

Where $b=82.352-79-0.350=3.002$ metres, on the understanding that the curve of the intrados of 79 metres radins is taken on the layer separating the angle-irons and sole-plates, so that the half-depth at the summit is $\frac{e}{2}=0.350$ metres (Fig. 8 or 9). The radical term differs but very little from 79 ; the greatest difference is at the extreme joint ($\alpha=24^{\circ} 46^{\prime} 2^{\prime \prime}$), which gives $78 \cdot 990$. By laying down the variable half-depths $\frac{e}{2}$ above the mean fibre, the curve of the extrados is obtained.

The section from the summit to the springings only varies by the fact of the increase of e. The area ω only increases by virtue of the increase of height of the vertical plates. The successive moments of inertia I are calculated as above, by the aid of a table of cubes. It would be useful to have tables still more convenient, in order to obtain quickly the values of moments of inertia, the laborions calculation of which is inherent in all problems of resistance.
5. The elements are now prepared fur the calculation of T. Having taken an even number of uniform divisions $\Delta s=2.9664$
metres, measmred on the arch, with a view of applying Simpson's approximate formula of quadrature, all may be expressed in $d s$ in the formula of 'I'; that is to say, that it will be written thus, substituting $d s \cos \alpha$ for $d x$:

$$
\mathrm{T}=\frac{2 \tau a \mathrm{E}+\int \frac{\int \mu_{1} y}{1} d s+\int \frac{\mathrm{N}_{1} \cos a}{\omega} d s}{\int \frac{y^{2}}{\mathrm{I}} d s+\int \frac{\cos ^{2} \alpha}{\omega} d s} .
$$

'Table No. 2 contains the successive values of the quantities

$$
\frac{\mu_{1}!!}{I}, \frac{N_{1} \cos \alpha}{\omega}, \frac{y^{2}}{I} \text { and } \frac{\cos ^{2} \alpha}{\omega}-
$$

easy to calculate with the elements furnished by the preceding columns.

The areh being symmetrical and symmetrically loaded, it suffices to consider here one-half of it. According to Simpson's parabolic method of quadratures, every integral of the form $\int z d s$ will be the product of the third part of the equidistance (for example $\frac{\Delta s}{3}$) by a sum compounded-

Of the sum of the two extreme ordinates $\left(z_{0}+z_{n}\right)$;
Of the quadruple sum of the ordinates with an odd index

$$
4\left(z_{1}+\ldots+z_{n-1}\right)
$$

And of the donble sum of the intermediate ordinates with an even index $2\left(z_{2}+\ldots \ldots+z_{n-2}\right)$.
Thus

$$
\begin{gathered}
\int \frac{\mu_{1} y}{\mathrm{I}} d s=40476990000 \cdot \frac{\Delta s}{3}, \int \frac{\mathrm{~N}_{1} \cos \alpha}{\omega} d s=-9511976 \cdot \frac{\Delta s}{3}, \\
\int \frac{y^{2}}{\mathrm{I}} d s=115109 \cdot \frac{\Delta s}{3}, \text { and } \int \frac{\cos ^{2} \alpha}{\omega} d s=443 \frac{\Delta s}{3}-
\end{gathered}
$$

Omitting, at first, the dilatation τ, due to the temperature or to the initial wedging-up,

$$
\mathrm{T}_{1}=\frac{40467480024}{115552}=350210 \mathrm{kil} .
$$

The terms in $\cos \alpha$ and ω might perhaps have been neglected without great error ; for, without taking account of them, there would be

$$
\frac{40476990000}{115109}=351640
$$

The difference between this value and the former one is less than the unknown errors that might be produced by the expansion and
the wedging. At any rate, the terms in $\frac{N_{1} \cos \alpha}{\omega}$, which arises from the shortening of the mean fibre, has but small influence; without it, there would follow that

$$
\frac{40476990000}{115552}=350298
$$

It is to be remarked that the circular form has not much modified the thrust 351 tons, given by the parabolie curve, in Article 3.
(6. Now let $\tau=0.0004$; this will he the linear variation due to an increase of temperature of 33 centigrade, or to a less increase, accompanied by a certain amount of wedging-up. This effect gives rise, in the numerator of the formula of T , to a smplementary term
$2 a \tau \mathrm{E} \frac{\ddot{3}}{\Delta s}=69 \times 0.000 \pm \times 14000000000 \times \frac{3}{2.966 t}=390777000 ;$ it produces, consequently an increase of thrust

$$
=\frac{390777000}{115552}=3380 \mathrm{kil} .
$$

The initial wedging-up is unknown, or arbitrary; the temperature varies. These effects, also, may very well be neutradized by an opposite cause; such as the settlement of an abutment, which may allow the arch to expand slightly while the dilatation recompresses it. Now write separately the bending moments $\mu=\mu_{1}-T_{1} y$ and the forces $\mathbf{N}=\mathrm{N}_{1}-\mathrm{T}_{1} \cos \alpha$ due to the loading only, then the augmentations - $3380 y$ and $-3380 \cos a$ produced by the supplement of thrust 3380 kil., due to the admitted dilatation. These angmentations will then only enter into account for the sections whose conditions of resistance are aggravated by them.

$\begin{gathered} \text { Abscisse, } \\ \text { starting from } \\ \text { the Middle } \\ x^{\prime} \end{gathered}$	Effect of the Complete Load.		Supplements due to the Expansion T.	
	μ	N	For μ	For N
0	$+25220$	-350210	-25600	-3380
$2 \cdot 966$	+23982	-350460	-25425	-3378
$5 \cdot 928$	$+21104$	-351220	-24880	-3370
8.882	$+15820$	-352480	-23980	-3360
11.825	+ 9328	-354220	-22720	-3345
$14 \cdot 752$	+ 2030 +	-356440	-21100	-3325
$17 \cdot 660$	- 5578	-35.1100	-19130	-3300
$20 \cdot 546$	-12622	-362200	-16800	-3273
$23 \cdot 405$	-17947	-365700	-14125	-3240
$26 \cdot 233$	-20740	-369570	-11103	-3204
$29 \cdot 028$	-19770	-373780	- 7710	-3163
31.784	-13100	-378280	- 4036	-3118
$3+\cdot 500$,	-383040	0	-3070

7. In any section whaterer, submitted to a moment μ, and to a longitudinal tension N, the work R, per unit of surface, on the fibres at the distance v from the neutral axis, is expressed by $\mathrm{A}=\frac{v \mu}{\mathrm{I}}-\frac{\mathrm{N}}{\omega}$. By the convention, our values of N being compressions, are negative. For the maximum of the stress R, the fibres must be considered as the farthest removed from the neutral axis, for which $v=\frac{e}{2}+0.024$ metre (Fig. 9) ; and we may take v positive for the apper fibre, or that of the extrados, and negative for the intrados. The fibre which the flexure tends to break by extension is aided by the pressure -N ; on the opposite fibre, however, the two stresses μ and N act together to produce erushing; this dangerons point of the section is found at the extrados when μ is p mitive, and at the intrados if μ is negative. 'I'he value of μ is found to be positive in the central region, and negative in the external portions; the arch tends slightly to sink in the middle and to rise at the haunches, when not acted on by expansion.

The expansion, or a wedging-up of the are, produces negative moments. Taking the intensity $\tau=0.0004$, these moments overcome those of the load, so that the central sinking disaplears, and the arch rises throughont.

The section at the summit is strained at the extrados, when τ is unl; the maximum work, at this point, is then:

$$
\begin{aligned}
R=\frac{0.374 \times 2520}{0.0078728} & +\frac{3.0210}{0.07202}=1198100+4809200 \\
& =6007300 \mathrm{kil}
\end{aligned}
$$

ber square metre, or 6 kilogrammes per square millimetre. The expansion ahove specified almost destroys at this place the effect of flexure, bringing back the eentre of pressure upon the mean fibre. 'ilhe special curve of pressure which wonld give the expansion considered alone, would be directed according to the chord of the arch.

When the expansion acts the greatest absolnte value of μ is fonnd at the abscissa $x^{\prime}=23 \cdot 405$, where we have $\mu=-17947-$ $1+125=-32072$, with $N=-365700-3240=-368940$. The maxinum stress per unit of surface is, in this section, at the fibre of the intrarlos:

$$
\mathrm{R}=\frac{0 \cdot 503 \times \frac{32072}{0.0150446}+\frac{368940}{0.07798}=1042500+4731200=5773700 . . ~}{0.3}
$$

At the preceding joint $x^{\prime}=20^{\circ} 546$, the actions are a little less. and the section is a little weaker also.

In conclusion, the case of the complete loading of the bridge does not give any strains reaching the limit imposed of 7 kilogrammes per square millimetre.

But this is not the most dangerons test that the bridge has to submit to ; it is necessary to eonsider the arch as loaded on one half only, and muloaded on the other half. The foregoing ealenlations are, however, not useless; for, according to a known theorem, the thrnst estimated for the case of semmetrical loading will furnish, in a very simple manner, the new thrust when the luad is msymmetrically disposed.

> Case where the Lodd. $\left(y^{\prime}=2000\right.$ Kil. $)$ onhe covers hale the Arch.
8. The dilatation τ, which will exert precisely the same effects as above, since it is independent of the load, may be neglected.

The areh supports a dead load $p=2 \check{5} 00$ kilogrammes per horizontal ruming metre, on the left half, i.e., between the abscisse $x=0$ and $x=a=34500$ metres (measured from the left aloutment) ; then it carries $p+\rho^{\prime}=4,500$ kilogrammes on the right half, from $x=34^{\circ} 5$ to $x=69 \cdot 0$.

If the symmetry were re-established by loading the left semi-span, it has been seen that the thrust would be $\mathrm{I}_{1}=350,210$ kilogrammes.

If, on the contrary, the symmetry be re-established by unloading the pertion to the right, so that the whole bridge be reduced to its dead weight p, the thrust I_{0} would be obtained by reducing $' \mathrm{I}_{1}$ in the ratio of p to $p+y^{\prime}$, i.e., $\mathrm{T}_{0}=350210 \times \frac{2500}{4500}=194500$.

To return to the actual ease of unsymmetrical load, it suffices to take the arithmetical mean of I_{1} and I_{v}, that is, the horizontal thrust will be ' $\mathrm{I}=272385$.
'The vertical component (), of the reation of the right abutment will be $Q=p a+\frac{3}{4} p^{\prime} a=138000$ kilogrammes, and that of the left abutment $p a+\frac{p^{\prime} a}{4}=103500$. Between $x=0$ and $x=a$ $=3+500$ metres, the bending moment will be expressed by $\mu=p x\left(a-\frac{x}{2}\right)+\frac{p^{\prime} u x}{t}-\mathrm{I}^{\prime} y$; then, beyond by

$$
\mu=p \cdot x\left(a-\frac{x}{2}\right)+\frac{p^{\prime} a x}{4}-\frac{p^{\prime}}{2}(x-a)^{2}-\mathrm{T}^{\prime} y
$$

On the left half, the longitudinal foree is $\mathrm{N}=\left[p(a-x)+\frac{p^{\prime} a}{4}\right]$ $\sin a-\mathrm{T} \cos \alpha$, and on the other half $(x>a)$ it becomes

$$
\mathrm{N}=\left[\left(p+p^{\prime}\right)(a-x)+\frac{p^{\prime} a}{4}\right] \sin \alpha-\mathrm{T} \cos \alpha
$$

This force N is always negative (compression), taking a negative for $x<a$.

The terms in p may be deduced from the values of μ_{1} and N_{1} in the preceding calculations, reduced in the ratio $\frac{p}{p+p^{\prime}}=\frac{5}{9}$. Or the operations may be abridged, as is done for straight beams, by the aid of diagrams or graphic delineations; after having calculated a limited number of moments μ and of forces N , they may be drawn as ordinates of a geometrical locus, the figure of which may be finished by hand, and which will serve afterwards for graphie interpolation.

Neglecting the term - T y, the expressions of μ are parabolic functions, of which the second differences are constant. This property may be made use of to obtain rapidly a large number of successive values corresponding to the values of x, increasing by equal steps.

More conveniently still, by cutting out a parabolie curved template in cardboard, having $\frac{1}{p}$ for semi-parameter, this curve will serve to draw, as at $\mathrm{A} O \mathrm{~B}$ (Fig. 10), the representative locus of the μ due to the dead load p. Afterwards, the additional values of μ due to p^{\prime} will be represented in OD B ly a rectilinear portion OD, followed by an are tangent D UB of a parabola ; this latter may be traced with a second template eurve having a semi-parameter $=\frac{1}{p^{\prime}}$, the axis of which is kept perpendicular to the abseisse x. Then, for any abscissa $O M$, the moment μ_{1}, due to the vertical forces alone, is represented by the accumulated ordinate $V \mathrm{U}$. It remains to deduet from it $\mathrm{T} y$, a value proportional to the ordinate y of the mean fibre above the chord. This T y may itself be obtained practically by reducing, in the proper ratio, by a reducing-compass, the ordinate of the arch on a large-scale drawing.
9. The values of μ and N , given below, have, however, been citculated directly. The last columns are obtained by adding algehraically to the former ones the supplements already known (No. 6) produced ly the expansion.

	Abscisse starting from the Left Abutment x	Without Expansion.		With Expansion.	
		$\begin{aligned} & \text { Moment } \\ & \mu \end{aligned}$	Force N	μ	N
Left abutment	0	0	-290690	0	- 29:3760
	$2 \cdot 716$	- 533050	-288600	-57390	- 291720
	$5 \cdot 472$	- 9tsio	- 2stingo	- 102550	- 25: 720
	$8 \cdot 267$	-124570	-284080	-13.5670	- 2s7780
	$11 \cdot 00.5$	-143810	- 252680	-15793.	-285920
	$13 \cdot 054$	-153170	- 2siosoo	- 169970	- 281160
Inloaded side	$16 \cdot 840$	-153015	-279290	-172145	-282520
	19.748	-141075	-277680	- 16.5175	-281000
	$\underline{29.675}$	- 126sio	-276280	- 149530	-279695
	$25 \cdot 618$	-101460	-275050	-125440	-278410
	28.572	- 68270	-278960	- 931.50	- 277360
	$31 \cdot 534$	- 28110	-278100	- 53535	-276480
Summit	31.500	+ 19600	- 272385	- 5080	- 27576
	$37 \cdot 466$	+ 65.520	-272350	$+40000$	-275730
	$40 \cdot 425$	+101100	--272:360	+ 76290	-275730
	$43 \cdot 35 \%$	+126080	-273250	$+102100$	-276610
	$16 \cdot 325$	$+141330$	-274725	$+118610$	-278070
	$49 \cdot 252$	$+147240$	-276780	$+126140$	- 280100
Loaded side	$52 \cdot 160$	+144350	-279390	$+123220$	- 2S2690
	$55 \cdot 046$	+133530	-282530	$+116730$	-285800
	$57 \cdot 905$	+115890	- 286I80	$+101765$	-289420
	$60 \cdot 733$	$+92310$	- 290300	+ 81210	-293500
	$63 \cdot 528$	+ 64060	-294870	+ 56320	- 298030
	613.284	$+32960$	-299820	+ 28924	-302910
	$69 \cdot 000$	0	-305140	0	-308210

This talle brings into view the dangerous points. Without expansion, the loaded side would be the most strained as far as the abscissa $x=49 \cdot 2 \cdot 5$, and this upon the extrados, as it is sinking (positive moment). Farther on, the danger is transforred to the intrados of the unloaded half span which swells out. Thus the point $x=16 \cdot 840$ is exposed to the moment -153015 , while the symmetrical point $x=52 \cdot 160$ is only exposed to the moment +144350 , and the quantities N are nearly equal. The calorifie expansion, or an artificial wedging-up of the arch between its abutments, ameliorates the condition of the loaded portion, but aggravates that of the unloaded half.

The greatest moment is realized at the section $x=16.840$. The stress is

$$
\mathrm{R}=\frac{0.447 \times 172145}{0.0116117}+\frac{282520}{0.07574}=6626800+3730100=10356900,
$$ or more than 10 kilogrammes per square millimetre, on the fibre of the intrados. The extrados supports a tension $=6626800$ $-3730100=2896700$, nearly 3 kilogrammes per square millimètre.

At $x=19.748$ the forces wre less, but the section is less also. The maximum stress is
$\mathrm{I}=\frac{0.425 \times 16.375}{0.0103938}+\frac{281000}{0.07480}=6754000+3753700=10507700$.
These amounts being too high, it is necessary to strengthen the arch. It suffices to apply a supplementary plate from the abscissa $5+72$; for in this section, in the actual state of things, the stress, including expansion, presents itself under the admissible valne

$$
R=\frac{0.575 \times 102550}{0.020179}+\frac{289720}{0.08086}=6505200
$$

Similarly, the reinforcement may be stopped at 3 metres distance from the summit: for, at the abscissa $x=37 \cdot 466$ metres, we find

$$
\mathrm{P}=\frac{0.376 \times 65420}{0.0079405}+\frac{2723.50}{0.0729}=6833800
$$

and the symmetrical point $x=3153+$ is less fatigued. It is clear. besides, that two symmetrical sections of the areh are exposed reciprocally to the same accidents when the load is moved.

The deficit of strength being eonsiderable, the arch will not only he strengthened at the hamehes, hot its thickness at the key will be angmented 5 centimetres, in spite of longer calculations being entailed.

New Calculations, with Strengtiening Plates at

the Mausches.

10. The old theoretical section (Fig. 9) is now replaced by that of figure 13 , where the height between the sole-plates is increased to 0.750 metres, and the thickness of the soles to 26 millimetres, instead of 24. In addition to this first general reinforcement, supplementary plates of 12 millimetres will be applied on the hamehes, between the abscisse $7 \cdot 50$ metres and 30 metres, and then between 39 metres and 61.50 metres (Fig. 11); so that in these parts the sole-plates may attain the thickness of 38 millimètres.
'The depth e will vary according to the radins of the intrados, which we will take now $=78.50$ metres, the radius of the mean fibre remaining always $=82 \cdot 352$ metres.

At the joint $x=19 \cdot 748$, the half-depth $\frac{e}{2}$ will be $=0.433$ metres, and the distance of the oxtreme fibre at the nentral axis will become
$v=0.433+0 \cdot 0.38=0.471 ;$ the area becomes $\omega=0 \cdot 101: 3 t$, and the moment of inertia $I=0.017615$. If, then, the moment μ, and the reaction N, preserve values of the preceding case, the greatest, stress would be reduced to

$$
\frac{0.71 \times 16.5175}{0 \cdot 01761.5}+\frac{281000}{0 \cdot 10134}=7189400
$$

At this point the researches might be stopped, and the reinforeement made a little thickn, since this last figure slightly exceeds the limit adnted, of a kilogrammes per square millimetre. But the series of calculations will be taken up anew umber the modified conditions indicated, reserving the intention of ading hereafter other smaller and shorter reinforeements at the points which betray weakness.

The strengthening mentioned above produces some incruase in the dead load. I'ut it at $p=26.00$ kilometres per metre: the total load will be $p+p^{\prime}=4650$, or $\frac{1}{3}$ greater than that of the former calculations; so that μ_{1} and N_{1} themselves will have, in the case of complete loaling, the values of the Table No. 2, angmented by $\frac{1}{30}$.

In general, a second calculation is always more rapid than a first trial, not only because the process becomes more certain, lout becanse a great number of results already obtained are utilized again. With this view it is important to preserve the sketches and memoranda of the arithmetical operations, the logarithms of $\cos \alpha$, of y, ete., arranged in order. The student should not be too much afraid of extended calculations, mate methotically; the labour becomes almost mechanical, and consequently rapid; and the accidental errors almost always betray themselves, on a glance of revision of the series of figures; or, if necessary, at their first differences.

In the present case, there are the sudden variations of section at the points where the additional plates begin and end. The theory assumes a gradual variation ; it is not, therefore, absolutely correct to employ the same formula for the calculation of the thrust ; but that approximation will doubtless suffice.
11. The following table is obtained for the complete load:

Abscissar start ing from the Summit x^{\prime} ．		$\begin{aligned} & \text { Area } \\ & \omega . \end{aligned}$	$\begin{gathered} \text { Moment } \\ \text { of Inertia } \\ \text { I. } \end{gathered}$	μ_{1} ．	N_{1} ．	$\mu_{1} y$ 1000 I	$\frac{\mathrm{N}_{1} \cos a}{\omega}$	$\frac{y^{2}}{1}$	$\stackrel{\cos ^{2} a}{\omega}$
$\left.\begin{array}{c} m . \\ \left(\begin{array}{c} m \\ (\mathrm{Summit}) \\ 2 \cdot 9(66 \end{array}\right. \end{array}\right\}$		$\begin{aligned} & 0.07742 \\ & \cdot 07750 \end{aligned}$	$0 \cdot 009623$ $0 \cdot 0097302$	2767330 746870	0 $-\quad 497$	2178380 2123530	0 $-\quad 6409$		$12 \cdot 9$
$\begin{array}{r} 2 \cdot 966 \\ \therefore \quad 5 \cdot 928 \end{array}$	$\begin{aligned} & 0 \cdot 377 \\ & 0 \cdot 384 \end{aligned}$	$\begin{aligned} & 9 \cdot 07750 \\ & 0 \cdot 09938 \end{aligned}$	$\begin{aligned} & 0 \cdot 0097302 \\ & 0 \cdot 013843 \end{aligned}$	2746870	$\begin{array}{r} 497 \\ -\quad 1984 \\ \hline \end{array}$	12123530	$\begin{array}{r} 6409 \\ -\quad 19912 \end{array}$		
． $8 \cdot 882$	$0 \cdot 396$	－09986	$0 \cdot 014722$	583910	－ 4455	1245270	－ 44352	3419	$9 \cdot 9$
ล 11 － 825	$0 \cdot 412$	－ 10050	$0 \cdot 015940$	442220	－ 7894	1029900	－ 77733	2834	$9 \cdot 7$
7 14．752	0.433	－10134	0．017615	2261340	－12290	801450	－119313	2213	$9 \cdot 6$
硡 $17 \cdot 660$	$0 \cdot 460$	－10242	$0 \cdot 019902$	2042135	－17610	580667	－167940	1609	$9 \cdot 3$
践 20.546	$0 \cdot 490$	－ 10362	0．022617	785880	－ 23836	392520	－222760	1092	$9 \cdot 0$
23．405	$0 \cdot 524$	－ 10498	$0 \cdot 0259201$	193770	－30930	240836	－282480	638	$8 \cdot 8$
解 26.238	$0 \cdot 564$	－10658	$0 \cdot 0301171$	167360	-38857	127329	－345590	358	$8 \cdot 4$
$29 \cdot 028$	$0 \cdot 608$	－10834	0．026279	808：50	－47580	70485	－410990	200	$8 \cdot 1$
$31 \cdot 784$	$0 \cdot 657$	－11030	0．030947	418550	－57040	16148	－477070		$7 \cdot 7$
$34 \cdot 500$ （Naissance）	$0 \cdot 709$	－11238	．．	0	－6，7210	0	-543050	0	$7 \cdot 3$

The use of Simpson＇s formula leads to

$$
\begin{gathered}
\int \frac{\mu_{1} y}{\mathrm{I}} d s=27925604000 \frac{\Delta s}{3}, \\
\int \frac{\mathrm{~N}_{1} \cos a}{\omega} d s=7325136 \frac{\Delta s}{3}-\int \frac{y^{2}}{\mathrm{I}} d s=76735 \frac{\Delta s}{3} \text { and } \\
\int \frac{\cos ^{2} \alpha}{\omega} d s=342 \frac{\Delta s}{3} .
\end{gathered}
$$

Conserpently，the thrust due to the loads will be

$$
\mathrm{T}=\frac{27932929136}{77077}=362410 \text { kilogrammes. }
$$

Now take the unfavourable case，where the moveable load of 2000 kilogrammes per metre is only applied on one half of the arel．The thrnst will be a mean between the above thrast of complete load，and that of the arch unloaded，which is

$$
=\frac{2650}{4650} \times 362410=206530 .
$$

It will therefore be $=284470$ kilogrammes．
An expansion $\tau=0.0004$ will give rise to an increase of thrnst $=\frac{390777000}{77077}=5070$ kilogrammes．
12. 'The following table is calenlated as in Article 9 :

	Anscisar starting	With, ut Expansion.		With Expansion.	
	x.	Ahment μ.	Force N .	μ.	N.
Left abutment .	0	0	-303720	0	- 305320
	$2 \cdot 716$	- 51280	-30)1600	- 60330	-306280
	$5 \cdot 47 \%$	- 96100	-299410	-108010	- $30+150$
	$8 \cdot 267$	- 1266510	- 297290	-143260	-302100
	$11 \cdot 095$	-116120	- 29.5270	- 167300	-300130
	$13 \cdot 9.51$	-15.2630	- -283: 0	-180830	-298270
Unloadea side	$16 \cdot 810$	- 155.380	-291590	-184220	- 299540
	119.748	- 146580	- 289960	- 178230	-294950
	$22 \cdot 675$	- 129250	- 288500	$-16: 330$	- 293520
	$25 \cdot 618$	-103850	-287210	-1392.0	-292250
	25.572	- 70010	-286100	-107930	-291160
	$31 \cdot 534$	- 30100	-285100	- 68530	- 290260
Summil.	$3 \pm .500$	+ 17350	-281470	- 21050	-289510
	$? 7 \cdot 466$	+ 63130	-284410		
	$40 \cdot 428$	+ 98760	-284470		
	$43 \cdot 382$	$+123690$	-285400		
	$46 \cdot 325$	$+138880$	- 286940		
	$49 \cdot 252$	+144740	-289070		
Ioarled side	$5 \mathrm{~S} \cdot 160$	+141880	-291760		
	$5.7 \cdot 046$	$+131070$	- 295000		
	$57 \cdot 905$	$+113.80$	- 298770		
	$60 \cdot 733$	+ 91270	-302140		
	$138 \cdot 528$	+ $62+460$	-307710		
	$66 \cdot 284$	+ 32040	-312820		
	$69 \cdot 000$	0	-3182s0		

The last columns have not been fimished, becanse the expansion is only prejudicial to the moaded side.

On the loaded side the greatest stress will be found at the extrados, at the abscissa $x=46 \cdot 325$; its value is
$\mathrm{R}=\frac{0 \cdot 450 \times 135380}{0.015940}+\frac{286940}{0 \cdot 1005}=3920700+2855120=6775820$.
The preceding point $x=49 \cdot 252$ gives $R=6,22640$.
On the unloaded side, the greatest stress, with expansion, is prodnced near $x=19 \cdot 748$, where
$R=\frac{0.471 \times 178230}{0.017615}+\frac{294950}{0.10134}=4765600+2910500=7676100$
kilogrammes per square metre for the compression at the intrados; and $R=4765600-2910500=1855100$ for the tension on the extrados.

The preceding point $x=16.840$ gives

$$
\mathrm{I}=\frac{0.498 \times 184220}{0.019902}+\frac{296540}{0.10242}=4609600+2895300=7504900 .
$$

At the point $x=31.534$ metres, deprived of the strengtheningplate,
$\mathrm{R}=\frac{0.403 \times 68530}{0.00973}+\frac{290260}{0.0775}=2838400+3745300=6583700$.
13. It will be seen that it is necessary again slightly to strengthen the weak part of the haunches in order to limit the stress to 7000000 , at least if we wish to be independent of the aid of the cross ties, which in reality maintain the arch against the flexure, and diminish consequently the calculated stresses.

An interesting question presents itself here: since it is the inequality of the load on the symmetrical sides which most threatens the stability, would it not he possible to ameliorate the conditions of the work by an addition of dead weight at suitable points? This is the case in some measure, as the following calculation will show.

Suppose two weights P, equal and symmetric, placed at the points $x=19 \cdot 748$ and $x=49 \cdot 252$ (i.e., $x^{\prime}= \pm 14 \cdot 752$), then let it be enquired what is the increase of thrmst due to these weights?

For this special load it is necessary to prepare a table analugous to that of Article 11. The quantities I and ω will remain the same ; μ_{1} will here be $=\mathrm{P}\left(a-x^{\prime}\right)$ between $x^{\prime}=a=34 ; 50$ metres and $x^{\prime}=14.752$; then near the middle (for $x^{\prime}<14.752$) they retain the constant value 19.748 I . As to the longitudinal furces N_{1} developed by the two weights P , setting aside the thast sought, they will be null in the middle part, and equal to $P \sin a$ (with a negative sign) between $x^{\prime}=14 \cdot 752$ and $x^{\prime}=34 \cdot 500$. They may be omitted in the calculation of the thrust, which they influence very little. The result obtained is:

Simpson's formula gives

$$
\int \frac{\mu_{1} y}{1} d s=212375 \cdot \frac{\Delta s}{3} \cdot \mathrm{I}
$$

Consequently the increase of throst

$$
=\frac{21237.5 \mathrm{P}}{77077}=2.755 \mathrm{P}
$$

At the joint $x=19 \cdot 745$ (where $x^{\prime}=14 \cdot 752$) found in the preceding article to be dangerous, the anxiliary load of the two symmetrie weights P gives an additional positive moment $=19.748 \mathrm{P}-2.755 \mathrm{P} \times 6.243=2.553 \mathrm{P}$, which will reduce the principal negative moment. This reduction, however, should he limited by the condition of not earrying the danger of rupture upon the symmetrie section $x=49 \cdot 2.2$, in the case of non-expansion. Leaving aside the quantities N. which differ little, the equality of the two dangers, on the two symmetrical points. will take place for $178230-2.553 \mathrm{P}=144740+2.553 \mathrm{P}$; this equation gives approximately $\mathrm{P}=6$ efio kilogrammes. Then the total moment, at the point $x=19.748$, hecomes $-178230+2.553 \times 6560=-161480$; the force N becomes $-294950-2.755 \times 6560 \cos \alpha=312730$, and the maximum stress
$\mathrm{R}=\frac{0.471 \times 161480}{0 \cdot 017615}+\frac{312730}{0 \cdot 10134}=4317.00+3086000=7403700$, instead of the value 7676100 .

This advantage would be realized by lowering the roadwayplates near the portions S T of the longitudinal section (Fig. :3), in order to increase the thickness of the layers of ballast. But it is evident that the adrantage would be rery small; it is based on pure hypotheses of expansion, and would change to a disadrantage if it should happen, on the other hand, that a settlement of the abutment caused the arch slightly to expand. And, finally, the braeing, thongh light, would probably have more efticaey in diminishing the theoretical flexures.
14. If, therefore, the intervention of the anxiliary weights P be given up, and if no account be taken of the aid of the bracing, it only remains to determine the new strengthening plates required.

Now, by Article 12, the sections $x=13.954$ and $x=25.618$ are found to have a stress on them, the first of

$$
\mathrm{R}=\frac{0.528 \times 180830}{0.022617}+\frac{298270}{0.10362}=7100000
$$

and the second of

$$
\mathrm{R}=\frac{0.434 \times 139820}{0.01+722}+\frac{292250}{0.09986}=7048500 .
$$

The joint $x=11.095$ gires $\mathrm{R}=6486400$. It will thus suffice to strengthen the arch between the abseisse 13 metres and 26 metres, by the aid of additional plates of 5 millimètres, a thickness which ought to suffice, as may be velified by an approxi-
mate calculation. This thickness, however. would be weak when compared with that, 12 millimetres, of the first strengthening plate; and we will prefer to reduce the latter to 10 millimetres, and lengthen the 4 metres of the second portion to 7 millimetres thickness. New caleulations of verification may be dispensed with, as the new addition further contributes slightly to canse the part to ower more resistance to expansion.

The weight of the arch is estimated at 210 tons, of which 130 are for the two arch rils, and 80 for the other portions.
1.5. If it is desired to trace the curve of pressure, the operation will be easy when the calenlations have been made of the moments μ and the longitudinal forces λ; for the quotient $\frac{\mu}{N}$ gives the ordinate or distance of the centre of pressure from the mean fibre ; above it if μ is positive, and below it towards the intrados if μ is negative. For example, with the valnes of the talle, Art. 12, withont expansion, the curve of pressures dotted on Fig. 11 is obtained. This emrve emerges slightly from the arch at M and MI^{\prime}. For example, at M, the distance of the centre of pressure is $=\frac{146580}{289960}=0.505$, while the extreme fibre is only $0.433+0.038$ $=0.471$ metres from the mean fibre.

It may have been remarked, in certain parts of the application which forms the object of this Memoir, that some uncertainty has been expressed as to the unknown effects of the wedging-ul, the expansion, or the settlement, which enter into the calculation of the strains in metallic arches. The adoption of a pivot, or free articulation at the summit, would climinate these manown quantities. The reason which has prevented the Author from proposing this in the present design is the smallness of the breadth in proportion to the length or span, a circmmstance which might lead to a fear of lateral derangements.

The inconvenience, not ascriballe to theory, just pointed out in regard to rigid arches, may be eompared to that which is found in continnous straight beams of several spans, in which an unequal settlement of the varions piers may serionsly interfere with the conditions of resistance. The great wrought-iron viaduct of the l'andezze, near Lansame, may be cited as an example. One of the abutments, situated near some sulbterranean exeavations, underwent a settlement of more than $0 \cdot 10$ metre, causing a considerable curvature of the beams over the adjoining pier. It is clear that in such a case the iron must be sulject to much higher

diacram of the beroing moments as for a straichi beam

on stamichteveo at the sumnit
-...... $\quad{ }^{\text {m }}$
stress than was intended in the calculations of the design, and this trial was continued for a certain time befure measures were taken for remedying the evil.

The caleulations deseribed in the foregoing Paper do not appear of an mreasonable length when large works are in question. For designs of less importance the labour may be much simplified by making the arch of uniform section. In this ease, in fact, the tables of M. Bresse ("Mécunique Appliquée," 1st P’art, "Sur la Résistance des Matérians et Stabilité des Constructions") furuish immediately the value of the thrust, so that it only remains to calculate the bending moments and the longitudinal forces at the sections whose resistance has to be verified. If the verification is not satisfactory, either another and stronger arch, still of uniform section, may be tried, or reinforcements may be added to the hauches, dispensing with a second calculation, for which tho tables referred to would not suffice.

In the use of the formula for 'T' in Art. 5, equal divisions on the arch have been taken. If it is preferred to take equal distances on the horizontal, with the view of giving valnes of x in round numbers, so as to simplify somewhat the calculations, the fonmula, for a cireular are, will be written in this form, in a function of the variable x :

$$
\mathrm{T}=\frac{2 a \tau \mathrm{E}+\int \frac{\mu_{1} y}{1 \cos a} d x+\int \frac{\Gamma_{1}}{\omega} d x}{\int \frac{y^{2}}{\Gamma \cos u} d x+\int \frac{\cos a}{\omega} d x} .
$$

The term $\int \frac{\Gamma_{1}}{\omega} d x$ may be neglected without material incon venience, as explained in Art. 5.

II. Further Remarks and Illustrations.

1. This note forms a second Appendix to the Memoir which the Anthor has had the honour to address to the Institution on the subject of Arehed Bridges. The first Appendix consisted of a detailed numerical application of the theory of rigid arches to a design for an iron bridge over the Rhone, near St. Manrice on the Western railway of Switzerland. Since that was written, the Author has prepared another design, with straight girders, for the same site. This new design has been found somewhat cheaper than the former one; it is estimated at the sum of 170,000 francs, while the arch bridge had been estimated at 220,000 francs. For this reason the girder-lridge has been adopted by the company, and is now in course of execution. The principal features of this bridge are represented in Plate $5^{\text {B }}$, which will perhaps offer some interest as a comparative study. The arch design given in the first Appendix, althongh not carried out, does not on that account lose the utility it was intended to have as an example of calculation and as furnishing the opportmity of adding some general observations on the resistance of curved arches.

The cconomy found in favour of the new design does not imply, as a general rule, that the arch is more costly than the straight girder, for it will be remarked on comparing the two designs-

1 st. That the normal water-way, allowed for the river stream, has been reduced in the later design to 60 metres, while in the earlier one it was 63 metres.

2nd. That the small shore openings have been made by light iron platforms, instead of by masoury arches, which would have been better architecturally, but more castly.

3rd. That the heary loading of lallast, indicated in the first design with the object of lessening the vibrations, has disappeared in the final plan.

These various modifications might have been effected withont abandoning the arch form, which, by its elegance and by the height of the free passage which it offered at the centre, would have been doubtless preferable for a navigable river, in the interior of a large city. But the lhone, in this region, is not navigable; and, as at this remote locality questions of architecture were of very little weight, the economy of construction became of the first importance. The expense was found to be about the same in the two systems, when brought to parallel conditions ; and hence it was considered preferable to adopt the plan which was most simple, in which the
calculations were most certain, and the exceution the most convenient, and where the expansion might take place with full liberty.
2. If the new design had heen made according to the same type as the first, the Author would have sought to sustain the latunches of the arch by an armature of picces A b, B c, bil (Fig. 15) entering into the system of the spandrel filling. Such an armature would resist with advantage the settlement of the rising of the hamehes, either loaded or runloaded.

Fig. 15.
 It is the the rigorous calculation would become more complicated and more doultful than for the simple arch, but also the structure, being less left to itself, and being thus only able to take an imperceptible play, would probally not depart materially from the conditions of uniform pressure on each section, which would admit the use of simple approximate calculation.

For example, the point d might be assimilated to a simple articulation, as is done, with no more exactness, in the lattices of straight beams. Or, in the first instance, the arch A ir cemight be studied alone, without taking account of the armature, and making it sufficiently light to present a certain deficiency of resistance. Then, instead of covering this deficiency by strengthening plates added to the soles of the arch at the alnoments (as proposed in the first Appendix), it should be done by the addition of the armature 1 ieces. If, for example, the point D of the arch was found sulject to a bending. moment μ, for which the moment of resistance of the section was insufficient, b c might be given such a resistance that the moment of this with respect to the pint D would be capable alone of equilibrating μ.
3. In the example treated in the first Appendix the luad was regarded as transmitted from the platfom to the arch ly the intervention of the vertical risers, so that the weights retained their primitive direction. If it were a question of a bridge with radiating spandrel bass, analogous to the Victoria bridge, Pimlico, the areh would receive no more than the nomal components of the load, these being decomposed between the direction of the radiating rods and the longitudinal lar of the roadway, which is sulgect to compression. If the load were futher sy arranged as to be distributed uniformly over the circumference of the arch, the strict figure of equilibrium would become circular, while it is paralolic in the case of vertical risers.
4. Some engineers propose to anchor the longitudinalis to the
abutments, with the object of being able to consider the arch as composed of two isolated halves, disjointed at the summit, after the fashion of huge brackets or corbels, fixed (encastrées) in the masonry. This point of view, if it were followed out by really leaving a void space in the middle, would do away with the inconvenience of the expansion of the arch ; but it would lead to a wasteful expenditure of metal, as the longitudinal would become as strong as the arch itself. Indeed, this is nearly the disposition adopted in certain swing-bridges in two halves, equilibrated at the back ends, but it is the dead weight alone which is thas balanced. When the bridge is shat, the two halves are rejoined together, in order to give the passing loads the benefit of the central butting joint. The abutment, therefore, cannot be dispensed with, except on the system of moveable pivots, if it is desired to render the expansion entirely free. Perhaps, in this case, there wonld be some advantage in substituting for the curved arch two triangular brackets (Fig. 16), whose points would be less slender. This is

Fig. 16.
 nearly the form of the swingbridge at Brest. The calculations would be simple, and would follow the considerations of Arts. 4 and 5 of the original memoir.
Suspension-bridges, instead of presenting a multitude of joints, may be reduced to two links, or three joints to each span. The rigidity so often desired will then be obtained, still leaving liberty for expansion. It is stated that this is what has been done in the sus-pension-bridge at Frankfort. M. Bridel, Engineer-in-Chief of the Regulation of the Streams in the Jura (Switzerland), also proposes to adop, this disposition in a work on his district. It would seem that this is the true solution of the problem of rigid suspensionbnidges; for each half-span may be latticed withont inconvenience to the expansion, provided that a little play be left at. , Fig. 17,

Fig. 17.

between the platform and the pier, in order to allow the expanded part to lower itself by moving on the central hinge. Rolling carriages B , at the smmit of the piers, will keep the anchoring tic BC, stretched at all temperatures. In the case of several spans, the
oscillation of these moveable saddes might be limitert by the addition of brating ties.
5. Moceable abutments; Bridyes of sereral arches.-It may be desirable to comider a pecoliar cause of pertmbation in the state of equilibimu of hridge arches. The formula of thast which has been given and applied to an example is hased on the hypothesis of immoreable supports. This hypother is being attmitted, there is nothing special to be said on bridges of several arches, every one of these being similar to an indepentent and isolated span. Pat this invariahility of the separating piers is not rigoronsly true, as is. proved by the fact, determined experimentally, that the load of one span maly produce an elevation of a neighboming arch.'

The abutments even of a single-areh bidge may yield slightly, at least in eertain particular cases. For example, the eeiling arches of the Palais de l'Exposition de 1867, at laris, had for abntments only light metal pillars, 1 e and b f, Fig. 18, maintained against upsetting liy an upper tie rod a m .
In this combination, the chord CD does not remain invariable; it lengthens either by the stretehing of the rol a b, which displaces the smmmits 1 and b, or loy the flexure of the pillars, pressed laterally at c

Fir. 18.

 and D , and sustained only at their extremities. An analogons disposition occurs in the bitge of Saederdin, on the Theiss (Ilnngary), where the longitudinal member is utilized to hold together, ly their summits, the metallic tubular piles.
6. The question of the molitity of the piles, under the influence of mequal loarling of the contignons arehes, has been raised, and illustrated by a wood model presented to the Institution by Mr. E. A. Cowper. ${ }^{2}$ It will he desirable to add here some theoretical considerations on the sabject.

It is necessary to know, or at least to assume, by some hypothesis more or less plansible, the lateral resistance at the summit of the piers, i.e., the quantity by which they are di-phaced meler varions intensities of resulting horizontal thenst. For piers which have no lateral resistance, as would be the case if the arehes almoted on rolling saddles, the thrust of an arch would only be resisted by that of the adjoining arch; the point of support would be dis-

[^11]placed until the opposing thrusts were equal, one arch resisting flattening, the other resisting a tendeney to rise. This ease would render inadmissible pirots at the summits, for then the areh that is crushed wouth no longer react with an increasing resistance; it would even tend to lose more and more a portion of its primitive resisting power, so that the other arch would thrust to falling. In the ordinary case, where the pier offers a certain degree of resistance, it will cease to move so soon as this resistance, added to that of the monded arch, has acquired a value equal to the thrnst of the preponderating arch. This resists flattening under less favourable conditions than if the support was immoreable, and the contiguons span resists the former one by its resistance to rising, if it has no central pivot.

Consider a loaded arch (Fig. 19), of which the primitive

$$
\text { Fig. } 19 .
$$

chord $2 a$ has angmented by $\gamma_{0}+\gamma_{1}$, by virtue of the accumutlated displacement of the two piers. The left pier having moved γ_{0}, exerts, in consequence, a horizontal reaction \mathcal{F}_{e}, connected with γ, by a relation which is either given, or may le estimated as best we may ; for example, by assimilating the pier to an upright cautilercr, which hents a quantity γ_{0} under the lateral stress k_{0}. Similarte, the pile on the right side displaced γ_{1}, reacts by a resistance k_{1}, which eo-operates with the thrust T_{1} of the following arch. The equilibrium of the piers furnishes the conditions:

$$
\mathrm{T}=\mathrm{T}_{0}+k_{0}=\mathrm{T}_{1}+k_{1} \ldots[1]
$$

Further, the theory of the deformation of the elastic curved piece, instead of leing lased on the supposed invariability of the ehord, will express on the contrary that this has increased by $\gamma_{0}+\gamma_{1}$, a quantity which is a function of known form, $f\left(k_{0}, k_{i}\right)$, of the developect lateral reactions k_{i}, k_{i}. Thus, with the sane notations as alrealy employed in Arts. 2,5 , and 15 of the first Appendix:-

$$
\mathrm{T}=\frac{\frac{2}{\tau} \tau a-f\left(k_{v}, k_{1}\right)+\int_{0}^{2 a} \frac{\mu_{1} y}{\mathrm{~L}} \frac{d s}{d x} d x+\int_{0}^{2 a} \frac{\mathrm{~N}_{1}}{\mathrm{~L} \omega} d x}{\int_{0}^{2 a} \frac{y^{2}}{\mathrm{~L} \overline{\mathrm{~L}} \frac{d s}{d x} d x+\int_{0}^{2 a} \frac{1}{\mathrm{E} \omega}-\frac{d x}{d s} d x},}
$$

or,

$$
\left.\begin{array}{c}
\mathrm{I}^{\prime}=\frac{2 \tau \mu \mathrm{E}-\mathrm{E} f\left(k_{\mathrm{u}}, k_{\mathrm{I}}\right)+\int \frac{\mu_{1} y}{\mathrm{I}} d s+\int \frac{\Gamma_{1} \cos \alpha}{\omega} d s}{\int \frac{y^{2}}{\mathrm{I}} d s+\int \frac{\cos ^{2} u}{\omega} d s} \cdot \tag{2}\\
\mathrm{I}^{\prime}=\frac{2 \tau a \mathrm{E}-\mathrm{E} f\left(k_{0}, k_{1}\right)+\int \frac{\mu_{1} y}{\mathrm{I} \cos \alpha} d x+\int \frac{\mathrm{N}_{1}}{\omega} d x}{\int \frac{y^{2}}{\mathrm{I} \cos \alpha} d x+\int \frac{\cos \alpha}{\omega} d x}
\end{array}\right\}
$$

or,

Any one of these cquivalent formule [2], alded to the donble equation [1]. comnects the five unknown quantities $\mathrm{T}_{0}, \mathrm{~T}^{\prime}, \mathrm{T}_{1}, k_{0}, k_{1}$; and by writing out the analogons equations for the different arches of the bridge, the determination of the problem may be arrived at.

Three particular cases will be considered.
First Case. A single Avel, bearing against moverble Abutments.-The arch rests, acquiring the increase of the chord which developes in the abotments the required resistance. ' I_{0} and T_{1} are made null, so that there only remain the three unknown quantities T, k_{0} and k_{1}, determined 1 y one equation [2], and the two equations [1]. It results from this that ' $\mathrm{T}=h_{0}=h_{1}$, so that T is obtained immediately by the formula [2], by substituting in it 2ϕ ' T for $f\left(l_{6} l_{i^{\prime}}\right)$; the function $\phi \mathrm{T}$ expressing the recoil of one alutment under a stress ' T .

Second Case. Bridge of two Arches, with immorable Abutments, and one moreable Pier.-With erqual spans equally loaded, the pier does not move, each arch preserving its chord maltered. But suppose the thrust T_{0} and T mequal (Fig. 20), then cach span

Fig. 20.

gives rise to an application of the formula [2], and the displacement of the pier causes to one of the chords $2 a$ the loss of the
elongation gained by the other chord $2 a_{0}$. Thus, by writing the abridged notations X, Y, instead of the sums of the integrals, the unknown throsts ' T_{0}, T, and the supplementary reaction k, which is developed by the movement of the pier, will be given by the equations -

$$
\mathrm{T}_{0}=\frac{2 \tau u_{0}-f\left(k_{0}\right)+\mathrm{X}}{\mathrm{Y}} \text { and } \mathrm{T}=\frac{2 \tau a+f(k)+\mathrm{X}^{\prime}}{\mathrm{Y}^{\prime}},
$$

joined to the equation of equilibrimm of the pier $\mathrm{T}_{0}=k+\mathrm{T}$. If k remained constantly null, i.e., if the pier did not present any resistance to displacement, this displacement $f(k)$ would only be arrested at the value resulting from the condition $T_{0}=T$. In this case the notation $f(k)$ would no longer be correct, and should be replaced by a single letter γ.

If the alutments themselves were moveable, they would introduce supplementary maknown quantities analogons to k; but their conditions of equilitrium would also furnish two more equations.
'Thirl Case. Three Spans; Abutments immovable; two flexible Piers.-The fire minnown quantities, $\mathrm{I}_{\mathrm{c}}, \mathrm{T}, \mathrm{T}_{1}, k_{0}, k_{1}$ (Fig. 19), will be detemined by the equilibrimm of the two piers, $\mathrm{T}_{0}=\mp k_{0}+\mathrm{T}, \mathrm{T}=k_{1}+\mathrm{T}_{1}$, and the deformations of the three arehes:

$$
\begin{gathered}
\mathrm{T}_{0}=\frac{2 \tau a_{0} \mp f\left(k_{0}\right)+\mathrm{X}}{\mathrm{Y}}, \quad \mathrm{~T}=\frac{2 \tau a \pm f\left(k_{0}\right)-\mathrm{F}\left(k_{1}\right)+\mathrm{X}^{\prime}}{\mathrm{Y}^{\prime}}, \\
\text { and } \mathrm{T}_{1}=\frac{2 \tau a_{1}+\mathrm{F}\left(k_{1}\right)+\mathrm{X}^{\prime \prime}}{\mathrm{Y}^{\prime \prime}} .
\end{gathered}
$$

The upper signs of the ambiguons terms suppose the left span driving the middle one, and this one driving the third; the lower signs smppose the intermediate arch alone to le loaded, and to thrust the two others. If the two piers are in similar conditions of construction, the functions f and F will have the sane form.

If k_{0} and k_{1} remained mull for every displacement, the real movements $f\left(k_{0}\right), \mathrm{F}\left(k_{1}\right)$, (called in preference γ_{0} and γ_{1}), would rember e"fual the three thonsts $\mathrm{T}_{0}, \mathrm{~T}, \mathrm{~T}_{1}$, and would be caleulated by this condition.

Analogons considerations would apply to any mmber of spans.
7. Numerict Excmple.-Let ns take the example of at bridge with three enplal spans $2 a=69$ metres, perfectly similar to that of the design treated of in the first Appendix; and let us first comsider the case where the arch of the left hank is the only one loarded. With the sections of the second trial, the eatenlations of

Art. 11 in the said paper will furnish, immediately, without expansion-

$$
\begin{aligned}
& \text { 1st areh, lomed with } 1650 \text { kil. ver metre, } \mathrm{J}_{0}=\begin{array}{c}
-\mathrm{E} f\left(l_{0}+27932929130\right. \\
77077
\end{array} \\
& \text { 2nd " } \quad 2650 \quad, \quad \mathrm{~T}=\frac{\left.\mathrm{E} f\left(l_{0}\right)-\mathrm{EJ} l_{i_{1}}\right)+15918766067,}{77077} \\
& 3 \mathrm{rl} \quad, \quad, \quad 3 \quad, \quad, \quad \mathrm{~T}_{1}=\frac{\mathrm{EP}\left(l_{1}\right)+15018766067}{77077} \text {; } \\
& \text { also } \mathrm{T}_{0}=l_{0}+\mathrm{T}, \quad \mathrm{~T}=k_{1}+\mathrm{T}_{1} .
\end{aligned}
$$

Armitting the same form of the functions f and F , it remains to assign this form. 'lhis is the delicate point, the uncertain element which renders the calculation but imperfecty applicable. 'The fault lies not in the theory, lint in the varialle, doultful, or heterogeneous conditions of the foundation, and even of the substance of the piers. 'To complete the calculation, let us assume, for example, that the displacement of the pier, at the origin of the arches, provided that it remains very small. shall be proportional to the excess k of thrust, and equal to 1 millimetre per 5000 kilograms, for the portion of the pier acted on by the arch. 'This condition is expressed by replacing $f\left(l_{0}\right)$ and $\mathrm{F}\left(l_{1}\right)$ respectively by $0.0000002 k_{0}$ and $0.0000002 k_{1}$. This being done, let l_{0} and k_{1} be eliminated, and take $\mathrm{E}=14,000,000,000$, then these three equations are obtained:

$$
\begin{aligned}
& 79877 \mathrm{~T}_{0}-2800 \mathrm{~T}^{\prime}=27932929136, \\
& 82677 \mathrm{~T}^{\prime}-2800\left(\mathrm{~T}_{0}+\mathrm{T}_{1}\right)=15918766067 . \\
& 79877 \mathrm{~T}_{1}-2800 \mathrm{~T}^{\prime}=15918766067
\end{aligned}
$$

from which we deduce $\mathrm{I}_{0}=357120$ kil., $\mathrm{T}=211640 \mathrm{~T}_{1}=206,710$.
Thus, in consequence of the compressibility of the right abutment, the areh of the left bank, loaded alone, only exerts a thrust of 357 metric tons, instead of 362 . The to the hypothesis of immoveable supports. As to the two following arches, mbaded, the last, which is slightly compressed, gives a thrust of 206.7 tons, instead of $206 \cdot 5$, and the middle one $211 \cdot 6$, insteat of $206 \cdot 5$. The second pier moves scarcely a millimetre, while the first one moves $0.0000002\left(\mathrm{~T}_{0}-\mathrm{T}\right)=0.029$ metre.
8. Now suppose the same lididge, loaded only on the second half of the central arch. 'The thrust of this arth ladf loaded is the arithmetical mean between the thrusts mloaded and completely loaded, for the same state of the ehord. 'I'hen-

$$
\begin{aligned}
& \mathrm{T}_{0}=\frac{2800 k_{0}+15918766067}{77077}, \\
& \mathrm{~T}=\frac{21925847600-2800\left(k_{0}+k_{1}\right)}{77077}, \\
& \mathrm{~T}_{1}=\frac{2800 k_{i_{1}}+15918766067}{77077},
\end{aligned}
$$

and

$$
\mathrm{T}=\mathrm{T}_{0}+k_{0}=\mathrm{T}_{1}+k_{1} .
$$

From this is found-

$$
k_{0}=k_{1} ; \text { then } \mathrm{T}_{0}=\mathrm{T}_{1}=209083 \text { kil., and } \mathrm{T}=279360 .
$$

Thus the lateral opposing arches acquire an encrgy of thrust equal to 209 tons, instead of $206 \frac{1}{2}$ tons, which they exert on the immorable piers; and the thrust of the eentral areh, half-loaded, is restricted to 279 tons, instead of $28 t$ tons. The morement of the supports of this intermediate span favours evidently the unloaded side, diminishing its upheaval, while it aggravates the sinking of the loaded half. If it is required to know to what extent this takes place, it will suffice to repeat the calculations of resistance similar to those of Art. 12 in the first Appendix.

For the point of the abscissa $x=46.325$ metres, this No. 12 gires a pressure of 6.78 kilograms per square millimetre. In order to know what the actual ease would give, it is necessary first to calculate, at the point under consideration, the bending moment μ, and the longitudinal force N , accorling to the formulæ No. 8
 and consequently the molecular stress

$$
\mathrm{R}=\frac{0.450 \times 173230}{15940}+\frac{281880}{100500}=7 \cdot 70 \mathrm{kil} . \text { per square millimètre. }
$$

It would seem then that the extension of the theory of elastic arches to the case of abutments susceptible of yielding under the load is not difficult. The uncertainty which exists as to the mode of resistance is attributable, not so much to the processes of the theoretical solution, as to the doubtfui nature of the data of the problem; to the initial compression of the arches, and to the degree of mobility of the piers.
9. In the example which has thus been treated, the displacement which well-constructed piers may suffer has prolably been exaggerated. Such at least would appear from the following considerations on the deflections by the effect of the load.

The sinking at the summit of a flat circular arch, with a uniform
section, by virtue of a load p^{\prime} per horizontal ruming-metre, and under a linear expansion τ, is valued approximately by

$$
\frac{25 p^{\prime} r^{2} f}{2 \mathrm{E}\left(8 \omega f^{2}+15 \mathrm{I}\right)}\left(1+0.012 \frac{\omega \cdot f^{4}}{1 a^{2}}\right) \pm 1.56 \tau r
$$

r being the radins of the arch, f its rise or versed sinc, ω the area of the section, and I its moment of inertia.

An arch entirely free, submitted to heat, would increase its chord ly $2 \tau a$ and its rise by τf; but the chord being retained at its initial value $2 a$, the rise inereases considerally, and M. Bresse cotimates it at $1.56 \tau r$ for an arch sufficiently flat. Now, by analogy, it may be said that if the chord nustains an increase 2 тa by the fact of the recession of the $p^{p i e r s}$, the summit of the are will be depressed by 1.56 T .

In the example already considered. $r=82.352$ metres, $f=7 \div 55$ metres, and $a=3+50$ metres. If ω and I preserved at all pints the minimum values at the summit $\omega=0.07742$ and $\mathrm{I}=0.009623$, the depression would be $0.0000016 \mu^{\prime} \pm 128 \tau$. If, on the contrary, the section were retained constant with the maximum values immediately above the springing, i.e., $\omega=0 \cdot 1103$, and $\mathrm{I}=0.030947$, the depression would be reduced to $0 \cdot 000001 p^{\prime} \pm 129 \tau$. And for the variable section of our example, it may be assumed that the result will be intermediate between these two values. Thus, in the case of Art. 7 above, the first span would be depressed by a quantity comprised between 0.0032 and 0.0020 , by virtue of the load $p^{\prime}=2000$ kilograms, and of another quantity $128 \frac{0.029}{69}=0.053$ metre, by the fact of the elongation of the chord. The second span, not loaded, lut having the chord shortened by 0.028 by the mobility of the piers, would undergo an elevation at the centre of 0.052 metre.

Now, an elevation so consideralle, by the sole effect of the load, has never, it is lelieved, been observed. On the Vietoria bridge, Pimlico, the tests have only shown an elevation of 4 millimètres. ${ }^{1}$

[^12]It is therefore probable that the movements of the piers are, in general, insignificant, and need hardly be considered in the face of the much more important effects of expansion. It is seen, really, ${ }^{\text {, }}$ that the expansion ly heat has produced an alteration of level amounting to as much as $1 \frac{1}{2}$ inch, or 0.038 metre, twelve times as much as the elevation cansed simply by the load on an adjoining span. It may be added, however, that the unknown part played ly the spandrels and the longitudinals forbids us from affecting much precision in considerations of this delicate nature.

[^13]

Mr. Binnos B. Stoner observed, thromgh the Seeretary, that M. Ciandard very correctly described the usual method of constrmeting iron arches as one in which tho fitness of the spandrels to sustain diagonal strains was altogether ignored, their duty being merely limited to prop יp the loar of the platform. In arehes of this common type, the spandrels consisted of vertical pillars, and either the arch, or the longitudinal bearer, or both together, must be deep and strong enough to support transverse strains, whether arising from the nomal curve of pressure produced by the permanent load passing outsicle the arch, or from some heavy moving load causing a temporary deramgement of the same line of pressure. 'Thongh numerous brilges had been constructed on this principle, and were doing excellent service, theyexhibited a rather lavish expenditure of material, and it secmed to be an unscientific and wasteful method of construction, for it was clear that an arched rib whose depth, regarding the arch as a girder capable of resisting transverse strain, was very moderate, must have much extra material to sustain oceasional bending strains to which it might be subject, and which were additional to those of mere compression which it legitimately sustaned if correctly formed to the curve of equilibrium for the permanent load. In fact, two calculations should, roughly speaking, he made for sneh arches. First, they should be made strong enough to smpport the permanent dead load together with the live load of maximum density, such as a crowd of people or a train of locomotives distributed uniformly over the platform. Secondly, the strains, regarding the arch as a bent girder of shallow depth and subject to transverse pressure from the live load in motion, should be calculated independently and the requisite material for this added to that already required for the permanent and miformly distributed loads. If, however, the spandrel-filling were properly designed so as to act as bracing, and if what wonld otherwise be transverse strains in the arch and longitudinal bearex were thus converted into longitudinal ones, which was the raison d'être of lracing, the quantity of material in the arch need not be in excess of that required to withstand the longitudinal compression due to the total load miformly distributed, and much greater liberties might be taken in giving the arch such an outline as might please the eye withont risk of its being subject to dangerous transverse strains. Both Lemnie and Telford seemed to have been aware of the proper function of the spandrel-filling, as evidenced by the Sonthwark and Tewkesbury cast-iron bridges. M. Gaudard then described the method of calculating the strains in an articulated system, that was, a braced areh, by the resoln-
tion of forces; this method was substantially the same as that already published by Mr. Stoney in 1866. ${ }^{1}$

There were also many points in the methods of M. Mery and M. Durand Claye which appeared to be common to the methods of calculating the stability of arches so fully deseribed in two Papers read at the Institution in 1846, by Mr. William Menry Barlow and Mr. George Snell, ${ }^{2}$ and which left little to he desired regarding the theory of stone arehes. M. Gaudard also alluded to the plan of keying iron arches on the abutments by a range of wedges, and showed that the unequal action of these wedges might render rigorons ealeulations illnsive. A better plan was to build the skewback up against the springing plate of the areh after the latter was in place. This conld be readily done if the skewback was luilt of brickwork in cement. If, however, the springing plate was bedded on large ashlar masonry, he had atopted the plan, after the areh was in place, of pouring east zine into the irregular interval between the ends of the ribs and the springing plates. This made very solid work and gave a uniform bearing over the whole end surface of each rib. The joints of the cast-iron voussoirs of the bridge of Austerlitz in Paris, finished in 1806, were thus formed and a similar method had been adopted in America. Mr. Stoney had also applied cast zinc to make sound butt joints in wrought-iron girder-work under a variety of ciremmstances where aecurate fitting would have been costly, if not impracticahle.

In the application of timber to bridges M. Gaudard had deseribed most of the recognised types of construction. It was, however, desirable to refer to that which was probably the simplest and certainly a very efficient form of timber girder for large bridges, namely, the \mathbf{A} truss, which was capable of being extended to very considerable spans and, from its great simplicity of construction if properly designed, was suitable for localities where timber bridges were admissible. The design of the cast and wrought-iron bridge in three arches in the park at Nenilly seemed to possess some objeetionable featmes, one of its characteristics being the encastrément or bolting of the ironwork to the masonry both of piers and abutments, and M. Gandard regarded this arrangement with well-merited distrust, and ohserved that it was difficult to estimate with certainty the internal strains which might arise from expansion. A bridge of this character possessed

[^14]few features in common with the arch, lut rather resembled a continuous girder whose points of inflexion were sulpect to movements of unknown amomis. It was rery prudent, therefore, to construct the horizontal bearer and the central parts of the arches of wrought iron, inasmuch as these parts might in winter be subject to mknown tensile strains, fir exceeding the safe working strain of cast iron. MI. Gamdard evidently admired the gigantic oval tubular how in the Royal Albert bridge at Saltash, and recommended this form of pillar for isolated arehed ribs. Mr. Stoney's experience led him to take a somewhat different view of the merits of this form of pillar. Comparatively little was known about the ultimate crushing strength of cylindrical or oval plate tubes of such gigantic size; but it was reasonable to suppose that large tulbes would follow the laws of smaller ones, and that the former, with sides having a small thickness compared to their diameter, would fail by buckling under a much smaller unitstrain than tubes of greater proportionate thickness. IIis researches led him to infer that the strongest form of tube to resist both flexmre and buckling-two very different things, but apt to be confomed -was a rectangular tube in whose corners the great mass of the material was concentratel, learing the sides chiefly to perform the function of a braced web, that was, to retain the angles in the line of thrust or, in other words, to prevent flexure of the tube. The mass in each corner prohibited them from buckling, and they would therefore be capable of sustaining a unit-strain of compression closely approaching to that which was the ultimate crushing strain of the material in short prisms. In such tubes as the Saltash bow the curvature at the flatter parts of the oval was so slight, that the plates there could derive but little stiffness from it, and notwithstanding that there were cross diaphragms 20 feet apart, these flat parts of the tube rather resembled isolated plates, which were certainly unsuited for resisting deformation; and though the Saltash bridge had apparently a large margin of strength, there was no experimental evidence to show that the crushing strain in the tube did not closely approximate to that which would cause buckling. M. Gandard alluded to the practice of spreading a large amount of ballast over the platform, or otherwise increasing the dearl load on a bridge for the sole purpose of producing stiffiness, without expressing either approval or the reverse of the practice. However excusable such practice might he in smaller structures, it could scarcely be regarded as desirable in such large bridges as that of Tarascon with seven arches of 20:3 feet span each; for unless there were something very exception-
ahle in this particular example, it seemed inferior practice to lond a bridge with a great mass of inert matter requiring a proportionate amomat of costly material in the strueture to smpport it, when the stiffness that was aimed at might be gained by a more skilful distribution of less material. However, the same practice might be found in some of the works of the eminent engineer whe designed the Saltash bridge.

Professor W. J. Maguon Rankine observed, through the Secretary, that the laper was of great practical value as giving a comparative view of the different methods of treatment suited for problems respecting metal and timber arches under different circumstances. All such methols were more or less approximate; and the study of the Paper would enable an engineer to decide which method was best suitel to a given case.

He thonght the Author had made too strong a statement in Section 1, when he said that "usually the spandrels are neglected, and the arch assumed to resist withont their aid." A method of treating the arch and spandrels as an articulated system, substantially identical with that described in paragraphs $2,: 3,4$, and 5 of the laper, had been used in Britain for eight years at least.

The method of M. Durand Claye, paragraphs 10 and 11, was sound in principle and very ingenions; and, so far as he knew, had not previonsly been published in Great Britain.

He had always been of opinion, that the proposal of M. Mantion, to construct arches with three linges, at the two points of support and at the crown, ${ }^{1}$ referred to in paragraph 12 of the Paper, held out the prospect of great advantages, in doing away with the straining effects, not only of heat and cold, but of the horizontal yielding of piers and abutments; which latter action was by no means to be neglectet. He thought it was to be regretted that M. Mantion's proposal had not get been tried in practice.

He referred to Papers which had appeared in the Civil Engineer and Architect's Journal for November and December 1860 as being worthy of attention in comnection with the strength of arched ribs. They had been published anonymonsly, and he did not know who their Anthor was. The study of these Papers had been the means of suggesting to him the method followed in his own investigation of the strength of arched ribs, published in 1862; which, so far as he could judge from the information given
${ }^{1}$ Fide" Annales des Ponts et Chaussées" 3e serie, tome 20, p. 161. Svo. Paris, 18 F .
by M. Gaudard, had led to results substantially identieal with those arrived at by M. Bresse. He had investigated two suljeects not referred to by M. Gaudard; the effect of the horizontal yichding of the aboutments, and the deflection of the rib.

The first equation in paragraph 13 of M. Gaudard's Paper could easily be modified so as to take account of the yielding of the abutments, by making the coefficient τ include a term varying proportionally to the horizontal thrist. He had met with cases in practice in which it had been necessary to ascertain empirically the value of that term.

It was desirable to have theoretical formule for the deflection, because the deflection as found by experiment was sometimes used as a test of the safety of the structure. IIe believed that the deflection was implicitly contained in M. Bresse's formulie as given by M. Gaudard; and therefore by suitable treatment of those formula its explicit expression conld be obtained.

There could be no doubt that the tables of M. Bresse for circular arched ribs were of great utility, and perfectly original.

Mr. G. H. Phires said, that he did not think the part of the title of the Paper which referred to details was properly carried out. The Paper could not be called practical, as there were hardly any facts given for the guidance of practical men; and although different kinds of construction of arch loridges, formed of different metals, and combinations of metals, were alluded to, no decided opinions were offered by the Author, either in favour of, or against them. He believed that the main point to settle, in the consideration of the strains upon arched ribs, was the projection of the apropriate curve of equilibrium to any given load, and its relation at all points along the curve to the neutral axis of the rib. The strain at any point of the curve of equilibrium, taken into its distance from the neutral axis, constituted the bending moment of the section considered, and its moment of inertia, the resistance to bending; and thus, the amount of angular motion, or pivoting, as it was sometimes called, being known, as well as the square on pressure, these two combined gave the pressine on any filament of the section; on one side of the neutral axis, greater; and on the other, less, than the square on pressure. If the angular motion were sufficient, the strain on ono side of the neutral axis might pass from compression into tension. From the above, it would be seen that the original square on pressure per square inch on any given section might be readily (and often was) more than doubled on the outside filaments at one margin of the rib, while upon the other margin the strain had
become one of tension; and hence no doubt had arisen the very low measure of direct pressure allowed, or thought safe by engineers, on arched structures in general-about 2 tons on the square inch of the cast iron in Southwark bridge, $2 \frac{1}{2}$ tons on the cast iron in Mr. Fowler's bridge over the Severn, 3 tons on the wrought-iron ribs of the Victoria bridge at Chelsea, and $3 \frac{1}{2}$ tons on the wrought-iron ribs of Mr. Cubitt's new bridge at Blackfriars.

It being so important then to determine the true curve of equilibrium for any given areh rib, and load; and also, it being possible to draw an infinite number of such curves, starting from the same points at the abutments, but differing in altitude; the question was how that particular curve could be decided upon which alone would be the proper one?

He would state one or two gencral prineiples upon which the determination of the true curve of equilibrium, in an arch rib, depended:-

1. When any heavy elastic material, such as an iron arch rib, was supported ly forces operating in any other direction than the vertical, the neutral axis beeame shortened ly compression.
2. When the curve of equilibrium to any given load agreed exactly with the line of the neutral axis, the rib underwent direct compression only.
3. When the curve of equilibrium did not coincide with the line of the neutral axis, there would exist at any point of the latter a bending moment equal to the pressure at that point, taken into its distance from the curve of equilibrium, and there would le, at the same point, an amount of angular motion, directly, as the bending moment, and inversely, as the moment of inertia of the section. The amount of such angular motion would constitute an addition to the square on pressure at one extremity of the section, and a dimimution at the other extremity, cansing the original compression to fass into tension when the angular motion was sufficient.

Suppose a heavy arch rib, of which A B C, Fig. 21, was the neutral axis, and also the curve of equilibrium to the load, and the points A and C, the places on the neutral axis where the rib rested upon the skewbacks of the alutments. Now the first operation of the load was to compress the rib along the line of the neutral axis ly some certain amount, regulated ly the compressibility and strain upon the square inch of the material-suppose by the distances A a and $C c$, at the extremities of the rib.

Next suppose for a moment such a rib, instead of resting upon immovable abutments, to be supported by two chains, $\Lambda \mathrm{D}$ and D C,

Fig. 21.

constantly tightened up, in proportion as the load was applied, it might he actually separated from the abutments by the above distances: but, inasmuch as when resting upon the skewbacks the extremities of the rib must reach to the points A and C, this eould only be accomplished by the angulat motion of all the varions sections $b \mathrm{~B}, f \mathrm{~F}$, de., pivoting about B and F, \&e., as centres, and giving a quantity of horizontal motion, measured by the limbs BE, F G , \&e. Thus, the curve of equilibrium, Lbf C, must be raised as much above $A B F \mathrm{~B}$ as would give the due amount of angular motion of every section, so as tu throw ont the points a and c, montil they tomehed A and C^{\prime}.

Fig. 22.

In the case just explained, the arch rib was supposed to touth the abutments at a single point only, where all angular motion was perfectly free; but where the rib, hat flat ends, resting upon plane skewbacks, as in Fig. $2 \boldsymbol{2}$, the relation of the curve of equilibrium, (; E I F H, must be to the neutral axis, A E BF C, such, that while the balance of all the angular motion in favour of
extension (due to E B F), and of that in favour of contraction (due to A E, and F H), was sufficient to bring the ends of the rib into contact with the abutments, the angular motion due to the distance between A and E must also be equal to that due to E B , for without this the flat ends of the rib could not apply themselves all along to the skewbaeks.

The previous remarks as to the cause of angular motion around any point in the neutral axis of an arch rib, led naturally to the examination of the proper form for its transverse section. He considered that, whether the rib consisted of one entire piece, mpierced by openings of any kind, or of an assemblage of an arch rib, a horizontal member at the top, and an efficient system of diagonal trussing letween them, the axes of angular motion must equally, in both cases, be taken mpon the nentral axis of the assemblage.

Fig. 23.

By way of illustration, he referred to two diagrams; one of a simple mperforated arch rib, as in Fig. 21, and the other, Fig. 23, composed by dividing the former rib into two equal parts, one of which retained its former position as an arch, while the other was placed horizontally above the arch; and both were kept at their proper distances ly the system of lracing represented. If in both those cases, curves of equilibrium were drawn suitable to a loading extending over one half the rib, such as ABCDE, in Fig. 23, and relatively to the nentral axis of the rib, Fig. 21, such as A B OD E, in Fig. 24.

Fig. 24.

Also, F G H I K, representing the line of neutral axis in Fig. 23, and A1MCGE, Fig. 24, the same for the rib Fig. 21, it wonld be seen that the lending moment at B , in Fig. 23:, exceeded that at B, in Fig. 24 , in the proportion of B G in the former, to BF in the later, werly as 5 to 2 . But the moment of inertiat of the
section in Fig. 23 was greater than Fig. 24, in the proportion nearly of 4 to 1 ; the result being that the angular motion of Fig. 24 was greater than Fig. 2:3, in the proportion of 4 to 25 . Since, however, the total depth at L MI, in the latter figwe, was doulble the corresponding depth of Fig. 21 , the outer fibres in Fig. $2: 3$ wonld be more strained than in Fig. 21, in the propurtion of 5 to 4.

He therefore preferred the construction where the bulk of the material was placed in the arch proper ; and considered the best form to be where the neutral axis of the arch corresponded with the curve of erpuilibrim to the fully loarled condition. 'Types approximating to this construction were to be found in the fine cart-iron single areh hridge, ${ }^{1}$ of 200 feet span, and 20 feet rise, for conveying the Coallnookdale railway over the river Severn, erected by Mr. Fowler; and in another ${ }^{2}$ very elegant bridge of three arches, of 100 feet span, over the river Trent, erected by Mr. Vignoles, in 1839.

The Author of the Paper referred, he thought in rather an unsatisfactory manner, to the assuciating together of wrought and cast iron in the same arch rib. Referring to the bridge in the park at Neuilly, of which he gave the clevation, he said: "The summit of the arch is very flat, which exposes it to sensible flexure; at certain parts of the crown the stress of tension may attain 4 kilogrammes per square millimetre" (equal to $2 \frac{2}{2}$ tons per square inch). The centre prortion of the arch in this loridge was stated to consist of 'plate' irom, which meant wronght iron. Now he considered there must be some mistake in the statement as to the $2 \frac{1}{2}$ tons on the inch tension. If the square on pressure upon the rib were taken at the very monderate quantity for wrought iron of 3 tons on the square inch, an amount of $2 \frac{1}{2}$ tons per square inch tension could not be induced on either margin of the rib, without increasing the compression upon the other margin u, to 8.5 tons on the square inch, a quantity which in this country, at least, would be deemed totally inadmissible. He could not understand the necessity for introducing wronght iron into the crown of a cast-iron arch, as in West. minster lridge and in the above-rpoted instance, and lie thought there was much misconception on this point, as well as on the comparative advantages of wronght iron and cast iron in arches.

Cast iron was objected to on aceomen of its inalility to withstand the force of tension; but wrought iron was incapable,
${ }^{1}$ Vïle Minutes of Preceedings Inst. C.E., wol. xxvii., p. 10 s .
"Firle Brees' " Railway Practice," p. ©7, and vol. iv. Prolessimal l'apers Royal Engineers.
according to usual computation, of bearing safely a compressive strain of more than about $4_{2} \frac{1}{2}$ tons on the square inch.

Referring again to Mr. Fowler's bridge over the Severn, the cast-iron ribs were of the section shown in Fig. ${ }^{2} 5$.

Fig. 25.

Fig. 27. Fig. 28.

The area of this section was 150 square inches; and if loaded up to $2 \frac{1}{2}$ tons on the inch, the pressure stated ly Mr. Baldry, the total pressure on each ribwould he 375 tons. Referring to Fig. 26, if angular motion were produced in the above section by applying the gross load of 375 tons at a point removed $1 \cdot 4$ foot from the nentral axis, the effect would be to increase the compressive strain $\left.{ }^{\prime}\right]^{\prime}$ to 6 toms on the inch at the one margin, and to convert it into a tensile strain of 1 ton on the inch at the other margin, both strains being well within the power of the cast iron to sustain ; while, if applied to wrought iron of the same section, the material would give way under the erushing force. It might however be objected to this conchusion, that, with the same sectional area as the above, the iron, whether cast or wrought, might lue disposed in a better form for resisting angular motion; and therefore he had examined other forms of section of the same area, namely, Fig. 27, cast iron, and Fig. 28, wrought iron. If these sections underwent angular motion abont their neutral axis, Fig. 27 , east iron, would require the total pressure of 375 toms to he removed to a distance of $25 \cdot 9$ inches from the axis, instead of $16 \cdot 8$ inches, as before, in order to produce the same angular motion and strains at the margins; while for Fig. 28, wrought iron, a distance from the axis of $18 \cdot 8$ inches would give a compressive stratin of \bar{i} tons on one margin, and total absence of strain at the other. 'I'hus, even with these improved sections, the wronght iron had no advantage over the cast iron. The chief difference to le remarked letween the two materials was, not that the cast, iron was amy weaker than the wrought; lut that the angular motion for that material was about double that for wrought iron;
which fact, however, was not of much importance in its bearing uron the subject of iron arrhes. ${ }^{1}$

As to the effects of temperature, in causing contraction and expansion, many of the older notions respecting the power of expanded metals, in oversctting the almonents of bridges, partook langely of the imaginative, lat this power had recently been much more accmately measured. The only reason why an expanded arch rib shomld exert a greater power to overset its abutments than before its expansion, would be, if the depth of the arch were so considerable as that when the rib became expanded, and increased in length, the angular motion due to the increased rise of the arch shonld hate the effect of depressing the centre of pressure at the crown, and elevating it at the springing, giving, in effect, a thatter arch. 'This motion, however, in practical cases was but very small. Through the greatest range of temperature in London, the centre areh of Sonthwark liridge rose and fell about 2 mehes; and if the alteration in the virtual versel sine of the arch was calculated from this, the difference would only amount to a few inches.

Mr. J. M. Meprea said, in the first part of the laper, M. Gandard drew a comparison between a system where the tuch was flexible, and where the resistance to deformation was given ly the spandrel hracing; and mother, which he called the rigid system, where the resistance to deformation was in the arch principally. He also remarked, very justly, that in eases where louth a rigid arch and rigid spandrels were introduced, it was difficult to tell exactly what the result wond be; and in spite of the very clear explamations given by MLr. Phipps, he thonght that, in the execution of an arch, althongh the utmost pains might be taken to set it in the position which should bring about the curve of equilibrimm, which Mr. Phipps considered to be the only tre and possible one, yet that it was fir from eertain whether it could be confidently affirmed that that was the direction in which the curve of equilibrimm actually passed.

By way of illnstration, what M. Gandard mentioned was a system of keys for adjusting an arch; but any inecpuality in driving them mist distort the couse of that line; and when a spandrel was superadded, which was understood to govern it in some degree by its rigidity, he thought the assemblage was such that it was difficult to say what the maximum strain on any portion of the material might be.

[^15]M. Gandard's remarks were suggestive of a kind of construction which he did not now mean to propose as practically to be recommended, but which might he studied with advantage, because he thought it embodied, in the simplest form, the conditions which the Author assmod, and at least realized one desiral,le objectthat of making known the mechanical conditions in which the principal parts of the structure were. The spandrel was taken to be to the arch what the stiffening girder was to the chain of a suspension bridge; in fact, so far from endeavomring to ol,tain the utmost amount of stiffness in the arch, the endeavour in this case would be to give it the opposite quality of flexibility, and rely entirely on the spandrel to resist its tendency to depart from its original form. Supposing an arch to be nearly a flat plane in transverse section, and in elevation a parabola-practically a circular arc-so as to be in equilibrimm with an miform load. Now the necessary consequence of that was, that the arch being perfectly flexible, whatever load it had, must be miform, becanse muder no other load could it retain its form. It would begin to depart from it, and, contrary to a chain, being in a condition of mostalule equilibrium, it would immediately collapse. The way that might be cured was by means of a spandrel in the form of a bent girder; not that that was ncessarily the best way of constructing it, but that it perhaps exhibited its functions in the clearest manner. It formed a continnons girler which simply sat mpon the areh, just as a man sat upon a saddle, being however well bolted down at the two ends to prevent any rising there. The action was similar to that of the stifening girder in the case of a suspension-bridge.

Thaking the case of a half load instead of a whole one, the effect was to deflect the spandrel or girder which was under it to the extent of half supporting it. Suppose the load was 1 ton to the lineal fuot; it would take up by deflection half a ton to the lineal foot, and would relieve the areh to precisely that extent. But the arch being itself a propagator of pressure in all directions diseharged that half ton per foot on the opposite spandrel, and deflected that nu; so that the deflection amomed to a resistance of half a ton : hence instead of 1 ton per lineal foot distributed over half the arch, there would be half a ton per lineal foot so far as the areh was concerned distributed miformly over it.

He believed such a construction would be economical, becanse in an areh of the dimensions of the Victoria bridge he calculated that bo inches of section would be sufficient to smplort mere compression, whereas on that hringe there were 80 inches of section,
and that the stifiening girder would require only what was equivalent to an average section of abont 50 inches. 'The horizontal member of the Victoria bridge had also about that section; so that he thought it would compare favourably in regard to weight. But if this girder were not made considerably stronger than was necessary merely to deal with tension and compression, its deflection would be considerable; and there would be a comparattively large rise at the haunch opposite to the half load and a corresponding fall at the other haunch. Supposing the girder were made of only sufficient scantling to take s, tons to the inch, he believed that these alternate motions might amount to about 2 inches on either side of the mean prosition. If this were found objectionable, it might evidently be cured by adding to the strength of the spandrel girders, ant would vary in about the inverse proportion ; but no doubt a certain superabundance of material would be the consequence, as these would not then be strained up to their fnul capability.

This was just a case where, without intending now to go so far as to recommend it as a desirable construction, he thought he might venture to assert that it was one which, supposing it to be carried out, would possess the advantage of rendering absolutely certain the strain that was brought upon every member of it.

Mr. W. Alry said he was glad the Author had distinctly laid down the characteristics of a continuous elastic areh. This was done in paragraph 7 , where it was stated that if such an arch were "treated as an arch by the curve of pressures, this curve will no longer be required to remain within the arch." This was essentially the property of a continuous arch; and he now noticed it because so much stress had been laid upon the importance of keeping the curve of pressures within the arch, that it would seem to be a general opinion that it was impossible for an arch to stand except this condition was secured. Such a condition was essential in the case of a voussoir areh, but was not essential in the case of a continuous arch.

The chief difficulty in solving the problem of the continuous arch was to ascertain the value of the horizontal thrust force at the abutment. This might be done in several ways-all of them depending upon the principle of invariability of the chord (as stated in par. 13), and he had adopted the following method : ${ }^{1}$
(1.) It was a well-recognised prineiple that the curvature impressed at any point of a heam ly a bending moment was proportional to the bending moment that cansed it.
${ }^{1}$ Vide "The Practical Themy of the Continnous Arch." Sro. London, 1870.
(2.) It was therefore possible to express the impressed curvature at any point of an arch in terms of the forces that acted upon it, including the unknown horizontal thrust force at the abutment.
(3.) Having thus found the curvature impressed at any point, it was easy to calculate what would be the effect of this curvature in spreading out the feet of the arch, supposing they were free to spread; and the actual amount of spread might be calculated, still involving the mknown horizontal thrust force at the abutment.
(4.) The same might be done for every point of the arch by the process of integration ; and thus the entire spread of the feet of the arch, due to the forces which acted upon it, would be ascertained, still involving the unknown horizontal thrust force at the abutment.
(.5.) The spread of the feet of the arch thus ascertained was now put $=0$ (since the feet were supposed to be prevented from spreading out); and this equation would afford the means of determining the unknown horizontal thrust force at the abutment (which was involved in the equation).
When the horizontal thenst force was thms ascertained, the problem of the continnous arch might be considered as solved, as everything else could he calculated with the greatest facility,

The Author, in paragraph 24, had referred to the advantage in certain cases of "spreading a thick layer of ballast on the platform (of railway bridges) in spite of the increase of load resulting therefrom." This remark had peculiar significance in the case of bow-string bridges, as would be seen by reference to his Paper ${ }^{1}$ on such bridges. It was there shown that if the total stationary load, exclusive of the weight of the bow, were $5 \frac{1}{2}$ times the weight of the single moveable load, none of the tic-bars would ever le in thrust. lf, therefore, the stationary load were increased by a thick layer of ballast till the above condition was securel, the necessity for stiffening some of these bars would be entirely obviated, and the construction of the bridge would he considerably simplified.

With regard to the statement of the Author, towards the end of paragraph 24 , that the "flexure (of arches of moderate dimensions) is small, and the longitudinal pressure much predominates," he held that this remark was only correct as regarded very flat arches. In the case of arches of large angle--as, for example,

[^16]arches of 120°, and semicirenlar arches-the strain on the metal, due to the bending moment, was fir greater than that due to the longitudinal pressure. He did not, however, dissent from the opinion of the Anthor, that solid plates were preferable to trelliswork for the construction of arehes.

In the last part of paragraph 26 , which treated of the strains on the suspension ties of low-string girders, everything was stated in the vaguest and most general mamer. 'The ordinary arrangement of thrust and tension bars was assmmed to be correct, and the strains were reasoned mon gencrally, withont reference to calculation or experiment. The problem of these strains had been treated by him experimentally in the Paper which he had already referred to, and in that l'aper would be found some positive numerical facts abont these strains, which he merely referred to in order to notice that the hars liable to thrust were the diagonals, and these should be stiffened to receive the thrust: the vertical bars need not be stiffened, as the degree of thrist to which they were liable was insignificant. He was aware that this result was at variance with the method ordinarily adopted, and he admitted the convenience of the ordinary arrangement, but at the same time he considered that it was mechanically incorrect.

Mr. W. Bell described a methorl of drawing a eurve of pressure for an arch acted on by oblicue forces in which the forces acting in the space between the abmoments A and B (Fig. 29, p. 144) were divided into a number of forces, each acting at its point of application : and to simplify the ealcnlation these points of application were assumed to be at equal horizontal distances. All these were then to be resolved into a single force R, acting in the line RO, which ent the arch rib in a point $\mathrm{C} . \mathrm{A}, \mathrm{B}, \mathrm{C}$ were to be considered as given points, throngh which the emre of pressme must pass. The forces acting between C 'and A were next resolved into a single force P, acting in the line $I^{\prime} O$, and those between C and B into a force (, , acting, in the line (0 O. These forces P and Q had the resultant R previonsly found, and must be balanced by forces whose directions must pass thromgh the given $p^{\text {wints }} A$ and B. These directions wonld also converge to the same point in $R O$, in order that they might balance the resultant R of the forces P and Q.

If, therefore, any point R in $R O$ were taken, and lines drawn from it to A and B cutting $\mathrm{PO}, \mathrm{Q} \mathrm{O}$ in the points E and F , the forces I' and Q might be considered to be held in equilibrimm by the frame A EF B ; and the thrust along F E, which together with the force along $A R$ balanced the force I ', would be equal and opposite

Hig. 29.

to the thrust along E F , whith together with the force acting om the line lid lalanced the foree (). For, calling X the force along $A \mathrm{R}$, and Y the force along $\mathrm{l} \mathrm{l}_{\mathrm{i}}$, these mist have a resultant equal and opposite to that of the forces 1 'and Q; and the four forces $\mathrm{X}, \mathrm{Y}, \mathrm{P}, \mathrm{Q}$ might be comsiderel as forming a four-sided figure, whose sides and diagonals were parallel to those of the figme REOF. amd of which one of the diagonals represented the resultant of P and Q , or of the equal and opposite one of X and Y . The other diagonal would represent the resultant of the forces 1 and X , and also of the chmal and opmosite resnltant of the forees Q and Y , and therefore of the thrust along E F.

As the point R was shifted along RO O the position of the line E F would change, and there was only one position of R where the line EF would pass throngh the given point C. The distance CR might he expressed in terms of the known quantities, hat it was a very easy proeess to find the position of R tentatively. Haring thus found the line E F, the foree along it and the forees X and Y were fomd by drawing the force parallelograms. The force along E F , which passed through the point (', could then the combined with the separate furces between $C 1$ and A, and the curre of pressure could thens be drawn, which must pass through the point A, and be there coincident in direction with A R. In the same way the branch of the curve between C and limight be drawn.

A similar method could easily be applied to the case of an arch acted on by vertical pressures, and loaded more on one side than on the other.

The line RO (Fig. 29) lueame the vertical R G (Fig. 30) through the centre of gravity of all the weights between A and B, and the lines PO, QO (Fig. 29) became the verticals $\mathrm{P} g$, Q g^{\prime} (Fig. 30) throngh the centres of gravity of the weights acting between G and A and letween G and B. The point R might then be fomd tentatively as before, or it might be determined by drawing the lines $\mathrm{C} A, \mathrm{C} B$, from the given point C to A and B , to cut $\mathrm{P} g$ and Q, g^{\prime} in e and f. Then let e and f be joined, cntting KG in c, and take $\mathrm{G} c: \mathrm{GC}:$:GC:GR. ${ }^{1}$ This determined the point R , and
${ }^{1}$ Since R was the required point,

$$
g e: g \mathrm{E}:: \mathrm{G} \mathrm{C}: \mathrm{G} \mathrm{R}:: g^{\prime} f: g^{\prime} \mathrm{F} ;
$$

and from this it followed that E F and ρf producel must interseet the prolongation of the tine $g g$ ' on the same point ; and, therefne,

$$
g^{\prime} f: g^{\prime} \mathrm{F}:: \mathrm{G} c: \mathbb{\mathrm { C }} \mathrm{C}
$$

But by the first proportion
$g^{\prime} f: g^{\prime} \mathrm{F}:: \mathrm{G} \mathrm{C}: \mathrm{GR}$,
and
Ge:GC:OC:GR.
[1870-71. s.s.]
by joining it with A and B the line $E F$ was fomm, after which the curve of pressure might be drawn as in the case of oblique forces.

This method of constructing eurves of equilibrimm for arches subjected to oblique forces was an extension of the following method of drawing these curves for symmetrical arches.

Each half of the arch being of the same form and weight, the thrust at the erown C would be horizontal (Fig. 31). Let the horizontal line $\mathrm{C} a$, represent the line of thrust, then the vertical

Fig. 31.

line EG drawn throngh the centre of gravity of the semi-arch womld intersect the line $f^{\prime} a$, in some point as E. Now if E
were joined with the abontment A, EA would be the direction of the thrust at A. which fogether with the thrust at C equilihrated the woight of the remi-arch. If $\mathrm{E} w$ be set off on EG to represent this weight, and we, drawn horizontally to ent the line EA in the puint $e_{\text {, }}$, then of e, wouk represent the horizontal throst, and Fe, that of the throst at A.

Supposing the somi-arrls to be divided into a number of parts (say four), cach of which it was convenient to make of the same horizontal length, and the vertical lines (1) (1^{\prime}), (2) (2'), (3) (3'), and (t) (t^{\prime}) were drawn through the centres of gravity of these parts, then from the point (1), the intersection of (1) (1^{\prime}) with (\mathbf{E}, set off' (1) a on ('E equal to the horizontal thrust $w e$, and draw ab vertical and equal to the weight of the first portion of the areh whose centre of gravity was in the line (1) (1'). Now join (1) b, which would represent in magnitude and direction the thrust after it had passed the point (1), and hat heen combined with the weight of the first portion of the arch, supposed to be concentrated there. This line (1) l would cut the next vertieal line (2) (2') in a point (2) where the thrust had to be combined with the weight of the secoml prortion of the arch. For this purpose set off from the point (2), on the line (1) (2) producer, a length (2) b^{\prime} equal to (1) b, and draw b^{\prime} ' vertical, and equal to the weight of the seeond portion whose centre of gravity was in the line (2)(2'). Then (2) ${ }^{2}$ when joinel would represent the resultant thrust after passing the point (2), and the line (2) c would cut the next vertical (3)(3') in a pint (3). From this point (3) a similar construction for the weight acting there womld give the line (3) d, the resultant after passing the point (3), which line would cut the next vertical (t) (4^{\prime}) in a point (4). From this last point, the direction (4) e of the resultant after passing the point (t) could be found in like manner, and this must coineide with the line E A already found, and would be a test of the accuracy of the several constructions.

The points (1)(2), \&c., might also be found by means of a diagram $\mathrm{E} a_{1} b_{1} c_{i}, \& c$., where $\mathrm{E} a$, represented the horizontal thrust, $a_{l} b_{\text {d }}$ the weight of the first portion acting in the line (1) (1^{\prime}), $b_{i} c_{\text {, }}$ the weight of the second portion acting in the line (2) (2^{\prime}) , c, d, the weight of the thind portion, \&e.: the total weight of the semi-arch being represented by $a_{1}, e_{\text {. }}$ The points (1)(2), \&c., were then found by drawing (1) (2) parallel to $\mathrm{E} b_{6},(2)(3)$ parallel to $\mathrm{E} c_{c},(3)(4)$ parallel to Ed, and so on.

In the case of oblique pressures, the lines $a_{1} b_{0}, b_{1} c_{0}, c_{1} d_{0}, \mathcal{d}$., must he so taken as to represent the forces acting at the points (1), (2),
(3), \&e., and would not le vertical; hut the diagram might be made ly drawing these lines in the oblique directions of the forces which acted at the several points, and setting off the amomuts of these forces on the respective lines. The lines which joined E with these points would represent the amoments of the resultants at the several points.

By dividing the arch into a sufficient number of parts, a series of points (1), (2) (3), \&e., would be found, the curve drawn through which would he the curve of equilibrimm, and the thrust at any point of it in the direction of the tangent. The position as well as the amoment and direction of the resultant was thus known, ant the transverse strain at any point of the arch rib was capable of being determined, since the moment of a resultant with respect to any point, and therefore with respect to the point of the rib to which it corresponded, was equal to the moment of the forces of which it formed the resultant.

$$
\text { Fig. } 32 .
$$

P being a point of an arch rib, Fig. 32, and RS the curve of equilibrimm, draw P 'li through P in the direction (vertical or oblique) of the force there, to cut $l i s$ in the point l. The resultant of all the forces acting on the arch rib, ul to the point P would he the force arting at the point h of the curve R s. Let F he this force, and $\mathrm{F} v$ its direction, tangential to Ris. Draw $P^{\prime} p$ perpendicular to $\mathrm{F} v$, and the lending moment at the point P would be measured lig $\mathrm{F} \times \mathrm{P} p$.

Mr. F. W. Youxg explaned a method of finding the strains on the diagonals of the spandrel of an arch, which he had used, and which he believel wats even simpler than that of MI. Gandard, while it hat this advantage, that the calculations were easily checked.

The first step was to fimd the loads on the almatments.
Fig. ©i.

Fig. 3: represented an areh loaded upon half the span. The deal load was if per lay, amt the live loal 12. 'The loats upon the ahntments were shown in Fig. 3:3, the proportion being 36 to the right-limd almoment, and $2 t$ to the left. Now dividing the load wh the liridge in these proprortions, the lowds of 6,6 , and 12 were assigned to the left-hand abutment, and the loads of 18 amd 18 to the right-hand ahotment. Then moltiplying each load by its leverage there was a thrust of ist. Knowing the horizontal thrust to he it, the vertical elements on the ribin bays Nos. 1 and 6 were found. Taking 54 as the horizontal element, the vertical was 30 ; lint there must he a pressure on the right-hand alontment of 36 , and on the left-hand abotment of 24 . Consefrently there must be a strain of 6 in eompression on the vertical which rester on the right-hand abmoment to make up a total of 36 ; and this necessitated a vertical downwam pall of 6 on the diagonal of hay No. 6 to resist that upward push; and that vertical pressure represented a horizontal pressure of $13 \cdot 5$, which again required a strain in temsion of 13% on the horizontal tol member to meet it. lroceding in this way in eath bay the strains on the diagonals were obtained. In order to cheek the results, there was fomm in each bay the total vertical force which should be equal to the shearing force on that hay, and the total horizontal foree should be st on each bay representing the thoust. Thus the shearing foree on bay No. 3 was 12 ; accorlingly there was a vertical force of 12 on this hay. Again, if there was added the vertical effects which acted in the same direction, and those acting in the contrary way were subtracted, the result was $13 \cdot 5+45=15$ as the total vertical cffect on bay No. 5 , and $22.5-45=18$ the total vertical effect om hay No. 2. Knowing the shearing force on any bay, the calculations could be thes ehecked, or from the shearing force alone, these strains could be aseertained by working from the centre towards the abutnents ; lut it was more convenient to proceed from the aboutment to the eentre when the diagonals were inclined as in

Fig. 33. When the diagonals were crossed his practice was to consider half the load as acting on the diagonals in the one way, and half acting in the other way, and putting the two together an approximation to the true strains was obtained, though the true strains wonld depend more or less mon the proportion of the sectional areas of the hars to the calculatel strains.

In Fig. 34 was shown the method of describing the curve of equilibrium which he generally adupted. He fomd, as hefore, where the load divided. He had taken the same loads in this case as in the former for the sake of convenience. Supposing he wanted to make the curve of equilibrimm pass through a particular point, such as the centre of the arch at the crown, he took a length of any convenient scale representing the sum of these shearing forces $-12+18+24=54$. Taking 54 as a length and the desired point in the crown as a centre, he deseribed an are cutting the chord. Joining the centre and point of intersection at the chorl, he marked off divisions 12,18 , and 24 along the line; and drew horizontal lines throngh the points in the line thas obtained to intersect corresponding vertical lines drawn through the points of application of the loads. The intersection of these lines gave points in the polygon of equilibrium. A similar operation would give the curve for the other side of the arch. It was also possible by this process, though more complicated, to draw the curve of equilibrimm when the loads were distributed at irregular distances. For instance, if the distance between the two loads of 6 was double what it was in the other case, all he had to do was to make the corresponding length on the ratial line 36 instead of 18 to , (btain the curve.

Fig. 35 was a representation of what appeared to him
to be a very complicated case. It was an atroh in appearance; hout yet it did mot act as an arch. It represented the rib of an

Fig. 35.

wehed roof which was fixed at one end and rested on rollers at the wther end. Now, when this was exposed to the horizontal force of the wind from the left, the free end tended to approach closer to the fixed end. Again, when exposed to the force of the wind on the other side the firee end was forced out. In this case two sets of calculations were required; it was a most diffienlt case, and he did not know of any work which showed how to treat it.

Mr. B. Baker said, that the Author, when treating on arches with three pivots, suggested the provision of a long joint at the centre to prevent bending. He assumed that the bending referred to was lateral bending, since the sole olject of the pivots was to provide for a free vertical movement of the arch. 'That being so it appeared to him that an arch pivoted at the centre would be in the same condition as an ordinary continnous arch, for in both cases provision against lateral bending woukd be made by the introduction of horizontal bracing between the arched ribs, and as the strain transmitted through that bracing would never be sufficient to put tension on the arch at the centre, a simple butt joint or a pivot would be as effective as a rivetted joint. The real oljections to pivots were that they afforded the designer far less freedom of treatment than a continnous arch; that the structure would be more sensitive to vibrations whilst at the same time the corresponding advantages were very problematical, since if material were saved labour would he increased.
'The Author prefaced his formule with the remark that the conditions involved were so delicate, that they were applicable only to strictly homogeneous materials, and he excluded from that category timber, masonry, and, to a certain extent, cast iron. The question at once ocemred, was wromght iron wor fifferent to cast
iron as to justify more than a partial acfuiescence in the results of the formmle in the one instance when they were avowedly inaprlicable in the other. It was known that even two pieces of wronght iron cut from the same plate were rarely found to be of the same strength and clasticity. Cast steel was usmally considered to he the most homogeneous of all materials; and yet a specimen of Krmpp's manufactme, which was slieed into small pieces and tested hy Mr. Kirkaldy, varied as much as 25 per cent. in strength, and 100 per cent. in extensibility ; so that, even if an arched rib were made of one solid piece of steel it could not he considered as perfectly homogencous ; and when, as was the case in practice, rivets were introdned, the conditions were far more complicated. He did not clearly moderstand the action of rivets when they had to secme the three or more plates of a girder-flange. They did not, it was certain, make a mechanical fit, for, if a bolt $\frac{1}{16}$ th of an inch smaller than the holes would pass throngh the rivet holes of a pile of plates as fixed for rivetting together, the work would be rather above than helow the average. As the rivets were put in hot, it might be imagined that they wonld conform to imegnlatities in the holes, lint such was seldom the case, for the head being struck off the rivet dropped ont, possibly withont having tonched more than the two exterior plates of the pile. In well-excented work every rivet was strained up, to the limit of elasticity, and it appeared that when four or five plates were rivetted together, the action of the rivets was merely to grip the plates together, and that the resnlting frictional resistance constituted the strength of the joint. If that were so the joint conld not be relied unou under straius exceeding the elastie limit, since the plates moder the rivet heads would then drag ont, the grip of the rivets wonld relax, and the frictional adhesion of the plates wonld necessarily cease. He could not reconcile any other method of action on the part of the rivets with the results of his experience as to the actual condition of rivets in ortinary girder flanges built up, of from three to six plates. ITe had never seen a rivetted sirder with more than two such plates broken. Some experiments of this nature seemed to lue desirable, lecanse it appeared hot too probable, that xeliance conld not be put upon more than 10 toms or 12 toms as the ultimate resistance per sfuare inch of rivetted girderflanges made up of fom or five plates : fon muless the rivets exactly filled the holes in each plate, he conk not conceive how they were to maintain their hold when the grip of the heads was relaxed. some engincers, he was aware, consilered that the streng'th of a joint was grorerned by the hearing area of the rivets. It was at
question whether the bearing area ever had anything to dow with the strength of rivetted work of the class hlealt with by cheineers in bridge building. He had seen many girders broken muder test, but had never been able to trace a failure to deficient haring area. Ile noticed in the recent report of the Committee of Civil Engineers on the strength of sted, ${ }^{1}$ that the maximm strain per square inch upon the learing area of the rivets in the joints tested was more than donhle that sustained by an average bar, and there was no evidnce to show that the strength of the joint womld have been diminisherl had the bearing area been still farther reluced. If the influence of bearing area were so important as to determine the strength of a joint, the same reasoning would apply to many other cases, and he shombl like to know how bearing area could be obtained in a chain cable, for instance, which was fir more severely tested than girler work. It was obvionsly impossible to get bearing area equivalent in area to the section of the chain, nor was it necessary, for if it were, would mere knife edges sustain a load of 450 toms, as in Kirkally's testing machine? Whatever view, however, was taken of the action of rivets, it was olvions that their presence materially detracted from the homogeneity of stmeture required, as stated by the Author, to almit of the application of his formule.

In treating on contimons arches symmetrically loaded the Anthor based his formula upon the assmuption that the angle letween the joint at the crown and that at the springing would remain constant. He did not think this would be quite so in practice, as there would be some clasticity in the ahment itsolf beyond the arch rib, which would tend to distribute merpal stresses. If this were not so in an ordinary girler, resting at each end upon masonry, it would follow that when the girder was loaded it would deflect, amb bear solely on the two inside arrises; hence if there were no elasticity in the almoment, fractures of bedstones would be the rule and not the exception as they now were. He provided for this modifying influence of imperfect fixing in the ease of arches by assmming, not that the abutment itself was elastic, hut that the arched rib was more elastic near the springing than at the centre, and he fixed the amomut arbitrarily ly taking the molulus of elasticity at one half of the usual amomet for
${ }^{1}$ Viale "Experiments on the Mechanical and other properties of Steel, made at H.M. Dockyand, Woolwich, ly a Committe of (ivil Enginecrs." Folio. London, 1870.
portions of the arched rib, extending to one-eighth of the space from each abutment. The effect of this hypothesis upon the eatculations was simply that the deduced sectional areas of the arched rib at different prints would be more uniform. Thus, if in an arch rib, with a certain amount of rolling load, the section at the springing required, upon the Author's hypothesis, were one and a half time that at the centre, upon the hypothesis of clastic abutment and imperfect fixing the section at the centre would be increased about 5 per cent. whilst that at the springing would be roduced from one and a half time to about one and a quarter time the area at the crown. Prolnably no two arches in a viaduct were fixal under precisely similar conditions. A piece of felt interpesed between the arched rib and the abounent would suffice to upset all exact calculations, and an error of but $\frac{1}{100}$ th of an inch to the foot in the angle of the skewback would materially affect the strains; hence the results arrived at hy any professedly exact method of investigation must be taken with due reservation. He agreed with the Author that, the thrust being given, there was no difficulty in fuding the stress, but he could not admit the accuracy of the formula alvanced for that purpose, because if that were correct a parabolic arched rib uniformly loaded would be submitted to only two beuding stratins, one arising from change of temperature, and the other from deflection; and the strains from both of these stresses would he diminished in proportion to the depth: it therefore followed that the smaller the depth the less was the strain, and that the best arrangement would be to give the rib no depth at all. But for an arched rib even uniformly londed there must obviously be some depth which would be the most advantageons, and it appeared to him that it conld only be arrived at by considering the condition of the arched rib as a column. Taking the most simple case by way of illustration-that of a parabolic arched rib pivoted at three points and uniformly luarled, in which the two archerl ribs constituted in effect two columns with rounded ends, the line of thrust being prarablic, would follow the axis of the ril, and the latter, therefore, would be subject to the same comditions as two straight columms of equal length and with rounded ends; beeause in both cases the line of thrust would correspond with the centre line of the member resisting it, although in one case both these lines were eurved, and in the wther both were straight. The same conchsions held grood with respect to contimons areher rils, although in that case the dfective length of colmmen was comsiderably less than ome-hatf of the spen as in the previons instance. 'This condition further
 original type of spaterement arehed ribs of miform section. He did not consider that the detemination of the most desirathe propurtions for arches was quite so simple a prohlem as might be infered from an inspetion of the talle advanced liy the Anther. The propre rise for the arch, in his opiniom, was governed principally ly the weight of the epmorel-filhing and its loweng ats compared with that of the areloed ribl popers, and the depeth of the rib) depended man a maltitmele of comlitions. It woud not be the same in Caglam as in Anerica, owing to the greater range of temperature in the latter emmory. Here it womld the made generally from $\frac{1}{1}$ the to ${ }^{1}$ the of the span: in Anerial from $\frac{1}{5}$, th to ${ }^{1} 100$ th would he a letter propurtion.

He thought the almission ley M. Gaudard, that it was hetter to adopt what was pactically most advantageons rather than that which most facilitated theoretical calculation, was a great roncession to practical men. No man, however profomm a mathematician be might be, could justly be styled an engineer unless his structures eomplied with many other conditions hesides those relating to stress. l'ublic opinion did not justify architects in putting up buildings of even the poorest class without some attempt at pleasing the eye: pilasters and agaged columns gate an "lrearance of increased statility even if in many instances they did not confer it, and he thonght the engineer should consider such points when designing an wehed bridge-the most expressive type of all hridges-and the one admitting of the nohlest artistie treatment. To the engineer figures were indispensable, and admirable servants, but they should never be allowed to hecome the enginecr's master.

Mr. G. J. Mormon olserved that prohably rivetted joints might be made nearly as strong as the plates which they comeetel; but he thought there were many cases where the strength of the joints was not more than 50 per cent. or 60 per cont. of that of the plates. Unless the joints eould be made nearly as strong as the plates some of the formula of ML. Gaudard would be of little use.

Mr. R. l'. Brereton observed, that in paragraph 6 it was suggested as desirabie that arches should be in equilibrium when fully loaded, and that the curves would be either the catenary for arches of uniform seetion carrying only their own weight, or the parabola when uniformly loaded on a horizontal line, the latter being the case for suspension or compressed metallic arches, eonsidering the weight of the ribs and andrels to have little influence as compared with that of the roadway and the loarl.

The Author assumed, however, hore, and again in paragraph 21, that, in practice, the circular form of arch was gencrally preferred to theoretical forms, owing to supposed facilities and simplification in setting out, and in the execution of the work; and, lesides, a theoretical figure would only be correct for a single condition of the load.

With arches, where the radins would be large, he had found greater simplicity in setting out the lines, and in the construction with the parabola, tham with the circular are ; and that form, in most cases, approached nearer to the curve of equilibrium than the circle, and had been adopted. He considered, although desirable with large bridges, that the arch should be in equilibrimm when fully loaded, that it should be also so when sulject to its permanent strains, rather than when carrying the maximum rolling load, only occasionally applied, and but rarely remaining more than a few seconds. This, with a bridge of the greatest traffic, would probably seldom exceed in the aggregate a thirtictly part of its full life, and during the remainder it would he undergoing constantly continuing cfforts at change of shape. In arch construction, varicties of forms became necessary as curves of equilibrimm, varying considerably, principally at the haunches, according to the relative weights of the arch itself and loads, as well as the extentand monle of appication of the load.

Taking a number of curves of the same span and leight, there was, first, the parabola, the flatrest at the hamches of the curves generally used in lridge-building. This could only be actnally reached under a miform horizontal load, the arch itself and spandrels being considered entirely without weight. Next, the common catenary, due to the weight alone of an arch or chain of uniform section. This was the eurve seem in wirerope suspension-hridges before attaching the floor and luad, and in the festoons of a ship's calle. Next followed the catenary of equal strength, or eme formed by the weight of the arch alone, with section varying in proportion to the strain upon the different parts, as usually adopted in a suspension-bridge built with iron hars or links, and in arches well designed. After this came the cireular segmental are.

The catenary of eqnal strength was at the hannches, nearly midway between the circle and parabola; and the common catenary curve passed between that and the parabola. All additions of uniform horizontal load, if appliod vertically, temded to deparfure from the circle and appoathed towards the parabola, inwasing as the magniture of the leartings. The same lome, if aphicel throngh the spandrels in a bulating direction, affected
materially the relative strains, or thensts, on different pertions of the areh, and the fembeny of the curre of erpilibnimu womld the reversed, apmothing in the direction of the cirenlar form, amb incraning with inercase of lade If, in addition to a maform
 material, as often happume with masomry hridges, the comes of equilibrimm pasme gratly lexond the eirele and partork more of an elliphic form. 'Taking, for instance, a man of goo fiet, with a
 iron arches rose from! the to 1_{1}^{1}, the only-the difference at the hameles between the different curves wond be comsiderable, the variation hetween parabola amb circle nearly rachang to 2 feet, and letween the parabula and ellipse to nearly 6 feet.

The following might be taken as approximately true:-
1st. With a miform horizontal load, in proportion to the weight of rib or chain as 6 to 1 , applied vertically, the curve would approach very near to the parabola.
2mb. With the same in the proportion of 3 to 1 , the curve at the haunch would be about midway between the parabola and the common catenary.
Brd. With the same in the proportion of 1 to 1 , the curve wonld be between the parabola and the equal catenary, or near the common catenary.
4th. With the same in the proportion of 3 to 1 , applich through radiating spandrels, the carve would be between the equal catenary and the circle.
5th. With the same in proportion of 6 to 1 radiating, the curve would approach closely to the cireular segment. The segment would also be nearly the eurve of equilibrium for :un arch of masonry with uniform horizontal load, in the proportion of 1 to 1 , when the material over the hand hes was lightened $\frac{2}{3}$ rels or ${ }_{4}^{3}$ thes by the introluction of spandrel walls or arches.
Gth. With the same load and spandrels fully weighted, the curve would approach to the elliptic regment, and would depart, to the extent of nearly 4 feet beyond the circle, assuming the spandrel-filling to act vertically upon the arch; bat, considering the uncertainty as to the direction in which the weight of the material nsed in the larking up of hamehes really acted, the departure from a circular form might be much greater.

In the case of the Inugerford suspension bridge of nearly 680
feet span, and a rise of $1: 0$ the not intended for milway purposes, and with the floor not caleulated torestrain the natural movement of the chains, whieh were heary in proportion to the loads, fourfifths of the weight contributed to form an equal eatenary with the constant load. And with the full moving load half contributed to the equal catenary and half to the paralola. The full luad was probably realized on very rare oceasions; the ealculations for constructing the bridge were for a curve half way between the common and equal strength catenary.

With the Saltash bridge of 450 feet span, and aggregate rise of the two curves forming the how and chain of $\frac{1}{8}$ th of the span, half the whole weight contributed to the equal catenary and half to the parabola with the constant load; and with the fall moving load one-third contributed to the equal catenary and two-thirds to the parabola. The areh was constructed as a parabolic polygon, and the difference at the hamehes between this curve and the circle would be nearly 3 inches.

At the Windsor Railway lowstring bridge of 200 feet span and $\frac{1}{10}$ th rise, one-third of the weight contributed to the equal catenary and two-thirds to the parabola with the constant luad; ant with the full load one-fifth to the equal eatenary and four-fifths to the parabola. The ribs were also built as parabolic polygons differing from the circle about $2 \frac{1}{2}$ inches.

In paragraph 7, there appeared to be a distinction between arches of masonry as rigid and inelastic, changing form, either by ernsling of the stones or pivoting on their colges. But a material degree of elasticity was to be met with in the arches, as well as in the abutments and their fomdations; and several instances had occurred of arches showing great elasticity during settlements, and from other canses. In the case of a large railway segmental arch of 120 feet span, with a rise of $\frac{1}{5}$ th and thickness of masomry at the crown of 4 feet 6 inches, lailt in the year 1841, the areh had settled in the first ten years 21 inches, incheding the allowance originally intended, and in the next ten years a further 11 inches, being 32 inches in all, equal to ${ }_{5}^{1}$ th of the original rise of the areh, and ${ }_{4}^{3}$ thes of its thickness; the ballast at the crown having aecumulated to more than double. There had been some trifling yielding of the abutments; but the settlement was mostly due to elastic change of form and compression of the masonry, the eurve of pressure heing nearer to one edge than the other, as in a metal arch. A few of the arel-stomes had been slightly cracked, but without signs of pivoting or opening of the joints such as should hate shown themselves with an inclastic structure. In 1860, some realljustment of
the loading was earriod out, sine which gear them hand heen her finther mevement.

With reference to arehes with thre pirots, he might onserve that if a pion at the erown were otherwise desimble, it ambl be obtained with less whection than hat been assmmed, since there was no necessity for a mherical knec-jwint, the top amd hottom members of large arches having width chough to admit of a sufficiently long evindrieal joint wh hinge, which, when connceter, would have no greater tembleney to thrning ower sideways of the areh than vas met with in the joints of king-post or polygunal trusses not depending for their existenec on the adjoining ribs.

Fig. 12 in paragraph 24 represented a pivot construction at the abutments to avoid risk of imperfeet ledding or keying up of the ribs upon the springing plate. With considerable spans and loads, assuming the small pivot to lee the only bearing, the strain upon it and upon the bed-plate beneath must be exeessive. Applying such a plan to the St. Louis bridge now building in America, where there was a direet thrust at the abutment of about 2,000 tons per rib, the strains by the converging of the top and bottom membens to the pivot would be increased to 2,200 tons together, producing also a strain in tension on the eross-stay connecting them of about 500 tons, which wonld require alone 100 square inches of wrought, iron, a failure of which or its comections would lead to the collapsing of looth the members of the areh. Nore than domble the quantity of metal would be required than would be otherwise necessary, hesides the heavy bed-plate easting requisite for distributing such enormons weights upon the masonry; and with a pivot at the crown it wond again be doubled. He helieved it would be better if the two members of the ribs, each ledded on the alutment, were made to eary a proportionate share of the total loading, relying upon efficient trellising or web comnection for distributing the strain during unequal loads.

He did not think sufficient justice had heen done by the Author, in paragraphs 22 and 23, on the sulject of timber lidide construction. It was assumed that, from decay, constant renewal of the parts was indispensable, and in doing this that there must every time be deformation or derangement of the structure. A skilful piece of carpentry or trussing should admit of any indivitual member being taken out and replaced, the proper initial strain of such member being maintained, without the remainder being sulbected to derangement. The examples of timber hridges given in the Paper, of two or three types omly, could not loe comsidered
satisfactory, and many of the railway bridges built in England harl, he thought, heen more so.

He did not think that keeping the timbers apart, as shown in Fig. 9, ly thocks at intervals, would have any great effect in trans. mitting the line of pressure from one side to the other. Indeed the contrary was found to be the case; as experience had shown that the surfaces of the timbers, if properly preserved, should be kept as closely as possible together by bolting or otherwise. In this way, aul by joggling to prevent the slipping of the surfaces in contact, the stiffness of beams placel one above the other might be increased to nearly double, or that due to a timber equal in dep,th to both; lut when not so treated, the stiffiness was but little greater than when placed side ly side where, as in the construction cited, the three timbers would have been nearly three times as stiff, if they had been close together, one above the other, and efficiently comnected.

The second type of arch, given in Fig. 10, had heen frequently employed for railway bridges. When formed with layers of thin planks, and with timber not sufficiently preserved, it hat not proved durable ; but when huilt of substantial timbers, with the joints securely made, it hat answered the purpose well. On the main line of the Great Western Railway there was a bridge of this kind across a river, with flat timber arches of 90 feet span, the ribs consisting of several layers of half timbers, 6 inches or 7 inches thick, bent to the required form, and well preserved by 'Kyanizing.' These arches hat been in constant use about thirty years without rerpuiring renewal. The class of timber rib, however, more frequently alopted for spans of about 100 feet, had been a system of domble polygons placed one within the other, bolted together and lireaking joint, ley which means great stiftiness had been obtainel. A lridge of this description carriel the Bristol and Exeter Railway across a river; the ribs were 102 -feet span, springing from abutments intemded for a masonry arch, and they were erected thirty years ago, of well creosoted timber; and these, too, were still in use.

On the subject of the preservation of timber, without which no degree of permanence in a structure could be expected, the Author was silent, beyond pointing out the desiralility of using tar or paint. It must, however, le borne in mind that the influence of these was superficial, and that the latter was only advantageonsly attainalle with wrought surfaces of carpentry, quite inapplicable th the enormons quantities of timber-work used on railways. He hath hat expericnce of alout $10,000,000$ cubic feet of pine timber
in railway eonstanction, all of which had been prepared by one or other of the different preserving processes. Amongst the carliest, in 18:8, was the chloride of meremy, or corrosive smblimateKyans process. Then came the sulphates of colper and of iron-Margay's and l'ayne's processes. C'reosoting, or tar-oilBethell's process-snceceded, and also to a large extent, chloride of zine-Burnctt's lrocess. 'The early Kyanizing, when effieiently done, had not been smpassed by sulsequent methods; and per-manent-way timber, laid thirty years ago, was in existence still. 'I'his process gave way to athers, the material heing expensive at the time, and difticulties existing in readily detecting frambulent adulterations. It hat, however, been resmmed again abont fifteen years ago, the material having become considerably cheaper. 'The sulphate processes had not been found so faromable; lint the Burnett process, and creosoting had been largely used. Ile dit not remember any instances of mischief from the combination of timber and iron, out of several hondred examples in England.

Pine timber did not contrast unfavomally with other materials. when used in compression, for large struts or arches. As compared with wrought iron, it was about 1_{12}^{1} th as heavr, $\frac{1}{2}$ th as costly, and ${ }_{2}^{1}{ }_{0}$ th of the ultimate strength; whilst as regarded extent of compression, or elasticity up to $\frac{1}{4}$ th the breaking weight, it was fomd to be only abont $\frac{1}{5}$ th greater ; and, as comprared with cast iron, about $\frac{2}{3}$ rels less. Timber, if subsituted for a rib of ashlar masonry, would be abont $2 \frac{1}{2}$ times stronger, $2 \frac{1}{2}$ times eheaper, and $3 \frac{1}{2}$ times lighter.

In paragraph 24, cast iron was spoken of as resisting compression well, lut tension batly, and as being ill-suited for arches when required to resist flexure. The latter might be true with motal that was brittle or imperfect; but good material might be made sufticiently elastic, and had been known to lend as much as 5 inches before breaking, in girders 30 feet long and 16 inches teep: the jointing also of the segments might be made, by bolting, as strong as other parts. As regarded resistance to compression of cast iron, as compared with wrought iron, althongh the ultimate strength was greater, yet, as used in practice up to $\frac{1}{4}$ th or $\frac{1}{3}$ rd of the breaking. weight, the compression which led to deflection or derangement in a structure would he nearly donble.

Mr. Stoney, in commenting on the Saltash bridge, and objecting to the form that had been used, as mnfarourable to resist compression, had probably not been fully acpuainted with the construction. The dimensions of the elliptic tube of the arch or polygon were 17 feet in width, and 12 feet in depth; the ratius at the sides was [1870-71. N.心.]
about 5 feet; and there, in the line of the greatest strain, the plating of the skin was doubled. At the upper and lower parts the radins of curvature was 12 feet; and at these flatter portions of the tube some of the metal was disposed in several longitudinal ribs or wehs, after the manmer of the Britamia tube. Before erecting the bridge, the first span was entirely completed, and tested with a load of 23 tons per lineal foot, or 1,200 tons in all, in addition to its own weight, for the purpose of detecting any indications that might show themselves, of buckling of plates or other weaknesses. No such appearances were olserved, nor any during the twelve years that the lridge hat been subjeet to constant traffic.
As regarded the use of ballast upon railway bridges, none of those constructed under Mr. Brunel, including the Saltash bridge, had been so large as to necessitate the departure from what was considered a sound and useful practice, the nature of the designs admitting of great depth of trussing, which inereased the stiffness and reduced the strains, even with some inereased load of ballast, to greatly less than bridges of the same size constructed on other designs; and the cost of the extra metal necessary formed lut a triffing proportion of the entire cost. It might be difficult to satisfy the rigid mathematician of the practical advantages of putting on a constant, or what might appear an umnecessary, load upon a structure. Theoretical calculations did not regard the results of trains getting off the rails, changes in the deseription of permanent way, fire, the bringing home of joints of ironwork or framing, preventing alternations of strains on different parts, the keeping in contact pins or bearings which diminished deffection, the reduction by the incrtia of the mass of the effeets of sudden jerks, blows, shoeks, and vilmations of passing loads-always misehievous with rivetted boiter work. Besides, there was a great advantage in being able to reduce the load, if neeessary, for repairs, or in the event of defective joints or workmanship, being afterwards discovered.

Assuming the diagonals in bowstring lridges, as usually made of bars or rods fastened by pins or keys, and themselves incapable of compression, the condition of the vertical struts depended upon the proportion of the moving load to the constant load of the suspended floor. When one-half the bridge was covered with a moving load, and the above proportions were about 2 to 1 , compression would be brought unon the vertical rols, and sooner if any of the reverse diagonals should have been too lightly keyed, or contracted in rever low temperatures. A load of hatlast was desirable
in preventing altemation of the strains from tension to compres-sion-a source of mischicf to struts if made with pin comections at the joints.

Mr. Bamone remarked that M. Gaudard had given the solution of the polygonal arch and framing in emnection with the spandrel, which was simple and easy to lie understond, and there was no difficulty in applying it. But in respect to a comtinuons areh, although the form in which M. Gandard had brought it forward could he easily handled hy mathematicians, yet it presented considerable difficulty to the practical man. He thought it would hase been better if the Author had adopted a more simple shape, because formule of such complexity had the effect of deterring many persons from entering on the subject. It was true that in a continuons arch the curve of pressure might pass comsikerably outside the arch without incmring the risk of failure, but in ordinary arehes such a depth of rib was gencrally given, anoming in large arches to $\frac{1}{30}$ th or $\frac{1}{40}$ th of the span, that in fact the curve of pressure did not pass ontside the arch. The arch of a bridge, ton, never stood in the position of what was called a naked areh; it always received more or less support and restraint from the spandrels, and therefure the combitions on which the arch of a bridge had to be treated were not those requiring the elaborate investigation loroght furward in the Paper.

The roof' of the St. l'ancras station of the Midland railway, which was a large arch unsupported by any spandrels whatever, was a maked arch, and he shomld have been glat if he had heen in possession of any practicalle formula which he could have used in designing that structure. He, howerer, was not in possession of such a formula, and therefore he was ubliged to have recourse to other means to determine the subject. In relation to that arch, he hat not only the condition of mequal lowing, but that of lateral pressure brought on it by the wind. He was not able to find out from the Paper the mode of treatment of the condition of lateral pressure. The sulject was one of importance, and he hoped the Author would continue his investigations, and ndeavour to render them in a more simple and intelligible form.

Mr. Phipps and Mr. Meppel had given views on the suljget of treating bridges, which differed from each other. Mr. Phipps proposed, as the best mode of constructing a bridge, to put the whole of the rigidity into the arch itself, and to take no adrantage whatever of spandrels. On the other hand Mr. Heppel had submitted, as a problem to be studied, an arch which in itself should be completely flexible, and which shomld obtain all its rigidity liy
means of the spambel action, more or less in the form of a gitder. This had been brought forward in the discussion on the Clifton Suspension bridge by Professor Airy, who then pointer ont that if there was a girder below a perfectly flexible suspension-chain, ant the girder was simply capable of resisting with a given deflection the strain brought by half the moving load, that the structure would be of sufficient stability for that end, and the deflection would be that due to half the moving load upon the girder. He believed that was correct; the more so, becanse it was not a new principle, but was one which Mr. P. W. Barlow had experimented upon in reference to a suspension-bridge in Ireland. But there was a distinction to be drawn letween a suspension-chain and an areh. In a catenary curve the suspension-chain was in a condition of what was termed stable equilibrimm: it had a tendeney to restore itself if disturbed. On the other hand, if it was turned upside down-and it was attempted to make it into an arch-it became in a condition of mstable equilibrimm. If the form of the areh was distmrbed, it had no power or tendency to restore itself. But arches were made with a given thickness, so that they possessed some elements of stability in themselves; and taking that property into accoms, the proposition of Mr. Heppel was a perfectly legitimate one; and he shonld be disposed to earry it farther, and mite the spandrel with the girder. It would follow in an arch so made, that if the lower member was sufficiently strong to resist the weight of the moving load in addition to the weight of the bridge itself as a whole, and then, secondly, if the half-arch was mited into one piece with the spandrel, forming as it then would do a species of girder, and that girder was sufficient to carry the weight of half the moving load, there would be a condition of things consistent with perfect stability.

He would mention, with reference to the St. Pancras station roof, that he had made a rough test model ${ }_{1}^{1}$ th of the full size of the roof, and, applying somewhat the same principle to it, had subjected it to two conditions of strain, which he would deseribe. The clear span of the model was $1:$ feet 4 inches, and there were two rils, each of a width of $1 \cdot 62$ inch, and a depth of 4 inches, making a total sectional area of B_{t} inches. liailway-slecpers were suspented from the arch, as shown in Fig. 36 (page 160), and nom them pig-irom was placed.

First, a distributed load of 12 tons, 3 cwt., 2 qrs., $10 \mathrm{lbs} .$, produced a stram of about 21 tons per inch at the hamehes. Secondly,

[^17]

2 tons, 3 ewt., 2 qris., of this load were transferred from one side to the other, which was equivalent to a distributed load of 7 tons, 16 ewt.. 2 qres., 10 11s.. and an additional load of 4 tons, 7 cwt., on one side of the arch. Kow it would be observed that this differenee of load of 4 toms, 7 ewt., if laid on one-half of the areh acting as a girder, wonld have heen sufficient to create a considerable deflection: yet when applied on the half-areh in the manner described, the distmbance was so small, that the change of figme was barely appreciable. This was a romgh mechanical way of treating the sul)ject. but as far as it went it appeared to bear ont the views of Professor Airy, Mr. Meppel, and Mr. P. W. Barlow.

With reference to M. Gaudard's reasoming upon the condition of the naked arch, which was really the main suljeet of the Paper, he had no dombt that it wonk be found practically applieable if the arch was formed of open framework; but if formed of solid pieces of metal, there were such differences letween theory and practice, where conditions of flexilility were involvet, that he thomght it desimble to have some experiments, or a crucial test of some kind to determine the question.

The Anthor had spoken of putting in pivots at the springing and at the crown of the arch. He liad seen one good illustration of the effects of pirots, if it was muderstood that a pirot meant a pin so placed that rubling took place round it, and that was afforded at the time when the IInngerford Suspension bridge was taken down for the purpose of re-erecting the chains at the Clifton bridge. It was then fond that the pins, which no doubt had been suljeet to that kind of action for a series of years under eonsiderable strain, and with the London dust getting into the bearings, had been so cht away in the grooves, that it was necessary to replace the old pins and to smbstitnte new ones of steel.

Dr. W. Pole stated, throngh the Secretary, that he congratulated the members of the British Engincering profession on the sreatly increased interest now shown by the Institution in subjeets of this class, as evinced by the remarks made in the course of the discussion that had taken place on M. Gandard's Paper. 'The Anthor wonll, no dombt, he pleased to find how thoroughly his labours had been appreciated. The Essay on "The Practieal Theory of the Continnoms Areh," hy Mr. Wilfrid Airy, Assoe. Inst. C.E., might in particular be mentioned, as showing that the mathmatical theory of arehes harl not escaped the attention of English Engineers.
M. Gaddafe, after receiving the motes of the foregoing dischssion, communicated to the secretary a l'aper of remarks unon them, of which the following is a translation :-

The Author feels mneh homomed by his essay being so favourably received by tho lnotitniom, and submitted to such a scarching discussion. Among the prinions put forward are some which invite a reply. As regards the general figme of the arch, the Author agrees with the opinions of Mr. Brereton, as to the facility of application of the parabolic curve. The equation of this curve is simpler than that of the circle; an anvantage which will be found in drawing large plans, where the compasses can no longer be applich. Nevertheless the cireular arch has in its favour not only ordinary usage or routine, but also the real adrantage of a constant curvature, which admits of the different parts heing verifich with the same monh or template, or of the volssoirs leing cast to one identical model, when they are of cast iron and of unvarying section.

Messrs. Baker and Barlow do not willingly accept the formula of the resistance of rigid arches: the first becanse he considers that practical instances depart too widely from the hypotheses of theoretical homogeneity : the second, because these formule are not readily applicable ly practical Engincers. With reference to this second consideration, assuredly it is a perfectly legitimate desire for every scientific Engincer to he able to rely upon himself, in every case which may the sulmitted to him. It would seem that this desire for simplification would be sufficiently satisfied liy the following methol :-The arch, being eonsidered parabolic (or nearly so), may he first calculated by the formula of the smpension-lritge, for the case of the full load applied orer its whole length. This gives at first too little strength, hecause it is known that partial addition burden, affecting the piece by flexure, will further fatigue it ; and besides, the nature even of the effort by compression exacts a rigidity not required for the stability of equilibrium of a stretched cable. Hence two modifications are necessary : first, to develop the calculated area in a form of section (such as the I) capable of revisting transverse flexure; the choice of this form may be left to the sagacity of the Engineer, assisted by "good models of works already executed. In the second place, it is necessary to inerease the area, or to support several points in the length of the arch by auxiliary picces. Perhaps it may he convenient to double the section, if there are reasons to alupt light spandrels. But it may be better, in accordance with Mr. Heppel's advice, to resort to auxiliary pieces, by calculating upon a division of functions.

The arch will suffice for itself in the ease of a load completely distributed. On the contrary, where the load rests only on onehalf of the arch, or is sulject to any other irregularity destroying the symmetry, the intervention of conveniently triangulated welis may be resorted to. The half truss should support the weight without appreciable deformation, by doing duty as a trellis girder, resting by its two extremities, which are, the abmoment at one end, and the summit of the areh, or point of junction of the two half-tusses, at the other culd. Meanwhile, it is to be observel that there will necessanily exist a very slight deformation, even in this strengthened system, so that it wonld be proper always to ald a little to the strength of the section of the arch, althongh much less so than if it hat heen deprived of the smport of the wehs. Simple and easy processes are as much appreciated by theorists as by practical men, for cases of slight importance, and where time does not admit of complicated resenches. But in the rarer cases of monmental works, where a consilerable economy, as well as a more perfect assurance of strength, may be expected at the mere cost of more laborions calculations, it dues not appear that the complexity of the method is a very serions oljection. Hence the formule given in the Papers appear worthy of being generally known, and carefully preserved in the repertory of the profession. A fine large britge cannot be constructed without the concurrence of several inliviluals, anong whom possibly some one may le found who is sufficiently acquainted with calculations of this kind. The profession of the Engiueer embraces, in our day. a knowledge of suljects so extended and so varied, that it becomes continually more and more impossible to find them all united, completely, in the same individnal; specialities, and the division of labour, are an imperions neeessity, inherent in the weakness of human powers. In prarticular there exists generally, not perhaps a natural antagonism, but a certain degree of practical incompatibility between the habits of laborions calculation and those of consummate practical skill. The Engineer who calculates designs has need of tranquillity; while he who has to carry them out must live in emontinnal movement and "excitement. It has always appeared to the Author, that the combination of the services rentered by these two classes of workers is effeeted very satisfactorily, and to their great mutnal alvantage. Indeed the Institution of Civil Engineers it.elf is a brilliant affirmation of the principle of co-operation of learning and speciality, and the conflict and disenssion of different ideas resnlt in substantial benefit to the interests of the Irofession.

With respect to the remarks of Mr. Baker. the Author conceives
that the use of the formule of the themst of rigid arehes offers sufficient approach to the trith to repas, at least in certain eases, the labour of its application. The ostensible objection is, that the construction is heterogeneons ; lut on further examination, it will be perceived that the real oljection reduees itself to that already examined, of the eomplexity of the calculation; for, in truth, a straight bridge is just as heterogencons as a curved areh, and yet the formula of straight girders commend themselves much more readily to all practical men becanse they are simple. In fact, the incontestable gulf letween hypothesis and reality is bridged ly the interval betwern the coefficient of practical work and the limit of rupture or elasticity. The ideal formula remains none the less the useful guide, which will serve to plaee a whole series of different works in nearly identical conditions of security.
'The Author has also to offer some considerations on what has been said in regard to the comparison of the arch of wrought iron and the arch of east iron. The following are the motives which have indued him to consider wronght iron as probably satisfying more nearly than cast ixon the theoretical comditions of homogeneity of a single piece. In the arch of plate iron the elementary picees are more numerons, thinner, intermingled and juxtaposed; the irregularities of textme would therefore appear to he more disseminated-more evenly spread about in the whole work-than would he the ease of east iron, east in mass through the whole thickness of the section. In the case of wronght iron, the theorist eanot know what law to he guided by for the variation of the grain ; he therefore eonchades that the best hypothesis is that of homogeneity, the inequalities being eompletely eomprised within the arbitrary limit, the practieal coefficient. With cast iron the ease is different, as the Engineer distrusts the hypothesis of homogeneity; it might he eonsidered nearer the truth to rely upon the law of a skin of finer grain than the interior texture: but it is evident that the application of the formulae under sueh conditions would only become more laborious still.

What has been said of the nature of the two metals will also apply to their combination. In the east-iron areh we do not hesitate to aecuse the joints of the voussoirs as very deeided points of weakness, tending to gape slightly under certain conditions of equilibrim, seeing that the bolts uniting the ribs of contact are at some distance from the extreme fibres which are the most fatigued or the most distant from the neutral axis; filres that therefore retain their want of eontinuity. It is trme that this may be avoided ly enlarging the seat of enntact lievond the limits of
the present section; but it is believed that that has hardly ever been practised save on the edge of the extrados contiguons to the web, and not on the lower edge.

In the case of wrought-iron joints it is more difficult to ascertain exactly the points of weakness, at least in a form as clearly defined as in a system of roussoirs; seeing that the joints of various juxtaposed pieces cross or overlap one another and are compensated ly the application of covering pieces or joint plates. The weakening due to the rivet-holes is, again, multiplied and disseminated through the whole. Mr. Morrison reminds us, it is true, that plate joints often present a large deficit of strength in the experiments on rupture. Mr. Baker expresses the same opinion; adding to it an important olservation, viz., that within the limits of practice, the rivets do not work by shearing, but support the whole by virtue of the pressure which they exert on the plates. This consideration seems to prove that the joint remains perfect as long as this pressure remains efficient, and prevents all sliding: such is the condition of the practical resistance of a solid structure where no morement of detail is producel beyond the elastic deformation of the whole. It is only under an exaggerated trial that the linding power of the rivets would be overcome and that then the joints would begin to make themselves felt as weak points, as is ordinaily proved by experiments on rupture. In fact, the formula of the l'aper, like gencrally all ordinary formula for the strength of materials, are only good for small deformations, within the limits of practical security, and hecome defective for experiments hordering on rupture, or even for those going beyond a cestain limit of elasticity.

The remaining observations which the Author has to add are not offered as controverting any opinions expressed, but rather as ailing in the discussion of the subject generally. The remarks of Mr. l'hipps would lead us to think that some injustice has been done to the aptitude for revistance of east iron in lridge arches; for the extension which may be developed in the arch remains notably inferior to the maximm compression, a condition appropriate to the character of the metal in question. With regard to the figure of 4 kilogiammes of tenilo stress which the Author has indicated (No. 25) for the Neuilly bridge, this datum was taken from an article by M. Contamin in the number for Pelmary, 1868, of the "Annales du Génie Civil."

The solution of the case of perfect cncastrement, mentioned at the end of No. 14, was noticed under the head of theoretical information rather than as a pactical example for according to the obser-
vation of Mr. Daker it is impossible in practice to secure invariahility, in the angle comprised hetween the section at the crown and that at the pringing. Hence the encustrement is scarcely ever adopted, a simple abotment being usually preferred.

The short talle of the hest promertion of pitch of the arch to the span, given in No. 20 , is only applicalle to the case examined ly M. Bresse, of a circular areh with constant section, and considered as ivolated or withont spandrels; the heights given are those which would strain the metal least with regard to equality of section and of loud. Mr. Baker was perfectly right in maintaining that such indications camot be preseribed alsolntely in bridge projects where other considerations are of intluence; a dimimation of the pitch is adrantageons as diminishing the mass of the spandrels.

As regarls the assimilation of the areh or the two halves of the arch to pillars whose resistance would angment when their extremities terminate with enlargel shoulders, instead of being rounded, it seems to the Author that the influence of temperature and of the arbitrary keying up diminish the force of this view. When a straight pillar is dilated it thrusts back its points of support, never ceasing to apply itself thoroughly liy the entire surface of the shoulder; but a curved piece will be lialde to alout on an eccentric edge, a case where the pillar with shoulders works under worse conditions than that with rounded ends.

Mr. Barlow appears to fear for the pivots of abutment or of free articulation an effect from wear analogous to that which he instanced in the case of the chain gndgeons of old Hungerford bridge. The Author does not attach weight to this as regards a rigid areh, not liable to the large, sudden, and continuous oscillations of a suspension bridge chain. The pivot has no need to be an entirely cylindical spindle; the shape of the pieces in contact would seem immaterial, provided it attains the oljeet sought for, namely, a free abutment, or simple articulation, only allowing of an imperceptible mutnal rolling, and which is only brought into action gradually by the change of temperature.
M. Probst, of the engineering firm of Ott, of Berne, has informed the Author that there exist at Berlin bridges with a central pivot, but that these works do not appear to comport themselves quite satisfactorily. The Author nevertheless thinks that it would be possible to obtain favourable results when the partienlar conditions of the work affiord a sufficient degree of utility to the addition of the pirots.

The ingenions musical contrivance employed by Mr. Airy to measure, on a small scale, the strains of the lattice of a bow-string
girder (Min. Proc. Inst. C.E., Vol. xxvii.) has given results different from those obtained by calculation based upon the hypothesis of articulated members. This ought not to be a matter for surprise; it is an additional proof that in these matters, when there are an accumulation of organs capable of affording mutual aid, calculation is insufficient to decide upon the real distribution of the effurts. Nevertheless, it does not on that account lose all its utility ; for it indicates distribution, possible or rirtual, if not effective. It ought to be generally admitted as a principle of resistance, that a construction sustains itself as long as it has not expended the whole of its possible conditions of stability; it suffices, then, to prove that a certain state of stability is realisable, in order to be assured that the work will not perish.

Alpendix II. supplies, at least to a certain extent, the blank instanced by Professor Rankine relative to the effect of a small movement of the alutments and to the calculation of the lowering of the summit of the arch.

Mr. Barlow having manifented a desire for a solution of the resistimee of a circular roof sulmitted to the horizontal pressure of the wind, the Author is induced to add a few words on this sulject. If this particular question was omitted in the Paper it was because the Author had particularly in view bridges where the wind dues not enter into consideration; and it was also owing to the dread of wearying the reader by placing before his eyes too numerons formule.

Let it be observed, in the first place, that the formule in No. 1:3 are general as regards the direction of the exterior forces, supposed only in the plan of the figure ; oblique or horizontal forces, such as the impulse of the wind, will enter as easily as the weight or the vertical forces into the evaluation of the moments μ_{1} and of the longitudinal forces N_{1}.

In the particular case of a circular arch with constant section, M. Bresse has given the following formula ("Mécanique Appliquée," first edition, Part I., No. 95), giving the reaction for the support

Fig. 37.
 occasioned individually by a horizontal force U, which is applied to the definite point ly the angle θ of the following figure:

$$
\begin{aligned}
& \mathrm{Q}=-\mathrm{Q}^{\prime}=\mathrm{U}^{\top} \cdot \frac{\cos \theta-\cos \phi}{2 \sin -\frac{1}{\phi}} \\
& \mathrm{~T}=\frac{\mathrm{T}_{1}+\mathrm{U}}{2}, \quad \mathrm{~T}^{\prime}=\frac{\mathrm{T}_{1}-\mathrm{U}}{2}
\end{aligned}
$$

the amiliary I_{1} represents the horizontal thrnst, eqnal to two supports which there wond be if the symmetry of loading wee ne-estallishet, by the introntuction of an equal and symmetrieal fonce at U , on the other half of the arch. The value is :

$$
\mathrm{T}_{1}=-2 \mathrm{U}^{\prime 2} \frac{a^{2} \Lambda^{\prime}+r^{2} \sin ^{2} \phi(\theta+\sin \theta \cos \theta)}{2\left(a^{2} l+2+r^{2} \sin ^{2} \phi(\phi+\sin \phi \cos \phi)\right.} ;
$$

the letter A^{\prime} represents the following expression:

$$
\Lambda^{\prime}=\frac{\theta}{2}-\frac{1}{2} \sin \theta \cos \theta-\sin \theta \cos \phi+\theta \cos \theta \cos \phi ;
$$

A designates the value already indicated in No. 15 of the Paper of which the other notations are equally preserved ; r is the radins of gyation of the constant section of the arch.

Every oblique force given can be resolved into a horizontal force and a vertical force, each producing stresses which can be calculated, ant which superpose algebraically.

Mr. Young also has raised the question of the action of the wind ; lut allds to the problem a condition which, far from complicating, simplifies it.

He supposes that one of the extremities of the arch, the left, for instance, slides upon its support. There is in this case no longer any occasion to invoke the theory of the deformation of the arch to find the thrusts on the supports: the thrist T would he nil if the support were frictionless; it will be $\mathrm{T}=f \mathrm{Q}$ in virtue of a fiiction f by unity of normal pressure Q. Further, the equilibrimm of forces, in horizontal projection, exacts $\mathrm{U}+\mathrm{T}^{\prime}=\mathrm{T}=f \mathrm{Q}$, which determines the thrust ' T ' upon the right-hand support.

Although the definitive bridge over the Rhone (Plate 5b) has no direct reference to the discussion, seeing that it is a straight span, it is nevertheless thought advisable to add some information touching the execution of this. work. In the first place the final disposition has to undergo a slight rehandling, ly virtue of which the angle of the skew becomes equal to $69^{\circ} 25^{\prime}$ instead of $67^{\circ} 30^{\prime}$, which modifies a little certain oblique rils.

The work has been adjudicated to Mr. Pilichody, Engineer, for the contract price of $205,000 \mathrm{f}$. This sum exceeds the estimate of 170,000 f. stated in Appendix II.; the addition is essentially owing to the fact that the state of the river and of the soil has led to the recurence to the system of fombations by sheet-iron cai-sons worked by compressed air.

This system of fomlation would appear to spread more and more, owing to the safety of its working and to the freedom from ronstraint in working at the time of low water. M. Croissette-

Desnoyers had laid it down as a rule for some years that the pnemmatic system was too costly for depths less than 10 metres from the platform. We nevertheless see it here applied for a depth of 6 metres only. This shows not only that rules should not bo considered absolute in the case of foundations, but also withont doult that the pueumatic process has now entered more fully into ordinary practice. Iron eaissous always require eareful construction. At one of the piers of the Phone bridge, the caisson, executed by a sub-contractor, allowed the air to leak at several joints; and it was only by lining the interior with cement that the required tightness was obtained. The interior armatures of the carcase are stays of wood, capable of being taken away after the completion of the operation of sinking.
M. Cuénol, the Engineer of the company in eharge of the works, has commmicated the extract given herewith of the charges upon which the Contractor based his tender:-

Total of contract 205,000
There are besides some works of disposition on the banks, which will bu executed by the company, as administrators.

Lausame, Juin 26, $1871 . \quad$ J. Gisudimd.

December 13, 1870.
T. MAWKSLEY, Viee-President, in the Chair.

The discussion upon the Piaper No. 1,224, "On Metal and Timber Arches," by M. Gaudard, was continnel throughout the evening.

ANNUAL (; ENERAL, MEETINQ.

> December 20, 1870. 'T. WILWKSLEY, Vies-President, in the Chair.

Mescrs. G. O. Bum, H. Mayter, C. E. Mollivgsworth, R. C. May, and R. C. Mipier were requested to act as Serutineers of the Ballot for the election of the President, Vice-Presidents, and other Memhers and Associates of Council; and it was resolved that the ballot-papers should be sent for examination at intervals of fifteen minutes, in order to expedite the labours of the Serntineers.

The list of Members prepared for Conncil, together with tho record of the attendances of the Members of Comeil, in Council and at the Ordinary General Meetings, was taken as read, and the Ballot was deelared epren.
The Amnual Report of the Conncil, on the proceedings of the Institution during the past year, was read.

Resolved,- That the lieport of the Comeil be receivel and approved; and that it be referred to the Comeil, to be printed and circulated with the Minutes of Proceedings, in the usual manner.

Resolvel,-That the thanks of the Institution are due, and are presented to Messrs. 'harles Hawksley and Hutton Vignoles, for the readiness with which they undertook the office of Auditors of Aecounts; and that Messrs. Hutton Vignoles and Robert Charles May le requested to undertake the office of Auditors for the ensuing year.

Mr. Charles Hawksley returned thanks.
It was moved and seconded,- That the practice of inserting in the balloting list the attendances of the Members of the Conneil be diseontinned.

On the motion being put from the Chair it was declared to be lost.

The Telford and Watt Medals, the Telford and Manby Pre-
miums of Books, and the Miller Prizes, which had heen awarder, were presented.

Resolved,-That the thanks of the Institution are justly Ine, and are presented to the Vice-Presidents and other Members of the Conncil, for their co-operation with the Presilent, their constant attendance at the Meetings, and their zeal on behalf of the Institution.

Mr. Cubitt, Vice-President, and Mr. Murray, Member of Council, returned thanks.

Resolvel manimously,-That the cordial thanks of the Meeting be given to Mr. Vignoles, President, for his stremons efforts in the interests of the Institution, for his extraordinary attention to the duties of his office, and for the urbanity he has at all times displayed in the Chair.

Mr. Hawksley, Vice-President, in the unavoidable absence of the President, returned thanks on his behalf.

Resolved,-That the special thanks of the Meeting le given to Mr. Barlow for his account of "The St. Pancras Station and Roof, Milland Lailway."

Resolved,-That the best thanks of the Members be offered to Mr. Callcott Reilly, for his valuable Memoir on "Iron Ciider Bridges."

Mr. Reilly returned thanks.
The Ballut having been open more than an hour, the Serntineers, after examining the Papers, amounced that the following gentlenen were duly clected to fill the several officess in the Comeil for the ensuing year:-

President. CIIARLES BLACKER VIGNOLES, F.R.S.

 Vice-Presideuts.- Toseph Culitt.

Thomas Elliot Itarrison.

Thomas IIawksley.
George Willoughly Itemans.

> Otierer Members of Council. Members.

James Abernotlyy.
William Henry Batow, F.R.S.
Johu Frederick Bateman, F.i.S.
Joseph William lazalgette. Nathaniel Beardmore.

Frencrick Joseph Pramwell. James Brunteres. John Murrag. George Rohert Stephensom. Edward Wionls.

Associates.
Jamen Joneph Allport. | Major William Palliver, O.IB.

Resolverl, That the thanks of the Meeting be given to Mesistis. Buhd, Mayter, Mollingsworth, May, and Rapior, the Scrutineers, for the promptitude and efficiency with which they have performed the duties of their office ; and that the Batlot-papers be destroyed.

Resolved,--That the cordial thanks of the Meeting be given to Mr. Charles Manby, the Ifonorary Secretary, and to Mr. James Forrest, the Secretary, for their unremitting and zealons services on behalf of the Institution and of the profession.

Mr. Manly and Mr. Forrest returned thanks.
A vote of thanks to Mr. Mawksley, Vice-President, for his conduct in the Chair, was carred by acelamation.

ANNUAL REPORT.

SESSION 1870-71.

Is conformity with the Bye Laws, it now becomes the duty of the Council, elected at the last Ammual General Meeting, to lay before the members an account of the principal topics which have engaged their attention, and a statement of their management of the affairs of the Institution, during the past twelve months. This duty they perform with great satisfaction, as they feel that the members may be congratulated on the increased power and utility of the Society, as evidenced by its present condition and prospects, at the close of the fifty-third year of its existence.

The Minutes of Proceedings for the past session, which were issued during the recess at an earlier date than usual, will have enabled an opinion to be formed of the character of the Papers read at the Mecting:, of the nature of the discussions upon them, and of the probable bencfit to engineering science from their production. It will therefore only be necessary to allude to the different suljeets lorought forward at the twenty-five Ordinary General Meetings, to show that they were hoth varied and important. Two of the discussions were originated by Papers read in the preceding session, while fifteen new communications were selected from the great mumber presented to the Institution. These Papers related to the following subjects, viz., the present state of knowledge as to the theory of the Resistance of Materials; the Strength of Iron and Steel, with observations on the design of parts of structures consisting of those materials; the l'ullic Works of the province of Cauterbury, New Zealaud; the line and works of the Sao Patulo railway, in the empire of Brazil; the new Mhow-ke-Mullee viaduct on the Great Indian Peninsula railway, and the Pemair bridge on the Madras railway; the St. Paneras station and roof, Midland railway; the statisties of Railway Income and Expenditure, and their hearing on future railway poliey and management; the maintenance ant renewal of Railway Holling Stock; the slujeing operations at the great Low Water Basin at the Dirkenhead docks; the Wolf Rock lighthouse;

Ocean Steam Navigation, with a view to its further development: the comlitions and the limits which govem the proportions of Rotary Fans: machinery fur the Dressing of Lead Ores: the relative safety of difterent monles of Working Coal, and on Coal Mining in decp workings; and recent improvements in liegenerative Hot-blast Stoves for hast fumaces.

For some of these commmications the following Preminns were auljulger:--

1. A Telford Medal, and a Telford Premimn, in Books, to Edward Dohson, Assoc. Inst. C.E., for his Paper on "The Phllic Works of the Province of Cinterbury, New Zealanc."
*2. A Watt Medal, and a Telford Preminm, in Books, to R. Price Williams, MI. Inst. C.E., for his laper on "The Maintenance and Renewal of Ratway Rolling Stock."
*3. A Watt Medal, and a Telford J'remium, in Pooks, to John Thornhill Ifarrison, M. Inst. C.E., for his Paper on "The Statistics of Railway Income and Expenditure, and their bearing on future Railway Policy and Management."
2. A Telford Medal, and a Telford Premium, in Books, to Thomas Sopwith, Jun., M. Inst. C.E., for his Paper on "The Dressing of lead Ores."
3. A Telford Medal, and a Telford Preminm, in Books, to James Nicholas Douglass, MI. Inst. C.E., for his Paper on "The Wolf Rock Lighthouse."
4. A Watt Medal, and a Telford Premium, in Borks, to George Berkley, M. Inst. C.E., for his "Olservations on the Strength of Iron and Stcel, and on the Design of parts of Structures which consist of those Materials."
5. A Watt Melal, and a Telford Preminm, in Books (to consist of the second series of the Minutes of Proceedings, vols. xxi. to axx. inchsive), to Hobert Briggs, of Philadelphia, U.S., for his Paper "On the Conditions and the Limits which govern the proportions of Rotary Fans."
6. A Watt Medal, and a Telford Premimm, in Books, to Edward Alfred Cowper, M. Inst. C.E.. for his Paper on "Recent Improvements in Regenerative Hot Blast Stoves for Blast Fumaces."
7. A Telford Preminm, in Books, to John Grantham, M. Inst. C.E., for his Paper "On Oceau Steam Navigation, with a view to its further development."

[^18]10. A Telford Premium, in Books, to Daniel Makinson Fox, M. Inst. C.E., for his "Description of the Line and Works of the Sau Panlo Railway, in the Empire of Brazil."
11. The Manby Premium, in Books, to Emerson Bainbridge, Stud. Inst. C'E., for his Paper on "Coal Mining in Deep Workings."

In accordance with a rule long since adopted and acted upon, the Paper descriptive of the St. Pancras station and roof, Midland Railway, hy Mr. W. II. Barlow, did not come meder consideration in the adjudication of the premimms-the Anthor being a Member of Comeil. The warm thanks of the Institution are, however, justly due to Mr. Barlow for his valuable contribution.

It should be generally known, that Papers are willingly received from other than members of the Institution, whether natives or foreigners; and that the premiums are not limited to the smbjects eontained in the list issned yearly by the Comeil, such list heing merely for the purpose of directing attention to questions of general interest, with the view of pointing out the kind of commumications desired. The Mimntes of Proceedings should, in the future, contain, as in the past, gool Papers on the theory and practice of every branch of Civil Engineering, as one of the most olvious modes by which the reputation of the Institution and of the profession may be maintained. The Council feel confident that, in this respect, the record of the proceedings of the last official year may be referred to with gratification. The " Minutes" exceed those of any former year in the amount of matter and in the mmuler of illustrations, and for the sake of convenience have heen pmblished in two volumes, -xxix. and xxx., -each of 500 pages, and containing together 37 plates, instead of in one volume of 650 pages, with 26 plates, as in the previous year. Besides the articles already referred to, there will be found in these volmmes, as usual, the inaugural address delivered in January last by the President, Mr. Vignoles, and a Memoir, 'hy Mr. Callcott Reilly, explanatory of the prineiples on which two iron girder bridges, recently executed, had been designed, with the ealenlations on which the dimensions of the different parts had been determined. This Memoir the Comeil had great pleasme in accepting for publication, regarding it as an additional proof of the interest taken by the Author in the Institntion. Althomgh a larger sum than nsual has been expended in pmblication, the Commeil consider that the cost is fully justified ly the professional valne of the additional matter, as the oljects of the Institution are
best promoted, and its alvantages most widely extended, ly the circulation of carefully edited and liberally illusirated lapers and discussions.

It has been deciled to issne a Ceneral Index to the series of procedings from Vol. xxt. to Vol. xxx., both inclusive, to be prepared on the same plan as the Index to the series from Vol. i. to Vol. xx., as the convenience and usefulness of that work have been fully appreciated.

The Comeil have awarted the following Miller Prizes to Students of the Institution for Papers read at the Supplemental Mectings:-

1. A Miller Prize to Robert William Peregrine Birch, Stul. Inst. C.E., for his Paper on "The Disposal of 'Town Sewage."
2. A Miller Prize to Henry Thomas Munday, Stud. Inst. C'E.E, for his Paper on "The lresent and the Future of Civil Engineering."
3. A Niller Prize to William Walton Williams, Jun, Stud. Inst. C.E., for his Paper on "Roads and Steam Rollers."
4. A Miller Prize to Silney Preston, Stud. Mnst. C.E., for his Paper on "The Mannfacture and the Uses of P'ortland Cement."
5. A Miller Prize to Edward Bazalgette, Stud. Inst. C.E., for his Paper "On Underpiming and making good the Fommbations of the Trongate Steam Wharf, St. Katherine's, Londun."
6. A Miller I'rize to Josiah Harding, Stul. Hist. C.E., for his Paper on "The Widening of the Liverpool and Manchester Railway between Liverpool and Huyton, and on the Construction of a Branch Line to St. Helen's."
7. A Niiller I'rize to the Hon. Philip James stamhope, Stul. Inst. C.E., for his Paper on "The Metropolitan District Railway."

These prizes should operate as a stimulus to other Students to forward to the Institution detailed descriptions and acemrate drawings of any work upon which they may be employed. The Conncil trust that the students will a a ail themselves of every opportunity in the course of their professional engagements, to place on record observations on the progress of different works for commmication to the Institution, in order that the Supplemental Meetings may be commenced at an early period each year.

The Comeil take this oportunity of tendering their sincere thanks to Mr. Fowler, Past-l'resident, for the facilities he afforded the Students to examine the works of the Metropolitan District

Railway; to Messrs. John Bazley White and Brothers for the handsome mamer in which they received and explained to the Students, at their works at Greenhithe, the whole process of the manufacture of Portland cement; and to Colonel Clarke, R.E., Associate of Council, for the equally liberal arrangements he made for the Students to inspect the Chatham Dockyard Extension Works. Visits to works in progress and to manufactories camot fail to be productive of alvantage, and it is hoped that similar privileges may be frequently extended to the Students.

One of the duties devolving on the Council under the Bye Laws is to arrange for the publication of such documents as may be calculated to advance professional knowledge. As an aid to this end, allusion may be made to the volume, lately issued, on "The Education and Status of Civil Engineers, in the United Kingdom and in Foreign Countries," compiled from original reports and statements by Engineers of eminence, and by the authorities of educational establishments, supplied to the Council in reply to their inquiry for particulars as to the system of instruction pursued in the training of Engineers. This collection of information, derived from so many sources, was circulated without the expression of any opinion on the part of the Coment, it being deemed preferable, in the first instance, to put the members in possession of the particulars so obtained, as, owing to the nature of the subject, various and discordant ideas may be, and no doubt are, entertained regarding it.

The Library continues to receive considerable accessions, by presentation, ly exchanges with other Societies, and by the purchase of all books which it is thought may prove useful. Every opportmity is taken to obtain copries of ohl and rare books on Engineering and on the arts specially allied to it, as well as to procure works of reference on general scientific suljects. The aim has always been to make the Library the depository of all treatises and docments directly or indirectly relating to engineering, and thas to accumulate a stock of information from which all maty derive the greatest benefit. It is now more nsed than formerly for the purpose of research, ly which its great value becomes letter known, and deficiencies are sometimes pointed out. To show the rapid inerease in the collection it may be mentioned that, in 1851, when the first elition of the Catalogne was issued, it contained 3,000 volumes and 1,500 pamphlets; in 1866, on the publication of the second edition of the Catalogue, it comprised 5,500 volumes and 3,200 pamphlets; whereas now there are in the library upwards of 7,000 volumes and 4,800 pamphlets. The additions have been so mumerous during the
last four years as to necessitate the printing of a Suplement, which has extemed to 160 pagess on about two-fiftlis of the size of the original catalogue. This suplement has been prepared in precisely the same mamer as the (atalogne, that is, in a form which has been found, by expericnec, best calculated to facilitate reference to the suljects partienlarly comected with the varions branches of engineering.

The Conversazione given ly the President in the rooms of the Institution at the close of the session was in every respect successful. f und was never previously surpassed. A new feature was introduced that of inviting the contribution of models and ohjects of engineering interest from the Continent. The collection was thens made more comprehensive and useful, while for a time it lessened the difficulty, which every year increases, of imparting freshness and novelty. The Catalogues of the works of art lent to decorate the rooms, and of the engincering models and instruments exhilited in the meeting room, have been reprinted in Vol. xxx. of the Minutes of Proceedings, as some acknowledgment to those who aided the President, and as a record for future reference.
'The tabular statement of the transfers, elections, deceases, and resignations of the members of all classes during the years 186869 and 1869-70 (taking into consideration the names which have been erased from the Register) is as follows:-

Year.		隹	嵒	
$\frac{1868-69 .}{\text { Thanserrel to Members }}$				
Elections	1	30	82	$11: 3-72=41$
Dectases .	1	13	11	
Resignations	,	13	72
Erased from the Register .	..	3	29	
Members of all Classes on the) Books, November 3uth, 1869)	16	655	918	1,580
$\begin{gathered} 1869-70 . \\ \text { Transferred to Members . } \end{gathered}$..		19	
Elections	..	42	114	$156-12=114$
Deceases	17	20	
Resignations	\pm	42
Erased from the Register	1	
$\left.\begin{array}{c} \text { Members of all Classes on the } \\ \text { Broks, } 30 \text { th November, } 1870 \end{array}\right\}$	16	690	988	1,703

This shows a net effective increase of 44 Members and of 70 Associates, heing at the rate of $7 \frac{1}{t} \mathrm{p}^{\text {er }}$ cent. in the twelve months.

In the same period 55 Students have been admitted by the Comeil, 12 have retired, and 8 have been elected Associates; the increase has therefore been 35 , which number added to 138 previonsly on the list raises the total to 173.

Ten years ago there were on the books 24 Honorary Members, :355 Members, 537 Associates, and 14 Graduates, together amounting to 930 ; now the gross number is 1876 .

The Council have to regret the loss to the Institution by death of the following :-Peter Ashcroft, James Melville Balfour, John Braithwaite, Zerah Colburn, Frederik Willem Conral, Sammel Dolson, Charles Canlfeild Fishe, John Harris, John Bernard Hartley, George Leather, Robert Morrison, George Paddison, Thomas Paterson, William Alexander Provis, Charles Sanderson, James Thomson, and William Weaver, Members; Henry Corles Binghan, Willian Thomas Blacklock, Robert Dunkin, Alister Fraser, William Gammon, General Sir William Gordon, Hemry Hakewill, Comrad Ablen Hanson, John William Heinke, George Houghton, Major Julian St. John Hovenden, Robert Willian Kemard, John Meeson Parsons, Joseph Pitts, George Selly, Gerrit Simons, George Hemry Smith, Sir John Thwaites, George Barnard Townsend, and Captain James Yetch, Associates.

Biographical notices of some of those who have been thus removed will be given in the Minutes of Proceedings.

The following Associats s have tendered their resignations in writing, and have been permitted to retire from the Institntion :Admiral George Elliot, Majar Hemy Hooper Foorl, Rochfort Astle Sperling, and Henry Waring.

In laying before the Members "a statement of the Funds of the fustitution and of the seceipts and payments for the past year," the Comincil would remark that the accomits, as certificel ly the Aiditurs, show that on the 1st of December, 1869, there was a batance in the hands of the Treasmer of $£ 26898.96$., and there has been received since (including the Λ_{1} pold bequests of $\pm 1,800$), $\mathfrak{L}^{〔}, 653 \mathrm{l}, 6 \mathrm{~s}$, making together $£ 9,921$ 19s. 98 . The late Mr. John George $A_{1} p^{\circ}$ dd, Assoc. Inst. C.E., by his will dated the 7 the of July, 1853, berpeathed to "the Treasurer of the Institution of ('ivil Engineers," for the use of the lustitution, the sun of $£ 1,000$, payable on the decease of his wife. Mrs. Appold died on the 2:3rd of March, 1870, and hy her will ako linerally begmeathed a like sum to the hastitution. Both these legacies have heen paid to the

Treasurer, less £200 for the legacy duty. The dislnursements have amomed to $\mathfrak{E} 6,5836 \mathrm{bs}$. 10 d ., while a smm of $\mathfrak{E x}, 968 \mathrm{I} 5 \mathrm{~s}$. Grd. has been invested-in the purchase of $£ 1,000$ North Eastern Railvay Company Four per Cent. Debenture Stock, of $£ 1,000$ Great Northern Railway Company Four per Cent. Delrenture Stock, and of $£ 1,000$ Manchester, sheftield and Lincolnshire Railway Comman Fow-and-a-Italf per Cent. Debenture Stock-leaving a balance (after deducting $£ 44 s$. 96 . due to the Secretary) of $\mathfrak{E} 36917 s .5 d$. 'This statement does not represent the funds of the Institution in a sufficiently favomahle point of view, as the amome of ontstanding bills on the current expenditure is less than at the same time last year. Althongh a larger smm than usual has leen expended in pub)lication, yet out of the ordinary reveme a smm of $£ 1,168$ 15s. 6 d . has been invested, and the present eash balance exceeds the former one by £101 is. 8d.

During the year William Matthew Coulthurst, Esq., the senior partner in the firm of Messrs. Contts and Co., bankers, has been appointed, and has accepted the office of, Treasmrer of the Institution, in the room of Sir Edmmen Antrobus, Bart., deceased.

The ordinary Receipts have comprised :-

The Expenditure during the same period (exclusive of the new building) has been:-

During the financial year ending ou the 30th of November last， a sum of $£ 6617 \mathrm{~s}$ ．was paid on accome of the new building and its accessories，making，with the sum of $£ 18,2102 s$ ． 4 d．expenderl up to the date of the previous Annual General Meeting，a total outlay of $£ 18,276$ 1 $1 / 8.47$ ．

The Funds of the Institution consisted on the 30th of November last of

```
                                    年家要
I．General Funds．
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Institution Investments：－£．s．\(d\) ．} \\
\hline Great Eastern Railway Fuur per Cent．Debenture Stoek & 3，650 & 0 & 0 & & \\
\hline London and North Western
ditto & 1，162 & 0 & 0 & & \\
\hline London，Brighton，and South Coast ditto & 1，000 & 0 & 0 & & \\
\hline North Eastern ditto & 1，500 & 0 & 0 & & \\
\hline Great Northern ditto & 1，000 & 0 & 0 & & \\
\hline Manchester，Sheffield，and Lin－ colushire Four and a Half ditto． & 1，000 & 0 & 0 & & \\
\hline New Three per Cents．．． & 1，344 & 1 & 8 & & \\
\hline
\end{tabular}
```


II．Trest Funds．

1．Telford Fund：－
Three per Cent． Consols ．．£2，839 106
Three per Cent． Ammitics ．2，570 $5 \quad 1$ ——— 5，409 $15 \quad 7$
Unexpended In－ come，Three per Cent．Consols 2，377 10 6
Ditto，Ammities． $20011 \quad 5$
$2,578 \quad 111$
$7,987 \quad 17 \quad 6$
2．Manby Premium ：－
Great Lastern Railway Five per Cent．Pre－ ference Stock ．．．．． $200 \quad 0 \quad 0$

3．Miller Fund ：－
Lancashire and Yorkshire liail－ way Four per Cent．Deben－ ture Stock ．$£ 2,000 \quad 0 \quad 0$
Great Eastern ditto ．． $1,100 \quad 0 \quad 0$

$$
1,100 \quad 3,100 \quad 0 \quad 0
$$

$$
\text { Carried forward } \begin{array}{llllllll}
3,100 & 0 & 0 & \overline{\varepsilon, 187} & \overline{17} & 6 & \overline{10,656} & 1 \\
8
\end{array}
$$

11. Thest Fivis-continued.

Unexpended	
Income,	
Three per	
Cint. Consels	5518
Ditto, Annuitics	$\because 4819$

as against $419,77517 s .4 d$. at the date of the last Report.

The Funds moder the charge of the Institution were at a maximmm on the 30 th of November, 1867, when they amounted to $\mathcal{E} 29,83518 s$. Now they are only less by a sum of $£ 6,69038.3 d$. , although in the interval there has been expended on aceount of the new building and its accessories, as previonsly stated, £18,276 19s.4 4 .

The following is a Smmary of the different Securities in which the above Funds are placed:-

Notwithstanding repeated notices, the total amount of subseriptions remaining due on the 30th November, 1870, incluting the current year, is somewhat in excess of what it was at the same date last year. Then the Arrears of Subscriptions were only £218 8s. ; now they are as under :-

For 1870.	From members of all classes residing abroad Ditto, in the United Kingilom	$\begin{array}{cc} £ . & \varepsilon . \\ 55 & 13 \\ 166 & 8 \end{array}$		s.	
For 1869.	From members of all classes residing abroad Ditto, in the United Kinglom	$\begin{array}{r} 515 \\ 2716 \end{array}$			
For 1868.	From memhers of all classes residing in the United Kingdom		16	5	6
Fur 1867.	Ditto, ditto	\cdots	13	2	6
	Total	.	£285	1	6

In the preparation of the balloting list for the election of officers for the ensuing year, the former Members of Comncil have leen nominated for re-election. The attendances, both in Council and at the Ordinary Mectings, have been prefixed to each name, in accordance with special resolutions passed at previons Ammual Meetings. A variation has been made in printing the list, by arranging the names of the Members of Comcil in the order of their election on the Comeil, instead of alphabetically as heretufore. To the list, in conformity with the Bye Laws, the names have been added of Messrs. Joln Coode and Charles Willian Siemens, Members, and of Messrs. John James Allport, James Timmins Chance, Sampson Lloyd, and Majo William Palliser, Associutes, all of whom have consented to serve if elected.

ABS'TRAC'T of RECEIP'TS and EAPENIDTURE.

APSTRACT of RECEIPTS and EXPENDITURE

from the 1 st DEC., 1869 , to the 30 TH NOV., 1870.

PAYMENTS.

Cr. £. 8. d. £. 8. d. By IIouse, Great George Street, for Rent, se.:-

Repairs	49	10
Rent.	8							
Rates and Taxes.	615	19	6
49	12	9						
lnsurance.	20	11

— Salaries 900 0 0
— Clerks, Messengers, and Ilousekeeper 351100

- Postage and Parreels:-
Pustage 501 ± 11
- Stationery, Engraving, Printing Cards, Circulars, \&e.
$16715 \quad 0$
- Coals, Candles, Oil, and Gas:-

Coals	33
Condles	9	0					
Oil.
0	1	0					
Gas

$8 \pm 16 \quad 0$

- Tea and Coffee
$43 \quad 7 \quad 0$
— Library : -

$26012 \quad 3$
— Pullication, Minutes of Proctedings 8,090811
- Telford Premiums 160180
— Watt Medal 10 0
— Manby Premium 14118
- Miller Prizes $6 \mathrm{~s}^{\mathrm{t}}$
— Diplomas 39 if
— Mannseripts, Original Pafers, and Drawings 310 :
- Ammal Dimer 12099
- Winding and Repairing Clucks 110 o
- Incidental Expenses :-

Christmas Gifts	116
Assistance at Meetings	224
$\left.\begin{array}{c}\text { Ditto at Supplemental Meetings } \\ \text { for Stulents }\end{array}\right\}$	212
$\left.\begin{array}{l}\text { Beating Carpets and Sweeping } \\ \text { Chimneys }\end{array}\right\}$	014
Household Utensils, liepairs. and Expenses	6018

— Engincering Education 182116

- Indian Circular 5111 2
— Legal Expenses, Locke Bequest ä 1010

ABSTRACT of RECEIPTS and EXPENDITLRE

RECEIPTS-cont.

from the 1st DEC., 1869, to the 30ги NOV., 1870.

Examined and compared the above Account with the Vouchers and the Cash Book, and find this account to be correct, leaving a Balance in the lands of the Treasurer of Three IInndred and Seventy-four Pounds, Two Shillings, and Two-pence.-Nov. 30th, 1870.

> (Signed) $\left.\begin{array}{l}\text { CHARLES HAWKSLEY, } \\ \text { HUTTON VIGNOLES, }\end{array}\right\}$ Auditors. JAMES FORREST . . Sccretary.

December 2nd. 1870.

APPENDIX TO ANNUAL REPORT.

MEMOIRS.

Sir DAVID BREIVSTER was the second son of James Brewster, rector of the grammar sehool of Jedlurgh, who was well known and much esteemed as one of the best classical seholars and teachers of his day, and a man of sterling worth. David was born in the Canongate of Jedlnugh on the 11th of December, 1781. The characteristic gifts which distinguished his later years can be traced from a very early age. Along with three hrothers of excellent alilities, he always kept a high place ir his classes, and was much looked up to by his schoolfellows. A dilapidated pane of glass in his father's honse, carefully observed and experimented uon, paved the way for future discoveries and researches in refracted light, while the beanty of the scenery and the legendary lore amidst which he was reared produced the intense love of nature, art, and poetry which blended so remarkably with the "sterner stuff" of science.

Jedburgh and its neighbourhood were noted for the number of intelligent and scientific residents, many of them possessing inventive gemins. David Brewster was not slow in availing himself of the advantages of such society, but the greatest help he received, whith was indeed the fomdation of his truest education, was from James Veitch of Inchbonny, a small lout beantiful property, half a mile from Jedlurgh. He followed the occupation of a wheelwright, which he could not be persuaded to relinquish; but threw into his ploughs and his whecls the skill and originality of his remarkable talents. The intervals of business, however, were spent in that wonderful process of self-elucation, which, as in many other cases, resulted in an amount of knowledge of almost every lranch of learning and research, which made him universally esteemed, and brought him into scientifie and friendly relations with many contemporarios eminent in seience and literature. James Veitch's workshop was a gathering-place for all the young men in the neighlourhood who were athirst for
knowletge, hesides being a favourite resort for some of maturer rears and well-carnod distinction ; and amongst others, of several intelligent and scientific French prismers of war. Astronomy, mechanics, mathematics, and theology, were amongst their farourite topics, and David Brewster must have formed one of the quaint and varied gromp from a wery carly age, as it is reeorded that at ten years ohl he had finished the construction of a telescope, muder his friend's anspices, an ocelpation in which he delighted for many years. At the age of twolve, he went to the Cniversity of Elinhurgh. where he pursned his sturlies with characteristic diligence, sonn hecoming the friend and companion of the eminent professors of his day-Playfair, Rohinson, Dugald Stewart, and others; and at the age of ninetcen, he liecame M.A. Destined for the Scottish Church l,y his father, he studied divinity with close attention, although his holiday time was spent in scientific research, of which there are interesting recorls in a long and close correspondence with his early friend at Inchhomny. He made his first scientific discovery in 1800, while studying his farourite science of opties. The rear after. at the age of twenty, he commenced his independent literary earece, ly becoming the editor of the "Edinlmugh Magazine." To all his other labours he added those of tuition, entering the family of Capt. Insshugh of Pirn, and afterwards of General Dirom. A tendency to nervons faintness, and a consequent dread of speaking in pmblic, which was increased by overwork, cansed him much suffering in preparing for the elerical profession. He however preached often, his ministrations were much liked, and he accepted a presentation to the living of Sproutom in 1808. This was in the gift of the luke of Roxlurgh, but heing under litigation, Brewster withdrew his claim, rather than cause any disputation of his right. It was not till 1809 that he felt free to follow the bent of his own genins, and devote himself to literature and science. In 1810 he married Juliet, the youngest danghter of James Macpherson, Esq., M.P., of Belleville, translator of Ossian, and settled in Edinburgh, where four sons and one danghter were horn.

The "Edinburgh Encyclopedia" was at this time, and for twenty succeeding years, the most arduons and anxious of his undertakings. Although commanding admiration for its intrinsic merits, the dilatory conduct of pullishers and contributors marred its suceess, and taxed the editor's strength to the utmost, who had to mako up for the negligenee of others. Many painful circumstances and broken friendships took place; while in a pecuniary sense the undertaking was a complete failure, and till a compromise took
place, a few years before his death, was a constant cause of anxiety and apprehension. He also continned to edit the "Edinlmurgh Magazine," moder different forms, for many years. In 1811 he bronght out a new edition of Ferguson's "Astronomy," contributing an Intronuction and twelve smplementary chapters. In 1812 he wrote the article "Burning-glasses" for the Encyclopedia, containing the description of a polyzonal lens which he had invented the year before, when examining the experiments of Buffon. Sown after, he pulhished a "Treatise on new Philusophical Instruments." Still later, he edited a translation of "Legendre's Geometry:" foru volumes of l'rofessor Rolison's "Essays on Mechanical Philosophy ;" and "Enler's Letters to a German Princess," with notes, and a life of the author.

In 181t he travelled in France and Switzerland, becoming acquainted with many foreign satents; was received with distingnished honom loy the French Institute, and made many interesting olservations, nothing being lost on his enquiring mind. In 1815 he became a Fellow of the Royal society of London, for which he had begm to contribute a long and important series of papers, principally on light; he received three of its best medals, and a prize fiom the French Institute, of which he afterwards became one of the eight Foreign Associates. Indeed, honomrs and rewards flowed so rapilly upon him that it is impossible to specify all, but the large book in which the letters, diplomas, burgess tickets, annomucements of medals, de., are collected is a remarkable one for size and interest. In 1816 Brewster invented the kaleidoscope; lout by mismanagement he reaped no practical benefit from an invention which spread over Europe and America with a rapid furore which is now searcely credible, lint which was quickly pirated. In 1820 he was elected an Honorary Member of this linstitution, in the oljects of which he ever took a lively interest: and, in 1821, he was much ocoppied in fomming the loyal Scottish Society of Arts, of which he was named "l lirector."

In 182:; he changed his residence to Allerly, a small property which he purchased not far from his early hants, and became one of the remarkalle circle which gathered romed Ablowtsford in the days of Sir Walter Soott. He met with a sore bereavement in the sudden death, loy drowning, of a favouite son, and not long after, his carly friend, Mr. Veitch, passed away from his useful and latherions life. Brewster's mind had been much impressed by the decline of science in England, and the varions causes leading to this effect a suligeet uron which he wrote and spoke with the utmost energy during his whole life. He was the first to propose a " British

Association for the Ailvancement of Sefence," " phan which was warmly taken up, and quiekly resulted in a brilliant and suecessfinl mereting at York, in Soptember, 18:31. An ammal meeting hats taken place ever since in different towns of the Thitert Kinglom, at one of which its originator made his last pulnio aprearance thirty-six years afterwards. Many of the alvantages to seience which he anticipated were worked out hy this Assiciation. In 1831 Dr. Brewster received the 1Ianoverian Order of the (inelph, and was shortly after kinghted. In $18: 3$ he offered himself for the vacaut chair of Natural Mhilosephy in Edinhurgh, and his umbeserved failure was a serions disappointment, espectially as his atfiairs had leeme extremely embarrassed. In 18:3; the gift from Government of a well-taned pension, and, in 18:38, his presentation to the Principalship of the United College of St. Salvator and st. Leonard, in the Cniversity of St. Anlrews, relieved him from pecuniary diffienlties. He threw himself with his accustomel ardeme into the duties of his new office, and although incurring much mpopularity by the much-needed reformation of many old alnses, his residence of twenty-three years at St. Andrews was marked as a useful and happy era of his life. In 1843 sir David Brewster took a prominent part in the disroption of the Chureh of Scotland ; and in consequence of his atherence to the Free Church, an attempt was made to eject him from his Chair as Principal, which proved msnecessful.

His lonsy pen had prodneed, at different times, a "Treatise on Opties," his first "Life of Sir Istac Newton," "Letters on Natural Magic," a "Treatise on Magnetism," "The Martyrs of Seience," hesides many serial contributions; and in $184 t$ he became a regular contributor to the "North British Review" for twenty years. In 1850 Sir David Brewster lost his wife, and the following year his eldest son. In 1851 he was appointed a juror of the Great Exhilition in London, ant he presided at the Peace Comgress. The year after he was chosen President of the Working Men's Edneational Union, and received from the Emperor of the French the decoration of the Legion of Ionom.

In 1852 a visit to Treland introlnced him to the great teleseope at Birr Castle, where he visited with delight its nolle architeet; making many astronomical observations, and never tiring of the mechanical wonders so peenliarly interesting to the early telescope maker. One of the many subjeets which Brewster studied with his peculiar gift of ahsorbed energy was the " Plumality of Worlds,' writing a review of Dr. Whewell's celehrated csssay for the "North British Review," which he afterwards expanded into a popular
volume called "More Worlds than One; the Creed of the Philosopher, and the Hope of the Christian." His secoml and larger "Life of Sir Isaac Newton," after years of steady work, was published in 1855. He hat musual facilities for correct information, as the valualle collection of the Newton MSS. belonging to Lord Portsmonth was placed at his disposal, and his early and passionate almiration for the great master of science made it, more than any of his works, a true lahour of love, and a successful vindication of an unjnstly traducel memory.

In the same year Sir David Brewster fulfilled with much interest his dutics as juror for the department of optical instruments in the Paris Exhibition. In 1856 he went to the Sonth of France with his family; and in the spring of 1857 was united, at Nice, to Jane Kirk, second danghter of 'Thomas Purnell, Esy., Scarborongh, by whom he had, in 1861, a danghter, Constance Marion. After his marriage he visitel Rome, Florence, Padua, Treviso, \&c.; and one of his greatest interests was following the traces of his favourite " martyr of science," Galileo Galilei.

While attending the meeting of the British Association at Aberdeen in 1859, he received ly telegram the tidings that he was appointal principal of the University of Edinburgh. It was not, however, for some time that he could decide on its acceptance: lut the pain of leaving his old St. Andrews home once orer, he thoronghly enjoyed the resming of old interests, and forming new friendships in his Alma Mater. From this time he resided part of the year in Elinhurgh and the rest at his beloved home at Allerly, which was near enough to the University to permit of a regular attendance at college meetings, going and retrung in one day-a practice which he contimed till within a short time of his death. In October, 1859, he presided as principal at the first meeting of the General Council of the Chiversity of Elinlmogh, where he declared his old college friend, Lord Brougham, duly elected as Chancellor, who in his turn afterwards apointed him ViceChancellor. Brewster's career in St. Andrews and elsewhere has been sometimes characterised ly ruggednesses of temper and undue severity of juigment; but it is gratifying to find that the eight years of his comnection with the University of Eliuhurgh were muclonded loy any jars or misumlerstanting, and his loss was atterwards felt l,y "each member of it as that of a valued and respected friend." Itis whole character hacame gratly mellowed, aml after years of doubt and strugyle on religions suljects, his arceptance with the heart of those gosied doctrines, some of which he han hell intellectually all his life, was remarkahly full
and clear, holding " the faith once delivered to the saints" with the simplicity of the child and the reasonableness of the sage.

In 18 tio he was made an M.I). of the Cniversity of Berlin, an henomr which gratified him exceedingly, as it was in reeognition of the services he had rendered ly his discoveries" to the seiences anxiliary to medicine." He hat previonsly luen made a Chevalier of the P'russian Order of Merit. In 18tit a severe ilhess of a prostrating nature, arising from an organic disease of the heart of old standing, lironght him very near death; but he again rallied, and heing in Lomblon at the time, muter the medical care of Dr. Sieveking, at that gentleman's rergest he presided at a meeting which resultel in the fomation of the Edinhurgh University Cluh, of which he was the first president. In the same year he was appointed President of the Royal Society of Edinhurgh. Althongh the aged frame, in spite of the iron strength of his constitution, was now shaken ly frequent ilhess. yet the energy and vigon of his mind were as melouded as ever, while his halits of constant and persevering work were continued so near the last breath of eighty-six years, that it may literally he said that "he diel in harness." It was with all the animation of yonth that he came forward in 1867 again to vindicate the fame of lis locloved master, in the well-known "Newton-Pascal Controversy." At the meeting of the British Association at Dunlee in September of that year, he faintel in the first pullic meeting, and although well enough to read several Japers on that and varions scientific sulbects, yet he never again completely rallied. For some months the flame of the taper fluttered, hut the light of faith grew ever brighter and steatier. He expired at Allerly, surromded ly his family, on the 10th of February, 1868, "at peace with all the worlh," as he touchingly said, and filled with " the peace of God." He was buried in the old churchyard of Melrose Abbey, and on his tombstone are graven the simple and suitable words, "The Lorl is my Light."

Besides the books, pamphlets, and serial writings to which allusion has been made, the catalogne of his printed contributions to the different secientifie societies and their organs of tommmencation, which is preservel in the library of the Royal Society of Elinburgh, gives tangible proof of the passionate industry which, with the daily exercise of the most minute powers of observation, formed the secret of his successful researches.

Ilis principal observations and experiments were in the demesne of polarized light, in which he made many original discoveries, although some of his theories, such as the red, blue, and yellow
colours of the spectrum, have been disproved by subsequent researehes. By patient observations he improved on the discovery of Wollaston and Framhofer, by increasing the 600 black lines already observel in the solar spectrom to the number of 2000 . One of the suljects which most interested him in his later years was that of film forms, making many experiments on the tints of the soap bubble, and the beauties of decomposed glass, while an unfinished Paper on their nature was his latest legaey to scienee. He was well known as an inventor of philosophical instrumentsthe sulject of his first book-amongst others, several kinds of micrometers, the lithoscope, the kaleidoseope, and the lenticular form of the stereoscope. There is also undoubted proof that the polyzonal lens now user in lighthonses, along with the lenticular apparatus called the " holophote," was invented by him, although afterwards independently discovered by M. Fresnel, who at once got it introduced into France. It was owing, moreover, to the persistency of Brewster's efforts that, after being thwarted for many years, it was at last adopted in the United Kinglom.

He was often himself mufortunate in missing the practical advantages and the deserved credit of his inventions, while he was too keen in their defence and too ready to take up seientific gametlets; hut he was ever warmly interested in the inventions and discoveries of others. The reform of the Patent laws, the introluction of scientifie education into schools, and the recognition by the State of science and seientifie men as mighty engines for the practical grood of the comtry-as in France-were among his constant and not always mensecessful aims. One of his latest efforts was to send a Paper on Seientific Education to the Jommal of the Inventors' Institute, of which he was President, along with a few farewell lines, expressive of his warm interest in its objects and designs. Another was to petition Lord Derby on behalf of the widow and children of a prematurely deceased scientifie confrere, the successful result of which arrived the day after the death of him who had made the appeal.

Mr. JAMES MeLV ILLE BALFOCR, the yomgest sm of the late Rev. Lewis Balfour, D.D., was born on the 2nd of June, 1831, in the manse of Colinton, near Elinhurgh, where his father was ministor of the parish for the long perion of thirty seven years. He recenved his education at the IIigh School and tuiversity of Edinhurgh. He early showed a strong inclination and remarkable
aptitude for meehanical pursuits, and was an carnest student of mathematies and natural philosophy. A fter attendance in different workshops in Edinhurgh and Germany, with the view of ganing a knowledge of practical mechanics and of the proper methons of working materials, he entered the employment of Messrs. 1). and T. Stevenson (MDI. Inst. (C.E.), by whom he was chicfly engaged in comection with the lighthonse department of their engincering practice. In the sping of 1863 he was appointed Marine Engincer to the province of Otago, New Zealand, and on the termination of a two years engagement became Marine Engineer to the Colonial Government of New Zealand, and at once set limself to the task of designing marine works and of estallishing the lighthouse system after the Scotch model. He took an active part in everything bearing on the welfare of New Zealand. In comection with the New Zealand Exhilition of 1865, he made an claborate series of experiments on the strength, weight, elasticity, deflection and durability of colonial timbers. These laborious experiments were the first to put the colonists in possession of reliable coefficients for the strength of sixty-four different kinds of native timber. He was consulted on all matters relating to the improvement of harbours and rivers, the most important of his works of this kind being the Port Chalmers Dry Dock, estimated to cost $£ 50,000$. He completed the Duncdin Waterworks, which had been commenced under another engineer, and he also accomplished a great part of the marine survey of the west coast of the Middle Island. He also designed and had executed minter his immediate superintendence varions lighthouses, among others those at Tairoashead, Nugget Point, Dog Island, Cape Campbell, and Farewell Spit, the lanterns and apparatus for which were sent from Edinburgh. For the lighthouse department he prepared a set of uniform harbour regulations and signals, to replace the great variety of regulations and signals formerly in use. These arrangements have given satisfaction to all concerned. He took a lively interest in all matters commected with shiping, as evidenced by the elaborate instructions which he prepared for the proper adjustment of ships' compasses, and also the incuiries which he instituted as to the canses of shipwrecks on the coast. The whole lighting, buoyage, and beaconage of the colony was fast being brought into proper system at the time of his death.

He invented a " Refraction Protractor"-the first instrument of the kind that was constructed-and which is thas spoken of by I'rofessor Swan, of St. Andrews, in his Paper "On new forms of

Lighthouse Apparatus: :" "I eannot too strongly express my obligations to that gentleman (Mr. Balfour) for the invaluable aid which I have derived from his ingenions instrument. Withont its help I shonld scarcely have undertaken to protraet the designs which accompany this laper." His design for a pmematic floating dry dock was novel, consisting of water-tight comprartments, some of which were entirely elosed so as to give a constant hoyancy which would barely allow the whole mass to bink. By foreing air in, instead of lifting the pontom and allowing the water to run ont, he proposed, on the principle of the 'camel,' to dippense with the cast-iron colmms, hydraulic presses, girders, \&e., which have hitherto leen used to get the vessel ont of the water.

Mr. Balfour was, unfortmately, cut down in the midst of neefulness at the early age of thirty-eight, being aceidentally drowned by the capsizing of a boat in the heasy surf uf Timaru, on the 18th of December, 1869. He was highly respeeted by the colonists for his massuming manners and kindly disprosition.

Besides his many printed ufficial reports he has left, among others, the following pmblications:
" Description of a Tefraction Protractor." Iogal Scot. Society of Arts, 1857. vol. v., Apl. 1. 34 (awarded the Bociety's silver medal and plate).
"Deveription of an Instrment for dividing circles on paper." Royal Scot. Soeiety of Arts, 1859, vol. v., p. 149 (awarded silver medal).
" 1hescription of a simple improvement on Reflectors for Lighthouses." Royal Sont. Socicty of Arts, 1863, vol. vi., p. 211.
"Experiments on the Strength of Colonial Wooks," 18t5. [Inst. C.E., Tract 8 ro., vol. 155.]
"Description of a combined optical square and 'line finder.'" Royal Scot. Socicty of Arts, 1866, vol. vii., p. 319 (awarded silver medal).
"Instructions to licensel adjusters of the Compasses of Steamvesiscls," 1869.
Mr. Balfour was elected a Member of the Institution on the 15th of May, 1866.

Mr. JoIn Cass mirkinsilaw was bom in the year 1811 at Bealingtom Iron Works, in the comnty of Dumam, where his father was manager to the Bedlingtom Jron Company, and the patentee

[^19]of the malleathle iron fish-hellied rais. TVe hat no spereial edmeation, wther than a combtry lad received in those days, exeept in leing sent to Edinhurgh for a session, where he studied mader Professors Lestie and IFope. His father and George Stephenson were at that time very intimate, and the latter used frequently to eome over to Bedlington, where Mr. Lomgridge, then managing partner of the Iron Company, had employed him in making a railway to comect the iron works with a eolliery abont $1 \frac{1}{4}$ mile distant. This was the first ralway laid with the malleable iron rails. In his hours of plat, young Birkinshaw made models of machinery, mills, forge-hammers, and electrical machines, as other hoys did. To these temdencies of the imitative faculty, hat principally no donbt to the intimate relations of his father with George Stephenson, must he attributed the reason of his hecoming an engineer. But some other canses may have exercised an inflnence: the old timber bridge, which spanted the river Blyth opposite the windows of his homse, was one day pmbed down, and a new one erected in its plate by the village mason; the dam across the river had lecome misafe, and was rebuilt hy the elder Rastrick while he was yet a boy : Sir Wr. Fairlairn, of Manchester, M. Inst. C.E., had spent some time at the works in his early days as a millwright repairing the old water-wheels; and young Birkinshat had himself designed a small suspension bridge, whieh was sulnequently put up hy the Bedlington Iron Company acruss the Wansleeck at Morpeth.

But at all events it so happened that, on Robert Stephensom's retmen from South America, yomg Birkinshaw hecame, it is believed, his first articled pupil. At the Forth Street engine factory of Messrs. Stephenson at Neweastle he spent many pleasent days, sometimes visiting Bedlington to make a series of sketches of all the machinery in vogue there, furnaces, rolling-mills, and forges, for Mr. Stephenson's use, copies of some of which, elahorated into finished drawines, were afterwards puldished in the "Encyclopedia Britannica." After assisting to check the levels, and to test the general acemacy of a survey made by Mr. Giles, for the proposed Newcastle and Carlisle railway, which the Stephensons were retained to oppose in Parliament, Mr. Birkinshaw was next engaged upon thi Leicester and Swamington railway for a year or more, as Resident Engincer. 'Then came, in 1830, the prening of the Liverpool and Manchester railway-the first line of any importance which had been mate in England. On this occasion he was smmmond to assist in carring ont the armangements. This was no sooner over than he went to Canterbury, where, with

Mr. Thomas Cabry, he made the Canterhury and Whitstable railway, now a branch of the Sunth Eastern.

The London and Birmingham railway was commenced in the year 1834, and Mr. Birkinshaw was appointed assistant engineer at the London or Camden Town end. But he did not long retain that position, for the contractor having become bankrupt, the works were carried on loy the company, and Mr. Birkinshaw, as having already had much experience, was considered loy Mr. Stephenson a proper person for their direction and management. The heaviest works were the Primrose Hill tumel, made through the London clay, the open-ent tmmel at Kensal Green, and the Brent hridge, beyond which his portion of the line did not extend far. The works were well done, and elicited favourable remarks both from Mr. Stephenson and from the chairman of the company.

In 1837 Mr. Birkinshaw had confided to him the exeention of what was ealled the Birmingham and Derby railway, lout was rather the Derby and Hampton line, Hampton being a small village in the forest of Arden, at some distance from Birmingham, on the railway from that town to London. The works were of a molerately easy character in point of construction. The materials were the blue bricks of staffordshire, sandstone from the neighouring quarries, and Memel timber for the river crossings, of which there were several long ones but little elevated above the adjoining meadows. It is sail that the permanent way of this railway has cost the present Midland Company less money for repairs than any other part of their system. Mr. Birkinshaw had a nution that the works were the best that had ever been done under his direction, and he went over them the year before he died to see what they were like then, after so many years had elapsed. The tarriages and rolling stock were made under his own eye at 'Tamworth. As the line approached completion the general management was entrusted to him by the Directors, and Messrs. Allport, Assoc. Inst. C.E., and Kirtley, now the General Manager and Locomotive superintendent of the Midland line, were his chief officers. On the completion of the Birningham station and the works of the Tame Valley line in 1842, Mr. Birkinshaw resigned his situation; on which oceasion he was prescuted with a gold snuff box by the enginemen of the line, and a piece of plate by his friends and pupils. The year after this was, to all intents and purposes, an olf-year, only enlivencl by an application for the position of manager to the Elinburgh and Glasgow railway, which was unsuccessful. Sulsecpuently Mr. Birkinshaw was appointed with Mr. Robert Stephenson joint Eu-
gineer to the York and Searborough ralway, which was begm in the summer of the year 184t, and was carried on with energy; the line having been staked ont and much of the land got before the Act of Parliament was olitained. A single line was at first made, lout it was dombled as soom as it was found what a large traftic was to be provided for. On the completion of the Scarlorough line in 1845, survess were made of the Seamer and Bridlington and the Mull and Bridlington railways. An Act had already been got by the Snll and selly directors, and the line was placel under Mr. Birkinshaw's direction, and these two railways, when formed, made a continnoms piece of roal from sicarbrough, by way of Pridlington, Driffield, and Beverley, to Hull. The larrogate and Chureh Fenton railway was also started about this time; it is about 17 miles long, includes some heavy works, with a tumel and viaduct over the Crimple beck. The Pickering branch of the York and Scarhorongh line was constructed for tho purpose of commmication with Whitly by the Whitly and Pickering railway, which, having leen made for horse traffic only, had to be altered so as to render it available for locomotives.

From great practice Mr. lirkinshaw had acquired considerable facility in selecting the best line of country, whether by hill or dale, through which to carry any proposed railway, and a quick eye for detecting its advantages and disadvantages, as well as the faculty of imparting his ideas readily and with accuracy, so that his assistants had little troulle in finding their way through a comutry which he had once walked over, being merely required to level it; and, if it were asked if he did any one thing letter than another, it might be said that in giving parliamentary or legal evidence he was not surpassed. These were valuable qualities at this juncture, when every engineer spent so much time in the witness box before Parliamentary Committees, or with lawyers preparing for the strife of partisanship. Many railways were projectel, to which Mr. Birkinshaw was Engineer, but only a small number were destined to be mate, among which may be mentioned the York and Beverley, in good part at least, the Selby and Market Weighton, the Knottingley branch, the Malton and Driffich, and the Thirsk and Malton, in which last he was associated with Mr. 'T. E. Harrison, Vice-President Inst. C.E.

Mr. Birkinshaw, although devoting himself almost exclusively to railways, sometimes applied himself to other things. There were the Harrogate waterworks and the Scarborongh waterworks, and at the latter place he put up an engine to assist the water-wheel, which had pumped all the water required by the town previonsly,
and otherwise extended the works. On the retirement of Mr. Mudson, Mr. Birkinshaw for a time gave up practising actively as an engineer; but it was not for long, as eircumstances soon made it imperative on him to resume the profession which he had almost disearded. At the invitation of Mr. Leeman, he made an claborate report on the Foss navigation, which it was proposed, on his recommendation, to do away with.

THe now took up his residence in London, aml made the plans of the Ware and Hertford railway, of the Luton and FIertford, of the Lymington branch of the South Western, and of the Sittinghomene and Sheerness railway, now a branch of the London, Chatham, and Dover railway, as well as designed a system of railways for the Isle of Wight. During a portion of this time (1860 to 1862) he was in partnership with Mr. Conybeare, M. Inst. C.E., lut the connection was soon dissolved. In 1860 he went to Denmark, and made a report on the reclamation of about 25,000 acres of land on the west coast of Jutland, and on the eultivation of the land so reclamed for the Danish Land Company. On returning he was appointed Consulting Engineer, and the works, or some of them, were let in 1863. It was in this last-named year, too, that he was employed for Mr. Fowler, in examining the Seine from Mave to the port of Ronen, in ascertaining by a series of measmements the deptlis of that river, and in collecting evidence as to its condition; and a " Report on the project of General De Brossard for the improvement of the port of Havre, and the navigation of the Lower seine," was made hy him. This was a work of consideralle lahour, of a telious kind; in consequence of the impossibility of getting up a survey, lay hy day, of the port of Havre and the river Seine under the different aspects of high and low water, of spring and neap tides, and other circumstances. In 1863 he was engrged hy Mr. Murray, who had the concession of the Turin and Savona railway, to go to Italy and report on the construction of the works. He spent the liest part of a year on this expedition, taking levels down the valley through which the line runs, and which, like all mountain valleys, is sulject to violent floods. He also made surveys, estimates, and reports of the Aequi and C'ano, the l'iacenza, Genoa, ant Chiavari, and the Carmagnola and T'urin railways, for the same gentleman.

He again went to Denmark, in the spring of the year 1865, for the Danish Jand Company ; and this time hoth as engineer and to superintend the work. Here he spent the summer and antumn, with very inadequate means in money amd materials to carry on the works. From anxiety to see them well executed, he exposed
himself to all weathers, which wreaty inereased a eomplaint lee sulfored from on his jommey ont. But the work went on, and the embankment was at length finishend, when a violent storm of wint burst over the exposed shore, the sea rore higher thath it hat been known to do for twenty rears, the water was seen to insimmate itself between the wookbork and the bank, and in a short time the bank was nearly all wathed asay. 'The adranced season of the year forbarle any further action at the time with the embankment; and it was left to be repaired in some future summer.

There is not much more to toll of Mr. Birkinshaw. On his return to England he was engaged on varions enginering works and arbitration cases, which owopied his attention matil Janmary, 18ti7. For the last ten or twelve years of his life he hat been harassed hy constant peemiary embarrassments. An incuralne malaly hat for several years been increasing in gravity, and the disease had now reached steh a height that no skill or care conlad le of use. Gradually he became less able to endure the plording of his daily arocations; till at last he succumbed, and diex in March, 186i7, in the fifty-sixth year of his age.

Mr. Birkinshaw was eleeted a Member of the Institution on the 2nd of Mareh, 1847 ; lut there is no record of his having joined in the diseussions at the evening mectings, nor did he ever contribute a Paper.

Mr. JOHN BRAITIIWAITE was the third son of the late Mr. Johm Braithwaite, whose ancestors hat earriel on a small engineer's shop and smitliy at st. Albans from the year 1605 , and was born at No. 1, Bath l'tace, in the New lioad, London, on the 1!th of March, 1797. In the year $1806-7$ his father was operating with the diving bell on the ' Earl of Ahergavemy,' East Indiaman, smen off Weymonth, from which he recovered $£ 130,000$ of specie, as well as the general cargo, and snccessfully blew up the wreek with gumpowder. In this undertaking he was assisted by the sulbject of this memoir, who, young ats he was, was entrusted with the signalling from his father, who was at work below, and who was frequently under water for from six to eight hours at a time. Mr. Braithwaite was educated at Mr. Lorl's sehool at Tooting in Surrey. From the time he left school he was at home attending in the manufactory, and making himself mister of the different trades pertaining to mechanical engineering; and he became a skilled traughtsman. In Febrnary, 1818, his father died, leaving the business to his sons, Franeis and John. Francis died in 1823, and Jobn Braithwaite
earried on the lonsiness alone, having inherited a large connection with the London brewers, distillers, water-works companies, and being engaged in the manufacture of pumps, sinking wells, \&c. He increased this business considerably in Scotland, Ireland, and the West Indies, and added to it the making of high-pressure steam-engines, many of which, from 1 II.P. to 30 H.1', are still working satisfactorily. Besides these works he had, in 1817, been called in by the then existing Committee of Engineers, held in the Strand, to report upon the Norwich steam-boat explosion before the Ilouse of Commons; and in 1820 he ventilated the House of Lords by means of air-pumps. In 1822 he made the donkeyengine, and in 1823 cast the statue of the late Duke of Kent. He was a great patron of inventors, rendering them much real service to enable them to develop their ideas and plans, and in a manner that secured him the esteem of all who availed themselves of his valuable practical experience. In 1827 he was introduced to Messrs. G. and R. Stephenson ; and about the same time he became acquainted with Captain John Ericsson, who then had many schemes in view. In 1829 Messrs. Braithwaite and Eriesson constructed the locomotive engine, "The Novelty," for the "Rainhill experiments," which, as has been observed by Mr. Vignoles, President Inst. C.E., " if it did not command success, deserved it." ${ }^{1}$ This engine was the first that ever ran a mile within a minute, as it did that distance in fifty-six seconds. At this time Mr. Braithwaite constructed the first practical steam fire-engine, which was ultimately destroyed by the London mob. It had, however, previonsly done good service, among other places, at the lurning of the English Opera House, at the destruction of the Houses of Parliament, and had assisted largely in extinguishing the fire at Messrs. Bishop's distillery, for which service Mr. Bishop gave him £500. It threw 2 tons of water per minnte, burnt coke, and got u_{1}, steam in from twenty minutes to thirty minutes: but it was looked upon with so much jealonsy by the fire lrigade of the day, and such impediments were thrown in the way of its workingsuch as playing cold water upon the boiler, \&c.-that he gave it u_{1}. IIe, however, constructed four others of larger dimensions; one for the municipality of Berlin, and one for Liverpool, which gave great satisfaction. In 1833 Mr . Braithwaite built the caloric engine in conjunction with Captain Eriesson. Next year he ceased to take an active part in the management of the engine works in the New Road; but began to practise as a civil engineer for pullic

[^20]works, and was largely eomsnlted at lome and abrod upon varions railway and other modertakings and mechanical apphances, partieularly as to the capabilities of, and probable improvements in, locomotive engines. Mr. Braithwaite was a strong advocate of four-wheel light inside-erlinder engines, and a supporter of the views of the late Mr. E. Buny, M. Bnst. C.B., as to light engines amb froquent trains, with mplicate power for heavy loads; but he afterwards altered soreral engines by adding another pair of wheels. In $183 t$ the Lastern Comenties railway was projeeted and laid ont by him in eongmetion with Mr. Vignoles. The Aet was passed in the year 18:36, which intorporated the Eastern Comtics Railway Company for constructing a line of railway from shorediteh, London, to Norwich and Yiamonth, iiA Colchester and Ipswich, with a stock and loan capital of $\mathfrak{E}^{2}, 133,000$, and he was soon afterwards appointed Engineer-in-chief for its construction. At. that time there was no gange Art in operation, and engineers were free to select the ganges of their respectives lines. Mr. Braithwaite apparently considering the Eastern Counties isolated as to railway commmication from the manufacturing districts, and likely to remain so, and well knowing by experience the ill effects of the then considered and admitted insufficient hoiler and machinery space, for efficient and economic working, within the ordinary gange of 4 feet $8 \frac{1}{2}$ inches, advised the adoption of a $5 \frac{1}{2}$-feet gange, which was afterwards reduced to σ feet, and \quad pon that gange the line was constructed as far as Colehester, a distance of $51 \frac{1}{4}$ miles, to which place it was opened in March, 1843 , the works being made wide enough for a 7 feet gange. On the reeommendation of Mr. Robert Stephenson, it was subsequently altered to the national gatge of 4 feet $8 \frac{1}{2}$ inches ; and the change was effected on the Northern and Eastern, Eastern Comnties, and Blackwall railways between the 5 th of September and the 7 th of October, 1844. In after years, Mr. Braithwaite advocated a still narrower gange than that of 4 feet $8 \frac{1}{2}$ inches. He eeased to be officially comnected with the Eastern Counties railway on the 28th of May, 1843. While Engineer to that company he introduced on the works the American excavating machine, the power of which was fairly tested. In a stiff clay the original and imperfeet machine from New York filled the earth-wagons at a cost of $1 \frac{1}{2} d$. per cubic yard, all expenses included ; and in America it is still used, particularly for dredging. In like mamer Mr. Braitlowaite endeavoured to utilise the American steam locomotive pile-driving machine, which failed, not by its demerits, as subserfuent application has proved, but from disagreement among the patentees, of [1870-71. N.s.]
whom Mr. Braithwaite was one. He was joint founder of the "Railway Times," which he started in conjunction with Mr. J. (. Robertson, as editor, in 18:37, and he continned sole proprictor till 1845. In that year he had been drawn into some commercial speculation, which, together with his mndertaking the preparation of plans for the direct Fxeter rallway, and the panic of the periorl, necessitated the winding up of his affairs. Mr. Braithwaite had, in 1844, a share in a patent for extracting oil from bituminons shale, and works were erected near Weymouth, which, but for his difficnlties, might have been successful. Up to this time Mr. Braithwaite had assisted Captain Ericsson in many costly experiments at the manufactory. Some years kefore, 1836-38, they had fitted up for Mr. John Robins an ordinary canal Joat with a screw propeller designed by Captain Eriesson, which started from Londin along the canals to Manchester on the 28th of June, 1838, returning by way of Oxford and the Thames to London, being the first and last steam-boat that has navigated the whole distance on these waters. The boat maintained a speed of from 5 miles to 6 miles an hour on the canals, and upwards of 9 miles an hour on the river, when fully loaded. This was considered at the time a great snccess, lut was abandoned on accomnt of the deficiency of water in the canals, and the completion of the railway system, which diverted the paying traffic. In 184t, and again in 1846, Mr. Braithwaite was much on the Continent surveying lines of railway from Paris to Dieppe, the Eastern of France, and others; but he still found time for other business, such as surveying Langston harbour in 1850, and building the Brentford brewery in 1851. From that year, however, he was principally engaged in chamber practice, and acted as consulting engineer; advising upon most of the important mechanical questions of the day, for patent and other purposes, in which his opinion was much songht after and highly esteemed. Mr. Braithwaite was always kind and hospitable; lis apprentices and employés were noticed by him and liberally treated. His conversation was lively, frequently instructive, and a vein of humour appeared in his remarks. He had no mean skill in painting and drawing, and his professional sketches were clear and explanatory. He was correct in his calculations, strict in liis estimates, and his works on the Eastern Counties railway were characterized by solidity of construction.

Mr. Braithwaite was elected a Member of the Institution on the 13th of February, $18: 38$, and at the time of his death he was one of the oldest memhers of the Society of Arts, having been elected
into that body in the year 1819: he was also a life govemor of seventeen charitable institutions. He died very suddenly on the 25 th of September, 1870 , and his remains were interred at Kensal Green cemetery.

Mr. GEORGE ROWDON BURNELL, after receiving a partial education as an architect, was in carly life a partner in a large iron fommery, which he left in 1840. He then visited America, and on his return, after a short stay in Belgimm and the North of France, was engaged muder the late Mr. Joseph Locke, last lresident Inst. C.E., in superintending the construction of a portion of the Paris and Ronen railway, and subsequently of the Ronen and Havre railway. On the completion of these works he was appointel superintending arehitect to the Harre Docks and Warehonse Conpany; but in the year 1848, like many of his fellowcountrymen, he found it expedient to return to England, as the cry was at that time raised "La France pour les Français." During the seven years that he resided ahroad he contracted a great armiration for the talents of the Frenel, and hence the strong colouring which pervaled most of his writings, in which he so constantly held them up for study and imitation. By degrees, however, after his return to England, he became more and more exclusively literary. He was as well known as a writer on architectural suljects as on those comectel with engineering; and was one of very few who have united a Fellowship of the Royal Institute of British Architects with a Membership of the Institution of Civil Engineers.

Mr. Burnell thongh possessed of considerable enginecring talent did not actively follow the practice of the profession, but was principally occupied in literary pursuits comnected with it. He was the author of several rudimentary works, ineluding one on limes and cements. In 1861 and afterwards he wrote "The Ammal Retrospect of Enginecring and Architecture." He edited for some years "A Builder's ant Contractor's Price Book," and " The Engincers' and Architects' Pocket Book," was comected, too, for a long time with the "Joumal of Gaslighting," contributed to "Bramle's Dictionary of Science," the "Dietionary of Architecture," as published by the Architectural Publication Socicty, and wrote largely and constantly for the "Building News." In addition to these strictly professional works, he wrote occasionally on general literature for the "Eclectic," and other reviews. His incessant literary labour, from which he never rested, brought on
the disease which so prematurely closed his career; an attack of paralysis of the hain in the summer of 1866 quite incapacitated him from any further labour, and after a tedions illness of two years, with no hope of recovery from the first, he died on the 25 th of July, 1868 , aged fifty-four, a great loss to his fellow-professional men, to whom his mhumded store of facts and miversal information were always liberally open.

Mr. Burnell was elected a Member of the Institution on the 6 th of Felnmary, 1866. He had previously, as a visitor, often attended the meetings and taken part in the disenssions, hesides contributing a Paper "On the Machinery employed in sinking Artesian Wells on the Continent," ${ }^{1}$ for which he was awarded a Telford premimm in hooks. After his election as a Member he presented a Paper "On the water supply of the City of Paris," and for this also he was awarded a Telford premium in hooks.

Mr. ZERAH COLBURN was born at Saratoga, in the State of New York, in 1833, and was named after his uncle, the celebrated mathematician. His father died soon after, and his mother, very poor and infirm, removed to Hillshorough, New Hampshire, where, during his boyhood, young Colburn earned his living on a farm. Ilis early means and opportunities for acquiring an education were limited to a few months' attendanco at a district school, generally a week at a time, a short clerkship in a factory, and such books as he could find in a remote comntry village. But his industry and his wonderful memory more than made up then, and thronghout life, for the want of early advantages. From an odd volume of the old "Penny Magazine" he gained a knowledge of the world and an inspiration to see and figure in it. From May to December, 1845, at the age of twelve, he was engaged in keeping the monthly accomnts, invoices, pay rolls, \&e., in the office of the Sngar River Manufacturing Company, at Claremont, New Hampshire, and in paying the hands, two hondred in mmber. His first sight of a city, and, what was a greater thing to him, a locomotive, was at Coneord. The strong lint hitherto in him mudeveloped meehanical talent at that sight asserted its proper $p^{\text {late, }}$ and the locomotive was ever after his chief study, and the subjeet of his best conclusions and ablest writings. At the age of thirteen he fomed his way to Lowell, Massachusetts, and

[^21]was hought to the machine shop of Mr. L. B. Tyng, by Mr. Lovejoy, overseer of the Middee ('orpration. In Mr. TYig he fombl a friend for life. From that shop he passed in September, 184t, into the cmployment of Mr. A. L. Broks, an extensive lumber manufacturer and dealer in Lowell, in the capacity of clerk. Here the intelligence and eagemess with which he stndied machinery of all kinds, lut especially stationary and locomotive stam engines, attracted the attention of his employer, who honght him to the notice of Mr. Williann A. Burke, at that time and for many yens superintendent of the Lowell machine shop. The pen-and-ink sketches of young Colbom seemed to Mr. Burke so meritorions, that he at once employed the lad, then hardly fifteen years of age, in his drawing-office. Mr. Burke says of hian at this period: "llis entrance into a large machine shop, where a great diversity of machinery was being constructed, was to him like finding a new world, and a close attendance to his partionlar duties could hardly be expected in one of his genius, and certainly was not realised. But with this exception he was a favourite with us all, and the ease and readiness with which ho comprehended and apprehended all the principles and details of machinery, were very monsual-1 might say remarkable." In May, June, and July, 1850, it appears by his letters that he was employed lyy Mr. 'Fyng and Mr. Calvert, lothe well-known mechanics of Lowell, for occasional work, probathy drawing. In Mareh, 1852, he was engaged in designing machinists' tools for M". Tyug, and in May, 1853, accompanied his employer to Alexandria, Tirginia, and was for a shont time comectel with the locomotive works there.

While lis head-fuarters were at Lowell, he was frequently resident in Roston. Mis first literary attempt was in verse for the Boston "Carpet Bag." His railway carcer commenced on the Baston and Maine ralroad, under the late Mr. Charles Minot, then its manager, who was att:acted ly lis brightness and practical i.lcas. He was also, about this time, engaged on varions other railways leading ont of lioston, especially the Boston and Lowell. in tahulating the particnlans of their loemotives.

In a few months Mr. Colburn hat mastered the details of the locomotive engine, tabulated the dimensions and proportions of those mider lis observation, and published a small, but excellent and still useful, treatise on the sulject. He then got a sul)ordinate position, and soon rose to the superintendence of the locomotive works of Mr. Souther, in hoston. Were he talmated and committed to memory the dimensions of all parts of the then
standard locomotive, and the cost of all the materials and labour employed in its construction. With the exception of a few months at the Tredegar Works, at Richmond, where, in connection with Mr. Souther, he started the manufacture of locomotives, Mr. Colburn now made New York his head-quarters until 1858. His more important professional work at this time was his superintendence, for a year or more, of the New Jersey locomotive works at Paterson, during which engagement he made some improvements, still standard, in the machinery of freight engines.

Although eminently fitted for the management of practical construction, Mr. Colburn had already found that the literature of engineering was his true calling. As early as March, 1847, some small pamphlets appeared from his len, entitled, "Monthly Mechanical Tracts," which were published at Lowell. In 1850 these were followed by "The Locomotive Engine, theoretically and practically considered," published at Poston, and republished at Philadelphia in 1853. From 1851 to 1853 he contributed to "The American Railway Times," at Boston, including a serial treatise on the locomotive engine. And in the latter year he was introduced by Mr. Tyng to Mr. Poor, editor and proprietor of the "Railroad Journal," then the leading American publication in this department. Mr. Colburn immediately commenced writing for it, and in fact soon edited the mechanical department of it; and professional readers, recognizing the hand of a master, began to look for a new era in technical journalism. They were not disappointed. In November, 1854, MLr. Colburn started, in New York, the "Pailroad Advocate," a weekly journal, devoted especially to the machinery of railroads, and addressed chiefly to the master mechanics and the more intelligent operatives. The next year he enlarged the "Adrocate," and it is wor thy of mention, as illustrating Mr. Colburn's extraordinary power of memory, that he kept no books for many months, but simply remembered when every sulseription and advertisement fell due, and made no mistakes. In the summer of 1855 Mr . Colbun thonght he saw, in his large acquaintance with railroad men, the way to a fortme in the business of railroad supplies. He therefore, in March, 1856, sold the "Advocate" to Mr. A. L. Holley, then draughtsman at the New York Lucomotive Works, bought land warrants with the money, journeyed to Iowa and located his lands, and then returned to New York-hut with another seheme. The frontier life hat temperarily charmed him, and he got tugether an engine and machinery to set up a steam saw-mill in the far West. However, before his plans were completed, literature had resumed the
mastery, and he again became a contributor to the "Advocate," and at the same time arrangen his suply business. He engaged with Mr. Moratio Ames to introntuce the Ames' tires; and with his knowledge, industry, and shrewduess, he assisted to build up a business which, unfortunately, the character of the tires did not maintain. But Mr. Collmur was not made for a merchant. He pined for larger professional observation and knowledge, and for a wider fick. As suddenly as he went into trade he left it, and sailed for Europe. luring a flying visit among the machine and iron works of England and France, whereof the story is recorded in the "Railruad Adrocate," he had become again and finally wedded to literature. Returning to New York, he resmed a half share of this periodical, which was then enlarged and cutitled the "American Engincer."

In the autmon of 1857 , Messrs. Colburn and Holley were commissioned by several leading railroad presidents to visit Entope, to report on the railway system and machinery abroad; and in view of the financial troubles of 1857 , they were advised to sto p, at least temprarily, the publication of their paper, which was never resumed. Permanent way and coal-burning locomotives were found to be the most important subjects of the period, and in 1858 their report on these subjects, "The Permanent Way, and Coal-burning Locomotive Boilers of European Railways," was pullished, and circulated among American railway managers. Mr. Colburn wrote the report entirely, while Mr. Holley, besides sharing the expense, assisted in collecting information and in preparing drawings. Mr. Colburn's thorongh and, to American readers, entirely new and startling analysis of the cost and economy of British railways was the foundation of many of the reforms that have since, although slowly, become standard in America, especially in the matter of improved road-bed and superstructure. The success of this book was such that its authors determined to continne their researches, and in the antumn of 1858 Mr . Colburn again visited London. Here his alilities attracted the attention of the founder and editor of "The Engincer," and, at that gentleman's request, Mr. Colburn wrote several articles, which were of so high a character that he was ultimately appointed to an influential position on the staff of that paper; eventually, for a time, occupying the post of editor in charge, while the responsible editor and proprictor was absent on the Continent through illhealth. The leading articles written by Mr. Colburn during this period have never been excelled in vigour, accuracy, and clegance of style, in any scientific journal. He at this time wrote the
chapters devoted to American locomotives for Mr. D. K. Clark's "Recent Practice in the Locomotive Engine;" and in 1860 an essay on "Steam Boiler Explosions," working out the theory now known as the 'perenssive theory.' Mr. Colburn then resolved to start another engineering paper in America. He left England in the 'Great Eastern' steamship, on her first passage in 1860, and soon selecter Philadelphia, the principal seat of mechanical engineering in America, as the birthplace of his own "Engineer," which was commenced in August, 1860 ; but the time was not ripe, in America, for a publication of this kind, and in a moment of despondency he dropped his new enterprise, and sailed for England. In Jamary, 1861, he again became the editor of the London "Engineer," which position he continued to occupy till November, 1864, and till the spring of 1865 he was an occasional contributor to its pages.

Ahout this time he wrote several pamphlets on professional sulpjects. On the 5th of May, 1863, he presented a Paper to The Institution of Civil Engincers "On American lrou Bridges," for which he was awarded a Telford medal and a T'elford I'remimm of books. In the same year he was the author of "An Inquiry into the nature of Heat," and commenced, and subsequently completed, the first eight parts of "Locomotive Engineering;" and he also contributed a paper "On the Relation between the Safe Load an! the ultimate Strength of Iron," to the Society of Engineers, of which Society he was President in 1865 , when he read a further paper "On certain Methods of treating Cast lron in the Fomndry." In $186 \frac{1}{4}$ Mr. Colburn wrote a treatise on ". The Gasworks of London," and gave a "Description of Harrison's Steam Boiler," to the Institution of Mechanical Engineers. On the 7th of February, 1865, Mr. Colburn was elected a Member of the lnstitution of Civil Engineers, and later in the rpring of the same year read two papers before the Society of Arts, one " ()n the Giming of Cotton," the other, "The Manufacture of Encanstic Tiles and Ceramic Ornamentation by Machincry." A paper "On American Locomotives and Rolling Stock," read before the Lnstitution on the 9 th of Manch, 1869, and for which he was awarded a Watt Medal and Telford Preminm of hooks, and a paper "On Anglo-French Commmication," read before the Society of Arts on the 1st of December, 1869, complete the catalogne of his contributions to learned sucieties.

In Janmary, 1866, Mr. Collmin started as his own property the well-known jomal ". Engineering ;" and he continued its active management, and gave it the full bencfit of his joumalistic ex-
perience and of his talents as a writer matil its success was firmly established. This done, howerer, his editoship, became a mominal one, and at length, at the ent of Felmary, 1870, he ceased to be connected with that perionlical in any way.

Naturally restless and execedingly impulsive he went to greater extremes hoth in work and relaxation than most men, and his irregularities were attended with melancholy results. On his giving up the proprictorship of "Engineering," he proceded to l'aris, and sulsequently to America, where he avoided all his old friends. They tried to follow him, but on the 25th of $\Lambda_{\text {pril }}$ he was foum lying in an orchard at Bemont, near Boston, whither he had wandered a day or two before from New lork, mortally womded by a pistol-shot, fired by his own hand. He was taken in a dying state to the comuty hospital, where he expired a few hours afterwards. He was buicd on the fth of May at Lowell, Massachusetts; his funeral being attended by his family connections resident there, and by many members of the profession; among them Mr. Tyng and Mr. Burke, his early friends and instrnetors in mechanics. Mr. Kerall Colbun was a man whom the profession could ill afford to lose. IIis thoroughly practical cducation in the workhop, his extended observation of engineering works, his intimate acyuaintance with professional literature, his remarkable quickness of comprehension, his more remarkable memory, and his mechanical talent and inborn engincering ideas, combined to give him the distinction of being the best general writer in the profession.

Mr. SAML'EL DOBSON was the son of a farmer, and was born on the 28 th of A_{p} rill, 1826, at Newton Hall, Horsley, in the comety of Northmberland, and attended the village school at Ovingham. IIe was aprenticen as a colliery viewer to Mr. John Gray, of (iaresfield, Durham, for three years; and at this time, finding himrelf somewhat deficient in entuation, he attended a night school at Crawerook, near Ryton, kept ly Mr. Craigie, a celebrated teacher of mathematics. At this school, Nessrrs. Nicholas Wood, George Elliot, M. P'., John Nixon, Robert Anderson, C.E., and other men of note, received a considerable purtion of their education. He afterwards acted for two years as an assistant to the late Mr. T. J. Taylor, of Earston, Northmberland. Alout the year 1848 he removed to South Wales, on leing appointed, through Mr. 'Taylor's influence, mineral agent to the Clive (now the Windsor) estate; and sulsequently he engaged in lusiness on his own account as a
mining engineer, and became mineral agent for many of the principal properties in the district. He had charge of the opening and working of some of the most important and extensive of the stean coal collieries of South Wales, amongst which Messrs. Powell's Duffryn collieries may be especially mentioned. He was also in extensive practice as a consulting Engineer in all matters relating to mining, and of late years had turned his attention to Civil Engineering matters. He projected the Penarth Harbour Dock and Railway, for which he and Mr. John Hawkshaw, Past-President Inst. C.E., were afterwards the joint Engineers. He was also instrumental in establishing several railways in South Wales, and reported upon experiments male by himself as to the comparative value of Welsh and North Comitry coals for marine purposes.

Mr. Dobson was elected a Nember of the Institution on the 2nd of November, 1856. He was also a Member of the North of England Institute of Mining Engineers, as well as a Fellow of the Geological suciety of London. He was devotedly attached to the profession, worked very hard, and in private life was a man of engaging mamers, very sincere, and one who formed many lasting friendships. Mr. Dobson's health had been failing for some time, and he died in London, of consumption, on the 26th of July, 1870, in the forty-fifth year of his age.

Mr. CHARLES CAULFEILD FISHE was the second son of Commander Fishe, R.N., and was maternally descended from the noble families of Drogheda and Charlemont. He was born at Waterford, on the $22 n d$ of October, 1821 ; and was educated at the endowed school, New Ross, and at Colonel Colby's engincering school, Phonix Park, Dublin. In the year 1837 he was articled to Mr. Edward White, a Civil Engineer engaged on the Borndary survey of Ireland; and in the following year went to Mr. William dones, District Bomdary Surveyor, and received the appointment of Bumdary Surveyor from Sir Richard Griffith, Bart., MI. Inst. ('.E., then the General Surveyor of Treland. On the completion of the Survey, in the antumn of the year 1843, he came to Lomblon, and through the introluction of friends obtained an appointment in the office of the late Mr. I. K. Bruncl, V.P. Inst. C.E. In the year 1844 he was sent by Mr. Bromel to Ireland on the surveys for the linhlin, Wicklow, and Wexforl railway, and in the ensuing year to Wales on the proposed railway from Worcester to Porth-I)yn-Uden, promoted by the Great Western Railway Company. Mr. Brmel's barliamentary husiness increasing, he was reealled from this work
to take the management of the office. On the death of Mr. Prmel, in 1959, his works were earried on by Mr. R. l. Brereton, M. hust. C.E., with whom Mr. Fishe remained for five rears. From 186.4 he was principally ocenpied as Resident Engineer, first on the Blisworth and Stratford on-Avom line of the East and West Junetion railway, and then on the extension of the line from Stratford to the town of Worcester. He also, in the year 1866, prepared the plans of the Teme Valley railway for Parliament, as Joint Engineer with Mr. Burke and Mr. Purchas, M. Inst. C.E. He sulsequently gave considerable time to the Duchy of Cornwall office ; and on the eve of marriage was nominated to represent the interest of 11.li.H. the Prince of Wales, in a case of arbitration with the Crown. His engagements abroad compelled him reluctantly to decline this distinction, and he died at Rome during his wedding tour, on the 3 rd of $\Lambda_{\text {pril, }} 1870$, after three days' illness, of fever combined with congestion of the lungs. He had only been clected a Member of the Institution on the th of May in the previous year.

Mr. JOIIN MARRIS was a native of Cumberland, and was born on the 16th of July, 1812. After completing his term of pupiage with the late Mr. Thomas Storey, Civil and Mining Engincer of St. Helens Anckland, in the comty of Durham, he became Engineer to the Stockton and Darlington Railway Company, and was engaged hoth in the maintenance of the permanent way and works of that line, and in the construction of new works and lranches in comnection with it. Of the latter the principal were, the Middleslrough Dock and its coal-shipping staiths. and railway approaches; a bridge across the Tees at Stockton, to replace a suspension bridge which had failed to answer its purpose as a railway bridge ; the Middlesbrough and Redear railway, and an extension of the Wear Valley railway from Crook to Waskerley. In the construction of the Middlesbrough Dock and its appurtenances, he was assoeiated with the late Sir W. (then Mr.) Cubitt, Past-President Inst. C.E., as consulting Engineer, and Mr. George Tumbull, M. Inst. C.E., as Resident Engineer, and in the design of the Tees bridge he had the alvice of the late Mr. Robert Stephenson, l'ast-l'resident Inst. C.E. He was one of the earliest to recommend and adopt wooden sleepers for railways in preference to stone blocks, which at that time (1839) were commonly used. In 1844 he becane contractor for the maintenance of the permanent way and works of the Stockton and Darlington
railway. He also constructed the Wakefield, Pontefiact, and Goole railway and its branches, and the Kendal and Wimbermere railway, which had been designed and commenctl by the late Mr. Errington, V.P. Inst. C.E. Besiles these he was the contractor for the construction of the Middlesbrough and Guisbrough railway, the stanley branch of the Stockton and Darlington railway, a large Drilge across the river Wear, near Witton, for the Stockton and Darlington liailway Company, a deseription of which he communicated to the Institution, ${ }^{1}$ and for varions minor works. The last ten years of his life were passed without professional oceupation.

He took an interest in pmblic affairs, was a member of the Board of Health in Darlington, the place of his residence, and frequently attended puldic meetings. Mr. Harris was elected a Graduate of the Institution on the 1 th of A_{1} ril, 1840, and was tramsferred to the class of Member on the 6 th of A_{p} mil, 18+1. He was of an open, genial disposition, and was miversally respected ly those under him.

He died at Kendal on the 20th of July, 1869.

Mis. ROBERT MORRISON was born in the parish of Moy, Inverness-shire, on the 14th of February, 1822. His father, David Monrison, was at that time tenant of the flow or meal mill situated at Kylachy, in the parish of Mor, where Rolnert, althongh yomg, most assiduously assisted him. Indeed, the most striking feature in Pobert's character, when a boy, was his devotion to his books and his dutiful attention to his father, whom he helped late and carly both before and after school hours; while he prepared his lessons, after the rest of the family had retired to leed, poring for hours over his books, by such light as could the got from the resinous. chips from the roots of the fir tree. He resided for some prortion of his school days at the house of the Rev. Dr. James MacLanchlan, who allowed him the use of books, which he read with avility whenever he had spare time either in or out of doors: and Fiobert Morrison frequently, in after lite, alluded in feeting terms to the grond precepts instilled into his mind ly the minister. When about the age of seventeen he was apmenticed by his father to a millwright in the same comen named Reil, who during this time got orders from sir George Mumro, of Poyntsfield, Ross-shire, to suphly and fix on that property a flow mill. Seing sent fo assist at this work, Fobert Morrison's intelligent appeanance, ac-

[^22]tivity, and husiness-like halits so faromahly impressed Sir George, that he was offored the lnerative appointment of factor, or manager, over sugar-growing estates in Jamaica belonging to Lady Mumo. Ilis father, however, raised objections to this seheme, and Sir George, still wishing to ancomrage merit, sent him to Giasgow, with a strong recommendation to the late Mr. John Perey Menderson, of Polmont. Here le worked with varions engineering firms. and actuired a practical knowledge of marine ant other engines. After a time, having a strong desire to extend his knowledge, he determined to proceed sonth, going in the first place to Leerk, amd subsequently to Manchester, where he got emplorment with Mr. Fairhairn, M. Inst. U.E., (now Sir William Fairbairn, Bart.).

At this time, 1841, his leisme hours after work were ocenpied in making sketches of the varions parts of engines, which he executerl with remarkable neatness. He was noted for his industry, being most scrupulous to his employer's interests, which lnomght him no small anomit of ill-favour from other workmen ; for, as chargeman, he insisted that those under him should commence work at the proper time and not wait for the appearance of the foreman ; indeed it was partly on accomnt of this feeling that he left Manehester and retumed to Glasgow, where he obtained with Mr. Paton, locumotive superintendent of the Edinburgh and Glasgow railway, the situation of draftsman. In $184 t$ he went to Messrs. Hawthorn, of Neweastle-on-'Tyne, as manager of their works. He was much valued and esteemed by the firm, and he hat, in such a position, the arlvantage of getting more prominently under the notice of others who were able to judge and appreciate his merits.

In 1851 he married Miss Fleming, only danghter of Mr. John Fleming, solicitor, of Newcastle; and in 1853 he commenced hmsiness on his own fecount, at Ousebmen, as Rolert Morrison and Co. 'The works at that time were comparatively small, lut by his great mechanical skill, application and energy, he, in a few years, extemed them so that they covered abont 10,000 sfuare yards of ground, and employed more than five humdred men, in the mamfacture of marine and other classes of engines, as wrill as of an improved steam-hammer which he invented and patented. His hammers were extensively used ly looth the English and Rassian Governments, ly Sir William Armstrong, for his big guns, and by many large engineering firms in this comtry, as well is in America, where, by license from the patentee, they were manufactured by Messrs. Wm. Sellers and Co., of Philarlelphia. Morrison's steam-hammer was adjudged the first medal and prize at the

Exhibition of 1862. The largest hammer he made was one of 40 tons, in 1863, for the Russian Govermment; its total weight when completed, in three parts, was 5.50 tons, and the diameter of the eylinder was 6 feet 6 inches, being, at that time, probably twice the size of any previously manufactured.

Pumping engines of considerable size were oceasionally made at the Onveburn Works, and of these one pair was erected for the Sunderland and South Shields Water Company, each cylinder being 5 feet in diameter. In the year 1866, in common with many others, he felt the effects of the commereial depression which then prevailed, and so severe were his losses that he was obliged nearly to close his works; but he settled handsomely, and beyond their expectations, with those to whom he was indebted. At this time he was also engaged as principal and manager, under the name of Morrison and Co., in developing iron-stone mines at lirotton, in the Cleveland distriet; and judging that little could be got, for some jears at least, by following mechanical engincering, he devoted his time and energy to bringing as speedily as possible into complete working order these mines; and this was successfully accomplished, but only shortly before his death, which took place on the 20th of December, 1869.

He was a devoted husband, an indulgent and affectionate father, a sincere friend, and a dutiful son. For many years he occupied the mansion and grounds known as Shield Field House. He was much interested in the education of the poor, and had been but a short time at Brotton when, through his instrumentality, large and efficient school-houses were built there. Mr. Morrison was electel a Member of the Institution on the 28th of May, 1861.

Mr. GEORGE PADDISON was born at Louth, in Lineolnshire, on the 2 nd of November, 1825. He receivel a general education at the Louth Grammar School, and his education as a Civil Engineer was subsequently completed at the Putney College for Civil Engineers. From his earliest ycars he was truthful, fearless, and hrave. Ilis daring may be imagined from the fact that at the age of thirteen he climbed, outside, to the top of the sprire of Louth chureh, which is nearly 300 feet high. This feat had been but twiee before recorded.

From 1846 to 1849 he was employed as an Assistant-Engineer on the York and North Midland lines of railway. In April, 1853, he was appointed Chief Assistant-Engineer to the Valparaiso and Santiago railway; and, for three years, till the temporary
suspension of the line, in Jume. 18.57, he oecmped the position of Resident Eugineer, in charge of one of the most important seetions, and by his ahility, practical knowledge, and energy contributed largely to the successful realization of a railway which ranks with the most diftionlt lines in the world. He, however, remained for nine months longer in Chili, during which he was engaged in the completion of a large reservoir and dam for irrigation at Catapileo, about 40 miles from Valparaiso; in the delineation and construction of au irrigation canal near Huaseo, in the north of Chili : and in the delincation, surver, and estimates of the Copuimbo railway, with the construction of which he would have been entrusterl as Chief Engineer had he remained in Chili. Mr. Pabldison then proceeded across the continent to laraguay, and in Jme, 1858, was appointed Engineer to the Assmencon and Villa lica railway ly the celelorated dictator, Lopez. He was at first quite alme, pending the arrival of the assistant-engineers; and explored, surveyed, and determined on 45 miles of line in a comtry of which no maps were to be procured, and he marle the final plans for a considerable portion. The actual works were commenced in June, 18.8, and the line was opened in September, 1861. Mr. Paddison left Paraguay for England in the following year, not on account of the works being finished, but owing to a disagreement as to the terms of a new contract. In July, 1864, he was engaged ly Messrs. Peto, Betts, and Crampton, to proceed, as Second Engincer, to Pern, to survey a line of railway from the Pacific Coast, across the Andes, into Bolivia. The ronte lay from Tacna, in Peru, to La Paz, south of Lake Titicaca, and thence to Cochabamba. He suffered great hardships on this survey, and after the revolution of January, 1865, returned to lquique; and as the constant revolutions made arrangements with the Bolivian Govermment impossible, he went again to Chili. Here he was soon entrusted, as Chief Engineer, with the surrey and construction of a line of railway through a desert in the north of the comtry, from Flojo to Cerro Blanco, between 60 miles and 70 miles long. This work he accomplished with great economy, and much to the satisfaction of the company ; its cost being less than $£ 2,000$ per mile, locomotives and trucks included. It was finished in December, 1867, and handed over to the directors of the company in January, 1868. On the termination of this engagement he was appointed by the Board of Dircetors of the Coquimbo railway to examine and report upon the works of the Coquimbo extension, previons to their being handed over to the company. This was a delicate commission, requiring much julgment and knowledge of the subject, as the line had been
constructed by the contractor for a lump sum, on his own plans, without supervision, inspection, or intervention on the part of the company. Mr. Paddison, however, earned the gratitule of both the parties concerned, by the satisfactory exceution of this commission. In Jannary, 1869, he was appointed, by the Chilian Government, one of the Commissioners to report on the Public Works of the country. About the same time he accepted an engagement with Messrs. William Gilbs and Co., to survey some extensive nitrate-gromds in the south of Bolivia, and to examine into the means to be adopted for the manufacture of nitre, and into the facilities for its shipment. A new company, Millourne Clark and Co., was estahlished in Bolivia, for dealing in Bolivian produce, but more particularly for the mamfacture of nitre. Mr. Paddison was appointed manager, and left Valparaiso in A_{1} ril, for the purpose of erecting the recpuisite works. He surveyed the harlow of Autofogasta, then called La Chimha, and fixed the locality of the port; erected one pier, and laid down the plans of another ; constructed a road from the port to the nitrate-works, and eompleted a distillery for supplying fresh water. In November he was taken ill from enlargement of the liver; he arrived at Valparaiso on the 12th, lut gradually sank, and died on the 24th of that month, leaving a widow and two sons, and a large circle of friems to mourn his loss. He was greatly esteemed as a friend, for his amiahility. gentleness of mamer, and generons character; while he was much respected as a man of high principle, unflinching courage, good ability, energy, and practical knowledge: and the most manalified dependence was placed in him by all his employers. Mr. Paddison was elected a Member of the Institution on the 3rd of Mareh, 1863. He highly valned the comection, and lure testimony to the standing it conferred on Civil Engineers in such comentries as South America. His almost constant residence almoad prevented his attending the meetings more than once or twice, lont he took part in the discussion on the Santiago and Valparaiso railway.'

Mr. TIfOMAS PATERSON was bom in Edinburgh on the 26th of December, 1830. He was educated chiefly at the ITigh school in that eity, and was sulsequently a pupil of Mr. Johm Miller, M.P., M. Inst. C.E. On Mr. Miller's retirement from the profession, Mr. Paterson completed his pupilage with the late Mr. B. Hall Blyth,

[^23]M. Inst. C.E. He contimod with Mr. Blyth and the firm of B. and E . Blyth from 1850 to $186:$, for many years acting an thoir principal assistant, and laving charge of important works. He was Resident Engineer on the eanal branch of the Great North of Sootland railway in 18.5 and 1854 , and left, on its completion, to assume the resident engineership of the Carlisle amb silloth Bay railway. In 186:3 he was appointed, on the recommendation of the Messrs. Stermson of Elinlmorgh, Engineer of Roads, Railways, \&e., to the Otago Guremment, New Kealand, a post which he ably filled for two years, amt then began business in Dunedin, the eapital of Otago. on his own accomnt, retaining the Government employment. In New Yealand he construeted several considerable hridges and other works, made extensive survers, and prepared claborate reports of projected roads and railways. Mr. Patersom's practice soon extended to other provinees, his professional adviee being much sought after and relied om. He was emploved by the Southland and Canterbury Governments; and when on his way from Innedin to Timaru, to sulmit the plans of a bridge over the river Rangitata, one of the largest rivers in 'anterbiy, he was drowned on the 15th of December, 1869, hy the unsetting of the mail coach when fording the river Kakami while in flood.

He was elected a Member of the Institution on the 10 th of A pril, 1866. Itis death was looked upon as a national loss in Dunedin, where he hat estalished not omly many sincere friendships, hat a high character for uprightness, homour, and ahility as a professimal man.

Mr. Williaic Mlexander Provis was born at Wimpole, in Cambridgeshire, on the 5th of May, 1792. His father, Mr. Henry Provis, was one of the resident Engineers to the Gramd Junction Canal Company, and in his office he enterel as pupil at a very early age, and continued there until the year 181t, when ho. accepted an engagement as assistant to the late Mr. Telford. At, the commencement of this engagement the improvement of the leading turmpike-roads in the kinglom had become very urgent, and a large portion of this work being put into Mr. Telford's hands rendered the efficient assistance he received from Mr. I'rovis highly valuable. Amongst the first duties assigned to Mr. Provis was to assist with the designs and drawings for the works of the Caledonian Canal then in progress, and in the survey for inproring the mail-coach ronte between Carlisle and Glasgow: the line selected gave much satisfact:on to Mr. Telforl, and the int proved road is now one of the finest in the kinglom.

In 1817 he assisted Mr. Telford in the examination and survey on which he was then engaged, for the improvement of the road between London and Holyhead, and during the execution of the work acted as Resident Engineer on the most difficult part of the road, that between Shrewsbury and Holyhead. The improvements included the making of large sections of new road, the thorough reconstruction of the old line where made available, and the building of several important bridges, and cther works of a minor character. But the most formidable difficulty on this line of road was the necessity of bridging the Menai Strait. "It so happened," says Mr. Telford, in his Autobiography, "that in the year 1814 I had been called upon to consider the best mode of crossing the river Mersey at Runcorn, with a view of shortening the London road to Liverpool; and, under all the circumstances of the ease, I recommended a bridge on the suspension principle." He then goes on to mention "several hundred experiments upon malleable iron " which he made on that occasion. In the conduct of these experiments Mr. Provis assisted ; and when it was decided to adopt the suspension principle for the bridge over the Menai Strait, to Mr. l'rovis, as Resident Engineer, was confided the care of the work. In this capacity he laid "the first stone of this great work," on the 10th of August, 1819. In consequence of Telford's overwhelming engagements, the settling of many of the details of the bridge were left to Mr. Provis; and under his advice several alterations were made from the original design. The bridge was opened in 1826 ; and in 1828 Mr. Provis pmblished an elaborate account of the work, with numerous engravings.'

During the progress of the works on the Holyhead road, Mr. Provis also superintended, under the direction of Mr. Telford, the improvement of the line of road from Chester to Bangor. This involved the construction of a bridge over the river Conway, in which the suspension principle was also adopted. Care was taken, in this design, to harmonize the brilge with the old eastle of Conway, immediately beneath which the bridge crosses the estuary.

In the year 1825 Mr . 'Telford was consultel with reference to a project for improving the canal communieation between Birmingham and Liverpool ; and in the following year an Act was obtained for carrying into exceution the scheme devised by him for this

[^24]purpose. "The Birmingham and Liverpool Junction canal " (as the line was named) leaves the Staffordshire and Worcestershire canal at Autherley, near Wolverhampton, and joins the Ellesmere and Chester canal near Nintwich. The system included also a branch from this line at Norbury to the Shrewsbury canal in the township, of Wappenshall. A line was also laid out from Barbridge, on the Ellesmere and Chester canal, to Middlewich, on the Trent and Mersey narigation. Docks, warehonses, etc., were also to be constructed at Ellesmere Port, where the former canal joins the river Mersey. Mr. Provis was actively employed in the preparation of all these plans, in promoting the passing of the Act, in the preparation of the designs, drawings, and in setting out the lines for their formation. He was afterwards engaged in the exceution of the work, which occupied his attention for some years.

In addition to the employments before enumerated, Mr. Provis was from time to time professionally engaged in the improvement of roals in North and South Wales, Cheshire, Derbyshire, and Herefordshire; in laying out lines of mineral tramways and railroads, the improvement of river navigations, drainage works, and other engineering business.

After the death of Mr. Telford, in 1834, Mr. Provis took the house formerly occupied by that gentleman, which continued to be his London residence until the close of his professional life.

About this time he prepared plans for a bridge over Poole harhour, which was erected in the years 1835 and 1836. A swivel bridge was necessary to allow the passage of vessels, and this, in the original design, was placed near the end of the structure, where the ground was sound, and where foundations for abutments of masonry would not have involved a great cost. In consequence of opposition in Parliament, the opening was removed to the centre of the structure, where the depth of water, and unsoundness of the ground, would have greatly increased the expense of the proposed piers of masonry, and a timber structure was therefore substituted for one of masonry with cast-iron arches.

During the passage through Parliament of the Act for the construction of the South Eastern railway, in the Session of $1836, \mathrm{Mr}$. Provis assisted in framing the estimates. He strongly represented to the directors the expediency of altering portions of the line so as to give a more direct route between the termini ; and, although his advice was not taken, the soundness of his judgment has been confirmed by what has since taken place.

Towards the end of the same Session, Mr. Provis was appointed Engineer to a company which had adopted a project for a railway
to Brighton, branching from the then authorized Sonth Eastern line. The length to be formed was short and inexpensive, compared witl others at that time lefore Parliament, and Mr. Provis was enabled to give such evidence in its farour as materially to assist in throwing out a line which had made much progress, and for which the promoters appeared likely to succeed in ohtaining Parliamentary powers. After a thorough examination of the district in the following summer, he made several amendments on the former line (which formed part of the original South Eastern scheme, and had been lad ont previous to his connection with the company), and he added a branch passing the town of Lewes to the harbour of Newhaven. In the line selected by Mr. Provis, the stations for the several towns, but most especially that of Brighton, were placed on more convenient levels than those which have since been adopited. Several competing lines were before Parliament in the following Session of 1837 ; and in a protracted contest a connpromise was entered into, by which portions of the lines laid ont by Mr. Provis and by Sir John Rennie were sanctioned; and in the following Session the arrangement was confirmed. Soon after this compromise, Mr. Provis's connection with the railway schemes to Brighton eeased. During the year 1836 he was also employed in laying ont a hranch railway from the Sonth Eastern line near 'Tunbridge to Maidstone, which scheme was, however, defrered for a future Session. In the same year he was likewise engaged in a project for completing the railway commmication hetween Etinburgh and Glasgow, by an extension of the Glasgow and Garnkirk railway to a junction with the Union eanal near to Falkirk, and the conversion of that canal into a railway.

Mr. Provis's attention had lieen directed for some time to the improvement of the canal communication between Birmingham and Manchester. With this riew, plans were prepared hy him, and notices given for an intended application to Parliament in 1838, for a more direct line from the Trent and Mersey eanal near Middlewich to the Duke of Bridgewater's canal at 'I'imperly, near Altrincham. The scheme was strongly opposed by existing eompanies; and as canal projects were not favourably receivel by the public at that time, the proposed eanal was not earried further than preparing and lodging the doemments for proceeding with an application to Parliament.

In the great storm of January, 1839, the roadway of the Menai bridge suffered much injury. Its repair and improvement were put into the hands of Mr. Provis. ${ }^{1}$

[^25]In $18: 39 \mathrm{Mr}$. Provis mulertook the exceution of extensive work at Ellesmere l'ort, where the Ellesmere and Chester canal joins the tileway of the river Mersey. These works were, in fact, the completion of the original design mate out and partially execnted by him years before for Mr. Telford. They are admirably alaptel for the large trmshipments which are there effected between the Mersey and the canal.

In 1845 the proprietors of the Ellesmere and Chester canal, and the Liverpool and Birmingham Junction canal (under the title of the Shropshire (nion Railways and Canal Company), entrusted Mr. Provis with the preparation of a scheme for the conversion of such parts of their canals as were suitable into railways; together with the laying out of such supplementary lines as semed necessary for furmishing the district with a complete system of railway commmieation. Ifis intimate knowledge of the canals, and of the adjoining country, eminently qualified him for this task. Accordingly, plans were prepared by him for several lines for which Acts of Parliament were oltained in the Session of 1846. In consequence, however, of the monctary erisis which shortly afterwards oceurred, the execution of the work was delayed, and eventually an arrangement was entered into with the London and North Western Railway Company, which was subsequently confirmed ly Aet of Parliament, under which the proposed conversion of the canals was abandoned, and a guarantee was given to the canal companies, scouring to them dividends of one half those paid by the London and North Western lailway Company. To this husiness Mr. Provis gave his unremitting attention for a long period: and the consequence of the anxicty and overwork was a sudden and severe illness, the effects of which induced him to decline any new professional engagements.

Having, however, formerly been consulted by the liiver Dee ('ompany, as to the improvement of their navigation, he again became their adviser during their protracted disputes with parties who were interested in the navigation of that river, as to the correctness of the standard by which the Company measured the depth of the water they were bound to maintain under their Act. Aiter several inquirics conducted by the Admiralty, the matter was at length settled by an Act of Parliament in 1851, muder which an adjustment of the standard was agreed upon. With this contest Mr. Provis closed his professional engagements.

Mr. l'rovis, heing chiefly agaged in camping ont designs amt imporements in rouls, bridges, and ranals, his comection with this elass of engincering subjects led to his being frepuently em-
ployed as an opponent to railway projects in the early stage of those undertakings. This eircumstance probably accounts for the small amount of railway work on whieh he was employed.

During the latter years of his life he spent most of his time on his estate-The Grange, near Ellesmere, which he greatly improved; and so long as his strength was sufficient, he took great pleasure in geological rambles, for he was a good walker, in the course of which he made a large and fine collection of fossils.

By his will he bequeathed a sum of $£ 500$ to the Benevolent Fund of the Institution, of which he had been a Member since the 6 th of April, 1819. He died on the 29th of September, 1870, at The Grange, in his seventy-ninth year; and on the 5th of the following month he was buried in Kensal Green Cemetery.

Mr. CHARLES SANDERSON was born in Sheffield on the 21st of July, 1824. He was the third son of Mr. Henry Sanderson, Engineering Surveyor to Lord Fitzwilliam. The father was a man of remarkable mental capacity ; and that he also possessed considerable professional ability is incidentally evidenced by a letter in which Lord Fitzwilliam recommends the son to the notice of one of the Commissioners for the Metropolitan Drainage. Mr. C. Sanderson had prepared a seheme for the drainage of London; and Lord Fitzwilliam writes:-"If the author of it has inherited the abilities of his father, who was in my employ and died the beginning of this year (1849), I am sure that anything he suggests will, at the least, be worthy of consideration." But the fortunes of the family were variable, and at the early age of sixteen Charles Sanderson left home to push his own way in the world.

He first found employment in the office of Mr. Fuller, of Reading, and subsequently with Mr. Moses Dodd, of the same town. In the latter appointment he, it is believed, projected, and certainly executed, a map of the country 10 miles round Reading. But as this was drawing to a elose, in the year 1844, engineering work was offered him on the Great Western railway. To that system, aecordingly, he attached himself, and for some years worked, in connection with Mr. Bertram, M. Inst. C.E., under the direction of the late Mr. Brumel, V.P. Inst. C.E., in every department of engineering construction. Several lines were selected and laid out by him in various parts of the comtry; and in the formation of various Great Western branches and extensions, more partieularly the Berks and Hants, the Oxford and Rugby, and the Birmingham and Oxford, every practical detail passed through his hands and
was exceuted to the satisfaction of his chiefs. Mr. Brunel testified to the promptitude, accuracy, and neatness of lis work, and Mr. Bertram spoko of the great energy, intelligence, and efficiency in everything committed to his care.

It was while connected in this way with the Great Western railway that Mr. Sanderson was elected an Associate of the Institution, on the 6th of Becember, 1853. He was transferred to the class of Members on the 9th of April, 1867; and to the day of his death he took great interest in its proceedings.

The time, however, came when Mr. Sanderson felt it important to seek to make an independent position for himself in the engineering world. He had never been attached to the regular staff of the Great Western railway, but simply had a large amount of work, in connection with that company, put into his hands, with other general engincering business, such as the drainage of towns, \&c.,-and he foresaw, that in the then position of engineering matters, and especially in the then position of the Great Western Company, this work might fail him. Accordingly, in the year 1857, he became concerned in the promotion of the Stratford-on-Avon railway, a short branch connecting the lirthplace of the immortal dramatist with the Great Western railway at Hatton. After many delays and the surmounting of mumerous olstacles, that line was completed under his direction, and opened for traffic. For this work he received the highest commendation from Colonel Yolland (the Government Inspector), a voluntary testimonial from Sir Robert Hamilton, of the most generous character, and an official testimonial from the Directors, couched in the handsomest terms.

Now it happened that, in the earlier part of his engincering career, Mr. Sanderson had occasion to refer to the late Mr. Rovert Stephenson on some matter of business; and Mr. Stephenson, who had that consideration for younger men in the profession which was such a noble feature in his character, had evidently been farourably impressed; for in the year 1858 Mr. Sanderson received a note intimating that Mr. Stephenson and Mr. Berkley had jointly recommended him "as a fit person to fill an important engineering appointment in India," and fixing the time for an interview. Mr. Sanderson, however, was already committed to the Stratford project and very solicitous to complete it; and the negotiations accordingly, for the time, fell through. But in 1860 , when the Stratford railway was opened, an offer was made to him of the Chief Engineership of the Bombay, Baroda and Central India railway, which he accepted in December of that year.

His persition on the line was defined by the most explicit " Instructions" from sir Charles Wool. But diffenlties had alrealy arisen in comection with the staff, and a short time sufficed to show that the task he had undertaken was a lopeless one; aml in the earlier part of 1862 he resigned the appointment. In March of that year he retmmed to England to lay the state of things on the railway lofore the Directors, who voted him a certain sum of money in consideration of the early termination of his arrangements with them. It was a great satisfaction to Mr. Sanderson, in comection with that unfortmate lmsiness, that almost the entire body of the staff joined spontanconsly in a rote of entire confidence in him as their chicf, and forwarded the same to Cobomel French, the Chairman of the Board of Directors, on his arrival in India.

In the year 1862 the so-called Cotton Famine was at its height, and mannfacturers were casting ahont in every direction for sulbstitutes for the precions fibre; and one eminent firm in the North of England was especially anxions to try the growth of jute in a congenial clime. Mr. Simherson was strongly persuaded that it comld le grown in the region of the Neipherry Hills; and, heing ly this time much attached to Indian life, mudertook to conduct the experiment there. Either his new occupation, however, or the climate of the liills did not suit his health; or a hankering after his old professional life depressel him, for he was compelled, under medical orders, to leave Coonoor; and, an appointment on the Aadras railway heing offered him, he aceepted it, and was once more in his right element. Afier fulfilling the duties of this position for a short time, the contractor of the north-castern portion of the line, intending to return to England, made handsome proposals to Mr. Sanderson to become his chief agent in his absence. This position he occupied for some months, when circumstances arising that prevented the return to England of the gentleman whose representative he was to be, he resigned the now mancesssary office, receiving a liberal acknowledgment from his employer for so doing.

After leing engaged for brief periods on various other works, Mr. Sanderson, finally, in April, 1868, received, from Mr. Berkley and Mr. linshton, an alpointment as liesident Engineer on the Great Imlian l'eninsula railway. In the service of that company he contimed till his death, which oceurred on the 20th danary, 1870, at the honse of his Friem, Mr. IEmry Conder, Traftic Manager G. I. P. railway, Bombay. He hat never pared himselfat work. Possessing as he lelieved a rolnst constitution, and being passionately devoted
to his profession, he allowed himself altogether insulficient resi and insufficient recreation. He had, moreover, a highly semsitive and scrupnons constitution of mind which took everything to heart, and made things matters of conscienee which many are able to regard as triffes. And these thing's eo-nerating with an Indian climate had broken him down in what might otherwise have leen his early manhook. IIe reerjed dming his lirief illness the most devoted attention from a large cirele of friends; who also immediately upon his decease set on foot a sulbeription to erect a monnment to his memory ; members of lis old staff, on the Bombay ame Baroda railway, leading the way with their contributions. In private life-a man of the most refined tastes, of the simplest halhits, of a most amiable disposition-he was beloved by all who knew him.

Often carcless of his own personal interests, in professional matters his conscientionsness and cantion were extreme. 'The intorests of his employers he felt to be a solemn trust that he was lommd religionsly to discharge. Nothing that conld be saved would he allow to be expended; nothing that could be suggested to give efficiency to the undertaking would he at any time withhold from them ; no departure from the terms of contract would he ever comntenance. It is also quite certain that not a single farthing of indirect emolnment ever passed into his hands. This severe integrity sometimes caused him to be misunderstood, as was to be expeeted, by those with whom he had to deal; and oceasionally made him enemies for the time; but it won him the respect of all upright men; and his ummistakable generosity ant mselfishness gencrally converted even his temporary adversaries into ultimate admirers and friends. He lived and died in the fear of (iod, having nobly done his duty in that state of life unto which it han pleased God to call him ; and those who were the mosi nearly related to him cherish his memory with reverent affection.

Mr. WILLIAM WEAVER was born at Beckington, in Somersetshire, in May, 1828; and was the youngest son of Mr. Menry Weater, of that place, who died in 1829 ; and grandson of the liev. Richard Weaver, sole curate of Chippenham. Having been for several years a pupil of Mr. J. Wilson, of Chippenham, he, at the age of fifteen, entered the office of his eldest brother, Mr. Menry Weaver, architect and surveyor, then practising at Chiphenlam and Sonthampton. In the latter jart of the year $18 t 6$ he obtained an appointment in Mr. Brmel's office at Bath, under the immediate
direction of Mr. R. J. Ward, M. Tnst. C.E., who was engaged on the Wilts, Somerset, and Weymouth railway. He next joined the office of Messrs. Fuller and Gyngell, architects, of Bristol ; and subsequently embarked, in conjunction with a Mr. Protheroe, in some coal-works at Lidney, Gloucester, which proved unsuccessful.

In July, 1850, he set sail for Sydney, New South Wales; where, by the aid of his uncle, the Rev. G. E. W. Turner, Colonial Chaplain, he oltained the appointment of Clerk of the Works in the Colonial Architect's office; and in $185 t$ was elected Colonial Architect for New Sonth Wales, in recognition of a clever plan for a lighthouse on Gabo Island, being appointed over the heads of several senior officers on account of superior ability. He had charge of the roads and bridges of New South Wales at this time; and besides the Gabo Island lighthouse, he constructed the Government printing-office, Sydney, and several timber bridges, at Bathurst, Maitland, and other places. On a change of ministry he resigned his office, on account of interference on the part of certain members of Parliament with the officers under him. He then commencel private practice as an Architect and Engineer, in partucrship with Mr. W. E. Kemp; and in the year 1863 was appointed to superintend the construction of a light railway from the Great Western railway at Richmond to Windsor. During this period he constructed the Oriental Bank, School of Arts, and several other public huildings at Sydney and elsewhere in Now South Wales.

In April, 1864, Mr. Weaver accepted the appointment of Engineer-in-Chief to the province of Auckland, New Zealand, which province hat just effected a loan for $£ 500,000$ for carrying out public works. In the following month he made a lengthy report upon the proposed Auckland and Drury railway, in which he pointed out the insufficiency of the available capital for completing the extent of work proposed, and recommended the postponement of the Auckland section of the line, with its heavy tumel works; but his alvice was not taken, the contracts were let, and the entire capital was expended without the completion of a mile of the railway; and when, in November, 1866, the line was put under his sole charge, he was mable to go on with it for lack of funds. Meanwhile, in August, 1864, he was requested to report on a scheme for supplying Auckland with water from the Waitakeri ranges. This he did in $\Lambda_{p r i l} 1865$, but the estimated eost, $£ 82,000$, or, onnitting the filter-beds, $\mathfrak{f} 67,000$, being far greater than had been anticipated, the works were not proceeded with. In the same fear, however, he secured for Auckland, from the Dumain at

Parnell, a suply giving a daily delivery of 40,000 gallons, for a section of the city, at a cost to the province of almont $\mathfrak{E t , 0 0 0}$. In November, 1864, he submitted a report and plans for the improvement of Anckland harlour, and for a wharf at Onchmoga, on the west coast. These were carried ont at a total cost of £57,500. In the same year he also furnished a design for a timber hridge over the Tamaki river. This structure was 576 feet long, with a roadway 21 feet hroad; it had an iron swivel bridge at one extremity, resting on a stone abntment, and was carried ont at a cost of $£ 17,000$. In 1866 Mr . Weaver furnished a detailed estimate, with plans, for a canal which had been proposed for connecting the head waters of the Auckland and Kaipara harbours, and estimatel the cost at $£ 60,000$, recommending the aloption of a line of railway insteal, when fumds were available.

In 1867 he took over the telegraphs from the military anthorities on lehalf of the province, and organizel a civilian staff of operators for its future conduct. 'The smiken coal luulk 'Marion' was also blown up by gmopowder, in the Anckland harbour, under his directions. In addition to these more prominent works, Mr. Weaver had charge of all the roads and bridges in the province; and with a very small staff of officers, viz., himself, an AssistantEngineer, two inspectors, and two clerks, works were carricel ont during the four years 1864-67 to the value of $£ 230,000$, at a cost to the province for supervision of three per cent. only. In June, 1867, in conserfuence of the financial difficulties of the province, his department was broken up, but his services were retained at a reduced salary mutil the end of the year, and he was allowed private practice. Mieanwhile, he was mate tistrict manager of the Colonial Telegraph Department, and became agent to the Royal Insmance Company's branch at Auckland. Later in the year, he was elected to the l'rovincial Comencil, as member for part of Aucklaud, lut resigned his seat on accepting the appointment of 'Telegraph Engineer to the General Government at Wellington, in February, 1868. 'This he held for but a very short time, and after a few months left for Australia. He died at Geelong, in Victoria, rather suddenly, from effusion of hood on the brain, and in indifferent circumstances, in December, 1868, leaving a widow and family behind him.

Mr. Weaver was elected an Associate of the Institution on the 21st of Jannary, 1851, and was transferred to the class of Members on the th of Felmuary, 1868. He possessed considerable talents, quick pereeption, and ready adaptation to circumstances, with no mean share of artistic skill. He was most kind-hearted and liberal,
but a bad financier, and it was said of him that the worst friend he had was himself.

Mr. NICHOLAS WOOD ${ }^{1}$ was horn at Sommires, in the parish of Ryton, on the sonth side of the river Tyne, on the 24th of April, 1795. Elneatel at the village school at Crawcrook, by Mr. Craigie, who hat the reputation-a rare one at the time-of turning out lads dever at figures and well-grounded in the most useful branches of an ordinary English education, young Nicholas Wood proved himself to le a ready scholar, and soon did erelit to his master. In April, 1811, Sir Thomas Liddell (afterwards Lord Ravensworth), having taken a fancy to the lad, sent him to Killingworth colliery to leam the business of a viewer. Here it was that Nicholas Woor made the acquaintance of George Stephenson, whose skill and ingennity had already led to his being adranced from the position of a brakesman to that of an engineer, and, in 1812, to that of colliery engine-wright at the Killingworth High Pit; whose friend and confidant Mr. Wood immediately became, assisting in the construction of the "Geordie" safety lamp, and, it is said, being one of those who witnessed the testing of the lamp at a "blower" in Killingworth colliery. On the 15th of November, $1815, \mathrm{Mr}$. Wood explained the merits and details of the invention before the members of the Neweastle Literary and l'hilosophical socicty, and he took a prominent part in the controversy with the advocates of Sir Homphry Davy's lamp. Mr. Wood also assistel in the early experiments in comection with the locomotive engine, maintained in the columns of the "Neweastle Magazine" for 1822 that it could be profitally employed as a tractive power, and in 1823 accompanied Stephenson to Darlington, when it was determined to proced with the Stocktom and Darlington railway. In 1825 appeared his celebrated "Treatise on Railroads," which has gone through several editions, and which materially assisted in the early development of the railway system. In the same year, as well as in subserpent sessions, mintil the Act was obtained, he gave evidence hefore Committees of b oth Homses of Parliament on the Liverpool and Manchester railroad lill. liy this time Mr. Wood had acquired considerable fame as an engincer, but he retained his preference for the mining interest, and had already

[^26]cutered into comliery speculations on his own acomat, amb was rapidly extemting his intluene amd pesition in the coal trate. When the British Association for the Alvancement of sciance met at Neweastle in 18:38 he read an claborate essay on the getology of Northmmerland before the Geological section, in which he enteavomed to show the probable identity of the red sandstone furmations of the valley of the 'Treed and those of the ''muberland plains. In $184 t$ he removed from Killingworth to Hetton, and assmmel the management of the collieries lelonging to the Hetton Coal Company: in which he was a partuer. He took a prominent and active part in the investigations which ultimately led to the Mincs Inspection liill, which was passed in 1851; and in the organization of a society, proposed to be called "The North of England society for the prevention of Accidents, and for other purposes comected with Mining," which wats estallished at Newcastle on the 3rd of July, 1852. Almost immediately afterwards the name was changel to that of "The North of England Institute of Mining Engineers." Mr. Wood was elected the first President, and on the third of September in that year he delivered an inangumal address in which he defined the olyjects of the Tustitution to be"Finst, by a mion or concentration of professional experience, to endeavour, if possible, to devise measures which may avert or alleviate those dreadful calamities which have so frequently produced such destruction to life and property, and which are always attended with such misery and distress to the mining population of the district; and, secondly, to establish a literary institution more particulanly applicable to the theory, art, and practice of mining than the institutes in the locality present, or which are within the reach of the profession in this locality." He retained the office of President to the day of his death, and he devoted all his influence, talent, and much of his time to promote its success, being a frequent contrilutor of essays on mining subjects. In 1855 the itea of a mining college for the cultivation. improvement, and teaching of that science, especially coal mining, was mooted in the Nortl of England, and Mr. Wool, in conjunction with the late Mr. T. J. Taylor, took a prominent part in promoting the undertaking; lut notwithstanding the support of the late Algernon, Duke of Northumberland, the project fell through; nor was a subsequent attempt, made under the same ausprices, to induce the University of Durham to add mining science to their course of studies more successful. Mr. Wood appeared for the last time as an author on the occasion of the British Association for the Advancement of Science visiting Neweastle for the secom
time in 1863, when in conjunction with Mr. T. J. Taylor, Mr. I. L. Bell, Dr. Richardson, and others, he presented a Paper on the varions industrial pursuits of the northern comaties. Soon after his health failed and prevented him taking an active part in mosiness, and he died in London, whither he had resorted for medical advice, on the 19th of December, 1865. Mr. Wood was of commanding height, portly form, and had a ruddy, good-hmmoured comenance, which bore no traces of the hard work he got through. He was an old Member of the Institution, having been electerl on the 12th of May, 1829. Mr. Wood married Miss Lindsay of Alnwick, whom he survived some years, and by whom he left four sons and three danghters.
Mi. Wtlliall Thomas BLaCKLOCK, son of John Blacklock, calico-printer, of Kersal, was born in July, 1815. At the age of fourteen he was apprenticed to the late Mr. George Bradshaw, of Manchester, engraver and letterpress-printer, to learn the art of engraving. Before he had completed his apprenticeship he was offered a share in the business by Mr. Bradshaw, and from that period, about forty years ago, the well-known firm of Bradshaw and Blacklock dates its existence, Taking advantage of the opportunity offered by the introduction and extension of the railway system, they laid themselves out for and secured so much of the work required by the railway companies as to become popularly known as the railway printers. The merits of their "Railway Guide and Shareholder's Mannal" are so well known to the members of the engincering profession, that no mention need here be made of the labour and exactitude with which it has always been prepared. In 1850 Mr . Blacklock was elected a director of the East Lancashire Railway Company, and in 1859, on the amalgamation of that company with the Lancashire and Yorkshire, a director of the latter, at the board of which he held a seat until his death. Upon assuming the responsibilities connected with an efficient discharge of his duties as a railway director, he retired from the firm in which he was the active partner, but soon after, finding that his energy demanded further occupation, he entered into partnership with Mr. George M‘Corquodale, of Newton-le-Willows. He was also a county magistrate, a borongh magistrate, a commissioner of taxes, treasurer to the Manchester and Salford branch of the British and Foreign Bible Society, treasurer to the Religions Tract Society, trustee of several churches, savings' banks, \&e., and energetically exerted himself in the advancement
of the education and social condition of the working classes. His, death was very sudden, he heing seized with apoplexy on the occasion of his youngest daughter's marriage, on the 29th of June, 1870. Mr. Blacklock was twice married, on the second oecasion to Miss Lord, of Farnworth, by whom he left two sons and two daughters. He was elected an Associate of the Institution on the 7 th of April, 1868.

Mr. LIDDLE ELLIOl' was 'hom on the 16th of Octoher, 1807, at 'Trentham in Staffordshire. He was brought up as a land surveyor and articled to a Mr. Slater, who had been sent ly Mr. Telford to improve the turnpike roads of North Stafforlshire. On the death of that gentleman, Mr. Elliot succeeded lim in this ocenlation and carried ont many new roads lesides. He was also engaged ly the late Mr. Sneyd of Keele ILall in improving the roads on his estates; and gave assistance to several engineers in selecting and surveying lines for railways in Staffordshire. Alout the year 1845 the attention of the leading mannfacturers in the Staffordshire potteries was drawn to the very inadequate supply of water, chiefly owing to mining operations draining the springs. Mr. Elliot was employed in conjunction with the late Mr. James Simpson, Past President Inst. C.E., to surver the country, and succeeded in finding an abuudant supply of pure spring water at Wall Grange, near Leck, on the estate of the Duke of Sutherland, whose confidence he largely enjoyed. A company was formed, Mr. Elliot was appointed engineer, and successfully carrich out the works for conveying the water a distance of 10 miles, to suplly a population of about a hundred thousand inhalitants; and the Staffordshire potteries now enjoy an excellent supply of spring water. He joined the Institution as an Associate on the Srd of December, 1850), and died on the 1st of March, 1869, at New-castle-under-Lyne, of which place he was mayor in 1846, greatly regretted by a large circle of friends, and leaving behind hin a mumerons family.

Mr. ALISTER FRASER was a descendant of an old Inverness-shire family, and was born at Culduthel IIouse, in that county, on the 6 th of September, 1829. He was educatel, first, at a private school at Elgin, then at the Inverness Royal Academy, and finally at King's College, Aherdeen. In the year 1846 he entered the office of Mr. J. Abernethy, M. Inst. C.E., who was then engaged in the construction of the Aberdeen harbour works, and on the
completion of his apprenticeship, in 1849, ohtained the appointment of Assistant-Engineer, muler Mr. Abernethy, to the Swansea docks. In November, 1853, he entered the office of Mr. Ahernethy in London, and in July of the following year he took charge of a section of the works of the Sonth-Eastern railway of switzerland for the contractor, Mr. Elward Piekering. He remained in Switzerland till Jannary. 1857, and in September of the same year he was appointed to the staff of the Martras railway, and took charge of a district containing some difficult and important works, amongst which the chicf one was a large bridge over the river Thoota. IHe left India on the expiration of his engagement, in July, 18t1, the Malras Railway Company at that time dechining to renew engagements, owing to a check in the influx of the requisite funts for carring on works.

In May, 1863, he was engaged by Messrs. William and John Pickering to accompany Mr. Samuel, M. Inst. C.E., the Engineer of the Nicaragna Conal Company, over the proposed line of navigation, with a view to alvising them in tentering for the exucution of the works. He completel this commission in september of that year. In May, 18:5, he was appointed hy Messis. Sinith, Knight, and Co., to explore the proposed line of rallway from Ismid, hy Angora, to Sivas, in Asia Minor. He made rough surveys and estimates of the section from Ismid to Angora, lant the project was abandoned, and he returned to England after an absence of four months. In September, 1866, he was appointed (hief ResidentEngineer of the Mexican railway-then the Imperial Mexican-of which Mr. Samnel was the Consulting Engineer. This appointment he held till the death of the Emperor Maximilian, in 1867, when he returned to England, passing throngh the [nited States and Canada. In Jannary, 1869, he resmmed his appeintment in Mexico, lut held it for a very short time, returning to England in ill health (on the 20th of funce, and on the same day in the following year he died at Edinlsurgh.

Mr. Fraser hat been an Associate of the Institution from the 1st of Decemiuer, 1863.

Mr. WILLIAM GAMMON, the son of Mr. Elwin Benjamin G:ammon, was lorn on the $29+$ of onvember, $19+1$. He was edneated at Hockley, Laleham, and l'eckhan; and in 1859 was
 having previonsly, for nine months, heen in husiness with his fither. On the expiration of his imbentures he was empleyed for
one year as an assistant-engineer on the South Western railway. At the age of twenty-one he entured into partnership with his father, who was engaged in the execntion of different railway and other contracts. such as luilding the locomotive and carriage shems for the South Western malway at Nine Elms. The firm also carried out extensive works at dillingham, for Govermment : and one of the contracts for the docks and sea-walls at that place was intrusted to them. He died on the 28 th of september, 1870, from the effects of rhemmatic ferer, having been elected an Associate of the Institution on the 3rd of March, 1868.

Mafor-Gexeral Sir Join IUthLIAM GORDON, K.C.B., was the elfest son of Colonel Thomas Gordon, of Harperfield, in Lanarkshire. 'This estate came to him while he was still young, at his father's death; and through his mother, Miss Nisbet, of Carfin, in the same county, niece of Andrew, last Earl of Hyndford, he not long after inherited Carfin and Maudslie Castle, formerly part of the Hyndford property. He was therefore born to such good prospects as would have indisposed most young men to steady exertion ; but of his own choice he entered a hard-working profession, to labour thenceforward as thongh dependent wholly on it. His ample means he throughout life treated as a steward for others rather than an owner. From a private school at Bexley, in Kent, he passed the entrance examination-not very difficult in those days of nomination-into Woolwich Academy. During his cadet life he was remarkable chiefly for his physical powers, his carelessness of danger, and his steady application to work. To the latter almost entirely-for young Gordon was not gifted by nature with quickness of parts-he owed the prize he worked for. a commission in the Royal Engineers. 'The times were those of profound peace. In no part of the army did mere soldiership promise any special advantage, and perhaps least of all in the Engineers, whose war duties were almost ignored. Gordon passed from his first home station to North America, undistinguished from other subalterns; for the simple habits of life which were to him as a nature, prevented his being even known generally to be more wealthy than his fellows. He left Malifax after a long term of duty there, much regretted by a few friends who had discovered the sterling worth which was concealed by a reserved exterior, and learnt something of the kind deeds which he had already begm to practise the doing of in secret. But to the many he was known chiefly by his great height and by the endurance and
[1870-71. N.s.]
activity which he displayed in the moose-hunts for which Nova Scotit was then noted, or for his arowed adherence to earnest, and to those not conversant with Seotch Presbyterianism, what scemed gloomy religious convictions. l'romotion was of course in those days very slow in a seniority corps, and Gordon looked a middle-aged man when, in 1845 , he was promoted, after sixteen years' service, to the rank of eaptain, and sent to Chatham to take charge of the 1st Company of Engineers, or Sappers and Miners as they were then called.

A neglected cold at this time brought out a predisposition to chest disease, and to those about him seemed to threaten his life; but happily his Company was under orders for Bermula, and the change to that mild climate soon restored him to his natural vigour and the out-of-duor habits in which he always delighted, though never allowing them to interfere with the duties of the desk. During the next five years he was constantly employed on the large works which were to create a Gibraltar of the West out of the sandhills that ages have solidified into Bermuda stone. His spare time, of which he allowed himself but little, was devoted wholly to manly exercises and to the good works which formed part of his daily life. Among these was a night-school kept by himself for the instruction of his men, and which he never allowed any engagement to interfere with. Frugal and temperate in his own habits, his ready hospitality was known to every passer-by who visited his station. Sparing in expenditure on himself, his liberality towards the poor near him, or in eases made known from any distance, was exhaustless. He not only gave, as a matter of course, to those that asked, if they deserved it, but his delight was to send help to those who deserved it and had not asked. The venerable bishop of the diocese has lately revealed the fact that Gordon maintained the private charities which he began at Bermuda for many years after he had left the island, and that his name is still familiar there among those who have heard it hlessed by the aged and infirm whose special wants he had carefully ministered to. Meanwhile no case of distress or difficulty in his own corps, however far from him, but received instant attention when brought to his knowledge.

But it was not for his large-hearted charities that he became as well known at this time as for his marvellous physical powers and endurance. His theory was, that a soldier, to do his duty properly to his country, must keep his body in the lighest perfection of its powers. Acting stringently up to this idea, he lived constantly, except in his exceeding temperance of diet, in such a state of regular
training as few men evor reach even for a special purpose and a brief time. His work never slackened anywhere in consequence of this. It was confessed that no one ever saw so much labour got out of large working parties of soldiers or of convicts as (iordon oltained, and that without a harsh word. No office detail, however petty, was below his attention. A favomite fancy of his was the preparing of working drawings, which he might well have left to his suloalterns but for his passion for labour ; and after returning from a tun of 12 miles, done within two hours, he would go straight to his high desk, without a moment's intermission, and fall to work with a steady hand in the standing attitude which ho always used.

He returned to England alout the time of the Great Exhibition of 1851, which was designed to usher in an era of universal peace. His reputation for strength and fearlessness and honesty of purpose went before him ; but some of his comrades laughed at his theory of being ready for the active service which in their time could never come. Two years afterwards the nation was rushing into the Crimean war, and no department which had the choice would have overlooked such a born warrior and practical engineer as the subject of this memoir. Gordon was at once put under orders for the Crimea, being then a captain of some standing, and fifth in seniority of the Royal Engineers seleeted for servico in the East. When the siege of Sebastopol was a month old, casualties had made of the captain the Commanding Royal Engineer of the army, and honours and rank were coming thick upon him. Gorlon carried on his duties under the superintendence of Sir John Burgoyne, who had come out as adviser to Lord Raglan ; and he acted afterwards as second to Sir Harry Jones, when Government sent that officer to take Sir John's place. To write the story of the duties of Gordon of Gordon's battery, and how they were performed, would be to write the history of the sicge. His long-practised endurance now enabled him to do what no other man could in the way of personal attendance to the works in progress; and during one bombardment it is reported of him that he never slept nor sat down to take a meal for three days and three nights. His valour was not so much mere courage as a perfect indifference to danger, which became a proverb in the lines. "How do you manage to keep so cool under this fire ?" said to him a regimental colonel noted for his gallantry, and beloved by his battalion, though his language was notoriously violent and coarse under excitement. "Colonel Y.," was the answer, given with much deliberation, "I am so cool because I read my Bible ; you don't read yours." His gallant
regiment buried Colonel Y. three months later, after the first assault on the ledan, but it is said that no man in it during that three months had heard an oath pass his lips. This is but one instance given from direct witness of a hundred that might be offered of the marrellons influence Gordon's pure life had on others. A severe woum received in the great March sortie, and much neglected afterwards, hoke down his health just before the siege closed, and he was absent when the stronghold was surreudered, which, more than any other single man, he had contributed to make our prize. In the following year, leing still regimentally a captain of Engineers, but by hrevet a full colonel and A.D.C. to the Queen, he was called suddenly from a holiday in Scotland to become practically the military head of his corps as Deputy Adjutant-General. " It is a splendid appointment," he said, "but one I would rather not have, for the principal duty lies in refusing different men different things they want." With this somewhat morlid view r,f what discipline should be, it is not surprising that he was not as popular at the Horse Guards as his friemds conld have desired to see him; but his translation to the important charge of the great fortifications of Portsmonth, the largest military Engineer's command then in the world, which happened not long after, gave his zeal and energy and his natural kindliness better scope. His Sunday-evening entertaimments, open to all his command weekly without special invitation, drew his young officers together once more as they had another generation of young officers fifteen years before, the survivors of whom warmly own the valuable influence these genial meetings had on them. With the design of the works of the Portsmouth district Sir W. Gordon (who received his knighthood while employed there) was not concerned. His duty was merely executive, and as an executive officer it may be fairly deelared that he has never been surpassed. His command there was broken by a temporary eall to Canala at the time of the 'Trent' affair; but the alarm over, he returned once more to the charge of the great works round Spithead, of the execution of which his old opponent, Todleben, after being escorted by him round them, publicly expressed his unalloyed admiration.

When Deputy Adjutant-General of Engineers he had become an Associate of the Institution, on the 3rd of Felruary, 1857, and was a constant attendant at its meetings; but with his usual extremely retired manner shrank from taking any more aetive part than listening. In January, 1870, however, he rose to express his thanks for the mention made of the Royal Engineers in the President's Address, which pointedly alluded to himself, and he
did so in a speech full of manly feeling and of sensible acknowledgment of what the education of the Royal Engineers owes to the eivil branch of the profession, "their intercouse with which, he hoped, might, on all occasions, be as close and friendly as heretofore." I He had then not long been appointed by popular wish, as it were, no less than by royal choice, to the revived office of Inspretor-Gencral of Fortifications, which his fricuds thought to see him fill with the same dignity with which he spoke that night. Alas! disease, produced by the iritation of his severe Crimean wounds, acting on the nervous system, was even then preying on his brain. Traces of aberration of mind had been observed some time before by watchful and anxions friends, and a few weeks later he passed from amoug us by the saddest ond a gallant soldier could know. In strength a giant, in modesty a maiden, in humility a child, so pure and noble a life never came to a more painful close, when, his mind losing its self-control, he suddenly laid violent hands on his own life, and died on the 8th of February, 1870, being at the time sixty-five years of age.

Left by his parents at the age of twenty-one the care of a younger brother and si.ster, he had discharged his difficult duties as though he had been the most loving and thoughtful of fathers. Of his practical benevolence let this one trait suffice. When defranded by an agent he had implicitly trusted of several thousand pounds, he insisted on charging his own want of supervision as the chief fault in the temptation it had offered, and refused therefure to prosecute the offender. More than this, when he found the wretched man afterwards starving (who had robbed his employer only to fall into deserved penury), he ministered to the needs of the only living being who had ever done him serious harm. The sudden loss of such a hero may well have cast a gloom over the service which was prond of him, even had the circumstances been less painful; while to his personal friends, their bereavement would have been bitter in any case.

Mr. HENRY HAKEIVILL was born in Brook Street, Grosvenor Square, on the 11th of April, 1842, and was descended from a family of respectability in the West of England. He received his education at Goodenough Honse, Ealing, and showing at an early age a decided turn for mechanical pursuits, he was allowed to follow the bent of his inclination in choosing the profession of a Civil Engineer.

[^27]At the age of sisteen he was articled to Mr. Thomas Page, M. Inst. C.E., and was engaged on the works of Westminster bridge, after which he superintended the erection of a bridge at Brafferton, Yorkshire, designed by Mr. Page. From thence he went to Horsens, Demmark, in the employment of Messrs. Brassey and Betts, to assist in the construction of a railway between that place and Viele, which occupied his time for three years, and he was afterwards engaged on the line between Alborg and Randers till the completion of the works. He returned to England in November, 1869, where he remained until the following April, having in the mean time been elected an Associate of the Institution on the 1st of Fe bruary, 1870, when he accepted an engagement with Messrs. Waring Brothers to proceed to Thorda, in Hungary, to commence a line of railway. While thus engaged he was attacked with inflammation of the lungs, which threw him on a bed of sickness for six weeks. After much suffering he reached Lundon with difficulty, and in spite of the best medical skill he sank rapidly and died on the 9th of October, 1870, in the twenty-ninth year of his age, beloved and deeply regretted by a large circle of relations and friends.

Mr. CONRAD ABBEN HANSON, having been educated at a private school, commenced his professional career about 1837, under Mr. William Budden, secretary to Mr. Robert Stephenson, in his office on the London and Birmingham railway, and at Weedon; he then became secretary to Mr. G. W. Buck, at Manchester, on the Manchester and Birmingham railway. After that line was finishel, in 1843, he entered the service of Messrs. Bramah, Fox and Co. (subsequently Messrs. Fox, Henderson and Co.) at Smethwick, near Birmingham, aml soon became head of the estimating department. He remained with that firm till after the completion of the Exhibition of 1851, to the opening of which at the stipulated time his untiring encrgy and perseverance contributed.

After leaving Birmingham he was connected with l'rice's Patent Candle Company, and superintended much of the mechanical work executed on the premises. In 1858 Mr. Hanson became secretary to Rray's Traction Engine Company, and in 1860 he entered the service of Messrs. Waring Prothers as manager in the estimating department, where he had active occupation in practical matters, as well as in estimating, comectel with the Pernambneo railway, the North London Extension railway, St. l'ancras Railway Station, Inungarian railways, \&e. Mr. Ilanson was elected an Associate of the Institution on the 4th of February, 1862. He died on the

30th of December, 18ti9, aged fifty-two, greatly respected hy all who kaew him, and learing a widow and six children.

Mr. JoHN WILLLAM IUEINKE was horn in Lomidon in 1816. His father, who was of lolish extraction, came to England after the conquest of loland, aml commenced business as a coppersmith, in which he was assisted ly his som as soon as he was old enough to enter business. About 1845 , in conjunction with his brother and father, he turned his attention to sulmarine engineering. Diving apparatus was at that time little muderstood, and not much used, lat he saw that, properly applied, it would prove a valuable addition to an engineer's plant. The apparatus then in vogne was of very crude construction, and aceidents were of frequent oceurrence, so that there was a natural prejudice against the use of these machines, which had to be overcome. By the introduction of a valve, and other improvements in the helmet, dress, and airpmop, the diver was enabled to work under water with perfect ease and safety. It was, however, some time before he was able to command a sale for the apparatus; but by dint of great perseverance he established the lonsiness, and the apparatus obtained a first class prize medal at the International Exhibition of 1851.

In 1855 he made some trials with the apparatus at Paris, and again obtained a first class prize modal at the Exhilition. Here he had an interview with Prince Napoleon, who presiled at a trial competition between three English and two French living machines, when lieiuke's was manimonsly pronomnced the best, both by the juiges and by the competitors themselves, which led to a large lonsiness with France.
soon after the Crimean War was terminated, he went to St. Petershurg, to arrange with the Russian Government for the removal by divers of the vessels smik at the month of the Harbour of Sebastopol during hostilities. Mr. Heinke saw the Grand Duke Constantine on the sulject, and having made the necessary arrangements, the vessels were blown up, and all impediments to navigation removed.

In 1858 he went out for Lloyd's to the Zuyder Zee, off Terschelling, to report upon the wreck of the 'Latine' frigate, which was wrecked about seventy years ago, with between $£ 1,000,000$ and $£ 2,000,000$ in gold on hoarl. Here he very nearly lost his life, whilst out in a small boat during a storm. In his opinion the treasure was not recoverable, as although the top of the ribs of the vessel were just visible above the sand, the body was embedded in
a quieksand, which would have rendered it a matter of extreme difficulty to get at the hold, even had the diver been able to work uninterruptedly, which at the time was rendered impossible by the rough weather. On this report, the idea was abandoned; and a Dutch comprany, which was formed about the same time, with a similar olject, also gave it up. On returning to England, he continned the business of a submarine engineer-a branch of the profession that was daily growing in importance. One curious instance of the use of the diving apparatus was given by him some time after this. When the famous watch robbery took place at the Messrs. Walker's, in Cornhill, a woman, who was known to be coneerned in the burglary, being hotly pursued by the police, threw a number of watches over Blackfriars loridge into the Thames. The police consulted Mr. Heinke as to the possibility of their recovers, and he sncceeded in obtaining ten of them. He also executed many other works and contracts by means of the diving apparatus, previously considered impossible.

Aloout the end of the year 1868, he was attacked by congestion of the liver, and never rallied, the disease being augmented by great mental anxiety.

One of his last works was the sinking of a brickwork cylinder at Battisfield colliery, near Chester; but the work did not go on satisfactorily, as he was prevented by ill-health from attending to it personally.

Mr. Heinke was elected an Associate of the Institution on the 2nd of December, 1856 ; having in the previous March contributed a Paper " On Improvements in Diving Dresses and other Apparatus for working under Water," ${ }^{1}$ for which he received a Council premium in books. Sulsequently, on one occasion, he spoke in reference to the same sulject, as carried out at the Dover breakwater. It was often said by him that snbmarine engineering was quite in its infancy. He diel on the 12th of Alril, 1870, aged fifty-four years, deeply regretted by all who knew him. He was much esteemed for his intogrity, kindness, and benerolence.

Mr. EDWARD HOOPER was born on the 18 th of November, 1822, at No. 1 South Place, Finsbury, where his father, Mr. John Hooper, was a prominent medical practitioner. His constitution was never robust, and he was subjected to no course of study beyond that of a classical education. This did not develop
to his friends an innate taste for mechanical pursuits of which he was himself sensible, and which gratified itself in such oceupations as drawing steam-engines and making mokels of ship's elaborately fimished and rigged. Consequently his introduction to busimess commenced in the comutry with a miller, who combined with this the timber and coal homsiness, and he was about nincteen years of age when he was allowed to cnter upon the carecr of his choice. He was then artieled for three years to the late Mr. Benjamin Culitt, M. Inst. ('.E., at that time loeal superintendent of the Brighton, C'roydon, and Dover raikway, and was chiefly employed in the mechanical department at the joint station, New Cross. He also took a prominent part for one in his then position in the experiment of the atmospheric railway from Croydon to Lomdon; subsequently he was engaged under other engineers in the making of the Jemappe and Louvain railway, on the Eastern Counties line, and on surveys in Wales and other places. Ho was thes engaged when the death of Mr. Culitt in January, 1848, and the railway panic about the same time, combined to unsettle him in the pursuit of railway engineering. His father died in the antumn of this year, and in the following year he paid a visit to America. On his return the removal of the duty on lricks caused him to give his attention to that manufacture. The result was his cstablishment of brick-works at Exbury, 17 miles from Southampton, and his residence in that town, he at the same time pursuing his profession as an architect. This business he worked successfully till 1866, when it was superseded by the occupation of the Portland cement works.

The disease of which he died on July 2nd, 1869, had been slowly developing itself for two or three years, but during that time the influence of his life and conversation was also gaining upon his fellow-townsmen and friends, and he died much respected and beloved. The most marked feature in his character was sulmission to the Divine will, which after a life of unusual trial shone out to its close.

Mr. Hooper was elected an Associate of the Institution on the 25 th of June, 1844; but, from living in the country, was unable to attend the meetings and take part in the discussions.

Mr. GEORGE HOUGHTON was born in London in the year 1841. He entered King's College in January, 1858, and remained in the Department of Applied Sciences mutil December, 1860, when he obtained an associateship, of the college. From an early period
he showed a decided predilection for mechanical and engineering pursuits. He was accorlingly articled to Mr. G. B. Bruce, M. Inst. C.E., and entered upon his professional duties with such ardum that before the expiration of his pmpilage he occupied the position of Assistant Engineer on the Tilsit-Insterburg railway, in East Mrmssia, where he was in charge of a length of 33 English miles, and sulbecpuently he beeame Resident Engineer on the same work for eighteen months. After this he was appointed Resident Engineer of a length of 46 miles of the Berlin-Gorlitzer railway, between Gorlitz and Spremberg, which appointment he held for a year and a half. He was elected an Associate of the Institution on the 5 th of Mareh, 1867. In the following year he went to Hungary and acted as Sceretary to the management, for the execution of the works of the Groswardein and East Hungarian railways, taking also as a portion of his work the control of the drawing office. In these capacities his general professional knowletge as well as his special experience in the construction of German railways was constantly exercised. In 1869 he was appointed first class Assistant Engineer on the Crreat Southern of India railway; but he had not been in India more than six months when he was attacked with cholera near Palamcottah, in the Madras Presidency, and after two days' illness died on the 24th of June, 1870.

Brevet Lieutenant-Colonel JUlifin St. JOHN HOVENDEN was born at Florence on the 24 th of June, 1831. He was educated privately for several years, and afterwards at Brighton College. He joined the East India Company's Military Seminary at Addiscombe in January, 1849; and obtained his commission in the Fngineers at the public examination in December, 1850, being . gazettel a lieutenant on the 9th of that month.

After the usual course of studies at the Royal Engineer Establishment at Chatham, Lientenant Hovenden proceeded to Bengal in the early part of 1853 . At that time the Burmese war was in progress, and he was detained in Calcutta in readiness for service with the army in Burmah, in case additional Engineer officers should be reduired, being in the meanwhile attached to the office of the Garrison Engincer of Fort William.

In November, 185:, Lientenant Hovenden was appointed an Assistant Engineer in the Public Works Department, and was posted to the Peshawur Division. He remained in this appointment until the outbreak of the Indian mutiny in May,

1857, when his services were required with the army. He was at first appointed Deputy Assistant (Quartermaster-General of the Peshawne Division, and took an active part in disarming the disaffected and mutinons mative regiments in garison there and in the neighomring forts; and he sthbequently joinel the besieging foree lefore Delhi as a Field Engineer. At the assault of Delhi on the 14th of September he was in charge of a ladder party and was severely womded. Colonel baird Smith, commanding the Engineer Brigade before 1)elhi, in his official report to Ceneral Sir A. Wilson says: "Lientemant Horemden (severely wombed) led the lahler party of the becond Division with the same gallantry and intelligence whieh thronghout the siege had made his services of so much value." Lientenant Itovenden was then employed with a regiment of Sikh pioneers, which he for some time commanden. He scred at the siege and capture of Lucknow (on which occasion he was again mentioned in despatehes), and he was with the Com-mander-in-Chief"s force in Rohilkund. In Angust, 1858, Lieutenant IIovenden was promoted to the rank of captain, and then immeliately received the brevet rank of major for his services before Delhi, \&c.

On the conclusion of active military operations, Major Hovenden rejoined the Iublic Works Department, and was posted to the Benares Division as Executive Engincer, and sulsequently on promotion he was transferred in a similar capacity to Gwalior, his pincipal duty in both places being the rapid erection of temporary barracks for European troops. In 1862 Major IIovenden was appointed Deputy Consulting Engineer and Assistant Sccretary to the Government of Bengal in the railway department, which appointment he held until May, 1867, when he visited England on leave of absence for six months. On his return to India in November, 1867, he was appointed Consulting Engineer and Joint Secretary to the Chief Commissioner of Oudh in the railway department, a new appointment formed when the Ouilh and Rohilkund Railway Company were about to commence operations in those provinces. The duties of the officers of the Govermment railway department in India consist in exereising the Government control and supervision over the operations of the several railway companies whose capital is gmaranteed ly the State. In March, 1868, Major Hovenden was appointer to officiate as Consulting Engineer and Joint Secretary to the Government of Bengal in the railway de-partment-the highest appointment in that branch of the public service in India. He held that appointment for nearly two years, and at the end of 1869 he left India on furlough to England,
having been promoted to the rank of Lieutenant-Colonel in 1868. Under medical advice he spent the winter and early spring of 1870 in Italy and the Sonth of France. He arrived in England on the 2nd of May, and died at Bath, of typhoid fever, on the 16th of the same month, at the carly age of thirty-nine, sincerely regretted by his brother officers, and, indeed, ly all who had known him, as he, in an eminent degree. obtained the esteem and affection of all with whom he was thrown in contact.

Lieutenant-Colonel Horenden was elected an Associate of the Institution of Civil Engineers on the 5 th of December, 1865.

Mr. JOHA MEESON PARSONS was the youngest son of Thomas Parsons, of Newport, Salop, where he was born on the 2 ith of October, 1798. He was educated first by the Rev. Richard Thurstfield, of Pattingham; secondly, by the Rev. Francis Blick, of Tamworth; and was for a short time in residence at the Cniversity of Oxford; but from too hard reading was seized with a violent inflammation of the exes, which olliged him to give up all study. He then settled in London, and after some time lecame a member of the Stock Exchange. He very early in his London career took an interest in railways, was elected an Associate of the Institution on the 5 th of Februarr. 1839, and on the 9th of February, 1843, became a director of the London and Prighton Company, of which he was elected chairman on the 19th of the following June. In this office he was sueceeded by Mr. Pascoe Grenfell on the 11th of April, 1844, and ceased to be director of the company on the 21st of August, 1848. He was also a director of the Shropshire Union railways from 1845 to 1849 . For many years he resided at 6 , Raymond Buildings, and spent much of his time in collecting pictures and works of art. He had amassed at the time of his death a valuable collection of pictures, principally of the German and Dutch schools, and of water-colour drawings by English artists. Haring left by his will a power of choice to the directors of the National Gallery, they selected three-one an oil painting, "Fishing Boats in a Breeze off the Coast," by J. M. W. Turner, R.A., and two paintings by P. I. Clays, of Brussels. Nearly a humdred oil pictures, and about fifty water-colour drawings were left ly him to the South Kensington Museum, where they are distinguished as "the l'arsons lequest," and a number of fine prints to the British Museum. Mr. Parsons married a daughter of Mr. John Mayhew, but was soon left a
widower with an only danghter, now the wife of Sir Charles W. A. Oakeley, Bart.

Mr. Parsons removed from Raymond Buildings in November, 1869. to 45 linssell siquare, and died there on the 26th of March, 1870.

Mr. JOAEPII PITTS was bom on the 8th of Janiary, 1812, at Sticker Lane, near Dudley IIill, Bradforl. The ciremetances of his parents were such, that in carly life he had to be made one of the loreal-winmers of the family; but through the kindness of a friend he had the opportmity afforded him of attending a dayschool gratis. Here he soon hecame a good plain pemman ; quickly passed throngh the rudiments of an elementary education, and diligently profited by the opportunities for acquiring learning which came within his reach, though he had to work early and late, as well as hetween the school hours, to procure the necessaries of life. After a time he became a teacher in a small day-school at Inorton, and a few months subsequently he obtained a similar hut more adrantageons position in a school at Horsforth. In the year 1834 the friend who first assisted him in his education obtained for him the sitnation of look-keeper to Messrs. Butler and Taylor, ironfomders of Stanningley. He proved to be an efficient, faithful, and indefatigable servant, and by the weight of his moral character and the foregoing qualifications, rose from one position to another, until he became, for several years before his doath, the leading partner in the firm-a firm which, in his lifetime, rose from comparative olscurity to be one of the principal manufacturers of iron bridges for railways. He was twice married; by his first wife, whom he married in 1834, he had a large family; his second marriage took place in 1848. He was elected an Associate of the Institution on the 7 th of April, 1857. He was a prominent member of the Methodist Free Churches, and took great interest in the schools and institutions of that persuasion, being a man of great benevolence and exemplary piety. For the last two years of his life he was sulject to heart disease, to which he succumbed on the 17th of March, 1870.

Mr. THOMAS MITCHINS SMITII, the eldest son of the Rev. C. A. Smith, vicar of Macclesfield, studied mechanical engineering for two years at the Atlas works in Manchester, and afterwards civil enginecring for three years under Mr. Samuel, M. Inst. C.E. He had charge of the construction of a railway bridge in Scotland
before his term with Mr. Samuel had expired, and subsequently, in conjunction with another engineer, was entrusted with the surveys for a railway in Spain, in the neighbourhood of Seville. He was in Spain hetween two and three years, and, on his return to England, after some months, was appointed an Assistant Engineer on the Great Indian Peninsula railway. He reached Bombay on Christmas Day, 1867; but he fell a victim to the climate and excessive lahour, and died in the May following. However, during this short term of service he won the respect and regard of all with whom he was associated, his fellow-engineers uniting in erecting a monument to his memory, and Mr. Brereton, M. Inst. C.E., his superior officer, learing the strongest testimony at once to his professional attainments, and the elevation of his character. He was elected an Associate of the Institution on the 12th of Jannary, 1864.

Mr. THOMAS HARDY TAYLOR was horn at Manchester, and was artieled to Mr. George Shorland, Surveyor to the Corporation of that city, from 1850 to 1855 . He remained as an assistant in the City Surveyor's office until April, 1860, when he received the appointment of Surveyor to the borough of I_{p} swich. This he retained until the 22nd of May, 1862. After this he was employed by the Contractors of the West Riding and Grimsly railway. On the failure of Messrs. Smith, Knight, and Co. he entered the office of Mr. P. Pons, architect and surveyor of Manchester, and there he remained, being regardel as a stealy, industrious, and efficient assistant, up to the time of his death, which oecurred on the 13th of January, 1869, from consumption, of which he had been a sufferer for four years and a half. He was elected an Associate of the Institution on the 9th of April, 1861.

Mr. GEORGE BARNARD TOWNSEND was the third son of Richard 'Townsend, formerly of Doetors' Commons, by his first wife, daughter of Mr. John Garrarl, of Onney, Bueks. IIe was lorn on the 17th of July, 1814, and was educated at Eton. Having chosen the profession of the law, he hecame a member of the firm of Holding and Co., of Salisbury, and was well known as a solicitor and Parliamentary agent, especially in connection with railways. In eonjunction with the late Mr. Joseph Locke, M.l'., Past-President Inst. C.E., he took an aetive part in the struggle for the introluction of the narrow gauge system of railways into the

West of England. Among the varions lines of railways, both at home and abroad, in the origination and constrnction of which he was instrmmental, are the Salishury and Yeovil, now a part of the Lombon and Somth Westom Companys madertaking, the Stockport, Disley, ant Whalley-hritge, the somth Eastern of Portugal, and the (ireat sonthern of Andia. LIe also took much interest in the development of Mr. Fairlie's patents fio improvements in lucomotive engines and carriages. Mr. Townsend was elected an Associate of the lustitution on the 1st of May, 1860, and he died on the 2:th of Angnst, 1870, at his residence, Gumbimore, ne:ar Christchurch, Itants. Like that of Mr. Locke, his death was sudden, of apoplexy, catsed by the lneaking of a ressel on the brain. He wats married in 1840 to Georqina, danghter of Mr. Daniel Eyre, of the Close, Salishury, who died in 1846, and by whom he left one son-now a lieutenant in the Royal Horse Artillery-and three danghters. His life was distinguished by constant activity and energy, and ly a kindliness of disposition and of mamer which was felt by all who were comected with, or approached him.

Captain James VETCH, R.E., F.R.S., was hem at Maddington, N. B., on the 13th of May, 1789, and was the third son of Robert Vetch, of Caponflat, East Lothian. He was educated at Haddington and Edinburgh ; and in 180t, having oltained a nomination from Lord Chatham, he joinel the Cadet College at Great Marlow, from whence, in 1805, he was transferred to the Royal Military Academy at Woolwich. He left Woolwich in 1806, to join the Trigonometrical Survey at Oakingham, in Berkshire, as Assistant-Engineer noder Mr. Robert Dawson, with whom he remained till the summer of 1807 . He received his commission as second Lieutenant in the corps of Royal Engineers on the 1st of July, 1807; was promoted on the 1st of Mareh, 1808, to be first Lieutenant; and on the 21st of July, 1813, to the rank of Captain.

After serving for three years at Chatham and Plymouth, he was ordered in 1810 to the Peninsula, to join the division of Sir Thomas Grabam at the blockade of Cadiz; where, with some exceptions, he continued till it was raised in 181:. II took part in repelling the attack made on the town of Carliz liy gun-boats; and was employed in throwing up works to strengthen the fortifications of the place.

In the spring of 1811 he was employed with Lieutenant Wells, R.E., in superintending the construction and repair of
roads by which the allied army was to advance from Tarifa to attack the enemy, and was present at the battle of Barrosa, where his zeal and judgment contributed in no small degree to the success of the action, as the following narrative will show: "On the 1st of March the allied Spanish and English army, commanded by the Spanish general, La Peña, proceeded in the direction of Medina Sidonia, and on the 5th took up its position on the south-east face of the hill of Barrosa. The Spanish general then sent down his own troops in successive divisions, to drive the French from their fortified position in front of S. Petri, and to establish communication with La Isla de Leon. Although little resistance was made, the Spanish troops were long in effecting their object, and General Peña ordered the English division to march through a thick pine-wool to the same spot. Sir Thomas Graham had no choice lut to obey, though much against his will, for the hill of Barrosa was evidently the key to the position. Lieutenant Vetch, though a young soldier, was fully alive to the danger of this movement, and lingered on the hill to observe whether the French would attempt to occupy it. The British division had not adranced above a mile into the wood, when, as Lieutenant Tetch was preparing to follow it, a mounted peasant hastily approached, crying out, 'Where is the general? Where is the general? The French are ardvancing to occupy the hill!' Young Vetch directing the peasant to follow him, galloped after the British division, and falling in with Major Hare of the staff, was taken to Sir Thomas Graham, who, the instant he was apprised of this flank movement of the French, ordering each regiment to comntermarch on its own ground, made all haste to get back out of the wood. The English emerged from the wood as the French were deploying on the top of the hill, and were immediately formed in line to right and left, with the batteries of artillery, consisting of ten grms, in the centre, on rising gromid. The British infantry advanced slowly but steadily under a heavy fire up the hill, and when, supported by their own artillery, they began to close on the enemy, a spirited charge put the French to flight, and their artillery, waggons, and a great many arms fell into the hands of the British force."

Sir Thomas Graham was so gratified at the intelligence displayed ly Lieutenant Vetch on this oceasion, that he made him the bearer of his despatches to Gibraltar ; and directed him afterwards to explare the surromding comory, and crossing to the coast of Rarlary, proceed from Tangiers to Tetnan, with a view to reporting on the capalilitics of those localities for furnishing
engineer smplips. This duty was satisfactorily performed, and on his return he was ordered to proceed in command of a detachment of sappers and mincers up the Guadiana to Elvas, where, on arriving, he was immediately emploged in the trenehes lefore Batajos. On the evening of the lith of A pril, 1812 , the town was assaulted, and Lieutenant Vetch received instructions to make a lolgment with three humbed men in the ravelin of San Roque; this the gallimtly accomplished, and entered Bandigns with the victorions army. After the capture of Badajos he returned to Cadiz, and remanel there till the llockate was raised in September, 1812, when he was employed in varions parts of the sonth of Spain until his retmon to Englam in 1814.

During the next six years, mentil 1820, Captain Vetch commandel a company of sappers and miners, and was stationed first at spike Islaml, in Cork Harhomr, and afterwards at Chatham. It was at this time that he deroted limself so eamestly to the study of geology and other scientific pursuits, for the thorongh acrpuaintance with which he was, later in life, so well known. White cmployed in constructing the fort on Spike Island, it was fomed necessary to remove, among other obstructions, an ohl, strongly built tower, about 50 feet square, with masoury walls 8 feet thick. Captain Vetch, having pail consideralle attention to military mining, undertook to blow it up bodily. In this he was completely suceessful, for the whole tower rose slowly and then fell into a thousand fragments,-so perfect were his arrangements, so well caleulated and placed were the charges, and so simmltaneous the shock; and it must be remembered that this was before the days of the application of electricity to mining.

In 1821, on the express recommendation of Colonel Colloy, Director of the Trigonometrical Surver, the Duke of Wellingtom, then Master Ceneral of the Ordnance, appointed Captain Veteh to the Ordnance Survey, and during this and the two following years, assistel first by Lientenant Drummond, and afterwarts by Lientenant Dawson (the late Colonel Dawson, Assoc. Inst. C.E.), he conducted the triangulation of the Orkney and shetland Islanis, and the Westem Islands of Seotlaml. The work was prosecuted by them with great zeal, and carried on so late in the year, that their tents, generally pitched on the tops of high hills, were surromded with snow hefore they would allow themselves to suspend their labours for the winter months, a season ocempied by Captain Vetch in attending comrses of lectures at the Edinburgh Thiversity.

While employed on the Ordnance Survey, Captain Vetch $[1870-71 . \times . . . s$.
ahrearly a Fellow of the Geological Society, contributed several valuable papers to this and other societies. He wrote an able Paper on the remains of a Mammoth discovered by himself near Rochester, also one on geological specimens from the Bermuda islands, and another on some terraces or ancient beaches in the island of Jura: he further contributed to the Memoirs of the Wernerian Society an account of Foula, the most remarkable of the Shetland Islands. In 1822 Captain Vetch submitted to the authorities an ingenious invention for throwing a line from the shore to effect a commmication with a ressel in distress, which was very farourably received. In 1824, promotion heing very slow, officers were encomaged to go on half-pay, in order to visit foreign countries and obtain professional information; and Captain Vetch, having been invited to take the management of some extensive silver mines in Mexico, availed himself of this opportunity, and oltained permission to retire on half-pay from the 11th of March, 18\%4. With the exception of a visit to England, for a year or two, he remained in Mexico till 1835; and during this time he not only devoted himself to the development of the Real del Monté, Bolanos, United Mexican, and other mining concems of which he had the management, but by laying-out and constructing gool roads, and by organizing efficient systems of transport, he paved the way for the more extended mining operations at present carried on in that comntry; in this work he was greatly indebted to the services of the late Colonel Colquhoun, R.A., whose cooperation he found most valuable. So conspicuous were Captain Vetch's disinterested endeavours to promote the welfare of the mining interest in Mexico, that they attracted the notice of Sir Hemry Ward, the British enroy, who, in an official communication, passed the highest encomiums upon them.

During his residence in Mexico, Captain Tetch was much hindered in his work by the want of a reliable map of the country, and with his usual energy he determined to construct one for himself, and making use of the experience he had acquired in Sigland on the Ordnance Survey, he accumulated a vast quantity of astronomical and barometrical observations, meastured several short base-lines, and triangulated a large tract of country, a small part of which, on his return to England, he plotted for the use of the Admiralty; but it is much to be regretted that he never had sufficient leisure to arrange his materials, and construct from his voluminous observations and computations an accurate map of the eastern portion of the State of Mexico. While devoting himself an zatonsly to these scientific labours he did not luse sight of the
vast wealth of the comntry in antiquarian remains, and on his return to England he presented the British Mnsenm with a valualle collection, and contributed a most interesting Paper to the Royal Geographical Society, of which he was a Fellow, on "The Monuments and Relics of the Ancient Inhabitants of New Spain."

In 1836 Captain Vetch was appointed one of the Commissioners for settling the Irish borough boundaries; and, on completing this duty, he was for the next four years employed by the Birmingham and Gloncester Railway Company as their Resident Engineer for the construction of one half of that line of railway. He was then engaged for some time in Ireland and Scotland on matters comected with the reclamation of tide-lands and the formation of embankments; and was frequently consulted professionally both by the Commissioners of Woods and Forests, and by the Admiralty.

In 1842, at the request of the Town Council of Leeds, he designed a system of drainage for that borough, which was at once put into execution, and gave great satisfaction. His report on the drainage of Leeds was most favourably noticed in the House of Lords by His Grace the Duke of Buccleuch, and he was in consequence called upon to give evidence before the Health of Towns Commission. In 1843, his attention having been directed to the facilities for commmication with India, he published a most exhanstive "Enquiry into the means of establishing a ship navigation between the Mediterranean and Red Seas," which attracted considerable attention at the time, and so far engagel public confidence in the proposal that the subject was widely discussed and adrocated. The idea never again slumbered, and the execution and completion, by M. de Lesseps, of this great engineering work has but now been witnessed. It was in this year that Captain Vetch was associated with Sir Henry de la Beche in the preparation of designs for the drainage of the town of Windsor. and in the following year he was directed by Lord Lincoln, then First Commissioner of Woods and Forests, to design and carry ont a scheme of dranage for the Royal Castle and Parks, and for the purification of the Frogmore lakes. These works, in which H.RH. the late Prince Consort tork great interest, were carried on partly ly contract, and on the strong recommendation of Captain Vetch, partly ly a letachment of Royal Engineers, under the command of Lientenant, now Colonel, the Honourable II. F. Keane, R.E., whose skill and energy were officially represented by Captain Vetch to have rendered his
assistance most valuable : the main portion of these works was brought to a conclusion in 1847. In the meantime, on the passing of the Assessionable Manors of the Duchy of Cornwall Act in 1844, Lord Lincoln was pleased to appoint Captain Vetch to be one of the three Commissioners to carry out the Act ; the others being Mr. J. F. Fraser and Mr. J. M. Herbert, barristers-at-law. At the termination of the labours of the Commission in 184 16 , on the successful attainment of the objects of the Act, the Chancellor of the Duchy was desired by Prince Albert, the I'resident of the Comeil of the Duchy of Cornwall, to express to the Commissioners the high sense entertained by His Royal Highness and the other members of the Comeil of the diligence, skill, and impartiality with which the Commissioners had conducted the enquiry ; and the letter proceedel to say: "The Council are happy to believe that this opinion is shared by the great body of the landowners and others in Cornwall, whose interests have been sulmitted to your consideration, and that a general feeling prevails that questions so numerous, complicated, and difficult as have arisen minder the Commission have seldom, if ever, been investigated by any tribmal with more care, or decided with more general acquiescence in the propriety of the adjudication."

During the years 1844-46 Captain Vetch was examined at some length lefore the Tidal Harbours, and Harbours of Refuge Commissions, by whom he was requested to send in a report with drawings and models, to show the advantages which he considered would be obtained by employing wrought-iron framework in the construction of piers and breakwaters. This report was subsequently pulbished. So high an opinion had been formed by these Commissions of Captain Vetch's acquaintance with, and knowledge of, the subject of hydraulic engineering that, in 1845, he was directed by Sir Byam Martin to report on the various desigus for a Harbour of Refuge at Dover, which had been submitted to the Commissions by the following eminent engineers: Sir John Remic, Messrs. Walker, Culitt, Vignoles, George Rennie, James M. Rendel, the late Sir Harry Jones, and Sir William Denison: the report of the Commissioners was in strong confirmation of Captain Vetch's opinions. In July, 184f, Captain Yetch was appointed Consulting Engineer to the Board of Admiralty on all questions relating to railways, hridges, and other works, which might interfere with, or injuriously affect the hartours, rivers, and navigahle waters of the United Kingdom. In 184^{7} this appointment was abolished, and Captain Vetch was alpowinted a member of the new Harbour Conservancy Board at
the Admiralty, the other members being Captain, afterwards Admiral, Washington, R.N., and Captain Bethme, R.N. Captain Washington was withdrawn from the Board at the end of 1849, and in 1853 it was broken up, and Captain Veteh was appointer sole Conservator of Harbours. From that date, till his retirement from office ten years later, at the advanced age of seventy-five, he continned to discharge its arduons duties, receiving most flattering testimony to his zeal and judgment from the late Sir Robert Peel, Sir J. Graham, the Duke of Neweastle, and other First Lorls of tho Admiralty. In a letter dated 185:3, the late Duke of Neweastle writes: "I shall, at any time, have very great pleasure in testifying to the high sense I entertain of your services on the various occasions on which I had the good fortme to ohtain your assistance."

In 1849 Captain Vetch was requested by the Govermment to become one of the Metropolitan Commissioners of Sewers, an office entailing a great deal of work and carrying with it no remmeration, but to which he devoted himself with much energy for four years. During this year he published a pamphlet on the question of an extended water-supply to the Metropolis, and in 1850 he proposed to the Metropolitan Commission of Sewers a complete system of drainage for Southwark, which was subsequently adopted. In 1859 he was a member of the Royal Commission on Marbours of Refuge, of which Admiral Sir James Hope was chairman.

During the sixteen years that Captain Vetch was employed at the Admiralty he was well known and esteemed by all the prominent members of the Civil Lngineering profession. His position was one of great responsibility, and oftentimes difficult in the extreme; for he had to maintain mflinehingly the rights of the Crown and publie benefit against countless attempts at eneroachments or private aggrandizement, besides having daily to sit in judgment upon, and to control the plans of Civil Engineers of great eminence and reputation. The arduous character of his work may be gathered from a letter written by Admiral Washington, the late Hydrographer, in 1858 , in which he says: "He (Captain Vetch) had at once thrust upon him, in the very first year of office at the Admiralty, one hundred harbour and railway lills, on which he was required to report to Parliament, and the work was such that, even Sir Francis Beaufort, with all his experience, shrank from it, and would have resigned his post had he not been relieved of it. Captain Veteh had also almost annually to report on works comnected with Portsmouth, Cork, Rye,

Ramsgate, Portpatrick, Wexford, Isle of Man, Table Bay, and other harbours independently of the common routine of business."

Captain Vetch retired from the Admiralty in 1863, when his office was abolished, and the duties transferred to the Board of Trade. He devoted the last years of his life to the interests of the various public companies of which he was a director.

He was clected a Fellow of the Geological Society in 1818; of the Royal Geographical Society and the Royal Society in 1830 ; and an Associate of the Institution on the 26th of March, 1839. He contributed a "Descripition of a Bridge built of bhe lias limestone, across the Birmingham and Gloncester railway at Dunhampstead," in the year $1841 ; 1$ and occasionally attended the meetings. In the year 1850 he was also elected a member of the Société Française de Statistique Universelle; and, in 1842, a Corresponding Member of the National Institution of Washington. For his services in the Peniusula he received the War Medal and two clasps, for Barrosa and Badajos.

He died at the advanced age of eighty, on the 7th of December, 1869, lcaving a large family and a wide circle of friends to mourn their loss.

[^28]
sUBJECTS FOR PREMIUNAS.

SEsion 187(0-71.

The Cousch of The Institution of Civil Engineers invite communications on the Suljectis comprised in the following list, as well as upon others ; such as-1. Authentic 1)etails of the Progress of any Work in Civil Lingincering, as far as absolutely exeented (Simcaton's Account of the Elystone Lighthonse may be taken as an example); 2. Descriptions of Engines and Machines of varions kinds; or, 3. Practical Essays on Suljects connected with Engineering, as, for instance, Metallurgy. For approved Original Commmications, the Comcil will bo prepared to award the Premiums arising out of sjecial Funds devoted for the purpose.

1. On the Strength and Resistance of Materials, practically and Experimentally considered.
2. On the Theory and Iractical Design of Retaining Walls.
3. On Steam and Mydraulic Cranes, and on the Application of Steam Power in the exccution of Pulbic Works.
4. On the Different Systems and the Results of the nse of Road Traction Engines.
5. On Land-slips, with the best means of preventing, or arresting them, with examples.
6. On the Gange of Railways.
7. On the Prineiples to be observed in Laying-out lines of Railway through momentanous countries, with examples of their application in the $\mathrm{Al}_{1} s$ s, the Pyrences, the Indian Ghâts, the Rocky Mountains of America, and similar localities.
8. On Peculiarities in the Systems of Construction adopted for Railways in different Countries.
9. On the Systems of Fixed Siguals at present in use on Railways.
10. Descriptions of Modern Locomotive Engines, designed with a view to cheapness of construction, durability, and facility of repair.
11. Description of Continuous Breaks which have been extensively employed on Railways, and the general results.
12. On the Principles which should be observed in laying out the Streets and Thoronghfares of Towns, or of the successive extensions of large Towns and Cities.
13. On the most suitable Materials for, and the hest mode of formation of, the Surfaces of the Streets of large Towns.
14. On the Adrantages and Disadrantages of Subways, for Gas and Water Mains, and for other similar pruposes.
15. Accounts of existing Water-works; including the sources of suply, a description of the different modes of collecting and filtering water, the distribution to the consmuers, and the general practical results.
16. On the Theory and Practical Design of Pumps, and other Machines for raising Water ; as well as of Turlines, and of Water Pressure Engines.
17. On the Principles applicable to the Drainage of Towns, and the Disposal of the Sewage.
18. On the Employment of Steam Power in Agriculture.
19. On the Theory and Practice of the Modern Methods of Warming and Ventilating large Buillings.
20. On the Supply of Gaseous Fuel in Towns for Heating Purposes.
21. On the Design and Construction of Gas Works, with a view to the Manufacture of Gas of high illmminating power, free from Sulphur compounds, especially Sulphide of Carlon; and on the most economical system of distribution of Gas, and the best modes of Illumination in Streets and Buillings.
22. On the Theory of Heat applied to Steam Engines.
23. On the Theory of Condensation in Steam Engines, and the total effects upon the efficiency of a Steam Engine of the various modes of producing condensation.
24. On the practical employment of Heated Air as a Motive Power.
25. Description of successfully applied Gas Engines.
26. On the Maintenance, by Sluicing, of the Harbours on the Coasts of France, Belgium, and Holland.
27. Description of the Sea Works at the month of the liver Maas, and the effects produced thereliy.
28. On the Construction of Tidal, or other Dams, in a constant, or variable depth of water; and on the use of cast and wronght iron in their construction.
29. On the arrangement and construction of Floating LandingStages, for passenger *and wther traffic, with existing examples.
30. On the different systems of swing, lifting, and other opening Bridges, with existing examples; and on the theory and Practical design of Machinery for working oprening Pridges.
31. On the present condition of knowledge relating to the Friction of Vessels passing throngh Water at different relocities, with snggestions for future rescarch, either theoretical or experimental.
:32. On the design and details of construction of Ships of War, laving regard to their Amomr, Ordnance, mode of Propulsion, and Machinery.
32. On the Design and the Materials for the construction of Land Fortifications.
33. On the measures to he adopted for protecting Iron and Iron ships from Corrosiom.
34. On Steel, and its present position as regards production and application.
35. On the safe working strength of cast and malleable Iron and Steel, including the results of experiments on the Elastic Limit of long bars of Iron, and on the rate of decty ly rusting, \&e., and how far vibration or prolonged fatigue affects the Strength of railway axles, chains, shafts, de.
36. On Modern Progress in Telegraphic Engineering, including a notice of the theoretical data upon which that progress has been hased; as well as a description of the improvements in the construction of land and sea lines, and in the working instruments.
37. On the Methods of Producing Artificial Cold and Ice by the Conversion of Mechanical Force.

The Council will be glad to receive, for the purpose of forming an "Appendix" to the Minutes of Procectings, the details and results of any Experiments, or Observations, on subjects comneeted with Engineering Science or Practice.

The Council will not consider themselves bound to award any Premium, should the Commmication not le of adequate merit, but they will award more than one l'eminm, shonld there be several communications on the same subjeet deserving this mark of distinction. It is to be understood that, in awarding the l'remiums, no distinction will be made, whether the Commmication has been received from a Member, or an Associate of the Institution, or from any other person, whether a Native, or a Foreigner.

The Commmications must be forwarded, on or before the 1st of Felmuary, 187!, to the house of the Institution, No. 25, Great George Street, Westminster, S.W., where copies of this Paper, and any further information, may be obtained.

Chaples Manby, Honorary Secretary. James Foriest, Secretary.
The Isstitution of Civil Evaineers, 25, Great George Street, Westminster, S.W., October, 1870.

Extracts from the Minutes of Councha Feb. 23rl, 18.35.
The principal Suljeets for which Premiums will be given are:-
"1st. Descriptions, accompanied by Plans and explanatory Drawings, of any work in Civil Engineering, as far as absolutely executed, and which shall contain authentic details of the progress of the work. (Smeaton's Account of the Elystone Lighthouse may be taken as an example.)
"2ndly. Models or Drawings, with deseriptions of useful Engines and Machines; Plans of Harbours, Bridges, Roads, Rivers, Canals, Mines, \&c.; Surveys and Sections of Districts of Country.
"3rdly. lractical Essays on subjects connected with Civil Engineering, such as Geology, Mineralogy, Chemistry, Physies, Meehanic Arts, Statistics, Agriculture, \&c.; together with Models, Drawings, or Descriptions of any new and useful Apparatus, or Instrunents applicable to the purposes of Enginecring or Surveying."

Excerpt Bye-Lafs, Section XV., Clause 3.
"Every Paper, Map, Plan, Drawing, or Model presented to the Institution shall be considered the property thereof, unless there shall have been some previous arrangement to the contrary, and the Council may publish the same, in any way and at any time they may think proper; but should the Comeil refuse, or delay the publication of such laper beyond a reasonable time, the Author thereof shall have a right to copy the same, and to publish it as he may think fit, having previously given notice, in writing, to the Secretary of his intention. No person shall publish, or give
his consent for the publication of any commmication presented and lelonging to the lustitution, without the previons consent of the Comeil."

The Commmications shouk be written in the impersonal pronom, and be legilly transwibed on foolseap paper, ahont thirteen inches liy cight inches, the lines being three-quarters of an inch apmet, on the one side only, laving a margin of one inch and a half in width on the left side, in order that the shects may be bromed.

The Drawings should be on mounted paper, and with as many details as may be necessary to illustrate the subject. Enlarged Diagrams, to such a scale that they may be clearly visible when suspended on the walls of the Theatre of the Institution, at the time of reading the commmication, should be sent for the illustration of any particular portions.

Papers which have been read at the Meetings of other Scientific Societies, or have been published in any form, cannot be read at a Meeting of the Institution, nor be admitted to competition for the lremiums.

Notice.

It has frequently occured that, in lapers which have heen considered deserving of being read and published, and have even had lremiums awarded to them, the Authors may have advanced somewhat donbtful theories, or may have arrived at conclusions at variance with received opinions. The Comeil would, therefore, emphatically repeat, that the Institution must not, as a body, be considered responsible for the facts and opinions advanced in the Papers or in the consequent-Discussions; and it must be understood, that such Papers may have Medals and Premiums awarded to them, on account of the Science, Talent, or Industry displayed in the consideration of the sulbject, and for the good which may be expected to result from the discussion and the inquiry; but that such notice, or award, must not be considered as any expression of opinion, on the part of the Institution, of the correctness of any of the views entertained by the Authors of the Papers.

ORIGINAL COMMUNICATIONS,

DRAWINGS, PRESENTS, \&c.,
RECEIVED BETWEEN DECEMBER 1st, 1869, AND NOVEMBER 30th, 1870.

ORIGINAL COMMUNICATIONS.

AUTHORS.
Adams, W. B. No. 1241.—On the Dead Weight and Frictional Resistance of Railway Trains.
Bainlridge, E. No. 1266.-On Coal Mining in Deep Workings.
Barlow, W. H. No. 1253.-Deseription of the St. Pancras Station and Roof, Midland Railway.
Berkley, G. No. 1279.-On the Strength of Iron and Steel, and on the design of parts of structures which consist of those materials.
Briggs, R. No. 1276.-On the Conditions and Limits which govern the proportions of Rotary Fans.
Broadrick, G. No. 1242.-On Indian Railway Stations.
Brown, W. R. No. 1239.-On the Streugth of Lock Gates.
Cerero, Capt. R. No. 1270.-(On the Construction of Flat Roofs.
Cowper, E. A. No. 1282.-Recent Improvements in Regenerative Hot Blast Stoves for Blast Furnaces.
Crawford, R. No. 1248.-Notes on the Construction of Railways in La Plata.
Curtin, E. J. No. 1272.-On the measures to be adopted in protecting Iron and Iron Ships from Corrosion.
Douglass, J. N. No. 1268.-The Wolf Rock Lighthouse.
Ducat, Capt. W. M., R.E.-No. 1265.-On the IIarbour of Bombay.
Fletcher, II. A. No. 1260.-Deseription of some Tank Locomotives for Narrow Ganges.
Fowler, (G . No. 1247.-On the relative Safety of different Methods of Working Coal.
Fux, D. M. No. 1245.-Description of the line and works of the Saô laulu lailway, in the empire of Brazil.

Authors.
Gandard, J. No. 1274.-On the Consolidation of Unstahle Siris.
_-_No. 1273.-On the Theory and Construetion of Metallie Arches.
Harper, J. P. No. 1263.—On Colliery Explosions, and on the influence of the different systems of "Getting" ('oal on the Safety of Miners.
IIarrison, J. 'T. No. 1246.-On the Statisties of Thailway Income and Expenditure, and their bearing on future Railway Foliey and Management.
Hart, C. No. 12.s.- On the Reclamation and Improvement of Lands in Ireland.
Hay, J. F. D. No. 1271.-On the Protectiom of Land from Floods in small hivers.
Innes, W., R.E. No. 1261.-Memoranda of Experiments on some accounts connected with the use of Fortland Cement.
Knowles. Sir F. C., Bart. No. 1240.-On the Arehimedean Serew Propeller, or Melix, of Maximmm W'ork.
Le Chalas, -. No. 1262.-On Tides, particularly as affecting Coasts, Estnaries, Pivers, Docks, and Navigation.
Leslie, A. No. 1255. -On the Water Supply of the Town of Paisley.
Maynard, H. N. No. 1283.-On the New Ross Bridge.
Naylor, W. No. 1249.-Locomotive Engines: Varieties of Construction to meet special objects, and their performance.
_— Mo. 1250.—Break-power as applied to Railway Trains.
l'assmore, F. B. No. 1251.- On the Trigation of the Sugar Cane, Vere, Jamaica.
Pice, J. No. 1281.-On the Testing of Rails: with a deseription of a machine for the pmrpose invented by the Anthor.
Roberts, R. No. 1243.-On the Estuary of the River Dee, and tho works upon it for the Improvement of the Navigation and the Reclamation of Land.
Rochussen, T. A. No. 1254.-The Iron Permanent Way in Puussia.
Siceama, H. T. II. No. 124t.-Hydrostatic Lock-Gates.
Smith, W. No. 1244a.-On Evaporation.
Sopwith, T., jun. No. 1280.-On the Dressing of Lead Ores.
Stoney, E. W. No. 1258.-Description of the Pemair Bridge, Madras Railway.
Terry, A. R. No. 1256.-The Mhow-ke-Mnllee Viaduct on the Bhore Ghant Incline of the Great Indian I'eninsula Railway.

AUTHORS.
'Thornton, G. No. 1238.-Notes on the Overflow of the River Waimakariri, Cinterbury, N. Z.
Wawn, C. No. $1259 .-$ On the different Systems of Swing, Lifting, and other Opening Bridges.
Williams. R. l'rice. No. 1277.-On the Maintenance and Renewal of Railway Rolling Stock.
Young, E. W. No. $1275 .-$ Economy in Suspension Bridges.

CATAIOGUE OF PRESENTS.

BOOKs.

HONORS. TITLE OF WORK.
Aeadémic Royale de Belgique. Anmaire, 1870. 12mo. Portraits. Pruxelles, 1870.
———Bulletins, 1869. Tomes XXVII.-XXVIII. 8vo. Bruxelles, 1869.
——— Mémoires Couronnés et autres mémoires. Tome XXI. Bruxelles, 1870.
—_ Mémoires Couronnés et mémoires des Savants Ētrangers. T'ome NXXIV. 1867-70. 4to. I'lates. Bruxelles, 1870. Admiralty, through the Astronomer-Royal. Rates of Chronometers on 'Trial for purchase by the Board of Admiralty at the Royal Observatory, Greenwich, 1869-70. 4to. No place or date.
—__ Report of the Astronomer-Royal to the Board of Visitors of the Royal Obvervatory, Greenwich. Read at the Annual Visitation of the Royal Observatory, 1870, June 4. 4to. London, 1870.
Aeronantical Society. First, Second, Third, and Fonth Annual Reports. 12 mo. London and Greenwich, 1866-70.
Airy, G. B. On the Jiurnal Inequalities of Terrestrial Magnetism. By George Biddell Airy. to. Plates. No place or date.
Airy, W. Remarks on the Construction of the course, and designs for a new and improved Scoop Wheel. By Wilfrid Airy. 8 vo. C'uts. London, 1870.
—— The Spiral Pump applied as a Force Pump, a suction promp, or a merewry pump. By Wilfrid Airy. 8vo. 1 lates. London, 1869.
Akademie der Wissenschaften zu München. Sitzungsberichte, 1869. II. Heft I.-1870. I. Heft IV. 8vo. München, 1869-70.
American Academy of Arts and Sciences. Proceedings. Vol. VIII., Pp. 1-136. 8vo. No place or date.
Amcrican Institute. Transactions. 1865-66-1868-69. 4 rols. 8vo. Albany. 1866-69.

DONORS.
TITLE OF WORK.
American Museum of Natural History. First Annual Report. January, 1870. 8vo. New York, 1870.
Andrew, W. P. The Enphrates Valley Railway. Letters addressed to her Majesty's Sceretaries of State for Foreign Affairs and for India. With Introductory Remarks and Map. By W. l'. Andrew. 8ro. Map. London, 1870.
Anonymons. Bristol Trade School. Papers relating to the Origin and lrogress of this Sehool. Svo. Bristol, 1869.
-- Chambre de Commerce de Boulogne-sur-Mer. Rapports faits à cette chambre par ses commissaires sur un projet de création, par une compagnie étrangère. d'un nouveau Port, au Sud de Cap Grisnez. 4to. Boulogne, 1869.
———Essay in Marathi on Beneficent Government. By Vishnu Bramachari. Translated at the desire of the Author, by Capt. A. Phelps. 12mo. Bombay, 1869.
—— New mode of applying Compressed Air to Tentilation, and to various other purposes. Invented and patented ly liarron de Mondesir, Lehaitre, and Julienne. 4to. London, 1870.
——— Report of a Committee of the Trustees of the Renssellaer Polytechnic Institute, concerning the system of Instruction, with proposed morlifications. 4to. Troy, 1870.
——— Report of the Streets and Sewerage Committee on Utilization of Sewage. 8 vo. Leeds, 1870.
——State of New York. Anmual Report of the Capitol Commissioners. 8vo. Washington, 1870.
——— 'Trial of an 11-inch Kriipp's Cast-Steel Breech-loading gun firel against the Hercules Shield in Russia. Sro. Lundon. No date.
Architecten und Ingenicur Vereins zu IIannover. Zeitschrift. Band XV. Hefte 2-4. 4to. Plates and cuts. Hamover, 1869-70.
———Ditto. Die mittelalterlichen Bandenkmäler Niedersachsens. 15 Jeft. 3 Band. Hto. Plates. Hannover, 1870.
Areher, W. II. Abstract of English and Colonial Specifications relating to the Preservation of Food, de. By William Henry Archer. 8vo. l'lates. Melbourne, 1870. Victoria. Patents and Patentees, from 1854 to 1866 (looth inchusive). By William Henry Archer, Registrar(ieneral of Victoria. 4to. Mellowne, 1868.
Jitto. Vol. II. Indexes for the year 1867. By William Hemry Archer. 4to. Melbomene, 1869.

10NORS.
HIJE OF WOHK.
Armstrong, li. On the Mercantile amd Amiralty findes for calen lating the Power of Marine Steam Engines. By Rolort Armstrong. Folio. London, no date.
Art Chion of London. Almanac for 1870. 16mo. London, 1870.
——Thirty-third Ammal leport of the Council. With List of Members. 8 vo . London, 1869.
Associacão dos Engenheiros C'ivis Iortuguezes. Revista de Onas Publicas o Dlinas. 'Tomo I. Nos. 6-9. 8vo. Lisboa, 1870. Auldjo, Mrs. 'I'. R. Nienwe Leerwijze van Doorzigtkunde. Mandleiding tot een hoogeren trap van Kennis dier Wetenschap, zoowel in 'Theorie als in praktijk. Door l'. van Sthendel. Svo. Breda, 1861.
————remier Système pour la Suppression du Mouvement de Lacet des voitures du Chemin de Fer. Par P. van Schendel. 8vo. Plates. Bruxelles, 1855.
badeley, C'apt. Coal, Iron, and Oil; or, The Practical American Miner. A plain and popular work on our Mines and Mineral Resomrees. By Samuel Harries Daddow and Penjamin Bannan. 8vo. Pottsville, Pa., 1866.
Bainhridge, E. North of England Institute of Mining Engineers. On the Hanlage of Coal; being the Report of the Committee appointed by the Mining Institute to investigate the sulpject. Bvo. Plates and euts. Neweastle, 1869.
Barry, H. Russian Metallurgical Works, Iron, Copper, Gold, concisely deseribed. By IIerbert Parry. 12 mo. London, 1870.

Barry, J. B. Government of India. Public Works Department. Report on the Ganges Canal. By Captain J. Crofton. 2 vols. Folio. Plates. C'aleutta, 1865.
——— Postscript to Notes on the Great Ganges Canal. By 'T. Login. 8vo. Simla, 1867.
— Report of the Ganges Canal Committee. Folio. Plates. Roorkee, 1867.
——— Resolution by the Hon. the Lieut.-Governor of the North Western Provinces in the lublic Works (Irrigation Branch) Department No. 5741, dated 22nd October, 1866, on the Report of the Ganges Canal Committee. Folio. Roorkee, 1867.
Bateman, J. F. Some account of the Suez Canal. In a letter to the President of the Royal Society. By J. F. Pateman. 8vo. London, 1870.
[1870-71. v.s.]

DONORS.
TITLE OF WORK.
Bell, J. L. On the Development and Appropriation of Heat in Iron Blast-Furnaces of different dimensions. By I. Lowthian Bell. 8vo. Neweastle-on-Tyne, 1869.
Beloe, C. II. Handbook of the Liverpool Waterworks. By Charles H. Beloe. 8vo. l'late and cut. London, 1869.

Bemett, W. C. New South Wales. Sydney Water Supply. Report of the Commission appointed to inquire into the Supply of Water to Sydney and suburbs. Folio. l'lates. Sydney, 1869.
Bérard, A. Procédé Bérard pour la Transformation directe de la Fonte en Acicr. Notice Explicative. 8vo. Plates. Bruxelles, 1870.
Berkley, G. Report to the Managing Directors of the Creat Indian Peninsula Railway, on the Circumstances conneeted with the Accident to a Train on the Phore-Ghât Incline, on the 26th of January, 1869. By George Berkley. Folio. No place, 1869.
Birch, R. W. P. The Disposal of Town Sewage. By R. W. Peregrine Birch. Svo. London, 1870.
Boult, J. A Littoral Survey of the Port of Liverpool. By Edward Eyes. With Additions and Emendations from the original Note-books. By Joseph Bonlt. 8vo. Liverpool, 1870.

Bourne, J. Indian Works and English Engineers. A Lettcr to his Grace the Duke of Argyll, K.T., Secretary of State for India. By John Bonrne. 8vo. London, 18 \% 0.
Briggs, R. Illustrated Catalogues of Iron Castings mannfactured by Morris Tasker and Sons, Philadelphia. 4to. No place or date.
Bristow, II. W. On the Formation of the Chesil Bank, Dorset. By Henry William Bristow and William Whitaker. 8vo. Plate. London, 1869.
British Association for the Advancement of Science. Report of the Thirty-ninth Mecting. Held at Excter, in August, 1869. 8vo. Plates and cuts. London, 1870.
British Association of Gas Managers. Report of Proceedings of the Seventh Annual Meeting, held at the Society of Arts Rooms, John Street, Alelphi, London. June, 1870. 8vo. Plates. London, 1870.
Broadrick, G. Bombay Municipality. Icalth-Officer's Repert, 1866. to. Bombay. No late.

Brmel, I. licports of Nicholas Wood and others, relative to the

DONORS.
TITLE OF WORK.
Gauge of the Great Western Railway, 1838. 8vo. No place or date.
Calvert, J. Notes on the Minerals of India. By John Calvert. 8vo. Calcutta, 1870.
Campbell, Johnstone, and Co. Narrative of the Voyage of M.M.'s Floating Dock "Bermuda," from England to Bermuda. Written in the form of a Diary, by One on Board. Sro. Plates. London, 1870.
Cambridge Philosophical Society. Proccedings, 1866; pp. 1-29. 8vo. Cambridge, no date.
Canadian Institute. C'anadian Journal, Vol. XII., Nos. IV.--VI. svo. Toronto, 1869-70.
Chemical Society. Journal. December, 1869-Norember, 1870. 8ro. Loudon, 1869-70.
Cialdi, Comm. A. L'Ingegno di Ferdinando de Luca. Articolo del Comm. Alessandro Cialdi. 8vo. Roma, 1870.
——— Le Dighe de Portosaido, ed il Loro Insabbiamento sino al Giorno della Solenne Apertura del Bosforo di Suez. Articolo del Comm. Alessandro Cialdi. 8vo. Roma, 1869.
———_Les Jetées de l'ort Saïl, et leur Ensablement. Mémoire par le Comm. Alexandre Cialdi. Traduit par (土. Barlocci. Svo. Rome, 1869.
——— Les Ports-Chenaux et Port-Saïl. Par le C'omm. Alexandre Cialdi. 8vo. Ilates and cut. Rome, 1870.
——Port Saïd. ג M. Ferdinand de Lesseps, Président et Directeur de la Compagnie Universelle du Canal Maritime de Snez. Lettre du Comm. Alex. Cialdi, Aetionnaire de la même Compagnic. Avec un Post-Scriptum. 8vo. liome, 1868.
Se Portolerante Escluda il Fluttocorrente come cansa del suo Insabbiamento. AI Chiarrissimo Ispettore Carlo Comm. Possenti. Lettera del Comm. Alessandro Cialdi. 8vo. Roma, 1870.
Sul Moto Ondoso del Mare. Pel. Comm. Alessandro Cialdi. 8vo. Roma, 1866.
Coke, IV. The History of the Invention of the Link-Motion. By N. P. Burgh. 4to. Cuts. No place or date.

Comité des Forges. Bulletins, Nos. 54-62. 4to. Paris, 1869-70. Cooke, J. Mine Ventilating, Blowing and Pumping. Cooke's Patent (1279), 1868. Folio. Cuts. No place, 1870. Corporation of London. Analytical Index to Volumes II. and III. of the Series of Records known as the Remembrancia.

DONORS.
TITLE OF WORK.
preserved among the Archives of the City of London. A.D. 1580-1664. 8 vo. London, 1870.

Corporation of London. Catalogue of the Library of the Corporation of London. Ninth Supplement. 1869. 8vo. London, 1870.
Corps of Royal Engineers. Papers on Subjects connected with the duties of the Corps of Royal Engineers. 8vo. Plates. London, 1869.
Cottam, E. No Frog, No Foot. By Edward Cottam. 8vo. Cuts. London, 1869.
Culley, R. S. Lectures on the Construction and Maintenance of Telegraph Lines. By R. S. Culley. Delivered at the School of Military Engineering, Chatham, in February, 1869. 8ro. No place or date.

Dale, T. A Treatise on the Cornish Pumping-Engine. By William Pole. 4to. Plates. London, 1844-48.
——— The Essential Elements of Practical Mechanics. By Oliver Byrne. 8vo. Cuts. London, 1867.
——_Tracts on Hydraulics. By Thomas Tredgold. 8vo. Plates. London, 1862.
Daly, C. Revue Générale de l'Architecture et des Travanx Publies. Vol. XXVIII. Parts 9-12. 4to. Paris, 1870.
Danvers, J. Report to the Secretary of State for India in Council on Railways in India. For the year 1869-70. By Juland Danvers. Folio. London, 1870.
Day, St. J. V. On Patents for Inventions. Being two Papers read by request of the President and Conncil of the Philosophical Society of Glasgow, on 1st and 22 nd December, 1869, respectively. By St. John Vincent Day, C.E. 8 vo. Glasgow, 1870.

- Papers on the Great Pyramid, including a Critical Examination of Sir Henry James's "Notes on the Great Pyramid of Egypt." By St. John Vincent Day. 8vo. Edinburgh, 1870.
De Buffon, N. (through J. Fowler.) Hydraulique Agricole. Des Submersions Fertilisantes. Comprenant les travaux de Colmatage, Limonage, Irrigations d'Hiver. Par Nadault de Buffon. 8vo. 4to. Atlas of Plates. Paris, 1867.
Dempsey, J. M. Our Ocean Highways. A Condensed Universal Route Book, by Sea, by Land, and by Rail. Edited by J. Maurice Dempsey. 8vo. Map. London, 1870.

Dircks, II. On the Policy of a Patent Law. A Paper read at the
boNORS.
TITLE OF WORK.
Sucial Science Congress, Bristol. By Hemry Direks. Svo. London, 1869.
Director-General of the Geological Survey. Catalogue of the published Maps, Sections, Memoirs, and other publications of the Geological Survey of the United Kingdom, up to March 31st, 1869. 8vo. London, 1869.
Memoirs of the Geological Survey. Explanation of Quarter-Sheet 88, S.E., of the Geological Map of England, illustrating the Geology of part of the Yorkshire Coal Field. By A. H. Green, J. R. Dakyns, and J. C. Ward. 8 vo. Cuts. London, 1869.
Mineral Statistics of the United Kingdom of Great Britain and Ireland, for the year 1868. With an A1, pendix. By Robert Hunt. 8vo. London, 1869.
——— Reports on the Geology of Jamaica ; or, Part II. of the West Indian Survey. By James G. Sawkins. 8vo. I'lates and cuts. Loudon, 1869.

- The Geology of the Carboniferons Limestones, Yoredale Rock, and Millstone Grit of North Derbyshire, and the adjoining parts of Yorkshire. By A. H. Green, C. Le Neve Foster, and J. L. Dakyns. Appendix and List of Fossils by li. Etheridge. 8vo. Cuts. London, 1869.
—— The Triassic and Permian liocks of the Midland Counties of England. By Edward Hull. 8vo. Cuts. London, 1869.
Drysdale, Dr. C. l. On Cholera; its Nature and Treatment. Being the Debate in the Harveian Medical Society of London. Edited by Dr. C. Drysdale. 8vo. London, 1866.

Dumas-Yence, Capt. Notices sur les Ports de la Manche et de la Mer du Nord. Par M. le Capitaine Dumas-Vence, I'remière Partie. De la Frontière Belge an Cap Grinnez. 8vo. 4to. Atlas of Plates. Paris, 1869.
East India Association. Journal. Vol. IV.-No I. 8vo. London, 1870.

Echeverria, J. de. Introduccion a la Geometria Superior. Por el Sr. D. Jose Echegaray. 8vo. Madrid, 1867.
Nuero Sistema, fundado en las Leyes Generales del Mundo Material, para explicar el Calor, la Luz, la Electricidad y el Magnetismo. Por Rafael Chamorro y Abad. 8vo. Madrid, 1870.

DONORS.
TITLE OF WORK.
Evans, W. W. Letter to the Editor of "Engineering," on the "Fairlio Engine." 8vo. No place, 1870.
Fairlie, R. F. Report of the Trial on the Festiniog Railway of the Fairlio Locomotive Engine "Little Wonder." Folio. Plates. London, 1870.
Farrer, T. H. Memorandum showing generally the Alterations which would be made in the present Law, by the enactment of the Merchant Shipping Code, 1870. By T. H. Farrer. 8vo. London, 1870.
Fishbourne, Rear-Admiral E. G. The Loss of H.M.S. "Captain." Illustrating a new Principle of Naval Architecture, for the first time enumerated, by E. Gardiner Fishbourne, C.B., Retired Rear-Admiral. 8vo. Plates. London, 1870.
Forrest, W. J. General Report of the Commissioners of Public Works for the year ending 30th June, 1867. 8vo. Ottawa, 1868.
Förster, II. and E. Allgemeine Banzeitung. 1868-69. Heft X1. -XII. Folio Atlas of Plates. Wien, 1868-69.
Fowler, A. M. Borongh of Leeds. Report of the Building Clauses Committee of work done during the years 1869-70. Ditto. Report of the Streets and Sewerage Committee of work done during the years 1869-70. 8vo. Leeds, 1870.
Fowler, G. On the mode of Working and the Mechanical Appliances employed in the Midland Coal Field. By George Fowler. 8vo. Plates. Birmingham, 1870.
Franklin Institute. Journal. Vol. LVIII. No. 3-Yol. LX. No. 2. 8vo. Plates and euts. Philadelphia, 1869-70.
Gaudard, J. Faculté Technique de l'Académie de Lausanne. Programmo de l'Enseignement et programme des Connaissances exigées pour l'admission. 8vo. Lausanne, 1870.
__ Note sur l'Application de la Propulsion Pneumatiquo par l'air comprimé à la Traction sur les fortes liampes, et en particulier au chemin de fer projété entre Lausanne et Ouchy. Folio. Cuts. No place or date.
Geolugical Society. Quarterly Journal. Vol. XXYI. 8vo. Plates and cuts. London, 1869-70.
Great Scal l'atent Offico. Abridgments of Specifications of Patented Inventions. 21 vols. 12 mo . London, various dates.
No. 4. P'reservation of Food. Part II.
10. Firearms. l'art II.
" 15. Electricity and Magnetism. Part II.
" 19. Photography. l'art II.
" 21. Shipbuilding. Part II.
hovols.
TITLE OF WORK.
No. 23. Plating or Coating Metals with Metals. Part II.
24. l'ottery. Part II.
28. Spinning. Part II.
29. Lace and other looped and netted fabrics.
31. Raising, Lowering, and Weighing. l'art I.
32. Mydraulics.
34. Saddlery, Harness, Stable Fitting's, de.
35. Loads and Hays.
36. Pridges, Viaducts, and Aqueduets.
37. Writing Instrmments and Materials.
38. Railway Signals and Communicating Λ pparatus.
39. Furniture and Upholstery.
40. Aeids, Alkalies, Oxides, and Salts.
41. Aeronautics.
42. Preparation and Use of Tobacco.
43. Books, Portfolios, Card-eases, \&e.

Great Seal Patent Office. Alphabetical Index of Patents applied for and Patents granted during the years $186+5,6,7$, 8, 9. 6 vols. 8 vo. London, various dates.
——.-. Chronological Index of Patents applied for and Patents granted during the years $1864,5,6,7,8.5$ vols. 8 vo. London, 1866-70.
Chronological and Deseriptive Index of Patents applied for and Patents granted, containing the abridgments of provisional and complete specifications, for the quarters ending March 31st, June 30th, September 30th, 1869. 3 parts. 8vo. London, 1869.
——— Deseriptive Index of Patents applied for and Patents granted, being the abridgments of provisional and complete speeifications for the years 1867 and 1868. 8vo. London, 1869-70.
___ List of prices of specifications issued in the years 1864 , $5,6,7$. Svo. London, 1869.
Snljeet-Matter Index of Patents applied for and Patents granted 1863, t, 5, 6, 7, 8. 6 vols. 8vo. London, 1868-69.
Greenwell, G. C. A Practical Treatise on Mine Engineering. By G. C. Greenwell. 2nd edition. 4to. Plates. New-castle-on-'Tyne, 1869.
Grover, G. E., Lieut. R.E. Chefs d'Ginvere of the Industrial Arts. By Philippe Burty. Edited by W. Chaffers. 8vo. Plates and cuts. London, 1869.
boNORS.
TITLE OF WORK.
Grover, J. W'. 'The facilities of Flexible Rolling Stock for economically constructing, maintaining, and working Railways or Tramways. By J. W. Grover. 8vo. Plate. London, 1870.
(irmer, L. Études sur l'Acier. Notes sur propriétés mécaniques des Aciers phosphores. Par L. Gruner. 8vo. Paris, 1870.

Gwynne, J.E.A. Descriptive Catalogue of Gwynne and Co.'s patented and improved machinery. 8vo. London, 1869.
Hampden, J. Grod's Truth or Man's Science. Which shall prevail? $\mathfrak{E} 500$ even on the issue offered by John Hampden, Esq. 12 mo . Swindon, $18: 9$.
___ Is Water Level or Convex, after all? The Bedford Canal Swindle Detected and Exposed. 8vo. Swindon, 1870.
Haywood, W. Report of the Streets Committee of the Mon. the Commissioners of Sewers of the City of London on the Val-de-Travers compressed asphalte carciage-way l'avement. By William Haywood. 8vo. London, 1870.
liciuke and Davis. A History of Diving. 8vo. Cuts. London, 1870.

Henderson, D. M. Report of the Chief Coast-Lights' Engineer in reference to the Sea-Lighting of the Yang-Tze Iiver. 4to. Plates. No place, 1869.
Heppel, J. M. The Theory of Continuous Beams. By John Mortimer Heppel. 8vo. Loudon, 1870.
Hewitt, A. S. Geology of New Jersey. By George M. Cook. 8vo. Folio Atlas of Plates. Newark, 1868.
IIill, M.-General. The Railway Problem, 1870. By Major-General John Hill, R.A. 8vo. London, 1870.
Hind, J. R. Path of the 'Total Plase of the Solar Eelipse, December 21, 22, 1870. 8vo. No place or date.
Llomersham, S. C. Canterbury Gas and Water. New WaterSupply. Report from the Engineer to the Waterworks, and a chemical analysis of the water from the new well at Wincheap. By Dugald Campluell. Svo. London, 1869.

Huscason, C'apt. J. C., R.N. Remarks on the Abyssinian Expenditure and on the general inefficiency of the over-sea Steam 'Transport for Military pmposes. By bohm Cochrane Iloseason, Captain Royal Navy. 8vo. Map. London, 1870 .
lmperial Chiversity of hazan. Series of 21 volumes in linss,

10NORS.
TITLE OF WORK.
being publications of the University. 8vo. Kazan, various lates.
Intian Government. A Catalogue of Maps of the British Possessions in India and in other parts of Asia. 4to. London, 1870.
- Memoirs of the Geological Survey of India. Vol. VII. Part I. Svo. Plates. Calentta. No date.
——— leeords of the Geological Survey of India. Vol. II. l'art t.-Vol. III. Part 3. 8vo. Caleutta, 1869-70.
———— Report on C'artographie applications of Photograplyy as used in the Topographical Departments of the principal States of Central Europe. With Notes on the European and Indian Surveys. By Lient. J. Waterhouse. 8vo. C'alcutta, 1870.
- The Annals of Indian Administration in the year 1868-69. Vol. XIV. Part I. 8vo. Serampore, 1870.
Institution of Civil Engineers of Ireland. Transactions. Vol. VIII. Part I. 8vo. Dublin, 1866.
In-titution of Engineers in Scotland. Transactions. Vol. NI. and XII. 8vo. Plates. Glasgow, 1868-70.

Justitution of Mechanical Engineers. Proceedings, 3 and 4 August, 1869. Part II.-2 and 3 August, 1870. Part I. 8vo. Plates and euts. Birmingham, 1869-70.
Lustitution of Naval Architects. First Report of the Committee of the British Association on the stability, propulsion, and sea-going qualities of ships. Exeter, 1869. 8vo. No place or date.
Transactions. Vol. XI. 4to. Plates aud cuts. London, 1870.

Institution of Surveyors. Transactions. Session 1869-70. Vol. II. 8vo. London, 1870.
Iron and Steel Institute. Transactions. Meeting in London, May, 1870. 8vo. Plates. Neweastle-on-'Iyne, 1870.

Jordan, C. H. Tabulated Weights of Angle, T, Bulb, Beam, Round, Square, and Flat Iron, for the use of Naval Architects and Shipbuilders. 16 mo . London, 1870.
Keefer, S. General Report of the Minister of Publie Works of Canada for the year ending 30th of June, 1869. 8vo. Ottawa, 1870.
Konigl. Rheinisch-Westphälisehen Polytechnisehen Schule zu Aachen. Programm fur den C'ursus, 1870.71. Sro. Aachen, 1870.

1 ONORS.
TITLE OF WORK.
Koninklijk Institunt van Ingenieurs. Catalogus der Boekerij. Vierde Aflevering. 8vo. 'sGravenhage, 1869.
Tijdschriften, 1869-70. 1-5 Aflevering. 4to. 'sGravenhage, 1869-70.
Lacretelle, S. Estimation des Houillères. Par S. Lacretelle. 8vo. St. Étienne, 1870.
Lacroix, E. Annales du Génie Civil. December, 1869—July, 1870. 8vo. Plates and euts. Paris, 1869-70.
Lall, L. K. A Treatise on Surveying Instruments designed for the use of Native Surveyors. By Liunhya Lall. 8vo. Roorkee, 1857.
———Designs for Wooden Bridges, together with Rules for calculating the area of the Waterway and the seantling of the Timbers. By Lalla Kunhya Lall. 8vo. Foliu Atlas. Roorkee, 1860.
——— Paper on the Mode of drawing the different kinds of arches made use of in building. By Kunhya Lall. 8vo. Lahore, no date.
—_ Practical Essays in Persian on moral subjects, entitled 'Goolzar IIindee.' By Rai Kumhya Lall. Second Edition 8 vo. Lahore, 1870.
———Rules for calculating the Velocity and Discharge of Rivers and open courses. By Lalla Kunhya Lall. 8vo. Cuts. Lahore, 1857.
——— Lahore Central Jail. By Lalla Kunhya Lall. 8vo. Cuts. No place or date.
———Tree Spurs on the Ravee. 8vo. Cuts. No place or date.
———Useful Rules and Tables relating to the measurement of Timber. By Rai Kmhya Lall. 8vo. Roorkee 1869.
Latham, B. Report upon the Influenco of the Sewage Irrigation Works at Beddington on the Mealth of the Inhabitants of the Neighbourhood. By Baldwin Latham. 8vo. Plate. Croydun, 1870.
Latham, G. India to England. Proposed new Overland Route, via Turkish Arabia. By George Latham. 8vo. Map. Calcutta, 1870.
Le Chatelier, L. Chemins de Fer. Marehe à contre-vapeur desMachines Locomotives. Question de Priorité. Par L. Le Chatelier. 8vo. Paris, 1870.

- De la Contre-vapeur employée comme Frein. Declaration de six Inspecteurs-Génćraux des Ponts et Chaus-

Donors. title of work.
sées et des Mines à propos des opinions émises par les conseils d'administration des six grandes compagnies. 8 vo. Paris, 1870.
Lockwood and Co. Lockwood's Engineers' and Contractors' Offico Almanac and locket Companion for the year 1870. 12 mo . London, is70.
'The Engineers', Arehitects', and Contractors' Pocket-book for 1870. 12mo. Plates and euts. London, 1870.

Login, T. Report on the Suez Canal. By T. Login. 4to. Cuts. Umballa, 1870.
Macgregor, J. The "Rob Roy" on the Jordan, Nile, Red Sea, Gennesareth, \&c. A Canoe Cruise in Palestine and Egypt, and the Waters of Damasens. By J. Macgregor. 8vo. Plates and euts. London, 1869.
M'lienzie, A. The P'arks, Open Spaces, and Thoronghfares of London. By Alexander M•Kenzie. 8vo. London, 1870.
Madras Govermment. Series of Reports and Papers relating to Irigation in the Madras Presideney. Bound in Four Volumes. Folio. Madras, 1867-69.
Manchester Steam Users' Association. Chief Engineer's Monthly Reports to Executive Committee, Nos. 95-106. 8vo. Manchester, 1869-70.
——— lieport of the Committee of Management. 8vo. Manchester, 1870.
Marshall, P. P. Report to the Tottenham Local Board of Health on the Disposal of tho Sewage of their Distriet, May, 1870. By P. P. Marshall. 8vo. Plate. London, 1870.
Martin, E. B. On Steam Boiler Inspection. By E. B. Martin. 8vo. Glasgow, 1870.
Martin, E. Projet de Construction d'un Tunnel sous-marin pour l'établissement d'un Chemin de Fer devant relier la France à l'Angleterre. Système Ernest Martin et Gilbert le Gay. 4to. I'lates. Paris, 1869.
Medley, Colonel J. G. A Short Account of the Ganges Canal; with a Description of some of the Principal Works. By the late Colonel Baird Smith. 8vo. Plates and cuts. Roorkee, 1870.
Average Plans of Bridges. Prepared by J. H. E. Mart Folio. Plates. Roorkee, 1868.
Ditto. Drains and Culverts. Prepared by J. H. E. Hart. Folio. Plates. Lioorkec, 1868.

10NORS.
TITLE OF WORK.
Medley, Colonel J. G. Catalogue of Central Library attached to the Civil Engincering College, Roorkee. 8vo. Roorkee, 1863.

Ditto. Supplement up to Mareh 31st, 1869. 8vo. Roorkee, 1869.
——— Irrigation Tracts, Nos. I.-III. 8vo. Various dates.
—_ Practical Treatise on Permanent Bridges for Indian livers. By Lieut.-Col. F. Abbott, C.B. Second Edition. With a Description of the use of Wells for Innndations. By Capt. P. T. Cautley. 8vo. Agra, 1850.
——— Professional Papers on Indian Engineering. Vols. V. and VI. Edited by Major J. G. Medley, R.E. Svo. Plates and ents. Roorkee, 1868-69.
——— Report of the Principal Thomason Civil Engineering College for the Official Year, 1869-70. Folio. Roorkee, 1870.
—— The Roorkee Treatise on Civil Engineering in India. Compiled by Major J. G. Medley. Vol. I. 2nd Edition. Roorkee, 1869.
——— 'Thomason Civil Engineering College, Roorkee. Annual Examination, August, 1870. Folio. Plates and cuts. Roorkee, 1870.
Messent, P. J. River Tyne Improvement. Report of John F. Ure, Esq., Engineer to the Tyne Improvement Commissioners, on the Plan of a Doek on the Low Lights Shore. Folio. Plate. No place, 1870.
Ditto. Report on the Proposed Abolition of Tynemonth Light, and the substitution in its stead of a Light on Souter Point. By John F. Ure, Elward Lishman, and Philip J. Messent. Folio. No place, 1870.
———Tynemonth Light. Letter of the Secretary to the Board of Trade to the Chairman of the Tyne Commission. August 16, 1870. Folio. No place, 1870.
Meteorological Office. Quarterly Weather Report, with Pressure and Temperature Tables for the year 1869. P'art I. Jannary-March, 1869. 4to. Plates. London, 1870.
——— Report of the Meteorological Committee of the Royal Society, for the year ending December 31st, 1869. 8vo. Cuts. London, 1870.
Meteorolugical Suciety. Proceedings. Vol. V., Parts 45-50. 8vo. I'lates. London, 1869-70.
Metrophtitan Buard of Works. Report of the Chiel Officer of the

JONORS.
TITLE OF WORK.
Metropolitan Fire Brigade on the state of the Brigate, and the Fires in London during the year 1869. Svo. London, 1870.
Michelot, P. Expériences sur la Résistance des Matériaux it l'Eerasment. Par l'aul Michelot. 8ro. P'aris, 1863.
——— 1o. Do. Paris, 1868.
Mirland Steam Boiler Inspection and Assurance Company, Chief Engincer's Report. With liecords of Boiler Explosions, 1869. Sro. Cuts. No place or date.

Millar, J. Otago Provincial Comncil. Session XXVI, 1869. No. 2. 8vo. Dumedin, 1870.

- - Otago Provincial Comencil. Dehate on Southern Railway Loan. 8vo. Dunedin, 1870.
———Otago Provincial Council. Debates on Dunedin ant Port Chalmers Railway. Session NXVII., 1870. 8vo. Dunedin, 1870.
Mille, - (through W. Maywood.) Service Municipal des Travaux Publics. Service des Eaux d’Égout. Année 1869. Compterendu des Travaux et des Résultats. Rapports des Ingénicurs. 4to. 4to. Atlas of Plates. Paris, 1870.
Miners' Association of Cornwall and Devonshire. Ammal Reports, 1868 and 1869. 8vo. Trirro, 1868 and 1869.
Moorsom, L. II. The Chronicle and Directory for China, Japan, and the Phillipines. 8vo. Hong Kong, no date.
Morton, J. C. An Agricultural Experience of 300,000 tons of North London Sewage, 1867. By J. Chalmers Morton. 8vo. London, 1868.
National Boiler Insurance Company. Chief Enginecr's Report, 1869. 8vo. Manchester, 1870.

Nclson, J. Grand Trunk Railway of Canada. Seven Pamphlets relating to the Railway, and Emigration to North America. Bound in 1 vol. 8vo. London, 1869.
Nilaji, B. Bombay Mechanics' Institution. Amnual Report for the year 1868-69, with Proceedings of the Annual General Meeting, held on the 27th of April, 1869. 8vo. Bombay, 1869.
——— University of Bombay. Convocation. January 11, 1870. 8vo. Bombay, 1870.
Nording, W. Documents relatifs aux Viadues Métalliques de la Ligne de Commentry à Gannot. Par W. Nording. 8vo. Plate. Paris, 1870.
North of England Institute of Mining Engineers. Transactions.

Vols. XVII. and XVIII. 2 Vols. 8vo. Plates. Newcastle, 1869-70.
O'Neill, C. New Zealand. Parliamentary Debates. Fifth Session of the Fourth Parliament. Nos. 6 and 7. July 23rd and 30th, 1870. 8vo. Wellington, 1870.

Session XXV., 1870. Report of the Engineer-inChief on Public Works on the Gold Fields, for 1869, and on Works proposed for 1870 . Folio. Plate. Thames, 1870.
Ohren, M. British Association of Gas Managers. Inaugural Address by Magnus Ohren, Esq., President. 8vo. London, 1870.
Oppermann, C. A. Le Propagateur des Travaux en Fer. Nos. 35, 36. Folio. Plates. Paris, 1870.
Ormiston, T. Memorandum as to the Toolsee Scheme of Water Supply, 1870. By Thomas Ormiston and Captain Hector Tulloch, R.E. Folio. Plates. Bombay, 1870.
Ordnance Survey Department. Report on the Geology of the County of Londonderry, and part of Tyrone and Fermanagh. By J. E. Portlock. 8vo. Dutblin, 1843.
Parallax. Experimental Proofs that the Surface of the Earth is not Convex, but IIorizontal. By Parallax. 8vo. London, 1870.
Peacock and Buchan. Prospectus of Composition for the Bottoms of Iron, Wood, Coppered, or Joined Vessels, \&c. Svo. Cuts. Exeter, no date.
Peabody Institute. Address of the President to the Board of Trustees on the Organization and Government of the Institute. 8vo. Baltimore, 1870.
——. Discourse on the Life and Character of George Peabody. By Severn Teackle Wallis. 8vo. Baltimore, 1870.
___ Mr. Peabody's Letter of September 22nd, 1869. Third Annual Report of the Provost to the Trustees, June 2, 1870. 8vo. Baltimore, 1870.

Phillips, J. A. Notes on the Chemical Geology of the Gold Fields of California. By J. Arthur Phillips. 8vo. No place, 1868.

Porter, J. II. The Sugar Beet, and Beet Sugar. By John Henderson Porter. Svo. London, 1870.
Price, Dr. D. S. Report of the Commission on the IIeating, Lighting, and Ventilating of the South Kensington Museum; together with Minutes of Evidence and Ap, pendix. 8vo. Lundon, 1869.

DONORS. TITLE OF WORK.
Proprictors. Annales Industrielles. 1869, No. 25-1870, No. 21. Folio. Paris, 1869-70.
——— Engincering. Nos. 207-259. Folio. Plates and cuts. London, 1869-70.
—_ The Architect. Nos. 48-99. Folio. Plates and cuts. London, 1870.
The Artizan. No. 12, 1869-No. 11, 1870. 4to. Plates and cuts. London, 1869-70.
The Athenæum. Nos. 2198-2249. 4to. London, 1869-70.
—— The Bombay Builder. Vol. IV. No.11. 4to. Plates. Bombay, 1869.
The Builder. Nos. 1401-1452. Folio. Plates and cuts. London, 1869-70.
The Builders' Trade Circular. Nos. 136-187. Folio. London, 1869-70.
'The Civil Engineer and Architects' Journal. December, 1869-November, 1870. Folio. Plates. London, 1869-7().
—— The Engineer. Nos. 728-779. Folio. Plates and euts. London, 1869-70.
The Journal of Gas Lighting. Nos. 447-473. Folio. London, 1869-70.
——— 'The Mechanics' Magazine. December, 1869-November, 1870. Folio. Cuts. London, 1869-70.
--.- The Technologist. Nos. 1-8. Folio. Plates and cuts. New York, 1870.
Purdon, W. A Sketch of Eastern Bengal, with reference to its Railways and Government Control. 8vo. Map. Calcutta, 1861.
Quetelet, A. Notices Extraites de l'Annnaire de l'Observatoire Royal de Bruxelles pour 1870. Par le Directeur, A. Quetelet. 16 mo . No place or date.
Quinette de Rochemont, Baron. Notes sur les Phares Electriques de la Heve. Par M. Quinette de Rochemont. 8vo. Paris, 1870.
Rankine, Professor W. J. M. Glasgow University Calendar for the year 1870-71. 12 mo . Glasgow, 1870.
Rawlinson, R. Address on Health, delivered by Robert Rawlinson, C.B., at the Newcastle-on-T'yne Congress of the Social Science Association, September, 1870. 8vo. London, 1870.
———Report upon Inquiry as to the Truth or otherwise
of certain allegations contained in a Memorial calling attention to the Pollution of the River Thames by the discharge of Sewage through the Northern Main Outfall Sewer of the Metropolitan Board of Works. By Robert Rawlinson, C.B. Folio Maps. London, 1869.
Regnault, V. Relation des Expériences pour déterminer les lois et les données physiques nécessaires au calcul des machines à feu. Par V. Regnault. 4to. Paris, 1870.
Reilly, C. On the present state of knowledge as to the Strength and Resistance of Materials. By Jules Gaudard. 8vo. 1'lates and euts. London, 1870.
Rowe, R. R. Report of G. W. Stephenson, C.E., to the Cambridge Improvement Commissioners. 8vo. Cambridge, 1870.
Richmond, V. R. Annual Report of the State Engineer and Surveyor on the Canals of New York, 1867, 1868, and 18!9. 8vo. Plates. Albany, 1868-69.
-_ Ditto. Tabulations and Deductions from the Reports of the Railroad Corporations for the years ending September 30, 1867 and 1868. 8vo. Albany, 186869
Rickard, Major F. I. The Mineral and other Resources of the Argentine Republic (La Flata) in 1869. Published lyy special authority of the National Government by Major F. Ignacio Rickard.

Romano, A. Esposizione di Quatro Nuove Scoperte. Il Moto Perpetno, \&e. Per Antonio Romano. 8vo. Plate. Como, 1870.

Royal Agricultural Society. Journal. Vol. VI. 8vo. Cuts. London, 1870.
Royal Artillery lustitution, Woolwich. Proceedings. Vol. VI., No. 2-Yol. VII., No. 22. 8vo. Plates and cuts. Woolwich, 1869-70.
Royal Colonial Institute. Proceedings, 1869. 8vo. London, 1869.
Royal Commission on Water Supply. Appendix to the Minutes of Evidence, together with maps, plans, and an index. Folio. London, 1869.
Royal Cornwall Polytechnic Institution. Thirty-third, thirtyfourth, and thirty-seventh Annmal Reports. 8vo. Falmouth, 1865.
Royal Dublin Society. Journal. No XXXIX. 8vo. Dublin, 1869. Royal Geographical Society. Journal. Vol. XXXIX. 8vo. Maps. London, no date.
——— Proceedings. Vol. XIV. 8vo. london, 1869-70.

DONORS. TITLE OF WORK.
Royal Institute of Pritish Arehitects. Sessional Papers, 1869-70. to. Plates and ents. London, 1869-70.
Royal Institntion of Great Britain. Proceelings, Vol. V. Part VII.-Vol. V'I. Part II. 8vo. Lamdon, 1870.

Loyal Irish Aealemy. Transtetions. Vol. XXIV. Polite Literature, Part IV. Antiquities, Parts VIII.-NV. 4to. Inblin, 1867-70.
Toyal National Life-Boat Institution. Ammal Report for 1870. 8 vo. Cuts. London, 1870.
Royal Siottish Society of Arts. Transactions. Vol. VIII. Part I. syo. Edinburgh. No date.
Royal Society of Elinburgh. Proceedings. Session 1869. Vol. VI. Svo. No place or date.
——— Transactions. Vol. XXV. Part II. 4to. Plates. No place or date.
Royal Society of London. Plilosophical Transactions. Vol. CLIX. Part. II. Vol. CLX. Part I. 4to. Plates. London, 18 亿0.
——— Proceedings. Nos. CXV.-CXXIII. 8vo. London, 1869-70.
Royal United Service Institution. Journal. Vol. XIII. No. NLIV. -Vol. XIV. No. LX. Svo. Plates and cuts. London, 1869-70.
Russian Govermment. Fifty volumes in Russ, being Memoirs of the Institution of Civil Engincers of St. Petersburg. 8vo. l'lates. St. Petersburg, varions dates.
Sabine, li. On Pnematic Transmission throngh Tumnels and l'ipes. By Robert Sabine. 4to. London, 1870.
Sächsischen Ingenieur-Vereins. Protokolle. 8vo. Dresden, 1870.
———Ditto. Exeursion nach Berlin am 22-24 Mai, 1870. 8vo. Dresden, 1870.
Saloff, Professor. Seven volumes in Russ, relating to Mathematical and Engineering questions. Folio. 4to. and 8 vo. St. Petersburg, varions dates.
Samuel, Brothers. Wool and Woollen Manufactures of Great Britain: an historical sketch of Rise, Progress, and present Position. 8vo. London, 1859.
Samuel, J. Description of Humphroy's latent Post and Railway. 8vo. London, 1870.
Sandberg, C. P. Light Railways in Sweden. By C. P. Sandberg, C.E. 4to. Cut. London, 1870.
_18- Royaume de Suède. Atlas des Constructions et du [1870-71. N.s.]
bosols.
TIMLE OF WORK.
Matériel des Chemins de For de l'État. Tol. I. Folio. Stockholm, 1870.
Sassoon Mechanics Institution. Annual Report for the year 1869-70. 8ro. Bombay, 1870.
School of Military Engineering. Lectures. Building Materials. By W. Y. Dent. Railway Construction, By W. Cawthorn U'nwin. Folio. Brompton, 1870.
——.- Analytical Tables, \&-c., for use in the Laboratory. By Quartermaster-Sergeant Ingram. 12mo. Brompton, 1870.
Scott, M. On an Improved Method of constructing Composite Ships. Svo. Ilate. No place or date.
Selwyn, A. R. C. Geological Survey of Canada. Notes on Coal from Springhill, Cotinty Cumberland, Nova Scotia. By Edward Hartley. 8vo. No place or date.
-_————_ Notes on Tron and Iron Ores. By T. Sterry Hunt, LL.D. Svo. Montreal, 1870.
Selwyn, Capt. On the P'rogress of Liquid Fucl. By Captain Jasper H. Selwyn. Svo. No place or date.
Simplin, Marshall, and Co. Adcock's Engineers' Pocket-Book for the year 1870. 12 mo . London, 1871.
Smith, T. M. The Goveruor and Company of Copper Miners inz England. Reports of Messrs. T. Macdougall Simith, Robert C. May, John Arthur Phillips, and John Bourne. Folio. Plates. London, 1870.
Smithsonian Institution. Annual Report of the Board of Regents for the year 1868. 8ro. Washington, 1869.
-_ Smithsonian Contributions to Knowledge. Vol. XVI. 4to. Plates. Washington, 1870.
————Smithsonian Miseellancous Collections. Vols. VIII. and IX. 8vo. Washington, 1869.

Smyth, R. B. Supplementary ('atalogue of Minerals, Rocks, and Fossils, which have been Collected by the Mining Department, Melbourne, Victoria. Svo. Melbourne, 1869.
Societì degli Ingegnere e degli Industriali in Torino. Atti. Anno IV. 1870. Fasc. I. 8vo. Torino, 1870.
Société des Ingénieurs Civils. Mémoire et Compte-rendu, 1869. Parts ©-4. 8vo. Plates and cuts. Paris, 1870.
Sopwith, 'T. Revista Minera. Nos. 4i8-491. 8vo. Madrid, 1869-70.
South Wales Institute of Engincers. Proceedings. Vol. VI., No. 4-Kol. VII., No. 1. 8vo. Plates. Merthyr Tydvil, 1869-70.
inNors. TITLE OF WORK.
Special Commissioner of the (I.S.) Revemue. Smmary Statement, from Munthly Renms of Collectors of Customs, of Foreign Commodities imported into the United States during the montlis ended July 31st, Angust 31st, and September 30th, 1869. too. Washington, no date.
Spon, E. and F. N. Spon's Dictionary of Enginecring. Nos. 22-4?. 4to. (iuts. London, 1869-70.
Stephenson, G. R. 'The Engincers' Manual of the Local Marino Board Examinations, for Certificates of Competency, as Second and First Class Engineers. By Thomas L. Ainsley. Second Edition. 8vo. Plates and euts. South shiclds, 1868.

Sugg, W. 'T'. The Theory of the Jet Photometer and Duration Test. By T. N. Kirkham and W. Sugg. Sheet. London, 1869.
Symons, G. J. British Rainfall. On the Distribution of Hain over the British Isles during the year 1869; as olserved at 1500 Stations in Great Britain and Ireland. Compiled by G. J. Symons. 8vo. l'lates and ents. London, 1870.

- —— Report of the Rainfall Committce of the British Association for the year 1868-69. 8vo. London, no date.
—_ Symons's Monthly Meteorological Magazinc. December, 1869-November, 1870. Sro. l'lates and cuts. London, 1869-70.
Tarn, E. W. On the Stability of Domes. By E. Wyndham Tarn, M.A. Sro. London, 1869.
—_- The Science of Building. An Elementary Treatise on the Principles of Construction. By E. Wyndham Tarn. 8 vo. Cuts. London, 1870.
Thackeray, Capt. E. T. Elements of Chemistry. Theoretical and lractical. By William Allen Miller, M.D. Part I.-. Chemical Physies. Fourth Edition, with additions. Svo. Cuts. London, 1867.
Tumbull, G. Observations on the Methods of carrying out the l'nblie Works of India. By George 'Iumbull. Svo. Calcutta, 1870.
Turner, R. Suggestions respeetfully offerel by Richard Turner (of Dublin) for the Improvement of the Euston Station, London. 8vo. London, 1870.
United States Government. Report of the Superintendent of the United States Coast Survey, showing the progress of the

DONORS.
TITLE OF WOIRK.
Survey during the year 1866. tto. Maps. Washington, 1869.

Inited States Govermment. Patent Office. Anmal Report of the Commissioner of Patents for the year 1867. Fomr vol: 8vo. Cuts. Washingtom, 1868.
University College, London. Calendar, Session 1870-71. Svo. London, 1870.
Vallin, M. Chauffage et Ventilation par les Calorifères ì Air Chaud de Marius Vallin. 8vo. Annecy, 1869.
Verdon, G. F. Victorian Government Railways. Reports of the Board of Land and Works, 1862 to 1868 , both inchsive. Bound in one Vol. Folio. Sydney, varions dates.
Vietorian Government. Mineral Statistics of Victoria for the year 1869. Folio. Melbomene, 1870.
——— Reports of the Mining surveyors and Registrars. Quarters ending 30th Sept., 1869, to 30th June, 1870. Folio. Melbourne, 1869-70.
Vignoles, C. Anuaire du Ministre de l'Agrieulture, du Commerce, et du Travaux Publies. Pour l'année 1869. Sro. Paris, 1869.
Webb, F. C. Up the Tigris to Bagdad. By F. C. Webb. 8vo. Plates. Lonton, 1870.
Wells, II. India and Russia. The Scinde Railway Company: its Origin and l'olicy. By Hardy Wells. 8vo. Map. London, 1869.
Whitaker, W. On the conncetion of the Geological Structure and the Physical Features of the South-East of England, with the Consmmption Death-Rate. By William Whitaker, B.A. 8vo. London, 1869.
Whitworth, Sir J. Miscellancons Papers on Mechanical Subjects. By Joseph Whitworth. 4to. l'lates and cuts. London, 1869.

Wilson, J. M. Pemnsylvania Railroad Bridge over ThirtiethStreet, 1hilatclphia. By Joseph M. Wilson. 8vo. Plate. I'hiladelphia, 1870.

IMAPS, CHARTS, \&c.
Addis, W. J. Nap of the Island of Bombay. Mounted on Rollers and Varnished.
O'Neill, (. I'hotograph of tho Moanaiari Tramway (N./̌.). Main and Wire Lines.
lorves, J. 'Twe mounted lhotographs representing respectively the loyal Mail Steamships '(ity of Baltimore' and ' C'ity of l'aris,' of the Imman Company.

O F F I C E RS.-1870-71.

(Comaril:
PRESIDENT.
Charles Blacker Viexoleis, F.R.S.
VICE-PRESIDENTS.

Josepir Cubitt, Thomas Elliot Harrison,

Thomen Hawrsley, George Willoughby Hemaxs.

MEMBERS.

Janes Abersetily, Whleam Hexpy Barlow, F.R.S., John Fiederic Pateman, F.R.S., Josepif Wm. lidzaliette, C.B., Nathaniel Beardmore,

> Frederick Joseril Bramwell, Janes. Bhunlees, John Murray, Georie liobert Stepherson, Edward Woods:

ASSOCIATES.

James Joseph Allport,
| Mejor William Palliser, C.B.

aldonorary Čountillors:

PAST PRESIDENTS.

Sir John Rexnie, F.R.S., George Parker Bidher, dohn Ilawkshaw, F.J.S.',

Jomn R. M'Clent, M.P., F.R.S., Join Fowler, Cifarles Hutton Gregory.
(1)ficers:

AUDITORS.

Hutton Vignoles, $\mid \quad$ Robert Charles May.

Whliam Matthew Coulthurst.
HONORARY COUNSEL.
HONORARY ARCHITECT.
Charles I'. F'. Wondeworth, Q.C. | Thomas IIenhy Wyatt, P.li.I.l.A.

HONORARY SECRETARY.
Charles Manby, F.R.s.

SECRETARY.

James F'onrest.

> Jannary $10,1871$. JOSEP' CUBIT'T, Vice-President, in the Chair.

The following Candilates were balloted for and duly elected:Janes Edward D.s amf Fidncis Jones, as Members; Lient.-Col. Geonge Cinesmey, Ti.E., iomin Whibiam Inglis, and Cimarles Marshall Bole, as Assuciates.

It was amomed that the Comeil, acting muler the provisions of Sect. III. Cl. 7 of the Bye-Laws, had transfermed Eisward Gorto from the class of Associate to that of Member.

Also that the following (amdilates, having been duly recommemderl, had been atmitted by the Comeil moler the provisions of Sect. IV. of the Sye-Laws, as Students of the Institution : - Heniry Charles Buggallay, Chawford Peter Barlow, Frank Stuaft Courtney, Thomas Duerinn, Charles Elmin, George Charles Gilmore, Artiur Cimbles Gotto, Richarid Mamiton, Willian Ebward Horis, Joserif Tintorer, and Frederick Thomas Young.

No. 1,229.-" An Account of Floating Docks, more especially of those at Cartagena and at Ferrol." By Georae Banks Rennie, M. Inst. C.E.

Floating docks are designed to enable the submerged part of the hull of a ship to be examined, repaired, and prainted, for which purpose, in many localities, they are found more advantageons than other ways of performing those operations.
'The carliest method of effecting repairs was by beaching, or carcening the ressel; then by excavating a cavity for it on the shore; and lastly, by making a floating structure capable of receiving the ship, and discharging the water from the space between the inside shell of the floating structure and the outside of the ship. Each of these different plans has been much improved upon. 'The former method of heaching vessels, by hanling' them up on a gravelly or sandy shore, or, as in the case of the war galleys at ancient Carthage, on ways or slips, with sheds over them, surromding a basin, has heen superseded by the more efficacions plan of Morton's patent slip, with its improvement of hydranlic hanling-up gear. C'areening, now nearly abolished, was bronght to perfuction towards the end of the last century by the Dutch and others. 'The excavated dock,' from a mere excavation in the bank of a river, open to the flow and ebb of the tide, the
sides of which were supported with timber, has given way to the more massive construction of granite docks, introduced by tho late John Remnie. And lastly, the wooden "floating docks," which existed on the river Thames and elsewhere at the commencement of the present century, have been replaced by iron struetures capable of lifting vessels of the largest class. It is this latter system, namely, that of Iron Floating Docks, which is treated of in the present laper.

Defore describing the Iron Floating Dock at Cartagena, an outline of the general introduction of floating docks, with such examples as have come unter the Author's notice, will be given. But those commonly known as screw or hydraulie docks will not be included, as they have been already diseussed in Mr. Edwin Clark's Paper on "The IIydraulic Lift Graving Dock," read before the Institution in 1866.?

The earliest exam, les resenbled a ship having one of the ends fitted with a pair of gates to admit the entrance of a vessel, the water being subserpently removed from the space between the dock and the ship. Decks of this kind formerly existed at Portsmouth and on the river 'Thames; the latter, the Author was informed by an ere-witness, was broken up abont fifty years ago. A similar arrangement may still be seen in some of the French ports, and on the river Garome, opposite Bordeans. On an examination of this six years ago, it was observed that balance chambers, or tanks, were usel for keeping the dock level on the water: one end was bilt up, and the other inclosed by a pair of wooden gates. A small stem-engine was used for working the pumps.

The 'sectional doek' and the 'balance dock' of Mr. Gilbert, both made of wood, are principally adopited in America. The former, as its name implies, is divided into as many seetions as are required for the particular vessel to le doeked. Each section consists of a rectangular woolden box made water-tight, and in the ends of these there is an open wooden frame-work of a height somewhat greater than the depth to which it is proposed to sink the dock. Within this frame a wooden water-tight hox slides up and down, which can be fixed loy means of a rack and pall to any repuired pusition. These boxes or tamks serve the purpose of keping the base or lower part of the dock steady, water not being allowed to enter therein. Thans a complete doek comsists of a series of eight or ten imbependent compartments lolow, with two moseable air-chambers to carh; and, although there are eertain

[^29]timbers comecting the different boxes, they are not constructed so as to enable any box to support the adjoining ones. The Author has been informed that the floating dock at Callao owed its destruction to this fact; for, while lifting a ship, some of the boxes, having more strain on them than others, were too suddenly lowered; the keel of the ship then got off the blocks, the vessel canted over, and simk with the dock.

The balanee floating dock, also introduced by Mr. Gilbert, and considered to be an improvement mon the sectional dock, consists of one compartment, divided internally into separate chambers (insteal of a series of independent compartments). Docks on this system have generally heen snecessful, and most of the dockyards of the United States Govermment have been supplied with them. They are nsed hooth with and without caissons at the ends; the heavier class of vessel, when the length does not exceed that of the dock, requiring caissuns.

In 1858, Mr. Gilbert was employed loy the Austrian Government to construct one of his timber balance docks for the new arsenal at I'ola. The dock was made at Venice, under the superintendenco of Mr. Gillbert, and was towed to lola when completed. It was of a similar construction to those previously made by him in America; but he dispensed with the end caissons, and gave the basement sufficient breadth and capacity to raise the largest vessel required to be docked. This dock has answered well, and dono good service. 'The largest vessels which have been lifted are tho 'Kaiser' serew line-of-battle ship, of 3,225 tons, and the 'Ferdinand Max' iron-clad, of 3,066 tons. In Appendix A a list is given of the different vessels doeked by it up to the end of 1867 .
The Author having been at Venice during the construction of Mr. Gilbert's wooden floating balance duck, and having ubserved the great quantity of timber required to give the necessary strength and stiffiness to support a first-class ship, came to the conclusion that a structure in irom would offer many advantages, and in the year 1859 he carried this idea into effect.

The Spanish Government having found great difficulty in constrecting stone graving docks at their naval arsenals, General Enesada, Director of Engineers, desired the chief of the Spranish Naval Commission in London to commmicate with the Messrs. Remic, relative to the construction of an iron floating dock for the naval arsenal of Cartagena, which shonld be capable of raising the class of iron-clad shipis then about to be added to the Spanish navy. The weight reguired to be lifted was stated to be from 5,000 tons to 0,000 tons, which repesents that of the ' Numancia,'
the 'Vittoria,' and other vessels. The dock proposel by the Messrs. Remic, and eventually adopted, was in principle somewhat similar to that constructed by Mr. Gilbert, at Venice ; but as it was of iron instead of wood, it was necessary to introduce certain modifications. In the wooden structure, in order to sink the dock sufficiently, it is not only necessary to allow water to run into the lower chambers, but water must le forced up into the top compartments at the sides, to overcome the buoyancy of the material of which the doek is constructed. In the iron structure, on the other haml, provision had to be made to prevent the dock sinking when the lower compartments were filled with water. To accomplish this, the upper part of the side walls was divided into compartments, forming permanent air-chambers, or floats, of a capacity sufficient to maintain the decks of the side walls from 6 feet to 8 feet above the level of the surrounding water. The Author considers these air-chambers essential to the safety of iron floating docks, and that the dock at Cartagena was the first practical example of carrying out an iron floating dock. Tp to the present time no other dock has raised so large a vessel as the ' Nmancia,' of 5,600 tons weight; and this ressel has actually been supported on it for a period of eighty days.

Within twelve months after the commencement of the Cartagena dock, one similar in principle, but of somewhat larger dimensions, was ordered for the naval arsenal of Ferrol ; but although completed and sent from this country, no decided measures have yet been taken to put it together.

The following is a list of floating docks, with their dates of construction, dimensions, and material, which have come under the Author's notice :-

Locality.	Country.	Eate.	Length.	Breadth.	I.ifting Power.	Material.
Portsmouth	Conited States	1851	$\begin{aligned} & \text { Fret. } \\ & 350 \end{aligned}$	$\begin{aligned} & \text { Fect. in. } \\ & 1054 \end{aligned}$	$\begin{aligned} & \text { TMn: } \\ & 8,070 \end{aligned}$	Woorl.
P'ensacola	United States	18.1	850	1054	8,100	
Pola.	Istria	18.57	:00	1080	10, 1:2	,
Mavannah	Cuba	18.5	300	790	($6,4: 3: 3$	
Cartagena	Spain	1559	824	1050	11,500	Iron.
Ferrol	Spain	1860	830	10.50	13,010	, ,
Souralaya	Java ${ }^{\text {a }}$ -	1861	$\because 0$	$70 \quad 0$	3,500	',
saimon	Corhin China					
Callan	l'etu		800	1000		
st. Thomas	West ludias	1866	300	11000	8,3.7	, ,
Bermuda	West Indies	1-66	$381 *$	1239	16,700	',

[^30]With the exception of the Bormoda duek, which approaches an elliptical or U-shaped form, all the dereks mentioned in the foregoing table are of a rectangular seetion, ant have a large proportion of breatth to depth of immersion, varying from abont $\frac{1}{8}$ to $1^{\frac{1}{0}}$, whereas the U-shaped form hats a depth of immersion of about $\frac{1}{3}$ of the breath. For a given displacement, the length being eonstant, as a rule the stablility of a floating borly varies in direct proportion to its brealth; lint as the stability is materially influenced by the height of the centre of gravity above the line of flotation, other sections approaching a semicireular form may, by lowering the centre of gravity, have a stability equivalent to the reetangular form. This requires the ends of a U-shaped dock to be closed in, either by gates or caissons, after the vessel has entered, as the keel of the ressel would be considerably below the line of flotation of the dock; whereas in a rectangular lock, as at Cartagena, the same stalility may lue olstained without the ineonvenience of closing $u p$ the ents, and usually there is less water to discharge. In the former case the volume of water occupying the space between the ontside of the ship and the inside of the dock has to be disposed of; in the latter merely the quantity of water representing the weight of the dock and of the ship. It will be seen from this that in the rectangular form the amount of p^{m} ping will vary as the weight of the ship, but, in the other case, the smaller the vessel the grater will be the quantity of water to be discharged. It is on these considerations that the rectangular form of dock was adopted for Cartagena.

In the docks Mr. Gilbert made in the United States, it was arranged that, after the doek with its ship had been about onehalf raised, the ends were closed by caissons, and the remaining water smrounding the ship was run into the lower comprartments of the dock. This was only required for the heaviest class of ships, but such was the inconvenience, that when Mr. Gilbert built the dock for Pola, he increased the breadth by a few feet, to render the stability greater, and he abandoned the caissons altogether.

The depth of the basement, or lifting chamber, of a floating doek on the rectangular system, like that at Cartagena, mainly depends on the lifting power required; for it is generally found that after the breadth to give sufficient stability has been determined, the depth refuired to olstain the neeessary displacement will allow of ample strength being imparted to the base to resist the transverse strain, the to the weight of a ship, without increasing the thickness of the material in the shell of the dock. From the difficulty,
however, of discharging water from a flat surface, a greater depth is sometimes given than is necessary, either for displacement or strength.

It will be observed that the bnoyancy of the empty chambers produces a strain on the basement, while supporting a ship on its keel, similar to that of a beam resting on a central fulcrum with a uniform pressure on the lower surface acting upwards, which is oqual to the weight of the ship supported. Although the strength of the duck transversely is calculated to resist this strain, the shores and bilge blocks when in use to a certain extent diminish the strain at the centre. Considering, however, the uncertainty of the pressure, it seems best to rely upon the strain being wholly borno by the metal in the centre. In the Cartagena dock the shell of the basement is made of a single thickness of $\frac{5}{8}$-inch plates; this in the centre for a breadth of about 6 feet is doubled, giving a thickness of $1 \frac{1}{4}$ inch of metal for resistance to the strain. For a vessel such as the 'Numancia,' weighing 5,600 tons, the strain would be $1 \cdot 32$ ton per sifuare inch, and for a vessel weighing 20 tons per lineal foot 1.5 ton per square inch. But, when the dock has no ship in it, the pressure upwards, due to the buoyaney, merely supports the weight of the side walls acting on the extremities of the beam, besides the weight of the basement which is aeting nearly uniformly over the whole surface.

It will be observed, on reference to the transverse sections of the Cartagena and the Ferrol docks (Plate 6), that arrangements are made for supporting the ship laterally by means of shores, such as are commonly used in graving docks, for which purpose there are two rows of altars for horizontal shores above what is usually called the 'broad altar;' but this is here replaced by a gallery, beneath which are eight rows of small altars or shoring steps. Besides these there are nine moveable 'bilge blocks' on the floor of the dock, which are worked by means of chains in communication with the upper leck.

Having described generally the form and construction of floating docks, the question naturally arises, How are these ducks to be placed in the required locality, and how are repairs, cleaning, and repainting of the submerged parts to be accomplished? First, the duck may either lee sent in piecess or be towed to its destination, for it is questionable whether it would be advisalle to provide a floating doek with sufficient self-contained power to be navigable by itself, unless it were found more conomical to fit it temporarily with machinery, which might be removed on arrival at its destination. The plan atopted for the wooden fluating dock of Pola
was to build it at Venice, and then to tow it to Pola when completed; that for lavamah was also towed when eompleted from New Orleans on the main land to Havannah. The dock recently made for Alexamtria was towed from France; those for Cartagena, Ferrol, Sourabaya, Saigon, Callaw, and St. Thomas's, were sent out in pieces and erected at the respective ports: lont the Bermuda dock, which was lamehed in the river Thames, was towed out to its destination. ${ }^{1}$ Secondly, the necessary mpairs, painting, or cleaning, can he performed in varions ways, viz., ly canting or carcening, beaching where there is sufficient rise and fall of tide, raising the submerged part ont of water by pontoms, or lastly, by floating the dock into a shallow excavation and closing the entrance. The former plan is intended to be used for the Bermuda, the latter has been adopited at Cartagena.

Two plans were proposed for that of Cartagena-one, lifting it by means of pontoons; the other, ly floating it into a shallow basin, out of which the water could be pmomed. The latter was eventually adopted, the dock loeing put together in the lasin, and floated out instead of being launched. The plan of the hasin originally proposed was rectangular, of a length somewhat greater than that of the dock, and of a brealth sufficient for the construction of three horizontal ways or slips, for hauling ships from the dock on to the dry land by means of hydraulie machinery.

The most convenient locality for the receiving basin was on the site of some old timber-ponds, at the south-west corner of the arsenal hasin; and it was considered advisable to make the end nearest the arsenal basin only of a lreadth sufficient for the floating dock to enter, the other end being spread out in a fan-shaperl form, wide enough for the three lines of ways before mentioned. Messrs. Remnie having proposed this plan, and having determined the dimensions of the basin, as far as the doek was concerned, the details of construction of this part of the work were intrusted to Don José Baldasano, a Spanish engineer of highways and canals.

At Ferrol it was decided merely to excavate a basin of sufficient size for the erection of the doek, without reference to any ways or slips, and to close the entrance by means of a cofferdam.

Having described, generally, the introduction and form of

[^31]floating docks, a more detailed description will now be given of the docks designed ly the Author, and carried into exceution by Messrs. J. and C. Remic.

Description of the Docks at Cartagent and at Ferrol. (Plate 6.)

As these two docks are of the same construction, the description of one will answer for both :-
Outside Dinensions.
\quad Cartagena.
Length 324 feet . . .
Fervol.
Brealth
Height of outside . .
H

The basement or lifting chamber is, at C'artagena, 324 feet long, and at Ferrol 350 feet long, 105 feet broad in looth cases, and 11 feet 6 inches, and 12 feet 6 inches deep respectively. It is composed of 5 -inch boiler plate, and is divided longitudinally into two equal parts, ly a plate-iron lulkhead $\frac{5}{8}$ inch thick, with angle irons 4 inches loy t inches on either side. Each of these parts is divided by transverse bmlkheads into ten equal compartments at Cartagena, and eleven such compartments at Ferrol. Thus the basement is formed at Cartagena of twenty, and at Ferrol of twenty-two water-tight and separate chambers. Each of these chambers is again divided into two equal parts, by a bulkhead parallel to the centre one, formed of plates 3 -inch thick. This is not water-tight but perforated, so as to permit a partial flow of water from one site to the other, thongh not to such an extent as to canse a rush of a large volume of water, in the event of the dock suddenly listing over.

Between each transverse bulkhead there are five lattice or trussed girders, at equal distances apart and parallel to these bulkheads, formed of T-irons, lack to back, $4 \frac{1}{2}$ inches by $3 \frac{1}{2}$ inches by $\frac{5}{8}$ inch. These cross each other diagonally, at an angle of about 42^{3}, and are attached to plates, 15 inches deep and $\frac{5}{8}$ inch thick, both at the top and at the bottom, and these again are mited to similar ones at right angles, by angle irons $3 \frac{1}{2}$ inches by : $3 \frac{1}{2}$ inchers.

Between the main girchrs, and miting them, are angle iron frames 2 feet 7^{3} inches apart, forming floors for strengthening the outside plating of the lasement against the pressure of water when the dock is submerged. The frames on the loottom of the base have in addition 'flow plates' 6 inches deep fixed to them. Every
sixth frame is carried down vertically and mited to the lower frame. They are then united in a lomgitudinal direction by means of diagonal braces. The hasement is thus strengthened liy mine elements in a longitndinal direction, viz., the two sides, the centre bulkhead, two intermediate bulkheads, and fom lines of diagonal truss-work.

The side walls run the whole length of the dock, one on each side of the hasement, with which, however, they have no communieation, and they are divided ly transverse bmbleads similar to those in the basement. 'They are also divided longitudinally by horizontal bulkheads, thus separating the wall into two parts, the upper of which serve as permanent air chambers into which no water is allowed to enter, the lower being used when the dock is sunk to an inereased depth for a large ship. The inner wall of the lower part is made in a sloping direction towards the centre of the dock, on which are angle-iron steps, to which are bolted balks of timher, serving as altars for the shores to abut against when supporting a ship. The outsine plating of the side walls is $\frac{9}{16}$ inch thick at the bottom, and is diminished to $\frac{3}{8}$ inch thick at the top.

The arrangement of the pumping machinery and distributing $\mathrm{l}^{\text {ip }}$ es to the varions compratments differs considerably from that adopted by Mr. Cilbert. In his docks pumps are placed in each lower compartment ; a line of shafting rms the whole length of the dock, and is worked by a steam-engine placed in the centre of its length. Each pump is driven fiom this shaft by a second motion, and can be comnected and discomected by means of clutch gear, so as to pump out any or all of the chambers, as may be required. Considering the nature of the material composing those docks, this was probally the most convenient pan; but it has the objection, that the machinery for regulating the quantity of water in each chamber is too widely distribnted, extending as it does along the whole length of the dock. In designing those for Cartagena and Ferrol, it seemed desimalle that the machinery should be as much concentrated as possible, so as to be under the control of one man, and at the same time to enalle a miform duty and speed of the engines to he maintained. The arrangement adopted was that of a pair of horizontal engines, working two pairs of lift pumps immediately under the engines, to draw water from a common pipe, commmicating with all the chambers. On the ends of these pipes are fixed the sluices of inlet for filling the chambers, and on the sides smaller sluices and pipes in communication with each chamber, so that by opening all the shaces the chambers are
filled, and on shutting the inlet shice, with the engines at work, one or any number of chambers may be discharged. Thus the whole engine-power may be employed in pumping out any one comprartment, if it is found desirable to do so, in order to balance, or level the dock.

It will be understood, from the form of the dock, that this applies to each side, each side having distinct proping arrangements. The man in charge of the dock commmicates to the opposite side by a simple arrangement of signals, the quantity of water in each compartment being indicated by floats.

The dimensions of the cylinders and promps are as follow :-
The engines were intended to make sisty revolutions at full speed, the pumps being reduced by gearing in the proportion of 2 to 1 .

The inlet sluices are four in number, $40 \frac{1}{4}$ inches in diameter. There are twenty distributing sluices and pipes, 18 inches in diameter, for Cartagena, and twenty-two for Ferrol. The maximum height which the pumps have to lift is 20 feet. The barrels of the promps, as well as the buckets and seats of the foot and delivering valves, are of grum metal, the valves being of indiarubber or leather. The compartments between the air chambers and basement or lifting chambers, termed the middle chambers, can have water admitted into them by four separate inlet sluices, $40 \frac{1}{4}$ inches in diameter, which may be regulated independently. The spindles, with the columns and hand wheels of all the sluices, are carried to the upper deck within the engine house, and can be manipulated in a space not exceeding 15 feet square. A compartment is made in the 'middle chamber' and basement chamber containing pumps and sluices, which are water-tight, so as to enalle them to be examined under all circumstances, by means of ladders leading from the engine honses.

The air pipes are 6 -inch cast-iron socket pipes, carried up from each basement and middle chamber to the uper deek, for the exit and entry of air during the filling or discharging of water into or from the chambers.

On the outside of the dock are fixed about a hundred wroughtiron ring lolts, 8 inches in diameter, for fastening small vessels or beats alongside.

The floor of the dock is covered with teak planking, 3 inches thick. This planking does not rest immediately upon the iron plating, but upon teak bearers of solid timber about 2 feet square. These are placel 16 feet apart, one over each transverse bulkhead and an intermediate one; the teak planking is in part made so that it can be taken up for the purpose of eleaning, and to give more room for driving long holts moder the bilge of the ship. The transverse teak beams are adapted for the use of bilge shoring hocks, which can be drawn inwards to the central line by means of chains passed throngh sheaves, cast-iron racks with palls heing fitted for the purpose of holding the blocks in their place. The keel blocks are such as are frequently used in large graving docks, and are made of teak with east-iron wedge pieces; these are placed at distances of about 5 feet apart, one over the centre of each transverse girder.

Each doek is provided with eight of Brown and Marfields powerful capstans, four on the basement and four on the 'top' sides,' with the necessary bollards, \&c. Besides these are fom large towing bollards, 5 feet high and 18 inches in diameter, made of plate iron; these are for the purpose of towing the doek from place to place when the distance is too great to use the eapstans. The sides of the dock are of yellow pine, $2 \frac{1}{2}$ inches thiek; the engine and boiler houses are also of the same material.

The sides and ends of the doek are protected by fender pieces, rumning vertieally the whole height of the doek, about 8 inches square, and between these, horizontal pieces of the same scantling are bolted to the vertical pieces, at intervals of about 5 feet. The fender pieces are not bolted through the iron plating, but to 4 -inch angle-irons rivetted to the plating, which are permanently fixed, so that the wood-work ean be renewed without danger of causing a leak by the removal of the bolts.

The iron, wood-work, machinery, de., as well as the capstans and other parts forming the floating doek, were prepared and put together in England, and then taken to pieces and sent out by sea to Cartagena, to he erected in the basin which had been in course of rreparation during the construction of the dock in England.

The town and naval arsenal of Cartagena are situated at the end of a spacious bay, about 1 mile in length and $\frac{3}{4}$ ths of a mile in breadth, the entrance being $3 \frac{1}{2}$ cables wide. 'The arsenal liasin is situated in the western corner, at the end of the bay, and is well protected by the high lands on the west, south, and east ; lut from the north it is exposed to the strong winds which blow from that
[1870-71. x.s.]
quarter. The hasin is rectangular, and measures in a westerly direction 1,120 feet, and 1,800 feet in a northerly direction, giving an area of about $46 \frac{1}{1}$ acres. It was originally from 30 feet to 40 feet deep, and was excavated by a powerful dredging machine to a depth of 50 feet where the dock is moored, and the dredging machine is still in operation for deepening the whole of the arsenal basin. This basin (Plate 7) was made towards the end of the last century, and is a fine specimen of engineering works constructed during a flowishing period of the country. The quay walls are of masonry, standing 4 feet 3 inches above the ustual water level; the different store-honses, dry docks, building slips, sheers, and cranes are placed on convenient sites round the basin. At the sonth-west corner there formerly existed several timber ponds, which in recent times ceased to be used for their original purpose. It was therefore determined to appropriate this site for the shallow basin, or dock receiver, with its three lines of ways or slips. The basin is of a uniform depth of 16 feet 6 inches from the top of the quay wall; the entrance is 120 feet 9 inches wide at the bottom, and 126 feet wide at the top for a length of 106 feet. It is provider with two grooves, an inner and an outer one, for the purpose of closing the entrance with an iron caisson.

The basin is 382 feet long on the north side and 345 feet on the south, and it has a curvature at the end of 320 feet radins, the chord of which is 200 feet. From this end rmo three lines of horizontal ways or slips radiating from the centre, from which the end of the basin is described. Each of these is 725 feet long and 45 feet broad, constructed with two altars, 5 feet 9 inches in breadth and 10 inches in height, one above the other, thus making the 'floor' of the ways or slips 1 foot $7 \frac{1}{2}$ inches below the surface of the gromad. Each is laid down with four lines of timber-ways, about 10 feet apart, with keel blocks to correspond with those in the floating doek, and is intended to receive vessels, after they have been raised by the floating dock, from the dock on to the slip, by means of hydraulic power. From the length of the slips, it is estimated that six vessels may lee buitling, or be under repair, at the same time, besides one on the floating dock. But this arrangement has not yet been fully carried out, though a somewhat similar disposition is in use for the duck at Pola.

The fomdations were made ly excavating the ground to about 7 feet in depth, and driving in piles at intervals of 3 feet $7 \frac{1}{2}$ inches. On these were put horizontal timbers, longitndinally and transversely, about 2 feet above the bottom, above which was laid
hydranlic concrete from 5 feet to 7 feet in thjekness. The concrete was formed of two parts of hydraulic lime, Portland or Theil, from Ardeche, France, four of sand from the lieach at Portus, and six to seven parts of scoria from the lead works at Escombrera. It was then mixed with sea-water in a large trongh, conveyed in baskets to the required spot, and thrown into wooden frames, where it quiekly hardened. The conerete was laid on the clay bottom as found upon the rock at the base of Mount Galeras; but nevertheless sea-water forcerl itself through in some places.

The piles are of Spanish and Italian pine, some of them having been driven about one hundred years ago, when the arsenal basin was eonstructed, and, from their perfect soundness, were again used in the new works.

The three top courses of the basin, the bottom, and the piers, are of squared stone from Alicante. The stone for filling in was obtained from the quarries in the adjoining Mount Galeras.

The Iron Caisson for the entrance was made by the Messss. Rennie, and is somewhat of the form of a ship, of nearly similar size and design to that constructed by them in 1858 for the basin of the floating dock at Pola. The length is 126 feet at the top, and 120 feet at the bottom, and the extreme breadth 18 feet. The water lines are elliptical, that form being very suitable for transmitting the pressure of water on the sides to the ends and bottom. The eaisson is provided with two sluices, $2 t$ inches in diameter, for filling the basin, and two, 18 inches in diameter, for sinking the caisson. The caisson was sent out in pieces, and put up in the entrance between the cofferdams, so that it could be floated and tried in its place previous to water being let into the basin.

The construction occupied about eighteen months in England, hut the work was not shipped for some time afterwards, and was many months lying at Cartagena before a start was made to put it together. This, combined with the difficulty of getting men to execute the work, the many festas, and official routine, retardel its completion. Particular instructions were given to prove all the chambers with water pressure, somewhat in excess of the greatest strain they might ever be sulject to. The engines and pumps were also tested, by admitting water to the basement compartments and pumping it out, so that the whole dock was in working order before being floated.

On the 2nd of June, 1866, water was let into the receiving basin, and the draught of the dock was found to be 4 feet 7 inches. This gives a displacement of water equal to 4,400 tons, the weight of the dock complete. It is made up as follows :-
Tons.
Plates, angle, T-iron and rivets 3,770
Machinery, viz engines, pumps, sluices and capstans . . . 160
Small forgings and castings, bolts, including handrails, mooring rings, keel block, wedges, \&c. \&c. 48
Calculated weight of teak and fir timber 422
Total 4,400

When the dock had been hauled out into the arsenal basin, orders were given to open the immersion valves, and in an hour and twenty-five minutes the lase was submerged 37 feet. However, the ressel not being ready, the dock had to remain in that position until the following morning, when at 9 a.m. the vessel was placed between the walls of the dock, promping was commenced, and at $1 \cdot 4.5$ p.m. the floor was above the level of the surrounding water, enabling the shipwrights to fix the shores under the bilge. The actual time that the engines were at work was under three hours: the dock was only once, for twenty minutes, out of level, which was cansed by one of the valves being opened without orders.

This first experiment gave the engineer so much confirlence in the working of the dock, that vessels of a larger size were afterwards raised, including iron-clads of from 4,400 tons to 5,600 tons.

In Appendix B a table is given of the weight and draught of water of the vessels taken on and off the floating dock at Cartagena to the end of July, 1868.

On more than one occasion, the efficiency of the air chambers has been fully testel, by leaving all the valves open, until the dock was hoyed up ly the air chambers in the side walls, when it was form that the greatest immersion was 40 feet, leaving the deeks of the side walls 8 feet out of the water. It will be understood that besides the actual air chambers, the pump and sluice chambers are also water-tight, giving a total buoyancy equal to 3,550 tons, leaving about 850 tons for the displacement due to the iron and woor-work forming the dock.

As previously stated, the largest vessel which has yet been docked at Cartagena is the 'Numaneia,' iron-clad. Although this ressel was mudergoing repairs for a periol of eighty days, the dock sustained no straining, or damage whatever, from the great weight rematuing so long a time in it. This is the more satisfactory from the 'Nmancia' heing one of the class of ressels for which the duck was originally designed. The operation of docking was jerformen with great facility, although from the weight of the ship, it was deemed prudent to raise her very slowly, the engines only making 40 revolutions per minute. The dranght of water
of the dock, with the 'Numancia' upon it, was 11 feet 3 inches, with a depth of water of 7 feet 6 inches in the lasement, and of 7 feet 2 inches in the middle chambers, amomeng to a weight of 800 tons. This added to the weight of the dock (4,400 tons) gives 5,200 tons, and, deducted from the total weight due to the displacement of the dock at 11 feet 3 inches draught, gives 5,600 tons as the weight of the ship, which corresponds with that calculated from the lines of the ship at 24 feet 1 inch-the draught at the time of docking. The height of the keel blocks was 4 feet above the dock floor, making the centre of gravity of the ship and the dock about 16 feet above the lino of flotation.

The dimensions of the 'Numancia' are as follow :-
Length between the perpendiculars . . 316 fect. Extreme beam 57 feet.
Displacement at load draught 7,420 tons.
The operation in docking this and other vessels has proved the dock in every way efficient, and from the arrangement of the distributing valves, it can be managed with facility, either in sinking or in lifting.

The personnel of the dock consists of one chicf engineer, one master boiler maker, four assistant engineers, four firmen, four valvemen, one clerk, and one storekeeper, in all cighteen men ; with this number everything goes on regularly and withont trouble.

Don Thomas Tallerie was the enginecr in chief of the arsenal, Mr. John Fenwick had charge of the erection of the iron floating dock, and Don José Baldasano superintended the construction of the masonry work.

The communication is accompanied by a series of drawings, from which Plates 6 and 7 have been compiled.

APPENDIX A.

Names and Tunnage of Vessels lifted on the Wooden Floating Dock at Pola.

APDENDIX A.-continued.
Nines and Tonvilie of Vesples, fe.

Class of the Ship.	Nume.	$\begin{aligned} & \text { Number } \\ & \text { of ciuns. } \end{aligned}$	$\begin{aligned} & \text { Tonnage, } \\ & \text { B. M. } \end{aligned}$	Date.
Iron-clad	Drache	22	1,878	18151
Frigate	Novara	50	-268	, ,
Corvette.	Frictrich	$\because 1$	1,2197	, ,
Irou-clad	Don Juan de Austria	32	2,128	
Ditto.	Kaiser Max	:	2,128	
Ditto.	Salamander	32	1,878	
Paddle steamer .	Fiume			
Iron-clal	Prinz Eugen	32	2,128	
Curvette.	Dambulo. .	21	1,280	
Frigate	Donau	:1	1,840	,',
Brig.	Itudzall	16	485	, ,
Caison of the basin				
slow.	Kirla	6	524	
Frizate	Schwarzenbery	51	2,313	1805
Ditto.	Madetzky. .	31	1, 802	, ,
Gimboat.	Dalmat .	4		, ,
Ditto.	Rikar.	4	597	,
Pradule steamer	Fantas c .			,,
Ditto.	Curtatonc	6	560	,',
(imboat.	Streiter	4	597	,
Paddle stamer .	Elisabeth	6	1,103	
Frigate	Adria	31	1,840	1866
Ditto.	Schwarzenberg	51	2,313	, ,
Paddle steamer	Fitume		4.00	
Frigate	Novara	50	2,268	
Iron clad	Kaizer Max	32	2,128	, ,
bitto.	Prinz Eugel	3:	2,128	,',
Ditto.	Don Juan de Austria	32	2,128	, ,
Ditto.	Drache	$\underline{2}$	1, 278	, ,
Ditto.	Salamander	22	1,878	
Line-of-tattle ship	Kaiser	91	3,225	,
Corsctte. .	Friedich	21	1,267	
Gunboat.	Dalmat	4	-5\%0	,
Ditto.	Velebrish	1	590	,',
Padule steamer	Greif.	..	1,100	.
Ditto.	Stadium	-	, 800	,',
Gimboat.	Hum.	4	590	,',
Ditto.	Wall .	4	597	',
Ditto.	Streiter	4	597	,',
Ditto.	Seahund.	4	597	,
Piuddle steamer .	Vulcan .	6	483	, ,
Ditto .	Sta. Lueia	s	981	',
Iron-clad	Ferdinand Max.	1 ;	3,066	, ,
Padille stamer.	Fantasic.		292	,
Ditto.	Elisabeth	${ }^{6}$	1,108	, ,
Frigate	Donau	31	1,840	,',
Gimboat.	Sansego	4	280	,'
Ditto.	Streiter	1	597	,',
Padtle steamer	Curtatone	${ }^{\text {f }}$	560	',
Ditto .	Garguano	..	530	
Ditto. .	Greit .	..	1,100	1866

APPENDIX A.-continuech.
Names and Tonnage of Vessels, \&e.

Class of the Ship.	Name.	Number of Guns.	Tonnage, B. M.	Date.
Gimboat .	Inum.	4	590	$\left\{\begin{array}{c} 1866 \\ \text { Drawn on shore. } \end{array}\right.$
Sloop .	lierka .	4	524	1866
Ditto.	Narenta . .	4	524	1867
Frigate	Radetzky	31	1, S 26	, ,
Curvette .	Friedrich.	21	1,267	
Gumboat .	Hum .	4	590	$\left\{\begin{array}{l}\text { Drawn back in- } \\ \text { to dock. }\end{array}\right.$
Sloop .	Saida.	6	344	
Iron-elad	Don Juan de Austrii،	32	2,128	

APPENDIX B.

Vessels taken on and off the Floativg Dock at the Arsenal of Cartagena, Spain.

Class.	Name of Vessel.	Taken on.	Taken off.	Draught.	
		1866.	1866.	Feet.	
Dredger	Diligente	July 5	August 1	9	900
P.W. gunboat	Vigilanté .	August ${ }^{6}$	18	12	
Ditto. . .	Alerta	,, 18	27	13	
Corvette, guns . 32.	Alcedo	September 15	September 29	17	1,500
Corvette . .	Ferrolama	November 8	November 17	21	2,000
Transport	Laborde	, , 17	, , 20	$8 \frac{1}{2}$	
1rig . .	Graviana	December 7	Deeember 15	15	
Mail steamer	Santander	$\begin{gathered} 1867 . \\ \text { January } \\ \hline 11 \end{gathered}$	$\begin{array}{cc} 1867 . \\ \text { January } & \\ \hline \end{array}$	23	3,696
Transport	Pinta			1712	
Gumbuat.	Ceres .	February 7	February 9	11	
Frigate	Resolucion	11	June 9	21	2,000
Ironclad.	Zaragoza	June 10	27	20	4,400
Gumboat.	Liniers .	July 15	July 29	11	
Drelger .	Diligente	,, 15	, , 29	9	900
Frigate . $\{$	$\left.\begin{array}{c} \text { Princesa de } \\ \text { Austria . } \end{array}\right\}$	August 7	August 13	21	3,810
Brig	Aleedo .	27	September 12	17	1,500
Tug	Veloz	27	12	12	
'Tug	Relampago.	Sepitember 23	October 12	$5 \frac{1}{2}$	
7 1,mitoms		23	, , 12		
Frigate .	Villa de Madrid	December 10	December 19	$27 \frac{1}{2}$	
Ironrlad.	Zaragoza	$\begin{array}{cc} \\ \text { March } \\ & 1868 . \end{array}$	${ }_{\text {April }}^{1868 .}$	25	4,972
Gunloat.	Vigilinté	April 15	, , 25	12	
Ironclad.	Numancia	27	July 15	24	5,600

longitudinal section on centre line.

transverse section.

end elevation.

Mr. G. B. Rennie said that Mr. Turner, the British Consul at Cartagena, had informed him that at the present time the working of the dock was perfect, aul that it was in excellent order. The slipways for hanling vessels into the dock were constructed, but as yet no machinery had licen orlered for the purpose. The Director-General of Engineers, General Nava, in a letter from Madrid, dated the 24 th of November, said that the dock "functions" well, and "does good service," and that the doeking of such ressels as the 'Victuria' and the 'Numancia,' with a displacement of $\mathbf{3 , 3 0 0}$ tons, fully equipped; and 1,000 tons less when lightened, was considered to be a very satisfactory test of the capalilities of the doek.

Mr. Hemass, Vice-President, said it would be diffieult to discuss the subject in the absence of any statement as to the cost of this structure, which would enalle a comparison to be made with the cost of dry docks construeted to fulfil similar purposes. He should be glad therefore if Mr. Remie could supplement the other details, which were of the most complete character, with a statement of the cost per ton of the ironwork, ineluding the transport to its destination.

Mr. G. B. Revnie replied, that roughly speaking, the cost of the doek was between $£ 150,000$ and $£ 160,000$. He had no account of the cost of the masonry work; the sum he stated was for the iron dock only. Many people had been employed at Cartagena who did not know mueh about their work, and who eonsequently were a long time abont it; but he understood the Spanish government nevertheless considered the undertaking was cheaper than if a stone graving dock had been built there.

Mr. Burlow said this arrangement had been made with a view of taking ships upon a floating doek, and putting them on to a landing at a fixed level. He would ask whether that operation had ever been attempted, and if so, what had been done in respect to the difference of level which existed between the dock and the surface to which the ship had to be floater.

Mr. G. B. Revmie replied that the hydranlie machinery at Cartagena was not completed, but at Pola, where the docking arrangements were not on quite so large a scale, several vessels had been hauled ashore from the dock. The arrangement for keeping the levels of the slip and of the dock the same was a simple matter. The dock was floated into the small basin, the water was let into the doek, and it was grounded in the hasin; the timber-ways on the slip were then placed in an exact line with the timberways on the flom of the lock, and the vessel was hanled along
horizontally. The dock was moored where the water was about 50 feet deep. If it was wanted to haul the vessel ashore, the dock was transported into the smaller basin, then grounded, and the vessel hauled on shore.

Mr. Hamltox E. Towle, of New York, said that two kinds of floating docks had been adopted by the United States Navy Department, one ealled the 'sectional dock,' and the other the 'balance dock.' In the former, swinging gates were substituted for caissons, which latter were only used at the mouths of the basins. The floats at the ends of sectional docks were not held by pawls but by racks and pinions, and a worm-wheel gearing driven ly a serew, which served the same purpose as patwls, and also permitted the floats to be movel up or down, an improvement devised by Messrs. Burgess and Dodge of New York.

The dock at Pola was 2 feet 8 inches wider than the Pensacola dock in the Gulf of Mexico, which was of the same dimensions as that at Portsmonth, New Hampshire; but the Pola dock was superior in construction, and had much of the character of the Cartagena dock. No iron docks had, up to the present time, been eonstrueted in the Cnited States. The shafting of the balance docks did not run the cutire length of the dock, as stated in the Paper, but only along the centre over where the pumps were placed. In the sectional docks the shafting was coupled by miversal joints, where the sections were united together, and it ran the whole length of the structure, on either side.

In hauling a ship out of the dock, when once raised and floated into the basin, the dock was first grounded upon the ways at the bottom of the basin. These ways were perfectly level, the doek rested upon them, and there were other inchined ways upon the dock itself, corresponding with similar ways on the land, and having the same inclination. The docks in the Cnited States had ways of greater inclination than that at Pola, where the inclination was only about 4 feet in 500 feet. The hydraulis press at Pola had a piston 15 inches in diameter, and one was split under a test of 600 tons, though some duult was at this date entertained as to the possibility of exactly measuring such high pressures.

The doeking of the 'Kaiser,' weighing 4,223 tons, was made a crucial test of the dock at Pola. He calculated that the entire weight then raised was 5.066 tons, made up loy the ship itself, with its guns, and other ballast. This test practically determined that the dock would lift a considerably greater weight than was required of it before construction.

The original design and plans of the trussed work had been
modified, in consequence of the short length of the timber available in Austria. It was found, on advertising for timber, that speculators combined, and put such a high price upon it, that it was eheaper to bring timber of the larger seanthing required from New York; and the very large and long timber which was used in the Pola dock grew in Ohio. The ways, upon which the ships were drawn out, were also made principally of Ohio oak; the sticks for the centre way heing 18 inches square. The railway ways consisted of three parallel lines of timber, one in the centre under the keel of the vessel, and two others, one on either sille. The centre way confined the hydraulic press upon the railway when pulling or pushing a ship upon the cradle.

At Pola there were two sets of railways constrncted parallel to each other, each railway was over 700 feet long, and each was intended to provide length enough for two vessels, one behind the other.

The hydranlic press, or, rather, the hydranlic locomotive, consisted of the press, its pumps to force in the water, and two vertical steam engines with an ordinary locomotive looiler ; and the whole slid upon the centre hed-way, and was confined to it by horizontal keys to secure the hydranlic press in position. To draw a vessel from the dock, the hydraulic locomotive went down to the cradle, on which the vessel rested, and was attached to it by a pair of iron hauling bars 8 inches square; the hyitraulic eylinder was then confined by the keys, and the engines above forced the water into the cylinder, which, pushing the piston out the entire length of the stroke of 8 feet, gave the desired hauling motion. The motion was now reversed by means of a serew, which drew the cylinder along 8 feet, sliting the piston in again, when it was ready for a fresh stroke. Applying the force pumps once more, the ship was brought another 8 feet, and this process was repeated till she was hauled entirely out of the dock, and to the desired position on the railway. To put a ship hack, the hydraulic locomotive was simply turned round, and the piston-head made to push against the eratle. This was the process alopted at Pola and at Pensacola, and at other naval yards in the United States.

At San Francisco and Philarlelphia the docks were upon the sectional principle, but they all had the same kind of hydranlic apparatus for moving vessels.

The 'Franklin' was the first vessel, weighing 2,300 tons, hanled out upon the railway at Portsmonth, New Hampshire, and some vessels had been cut in half on the ways, and lengthened there. The Pola basin had about 40 feet depth of water at one corner,
and 8 feet or 10 feet less at the opposite corner, and at the corner nearest the land the water was abont 22 feet deep. A few years previous to its construction, several attempts, by Austrian and French engineers, to build an ordinary excavated dock had failed. They blasted and exeavated the rock to a depth of about 16 feet or 18 feet; but at this depth subterranean passages and fissures were met with in the volcanic roek which commmicated with the sea. The enterprise was eonsequently abondoned.
. Tanuary 17, 1871.

THOMAS F. IIARRISON, Vice-President, in the Chair.

No. 1,239.-"On the Strength of Lock Gates." By Walter Raleigif Browne, Assoc. Inst. C.E.

Turs subject has been treated of in the publications of the Institution, first by Mr. Peter Barlow, ${ }^{1}$ and, secondly, by Mr. Kingsbury, ${ }^{2}$ in the course of his Paper on the Victoria Docks; but neither of these investigations is altogether satisfactory.

Mr. Barlow points out the two strains to which a lock gate is suljected, viz., a transverse strain, arising from the water pressure, and acting at right angles to the length of the gate; and a longitudinal strain of the nature of a thrust, arising from the pressure of the other gate. He gives the ratio of these strains to each other, and proceeds to reduce the longitudinal to a transverse strain, in order to simplify the investigation. This he does by the help of some experiments of Girard, which are confined to oak timber, and which, as giving only the breaking strain, furnish no certain information as to practical cases, where the strain is only a fraction of the breaking strain. Hence the result, even if correct as far as it goes, is clearly not applicable in general.

So far Mr. Barlow speaks only of straight gates. He makes some further remarks on cambered gates, which appear to be based altogether on a false supposition, namely, that the pressure at the mitre end of a curred gate must be in the direction of the tangent to the curve at that point. This is only true in the case of a straight strut kept in equilibrium by a force at each end. It does not apply where a third force acts on the strut, as the water pressure does here. At the point of junction of two gates two surfaces are in contact; and, therefore, neglecting friction, the pressure between them must be normal to each, that is, at right angles to the axis of the lock. This original error vitiates all Mr. Barlow's reasoning on this part of the subject.

Mr. Kingsbury's chief object is to show the advantages of using

[^32]what he calls the cylindrical form of gate, i.e., the form in which the backs of the two gates, when closed, make a single circular are. The appearance in this case is that of an ordinary arch, and Mr. Kingslinry uses the common formula for arches under normal pressure, viz.:-

Thrust at any point $=$ pressure per lineal unit \times radius of curvature.

On the other hand, in straight gates, he assumes it to be necossary to give sectional arca enough, first to withstand the transverse strain, and, secondly, to withstand the longitudinal or compressive strain. But it does not seem impossible that these two strains should partly counteract each other; as in a common arch the reaction of the abutments tends to counteract the vertical pressure of the load. Moreover, Mr. Kingsbury assumes that in cylindrical gates the unit strain on the two flanges is the same, which is not the case. The formula he uses gives the resultant compression on any section, but tells nothing as to how it is distributed. It might eren happen that there was tension at one part, neutralized ly an excess of compression at another.

In working ont the mathematical conditions of the problem, no account is here taken of that clement of strength in beams which Mr. W. H. Barlow calls the resistance to flexure. The character and laws of this resistance are not sufficiently ascertained for caleulation; and it seems probable that it will exercise a greater effect proportionally under a breaking than under a working strain. In determining moments, the alteration of form ly deflection has been neglected.

The investigation will then be as follows:-In the first place, all questions of form and material are left out of consideration ; a pair of gates is taken as consisting simply of two rigid rods, 1 inch thick, supporting the water pressure, and meeting at the mitre.

$$
\text { In Fig. } \begin{aligned}
1, \text { let } s & =\text { span of lock. } \\
, r & =\text { risc. } \\
, l & =\text { length of either gate. } \\
, r v & =\text { water pressure in tons per inch run. }{ }^{1}
\end{aligned}
$$

Then taking one gate as ΛP, the forces acting upon it are -

1. The water pressure, equivalent to $w l$, acting at the centre or middle point of the gate.

[^33]2. The reaction at the mitre post. This by symmetry will act directly across the lock in the direction of $\mathrm{A} O$.

3. The reaction at the heel post, which, by the triangle of forces, must pass through the intersection of the lines of action of the other two forces.

Resolving the two latter forces in directions parallel and perpendicular to the line A B, it follows, by the ordinary conditions of equilibrium, that the reaction at either end perpendicnlar to A $\mathrm{B}=\frac{w l}{2}$, and the reaction parallel to the gate (or compressive strain along the gate $)=\frac{w l}{2} \times \frac{\frac{s}{2}}{r}=\frac{w l s}{4 r}$.
This longitudinal strain will be the same, whether the gate be straight or cambered.

Having established these general values for the forees, the most important and complicated case-that of a cambered iron-plate girder, may be considered. The investigation will differ from that giving the strength of such a girder in ordinary eases, becanse the longitudinal strain, which is there assumed to be zero, is here, in consequence of the end pressures, considerable.

Figure 2 (p. 320) represents the plan of such a girder. It consists of a web and two flanges, of which that next the water (as A E) will be hereafter called the back flange, and the other the front flange. The resistance of each flange will he considered as acting at the centre of resistance of that flange; and the centre of resistance of the back flange will be taken to coincide with the back or upper edge of the web plate. This will in all practical cases be very near the truth.

The external forces acting on cither gate are as before.

1. The water pressure. On any elementary are $d s$ of the back
flange the water pressure will be $w d s$, acting along the normal to the arc.

Fig. 2.

2. The pressure on the mitre post from the other gate. This, as shown above, is equivalent to a pressure $\frac{w l}{2}$ at right angles to the axis of the gate, and a pressure $\frac{w l s}{4 r}$ parallel to the axis.
3. The pressure on the heel post from the hollow quain. This is equivalent to two pressures similar to those just described.

As to the exact centre of resistance, or point of application of either of those forces, it is to be remarked that the tendency of the water pressure will clearly be to flatten the curve of the gate by foreing it in at the crown. Now, supposing the joint of the mitre post at B to be perfectly hard, and the gate or rib to be flattened as described, the joint at A would evidently open, and the two ribs in their deflected state would meet one another only at the point B, In experiments made on small hars of wook, in 1868, this opening of the joint was very apparent when the strain approached the hreaking $]^{\text {wint. In some cases it extemded as mueh as three-fourths }}$ of the way down. Thus it appears that the pressure on the mitre joint A 1? will not be uniform, lut will increase very considerably
between Λ and 13 . The exact position of its centre of resistance is diffienlt to determine, theoretically or practically. Supposing the pressure to vary uniformly as the distance from A, the point would be two-thirds of the distance from A to \mathbf{l}, and this will probably be a sufficient approximation to employ until the question can be aceurately determined.

A line (' D (Fig. 2) drawn from this point however fixed, to the centre of the heel post (through which all the normal pressures on the heel post must passi), will he the proper axis of the rib A E; a line drawn through A, parallel to CD , will be the chord of the eurve of the back flange. Let PQRS be a normal section to the rib drawn through the centre of its length. Then the following symbuls will be used:

PQ the eamber of the back flange	$=0$
PO the radius of curvature of back flange	$=\rho$
PR the depth of the web at centre	$=d$
Distance from P to centre of resistance, front flange	$=d^{\prime}$
S Q distance from axis to chord of back flange	$=\beta$
Thickness of web	$=\tau$
Sectional area of back flange at centre	$=\Lambda$
Sectional area of front flange at centre	$=\mathrm{B}$
Working strain per square inch	$=\mathrm{E}$
Longitudinal compression $\left(\frac{w l s}{4 r}\right)$	$=\mathrm{P}$

The object is now to determine the relations which hold between these quantities and w, the unit pressure due to the water, on the supposition that the greatest strain on any part of the rib shall not exceed the given value E. For this purpose, suppose the rib divided by an ideal section at the centre, and consider the equilibrium of one half as APRB. The forces acting on this half are the same in character as on the whole, except that for the pressures upon the heel post are substituted the resistances of the iron in the section at the centre. The nature of these resistances will, therefore, be the first point to discuss.

The effect of the forces acting on the rib will be, as before observed, to shorten and flatten the curve to which it is formed. Hence an element ABCD (Fig. 3) of the rib, having centre of curvature P , will be altered to some such form as ABcd, having centre of curvature p, and the radius of curvature will be altered from ρ to $\rho+\delta \rho$. 'Thus there must be some point, as O, at which the length of the elementary are will be the same as hefire. This point will
be called the neutral point, and its distance OD from the back

Fig. ${ }^{3}$.
 flange may be called l.
A Now let ϕ be the angle subtended at the centre of curvature by any element of the rib, such as A BCD when unstrained: $\phi+\delta \phi$ the angle sulbtended by the same element when strained. Also let A $P=\rho$.

Then $\overline{\rho-k} \dot{\phi}=$ length of element at O before straining.
$=$ length of element at O after straining.
(by definition of nentral point)

$$
=\overline{\rho+\delta \rho-k} \cdot \overline{\phi+\delta \phi}
$$

Therefure $\delta \rho \times \phi+\overline{\rho-k} \times \delta \phi=0 .(1)$
Take any one of the elementary ares, which may be considered to make up the element ABCD , and let y be its distance from the back flange, or A D. Then
Length before straining $=\overline{\rho-y} \times \phi$
,, after,,$\quad=\overline{\rho+\delta \rho-y} \times \overline{\phi+\delta \phi}$.
Hence the extension or compression is

$$
\begin{aligned}
& \delta \rho \times \phi+\overline{\rho-y} \times \delta \phi \\
= & \delta \rho \times \phi \times\left(1-\frac{\rho-y}{\rho-k}\right) \ldots \text { by }(1) \\
= & \delta \rho \times \phi \times \frac{y-k}{\rho-\bar{k}} .
\end{aligned}
$$

'Therefore by Hooke's law the strain per P unit of area on this element is

$$
\lambda^{2} \times \frac{y-k}{\rho-y} \times \beta-k=\delta \rho .
$$

Suppose the value of this unit strain to be given as E, when $y=$ some fixed quantity y^{\prime} Then

$$
\lambda \delta \rho=\mathrm{E} \frac{\overline{\rho-y^{\prime}} \times \overline{\rho-k}}{y^{\prime}-k}
$$

${ }^{1}$ In figure 3 the original and altered elements are superimposed on each other, by making the point A and line AP the same in both. Thus the figure does not show the position of the element before and after straining, lint only its form.
$\therefore \lambda=$ Modnlus of elasticity.

Hence at the furmer point, distance y from the hack flange, the unit strain will be

$$
\mathrm{E} y-k \times \frac{\overline{p-y^{\prime}}}{\overline{p-y} \times y^{\prime}-\overline{k_{i}}} .
$$

It is evilent that the part of the rib which lies hetween D and O will be in compression, and the part, if any, which lies hetween O and I' will be in tension. But in the case under consideration the whole compression must exced the whole tension by the amount of the longitulinal thirnst. Itence the point at which the mit strain is greatest will clearly he the lack flange. Therefore the point at which the strain is to equal the maximum mit strain E is the point given by putting $y^{\prime}=0$.

Putting then $y^{\prime}=O$, the mit strain at distance y from back flange

$$
=\frac{\mathrm{E}}{k_{i}} \times \overline{k_{i}-y} \times \frac{\rho}{\rho-y} .
$$

This is the value of the strain without reference to direction ; the positive direction may therefore be assumed to be that in which this strain acts, viz., the direction of resistance to compression at the centre section of the rib.

If y becomes greater than k, the strain will become negative.
The flanges must now be considered separately from the weh.
(a) Back flange. Putting $y=0$. Strain $=\AA \mathrm{E}$.
(β) Front flange. l'utting $y=d^{\prime}$. Strain $=\mathrm{BE} \times \frac{k-d^{\prime}}{k} \times \frac{\rho}{\rho} \frac{\rho}{-d}$.
(γ) Web. Unit strain on element $\tau \delta y$ at distance y from back flange

$$
=\frac{\mathrm{E} \tau \rho}{k} \times \frac{k-u}{\rho-y} \times \delta y=\frac{\mathrm{E} \boldsymbol{\tau} \rho}{k}\left(1+\frac{k-\rho}{\rho-y}\right) \delta y .
$$

The total resistance to compression of the web will be fomud by integrating this from O to d. This integration is

$$
\begin{equation*}
\frac{\mathrm{E} \tau \rho}{k}\left[d-\overline{k-\rho}\left(\log _{\epsilon} \overline{\rho-d}-\log _{\epsilon} \rho\right)\right] \tag{A}
\end{equation*}
$$

Again, the moment abont the laek flange of the strain on the element $\tau \delta y$ is

$$
\begin{aligned}
& \frac{\operatorname{ET} \tau}{k} \times \frac{k-y}{\rho-y} \delta y \times y \\
& =\rho \times \frac{\operatorname{E\tau } \rho}{k} \times \frac{k-y}{\rho-y} \times \delta y-\frac{\operatorname{E} \tau \rho}{k}(k-y) \delta y, \\
& y=\rho-\frac{\rho-y .}{}
\end{aligned}
$$

since

The moment of the whole strain on the web about the back flange will be found by integrating this expression from O to d. The integration is
$\rho \times \frac{\mathrm{E} \tau \rho}{k} \times[d-\overline{k-\rho}(\log \overline{\rho-d}-\log \rho)]-\mathrm{E} \tau \rho d+\mathrm{E} \tau \rho \frac{d^{2}}{2 k}(\mathrm{~B})$
This is a complete account of the resistances of the central section parallel to the axis of the rib. Besides these there is an muknown resistance to shearing perpendicular to this axis, which may be called F .

Next, to find the effect of the water pressure on the half ril, under consideration :

Take any normal section pr (Fig. 2) making an angle ϕ with the radius of curvature at the centre P , the pressure on the element $\rho d \phi$ at this point is

$$
w \rho d \phi .
$$

And resolving this perpendicular and parallel to the axis of the gate, there result $w \delta l$ and $w \delta c, \delta l$ and $\delta \phi$ being the projections of the element $\rho \delta \phi$ on $A \mathrm{P}$ and on PQ respectively.

Hence the whole resolved parts perpendicular and parallel to the axis will be

$$
\frac{w l}{2} \text { and } w c \text {. }
$$

Again, the moment of pressure on the element $\rho \delta \phi$, taken about the baek flange at the point P is

$$
w \rho \times \delta \phi \times \rho \sin \phi
$$

And the extreme values of ϕ are $\phi=0$, and $\phi=\cos ^{-1} \frac{\rho-c}{\rho}$.
Hence integrating the above expressions between these limits, for the whole moment of the water pressure,

$$
\begin{align*}
& \int_{0}^{\cos ^{-1} \frac{\rho-c}{\rho}} w \rho^{2} \sin \phi \delta \phi=-w \rho \times \overline{\rho-c}+w \rho^{2} \\
& =w c \rho ; \\
& \text { or, since } \\
& \text { moment of water pressure }=w\left(\frac{l^{2}}{8}+\frac{c^{2}}{2}\right) \text {. } \tag{C}
\end{align*}
$$

It is now practicalle to form the equations of equilibrimm for the half of the gate muler consideration. These equations are-
(1) Resolution of forces perpendieular to axis.
(2) , , , parallel to axis.
(3) Moment of forces about the back flange at the centro section of the gate, or about the point P (Fig. 2).

The resolved parts of the water pressure, of the pressure on the mitre post $A B$, and of thes resistances at the central section $P Q$, have been found.

The moment of the water pressure about the required point is given in equation (C).

The moment of the web's resistance about the same point is given in equation (B).

The moment of resistance of back flange is O. , , , front flange is

$$
-\mathrm{BE} \frac{k-d^{\prime}}{k} \times \frac{\rho}{\rho-d^{\prime}} \times d^{\prime}
$$

The resolved parts of the pressure on the mitre post being $\frac{w l}{2}$ perpendicular, and P parallel to the axis, the moments of these parts will elearly be

$$
-\frac{w l}{2} \times \frac{l}{2} \text { and } \mathrm{P} \overline{\beta+c} \text { respectively }
$$

Those moments are here considered positive which tend to turn the gate in the same direction as the hands of a watch.

Thus the three equations, as enumerated above, are
(1) $\frac{w l}{2}-\frac{w l}{2}+\mathrm{F}=\mathrm{O}$; whence $\mathrm{F}=\mathrm{O}$.
(2) $\mathrm{AE}+\mathrm{B} \mathrm{E} \frac{k-d^{\prime}}{k} \times \frac{\rho}{\rho-d^{\prime}}+\frac{\mathrm{E} \tau \rho}{k}[d-\overline{k-\rho}(\log \overline{\rho-d}-\log \rho)]$ $-\mathrm{P}-w c=0$.
(3) $\mathrm{P} \overline{\beta+c}+w\left(\frac{l^{2}}{8}+\frac{c^{2}}{2}\right)-w \frac{l^{2}}{4}-\mathrm{BE} \frac{k-d^{\prime}}{h} \frac{\rho d^{\prime}}{\rho-d^{\prime}}$
$-\frac{\mathbf{E} \tau \rho^{2}}{k}[d-\overline{k-\rho}(\log \overline{\rho-d}-\log \rho)]+\mathbf{E} \tau \rho d-\mathbf{E} \tau \rho \frac{d^{2}}{2 k}=\mathrm{O}$.
Multiplying each of these latter equations by k,
(4) $\left[\mathrm{AE}+\mathrm{BE} \frac{\rho}{\rho-d^{\prime}}+\mathrm{E} \tau \rho(\log \rho-\log \overline{\rho-d})-\mathrm{P}-w c\right] \times k$
$=\mathrm{BE} d^{\prime} \times \frac{\rho}{\rho-l^{\prime}}+\mathrm{E} \tau \rho^{2}(\log \rho-\log \overline{\rho-d} d)-\mathrm{E} \tau \rho d$.
(5)

$$
\begin{aligned}
& {\left[\mathrm{P} \overline{\beta+c}-w \overline{l^{2}}-\frac{c^{2}}{2}-\mathrm{BE} \frac{\rho d^{\prime}}{\rho-l^{\prime}}-\mathrm{E} \tau \rho^{2}(\log \rho-\log \overline{\rho-d})+\mathrm{E} \tau \rho d\right] \times k} \\
& \quad=-\mathrm{B} \mathrm{E} \frac{\rho d^{\prime 2}}{\rho-d^{\prime}}+\mathrm{E} \tau \rho^{2}[d-\rho(\log \rho-\log \overline{\rho-d})]+\mathrm{E} \tau \rho \frac{d^{2}}{2}
\end{aligned}
$$

If from these two equations (4) and (5) k is eliminated, a single equation is obtained between the variable quantities, which are $\mathrm{A}, \mathrm{B}, d, \tau$, and c; d^{\prime} being determined by d, and ρ being a function of c.

Any four of these five being given, the equation will enable the fifth to be determined.

The next step will be to find the section required at any other point in the rib.

For this purpose it will be sufficiently close to consider the water pressure as acting everywhere at right angles to the axis of the gate. Thus if z be the distance of the point considered from the mitre end, the water pressure will be merely $w z$.
'Then the external strains on the part of the rib between this section and the mitre post will clearly be

1. A force P acting parallel to the axis.
2. A force $\frac{w l}{2}$ acting at right angles to the axis, and at the mitre post.
3. A distributed pressure $w z$, whose centre of pressure is midway between the section and the mitre post.

Now let $\beta+\gamma$ be the distance of P's line of action from the back flange at this section ; so that γ takes the place of c in the investigation for the central section. Then the moment of the external forces about the back flange

$$
=\mathrm{P}^{\mathrm{\prime}} \overline{\beta+\gamma}+w z \frac{z}{2}-w \frac{l}{2} z .
$$

But by the equation to a circle (Fig. 4)

$$
\begin{gathered}
\mathrm{CO} O \cdot O D=A O \cdot O B=A O \cdot(A B-A O) \\
=A O\left(2 \sqrt{E A^{2}-E F^{2}}-A O\right),
\end{gathered}
$$

or in the case under consideration

$$
z(l-z)=\gamma\left(2 \sqrt{\left.\rho^{2}-\left(\frac{l}{2}-z\right)^{2}-\gamma\right) .}\right.
$$

But $\frac{\gamma}{\rho}$ may le neglected. Hence there may he put

$$
\gamma=\frac{z(l-z)}{2 \sqrt{\rho^{2}-\left(\frac{l}{2}-z\right)^{2}}}
$$

Fig. 4.

And the expression for the moment becomes

$$
\mathrm{P} \beta+\frac{l z-z^{2}}{2}\left(\frac{\mathrm{P}}{\sqrt{\rho^{2}-\left(\frac{l}{2}-z\right)^{2}}}-w\right)
$$

As the amonnt of this moment determines the area of the front flange and wel, it will be desirable to find its maxima or minima values. 'Taking the differential eoefficient, and putting it equal to zero,

$\operatorname{or}\left(\frac{l}{2}-z\right)\left[\left.\frac{\mathrm{P} \times\left(\rho^{2}-\frac{l^{2}}{4}+l z-z^{2}-\frac{l z-z^{2}}{2}\right)}{\left[\rho^{2}-\left(\frac{l}{2}-z\right)^{2}\right] \frac{3}{2}}-w \right\rvert\,=0\right.$.
It is evident that one maximum or minimm value is given by

$$
\frac{l}{\bar{z}}-z=0 .
$$

To determine whether it is a maximum or a minimum, three cases have to be examined:

Case 1.

$$
\left(\frac{\mathrm{P}}{\sqrt{\rho^{2}-\left(\frac{l}{2}\right)^{2}}}-w\right) \text { negative. }
$$

In this ease, since $\frac{\mathrm{P}}{\sqrt{\rho^{2}-\left(\frac{l}{2}-z\right)^{2}}}$ diminishes as z increases, it follows that

$$
\frac{\mathrm{P}}{\sqrt{\rho^{2}-\left(\frac{l}{2}-z\right)^{2}}}-w
$$

is always negative, and increases (numerically) from $z=0$ to $z=\frac{l}{2} . \quad$ Also $\left(\frac{l z-z^{2}}{2}\right)$ is always positive, and increases numerieally from $z=0$ to $z=\frac{l}{2}$. Hence the expression for the moment

$$
\mathrm{P} \beta+\frac{l z-z^{2}}{2}\left(\sqrt{\sqrt{\rho^{2}-\left(\frac{l}{2}-z\right)^{2}}}-v 0\right)
$$

diminishes from $z=0$ to $z=\frac{l}{2}$; and hence when $z=\frac{l}{2}$, it is a minimum. In this ease, then, the front flange and web shonld be strongest at the ends of the rit).

Case 2. $\left(\frac{\mathrm{P}}{\rho}-w\right)$ positive.
In this case $\left(\frac{\mathrm{P}}{\sqrt{\rho^{2}-\left(\frac{l}{2}-z\right)^{2}}}\right)-w$ is always positive, and hence the expression for the moment is a maximum where $z=\frac{l}{2}$; or the front flange and web should be strongest in the middle. This is the case of a pair of gates with very small rise, where P is consequently large ; or of a gate with an undue amonnt of camber, where ρ is ton small.

Case 3. $\left(\frac{\mathrm{P}}{\rho}-w\right)$ negative, $\left(\frac{\mathrm{P}}{\sqrt{\rho^{2}-\left(\frac{l}{2}\right)^{2}}}-w\right)$ positive.
In this case the expression $\left(\frac{1}{\left.\sqrt{\rho^{2}-\left(\frac{l}{2}-z\right)^{2}}\right)}\right)-w$ changes
sign letween $z=0$ and $z=\frac{l}{2}$. \quad s, however, it will always be small, it will be safe to take l' β as the constant expression for the moment.

Case (1) will be the general ease, and then $\mathrm{P} \beta$ will be the maximm value of the moment of external forces, and the equation determining the value necessary for the front flange and web at the ends of the rib will be

$$
\begin{aligned}
& {\left[\mathrm{SP}-\mathrm{B} \mathrm{E} \frac{\rho d^{\prime}}{\rho-d^{\prime}}-\mathrm{E} \tau \rho^{2}(\log \rho-\log \rho \overline{-d})+\mathrm{E} \tau \rho d\right] l} \\
& =-\mathrm{BE} \frac{\rho d^{\prime 2}}{\rho-d^{\prime}}+\mathrm{E} \tau \rho^{2}[d-\rho(\log \rho-\log \overline{\rho-d})]+\mathrm{E} \tau \rho \frac{d^{2}}{2} .
\end{aligned}
$$

And at the same time equation (4) becomes for the ends of the rib

$$
\begin{aligned}
& {\left[\Lambda \mathrm{E}+\mathrm{B} \mathrm{E} \frac{\rho}{\rho-d^{\prime}}+\mathrm{E} \tau \rho(\log \rho-\log \overline{\rho-d})-\mathrm{P}\right] k} \\
& =\mathrm{B} \mathrm{E} d^{\prime} \frac{\rho}{\rho-d^{\prime}}+\mathrm{E} \tau \rho^{2}(\log \rho-\log \overline{\rho-d})-\mathrm{E} \tau \rho d .
\end{aligned}
$$

The values to be given to d and d^{\prime} are of course those at the ends of the rib.

Hitherto the rise of the gates and also the camber of the rib have been considered as fixed by considerations independent of the present investigation. An attempt will now be made to determine what the values of these quantities should be for a given span, in orler that the quantity of iron in the rib may be as small as possible. For this purpose the central seetion will first be considered. Suppose the area of the front flange, and the depth and thickness of the web to be fixed by other considerations, such as the strength of the rib to resist the occasional blow of a vessel, this leaves A, the area of the back flange, as the quantity which is
to be as small as possible. Recurring to equations (2) and (3), it will be seen that they may be written

$$
\begin{gather*}
\mathrm{P}+w c-\mathrm{A} \mathrm{E}=\mathrm{B} \mathrm{E} \frac{k-d^{\prime}}{l^{\prime}} \frac{\rho}{\rho-d^{\prime}} \\
+\frac{\mathrm{E} \tau \rho}{l^{\prime}}[d-k-\rho(\log \overline{\rho-d}-\log \rho)] . \\
\mathrm{l}^{\prime} \overline{\beta+c}-w \frac{l^{2}}{8}-\frac{c^{2}}{2}=\mathrm{B} \mathrm{E} \frac{k-d^{\prime}}{l^{\prime}} \frac{\rho-d^{\prime}}{\rho-l^{\prime}} \\
+\frac{\mathrm{E} \tau}{\rho^{2}}[(l-\overline{k-\rho}(\log \overline{\rho-l}-\log \rho)] \\
-\mathrm{E} \tau \rho d+\mathrm{E} \tau \rho \frac{d^{2}}{2 k} .
\end{gather*}
$$

In the first of these equations the right-hand side represents the whole resistance to compression of the front flange and web. In the second the right-hand side represents the moment of this compression about the lack flange.

Now since the distance of any point in the section from the back flange is independent of the camber, it follows that this moment of compression cannot be increased except by an increase in the unit strain at each point. But this moment is increased if c is inereased, because it is equal to $\left(\mathrm{P} \overline{\beta \times c}-w \frac{l^{2}}{8}+w \frac{c^{2}}{2}\right)$.

Hence by increasing c the unit strain is increased at each point, and therefore the whole resistance to compression. Now equation $\left(2^{\prime}\right)$ shows that, by increasing this resistance, A is diminished, provided that $(\mathrm{P}+w c)$ remains constant. This, however, is not the case, as $\mathrm{P}+w e$ increases with c. Hence it has to be determined whether the decrease in the value of Λ from the increase of the resistance to compression is or is not comoterbalanced by the increase in the value of A from the increase of $\mathrm{P}+w c$; or, in other words, taking A as a function of c, whether its differential coefficient with respect to c is positive or negative.

To determine this question for the moment the web will be left out of calculation, and the rib) considered as consisting of two flanges only, united by lattice bracing or otherwise. Any conclusion so oltained will apply $\begin{gathered} \\ \text { fortiori to the case where there is }\end{gathered}$ a weh as well as flanges.

Omitting the wel, or, in other words, making $\tau=0$, the two equations beeme

$$
\begin{gathered}
\mathrm{P}+w c-\mathrm{A} \mathrm{E}=\mathrm{B} \mathrm{E} \frac{k-d^{\prime}}{l^{\prime}} \frac{\rho}{\rho-d^{\prime}} \\
\mathrm{\Gamma} \overline{\beta+c}-w \frac{l^{2}}{8}+w \frac{c^{2}}{2}=\mathrm{BE} \frac{l-d^{\prime}}{k} \frac{\rho d^{\prime}}{\rho-d^{\prime}} .
\end{gathered}
$$

Substituting from the second in the first,

$$
\mathrm{P}+w c-\mathrm{A} \mathrm{E}=\frac{\mathrm{P} \overline{\beta+c}-w \frac{l^{2}}{8}+w \frac{c^{2}}{2}}{d^{\prime}}
$$

Differentiating this with regard to c,
or

$$
\begin{aligned}
& w-\frac{d \mathrm{~A}}{d c} \times \mathrm{E}=\frac{\mathrm{l}}{d^{\prime}}+\frac{w}{d^{\prime}} \\
& \frac{d \mathrm{~A}}{d c} \times \mathrm{E}=w-\frac{\mathrm{P}}{d^{\prime}}-\frac{w c}{d^{\prime}} .
\end{aligned}
$$

But P , as has been shown: $=w \frac{l s}{4 r}$;
hence $\quad \frac{d \mathrm{~A}}{d c} \times \mathrm{E}=w\left(1-\frac{l s}{4 \cdot l^{\prime}}-\frac{c}{d^{\prime}}\right)$.
Now $\frac{l}{4}$ will always be much larger than d^{\prime}, and s will always be much larger than r; hence $\frac{d \mathrm{~A}}{d c}$ will always be negative, and the larger the value of c can be made, the smaller will be the value of A. As a general conclusion, it may be assumed, that the value of c is to be as large as possible.

But it has been shown above that by increasing c the unit strain is increased on each point of the web and front flange. Hence this unit strain must be made as large as possible.

Now the unit strain at distance y from the back flange is

$$
\frac{\mathrm{E}}{k} \times \bar{k}-\bar{y} \times \frac{\rho}{\rho-y},
$$

and the greatest value whieh this strain can have is E. This value will be attained by making $k=\rho$, for then the strain becomes

$$
\frac{\mathrm{E}}{\rho} \times \overline{\rho-y} \times \frac{\rho}{\rho-y}=\mathrm{E} .
$$

l'ut $k=\rho$. Then the two equations of equilibrimen become

$$
\mathrm{A} \mathrm{E}+\mathrm{B} \mathrm{E}+\mathrm{E} \tau d-\mathrm{P}-w c=\mathrm{O}
$$

$$
\mathrm{P}^{1} \overline{\beta+c}-w \overline{l^{2}} \bar{\delta}-\frac{c^{2}}{\underline{2}}-\mathrm{B} \mathrm{E} d^{\prime}-\frac{\mathrm{E} \tau d^{2}}{\underline{2}}=0 .
$$

The second equation assigns the best value to be given to the camber for any fixed value of P. Solving this equation, and substituting for P its value $w \frac{l s}{4 r}$, then

$$
c=-\frac{l s}{4 r}+\sqrt{\frac{2}{w}\left(\mathrm{BE} d^{\prime}+\frac{\mathrm{E} \tau d^{2}}{2}\right)+\frac{l^{2} s^{2}}{16 r^{2}}+\frac{l^{2}}{4}-\frac{l s \beta}{2 r}} .
$$

It has lastly to be determined what will be the best value to be given to P , or, since $\mathrm{P}=\frac{w l s}{4 r}$, the best value for $\frac{s}{r}$. The first equation above shows that A will be least when $\mathrm{P}+w c$ is least, and hence that the best value of P will be that which makes $\mathrm{P}+w c$ a minimum.

Now the expression for c gives

$$
\begin{aligned}
\mathrm{P}+w c & =w \frac{l s}{4 r}+w c \\
& =w \sqrt{\frac{2}{w}\left(\mathrm{BE} d^{\prime}+\frac{\mathrm{E} \tau d^{2}}{2}\right)+\frac{l^{2} s^{2}}{16 r^{2}}+\frac{l^{2}}{4}-\frac{l s}{2 r}} .
\end{aligned}
$$

The variable part of this expression is

$$
\frac{l^{2} s^{2}}{16 r^{2}}+\frac{l^{2}}{4}-\frac{l s \beta}{2 r}
$$

which is accordingly to be made a minimum.
Expressing the quantities involved in terms of the angle which the axis of the rib makes with the span of the lock, and calling this angle a, then clearly

$$
\begin{aligned}
& l=\frac{s}{2} \times \frac{1}{\cos \alpha} \quad r=\frac{s}{2} \times \tan \alpha \\
& \frac{l^{2} s^{2}}{16 r^{2}}+\frac{l^{2}}{4}-\frac{l s \beta}{2 r} \\
& =\frac{s^{2}}{4 \cos ^{2} \alpha} \times \frac{s^{2}}{16} \times \frac{4}{s^{2}} \frac{4}{\tan ^{2} \alpha}+\frac{s^{2}}{16 \cos ^{2} \alpha}-\frac{s \beta}{2} \times \frac{s}{2 \cos \alpha} \times \frac{2}{s \tan \alpha}, \\
& =\frac{s^{2}}{16} \times\left(\frac{1}{\sin ^{2} \alpha}+\frac{1}{\cos ^{2} \alpha}\right)-\frac{s \beta}{2} \times \frac{1}{\sin \alpha}, \\
& =\frac{s^{2}}{4} \times \frac{1}{\sin ^{2} 2 u}-\frac{s \beta}{2} \times \frac{1}{\sin u} \text {. }
\end{aligned}
$$

The ordinary method for determining the maxima and minima of this expression leads to an erpation of the fitth degree.

However, the object can be attained indirectly by assuming a value for β.

Now the depth of the rib will always be a small fraction, say one-twentieth of the span ; and, since β has been taken to be twothirds of the depth, $\beta=\frac{1}{30} \times s$. Then the expression beeomes

$$
\frac{s^{2}}{4} \times\left(\frac{1}{\sin ^{2} \because a}-\frac{1}{15 \sin \alpha}\right)
$$

All the values which in practice are given to a may be taken as comprised between 10° and 40°. Comparing the values of the above expressions between these limits-

$$
\begin{aligned}
& \text { (1). } \alpha=10^{\circ} \quad \sin \alpha=\cdot 174 \frac{1}{15 \sin \alpha}=\cdot 383 \\
& \sin 2 \alpha=\cdot 3+2 \quad \frac{1}{\sin ^{2} 2 a}=8 \cdot 547 \\
& \frac{1}{\sin ^{2} 2 \alpha}-\frac{1}{15 \sin \alpha}=8 \cdot 164 . \\
& \text { (2). } \alpha=20^{\circ} \quad \sin \alpha=\cdot 342-\frac{1}{15 \sin \alpha}=\cdot 195 \\
& \sin 2 \alpha=\cdot 64 ; \quad-\frac{1}{\sin ^{2} 2 \alpha}=2 \cdot 421 \\
& \frac{1}{\sin ^{2} 2 \alpha}-\frac{1}{15 \sin \alpha}=2 \cdot 226 . \\
& \text { (3). } \alpha=30^{\circ} \sin \alpha=\cdot 500 \quad \frac{1}{15 \sin \alpha}=\cdot 133 \\
& \sin 2 \alpha=\cdot 866-\frac{1}{\sin ^{2} 2 \alpha}=1 \cdot 333 \\
& \frac{1}{\sin ^{2} 2 \alpha}-\frac{1}{15 \sin \alpha}=1 \cdot 200 . \\
& \text { (4). } \alpha=40^{\prime} \quad \sin \alpha=\cdot 643 \quad \frac{1}{15 \sin \alpha}=\cdot 104 \\
& \sin 2 \alpha=\cdot 985 \quad-\frac{1}{\sin ^{2} 2 \alpha}=1 \cdot 031 \\
& \frac{1}{\sin ^{2} 2 \alpha}-\frac{1}{15 \sin \alpha}=927 .
\end{aligned}
$$

These results show that the value of A always diminishes as that of α inereases, and, therefore, that the rise ought to he as sreat as prossible.

So far, however, only the area of the middle section of the rib, has heen considered. But it is obvious that the quantity whieh is really to lee made a minimum is the whole quantity of metal in the rib, and that the increase of length caused by an increase in the rise might counterlalance the decrease so obtained in the value of Λ.

To obtain the accurate expression of this quantity, it would be necessary to find the value to he assigned to A at any point of the ril, and to integrate the expression so formd for the whole length of the rib. It will, however, he practically sufficient to consider the area throughout as determined by the value of P. This will exactly represent the true case at the ends of the rib, and approximatcly everywhere else, because $w c$ is always small compared with P.

Assuming this, $l \mathrm{P}$ will clearly be an expression representing the whole quantity of metal in the rib, and only the minimum value of this quantity need, therefore, be found.

$$
\text { Now } l \mathrm{P}=l \times \frac{w l s}{4 r}=\frac{w s}{4} \times \frac{\frac{s^{2}}{4}+r^{2}}{r}=\frac{w s}{4}\left(\frac{s^{2}}{4 r}+r\right) \text {. }
$$

Differentiating for maxima or minima,

$$
-\frac{s^{2}}{4 r^{2}}+1=0 \quad r=\frac{s}{2} .
$$

It will he seen also that the second differential coefficient is positive; and hence that this value of r is a minimum, i.c., the quantity of metal in the rib will be least when the rise is equal to half the span, or when the angle at the mitre is a right angle.

Thus everything appears to show that, theoretically, a pair of gates should meet at a riglit angle. There are, however, several practical reasons which prevent the rise from leing made as great as is requisite for this.

1. The greater the rise the more oblique is the thrust on the hollow quoin with respect to the side wall of the loek, and, therefore, the more difficult to mect.
2. The longer the gate the weaker it is to withstand the strain of opening and shutting, and any blows, \&e., which it may receive when home in the recess.
3. The less the value of P the greater will be the value of r necessary to lining the web and front flange into uniform coprpression. But a large camber entails a great depth of reeess, which is inconvenient: and, moreover, in ordinary cases, long
before P attains its minimum value, the necessary camber will cause the two gates to assume the cylindrical form, heyond which they clearly must not be allowed to go.

The point at which this limit is reached will depend uron the value given to the areas of the front flange and wot, since the value of a depends on these prantities.

By calculation in the case muldr disenssion, in which, however, the web, and front flange were lighter than nsmal, the limit appens to he reached when the angle a was a little less than 30 . This points, therefore, to an angle of 255^{\prime}, which is abont the value given in the lest modern construction as leeing not far from the truth.

Closing here the general investigation, and proceching to consider results, there will be taken as an example one of the lower ribs of a gate actually designed for a lock now under construction, and it will be shown how to calculate its dimensions by the present method.

In this ease the water pressure per lineal inch of the rib, or the value of w, was 0.15 ton; and the maximm strain allowed was $2 \cdot 5$ tons per square inch.

The length of the gate was 417 inches.
The angle a was abont 23°, and was such that $\frac{l s}{4 r}$ was equal to 516 .

The value of the front flange, or B , was 8.6 square inches, being composed of a bar 4 inches by $\frac{3}{4}$ inch, and an angle iron $4 \frac{1}{2}$ inches by 4_{2}^{1} inches hy $\frac{5}{8}$ inch.

The value of d was about 29.5 inches.
The value of d ' was ahout 28.25 inches.
The value of β was assumed to be 13 inches.
The thickness of web, or the value of τ, was $\frac{1}{2}$ inch.
From these quantities the proper camber is to be found from the equation

$$
c=-\frac{l s}{4 r}+\sqrt{\frac{2}{w}\left(\mathrm{BE} d^{\prime}+\frac{\mathrm{E} \tau l^{2}}{2}\right)+\frac{l^{2} s^{2}}{16 r^{2}}+\frac{l^{2}}{4}-\frac{l s \beta}{2 r}} .
$$

Substituting the above values, it will le found that

$$
\begin{gathered}
c=-516+\frac{\left.\sqrt{\frac{2}{\cdot 15}\left(8 \cdot 6 \times 2.5 \times 28 \cdot 25+\frac{2.5 \times \frac{1}{2} \times(29 \cdot 5)^{2}}{2}\right.}\right)}{+(516)^{2}+\frac{(417)^{2}}{4}-2 \times 516 \times 13} \\
=42.2 \text { inches. }
\end{gathered}
$$

Taking this for the camber, the value of A , the back flange, is given from the equation

$$
\mathrm{A} \mathrm{E}+\mathrm{BE}+\mathrm{E} \boldsymbol{\tau} d-\mathrm{P}-v c=0
$$

or sulstituting the present values,

$$
\begin{aligned}
A & =\frac{\cdot 15(516+42 \cdot 2)}{2 \cdot 5}-8 \cdot 6-29 \cdot 5 \times \frac{1}{2} \\
& =10 \cdot 14 \text { square inches. }
\end{aligned}
$$

This determines the section at the middle of the rib. Since, however, as has been shown, the external forees have a tendeney to increase towards the ends of the rib, it will be desirable to calculate the areas necessary at each end.

For this purpose it will be assumed that the strain at the end section is uniform throughout, and is equal to 2.5 tons per square inch; and thence will be derived the areas corresponding to such a conlition.

The equations for this case are

$$
\begin{aligned}
& \mathrm{A} \mathrm{E}+\mathrm{BE}+\mathrm{E} \tau d-\mathrm{P}=0 \\
& \mathrm{P} \beta-\mathrm{BE} d^{\prime}-\frac{\mathrm{E} \tau d^{2}}{2}=0
\end{aligned}
$$

The value of d, in the example chosen, was here 21 inches, and that of $d^{\prime} 20$ inches. The remaining quantities the same. Then the second equation is (since $\mathrm{P}=\cdot 15 \times 516=77 \cdot 4$)
or

$$
\begin{gathered}
77.4 \times 13-\mathrm{B} \times 2.5 \times 20-\frac{2.5 \times{ }_{2}^{1} \times(21)^{2}}{2}=0 \\
1006 \cdot 2-\mathrm{B} \times 50-275 \cdot 6=0
\end{gathered}
$$

whence $B=14 \cdot 6$ square inches.
Substituting this value in the first equation, it beeomes

$$
A \times 25+14 \cdot 6 \times 2 \cdot 5+2 \cdot 5 \times \frac{1}{2} \times 21-77 \cdot 4=0
$$

whence $\mathrm{A}=5.86$ square inches.
It appears, therefore, that to obtain the most uniform distribution of strain, it is necessary to add considerably to the strength of the front flange towards the ends of the rib, diminishing that of the lack flange by nearly the same amount.

Having thins fixal the dimensions of the lowest and most impontant rib, those above will be disenssed.

Now, reeurring to the expression giving the best value of c, viz.,

$$
c=-\frac{l s}{4 r}+\sqrt{\frac{2}{w}\left(\mathrm{BL} d^{\prime}+\frac{\mathrm{E} \tau d^{2}}{2}\right)+\frac{l^{2} s^{2}}{16 r^{2}}+\frac{l^{2}}{4}-\frac{l s \beta}{2 r}},
$$

it appears that c will vary with w, increasing as w decreases. It will, therefore, be cepecially advantageous to space the ribs so that the pressure on each may be as nearly as possible the same, in which case the dimensions of the rib will, of course, be the same also.

Hitherto the rib has throughout been considered as a plate girler. Sulposing it to have lattice bracing, the same equations will apply, leaving out all connected with the web, or, in other words, making $T=O$. The two equations will then be:

To determine $c, c=-\frac{l s}{4 r}+\sqrt{\frac{2}{w} \mathrm{BE} d^{\prime}+\frac{l^{2} s^{2}}{4 r^{2}}+\frac{l^{2}}{4}-\frac{l s \beta}{r}}$.
To determine $\mathrm{A}, \quad \mathrm{A} \mathrm{E}+\mathrm{BE}=\mathrm{P}+w c$.
Again, supposing the section to consist only of an oblong, i.e. surpose the gate to be a wooden gate. Here there are two eases in practice:

1. Where the rib is made of whole timbers; 2 . Where the rib is built up of shorter lalks, with a post in the middle of its length.

In the first case it will be impossible to give the proper camber, unless the timber be bent. In the second case it will be best to take each half of the rib as a separate rib, and the two halves as forming in themselves a pair of gates with small rise. They will then be reduced to Case 1. And here it will be safe to consider the camber as nothing, except in estimating the value of $\overline{\beta+c}$.

But if $c=0, \rho=\infty$.

$$
\begin{aligned}
\rho\left(\log _{\rho} \rho-\log \overline{\rho-d}\right) & =\rho\left(\frac{d}{\rho}+\frac{1}{2}\left(\frac{d}{\rho}\right)^{2}+\frac{1}{3}\left(\frac{d}{\rho}\right)^{3}+\sqrt{2} .\right) \\
& =d+\frac{d^{2}}{2 \rho}+\frac{d^{3}}{3} \overline{\rho^{2}}+d \mathrm{ce} . \\
& =d .
\end{aligned}
$$

Hence the two gencral equations (4) and (5) hecome, pmtting $\mathrm{A}=\mathrm{O}, \mathrm{B}=\mathrm{O}, \mathrm{c}=\mathrm{O}$,
(4). $(\mathrm{E} \tau d-\mathrm{P}) k_{i}=\mathrm{E} \tau \rho\left(d+\frac{d^{2}}{2 \rho}+\& \mathrm{c}.\right)-\mathrm{E} \tau \rho d=\mathrm{E} \tau \frac{d_{2}^{2}}{2}$.
(5). $\left(\mathrm{I} \beta-\frac{w l^{2}}{S^{-}}-\frac{\mathrm{E} \tau d^{2}}{2}\right) k=-\mathrm{E} \tau \rho^{2}\left(\frac{d^{2}}{2}+\frac{d^{3}}{3} \mu^{2}+\mathbb{}+\mathrm{e}+\mathrm{E} \tau \rho_{2} \frac{d^{2}}{2}\right.$

$$
=-\mathrm{E} \tau \frac{d}{3}
$$

[1870-71.]

Or eliminating k,

$$
\begin{gathered}
\mathrm{P} \beta-\frac{w l^{2}}{8}-\frac{\mathrm{E} \tau d^{2}}{2}=-\frac{2}{3} d(\mathrm{E} \tau d-\mathrm{P}) . \\
\frac{\mathrm{E} \tau d^{2}}{6}=\frac{2 \mathrm{P} d}{3}+\frac{w l^{2}}{8}-\mathrm{P} \beta .
\end{gathered}
$$

This equation will give τ, the thickness of the rib required.
In conclusion, it may be remarked that the quantity of metal used in existing lock gates appears by the present investigation to be much beyond what is necessary. In the example given alove, the pressure was that due to a head of 28 feet of water, and the distance between the ribs was more than 2 feet. Yet the area required for the back flange comes out to be only 10 square inches. A continuous skin, $\frac{1}{2}$ inch thick, would itself give an area of 12 square inches, and this is the least thickness that could possibly be admitted. This shows a large waste of material in the double skinned gates which are now so common ; and this, combined with the acknowledged difficulty of keeping the gates permanently watertight, seems to form a strong objection against their use. On the other hand, woolen gates are liable to more rapid decay, and eannot be given the requisite amount of camber. Thus the form of gate, which so far would seem to have the preference, is that adopted, for example, in the Bute doeks at Cardiff, viz., a wooden skin supported ly plate girders at intervals, and strengthened by vertical and diagonal ribs. Here a leak is at once detected, and can easily be repaired, either by fresh caulking, or by eutting out and replacing a plank; whilst the dimensions and position of the girders can be exactly aljusted to the requirements of theory and practice.

Mr. (9. II. Pumps said, the chiel ohject of the Paper : appared to bee to peint out a manmer of aseertainiug the degree to which lock-gater, either straight or of varions amomes of curvature, were sulject to the effects of transverse strain. He thought that Mr. Barlow's Paper, to which the Author hat referred, although apparently erroneons in the views expressed relative to the comlined effects of transwerse strain, and pessure applied endways, on balks of timber, had the merit of being one of the earliest, if not the rery first, in its alvocacy of gates of considerably greater curvature than had been previonsly constructed. Snch an increase in the curvature, it was obvions, could not well be carried into execution while timber remaned the only material at command ; but this difficulty ranished sor soon as iron came so largely into use.

Of the gates of the Victoria Docks, described by Mr. Kingsbury, which were of iron, and of very considerable curvature, the Author secmed to apprehend that such gates might, by flexure, throw the strain away from the true axes of the gates, where they met at the mitre-posts, and so give rise to an mequal pressure on the two boiler-plate skins of the gates. But the axes of such gates, when properly set out, formed a continuous circular are, drawn throngh the centres of the heel-posts and the centre of the gate's thickness at the mitre-posts; and, consequently, were subject to no other strain than direct compression of the material. The cquantity by which the compression shortened each gate wonld indeed tend to a slight 'nipping' of the gates where they met, hut rather at the outer extremity than at the imner one, as supposed by the Author. However, the difficulty, if it existed, could be easily got over by slightly romding the touching surfaces of the gates.

Several important advantages appeared to be possessed by curved gates over straight ones; amongst others, that they contained far less material,-that by absence of flexure they were more likely to fit closely to the cill,-and that the curved figure enabled the roller to be placed upon the straight line passing through the centre of the heel-post and the gate's centre of gravity, thereby avoiding any tendency of the gate to cant over.

Although not referred to in the Paper, he would observe that the floating power obtained by forming lock-gates of boilcr-plate made watertight appeared so great an mlvantage, that the objections, as regarded the difficulty of maintaining them watertight, ought to be critically examined liefore so great an adrantage (particularly for heavy gates) was given up.

He would now offer a few observations upon the varions strains
upon lock-gates, with a method of determining them, founded upon simple geometry and statics, which he thought fully competent to give all the useful information required; but at the same time he desired to give the Anthor of the Paper full credit for his able use of the higher mathematics.

Let HGC, Fig. 5, be the span of the lock, and $\mathrm{H} A \mathrm{BC}$ a continuous circular curve: and let ABC, ADC, and A EC, represent

$$
\text { Fig. } 5 .
$$

the axial lines of three different outlines of gates; the first being the truly eylindrical; the second, a flatter circular curve; and the third, a flat gate.

Let the gate H A be removel, and the other gate ABC kept from turning on the centre U by a chain $A F$, lying at a tangent to the curve at A .

Calling W the total pressure of the water at right angles to AC , acting at the middle of its length, and T the tension upon the clain A F, T would be $=\begin{gathered}\mathrm{W} \times \mathrm{C} \mathrm{E} \\ \mathrm{CH}\end{gathered}$. Next, let the dotted line A B be the chord of half the are ABC , and BDE the are of a circle drawn with the radius $A \mathrm{~B}$, cutting the two inmer gates at D and E. From these lines being all of equal length, each lad the same water pressure to sustain; and hence they all had the same turning moment around the respective points B, D, and E ; but the chord $A B$ was kept from turning around B, by the foree T iuto the lever $\mathrm{B} b$, which, therefore, equalled the previous turning moment $\mathrm{W} \times \mathrm{C} E$. On the two inner gates, therefore, the moments T , into $f \mathrm{D}$ and $g \mathrm{E}$, respectively, were too great by the distances $d \mathrm{D}$ and $e \mathrm{E}$.
which accordingly, i.e., $\mathrm{T} \times d \mathrm{D}$, and $\mathrm{T} \times e \mathrm{E}$, represented the bending moments at the above points of the two gates. The same method would also evidently apply on any other are, $h i$.

When the gate was straight, as A EC, the pressure, endways of the material, would he at all points equal, and would bear the same proportion to the miform pressure upon the cylindrical gate (equal to the tension ' T ') as the radius to the cosine of the angle \mathbf{F} A C.

When the gate was of some curvature AIII, intermediate between the cylindrical and the straight, the pressure at right angles to any given section, at I, must be obtained by first finding the direction and magnitude of the resultant $\mathrm{K} M$, due to the conjoint action KN of the water upon the chord AI, and the tension $\mathrm{T}=\mathrm{K} \mathrm{L}$, and then reducing the force of the resultant in the ratio of radius to cosine of the angle between the resultant and a tangent $k k$ to the curre at the section I in question.

Having now obtained the bending moment of any section, and also the direct pressure upon it endways, the total strain upon any fibre of the material was obtained by adding the compression due to transverse strain to the direct compression, at the one extremity of the section, and by adding the tension due to transverse strain, as a minus quantity, to the direct compression, for the total strain at the other extremity of the section; which would be either compression or tension, according to whether the plus or minus quantity preponderated.

Mr. Bramwell said he would endeavour to explain the conclusions to which he had arrived in considering the question, with the aid of the few simple rules that seemed to him sufficient for the purpose. The Author had alluded to the one or two previous commmications on the same subject; especially to a Paper by Mr. I. W. Barlow, which he condemned as containing the erroneons statement, that the line of pressure at the mitre or shutting-post would always be a tangent to the curve of the separate gates, whatever that curve might be. No donbt that was an error, as the line of pressure must always be at right angles to the centre line of the lock, and thus could only be a tangent to the curves of the gates when they were such that the two gates, on leeing closed, formed a segment of a circle; or, at all events, that their junction at the shutting or mitre-post formed, at that point, part of some continuous eurve.

Passing next to the Author's views, he seemed to urge that when gates were closed, they were deflected under the pressure, and thus the junction at the mitre or shutting-post was disturbed, so that the pressure was not uniformly distributed, but was thrown
towards the front of the gate; that it was necessary to take this fact into account in calculating the strains upon the gates; and that when taken into account, it wonld be found there were differences of strength required between the back and front flanges of the ribs of the gates, and that it would be a better construction to give such a curvature to the gates, as that, when closed, they should assume the form of a Gothic areh, and not the form of a segmental arch.

Mr. Phipps had well remarked that in practice the mitre-posts were ordinarily bevelled at the edges; and that thus the pressure was, under any circumstances, preserved in the centre line of the gate. Mr. Bramwell, however, thought that when gates were of the proper form, there would be no deffection whatever; and that this proper form must be one which, when they were closed, made a segment of a circle; and he basel this opinion on the following reasons. Suppose it were required to construct a self-sustaining, that was an mistrutted, dam, in a lake to smport fluil pressure; it could not be doubted but what the plain circular form Fig. 6 would be the one adopted. No one would think of atopting a hexagonal structure with curved sides, such as Fig. 7. Again, suppose it

Fig. 6.

Fig. 7.

were required to make a self-sustaining dam against the face of a flat wall; it could not be doubted that the semicircular form of Fig. 8 would be the one adupted. And supposing it were desired

Fig. 8.

to make a self-shstaining dam against two flat walls, inclined t.) one another as A B, lig. 9, the form selected would the that

Fig. 9.

c
of the segment of a circle, having for its centre the point at which the faces of these two walls, if produced towards each other, would meet in (. Now if this were true of a self-snstaining, i.e., an mstrutiel, dam, it should be equally true of a loek-gate made in one leaf, having its linge-post at A, and its shntting-post at P, Fig. 9. For such a gate, when closel, was a portion of a selfsustaining dam. But if true of a lock-gate when made in a single leaf, it was equally true of lock-gates when made in a pair of leaves, with their hinge-posts at A and B, and with their mitre, or more properly, shutting-posts at the centre between the two. It was manifest that the whole of any cylindrical dam was sulject simply to a uniform compressive strain, and except that this miform strain was one of mstable equilibrimm, it would be possible to make such a dam by the mere abutment of contignous piles, like the staves of a cask. Now the junction of the two shatting-posts in al pair of gates was no more important than the junction of any other two staves romd about the dam or gates, and was no more likely to be suljected to an alteration in the point of pressure than the junction of any other two staves in the dam or qate. He should lave thought the foregoing propositions self-evident and imdisputable; and that it was equally indispriable that gates, forming, when closed, a segment of a circle, could not be subjected to transverse strain, and therefore not to any liability to distortion which transverse strains alone could produce; and that it was clear that the whole of the material in the gates would be in compression. He had been at the pains of finding what was the curvatme of the gates which the Author had brought forward as an instance in which the calculations had been employed. In the Paper these gates were stated to have such a rise that $\frac{l-s}{4} \cdot=516$, the length of each gate being 417 inches; and also to lave a versed sine to cath gate of $42 \cdots$ inches. He had fully cxpected to
find that these gates, when closed, would form a Gothic arch; but, to his surprise, he found that they formed a segment of a circle. Thus it appeared that the Author, in the instance brought forward, had adopted the segmental curve, while apparently advocating in the Paper the view that that curve was not the best. But while the Author adopted the segmental curve, calculations were nevertheless given, based upon the suggestion that there would be flexure of the gates under pressure, and that the point of pressure at the mitre-post would be shifted; and thus the conclusion was arrived at that there must be varying proportions of metal in the ribs of the gates. Further it was suggested that this was done because of the variations of strain in different parts of the gate, although that gate, when closed, formed with its neighbour a true segment of a circle. According to Mr. Bramwell's already expressed views, such a proportioning of the metal must be erroneons and injurions; as in every pair of gates forming a segment of a circle when shat the pressure must be uniform throughout the segment.

As to what must be the radius of a pair of segmental gates in relation to the width between the centres of the heel-posts, in order to obtain the minimum of metal, he might state that the quantity of metal would clearly depend upon the girth of the gates, multiplied into the requisite sectional area; and the least metal required would be when this product was a minimum. Now the girth would vary with the radius multiplied into the angle, the pressure would vary directly as the radius, and the quantity of metal would therefore vary as the angle into the square of the radius; and this quantity would vary as the area of the sectors, and could be represented by them. In Fig. 10 he had assumed a pair of gates having half the width of the lock for their radius, and therefore a sector of 180°. Calling this radius unity, the area of such a sector would be 1.5708 .

In Fig. 11 he had shown a pair of gates subtending an angle of 90°, and having therefore a radius of $\sqrt{ } 2$. It was manifest that a 90° sector of a circle of a radius of $\sqrt{ } 2$ would be equal in area to a sector of 180° of a circle of a radius of 1 , and that therefore the ancmunt of metal would be the same in the gates of Fig. 10 and in those of Fig. 11. The minimum amount must be somewhere between these two sectors of 180° and of 90°, and it would be fomul to he, as shown in Fig. 12, 133.56°, as with this angle the sfutare of the radius in the degrees was a minimum. Such an angle gave a rise of gate of 65916 , and for the chords of the gates, angles at the heel-posts of $33^{\circ} \cdot 39$, and at the mitre-posts of $113^{\circ} \cdot 22$;
and these proportions and form of gate he believed to be the most

Fig. 10. Fig. 11.

economical of any. Moreover, they did not require ineonveniently deep recesses to draw into when open, nor did they possess, so far as he knew, any ofher practical objection. It would be found that while Figs. 10 and 11 required eaeh a unit of metal, Fig. 12 would require 8785 of metal. From this it appeared that there was not

Fig. 12.
Fig. 13.

so very muth difference between the metal of the most economic
form of Fig. 12 and the metal of the very different forms of Figs. 10 and 11 ; and that thus if for any reason an engineer wished to have gates subtending either a greater or a less number of degrees than Fig. 12, he might do so withont material increase in the amount of the metal. This was true so long as the gates when shut formed a segment of a circle, but direetly this form was departed from, and curves were used for the individual gates which formed a Guthic arch when the gates were closed, the increase of metal necessary to resist the cross strain tending to produce flexure became considerable.

For example, take a pair of gates as in Fig. 13, with girders, say .06 wide and having the same central rise as those of Fig. 12, but with each gate made with a flatter curve, so that the rise of each grate at $a b$ was only 08985 instead of $\cdot 1797$ as in Fig. 12. There would then come, in lien of a compressive strain of $\frac{1}{2}$ on the imner and $\frac{1}{2}$ on the outer flanges of the girders as in the girders of the grates Fig. 12, a compressive strain of 1.2809 on the back, and a tensile strain of $\cdot 283$ on the front flange, so that 5639 part of metal would be required in lieu of the one part of Fig. 12.

He had only one other remark to make, and that was upon the statement by the Author, that although gates which subtended an angle of 180° were clearly the most economic, a statement which he trusted he had disproved, they had varions practical disadvantages, and among them that they threw an oblique strain on the masomry. Now in this latter view he could not coincile. Gates which formed a semieirele when shut could not throw an oblique strain on the masonry; on the contrary, the strain must be exactly parallel with the centre line of the lock. Not only was this true with gates which formed a semicircle when shut, but it was true of all gates which subtended an angle of 180°, or which, in other words, made an angle of 90° at the mitre-posts whatever the curvature of those gates might be, or even if they were quite flat. Let Fig. 1t represent a square dam in a lake, the sides being sufficiently stiff to bear the pressure. Then such a dam would clearly not have any tendency to alter its form, cither into that of Fig. 15 or that of Fig. 16; but the sides would be in equilibrium and the square shape would remain unchanged. But this must lee equally true if instead of a whole dam the half of it were taken, as in Fig. 17 ; that was to say, such a figure wonld have no more tenteney for the apex A to lower, and for the feet B and C 1. spread, than it would have for the apex A to rise, and the feet is and © to come together. He thought this was evilent from these diagrams; but if not, a simple calculation of the pressure on
such a pair of gates would pove that their heeds had neither any

Fig 11.

Fig. 1;

Fig. 15.

1范 17.

tendeney to spread nor to come together, and that thus the strain they put on the masonry, so fir from being obligue, must be parallel to the centre line of the lock.

Mr. G. J. Morrason satid he thought that the Author of the Paper, in speaking of circular gates, did not attempt to show that the pressure upon them, if they were very thin, would be anything but simple compression ; but that when the thickness of the gates was considerable, the pressure throughout the whote of the section
might not be equally distributed, and with that he agreed. A cylinter subjected to pressure, at right angles to the surface at every point, must be subjected to uniform compression if the thickness of the cylinder was small, but to a different amount on the outside and on the inside if the thickness was considerable. It was found that large grus (which were thick cylinders subjected to pressure from within) did not increase in strength when the metal lassel a certain limit; which showed that the strain was not uniformly distributed through the metal. He thonght that where luck-gates were composed of horizontal girders with back and front flanges, the conclusion of the Author was true, viz., that the strains on the front and back flanges were not the same, even when the gates were circular. True he made an assumption with regard to the pressures at the mitre-post which might not be strictly correct, but which if not correct was approximately true, and the eror, if any existed, would only slightly alter the exact amount of strain he arrived at.

With regard to the example which the Author had given at the end of the Paper, although he arrived at the conclusion that the camber to be given to the gates was such as to make them circular, yet he thought it was only accidental. The Author had assumed a certain value for the front flange of the gates, and from that had calculated the proper camber for the gate, to get equal strain throughout, and the result was a circle; but this system of calculation would not invariably give a circle. Mr. Bramwell had spoken about the building of a cofferdam where a circular form would be adopted, and he considered a gate was simply part of a cofferdam ; lut the Author took for granted that a certain size must he adopted for the front flange of the gate, otherwise it would be injured by blows from vessels, \&ce, and if the size of the front flange was fixed, it did not then follow that a circle was the best shape of gate. If a considerable quantity of metal had to be put into a gate to resist blows from vessels, it might be more ceonomical to adopt a straight gate, which would be shorter than a circular one, and so take full advantage of the metal which hat to he put in for other reasons.

The thrust on the side walls in a semicircular gate would be in a direction parallel to the centre line of the luck; but that was incomvenient where the gates were requirel near the outside of the loek, for it might he undesirable to prit a great amount of masomy in front of the gates; therefore it was often alvisable to direct the thrnst, if possible, across the wall where an abutment could be obtainecl.

In the example given by the Author, a certain size of gate hat been assumed, with a flange of $8 \frac{1}{2}$ inches for the front, and the back flange had heen calculated at 10 incles, so that the pressure might be the same throughout. Now, if eath of the flanges were 91 inches, there would be the same amont of metal, and there wonld he only $2 \cdot 6$ tons pressure per square inch in one case, and 2.3 tons pressure per square inch in the other. He believed the Author was the first to call attention to the different strains on the back and front flanges of luck gates, but the laper showed that the difference, in ordinary cases, was so slight that it might practically be disregarled.

Mr. F. W. Suends said that a question had arisen as to the principle on which gates of this kind should be designed, upon which there seemed to be considerable difference of opinion. He thought it was erroneous to eompare a strncture of this kind to a circular cylinder; for in a lock gate, just as in the areh of a bridge resting on a solid abutment, the supports were upon two immovable points, viz., in the case of the arch on the abutments supporting the springings, and in the case of the lock gate on the hollow quoins supporting the heel-posts; whereas in a eylinder there were no such fixed points of support, but the whole circular structure was in equilibrium throughout. For that reason it might be assumed that there wonld be deflection in a lock gate, just as in an arch, and that the centre of a gate would bulge in or lulge out under pressure as an arch not in equilibrium would do. The question also arose as to the rounding or making square of the meeting points of the mitre-posts. He thonght it better to make the mitre-posts meet at the outside skin, where the water-pressure came directly upon the gate, than at any other point, such as midway upon the gate, which wonld occur when the mitre-posts were rounded as Mr. l'hipps described; becanse if the mitre-posts met at the ontside skin, the arch of the gate would be continuous at the point of meeting, and the gate would be in a better position to resist the strain upon it. The rounding might be further justified for this reason-that the heel-post was round, and, if one was rounded, the other shonld be. But in that respect the heel-post had the advantage of acting in a rounded bearing, viz., the hollow ruoin; whereas the other had nothing of the kind, and the indirect bearing he spoke of was in full force. He therefore thonght the Author was theoretically right on that sulject. But the Author had also said that the mathematical conditions of a structure of this kind were different from those of an arch or girder. He was not able during the
reading of the Paper to follow the mathematical reasoning sufficiently to say whether that was really the case. It might he so, but in his own practice he had followed the common arch and girder rules; and, unless there was good reason to the contrary, he was an adrocate for great simplicity in engineering mathematics; and his own impression was the ordinary arch and girder rules were sufficient for the practical designing of works of this nature.

Mr. Marrison, Vice-President, remarked that no doubt, if dock gates were always subjected to such conditions as had been assmmed, a constant and equable pressure might be obtained with a perfect portion of a circle; but in practice that was not always the case. He had met with a variety of canses which had produced a transverse strain upon dock gates. Sometimes a piece of chain was wedged in between the bottom of the gates and the sill, or a piece of wood got jammed in at half tide level so that it could not be moved; and there were other similar accidents to which the gates were liable, and in all these cases they were subjected not only to transverse strain in every direction, but they could not meet except by being twisted, and they would at once act on girders. Though advocating the principle of the circular form of gate for the outer skin, which he believed to be perfectly right so far as it went, yet he had adopted for practical reasons a form different to that of having the outer and imer skins parallel. One reason why he had adopted different forms was that the nearer the sill approximated to a straight line the better the gates would fit; at the same time he had found he could make a circular sill sufficiently water-tight. Then, again, he believed that in iron gates it was desirable to adopt the system of flotation. Fourteen years ago he had construeted a pair of iron gates for a lock so feet in width (Figs. 18) ; in this case the heel-post was raised considerably above the sill. When these gates were put in, they were made water-tight from top to bottom; consequently when there was a high tide it was found necessary to let in a certain amount of water to prevent them floating away, and there was a depth of 6 feet to 8 feet of water in the gates. A large valve let the water out, lut practically it was not always attended to ; and, as there was a heavy weight thrown upon the roller paths, they were worn away. To avoid these objections, he had allopted the following plan with perfect suecess:- He had limited the water-tight compartment to the part marked in Figs. 18, letting the water flow in and ont of the other compartments. A water-tight tube was constructed sufficiently large to admit of
a ladder being put in, ly which a man cond deseend to amy part of the gate at any time of tide for the purpose of examination.

Figs. 18.

This water-tight compartment was made so large that, when the water reached the upper part of it, it floated the gate within alout 5 tons, so that the gate conld never float away ; and having, as shown on the plan, a larger buoyant power towards the outer end, the gate had, as nearly as possible, its weight divided between the roller and the heel-post. He was satisfied that this was one of the best principles that could be adopted for iron gates.

Gates were liable to vessels bumping against them, and they were exposed to a variety of accidents. To make a gate watertight there must be a certain thickness of iron, which would bear caulking; and calculation based on the mere assumption that the only thing to be provided for was a muiform state of equal pressure would give a less thickness of skin than it was desirable in some cases to put in. The angle at which these gates shut was as nearly as possible 24°. When closed the outer skin made a complete circle.

Mr. J. Coobe said, some remarks having been mate in the earlier part of the discussion with regard to the advantages of continuity of skin in lock gates, he must observe that if continuity of skin were an alvantage, he was mable to reconnise it, and that he regarded it rather as a drawback. It was
very properly stated that in the case of all cireular gates there was a tendeney, when the pressure came upon them, to' 'nip' at the crown or extrados of the arch: that being so, if the skin were continuous, the greater part of the strain would fall upon the skin, which was the weakest part of the gate. To his mind the office and functions of the skin and of the frame of a lock gate were as distinct and as different from each other as the functions of the skin and of the frame of the human body. The rule in praetice was to ent away a portion of the meeting posts at the salient angle which they furmed when closed-in fact, to chamfer them off in some degree; and the effect of this was to prevent that very continuity which was contended for. Generally the amount of chamfer was from about one-fourth to one-third of the breadth of the mitre or meeting posts, and by that means instead of bringing the principal strain on the mitre-post at an aeute angle, it was brought at an obtuse angle on the face of the mitre-post.

He would take this opportunity of referring to an arrangement which he never saw or heard of till a few months since: that was a means of resisting the very severe strain which gates were sulbjected to when struck by waves, even small waves, when the water level was nearly the same on both faces. The arrangement was devised by Mr. Ramsey, resident Engineer at Ramsgate larbour, and had proved most snccessful. In the case of one of the pairs of gates of the floating basin in that harbour, the evil was so great that the masonry beeame seriously dislocated, solely by the concussion of the gates cansed loy their being struck by the waves coming in at the harbour entrance, when the tide on the outside of the gates was nearly level with the water in the basin. The question arose as to what was to be done to prevent the recurrence of this mischief? Under these ciremmstances Mr. Ramsey devised the following arrangement:-One end of a stont beam or stay of greenheart timber was comneeted by means of a massive iron movealle joint, to the fore part of each gate, near the mitrepost, on the immer or basin side, and at about the level of high water of equinoctial spring tides; the opposite end of this beam passed into an opening in the masonry of the side walls of the entrance. The imer end of this beam was supported by a small bogic truck ruming upon a pair of rails laid in a channel under the ground, the olject of this being to support the inner end of the leam, and admit of its ready motion in a horizontal plane. On the vertical face of the beam, nearest the gate, there was a strong touthed rack, working into a pinion at the end of a train of gearing, the first motion of which was a screw-and-worm
wheel. By means of this gearing the power of the men was commmiated to the gate through the beam or stay just described; the action was so perfect that the gate would remain stationary in any intermestiate position if the gearing were let go, even when there was a considerable amount of disturbance in the harlour. 'This was a simple contrivance, and the men connected with the working of these gates, whose lives had frequently been in jeopardy umber the old arrangement, had the utmost confidence in it, though at times the gates were opened and closed when there was a consilerable anome of mudulation in the harthour. The span of the gates was alout 50 feet; the shock from the waves was occasionally so great, previous to the adoption of the arrangement described, that the masonry of the entrance had to be entirely taken down and rebuilt. The manipulation of the gates was so simple and easy by means of the gearing and stays, that the men preferred these on all occasions, and had abandoned the original ordinary gearing and chains, which still remained available if desired. The arrangement deseribed would in his opinion entirely olviate the necessity of sea or storm gates.

Mr. W. R. Browne, in reply upon the discussion, said the chief point to which he would address himself was as to the cylindrical or circular gates, bearing the form of an are of a circle. It lad been argued that this form was the best that could be given to lock gates; but he could not assent to that doctrine. The principle which all those who adrocated that form had rested upon was this-that in the case of a cylinder pressed by a miform pressure ontside, the pressure producel upon the cylinder, and tangential to the cylinder, was a certain simple pressure uniform everywhere: but there was a difference, which had not been remarked, between the case of a cylinder and the case of a pair of lock gates.

He would take the case of Fig. 6, exhibited and commented upon by Mr. Bramwell. When a eylinder like a cofferdam was pressed by external pressure, the form of the cylinder did not alter; but it was not true that the diameter of the cylinder did not alter, because a certain pressure acted throughout the ciremmference of it, and pressure always produced contraction. The whole cylinder would contract ; it would remain a perfect cirele, but it would be of smaller diameter than before, as was the case with an india-rubber ring placed upon an elastic tube, where the diameter was smaller though it remained a circle. But in the case of lock gates resting upon abutments, while the gates yielded to the pressure of the water, the abutments did not yield ; and instead of their being in the condition of a cylinder, they were in the condition of an arch,

Besides, in the case of a cylinder, the pressure would not be uniform throughout the whole of its section ; the pressure on the outside of the erlinder would not be the same as on the inside; and it might happen that there was compression at the outside fibre, and tension at the inside fibre of the cylinder; and the strains would not be confined to the safe working limit if there was just enough iron to support the pressure upon the cylinder if equally distributed. For a proof of the fact that the pressure was not uniform all over the section, he referred to Rankine's "Applied Mechanics," art. 273 ; but it might be seen thas:- The pressure came first upon the outside fibre. It was only by the yielding of the outside that the strain was brought upon the next one, and that strain was less than that on the outside fibre by the amount of the resistance offered by that fibre in yielding. It was the same with the second and third fibres, and so on, until at last a point was reached at which there was no pressure whatever.

Mr. Bramwell said the examples given in the Paper proved his case, because he discovered that the gate which Mr. Browne thought the best form came out to be a cylindrical gate. That was true in the case of the particular gates for which calculations were given, but it was not to be argued from this that the cylindrical was always the best form of gate. It was the result of design. 'The fact was, when designing those gates the engineer wished to have the advantage-if advantage it was-of the cylindrical form; and had therefore requested him to make the quantities such as would cause the cylindrical form to come ont the lest in calculation, and a few of the quautities which could be altered had been manipulated, so that that was the case. When he wrote the Paper he did not take the trouble of new calculations, but copied what he had already done; and he had not imagined that the persistent energy of Mr. Bramwell would have seen through his calculation, and found that the gate happened to be of a cylindrical form.

With regard to Mr. Harrison's remarks as to floating gates, he would say, whatever the advantages might be, in some respects there were attendant disadvantages. Twice in his experience the Bristol caisson gates floated from off their bearings, though that might not have happened if the people whose duty it was had properly looked after them, in which case considerable inconvenience and expense would have been avoided. Mr. Harrison's remarks, however, pointed to what was perhaps the best form of gate, viz., one with a sort of box near the bottom for flotation, and a wooden skin with girders above.

Mr. l'hipps had urged that there was too much in the l'aper in
the way of symbols, and that the phestion was unecessarily comphicated, and wished it had been settled ly some geometrical metheo. He should have been happy to do it if he could ; but mufortumately Nature was against it in this as in some other cases. It was not very easy to do it ly amalyis; it was much harder, if not impusible, to do it by geometry. He was aware of the liability to fill into mistakes in an investigation of this nature: hut he had not only gone over these calculations several times himself, but they had been checked in a variety of ways.

He cond not agree with Mr. Bramwell that the point C on Fig. 2 wonld be about the midlle of the gate. From varions experiments he had made with small models, it was clear that the strain womld he much more nealy at the point B ; but that would not make a serious difference in the calculation.

Mr. R. I'. Brenetor remarked, through the Secretary, that he did not consider there was any necessity for treating the calculations of the strains to which dock gates were subject differently from thase of ordinary bridges, roofs, or girders spanning a given opening. The thrusts or pressures against the side walls or abutments would le of the same nature, and would be lateral, varying according to the flatness, or vertical, according as the arch or strut form of the girder was adopted. 'The only distinction in gates being the application of the loads, the water pressure uniformly diffused throughout acted always in the same directions, which, with an arch or strut, reduced the lateral thrust against the abutment or hollow quoin.

Local circumstances would generally determine the form of gates that it was most desirable to adopt; lut with meeting gates, in the promerions most commonly in use, he could conecive no form in which theoretically the strains would be so favomably provided for as when the two leaves were formed as a continuons segment of a circular are, that leing the line of equilibrimm naturally songht by water pressure ; the metal being economically disposed in a continuous sheet abutting fainly against the hollow quoin, and not reruiring fortification by ribs or girders, as must be the case with gates meeting at a point with separate curves or camber requiring to be restrained from distortion or change of form.

It was suggested that calculation showed that the best furm for gates would be where the sally, or rise, was equal to the half' span, or meeting at 90° in the centre. 'This would not appear to be the case: whether treated as segments of a circle or as struts, and with dock walls capable of resisting lateral thrust, a rise of about one-
half of the half span, or an angle of 127° at the centre (which was very commonly adopted), would be more economical, besides having many practical advantages.

Taking this proportion of one-half, and contrasting it with a greater or a less rise, such as double or one-half, or erfual to the span or one quarter of it, the calculations would be favourable; and whether considered as segments of the complete circle, or cambered as segments of separate circles, or merely as straight struts, the thrust would be about the same. In comparison with the case of 1 to 1 , whilst the strains would be somewhat reduced, the length of the strained part would be increased in a greater ratio; and, on the other hand, in the case of $\frac{1}{4}$ to 1 , whilst the strain would be increased about two-thirds, the length of the strained part would be reduced in a much less ratio, resulting in the loss of upwards of one-half. But amongst the practical advantages of increasing the angle of the gates were to be found the greatly increased effective bearing of the heel-post surface for abutment in the hollow quoin, as well as reduction in the extent and lateral direction of the thrusts. With the rise of 1 to 1 the bearing surface would be about one-half of the semicircle of the heel-post, withont producing lateral thrust. With $\frac{1}{2}$ to 1 the surface would be reduced to about two sevenths of the semicircle, and the thrust would be increased one-fourth, with a considerable lateral direction. And with $\frac{1}{4}$ to 1 the bearing surface would only lee a sixth or a seventh of the semicircle, and the thrust would le increased in amount about two-thirds, and its lateral direction more than doubled.

In designing dock gates a large excess of strength heyond that calculated must always be provided, particularly high up in the gate, where the calculated strains were smallest, and where the gate was subject to blows from vessels and from the sea in exposed sitnations; nor would it be practically prudent to make use of hoiler plate less than $\frac{1}{4}$ of an inch in thickness.

As regardel the question of relying entirely upon horizontal ribs at intervals to convey the thrust, considering the skin, in the case of curvel gates, only in the light of planking to retain the water, it must be borne in mind that a single skin or plating outside the ribs, as ustally applied, could not be available for resisting thrust. Assuming that the gates corld always meet true at the centre, so that the skin at the meeting posts' end should be in line, the other end attached to one side only of the heel-post would not approach near to the abatting surface in the hollow quoin. A donble skin was therefore indispensable, that the thrusts of both should be
bronght by the heel-post symmetrically to the bearing surface; or a single skin conlel only be applicable for thrust when fassing thromgh the centre of the herlpust.

With large spans many advantages acerued from domble skins of boiler plates, particularly when near the Jottom and midde of the gates. 'They ware important for difinsing the pressure of the ribs miformly along the leed-post. In some cases the thensts amounted to 50 toms or 60 toms per foot in height with the wates at an angle of $\frac{1}{2}$ to 1 , and the effective bearing surface obtainable with the heel-post 20 inches in diameter did not exceed 4 inches in width on either side of the centre line. Enomons pressures were prodnced eren when distributed in the most careful mamer. A donble skin also admitted of sufticient boyancy, from the adoption of air chambers within, for the casy working of the gate, and to relieve the rollers and heel-post pivots from excessive loads. His practice bat been to restrict the eapacity of the air chamber so that there should always be a sufficient preponderance of weight to prevent the wate from lifting.

The iron gates used in the muddy water at the Bristol Docks, and constructed more thim twenty years ago by Mr. Brunel, had air chambers of a eapacity to give sufficient broyancy when mud had deposited in the bottom. When this was removed, water was atmitted into the air chamber to retain the gates in positiom. There had, he believed, been one or two instances where this had been neglected, and the gates had floated on extraordinary tides, doing some mischicf to the fitsteningis.

In well-constructed gates the use of double skins tended materially to preserve the form under racking forces, and to equalize the strains, diminishing the thrusts at the buttom where greatest, and distribmting them higher up. He had known instances of gates construeted in this manner undergoing execssive strains without injury, when single-skin or plank-ribled gates must have been destroyed. On ono oecasion a large single-leaf gate, 65 feet in length, broke away from its opening chains dming a heavy sea, continuing for some time uncontrolled, opening by the runs of the sea as much as 15 feet or 20 feet, and closing violently against the meeting post ; but no mischief ensued beyond the starting of a few rivets.

Jannary 24, 1871. CILARLES 13. VIGNOLES, F.R.S., President,
in the Chair.

No. 1,284.—" Train Resistance on Railways." By W. Bringes Adams. ${ }^{1}$
To analyze this question, it is necessary to determine the theoretical conditions under which the resistance might be reduced to a minimum on a level line. The first condition is, that the rails should be perfectly straight and level, i. e., free from all irregularities, and of such section that they would not materially deflect, either vertically or horizontally, under the heaviest luad borne on them by the pressure of the wheels. Secondly, that they lie fixed in supports at sufficiently close intervals to prevent defleetion, the snpports being as firm and immovable as the piers of a bridge. Thirdly, that the rails be supported elastically on the rigid supports in such moke that no blow can take place, or any greater pressure at one point than another, the elastic action being equally distributed throughont. Fonrthly, that the joints of the rails be so connceted that they be equally strong, level, and even with the solid portions of the rails. Fifthly, that the two rails bo perfectly parallel throughout to the required gange when straight, and concentric when curved. Sixthly, that supposing the rails to be sufficiently hard to resist crushing, the bearing surface should be as narrow as possible, inasmuch as on curved lines the friction increases in proportion to the breadth of contact.

The structure of the vehicles requires that each vehicle must bo supported on four wheels as a minimum. If the wheels be fixed on their axles, so that each axle becomes practically one wheel, analogous to a garden roller, the lines of rail being perfectly straight and level, with the axle arranged at right angles, and the wheels parallel with the rails, it follows that the only resistance will be the axle frietion, and that tire friction will be absolutely nil, supposing the tires to be formed with concl peripheries, permitting exact movement in a straight course without forcing the flanges into contact with the rails. The amount of this axle friction, under the most favourable circumstances, of aboudant oil, hubrication, and bearing surface, equivalent to 90 lls . per square inch, is generally assumed to be 41 l s. per ton of insistent load on the level. If, thercfore, the practical resistance per ton

[^34]is found to amomet to 10 lbs., 201 lhs , or upwards, per ton of load, it follows that this sumplus frietion mast he generated between the tires and the rails, and it is important to impuire whether this is a matter of necessity, or an evil that can be avoiled. It may arise either on a straight line or on a curve. On the straight line, by the malfimation of the vehicle, owing to the axles being out of parallel with each other; or hy the axles, though parallel with each other, not being rectangular to the line of traction, and the wheels at intrrseting angles, with constant grinding hetween flange and rail. (on curves, the friction, both of the flanges and of the wheel treads, may be caused ly the flanges lieng constantly at anintersecting angle with the rails, and by the differing lengths of the rails, producing a sledge or sliding movement; the wheels on the onter rail requiring to work on larger diameters than the inner, and for want of compensation involving great torsion of the axles, eventually leading to their breakage. In such vehieles the amount of the tire friction will be increased in propurtion to the inereaso in the width of the gange and in the curvature of the rails. The evil may be exaggeratend by faulty structure, either original in the workshop, or, as a consequence of collision, making the frame of the vehicle-which should be a true ollong-a rhomboid, the wheels and axles taking the same relative position. And, practically, the rails, assumed to be straight and ceme are, by faulty workmanship and wear, a succession of small curves on which the wheels, by the action of their coned peripheries, are seeking the path of least friction, and by reason of the rigid lateral fixtures of the whecls to the upper structure, that, with its whole loarl, is carried with them; as any one may verify by watching the sinuous comrse of a loose colupled goods train. Passenger carriages, close compled, are prevented from making the same movement, but they lecome sledges or sliders, and grind away the flanges and treads of their wheel tires, and the collars of their hearing hrasses, at a large cost of engine power, and with an extra development of noise and vibration not compensated for by the mere perfect vertical action of their springs.

Goods and coal trains are loose coupled, for the reason that otherwise their resistance would overpower the engine. But this involves another difficulty in snatches and concussions, breaking the chains and couplings, and inducing accidents more or less fatal and costly. Nor does this loose coupling contrivance get rid of the difficulty. 'Torsion of the axles goes on with tire rubling and flange concussion, 'wringing the neeks' of the revolving axles, and gradually, but assuredly, destroying them, unless so enor-
monsly heavy that the destructive action is confined to the wheels and rails instead. In ceal trains, on a given line, the breakage of an axle per week is the average result.

As the loads on railways increased, the wheel-tires were crushed out, and rails were made hearier to resist them. Then tires were made of steel, and rails were ernshed beneath them; and so rails in turn were made of steel, and it is assumed that, by its lardness, the steel will have great durability. Bat hardness has little to do with the question, which is one of homogeneity. Steel rails rolled from solid ingots do not split like iron rails rolled from imperfeetly welded blocks and drawn out into a skein of fibres. But what are called steel rails are, in their most perfeet condition, not steel but iron rails; the earbon which has served the purpose of enabling it to be melted into an ingot having disappeared in the subsequent processes. Steel proper is a very treacheroas metal, and must either be equally hardened and tempered throughont, or perfeetly annealed throughout. In the former case or in the latter it will not be subjeet to breakage. But if unequally hardened, or if hardened throughout and not tempered, it will break under concussion. But even when so hard as to break like glass, it is not secure against the wear of attrition. The engineer of a London line laid down some exceedingly hard and brittle steel rails, carefully guarding against risk of breakage; and twelve months' wear produced the removal of onesixteenth of an inch of metal from the surface, as perfectly smooth as though planed off in a machine. The reason was, the amount of sledging or sliding movement, in which the sand embedded in the softer wheel tires cut the harder metal.

The canse of wear between tires and rails resolves itself into the fact, that the wheels do not roll, or only partially roll, and so become, more or less, sledges. It is a process of mbbing friction analogous to that of the axles without a lubricant, the noise and vibration experienced by the passenger indicating the amount, which is greatest in dry weather. In heavy rain the water acts as a lubricant between wheel and rail, and mueh of the noise and vilration disappear if the rails be clean. There is one common case demonstrating the amome of the sledging action. When a rail is turned, after being hammered and notehed in the chairs, the sfuare notches groudually become small curves, then larger curves, then the prominences begin to disappear, and after a given time, promitimed to the weight of the engine and the mileage, the rail becomes a nearly true and level surface, unless crushed out in the process. It is quite elear that mere rolling could not produce
this result, and that it is practically a coarse planing process at the expense of engine power.

It is obrions, that if, by a process of better structure, tire friction can be got rid of, trains may rom with only the nomal amome of resistance belonging the the axte friction. The swnee of the tire friction is in the rigidity of the structure, and the only mole of aroiding it is by flexibility and compensation yidlding. The first emolition is, that insteal of keying the wheels fast on to the axles, and so involving axle torsion and breakage, every whed should revolve freely, so as to compensate for the varging lengths of the rails on curves or inegularities. Secomely, that the wheels should be enathed to slip, or slightly rock, within the tires on clastic enshions, mabling the tire to tread equally on meven surfaces, interecpting mise and vibration and pressing always on the rails with equal pressure withont jumping. In this mote all risk of bursting the tire will be avoided. Thirdly, that insteal of fixing the whecls between horn plates, always involving mischievous flange contact on curves, the axles shonld be caster eentred,' so that the wheels may move freely from side to side radially, constantly maintaining their parallelism with the rails, and their axles in true radii to the curves, under all conditions. Under such eiremmstances imperfect structure of the frame, whether original or distorted by collision, will mot affeet the true rmming of the wheels. Fourthly, that the buffer contaet should be in true radial lines, so that elose coupling may be used without involving lateral frietion of the wheels. Fifthly, that the structure of the bearing springs should lee such as to enalle them to carry rarying loads with equal ease and with minimm risk of breakage.

Wheels were originally made of wood, then of east iron, then of cast-iron hosses, with wrought-iron spokes and tires, and then of solid forged wronght iron, either spokes or dises, and then of wood discs. The Americans still make them of cast iron in the solid with their tires chilled. The chilled tire is not desirable, for it increases the liability to breakage, and is apt to grind into flats on the tread, which spoils it. In all these wheels, excess of strength is needed to resist axle torsion and flange pressme against the rails.

The east-iron wheel, properly made, is the simplest and cheapest, and not necessarily the heaviest, and by improved construetion it may be quite free from all risk of breakage. In constructing a railway wheel to revolve on the axle, the first consideration is length of wheel hoss. This should be equal to onehalf the diameter of the wheel, to insure truth of structure and
freedom from wear. In experiments with loose wheels, years back, a soft east-iron boss 9 inches throngh was used to a wheel of 4 feet in diameter, and the result was that, in technieal phrase, it 'got drunk' in three weeks, and the prineiple was dogmatieally pronounced a failure upon the imperfect practice. With a boss half the wheel diameter in length this defect would not exist. Fig. 1 (Plate 8) shows this arrangement. The wheel boss is bored ont, and the axle turned to a diameter one quarter of an ineh less than the hore. The intermediate space is fitted with a sheet of jerforated brass, with an open joint, so that the axle can revolve within the brass; or the wheel ean revolve round the brass or buth, the lubricant being eontained in the perforations; or the boss may be cast without boring. and the space rm in with white metal.

In considering the question of axles, there are several points. Finst, the normal strength of the axle, and next, the bearing area of the journals. As respects vehicles, a 10 -ton wagon gives the practice of the heaviest axles, viz., 5_{4}^{1} inches in diameter at the back of the wheel, 5 inches through the wheel, and 33_{x} inches by 8 inches for the journal. Assuming that this size, if answering at all with the existing disadrantages of structure, would be ample were the defects removed, the question narrows itself into bearing surface of the journal and lubrication. In the experiments of Nicholas Wood and George Stephenson, to aseertain the rubling friction of asles and wheels mounted on fixed bearings removed from the vehicles, and consequently without tire friction, they came to the conclusion, that a bearing area of one square inch to every 90 lbs . of insistent weight, and perfectly lubricated with oil, was the most favourable condition. Now, the area of the journal of the 10 -ton wagon is only 40 square inches, equal on the four bearings to a load of 6 tons 8 ewt., and no doubt it was the small size of bearings, ealculated from fixed machinery, that originally led to the use of viseid soap instead of fluent oil for lubrieation. The small size of the journals was indueed probably by the object of obtaining a back and front eollar on the axle, to retain the bearing brass withont materially inereasing the diameter through the wheel. In Fig. 1 it will be seen that a proposed improved axle is 5 inches in external diameter throughout. It is not solid, but a tube with a bore of $2 \frac{1}{2}$ inches, leaving walls of $1 \frac{1}{4}$ inch, thus reducing the weight by one-fourth. If the external diameter were increased to $5 \frac{1}{2}$ inches, the weight would be aloout the same as that of the solid 5 inches, having a bore of $2 \frac{1}{2}$ inches and walls of $1 \frac{1}{2}$ inch ; and the strength would be increased one-fifth, by the increased external diameter. lint the increase would be
considerably more than that, inasmuch as metal $1 \frac{1}{2}$ inch in thickness would be much hetter workel and manipulated than metal 5 inches thick. Taking the j-inch axle, with a bearing 5 inches in diameter and 10 inches in length, it would give 70 square inches of area, equal to a load on four wherls of 11 tons 5 ewt., and without any sinking or reduction of diancter to eanse breaking down. 'Tokeep the fice revolving whecls to the cxact gange, collars are shomk on to the axle at the bate, and serew studded. Against these collars the wheels abut, retained by the bearing brasses in fromt of them facing against the wheel-front, turnel true, and with ample surface. The front collar of the axle is $6 \frac{1}{2}$ inches in diameter, and is sorewed into the hollow of the axle and secured by a key; the bearing tapers slightly to the front, tending to carry up the oil towards the wheel. The axle box is fitted heluw with a metal oil well in a 'keep' of hard wool, cross keyed into position, and fitting close romd the bearing and brass. A slip of hard wood between the box and end collar prevents end wear on the brass, which is so serions an evil in ordinary arrangements. The hollow of the axle within may serve for an oil magazine, and there is also a feed on the box top. Waste of oil is preventel by glands in hollows round the external joints. An angle band, earried in a recess of the axle collar, lifts the oil continuously from the well as it revolves. The wheel is turned on the periphery to a cross curve bearing on the centre of its breadth. The tire is $1 \frac{1}{2}$ inch thick in the central width, and 1 inch at the edges, where the retaining rings rebate. The space between the bolts is flushed with wood packing, on which is laid a thick band of vulcanised rubber, faced with a thin hoop of tempered steel. On this hoop the wheel rests, and the bolts are serewed up. Blacklead powiter is placed between the wheel and steel hoop, and the wheel can thus slip round, and the tire can rock laterally to suit the tread on the rails. 'These axles and wheels, with the tire free from blows, would carry oil, under the most favourable conditions, to enable the vehicle to run 100 miles per day for twelve months. The wheel-tire is shown in section in Fig. 1.

There remains the question of axle radiation true to curves, and the parallelism of the wheels to the rails under all conditions. Vehicles have been constructed on four wheels, on six wheels, and on eight whecls. On the whole, for several reasons, fourwheel vehicles are preferred, though eight-wheel vehicles are well adapted for large salouns or family carriages. Bogic carriages on eight wheels have hitherto been imperfect for several reasons; frictional central bearings carrying the load, and uncertain automatic
gnidance of the wheels by the flanges, the outer wheels recoiling when they ought to advance, an evil which it has been sought to remedy by lengthening the bogie, and thus increasing the flange friction by irregular action. On no eurve can the fixed parallel axles be perfect even on the logie; and it is only by keeping them as close together as possible that this evil can be minimisel, using the same 'easter' guidance as that proposed for the fourwheel vehicle. ${ }^{1}$

Figs. 2 and 3 show a half carriage on eight wheels, with long vertical shackle-rods pendent from the side bearing springs, which are firmly fixed to the axle-boxes, in such mode that the wheels and axles may move freely in every direction, either laterally or fore and aft, or diagonally. Such freedom of movement as this would, of course, result in irregularities if uncontrolled. To insure true movement a pivot is fixed to the upper frame, round which the wheels and axles revolve. If this pivot were placed directly over the centre between the four wheels, the pressure of the wheel flanges against the curves of the rail would probably place the axles in positions abnormal to the curves; but, passing through a plate on the cross bar of the wheel frame centred near the imer axle, it gives a 'caster' movement, insuring that the wheels are always parallel to the rails by flange guidance, whether on the straight line or on the curve; on the curve ly flange pressure, and on the straight line by gravitation action, or the vertical action of the spring shackles. The total wheel base is 35 feet, and it can run round S eurves of two chains radius without grinding the flanges.

It will be seen that there is no frictional resistance to the radial movement, as no load is borne upon the central pivot; nor is any special structure of the vehicle required to carry the load, which is borne by side springs from the axle-boxes as usual, but with the advantage that, as the horn plates are dispensed with, the frame may be made to overhang the axle-boxes to any extent desired, and the width of the spring plates may be greatly increased, giving equal strength, with less thickness and greater elasticity. The width of the frame of the vehicle may in all cases

[^35]be twice the width of the gange; but if the gange be broad, it may even exceed that the height of the vehicles remaining in all cases the same, and the centre of gravity being lower in proportion to the width. There is therefore-smposing the traffic abmolint-an economical advantage in the broad gange, for the length of the train may be shortened, and the number of vehicles be reduced, in proportion to their width, with manifest advantage in hanlage. And with free wheels and radial movement, the resisting friction on the broad gange may be as free as that on the narrow gange. The apparent anmaly of lessened friction on the narrow gange is simply owing to the fact that the wheels so called, on looth, are not true wheels, lont garden rollers, and the narrower the roller the less is the friction. With wheels proper, the friction is alike in buth cases, relatively to the load, and perfeet or imperfect structure. The 7 -feet gauge might have vehicles 15 feet in width rumning with no more friction per ton of load than any narrow gange : and it is only a question of population and traffie, whether it would be commereially desirable or not. With proper constraction, the proportion of paying to non-paying load shonld be less on a broad gange than on a narrow gauge. 'I'he chief question to consider, if it he a fluctuating traffic, is as to the average maximum, and transit convenience.

There is one article of commerce in which the quantities are more unvarying and regular than any other-coals. The object in this case is to get as large a load on each wagon as possible, short of damaging the wheels and rails. It is enstomary to rm these trains with a foot or more of loose chain-conpling between each wagon. The motive for this is, that if close-coupled the friction of the wheel flanges against the rails would become si enormons as to overpower the engine, and the amount of the friction may be estimated from the simons courses the wagons take when left to their own guidance. If the wheels were free to revolve on their own axles, and the axles freely radial to allow the wheels to be parallel to the rails in all cases, flange friction would cease, and in such case the wagons might be closc-coupled, provided their ends were curvilinear to keep contact without binding at the corners. In such ease axle torsion aul axle breakage might cease to be a large and monkown quantity, and the chances of breaking couplings, with all the contingent accidents, would be minimised, with a lessened consumption of finel, and a removal of the chief somrces of wear and tear.

There is another important advantage in the radial system. Ordinary wagons or vehicles as they leave the workshop may lee
accurately constructed, with their axles parallel to each other and rectangular to the line of traction-their snpposed normal condition of perfection-or they may not; a question involving much supervision. But supposing them originally true, they may chance to meet with a collision on a sharp curve. In that case, if deficient in buffer yield, they cease to be square frames, and become rhomboidal in form. The two sole bars remain parallel to each other and so do the axles, but one end advances beyond the other, and the axles become askew to the line of traction, and the wheels form constant intersecting angles to the rails. The vehicle is thus converted into a constant sledge mider all circumstances, with great risk of rumning off the rails. This will account for the fact that, in some cases, trains of wagons are unable to run down inclines of 1 in 72 without engine power to help them, the resistance leing equal to about 31 llis . per ton.

In the radial wagon, Figs. 2 and 3, the guiding action is from two central pivots; in the non-radial, from fom horn plates. The horn plates in a damaging collision change their relative position to each other. The central pivots in a similar collision retain their relative position, and the wheels being free, the wagon will continue to run true on its wheels even after the frame is distorted. The radial wagon has a compensating action ; the non radial wagon has none. The non-radial wagon if not repaired goes on 'wringing the necks' of its axles, by flange pressure against the rails, till it breaks them-an incipient cut round the exterior gradually deepening, and the centre lessening, till the axle inside or outside of the wheel becomes severed. This radial wagon is shown without swinging spring shackles, the springs being fixed to the scle bars, with the radial axle gmards and axle-boxes sliding beneath the buckles, but with common axle-boxes. The radial axle guards can be formed with arms clipping the tender rod, and made to move laterally, to right or left, romnd the curves, and ensuring truth of movement with rails ont of gange, as indieated by dotted lines in the diagram.

When the wheels, instead of rolling, slide along the surfaces of the rails, especially with sam or dnst hetween, contact is incessuntly made and broken, a vibratory sound is induced, and also a vibratory movement by no means pleasint to the car or to the nerves gencrally. If the rails were quite clean ant oiled on the surface there would be smooth sliding without breaking contact, and the mpleasmit vibration would cease, while the hubication of the axle beanings wonld be perfect and free from concussion. There is no reason, other than faulty
construction, why velides moving on rails should be appreciably more moisy and conemssive than relicles at rest.

The same comlitions of frictional resistance apply to short vehicles as well as to long ones, but in long vehicles the defects of rigidity are exaggeratent. With length there is less oscillation lout more vibration. Of couse on very long earriages more whels must be used to carry the load, but there is no reason why eightwhed velicles shombl not have their friction rednced nearly to the same amomit as four-wheelel. The system of radial velicles permits the application of self-acting breaks throughout the whole train, worked either ley the guarl or driver, or ly both.

Engines with conpled driving wheels must of conse have the axles of those whech parallel with each other, and on curves thoso tires must grind and induce impedimental friction on the rails, and for this reason what are called single drivers are commonly used for ligh speeds. But if the tires be applied as friction clutches by the agency of springs, they will yield a comprensating movement on curves. preventing the torsion and liability to breakage of the axles. Six coupled wheels close together may this be used without surplus friction, radial wheels being applicd to the trailing end, so as to adapt the engine to run withont flange friction round curves as sharp as 3 chains radins, either one, two, or three pairs of radial wheels being used, making the engine twelvewheeled, and free from flange friction. Of course, providing the wheels between tire and wheels with elastic springs will serve greatly to moderate concussion. But the structure of the rails is worth consideration-such a structure as will diminish to the utmost the chances of loose movement among the several parts, and make those parts as few as possible in number. liails are practically a portion of the engine. A rigid permanent way with no lonse parts or any chance of working loose might be hard, but would not in itself be concussive. There is an important principle which should not be overlooked: the strength of a rail is as the square of its depth and width to prevent flexure. But if the rail be supported on its lower edge, it will require a much larger amount of metal in its central web than if it be suspended below its upper edge or table; and therefore the metal of a rail 5 inches in depth may, withont increase of weight, by changing the prop below into a suspenion above, produce a rail $\&$ inches in depth. As the strength is as the square of the depth, the increase will be as 64 to 25 . 'ithe 5 -inch donble-headed rail placel in chairs is supported on its base, and needs a thick web to prevent it from buckling under the load. To keep the rail in position
wooden keys are driven on the ontside between the rail and chair. The outward pressure of the wheels crnshes the keys, and then the rails are loose, and jump up and down, breaking the chairs and crushing the rails, the load being multiplied in its mischievons effect by the looseness. To avoid this the wooden keys are in some cases applied inside the rails. The rail, 5 inches in clepth, passes through an are of that radius if yielding laterally. The 8 -inch rail, clevated only 2 inches above its hearing, is free from the rocking aetion. The total depth from the ordinary rail top to the bottom of the cross sleeper is 12 inches, and if the slceper sinks or gets loose, 12 inches more or less of ballast must be dug out and removed in order to get at the sleeper to repack it; and when packed and the space refilled, a mass of loose ballast is filled in for the reception of rain. liy the forward motion of the engine, the slecpers continnally rock fore and aft, and by flange pressure the sleepers are driven endways transversely to the line, which gets out of gange and into irregular curves. It is a great defect in railway structure that almost all rails are applied in this imperfeet manner, whether used with or without chairs.

It is generally assumed that the hardness of a railway is lessened by the use of woolen slecpers as compared with iron. But the iron rail in an iron chair is practically an iron permanent way, and is subject to jolting. One oljection is the ringing somet, and the more perfect the iron way is, the freer from all loose movement, the greater is the ringing. But the ringing is induced by a ringing wheel and a ringing rail combined. If the ringing be taken out of the wheel, by an clastic tire, the rail also will cease to ring, as is the ease with a wood wheel compared with an iron one.

Time was when wooden sleepers were oljected to on account of their tendeney to deeay, and so ereosoting was invented. But by the increase of the engine weight the sleepers were destroyed by mechanical aetion before rotting could begin. Cast-iron sleepers have been substituted for wook in warm elimates, but have not made way in England, possibly on accomnt of the cost, for if heavy enough to prevent brittleness at high speeds, the weight would require to be increased from 84 lhs. to 112 llw ., or more.

The Author has come to the conclusion, that wrought iron is the hest material for sleepers, and that surface baring with surface packing is the most suitalke mechanical arrangement, the head of the rail being kept as low as possible on the sleeper ; that a deep keel muder the line of the rail is necessary to maintain the gange; that serew holts ats fastenings are a disadvantage; that fishes as hitherto constructed are very inefficient and troullesome:
moreover, that the rails should he so applied as to maintain their position without fastenings, and that even in case of breakage they should not get out of the sleepers; that the sleepers should key into the ballast in such mode that if the slecper were to lift it should lift the ballast with it. And all this with a long and wide hearing area of the rail on the sleeper, and of the sleeper on the ballast, while the line shond be well ad:pted to lay into shap curves as well as maintain its straightness on straight lines; and all this with the minimum number of parts, and the minimum number of types of parts.

With ordinary rails supported on the lower table, whether with a broad foot direct on the sleeper, or with a duplicate table in a castircn chair, it is obvions that a high upper table requires a web proportionately hroad to prevent lateral overhang and crushing, and so it becomes very heary. The foot rail if wide enough on the foot to keep it steady and of great height takes more metai than a donble headed rail, for the foot must be thick where it joins the rertical web, to prevent buckling upwards at the elges. But if the rail be suspended beneath the upper table these difficulties may be avoided. To prevent crushing a sufficient mass of metal must be applied on the running table.

Fig. 6 shows a single-headed rail 7 inches in depth, with a lower table 1 inch by 1 inch, a vertical web $\frac{1}{2}$ inch thick, and an upper table $2 \frac{3}{4}$ inches wide by $1 \frac{3}{4}$ inch in depth. The weight is 75 lbs . per yard. The sleepers, formed of rolled plate iron, are 2 feet 3 inches in length and 12 inches in wilth, giving each a bearing area in the ballast of 21 square feet, and weighing 65 lhs . each. They are spaced 3 feet apart from centre to centre. From the bearing surface the plates pass downwards, forming a deep channel groove spread outwards below, like an inverted wedge which keys into the ballast and holds the sleeper firmly down. The extreme edges are ribbed to thicken them and retain the ballast. To keep the rail in the sleeper a cross key of parallel round iron is driven through both the sleeper and the rail; the end being tapered fir easy entrance, the drift being parallel, and curving the key downwards. This leaves no discretion to the platelayer, such as would be needed with a key taper thronghout. The elastic action of the key prevents any working loose, but at any time it may be driven another inch and retightened. The holes through the sleeper and the rail web are $\frac{7}{x}$ inch in diameter, and the round key is $\frac{5}{5}$ inch in diameter. The bearing surface of the rail on each sleeper is 60 square inches, or abont six times the rail area of an ordinary mair: One cross key is used to each
intermediate sleeper, and four keys to each joint sleeper. The sleepers, which serve the place of fishes, are 2 feet 3 inches in length as compared with 1 foot 6 inches, and 6 inches in depth as compared with $2 \frac{1}{2}$ inches. To keep the gange of way, cranked tie bars are applied, the cranks lipping in between the sleeper and the rail, and sufficiently low in the ballast to prevent disturbance. Practically the chief use of the tie bars is to determine the exact gauge when laying lown. When once in the ballast the deep keel gives an amont of lateral stability which, combined with the small elevation of the rail above the surface, renders it almost immoralke. The amount of ballast required with this rail under ordinary circumstances is only one half the usnal depth, and it may be laid in two trenches instead of over the whole surface. Cross sleepers, deep down, only get partially paeked and require the removal of 12 inches of ballast, called 'opening out.' to get at them, leaving the upper ballast afterwards open to the penetration of rain. These iron sleepers, on the contrary, are packel from the surface without any 'opening out,' and they shield the ballast below them from aecess of rain, the water passing at an angle below the bottom of the keel. The sleeper has an elastic form both where it rests on the surface and also at the bottom of the keel, and the support of the rail is the reverse of that of an anvil, as when resting in a heary castiron chair. There is a gencral impression that an iron way must necessarily be a rigid way, and that timber sleepers lessen the rigidity; but this can searcely have any effect with heavy iron chairs. The wronght-iron sleepers will be less rigid than rails jmmping up and down in the chairs by the crushing of the keys. No doubt cast-iron sleepers being heavier, and more resembling: an anvil, have a harder and harsher effect than rails borne direetly on timber slecpers without chairs, but the real annoyance is to the ear rather than the boly, ly the ringing sound whieh the timber helps to moderate.

Many years back the Author produced a system of permanent way known as the Girder Rail. It was something analogous to the present, inasmuch as it was supported on the surface, or rather suspended. But the sleepers were not short channels, but long angle iroms bolted to the rails and through them, and breaking joint throughont like a long T heam one solid mass for miles. But the vertical wel, of the angle irons was not so deep as in the present system, nor the rail so strong at the joints, and the number of serew bolts all beneath the horizontal bearing were inconvenient
to get at. Mereover, it was diftionlt to lay into curves, or to make it take any form hut that of its manufacture, which was mot very perfoet, so that it was impossible to get rid of smadl curres or kinks loy any amment of packing. If forcilly restrained hy the ballast, the emgines that passed over restored it to its nemmal condition. Amb surge a mass of iron without heaks-a contimums heam-was muth atfected by changes of temperature. The ringing some under the trains was wery remarkable. For the sake of kerping down the weight the mals. which were domble--headed and \&t lls. to the fard and 7 inches in depth, were only 2 inches in wilth. and the vertical wels of the angle irons were omly : $: \frac{1}{2}$ inches in depetlo.

It is gencrally assmed that suface bearing perents any effecthal hoding in the hallast, lont that system demonstrated this idea to be a fallace. When laik in loose-llowing samd, the sand below the homizontal wels beeame conselidated into a kind of sandstone, which when liftel clung to the bolts am rails as if it were a mass with them. The objections may be thus summed up: insufficient bearing-talle, insufficient depth of the angleirons, expansion and contraction as an endess bar. difficulty of dealing with curves, and inconvenionce of the multiplicity of serew-holts in a buried position ; to which way be added the difficulty of reflacing a rail owing to the long length requiring to be taken apart berason of the contimoms heak joint. In the present structure the ediftionties are got rid of hy the shallow angle-irons being changed into deep chamels, and short lengths sulstituted for hreak-joint, fermitting the laying in to curves by the sulstitution of one large solid table for two small ones, and by getting rill of screw-holts altogether, and sulstituting simple keys easily driven in and driven ont, with the advantage that the rails will be safe to run orer even after the keys are remover, a most impertant consideration for drick repairs, and appecially on lines of constant traftic, with small intervals, sueh as the London suburban lines. If there be any advantage in the alplication of wook to prevent jarring, there is no difficulty in laying the sleepers on inch planking, as a mere suffacing to the ballast below the sleeper wings. In Fig. if the types are four, the posts per mile $10 \cdot 064$, and the total weight per mile 228 tons. It will he ohservel that timber fishes and serew-lolls are dispensed with.

On a rough estimate, the surplus resistance of trains is fully one-thind more than it ought to le, in consequence of imperfeet
structure, and this necessitates the employment of one-third more engine power than would be needed were this evil corrected. If the present sledging or sliding movement of the so-called wheels over the rails were reduced to simple rolling, and the loads per wheel regulated to prevent crushing, and mechanical destruction of the sleepers avoided, there is no apparent reason, other than collisions, why wheels and rails should not last twenty years. In the prevention of collisions breaks should play an important part. A given power applied will stop a single carriage on a given incline with a specific rate of speed. If every carriage in the train were supplied with a similar break, every length and weight of train could be stopped in the same space and time. To do this effectually the breaks in their normal condition must be pressing on the wheels, and be taken off by the guard or driver, or both, when requiring to proceed. They should also be rapidly selfacting in case of impending collision, or breakage of a coupling. There is no difficulty in this arrangement.

On the question of engine traction the necessity for larger and larger trains has gone beyond the adhesive power of a single pair of driving wheels with a crushing load on them, and perforce the number must be multiplied by coupling four or six or more. The objection to coupling is the increase of friction between tires and rails, increasing with the speed. The cause of it is rigidity and inflexibility, and the remedy is to be found in flexibility. If the tires, instead of being shrunk on to the wheels with enormous tension, involving their bursting, were simply applied as friction clutches, the compensating movement needed would be provided for, and axle torsion and tire rubbing would disappear. Fig. 1 shows spring tires both with steel and india-rubber springs. Coupled driving wheels of course can be used with straight axles. Inside eylinders require cranked axles-a source of breakage. Outside eylinders tend to produce more unsteadiness than inside, but they can be used with straight axles, and the unsteadiness can be obviated by length of wheel base. But length of wheel base involves friction of the flanges, and more especially on curves. The remedy for this is to keep the driving wheel-base as short as possible, and to make the trailing wheel-base radial. The numerons engines with radial axle-hoxes which have been working for the last four years on the submban lines of the London, Chatham and Dover and the Great Northern railways show how practicalle this is. They are adapted for t chains radius, and are steady at all speeds, the length of wheel-base heing 20 feet. The water-tank leing at one end and away from the driving-wheels,
the load on the driving-wheels is as constant as that of a temder engine, independently of the consumption of water. 'Tenders were originally contrived to carry a large quantity of water, and the tank-engine has been rarely used fir long distances on aceount of the limited quantity of water. The radial engines on the submen lines aresix-whecled, lut there is nodiffientty in making them eight-wheeled, to carry two thonsand gallons of water with an increase of wheel-base, and yet fitted to roll freely round curves of 3 chains radins. Such engines are adapted for the highest speeds and longest joumeys. An engine is shown in ligs. 7 and 8 , llate 8, with four driving-wheels $i f$ feet in diameter, and four trailing-wheels 4 feet in diameter. But it is not merely for long journeys on main lines that an abundant water supply is needed. The jommeys on suburban lines are practically a comtinnous jomrney, and it is more convenient and conomical to carry a large supply of water than to pay frequent visits to the watercrane, deranging the traffic meanwhile. There are three classes of engines for curvilinear lines-the radial engine, the doulle loge engine, and the twin engine, and they may all alike be constrncted with two cylinders or four. Their steadiness must in all cases depend on the length of wheel-bise. The movement of the radial engine is by curvilincar slides laterally: that of the domble logie engine is ly a four or six-wheel frame moving on a central. pivot at each end of a long frame. The twin engine is radially compled at the centre of the frame, at the foot-plate between the fire-boxes.

Practically, the double bogie engine is two separate engines as much as the ordinary engines, each formed on a separate frame, with a difference in the connection. The two logie engines are comected by a central pivot each to a long boiler, much in the same mole that two railway timber trucks are comected by pivoted saddles to a long tree. The boiler is formed with a donble fire-box at the centre of its length, and each connected by fire tubes to a chimney at either end, the steam space being in common. To obtain space for footplates, the fire-boxes are eramped and narrowed in the centre, and the driver and stoker are separated-one having the fires in charge, and the other the steam ; with the disarvantage that neither of them can perform the duties of the other in ease of accident to one or other. To comncet the engines to the boiler separate frames are fixed to it, having no connection with one another, by a piroted eentre plate, and a circular sway bar next the fire-boxes, the chimney ends taking no bearing on the engine frames. The load of the beiler therefore is not borne on the extreme wheels, but orerhangs them. It will be seen that
the two engine frames are so arranged, that they ean swivel romed each independently of the other, so that they can work without friction on irregular eurves, whereas if they were obliged to move simultaneously they could only work to atrantage on regular curves. But the traction and buffing strains are carried through the two engine frames, and consequently through the central pirots or eireular plates which are attached direetly or indirectly to the boiler. If therefore, in case of collision, the pivot withstands the force of the blow, it must be by the strength of the boiler at the risk of loosening the rivets, and, if giving way, the engine frames must drive into the fire-boxes at each end as the ultimate result. Other things being equal, fewness of parts in any machine is desirable, with equal effieiency. The double bogic engine is disadvantageous in four cylinders being substituted for two, but in balance for this, greater power is elamed, which might be a fair equivalent; but the cylinters are placed in awkward positions, overhanging weights at the ends of the loose bogies tending to sway them down and indnee steam leakage. It is therefore worth eonsidering whether the four eylinters may not be so disposed as to attain many greater atvantages while remedying their alefeets.

There can be no donbt that the demand for a concentration of greater engine power is increasing with the increase of traffic. To obtain this concentration the number of driving-wheels must be multiplied, so as to distribute the necessarily inereased luad, without erushing the rails and road. This must, of comse, extend the wheel-bose, and necessitates purision against increased flange frietion on curves. It is notorions that engines with six wheels compled are frequently less efficient than engines with four wheels compled and the same stean power, and this arises either from extra flange friction, or from defects in the adjustment of the conpling rods, and their multiplication. It is not a favourable condition for cylinders plated at one end of an engine to be working a train of coupled wheels, sty eight in number.

The true mechanical position for the cylinders is at the midlength of the engine frame, out of the way of collision, and with their weight smported by wheels both fore and aft. 'To accomplish this, one cylinder on a side will not suffice, and there most be two, one above the other, each piston being made to work a pair of compled driving-wheels, the pistons working in opposite direotions. As the wheels are all drivers, it is obvions that no malial movement can be pemitted or obtained, but as an equivat Inat for getting rid of flange friction some of the flange tires may
tre replaced ly hom rolling tires without flanges, leaving the flange base sufficiently long for lateral steadiness to the gauge of way.

Figis. 9 and 10 illustrate this plan of twin-eylinder engine. The driving-wheds are right in mumber, and + feet 6 inches in diancter. The four cylinders, wast in pairs and fixed at the midlength of the frame in strong horn plates, to work crank pins on the wheek, are 15 inches in dianneter, with $2 t$-inch stroke. The extreme wheel hase is 18 feet. The central whecl-lase, with flange guinlance, is feet; the same as the 'White Raven,' which was perfectly steady with radial movement of each pair of end wheels, and a tutal whel have of 22 feet. The end wheels have that tires sinches in breadth, without flanges. Wach pair of end whechs has a coupling-rod to at pair of central wheels. The stean is taken from a central dome near the fire-box, and enters the two cylindes on each side simultaneonsly, by the action of a single slide valve worked by the ordinary number of cecentrics, which open and close two ports at opmosite embs, working the two pistons in upposite directions. An mrious advantage is gained by this arrangement, as the steam, working in opposite directions on two pistons at the same time, neutralizes all oscillation and may dispense with the balancing of the wheels. A possille oljection to this simple arrangement of single slide valves with double ports may arise from unerpual slip of the front and hind groups of whecls, which are mocomected, interfering with the due steam entrance and exit. If so, two sets of valves can be used, the forward set within, and the hinder set withont the whels, withont interfering with the fire-hox. By a simple arrangement, the stean could be shut off from either front or hind wheels, lig the driver on the fiost-plate, where only small power or speed were needent. The buffers are formed on radial curves, with hroad steel spring phates bearing in shect rubber on curved blocks of timber, adapted to meet any class of buffers on the same level. The couplings are on radial traction bars between the radial buffers. The engine will run with the minimm of flange friction romed curves of 3 chains radius. All the whels are spring tired, preventing blows and destruction between wheels and rails. Wedge hreak hlocks, actuated by stem, press upwards and arrest all the eight driving whecls. The tractive force at the rails is equal to $18,500 \mathrm{llis}$. Two side springs spaning from axle-hox to axle box cary the front end of the engine, and two cross springs, one to each axle, can ry the hind end, the whole load resting on four points of support, with a total wheel-base of 18 feet, and a total length of

28 feet. If used as a tank engine, the wing tanks will earry 1,600 gallons of water, and the coal bunk has 72 cubic feet of space. The boiler is of large size, and the ordinary eoal fire would suffice to produce steam enough ; but there is a better fuel, which must ultimately displace eoal for locomotive purposespetroleum. It is lambent flame in contact with leating surfaces, that is the chief agent in giving out heat to water, and not mere incandeseent fuel; and lambent flame can be most effectually induced by burning gas. Putroleum, flowing from an upper cistern in thin streams into heated perforated pipes in the furnace, will be iustantly flashed into gas, which, mingling with the requisite amount of atmospleric air, will fill the whole of the fire-box and tubes with lambent flame in greater or less amount at the will of the driver, who by the presence or absence of smoke will know exactly how to aljust his oil supply to the supply of air, and stop or urge the steam-making at pleasure, without needing a stoker to dirty his hands or his footplate, keeping him to lis legitimate lusiness of louking out. It is quite clear that the question of cost may lave a considerable margin. If an engine builer of a given size can be made to double its power, it may be worth while to pay double price for the finel, and the minimum price at which fuel manufacturers may supply the material of olefiant gas has not yet been arrived at. There is another important consideration: there is no sulphur in petroleum to destroy bars, tubes, or eopper fire boses.

There is another principle not yet applied to locomotives, though used to a considerable extent iu steam-vessels-using the steam twice over before dismissing it to the chimney in blast, by passing it through two or more cylinders, working it expansively. But this application would need some complication in the eccentries, to keep the eranks at right angles.

A passenger chgine could be made on the same principle, and of the same size and length of wheel-base, but with only four driving-whecls and no coupling-rods. The driving-wheels, 7 feet in diameter, might be at the ends, with an 18 feet base. There would he four central carrying wheels, 3 feet 6 inches in diameter, sliding laterally in the horn plates, so that the engine would work rom curves of 4 chains radius with a tractive force at the rails of $12,000 \mathrm{lbs}$.
'This l'aper has dwelt on many of the most inportant details making up railway transit-some in actual use, and some awaiting use. A practical prople are too prone to ask, "Has it been done? Is it in actual use?" And many are they who try to

avoid all possible mistakes lever doing anything that has not been done befire. bint had there been no previons looking into the unknown there would mot have betn any railways. The trine philosophy is to examine carefully all nseful suggestions that may be fortheming ; and when satistied that the balance of probability is in their farour, to try them fairly. for the result is a very important one. To seduce train resistance by onc-third, and take 300 tons of coal at the cost of 200 , and at the same time to multiply the hanlage power of engines in a similar proportion, reducing the cost by possibly one half, is an important consideration for those railway eompanies deating largely in coal, and still more for the vast mass of their customers, to whom it is a necessary of their existence.

The commmication is accompranied ly a series of diagrams, from which Plate 8 has been eompiled.

Mr. C. Douglas Fox said, it appeared to him important in the interests of the profession that a more comprehensive series of experiments should be made as to the effect of sharp curves upon tractive force for drawing a train. On the Queensland railway a series of experiments were made in 1869 on a eomparatively small scale, but on very severe curves down to 5 chains radins, combined with gradients up to 1 in $50 .{ }^{1}$

These experiments showed that the effect of a 5 -ehain curve, on the 3 feet 6 inches gange, was to increase the tractive force necessary in the ratio of 6 to 5 , as compared with a straight line; and that, if the curve exceeded 10 chains in length, this ratio was further increased towards the end of the curre.

As regarded the reduction of cust of maintenance and repairs of permanent way and rolling stock, there would seem to be two primary things necessary to be reconciled in order to acconnplish this object. In the first place the construction of railways monst be economical, and so also must be their maintenauce. As far as the latter peint was concerned, what was the present condition of railway rolling stuck over the greater part of Europe? It consisted of a very heary dead weight compared with the live load carried. A great deal, may almost the whole of it, was
${ }^{1}$ Solthern and Westery Railway of Qeeevslind.
Maln Range (Section 5).

Iestlats of Experiments made with the dynamometer to ascertain the reative resistance due to curves and gradients.

May 11, 1869.
The lond consisted of six emipty wagons and a break van. Gross load 32 tons 13 cowt.
Description and weight of wagons.

A spu dif 10 miles per hour was mantained thronghont fiom Muphy's Creek to '1'oowoomba.
constructed with a rigid whed lase of considerable length. As a rule, very lithe of the rutial action which the Anthor spoke of had been introdnced in Europe; the tires were still coned; the centre of gravity was rather high; the stock was screwed up tightly with serew complings; and it was provided with double buffers-four to each carrizge or wagon, besides a central drawbar and two safety ehains. But there was a constant grinding on sharp eurves between tires and rails; a considerable and modetermined amomen of gange concussion due to oseillation and simuons motion, and severe vertical shocks, owing to tho heary

Tabelation of Resclts.

Gradient.	Radius of Curve in Chains.	Tractive Fonce in 11s. pre 'iou.
Level	Straight	$17 \cdot 15$
Level	5	$20 \cdot 5$
1 in 625	Straight	$15 \cdot 80$
1, , 625	5	$24 \cdot 00$
1, , 310	5	27.40
] , , 220	7	$31 \cdot 30$
1, , 120	Straight	$34 \cdot 30$
1, , 120	$57 \frac{1}{2}$	$37 \cdot 18$ 41.10
1,, 112	12	$41 \cdot 10$
1 , , 110	7	$45 \cdot 5$
1, , 100	10	$46 \cdot 0$ $45 \cdot 0$
1, , 100	5	$45 \cdot 02$ $+1 \cdot 10$
1, , 993	Straight	41.10
$1,, 87$	Straight	$40 \cdot 30$
1, , 80	Straight	$48 \cdot 00$
1, , s0	6	48.88
1, , 80	${ }_{5}^{5} 5$	$54 \cdot 88$
$1, \ldots 64$	$5 \cdot 5$	$56 \cdot 60$
1 ,', 60	Straight	$51 \cdot 11$
1 ,', 60	20	$54 \cdot 8$
1 ,, 60	12	$55 \cdot 31$
1 ,, 60	$5 \cdot 5$	$60 \cdot 03$
1 ,, 55	Straight	$56 \cdot 29$
1 ,, 50	15	$62 \cdot 49$
1 ,, 50	10	$65 \cdot 11$
$1,, 50$	8	$66 \cdot 91$
$1,{ }^{\prime}, 50$	7	$72 \cdot 03$
1 ,, 50	$6 \cdot 5$	$75 \cdot 13$
1 ,, 50	6	$77 \cdot 18$

These experiments were made with a dynamometer registering ewts. only.
N.B. These results only hold gool for about 10 chatins on sharp curves. If the curve exceeled 10 chains in length, the tractive fore necessary at the end of the curve was much increasd. At the cml of a 5 -chain corve, whose length was 18 chains, and gratient 1 in 60 , it was 64 lbs . insteal of 60 lbs . as given above. This accomis for ecrtain sceming discrepaneics in the total.
rolling loads, which tuok place both on curves and straight lines. He thought, one reason why more radical remedies had not been applied, in England at least, was the extreme difficulty of introducing fundamental alterations in the existing rolling stock -a difficnlty which must more or less exist on all old systems of railways, and which could not be lightly ignored. Thus, as these difficultics had grown with the use of steeper gradients, sharper curves, longer trains, and higher speeds, heavier rails had been laid down and more powerful locomotives had been introduced to struggle throngh the difficulty rather than remove it. He understood the olject of this Paper was to show one way in which the tractive force necessary, or in other words, the train resistance to he overcome, might be reduced. He was not going to speak to the exact question of a particular system raised by the Author, he rather desired to dwell on the question of train resistance generally. One remedy was that of radiation of the axles as they passed round curves, and for this purpose there were three systems which might be easily compared. There was, first, the old-established American hogie truck, and next, Mr. Adams' radial system, and Mr. Clark's radial system. The bogie used so miversally in America accommodated itself very beautifully to rongh roals. Any one who had travelled in America must be convinced of this; and these bogie-trucks ran over roads,

Table showing the tractive force required on different gradients irrespective of the eurves, i. e., taking an average of all the different results arrived at on the total lengths of the same gratlients, though these gratlients oceurred both on straight portions of the line and on curves of different radii.

Gradient.	Tractive Force in Cuts.
Level	5
1 in 625	512
1 , : 000	${ }^{\text {s }}$
1,, 226	10
1, , 110	13
1 ,, 100	1.
1 ,, 90	15
1,, s0	16
1, , 70	18
1, , 60	19
1 ,, 50	20

The eurves on the Main Range are so short for the most part, that it is difficult to obtain very aecurate results. 'the foregoing were eompiled from a great number of experiments.
especially in winter which Furopean rigid-rolling stock wonld have difficulty in contending with. At the same time the bogie did not support the centre of the carriage, and it left a great length to be trussed or sulported in sume other way. It required an extra pair of wheels, and slightly raised the centre of gravity of the rolling stock. He believed that an immense alvantage, as regarded the question of train resistance, was derived from a well-arrranged system of radiation.

With reference to loose wheds, he had fom it necessary to provide some good plan of getting round curves of 5 -chain radius, and for that purpuse he had tried several systems. Amongst others he made some experiments with loose wheels, one on each axle of a four-wheeled wagon. These wheels were 2 feet in diameter, carefully fitted with a hard gron-metal bearing on the axle 12 inches long, and were provided with arrangements for lubrication. The axles were $4 \frac{1}{4}$ inches in diameter through the wheel-boss, and were not fixed, but free to turn as usual. It was thought that an ample length of bearing had been given, but the result was not satisfactory, and these wheels had soon to be keved to the axle. He was, however, far from saying that a loose wheel could not be devised that would answer the purpose withont 'wollhing.' Mr. Brmel had tried many experiments on this sulject, but the results were not satisfactory:

He had for some years tried experiments with conical tires, and he believed that though it was true, on curves of large radii and at high speed, that the flange of the hinder wheel of the carriage did not touch the imner rail, but that both flanges were thrown on to the outer rail, yet that on sharp curves, and at moderate speeds, this did not obtain, and that the hinder wheel did begin to drag on the inner rail. The result was that the adrantage of the cone was neutralised on such curves. Again, the cone on a straight line was not so satisfactory in its action as the cylindrical tire, as unless the centre line of the coned tire exactly coincided with the bearing ou the rail, the whecls beeame of different diameters; and he thought a great deal of the oseillation on a straight line was cansed by the irregular action of the cone.

Another important matter that deserved consideration, where engineers were free to act, was that of the central buffer. The introduction of this was almest an impossibility in Europe, where the use of the double buffer was firmly fixed; but he had watched the action of the central buffers in America and in Norway, and he thought that there lay in them the means of introducing a great improvement. The side buffers cansed serious racking strains
to the framing and did not act properly on eurves, and on sharp curves had a tendeney to throw trains off the rails; and, though the balance-lever had been introduced to enable the outside buffers to touch one another upon curves, this was only a partial remedy of the evil. The American central buffer was a rough and ready contrivance. It had answered the purpose well, but the mode of coupling was not first-rate. He had lately been left behind, in the last carriage of a train, in the middle of the night, in consequence of the coupling pin jumping out; but the Norwegian buffer, designed by Mr. Carl Pihl, the Government engineer, met this objection, and as far as he could ascertain answered admirably, and he was in consequence adopting it in a modified form in Canada for the whole of the rolling stock on the lines under his charge there. It caused no racking strains to the framing; the whole of the buffing and drawing strains passed through the centre, and could be carried through by a balk of timber, or by a proper arrangement of angle-irons. Consequently, the frames could be lightened, and the combined buffing and drawing apparatus was hardly more than one-third of the weight of that in ordinary use in England.

Another question deserving of discussion was that of loose complings. Two totally opposite systems obtained in this respect in England and America. The practice in England was to screw up the carriages very tightly tugether with screw couplings, and he believed that was essential with such short carriages as those used; but in America, where the carriages were long and heary, loose couplings were used; and those who had ridden on American railways could bear testimony that, for some reason or other, the Anerican cars ran with a much pleasanter motion than English carriages. There was much less of the disagreable tremor, which rendered reading difficult here; the movement of the American car was more of a roll than a shake; each car ran freely without in any great degree communicating its motion to the adjacent cars : and he was inclined to believe that this reduced the train resistance. A little more care in starting the train was all that was requirel.

Another important point was to have the centre of gravity low down. It was alwars an object to reduce its height as far as possible, inasmuch as loy that means the gange concussion was reduced, and the steadiness of the rolling stock was improved. He had ridden at considerable siced on a line of 3 feet 6 inches gange, with carriages 8 feet 6 inches wide, which was the extreme wilth he now adopted for that gange, and those carriages ran with
great steadiness; no donlit in a great measure owing to their low centre of gravity.

There was a wide field open for the exereise of the ingemuity of the profession in reducing the dead weight of rollingstock. Why shonld it exceed from one-fonth to at maximmo of one-third of the gross weight? The improvements in springs had redncod the shocks cansed he shming, which had mitil lately been the bughear of engineers: and if the ferman system of a donble set of bearing springw were introluced, that evil combl he almost got rid of.

He fomb that, on the sharp enrves on the (bneenslame malways of which he hand soken, one point tending to rednce train resistance was to lay the rails eomparatively wide to gange. Thus on inchain curves on the 3 feet 6 inches gange, ly laying the rails fully ${ }^{3}$ the of an inch wide to gange, the frietion and the wear of the tires were much reduced.

When he was in America a short time since, a pneumatic break was in use on the l'emsylvania Central railway, which appeared to answer all essential conditions. It was applied by the engine-man to every car by the simple turning of a small handle, and the great point was, that it acted, thongh almost instantancously thronghont, yet on the hinder end of the train first, thus keeping it drawn ont tight. It was a simple arrangemont of an air cylinder on the engine, in which the air was kept constantly compressed bey means of a small steam eylinder. Thence the air was forcel throughout the train through pipes, which could he quickly coupled or monoplet, and in case of aceident to the train, had self-acting valves, which closed the supply of air. The breaks were applied to the wheels of each carriage by means of pistons working in small air cylinders placel under the centre of the frames.

Mr. J. A. Lovimidge said he thought the question was one of reducing the friction of the train, whether of the axle hearings of the carriages themselves, or of the rolling resistance upon the rails; and whatever might prove best in that respect would be equally satisfactory if the dead weight could he reluced, although he thought this conld not be done to any great extent.

He had for many years been of opinion that loose wheels were suitalle for railway carriages. Ine believed, too, that radial axles were exceedingly important, and on this matter he conld speak partly from experience, and partly from the mathematical nature of the problem. On the Mont ('enis railway, which hat curves of 40 metres radins, being the sharpest curves of any railway in the worl, loose whechs and ratial axles had been adopted with perfect
succers. He was aware that great oljections were made to loose wheels, and that it was said they got a 'wobbling' motion, which rendered them dangerous. His experience on the Mont Cenis railway disproved this. The carriages which had these loose wheels had a wheel base of 14 feet, and they had never given the slightest tronble; in fact, there was a considerable diminution in the wear of the tires. The carriages were of two classes, viz., four-wheel carriages of the ordinary kind, with a wheel base of 6 feet, and carriages on Mr. Clark's radial system, with six wheels, having a wheel base of 14 feet; and he had no hesitation in saying the friction of the six-wheeled carriages was less than that of the four-wheeled in going romed the curves.

It was the general opinion that on a curve the outside rail must be elevated to counteract the effect of centrifugal force, and that the centrifugal force would drive the carriage against the rails on the outer side of the curve. When he first went to Mont Cenis, in company with Mr. Crampton, they looked into that question, and they found that when a four-wheel carriage passed round a curve one of the leading wheels was always ruming hard against the outside rails, whilst the trailing wheel on the opposite side was ruming equally hard against the inside rails. Where the centre rail existed the guide wheels showed the same action, viz., that the front of the carriage was passing outwards, and the hinder end inwards, as regarded the curve, and this action took place at as high a speed as 3.5 miles to 40 miles per hour, thus showing that the centrifugal force never brought the carriage up against the outer rails. It could not do so, because for that the whole carriage must have a sliding action in a horizontal direction upon the rails : and at the small angle at which that was found, the coefficient of friction was so great that the sliding action was never overcome.

In the case of a carriage passing along a curve there was, besides the forward motion, which, of course, would be rectilineal, another motion cansing the carriage to rotate horizontally round its centre ; so that when the curve was an entire circle, the carriage had made an entire revolution in passing round it; and, as there was no fixed pivot, this could only he caused by two forces acting as a couple, one at the front wheel, another equal, and in an opposite direction, at the hack; and, as a matter of fact, it was found that, in going romd sharp curves, the flange of the hinder wheel never touched the outside rail at all. Mr. Fox's remark, that the cone of the wheel in such a case acted in the wrong direction to what it ought was perfectly correct, and therefore it was hetter to ahamion come-whecls altogether.

Mr. ('rampton and he hand tried an experiment in the mode of compling. 'The mariames on the Mont (enis lino were eompled by a short link joining two pins in the centre of the earrians. When so coupled, this action of the wheche wats, as hefore deseribed, in each carriage of the tain. lint on doing away with the link altogether, and joining the earriage ly one pivot withont an intormediate link, it was fomm that the tembener of the hinder wheels of the finst carriage to 1 mom aganst the inner sail was commteracted by the tendency of the reomd comiage to rmo agninst the onter railEnder these circumstances, all the carmages exeepting the last ran perfectly well, the last carriage having the same defect as in the ordinary case. He did not think that was an alvisalle way of getting orre the difficulty he har pointed ont, beeanse it hrought a greater side strain upon the couplings and frames of the camiages. The system of radial action in the six-wheel carriages on the Hont Cenis answered exceedingly well, and he thomght that for six-wheel carriages nothing conld be better ; but it was not applicalbe to fomwhed carriages. He was now adopting radial axles to some rolling stock; lut there was one defect in that plan, which was thismuless the radial hars were comnected, and they were not, that the hind whecls had just the reverse action to what they ought to have. 'Therefore in the carriages he was now having constrmeted, he had adopted a provision ly which the axles most move simmltaneously, hut in upposite directions, so that both would always be pointing to the centre of the emre. As the front axle took the curve first, he had no dould it would liring the lind axle into the proper position, and the two axles on a curve would le in their proper position. There had been no diffientry with loose wheels, as he had already said, on the Mont Cenis railway; the axles did not revolve, hut the wheds reyolved on the axles. In the system he was now adopting the axles would revolve in ordinary axle-hoxes, whilst the wheels would revolve independently only in passing round curves. He believed it was better to have cylindrical wheels than eonical wheels; and he was putting on some of his carriagos wheels with conical tires, and on the hind wheels of the same carriage cylindrieal tires by way of experiment ; but he had no doubt the louse eylindrieal wheels would work well, for he knew from cxperience they were doing excedingly well on Mont Cenis. 'The wheel bearing was about 9 inches.

Mr. W. Naylor remarked that the St. Melen's and Pmeorn Fap Company once undertook to hani the wagons from a convenient site at the collieries, and to deliver them at a convenient siding at Runcorn Gap. The colliery people found their own wagons,
[1870-71. א.心.]
and collected them in the siding, and for that purpose horse power was employed. 'The curves were very sharp indeel, and two of the colliery owners adopted the plan of loose wheels, or one loose wheel on each side, so that each wheel conld revolve freely and independently of the other. This was considered at first a great arrantage, as two horses could take as heary loads round the sharp eurves with loose wheels as three horses conld do with the wheels fast on the axles. Notwithstanding this great adrantage, and nutwithstanding that forty years ago the trains travelled on that line at comparatively slow speed, the oseillation was considerable, and there was a simuons motion from side to side; and that was so much the case when descending the steep inclines at Witnes and Sutton, that the owners of the wagons became alarmed. The engincers of the permanent way complained that those wagons damaged their line, and the result was that, rather than incur the risk of danger, ther kered the wheels fast and decided upon using more horses for hanling the wagons to the railway siling.

In a four-wheel carriage designed by Mr. Bergin for the Dublin and Kingstown railway in 18 if, each wheel had a separate axle. The carriage cane out of the workshop on to the siling with the greatest ease; but when it was attached to a train travelling at a speed of 30 miles an how the sinnons motion from side to side-he might almost say jumping from side to side-was so great that it was never again used.

He next met with a six-wheeled engine by Mr. Joseph Woods, in 1839, which was placed on the then London and Sonthampton railway. The lading axle had one loose wheel, and the others fast wheels. The engine was sent out and workel well, hut Mr. Wools, wishing to go a little further, put on one end of the axle a wheel ths of an inch larger in dianeter than the other ; one wheel leing still loose on the axle. That engine did its work well; but after a time it was determined that the wheels should lue made fast on the axle; accordingly the wheel was keyed fast to the axle, and the engine was sent ont to work. When the train arrived at Southampton the driver called his attention to the engine, as he could not imagine what was the matter with it, and when he was informed that one wheel was sth of an inch smaller in diameter than the other, he at first refused (and was at last with difficulty persuaded) to take the train back with that engine, stating that he would sooner be discharged than risk his life on the road.

On another oscasion, in the year 1839 , when he went into the Southampton district to take charge of that section of the South

Westem railway, he fomm an engine that had been used by the contractors as a ballasting engine. The wheds were in a very strange comition, with the flange on one side ent down as spuaro as if it had hem dome in the lathe. On examining the engine, it was fumm that on one sidu the wheels were 5 feat $9 \frac{1}{8}$ inches apart. while on the other side they were 5 feet 10 inches apart. The engine in that combition hat the axhes as if they had been ratially eonstructed for a curve of 50 feet radins: while the frevions engime he had referred to, with the difference in the diameter of the wheels of 5 this of an inch, was aldipet for a curvo of $3: 0$ feet radins. Notwithstanding, these engines dil not run off the rails.

The line from Landen to Sunthampton was opened on the 11th of May, 18th, and on the 17 th of the same montl an engine low Messrs. Sharp and Roberts, while going over a piece of straight line, in good order and well latlasted, ran off the rails in a cutting, turned uver, killed the engine-man on the spot and injured a number of other people serionsly. The engine when examined appeared to be perfect, and the question was raised, how conld the accident have happencl? Ine never heard it solved, but he would attempt to du so. At that time there was a strong bar of iron between the engine and the tender, keeping them together. If the engine ran from side to side with a simons motion, the tender ian from side to side also, but in opposite directions; consequently there would wecasionally be a tremendons thimp hetween the engine and the tender quite sufficient to smap an iron lar $1 \frac{3}{1}$ inch in diameter; and he thought that was the reason why the engine was thrown off the line, the momentum of the train acting upon the tender as a mudder on a slip.

Again, on the line letween Salislary and Bishopstoke, a train was travelling at a speed of about 40 miles an hour over a piece of bad road; the road had been newly laid, and the lallant was not good. While travelling round a curve of a radius of ths of a mile, the engine ran off the line on the insite of the curve, continued along the embarkent for some distance, and finally went down the slope into a ficld.

With regarl to axle friction, in 1849 he investigated the question of what was the canse of oscillation in railway tains, and for that prorose he made experiments with a pair of wheels 3 feet 6 inches in diameter keyed on an axle. These were run down an ineline from the Dorchester station; then over a level; and then down another incline a distance of 9,900 fect, the average gradient leing 1 in 178. The wheels then travelled up an incline
of 1 in 200 for a distance of 2,050 feet, coming to a state of rest on an average gradient of 1 in 262 , equal to a gravity of $8 \frac{1}{2} \mathrm{llbs}$. per ton. This he attributed to there being no axle friction; there was nothing upon the wheels; it was simply a pair of wheels twoned loose, and he could only attribute the result to tire friction and to atmospheric resistance. The centre of the axle was the moving point, and the upper part of the wheels would be moving at trice the relocity of the axle, and consequently the resistance of the atmosphere would be quadrupled. The olject of this experiment was to notice the effect of the cone in cansing the wheels to rin from side to side: to observe this he followed upon an engine close after them, and saw that the lateral movement was consideralle.

Mr. Bramweld remarked that Mr. Adans had lrought forward a variety of very useful suggestions. He thought, however, if Mr. Adams hoped to get the great saving he had spoken of by reducing axle friction he would be disapmonted: becanse it was mulikely that the resistance due to axle friction was so great as to admit of any large reduction. Last year he had the opportmity, on the Sonth Western railway, of trying some experiments with a steam break; and to ascertain what was the value of the break it was necessary to find out what was the resistance of a train of a known weight, and roming at a known speed. The weight of the train, inchating the engine and tender, on which he tried the experiment, was 160 tons, the speed was t_{0} miles an hour on a level, the rails in grood order, and the weather propitions: the steam was shat off and the momentmo of the train was left to die out. The distance the train ran was. 5,39 feet: which gave an arerage resistance of $22 \cdot 4$ lbs. per tom weight of train from 40 miles an hour down to nothing. That ineluded the train friction and the resistance of the air. There was also another source of resistance which he believed had never yet been allowed for, viz, that when an engine was rumning with the regulator shint there was a vacum prodneed in the cylimer, and the indicator diagrams when worked ont showed it was eprall to $3 \frac{1}{2}$ lhs. per ton of the weight of train, leaving for the other sompes of resistance $18!11 \mathrm{~s}$. Looking at these facts, he thought Mr. Adams could scarcely carry out his expectation of diminishing materially the power necessary to draw a train by diminishing the a de friction.

With regard to the question of loose wheels, he agreed with Mr. Longrilge, and would not himself hesitate to rm them at (6) miles an hom. He had bepn coneemed, whilst an apprentice, in making the wheel designed hy Mr. Brmel, and spoken
of by Mr. Adans, and a more ill-advised picee of constraction was never turned ont. 'lhe wheel was + feet in diameter; the boss short-anly 10 inchess it was made of solt iron and worked on a softimon axle. Let this workmanship be compared with that of ondinary carmiage axles- 'allinge's axles-these wonld run for rears, lecanse they were well made, a case-hardened hox working upon a case-hardencel axle: if sheh workmanship was applied to railway whels lee satw no difficulty in making wheels loose upen axles that wond do their work. He did mot propose, amy more than Mr. Atams did, to fix the railway axles; these shomld still be allowed to revolve, and thas the anement of motion between the wheel and the axle, and the amomit of wear, wond merely he that due to the reenired difterential revohtion of the wheels as they, from time to time, came respetively on the ontside and on the inside of the curves.

If anything were wanted to show that such wheels wonld effect the olject for which they were intended it was contained in Mr. Naylor's statement with reference to Mr. Woods' engine on the Sonth Western ratilway. In that engine the loose wheels were made of diameters differiug by $\frac{5}{s}$ of an inch, amd yet they ran successfully, till the men in anthority keyed the wheels tight on the axle, and then they went no batly that the driver refused to take the train back with such an engine. If confirmation was wanted that the use of fixed wheeds of equal diameter over cmes was wrong, it was contained in that narrative of Mr. Naylors, whe had alluted to the danger of the corresponding defect, viz, the use of fixel wheels of meyual dianeters on straight lines.

Further. on the question of loose whecls and radial axles, when the discussion mon the Mont Cenis railway took place, ${ }^{1}$ he had exhilited a morle! of a malway enve having, instead of a pair of wheels, a long eylinder, which cond he placed either in the ordinary way parallel with a rambal line, or conld be shifted into a radial line. With this model he showed that, when the two axles of the carriage were parallel instead of radiating, there was a strong endway thrust, and that if the axle of the long eylinder were left at liberty in its hearings the eylinter wonld move andways in the same way as in on orlinary printing press, where the rollers in passing over the inking table mate an ent-way as well as a rotary movement.

Now in a railway carriage on a emre, this contimons tendency of the wheels to move in the direction of the length of the axle

[^36]could only be satisficd by a corresponding slipping motion between the wheels ant the rails. 'To show the value of this in protucings frietion, and how much more important it was than the other friction, which arose from the wheels not being loose on the axles, he would make a comparison in a particular instance. Ho would commence by stating the friction arising from the wheels not being loose on the axle. Assume a curve of 621 feet radius-a little under 10 chains; a gange of 4 feet $8 \frac{1}{2}$ inches: and a four-wheel carriage with a space of 12 feet between the wheels. The loss by the slipping caused by the wheels not being loose on the axle would be equal to the whole weight of the train through 20 feet in 1 mile; whereas the loss by slipping through non-radiating of the axles would be the whole weight of the train through 53 feet. He believel there was no difficnity in overcoming this loss arising from non-radiation of the axles, ant that it might be done either by the mode snggested by the Author, or by other meehanical contrivances. He also concurred with Mr. Adams in the view that it was most desirable in locomotives to introluce the elastie medium at the earliest possible moment, and not to leave the 2 -tons weight of the wheels and axle of an engine running withont an clastic relief upon the rails. If the introluction of springs between the tire and the frame of the wheel were possible in practice, he believed a great benefit would result.

He quite concurred with Mr. Alams that it was undesirable to shrink tires on to railway wheels: and he also thonght the use of spoked wheels in railway carriages was a mistake. He believed that both these errors had arisen simply from repeating in an iron wheel the old-fashioned strueture of a woolen wheel. In a common road wheel with its nave, spokes and felloes, the only reliable bond for the whole strueture was the tire; under these circumstances the tire was properly enough shrme on; it thins drew the parts together ; there was no fear of bursting the tire in the operation, becanse the wool would yield to its pressure and, moreover, the spok's were made 'dished,' and thus allowed of any decrease in diamcter of the wheel which the contraction of the tire demander. But in an iron wheel with spokes not dished there was no surch yielding; amb therefore the shrinkage of tires on to snch whecls was always most msatisfactory, as there was constantly present the donlt whether the exact best pint of shrinkage had heen reached: on the one hand there was danger of lawsting, on the other there was danger of becoming loose. He believel the most appropriate rallway wheel was one without spokes, and where the tire was secured with ut shrinkage. Some
of the carliest railway whels were mate of the dise construction: and hoking at the mitimen suppert such whe els gave to the tire, and to the lesserfe et the hat in disturning the air, he helieved they would ewohtnally surnsede poke whechs for all railway plant.

There was onte peint on which he thought Mr. Adams was in error, and in which he was at rariance with the views expressed in other partin of the laper. Jle agreed that it was desimable to have a smooth reat was to get the hast reeistance; but Mr. Alams probuscel to hreak the train ley acting umen the wheels. If it were desirable to keep loth whewls amd raiks in order that kind of heaking most lo get rin of'; for where it was used the wearing of flats in the wheels was almost inevitable, and wheels thens worn locame revoling hammers. He thonght the apraratus adopted be Mr. limulees for the Nín laulo ralway was an almiable one for coring this defect, ant that it was applicalle in all cases, though secially derigncel for extremely heary inclines. ${ }^{1}$
'The plan of lieaking ley 'contre-vapeur' of M. Le 'hatelier, so largely used on the Continent, and now begiming to be employed in England (he helieved Mr. liamshottom had it in operation in the Liverporl tumel), was also an amirable one for preventing the rubling of that places on the wheels. In this syatem provisions were made which emabled the driver, when he wished to bring the train to re-t, or to retard it down a steep incline, to safely reverse his engine while the stcam was on. This put the pressure of the steam against the wheck; lut it womld lee seen, on reflection, that this pressure ennd no ver le sufficient to stop the wheels from revolving; and thus, thongh a powerful retarding effect was obtained, the wheds cond nerer be worn ont of shape. He had experimenterl with this system of break and had fonm that with an ortinary train the driver hat entire control, and could pull up in the ustal istance and time on appoaching a station, without making nse of any other break, even a tender break. He heliererl, if this system were adopted, it would be fomm that although trains world still be fitted with temer and herek-ran breaks, these woud never be used in the ordinary service of the trains, but would be brought into operation only when it was desired to pull up rey shaply to aroid colli.ion.

Mr. (x. H. I'mers said he thought Mr. Longrilge underralned the usual practice of the super-eleration of the onter rail uron railway curves, arguing from experiments upon the Mont Cenis
railway, that the bite upon the rails was upon the foremost part of the parallelogram formed by the four wheels of the carriage, on the exterior rail, and, at the after part of the same, on the interior rail of the eurve. Now, if the action referred to took place upon a line similar to ordinary lines of railway, without the central rail, the eross-cornered lite above referred to would, in his opinion, by no means prove that the lateral pressure against the forward wheel flange was not considerably greater than that against the after wheel flange, and thus still leave the necessity for super-elevation of the outer rail, as usually considered; but if to this was added the action of the horizontal wheels upon the central rails in the ease cited, he feared that the experiment could not properly lead to the abandoment of the usual modes practised in this comntry for security against the effects of centrifugal force, whether consisting of super-elevation of the outer rail, or, on very sharp curves, of the check rail usually adopted.

Mr. J. A. Loxgridge explained that he did not dispute that tentrifugal force had no influence on the movement of a railway carriage round a curve, hut that it was not sufficient to throw the carriage wheel flanges against the onter rail. The proof of that was that the hind end of the carriage never bore against the outer edge.

Mr. J. B. Fell said he took considerable interest in the working of sharp curves, and could confirm to the fullest extent all that had been said by Mr. Longridge in rogard to the satisfactory manner in which the system of loose wheels had worked on the Mont Cenis line. On the Paris and Scéanx railway, which had sharp curres of $2 \frac{1}{2}$ chains radius, the loose wheel system had been in operation for more than fifteen years. The axle-loxes of the Mont Cenis carriages were made after the model of those used on that line, which he believed had run over 100,000 kilomètres with lont trifling repairs. With regarl to the plan Mr. Longridge poposed, in place of Mr. Clark's methool, to use the diagonal rools for obtaining the radial movement, he had heen told ly M. Amaul, of l'aris, the inventor, that it answered exccenlingly well: it was a more simple mode of imprarting the movement to the axle. The result in earriages in which it had been tried was perfeetly satisfictury. Mrr. Naylor had told what happened to an engine with one leading whee fths of an inch larger in diameter than the other. A curions instance of the kind occurred some years ago on the Maria Antonia railway, a single line, where a mosement was observed to take place in the rails on one sine in the diredion of Plonenee and on the other side towards

Pistoja. No one could make out for many months what was the canse of this: but at length one of the engines came into the shop for repairs, when it was fomed that one of the driving-wheels was $\frac{1}{4}$ the or ${ }^{3}$ the of an inch larger in diameter than the others. That engine ran pobally twelve months lefore the defeet was discovered, which hal no other than the alove result; and he was not aware that the engine hat at any time left the rats. After the wheds hand been turned up and made even the movenent of the rails ceaserl.

Mr. J. ©hank ohservel that train resistance on curves might be resolven into flange friction, and merpal treat. 'laking the 4 feet $8!2$ ineles gange, when a train passed romad a circle of any ralins of the same gange half the weight of the tain had a slip, backwarls upon the imer rail to the extent of 31 feet. 'To overeme this slip' , we whed should be loose upon the axle, and hy stipping upon the buss, instead of on the tread, the friction would be relncel to about $\frac{1}{10}$ th of what it was when the wheels were fixed : and again this might be much more reduced by hunicating the boss. Nuthing was gained ly eoning the wheels, and fixing the axles parallel in the framing. But if the axles were made to radiate, the conical tread had a eircmmerential learing 1_{4}^{1} inch larger towarts the flange. On a curve of 7 -chains radius, it was equal to the 81 feet difference of rail; for one of 5 chains radius it was rather in excess the wrong way; and for one of 10 -chains radius, there was a falling off. On a straight road the conical treat acted as a drawbark, because the whed worked to the high side, and the opposite wheel ruming on the small part of the tread had a scraping action on the rail; and this had the effect of throwing furward the wheel with the larger bearing or tread on the opporite side, which was the cause of the oscillation complained of.

In the case cited ly Mr. Longridue, the leading wheels were stated to grind against the rail on the outside, and the trailing wheels on the inside; but if the trailing wheels were examined from belind they would also be forind to grimd against the outside. He thought the centrifugal foree, at a speed of 60 miles an hour on a large curve, was so small that it had no effect when the ordinary cant was given. Loose wheels were the only practical solution of the difficulty; but he thought the bearing onght to be one-third outside the wheed and two-thirds inside. If the bearing was all inside, he thought the wheel would som get too louse.

The hegie arrangements proposed did not seem to him to affird sufficient pressure to deflect the leading wheels the right way;
nor did he think that putting rods in any position would effect the purpose. The bearing followed the track of the whecls that caried it, and there was nothing to prevent them grinding upon the outer flange.

Mr. G. J. Mormons remarked, that centrifugal force upon carriages going romd a curve was a horizontal force. Taking W to represent the weight of the cariage, V to represent the velocity in feet per second, and 12 to represent the radius in feet, the centrifugal force was given loy the formula $\frac{W \mathrm{~V}^{2}}{32 \cdot 2 \times \mathrm{R}}$.

In the case of a carriage passing round a curre, its weight acted in a vertical direction, and the centrifngal force in a horizontal direction. It was stated that centrifigal foree in molinary cases was insufficient to make koth the leading and the trailing wheels press against the outer rail. Perhaps in many cases that might be so. He would smppose an extreme case. lut one within the limits of possibility-a curve of 2 -chains radius, with a speed of to miles an hom. At that speed centrifugal force would le exactly equal to gravity; so that the carriage would be in this position: it would be acted on by its own weight in a vertical direction, and ly a force equal to its own weight in a homizontal direction; aml it wonld be just as reasonable to build a vertical wall on a curve of 2 -chains radius, and put the rails on the wall and set the carriage to rm romd that, as to lay the rails of a-chain curre without any cant and send a carriage round at that speed.

He understood Mr. Longridge to say that the centrifugal force was not sufficient to make the outer wheels lite the rails, and therefore it was monecessary to give any cant, becanse the cant was put to make the friction somewhat less. In the case which he had suppresen?, which wats an extreme one, the danger would be extreme; but in ordinary cases, on a curve of 2 chains ralins, at a speed of 20 miles an hour, a siced which had been worked for vears on the Mont Cenis line, if there were no cant, the carringe would be in a dangerons position. If a vertical line were drane to represent the weight of the carriage, and a horizontal line to repesent centrifigal force, and the parallelegram was compheted in the ordinary way, then the resultant of these two forees would fe the diagonal of the parallelogram, and the rails monst be laid at right angles to that, to put the carriages in a proper condition for foming romul curves. Whether the outer wheels pressed against the rails or mot had nothing to do with the question.

With regarl to the friction of a fom-whee carriage passing
romed a curve, in the first place, the miter pail was longer than
 centre to contre of mils, this exersis of length was $2 \times\left(i \times 3 \cdot 14^{2}\right.$ in a complete circle, mermatter what the ranlius might be. With the orlinary gime that was almot 31 feet : hat it was more conrenient to consider the exase of langth in 1 frot, and this exerss was ${ }_{1}^{(i}$. Either the miter wheel would drag forwarl, or the inmer wheel womk slip hack: but in any case, half the weight must be moved over that distance.

$$
\begin{aligned}
& \text { Let } W^{-}=\text {weight of carriage, } \\
& \mathrm{l}=\text { ralins of eurre, } \\
& \text { (i }=\text { samge (centre to centre of rails), } \\
& \mathrm{L}=\text { length of wheel hase, } \\
& \mathrm{F}=\text { cocflicient of friction; }
\end{aligned}
$$

then the total friction arising from this canse would he-

$$
\frac{G}{G_{i}} \times \frac{W}{2} \times F=\frac{W \mathrm{~F}}{2 \mathrm{H}^{-}} \times \mathrm{G} \ldots(i)
$$

The next friction to be ennsidered was that arising from the fact that the axles were parallel.

The wheels constantly tried to move in a direction at right angles to their axles; but each wheel was compelled to move alonge a rail which was inclinel to that direction at a certain angle a, and the friction arising from this would therefore be expressed by the formula $W \times \sin a \times F$; bit as $\sin a$ was eciual to $\frac{1}{2} \overline{R_{i}}$, this might he written $W \times \frac{\mathrm{L}}{2} \overline{\mathrm{R}} \times \mathrm{F}$; or, to compare with the last formmla,

There was anotiner canse of resistance; the force to overeone the last-maned friction was not applied directly, lat indireetly, ly the grimling of the flanges against the mals. The friction arising from this canse was somewhat difficult of calculation, hat ho helieved it might he expressed very noarly this:

$$
\frac{W F L_{2}}{2 \mathrm{~F}^{-1}} \times \frac{\mathrm{F}}{5} \text {, or } \frac{W^{2} \mathrm{~F}}{10 \mathrm{~F}^{-}}
$$

That was appoximately right, lut it varied with the prejection of the flange and the diancter of the whel. It howerer involved F^{2}, so that it must be a comparatively small amomet. But the
formulæ (a) and (b), which expressed the amounts of the principal resistances, might be written thus:

$$
\frac{\mathrm{W} \mathrm{~F}}{2} \times(\mathrm{G}+\mathrm{L}) \ldots \ldots . .(c) ;
$$

and he believed that expressed very nearly the tutal resistance to be overcome.

If the wheels were made loose upon the axles, frietion (${ }^{(t)}$) was altogether got rit of. If the axles were made radial, then friction (b) was got rid of: but L was always greater than G . Therefore it was more important to make the axles radial than to make the wheels loose. He had no dount loose wheels could be made to work well. Those he knew most about were on the Mont Cenis railway, where the speed was not great, so the evidenee was not conclusive for high speeds; still, as far as they were tried, they worked admirably. He thought it might le taken for granted that resistance ((1) might lie got rid of altogether, be making the wheels loose; but as regarded resistance (b), it was rather a difficult affair.

Mr. 'lark's system of radial asles was, no doult, nearly perfeet, and almost mathematically correct: but it involved three axles in a carringe. That was frequently considered to be a disadvantage. The plan adopted in America dit not get rid of friction (b) altogether: lut by the adoption of bogies the length of the wheel base (L) was reduced, and that being the case the amount of friction (b) was also reduect, althongh it was not removed. A great deal had been said about bogies ruming very smoothly on American railways. Bogies had the alvantage of adapting themselves to the particular pertion of the road on which they were rumning. Now, in a system like Mr. Clark's, the position of the axles depended uron the position of the three points at which the wheels tonched each rail: and if the road was very bad, all these axles might he in a wrong porition. Therefore he thonght the logie was suitable for a lad road; lut he considered radial axles superior to the hogie on a well-laid road, although they could only be adopted for carriages at present. For locomotives the rathial axle, invented ly the Author of the laper, could only be applied to the leating and trailing wheels, and not to the driving wheels. He thought Mr. Clark's system of ratial triving wheels would prove snceessful, and if so, the friction (b) could be got rid of; but the only methor at present in use for reducing that friction (b), when all the wheels hat to le driving whecls, was the athpion of a very short wheel base; and where the curves were
severe, this oljeet was hest attained by the engine known as the donble-hogie engine. The two driving whecls must always be keyed on to the same axle, and therefore it was apparently impossible to lessen the friction (1) , in the case of engines.

Mr. W. Atrisus remarkel that on the one ham the superclevation of the outer rail han hern regardel as a theoretical question, only one carriage heing dialt with at a time, am that carriage heing supposed to receive the impetus within itself; while, on the wher hand, it had also heen treated as a practieal question, in which the impetus of the carriage was not within itself lout was given by the engine drawing it. Directly a train was brought on to a curve a new condition of things was instituted. The resistance of the latter part of the train tended to pull the whole train into the position of a chord; and as Mr. Longridge hat sait, the central portion of the train ran against the inside rail of the curve and not against the outside. From this it followed that the utility of the super-elevation was very much diminished, because the latter part of the train dragged the trailing wheels of the engine against the inner side and forced the leading wheels more strongly against the onter rail. In practice it was often found that when the theoretical superelevation had been given it had to be reduced considerably, because the engines ran off the line. By giving super-elevation the outer wheel pressed less heavily on the rail, and the train dragged the trailing wheels in such a way as to drive the leading wheel of the locomotive over the rail; therefore, though he felt some diffidence in saying that the super-eleration should be done away with, yet in practice it had to be much modified.

There was, no doubt, some truth in Mr. Fox's theory of accounting for the casy travelling in the American cars, but the principal cause of the easy motion was the fact, that the carriages were supported upon two distinct systems of springs. First, they had two or three wheels on cither side, which prevented the inequalities of the road from being felt; then there was the bogie frame itself on springs; again, the carriage was placed in the centre on a bar resting on other springs, and consequently almost the whole of the tremulons motion which existel in European carriages, and which was conveyed directly from the road to the passengers, was removed. To effect this, attention must be directed not to slack coupling, hat to some intermediate system of springs. He thought cylindrical were preferable to conical wheels, because in the case of curves little advantage was derived from the conical form, on aecount of the greater part of the train ruming
against the inner rail. The want of reliable information on the rexistances of the train on curres was a disgrace to the profersion. There was no information in a tabulated form in any engineering hook. He had reduced to the single form a rule laid down by Mr. Latrobe-that on a curve of 100 feet radius the resistance was 30 lbs. per ton, and inversely as the radius. That was given as the result of American experience of American rolling stock, lut its insufficiency was admitted by American engincers. Then in the experiments on the Erie railway ${ }^{1}$ it was estimated that the resistance was equal to $\frac{1}{2} \mathrm{lb}$. per ton per degree at the centre of the circle subtended ly 100 feet at the circmerence. By reducing this rule to the terms in which Mr. Latrobe's had been expressed, it was found that 28.75 lbs . was given as against 30 llhs ., so that it was evident that both rules had a common origin. In both cases the length of the train and the speed were ignored, although it was manifest that the resistance would depend upon the length of the train and its speed.

The only other formula he was acquainted with was that given liy Mr. Molesworth, in which the resistance was stated to lee equal to 1 per cent. of the ordinary resistance of the train on a straight and level line for each degree of the curve occupicd by the train. If that was reduced to the same form as the American rules, the three rules agreed in the condition that the train in this last case was 435 feet in length, and that the ordinary train resistance was 12 lhs . per ton at a speed of 20 miles an hour. In this formula the resistance of the curve was partly dependent upon the speed and patly upon the length of the train, so that in a train of 100 feet the resistance would have been only one-fourth. Thus this rule must be entirely wrong, and as far as he knew these were the only data extant. It was therefore most desirable that further experiments should be made and tabulated, and at the same time the length and speed of the train, and the state of the rails, should be recorded.

The only experiments he had mate were on the speed of trains round curves. He took a train up an incline; drove it first along a straight line, and noticel the speed on entering the curve, and then when he had passed it; but what was most remarkalle was that, with a train of 120 tons on a gradient of 1 in 66 , going at a low speed, the lows on the curve was 2.1 per cent. of the speed at which the train entered upon it; while on another occasion, at

[^37]a speed of about 11 ? miles an hour, the loss wits mhly a rery small gereentase of sued. 'Ihis showed the difficulty of arriving at positive eomelnsims, as a ereat deal dependerl uph the state of the mals at the time of making the experiment.

Mr. Smamosun mal that whataver experiments hal heen tried on the llont ('anis railway and whaterer might hatre been the gesults ohtained from thase experiments, the womld mot induce him to recommend the great ratway companies of this eountry to adnpt loose wheels for the rolling stock upon their main lines, ruming at a speed of 60 miles an hour. The question of the morits of fised and loose wheels was not a new one. Many first(lass meehanies had formerly devoted their time in endeavours to bring out an axle that womlil enable them to surmount the diffienltios referverl to: the oljeet being to make eath wheel travel the distance that was delineated men the length of railway which that whecl had to pass over on the curves.
llis lather in 1820 groduced a domle axle, which was shown in Fis. 1 (p. foo). He was aware of the fact that any pulley rmning loose on its axle 'got drunk.' A practical man going through a manufacturers shop wonld notice that a lonse pulley which had no work to do always wore out sooner than the pulley which had all the work to do. It was evident, therefore, that if the wheel was to turn romud upon the axle it must have a hroad lase. The wheels for these axles were employed mon a colliery rolling stock. and were used looth below and above ground at a speed of 4 miles or 5 miles an hour, and a consideralle sum was saved by preventing wear and tear of the wheeds. The men used to skid the wheels \quad pon the inclined planes, and those wheels, when they nocted repairing, were sent to hinn, and he hat sixpence each for turning them up. He might have got a shilling if they had not lecm on loose axles.

There was an axle, Fig. . , the details of which he conld not quite recollect. He had drawn it to the hest of his ability, but he thonght it was invented by his father after l-26. In this case there was a hollow axle haring a wheel keyed on it at one end, while a solid internal axle ran through it, to the end of which the other wheel was keved, the wheds heing kept in gauge by collars. When these axles were first used he was engaged, as an engine-man, in winding the coals wl the inclined plane where they were in use. For twelve montlis he worked an engine with a boy as fireman, and found that at low speds the loose wheel answered its purgose.

The axle, Fig. :3, hall not been invented when he was at the lathe, so that he could not remember or describe it so well as those previously mentioned. He believed it was introduced about the year $18: 31$.

After the time to which he had referred. experiments were mate which eventually led to the condemmation of loose wheels for high speeds, thongh they had been tried in every possible shape. The ball and socket joint, which appeared on the double axles, was changed into an ordinary bearing, but whenever it was worked at high speed it invariably got knocked to pieces.

Ie might inedentally state his opinim, that the mowle of porpelling a carriage was lased on the fact that it was mot always polled n pon the centre. The draw-har in the midtle of the carrage was mot atway pulled upen: wecasionally the whold of the strain was thrown umen the safety ehains. la the rase of breakage of the hraw-har it was dear the strain would come tirst on one side and then on the other anomeding to the oscillation of the carrage. 'This principle hat heen matioly lost sight of in the argments hitherto atheed. Mr. Phipss ham mand the original dratwings of an axle which was projected hy Mr. Rohert Stephenson, and this question was disenssed wer and over again. not only he Mr. Stepherism lont he Mr. Brmel. and they all cane to the same conclusiom, that there was an moniahly fatal dofect in making one wheel detached from the other. In order to indicate this defect. he would ask any whe who had ever passud thromgh a village and seen the village blarkmith, after having hoopela wheel, pate it on a cartaste in order to take it home? He began to posh, but when he pmoshed one whed. insteal of the other going forwards it had a tendeney to go backwards.

If any two wheels, loose on the axles, were taken from a malway carriage, the power necessary to propel them forwarl might start, the wheel, nearest to the point where the power was applied, 2 or 3 inches in advance, while the othor whed might not have started. Again, in a locomotive yard, supposing there was a pair of wheels keyed on the axle, and a man wanted to move them forward, what dirl he do: He placed his foot upon the spoke and his hand upon the periphery, and pulled, and both wheels went on simultaneously, but if he placed his foot upon the spokes of at wheel loose on the axles, the two wheels performed a pirnette. He sulmitted that the defect indicated ley these facts was fatal to any application of the loose wheel to a railway carriage. Upon the question of conced wheds, he to a great extent concmred in what Mr. Fox had said. Between the years $18: 38$ and 1842, during the construction of Charlestown tumel, he happened on one oceasion to he on a ballast train when an opportmity was afforded him for observing the peculiar effect of the wheels upon the curve. After careful observation, he riscovered that the comes were acting in a diametrically opposite way to that generally believed, and there was not a shadow of dombt that at a speed of 10 miles an hour, with a train going romed a curve of 10 chains radius, erery cone, except those of the engine and as far as about the third carriage, was acting in a wrong direction. This was bronght about by the engine haring a temdency to poll the train
into the line of the bow-string, thus bringing most of the cones into the wrong position.

Mr. Bhunlees said he could confirm all that had been stated with regard to the working of loose wheels and radial axles on the Mont Cenis railway. Nothing could possibly act better than the two combined in reducing train resistance. He thought that loose wheels conld be applied to rolling stock with the same perfection of workmanship as fixed ones; and, as they possessed the great advantage of taking the strain off the axles, he considered their use would render railway travelling much freer from accident, and he would have no heritation in travelling in a train fitted with properly made loose wheels at a speed of 60 miles an hour.

In adopting Mr. Clark's radial system on the Mont Cenis railway, he hal to take into consideration the fact that there were on that line numerons eurves of 2 chains radins, some of which were so long as to deveribe three-fourths of a circle, thus giving the outer wheels an additional distance to travel of 18 feet as compared with the inner ones; and he was convinced that the line could not, under these circumstances, have been successfully worked with fixed wheels and rigid axles. He was now applying the system to the stock for a much longer line, the Honduras Interoceanic railway, and was glad to find from the reports he had received, that it was acting equally as well there as upon the Mont Cenis railway. The Mont Cenis stock had not been quite correctly described. The goods wagons and a number of the passenger carriages were fourwheel, fitted with ordinary axles, and with fixed wheels on the one side and loose wheels on the other, lont the remainder of the passenger carriages were made with six loose wheels, and radial axles which did not revolve.

There was no doulit lut that much of what Mr. Stephenson had said, in condemnation of the use of loose wheels, was due to the fact that his experience of them belonged to an early period in the construction of railway rolling stock, when the defeets to which he referred would be attributable to imperfect manufacture and fitting. Perhaps, also, Mr. Stcphenson was a little prejudiced in favour of the old system. He might mention that the contractor for the Mont Cenis rolling stock was so much prejudiced against radial axles and loose wheels, probably from their being novel, that he declined to construct it with them unless he were previously allowed to make a trial of the system ly fitting them upon the underframe of a cariage, and running it over the linc. He had been so certain that the system was lad that nothing but an actual trial convinced him of its merits. It had heen found in working
that the earriages fitted with radial axles and loose wheels were much superior in comfort to the others with the fixed and loose wheels only, and were invariably preferred by persons who had opportunities of travelling by the two kinds of carriage, the motion being much steadier in the former, both upon the straight road and upon curves. He had no donbt that equally satisfactory results would be arrived at with regarl to many of the improvements which Mr. Adams had suggested, and he hoped that ere long many of them would be carried into practical operation.

Mr. A. II. Macrine exhibited a diagram of a railway wagon upon a curve the relative size of the wagon and the sharpness of the curve being exaggerated for the sake of illustration. A point marked A was the centre of the wagon, and the centre of gravity as well. The rails would cause the wagon to follow the curve, and therefore centrifugal force would come into action; hut while the momentum of the wagon bore on the point A in the direction of the tangent, there would be an independent action in every other part of the wagon. If it were free from every force, exeept that which was inherent in itself, it would have a rotary motion of its own round the point A as a centre, which would affect it when upon a curve, and would tend to keep the inside of the wagon towards the centre of the curve, and the transverse axis of the wagon always radial. If the wagon had only one pair of whecls on an axle passing through its centre of gravity, this axle would be always radial, and the resistance would be a simple pressure against the outer rail. In the case of four-wheel wagons this resistance was not at the centre, hut at the two axles. In this case, if the axles were radial the resistance would still be simply against the outer rail; but when the axles were parallel to each other the parallelism of the axles was antagonistic to the rotary motion of the wagon, and would destroy it. But the rotary motion was necessary; and therefore the outer rail must move the leading axle inwards, while the imer rail must move the trailing axle outwarls, and this brought a transverse friction upon the rails which would not occur if the axles were made radial. However, the rotary motion of the wagon was not equally shared between the two axles. In illustration of this, he would take the case of a coach on a common road, in which the leading axle of the coach had radial motion, and the trailing axle followed approximately the path of the leading axle withont radial motion, being fixed at right angles to the centre line of the coach. In the same ray the trailing wheels of a railway wagon would keep upon the rails, even though they had no flanges, if they were only broad enough.

Therefore, if the curve was very great, as there was always a play between the wheels and the rails, that might he sufficient to prerent flange friction of the trailing wheel, and the whole flange friction would then come on the lealing wherl. This was trme of all parallel axles, rven if they were provided with means for the revolution of one whed imdependent of the other. When the wheels were fixed, the leading axle had still more friction to contend with than the trailing axle, for the longitudinal sliding action this brought into play gave the onter leading wheel and the onter trailing wheol a tembency to hang lack, which woutd aggravate the non-radiation of the former, but diminish that of the latter. Where the wagon formed part of a train some of these circumstances would he altered; the compling of the wagons would tend to relieve the flange friction, as the trailing wheels of the wagon in front would tend to relieve the flange friction of the outer leading wheel, and the leading wheels of the wagon behind wouk tend to relieve that of the imner trailing wheel. At the same time the resistance of the train itself would not be diminished, but rather increased as it ran round the curve. He hat pointed out these elementary matters in an ahstract point of view, ant apart from circumstances of imperfection in whels and rails, or of oscillation, which might be called aeeilental. He thought radiation was the great question to be considerel in the present day; one reason for which was that radiation would allow the full lenefit from the coning of the whecks, if coning were of any benefit at all; but it was plain that no adrantage could be obtained from coning withont radiation.

There was another expedient that might tend to diminish friction in passing round a curve if the axles were radiated; that was the extra elevation of the outer rail, in order that it might he relicved of a certain amount of friction incidental to longitudinal slipping. He did not wish to molerrate the importance of the independent motion of one wheel mon the axke, but considered it of less importance than radiation, though that was a question on which much difference of opinion prevailed.

Mr. Woors remarked that one observation struck lim with some surprise at the ontset of the Paper, an olservation which he thought constituted the fundamental principle on which the conclusions of the Author were based. Mr. Adams said, "If the true principles of construction were accurately followed, resistancoother that that of gravity - shonld be reduced to the single element of axle friction." Mr. Alams stated that the axle friction might be faken at 4 lhis. per ton of weight, and then went on to intimate that,
whereas in pratice the resistance was fomb to be much errater than this, the excess was ocasioncel by distmrbing elements due to fanty eonstanction of the ralway and the rolling stock. 'The probhems referred to were by no means novel, hat hat engiged the attention of engineers for the last thirty or forty years ; in fite ever since the Liverpol and Manchester railway was rompleterl. As far late as thirtr-two years ago the resomeres of the (irame Junction and the Liverpool and Manchester railways were phaced at the disposal of a committee; appointed by the british Association, whose duty it became to ascertain, what were called then, the 'donstants' of railway resistance. 'The milways, the rolling stock, aml the servants of those compranies were plated at the disgosal of that committee ; and the eond lasions arived at were emborlied in the volmes of the 'Transactions for 1838 and $1841 .{ }^{1}$ 'Thuse conchasions he believed had not only never been dispoved, but were now miversally admitted. 'They showed that, lreyond mere axle friction, a large amome of the resistance on rallways was occasioned by the motion of trains throngh the atmosphere. It was, for instance, proved,-taking as an example a train of eight eariages, - that, whereas the friction of such a train at a Low relocity searely exceeded ; lls. per ton, when the velocity was increased to 10 miles an homr it became 7 llos. per ton;
 per ton : so that the resistance was dombled, and in some cases trebled, simply by the action of the atmosphere alone. I Iaving taken an active part in the conduct and analysis of those experiments, he could speak with the greater confilence on the snlject; and he felt convinced that on railwats of easy gradients and curvers, like the Lombon and North Western, Gieat Northern, and others, but little was to be hoped for in the way of reducing the resistance of trains ly such appliances as hat been proposed, whether by loose wheels. her radial axles, or hy the other eontrivances that had beon deseribed. In other and special eases some of these appliances were, he thonght, of importance. With regard to Mr. Adams radial axkes, he had experienced the benefit of that systen as applied to engines on lines whore the curves were very sharp, thas emabling them to pass round emrves much more easily than they would have done withont it. IIe had no experience with Mr. Adams radial system as applied tocarriages and Wagons, and much dombted whether it cond he safely and adrantageonsly

[^38]applied to four-wheel vehicles. He had used Mr. Clark's system with success, and indeed was the first to introduce that system, on a railway in Chili, with curves of 500 feet radius, and it was there still working in a satisfactory manner. About a year ago he spent two or three days on the Mont Cenis railway, and he was pleased to find Mr. Clark's system of radial axles in satisfactory operation there. Although the carriages were fitted with loose wheels, the motion was perfectly steady, and the radial action complete, and all that conld be desired, enabling the trains to travel smoothly and with ease round curves of 40 metres radius; but the speed, the gradient being 1 in 13 only, was necessarily limited, not more than, say, 7 miles or 8 miles an hour on the ascent, whilst in descending it got to 20 miles or 25 miles an hour ; a speed as great as it could be desired to travel at down inclines of 1 in 13. He doubted whether it would be expedient or safe to apply loose wheels to trains travelling at express speed.

The reduction of resistance leading to economy of tractive power, became most important in those cases in which the engines had to put forth their utmost power, as, for instance, on steep gradients, or in travelling at high speeds; but in both those cases it would be observed, from what he had said, that the reduction of friction proper would amount to only a fraction of the whole resistance; for in the first case the force of gravity, and in the second case the resistance of the atmosphere, came largely into play.

No special reference had been made in the Paper to the methods used on American railways, but these, on the whole, had been found very effective; and in partioular the use of the bogie truck, whether for engines or for carriages and wagons, was almost universal, in combination with the central buffing arrangement. With such combination trains readily went round curves of 500 feet radius. In working curves of that radius on the railways in Chili he had found great advantage, especially in the case of engines which had no bogie, in lubricating the wheels and rails by a jet of water, and the engines were arranged for this to be systematically done by means of pipes, which threw the water on to the rails in front of the driving-wheels.

The expediency of using elastic and loose tires on the wheels of coupled engines appeared to be very questionable; and he conceived that it would be almost impossible in practice so to adjust the tires as to allow of their slipping on the wheel centres, without at the same time being so loose as to be unsafe.

The suggestion of the application of four cylinders to an engine was not new. He believed the late Mr. Bodmer was the first to
propose it many years since; lout, in his upinion, the advantago that might be derived from the four cylinders wond he more than comberbalanced by the increascd complexity of the engine, a greater number of parts having to be attended to and kept in order.

Mr. Vigsoles, l'resident, said that before the appointment of tho committee of the Pritish Aswociation on the sulject of railway friction alluded toly Mr. Wionds, the stock of the (irand Junction railway had been placed at his disposal, and he had made experiments during a perion of several weeks. The ressalt he came to was, that atmospheric resistance, hoth directly and laterally, formed a very large proportion of the total resistance; so much so, that in desecuding an inclined plane of 1 in 100 or in 120, it was about equal to the effect of gravity due to such a plane, and these resistances were increased in wind y weather. He concured to the fullest extent in the valne of Mr. Adans' radial contrivance, particularly in respect of reducing friction, especially on curves; burt it must not be assumed that with any contrivance of that kind, such at proportion of refinement conld be obtained as would counterbalance the resistances on railways at high velocitios.

Mr. Bridges Adnais, in reply upon the discussion, procceded to sum up the general objects of his Paper.

First, as to axles, his object was to oldtain an unbreakable axle with the smallest quantity of material, and he therefore resorted to the tulue princijle as the strongest form, and as that in which the metal conld be most perfectly manufactured ly the reduced thickness of the hollow as compared with the solid. Hollow axles were not new, but they were new as he proposed to construct them. They had failed owing to the process of swaying down the bearings to proluce collars for the hearing brasses, and in that process they were rednced in thickness where strength wis most needed, and so failed. His axle was a true hollow eylinder from end to end, without any decrease of thickness at the bearings, and the collars were produced simply by the faced wheel boss at the inner side, and ly a hroad dise mut serewed into the axle hollow at the onter end. In this mode, collars of 2 inches or more in brealth could be ol,tained, instead of the insufficient $\frac{1}{2}$-inch of oidinary practice, which collars were defective, and involved rapid wear and cost for replacement; moreover the increased diameter of the bearing could thus permit a larger surface for oil lubrication.

With regard to loose wheels, i. e., wheels revolving on the axles, there seemed to le some want of clearness as to the object to be attained. The whed was not wanted to revolve as in an ordinary road rehicle, for the revolution of the axle was more advantareons
in many respects; but it was absolutely essential that each whech should lee enabled to slip easily round on the axle, in order to avoid the wasting of the tires and the destruction of the rails and torsion of the asles, together with the blows and vibration which were the conjoined canses of axle breakage. The worst mode of applying a wheel was by forcing it on to the axle, making the two as it were solid, with a very short boss; a boss so short, that the wheels could not be thue without intense presswe, and the very solidity served to intensify the vibration. In the experiments with loose wheels they had failed from imperfect stiucture. In one case the bosses were too short for stealiness, 10 inches to a wheel + feet in dianeter, and so became conical and unstearly by flange pressure. In another case, wheels only 2 feet in diancter, and with a hoss 1 foot in length, failed becanse their heavy lining brasses were in parts adjusted by screws, which getting madjusted cansed failure. His own experience had satisfied him that it was practicable to nse loose wheels with a boss 12. inches in length to a wheel of 3 feet in dianeter. Many years back Captain Moorsom had a first class carriage built for the Birmingham and Cloucester railway to his design. It had four wheels, is feet in diameter and 12 -inch bosses, simply hored out and without any lining brasses. Experiments were matde with this vehicle at Enston Station, rumning it upon curves and straight lines by hand. On the straight line it could be observel that the wheels varied in their movement, sometimes advancing and sometimes receding slightly, as could be noticed by the positions of the spokes, but making an average movement that left them finally in their original position to each other. On the curves, a given distance increased the revolutions of the outer wheels, and the rum back over the same distance restured them to their original position, as denoted ly chalk marks placed on the spokes. This velicle was in use for about twelve months, and the wheels did not get out of order, but they hid a favomable condition of great impronce: the axles were made to radiate, and consequently there was no unfair strain on them, or on the wheels, and there was no donld that was the reason of their durability. Subsequently, the superintendent altered the carriage, and applied wheels and axles in the ordinary rigid mode; the only reason, so fir as eould be aseertained, was "to make it like the rest." But it would he preferable to make the boss half the diameter of the whel in lengtle, and lining it with thin sheet brass, which with hank lead powder dry, for a luhricant, would give double movenent withont any pereeptible wear.

With regand to the aplication of tires, the most bablaroms methol was that of shrinking them on hot, putting all possible strain on them, so that they might horst under a slight how. A lowse tire wats considered to be a somere of danger, hat in truth all tires were apt to stretel in the process of rmming over the rails, and the only way to prevent them from stretching wats to support them by an elastic cushion romd the wheel, which would absorl, the hows and prevent vilmation. The cnshion should act ins a friction clutel, holding the tire, hat permitting it to slip to prevent umbe strain. Experience had shown that such tives were applicable hoth to driving-wheds and ordinary wheels, and by the use of side rings, the tire might be made so deep and strong as always to maintain its true circular form under all diremstances. The tire so fitted beeane a chamel in which (ither a steel or rublher cushion could be placed and safely held, and with rulber all vilnation and ringing noise wond disappear. With the whecls loose on the axles, the tires loose on the wheels, and the axles radial, the friction luetween tire and rail would be reduced to a minimum.

With regard to atmospheric resistance, that must be continually rarying with the speed, and a still atmosphere might, mider certain conditions, he more disadrantageons than a wind. Without wind the atmospherie resistance would lo in propertion to the speed of the train, but with a stern wind travelling at the same speed as the train the atmosphere would give no resistance whatever. Again, a still atmosphere wond give less resistance than a side wiml, cansing the flanges to come in contact with the lecward rail. A moderate side wind might thus produce a greater evil than a strong head wind, especially if the side wind drove the train and wheel flanges to the immer rail on a eurve. In the laper he had not alluded to the atmosphere, dealing only with the puestion of mechanical frictional resistance.

It had been said that certain experiments with passenger trains on the Soutl Westem railway gave very favomable results, but this depended in the circumstances. With a favourable wind and on a stratight line of railway the best conditions might be attained. But the real question at issue was how to compensate by mechanical form for varying conditions. The American bogie vehicles did this imperfectly. Each hogie was eentred to the uper frame, and in ruming the wheels eomad adjust themselves against the rails, the two pivot centres maintaining their relative position to each other muler all ciremonstances, whatever might be the position of the mper frame. lint he comsitered the
position of the pivots in these velicles to be injulicions, as it required a cousiderable length of wheel base to keep them steady. But by the application of the 'caster' principle to the pivots, placing them nearer to the imner than to the outer axle, true movement would be oltained even with a short wheel hase. In this arrangement, the pivot carried no load, as in the American hogie, lut simply served as a guide to regulate the radial movement of the wheels and axles on the free moving spring shackles. In this case, as in that of the fourwheel radial frame, and the longer frame, this same plan of 'caster' pivoting was used, and he insisted that on this plan the compensation of the free moving wheels would insure their true rmming, whether with badly constructed relicles, or with velicles distorted by accident, or with unequal diancters of the wheels on the same axle. The radial system of axles was even more important than loose wheels, for with radiation the conical tires of ordinary wheels could come into play, and so equalize the differing lengths of the pathways on curves, without disturbing the loads or upper structure by lateral movement.

A question had arisen as to the movement of the radial wagons on rails. It had been argned that the centrifugal force always kept the flanges of both the fore and aft tires in contact with the outer rail. Fint it was quite clear that this must be a question of speed. On the other hand, it had been contended that, whatever the speed, there was constantly gaing on what might he called a leeward movement, the foremost wheel flange hugging the outer rail and the hinder wheel flange hugging the inner rail, and this irrespective of radial movement or rigid fixture in the horn plates; and that therefore in the four-wheel 'caster' wagon, the front wheels might run normal to the curves of the inner and outer rails, and the hinder wheels abnormal to the curve, dragging against the inner rail. How much of this might le due to the super-elevation of the outer rail it would be difficult to say, but some engineers were beginning to doult whether there was any adrantage in the super-elevation of the outer rail, and in a line of sharp curves, where the rails had been levelled, no difficulty had occurred. So long as the wheels could be kept parallel to the rails, with the axles pointing to the centres of the curves, the flanges could not mount the rails, unless on the supposition of a projecting rail and at a bad joint, and the fishes must be very lad that permitted this. It was almost impossible that this should oceur with the permanent way he had described, inasmuch as the rail was cnclosed in at
deep groove. With regard to the radial wagon under discussion it would be difficult for the himd wheels to drag abmomally to the eurve, muless in the case of the gauge being laid abnomally wide.

A wheel 3 feet in diameter had two lases-the vertieal base, a point or line vertical to the axle, and a horizontal base formed by the flange laterally against the rail. The flange base was abont 14 inches in length, the 'easter' pivots leing placed 7 inehes within each axle; the distance was it indhes less between them there, and the distance between the axle centres was 14 inches greater at the extremes of the flange bases. Supposing the leeward action to exist in the hind wheels hagging the imer rail, there would be a limited movement when the flange tonchet the rail, and the point where it tonched it would be in the line of the centre pirot, without any tendency to sway the wheels either in one direction or another. Inasmnch, however, as the extreme flango base on the outer hind wheel was 14 inches behind the 'easter' pivot, it would at that point press against the outer rail and sway the axle round the eccentrie centre to the normal position required by the eurve, unless tho gange was abnormally wide. In such case there would be an advantage in a diagonal bar connecting the two radial axle guards and providing simultaneous movement, which he had foreseen. But in all ordinary eases, freo movement of each pair of wheels, imdependently of the other, was desirable to minimize friction. A very long wheel base, as 18 feet or 20 fect, would, with the wheels coupled to prodnce simultaneous radial action, be a very unfavourable condition upon irregular curves or irregular rails, and tend to increase tire friction.

For the sake of keeping the parts few in number, the wagon frame was shown with the learing springs fixed to it, and the axle looses sliding beneath them with the radial movement; but, when high speed was requirel, he preferred to fix the bearing springs to the axle-boxes, and to give free sensitive movement by suspending the body from scroll irons or brackets on long vertical shackles, which easily yielded to the flange pressure of the rails on cures, and returned to their vertical position by gravitation of the vertieal shackles on the straight line.

There was one other consideration; that of a permanent way of almormally wide gauge giving no guidance whatever to the wheel flanges. In each case it was desiralle to conneet the 'caster' radial frames to the jointed traction rod at either end of the wagon, free lateral movement being given to the rod in slots of the head-stock, in such mode that the rod following the tractive force would keep
the centre leetween the two rails, and enforce trine radial movement of the wheels :mul axles.

In the application of breaks to radial vehicles, a departure from the common practice, of langing the break hlocks to the frame or body, was absolutely essential. He therefore suspended them from the radial frames in such a manner as to travel with the wheels, with provision for making them self-acting. If required, there could be a block to each wheel through the whole train. The action of the breaks was by long gravitation lines acting as steelyards, on which the weight conld be adjnsted to the maximum, without stopping the revolntion of the wheels and damaging them by sliding on the rails. The normal condition therefore was for the blucks always to be pressing on the rails, unless lifted, and this was accomplished by a system of sheeves and a ruming eord; one on the end of each lever moving with it, another ruming between the lever and the top of the vehicle over a fixed sheeve, and thence to a winch fixed on the tender or lureak-van; preferally the former. Thus, supposing the weight at the lever end to be $8+11 \mathrm{~s}$., it would be redneed at the winch to one-fourth, and still more ly the wineh power. A cord passing from the winch ran over a fixed pulley at the top of the train, and then descended in a light to the suspended pulley, rising upwards to the next vehicle, and so on throughoat the train. Thas every gravitation levor was attached to a suspended pulley when in action, and each vehicle not recpuired to be in action could have the lever suspended to a hook, out of use, the lifting cord passing onward to the next vehicle. In starting the train the driver most perforce lift all the breaks by the winch, and in stopping he wonld set the winch free, and then every lever in rapid succession would press the blocks on the wheels, with either the whole or a portion of the vehicles, as provided. In case of the train separating into two parts while ascending an incline, by the severance of a coupling, the lifting. cord would also break, and all the breaks would act on the wheels before the train could aefuire a reverse movement.

On the sulbjeet of hauling power, he directed attention to an engine with eight wheels, four conpled drivers in front and four carrying wheels behind, the earrying wheels arranged for common axle-boxes, and with a central radial bar midway between the carrying-wheels to produce radial movement on curves. In this mode the earying-whecls sustaincl a tank with 2,000 gallous of water. In this arrangement, the loal on the driving-wheels would be ahmest constant, the consmuption of water at the hinder rond marely affecting it. He had dengned an engine for working
 wheels, all drivers, with a view to ataingrat power without damage to the rails. The eglinders were form in momber. two on each side. placed alove the other at a pitch eomesponding to the eentres of the driving-axhe. The hriving-whels were eight in monber, compled in two gromps, the extreme when hase heing t9 fiet and the contral lose is feet if inchers, the com wheels heing the drivers and withont flangers. lint, of comsere flanges comblde used to ally or all of the whels, berad or mow, aceorling to the curves. Eath piston govement two wheels, aml as the pistomsaeted in opposite dipetions on each sile the ow illating movement induced loy single artion was nentralized. The stam was taken from a dome on the centre of the fire-lux, and the cxhanst as masme with the exception that longer exhmot pipes were needen to cary it to the chimney; bit this was simply a question of propertion. As in Mr. Crampton's and other choines, and in the tank locomotive of Mr. Rohert Sinclair, the cylimers comh be easily covered in to prevent condensation. The cecentrics were outside between the wheels and the cranks. The loan of the cylinders and piston was thus carried at the mid-length of the frame hetween the wheels, withont end overhang. The engine could be used either as a tank engine. carring 1,600 gallons of water in wing tanks, or as a tender engine. The luffer heams were ratial. The wheels were all spring tired, which gave from 14 per cent. to 15 per cent. letter adhesion, together with freedom from blows and vibration. Wedge lreaks were applied to all the eight wheels ly steam action, worked liy the driver, in such mode as to retard, but not to arrest the wheels: and he considered that it would he as effective and as simple as the Chatelier hreak, looth being alike a driver's operation.

With regard to rail breaks, he considered them to be usefnl under limited conditions. As far back as 1840 he had designed a rail break to clip the two sides of the rails, om the plan of a parallel ruler, the breaks being made to lift up and lower down, with a central lever to put on pressure. Capitain Laws was ahout to apply this break to the Leeds and Manchester railway, lut it was not thought advisable, on aecount of the difficulty of pointis and crossings. At a later periol, he had devised a break of a similar kind, acting vertically on the rails, and it was ordered for some stock for a Northern railway, and actually constructed; lint the superintendent of the line having expressed some dissatisfaction or doubt, he had it removed, not desiring to send an improvement to a distance to be worked under an alverse fecking. On the whole
the pressure of blocks on the wheels he considered to be the most eligible arrangement, provided they were distributed over a sufficient number of vehieles, and guarded against setting the wheels fast.

The last consideration was the structure of the permanent way, which he considered to be an integral part of the rolling stock, without which rolling stock could not be used. He thought if all brittle and rotting material were excluded from permanent way, and the rail rightly constructed with regard to the work, what was called maintenance of way might almost disappear, and its annual cost go into dividend. If, for the heaviest work, it would be desirable to use a rail 8 inches deep with a single head, 3 inches in width, supported beneath the head by a channel sleeper of rolled iron, with a pair of upper wings lying on the ballast surface, and packed from the surface without need of 'opening out,' and a deep keel preserving the gauge; all the advantages of the longitudinal system, with a broad and almost continuous bearing, could thus be attained, but without the disadvantage of a continuity preventing their being laid in curves. The types of joints were only four in number, and the joints per mile a few over ten thousand-about half the usual quantity-and without any screw-bolts or brittle or rotting material. It was, moreover, a safety rail, first, by its great depth, adding to its strength; and next, by the greater part of that depth and length being buried in a wrought-iron channel and held down by cross keys, so that in case of a rail breaking it was scarcely possible for it to get out of position in the sleepers, or for the sleepers to get out of position in the ballast.

> January 31, 1871.
> (i. W. HEMANS, Vicw-President, in the Chair.

The dimension upen the Paper No. 1,284 , "Iram Resistance on Railways," was continned thonghont the meeting.

Felnuary 7, 1871.

CHARLES B. VhGNOLES, F.I.S., Presilent, in the Chair.

The fullowing Candidates were latloted for and duly clected:Whblem Crouch, Jonn James Moxtgomery, and Cilables George Napier, as Members; Guybon Damant Atherstone, Thomas Avelina, Charles Colson, Mevry Crabtiee, Alexatper Mhlane Dunlop, Join Eunsox, Martin Join Farrela, George Fuwler, Join Russela Freman, Whlida George Freeman, Frank Alexanidr Brofy Geniste, James Metcalf Hawhins, l'eter Linisiy Iemperson, James Arciifald Hamilton IIolaes, Josepil Join Mlacleay, Samuel. Lack Masox, Francis Ivgram Palmer, Navigating Lientenant, R.N., Daniel Pidgeon, Robert Carstairs Reif, Thomas Mileer Rickmin, Memeley Crayen St. Johis, Josepi Tomlinson, Douglas bidrey Wheberfonce Veitci, Stud. Inst., C.E., Join Waugif, and Fravels (Eentge Wrxee, Stud. Inst., C E., as Associates.

It was amounced that the following Camlidates, having been duly recommended, had been admitted by the Council under the provisions of Sect. IV. of the Byc-Laws, as Students of the Institution:-Rofolfo de Arteaga, Willam Dugald Campbele, Edwari Alexisper Dunn, Walter Faituful Garland, IIarry Robert Kempe, Henfy de Quincy Sliwela, and Join Slate.

The disenssion npon the Paper No. 1,28.4, "Train Resistance on Railways," was continued and concluded.

I N D E X

TO THE

MINUTES OF PROCEEDIN(iS,

18:0-71.-Part I.

Abernetiry, J., remarks as to the construction of a dam in the eentro of the larbour of A berdeen, $2 s$.
Aceonts, anditors of, appointed, $175 .-$ Ahstract of receipts nud expenditure from the Ist of Jecember, 1869, to the 30th of November, 1870, 190.- Remarks as to ditto, in the Ammal Report, 184.-Nominal value of the funds of the Institution to 30 th of November, 1870, 186.—Summary of the Seeurities in which the funds are placed, 187.
Alams, W. B., train resistance on railways, 35S.- Remarks as to ditto, 407.Ditto as to railway axles, 407 .-Ditto as to wheels revolving ou the axles, 407 . -Ditto as to loose tires, 409.-Ditto as to atmospheric resistance, 409.-Ditto as to the American boyie vehieles, 409.-Ditto as to the application of tho 'caster' movement to the pirots, 410.-Ditto as to the movement of rarlial wagons on rails, 410.-Ditto as to the effect of the super-elevation of the outer rail on eurves on railways, 410 . -Ditto as to the application of breaks to ratial vehicles, 412.-Ditto as to a locomotive engine with four eoupled drivingwheels in front and four carrying wheels behind, and four eylinders, two on each side, 412.-Ditto as to railway breaks, 413. -Ditto as to the structuro of the permanent way, 414.
Airy, W., remarks as to the theory of metal arches, particularly as to the characteristics of a continuons elastie areh, 141 .-Ditto as to how-string bridges, 142.

Alberga, C. A., elceted assoeiate, 72.
Anderson, J. I. C., elected associate, 72.
Anmual General Meeting, 175.
——— lieport, 178.-Ditto read and ordered to be printed, 175. Iide abo Report. Appold bequests notied in the Annual Report, I8t.
Arches, on tho theory and details of construction of metal and timber, 73.Functions performed ly the parts of a brilge, $73 .-$ Artienlated system, $73 .-$ Rigid arches, 76.- Elastie arches, 76.-Curre of pressures in an arch, 77.Durand Claye's system of ealculating the stress and emmarative bolduess of elastic arehes, 7S.-Bridges with three pivots, sl. -Bridges with two pivots, 81.-Méry's process of calculation, sl. -Bresse's theory for arches of solid wrought-iron plates, s2.-Ditto for a symmetrical arch symmetrieally loated, S4.-Ditto for circular arehes of uniform section, 85.-Arches of different materials: details of construction, 89.-Arches in timber, 89.-Constructions in metal. 92.-Cast iron, 22.-Wrought iron, 03.-Combined cast and wrought
iron arehes, 94 .-Arehe: bridges eompared with girder bridges, 95.-Bow and string bridges, 95.-Appendix 1. Application to a design for an iron arch hridge orer the Rhone, near St. Maurice, for the Western railway of Switzerland, 98. -Principal features of the proposed arch, 98 .-Listimation of the 1 and and thrnst. 98.-Calenkations of the areas of the sections, 100 .-Calenlation of the thrust, 103.-Effect of expansion from an inerease of temperature, 105.Case where the loal ouly covers balf the arch, I07.-Calculations of the bearing moment and the thrust, 107.-New ealculations, with strengthening plates at the haunches, 110.-Calculation of the strains for the complete load, 111.Calculations of the strains where the load only covers half the areh, 112.Anxiliary loads to increase the stability of the work, $114 .-$ New plates required, 115.-Curve of pressure in the arch, 116.-Possibility of eliminating unknown effects of wedging-up, expansion, or settlement, 116.-Effect at settlenent of a pier of the wronght-iron viaduct of the Pandeze, near Lausanne, 116.--Calculations for smaller arehes, 117.-Appendix II. Application to an iron girler hridge in eourse of execution over the river Rhone, near St. Mamice, for the Western railway of Switzerland, 118.-Points of difference from the former design for an arehed bridge at the same spot, 118.-The arch considered as composed of two isolated halves, 119.-Rigid suspension bridges, 120.Moveable abutments; bridges of scveral arehes, 121.-Mobility of the piles under the influence of unequal loading of the contiguons arehes, 121.-Problem of a single arch, bearing against moveable abutments, 12: $;$ - Problem of a bridge of two arches, with immorable abutments, and one moveable pier, 123.Problem of three spans; abutments immovable; two flexible piers, 124.Numerical example, 124.-Displacement which well-constructed piers may suffer probably exaggeratel, 126.
Arteaga, R. de, admitted student, 415 .
Ashton, T., elected associate, 72.
Atehison, A. T., admitted student, 72.
———— J. T., admitted sturlent, 72.
Atherstone, G. D., elected associate, 415.
Atkinson, W., remarks as to train resistance on railways, 397.-Dittn as to the effeet of the super-elevation of the onter rail on eurves on railways, 397.-Ditto as to the cause of the easy motion of American railway cars, 397.-Ditto as to the want of reliable information on the resistanees of a railway train on curves, 398.
A veling, T., lected assoeiate, 415.
Bagallay, H. C., arlmitted student, 295.
Bainbritlo, E., Manby premium of books a warded to, 180 .
Balker, B., remarks as to the theory and details of construction of metal and timber arches, 151.-Ditto as to arches with three pivots, 151.—Ditto as to materials of constmetion not being strietly homogeneous, 15I.-Ditto as to the artion of rivets in girler work, 152.-Ditto as to continnons arches symmetrically lowded, 153.
Bathour, J. M1., memoir nt, 200 .
Barlew, (1, 1'., armitted stulent, 295.
———, P. W., his investiyations as to the strains to which lockegates are subjelen, referreal to, :317.
, W. U., remarks as to the theory and letails of construction of metal and timber arches, particutarly of a contimomes arch, 163.-Ditto as to the arched
roof of the St. Pameras station of the Midlam railway, 16:3--Ditto as to the construefon of irom brideces amb as the distine tion to be drawn betwern a suspension chein ant an aroh, lef. Vote of thanke to, fir his aceonnt of the St. Pamoras station amd rof, Milland railway, Thi--lamerks as to the arrmpencuts for hanling vessels a-hore from the iron thating doek at Cantagema, :3:3.
Bacalgette, E., Millur prize awarded to. 1 is.
Beardmore, N., remarks as to pile-hriving through grased, 20. Difto as to piledriving for the nerth-wing wall of the West Inlia Dusk entrance, 20.-Ditto as to the strenoth of the timber collerdams of the Thames Embankmen, 20.Ditto as to tiolbolts for enferdams: 2l-Ditto as to the settlement of pulde
 and the way to comitract it, 21.-1 Dito ats to the supply of water by meter, 5 , -Diton asto asectaining the latw of manfall in respect to its perionlieal variations, 60.-Ditto as to the limits to the provision that shomid be male for thoorls in earring out engincering works, fo.-Ditto as to flools in England ant in Jutia, (i1.-Ditfo as to weent droughts in Englaul and on the Comtinent, 61.-Ditto as to 'reles of seasons, tiz.-Ditto as to the fall of rain on the hills sonth of Paisley, fín.
Bull, W., remarks descriptivo of a metlond of drawing a curve of pressure for an arch actal on by oblipue forces. $14: 3$. Ditto ditio acted on by wertical pressures and londed more on one side than on the other, 14.-Dito ditu fir symmetrical arches, 146.
Berkley, G., Watt medal and Telford premimm of books awneleil to, 179.
Bireh, R. W. I'., elected associate, 72.-Miller prize awarded to, 181.
Birkinslaw, J. C., memoir of'. 20 .
Bisset, J., electerl assmeiate, 72.
Blacklock, W. 'T'., memoir of, 2.3.
Bourne. J., elected associate, 72.
Braithwaite, J., memoir of, 207.
Bramwell. F. J., remarks as to the resistance offered by the timber cofforlams of the Thames Embankment to the pressure of the watc. 19. - Ditto as to the strains to which lock-gates of varions foms are subjecterl, and as to the methon of ralculating them. 341. -Ditto as to what must he the rutios of a pair of scomental gates in relation to the width hetween the emitese of the hereposta. in order to obtain the minimmon of metal, 34t-Ditto as to frain resistance on raliways, 388 - Ditto as to the improlability of axte frietion heing reduced, 388 -Ditto as to wheels loose on the axles. 38S.- Ditto as to rat lial axles, 389.bitto as to railway wheels, 300.-Ditto as to railway breaks,391.-Ditto as to M. Le Chatelier's plan of hreaking by 'eontre-vapeur,' 391.

Breaks, milway. İide Railwars, train resistance on.
Brecton, R. P., remarks as to the effertams userl in the exerntion of No. 2 contraet of the Thames Embankment, 29.-1)itto as to the failure of a cofteridam, constructed without shoring or similar precantions, :30.-1)itto as to the theory and details of construction of metal and timber arrles, 12n.-Dito as to the Hmgerforl suspension hridge. 157.-Dito as to the Seltash bridere, 15s, 161.Ditto as to the Wimber railway bowstring luidge, 15s.-1 Ditto ats to instamees of arelies of masomry showing great chanticity huring seflement, and from other caluses, tis.-Ditto ats to arches with three pionts, and probalite effied of the application of the pivot construction to the St. Lomis bridge now himiting in Dimeria; 159.-Ditto as to timber bridge constrution, 154.-With as to pro-
cesses for the preservation of timber, 160.-Ditto as to resistance to compression of cast iron, as compared with wromght iron, 161.-Ditto as to the use of ballast upon railway bridges, 162 .-Ditto as to bowstring kridges, 162.-Ditto as to the methols of calculating the strains to which lock and dock gates are subjected, 355. - Ditto as to the determination of the form of gates, 355.-Dito as to the details of construction of iron gates, and as to the alvamtages arising from double skins of boiler plates, 356.-Ditto as to the iron gates at the Bristol docks, 357.
Bresse, M., his thenry for arehes of solid wronghtiron plates, for a symmetrical areh symmetrically loaded, and for circular arches of miform section, referred to, s2, et seq.
Brewster, Sir D., memoir of, 194.
Bridges, metal and timber. Vide Arehes.
Brighs, li., Watt medal and Telforl premimm of books awarted to, 179.
Brooks, W. A., remarks as to the construction of a dam at the Northumbernand dock, in the river Tyne, 29.
Browne, W. R., on the strength of lnek gates, 317.-Remarks as to ditto, and as to cylindrical or circular gates bearing the form of an are of a circle, 353.-Ditto as to floating gates, 354.
Bruce, G. B, remarks as to driving piles of Nemel timber, 19.-Ditto as to the relative cost of iron caissons and timber cofferelams, 19.
Brunlees, J., remarks as to train resistance on railways, 402.-Ditto as to the working of wheels loose on the axles and of radial axles on the Mont Cenis railway, 402.
Buld, G. O., appointed one of the scrutineers of the ballot for Conncil, 175.-Vote of thanks to, 177.
Building, new, total outlay on the, to November 30, 1870, notieed in the Annual Report, 186.
Burnell, G. R., memoir of, 211.
Burstal, E. K., admitted student, 72.
Campbell, C. J., elected member, 72,
——, W. D., admitted stulent, 415.
Carey, J. J., elected member, 72.
Cartagena, town and arsenal of, and description of the iron floating dock at, 295. Vide also Docks, floating.
Carter, W. 13., elected member, 72.
Chesney, Lient.-Col. (i., R.E., elected associate, 295.
Clark, J., remarks as to train resistance on railway curves being due to flange frietion and unequal tread, 393.
Clarke, Lient-Col. A., R.E., remarks as to the enst of cofferdams, $2 ;$.-Ditto as to the details of ronstruction of a dam in the River Metway for the Chatham dockyarl extension works, 26.-Ditto ditto for the Portsmouth dockyard extension works, 27.
Claye, D., his system of calculating the stress and comparative boldness of elastic arelies referred to, 78.
Cofferdams, deseription of the, used in the exeention of No. 2 contract of the Thames Embankment, 3.-Eneroachment of the new river wall upon the Thanes, 3.-Depth of water along the line of wall. 4.-Considerations which governed the preparation of a phan of cofferdam submitted by the contractor, 4.-Plan ultimately adoptel, 5.-Temple steambat piar, 5.-Dam at wastern end of the Temple pier, 5.-Temple pier, or No. 3 dam, 7.-Details of No. 4
dam, 9.-Yichling of the dims, 9.-Level of the London clay, 10.-Cross dam, bomming the western ends of Nos. t and 5 dams, 10 . Dams Nos. 5,5 a and 6 , 10.-I'monp wells in the Temple pier dam, 10.- (enantity of water in the dams,
 stoppinshaks, II. - Materials used in the dams, 11.-P'ile-driving, I2.-'Timber masd, 12. - Catculations made in cotimating the pressure of the water to be resisteal, and the remuisite strength of the dam, 12.-Lemoval of the piles and phalle, 15.-Machine for euthing of the piles, 16.
Coltmm, Z., menwir of, ㄹ12.
(insm, C., clected anmeiate. 415.
Comversazione, Piesident's, Isiot, noticed in the Ammal Report, 183.
Combl, J., remarks as the the eftet of the enntinuity of skin in lock-gates, 351.Ditto as to a means of resisting the serere strain to which grates are subjected when struck ly waves, as carrich out at Ramsate harbour, 352.

Coulthurst, W. M., alpminted Treasurer, 185.
Chumeil, list of the attemdanes of the memers of, taken as rall, 17. - Ballot for, 175.-Ammal Report of, read, 175.-Ammal liphot, 178.-Vote of thanks to,
 Ammal lieport an to balloting list fir members of Council, 185.
Comrthey, F. S., admitted stulent, 295 .
Cowan, C., clectel assiciate, 72.
Cowner, E. A., Wiatt metal and Telford prenium of books awarded to, 179.
Crabtree. M., elected associate, 415.
Cronch, W., elceted member, 415.
Davis, II. L. A., trunsferred member, 72.
D.4., J. E., clected member, 295.

Dobson, L., Telford medal and Telford premium of books awarded to, 179.
———, s., memoir of, 217.
Duck grates. litue Luck gates.
Docks, thating, an acrount of, more cspecially of those at Cartagena and at Ferrol, $295 .-$ Ohject of thating docks, 295.-Warly methorls of effecting repairs of vessels, 295 - Larlicst examples of floating docks, zog. -The sectional doek and the batane dock, 296.-Gilbert's balance floating doeks, 297.-Timber balance dock at Pola, 297.-Superiority of iron to wool for tloating docks, 297.-Iron tleating dock for the maval aremal of Cartagena, 297.-Ditto for the naval aremal of Ferrol, 2!s.- List of thoating docks, with their lates of construction,
 convenience of the Gillent docks made in the Unitud States, 293.-Lifting chambers of a doating dock like that at Catagena, 299.-Strains produced ly the buyancy of the empty chambers, 300 .-Arrangements for supporting the ship on the dock, :30.-Plans for placing ducks in the repuired lecality, and for keeping them in repair, 300.-Ditto, at remards the Cartagena doek, 301.-
 and at form, soz. The hascment or liftime chamber, 302-Domping ma-
 B01.-ling belts, B0t.-Wumbork, 305.-Capstans, :305.-Town and arsenal of Cartan ma, : 0n5.-The basin, :30t.- l'iles, 307.-Masomy wonk, 307. - Iron ratson, 307.-'Time occupied in construction, 307.-Dramght and displacement of the doek, 307.-Finst experiment in the working of the dock, 308.-Etieiency
of the air-chambers, 308.-Operations in docking the 'Numancia,' 308.Persombel of the dock, 309.-Appendix A: Narces and tomage of vessels lifted on the wooden tloating dock at Pula, 310. - Appendix B: Vessels taken on and off the floating dock at the arsenal of Cartagena, 312.
Donglass, J. N., Telford medal and Telford premium of books awarded to, 179.
Downing, Capt. A. E., elected associate, 72.
Dresser, F., elected associate, 72.
Duerdin, 'T., admitted student, 295.
Dunlop, A. M., elected associate, 415 .
Dunn, E. A., admitted student, 415 .
Elueation and status of Cisil Engincers, in the United Kinglom and in foreign countries, pablication of the volume on the, referred to in Annual Report, 18%.
Elliot, L., memoir of, 239.
Elwin, C., fudmitted stulent, 295.
Emson, E., admitted student, 72.
Eugines, locomotise. Vide Railways, train resistance on.
Eunson, J., clected associate, 415.
Evans, W. W., eleeted member, 72.
Evaporation, annual amount of, 51, et seq.
Farrell, M. J., elected associate, 415.
Fell, J. B., remarks as to train resistanee on railways, 302.-Ditto as to the satisfactory manner in which wheels locse on the axtes, and radial axles had worked on the Mont Cemis line, and on the Paris and scanx railway, :92.-1 Ditto as to the effect produced on the Maria Antonia railway by one of the driving wheels of thengine being larger than the others, 302.
Ferrol, description of the iron floating dork at, 295. Vide also Docks, fluating.
Fishe, C. C., memoir of, 218.
Floating docks.-Vide Doeks, floating.
Forrest, J., Secretary, vote of thanks to, 177.
Fowler, G., elected associate, 415.
Fox, C. D., remarks as to train resistanee on railways, and as to the effect of sharp curves mon tractive force for drawing a train, 378.-Ditto as to the results of experiments to ascertain the relative resistame due to curves and gradients on the Southern and Western railway of Qucenslamd, 375 .-D Dito as to the reduction of cost of maintenance and repairs of permanent way and rolling stock, $: 378$.-Ditto as to the difticulty of intwheing humbmental alterations in the existing rolling stock, 380 .-Dito as to the American bogie truck, Mr. Adans' radial system, and Mr. Chark's matial systm, 380 .-Ditto as to whets boose on the axles, 381.-Ditto as to conical tires, 381.-Ditto as to the ecentral buffer
 the centre of gravity low, 382 . -Dito as to the reluethons in the dean wright of rolling stock, :383.-Ditto ais to a pmeunatic break in use on the I'cmosyania Central railway, 3s:3.
-, D. M., Tetfone promimm of books awarded to, 180.

- F', rlected associate, 72.

Fiaser, Alexamber, deded member, Te.
Aister. memmir a, ex:3.

Frectl, W., admitted student, 72.
Furness, (i., remarks as to the Thames Embankment coflerdams, -1 .
Gammon, W., memoir of, 240 .
Garland, W. F., whinitled student, 415.
Gates, lock, on the strength of, 317. lïle alow Lnek gates.
Gaularl. J., on the theory and details of construction of metal and timber ar-hes. 73.-Lemarks as to ditto, 167.-Difto as to the eremeral figure of the arch, I67.Ditto as to the resistance of rigid arehes, $\mathbf{1 6 7}$.-1 Dito as to an ared of wrought irom and an arch of east iron, 169 .- Ditto as to the combination of the two materials, 169.-Ditto as to the strenorth of risetted joints, 170.-Ditto as to the aptitude for resistance of cast irom, 170. - Dith as to bridges with two and three pivets, 171.-Dittoas to bow string girkers, 171 .-Ditto as to a molution of the resistance of a circular roof sumited to the horizontal presume of the wimb, $172 .-1$ Ditto as to the iron quver bridge in course of eretion wer the lihone, near St. Manrice, tor the Westswizerland railway, 173.
Geneste, F. A. 13., elected assuciate, 415.
Gilbert's sectional and balanee lloating docks, as alopted in America, amd timber balanec doek at Polis, 290, et seq.
(iilmore, (i. C., almitted student, 2:5 .
(ilaisher, J., remarlis as to the rainfall at the Royal Observatory, Greenwich, from 1515 to 186:9, 48.-Dito as to the capacity of storace reservoirs, 48.-Ditto as to the water suplly of Norwich, 49.-Ditto as to talls of rain at Crechwich which hat amonted to 1 inch per day during the last fitty-tive years, 49.Ditto as to the mean monthly fall of rain at Cremwich amd at Aberdeen, 50.Ditto as to a cyele in the fall of rain at Greenwich, 50.-Ditto as to the ammal amount of evaporation, 51.-Ditto as to the records of the fall of rain at Greenwich, 5 ?.
(inodman, C. J., admitted student, 72.
Gorion, Maj.-(ien. Sir J. W., memoir of, 241.
Gotto, A. C., admitted stulent, 295.
——, E., transfrred member, 295 .
(irantham, J.. Telford premium of books awarded to, 179.
Grindle, T. W.. dected associate, 72.
Grose, A., admitted student, 72 .
Hakewill, II., memoir of, 245.
Hamilton, R., admitted stulnit, 29\%.
Ilanson, C. A., memoir of, 245 .
Harding, J., Miller prize atwarded to, ist.
Harlwicks, A., admitted studeut, 72.
11arris, J., memoir of, 219.
Harrison, J. T., Watt metal and Telford premime of boks awarded to, 179.
——_, T. E., Vice-Eresident, remarks as to the pevention of leakage where bolts are put through colierdams, 22.-Ditto as th th: construction of dams, 22.Ditto as to the construction of river walls, $2 \cdot 2$ - Dita, as to the Nasmyth hamher for driving piles, 2:3.-Ditto as to the large waste of water in towns where there is an abundant smply, and as to a find and sullieicot sumply, 5\%.-Ditto as to the stremoth of luck gates, and as to canses which in practice pronfuce transverse strains, Ban. Ditto as to the details of comstruction of a pair of irm gaten

Hawkins, J. M., elected associate, 415.
Hawksley, C., vote of thanks to, 175.
———. T., Vice-President, remarks as to the supply of water from chalk districts, 53.-Ditto as to the quantity of water obtainable from gathering grounds for the supply of towns, 54.-Ditto as to the callses of the periodical shortness of the water-supply at Sheffield, 55.-Ditto as to the magnitute of the basins whiel must be provided for impounding water for the supply of towns in different parts of England, $55 .-$ Ditto as to the determination of the quantity of water to be calculated upon as the use and waste of a town, 57.-Ditto as to the waste of water from bad management, 57.-Ditto as to the outlay of capital required for the water supply of a town, 57 .-Ditto as to the waste of water in the metropolis, 58.-Ditto as to the reason why water is not supplied by meter, 58.-Ditto as to the supply of water by pmblic bodies and by private companies, and as to the necessary consumption per head per diem, 59.-Ditto as to apparatus for rendering the constant supply of water successful, by sippressing waste, 62 . - Ditto as to rules and regulations recently adopted by the Rochuale Corporation water-works, 62.-Ditto as to special apparatus to prevent waste in water-closets with the constant service system, 66.-Ditto as to high pressure and low pressure water meters, 67.-Ditto as to the virtnes of soft and hard water, 69.-Ditto as to the construction of embankments for impounding water, 70.-Ditto as to the provision to be made for tluods in England, 70.
Hayter, H., appointed one of the scrutincers of the ballot for Council, 175. - Vote of thanks to, 177.
Heinke, J. W., memoir of, $2 \not 47$.
Hemans, G. W., Vice-President, remarks as to the Thames Embankment cofferdams, 17.-Ditto as to the cost of ditto, compared with that of caisson dams, 17. - Ditto as to the cost of the iron tloating dock at Cartagena, 313 .

Hendersou, P. L., elected associate, 415.
Heppel, J. M., remarks as to the theory and details of construction of metal arches, particularly as to the proper functions of the spandrel filling, 139.
Hobson, J. F., elected associate, 72.
Hollingsworth, C. E., appointel one of the serutineers of the ballot for Council, 175.- Vote of thanks to, 177.

Holmes, J. A. H., elected associate, 415.
Homersham, S. C., remarks as to the absorption of rain by the chalk formation in the neighbonrhood of London, 53.-Ditto as to Iloods in chalk districte, 53.Ditto as to the storage of subterranean water, 53 .-Ditto as to the sale of water by micter fur domestic purposes, 59.
Hooper, E., memoir of, 248.
1Lorn, W. E., admitted student, 295.
Houghton, G., memoir of, 249 .
Hosenden, Lient.-Col. J. St. J., memoir of, 250.

Inglis, J. W., elected associate, 295.
Ivens. F. J., admitted student, 72.

Jarksin, F., admitted student, 72.
Jonss, F., elected member, 295.

- , T. M. R., transfered memler, 72.
W. R., aluitted student, 72.

Kempe, M. R., almittel student, 415.
Kingsbury, W. J., his observations as to the advantages of the eylindrical form of lock gates referred to, 317.

Le Chatelier, L., his plan of breaking railway trains by 'contre-vapeur' referred to, 391.
Leslie, A., on the water supply of the town of Paisley, Reufrewshire, 33.
Library, aceessions to, noticed in Annat Report, 182. - Supplement to Catalogue of ditto, 182. -List of presents to, 271 .
Loek gates, on the strength of, 317.-Mr. P. W. Barlow's investigations as to the strains to which they are subjected, 317.-Mr. Kingsbury's remarks as to the alvantares of the eylindrical form of gate, 318.- Alteration of form by deflection neglected in working ont the mathematical conditions of the problem, 318.Fures acting on one gate. 318.-The water pressure, 318.-P'ressure on the mitre post from the other gate, 319.-Case of a cambered iron-plate girder considered, 319.-Tendency of the respective pressures, 320. - Effect of the forces acting on the rib, 321.-Resistances of the central section paraltel to the axis of the rib, $322 .-$ Equations of equilibrimm for the half of the gate, $3.4 .-\mathrm{T} 0$ find the stetion required at any other point in the rib, 324 .-To determine the rise of the gates and the camber of the rib for a given span, in orter that the quantity of iron in the rib may be as small as possille, 329 .-Practical reasuns which mevent the rise of a pair of gates from being made as great as theory indicates they should be. 334.-Example of the calculations made for one of the lower ribs of a gate designed for a lock under construction, 335.-Ditto of the ribs above, 33t.-Quantity of metal used in existing lock gates much beyond what is necessary, 338.-Oljection to double skinned gates, 338.-Best form of gate, 338.

Loeomotive engines. Tide Railways, train resistance on.
Longritge, J. A., remarks as to the supply of water by meter, 59.-Ditto as to retucing the train resistance on railways, 383.-Ditto as to wheels bose on the axkes and radial axles having been suceesfully employed ou the Mont Cenis railway, $383 .-$ Ditto as to the presumed effect of the elevation of the outer rail on curves, 381,392.-Ditto as to mode of coupling tried on the Mont Cenis rail way, 385.
Lucas, A., elected associate, 72.
Maclean, J. J., elected associate, 415.
Macnair, A. H., remarks as to train resistance on railways, 403.-Ditto as to the action of a railway wagon upon a curve, both with parallel and with radial axles, 403.-Ditto as to expedients for diminishing friction in passing round curves, 404.

Madcley, J. C., elected associate, 72.
Manby, C., Honorary Secretary, vote of thanks to, 177.
——and Telford Premimms, and Telford and Watt Medals, and Miller Prizes, a warded, session 1869-70, 175, 179.-List of subjects for, session 1870-71, 263.
Masnn, S. L., etected associate, 415.
Matthews, W., elected associate, 72.
May, R. C., appointed one of the serutineers of the ballot for Comneil, 175.-Ditto one of the auditors of aecounts, 175. - Vote of thanks to, 177.
Medals, Telford and Watt, and Telford and Manby premiums, and Miller prizes, awarded, session 1869-70, 175, 179.-List of subjucts for, session 1870-71, 263.

Memoirs of deceased members, 191.
Merivale, J. H., admitted student, 72.
Méry, M.. his process of calculation for bridges with two pivots referred to, s1.
Miller prizes, and Telford and Watt medals, and Telforl ant Manby premimms, awarled, session 1869-70, 175, 179.-List of subjects for, session 1870-71, 263.
Mimutes of Proceedings published during the past year, noticed in Ammual Report, 178. - Gencral Index to Vols. xxi. to xxx. in preparation, ditto, 181.

Montgomery, J. J., elected member. 415.
Morrism, G. J., vemarks as to the strength of rivettel joints, 155.-Dito as to the strength of lock gates, 347.-Ditto as to train resistance on railways, 394 . -Dito as to the cftect of centrifugal force in going round curves on railways, 394.-Ditto as to the friction of a four-wheel carriage passing roumd a curve, 394.-Ditto as to wheels loose upon the axles, and as to radial axles, 396.
———, R., memoir of, 220.
Munday, H. 'T., Miller prize awarded to, I8I.

Napier, C. G., elected member, 415.
Naylor, W., remarks as to train resistance on railways, 385.-Ditto as to wheels loose on the axles, 386 .-Ditto as to axle friction, 387.
Neate, C., remarks as to the cofferlam at the Grimsby docks, 27.-Ditto as tor a dam of single-sheet piling at Rio Janeiro, 28.
Nowlan, J., admitted sturlent, 72.

Ogilvie, A., remarks as to the timber cofferdams of the Thames Embankment, 20. Oschard, W. P., admitted student, 72.
Original communications receivel between Dec. 1, 1869, aud Nov. 30, 1870, 268. -Instructions as to preparing ditto, 267.

Pallisou, G., memoir of, 222.
Pilmer, Gr., elected associate, 72 .
--, F. I., Nav. Iieut., R.N., elected associate, 415.
I'arsuns, J. M., memoir of, 252.
P'aterson, 'T., memoir of, 은.
Permanent way. IGde Railways, train resistance on.
Ihillip's, W. F. M., elected member, 72.
Phillips, J., remarks as to there being a limit to the economical use of timber colferlams, IS.-Ditto as to the probability of irou smplanting woul for coffer1:1us, 18.
——. , J. A., elected member, 72.
flipりs, f: II., remarks as to the strains upon arched ribs, 133.-Dito as to the cast and wrought iron arch bridee in the park at Neuilly, 137.-1 Ditto as to the castirrn bidge over the Fevern, Cualbroktale railway, 138.-Ditto as to the effects of temperature on arched ribs, 139.-Ditto as to the degrec to which lock gates, either straight or of varions amounts of eurvature, are subject to the effects of transverse strain, :339.-Ditto as to the alvantages possessed lig curved gates ower straight ones, :3:-Ditto as to forming lock gates of boiler-plate, :389.bittre as to the various strains upon lock gates, with a methow of determining them, fommen upm simple gionnetry and staties, :310.--Dite as to the effect of the sujer-ch vation of the onter rail upen curves, 391.
fingem, H', deted associale, 115 .

Pile-driving. Virle Cutterdams.
Piles, machine for entting oft, 16.
l'itts, J., hemoir of, 2ab:
Pola, (tillert's timber balance dock at, 297, it seq.
Pole, W., tramslation of M. Gamdard's Pan"r, "On the theory and details of construction of metal and timber arches," 73.-- limarks ats to ditto, 166.
l'owle. C'. M.. elceted associate, 29.5.
louts, A., electod member. 7e.
Promimus, Tolford aml Manby and Telford and Watt medals, and Miller prizes, awarded, session 186970, 175. 179.-List of sulpeets for, session 1870-71, 26;3. -Latract from Minntes of Comeil, Feb. 2:3, 1835, on the prineipal snljects for, 2tif.
Presconts, catalogue of, reecivel between Dee. 1, 1569, and Nov. 30, 1570, 271.
I'restem, s., Miller prize awarded to, 181.
Provis, W. A., memoir of, 22.5.

Quick, J., jun., elected member, 72.

Railway, Western, of Switzerland-design for an iron areh bridge over the Rhone, near St. Maurice, for the, 98.-Iron girler bridge in course of execution at the same spot, 118. V̈ide also Arches.
Railways, train resistance on, 358 .-Theoretical conditions under which the resistance might be reluced to a minimum on a level line, 358.-Axle friction, 358.-Friction on curves, 359.- Evils of loose coupling, 359.-Wear of so-called stecl rails, 360.-Cause of wear between tires and rails, 360 .-Sources of tire friction, and mode of a ooidiug it, 361.-Materials of wheels, 361.-Wheels loose on the axhe, 362 . - Axles, and axle-bearings, 362 .-Axle radiation, 363.Method of insuring ditto, 364.-Caster movement, 364.-Eennomical adrautage in the broad gange where traffic is abundant, 365.-Advantages of carriages with loose whecls and radial axles for coal trafic, 365 . - Results of change of form of the frames of ordinary wagons in collisions, 366.-Ditto of radial wagens, 366 . - Noise and vibration in trains an index to the wear going on, 366. - Defeets of rigidity exaggerated in long velicles, 367.-Modification of tho tires of coupded driving wheels, 367.-Structure and strength of rails, 367.Canses of permanent way getting nut of gange, 368.- Ringing somuls in iron permanent way, how induced and how to be obviated, 368. -Wooden and castiron sleepers, Bbis.-Best material for sleepers amb most suitable arrangement for permanent way, 3is.-Liails, 369.-1) isadrautages attending the system of fermanent way known as the girder rail, 370 . - Effeet of surface bearing on ballast, :371.-Supplus resistance of trains from imperfect structure, 371.Breaks, 372-DEngine traction, 372 .-Disadrantages of double logie engines, $373 .-$ How to mect the demanl for a concentration of greater engine power, :374.-Twin cylinder engines, :375.-Petroleum for fucl, 37 (;-- Lecomotives working steam expansively, 376.-Importanee to railway eompanies and their custmers of reducing train resistance, 376.
Lainfall at the Foyal Observatory, (ircenwieh, from 1815 to I869, 48.-Table of each rainfall at (Greenwich which had amomated to at leatet 1 inch ger day during the last fifty-five years, 1!.-Mcan monthly fall of rain at (irecmwich and at Aberdecn, 50. liale abo Witer suply.

Lamsey, - , his arrangement for enabling lock gates to resist the severe strain to which they are subjected when struck by waves, as adopted at liamsgate harbour, reterred to, 3.2.
lankine, I'of. W. J. M., remarks as to the theory and details of construction of metal and timber arches, 132.
Rapier, I. C.. appointed one of the scrutinecrs of the ballot fur Cuuncil, 175.Vote of thanks to, $\mathbf{1 7 7 .}$
Redman, J. B., remarks as to the eomparative adrantiges of wrought-iron and cast-iron cofferdams and timber piling, 23.-Ditto as to the cost of cufferdams, 23 -Ditto as to cylinder fuundations for river walls, 24.-Ditto as to a method of olviating the difficulty of leakage by through bolts, 24 .
licid. R. C., elected assuciate, 415.
Iicilly, C., vote of thanks to, for his Memoir on Iren Girder Bridges, 176.
liemic, (t. B., an aecount of floating docks, more especially of those at Cartagena aud at Ferrol, 295.-Remarks as to the working of the dock at Cartagena, 313. -Ditto as to the cost of ditto, 313.-Ditte as to the arrangements for hauling vessels ashore firm the dock, 313.
Lieport, Ammal, read, and ordered to be printed, 175.-Enumeration of the suljects brought forward at the mectings during the sessiom, 178.-List of Telford and Watt medals, and Telford and Manby promiums of books, awarded, 179.--P'aper by Mr. Larlow on the St. Pancras station aud roof, Midland railway, 150.-Subjects suitable for Papers, 180.-Memoir, by Mr. Calleott Reilly, "Studies of Iron Bridges," 180.-Gencral Index to vols. xxi-xxx. of the Procecdings in preparation, 181 . - Miller prizes a warded, 181 . -Visits of the Students to Eugineering works in progress, 181.-Publication of the volume on "The Eilucation and Status of Civil Enginecrs in the United Kingdom and in Foreign Comatries," 181.-Accessions to the library, 182.-Supplement to the Catalogue being printed, 183.-President's Conversazione, 183.-Tabular statement of the transfers, elections, deceases, and resignations of the members of all classes during the ycars 1868-69 and 1869-70, 183.-Additions to the student class, 184.-Deceases, 184.-Resiguations, 184.-Remarks as to the receipts ant expenditure, 184.-Bequest by J. G. Appold and Mrs. Appold, 184.-Mr.. W. M. Coulthurst appointed treasurer, 185. -Total outlay on the new building to November :30, 1870, 186.-Nominal value of the funds of the Institution to ditto, 186.-Snmmary of the secmitics in which the funds are placed, 187. -Statement of the arrears of subscriptions, 188.-Tiemarks as to the balloting list for members of Council, 188.-Abstract of receipts and expenditare from the 1st of December, 184, to the 30th of November, 1870, 190.-Appendix: Memoirs of deceased members, 194.
liesistance on railways, train, 358. Tide also hailways.
Ithores, A., clected associate, 72.
liiekman, 'I'. M., elected asoociate, 45.5.
lidfley, T. D., description of the cofferdams uscd in the exemtion of No. 2 contract of the Thanes Embankment, 3 - - Remanks as to ditta, 24 , el seq.-Ditto as to the Nomyth hamer for pile-driving. 21 .-Dito as to the timber used in tho contiondams of the Thames Einbankment, 24 .-Ditio as to the details of the corst Prer lincal fort of the dans of No. 2 contract of the Thames Embankment, except that at the Temple pier, 25.-Ditto as to the cost per lineal finct of the Tomple fine dam, 25.-Ditto as to the cost per lineal foot of the Thames Enbankment, induling timpory works, 25.-1 Ditte as to the rclative advantages of cotlerdams and iron caisson dans, 24.

Rolinson, W. R., elected member, 72.
Rochdale Corgeration Waterworks, mules and regulations adopted by the, 61.
Roof of the St. Pancras station of the Midland railway, remarks as to the arched, 163.-Remarks as to a solution of the resistance of a cireular roof submitted to the horizontal pressure of the wind, 172.

Sinderson, C , memoir of, 2:0.
Sawyer, E. E., admitted student, 72.
Sentt, W. G.. elected associate, 72.
Sewell, If. de Q., admitted student, 415.
Sheilds, F. W., remarks as to the principle upon whieh lock gates should be designed, 349.
Shield, H.. transferred member, 72.
Slate, J., admitted student, 415.
Smith, 'T. Il., memoir of, 253.
Soames, P.. elected assnciate, 72.
Sol,with, T., jun., Telforl medal and Telford premium of books awarded to, 179.
St. John, B. C., clected associate, 415.
Stanhope, Hon. I'. J., Miller prize awarded to, 181.
Stephenson, G. R., remarks as to train resistance on railways. 399.- Ditto as to wheels loose on the axles, 399.-Ditto as to a domble axle produced by his father in 1826, 399.-Ditto as to a combined hollow external and solid internal axle, 399.
Stiff, G., atmitted student, 72.
Stoner, B. B., remarks as to the construction of iron arehes, and as to the proper function of the spandrel filling, 129.-Ditto as to methods of ealenlating the stability of arehes. 130.-Ditto as to timber bridges, 130.-Ditto as to east and wrought iron bridge of three arehes in the park at Neuilly, 130.-Ditio as to the Saltash bridge, 131.
Subscriptions, arrears of, statement of the, for the years 1867 to 1870 , both inclusive, 188.
Sugden. T., admitted student, 72.
Symons, G. J., remarks as to the inaccuracy of the carly reeords of the fall of rain at (ireenwich, 51.-Ditto as to the epoch of maximum rainfall in various parts of Great Britain, 52.-Ditto as to evaporation, 52.

Tabular statement of the transfers, elections, deceases, and resignations of nembers of all classes, during the years 1868-69 and 1869-70, 183.
Taylor, T. H., memoir of, 254.
Telford and Watt medals, and Telford and Manby premiums, and Miller prizes, awarded, session 1869-70, 175. 179.-Lizt of suljects for, session 1870-71, 263.
Timber, preservation of, remarks as to processes for the, 160.
Tintrirer, J., almitted stmdent, 295.
Tombinson, J., clecterl associate, 415.
Towle, H. E., remarks as to sectional and balance floating dueks adopted by the U. S. navy department, 314.-Ditto as to the timber balance dock at Poli, 314. -Ditto as to arrangement.s for hauling a ship out of the dock on to the land, 314 .
Townend, G. B., memoir of, 254.
Train resistance on ruilways, 358. Vide also Railways.
Unwin, H., elected associate, 72.

Vallon, J. C. G. du, almitted student, 72.
Veitel, D. d'A. W., elected associate, 415.
Vetch, Capt. J., memoir of, 255.
Vignoles, C. l., President, remarks as to the Thames Embankment cofferdams, 17. -Ditto as to engincering literature, 31.-Ditto as to cylinders of iron or brick for the fommations of river walls, 31.- Vote of thanks to, 176.-Remarks as to train resistance on railways, 407.
Vignoles, Hutton, vote of thanks to, 175.-Appointed one of the auditors of accounts, 175.

Wakley, T. F. S., elected associate, 72.
Walker, W. T., elected associate, 72.
Water meters, remarks as to high and low pressure, 67 , et seq.
Water supply, Norwich, 49, et seq.
Water snpply, Paisley, on the, of the town of, Renfrewshire, 33.-Works executed under parliamentary powers oltained in 1835, 33.-Reservoirs at Harelaw and Stanely, and conduit leading from Harclaw to Stanely, 33.-Arrangements for a uniform delivery of water, 34.-Parliamentary powers acquired in 1853 and in 1866, 34.-Drainage area, and features of the distriet, acquired by the Paisley Water Commissioncrs, 34.-liainfall at Springside and at Muirhead, 35.-Amount of water availablo for use, 35.-Store reserwoir at Nethertrecs, 35.Gauge weirs to test the flow of water into the Rowbank reservoir, 35.-Disclarge over ditto, 36.-Conduit, branch-pipes, filters, and tanks, 36.-Works of construction of the store reservoir at Nethertrees, 37.-Bye wash, 87.-Outlet trunel, 37.-Formation of the embankments, 38.-Waste weir, 40.-Effect of vegetable matter on the quality of the water, 40.-Supply pipes and stuice apparatus, 40.-Pipe track and pipes, 41.--Precautions to be observed in using clay pipes, 41.-Test for the soundness of clay pipes, 42.-Aquetnct for deep enttings, 4^{2}.-Dimensions of the clay pipes, 43.-Dimensions and weight of the iron pipes, 43.-Method of laying the pipes, 43.-Pipes tested, 41.-Filters for the supply of Johnstone and Elderslie, 44.-Tank walls, 44. - Filtering materials, 45.-Roof of the tank, 45.-Mortar, 45.-High level filters at Stancly, 45.-Cost of the separate works and of the entire scheme, $46 .-A_{\text {ppendix : }}$ Cost of constructing filters, 46.-Ditto, contents of, and quantities of materials employed in, the construction of different impounding reservoirs, for various catchment areas, 47.
Water works, Rochdale, rules and regulations adopted by the corporation for the constant service, 62.
Watt and Telford melals, and Telford and Manhy preminms, and Miller prizes a warled, session 1869-70, 175, 179.-List of subjects for, session 1870-71, 263.
Waugh, J., elected associate, 415.
Weaver, W., memoir of, 233.
Whdsh, E., clected member, 72.
Whitchomse, E. O. W., clected associate, 72.
Wilks, C. II., elceted associate, 72.
Williams. R. Price, Watt medal and Telford premium of looks awarded to. 179.
-_- W. W., jun., Miller prize awarded to, 181.
Wilem, J. II., alecterl assoriate, 72.
Wrom, N., memoir of, 236.
Wonks, E., romarks as to train resistance on railways, 40.- Ditto as io axle fridion, 401.- I) Itto as to experiments, made ly a Committee of the British

Association, to ascertain the 'eonstants' of railway resistance, 405.-Ditto as to there heing little hope of reducing the resistame by lonse wheres, hy radial axles, or other contrivances, ton.-Ditto as to Mr. Alams railway axles as applied to engines, to5.-D Dito ats to Mr. Clark's radial system as in use on the Mlont Cenis railway, 400.-Ditto as to the bogic truck in use on Americm railways. 106.

Young, E. W., remarks as to a method of fimbing the strains on the diagomals of
 150.-Ditto as to the rib of :marelod row, 151.
———, F. T., almitten stment, 29.
Yomghoband, U. E. S., admitted studnt, 72.

LONLON:
PRINTED RY WILL!AM CLOWES AND sons, STAMFORD STREET AND CHAFING CROSS.

39358008524248

[^0]: 'Vide Mimtos of Prowe elinges lnst. C.E., whl. ix., p. 4.

[^1]: ${ }^{1}$ Vide Minutes of Pruccedings Inst. C.E., vol. i., Session 1840, pp. 18, 19.

[^2]: 1
 Fïhe Minutes of Procedings Inst. C.E., vol. i., Scasion 1511, 1P. 81-8゙.
 llid., rol. ix, 14^{3} 1-23.

[^3]: 1 Weale's Rulimentary Series.

[^4]: ${ }^{1}$ The discussion upon this Paper occupied portions of three evenings; but an abstract of the whole is given consecutively.

[^5]: ${ }^{1}$ Tide "Manual of Hydrology," p. 282, fuot note, 8ro. London, 1862.

[^6]: ' Pitle "Report of the British Association, 1868," p. 13.5, et seq., 8vo. London 186:

[^7]: ${ }^{1}$ 'the Rules and Regulations recently adopted by the Rochdale Corporation Water Works are as follow:-
 " 1.-The Corporation will, at their own cost, lay fown and maintain all the

[^8]: ${ }^{1}$ Vide Minutes of Proceedings Iust. C.E., vol. xxviii., p. 561.

[^9]: 1 This paragraph ought, I think, to be taken with some reserve--The.

[^10]: : 'This Appendis was receivel at difierent dates, after the original Memoir, and hal not been translated or cireulated previous to the diseusion.
 ? The dimensions lave been retainel in their origital form, as the metrie systew is now thoroughly un lerstond and rauch used ly Enghish Engineers.-Tr.

[^11]: ${ }^{1}$ Fide Minutes of Procecdings Inst. C.E., vol. xxvii., ip. 66 and 74.
 *Vide Ibid., p. 101.

[^12]: ${ }^{1}$ Vite Minutes of Proceedings Inst. C.E., vol. xxvii., p. 66. The bridge of Szègédin, with iron piers, dil not give greater elevations than 5 or 6 millimètres according to the following information supplied by the "Nouvcau Portefeuille do l'Ingénicur des Chemins de Fer," par A. Perdonnet et C. Polonceau. Texte, p. 366, Sro., Paris, 1866.
 "Lors des épreuves du pont, on a réalisé le cas le plus défavorable à la stabilité des piles, en chargeant chaque travée de 8000 kilog. par mètre courant, toutes les autres trarées étant libres, et l'on a remarqué les lois suivautes.
 "Tontes les piles fléchissent à la hauteur des naissauces, en s'écartant de la travée chargée ;

[^13]: "Les denx piles adjacentes à la travée chargée fléchissent, en moyenne, de 4 millimètres; les deus piles situtées a la distiture d'une travée fléchissent de $1 \frac{1}{2}$ millimetres: ees fleches diminuent rapidement quand on scoloigne de la travée chargée?; elles sont sensibles encore, quoiqu'on ne puisse les mesurer d'une extrémité a lautre du pont.
 "Les dépressions an smmet des travées, qui n'étaient que de 12 millimìtres lorsfue tont le pont était charge, attcignaient 30 millimètres pour le travée charrée isolément, ce qui s'explique par l'argmentation de la corde; les deux travées adjacentes se relevitent de 5 à 6 millimètres, les snivantes de 2 millimètres an phes: phas loin, ancun monvement n'a été oluservé."
 ${ }^{1}$ Tide Minntes of Procedings Inst. C.E., vol. xxvii., p. 74.

[^14]: ${ }^{1}$ V̈ide "Theory of Strains in Girders and Similar Structures," by B. B. Stoney, vol. i., p. 136. Svo. I andon, 1866.

 2 Virle Minutes of Procedings Inst. C. E., vol. v., 1P. 162 and 439.

[^15]: ${ }^{1}$ Vite Minutes of Proccedings Inst. C.L., vol. xxvii., 1. 88.

[^16]: ${ }^{1}$ Vide Minutes of Procedings Inst. C.E., vol. xxvii., p. 443.

[^17]: ${ }^{3}$ Tide Minutes of Proredings Inat. C.E.. vol. xxvi.. p. 258.

[^18]: * Have previously received Telford Medids.

[^19]: ${ }^{1}$ Vide Transactions Royal Scottish Society of Arts, vol. vii., p. 534.

[^20]: ${ }^{1}$ Vide Minutes of Proccedings Inst. C.E., vol. xxix, p. 310.

[^21]: ' Vile Minutes of Proceedings Inst. C.E., vol. xxiii., p. 450.
 ${ }^{2}$ I!inl., vol. xxe., p. 480.

[^22]: ' Tithe Minates of Procteding*, Hast. U.E., vol. i. (1841), p. 18:

[^23]: ${ }^{2}$ Vide Minutes of Proceedings Inst. C.L., vol. xxiii., p. 399.

[^24]: 1" An Historical and Descriptive Account of the Suspension Bridge constructed over the Menai Strait, in North Wales; with a Brief Notice of Conway Bridge, from the Designis of 'T. Telfurd, \&e." By W. A. Provis. Folio. Plates. Lond. 1828.

[^25]: ${ }^{1}$ V'icle Trans. Inst. C.E , vol. iii., p. 357.

[^26]: ${ }^{1}$ In the "Transactions of the North of England Lustitnte of Mining Engimere," vol. xt., there is a lhgthy memoir of the late Mr. Nicholats Wood, by Mr. Doubleday.

[^27]: ${ }^{1}$ Vill Minutes of Proccedings Inst. C.E., vol. xxix., p. 319.

[^28]: ${ }^{1}$ Vide Minutes of Proceedings Inst. C.E., vol i. (1841), p. 156.

[^29]:

[^30]: * But only 830 feet within the calisions.

[^31]: ${ }^{1}$ Vide "Narrative of the Voyage of the Floating Doek Bermula, from Englant to Dermuda, de." By One of those on board. Svo, I'lates and Map. Lomden No date.

[^32]: ${ }^{1}$ Vide Trans. Inst. C.E., vol. i., p. 67.
 ${ }^{2}$ Vide Minutes of Proceedings Inst. C.E., vol. xviii., p. 445.

[^33]: 1 The dimensions are taken in inehes, lecause the stress is always measured in tons to the spuare inch.

[^34]: ${ }^{1}$ The disenssion upm this Faper extended over portions of three evenings, but an abstract of the whole is given consecutively.

[^35]: ${ }^{1}$ By 'easter' movement is to be understood the principle of applying a vertical axis at a short distance behind or beforo a horizontal axis, so that it 'casts' or turns the horizontal axis out of a straight line. In house furniture the vertical axis is in front of the horizontal axis, the tendeney being, to follow the guidance of the mover. On the rails the rail is the guide, and so the vertieal axis is placed behind the horizontal, in preference.

[^36]: ${ }^{1}$ Föle Minutes of Procendings Inst. C.E., Mol. axviii., p. 2.is.

[^37]: ${ }^{1}$ Vide Minutes o. I'uccedings Inst. C.L., vul. axviii., 1. 869.

[^38]: vol. x. (1811). 1. 205, t sity.

