AMERICAN JOURNAL

of

SCIENCE AND ARTS.

CONDUCTED BY

Professors B. SILLIMAN and JAMES D. DANA, IN CONNECTION WITH

Professors ASA GRAY, LOUIS AGASSIZ, and WOLCOTT GIBBS, of CAMBRIDGE, and

Professors S. W. JOHNSON, GEO. J. BRUSH, and H. A. NEWTON, of NEW HAVEN.

SECOND SERIES.
vol. XL. - [WHOLE NUMBER, XC.]
VOL. XL.-JULY-NOVEMBER, 1865. WITH AN INDEX TO VOLS. XXXI-XL.

NEW HAVEN: EDITORS.
1865.

PRINTED BY E. HATEg, 426 CEAPEL AT.

CONTENTS OF VOLUME XL.

NUMBER CXVIII.

Fage.
Art. I. On the Deep Placers of the South and Middle Yuba, Nevada county, California, in connection with the Middle Yuba and Eureka Lake Canal Companies; by B. Silliman, 1
II. On the Iee in Kennebec River; by Rev. Frederic Gardner, 20
III. On the Origin and Formation of Prairies ; by L. Lesquereux, 23
IV. Preliminary notice of a small collection of Fossils found by Dr. Hays, on the west shore of Kennedy Channel, at the highest northern localities ever explored; by F. В. Меек, 31
V. On the Replacement of one Alcoholic Radical by another in compounds of the Ether Class; by C. Friedel and J. M. Crafts, 34
VI. On Etherification ; by C. Friedel and J. M. Crafts, 40
VII. Contributions to the Chemistry of Natural Waters ; by T. Sterby Hunt, 43
VIII. On Molecular Physics; by Prof. W. A. Norton, 61
IX. On the Spectra of some of the Fixed Stars; by William Huggins, and Prof. W. A. Miller: and On the Spectra of some of the Nebule ; by William Huggins, - 73
X. Reactions of Gelatine ; by M. Carey Lea, 81
XI. Influence of Gravity on Magnetic Declination ; by Painy Earle Chase, 83
XII. Researches on the Volatile Hydrocarbons; by C. M. Warren, 89
XIII. On the nature of the Invisible Photographic Image; by M. Carey Lea, 109
XIV. Mineralogical Notices; by Prof. C. U. Shepard, 110

SCIENTIFIC INTELLIGENCE.

Chemistry and Physics-On the chemical constitution of the brain, Liebreich, 113.On an advantageous method of preparing oxygen, Fleitmann, 114.-On propyl-phycit, Carius, 115.
Mineralogy and Geology.-Descriptions of New Species of Fossils from the Paleozoic Rocks of the Western Sates, by J. H. McChesney, 116.-Mont Alto Lignite and Appalachian Erosion, by J. P. Leslex, 119.-Eruption of Etna: Volcano of Kilauea, 122. -Addition to Prof. Shepard's Notes on the minerals of the Emery mine at Chester Mass. : Geological Map of Russia : On the changes rendered necessary in the Geological Map of South Africa, by recent discoveries of Fossils, by Dr. R. N. Rubidge, 123. -Anthrakerpeton, a new Carboniferous Reptile, Prof. Owen: Mineral wealh of Mexico, Baron de Morner : Gneiss with the impression of an Equisetum : Kalicine, 124.-Geological Excursion, 125.

Botany and Zoology.- Thwaites, Enumeratio Plantarum Zeylaniæ ; an Enumeration of Ceylon Plants, etc. : Flora Capensis, by Drs. Harvey and Sonder, 125-Thesaurus Capensis, by Prof. ${ }^{*}$ HARVEY : Ammobroma Sonore, or Sand-food of Sonora : Annales $^{\text {A }}$ Botanices Systematicæ: The Production of Organisms in closed vessels, 126.-On the absorption and assimilation of carbonic acid hy plants, Boussingault : Classification of Pulyps, by A. E. Verrill, 127.-Embryology of the Star Fish; by Alexander Agassiz, 129.
Astronomy.-Note on the inclination of the planetary orbits to the invariable plane, by Prof. G. Hinkichs, 131.-New Comet, 132.-Mr. Haggins on the Spectrum of the Nebala in Orion, 133.-On the Meteorite of Mamboum, Bengal, by Haidinger : New Asteroid, 134.
Miscellaneous Scientific Intelligence.-Experiments on the production of cylinders of ice by pressure through orifices, by Mr. Fresca, 134.-On Sepulture in the Age of Stone in France, by P. Gervais: Lake Habitations, 135.-On the Human Remains of the Trou du Frontal, by P. J. Van Beneden and Dr. E. Dupont: Instrument for measuring distances: On a Journey from Chimborazo to Bogota across the Central Andes, by Robert Cross, 136,-Walker Prizes, Boston Society of Natural History, 137.Tunnel of Mount Cenis: Centennial Celebration of the Royal Saxon Mining Academy at Frieberg: The Agassiz Expedition to South America, 138.-Report on the mortality in Paris, by M. Deville : Dr. H. Falconer : Ink: Production of the Sexes : British Association: Academy of Sciences, Paris: Voyage of the Novara, 139,-Obitu-ary.-Valenciennes : Pierre Gratiolet: Leon Dufour: Admiral Fitzroy: A. Gressly: Sir J. Richardson : Sir Joseph Paxton : Kupfler, 140.
Miscellaneous Bibliography.-A Treatise on Astronomy, by Prof. Elias Looms, LL.D., 140.-Entomological Society of Philadelphia: Whitney's Report on the Geological Survey of California, 141- A Preliminary Report on the Geology of New Brunswick, etc., by Henry Youle Hind, M.A., etc. : Ritter's Comparative Geography : Annual Report of the American Institute of the City of New York: Baird's Review of American Birds: Naturalist's Directory, by F. W. Petnam : Chambers's Encyelopedia: Report of the Commissioner of Agriculture for 1862, 142. -Report on the Formation of the Canterbury Plains (New Zealand), etc., by JuLius Hiast, Ph.S., etc.; American Journal of Conchology, 143.-Notices of New Works and Proceedings of Societies, 143, 144.

NUMBER CXIX.

Page.
Art. XV. Friedrich Georg Wilhelm Struve, 145
XVI. Experiments with the Ammonium Amalgam; by Charles M. Wetherile, Ph.D., M.D., - 160
XVII. Gravity and Magnetic Inclination; by Pliny Earle Chase, M.A., 166
XVIII. Waterglass; by John M. Ordway. Part V, 173
XIX. Speculations upon a possible method of determining the dis- tance of certain variably colored Stars; by Joseph Wharton, 190
XX. Contributions to the Chemistry of Natural Waters; by T. Sterry Hint, 193
XXI. A new Meteorite from Newton county, Arkansas, contain- ing on its surface Carbonate of Lime ; by Prof. J. Law- rence Smith, 213
XXII. Researches on the Volatile Hydrocarbons ; by C. M. Warren, 216
XXIII. Barometer; by James Lewis, 233
XXIV. On a new Illuminator for Opaque objects under high powers of the Microscope; by H. L. Sinth, 238
XXV. On a new Growing Slide for the Microscope ; by H. L. Smith, 241
XXVI. On the Projection of the Spectra of the Metals; by Prof. Josian P. Cooke, Jr., 243
XXVII. On the use of the Bisulphate of Soda as a substitute for the Bisulphate of Polash in the decomposition of minerals, especially the Aluminous minerals; by Prof. J. Lawrence Smith, 248
XXVIII. Altitudes of Shooting Stars observed on the night of Nov. 13-14th, 1863, at Washington, Haverford College, Germantown, Philadelphia, and other places. Computed by H. A. Newton, 250
XXIX. Remarks on Gravitation, and its relation to a supposed Universal Force ; by Heniy F. Walling, 254

SCIENTIFIC INTELLIGENCE.

Chemistry and Physics.-On a new and very powerful thermo electrie battery, S. Mancus, 257.- On some thermo-electric elements of great electro motive power, Stefan : On the wave length of the blue iridium line, J. Mü ı.eEr, 250.-Orethe absurpion spectrum of Didymium, Erbium and Terbinm, Delafontaine: Polisimmetria dei Cristalli; Relazoni tra la geminazione dei Cristalli ed il luro ingrandimento, par Abcangelo Scıechr, 260.-Memoire sur l'Emploi du Microscope polarisant, etc., par M. DesclorzEUX : Zirconium, 261.
Mineralogy and Geology.-On the Sand hills of Cape Henry in Virginia, by B. Henry Latrobe, Eaq, 261.-Voleanic Eruptions in Northern California and Oregon: Notice of Pot-holes near Ponltney, Vermont, by John A. Nichols, 264.-Observations on the Eocene Lignite Formation of the United States, by T. A. C.nrab, 265.-On the Fossil Insects frum Illinois, the Miamia and Hemeristia, by Samuel II. Scudder, 268. Pulfontulogy of the Upper Missouri,--a Report upon collections made by the expeditinns under Lient G. K. Waren-lnvertebrates, by F. B. Mrek and F. V. Hayden, M.D.: Archæopteryx, 2\%1.--Documents sur les tremblements de terre et les phenomènes
 Exirats de Geologie, pour les années, 1862-1~63, par M. Delesse, 27\%.-Earthquake in the Mississippi Valley: Geological Survey of Nevada, 273.
Butany and Zoology.-The Tennersee Jellow Wool (Cladrastis lutes): Welwitschia mirabilis: Ou the Dovements and Habits of Climbing Plants, by Cuarafs Darwin, 2:3-Gradation from Indivilual_Peculiarities to species in Insects, by Dr B D. Walsif, 282.-Illustrated Catalugue of the Museum of Cumparaive Zuvlugy at Harvard College, 253.
Astronomy and Meteorology.-Shooting Stars seen at Hinsdale, Mass., in August, 1865: Shooting Stars seen at New Haven in August, 1865, 284 -Auroral Phenomena of Augnst 3 , 1865,235 .-Comparative intensity of the light reflected from the Moon and Venus, by Mr. Ciricor vac, 287.
Miscellaneous Scientific Intelligence.-Magnesium, 2s7.--The Rumford Premium : The Prince Alhert Medal: Expluration of the Urals : Mineral Waters: Association for the Advancement of Science in France : Central Meteorological Burean in Prussia : Goeppert on the Diamond, 283-Obituary--Silbermann: Dr. Samuel P. Woodward: Sir John William Luibuck: sir William J. Hooker, 238.

Miscellaneous Biblingraphy.-A treatise on the Assaying of Lead, Copper, Siver, Gold and Mercury from the German of Bodemann and Keri, translated by W. A. Goodyear: The Declaration of Students of the Natural and Physical Sciences: Smithsonian Repurt for 1863, 289.-Quartz Operator's Hand-Book, Wheeler \& Randaht, 290. -The Scientific Review and Journal of the Inventor's Institute: Coal Oils, Gksener : Tours of a Chess Knight, by S. S. Haldeman, 291-Nutices of New Works and Proceedings of Societies, 291, 292.

NUMBERCXX.

Page.
Art. XXX. On the Origin of Prairies; by James D. Dana, 293
XXXI. On the Construction of a Spectroscope with a number of prisms, by which the angle of minimum deviation for any ray may be accurately measured and its position in the so- lar spectrum determined; by Јоstan P. Сооке, Jr., - 305
XXXII. Experiments in Mechanical Polarity ; by Pliny Earle Cifase, - 313
XXXIII. Nitrates of Iron; by John M. Ordway, 316
XXXIV. Some Indications of a Northward Transportation of Drift Materials in the Lower Peninsula of Michigan ; by Prof. Alexander Winchell, - 331
XXXV. On the Crystallization of Sulphur, and upon the Reaction between Sulphid of Hydrogen, Ammonia and Alcohol; by Charles M. Wetherile, 338
XXXVI. On the History of Eozoön Canadense, (with a plate), - 344
XXXVII. Notices of Earthquakes, - 362
XXXVIII. On Metabrushite, Zeugite, Ornithite and other min- erals of the Key of Sombrero; by Alexis A. Julien, 367
XXXIX. On two Varieties of Sponge-Spicules; by Alexis A. Julien, 379
XL. Researches on the Volatile Hydrocarbons ; by C. M. Warren, 384

SCIENTIFIC INTELLIGENCE.

> Iron regions of Arizona, by W. P. Blake: On an oil-well boring at Chicago, by Gzo. A. Shufeldt, Jr , 388.-On the Drift in Brazil, and on decomposed rocks under the Drift; from Prof. Agassiz-communicated by A. Agassiz, 339.-Mining Statistics of Great Britain for 1861, 390.-Cretaceous Reptiles of the United States, by Joserir Leidy, M.D.: Note on the Discuvery of Rhizopods in the Azoic, by James D. Dana: Report on the Mines of New Mexico, by Prof. R. E. Owen and E. T. Cox, 321--Defense des Colonies, by Joachim Barrande: Supplement to the Ichnology of New England, by Edward Hitcucock, D.D., etc. : New Dinosaurian from the Isle of Wight: Seaside Studies in Natural History, by Elizabeth C. Agassiz and Alexander Agassiz, 392. --Entomulogical Society of Philadelphia: A classification of Mollusea based on the principle of cephalization, by Edward S. Morse: Natural History-A Manual of Zoulogy for Schools, etc., by Sanborn Tennex, A.M. 393-On a solar halo seen at Crawfordaville, Ind., by Prof. J. L. Campbell, 394.-British Association at Birmingham :

Systema Naturæ of Linnæus : New Planet : Italian Society of Natural Sciences: Prof. Berthelot: Statue of Arago: Chambers's Encyclopedia, 395.-Obituary.-Admiral William Henry Smith : Hugh Cumming, 395.-Johann Franz Enke : William Rowan Hamilton: John T. Plummer, Mi.D., 396.
General Index to Vols. XXXI-XL, 397.
List of Plates, Vols. XXXI-XL, 435.
Appendix.-On Prairies : Discovery of a New Planet, by J. C. Watson : MeteoritesSystem of Arrangement, by R, P. Gregg, 435.

ERRATUM.

P. 285, line 12 from top, for C. Tomlinson, M.D., read Mr. C. G. Stowell.

AMERICAN

JOURNAL OF SCIENCE AND ARTS.

[SECOND SERIES.]

Art. I.-On the Deep Placers of the South and Middle Yuba, Nevada county, California, in connection with the Middle Yuba and Eureka Lake Canal Companies; by B. Silliman.

Geographical and Geological position of the Gold in California.The gold of California is found chielly on the western slopes of the Sierra Nevada in rocks believed to be not older geologically than the Jurassic. The great gold region of the State, that area from which much the largest amount of gold bullion has been derived, stretches over about three degrees of latitude from near Fort Miller on the San Joaquin river in Fresno county, north to Deer Creek and the Forks of the Feather river in Plumas county, an area of about 200 miles in length and of an average width of about 40 miles, although it widens toward the north to about 70 miles from east to west. Its approximate area is probably about 1000 square miles. There are other important gold-bearing areas, especially those to the north near the sea coast, viz: the Waldo or Sailors' diggings, the Sea Shore diggings, and a large but not very productive district, bounded on the north by the Klamath river, and south by Trinity river and the forks of the Sacramento near Shasta. In the southern part of California are several subordinate gold fields of inconsiderable area, chielly in the Coast range mountains; such are the Santa Cruz diggings near the coast, the San Antonio, the Francesquito, San Fernando, San Gabriel and Holcomb valley. These are chiefly interesting historically as having furnished the earliest evidence of the existence of gold in California, some of the southern gold fields having been

[^0]well known to the Spanish missionaries from an early period, long anterior to the date commonly mentioned (1849) for the first discovery of gold in California. Prudential considerations led these ecclesiastics to prevent as far as possible the spread of any knowledge respecting the existence of gold on or near their mission lands.

From this statement it will be observed that the gold in California is probably of two distinet geological ages, that of the Sierra Nevada being Jurassic or Triassic, that of the Coast range Cretaceous or Tertiary.

Sources to which the Gold in California is referable. -The original source from whence all the gold of California has been derived is undoubtedly the veins of gold-bearing quartz which occur so abundantly in all the slates and metamorphic rocks of the western slope of the Sierras within the areas known as the gold regions. But this original or great source of the precious metal is historically secondary to the shallow and deep diggings or placers, in the former of which the gold was first discovered, and which during the early years of California history furnished nearly the whole of the metal sent into commerce. That the placers were derived from the degradation or breaking up of the auriferous veins and the distribution of the detritus thus formed by the agency of running water and ice does not admit of a question. It appears also to be pretty conclusively proved that the goldbearing gravel is of two distinct epochs, both geologically very modern, but the later period distinctly separated in time from the earlier, and its materials derived chiefly from the breaking up and redistribution of the older or deep placers. These appear to be distinctly referable to a river system different from that which now exists, flowing at a higher level, or over a less elevated continental mass, and with more power, but generally in the direction of the main valleys of the present system. The reasons for this opinion will be hereafter stated more at length.

The sources to which the gold in California is referable are therefore

1st. The distribution of placer gold by the present River System, giving the 'Shallow diggings.'

2d. The distribution of placer gold by an ancient River System, known as 'Deep diggings.'

3d. The gold-bearing quartz veins in the metamorphic rocks of the Sierra Nevada.

This is also the order in which the development of the country by human industry has brought the gold to light: the comparatively small number of exceptions to this generalization from the early workings of quartz mines forming in fact a confirmation of its general accuracy.

The first rush of adventurers was to the shallow placers,
where the gold, chiefly washed out of the older placers, was found distributed, within reach of the miners who had only a pick and shovel or pan. Here the first fruits of labor were sometimes very ample, and the capital and skill employed quite small. Gradually, as the gold thus superficially distributed became partly exhausted, streams of water and various contrivances for 'sluicing' were introduced, involving more skill and the union of labor with capital.

It was pretty early discovered that very extensive and valuable deposits of auriferous gravel lay at levels far above the present course of the streams, and that to wash these deposits required the adoption of new methods adapted to meet the case. Hence came the so-called Hydraulic process, which, although in use now for more than ten years, has yet made barely more than a commencement upon the great mass of deep lying auriferous shingle which remains to be treated by this method of gold washing.

Finally comes the era of quartz mining in depth, the successful prosecution of which demanded more skill and capital, as well as cheaper labor and better machinery than the early days of California furnished. In this man undertakes to do for himself, by the use of his own skill, what in an earlier age nature had done for him on a grand scale in breaking up the matrix of the precious metal, commencing at the fountain head of the stream of gold.
I propose at present to consider with some detail the second of the great sources of gold production, viz: Deep-lying Placers. The character of these deposits is well illustrated by a description of the ground between the south and middle forks of the Yuba River, in Nevada county, where this description of gold deposit is well exposed in consequence of the considerable amount of mining work which has been performed there, the whole of this ground being controlled by the waters of the Middle Yuba Canal Company, and of the Eureka Lake Water Company.

The Deep Placers of the Yuba.-The Yuba is an affluent of the Feather river, which it joins at Marysville on its way to its junction with the Sacramento. The South and Middle forks of the Yuba river unite with the North Yuba, the course of which is nearly at right angles to these two branches, whose mean course is west about 13° south (magnetic), the Feather river running about north and south.

The ridge of land embraced between the South and Middle forks of the Yuba is from six to eight miles in width, and to the limits of the auriferous gravel, as thus far explored, about 30 miles, forming an area of about 200 square miles. The elevation of this ridge above the sea is, at its western extremity near French

Corral, about 1500 feet, from whence it gradually rises into the high Sierras, the Yuba Gap Pass being 4570 feet above the sea, and the Downieville Buttes about 8840 feet. This Mesopotamia is cut up by ravines descending from a central axis both ways into the valleys of the two rivers forming 'gulches' with steep sides, often beautifully wooded. The more elevated portions of the land are covered by a heavy bed of volcanic ashes and breccia, which evidently at an earlier day formed a continuous sheet over not only the tongue of land under consideration, but over the adjacent region, as is conspicuously seen in the sections afforded by the various rivers. This mass of voleanic ashes contains numerous angular fragments of cellular lava, trachyte, basalt, porphyry and voleanic mineral aggregates, quite foreign to the general geology of the country. Its thickness varies with the topography and drainage of the surface, but it forms the summits of all the hills above a certain horizon, and in places reaches an elevation of from 2000 to 3000 feet above the level of the rivers. Below Columbia the denudation of the surface has removed the volcanic matter, leaving the auriferous gravel exposed as the upper surface. This volcanic deposit receives from the miners the general name of 'cement,' a term it well deserves from its compact and tenacious character, much resembling pozzuolana or Roman cement. The accompanying section was made by Mr. Hugo Hochholzer to accompany his map of the ridge, and represents the line drawn from the Fellows Quartz Lode, on the Middle Yuba, southeast through Snow Point and Mount Zion, to the South Yuba.

This section represents a point above most of the deep diggiags, the gravel on this portion of the ridge being generally covered by the volcanic cement, so as to be inaccessible by the process of hydraulic working, and available at a later day only by deep mining.

It shows the ravines of the two branches of the Yuba at f (middle) and g (south), the 'bed rock' a, the auriferous gravel b, and the volcanic cement e covering all. The Snow-Point Diggings are seen at d, and the position of two of the waterditches at e.

The auriferous gravel varies in thickness from 80 or 100 feet, where it has been exposed to denudation, to 250 feet or more,

Where it is protected from such action. Probably 120 feet is not an over-statement for its average thickness in the marginal portions, where it has been exposed by working the deep diggings or hydraulic claims. This vast gravel bed is composed of rounded masses of quartz, greenstone, and all the metamorphic rocks which are found in the high Sierras.

It is often locally stratified, but I could find no evidence of any continuity in its beddings. The lower portions are composed of larger boulders than the upper, as a general rule, but this does not exclude the occasional presence of huge boulders in the central and upper portions. In a fresh fracture of the whole thickness of these deposits, such as may be seen daily in the 'claims,' which are being actively worked, a striking contrast of color is seen between the lower and upper portions of the gravel mass, consequent on the percolation of atmospheric waters and air, oxydizing the iron resulting from the decomposition of pyrites, and staining the gravel of a lively red and yellow color in waving lines and bands, contrasting boldly with the blue color of the unoxydized portions. A close examination of the blue-colored portion of the gravel shows it to be highly impregnated with sulphuret of iron, forming, in fact, the chief cementing material which holds the pebbles in a mass as firm as conglomerate, requiring the force of gunpowder to break it up.

In the upper portions of these beds are frequent isolated patches, often of considerable extent, composed of fine sand, clearly showing water lines, curved, sloping or borizontal, but never for any distance regular, and in these portions occur frequently large quantities of lignite, or fossil wood, little changed from its original condition, but blackened to the color of coal and flat with pressure. Among these remains are logs similar in appearance to the Manzanita, now growing abundantly on the hills of auriferous gravel. Some of these, which I measured, were fifteen to eighteen inches in diameter and ten to fifteen feet in length. Occasionally the mass of this ancient driftwood accumulated in these eddies of the current, where they were deposited with the fine sands, amount almost to a continuous bed of lignite.

Wedge-shaped and lenticular masses of tough yellow and whitish clay also occur in the ancient drift, replacing the gravel and affording, by their resisting power, a great impediment to the operations of mining.

The 'slacking down' or disintegration which a few months exposure of the hard gravel 'cement' produces, is due mainly, if not entirely, to the decomposition of the associated pyrites before noted. It is remarkable how large a part of the smoothed and beautifully rounded stones, even those of large
sizé, undergo a similar slacking by atmospheric action, even in a very brief period of time, rendering it almost impossible to preserve specimens of the gravelly concrete unless they are protected by varnish. The most unyielding of the 'cement' masses are sometimes left over one season by the miners, exposed to the air and frost, to secure the benefits of this disintegration, without which but little of the contained gold can be obtained.

The gold is disseminated throughout the entire mass of this great gravel deposit, not uniformly in value, but always in greater quantity near its base or on the bed rock. The upper half of the deposit is found to be always less in value than the lower part, sometimes so poor that it would be unprofitable working by itself, but inasmuch as there is no practicable mode of working the under stratum without first moving the upper portion, in practice the whole is worked.

The gold rarely occurs in large masses in this ancient gravel. Often on the polished and very smooth surfaces of the 'bed rock' and of the superincumbent masses of gravel when freshly raised from their long resting place, the scales of brilliant yellow metal are beautifully conspicuous. These are frequently inlaid so firmly upon the hard granite floor of the ancient river or glacier as to resemble hard stone mosaics. In fact the whole surface of the bed rock requires to be worked over by the pick to secure the gold entangled in its surface, to a depth, when soft, (as of mica or chloritic slate or gneiss,) of several inches.

The method of extracting the gold from these deposits by hydraulic process is described under a subsequent head.

The Bed Rock, as it is significantly termed by the miners, shows everywhere when freshly exposed the most conspicuous evidence of aqueous or glacial action. The course and direction of the motion which has left its traces everywhere is plainly discernable. Nothing would so satisfactorily convey a correct idea of the remarkable features of this ancient floor, moulded and rounded by water or ice, as a series of good stereoscopic photographs such as I hope to secure the present season through the kind assistance of Mr. C. F. Watkins, of San Francisco, so well known for his admirable California views. The "bed rock" varies of course in different portions of the area now under consideration, being either granite, gneiss, greenstone or shale. In the granite are observed numerous minute quartz veins pursuing a course parallel to each other often for hundreds of feet without interruption.

In the 'American Claim,' at San Juan, the granite is succeeded on the west by a large jointed blue siliceous sbale, of the same strike with the main joints of the granite. This latter rock is covered by numerous very large boulders of metamorphic conglomerate, of which no traces are seen in place.

The course of the ancient current where I had an opportunity of measuring it, appears to have been about $20^{\circ}-25^{\circ}$ west of north, (magnetic,) which it will be observed is nearly at right angles to the mean course of the middle and south forks of the Yuba; but it is not far from parallel with the axis of the Sacramento river valley, or of the great valley between the Coast Range and the Sierra Nevada. I have noted the same general direction of the scratches elsewhere in the great gold region, but additional observations are required to justify any comprehensive generalization. This much appears clearly shown, however, by the present state of our knowledge on this subject, viz: that the spread of the ancient gold-bearing gravel was produced by a cause greatly more elevated than the existing river system, or, which is more probable, at a time when the continent was less elevated than at present, ${ }^{1}$ and moving in a direction conformable to the course of the valleys of the Sacramento and San Joaquim. We find it impossible to admit the existing riversystem as a cause adequate to the spreading of such vast masses of rounded materials; the facts plainly point to a much greater volume of water than any now flowing in the valley. The section already given illustrates perfectly the relations of the present river-system to the more ancient one whose grand effects are chronicled in the bed rock and its vast superincumbent mass of auriferous gravel. It serves also to illustrate the process now still in progress, by which the existing river system derived its gold-bearing sands, in great part at least, from the cutting away and secondary distribution of these ancient placers.

Those who have had the opportunity of visiting other portions of the great gold region of California than that now under consideration will at once recognize the local characters of the details given as perfectly consistent with the general phenomena of the ancient placers as observed elsewhere; while at the same time great differences are found in many of the details. Thus in Calaveras and Tuolumne counties, 80 or 100 miles farther south, the volcanic matter capping the auriferous gravel is found in the form of basaltic columns, beneath which recur the same phenomena already described. Here the wood contained in the gravel beds is beautifully agatised, or converted into semi-opal, as is the case also at Nevada City, Placerville, and elsewhere, associated with beautiful impressions of leaves of plants and trees similar in appearance to those now found in this region.

[^1]This general description of the deep-lying placers of the Yuba might be greatly extended from my notes, but enough has probably been said to convey the impression that the phenomena here described are on a grand and comprehensive scale, and referrable to a general cause long anterior in date to the existing river-system; a cause which has been sufficient to break down and transport the gold-bearing veins of the Sierras, with their associated metamorphic rocks, thus laying up in store for human use deposits of the precious metal in amount, on a scale far beyond the notions generally prevailing of the nature of placer deposits.

Quantity of Gold in the Deep Placers of the Yuba.-The extensive mining operations which, since 1852, have been carried on upon the ridge of land between the South and Middle Yuba rivers, have supplied the data requisite for a pretty accurate estimate of the average value of gold actually saved in mining and washing a given quantity of auriferous gravel. Without making an exact survey of the ground, it would be impossible to give a precise statement of the total quantity of gravel which has been washed away, much less of what yet remains to be washed. Fortunately, Mr. George Black, a skillful English engineer long resident in California, has twice made a reconnoissance of the ground now under consideration, and his Report," privately printed, has been placed at my disposal. I shall use its data with freedom so far as they are required to confirm or extend my own observations.

The mining ground in this area stretches along both margins of the delta from French Corral, a place near its western extremity, in a line pretty closely parallel to the Middle Yuba, skirted by the claims known as Birchville, Sweetland's, Sebastopool, the Eureka claims (at North San Juan), Badger's Hill, through Grizzly Gulch to Woolsey's Flat, Moore's Flat, Orleans Flat, and Snow Point to Eureka, and thence crossing to the South Yuba slopes ; it includes Mt. Zion, Relief Hill, Bloomfield, Lake City, Grizzly Hill, Columbia, Pleasant Hill, and Montezuma, the entire circuit being over sixty miles.

But I was fully convinced from my own examinations of this ground, in November of last year, that but a very small part of the mining ground available for early development and quite within easy control of the existing flow of water furnished by the Middle Yuba Canal Co. and the Eureka Lake Co. has been taken up, much less opened for work. Mr. Black estimates the length of the mining claims at present supplied with water by the Middle Yuba Canal Co. at five miles, with an average width of three hundred and fifty yards, and an average depth of forty

[^2]yards, making a quantity of one hundred and twenty-three millions of cubic yards of auriferous gravel. He also estimates that eight per cent of this quantity has been worked away in the past twelve years, leaving one hundred and thirteen millions of cubic yards which remain for future operations. At an average of thirty-four cents of gold to the cubic yard (the average in the Yuba region appears to be from thirty cents to forty-five cents per cubic yard, saved in the hydraulic process), the volume of auriferous gravel here estimated would yield over thirtyeight millions of dollars. But the total area of the various places where gravel deposits have been worked on this ridge is estimated by Mr. Black as equal to fifteen square miles, all of which, and much more, is controlled by the water of the Eureka Lake Co., or of the Middle Yuba Canal. If this area is estimated at an average of forty yards in depth (it varies from eighty to two hundred and two hundred and fifty feet in depth), we shall have one thousand eight hundred fifteen million nine hundred and thirty-six thousand cubic yards of gravel, and if this be estimated to yield only thirty cents per yard, we reach the grand aggregate of five hundred and forty-four million six hundred and ten thousand dollars as its probable yield in gold.

The average cost of the water required to wash away one cubic yard of gravel has heretofore been seven and a half cents: but if its price is reduced to six and a quarter cents $\left(=16 \frac{2}{3}\right.$ cents for one miner's inch of water) for each cubic yard, the cost of the water to perform this work will be nearly one hundred and twenty millions of dollars ($\$ 119,316,320$). It is easy to see from these statements that the amount of gold contained in the deep placers of the Yuba alone is probably greater than the aggregate of all the gold yet exported from the whole Pacific coast, which (including silver) amounted on the first of January, 1865 , to $\$ 695,944,786$. 3 Mr. Black's estimate of the area of mining ground applies only to certain marginal parts of the Yuba district which are not covered by the volcanic tufa. I saw beyond these limits a vast amount of valuable mining ground in this area, all under control of the existing waterflow of the Eureka Lake Company. There is little doubt, that at a future time a considerable portion of the ground covered by volcanic ash beds will be made to yield its precious deposit in a day of cheaper labor, and with improved methods of mining. At Forrest City, Minnesota, and Alleghany town, situated on the north bank of the Middle Yuba, immediately opposite Snow Point, the volcanic ash bed covers the 'great Blue Lead' (part of the ancient auriferous gravel,) where it has yielded almost fabulous wealth to the explorers. The

[^3]Am. Jour. Sci.-Second Seribs, Vol. XL, No. 118.-July, 1865.
'Live Yankee Claim,' for example, at Forrest City, is reported to have paid its owners over three millions of dollars. The south side of the Middle Yuba yet remains to be explored for the continuation of this streak of 'rich pay' which points nearly in the direction of the section given in this Report.

It will be observed that these estimates apply only to the value of gold actually saved. That this amount is small compared with the total contents of the placers, will appear when we come to describe the method by which it is saved, and see how crude that process yet is. What goes down the ravines from the washing is not all lost, as it is partially washed again in the rivers below by the Chinese and others, but there are no data for determining how much is thus saved. No account is taken in this connection of those extremely rich deep placers, which, like the workings at Forrest City, \&ec., just named, and other localities, yield gravel so rich in gold that the whole mass is often worked in a crushing mill.

Process of Hydraulic Mining.-With the more or less complete exhaustion of the shallow placers in the ravines and river beds in California, where the gold was first obtained with little labor and by the most simple means, came the necessity of devising a system by which the deep placers, like these under consideration, *could be economically worked. The accomplishing of this object demanded the use of a large amount of capital, to be expended in the construction of canals and aqueducts to convey water from the mountains and fountain heads of the streams, at a suitable elevation and in sufficient quantity to command the ground to be worked, as well also as for the opening of tunnels and shafts in the 'bed rock,' for the discharge of the gravel, an operation requiring much labor and skill, and consuming often several years in their prosecution.

The association of labor and capital thus demanded, called into existence in various parts of the State, Canal and Ditch companies, the associates being generally miners, whose limited finances were eked out by borrowing money from bankers, at rates of interest ranging from three to five per centum monthly. The Middle Yuba Canal Company was thus organized in 1853, and the construction of its hydraulic works commenced, the water being brought from a point on the Middle Yuba river just below Woolsey's Flat, where the stream was dammed, with a total cost, including the various branch ditches, reservoirs and extensions, to June 1858, of $\$ 397,171.91$, (since then increased to about $\$ 600,000$) and with a safe capacity of thirty-eight cubic feet of water per second, which can easily be increased by inexpensive improvements to sixty cubic feet per second. The first named quantity is equal to 1500 inches
miner's measurement, the second to 2280 miner's inches. ${ }^{\text {. The }}$ Eureka Lake Water Company's works, commenced in 1858, have cost about one million of dollars.

Experience has demonstrated that the larger the volume of water employed in the process of washing, the more the efficiency and greater the economy of the operation. The proper application of the great mechanical force furnished by large volumes of water under a great pressure was a problem solved satisfactorily only after many abortive trials and large experience. This problem involves the following conditions.

1st, The whole mass of auriferous gravel must be moved, whatever its depth, quite down to the 'bed rock.'

2 d , This must be accomplished by the action of water alone, human labor being confined to the application of the water, and the preliminary preparations it involves, the amount of material to be moved and disposed of in every day of ten hours being from 1500 to 3000 cubic yards for each first class operation, involving the use of 400 inches of water.

3d, The mechanical disintegration of the compact conglomerate as a part of the uninterrupted operation of the whole system.

4th, The contemporaneous saving of the gold, without interrupting the continued flow of the water.

5 th, The disposal of the accumulations resulting from the removal of such vast masses of auriferous gravel.

These conditions are in practice met by the following steps, The mining ground being selected, a tunnel is projected from the nearest and most convenient ravine, so that starting in the 'bed rock' on the face of the ravine, it shall approach the center of the gravel mass to be moved at a gradient of about one in twelve to one in twenty. The dimensions of this tunnel are usually six feet in width by seven feet in height, sometimes wider; and where possible, it is carried on a line of contact between the granite and the shales, for the greater ease of excavation. These tunnels vary in length from a few hundred feet to

[^4]several thousand feet, some of the longer consuming from two to four or five years in driving, at a cost of from $\$ 10$ to $\$ 60$ per foot, varying with the character of the rock to be excavated. The end of the tunnel is designed to be from fifty to one hundred or more feet beneath the under surface of the gravel at a point where a shaft is sunk through the gravel and 'bed rock' until it intersects the tunnel. It obviously demands careful engineering to carry out works of such magnitude with the accuracy required, and for the want of sufficient care or skill in this particular, years of costly labor and anxious expectation were sometimes wasted in the early history of these enterprises.

The object of this laborious exploration is obvious. The long tunnel becomes a sluice-way through the whole length of which 'sluice boxes' are laid, at once to direct the stream and save the gold. For this purpose a trough of strong planks is placed in the tunnel two and a half feet wide and with sides high enough above the pavement to control the stream. The pavement is usually composed of blocks of wood six inches in thickness and as wide as the sluice, cut across the grain of the wood. These are placed about two inches apart at the ends and held in position by cleets of two inches square. In the interstices ('rifles') of two inches by four thus left, a small portion of quicksilver is placed, to aid in catching the gold which finds its way into these bollow spaces.

The vertical shaft is intended to furnish a fall of sufficient height to break up the harder masses of conglomerate and cement as the gravelly stream is precipitated, dashing from side to side of the shaft, and finally with great force upon its rocky bottom.

The water from the canal is brought by side flumes or aqueducts to the head of the mining ground, with an elevation of one hundred to two hundred feet above the bed rock, and it is conveyed into the bottom of the mining claims by iron pipes sustained on a strong incline of timbers. These pipes are of sheet iron, of adequate strength, rivetted at the joints, and measure from twelve to eighteen inches in diameter. These communicate at the bottom with a strong prismatic box of cast iron, in the top and sides of which are openings for the adaptation of flexible pipes, made of a very streng fabric of canvass, terminating in nozzles of metal of two and a half to three inches in diameter. From these nozzles the streams are directed against the face of the gravel to be washed, with a force comparable to that of ordnance. The volume of water employed varies, of course, with the work to be done; but it is not uncommon to see four or five such streams, each conveying two hundred inches of water, acting simultaneously on the face of the same bank. One thousand miner's inches are equal to twenty-six and a
third cubic feet of water, weighing 1632 pounds, constantly discharged against the face of the bank under a pressure of ninety to two hundred pounds to the square inch, varying with the height of the column. Under the continuous action of this enormous mechanical force, aided by the softening power of the water, large sections of the gravelly mass come crashing down with great violence. The debris, speedily dissolving and disappearing under the resistless force of the torrent of water, is hurried forward to the mouth of the shaft, down which it is precipitated with the whole volume of turbid water. Boulders of one hundred to two hundred pounds in weight are shot forward by this impetuous stream, accompanied by masses of the harder cement, which meet in the fall down the shaft and in the concussion of the great boulders, the crushing agencies required to disintegrate them.

The heavy banks of 80 feet and upwards are usually worked in two benches. The upper half is never so rich as the lower, and being also much less firm is worked away with greater rapidity. The lower section is much the most compact, the stratum on the 'bed rock' being strongly cemented by sulphuret of iron and great pressure, resists even the full force of the water stream until it has been loosened by gunpowder. For this purpose adits are driven in on the 'bed rock' forty or fifty feet from the face of the bank, and a tunnel extended at right angles therefrom to some distance each side of the adit. In this tunnel a large quantity of gunpowder is placed, from fifty to two hundred kegs, and fired as one blast by a train laid from without. In this manner, the compact conglomerate is broken up, and the water then rapidly completes the work.

Sometimes the systen of tunnels on the bed rock is extended much as in a coal mine, by cross alleys leaving blocks, which are then washed away, when the whole mass settles and disintegrates easily under the influence of the water.

The tunnels in the bed rock alrealy described are made double, for the convenience of 'cleaning up' one of them while the other is in action. The process of cleaning up is performed every ten or twenty days, according to the size and richness of the work, and consists in removing the entire pavement of blocks from the bed of the sluice, and removing all the amalgam of gold and 'rich dirt' collected in the 'rifles,' and replacing the blocks in the same way as at first; advantage is taken of this occasion to reverse the position of the blocks when they are worn irregularly, and to substitute new ones for those which are worn through. The mechanical action of the washing process on the blocks is of course very rapid and severe, so as to command a complete renewal of them once in eight or ten weeks. Some miners prefer a pavement of egg-shaped stones
set like a cobble-stone pavement, the gold being deposited in the interstices. Most of the sluices are however paved with rectangular wooden blocks as described.

Standing at the mouth of one of these long bed rock tunnels in full action, one unaccustomed to the process is filled with a sense of amazement amounting almost to terror, as the muddy mass sweeps with great velocity onward, bearing in its course great boulders which add to the roar of the water, the whole being precipitated down a series of falls, at each of which it is caught up again by new sluices of timber lined like the first one, and so onward and downward many hundreds of feet, until the level of the river is reached at the distance perhaps of half a mile or more from the mouth of the first tunnel. At each of these new falls of twenty-five or fifty feet, the process of comminution begun in the first shaft is carried forward and a new portion of gold is obtained.

Another ingenious device to secure the gold is by means of what are called under currents. At the end of the last sluice box, and beyond the mouth of the tunnel a grating of iron bars is arranged lengthwise in the bottom through which a portion of the water and finer material falls upon a series of more gently graded sluices of double the width of the main sluice. These sluices are placed at right angles to the other while the great body of the gravel with the large boulders go dashing forward over the fall, while the finer part thus diverted is more gently brought in contact with a new set of mercurial rifles, from which it rejoins the main torrent; and the same process is repeated at each succeeding fall, until the river is reached.

Rude as this method of saving the gold appears, experience shows that more gold is saved by it than by any other method of washing yet devised, while the economical advantages it offers are incomparably greater than any other. In fact, it would be entirely impossible to handle so vast a body of poor material in any other way now known.

To show the enormous advantage gained by the present system of working, compared with those formerly in use, Mr. Black states that, taking a miner's wages at four diollars per day, the cost of handling a cubic yard of auriferous gravel is as follows:
With the pan,
With the rocker,
With the long tom,
With the hydraulic process,

In fact, man has, in the hydraulic process, taken command of nature's agencies, employing them for his own benefit, compelling her to surrender the treasure locked up in the auriferous
gravel by the use of the same forces which she employed in distributing it!

I have dwelt with the more fullness on this process, so familiar to all Californians, because I am persuaded that few who have not seen it in action have any adequate notion of its magnitude and importance. By no other means certainly does man more completely change the face of nature than by this method of hydraulic mining. Hills melt away and disappear under its influence, being distributed in the river beds below, every winter's freshets carrying to lower and yet lower points portions of the detritus, while whole valleys are filled with clean-washed boulders of quartz and other rocks left behind in the general debacle. Meanwhile the Sacramento and its tributaries, and likewise the San Joaquim flow turbid with red mud, bars are formed where none existed before, and the hydrography of the bay of San Francisco is changing under the influence of the same causes. The desolation which remains after the ground washed by the miner is abandoned, is remediless and appalling. The rounded surface of the bed rock torn up with picks and strewn with great boulders shows here and there islands of gravel, rising in vertical cliffs with red and blue stains, serving to mark the ancient level and filling the spectator with amazement at the changes, geological in their nature and extent, which the hand of man has wrought.

But the auri sacra fames heeds no suggestion of the æsthetic; the gold is there, we have the means and the power to remove it, why should we stay our hand! The process is but just commenced. It has required already twelve years to remove, as we have seen, eight per cent of the mining ground, already recognized as such, in but a small portion of the area between the two forks of the Yuba. Not this generation, nor yet a fifth from this, will see the completion of the work, while each year will hereafter witness an increased production of gold up to the maximum possible with the water at command. The amount of gold sent into commerce from this very limited portion of the ancient auriferous gravel has for many years averaged over two millions of dollars annually.

Water Supply.-It follows as an obvious consequence of what has been said of the Deep Placers, and of the hydraulic process of mining, that an adequate supply of water at a suitable elevation is essential for the extraction of the gold contained in the ancient auriferous gravel. The water shed between the two branches of the Yuba River now under consideration, includes not only the tributary streams which rise in the Sierras, such as Cañon Creek, Pass Creek, and others, but a great number of small and larger lakes, from a few acres to several miles in area which nestle among the bills. Of these the largest is the Truckee Lake;
and although the waters of this considerable reservoir are not now flowing in either of the canals under consideration, I am credibly informed, on high authority, that they are likely to do so ere long. Cañon Creek Lake (called on the map Eureka Lake) is the most considerable reservoir of the Eureka Lake Canal Co. I visited it in November, after the first fall of snow, but before the waters had commenced accumulating. In four or five weeks time after it was full. A substantial dam built of blocks of granite, raises its waters to a present average height of forty-two feet above its outlet, with natural abutments of granite capable of receiving twenty feet more of height. Its base is transversely at bottom one hundred and twenty feet, its height seventy feet, and from bank to bank its top measures two hundred and fifty feet. The water face is protected by a double covering of sawed planking, securely fastened, and in all five inches in thickness. The flow of water is regulated by a slaiceway of arched masonry. When full, the present capacity of this reservoir is estimated at $933,000,000$ cubic feet of water. By an increase of twelve feet in the height of the dam, Mr. Black estimates the increased capacity of this reservoir to be $262,000,000$ of cubic feet of water, equal to twenty-five days supply of the canal with a constant stream, or in all about six months' supply.

But the canal receives its supply for four months, say from the middle of April to the middle of August, from the mountain streams, which afford a plentiful supply from the constant melting of the snows during this season; the snow accumulates in great quantities in the snowy Sierras during the winter months, the melting of which supplies not only the flow of the streams, but fills also to overflowing all the mountain lakes and artificial reservoirs, in which the waters are kept in reserve against the droughts of late summer and autumn. Rarely, as in the summer of $1863-4$, does the snow-fall fail to meet the demands. During the year named, for the first time since the construction of the canals, the reservoirs were not half filled, but during the current year they were filled again by mid-winter. The rain-fall for $1863-4$ was less than has been known in California since 1850-51. The snow in 1863-4 measured only four feet. ${ }^{5}$

\footnotetext{
${ }^{*}$ Mr. Black gives the following table, \&c. Statement of the Rain-fall, as registered at Sacramento for fifteen years:

Year.	Rain-fall in inches.	Year.	Rain-fall in inches.
1849-50 36.	1857-58 15.008
1850-51	4730	1858-5.5	16.021
1851-52	17.980	1859-60	22.107
1852-53.	. 36362	1860-61	16.097
1853-54.	50.063	1861-62	55.549
1854-56	18.620	1862-63	11.579
1865-56	18.770	1863-64	7.372
1856-57	10.443	Mea	. 18.64

From this table it will be seen that the rain fall for 1863 , '64, is only 7.37 , whilst

Besides the main reservoir are other smaller lakes or reservoirs, of which the principal one is Lake Faucherie, on the course of Cañon Creek, perhaps four miles below the main reservoir. A timber dam of thirty feet in height bas been constructed across its outlet, forming a reservoir of about two hundred acres, giving a volume of $217,000,000$ of cubic feet. Dams have also been erected across the outlets of several small lakes to the west and south of Lake Faucherie, from the outlet of one of which the main canal commences.

The Eureka Canal is constructed partly in earth and partly as a wooden flume. The dimensions of the main flume are five feet nine inches in width; depth, three feet; fall, sixteen feet per mile. The discharge is ninety-six and forty-four-hundredths cubic feet per second, or 3,485 miners' inches, taking the depth of water at two feet nine inches. If the full depth of three feet were attained, the discharge would be one hundred and thirteen and thirty-three-hundredths cubic feet, or 4,306 inches; but on account of the irregularity in the grade and the subsidences which have taken place, it is not practicable, at present, to fill it to its full capacity.

Taking 3,485 inches as the supply, and deducting ten per cent for loss by leakage, evaporation, etc., will leave 3,037 inches, the supply which can be made available. The practical result, which is 3000 inches, agrees very closely with this; 3,037 inches of a constant discharge during a working day of ten hours is equal to 7,289 inches for twenty-four hours, which latter quantity, therefore, is the available capacity of the canal, irrespective of the Miners' and other confluent ditches. The discharge per second, being ninety-six and forty-four-hundredths cubic feet, equals eight and one-third millions of cubic feet for twentyfour hours. The yearly complement is therefore $3,041,000,000$ cubic feet.

The storage capacity for the supply of the Canal is thus stated:

the average fall for the last fifteen years has been 18.64 . In the mountains, rain rarely falls after the month of September. It is then converted into snow through the coldness of the climate. In April it commences to thaw, and during the few following months all the water-courses and rivers have a plentiful supply of water. The rainfall of the mountains (or the snow which falls there, when converted into water) is from fifty to seventy per cent more than the rain-fall of the valleys; (according to experiments which I made on the Middle Yuba in 1856-7, I found that seven feet of snow measured, after its fall, one foot of water; therefore, as an approximation, the fall of snow, divided by seven, is equal to the rain-fall.)
Am. Jour. Scl-Second Series, Vol. XL, No. 118.-July, 1865.

This amount divided by eight and one-third millions, the daily supply, equals one hundred and fifty days', or five months' storage supply. A partial deficiency exists during three months of the year, from the middle of January to the middle of April, during a part of which period, however, the demands for washing are at a minimum. In ordinary years the reservoirs are not drawn from before the middle of August. In 1864, however, the draft commenced as early as July 1st, owing to the very exceptional dryness of that season.

The main canal after leaving Cañon Creek takes a westerly direction, and follows the contour of the hills on the south side until it crosses Jackson Creek, a distance of about seven miles; thence taking a more northerly direction for two miles, it crosses a depression in the ridge, and keeping above Weaver's or Eureka Lake, follows the north slope of the ridge to Eureka, a distance of about eleven miles; continuing in the same direction two miles further, it crosses a low depression by means of the Magenta and National aqueducts. From this it still follows the same slope of the ridge to Snow Tent, a distance of thirty-two miles from its commencement. At this point, being on the crest of the ridge, it discharges itself on the north side into Bloody Run, a tributary of the Middle Yuba, and on the south side into Bloomfield Creek, a tributary of the South Yuba, thus obtaining the complete command of the country from river to river.

Among the wonders which strike a visitor on first seeing the mining regions of California, are the lofty aqueducts constructed on trestle-work for the purpose of carrying the water across deep ravines. Often these structures are slight and insecure, but the Magenta and National (or Washington) aqueducts on the line of the Eureka Canal are remarkable exceptions to this. They are thus described by Mr. Black:
"The Magenta and National aqueducts, which reflect great credit on the ability and skill of Mr. Faucherie, the engineer, are the finest works of the kind in California. During their construction, in 1859, I had frequent opportunities of inspecting them, as I was at that time engaged in carrying on the works of the Sierra Nevada Lake Water Canal, on the opposite side of the Yuba. The National Aqueduct is in length 1,800 feet; its greatest height sixty-five feet. The Magenta Aqueduct is 1,400 feet in length, and its greatest height one hundred and twenty-six feet. The size of the flume is seven feet by one foot and three inches; the inclination, or grade, one foot per hundred feet. The sides were made as low as practicable, so that the high winds which sweep across this gap might have little effect upon them. The posts of the trestles were all hewn from trees growing in the vicinity, no splicing existing in any part of them; they are whole from foundation to top. The sides of the flume, one foot three inches in depth, are formed of whole scantlings thirty feet in length and seven inches in width. The trestles are placed thirty feet apart from centers; they are well and securely braced. The
whole aqueduct was built in sections of thirty feet each ; each section, when completed, being raised on the spot where it was constructed, by which scaffolding was completely dispensed with. This work, to-day, is in good preservation, the foundations and superstructure being alike sound and substantial, and likely to last for many years."

The aggregate length of all the ditches in the Eureka Company's ownership is about two hundred miles.

In the ownership of the San Juan Company the aggregate length is about half this quantity, twenty-six miles being in the main San Juan ditch.

The safe capacity of discharge of the canals of both Com. panies, being a constant stream during 10 hours, is as follows:

	Miner's inclies.
Eureka Lake Canal 3,000
Miners' Canal .	. 750
Other districts	250
	- 4,000
Middle Yuba Canal	1,500
	5,500
5,500 inches for 10 hours, equals for 24 hours..........	13,200
20 per cent deficiency in supply, stoppages, and other causes,	, 2,620

Say 10,000 inches per day.
The laws of California are quite peculiar in respect to the rights of miners to the control of mining ground and of water. The miner has no ownership in fee, but an absolute control so long as he conforms to the mining laws of his district. Mining being the great business of the State, the rights of miners have been most carefully guarded, and are esteemed prior to all other property rights of real estate. As respects the ownership and control of water, the laws permit and protect usages unknown under the English common law, such as the permanent diversion of water from its original channels for mining uses. The right of 'locating' streams for such purposes is fully recognized and established as against adverse interests, by numerous decisions of the highest Courts of law. An abstract of these mining laws may be found in Hittel's Resources of California, page 354.

Art. II.-On the Ice in Kennebec River: by Rev. Frederic Gardiner.

The following observations were made upon the ice on the Kennebec river during the months of February and March, 1865. The location is in the town of Gardiner, at a point where the river is about 700 feet wide. The water is entirely fresh for many miles below, and the average ebb and flow of the tide here is five feet. The depth of water varies, according to the state of the tide and the particular locality, from 17 to 25 feet. In the course of the winter the ice is always observed to crowd ashore, crumpling up in ridges on the flats and near the edge of the channel. This process was already well advanced when, after various delays, these observations were begun, Feb. 6. A row of stakes was planted in the ice, by boring holes quite through to the water, at distances of about 100 feet apart, avoiding a very near approach to either shore. Their positions were determined by observing the range of each with a near and a distant fixed object on the shore, by means of an instrument with a small telescope, and also by the angles subtended at each position by fixed objects on the opposite shores. After an interval of time, the instrument was placed in the same range, and the distance from it to the stake measured. The stakes were soon brokent off even with the ice by boys, and then a heavy snow fall vith the consequent sinking of the ice and formation of a separate sheet of ice above, with water between and slush above, made it impossible to recover the ends of the stakes until March 18th. The distance between the eastern and western stakes was 500 feet. March 18, the easternmost stake was found to bave moved to the eastward $12 \frac{3}{4}$ inches. A stake 200 feet west of this had not sensibly changed its position. The western-most stake had moved to the westward 12 feet 2 in . There was thus a total expansion of the ice of 13 feet $2 \frac{1}{4} \mathrm{in}$. in a breadth of 500 feet, or 2.646 per cent nearly, in 40 days. Of course this motion is entirely independent of the action of gravity, and is possibly due to variations in the temperature of the air, that of the water having been nearly constant, as will be seen below. It is to be regretted that there are no data for determining the proportion of this motion in successive proportions of time-a defect which it is hoped the observations of another winter, and of observers in other localities, may supply. The temperatures observed at my house, 120 feet above the river, during the time, are as follows, in degrees Farenheit: Mean temperature, Feb. 6 to 28 inclusive, 22.37°; mean of extreme heat of each day, 32°; mean of extreme cold, 12.74°; mean diurnal variation, 20.217°; extreme heat, 45°; extreme cold, -17°; extreme variation, 62°

March 1 to 18, inclusive.-Mean temperature, $33 \cdot 138^{\circ}$; mean of extreme heat, $41^{\circ} 33^{\circ}$; of extreme cold, $24^{\circ} 944^{\circ}$; mean diurnal variation, 15.44°; extreme heat, 50°; extreme cold, 7°; extreme variation, 43°. These temperatures, of course, are each that of the shade ; they would be much increased by taking into consideration the influence of the sun to which the ice was exposed.

When the ends of the stakes were recovered, they were floating in greatly enlarged holes. The stakes were pieces of pine turned, $\frac{8}{4} \mathrm{in}$. in diameter. They were placed in holes of $1 \frac{1}{4} \mathrm{in}$. diameter, and frozen in firmly. When found, the holes varied from $1 \frac{1}{2}$ to $6 \frac{1}{2} \mathrm{in}$. diameter. This fact probably accounts for the anomalous temperatures given below, and must be due to the action of the sun's rays in the substance of the ice absorbed by the wood of the stakes. It also illustrates the effect upon the ice of objects within its substance. The larger holes were in the middle and near the eastern side of the river; the smaller were toward the western shore, where a high bank cuts off the sun early in the afternoon.

The subjoined temperatures of the water and ice were taken with thermometers enclosed in cylinders of pine of such size as to leave a minimum thickness of $\frac{1}{4} \mathrm{in}$. of wood outside the bulb. The piece of wood covering the graduated side of the stem was confined only by an india rubber ring which could be slipped off in an instant. These thermometers were made by Green of New York, accurately graduated to $\frac{1}{10}^{\circ} \mathrm{C}$., and easily read to $\frac{1^{2}}{2^{\circ}}$. The temperatures of the air and snow were observed with naked thermometers. The minimum time of exposure in each case was a half hour, and it was not found that a longer exposure produced any change, although an hour was repeatedly tried. The thermometers were sunk perpendicularly in the ice, by boring holes with an augur a trifle larger than the thermometer cases, and, after inserting them, stopping the top of the hole with dry snow. The measurements, in all cases, are to the center of the bulb, which was about $1 \frac{1}{2} \mathrm{in}$. long. The temperature of the water was always observed near the bottom of the river, and also immediately under the ice; but no difference was observed except on Feb. 6, when the water near the bottom was $0 \cdot 10$, and just below the ice -0.05 , the ice at the time wasting a little. Feb. $15,0.10$; Feb. 22, 0.15 ; March 11, 0.35 ; March 18, after a heavy rain, producing a freshet and filling the river with melted snow, $0 \cdot 15$. This freshet terminated the observations upon the ice.

At a point about the middle of the river and near the line of the stakes, varied, however, a few feet for each observation, the following observations were made: Feb. 6, mean temperature of air in shade, 0°; depth of snow on ice, 15 in .; thickness of "snow ice," $6 \frac{1}{2} \mathrm{in}$.; of black ice, $6 \frac{1}{2} \mathrm{in}$.; total, 13 in .-surface
of ice 3 in . below surface of water. Temperature of snow just below its surface, 0°; just above the ice, -3.45°; of ice at depth of $10 \mathrm{in} .,-1 \cdot 95$. Feb. 15, air in shade, $-4 \cdot 15$; depth of snow, 6 in. Below this was a sheet of ice generally $3 \frac{1}{2}$ in. thick, then a layer of water $2 \frac{1}{2} \mathrm{in}$., then about 12 in . of ice; in all, 18 in . The temperature of the ice was taken at a point where the two layers were frozen together. Snow near surface, -1.55°; just above ice, -0.75°; ice at depth of $2 \mathrm{in} .0 .46^{\circ}$; at 14 in., 0.65°. Feb. 22, thickness of snow, ice, and water, about the same. Temperature of air in shade, -3.90°; of snow near its surface, 0°; just above ice, 0.55°; of enclosed water, 0.05°. The layer of water prevented the examination of the ice below. March 18, snow on the ice all gone; upper layer of ice, 4 in ., but much disintegrated and in places wholly gone; enclosed water varying from 2 to 5 in , and the entire thickness of the whole reduced to from 14 to 15 in . Temperature of enclosed water, 0.85°; temperature of air in shade, 390°; in sun, $7 \cdot 25^{\circ}$. At another point, where the draft of air under a bridge kept the surface nearly free from snow, but still fully exposed to the sun, the following observations were made: February 15-air in shade, -4.70°; in sun, 0°; thickness of "snow ice," 3 in.; of black ice, 19 in . : total, 22 in . Temperature of ice at depth of $2 \mathrm{in},-0.35^{\circ}$; at $10 \mathrm{in} .,-2 \cdot 15^{\circ}$; at $18 \mathrm{in} .,-2 \cdot 25^{\circ}$. Feb. 22,-air in shade, -2.25°; in sun, 9.50°; snow ice, $2 \frac{1}{2}$ in. ; black ice, $21 \frac{3}{4}$ in.: total, $24 \frac{1}{4}$. Temperature of ice at 2 in ., $2 \cdot 15^{\circ} ;{ }^{1}$ at 10 in ., 1.00°; at $18 \mathrm{in} ., 0.65^{\circ}$; at $22 \mathrm{in} ., 0.90^{\circ}$. The surface of ice in the sun was thawing freely. March 11,-air in shade, -220°; in sun, $11 \cdot 10^{\circ}$; surface of ice thawing in the sun. Thickness of black ice, (there being no snow ice), $22 \frac{1}{2} \mathrm{in}$. Temperature, at 2 in ., $1 \cdot 90^{\circ} ;^{1}$ at 10 in ., $2 \cdot 35^{\circ} ;^{1}$ at $18 \mathrm{in} ., 1 \cdot 25^{\circ}$.

These observations show that the ice expands without reference to the temperature of the water, and that the temperature of the ice itself, for such thickness as above given, varies considerably, its changes having little reference to the water below. It also appears that the rays of the sun at these depths, (and probably the same would be true of much greater depths,) are absorbed largely by an enclosed object, even of a light color. In the uniform temperature of the water at various depths, there is evidence that the sudden disintegration of the ice, and its disappearance, is not in this instance due to the action of the water. This occurs constantly on the large ponds in the neighborhood, bat rarely on the river. It never takes place until the "snow ice" is entirely melted, and is believed to be due to the action of the sun.

[^5]
L. Lesquereux on the Origin and Formation of Prairies.

Art. III.-On the Origin and Formation of Prairies; by Leo Lesquereux.
[Concluded from vol. xxxix, p. 327.]
We now come to the examination of the new theory of Prof. Winchell. ${ }^{2}$. A clear abstract is given by the author himself in the following words:

1. The soil of the prairies is of lacustrine formation, as proved by its physical characters, and by the necessary effect of geological changes of level which are generally admitted to have taken place.
2. Lacustrine sediments enclose but few living germs.
3. Diluvial deposits, on the contrary, are found everywhere replete with living germs.
4. The living germs of the diluvial deposits were buried during the glacial epoch.

5 . In proportion as the diluvial surface became exposed, the flora of the pre-glacial epoch was reproduced.
6. The vegetation which finally appeared on the drained lacustrine area was extra-limital, and was more likely to be herbaceous than arboreal.

The above quoted conclusions are sustained with ability by various arguments, and merit, therefore, careful consideration.

The first is, "The soil of the prairies is of lacustrine formation," etc.-As Prof. Winchell states, in the beginning, that his system is not intended to explain the formation of the low wet prairies, but only that of the high rolling prairies, and as, in remarking on the extent of the ancient lakes, he says that its arms reached into Iowa, we may admit that the high rolling prairies of this State are considered by him as resulting from the same lacustrine action. We might go farther west, and follow the same formation over a surface continually rising to an elevation of 5000 feet. ${ }^{2}$ But it is not necessary for our present argument. In Iowa the knolls of the high prairies are 1,500 feet above the Ocean, and as Lake Michigan is only 600 feet above the sea, its waters, to reach the high prairies of Iowa, should have been 900 feet higher than they now are. How would this agree with the actual configuration of our country? Moreover, as the level of the high prairies of Southern Illinois is now at least 150 feet lower than that of Lake Michigan, this part of the country, in the supposition of the author, should have been, at the time of the formation of the Iowa prairies, under at least one thousand feet of water. With such an elevation of the lakes as supposed

[^6]
24 L. Lesquereux on the Origin and Formation of Prairies.

above, all the highlands of Indiana and Ohio should have been also deep under water. For, the highest point of the Ohio canal, at Licking, being 890 feet above the sea, there is still about 500 feet of difference between this point and the level of the Iowa prairies. The whole high country in Ohio and Indiana is nevertheless covered with forest.

Nobody, indeed, can deny that the whole surface of the prairies, from the lowest to the highest point, has been recently (geologically considered) under water. But to reduce to a mere extension of Lake Michigan, or of the basin of our lakes, an epoch of submergence which has left its traces over the whole extent of our continent, is narrowing the phenomenon of a whole epoch to one of its merely local results. The deposits of this Champlain epoch follow the rivers of the valley of the Mississippi to their highest affluents and their sources. ${ }^{3}$ I have seen them overlie the Drift along the banks of the Big Waraju river, in the Indian Territory, at an elevation of more than two hundred feet above the bed of the river. This epoch of subsidence has been followed by an epoch of slow upheaval and slow drainage whose action is recognizable in denudations, deepening of channels, moulding of terraces, along the lakes and the rivers, etc., ${ }^{4}$ and in the formation of prairies over immense, nearly horizontal plains, which were necessarily covered with vast sheets of water, lakes, and swamps. If the wider expanse of our lakes at former times is understood in that way, it is indeed undeniable. But, as we have already said, these lakes cannot be considered in the phenomenon as causative or primitive agents. And if it is so, all the deposits of that epoch belong to the same lacustrine formation, and as all these surface deposits which were not horizontal are generally wooded, and often densely so, we are already authorized to conclude that the so-called lacustrine formation has, by its nature, no direct relation to the prairies.

Before passing to another of the statements of the author, I would like to ask if there is not a contradiction in asserting that there was "little difficulty in discovering the true origin of the so-called 'wet prairies' so common in Ohio and Michigan, and now usually termed 'marshes,' 'swales,' 'bogs,' and in proving that the humidity and sourness of the soil were the real causes of the absence of ordinary upland trees from their surface, ${ }^{3 / 5}$ and to say, in considering my opinion identified by the author with the former, that "it is so well known that there is no situation so wet but certain trees will flourish in it," (referring here to the soil of swamps. $)^{\text {b }}$. Is it not also a contradiction to acknowledge that the wet prairies, along the shores of our lakes, are caused

[^7]
L. Lesquereux on the Origin and Formation of Prairies. 25

by humidity of the soil, and to assert that the high prairies, under lacustrine influence, owe their origin to quite another cause? Does the difference of time modify the action of lacustrine influence?

2nd. Lacustrine sediments inclose but few living germs, says Prof. Winchell, and, on the contrary, 3d. Diluvial deposits are found everywhere replete with living germs.

Nothing is known of the length of time for which the germs of seeds can be preserved in water. Salt water and fresh water appear to have about the same destructive action on seeds. Though a number of fruits and seeds are brought by currents from the shores of America to those of Scotia and Norway, these seeds do not, or only very rarely, germinate, even under careful cultivation." The marine cocoa-nut (Lodoicea Seychellarum Lab.) has been carried for ages by currents from the Praslin Islands to the Maldive, and, nevertheless, it has not been naturalized on these last islands, although similar to the former in climate." In fresh water, the only instance known of seeds preserved for a length of time is that quoted by Dureau de la Malle, who says, that seeds of White Birch, (Betula alba, L.), preserved their germinative power after twenty years of immersion. Nothing, or very little, is known, either, of the duration of vitality in different kinds of seeds, under various circumstances. Even for the same species, this duration depends on their degree of maturity, and on the substance in which they have been deposited. When inclosed in a perfectly dry, unalterable matter, in carbon, for example, and sheltered against any kind of atmospheric action, the life of seeds may be, apparently, preserved for a long but not for an indefinite period of time. Isolated and apparently marvelous facts, tending to prove the preservation of the vegetative power of some seeds for centuries, have been quoted by authors. But these peculiar cases have not been carefully enough investigated to be considered as conclusive for science; or, after investigation, have been found to be mere fabrications, published for mercenary purposes. Three cases of this kind are quoted by Prof. Winchell in support of his 4th assertion. One regards the seeds of raspberries taken from the stomach of a skeleton, found 30 feet below the surface of the earth. With the body were found "some coins of the Emperor Hadrian, from which we are justified in assuming that these seeds had retained their vitality for 1600 to 1700 years." I will say nothing of that stomach preserved for 1700 years, though, supposing that the story was true, it would indicate a concurrence of peculiar circumstances, so remarkably favorable to the preservation of organic substances, that we should consider the case of the preserved vital-

[^8]Ay. Jour. Scl-Second Sraies, Vol. XL, No. 119-July, 18%.

26 L. Lesquereux on the Origin and Formation of Prairies.

ity of the raspberry seeds, as quite an exceptional one. But on this subject, Prof. Ad. DeCandolle, who mentions the same fact, and who has studied more closely than any other botanist this interesting question of the preservation of seeds, says: "Prof. Lindley has quoted a species of Rosacer (raspberry) whose seeds were found in a human skeleton, which was believed to be some centuries old ; but after verification of the fact, the seeds proved to be more recent."10 DeCandolle says nothing of that bulbous root found in the hands of a mummy and which produced a beautiful dahlia, rightly passing the fact, as one of those apocryphal stories with which science had better not be encumbered. Not that the statement of Prof. Lindley is to be doubted ; but that this celebrated botanist, too prone to believe stories in confirmation of his opinion, may have been misled by false accounts. We know of old that the merchants of Egyptian mummies are not more conscientious in the preparation of their goods for market, than the manufacturers of Italian or of Syrian antiquities. Manuscripts, seeds, rings, every kind of remarkable utensils and bodies, have been wrapped with the old bones of Egyptian mummies, to raise their price. This explains also the third case of long preservation of seeds of wheat from the pyramids, quoted by Prof. Winchell. I have myself cultivated green peas, duly certified as directly coming from the same source and bought at a high price; and learned to my cost that the most common of our varieties of this vegetable was already cultivated at the time of the Pharaohs.

But even accrediting to the seeds a vitality of infinite duration, whenever they are imbedded under favorable conditions, wrápped in a hard and perfectly dry body, sheltered against any kind of atmospheric influence, we must inquire if the diurnal or drift deposits may have afforded to them these conditions of preservation.

Two theories only are admissible for explaining the transportation of the drift materials: 1st, Water and floating Icebergs, 2d, Glaciers. In the first case the transport of seeds would have been made in water, and their vitality destroyed, as it has been remarked already. Admitting, with Prof. Winchell, the transportation by glaciers, we are called to suppose or believe that seeds of all the species of trees now living on the north part of our continent, have been at first buried and then carried in the drift, as in a kind of Noah's ark, especially provided for the preservation of vegetables. But the transportation of the materials carried by glaciers is only partly done upon their surface, and does not proceed in a way very favorable to the preservation of seeds. In their forward advance, this surface of the glaciers is continually broken into innumerable fissures of vari-

[^9]
L. Lesquereux on the Origin and Formation of Prairies. 27

ous size, often broad crevasses of great depth, where heaps of transported materials are constantly engulfed, to be, by the movement of the ice, crushed, ground up, and, by and by, thrown back to the surface to be swallowed again. Hence, all the materials transported by glaciers bear the marks of long grinding. The soft stones have been reduced to sand or to mud, the hard ones are rounded into pebbles, and the few which have casually escaped burial have still their angular corners smoothed away, of course. And though the movement is slow, the materials carried on the back of the glaciers (moraines) are continually mixing and in a confused mass, and thus, though their thickness may be great, they are at repeated times exposed to atmospheric action. How then could it be supposed that mere seeds, especially large ones, like acorns, nuts, beech nuts, etc., could have resisted the crushing action of ice, when hard stones have been ground into sand and mud. For, according to the theory, the seeds ought to have been preserved within the transported materials, as it is positively stated that diluvial materials are full of seeds.

Prof. Winchell says, "The general effect of the events which ushered in and marked the progress of the reign of ice was to destroy the vegetation flourishing over all the northern portion of the continent, and mingle its forms with cubic miles of debris detached from the under-lying rocks," etc. What has become of these forms of vegetation, remains of vast destroyed forests which have produced those seeds with which the diluvial is replete? Are trunks and branches of trees more difficult to preserve than seeds? Who has found those trunks and limbs of trees buried 50 and 100 feet in this diluvial rubbish ? ${ }^{11}$ Althnugh the drift has been cut by canals, railroads, etc., over its vast extent, I do not know that any large deposits of vegetable remains have been found in it. There is, near Cleveland, Ohio, a bed of vegetable matter, a compound of leaves and branches of nearly carbonized Conifers heaped in patches, within sandy clay, and which do not appear to have been transported from the place where the plants grew. They look like the scattered remains of an incipient peat-bog. Here, at Columbus, a few pieces of wood have been dug out, at a depth of twenty feet, from a kind of drifted clay not far from the banks of the Scioto river. They may or may not belong to the Drift; in any case they were, when taken out, as soft as clay and decayed throughout. These are the only Drift deposits of vegetable remains which have come under my examination.

And if the diluvial deposits are replete with living germs, how is it that wherever these deposits are deeply cut, and their inmost recesses exposed to view, we do not see this new ground
invaded at once by a peculiar kind of vegetation, especially by trees? Along the Ohio canals, the exposed Drift remains absolutely sterile in the first years after its denudation. By and by, some seeds of the plants growing in the neighborhood, those of the Mullen especially, invade this new soil, and become for a time its predominant vegetation. Afterward, a few shrubs, also the most common in the vicinity, appear on it; and it is only long years after, and when the surface of the original ground is already covered by a coat of vegetable mould, that a few trees, the Black Locust, the Elm, etc., are seen here and there growing up among the bushes.

Prof. Winchell again says: "4th, The living germs of the diluvial deposits were buried during the glacial epoch;" and, "5th, In proportion as the diluvial surface became exposed, the flora of the pre-glacial epoch was reproduced.

The author supposes that the vegetation which characterized the close of the Tertiary period was probably nearly identical with that existing at the present day under the same climatic conditions. ${ }^{18}$ The climate of the Tertiary period at our latitude was evidently warmer than it is now, and, in the supposition of the author, we must expect of course to find the seeds of northern species, brought with the Diluvium and established with us, taking the place of those destroyed by the influence of the glacial period. Considering only the general character of the flora of the Tertiary at different latitudes, it agrees well enough with this idea, and we may give here some details which tend to strengthen the hypothesis, more, perhaps, than any reason advanced by the author himself.

The Tertiary flora of Iceland, at least what is known of it, is more closely related to our present flora than that of the Tertiary of the Mississippi. Among twenty-seven species of Phenogamous plants, ${ }^{13}$ it has eight Conifers, one of which, the most common, is an Araucaria; two Pines, one of them related to Pinus serotina Michx. of ours; five Firs, one also related to our Abies balsamea Marsh., or Abies Fraseri Pursh. Among the Monoeotyledonous plants, this flora of Iceland has a Sparganium, a species of the Naiadacece and the seeds of a sedge; and among the Dicotyledonons it has three species of Birch, one of which is related to our Betala excelsa Ait; one Alder, one Willow, one Hazelnut, one Gak, whose nervation resembles that of our Quercus montane Willd, ; one Buttonwood (Platanus), one Dombeyopsis, a genus of the Linden familj, represented only by broken, scarcely determinable leaves; one Maple, apparently the most predominant species in that Tertiary flora of Iceland, and remarkable by its large leaves and large fruits; one Grape, related to Vitis vulpina L. of ours; one Tulip tree, one Buckthorn,

[^10]one Sumach, and one Walnut. If we consider the genera only, it is evident that this flora has the greatest analogy with ours; and if we could account for the transportation of seeds, it would perhaps seem reasonable to suppose that the change of character of our vegetation, since the Tertiary period, might be explained by Prof. Winchell's theory. Before conceding the value of this supposition, however, we must look further to what we know of the characters of the vegetation in our recent geological ages. The materials collected till now from the flora of Iceland as well as from our own are not sufficient to form a solid basis for argument, but we must use them as they are.

In the lower Miocene (may be the Eocene?) of the State of Mississippi, the most abundant remains of fossil plants belong to a species of Calamopsis, an extinct genus of Palms. With this, and in about the same abundance, there are leaves of a Sabal resembling our Palmetto, and of Fig and Cinnamon trees. At a higher stage, in the red shales, which I consider as true Miocene, we find still some leaves of Fig, Cinnamon, and Sabal, with already those of Oak, Maple, Hickory, Laurel, Olive, Magnolia and even Beech, whose species are related to, but not identical with, species of our time. Higher still, in the chalk banks of Columbus, Kentucky, we have leaves and fruits, whose relation is still nearer to our present species. Some of them so much so, that I have considered them as identical with ours. ${ }^{14}$ Passing higher up in the formations, we have, along the banks of the lower Ohio river, thick strata of a compound of leaves and fruits mixed with alluvial clay and formed in terraces. All the species of this formation are of our time and of our latitude.

In the difference of forms between the plants of the lower Tertiary and those of our epoch, we recognize a constant modification of specific characters, but one so uniform and so slow in its progress that we cannot consider it as resulting from any great geological cataclysm. These changes are nevertheless evident; as evident after the glacial epoch as at the different stages of the Tertiary, but no more marked. Therefore, I do not see that we can ascribe the last change to a peculiar glacial agency, especially when, to sustain the hypothesis, we should have now, in our arborescent vegetation, exactly the same species as those of the Northern Tertiary. This is certainly not the case. For out of the twenty-seven species of the Tertiary of Iceland, no one is perfectly identical with ours; four only are related to species of our time, and the most remarkable and prominent, Araucaria and Acer otopterix Gp., that maple noted for its very large fruits, are types of which no trace appears, in our actual vegetation.

[^11]30 L. Lesquereux on the Origin and Formation of Prairies.
Prof. Winchell's next statement is, " 6 th, The vegetation which finally appeared on the drained lacustrine area was extra-limital, and was more likeiy to be herbaceous than arloreal.

What is an extra-limital vegetation? Prof. Winchell supposes that after the Drift epoch the whole continent passed under the action of the ocean's surges. That the highest points of the drift emerging from this general flood were immediately covered with forests, from the seeds preserved in it. That, at the time when this portion of the emerged continent "was again clothed with those forms of verdure which had adorned it at the close of the Tertiary period," "the retreating waters paused to brood over the wide region destined to become the garden of the West; perpetual dilution converted them into a vast inland sea of fresh water, upon whose bottom gathered the lifeless sediments that were to be the soil of the prairies."

A few simple measurements have already contradicted the essential idea in this paragraph. We have quoted it only to show that by extra-limital species, the author understands apparently species which either did not belong to the Tertiary, or, did not inhabit the forests bordering the lacustrine prairies, and were brought from somewhere far away. For the vegetation of the prairies is of a type quite different from that of the forests, and cannot have originated from it. How, then, can we account for this extra-limital origin of species and the transportation of seeds across the forests surrounding the lacustrine deposits? Can we suppose that, for hundreds of centuries, the seeds of trees never progressed by dispersion, never trespassed upon that limit marked by the borders of ancient lakes, though the soil was well adapted for their germination and their growth; ${ }^{15}$ and that the lacustrine soil was invaded by herbaceous plants brought from far away across the forests, we know not whence? It is not necessary to attempt to refute such a supposition. Are the seeds of Maple, Box-Elder, Linden, Hornbeam, Ironwood, Birch, Alder, Willow, Cottonwood, etc., which are either winged or surrounded with down or with hairs to facilitate their dispersion, more difflcult to transport by natural known agencies, such as winds, currents, etc., than those of Pentalostemon, Astragalus, Baptisia, and other Leguminosæ so common on the prairies? The vegetation of the prairies has the same general character as that of the swamps and marsh lands. In both there is especially an abundance of large, coarse Composite, "plants which continually pump water by their roots from the soil and send it through their leaves into the atmosphere as vapors."18 These and most of the other species of the prairies have generally deep-creeping or tap conical and tuberous roots, penetrating the soil and thus

[^12]escaping destruction by conflagration. ${ }^{17}$ And with these, there are the sedges, and the hard grasses, like the Andropogons, which seek a siliceous soil, and whose tissue is so hardened by silica that their culms are not even consumed by the autumnal fires. These, and indeed many of the species of the high prairies of the Mississippi, are found in our swamps along the canals of Ohio.

A simple remark on the whole theory will close this examination, already too long. An hypothesis, or a theory, to be acceptable to the mind, should account for all the appearances of the phenomenon which it proposes to explain; and its explanations should be sustained by what we know of natural laws still in activity, and by action so evident that its effects cannot be denied. Neither of these conditions is fulfilled, I think, by the new theory. It takes into consideration a very small part of the whole system of prairies, explaining neither the low lacustrine nor the fluvial prairies, neither those of the sea nor those of the mountains, etc. And it refuses to acknowledge an evident operation constantly at work under our eyes, the result of a simple law of nature.

Art. IV.-Preliminary notice of a small collection of Fossils found by Dr. Hays, on the west shore of Kennedy Channel, at the highest northern localities ever explored; by F. B. Меek.

Some time after Dr. Hays' return from his Arctic expedition, he sent on to the Smithsonian Institution several boxes of mineral and rock specimens collected by him while in the north, to be examined by Prof. Thomas Egleston. On opening these, Prof. Egleston noticed, amongst other specimens, a mass of gray limestone containing a few fossils, to which be called the attention of the writer. Finding these to be of much interest, considering the distant northern locality from which they were obtained, the other specimens were then carefully examined, and fragments of a few other fossils found amongst them. When Dr. Hays subsequently visited Washington, he stated that the best specimens of fossils collected by him were then in the possession of a friend at Philadelphia, and that those we bad seen were merely fragments that had been packed up with the rock specimens. At the request of Dr. Hays, the writer agreed to examine and report upon these fossils, so soon as the other specimens could be sent on from Philadelphia. After the lapse of five or six months, however, without their arrival, inquiries were

[^13]made in regard to them, when it was ascertained from Dr. Hays that his friend, with whom he had left the specimens, had sent them on some time previous. Unfortunately, however, up to this time they have not been received, and, as it is quite probable they may never be recovered, it has been thought desirable in the interests of science, as well as in justice to the intrepid Arctic explorer, Dr. Hays, that such conclusions as can be deduced from the meager collection of imperfect fossils found amongst the rock specimens collected by him, should be placed on record.

Before expressing an opinion, however, in regard to the age of the rock from which these specimens were obtained, the following list of them, with brief descriptions of some of those believed to be new to science, are given:

1. Zaphrentis Haysif, Meek.

Corallum obconical, distinctly curved, rapidly expanding from a pointed base; length, about two inches; breadth, near the summit, $1 \cdot 40$ inches; sometimes showing, on the convex side, two broad, distant, shallow, longitudinal furrows, extending the whole length, so as to give that side a trilobate appearance. Epitheca, thick, and, where not worn, concealing the septa within; surface showing small wrinkles of growth, which are most distinct near the summit. Calice, apparently rather deep, (filled with stony matter in all the specimens examined); principal radial septa about sixty, rather stout and rigid, as seen around the margins of the calice, where about ten of them may be counted in a space of half an inch; alternating with these there is a shorter and weaker secondary series.

The trilobate appearance of the outer or convex side in the type of this species, together with its small wrinkles of growth, give it much the aspect of some of the merely arched species of Platyceras, for which it might be mistaken, when the calice is filled with stony matter. As some of the other specimens, however, apparently not differing in other respects, do not present this trilobate appearance, it may not be constant.

The specific name of this coral is given in honor of Dr. Hays, its discoverer.

Locality, Cape Frazier. Between lat. 80° and 81° N., long. $70^{\circ} \mathrm{W}$.
2. Syringopora, (sp. undt.)

A mere fragment. The tubes are crowded so as to be nearly always less than their own breadth apart, and sometimes nearly in contact. They are uniformly $0 \cdot 10$ inch in diameter, and apparently nearly straight and parallel, while the connecting tubes are small.

Locality, Leidy. Between lat. 80° and 81°, long. $70^{\circ} \mathrm{W}$.
3. Favosites, (sp. undt.)

A small flat fragment showing regular hexagonal calices 0.10 inch in diameter. Tabule apparently thin and closely arranged; mural pores consisting (as seen on one wall only) of four or five alternating series.

Locality, same as last.

[^14]4. Strophomena rhomboidalis, Wahlb. (=Leptaena depressa of authors). Presenting its usual characters.
5. Strophodonta Headleyana, Hall?

The specimen of this shell consists of about the half of a ventral valve, embedded in the matrix so as to show the inner side with its coarse irregular striate, subcordate visceral cavity, and granulose surface. So far as can be determined from this, it agrees well with the New York species.

Loculity, same as last.
7. Strophodonta Beckit, Hall?

The specimen referred with doubt to the above species, is imperfect, but presents the same general outline, and flatness, as well as the characteristic small curving concentric wrinkles, fine strix, and even traces of the flabelliform visceral scar, of the New York shell.

Locality, same as last.
8. Reinchonella, (sp. undet.)

A single specimen of a ventral valve partly embedded in the matrix. Breadth, 0.42 inch; length, 0.36 inch. Mesial sinus broad and shallow; surface with only twenty small radiating costr, five of which occupy the mesial sinus.

Locality, same as last.
9. Celospira concata, Hall.

Several specimens, showing both sides, agree well with the New York species.

Locality, same as foregoing.
10. Spirifer, ($s p$. undet.)

Specimens, partly embedded, closely resemble S. perlamellosus, Hall, of New York Catskill Shaly limestone.

Locality, same as last.

11. Loxonema? Kaner, Meek.

An internal cast, from which it is not possible to determine, beyond doubt, whether it is a Loxonema, or a Murchisonia. Length, about 2.07 inches; breadth, 0.75 ; apical angle, 20°. Form conoid-subfusiform; consisting of about six convex whorls, separated by a distinct suture. Aperture subovate; last turn comparatively rather large; surface unknown.

Named in honor of Dr. Kane, the Arctic explorer.
Locality, Cape Frazier; between lat. 80° and 81°, long. $70^{\circ} \mathrm{W}$.
12. Orthoceras (undetermined).

The specimen is too imperfect for identification with any known species, or be characterized as new. It is incomplete at both extremities, and partly embedded in a mass of limestone. Entire length of the fragment, 2 inches; section circular, at the larger end, 0.43 inch in diameter; at smaller end, 0.15 inch. Septate throughout; septa numbering five in the space of 0.27 inch at larger end. Siphon and surface unknown.

Locality, same as last.
13. Illeixus, (sp. undet.)

Fragments of the glabella, and a movable cheek, apparently of a species of this genus.

Am. Jour. Sci.-Srcond Semies, Vol. XL, No. 118.-July, 1865.

From the foregoing list, it is believed that geologists will agree, that the rocks at this highest northern locality at which fossils have ever been collected, belong to the Upper Silurian era. The most remarkable fact, however, is, that they are nearly all very closely allied to, and some of them apparently in all respects undistinguishable from, species found in the Catskill Shaly limestone of the New York Lower Helderberg Group. Indeed, these shells resemble so closely Shaly limestone forms, that we could scarcely dismiss the impression that the mass of limestone in which they are imbedded might be a New York specimen that had in some way been accidentally mixed with those from the north after Dr. Hays's return, until assured by him that he distinctly remembered collecting it at the Aretic locality.

We are aware that great caution is necessary in pronouncing upon the identity of fossils found at localities separated by forty degrees of latitude, without a good series of specimens for comparison; but, whether or not the absolute specific identity of any of these Arctic shells with New York species be admitted, in their unquestionably close affinities to the New York forms alluded to, they certainly present another striking evidence of the apparent wonderful uniformity of climatic and other physical conditions during these early periods of our earth's history, over the whole globe.

Art. V.-On the Replacemert of one Alcoholic Radical by another in compounds of the Ether Class; by C. Friedel and J. M. Crafts.

While engaged in the study of the ethers of silicic acid, we noticed that the normal silicate of ethyl, $\left.{ }_{2} \underset{\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4}}{\mathrm{Si}}\right\} \mathrm{O}_{4}$, when it was heated with amylic alcohol, underwent a decomposition similar to that which would have been effected by an alkaline base; ethylic alcohol was set free, and ethers containing the radical amyl were formed; we also observed a decomposition, at the temperature of its boiling point, of a mixed silicate of ethyl and amyl, $\left.\left.\underset{\left(\underset{5}{2} \mathrm{C}_{5}^{2}\right.}{\mathrm{H}_{5}}\right)_{3}\right\} \mathrm{O}_{4}$, with formation of silicate of ethyl and silicate of amyl, as well as of the mixed ethers intermediate to these two. We considered it of interest to determine the conditions under which reactions of this nature take place, especially as they have much analogy with those which most often occur in inorganic chemistry, namely, the action of a base upon

[^15]a salt, and in general the replacement of one element by another, and there was reason to hope that the study of the reactions in which these organic radicals were concerned might throw some light upon those in which their types, the inorganic elements, play a part.

In the present research we have confined ourselves to the study of a few compounds, which may be taken as representatives of others which are analogous, and have endeavored to solve by experiment the following problems.

1. Is the replacement of the alcoholic radicals by each other one that takes place readily in all the combinations into which they enter; or is it peculiar to their combinations with acids?
2. Is one alcoholic radical to be considered as playing the part of a stronger base than another, and as displacing it from its combination by virtue of a stronger affinity for the body with which it was combined? Or, on the contrary, is the change of composition, produced by heating a mixture of compounds of several radicals, due to the tendency of each one to enter into all the combinations possible to it?

In order to answer the first question, we have examined-1st, the action of alcohols on the ethers of various acids; 2d, the action of these ethers on each other: and 3d, the action on each other of the ethers, properly so called. The second question has been, at least partially, answered by conducting two series of experiments, in which the conditions of the reaction have been reversed; as for example, first by the study of the action of amylic alcohol on the acetate of ethyl, and then that of ethylic alcohol on the acetate of amyl. Great care has been taken to ascertain the purity of the preparations employed, and particularly that the alcohols were anhydrous. ${ }^{2}$

Action of amylic alcohol on acetate of ethyl.-A mixture of equal parts, by weight, of the two bodies was sealed in a stout glass tube by means of the blowpipe lamp, and heated during fortyeight hours at $240^{\circ}-260^{\circ} \mathrm{C}$. Common alcohol was set free, and could easily be isolated and recognized in the portion of the contents of the tube which distilled at the lowest temperature. The portion which distilled last contained acetate of amyl, together with the excess of amylic alcohol employed. To separate the two, advantage was taken of the property of amylic alcohol to unite readily with an excess of sulphuric acid to form amyl-sulphuric acid soluble in water, while acetate of amyl is dissolved, undecomposed by the acid, and is precipitated by diluting the solution with water. [If care is taken not to allow the temperature of a mixture of amylic alcohol, with several

[^16]times its weight of concentrated sulphuric acid, to rise above $60^{\circ}-70^{\circ} \mathrm{C}$., the product is entirely soluble in water. At a higher temperature insoluble products, sulphate of amyl and amylic ether, are formed.] The portion, therefore, of the contents of the tube, whose boiling point was above $125^{\circ} \mathrm{C}$., was treated with sulphuric acid, and the acetate of amyl, precipitated by the addition of water, was again treated with sulphuric acid, and again precipitated by water. This operation was repeated three times. In this way acetate of amyl was obtained, distilling $136^{\circ}-138^{\circ}$, which contained:

The quantity of acetate of amyl formed was considerable, but still a certain portion of the acetate of ethyl remained unchanged, although amylic alcohol had been employed in excess.

Action of common alcohol on acetate of amyl. ${ }^{3}$ - Equal parts of each were heated forty hours at $240^{\circ} \mathrm{C}$. The liquid which distilled at $75^{\circ}-90^{\circ} \mathrm{C}$., was washed eight times with a saturated solution of common salt, to free it from alcohol, and dried over chlorid of calcium. After being thus purified, it distilled at $74^{\circ}-76^{\circ} \mathrm{C}$., and had all the properties of acetate of ethyl. An analysis gave:

$$
\begin{array}{r}
\mathrm{C}=53.81 \\
\mathrm{H}=9.50
\end{array} \quad \begin{gathered}
\text { Theory. } \\
54.54 \\
9.09
\end{gathered}
$$

Thus acetate of ethyl was formed in the same way from a mixture of acetate of amyl and common alcohol, that acetate of amyl was from a mixture of acetate of ethyl and amylic alcohol.

Action of amylic alcohol on benzoate of ethyl.-Equal parts of each, heated sixty hours at $210^{\circ}-240^{\circ} \mathrm{C}$., gave a small quantity of an ether, distilling at $251^{\circ}-253^{\circ}$, which answered in all its properties to benzoate of amyl. It contained :

We conclude from this and another experiment, which was
${ }^{3}$ The acetate of amyl, obtained at different times, always distilled at $136^{\circ}-138^{\circ}$ C. The boiling point, given in Gerbardt, about 125 ${ }^{\circ}$, and that determined by Kopp, 133°, differ so much from that observed by us that we thought it necessary to analyze the product ased in these experiments. A portion, prepared by treating one part amylic alcohol with one part erystallized acetic acid and two parts concentrated sulphuric acid, at a temperature below $70^{\circ} \mathrm{C}$., after having been thoroughly washed with water, distilled at $187^{\circ}-188^{\circ}$, and contained:

$$
\begin{aligned}
& \mathbf{C}=6481 \\
& \mathbf{H}=1106
\end{aligned} \quad . \quad \begin{gathered}
\text { Theory } \\
64.62 \\
-10.77
\end{gathered}
$$

The amylic alcohol used in the preparation distilled at $130^{\circ}-131^{\circ}$, and contained:

$$
\begin{aligned}
& \mathbf{C}=68.02 \\
& \mathbf{H}=18.51
\end{aligned}, \quad \begin{gathered}
\text { Theory } \\
68.18 \\
1864
\end{gathered}
$$

made at a somewhat lower temperature, and where only traces of benzoate of amyl were produced, that the benzoate of ethyl is decomposed by an alcohol with more difficulty than the acetic ethers. It will be remembered that this body is also less easily decomposed by water and alkaline bases than they; the reaction, however, takes place, and the extent of the decomposition effected is without doubt only a question of time and temperature.

We next studied the action of an alcohol on the ether of a bibasic acid, a reaction which is capable, evidently, of giving rise to a greater number of products than those which were formed in the preceding cases; for, by the successive replacement, by another radical, of each equivalent of the alcoholic radical combined with the acid, first a mixed ether, and then an ether containing two equivalents of the other radical would be formed. Oxalic ether, which is easily decomposed by water and alkalies, is well adapted to the study of this reaction.

Action of amylic alcohol on oxalate of ethyl.-One part amylic alcohol and two parts oxalic ether were heated thirty-six hours at $220^{\circ}-250^{\circ} \mathrm{C}$. On opening the tube, carbonic acid and carbonic oxyd, unmixed with any hydrocarbon, were given off, and ordinary ether was found in the most volatile part of the liquid; thus a small part of the oxalate of ethyl had been decomposed by heat into carbonic acid, earbonic oxyd and ether; but the contents of the tube were not acid, and this decomposition could have had no influence on the reaction we were studying. After the liquid, taken from the tube, had undergone several fractionated distillations, the part which passed below $90^{\circ} \mathrm{C}$. consisted of a mixture of ordinary ether and alcohol. The alcohol had evidently been set free from the oxalic ether by the action of amylic alcohol. It was isolated from the common ether, with which it was mixed, by treating the mixture with an aqueous solution of salt, and distilling to regain the alcohol which was dissolved in the saline solution. The alcohol, distilled, was treated again several times in the same way. After having been rectified over anhydrous baryta, it boiled at 78°, and presented the characteristic properties of ordinary alcohol.

The portion of the liquid boiling at a temperature higher than 90° was separated by fractionated distillation into four products: amylic alcohol, oxalate of ethyl, distilling near 180°, oxalate of ethyl and amyl, distilling at $225^{\circ}-233^{\circ}$, and oxalate of amyl, distilling at $259^{\circ}-261^{\circ}$. An analysis of the latter gave:

$$
\left.\begin{array}{c}
\mathrm{C}=62 \cdot 24 \\
\mathrm{H}=9.49 \\
\mathrm{C}_{2} \mathrm{O}_{2} \\
\text { The mixed ether, } \mathrm{C}_{2} \mathrm{H}_{5} \\
\mathrm{C}_{5} \mathrm{H}_{11}
\end{array}\right\} \mathrm{O}_{3}, \text { boiling at } 225^{\circ}-233^{\circ} \text {, which was } 9.61
$$

obtained in a state of approximate purity, could not be farther purified by repeated distillations, but on the contrary, when distilled by itself, the limits of temperature within which it passed beeame wider with each operation. We suppose this circumstance to arise from a decomposition of the body by heat, and our supposition was verified by the result of an experiment, where we heated a portion of this product, which had distilled at $230^{\circ}-242^{\circ}$, during twenty-four hours, at $220^{\circ}-250^{\circ} \mathrm{C}$., in a sealed tube, and found that the decomposition had advanced so far that oxalate of ethyl (boiling at 180°), and oxalate of amyl (boiling at 260°), could be obtained from it. We shall publish the details of experiments with the ethers of a quadribasic acid in a paper on silicic ethers.

It appears from the experiment with the mixed oxalate of ethyl and amyl, that, when two alcoholic radicals are combined with a single bibasic acid, they have a tendency, at a high temperature, to displace each other, so that, besides the portion of the mixed ether which remains unchanged, compounds of the acid with two equivalents of each of the radicals are formed. When two ethers containing different acids and different alcoholic radicals are subjected together to the action of heat, a decomposition might be expected with production of two new ethers, each acid having entered into combination with each alcohol. This reaction actually takes place.

Action of benzoate of ethyl on acetate of amyl.-The two ethers were heated several hours at $300^{\circ}-310^{\circ} \mathrm{C}$., and the acetate of ethyl and benzoate of amyl formed were isolated and analyzed.

Acetate of ethyl, boiling point about 74° :

$$
\begin{aligned}
& \mathrm{C}=55.84 \quad-\quad-\quad \begin{array}{r}
\text { Theory. } \\
\mathrm{H}
\end{array}=10.54 \\
& \mathbf{H} .09
\end{aligned}
$$

Benzoate of amyl, boiling point about 250° :

$$
\begin{gathered}
\mathrm{C}=74.06 \\
\mathrm{H} \equiv 8.14
\end{gathered}-\quad \begin{gathered}
\text { Theory. } \\
\hline
\end{gathered}
$$

In another experiment, when the tube was heated sixty hours at $200^{\circ}-240^{\circ}$, the quantity of these ethers formed was too small to admit of their being separated from the other products. A very high temperature or a great length of time therefore is necessary to the accomplishment of this reaction. The ethers properly so called, the oxyds of alcoholic radicals, do not undergo a similar decomposition except perhaps at a very high temperature.

Common ether and amylic ether were heated seventy-five hours at $200^{\circ}-250^{\circ}$ without formation of a mixed ether.

The presence of water in the products employed would have taken away entirely from the value of the preceding experi-
ments, for the water would have acted upon the ether, setting free an equivalent of acid, which would have combined with the alcohol, setting water free again, so that the transfer of the acid from one alcoholic radical to another might have been wholly independent of the reaction we were studying; each of the tubes, after having been heated, was therefore examined with very sensitive litmus paper, which was left in the liquid several minutes. In no case was there a trace of acid reaction observed.

If we refer to these experiments for an answer to the questions proposed at the beginning of the memoir, we find: 1st. That the reaction which we have considered takes place, at a temperature in the neighborhood of $250^{\circ} \mathrm{C}$., between an alcohol and the ether of an acid, or between two ethers of acids, and also, that a similar decomposition takes place when the mixed ether of a polybasic acid is heated by itself. That it does not take place at all, or only with great difficulty, when the ethers (oxyds) of alcoholic radicals are heated with one another. That the reaction takes place most readily with those ethers that are most easily decomposed by water and other reagents. 2d. That the character of the reaction indicates that it is not dependent upon elective affinity, but simply on a tendency of each radical to unite with all the others present, and thus to form the greatest number of compounds possible.

It has long been a point, upon which the opinion of chemists has been undecided, whether two salts in solution undergo mutual decomposition, so that a portion of each acid combines with a portion of each base, or whether the salts remain in their primitive condition. Late researches ${ }^{4}$ seem to render probable the first view of the subject, so that, for example, a solution of nitrate of potash and sulphate of magnesia would be found to contain the sulphates of potash and magnesia and the nitrates of these bases if there were any means of directly separating all these salts; the separation is however impossible, and the state of combination of each element in the solution must be deduced from an examination of its physical properties. With many compounds of organic chẹmistry, however, when it is sought to separate products formed under similar circumstances, and belonging to the same class as salts in inorganic chemistry, advantage may be taken of the differences in the boiling points of the products to isolate each one by fractionated distillation; and also, a peculiar and characteristic property of organic bodies frequently aids in rendering a separation of this nature easy, namely, the slowness with which they experience intermolecular changes. Thus, the mixed oxalate of ethyl and amyl can be obtained, by a single distillation, in a state of approximative
purity, from the products of the reaction of oxalate of amyl on oxalate of ethyl, although, when it is isolated and heated alone for a certain length of time, it is resolved in part into the bodies from which it was formed. It is this last mentioned property of compounds of the ether class together with their volatility, which render them peculiarly fitted as material for the study of reactions like those which we have been considering; and the results, obtained by such a study, are not without weight in questions concerning inorganic compounds, for the analogies between the elementary bodies and the organic radicals, which play the same part as elements in a large number of reactions, are becoming every day more numerous with the advance of chemical science, and the barrier which separates the two branches of chemistry is now nothing more than a line of division in an artificial classification, which, notwithstanding its many advantages, has the demerit of separating too widely phenomena which are dependant on the same general laws.

Art. VI.-On Etherification; by C. Friedel and J. M. Crafts.
With the purpose of extending our observations on the class of reactions described in the preceding paper, we undertook similar experiments with the chlorids and iodids of alcoholic radicals; but we soon recognized that, although these bodies are easily decomposed by an alcohol at a comparatively low temperature, the reaction is quite different from the one before described.

Two tubes were heated twenty-four hours at $160^{\circ}-180^{\circ} \mathrm{C}$. The first contained iodid of amyl with one-half its weight of common alcohol; the second contained iodid of ethyl with an equal weight of amylic alcohol. The contents of the tubes became strongly acid, and a layer of water, containing iodhydric acid in solution, separated on the surface of the liquid in each of them.

The liquid was washed with water to free it from iodhydric acid, and, as the iodids are not acted upon by concentrated sulphuric acid, this agent was employed to separate them from the other products. The iodids, separated by decantation from the sulphuric acid, underwent several fractionated distillations. The contents of the first tube gave a small quantity of a liquid, boiling at $72^{\circ}-75^{\circ}$, which possessed the properties of iodid of ethyl [true boiling point $=72^{\circ} \cdot 2$], and from the second tube iodid of amyl, boiling at 146° [true boiling point $=146^{\circ}$], was obtained. Analyses were made of these products, which corresponded sufficiently with the true composition to leave no doubt as to
the identity of the bodies. The quantity of these iodids which was obtained was, however, comparatively small; in each of the tubes the principal portion of the reaction was an ether, which was regained from the sulphuric acid employed in purifying the iodids, by the addition of water.

The ether obtained in this manner was not pure, being mixed with a small quantity of the iodids, and with traces of the alcohols, but it distilled in greater part at $100^{\circ}-120^{\circ}$, and after a few fractionated distillations a large quantity of a product whose boiling point was near 110° was obtained. In order to rid this product of the iodids with which it was mixed, it was heated some time with sodium; the iodids were destroyed with formation of iodid of sodium and the radicals ethyl and amyl. From these latter the ether was freed by repeated fractionated distillation as far as possible, but the analyses below show that the body was not perfectly pure; the traces of these hydrocarbons which it contained was not, however, sufficient to leave any doubt as to its identity with the mixed oxyd of ethyl and amyl, \left.\left.${\underset{\mathrm{C}}{5}}_{\mathrm{C}_{2} \mathrm{H}_{5}}^{\mathrm{H}_{11}}\right\}\right\} \mathrm{O}$. It distilled at $110^{\circ}-113^{\circ}$ (true boiling point $=112^{\circ}$).

Analysis I is of the product obtained from the tube containing iodid of amyl and common alcohol; analysis II, of that obtained from iodid of ethyl and amylic alcohol.

The ether could only have contained a trace of an alcohol, but, as the action of sodium of a mixture of an alcohol with the iodid of the radical of another alcohol gives rise to a mixed ether, we repeated the experiment, taking care to destroy the alcohol more completely by repeated treatments with concentrated sulphuric acid before acting upon the iodid with sodium, but we did not observe that the quantity of mixed ether formed was diminished after this precaution had been taken.

In the foregoing experiments common ether as well as amylic ether were formed, but in much smaller quantity than the mixed ether. The principal reaction which took place in the tubes is therefore expressed by the equation:

$$
\left.\left.\begin{array}{l}
\mathrm{R} \\
\mathrm{H}
\end{array}\right\} \Theta+\mathrm{R}^{\prime} \mathrm{I}=\stackrel{\mathrm{R}}{\mathrm{R}^{\prime}}\right\} 0+\mathrm{HI} .
$$

The iodhydric acid in presence of an excess of alcohol would give rise to the formation of water and of the iodid of the alcoholic radical,

$$
\underset{\mathrm{H}}{\mathrm{R}}\} 0+\mathrm{HI}=\mathrm{RI}+\mathrm{H}_{2} \mathrm{O},
$$

and the iodid would in this manner be continually decomposed Am. Jour. Scr.-Second Series, Vol. XL, No. 118.-July, 1865.
and reformed as long as any alcohol remained. The iodhydric acid would also decompose a certain portion of the ether formed, in the same manner as it decomposes an alcohol, but less readily.

It is not necessary to suppose that the decomposition and recomposition of the iodid are dependent upon successive reactions; it is on the contrary certain, that at any given moment all the above mentioned reactions take place simultaneously, and that the mass of each body entering into them at that moment determines the relative amount of their products.

The fact that the principal product of the reaction of the iodid of an alcoholic radical upon the alcohol of another radical is a mixed ether can only be interpreted by the first of the preceding equations, and this manner of viewing the reaction is of some importance in its bearing on the theory of etherification, as affording evidence in support of a theory, already advanced by Reynoso ${ }^{1}$ and others, which refers to a simple chemical reaction, the etherification by so-called catalytic action of chlorids, bromids, and iodids on alcohols. We have been able to demonstrate in the preceding experiments, that the first stage of the reaction, the replacement of the hydrogen of the alcohol by the radical combined with the iodid, actually takes place in a manner which accords with the theory of Reynoso. The property, which the chlorids, bromids and iodids of alcoholic radicals, as well as of metals, possess, of transforming an unlimited quantity of an alcohol into an ether is comparable to that of ferments, in so far that a change of composition is wrought in a large quantity of matter by a body, which seems in itself to be inactive, and the explanation of phenomena of this class was sought in a mysterious influence, exerted by the presence of the body, which brought about a change without seeming to suffer one itself; but the remarkable researches of Pasteur have led to the discovery of an explanation of the process of fermentation in the physiological action exercised by the fermenting matter on one another; the etherification of alcohols by bodies which are not destroyed at the end of the process, also, admits of a simple explanation, founded on known chemical laws, and there is reason to hope that the name catalysis will eventually be banished from scientific language by a closer study of the reactions, which have been designated by this term in default of a knowledge of their true character.

These researches have been made in the laboratory of Professor Wurtz.

Paris, March 1st, 1865.
${ }^{2}$ Ann. de Chim. et Phys., 1856.

Art. VII.-Contributions to the Chemistry of Natural Waters; by T. Sterry Hunt, A.M., F.R.S.: of the Geological Survey of Canada.

II.
 Analyses of various Natural Waters.

Contents of Sections. - 35, mode of analysis, date of collection; 36, waters of the first class; 37 , their probable origin, the elimination of sulphates; 38, separation of lime-salts from waters; 39, earthy chlorids in saliferous formations; brines of New York, Michigan, and England; foot-note on errors in water-adalyses; 40. brines of western Pennsylvania; waters in which chlorid of calcium predominates; 41, origin of such waters; separation of magnesia as an insoluble silicate; 42 , waters of the second class; 43 , waters of the third class; 44, waters of the fourth class; Chambly; 45, other waters of the same class; Ottawa River ; 46, waters of Highgate and Alburg; 47, changes in the Caledonian waters; comparative analyses; 48, waters of the fifth class; sulphuric-acid springs of New York and Canada; 49, changes in composition, action on calcareous strata ; 50, waters of the sixth class, their various sources; 51 , neutral sulphated waters.
$\S 35$. The analyses of the various mineral waters to be given in the second part of the present paper, were made according to the modes laid down in the treatise of Fresenius on Quantitative Analysis. The carbonate of soda in the alkaline waters was determined by the excess of the alkaline bases over the chlorine and sulphuric acid present. This was generally controlled by the amount of the carbonate of baryta thrown down from a solution of chlorid of barium by a solution of the soluble salts obtained by the evaporation of the mineral water; and in some cases, to be specified farther on, this latter process was relied on as the only means of determining the amount of carbonate of soda. For remarks on the earthy carbonates of the waters, and their relation to the results of analysis, see Part III of this paper.

The date at which the various waters were collected for analysis is in each case appended to the notice of the spring. This is of the greater importance, inasmuch as it will be shown that, in the course of years, some of the springs here described have suffered considerable changes in their composition.
$\S 36$. In the following table are given the analyses of several waters belonging to the first class as defined in § $34 .{ }^{\circ}$

1. This water is from a well thirty feet in depth, near the village of Ancaster, on the western shore of Lake Ontario. It is sunk in the Niagara formation; but like the other waters of this class, probably has its source in the Lower Silurian limestones. The water rises nearly to the surface, but there is no perceptible discharge. Its temperature was found to be $48^{\circ} \mathrm{F}$. when collected for analysis in September, 1847.
[^17]Table I.-Waters of the first Class.

	1.	2.	3.	4.	5.	6.	7.	8.
Chlorid of sodium.	178280	18.9158	$38 \cdot 7315$	$17 \cdot 4000$	29.8034	19.94		
potassium	-0920	traces.	traces.	undet.	$\cdot 3555$	und't.	undet	undet.
calcium.	12-8027	17.5315	15.9230	9.2050	14.8544	$6 \cdot 49$	12.439	$2 \cdot 102$
" magnesium.	$5 \cdot 0737$	9.5437	12.9060	9.4843	3.3977	1.95	$7 \cdot 33$	11763
Bromid of sodiura.	-1178	'2482	$\cdot 4685$	undet.	undet.	und't.	undet.	undet.
Iodid of sodium		-0008	-0133	"	-0042		"	-
Sulphate of lime.	7767				21923	1%	$\cdot 954$	2.388
Carbonate of lime...	traces.	-0411				1.	- 370	${ }^{-4} 400$
" magnesia.		-0227					1-287	
" $\left\{\begin{array}{l}\text { baryta } \\ \text { strontia. }\end{array}\right.$		undet.						
In 1000 parts	6.6909	6.3038̊	8.0423	$6 \cdot 0893$	$0 \cdot 6$			

2. This water is from a copious spring which issues from the limestones of the Trenton group at Whitby, on the north shore of Lake Ontario. It contained small portions of baryta and strontia, and was collected in October, 1853.

3,4. Several wells have been sunk in the Trenton limestone in the township of Hallowell, on the Bay of Quinté, Lake Ontario, in search of brine for salt-making, and have yielded bitter saline waters, of which the two here noticed are examples. No. 3 was obtained from a well twenty-seven feet deep, in October, 1853. No. 4 was taken in the summer of 1854 from a well a mile or two distant from the last. Neither of these waters was examined for baryta or strontia.

5, 6. At St. Catherines, near Niagara Falls, a boring of five inches in diameter was carried to a depth of about 500 feet, and, after traversing the Medina formation, is said to have penetrated fifty or sixty feet into the Hudson River shales. It yields about twenty gallons a minute of a saline water, whose analysis by Professor Croft of the University of Toronto, a few years since, afforded the results given under 5 . This water, which was first sought for the manufacture of salt, is now much used for medicinal purposes. Its strength seems subject to some variation, since a specimen from the same well in December, 1861, gave me, by a partial analysis, chlorid of sodium 23.00 , chlorid of calcium $9 \cdot 66$, chlorid of magnesium $2 \cdot 40$, sulphate of lime $1 \cdot 75=36 \cdot 81$ parts in 1000. No. 6, examined at the same time, is from a second well sunk in 1861, not far from the last.

7,8 . These are analyses of the waters from two borings in the Trenton limestone at Morton's distillery in Kingston. The analyses are by Dr. Williamson of Queen's College in that city, and were made probably ten or twelve years since. They have ibeen recalculated so as to represent the whole of the sulphuric acid as combined with calcium. The first of these waters gave to Dr . Williamson both bromine and iodine, and the second was
found to be sulphurous. These waters differ from the preceding in containing considerable amounts of earthy carbonates, and in this respect are related to those of the second class, while they still show a large predominance of earthy chlorids.
$\S 37$. The waters of the above table contain, besides chlorid of sodium and a little chlorid of potassium, large quantities of the chlorids of calcium and magnesium, amounting together, in several cases, to more than one half the solid contents of the water. Sulphates either are absent, or occur only in strall quantities, and the same is true of earthy carbonates. Salts of baryta and strontia are sometimes present, while the proportions of bromids and iodids, though variable, are often considerable.

In the large amount of magnesian chlorid which they contain these waters resemble the bittern or mother-liquor which remains after the greater part of the chlorid of sodium has been removed from sea-water by evaporation. The bitterns from modern seas, however, differ in the presence of sulphates, and in containing, when sufficiently concentrated, only traces of lime. The reason of this, as already pointed out in $\$ 22$, is to be found in the fact that in the waters of the present ocean the sulphates are much more than equivalent to the lime, so that this base separates during evaporation as gypsum. ${ }^{2}$ But, as shown in 23 and 24 , the waters of the ancient seas, which held in the form of the chlorid of calcium the greater part of the lime since deposited as carbonate, must have yielded by evaporation bitterns containing a large proportion of chlorid of calcium. Such is the nature of the brines whose analyses are given in the above table, and such we suppose to have been their origin. The complete absence of sulphates from many of these waters points to the separation of large quantities of earthy sulphates in the Lower Silurian strata from which these saline springs issue; and the presence in many of the dolomitic beds of the Calciferous sandrock of abundantly disseminated small masses of gypsum, is an evidence of the elimination of the sulphates by evaporation. The frequent occurrence of crystalline masses of sulphate of strontian in the Chazy and Black River limestones of this region, is also to be noted as another means by which the sulphates were separated from the waters of the Lower Silurian seas. From the proportions of chlorid of sodium. varying from about one-third to more than two-thirds of the solid contents of the above waters, it is apparent that in most cases the process of evaporation had gone so far as to separate a part of the common salt; and thus successive strata of this ancient saliferous formation must be impregnated with solid or dissolved salts of unlike composition. The mingling of these in varying proportions affords the only apparent explanation of the differences in

[^18]the relative amounts of the several chlorids in waters from the same region, and even from adjacent sources. These differences are seen on comparing the waters from the different wells of St . Catherines, Hallowell and Kingston, with each other.
§ 38. The great solubility of chlorid of calcium renders it difficult to suppose its separation from the mother-liquors so as to be deposited in a solid state in the strata. The same remark applies to chlorid of magnesium. It is, however, to be remarked that the double chlorid of potassium and magnesium (carnallite) is decomposed by deliquesence into solid chlorid of potassium and a solution of chlorid of magnesium; and thus strata like those which at Stassfurth contain large quantities of carnallite, (822 , might give rise to solutions of magnesian chlorid. This, however, would require the presence of a large amount of chlorid of potassium in the early seas. It will be observed, by referring to the analyses above given, that the chlorid of magnesium sometimes surpasses in amount the chlorid of calcium, and sometimes, on the contrary, is equal to only one-half or one-fourth of the latter salt. While it is not impossible that the predominance of the magnesian chlorid in some waters may be traced to the decomposition of carnallite, it is undoubtedly in most cases connected with the action of solutions of carbonate of soda, the effect of which, as already pointed out, is to first separate the soluble lime-salt as carbonate, leaving to a subsequent stage the magnesia chlorid. (§ 18.) As this reaction replaces the lime-salts by chlorid of sodium, it might be expected that there would be an increase in the amount of the latter salt in the water wherever the magnesian chlorid predominates, did we not remember that evaporation separates it from the water in a solid form; and that the two processes, one of which replaces the chlorid of calcium by chlorid of sodium, while the other eliminates the latter salt from the solution, might have been going on simultaneously or alternately. As the nature of the waters now under consideration shows that the process of evaporation had been carried so far as to separate the sulphate in the form of gypsum, and probably also a portion of the chlorid of sodium in a solid state, it is evident that we have not yet the data necessary for determining the composition of the water of the Lower Silurian ocean, as regards the proportions of the sodium, calcium and magnesium which it held in solution; and we can only conelude, from these mother-liquors, that the amount of the earthy bases was relatively very large.
§39. As already remarked in §22, the mother-liquor from modern sea-water contains no chlorid of calcium, but, on the contrary, large quantities of sulphate of magnesia; the lime in the modern ocean being less than one-half that required to combine with the sulphate present. If, however, we examine the
numerous analyses of rock-salt and of brines from various saliferous formations, we shall find that chiorid of calcium is very frequently present in both of them; thus supporting the conclusions already announced in $\$ 24$ with regard to the composition of the seas of former geological periods. The oldest saliferous formation which has been hitherto investigated is the Onondaga salt-group of the New York geologists, which belongs to the upper part of the Silurian series, and supplies the almost saturated brines of Syracuse and Salina in New York. These, notwithstanding their great purity, contain small proportions of chlorids of calcium and magnesium, as shown by the analyses of Beck, and the recent and careful examinations of Goessmann. In the brines of that region the solid matters are equal to from 14.3 to 16.7 per cent, and contain on an average, according to the latter chemist, 1.54 sulphate of lime, 0.93 chlorid of calcium, and 0.88 chlorid of magnesium in 100.00 ; the remainder being chlorid of sodium. ${ }^{3}$

The nearly saturated brines from the Saginaw valley in Michigan, which have their source at the base of the Carboniferous series, contain, according to my calculation from an analysis by Prof. Dubois, in 100.00 parts of solid matters, chlorid of calcium $9 \cdot 81$; chlorid of magnesium $7 \cdot 61$; sulphate of lime $2 \cdot 20$; the remainder being chiefly chlorid of sodium. Another well in the same vicinity gave to Chilton an amount of chlorid of calcium equal to 3.76 per cent. ${ }^{4}$ In a specimen of salt mariufactured in this region Goessmann found 1.09 of chlorid of calcium ; and in two specimens of Ohio salt, 0.61 and 1.43 per cent of the same chlorid. The rock-salt from the Lias of Cheshire, according to Nichol, contains small cavities, partly filled with air, and partly with a concentrated solution of chlorid of magnesium, with some chlorid of calcium. ${ }^{\text {. }}$

[^19]§ 40. The brines from the valley of the Alleghany River, obtained from borings in the Coal formation, are remarkable for containing large proportions of chlorids of calcium and mag. nesium, though the sum of these, according to the analyses of Lenny, is never equal to more than about one-fourth of the chlorid of sodium. The presence of salts of barium and strontium in these brines, and the consequent absence of sulphates is, according to Lenny, a constant character in this region over an area of two thousand square miles. (See Bischof, Chem. Geol. i, 377). A later analysis of another one of these waters from the same region, by Steiner, is cited by Will and Kopp, Jahresbericht, 1861, p. 1112. His results agree closely with those of Lenny. See also the analysis of a bittern from this region by Boyé (this Journal, [2], vii, 74).

These remarkable waters approach in character to those of Whitby and Hallowell; but in these the chlorid of sodium forms only about one-half the solid contents, and the proportion of the chlorid of magnesium to the chlorid of calcium is relatively much greater than in the waters from western Pennsylvania, where the magnesian chlorid is equal only to from onethird to one-fifth of the chlorid of calcium; the proportions of the two being subject in both regions to considerable variations.

In this connection may be cited a water from Bras d'Or, in the island of Cape Breton, lately analyzed by Prof. How, which contains, in 1000 parts, chlorid of sodium 4.901 , chlorid of potassium 0.650 , chlorid of calcium 4.413 , and chlorid of magnesium only 0.638 , besides sulphate of lime $0 \cdot 134$, carbonates of lime and magnesia 0.085 , with traces of iron-oxyd and phosphates $=10.821$. (Can. Naturalist, viii, 370.) The analyses of European waters furnish comparatively few examples of the predominance of earthy chlorids. ${ }^{\text {b }}$
§41. We have already shown in §38 how the action of carbonate of soda upon sea-water or bittern will destroy the nor-
of an excess of carbonic acid. (This Jour., [2], xxviii, 171). By evaporation, however, such solutions regenerate carbonate of lime and sulphates of soda and magnesia; and by the consent of the best chemists these elements are to be represented as thus combined. But what shall be said when chlorid of magnesium, carbonate of soda, and silicate of soda are given as the constituents of a water whose recent analysis may be found in a late number of the Chemical News; or when bi-carbonates of soda, magnesia and lime are represented as co-existing in a water with sulphates and chlorids of magnesium and aluminum? These errors probably arise from determining in the recent water, or in water not sufficiently boiled, the lime and maguesia which would by prolonged ebulition be separated as carbonates, together with portions of alumina, silica, etc. In the subsequent calculation of the analyses these dissolved earthy bases being regarded as sulphates or chlorids, ibstead of carbonates, there remains an excess of soda, which is wrongly represented as carbonate, iustead of chlorid or sulphate of sodium.
${ }^{6}$ Lersch, Hydro-Chemie, zweite Auflage: Berlin, 1864; vide p. 207. This excellent work, which is a treatise on the chemistry of natural waters, in one volume 800 of 700 pages, was unknown to me when I prepared the first part of this essay.
mal proportion between the chlorids of magnesium and calcium by converting the latter into an insoluble carbonate, and leaving at last only salts of sodium and magnesium in solution. A process the reverse of this has evidently intervened for the production of waters like that from Cape Breton and some others noticed by Lersch, in which chlorid of calcium abounds, with little or no sulphate or chlorid of magnesium. This process is probably one connected with the formation of a silicate of magnesia. Bischof has already insisted upon the sparing solubility of this silicate, and he observed that silicates of alumina, both artificial and natural, when digested with a solution of magnesian chlorid, exchange a portion of their base for magnesia, thus giving rise to solutions of alumina; which, being decomposed by carbonates, may have been the source of many of the aluminous deposits referred to in \& 9. He also observed a similar decomposition between the solution of an artificial silicate of lime and soluble magnesian salts. (Bischof, Chem. Geology, i, 13, also chap. xxiv.) In repeating and extending his experiments, I have confirmed bis observation that a solution of silicate of lime precipitates silicate of magnesia from the sulphate and the chlorid of magnesium ; and have found, moreover, that by digestion at ordinary temperatures with an excess of freshly precipitated silicate of lime, chlorid of magnesium is completely decomposed; an insoluble silicate of magnesia being formed, while nothing but chlorid of calcium remains in solution. It is clear that the greater insolubility of the magnesian silicate, as compared with silicate of lime, determines a result the very reverse of that produced by carbonates with solutions of the two earthy bases. In the one case, the lime is separated as carbonate, the magnesia remaining in solution; while in the other, by the action of silicate of soda (or of lime), the magnesia is removed and the lime remains. Hence, carbonate of lime and silicate of magnesia are everywhere found in nature; while carbonate of magnesia and silicate of lime are produced only under local and exceptional conditions. The detailed results of some experiments on this subject are reserved for another place. It is evident that the production from the waters of the early seas of beds of sepiolite, tale, serpentine, and other rocks in which a magnesian silicate abounds, must, in closed basins, have given rise to waters in which chlorid of calcium would predominate.
$\S 42$. Of the waters of the second class whose analyses are here given, the first three occur, with many others of similar character, on the south side of the Ottawa river, below the city of that name. The remaining four are on the north side of the St. Lawrence, between Montreal and Quebec, where also similar waters abound. All of these springs rise from the Lower Silurian limestones of the region.
Ahf. Jour. Scl.-Second 8eries, Yol. XL, No. 118.-July, 1865.

Table II.-Watebs of the second Class.

	1.	2.	3.	4.	3.	6.	7.	8.	9.
Chlorid of sodium.	11.6661	$9 \cdot 4600$	12.2500	11-1400	$8 \cdot 0454$	11.7750	114968	17.2671	11.5094
" potassiu	-1040	-1040	-0305	-1460	undet.	-0800	-1832	-2409	undet.
" bari				-0303			-0019		
" strontiu				-0185			-0019		
" calciu	-1364	-044	-2870	-2420	.0466	-0503	-0718	-6038	- 2264
" magnesiu	-2452	- 4942	1.0338	-2790	-0856	- 3743	-6636	$2 \cdot 0523$	-8942
Bromid of "	-0080	-0029	-0238	-0283	undet.	-034"	-0091	-0587	0278
Iodid of	-0052	-0017	-0021	-0052	traces	-0039	-0046	-0133	-0183
Sulphate of lime		-1929							
Carbonate of baryta.				-0106					
" stron				-0137					
lime.	-0330	-2980	-1264	-4520	$\cdot 0470$. 2160	-3493	$\cdot 0120$	-0180
" magnesia	-8904	-3629	-8632	- 4622	. 8354	$1 \cdot 0593$	-9388	-7506	-4464
" iron....	-0096	traces.	traces.	traces.		-0054	-0145	traces.	traces.
Silica	.0700	-0205	.0225	. 0552		-0479	-0865	undet.	undet.
Alum	traces.	undet.	races.	undet.		-0050	-0145		
In 1000 parts	1678		14.639	83	$9 \cdot 0600$	13.651	13.8365	20.9987	$13 \cdot 1400$
Specific gravity	09	$8 \cdot$	101				011.23		

1,2. These two waters are from the township of Plantagenet. The first is known as Larocque's, and the second as the Georgian Spring. These waters were examined in 1849 and 1851. Two other springs have been observed in the same vicinity, one resembling Larocque's spring and containing borates, with a notable proportion of strontia, while the other is an alkaline-saline water of the third class.
3. Caledonia Intermittent Spring. This spring owes its name to the intermitting discharge of carburetted hydrogen which takes place from its waters. It is in the township of Caledonia, not far from Plantagenet, and near three other waters from the same township, to be mentioned in the next class. The water was collected in September, 1847.
4. Lanoraie. This is from the seigniory of Lanoraie. It contains both baryta and strontia, and evolves an abundance of carburetted hydrogen. The water was collected in March, 1851.
5. Is from a copious spring in the seigniory of Berthier, and was collected in July, 1853.
6. Is from the township of Caxton, and yields six or eight gallons of water a minute, besides a great abundance of inflammable gas. The carbonic acid was found to equal $1 \cdot 126$ parts, of which '651, or more than one half, is required for the neutral carbonates present. The water was taken from the spring in October, 1848.
7. Is from the seigniory of St. Léon, and is a copious spring which, like the last, disengages inflammable gas. The carbonic acid was equal to 1.224 parts, of which 651 , or not quite one half, is required for the neutral carbonates found by analysis. The water was collected in October, 1848.

8,9 . These are from two springs in the parish of Ste-Geneviève on the Batiscan River, and are remarkable for the large proportion of iodids which they contain. The first is known as Trudel's spring, and the second is at the ferry opposite to the church. The waters were collected in August, 1853. Several other saline springs occur in the same neighborhood.
$\S 43$. Of the waters of the third class which follow, the first four rise from the Trenton limestone, and occur on the south side of the Ottawa River, in the vicinity of the first three of the preceding section. The others are from the south side of the St. Lawrence below Montreal.

Table III.-Waters of the third Class.

	1.	2.	3.	4.	5.	6.	7.	8.
Chlorid of sodium....	$6 \cdot 9675$	6.4409	$3 \cdot 8430$	$6 \cdot 3825$	9.4231	8-4286	$4 \cdot 8234$	万. 9662
" potassium.	-0809	- 0296	-0230	- 1160	-1234	. 0382	. 0610	undet.
Bromid of sodiun	-0150	-0169	-0100	. 0217	-0126	-0046	undet.	
Iodid of sodium	-0005	-0014	traces.	-0032	. 0054	-0085	${ }^{4}$	"
Sulphate of potash	-0053	-0048	$\cdot 0183$					
Phosphate of soda.				-0124				
Carbonate of soda.	-0485	$\cdot 1762$	$\cdot 4558$	-5885	-1705	-3260	15416	. 6082
* baryt				traces.	-0226	- 0123	traces.	
* stront				"	-0140	-0096	"	. 0250
line.	-1480	-1175	$\cdot 2100$	-1500	-3540	- 3490	-2180	-1440
magnesia.	-5262	-5172	-2940	-7860	- 5433	-3559	-4263	$\cdot 4756$
-	traces.	traces.	traces.	traces.	-0048	traces.		traces.
Alumina	-0044	undet.	-0026	. 0040	traces.		undet.	undet.
Silica	. 0310	. 0425	. 0840	-1330	. 0465	-054	. 2120	-1140
In 1000 parts	$7 \cdot 7773$	$7 \cdot 3470$	4.9407	8-3473	$10 \cdot 720$	9.5867	7.2823	7.3330
Specific gravity	$11006 \cdot 2$	$1005 \cdot 8$	100	100	008	1007.71		

1,2 and 3 are waters from Caledonia, and rise about two miles from the spring 1 , of the second table. These waters were examined in September, 1847. The first, which is known as the Gas spring, then yielded about four gallons of water a minute, and discharged in the same time about 300 cubic inches of carburetted hydrogen gas, whence its name. At a distance of four or five rods from this, are the second and third springs, known as the Saline and White Sulphur waters, yielding each about ten gallons a minute. The former affords a few bubbles of carburetted hydrogen gas, and is not at all sulphurous, while the latter contained a little sulphuretted hydrogen, equal to somewhat less than a cubic inch to the gallon. The temperature of the three waters was found to be respectively $44^{\circ} .4,45^{\circ}$ and $46^{\circ} \mathrm{F}$. The carbonic acid in 1000 parts of the Gas spring was equal to $\cdot 705$, of which 356 , or a little more than one-half, is required for the neutral carbonates present. In the Saline spring there was found 648 of carbonic acid, being an excess of 292 over that required to form neutral carbonates; while in the Sulphur Spring, which contained in 1000 parts only 590 of carbonic
acid, 349 are contained in the neutral carbonates, leaving only - 141 towards the formation of bi-carbonates. For later analyses of these waters see $\S 46$.
4. This, which is known as Gillan's spring, is from the township of Fitzroy, not very far from the last. Its waters were collected in July, 1850.

5,6 . These two waters are from Varennes, and are about one hundred rods apart. The first is known as the Saline, and the second is called the Gas spring from the large volumes of carburetted hydrogen gas which it disengages. The Saline spring contained in 1000 parts 920 of carbonic acid, of which 451 , or nearly one half, is required to form neutral carbonates present. In the Gas spring was found 792 of carbonic acid, leaving thus $\cdot 312$ over that required to form neutral carbonates. The waters were collected in October, 1848.
7. This is from Labaie du Febvre, and is known as Courchêne's spring. It evolves small quantities of carburetted hydrogen gas. The water was collected in September, 1852. Several other mineral springs occur in this vicinity, one of them belonging to this class, and others to the second and fourth classes.
8. This water, from the seigniory of Beloeil, was collected in 1851.
§44. We shall now proceed to the springs which, in § 34, have been referred to the fourth class-and begin with three analyses of a mineral water from Chambly. Here, on a plateau, over an area of about two acres, the clayey soil is destitute of vegetation and impregnated with alkaline waters, which in the dry season give rise to a saline effloresence on the partially dried-up and fissured surface. A well. sunk here to a depth of eight or ten feet in the clay, which overlies the Hudson River formation, affords at all times an abundant supply of water, which generally flows in a small stream from the top of the well. Small bubbles of carburetted hydrogen are sometimes seen to escape from the water. The temperature at the bottom of the well was found, in October, 1861, to be $53^{\circ} \mathrm{F}$., and in August, 1864 , to be nearly $54^{\circ} \mathrm{F}$. The mean temperature of Chambly can differ but little from that of Montreal, which is $44^{\circ} 6 \mathrm{~F}$., so that this is a thermal water. Another alkaline and saline spring in the same parish has also a temperature of $53^{\circ} \mathrm{F}$. The water of the spring here described has a sweetish saline taste, and is much relished by the eattle of the neighborhood. Three analyses have been made of its waters, the results of which are here given side by side. The first was collected in October, 1851 ; the second in October, 1852; and the third in August, 1864, duribg a very dry season.

	1851.	1852	1864.
Chlorid of potassium.	undet.	-0824	.0182
" sodium	. 8689	-8387	-8846
Carbonate of sodium	$1 \cdot 0295$	1.0604	-9820
" lime	.0540	-0880	-0253
" magnesia	-0908	-0765	-0650
" strontia.	undet.	-0045	undet.
${ }^{6}$ iron	"	.0024	
Alumina and phosphate	"	-0,163	"
Silica.	-1220	. 0730	-0166
Borates, iodids and bromids	undet.	undet.	undet.
In 1000 parts	$2 \cdot 1652$	2-1322	1.9917

A portion of barium is included with the strontium salt. The water contains moreover a portion of an organic acid, which causes it to assume a bright brown color when reduced by evaporation. Acetic acid gave no precipitate with the concentrated and filtered water; but the subsequent addition of acetate of copper yielded a brown precipitate of what was regarded as apocrenate of copper. The organic matter of this and of many other mineral springs has probably a superficial origin. The carbonic acid was determined in the third analysis, and was equal in two trials to $\cdot 903$ and 905 . The neutral carbonates in this water require 452 parts of carbonic acid.
$\S 45$. In the following table are given the results of the analyses of several other waters, which belong like the last to the fourth class.

Table IV.-Waters of tae fourte Class.

	1.	2.	3.	4.	5.
Chlorid of sodium	$\cdot 0207$	-0347	-3818	-3920	
" potasssium	-0496	. 0076	.0067	.0818	-0169
Sulphate of soda		traces.	-0215	traces.	-0188
C ${ }^{\text {" }}$ potash	$\cdot 6081$				-0122
Carbonate of soda.	-1840	-1952	-2301	$1 \cdot 1358$. 0410
" lime	-1740	-0710	-0620	undet.	- 480
" magnesia.	-1287	.0278	.0257	6	. 0690
Iron, alumina, phosphates	traces.			"	traces.
Silica............	. 0161	-0110	-0245	"	. 2060
In 1000 parts.	*8312	-3478	-7529	1.5591
In 10,000 parts..	.	\cdots	. . .	\ldots	-6119

1. This spring was met with some years since in constructing a lock on the Richelieu River at St. Ours, and was enclosed in such a way that it is only accessible through a pump; so that it is impossible to determine the amount of water furnished by the spring, or its freedom from admixture. The water was obtained in November, 1852, and is remarkable for the large proportion of potassium salts. 1000 parts of the water gave of alkalies determined as chlorids, 0.2250 ; of which 0.0565 parts, or 25.11 per cent, were chlorid of potassium. Another trial gave $24: 52$ per
cent; while a portion of the water taken from the spring three weeks earlier gave a large proportion of alkalies, equal to 0.3400 of chlorids; of which 0.0596 , or 17.53 per cent, were chlorid of potassium.
2. This spring occurs on the bank of the Jacques Cartier river, a little above Quebec. It is strongly impregnated with sulphuretted hydrogen, and appears to contain a considerable proportion of borates. It was collected for analysis in the summer of 1852.
3. This water is from a spring in the township of Joly on the opposite side of the St. Lawrence, a few miles south from the last, and like it is sulphurous, and affords a strong reaction of boric acid. It was collected for analysis in July, 1853.
4. A small area of marshy ground in the seigniory of Nicolet, near the line of St. Gregoire, is, like the similar tract in Chambly, so impregnated with mineral water as to be destitute of vegetation. The water collected in a small pit, dug in this locality in the autumn of 1853 , was yellowish colored, and alkaline to the taste, and gave by analysis the above results. Several other alkaline springs occur in this vicinity. All of the preceding waters, with the exception of No. 2, which comes out from the Utica slates, rise, like that of Chambly, from the Hudson River formation.
5. This water, unlike the preceding, is that of a large river, the Ottawa, which drains a region occupied chiefly by ancient crystalline rocks, covered by extensive forests and marshes. The soluble matters which it contains are therefore derived in part from the superficial decomposition of these rocks, and in part from the decaying vegetation. The water, which was taken at the head of the St. Anne's rapids, on the 9 th of March, 1854, before the melting of the winter's snows had begun, had a pale amber-yellow color from dissolved organic matter, which gave a dark brown hue to the residue after evaporation. The weight of this residue from 10,000 parts dried at $300^{\circ} \mathrm{F}$., was ${ }^{\circ} 6975$, which after ignition was reduced to 5340 parts. As seen in the above table, one-half of the solid matters in this ${ }^{\circ}$ water were earthy carbonates, and more than one-third was silica, so that the whole amount of salts of alkaline bases was ${ }^{\circ} 088$, (of which nearly one half is carbonate of soda) ; while the St. Ours water, which resembles that of the Ottawa in its alkaline salts, contains in the same quantity 4248 , or more than forty-eight times as much. The alkalies of the Ottawa water, equalled as chlorids, $\cdot 0900$, of which 0293 or 32.5 per cent were chlorid of potassium. The results of some observations on the silica and organic matters of this river water will be given in part III. It will be observed that in the above table the figures given for the first five waters are for 1000 parts, while those of the Ottawa are for 10,000 parts.
§46. In this connection may be given the analyses of two sim-
ilar springs from Vermont, the Highgate and Alburg springs. The waters were sent me in October and November 1861, and the results have already appeared in the Geology of Vermont, vol. ii, p. 926. Both of these waters, when examined, were slightly sulphurous, and yielded the reactions of boric acid. The amount of carbonate of soda was estimated from the carbonate of bary ta obtained by the process already mentioned in $\S 35$.

	Highgate.	Alburg.
Chlorid of sudium	-402	-140
Sulphate of soda	-042	-024
Carbonate of soda	-235	$\cdot 230$
* lime	-024	-036
magn	${ }^{\circ} 010$	-022
Potash and borates	undet.	undet
In 1000 parts	.718	-452

$\S 47$. On the 5 th January, 1865, after a lapse of more than seventeen years, I again visited the three springs of Caledonia, whose analyses have been given in the table $\S 43$, and collected their waters for a second examination. The results of my recent analyses show that considerable changes have occurred in the composition of each of these springs, and tend to confirm in an unexpected manner, the theory which I long since put furward, -that the waters of the second and third classes owe their origin to the mingling of saline waters of the first class with alkaline waters of the fourth class. It will be observed that the three Caledonia waters in 1847 were all alkaline, though the proportions of the carbonate of soda were unlike. Sulphates were also present in all of them, though most abundant in the Sulphur spring, which, although holding the smallest amount of solid matters, was the most alkaline. In January, 1865, however, the first and second of these waters had ceased to be alkaline, and contained, instead of carbonate of soda, small quantities of earthy chlorid, causing them to enter into the second class. They no longer contained any sulphates, but, on the contrary, portions of baryta and strontia. Only the Sulphur spring, which in 1847 contained the largest proportion of carbonate of soda and of sulphates, still retained these elements, though in diminished amounts, and was feebly impregnated with sulphuretted hydrogen. If we suppose these waters to arise from the commingling of saline waters like those of Whitby and Lanoraie, containing earthy chlorids and salts of baryta and strontia, with waters of the fourth class holding carbonate and sulphate of soda, it is evident that a sufficient quantity of the latter water would decompose the earthy chlorids and precipitate the salts of baryta and strontia present; while an excess would give rise to alkalinesaline waters containing sulphate and carbonate of soda, such as were the three springs of Caledonia in 1847. A falling-off in
the supply of the sulphated alkaline water has however taken place, and the result is seen in the appearance of chlorid of magnesium and of baryta and strontia in two of the springs, and in a diminished proportion of carbonate of soda in the Sulphur spring.

These later analyses being directed chiefly to the determination of these changes, no attempt was made to determine potassium, iodine and bromine. For the purposes of comparison, the two series of analyses are here put in juxtaposition; the elements just mentioned being included with the chlorid of sodium, and the figures reduced to three places of decimals. The precipitate by a solution of gypsum from the concentrated and acidulated water was regarded as sulphate of strontia, and calculated as such, but was in part sulphate of baryta.

Table V.-Showing the chavges in the Caledonian Springe.

	1. Gas Spring.		2. Saline Spring.		3. SulphurSpring.	
	1847.	1865.	1347.	1865.	1846.	1865.
Chlorid of sodium	7.014	6.570	6.488	6.930	3876	3.685
" magnesium		-024		-026		
Sulphate of potash	$\cdot 005$	-005	-018	-021
Carbonate of soda.	-048	\ldots	$\cdot 176$		-456	$\cdot 091$
". lime	-148	$\cdot 096$	-117	$\cdot 095$	-210	. 077
magnesi	-526	-455	517	-469	-294	-228
" strontia		-009		-012		
Silica	$\cdot 021$	-020	$\cdot 042$. 015	$\cdot 084$	021
In 1000 parts.	7.762	7174	$7 \cdot 345$	7.547	4.938	$4 \cdot 123$

In the recent analyses of these waters, the carbonic acid in the Gas spring was found to equal, for 1,000 parts, $\cdot 671$; of which $\cdot 278$ were required for the neutral carbonates. The Saline spring contained 664 of carbonic acid, of which 290 go to make up the neutral carbonates. The Sulphur spring, in like manner, gave of carbonic acid 573 , while the neutral carbonates of the water require only 191. All of these waters in January, 1865, thus contained an excess of carbonic acid above that required to form bicarbonates with the carbonated bases present; while the analyses of the same springs in 1847, showed, as we have seen in $\S 43$, a quantity of carbonic acid insufficient for the formation of bicarbonates. The questions of this deficiency, and of the variation in the amount of carbonic acid in these and other waters will be considered in the third part of this paper.
§ 48. The waters of our fifth and sixth classes, as defined in § 34, are distinguished by the presence of sulphates; the former being acid and the latter being neutral waters. In the fifth class the principal element is sulphuric acid, associated with variable and accidental amounts of sulphates of alkalies, lime, magnesia, alumina, and iron. Apart from the springs of this kind which
occur in regions where volcanic agencies are evidently active, the only ones hitherto studied are those of New York and western Canada; which issue from unaltered, and almost horizontal Upper Silurian rocks. (§ 31.) The first account of these remarkable waters was given in this Journal in 1829 (vol. xv, p. 238), by the late Prof. Eaton, who described two acid springs in Byron, Genesee Co., N. Y.; one yielding a stream of distinctly acid water sufficient to turn a mill-wheel, and the other affording in smaller quantities a much more acid water. The latter was afterward examined by Dr. Lewis Beck (Mineralogy of New York, p. 150). He found it to be colorless, transparent and intensely acid, with a specific gravity of $1 \cdot 113$; which corresponds to a solution holding seventeen per cent of oil of vitriol. No chlorids, and only traces of lime and iron, were found in this water, which was nearly pure dilute sulphuric acid. Prof. Hall (Geology of New York, 4th District, p. 134), has noticed in addition to these, several other springs and wells of acid water in the adjacent town of Bergen. Farther westward, in the town of Alabama is a similar water, whose analysis by Erni and Craw will be found in this Journal, [2], ix, 450. It contained in 1000 parts about 2.5 of sulphuric acid, and $4 \cdot 6$ parts of sulphates, chiefly of lime, magnesia, iron and alumina. In this, as in the succeeding analyses, hydrated sulphuric acid, $\mathrm{SO}_{8} \mathrm{HO}$, is meant.

The earliest quantitative analyses of any of these waters were those by Croft and myself of a spring at Tuscarora, in 1845 and 1847, of which the detailed results appear in this Journal, [2], viii, 364. This, at the time of my analysis in September, 1847, contained, in 1000 parts, 4.29 of sulphuric acid, and only 1.87 of sulphates; while the previous analysis by Prof. Croft gave approximatively 3.00 of neutral sulphates, and only about 1.37 of sulphuric acid. Similar acid waters occur on Grand Island above Niagara Falls, and at Chippewa.

All of these springs, along a line of more than 100 miles from east to west, rise from the outcrop of the Onondaga salt-group; but in the township of Niagara, not far from Queenston, are two similar waters which issue from the Medina sandstone. One of these is in the southwest part of the township, and fills a small basin in yellow clay, which, at a depth of three or four feet, is underlaid by red and green sandstones. The water, which like those of Tuscarora and Chippewa, is slightly impregnated with sulphuretted hydrogen, is kept in constant agitation from the escape of inflammable gas. It contained, in 1000 parts, about two parts of free sulphuric acid, and less than one part of neutral sulphates. This water was collected in October, 1849, and at that time another half dried-up pool in the vicinity contained a still more acid water. Another similar spring occurs near St. Davids in the same towniship.

[^20]In connection with the suggestion made in $\S 31$ as to their probable origin at great depths, it would be very desirable to have careful observations as to the temperature of these acid springs. When, on the 19th October, 1847, I visited the Tuscarora spring, the water in two of the small pools had a temperature of $56^{\circ} \mathrm{F}$.; but on plunging the thermometer in the mud at the bottom of one of these it rose to $60^{\circ} 5$.
§49. It appears from a comparison of the apalysis of Croft with my own, that the waters of the Tuscarora spring underwent a considerable change in composition in the space of two years; the proportion of the bases to the acid at the time of the second analysis being little more than one-third of that in the analysis of Croft. This change was indeed to be expected, since waters of this kind must soon remove the soluble constituents from the rocks through which they flow, and eventually become like the water from Byron, little more than a solution of sulphuric acid. The observations of Eaton at Byron, and my own at Tuscarora, show that half-decayed trees are still standing on the soil which is now so impregnated with acid waters as to be unfit to support vegetation. Reasoning from the changes in composition, it may be supposed that these waters were at first neutral, the whole of the acid being saturated by the calcareous rocks through which they must rise. It was from this consideration that I was formerly led to ascribe to the action of these waters, the formation of some of the masses of gypsum which appear along the outcrop of the Onondaga salt-group. (This Journal, [2], vii, 175.) That waters like those just mentioned must give rise to sulphate of lime by their action on calcareous rocks is evident; and some of the deposits of gypsum in this region, as described by good observers, would appear to be thus formed. So far, however, as my personal observations of the gypsums of western Canada have extended, they appear to be in all cases cotemporaneous with the shales and dolomites with which they are interstratified, and to have no connection with the sulphuric-acid springs which are so common throughout that region. (This Journal, [2], xxviii, 365 , and Geology of Canada, 352.)
$\S 50$. We have included in a sixth class the various neutral saline waters in which sulphates predominate, sometimes to the exclusion of chlorids. The bases of these waters are soda, potash, lime, and magnesia; which are usually found together, though in varying proportions. For the better understanding of the relations of these sulphated waters, it may be well to recapitulate what has been said about their origin; and to consider them, from this point of view, under two heads.

First, those formed from the solution of neutral sulphates previously existing in a solid form in the earth. Strata enclosing natural deposits of sulphates of soda and magnesia, sometimes
with sulphate of potash ($\S 17, \S 19$), afford the most obvious source of these waters. The frequent occurrence of gypsum, however, points to this salt as a more abundant source of sulphated waters. Solutions of gypsum may in some case exchange their lime for the soda of insoluble silicates, or this salt may be decomposed by solutions of carbonate of soda (7,819). The decomposition of the sulphate of lime by hydrous carbonate of magnesia, as explained in $\$ 21$, is doubtless in many cases the source of sulphate of magnesia, which is, more frequently than sulphate of soda, a predominant element in mineral waters. In connection with a suggestion made in the section last cited, it may be remarked that I have since found that predazzite, in virtue of the hydrate of magnesia which it contains, readily decomposes solutions of gypsum holding carbonic acid in solution, and gives rise to sulphate of magnesia.
In the second place, sulphuric-acid waters, like those described in $\S 47$, by their action upon calcareous and magnesian rocks, or by the intervention of carbonate of soda, may, as already suggested, give rise to neutral sulphated waters of the sixth class. It is evident also that waters impregnated with sulphates of alumina and iron from oxydizing sulphates, as mentioned in § 28, may be decomposed in a similar manner, and with like results.
Neutral sulphated waters generated by any of the above processes, are evidently subject to admixtures of saline matters from other sources, and may thus become impregnated with chlorids and carbonates. Indeed it is rare to find waters of the sixth class without some portion of chlorids, and a transition is thus presented to the waters of the first four classes; in which also portions of sulphates are of frequent occurrence. The presence of sulphates being one of the conditions required for the generation of sulphuretted hydrogen ($\S 10$), we find that the waters of the sixth class are very often sulphurous.
$\S 51$. Waters of the sixth class are very frequently met with in the Paleozoic rocks of New York and western Canada, and are probably derived from the gypsum which is found in greater or less abundance at various horizons, from the Calciferous sandrock to the Onondaga salt-group. It is however not improbable that the sulphuric-acid waters which abound in this region (§48) may, by their neutralization, give rise to similar springs. In the waters of the district under consideration, the sulphate of lime generally predominates over the sulphates of the other bases, and chlorids are frequently present in considerable quantities. For numerous analyses of these waters, see Beck, Mineralogy of New York. The results of an examination of the Charlotteville spring, remarkable for the amount of sulphuretted hydrogen which it contains, will be found in this Journal, [2], viii, 369. A very copious sulphur spring which issues from a mound of cal-
careous tufa in Brant, C. W., overlying the Corniferous limestone, is distinguished by the absence of any trace of chlorids; in which respect it resembles the acid waters of the fifth class from the adjacent region. A partial analysis of a portion of it collected in 1861, gave, for 1000 parts, sulphate of lime 1.240, sulphate of magnesia 207 , and carbonate of lime 198 . From a slight excess in the amount of sulphuric acid, it is probable that a little sulphate of soda was also present.

Of waters of this class, in which sulphate of magnesia predominates, but few have yet been observed in this country. A remarkable example of this kind from Hamilton, C. W., was examined by Prof. Croft of Toronto, and described by him in the Canadian Journal for 1853 (page 153). It had a specific gravity of $1006 \cdot 4$, and gave for 1000 parts,

Chlorid of sodium, Sulphate of soda,	-		-		-		-5098
	-	-	-		-		$1 \cdot 6985$
\% lime, -	-	-	-		-		1-1246
magnesia,	-	-	-		-	-	4.7799

The rocks exposed at Hamilton include the Medina sandstone, and the Niagara limestone, with the intermediate Clinton group. Along the outcrop of the latter, crystalline crusts of nearly pure sulphate of magnesia are observed to form in many localities, during the dry season of the year. (Geology of Canada, p. 460.)

According to Emmons, the Post-tertiary clays near Crown Point, on the western shore of Lake Champlain, are during dry weather covered with efflorescences of sulphate of magnesia, which impregnates several springs in the vicinity. The water of one of these, aecording to Emmons, had a specific gravity of 1014.0 , and contained, in 1000 parts, $18 \cdot 78$ of saline matter, which was chiefly sulphate of magnesia, with some sulphate of lime. (Cited by Beck, Mineralogy of New York, p. 252.) The strata underlying the clays of this region belong, according to the State geological map, to the Potsdam, Calciferous and Trenton formations, but the source of the magnesian salt is not improbably to be found in the clays themselves.

In the third and concluding part of this paper, it is proposed to notice briefly some of the more important points in the chemistry of the various waters which have been here described, and to inquire into their geological relations.

Art. VIII.-On Molecular Physics; by Prof. W. A. Norton.

[Continued from vol xxxix, p. 254.]
Thermo-Electricity.-The key to thermo-electric phenomena should be found in the effect produced by heat on the electric condition of molecules. Now when heat is applied to a surface, the molecules at the surface first receive the ethereal pulses of which the force of heat consists. These pulses passing on to the central atom of each molecule, or the condensed universal ether at the center of the molecule, are there partially expended in expanding its electric atmosphere on the outer side, and are partially propagated on. Upon reaching the inner side of the atom they will again be partially consumed in expanding the atmosphere on that side, while a certain portion will be transmitted to the next atom. It is easy to see that this second expansion should be less than the first. Under these circumstances two important electrical effects will be produced. (1.) By reason of the greater expansion of the atmosphere on the outer than on the inner side, its density will be diminished on the outer side, and hence electric ether will flow around to that side. The molecular atmosphere will therefore become polarized positively on the outer side. (2.) As a consequence of this polarization the molecular atmosphere will urge away from it a portion of the electric ether posited near its surface, and tend to develop a negative polarization in the particles of contiguous surfaces. The surface receiving the heat will then become positively polarized, and there will be at the same time an electric movement outward from the surface. Cold, or the abstraction of heat, will have precisely the opposite tendency; that is, a surface in the act of cooling will become negatively polarized, and this change will be attended with a flow of electricity toward the surface. Such movements of the electric ether will be in waves of translation, or in currents of free electricity, or both combined, according to the conducting power of the medium exterior to the surface (p. 252). Substances may differ in the effects thus produced, under similar circumstances, from two causes; a difference in their conducting power for heat, and a difference in the degree of expansion, or in the effect of the expansion produced by the same amount of heat.
Now let a plate of bismuth be placed in contact with a plate of antimony, and let the junction be heated and the other ends be brought into good conducting communication. If the above mentioned effects of heat be different for these two metals, a current should set, at the junction, from the one which experiences the greatest effect to that which experiences the least, and pass through the circuit. Bismuth is a poorer conductor of heat
than antimony, and in fact than most other metals, and bence its surface molecules should imbibe and retain more heat than those of the antimony. The diamagnetic properties of bismuth also indicate, as will be seen hereafter, that its molecular atmospheres are remarkably expansible. If these peculiarities of bismuth be admitted, we have an explanation of the fact that bismuth is positive ${ }^{1}$ to other metals in its thermo-electric relations. The bismuth and antimony in the thermo-electric pair, it will be observed, hold the same relation to each other as the zinc and copper in the galvanic pair, and the heat does the same electrical duty in the one, that the oxygen does in the other.

If the other ends of the two metals be brought together and cooled, the current will be reënforced, since the molecular atmospheres of the bismuth will contract more than those of the antimony. (See effect of cold, p. 61.)

It has been ascertained as the result of numerous experiments, that "increasing the temperature of the negative metal generally increases the amount of deflection of the galvanometer needle produced by heating the junction; while if the higher heat is applied to the metal which is positive at moderate temperatures, a current in the opposite direction is established." To get at the explanation of these curious effects we must observe that the "higher heat" spoken of is applied at a certain distance from the junction, and hence it is the inner sides of the surface molecules which first receive the heat from this second source, and become positively polarized. Accordingly, the current should be strengthened in the first case, above mentioned, and weakened in the second. It has also been observed that a current may be excited with two wires of the same metal, by heating the end of one and bringing it in contact with the other; and that the direction of the current at the junction is from the cold to the hot wire." In this case it is to be remarked that the hot wire is in the act of cooling, and hence there should be an electric movement toward its surface (p. 61), or from the cold to the hot wire, through the junction.

Pyro-electric Crystals.-Tourmaline is the most conspicuous crystal belonging to this class. "A prism of tourmaline has different secondary planes at its two extremities, or, as it is expressed, is hemihedrally modified." This peculiarity of crystallization, which also obtains in the other pyro-electric crystals, indicates that in the direction of the axis, the molecules of the crystal have different mechanical properties on opposite sides. In this condition of things we may reasonably suppose that the molecular atmospheres would expand unequally on opposite

[^21]sides, under the influence of the same amount of heat. If this be admitted we have a complete explanation of the electric phenomena exhibited by the tourmaline when heated, in accordance with the principles already laid down. Thus, let a tourmaline be heated regularly, that is, so that all points of its surface shall receive equal increments of heat; at all points of the surface the unequal expansive action of the heat upon the two sides of the molecular atmospheres in the axial direction, will determine their polarization, and an attendant electric movement from the positively polarized side of one molecule to the negatively polarized side of the next. There should accordingly be opposite electrical states manifested at the ends of the crystal. This state of things should continue so long as the temperature is rising. But it is to be observed that the effective polarization determined in each molecule by the heat is weakened by the discharge that takes place from one nolecule to the next, and that from this cause the signs of electrical excitement at the ends of the crystal will be much feebler when the temperature becomes uniform than they would otherwise be. Now if the heated tourmaline be cooled regularly, the process that attended upon the heating will be reversed, and the electrical states, or effective poles, will be reversed. This reversal of the poles may occur soon after the temperature begins to fall, because of the above mentioned weakening of the effective polarization; since this remaining polarization, when the temperature becomes uniform, which is really effective upon bodies placed near the ends of the tourmaline, may be no greater than the opposite transient polarization that may arise from a small loss of temperature.
Mutual Attractions and Repulsions of Electric Currents.-We have seen that in an electric current there is a flow, or onward movement of electric ether throughout the entire route of the current. Now the rapidly moving molecules of electric ether must act impulsively against the universal ether in their path; and every such impulse must be propagated indefinitely outward through this ether. The innumerable impulses thus originating in a current are parallel to the direction of the current, and must take effect upon all surrounding molecules in this direction. They constitute what may be called the external impulsive force of the current. The well known phenomena under immediate consideration, as well as all the other phenomena of the external action of currents to be discussed, are to be ascribed to the operation of this external impulsive force. Let us first take the case of two parallel wires conveying currents in the same direction. The impulses propagated from these wires will tend to weaken the tension of the universal ether lying between the wires. A similar effect, but less in amount, will be produced upon the ether lying on the outer sides of the wires. The ethereal tension
should therefore be in excess upon the outer sides of the wires ${ }_{9}$ and hence they should be urged toward each other, or there should be an apparent attraction between the wires conveying the currents. The excess of ethereal tension here alluded to is attributable to the fact that the impulses proceeding from the one wire, in being propagated through the other, are materially reduced in intensity. This effect results mainly from the dispersion produced by the interstitial ether, which is brought into a very disturbed state of density by the swiftly moving atoms of the electric ether in the current. When only one of the wires conveys a current, no attraction or repulsion is observed, because the dispersion just mentioned is wanting.

If the currents be supposed to traverse the wires in opposite directions, then the same operative cause, the external impulsive forces of the currents, will compress the ether between the wires to a greater degree than beyond them, and thus there will be an effective force urging them farther apart.

Let a, fig. 8 , be a point of one of the currents, from which an impulse is propagated, and $a b, a c, a d$, lines radiating from it and crossing the second wire, v, under different degrees of obliquity. The dotted lines drawn between $b d$ and eg represent the lines of moving electrical atoms. Each of the
 lines $a b, a c$, $u d$, will cross the same number of such lines, and therefore impulses propagated along them will encounter the same number of moving atoms, and experience the same proportional diminution. This diminution should be a certain constant fractional part of the impulse that reaches any point of the nearer side, eg, of the wire. The diminution of the propagated impulse, in traversing the wire, simply by reason of the increased length of the passage, as the line is more oblique, should also be a constant fractional part of the impulse; since $f c$ is the same proportional part of $a f$, or $a n$ for each point of the wire. Hence the action of any point a of the first wire, upon any point f of the second, should be inversely proportional to the square of the distance; and the entire force of action of one indefinite wire upon another should be inversely proportional to the distance between the two. (See Lamé, Cours de Physique, vol. iii, p. 236.)

If the currents cross each other under a certain angle instead of being parallel, it may be seen by attending to the mutual actions of the separate points of the two currents, that there will be attractions or repulsions according to the relative directions of the currents at the points; and that the entire action will tend to bring the two currents into the same direction, in which the attraction will be a maximum.

External Action of an Electric Current upon bodies in their natural state.-In undertaking to deduce from our fundamental principles the varied phenomena of the action of a current upon bodies in its vicinity, we have to consider that there are two modes in which the external impulsive force of a current may act upon such bodies and develop currents; the one direct, and the other indirect. (1.) The propagated impulses may take effect directly upon the atoms of the electric atmospheres of the molecules, impelling them in the same direction that the primary current is moving, and so tend to generate a current similar to the primary. (2.) Or these same ethereal impulses may fall upon the central atoms of the molecules, force up the atmospheres on the side of the atoms upon which they fall, and so develop a current opposite to the original one. We have to consider, also, that the external current-force may operate, theoretically, in both these ways, either upon the simple molecules which are grouped together into compound molecules, or upon compound molecules as a whole. The action upon the constituents of the compound molecules, tends to develop currents within the mass of these molecules. Among the variety of especial currents which may thus be excited, we have particularly to note those which may be developed in the surface of each group, and circulate around it, from particle to particle. If the direct mode of operation of the primary current predominates, such circular currents are magnetic ; if the indirect prevail, they are diamagnetic. If the two tendencies countervail each other, the substance is in a neutral magnetic condition. The neutral mag. netic state may also result from the absence of groups of particles in the substance, within which circular currents can be established.

To the action of the current upon each compound molecule, with its own proper atmosphere (p. 241), as a whole, are to be ascribed the remarkable phenomena of Induced Currents, especially so-called. Experiment has hitherto failed to detect the existence of any current, from one such molecule to another, or through the mass of a body, produced by the uniform action of an established current. All such induced currents result from either an increase or a decrease in the effective action of the inducing current, and are wholly due to the indirect mode of operation of this current. This fact indicates, in accordance with the views that have been advanced upon electric polarization, (p. 242), that the current develops a polarization in the compound molecules of bodies, which increases or decreases as the external impulsive action of the current increases or decreases, but remains constant so long as this action continues the same. This polarization is Faraday's "Electro-tonic state" of bodies.

Magnetism.-The general nature of the magnetic currents, as Ak. Jour. Scr.-Second Series, Vel. XL, No. 118.-Juer, 186\%.
distinguished from other electric currents, has just been indicated.
The existence of such currents in the surface of a compound molecule seems to imply that there is a virtual chain of particles extending circularly around it, which there would be if the num. ber of particles in each group be large. Ampére's researches have completely established that the idea of circular molecular currents is the key to all magnetic phenomena. It suffices, therefore, for our present purpose, to show, as has been done, that such currents are legitimately deducible from the fundamental conceptions laid down at the outset ; and that the mutually attractive and repulsive actions of currents may also be derived from the same mechanical ideas, (p.63). We adopt, then, definitively, Ampére's theory of the constitution of a magnet.

The immediate cause of the development of magnetic currents is the direct impulsive action of an established current, taking effect upon the particles in the surface of compound molecules.

In respect to magnetic properties, we bave specially to distinguish soft iron and steel. The cause of their difference of property seems to lie simply in a difference in the conducting power of the groups of particles into which they are aggregated. If in soft iron these groups are good conductors, the electric ether set in motion should pass freely around them, unattended with any material polarization of the particles, and unresisted by the force that results from such polarization, (p. 245). When the exciting cause ceases to operate, there is no force remaining to counteract the resistance of the universal ether to the flow of the electricity, and the retarding operation of contiguous opposing currents. But if we suppose that, in the case of steel, the molecular groups are imperfect conductors, the magnetizing force will develop a polarization of the separate molecules; and, as a consequence, the currents may pass chiefly through their atmospheres, as in the case of electric induction, (p. 243). In this state of things, when the force is withdrawn, it does not follow that the magnetic currents will entirely pass off; for there would apparently be a force in operation which would tend to retain currents of a certain intensity in circulation. This is the matual action of the contiguous positive and negative sides of two molecules, throughout the chain. It would seem that such a circular chain of particles would not, of necessity, attain to a condition of statical polarization, but might reach a dynamical equilibrium; in which the impulsive force, from each discharge brought about by the action of contiguous molecules, should restore the polarization lost by the discharge to the next preceding molecule. ${ }^{2}$
z It is worthy of consideration, whether certain phenomena of luminosity, as phosphorescence, heat lightning, dec., may not have a similar origin, viz: in recurring discharges resulting from a previous molecular polarization, established by an electric discharge through the mass; or from a similar effect produced in a feebler degree by heat or light.

According to this view, permanent magnetization consists in polarizing the molecules, and it is this induced state which determines and maintains, in opposition to all resistances, currents of a certain intensity. A certain amount of force ("coercive force'"), and a certain interval of time, are expended in developing this polarization. At the same time it is ouly when this force is exerted with this result that permanent magnetism can exist. Heat, or a blow, or an electric discharge, by destroying the molecular polarization, may demagnetize the bar. It is also to be observed that intense heat may demagnetize a bar, and destroy the susceptibility to magnetism in iron or steel, by breaking up the groups of particles into which the mass is aggregated.

Diamagnetism.-It has already been intimated that the diamagnetic state into which certain substances, as bismuth, phosphorus, antimony, \&cc., are brought by the action of a powerful magnet, probably consists in the circulation of currents around the compound molecules of the mass, in the opposite direction to the inducing current; and that these currents result from the second mode of operation of the external force of the primary current, (p. 65). Accordingly, the susceptibility to diamagnetism must arise from a special liability to expansion on the part of the electric atmospheres of the simple molecules, when urged upward by the ethereal pulses that fall upon their central atoms.

Electro-Magnetism.-The essential theory of the developement of magnetism by electric currents, and of electro-magnetic phenomena generally, is embraced in what has already been stated, (pp.63-4-5).

Magneto-Electricity.-The excitation of electric currents by magnetic action is a phenomenon of pure induction, and will be included under the next head.

Induction of Electric Currents.-The term induction, as ordinarily used in Dynamical Electricity, has reference only to the development of currents, through wires, or upon the surfaces, or within the mass of bodies. It will suffice to confine our attention to the origination of currents in wires forming a closed circuit. The general idea of the process, as contemplated from our theoretical point of view, has already been indicated. The fundamental principle which covers the whole ground is, that whenever the action of the impulsive force of any current begins, or is on the increase, the induced current sets in the opposite direction to the inducing current; and when the same action terminates, or is on the decrease, the induced flows in the same direction as the inducing current. The rationale is, that the ethereal pulses of the originating force fall upon the condensed ether at the central portion of each group of molecules, and urge outward the interstitial electric ether on that side of the group.

This determines a flow of a certain portion of the electric ether around to that side; and a consequent positive polarization on that side of the group, or compound molecule. While this process of polarization is going on, there must then be a flow of electricity from one compound molecule to the next, in the same direction in which the transfer of ether occurs within the molecules themselves, as an inevitable attendant upon the increasing polarization (p. 242). When the primary action becomes constant, there simply abides a state of static polarization,-an "electro-tonic state,"-in which an equilibrium prevails throughout the circuit. But when this action falls off, the polarization maintained by it must decline, and a current arise setting in the opposite direction to the former one (p. 67). The inducing current may be either electric, or magnetic, so-called. The increase of its action upon the adjacent wire may result either from the closing of the circuit in the case of a galvanic current, or the magnetization of the iron when a magnet is employed; or from the approach of the current to the wire; or from a change in the position of the wire in the magnetic field, attended with an augmentation in the action of the external impulsive force exerted by all the circular currents of the magnet. A decrease in the polarizing effect of the inducing current may result from an interruption of the circuit, or a diminution in the force of the magnet, or a recess of the wire from the current, or a movement of the wire in the magnetic field attended with a diminished action of the entire impulsive force of the magnet.

The oppositely directed currents induced by alternately closing and breaking the galvanic circuit, when the two contiguous wires are formed into a hollow coil, are greatly augmented by inserting rods, or bundles of iron wire within the coil. The explanation of this is, doubtless, that the direct action of the galvanic current is reënforced by the magnetic currents which it develops in the iron. The other cases of induction above referred to need not be dwelt upon, with the exception of that resulting from the movement of a wire to different points of the magnetic field.

This case has been subjected to a rigorous experimental analysis by Faraday, who has deduced from his researehes the following gencral results. If a wire, forming part of a closed circuit, be held in a direction transverse to a magnet, and moved in the magnetic field, across the "lines of force," or magnetic curves, a current will be induced in the wire. If the wire be moved in one direction across these lines of force, a current in a certain direction will arise, and if it be moved across them in the other direction, a current in the opposite direction will be induced. The quantity of electricity set in motion will depend upon the number of lines of force crossed by the moving wire, and not
upon the obliquity of the direction of the motion to these lines. Thus, if the wire be placed over the middle of the magnet, (m, fig. 9), and moved in any direction from this position, across the lines of force as shown in the figure, a current will be induced in it, running in the same direction as the circular currents on the upper side of the mag. net; and if the wire be moved across these lines toward the middle of the magnet, a current will traverse the wire in the opposite direction. In
 each case the comparative quantity of electricity set in motion, will depend solely upon the comparative number of magnetic curves crossed, and not upon the line, $m r, m s$, or $m t$, along which the movement takes place.

These facts are in entire accordance with the fundamental prinple of induction, stated on page 67. For, (1.) the impulsive force of the magnet, at any point of the field, is the resultant of the special impulsive forces due to all the circular currents of the magnet, and has the same direction as these currents in the upper face of the magnet. (2.) This resultant will have the greatest value at the middle of the magnet, m, and decrease in all directions from this point. (3.) The curves of equal impulsive force correspond very closely to Faraday's "lines of force." For it will be seen on a little reflection, that the force will, beyond a certain distance from the middle, if not from the very middle, decrease most rapidly parallel to the surface of the magnet; and that the curves of equal impulsive force, proceeding from points on the ends of the magnet, will recede, over the middle of the magnet, to a greater distance from it than half its length. This is strikingly true of the curves that originate from near the center of each end; for at the very center, the force in question vanishes entirely, and therefore the curves for that point would be thrown to an infinite distance from the middle of the magnet.
In making a comparative estimate of the impulsive force of the magnet in different parts of the field, it should be observed that in receding from the magnet the force that results from any one molecular current is the resultant of the opposing impulses propagated from the oppositely directed currents on the nearer and farther sides of the molecule, and that this not only depends upon the distance of the point from the molecule, but also upon the obliquity of the line connecting the two, to the plane of
the circular current. For the same distance the resultant will be greatest when the point lies in this plane, and zero when the point is opposite the center of the current. Bearing this in mind, it may readily be seen that if a line, $u v$, be drawn parallel to the axis of the magnet, at any distance from it, the impulsive force of the magnet, along this line, will decrease from the point n, opposite the middle of the magnet, indefinitely in both directions. Also that the force will decrease along a line, as if, parallel to the end, and vanish at o in the prolongation of the axis.

To obtain a general expression for the intensity of the external impulsive force of the magnet, let $a b c d$, fig. 10 , be a magnet, and let us regard its effective action upon any molecule, at f, as the result of the joint action of two sets of opposing currents, the one lying in the upper face $a b$, and the other in the lower face $c d$. Let $n f=y, n r=z$,
 $n r^{\prime}=z^{\prime}, n b=u, n a=v, a c=d$, and $m=$ coefficient of the impulsive force of an individual current. Then for the action of r upon f we have $\frac{m d z}{y^{2}+z^{2}}$; and for the action of $n r, \int \frac{m d z}{y^{2}+z^{2}}=\frac{m}{y} \operatorname{tang}^{-1} \frac{z}{y}+\mathrm{C}$. For the entire action of $n b$, we have the definite integral $\frac{m}{y} \operatorname{tang}^{-1} \frac{u}{y}$. In a similar manner we obtain, for the opposing action of $o d, \frac{m}{y+d} \operatorname{tang}^{-1} \frac{u}{y+d}$. The effective impulsive action of the portion nodb of the magnet, will then be

$$
\frac{m}{y} \operatorname{tang}^{-1} \frac{u}{y}-\frac{m}{y+d} \operatorname{tang}^{-1} \frac{u}{y+d} .
$$

The effective action of the other portion, naoc, of the magnet, will be $\quad \frac{m}{y} \operatorname{tang}^{-1} \frac{v}{y}-\frac{m}{y+d} \operatorname{tang}^{-1} \frac{v}{y+d}$.

We therefore have, for the entire action of the magnet,

$$
\begin{align*}
w & =\frac{m}{y}\left(\operatorname{tang}^{-1} \frac{u}{y}+\operatorname{tang}^{-1} \frac{v}{y}\right)-\frac{m}{y+d}\left(\operatorname{tang}^{-1} \frac{u}{y+d}+\operatorname{tang}^{-1} \frac{v}{y+d}\right), \\
\text { or, } w & =\frac{m}{y}(\operatorname{arcc} a f b)-\frac{m}{y+d}(\operatorname{arc} c f d) \ldots \ldots \tag{a.}
\end{align*}
$$

When y is large as compared with d, we have approximately

$$
\begin{equation*}
w=\frac{m}{y}(\operatorname{arc} a f c+\operatorname{arc} b f d) \tag{b.}
\end{equation*}
$$

To obtain the equation of the curve of equal impulsive force, Iet $m n=x$, and $r m=t$. Then $n r=z=x+t$, and $n b=u=x+$ $+m b=x+a$. Also $n a=v=a-x$. Hence,
$\frac{m}{y}\left(\operatorname{tang}^{-1} \frac{x+a}{y}+\operatorname{tang}^{-1} \frac{a-x}{y}\right)-\frac{m}{y+d}\left(\operatorname{tang}^{-1} \frac{x+a}{y+d}+\operatorname{tang}^{-1} \frac{a-x}{y+d}\right)=\mathrm{C} \ldots . . .(\mathrm{c}$.

C here represents the constant intensity of the impulsive force of the magnet, for one curve. The value of C decreases as the distance of the curve from m, fig. 9 , increases. The equation (b) shows that for the larger curves, except near the magnet, afct $b f d$, must vary in nearly the same ratio with the ordinate y, from one point to another of the curve. To the left of the line $a k$ the arc $a f c$ becomes negative in equation (b). Equations (a) and (c) fail for $y=0$.

The investigation here made proceeds upon the supposition that the breadth of the magnet is indefinitely small. If we suppose it to be indefinitely great, the action of each individual transverse current upon any point, f, fig. 10 , would be inversely proportional to the distance of the current from this point, ${ }^{3}$ and it will be readily seen that the amount of force propagated to f, within any angle, as $m f r^{\prime}$, will be the same whatever may be the value of $f n$.

The equation for the value of the effective impulsive force will be approximately of the form

$$
w=k\left(\frac{l}{n}+\frac{l^{\prime}}{n^{\prime}}\right) ;
$$

k being a constant coefficient dependent upon the strength of the magnet, $-l$ and l^{\prime} the parts of the length, $a b$, of the magnet, comprised between the angles $a f c$ and $b f d$ subtended by the two ends, -and n, n^{\prime} the mean distances of these parts from f. We approximate to this state of things in proportion as the magnet is supposed to be broader, and shorter and thinner; or in proportion as, with a magnet of given dimensions, the point f is taken nearer to the magnet.

Let us now replace Faraday's lines of force by the curves of equal impulsive force of the magnet, and consider what should be the effect of moving a wire across them, along any line $m r$, $m s, m t$, \&c., (fig. 9).
It is obvious that if the movement be outward, the impulsive force taking effect upon the wire will decrease; and that if it be inward, the force will increase. Hence, agreeably to the fundamental principle before alluded to, (p. 67,) in the first case there should be an induced current having the same direction as the currents of the upper face of the magnet; and in the second case a current pursuing the opposite direction. Again, the amount of change of force which results from the displacement of the wire, and therefore the quantity of electricity which this charge sets in motion, should depend solely upon the number of curves traversed. We may add that in whatever part of the magnetic field, and in whatever direction the wire be

[^22]supposed to move, the theoretical result is in perfect accordance with the facts as experimentally established by Faraday.

In the foregoing we have supposed the wire, transverse to the magnet, to be moved parallel to itself to various points of the magnetic field; but Faraday has shown that a current may also be induced in the wire, by bending it into a curve and causing it to revolve around the magnet, after one end has been brought into contact with the equatorial part of the magnet, and the other with a wire or rod leading out from the pole, as shown in fig. 11. "A copper ring was fixed round and in contact with the equatorial part, and the wire, e, made to bear by
 spring pressure against this ring, and also against a ring on the axis." The direction of the current changed with the direction of revolution. Corresponding currents were also obtained by rotating the magnet in the opposite directions, the wire remaining fixed. To explain these currents upon the principles now developed, we must first observe that the impulsive force of the magnet will impart a transverse polarization to the molecules of the wire. Now let a motion of revolution be imparted to the wire, in a direction opposite to that of the circulation of the magnetic currents, and the relative velocity with which the ethereal impulses will fall upon the molecules will be the sum of the velocity due to the impulse, and that of the molecules themselves in the opposite direction. The molecales at the end, e, of the wire, will therefore take on a higher polarization than is induced in the copper ring by the magnet simply. This polarization should be attended with a disturbance of the electric condition of the molecules in the direction of the length of the wire. There should, then, be an inequality in this disturbance at the point of contact, e. This inequality should originate a current that would pass around the circuit. Let v denote the velocity answering to the magnetic impulse, and v^{\prime} the velocity of revolution of the molecule at e. Then the effect due to the polarizing force at the end, e, of the wire, may be represented by $m\left(v+v^{\prime}\right)^{3}$, and that induced in the contiguous particles of the copper ring by $m v^{2}$. The difference is $m v^{\prime}\left(2 v+v^{\prime}\right)$, which represents the electro-motive force of the current. If the wire were made to revolve around an unmagnetized bar, the originating force of the current would be $m v^{\prime 2}$. The electro-motive force just mentioned would exceed this nearly in the ratio of $2 v$ to v^{\prime}. A very high velocity of revolution of the wire would therefore be required to develop a sensible current, if the bar were unmagnetized. The above expression for the electro-motive force, $v i z, m v^{\prime}\left(2 v+v^{\prime}\right)$, which is nearly equal to $2 m v v^{\prime}$, shows that this force is proportional to the velocity, v^{\prime},
of revolution of the wire. The entire force developed in ten revolutions of the wire should then remain the same, if the velocity of revolution should be changed, (as determined by Faraday). If the magnet rotates in the opposite direction its impulses against the ether will be correspondingly increased, and the result will be the same.

Faraday, in certain papers originally published in the Philosophical Magazine, and the Philosophical Transactions, has indulged in ingenious speculations upon the probable physical character of the lines of magnetic force, and distinctly intimates that he inclines to the opinion that they have in reality a physical existence, correspondent to their analogues the electric lines," instead of being simply "representants of magnetic power," or lines of resultant magnetic action. In speculating upon the question in what this physical existence may consist, he remarks that "it may be a vibration of the hypothetical æther," (along the lines), or a state or tension of that æther equivalent to either a dynamic or a static condition, or it may be some other state." The results arrived at, in the present paper, are opposed to these speculative ideas of the great English physicist, for our conclusions are that the lines upon which the phenomena of induction by a magnet depend are merely lines of equal magnetic action; but the action is that of a force whose existence has not heretofore been recognized, viz, the so-called impulsive force of the magnet.
(To be concluded.)

Art. IX.-On the Spectra of some of the Fixed Stars; by William Huggins, F.R.A.S., and Prof. W. A. Miller, V.P.R.S., and On the Spectra of some of the Nebule; by William Huggins, F.R.A.S.

Mr. Huggins and Prof. Miller presented to the Royal Society of London, on the 26 th of May, 1864, an important paper on the spectra of some of the fixed stars, and Mr. Huggins presented one on the 8th of September on the spectra of some of the nebulæ. By a peculiar adaptation of the spectroscope to a telescope of 10 feet focal length and 8 inches aperture, they were able to make a direct comparison of the spectra of the moon, planets, fixed stars, and nebulæ, with the spectra of the several chemical elements. The following are some of the more important points of the two papers.

The result of the analysis of the light of the moon is wholly negative as to the existence of any considerable lunar atmos-

[^23]
74 Messrs. Huggins and Miller on Spectra of Fixed Stars.

sphere. The spectra of the planets Jupiter, Saturn, Mars, and Venus, agree essentially with the solar spectrum. Differences however exist which cannot be due to the earth's atmosphere. The evidence afforded by the prism of the existence of atmospheres around these planets is imperfect. This may be explained by supposing the light to be reflected from masses of clouds in the upper strata of thin atmospheres, and not from the surface of the planets.

Observations on the Fixed Stars.-The number of fixed stars which we have, to a greater or less extent, examined amounts to nearly 50. We have, however, concentrated our efforts upon three or four of the brighter stars, and two only of these have been mapped with any degree of completeness. These spectra are, indeed, as rich in lines as that of the sun, and even with these it may be advantageous to compare the spectra of additional metals when the season is again favorable.
α Tauri (Aldebaran). -The light of this star is of a pale red. When viewed in the spectroscope, numerous strong lines are at once evident, particularly in the orange, the green, and the blue portions. The positions of about seventy of these lines have been measured.

We have compared the spectra of sixteen of the terrestrial elements by simultaneous observation with the spectrum of Aldebaran, of course selecting those in which we had reason, from the observations, to believe coincidence was most likely to occur. Nine of these spectra exhibited lines coincident with certain lines in the spectrum of the star. They are as follows:-sodium, magnesium, hydrogen, calcium, iron, bismuth, tellurium, antimony, and mercury.

Seven other elements were compared with this star, viz. nitrogen, cobalt, tin, lead, cadmium, lithium, and barium. No coincidence was observed. With nitrogen three strong double lines were compared, with cobalt one strong single line and a double line, with tin five lines, with lead two strong lines, with cadmium three lines, with barium two of the strongest in the green, and with lithium the line in the orange, but were found to be without any strong lines in the star-spectrum corresponding with them.
a Orionis.-The light of this star has a decided orange tinge. None of the stars which we have examined exhibits a more complex or remarkable spectrum than this.

The spectra obtained from sixteen elementary bodies were observed simultaneously with it. In five of these, viz. sodium, magnesium, calcium, iron, and bismuth, lines corresponding with certain stellar lines were found to exist.
The bright green line so characteristic of thallium appears to coincide with one of the lines seen in the star-spectrum; but this
line may be due to calcium, since the small difference between the position of the thallium line and that of one of the calcium lines very close to it, would not be distinguishable with the dispersive power of the apparatus employed.
In the spectra of the other elements which we compared with that of the star, no coincidences occur. There is no line coincident with the red line C of hydrogen; but in the star are two strong lines, one on either side of the position of C : there is also no line coincident with F . It is strikingly confirmatory of this methed of analysis, that in all the stars hitherto examined by us in which a line corresponding to C exists, that corresponding to F is also found. When F is absent, C is also wanting. In nitroger three strong double lines were compared. In tin five lines, and in lead two bright lines were compared, but no coincidence was found.

The strongest of the gold lines approximates closely in position to one in the spectrum of the star, but it is probably not coincident. Three of the strong lines of cadmium, two of silver, four of mercury, two of barium, and one (the orange line) of lithium, were observed to be not coincident with any of the lines visible in the star. In these comparisons, when barium was used, it was employed in the form of a nearly solid amalgam.
β Pegasi.-The color of this star is a fine yellow. In the general arrangement of the groups, in the gradation of the strength of the lines composing the groups, and in the absence of the hydrogen lines, this spectrum, though much fainter, is closely analogous with the spectrum of α Orionis. Nine of the elements were compared with it. Two of these, viz. sodium, and magnesium, and perhaps a third, viz. barium, furnish spectra in which there are lines which coinicide with lines in the spectrum of the star.

The spectra of iron and manganese were also compared with that of the star, but the state of the atmosplere prevented any certain conclusion. The lines in the spectra of nitrogen, tin, and mercury, were not coincident with any definite lines in the starspectrum. Neither of the hydrogen lines corresponding to C and F was present.

The absence in the spectrum of α Orionis, and also in the spectrum of β Pegasi which so closely resembles it in character, of lines corresponding to those of hydrogen, is an observation of considerable interest. It is of the more importance since the lines C and F are highly characteristic of the solar spectrum and and of the spectra of by far the larger number of the fixed stars to which our observations have been extended. These exceptions are further interesting as they seem to prove that the lines C and F are due to the luminous bodies themselves. Of this some doubt might be entertained, and it might be suspected that they

76 Messrs. Huggins and Miller on Spectra of Fixed Stars.

are in some way due to our own atmosphere, if these lines were present in the spectra of all the stars without exception. This absence of the lines corresponding to hydrogen is also the more entitled to consideration, since it is so rare to find them wanting, amongst the considerable number of stellar spectra which we have observed.

Sirius. - Three if not four elementary bodies have been found to furnish spectra in which lines coincide with those of Sirius. viz. sodium, magnesium, hydrogen, and probably iron.

The whole spectrum of Sirius is crossed by a very large number of faint and fine lines. It is worthy of notice that in the case of Sirius, and a large number of the white stars, at the same time that the hydrogen lines are abnormally strong as compared with the solar spectrum, all the metallic lines are remarkably faint.
α Lyroe (Vega).—This is a white star having a spectrum of the same class as Sirius, and as full of fine lines as the solar spectrum.

General Observations.-Probably in the constitution of the stars as revealed by spectrum analysis, we shall find the origin of the differences in the color of stellar light. Since spectrum analysis shows that certain of the laws of terrestrial physics prevail in the sun and stars, there can be little doubt that the immediate source of solar and stellar light must be solid or liquid matter maintained in an intensely incandescent state, the result of an exceedingly high temperature. For it is from such a source alone that we can produce light even in a feeble degree comparable with that of the sun.

The light from ineandescent solid and liquid bodies affords an unbroken spectrum containing rays of light of every refrangibility within the portion of the spectrum which is visible. As this condition of the light is connected with the state of solidity or liquidity, and not with the chemical nature of the body, it is highly probable that the light when first emitted from the photosphere, or light-giving surface of the sun and of the stars, would be in all cases identical.

The source of the difference of color, therefore, is to be sought in the difference of the constituents of the investing atmospheres. The atmospbere of each star must vary in nature as the constituents of the star vary; and observation has shown that the stars do differ from the sun and from each other in respect of the elements of which they consist. The light of each star therefore will be diminished by the loss of those rays which correspond in refrangibility to the bright lines which the constituents of each atmosphere would, in the incandescent state, be capable of emitting. In proportion as these dark lines preponderate in particular parts of the spectrum, so will the colors in which they occur be weaker, and consequently the colors of other refrangibilities will predominate.

Observations on the Planetary Nebulce.-These wondrous objects present in the telescope slightly oval disks. For this reason they were placed by Sir William Herschel in a class by themselves. They present but little indication of resolvability. The color of their light, which in the case of several is blue tinted with green, is remarkable, since this is a color extremely rare amongst single stars. These nebulæ, too, agree in showing no indication of central condensation. By these appearances the planetary nebulæ are specially marked as objects which probably present phenomena of an order altogether different from those which characterize the sun and the fixed stars. On this account, as well as because of their brightness, I selected these nebulæ as the most suitable for examination with the prism.

The numbers and description of the nebulæ, are taken from the last Catalogue of Sir John Herschel.
[37 H. IV. A planetary nebula in Draco, very bright; pretty small; suddenly brighter in the middle, very small nucleus.]

On August 29, 1864, I directed the telescope armed with the spectrum apparatus to this nebula. At first I suspected some derangement of the instrument had taken place; for no spectrum was seen, but only a short line of light perpendicular to the direction of dispersion. I then found that the light of this nebula, unlike any other ex-terrestrial light which had yet been subjected by me to prismatic analysis, was not composed of light of different refrangibilities, and therefore could not form a spectrum. A great part of the light from this nebula is monochromatic, and after passing through the prisms remains concentrated in a bright line occupying in the instrument the position of that part of the spectrum to which its light corresponds in refrangibility. A more careful examination with a narrower slit, however, showed that, a little more refrangible than the bright line, and separated from it by a dark interval, a narrower and much fainter line occurs. Beyond this, again, at about three times the distance of the second line, a third, exceedingly faint line was seen. The positions of these lines in the spectrum were determined by a simultaneous comparison of them in the instrument with the spectrum of the induction spark taken between electrodes of magnesium. The strongest line coincides in position with the brightest of the air lines. This line is due to nitrogen, and occurs in the spectrum about midway between b and F of the solar spectrum.

The faintest of the lines of the nebula agrees in position with the line of hydrogen corresponding to Fraunhofer's F. The other bright line was compared with the strong line of barium ; this line is a little more refrangible than that belonging to the nebula.

Besides these lines, an exceedingly faint spectrum was just perceived for a short distance on both sides of the group of bright lines. I suspect this is not uniform, but is crossed with dark spaces. Subsequent observations on other nebulæ induce me to regard this faint spectrum as due to the solid or liquid matter of the nucleus, and as quite distinct from the bright lines into which nearly the whole of the light from the nebulæ is concentrated. The color of this nebula is greenish blue.
[6 5. A planetary nebula in Taurus Poniatowskii, very bright; very small; round; little hazy.] The spectrum is essentially the same as that of 37 H . IV. The three bright lines occupy the same positions in the spectrum, which was determined by direct comparison with the spectrum of the induction spark. These lines have also the same relative intensity. They are exceedingly sharp and well defined. The presence of an extremely faint spectrum was suspected. In connexion with this it is important to remark that this nebula does not possess a distinct nucleus. The color of this nebula is greenish blue.
[73 H. IV. A planetary nebula in Cygnus with a central star. Bright; pretty large; round; star of the 11th magnitude in the middle.] The same three bright lines were seen. Their positions in the spectrum were verified by direct comparison with the induction spark. In addition to these a spectrum could be traced from about D to about G of the solar spectrum. This spectrum is much stronger than the corresponding spectrum of $37 \mathrm{H} . I V$. This agrees with the greater brightness of the central star, or nucleus. The opinion that the faint continuous spectrum is formed alone by the light from the bright central point was confirmed by the following observation. When the cylindrical lens was removed, the three bright lines remained of considerable length, corresponding to the diameter of the telescopic image of the nebula; but the faint spectrum became as narrow as a line, showing that this spectrum is formed by light which comes from an object of which the image in the telescope is a point. Lord Rosse remarks of this nebula, "A very remarkable object, perhaps analogous to H. 450." The color of this nebula is greenish blue.
[51 H. IV. A planetary nebula in Sagittarius. Bright; very small; round.] This nebula is less bright than those which have been described. The two brighter of the lines were well defined, and were directly compared with the induction spark. The third line was seen only by glimpses. I had a suspicion of an exceedingly faint spectrum. The color of this nebula is greenish blue. Lord Rosse remarks, "Center rather dark. The dark part is a little north preceding the middle.
[1 H. IV. An exceedingly interesting object in Aquarius. Planetary; very bright; small; elliptic.] The three bright
lines very sharp and distinct. They were compared for position with the induction spark. Though this object is bright, an indication only of the faint spectrum was suspected. This nebula contains probably a very small quantity of matter condensed into the liquid or solid state. The color of the light of this nebula is greenish blue. Lord Rosse has not detected any central star, nor any perforation, as seen in some of the other planetary nebulæ. He represents it with ansæ, which probably indicate a nebulous ring seen edgeways.
[57 M. An annular nebula in Lyra; bright; pretty large; considerably elongated.]-The apparent brightness of this nebula, as seen in the telescope, is probably due to its large extent, for the faintness of its spectrum indicates that it has a smaller intrinsic brightness than the nebulæ already examined. The brightest of the three lines was well seen. I suspected also the presence of the next in brightness. No indication whatever of a faint spectrum. The bright line looks remarkable, since it consists of two bright dots corresponding to sections of the ring, and between these there was not darkness, but an excessively faint line joining them. This observation makes it probable that the faint nebulous matter occupying the central portion is similar in constitution to that of the ring. The bright line was compared with the induction-spark.
[18 H. IV. Planetary; very bright; pretty small, round, blue.]-With a power of 600 this nebula appears distinctly annular. The color of its light is greenish blue. The spectrum formed by the light from this nebula corresponds with that of 37 H. IV. In the spectrum of this nebula, however, in addition to the three bright lines, a fourth bright line, excessively faint, was seen. This line is about as much more refrangible than the line agreeing in position with F as this line is more refrangible than the brightest of the lines, which coincides with a line of nitrogen.
[27 M. Very bright; very large; irregularly extended. Dumb-bell. In Vulpecula.]-The light of this nebula, after passing through the prisms, remained concentrated in a bright line corresponding to the brightest of the three lines. This line appeared nebulous at the edges. No trace of the other lines was perceived, nor was a faint continuous spectrum detected. The bright line was ascertained, by a simultaneous comparison with the spectrum of the induction spark, to agree in position with the brightest of the lines of nitrogen. Minute points of light have been observed in this nebula by Lord Rosse, Otto Struve, and others; the spectra of these bright points, especially if continuous like those of stars, are doubtless invisible from excessive faintness. By suitable movements given to the telescope, different portions of the image of the nebula formed in the tele-
scope were caused successively to fall upon the opening of the slit, which was about $\frac{1}{10}$ inch by $\frac{1}{3} \frac{1}{0} 0$ inch. This method of observation showed that the light from different parts of the nebula is identical in refrangibility, and varles alone in degree of intensity.

In addition to these objects the following were also observed:
[92 M . Very bright globular clusters of stars in Hercules.] The bright central portion was brought upon the slit. A faint spectrum similar to that of a star. The light could be traced from between C and D to about G . Too faint for the observation of lines of absorption.
[50 H. IV. Very bright; large ; round. In Hercules.] The spectrum similar to that of a faint star. No indication of bright lines.
[31 M.] The brightest part of the great nebula in Andromeda was brought upon the slit. The spectrum could be traced from about D to F . The light appeared to cease very abruptly in the orange; this may be due to the smaller luminosity of this part of the spectrum. No indication of the bright lines.
[32 M. Very bright; large; round; pretty suddenly much brighter in the middle.] This small but very bright companion of the great nebula in Andromeda presents a spectrum apparently exactly similar to that of 31 M . The spectrum appears to end abruptly in the orange; and throughout its length is not uniform, but is evidently crossed either by lines of absorption or by bright lines.
[55 Androm. Fine nebulous star with strong atmosphere.] The spectrum apparently similar to that of an ordinary star.
[26 IV. Very bright cluster in Eridanus.] The spectrum could be traced from the orange to about the blue. No indication of the bright lines. Several other nebulæ were observed, but of these the light was found to be too faint to admit of satisfactory examination with the spectrum apparatus.

It is obvious that the nebule $37 \mathrm{H} . I V, 6 \Sigma$. $73 \mathrm{H} . \mathrm{IV}, 51 \mathrm{H}$. IV, $1 \mathrm{H} . \mathrm{IV}, 57 \mathrm{M}, 18 \mathrm{H} . \mathrm{IV}$, and 27 M , can no longer be regarded as aggregations of suns after the order to which our own sun and the fixed stars belong. We have in these objects to do no longer with a special modification only of our own type of suns, but find ourselves in the presence of objects possessing a distinct and peculiar plan of structure.

In place of an incandescent solid or liquid body transmitting light of all refrangibilities through an atmosphere which intercepts by absorption a certain number of them, such as our sun appears to be, we must probably regard these objects, or at least their photo-surfaces, as enormous masses of luminous gas or vapor. For it is alone from matter in the gaseous state that light
consisting of certain definite refrangibilities only, as is the case with the light of these nebulæ, is known to be emitted.

Such gaseous masses would be doubtless, from many causes, unequally dense in different portions; and if matter condensed into the liquid or solid state were also present, it would, from its superior splendor, be visible as a bright point or points within the disk of the nebula. These suggestions are in close accordance with the observations of Lord Rosse.

Another consideration which opposes the notion that these nebulæ are clusters of stars is found in the extreme simplicity of constitution which the three bright lines suggest, whether or not we regard these lines as indicating the presence of nitrogen, hydrogen and a substance unknown.

It is perhaps of importance to state that, except nitrogen, no one of thirty of the chemical elements the spectra of which I have measured has a strong line very near the bright line of the nebulæ. If, however, this line were due to nitrogen, we ought to see other lines as well; for there are specially two strong double lines in the spectrum of nitrogen, one at least of which, if they existed in the light of the nebulæ, would be easily visible. In my experiments on the spectrum of nitrogen, I found that the character of the brightest of the lines of nitrogen, that with which the line in the nebule coincides, differs from that of the two double lines next in brilliancy. This line is more nebulous at the edges, even when the slit is narrow and the outer lines are thin and sharp. The same phenomenon was observed with some of the other elements. We do not yet know the origin of this difference of character observable among lines of the same element. May it not indicate a physical difference in the atoms, in connexion with the vibrations of which the lines are probably produced? The speculation presents itself, whether the occurrence of this one line only in the nebula may not indicate a form of matter more elementary than nitrogen, and which our analysis has not yet enabled us to detect.

Art. X.-Reactions of Gelatine; by M. Carey Lea, Philadelphia.
I have been occupied at times for some years past with the study of this very interesting substance, and propose here to describe a new reaction which I have observed, and which constitutes, I believe, the first colored reaction described as produced between pure gelatine and a perfectly colorless reagent. It is true that the precipitate produced in gelatine solutions by gallotannic acid is much deeper in color than the precipitant. But the straw-yellow color of gallotannic acid naturally leads to

[^24]the expectation of colored combinations, whereas in the case I am about to mention, the precipitant is colorless, and the production of a marked color seems to point to a more complete action than that of simple combination.

When a piece of gelatine is dropped into an acid solution of pernitrate of mercury, it gradually assumes a strong red coloration, and after a time, dissolves in it completely at ordinary temperatures, to a fine red solution. This solution deepens a little if boiled for some minutes. By chlorate of potash, the hot solution is quickly decolorized, and passes to pale dirty yellow.

This red coloration seems to require a certain amount of time for its production, which cannot be replaced by heat. If a piece of gelatine be immersed in the solution of protonitrate and boiled for some minutes it is dissolved but the solution thus obtained is not red, but yellowish.

It is to be regretted that the reaction here described is not more delicate. It is only striking when tolerably strong solutions of gelatine are employed. When the solution is very weak, as for example, if the gelatine constitutes only one half of one per cent of the mixed liquids, the limit of the delicacy of the test is reached. Such a solution, by standing twenty four hours, exhibits a light but distinct pink color. Although this delicacy is not what may be desired, still, colloid organic substances are so comparatively difficult of qualitative detection as a general thing, that the method is not without value.

The experiment was next extended to metagelatine. A neutral metagelatine was prepared in the following manner.

Gelatine was set to swell in cold saturated solution of oxalic acid, and then 2 moderate heat was applied for a sufficiently long time for the mass to remain quite fluid when cold. It was then agitated with precipitated carbonate of lime until the whole of the oxalic acid was got rid of. Metagelatine prepared in this way was kept for months in a corked vial in a warm room without showing any disposition to putrefy. It was almost as fluid as water: perfectly neutral and almost insipid to the taste.

With this metagelatine, the red coloration was produced even more decidedly than with ordinary gelatine. The addition of the acid solution of per-nitrate of mercury produced at first a whitish flocculent precipitate, which, by standing, acquired a strong red color, as did the supernatant liquid.

Philadelphia, May 12, 1665.

Art. XI.-Influence of Gravity on Magnetic Declination;' by Pliny Earle Chase, M.A., S.P.A.S.

In my first communication on the diurnal variation of the barometer, [Proceedings A. P. S., ix, 284], I expressed the belief that a careful investigation would "show a mutual connection through which all the secondary [disturbing] causes may be referred to a single force." In my various subsequent papers, and especially in the one to which the Magellanic Premium was awarded, [op. citat. and Trans. A. P. S., vol. xiii, N. S., Art. VI], I pointed out various reasons for supposing that the primal unitary force is the same that controls the motions of the several stellar systems; in other words, the force of gravitation, or perhaps of simple undulation, which is manifested as heat in one of its subordinate forms, and as attraction in another. The numerical relations which I demonstrated between the disturbances of weight and of total magnetic force were certainly noteworthy, and to my own mind, extremely satisfactory, and as further investigations have afforded additional confirmation of my views, I desire to put upon record a brief notice of the general harmony which mutually characterizes the gravitation currents and the variations of magnetic declination.
Preliminary investigations showed, as might have been reasonably anticipated, that the best quantitative results can be obtained from the observations at stations near the equator, and I therefore based my reasoning in great measure upon the St. Helena records and Maj. Gen. Sabine's discussions, confirming it by such incidental references to other observations, as seemed available for the purpose. At the same time allusion was made [Trans. A.P.S., loc. citat., p. 132,] to researches now in progress, which may probably enable us to discover numerical relations, that will be equally satisfactory, from an examination of the observations in higher latitudes. While patiently and confidently awaiting the completion of those researches it may be well to present some considerations which will serve both as a corroboration of my own views and as a guide to the investigations of others.
The discussions of the magnetic and meteorological observations at Girard College, [Coast Survey Reports, and Smithsonian Contributions], should be specially interesting to all Americans, and they are also among the most recent and valuable publications on terrestrial physics. Fron them I quote the following references to the most important and best established normal disturbances of declination.

[^25]
84 P. E. Chase on influence of Gravity on Magnetic Declination.

I. "The annual variation depends on the earth's position in its orbit, the diurnal variation being subject to an inequality depending on the sun's declination. The diurnal range is greater when the sun has north declination, and smaller when south declination; the phenomenon passing from one state to the other about the time of the equinoxes." [Part II, p.10. See also Toronto Obs., 2, xvii ; St. Helena Obs., 2, cxviii].
II. "At the hour of 6 or 7 in the morning, the annual variation is a maximum, disappearing at a quarter before $10 \mathrm{~A} . \mathrm{M}$. , and reaching a second (secondary) maximum value at $1 \mathrm{P}, \mathrm{M}$. It almost disappears soon after 5 P. M., and a third still smaller maximum is reached after 9 P. M. Half an hour before midnight, the annual variation again disappears. At (and before and after) the principal maximum, between 6 and 7 in the morning, the annual variation causes the north end of the magnet to be deflected to the east in summer and to the west in winter; at 1 P. M. the deffections are to the west in summer and to the east in winter. The range of the diurnal motion is thus increased in summer and diminished in winter; the magnet being deflected in summer more to the east in the morning hours, and more to the west in the afternoon hours, or having greater elongations than it would have if the sun moved in the equator. In winter, the converse is the case." [Ibid., p. 12. Compare St. Helena Obs., 2, cxviii ; Toronto Obs., I, xiv, and 2, xvi.]
III. "According to the same authority," [Gen. Sabine], "the annual variation is the same in both hemispheres, the north end of the magnet being deflected to the east in the forenoon, the sun having north declination; when in the diurnal variation, the north end of the magnet at that time of the day is deflected to the east in the northern hemisphere and to the west in the southern hemisphere; in other words, in regard to the direction the law of the annual variation is the same, and that of the diurnal variation the opposite in passing from the northern to the southern magnetic hemisphere." [Ibid., p. 13. Comp. St. Hel. Obs., 2, lxxx, exviii.]
IV. "The regular progression of the monthly values is a feature of the annual variation deserving particular notice. There is no sudden transition from the positive to the negative side, or vice vers \hat{a}, at or near the time of the equinoxes (certainly not at the vernal equinox) ; on the contrary, the annual variation seems to be regular in its progressive changes. The method here pursued is entirely different from that employed by General Sabine for the same end, but the results are, nevertheless, in close accordance." It has been found that the transition takes place "ten days after either equinox, and also that the turning points occur ten days after the solstices." [Ibid., p. 14. Comp. St. Hel. Obs., 2, exx.]

P. E. Chase on influence of Gravity on Magnetic Declination. 85

V. "The general character of the diurnal motion ... is nearly the same throughout the year; the most eastern deflection is reached a quarter before 8 o'clock in the morning (about a quarter of an hour earlier in summer, and half an hour later in winter), . . . the north end of the magnet then begins to move westward, and reaches its western elongation about a quarter after one o'clock in the afternoon (a few minutes earlier in summer). . . . The diurnal curve presents but a single wave, slightly interrupted by a deviation occurring during the hours near midnight, (from about 10 P. M. to 1 A. M.), when the magnet has a direct or westerly motion; shortly after 1 A.M. the magnet again assumes a retrograde motion and completes the cycle by arriving at its eastern elongation shortly before 8 o'clock in the morning. This nocturnal deflection is well marked in winter, vanishes in the summer months, and is hardly perceptible in the annual curve. According to the investigations of General Sabine, it is probable that if we had the means of entirely obliterating the effect of disturbances, this small oscillation would almost disappear. In summer, when it has no existence, the magnet remains nearly stationary between the hours of 8 P. M. and 3 A. M., a feature which is also shown by the annual type-curve." [Ibid., p. 20. Comp. Hobarton Obs., 2, vi; St. Hel. Obs., 2, exi, cxix, exx; Toronto Obs., I, xiv, 2, xvi.]
VI. "The critical hours which vary least during the year are those of the western elongation and those of the morning mean declination. The extreme difference between the value for any month and the mean annual value, is 31 minutes in the former and 28 minutes in the latter." [Ibid., p. 21.]
VII. The curves of lunar-diurnal variation "show two east and two west deflections in a lunar day," the westerly maxima "occurring about the upper and lower culminations," and the easterly maxima "at the intermediate six hours. The total range hardly reaches $0^{\prime} 5$. These results agree generally with those obtained for Toronto and Prague." [Part. III, p. 8. Comp. St. Hel. Obs., 2, xxiii, Ixxxii, cxliv; Toronto Obs., 3, lxxxv.]
VIII. "In comparing the easterly and westerly curves, the constant in Bessel's formula comes out zero, and hence it is inferred that the moon has no specific action in deflecting the magnet by a constant quantity." [Ibid., p. 10.]
IX. "If we take the four phases into account, the lunar action seems to be retarded 10 minutes, which quantity may be termed the lunar-magnetic interval for the Philadelphia Station. At Toronto the intervals are not so regular." [Ibid., p. 11.]
X. "The characteristic feature of the annual inequality in the lunar-diurnal variation is a much smaller amplitude in winter than in summer. Kreil, indeed, inferred from the ten year series of the Prague observations, that in winter the lunar-diurnal va-

86 P. E. Chase on influence of Gravity on Magnetic Declination.

riation either disappears, or is entirely concealed by irregular fluctuations, requiring a long series for their diminution. The method of reduction which be employed was, however, less perfect than that now used. The second characteristic of the inequality consists in the earlier occurrence of the maxima and minima in winter than in summer. The winter curve precedes the summer curve by about one and three-quarter hours." [Ibid., p. 12-13.]
XI. The curves of semi-annual variation at all points where continuous observations have been made, present a striking similarity, the amount of deflection being nearly equal in all parts of the globe. [See diagram, Part II, p. 12. Comp. St. Hel. Obs., 2, cxix; Toronto Obs., 2, xvi, xvii.]

Now it is evident that the mechanically-polarizing currents (Proc. A. P. S., ix, 367 sqq.) must be variously deflected at different periods of the day, in consequence of gravitation-disturbances arising both from the varying distance of the sun and from solar heat. Although it may sometimes be desirable to consider the so-called thermal currents apart from those which would be produced independently of any change of temperature, such a distinction is unnecessary in a preliminary qualitative investigation like the present, because the periods both of maxima and of minima are precisely coincident in the two currents (except as they may be slightly modified by the earth's radiant heat), and because even the thermal currents are occasioned simply and solely by the varying gravitation of fluids of varying density.

Regarding, therefore, the air and æther over any given mag. netic meridian, during the day hours the intertropical and during the night the extra-tropical portions will be most drawn toward the sun, and the following deflections will be thus produced in the portions nearest the equator:

	6 to 12 A. M.	12 to 6 p. M.	6 to 12 p. M.	12 to 6 s. m.
Northern zones, S.E.	S.W.	S.E.	S.W.	
Southern "	N.E.	N.W.	N.E.	N.W.

The night-disturbances, whether from variations of temperature or from simple fall toward the sun (the distance fallen varying as the square of the time from midnight), will be very slight. The earth's rotation, centrifugal force, and the atmospheric inertia, tend to throw each of the phases forward and to increase the magnitude of the westerly, while they diminish the easterly deflections. If these modifications were sufficient to override the slight easterly tendency at 6 to 12 P. M., and to advance the phases one hour, the disturbances would assume the following forms, the change between 7 P. M. and 1 A. w. being scarcely, if at all, perceptible:

P. E. Chase on influence of Gravity on Magnetic Declination. 87

7 A. M. to 1 P. M.

Northern zones, Southern

S.E.
N.E.

S.W.
N.W.

At the equinoxes, the amounts of deflection in the northern and southern magnetic hemispheres should be equal; at other seasons the shortest lines would suffer the greatest displacement, the deflections being greatest in the northern zones from April to September, when the sun is in the northern signs, and in the southern zones from October to March, when the sun is in the southern signs. My experiments have shown that the compassneedle sympathizes with, and is to some extent controlled by, purely mechanical vibrations, and if in obedience to such control it should tend to parallelism with the æthereal currents, a westerly disturbance of declination (the declination being always conventionally referred to the north pole of the needle) would correspond either to an equatorial southeasterly deflection of the southern or a northwesterly deflection of the northern extremity of a half-meridian, and an easterly disturbance to a southwesterly deflection of the southern or a northeasterly deflection of the northern extremity.

Substituting these declination values for the current-deviations to which they correspond, the almost precise accordance of theory and observation in the prominent features of the normal variations of declination, may be seen by a reference to the following table:

Daily maximum, ${ }^{1}$ Half-yearly " April to Sept. ${ }^{2}$ " Oct. to Mar.	Easterly.				
		esterly.	Morning. Mean.	Evening. Mean.	y.
Theoretical, Observed [I to V], ${ }^{3}$	$\begin{gathered} 7 \text { A.M. } \\ 6-8 . " ~ \end{gathered}$	$\begin{gathered} \left.1 \begin{array}{c} 1 \text { P.M. } \\ 1 \end{array}\right) \end{gathered}$		$\begin{aligned} & 4 \text { P.M. } \\ & 5 \quad \text { " } \end{aligned}$	

Gen. Sabine, in speaking of the opposition of the annual and semi-annual curves (St. Hel. Obs., 2, cxix), says, "these remarkable systematic dissimilarities may be regarded as sufficient indications of a difference in the mode of operation of the solar influence in the two cases." I am not aware that any attempt has hitherto been made to explain this apparent difference, or to show that it is only apparent, and may result from the action of a uniform law. I believe that I have now given the needed explanation, and since I have shown experimentally that the phenomena are such as should be produced by gravitation, it is reasonable to assume that they probably are so produced. The probability is increased by the disappearance of the night oscillation in summer (V), the probability that when it is observed it results from thermal disturbances, and the greater stability of

[^26]
88 P. E. Chase on influence of Gravity on Magnetic Declination.

those critical hours which are nearest to the hours of maximum sun-ward gravitation (VI). The precise coincidence both in time and direction of the lunar-diurnal declination and tidal curves (VII), the unavoidable inference that the moon has no constant or specific magnetic action (VIII), the "establishment" of ten minutes at the Philadelphia station (IX), the correspondence of the lunar and solar curves in the diminished winter amplitude (X), and the uniformity at all stations of the semi-annual variation-curves (XI), are all necessary corollaries of my hypotheses.

The demonstration of a connection between the daily and annual variations of magnetism and gravitation would be incomplete, if our theory could not be so extended as to explain the decennial and secular changes. For such an extension we are compelled to wait until further study and observation have more precisely defined the character and value of those changes, and suggested all the important gravitation-disturbances of long period to which they may be plausibly referred. We may find, however, in the attraction of Jupiter, one of the possible causes of the 10-11 year period, while nutation, precession, geological upheaval and depression, change of seasons, accumulation or diminution of polar ice, and the shifting position of the center of gravity of our planetary system, must all necessarily contribute to the production of gradual changes in the terrestrial gravitation currents. The belief does not therefore seem unreasonable, that the feeble vibrations of the tremulous needle may not only furnish us with a delicate scale for weighing (as we have already approximately done) the huge mass of the sun, but they may also aid us in the discovery and verification of other important cosmical phenomena, and the assignment of their appropriate laws.

Although it is probable that terrestrial magnetism is mainly owing to currents circulating above the surface, it is well known that there are also earth-currents which exert an appreciable modifying influence. I am confident that they will be found equally obedient to the laws of gravitation, which affect every particle of the earth's body, modifying the crystalline-polarity and cohesion of solids as well as the flow of liquids, and producing internal tides, which may contribute largely to that metamorphism of stratified rocks which has been referred by geologists to the agency of heated fluids and vapors. (See Rogers, Pa. Report, ii, 700 ; Lyell, this Journal, [2], xxxix, 22.)
The inclination presents some anomalies that are difficult to explain, and whether we compare the solar-diurnal or the annual curves at the principal northern and southern stations, the "indications of a difference in the mode of operation of the solar influence in the two cases" seem as striking and perplexing as
they did to Hudson and Herschel in their examination of the influence of heat on the barometer (Proc. A. P. S., ix, 283), and to Sabine in his discussions of the semi-annual declination curves (St. Hel. Obs., 2, cxix). But the disappearance, in the progress of our investigations, of these once seemingly insurmountable difficulties,-the wonderful coincidence in the general features of the gravitation and magnetic currents,-and the a priori probability that all disturbed forces, of whatever character or variety, will tend constantly to a mutual equilibrium,-encourage the belief that this apparent paradox may be likewise susceptible of a simple interpretation, which will drive it from its latest lurking place.
I can think, at this moment, of no more probable causes of the want of symmetry here spoken of, than the different distribution of land and water in the two hemispheres, and the influence of powerful alternating land and sea breezes. A long series of connected observations at a number of new stations may perhaps be required, before it can be satisfactorily ascertained whether the disturbances thus occasioned are sufficient to account for all the phenomena, but meanwhile it is interesting to observe the degree of accordance that exists, at northern inland stations like Philadelphia and Toronto, between the curves of vertical force and force of wind on the one hand, and those of horizontal force and barometric pressure on the other, as well as the agreement that has been pointed out by Dr. Lloyd and Mr. Homer, between the annual curves of declination and of temperature.

Art. XII.-Researches on the Volatile Hydrocarbons; by C. M.
Introductory Remarks.-While engaged, a few years since, in attempting to separate some of the constituents of coal-tar naphtha by the common process of fractional distillation, I was forced to the conviction that that process could not be safely relied upon for anything like a complete and accurate analysis of such a complex mixture of liquids; and that, at best, the products thus obtained could not be regarded as anything better than remote approximations to pure substances; leaving reason to fear that there might still be other bodies present, in less quantities perhaps, which had escaped detection.

An examination of the results of previous researches on tars, petroleums, etc., served in general to confirm the impressions induced by my own less extended experiments; and to increase,

[^27]rather than lessen, the doubts already existing in my mind as to the trustworthiness of the results which had hitherto been published concerning the neutral constituents of such mixtures. Influenced by these considerations, and by the belief that, if I could succeed in finding a process capable of effecting a more complete separation of the constituents of such mixtures, it might probably lead to the discovery of new bodies, lying between those which had already been described,-I was led to undertake the researches, the results of which I am about to record. Even if this chief purpose should fail, I was convinced that the expenditure of labor in isolating those bodies in a state of greater purity, would be amply compensated by the much needed confirmation, or perhaps correction, of the results previously published, in addition to the valuable incidental evidence of the absence of other bodies which would thus be furnished. The results which I have obtained in the pursuit of this object are abundantly sufficient to show that I did not undervalue the work of my predecessors, nor over-estimate the importance of the work before me.

The success which attended my efforts in search of a better process of separation has already been described in detail, in a memoir "On Fractional Condensation," etc. (Memoirs of the American Academy, 1864, and the last volume of this Journal.)

This new process was first applied, more especially for the purpose of testing its efficiency in the separation of benzole from coal-tar naphtha. This mixture was selected for the test on account of the property which benzole possesses, in contradistinction from its associates, of being crystallizable at a low temperature, thus affording an additional test of the purity of the product which might be obtained by the process of fractioning. Somewhat to my surprise I found that, after only the fifth series of fractionings, I had obtained benzole so nearly pure that the whole of it would distil from a tubulated retort between 80° and 81° C.; and that when congealed, which was effected by placing the containing bottle in pounded ice, not a drop of liquid could be poured from the mass of crystals. From this result,-which, at least, indicated a near approximation to purity,-taken in connection with other favorable indications, I felt confident that I had accomplished my first object, and had found a process that could, in all probability, be successfully applied in the study of the petroleums, which up to that time (1861) had baffled every attempt to resolve them into their proximate constituents.

Being naturally anxious to apply the new process in this seemingly more promising field of inquiry, I at once suspended, for the time being, my operations on coal-tar naphtha, and commenced simultaneously the investigation of Pennsylvanian petroleum, and of the oils distilled from Albert coal (from Hillsboro, New Brunswick) in the process of manufacturiug illuminating
oil. These two substances, neither of which had ever been made the subject of special scientific investigation, were selected as being fair representative types, on the one hand of the native liquid petroleums, and on the other of the artificial coal oils. The comparative study of these two substances seemed to promise additional interest on account of the close analogies which they present, especially when this circumstance is considered in connection with the fact of their great diversity of origin. This is the limit which at that time was assigned for these researches; my intention being, so soon as the separations and analyses should be completed, and the boiling-points and some of the other more important physical characteristics determined, briefly to publish the results, together with the process of fractioning, preliminary to a complete memoir at a more advanced stage of the work. Before this work had been accomplished, however, it becarne evident that the bodies contained in these mixtures could not be studied so satisfactorily by themselves as in comparison with other series of hydrocarbons, especially with reference to certain important questions of more general interest; for example, the question in regard to the increment of boiling-point corresponding to the addition of $\mathrm{C}_{3} \mathrm{H}_{2}$ in homologous series. It was therefore deemed advisable to extend the inquiry so as to include the naphthas from coal- and wood-tars, and the oil of cumin. And there are still other mixtures of hydrocarbons, that have been made the subject of previous research which must yet be brought into the works, in order to clear up, in a satisfactory manner, the confusion and obscurity that seem to exist in our publications regarding some questions relating to the different series of this class of bodies.
This digression from my original plan having caused much additional labor has necessarily delayed publication longer than was desirable, until now the results of more than three years of work have accumulated. In this connection I may remark, so far as regards petroleum, that I had nearly completed the fractional separations-except of the bodies of high boiling.pointso long ago as June, 1862, having been for a long time occupied with this work before the appearance, in that month, of the first memoir of Pelouze and Cahours on the same subject. At that time my work was considerably in advance of theirs, and their results differed widely from mine in some important particulars; yet after the publication of their memoir I felt reconciled to a continuance of the delay which had been caused by the change of plan above mentioned, considering it due to these chemists that they should have time to complete the publication of the results of their investigations before I should publish mine. Similar remarks might be made respecting the first publication of Schorlemmer, which appeared soon after, on the products of distillation
of cannel coal; this substance being so closely analogous to the Albert coal (upon the products of which I had at that time been long engaged) as to induce the belief that, under the same circumstances, either would afford the same products.

I.-On the Volatlle Hydrocarbong from Cóal-tar Naphtha, Oil of Cumin, and Cuminic Acid.

Part I.-Hydrocarbons from Coal-tar Naphtha.

In presenting the results of a re-examination of a series of substances upon which so much labor had already been bestowed, and upon the nature and properties of which so little doubt has seemed to exist, it may confer an interest on the subject to state briefly some of the more important results and conclusions that previous investigators have arrived at in the study of these substances.

The discovery by Faraday," in 1825, of benzole (" bicarburetted hydrogen") in the oil compressed from oil-gas, rendered it highly probable, and indeed led this distinguished philosopher to suspect, that this substance might be found in coal-tar naphtha. His search for it, however, proved unsuccessful, it having been first detected by Hofmann in 1845.' This chemist, however, did not attempt to isolate this body, and the bare fact of its pressence appears to be all that was definitely known of the composition of coal-tar naphtha prior to 1849 , in which year Mansfield ${ }^{4}$ published his elaborate and valuable research, being the first effort at a proximate analysis of this mixture which appears to have been attended with any considerable measure of success. Although a fatal accident, while engaged in his experiments, prevented Mansfield from completing the investigation which he had so well begun, yet the work that he had already published in an unfinished state must always be regarded as having contributed much towards a clear and definite knowledge of the nature of the neutral pyrogenous oils contained in coal-tar naphtha. Indeed, it may be said that little has since been added to our knowledge on this subject. Notwithstanding the incompleteness of his separations of the hydrocarbons, the extent to which he had carried them with the limited means employed is truly remarkable, and could not have been accomplished without an expenditure of labor, and a degree of patient endurance, which only those who have experienced the tediousness of such operations can appreciate.
Mansfield claimed to show that the light coal-tar naphtha is composed of a mixture of four distinct hydrocarbons, boiling

[^28]within the range of 80° to $175^{\circ} \mathrm{C}$.; and probably having the general formula $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{\mathrm{n}-6}$. The first of these, which he found to boil constant at 80°, was proved to be identical with benzole, $\mathrm{C}_{12} \mathrm{H}_{8}$. The second, boiling at about 113°, was determimed, from certain reactions, to be identical with toluole, $\mathrm{C}_{14} \mathrm{H}_{8}$. The special study of this body was deferred, however, with the remark that it had not yet been isolated in a state of sufficient purity to claim an analysis. The third body, boiling at about 140° to 145°, was said to present all the characteristics of cumole, $\mathrm{C}_{18} \mathrm{H}_{12}$; but this view was not founded on a careful study and comparison of the chemical or physical properties of these bodies, but was merely an expression of opinion in advance of anticipated results. Of the fourth body, boiling at about 170° to 175°, Mansfield remarks that it bears so strong a resemblance, in odor and other properties, to cymole, $\mathrm{C}_{20} \mathrm{H}_{14}$, as to induce the belief that this substance is identical with the hydrocarbon existing in oil of cumin. It thus appears that of the four bodies which Mansfield detected in coal-tar napbtha, benzole is the only one which he had studied in any detail. Indeed he distinctly states that the others had not yet been isolated in such a state of purity as to entitle them to analysis. And yet his conjectures as to the identity of these bodies, thrown out by way of preliminary no- tice of results which were acknowledged to be incomplete and inaccurate, have nevertheless been extensively quoted, and generally received as established facts. In addition to the bodies already mentioned, Mansfield also detected the presence of a body more volatile than benzole, having an alliaceous odor, which he found to boil between 60° and 70°. Ritthausen made a re-examination of the light coal-tar naphtha, in order to obtain the hydrocarbons in a state of greater purity, and to prove the correctness of Mansfield's view of the composition of this naphtha. In regard to the results which he obtained, he says they fully confirm those of Mansfield. Of the body which Mansfield designated as probably identical with cymole, and of the oil more volatile than benzole, Ritthausen obtained quantities too small to admit of investigation. In regard to the latter, however, he remarks, that to Mansfield's account he can add, that "its nitro-product quite resembles that of benzole, and hence that at all events it belongs to the series $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{\mathrm{n}-6 \text {, }}$, and perhaps has the formula $\mathrm{C}_{1}{ }_{0} \mathrm{H}_{4}$." ${ }^{\prime \prime}$ It is to be regretted that Ritthausen

[^29]also omitted to analyze and determine the vapor density of any one of these substances, he having added, therefore, nothing more than a confirmation of the results of Mansfield. He gives the boiling-point of benzole at 80°, of toluole at 109°, and of the so-called cumole at $139^{\circ}-140^{\circ}$, which will be found to agree very nearly with my own determinations. Church, ${ }^{8}$ in the following year, published a paper on the "Determination of Boiling. points" in the "Benzole Series." I cannot better present his results than by quoting the following table:-

Benzole, Toluole, Xylole, Cumole, Cymole,

Formula.

$$
\begin{aligned}
& \mathrm{C}_{12} \mathrm{H}_{6}=\mathrm{C}_{6} 3\left(\mathrm{C}_{2} \mathrm{H}_{2}\right) \\
& \mathrm{C}_{12} \mathrm{H}_{8}=\mathrm{C}_{6} 4\left(\mathrm{C}_{2} \mathrm{H}_{2}\right) \\
& \mathrm{C}_{16} \mathrm{H}_{110}=\mathrm{C}_{6}^{6} 5\left(\mathrm{C}_{2} \mathrm{H}_{2}\right) \\
& \mathrm{C}_{18} \mathrm{H}_{12}=\mathrm{C}_{6}^{6}\left(\mathrm{C}_{2} \mathrm{H}_{2}\right) \\
& \mathrm{C}_{20} \mathrm{H}_{14} 7\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)
\end{aligned}
$$

Boiling-point. Difference.
\(\left.\begin{array}{r}80^{\circ .} .8

103^{\circ} .7

126^{\circ} .2

148^{\circ} .4

170^{\circ} .7\end{array}\right\}\)	$22^{\circ} .9$
$22^{\circ} .5$	
$22^{\circ} .2$	
$22^{\circ} .3$	

Church states that he obtained all of these bodies from coalnaphtha, and also that he obtained benzole from benzoic acid, toluole from toluylic acid, xylole from woodspirit, cumole from cuminic acid, and cymole from oil of cumin; and that he has found the corresponding bodies from these different sources to be identical. It will be observed that Church claims to have - found in coal-tar a body boiling at $126^{\circ} \cdot 2$, which he calls xylole, thus supplying from this source a fifth member of the benzole series; whereas Mansfield and Ritthausen found only four bodies within the range of temperature indicated by the table. It will also be observed that his determination of the boiling-point of toluole is much lower, and that of cumole much higher, than the corresponding determinations of Mansfield and Ritthausen; thus giving room for a middle member between them, and preserving a remarkable uniformity of difference-viz. 22° and a fraction-between the boiling-points of any two contiguous members of the series, for the addition of $\mathrm{C}_{3} \mathrm{H}_{2}$.

That the earlier investigators had found in coal-tar naphtha only the two lower members ($\mathrm{C}_{12} \mathrm{H}_{8}$ and $\mathrm{C}_{14} \mathrm{H}_{3}$) and the two upper members ($\mathrm{C}_{18} \mathrm{H}_{12}$ and $\mathrm{C}_{2}{ }_{0} \mathrm{H}_{14}$), indicating the absence of the middle member ($\mathrm{C}_{16} \mathrm{H}_{10}$) of the benzole series, was always to me an anomaly which I could not reconcile with any plausible theory in regard to the formation of these bodies; and I was led, therefore, to question whether this body had not been overlooked in making the separations. The alleged discovery of this body in coal-naphtha by Church, together with tile than benzole is by no means composed of a single substance. Having had a
large quantity of this volatile material at my command, I have been able to obtain
the separate constituents apparently in a state of great purity. Of the two bodies
separated, one of them boils constant at about 40°, and the other near 0°. Both are
compounds containing sulphur, and therefore will more properly form the subject
of a separate paper.

* Philosophical Magazine, 1855, [4], ix, 256.
the beautiful uniformity of the boiling-point difference throughout the series which he presented, and the apparent care with which the whole research had been conducted, led me to regard his results as being more reliable than those which had previously been published. I remained under this conviction until I had discovered the boiling-point difference of 30° in other series of hydrocarbons,' which led me to doubt the accuracy of Church's determinations of boiling-points, and to consider those of Mansfield and Ritthausen as probably more correct.

In the first paragraph of his paper, Church remarks that, "although doubts still remain as to the relations of these bodies to one another, yet their composition has been ascertained with certainty." It does not appear, however, that an analysis or vapor density of any one of the members of this series, as obtained from coal-tar, except benzole, had ever been published.
As already indicated by the title of his paper, it appears to have been the design of Church to treat only of the boilingpoints of these bodies; yet finding that his preparations of toluole-prepared both from coal-naphtha and toluylic acid-gave a boiling-point differing considerably from observations previously published, he took occasion to make analyses of his preparations of this substance, which he regards as "perfectly satisfactory;". and adds that "the details and numerical results of these analyses, and of many others which the present inquiry necessitated, the limits and special object of the present paper do not admit of my giving here." As he undertook to correct the work of his predecessors, to do which fairly would seem to require the publication of these "details and numerical results," their omission is to be regretted, the more since he found space and purpose for matter apparently less relevant to his special subject. I am prompted to these remarks from having been led to undertake the tedious task of making a re-examination of coal-tar naphtha mainly on account of the disagreement between Church's determinations, which I have found to be mostly incorrect, and those which had been previously published.
In addition to the bodies mentioned in the foregoing table, Church alludes to the discovery of two other bodies, boiling respectively at 97° and 112°. Subsequently, in a "Note on Parabenzole, a new Hydrocarbon from Coal-Naphtha," ${ }^{10}$ he publishes the details of an investigation of the former of these two bodies, which he finally found to boil "perfectly constant at $97^{\circ} 5$ ", and to be isomeric with benzole.
I think I shall be able to show in the following pages, -

1. That coal-tar naphtha contains only four hydrocarbons within the range of 80° to 170°, as taught by Mansfield, and confirmed by Ritthausen.

[^30]2. That the benzole series within that range of temperature is limited to four members, and therefore does not contain five, as has been generally supposed.
3. That these four members have the boiling-points $80^{\circ}, 110^{\circ}$, 140°, and 170 respectively; and consequently that the boilingpoint difference in this series, for an elementary difference of $\mathrm{C}_{3} \mathrm{H}_{2}$, is 30°, instead of 22° and a fraction as alleged by Church.
4. That the body obtained from coal-tar naphtha, boiling at 140°, is not identical with cumole from cuminic acid, as assumed by Mansfield, nor even isomeric with it; but that it has the formula which has been assigned to xylole, containing $\mathrm{C}_{3} \mathrm{H}_{3}$ less than that of cumole.

5 . That the body obtained from coal-tar naphtha, boiling at 170°, is quite a different body from cymole obtained from oil of cumin,-with which it has been considered identical, as assumed by Mansfield,-these bodies differing from each other by $\mathrm{C}_{2} \mathrm{H}_{3}$.
6. That cumole from cuminic acid, and cymole from oil of cumin, do not even belong to the benzole series.
7. That the Parabenzole of Church was in all probability only a mixture of benzole and toluole.

Of the Quality of Naphtha employed in this Investigation.-As I have taken occasion to question the existence in coal-tar naphtha of two of the substances which it has been said to contain, -viz. cymole, $\mathrm{C}_{3} \mathrm{H}_{14}$, and parabenzole, $\mathrm{C}_{13} \mathrm{H}_{6}$, 一it is a matter of some importance that I should clearly state the kind or quality of the naphtha employed. The tar from which this naphtha was obtained was a mixture of the tar furnished by the following companies, viz. the New York and the Manhattan Gas-Light Companies, of New York; Brooklyn Gas-Light Company, of Brooklyn, N. Y.; Albany Gas-Light Company, of Albany, N. Y.; and the Gas-Light Companies of Newark and Jersey City, in New Jersey. It was mostly made from Cannel and Newcastle caking coals, which were imported from Liverpool, and mixed in the proportions of one-third to five-eighths Cannel, to two-thirds to three-eighths Newcastle. In some of the works a portion of the caking coal was from mines in Pennsylvania. The tar from these different gas-works, as regularly received at the naphtha manufactory, was poured into a large tank provided for this purpose. The stills were uniformly charged with tar directly from this tank; so that there can be no doubt that the naphtha employed was made from a mixture of the tar supplied by the six different companies above enumerated. Most of the gas-works referred to are large, the annual production of tar amounting in the aggregate to upwards of 50,000 barrels. It does not appear, therefore, that the absence of the bodies in question from the naphtha which I have employed, can be attributed to any peculiarity of the tar. The
naphtha was prepared in a manufactory in New York over which I had at that time personal control, and was purified under my own direction. The process of purification did not differ essentially from that in common use in England, the reagents employed being oil of vitriol and alkali. One hundred barrels of the purified naphtha were subjected, under my personal superintendence, to repeated fractional distillation from an iron still. The chief object in operating on so large a quantity was to insure the detection of any constituent which might be present in small proportion. The process of fractioning was continued on this large scale until the separations had so far progressed, that at certain temperatures a full barrel of distillate would come off from the ten-barrel still employed, without a variation of more than one or two degrees of the thermometer. Finally, a sample gallon was taken from each of the barrels composing the last series of products, and these samples were set aside for this investigation, which was afterwards conducted in the laboratory.

Of the Results of Fractional Condensation.-Such of the samples above mentioned as promised to yield the different constituents of the naphtha in the largest proportion were subjected to repeated series of fractionings by my process of "Fractional Condensation." ${ }^{12}$ As full details of this process have already been given in the memoir referred to, it will be needless to repeat them here. It will suffice to say that the fractioning in this case was conducted in all respects as there described, and continued until the whole of the naphtha taken, boiling between 80° and 170°, had accumulated at the four points already indicated, viz: at $80^{\circ}, 110^{\circ}, 140^{\circ}$, and 170°; or so nearly the whole that the intermediate quantities had become too small to admit of being further operated upon. Having, therefore, so thoroughly exhausted the intermediate fractions, I can have no hesitation in asserting that no other body than those alluded to was present in the naphtha,-at least, in appreciable quantity,hence, that the parabenzole of Church was probably only a mixture of benzole and toluole. I may here remark that each of the sample-gallons employed, when subjected to my process of fractioning, was found to contain, in variable proportion, all of the constituents of the naphtha.

[^31][^32]Determination of Boiling-point.-This experiment was conducted in a tubulated retort, operating on $150-200$ c.c. of the benzole, containing some pieces of sodium. The benzole employed had previously been repeatedly boiled with sodium, until the latter ceased to have any action. The thermometer bulb extended into the liquid ${ }^{13}$ nearly to the bottom of the retort. A second thermometer was attached, by means of flexible bands, to the side of the one in the retort; the bulb being placed, during ebullition, at a point midway between the center of the cork $\left(-5^{\circ}\right)$ and the upper end of the mercurial column, viz: at 35°. A paper screen, closely fitting the thermometer spindle, was placed across at the top of the cork. With the retort neck slightly inclined upward, and cooled to prevent the escape of vapor, ebullition was continued for a considerable time, until the mercury in the thermometer ceased to rise. The lamp being removed for the moment, the neck of the retort was then turned downward, and quickly inserted in a Liebig's condenser. On replacing the lamp, distillation commenced almost immediately at 79°.

Observations.-

greater convenience, etc., is generally acknowledged to be preferable-is probably due to the fact that the more common specific gravity bottle is not suited to this purpose. Indeed, with a volatile body that bottle cannot serve for an accurate determination at any temperature. A reform in this regard being highly desirable. I would call attention to a specific gravity bottle which I obtained a few years ago from Fastrè, in Paris, which is admirably adapted for taking specific gravities, even of volatile liquids, at a low temperature. The accompanying tigure represents this bottle one-half its natural size. Who was the author of this particular form I am not informed, although it may have been already noticed in some publication. A bottle analogous to this is figured by Schiel ("Einleitung in das Studium der organischen Chemie," page 76); but his bottle has an oval bottom, which makes it less convenient. The particular advantage of this bottle over the more common one, which advantage Schiel omits to notice, consists in this: that the space or clamber above the line on the capillary neck is large enough to allow for the expansion of the liquid consequent upon the elevation of temperature from 0° to that of the surrounding air; and that the ground stopper fits so clnsely that no perceptible loss from evaporation can tuke place during the time occupied by an experiment.

In order to furnish determinations of the specific gravities of the
 bodies to be treated of in these researches, which shall be comparable with corresponding determinations by other observers, I shall generally record one or more special determinations made for this parpose.
${ }^{13}$ For critical remarks on the question of propriety of placing the thermometer bulb in the liquid, etc.; and for further details of the method of taking boilingpoints, especially at low temperatures, see a following memoir, "On the Influence of $\mathrm{C}_{3} \mathrm{H}_{2}$ on the boiling-points in Homologous Series of Hydrocarbons," etc.

Distillan therefore occupied one hour and ten minutes, during which time the thermometer rose only $0^{\circ} 6$, being fifty minutes in rising $0^{\circ} .2$ from $79^{\circ} 4$ to $79^{\circ} 6$, at which temperature it had distilled nearly to dryness. Height of the barometer during the experiment reduced to $0^{\circ}=761 \cdot y \mathrm{~mm}$. Taking $79^{\circ} \cdot 4$, this being the average of the last five observations, and applying the corrections for the upper column of mercury, and for atmospheric pressure, according to the directions given by Kopp, ${ }^{14}$ we find the corrected boiling point of benzole to be $80^{\circ} 1$.

Analysis.- 0.2339 gram of benzole gave, by my process ${ }^{28}$ of combustion in a stream of oxygen gas, 0.7903 of carbonic acid, and 0.1683 of water.

		Calculated.		Found.
Carbon, Hydrogen,	C_{12}	72	92.31	$92 \cdot 15$
	H_{6}	6	$7 \cdot 69$	$7 \cdot 99$
		78	100.00	$100 \cdot 14$

Determination of Vapor Density. -

Temperature of balance,	15°
Temperature of oil bath,	171°
Height of barometer,	$764 \cdot 1^{\mathrm{mm}}$ at 9°
Increment of balloon,	0.2447
Capacity of balloon,	265 c.e.
Density of vapor found,	2.688
Theory, $\mathrm{C}_{12} \mathrm{H}_{6}=4$ volumes,	2.698

2. Toluole.-Specific gravity, 0.8824 at 0°, and 0.872 at 15°.

Determination of Boiling-point.-The preparation employed for this determination had also been repeatedly boiled with sodium until the latter ceased to have any action upon it. Operating in this case also upon a pretty large quantity, the distillation occupied about an hour. The experiment was conducted as detailed under the head of benzole. Distillation commenced at $110^{\circ} \% 6^{;}$ two minutes later, the temperature had fallen to $110^{\circ} 4$, at which point it remained absolutely constant during the lapse of fortyeight minutes. Five minutes later the temperature had risen again to $110^{\circ} 6$; and five minutes later to $110^{\circ} 8$, at which point, having distilled nearly to dryness, the operation was suspended. The corrections for pressure $\left(-0^{\circ} 16\right)$ and for the upper column of mercury-which, with the thermometer used in this experiment, was only 7° in length,-gives $110^{\circ} .3$ as the corrected boiling-point of toluole. Church ${ }^{18}$ remarks that toluole, when distilled in the ordinary manner, is liable to become oxydized, and its boiling-point thereby raised, in consequence of the upper part of the retort becoming heated above the boiling-point of toluole. He found that toluole which, by ordinary distillation,

[^33]had come over between 108° and 109°, would distil eight-tenths between 103° and 104°, after repeated purification with sodium. I would therefore state that my preparation of toluole was never subjected to a temperature above its boiling-point; and that I have never noticed any reduction of the boiling-point of this body by purification with sodium.

Analysis.- 0.1628 gram of toluole gave, by combustion in a stream of oxygen gas, 0.5447 of carbonic acid, and 0.1315 of water.

		Calculated.		Found.
Carbon,	C_{14}	$\boxed{84}$	$\mathbf{9 1 . 3}$	91.20
Hydrogen,	H_{8}	$\boxed{8}$	8.7	8.97
		$\boxed{92}$	100.0	100.17

Determination of Vapor Density.-	
Temperature of balance,	17°
Temperature of oil bath,	209°
Height of barometer,	760.1^{mm} at 15°
Increment of balloon,	0.287
Capacity of balloon,	$249.5 \mathrm{c.c}$
Density of vapor found,	3.2196
Theory, $\mathrm{C}_{14} \mathrm{H}_{8}=4$ volumes,	3.1822

3. Xilole (Cumole of Mansfield and Ritthausen).-Specific gravity, 0.878 at 0°, and 0.866 at $15^{\circ} 5$.

Determination of Boiling-point.-This determination was made in all respects like that of benzole, the xylole employed having been also subjected to the same treatment. The quantity operated upon was, however, smaller, and the experiment conducted more rapidly. Distillation began at $138^{\circ} \cdot 6$, and terminated at 139°, having distilled almost to dryness. The time occupied was seventeen minutes. Taking the average of these observations, viz: $138^{\circ} 4$, and applying the customary corrections, we find $139^{\circ} 8$ to be the corrected boiling-point of xylole.

Analysis.- 0.1333 gram of xylole gave, by combustion in a stream of oxygen gas, 0.4413 of carbonic acid, and 0.1185 of water.

Carbon, Hydrogen,	$\begin{aligned} & \mathrm{C}_{16} \\ & \mathrm{H}_{10} \end{aligned}$	Calculated.		Found.
		96	90.57	
		10	$9 \cdot 43$	987
		106	100.00	$100 \cdot 16$

Determination of Vapor Density.-

Temperature of balance,	$16^{\circ} .5$
Temperature of oil bath,	$207^{\circ} \cdot 5$
Height of barometer,	760^{mm} at 14°
Increment of balloon,	0.3528
Capacity of balloon,	228 e. \mathbf{c}.
Density of vapor found,	3.7517
Theory, $\mathrm{C}_{46} \mathbf{H}_{10}$	3.6665

These results show clearly that this body has the formula $\mathrm{C}_{18} \mathrm{H}_{10}$, and that it is doubtless the third member of the benzole series. ${ }^{17}$ Although xylole, first discovered by Cahours in the oil separated from wood-spirit, has had a much lower boil-ing-point assigned to it, I have retained that name for this body, since the results which I have obtained in the study of the light oil from wood-tar indicate that when the corresponding body from this source is in a state of equal purity, its boiling-point will agree with the above determination. I may here mention that in my researches on the light oil from wood-tar I have obtained a body at about 140°, but nothing between that and 110° (these temperatures are not corrected), although special pains were taken to work up the intermediate fractions. So that I am in a position to justify the assertion that no other body was present in appreciable quantity between the temperatures mentioned.

That this body from coal-tar naphtha, boiling at 140°, is not identical with cumole from cuminic acid, will be made apparent on comparison of the results above stated, with those which will be given when treating of cumole.
4. Isocumole (Cymole of Mansfieid). -Specific gravity, 0.8643 at 0°, and 0.853 at 15°.

Determination of Boiling-point.-This was conducted with the usual precautions, and under conditions similar to those detailed above. The distillation, as in the foregoing determinations, was continued nearly to dryness, and occupied twenty-five minutes. Before distillation was commenced, the temperature of the boiling liquid was found to be $166^{\circ} 5$, and at the close of distillation 167°. Applying the customary corrections to the average of these observations, viz: $166^{\circ} 75$, we obtain for the corrected boiling-point $169^{\circ} 8$.

Analysis.- 0.1944 gram of the substance gave, by combustion in a stream of oxygen, 0.6366 of carbonic acid, and 0.1896 of water.

Carbon, Hydrogen,		Calculated.		Found.
	C_{1}	108	$90 \cdot 00$	89.31
	H_{12}^{18}	12	10.00	$10 \cdot 84$
		120	$100 \cdot 00$	$100 \cdot 15$

[^34]
Determination of Vapor Density.-

Temperature of balance,	16°
Temperature of oil bath,	211°
Height of barometer,	$758^{\circ} \cdot \mathbf{4}^{\mathrm{mm}}$ at 14°
Increment of balloon,	0.4939
Capacity of balloon,	$221 \mathrm{c}. \mathrm{c}$.
Density of vapor found,	4.7281
Theory, $\mathrm{C}_{20} \mathrm{H}_{16}=4$ volumes,	4.7028
Excess found,	$\boxed{.0253}$

The calculated density on the formula $\mathrm{C}_{30} \mathrm{H}_{14}$ is 4.635 ; which, compared with the density found, would increase the excess to 0.093 . Although the determination agrees more nearly, indeed almost exactly, with the calculated density on the formula C_{2} 。 H_{18}, the calculation on the formula $\mathrm{C}_{2}{ }_{0} \mathrm{H}_{14}$ does not show a greater variation from the density found, than we have observed to be quite frequent with hydrocarbons of so high boiling-point; so that it may be questionable which of these formule is the true one. I cannot regard the determination of a vapor density as reliable for fixing the formula nearer than to within two equivalents of hydrogen. In the absence of opposing evidence, it will be wiser, however, to take the formula which agrees best with the results of experiment; at least until it shall be shown that the discrepancy between the calculated and observed vapor densities of bodies of high boiling-point, which appears to be so frequent, is nearly constant, or variable by some fixed law by which the amount of the error, in any given case, may be pretty nearly estimated. I shall therefore regard this body as having the formula $\mathrm{C}_{3} \mathrm{H}_{10}$, which is also better supported by the results of analysis. On account of its source, and close resemblance to oil of turpentine, I think of no better appellation for this body than cumo-oil of turpentine; thus adding another to the long list of isomers of the former substance, the chemical relations of which stand in so much need of being further studied.
2. Cumole.-This body was first obtained by Gerhardt and Cahours, ${ }^{33}$ by the dry distillation of a mixture of six parts of crystallized cuminic acid, and twenty-four parts of caustic baryta. Abel ${ }^{23}$ obtained the same result by substituting caustic lime for the baryta. His product, however, was found to boil 4° above that of Gerhardt and Cabours. My preparation was also made by the use of lime. Although the results of my experiments confirm the conclusions arrived at by Gerhardt and Cahours as to the composition of this body, yet the numerical results differ considerably from theirs. I have also observed some new facts regarding the formation of this body. They have described the

[^35]reaction between the baryta and cuminic acid as being much more simple than my experiments seem to indicate. On this point they remark: "The formation of cumene is easily explained. In effect, the cuminic acid being represented by $\mathrm{C}_{4}{ }_{0} \mathrm{H}_{24} \mathrm{O}_{4}$, it appears that $\mathrm{C}_{4} \mathrm{O}_{4}$, that is to say, 2 equivalents of carbonic acid, are retained by the baryta, while $\mathrm{C}_{36} \mathrm{H}_{24}$ are set free.' ${ }^{\prime 24}$
$$
\mathrm{C}_{2}{ }_{0} \mathrm{H}_{12} \mathrm{O}_{2}=\mathrm{C}_{2} \mathrm{O}_{2}+\mathrm{C}_{18} \mathrm{H}_{12} .
$$

In another place (p. 88) they remark, that "by suitably managing the heat, and employing no more than 6 gr. of cuminic acid at a time, no other products are ever obtained than those which we mention."93 My experiments show that this reaction is ny no means so simple as thus described. The crude product obtained from the mixture of lime and cuminic acid, when subjected to a simqle distillation from a tubulated retort, was found to distil between 155° and 250°, leaving a residue at the latter temperature which became semi-fluid on cooling. The distillate thus obtained gave, by my process of fractional condensation, an oil boiling at $151^{\circ} \cdot 1$, and a residue at 170°. It is not improbable that the latter may prove to be mostly cymole, $\mathrm{C}_{20} \mathrm{H}_{13}$; but the quantity was too small to admit of pursuing this inquiry with the probability of deciding the question. There is evidence, however, that the product obtained by Gerhardt and Cahours was not simply pure cumole, as they described it, but a mixture of different bodies, which would necessitate a more complicated reaction than that which they assigned. Gerhardt and Cahours found the boiling-point of their cumole to be constant at 144°. Four years later, Gerhardt, ${ }^{26}$ having occasion to make a very accurate determination of the boiling-point of this body, in connection with his research to find a law governing the boilingpoints of the hydrocarbons, found its boiling-point to be 9° higher, viz. 153°, which is but 2° higher than my own determination. The disagreement between their determinations, it being so considerable, may be more reasonably accounted for on the supposition that they operated, in the first instance, upon a mixture of different bodies; and yet I cannot see how they could have obtained the product boiling below 150°. Additional evidence on this point will be found in the discrepancy which appears between their determination of the vapor density, and that calculated upon theory.

[^36]The specific gravity of my preparation of cumole was found to be 08792 at 0°, and 0.8675 at 15°.

Determination of Boiling-point.-The quantity of material being quite small, this determination was made in a large test tube, with the usual precautions. It had not a perfectly constant boiling-point, the distillation ranging from $148^{\circ}{ }^{\circ} 4$ to $151^{\circ} 6$. Applying the proper corrections to the mean of these observations, gives, for the boiling-point of cumole, $151^{\circ} \cdot 1$, which is doubtless a little too high from the impracticability of making a complete separation with the small quantity of material employed. If the boiling-point difference between cumole and cymole, for the difference of $\mathrm{C}_{2} \mathrm{H}_{2}$ in their elementary formulæ, is 30°, as there is every reason to believe, then the boiling-point of cumole should be 150°, as I have found the boiling-point of cymole to be but a fraction under 180°.

Analysis.- $0 \cdot 1700$ gram of cumole gave, by combustion with oxyd of copper, 0.563 of carbonic acid, and 0.1557 of water.

	Calculated.			
Carbon,	C_{18}	108	90.00	90.35
Hydrogen,	H_{12}	$\frac{12}{120}$	$\frac{10.00}{100.00}$	$\frac{10.18}{100.53}$

Determination of Vapor Density.-

Temperature of balance,	17°
Temperature of oil bath,	$203{ }^{\circ}$
Height of barometer,	$760 \cdot 1{ }^{\mathrm{mm}}$ at 15°
Increment of balloon,	$0 \cdot 4428$
Capacity of balloon,	232 c.c.
Density of vapor found,	4.2003
Theory, $\mathrm{C}_{18} \mathrm{H}_{12}=4$ volume	$4 \cdot 151$

This determination, as well as the results of analysis, confirms, therefore, the formula which Gerbardt and Cahours had assigned to this body. I had anticipated a different result from this, inasmuch as the hydrocarbon from coal-tar naphtha, which I have called iso-cumole, boiling at 170°, or nearly 20° higher than cumole from cuminic acid,-had been found, as I have shown above, to have the formula $\mathrm{C}_{18} \mathrm{H}_{12}$. I am forced to the conclusion, therefore, that these two bodies are isomeric, and belong to different series. A preliminary examination of their behavior with reagents indicates that their chemical properties are also different. These will be treated of on a future occasion, in Part III.
3. Cymole.-Notwithstanding that this body is so much more volatile than the cuminole with which it is associated in the oil of cumin,-there being a difference of 40° between their boiling. points,-Gerhardt and Cahours found it necessary to resort to
chemical means, viz: treatment with fused potash, in order to isolate it. Being desirous of testing the efficiency of my process in effecting the separation, the preparation employed in this investigation was obtained by fractional condensation, this process having been found as effective in this as in other cases. This will appear by a comparison of the results obtained in the study of this body before and after treatment with concentrated sulphuric acid, which is also effective to remove cuminole.
Specific gravity.-

Determination of Boiling-point before Treatment with Sulphuric Acid. - The preparation was found to distil to dryness between $175^{\circ} 8$ and 177°. The temperature remained absolutely constant at 176° during the lapse of ten minutes, and occupied fifteen minutes in rising from 176° to $176^{\circ} 5$. Taking the mean of the former numbers, viz: $176^{\circ} \cdot 4$, and applying the proper corrections for pressure, etc., we obtain $179^{\circ} 5$ for the boiling-point of cymole.

After Treatment with Sulphuric Acid. -The preparation distilled to dryness between 176° and 177°, the temperature remaining thirteen minutes constant at $176^{\circ} \cdot 3$, indicating that no essential change in the boiling-point had been produced by the acid treatment. It was nevertheless evident that some impurity was being removed by the acid, as the first portions of the latter became dark-colored and thickened on being agitated with the oil. Successive portions of acid were therefore employed, until it ceased to produce any marked effect.

Analysis before Treatment with Sulphuric Acid.- 0.1589 gram of cymole gave, by combustion in a stream of oxygen gas, 0.5200 of carbonic acid, and 0.1532 of water.

Carbon, Hydrogen,	$\begin{aligned} & \mathrm{C}_{20} \\ & \mathrm{H}_{14} \end{aligned}$	Calculated.		Found.
		120	89.55	89.25
		14	$10 \cdot 45$	10.72
		134	$100 \cdot 00$	09966

After Treatment with Sulphuric Acid, and Distillatian in Vacuo. -0.1623 gram of cymole, by combustion in a stream of oxygen gas gave 0.5324 of carbonic acid, and 0.1561 of water.

				Catculated.		Found.
Carbon,	C_{20}	120	89.55	89.46		
Hydrogen,	H_{14}	$\frac{14}{134}$	$\frac{10.45}{100.00}$	$\frac{10.68}{100.14}$		

The removal of impurity by treatment with sulphuric acid had therefore hardly a sensible effect on the results of analysis.
Determination of Vapor Density before Treatment with Sulphuric Acid.-

Temperature of balauce, $\quad 11^{\circ}$
Temperature of oil bath, 259°
Height of barometer, $\quad 740.6^{\mathrm{mm}}$ at 5°
Increment of balloon, $\quad 0.4446$

Capacity of balloon, 239 c.c.
Density of vapor found, . 4.742
Theory, $\mathrm{C}_{20} \mathrm{H}_{14}=4$ volumes, $\quad 4.6351$
After Treatment with Sulphuric Acid.-

Temperature of balance,	$25^{\circ} \cdot 5$	
Temperature of oil bath,	255°	
Height of barometter,	760^{mm} at 26°	
Increment of balloon,	0.4647	
Capacity of balloon,	$232 \mathrm{c.c}$	
Density of vapor found,	4.7536	
Ditto before treatment with HOSO_{3},	$4^{\circ} 742$	
Difference,	0116	

The results of the two determinations are therefore almost identical.

A comparison of the above results with those obtained in the study of isocumole, the body from coal-tar naphtha boiling at 170°, will show that the two bodies are far from being the same substance, as Mansfield assumed, and that they have a constitutional difference of $\mathrm{C}_{2} \mathrm{H}_{2}$, and therefore doubtless belong to different series.

Nore.-I had hoped to be able to present on this occasion the results of the study of some of the more important reactions of the hydrocarbons treated of in the preceding pages,-at least, of those in regard to which I have differed from my predecessors; but as this work is yet incomplete, and as I am at present occupied with the study of other substances of more immediate interest, I will defer this branch of the subject for future consideration, in Part III. I may here remark, however, that the behavior of these bodies with reagents is such as to strengthen the conclusions already expressed in regard to them.
[To be concluded.]

Art. XIII.-On the nature of the Invisible Photographic Image; by M. Carex Lea, Philadelphia. In a letter to the Editors.

Some experiments in which I have lately been engaged seem to me to finally settle the long-contested question as to the nature of the invisible photographic image, and I hasten to send a very brief description of them, hoping it will be in time for your July number.

The view that the change which takes place in an iodo-bromized plate in the camera, is a purely physical one, that no chemical decomposition takes place, and neither liberation of iodine nor reduction of silver, has obtained a pretty general acceptance. But latterly it has been opposed by two distinguished photographers, Dr. Vogel and Major Russel. The former affirms that iodid of silver "is never sensitive unless there is a body present capable of taking iodine from it under the influence of light. And Russel believes that the developed image is chiefly produced at the expense of the silver haloid in the film.

The following experiments seem to me to decisively close this controversy in favor of the physical theory.

Experiment 1.-If the iodid or bromid of silver in the film undergoes decomposition in the camera, and still more, if the developed image is formed at its expense, the film of iodo-bromid must necessarily be greatly consumed in the development under the dense portions of the negative, which it has contributed to form.

To settle this point, I exposed and developed an iodo-bromized plate in the ordinary manner. Then, instead of removing the unchanged iodid and bromid by fixing in the ordinary manner, I took measures to remove the developed image without affecting the iodid and bromid. This I succeeded in doing with the aid of a very weak solution of acid per-nitrate of mercury. Now, if the iodid, or bromid, or both, had been in any way der composed, to form, or aid in forming, the developed negative image, when this came to be removed, there should have been left a more or less distinct positive image, depending upon varying thicknesses of iodid and bromid in the film, much like a fixed negative that has been completely iodized. Nothing of this sort was visible, the film was perfectly uniform, just as dense where an intense sky had been, as in those parts which had scarcely received any actinic impression, and looking exactly as it did when it first left the camera, and before any developer had been applied.
This experiment seems sufficiently decisive. But the follow. ing is far stronger.

Experiment 2.-A plate was treated in all respects as in No. 1, except that the application of the nitrate of mercury for removing the developed image was made by yellow light. The plate, now showing nothing but a uniform yellow film, was carefully washed, and an iron developer, to which nitrate of silver and citric acid had been added, was applied. In this way the original image was reproduced, and came out quite elearly with all its details.

Now as every trace of a picture and all reduced silver had been removed by the nitrate of mercury, it is by this experiment absolutely demonstrated that the image is a purely physical one, and that after having served to produce one picture, that picture may be dissolved off, and the same physical impression may be made to produce a second picture by a simple application of a developing agent.
Philadelphia, June 14, 1865.
P. S.-Since the above was written, I have repeated the experiment with a pyrogallic development with similar results. Both the first and second developments may be made with an iron developer, or both with a pyrogallic. The experiment succeeds without the least difficulty in either way.

Art. XIV.-Mineralogical Notices; by Prof. C. U. Shepard.

1. Syhedrite.-I have thus named, from its locality, a very pretty green mineral sent me in small quantity by Dr_{r} Thomas Oldham, Geological Surveyor General of India. It has the following properties: Hardness $=3 \cdot 5$. Gravity $=2 \cdot 321$. Massive; irregularly foliated in much-contorted individuals, resembling common varieties of massive highly crystalline dolomite. Color leek-green,-that of the purest Indian heliotrope. Translucent on the edges only. Luster vitreous. Cleavage in one direction very distinct. Brittle. Liable to alteration by exposure to the weather, when it loses its luster and cleavage, and assumes a pale greenish color, at the same time emitting an earthy odor if moistened.

Before the blowpipe it swells up slightly and undergoes easy fusion into a slightly grayish pearly-white enamel. With borax it gives imperfectly the reaction of iron. Its powder is applegreen, in which state it is but slowly attacked by long boiling in chlorhydric acid. The liquid does not gelatinize on cooling.

As I wished to preserve as much as possible of the material for an analysis by Mr. Tyler, I had but six grains to submit to a qualitative examination. Nevertheless, I kept as accurate an ac-
count as I was able of the results obtained. They were, Silica 55.00 , alumina $12 \cdot 00$, lime 6.00 , protoxyd of iron 4.50 , magnesia $2 \cdot 20$, water $13 \cdot 33=94 \cdot 15$.

The mineral occurs in trap at Thore-Ghat, in the Syhedree Mountains, Bombay.

Mr. W. S. Tyler has sent me the following account of his chemical examination, in a letter dated Göttingen, March 1, 1865.
"I have finished my examination of the Syhedrite, with the exhaustion of the material, and send you herewith the results at which I have arrived. Though not so satisfactory as could be desired, some conclusions as to the constitution of the mineral may nevertheless be drawn from them. I devoted most of the material, of course, to a search for the alkalies, but found none present. Of the rest, the larger part was used for the determination of the water and silica, and of the bases as well as possible. The determination of the silica failed, through an accident; and the precipitate of alumina and oxyd of iron was melted with nitrate of potassa to see if a trace of chrome were present. None, however, was found. So only the water, lime and magnesia were determined in this portion. The small remainder was again divided. One portion was heated with concentrated sulphuric acid in an atmosphere of carbonic acid, to discover, if possible, whether the iron was present as protoxyd or peroxyd; but the mineral appeared to be entirely insoluble. The other portion, of 0.095 grams, was devoted to a second determination of the water.

No. 1 (0.8239 grs.) was decomposed with hydrofluoric acid, and gave $0.1241 \mathrm{gr} . \mathrm{Al}^{2} \mathrm{O}^{3}, 0.025 \mathrm{gr} . \mathrm{Fe}^{2} \mathrm{O}^{3}, 00595 \mathrm{gr}$. CaO .

No. 2 (0.3695 gr.), decomposed in the usual way, with carbonate of soda and potassa, after ignition to determine the water, gave 0.0209 gr. $\mathrm{CaO}, 0.009 \mathrm{gr}$. MgO.

No. 3 (0.09 g gr.) gave 0.0156 gr . HO.
Analyses.

	1.	2.	3.	Average.	Oxygen.		Ratio
+1,	15.06	-		15.06	T08	7.03	2
Fe,	2.71			2.71	${ }^{6} 60$		
Ca,	$7 \cdot 23$	567		$6 \cdot 45$	1.84	342	1
Mg ,		246		$2 \cdot 46$	-98)		
悬,	-	16.38	16.42	1640	14.60	$14 \cdot 0$	4
Si,		loss)	=	56.92	30.36	$30 \cdot 36$	9

The simplest formula which corresponds to a ratio $1: 2: 9: 4$

 requires $\mathrm{SiO}^{3} 58.05, \mathrm{HO} 15 \cdot 47, \mathrm{Al}^{3} \mathrm{O}^{3} 14 \cdot 73, \mathrm{FeO} 2 \cdot 81, \mathrm{CaO}$ 6.71 , and $\mathrm{MgO}_{2} \cdot 34$. If the iron be calculated as peroxyd, wo have the following composition:

		Oxygeri.		Riatio.	
A1,	$15 \cdot 06$	$7.03)$	7.09		
He,	$3 \cdot 03$	$\cdot 90$	7.93	3	
Ca,	6.45	$1.84)$	2.82	1	
Mg,	$2 \cdot 46$	$\cdot 98$ S	282	1	R: $\mathrm{f}: \mathbf{S 1}: \mathrm{H}=1: 3: 11: 5$
H,	16.40	$14 \cdot 60$	14.60	5	
Si,	56.60	$30 \cdot 15$	$30 \cdot 15$	11	

So regarded it has very nearly the composition of stilbite, the oxygen ratio in which is $1: 3: 12: 5$, or $\left(\mathrm{R}_{\mathrm{Si}} \mathrm{i}^{2}+\mathrm{ZIS} i^{2}\right)+5$ aq, with Si 59.79 , Al 16.61 , © 9.06 and in 14.54 . The mineral differs, however, from stilbite in its complete insolubility in acids; and its green color would seem, in the absence of chrome, to indicate that the iron was contained as protoxyd. Want of material prevented any further attempts to solve this not altogether easy
question."
2. Octahedral Garnet at Middletown, Conn.-Ever since the china-stone quarry of feldspar has been wrought at Middletown, I have known of the occasional finding there of precious garnet in small drusy masses, either loose in cavities of feldspar or slightly adhering to the walls of such cavities. The color is intermediate between blood-red and hyacinth-red. The largest masses were rarely above half an inch in diameter. Their most ambiguous feature was, that they presented no facets of the rhombic dodecahedron or the trapezohedron, both of which forms were often to be met with in the cornmon red-brown garnet of the same locality. Prof. Johnston of Middletown, however, has lately sent me a small fragment, among some fragments of columbite, which shows distinct octahedral faces, thus evincing the relationship of the substance with the octahedral garnet of Elba.
3. Corundophilite at Chester, Mass. ${ }^{1}$-I find this mineral to be most abundant along with the emery of this locality, especially with the coarse granular variety (where the corundum is in rhombohedral crystals of a reddish-brown color); also with the margarite. Ilmenite, in thin curved laminæ, is likewise associated with the margarite.
4. American Sienna.-A valuable repository of this precious pigment exists in the town of Whately, which will soon be reported upon, and is destined to be brought into extensive use.
5. Diaspore in the Emery-rock of Chester, Mass.-I found this mineral on the surfaces of cross-joints of the emery-rock about a month since. It was associated with rose-colored amphodelite. On visiting the locality yesterday, I again discovered it similarly situated, but associated with radiated epidote; and in

[^37]a second instance, in very distinct crystals occupying little clefts, the crystals being implanted on massive or simply foliated diaspore of a delicate pink color, similar to the Hungarian variety. The crystals had the form usually figured for Goethite, and were of a blood-red color, owing to a very thin film of peroxyd of iron. When broken across, however, they showed the same tint as the massive mineral beneath. The hardness, cleavage, and blowpipe characters fully agreed with the inferences concerning the nature of the mineral derived from crystalline form.

The observation is the more interesting as adding another species to the associates of emery detected at this locality. I have elsewhere had occasion to point out two Connecticut localities of diaspore, one at Litchfield with corundurn and kyanite, the other at Trumbull with topaz and fluor.
6. Dipyre at Cinaan, Conn.-Mr. F. E. Seymour of New York gave me for examination an unknown mineral which I find to be dipyre. It occurs in small crystals disseminated through a white saccharoidal limestone, associated with minute crystals of pyrites and occasional scales of a nearly colorless mica. At first view the mineral seemed to be a glassy pyroxene; but on further examination it was found to disagree with that species both in form and in the absence of cleavage. The crystals are octagonal prisms, or rather right-square prisms, with their lateral edges deeply truncated, so as to possess very nearly equal breadth with the primary planes, to which they incline under angles of 135° (reflec. goniom.). Hardness $=6$. Gravity $=2 \cdot 6$. Semitransparent. Color gray with a tinge of blue. Fracture conchoidal to uneven. No traces of cleavage. Luster vitreous. Largest crystals one-third of an inch in diameter. Length about three times their diameter. I have seen but one crystal (out of fifty) that showed a tendency toward a regular termination. This exhibited one of the pyramidal planes common in meionite and scapolite. Before the blowpipe it immediately whitens, becomes nearly opake, and fuses easily with ebullition into a vesicular glass, the flame of the blowpipe being deeply colored yellow.
Amherst College, Feb. 15, 1865.

SCIENTIFIC INTELLIGENCE.

1. CHEMIStRy AND pHYSICS.

1. On the chemical constitution of the brain.-Liebreich has discorered in the fresh brain of man and animals a crystalline substance to which he has given the name of protagon (from rownajov). The brain of an animal is most conveniently obtained free from blood by cutting the carotid arteries and injecting water until the liquid which flows from Am. Jour. Sci- - Second Series, Vol. Xl, No. 118.-Jult, 1865.
the veins is colorless. After removal from the skull and adhering membranes, the brain is to be rubbed in a mortar to a fine paste and the mass shaken in a flask with water and ether. Cholesterin and substances soluble in water are thus removed; after filtering, the mass on the filter is treated with alcohol of 85 per cent at $45^{\circ} \mathrm{C}$. in a water-bath and then filtered through a water-bath filter. The filtrate is to be cooled to $0^{\circ} \mathrm{C}$., when an abundant flocky precipitate settles, which is to te collected upon a filter and washed with cold ether until the filtrate is free from cholesterin. The mass is then to be dried under the air-pump over sulphuric acid, moistened with a little water and dissolved in alcohol at $45^{\circ} \mathrm{C}$. The solution, after filtration, is to be allowed to cool gradually upon a water-bath to the mean temperature of the atmosphere, when the liquid will be found filled with microscopic crystals. These differ somewhat in appearance according to the quantity of alcohol employed; they may be purified by repeated crystallization. The pure protagon as obtained from the brains of various animals was found to have the formula

$$
\mathrm{C}_{232} \mathrm{H}_{241} \mathrm{~N}_{4} \mathrm{PO}_{44} .
$$

Dried under the air-pump over sulphuric acid, protagon is a light flocky powder soluble in hot alcohol and ether, but with difficulty soluble in these media when cold. Absolute alcohol at a temperature higher than $55^{\circ} \mathrm{C}$. decomposes protagon partially. With water, protagon swells up remarkably and gives an opaque, starch-like mass. More water gives a clear but opalescent solution; when boiled with saline solutions the protagon coagulates, but the coagulum is not a chemical compound, as the salts may be washed out. Glacial acetic acid dissolves protagon to a clear liquid, from which, on cooling, crystals may be obtained similar to those yielded by alcohol. When strongly heated, protagon melts, becoming at the same time brown, and finally leaves a carbonaceous mass which is difficult to burn and which has an aeid reaction when moistened.

When protagon is boiled for 24 hours with baryta water, glycerinphosphoric acid is formed, which unites with the baryta, while a new base which the author terms neurin is set free. Two fatty acids are formed at the same time, of which one appears to be stearic acid. The lead salt of the other acid is soluble in ether, but the acid is not the oleic. Neurin bas the formula $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{~N}$ as the simplest expression of the analysis; its platinum salt is $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{NCl}, \mathrm{PtCl}_{2}$. The above investigations are sufficient to show that protagon possesses an extremely complex structure, while the products of its decomposition separate it in a remarkable manner from other known substances. Liebreich considers it certain that the glycerin-phosphoric acid, oleo-phosphoric acid, cerebrin, \&c., of certain writers, are all secondary products of the decomposition of protagon. It is to be hoped that the author will pursue the investigation, which promises results of extraordinary importance and interest. -Ann. der Chemie und Pharm., cxxxiv, 29. W. G.
2. On an advantageous method of preparing oxygen.-Fleimann bas given a method of preparing oxygen from bleaching powder, which possesses much interest theoretically, and which appears also to offer some decided advantages over the ordinary processes. The method in question depends upon the fact that a concentrated solution of hypochlorite of lime, when warmed with a trace of freshly prepared moist hyperoxyd of
cobalt, is completely decomposed into oxygen and a solution of chlorid of calcium. No chlorate of lime is formed, but the whole of the active oxygen is given off. The evolution of oxygen takes place at a temperature of 70° to $80^{\circ} \mathrm{C}$, in a regular current, with a gentle foaming of the liquid. The author's explanation of the process is that a lower hyperoxyd constantly takes oxygen from the hypochlorite of lime and passes into a higher oxyd, which is decomposed into oxygen and the lower oxyd, and the process is then repeated. The same quantity of hyperoxyd will serve to decompose an indefinite amount of the hypochlorite; the quantity required is very small, from $\frac{1}{2}$ to $\frac{1}{10}$ of one per cent being sufficient. Instead of preparing the hyperoxyd of cobalt separately, a few drops of any soluble cobalt salt may be added to the solution of the hypochlorite, when a corresponding quantity of the hyperoxyd is formed. The advantages of the new mode of preparing oxygen, according to Fleitmann, are as follows. 1. The evolution of the gas is very regular and easily managed, so that the process may be used for lecture experiments in which a gas bladder cannot be employed. After the heat is once applied the lamp may usually be removed, the decomposition going on to the end. 2. All the oxygen of the material is obtained, which is not the case when peroxyd of manganese is heated. 3. The method is much cheaper than that by means of chlorate of potash.

It is to be regretted that the solution of hypochlorite of lime cannot be used in the raw unfiltered state, but must be perfectly clear, since a milky solution foams so that finally the whole contents of the vessel pass over. A clear solution is best obtained by decantation, one portion of of the hypochlorite being heated with water, and then this solution being employed to act upon a fresh portion of the bleaching powder. In this manner it is easy, from a good bleaching powder of 35 per cent, to obtain a solution which evolves 25 to 30 times its volume of oxygen. Upon the small scale, flasks may be employed with advantage, and these may be filled with the liquid to $\frac{5}{8}$ of their volume. Upon the large scale for technical purposes steam boilers would answer well, and would permit the evolution of gas under pressure-Ann. der Chemie und Pharm., cxxxiv, 64.
W. G.
3. On propyl-phycit.-Carius has given the name of propyl-phycit to a new alcohol, which affords the first instance of a tetratomic organic oxyd in combination with water, and the formula of which, in the ordinary equivalent notation, is $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{4}, 4 \mathrm{HO}$ or $\left.\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{H}_{4}\right\} \mathrm{O}_{8}$. The new alcohol is an amorphous, solid, tough and colorless substance. It does not crystallize, is soluble in water and alcohol, and has a very sweet taste. In its chemical relations, propyl-phycit resembles the group of sugars in a very remarkable manner. The solution, acilulated with a little chlorhydric, sulphuric, or even acetic acid, and evaporated in a water-bath becomes brown, while a body resembling humus separates, and the greater part of the alcohol is converted into a carbonaceous mass. Humus-like substances are also formed by boiling the alcohol with alkalies. Propyl-phycit prevents the precipitation of oxyd of copper by caustic potash and reduces silver from the ammonia nitrate. Dilute nitric acid oxydizes the alcohol and forms a new acid, $\left.\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{O}_{2} \mathrm{H}_{4}\right\} \mathrm{O}_{3}$; by a further osydation, oxalic acid
is formed. All the four equivalents of hydrogen in the molecule of pro-pyl-phycit may be replaced by other radicals, simple or compound; thus the lead salt has the formula $\left.\underset{\text { ethers derived }}{\mathrm{C}_{6} \mathrm{H}_{4}}\right\} \mathrm{P}_{2}$. The author describes various ethers derived from the new alcohol, the formulæ of which are as follows:

Mono-nitrate,	$\mathrm{C}_{6} \mathrm{H}_{4}{ }_{3}$
Di-acetate,	$\mathrm{H}_{3} \mathrm{NO}_{4}$

These compounds are of special interest as illustrating the tetratomic character of the new radical $\mathrm{C}_{6} \mathrm{H}_{4}$, and as establishing the existence of 4 -acid alcohols. They render it, to say the least, extremely probable that Mannit, and also the ordinary species of sugar, may be prepared artificially, and they confirm the view long since proposed by Berthelot that the sugars are hydrated oxyds analogous to ordinary alcohol but of a higher order. A tetracid alcohol will form four chlorids by the successive replacement of HO_{2} by Cl . Thus we should have $\left.\mathrm{C}_{6} \underset{\mathrm{H}_{4}}{\mathrm{H}_{4}}\right\} \mathrm{O}_{8}, \mathrm{C}_{6} \mathrm{H}_{3}\left\{\mathrm{O}_{6}\right.$, $\mathrm{C}_{6} \mathrm{H}_{4},\left\{\begin{array}{ll}\mathrm{O}_{2}\end{array}\right\} \begin{aligned} & \mathrm{C}_{6} \mathrm{H}_{4} \\ & \mathrm{Cl}_{2}\end{aligned} \mathrm{H}^{\mathrm{H}_{2}}, \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{Cl}_{4}$. Of these two chlorids, the second in order, namely, $\left.{ }_{6} \mathrm{H}_{4}\right\} \mathrm{H}_{4}$, was obtained by the author from glyeerine and formed the starting point of the present investigation.-Annoder Chemie und Pharm., exxxiv, p. 71.

II. MNERALOGY AND GEOLOGY.

1. Descriptions of New Species of Fossils from the Paleozoic Rocks of the Western States; by J. H. McChesney. Chicago. Date of text between 1859 and 1861 ; illustrations, $1865 .{ }^{1}$ - The letter-press of this memoir, issued in separate parts some time back, was briefly noticed in this Journal, [2], vot. xxxii, p. 122, 1861. Since that time the author has had most of the fossils described by him carefully lithographed, and now re-issues the whole, consisting of ninety-seven large octavo pages of text, with intercalated wood-cuts, and nine well executed plates containing about one lrundred and sixty figures. The fact that these figures were

[^38]drawn on stone by Mr. Salter of London, the well known English paleontologist, is alone a sufficient guaranty for their accuracy; but we can add, from a personal knowledge of many of these forms, our own testimony that they are faithfully represented.

By reference to our former notice of this memoir, alluded to above, as originally published without figures, it will be seen we were then impressed with the remarkable coincidence of the characters of several forms described, with those of old and well known species. But as no illustratious accompanied these descriptions as then issued, we did not consider our means of comparison sufticient to justify an expression of opinion in regard to the validity of the proposed new species. As the author has now, however, added good figures of many of these fossils, we have made careful comparisons of the species with those figured and described by others, and here offer some critical notes embodying our conclusions.

To begin with the first plate, we would remark that figure 1, Retzia subglobosa McC. was described by Dr. Shumard in 1858, under the name Retzia punctulifera, in the Trans. St. Louis Acad. Sci., vol. i, p. 220. It is also identical with a form described by Marcou during the year 1858, in his N. Am. Geol., p. 51, as Terebratula Mormonii. Figure 2, Terebratula geniculosa McC. represents a well known species described many years back in this Journal, by Dr. Morton, from Ohio, as T. bovidens, and more recently by Prof. Hall under the name T. millepunctata, in vol. iii, Pacific Rail Road Reports, p. 101, 1857. Figure 3 of this plate is not mentioned in the explanations of the figures, and as no references were printed with the text to any of the illustrations, some doubts may exist in regard to the species it is intended to represent; but from the fact that it agrees well with the description of a shell he proposes to call Ambocoelia gemmula on page 41, and with no other form described in the memoir, we suppose it must have been drawn from that sbell. In regard to this form, however, we have only to say, that reliable authnrities both in this country and Englaud, including Mr. Davidson of London, after a careful examination of authentic specimens from the Illinois localities, consider it the common Spirifer Urei Fleming. If future comparisons, however, should show it to be distinct, Prot. McChesney's name could not stand, since Dr. Shumard had proposed for it the name Spirifer planoconvexus, in 1858; see Missouri Geol. Report, page 202. Figure 4, Spirifer subventricosus (subventricosa in the memoir), seems to be a variety of the same shell described by Prof. Hall in 1858 , under the name S. opimus (Iowa Report, p. 711), juiging from speeimens of S.opimus from the Iowa localities. Figure 5, Orthis Richmondi McC., was described by Meek \& Hayden, from the Coal-measures of Kansas, in the Proceed. Acad. Nat. Sci. Philad., 1858, under the name Orthisina crassa, and subsequently referred by them to the genus Streptorhynchus, to which it properly belongs. Fig. 6, Orthis Lasallensis McC. is almost certainly only a variety of the last. Upon such trivial differences, species may be multiplied indefinitcly in a genus like this. Fig ?, Productus asper McC., fig. 8, P. Wilberanus McC., and fig. $9, P$. symmetricus McC., are all, we strongly suspect, only varieties of one species, apparently very closely allied to the European $P_{\text {. }}$ scabriculus; if distinct from that shell, however, Norwood
and Pratten's name, P. Rogersii, (Jour. Phil. Acad. Sci., Aug. 1854) founded upon a variety, or more properly, condition of the same, will have to be adopted. Figures 11 and 12, Productus tubulospinus McC, seems scarcely distinct from the European species, P. punctatus; but if different, our author's nåme cannot be retained for it, since it was figured by Prof. Shephard in this Journal, vol. xxxiv, p. 153, under the name P. semipunctatus, as long back as 1838.

In regard to Plate II, we would merely remark that figure 5, Bellerophon Blaneyanus McC. seems to be only a variety of his B. vittatus. He is doubtless correct, however, in separating these forms from B. Urei Fleming, though here, again, he was too late in proposing a new name, since Mr. Cox named this shell B. carbonarius in 1857 (see Kentucky Geol. Report, vol. iii, p. 562). His figures 9,10 and 13, of this plate, representing forms he calls Leda Knoxensis, L. Owenii, and L. Rushensis, have more the form of the genus Yoldia. If they are true Ledas, however, their names must be written Nuculana Knoxensis, N. Ruskensis and N. Owenii, since the name Leda is only a synonym of the older genus Nuculana Link, 1807. Figure 12, Nucula Mercerensis McC., has not the form of shells of that genus as restricted by modern conchologists. Figures 14 and 15, Natica Altonensis McC. and N. Shumardi McC. are not Naticas at all, as will be seen at a glance, but belong to McCoy's genus Naticopsis, and hence, if new, must be called Naticopsis Altonensis and Naticopsis Shumardi. The genus Natica, as now restricted, is wholly unknown in the Paleozoic rocks, as all well informed paleontologists must be aware. Figures 19 and 20, Discina trigonalis McC., and D. capuliformis McC. are doubtless only varieties of D. nitida Phillips, which, according to figures given by Mr. Davidson, who referred specimens sent from the Illinois localities to that species, includes a wider range of varieties than the two forms figured by our author.

We pass over Plates III and IV, occupied by figures of shells and crinoids, which, so far as we know, represent good species.

On Plate V, among other Crinoids, he gives (fig. 4) an excellent representation of a noble species under the name Forbesiocrinus Pratteni, which shows distinctly four basal pieces, supposed by our author to be "probably an accidental feature." It is unnecessary, however, to inform any one who has given the Crinoids more than a superficial study, that this is a typical Melocrinus, and, hence, must be called Melocrinus Pratteni.

Figure 1 of Plate VI represents his Productus inflatus, which may be a small variety of P. semireticulatus, supposing that shell to vary to the extent represented by Mr. Davidson. Figures 8 and 9 of this plate illustrate his Allorisma sinuata and A. clavata. In the explanations of the plate he writes their names Allorisma (Sanguinaria) sinuata, and Allorisma (Sanguinaria) clavata. As Sanguinaria is a genus of plants, the Professor doubtless intended to write it Sanguinolites, since the first of these two species seems to be congeneric with some of the forms included in the latter genus by McCoy.

On Plate VII, he gives (fig. 4) Nuculites Vaseyanus, which is undoubtedly a true Leda, or more properly Nuculana, and should be called Nuculana Faseyana. The ridge he mentions, descending from the
beaks, on the inner side of the valves, is a common feature in such Carboniferous species as Nuculana bellistriata ($=$ Leda bellistriata of Stevens). His Nucula rectangula, of the same plate, is more probably a Nuculites.

On Plate IX, fig. 1 represents his Pentamerus bisinuatus, which is apparently only a variety of the well known P.oblongus. On the same plate, he figures a shell at first described by him under the name Ambonychia neglecta, but placed by him now in the genus Pterinea. It has not the strung anterior muscular scar, nor apparently the posterior hinge teeth of Pterinea, however, and until the characters of its hinge can be clearly determined, it would have been better to leave it in the genus Ambonychia.

In conclusion, we would state that we do not mean to assert that all the species described in this memoir are spurious, or placed in wrong genera, for some of them are undoubtedly distinct from all previously described forms, and have been properly referred; while the descriptions are generally sufficiently clear to ellable the paleontologist, by the aid of the figures, to identify the forms described. The author also deserves -credit for having published accurate figures of most of the species proposed by him, and it is to be hoped that he will publish figures of the others, so that all may form their own conclusions as to which of them should be adopted, and which arranged in the lists of synonyms. We must confess, however, that a careful study of his memoir has not left a very favorable impression in regard to the author's powers of discrimination, nor of his knowledge of the literature of the subject upon which he has essayed to write.
2. Mont Alto Lignite and Appalachian Erosion; by J. P. Lesley. $30 \mathrm{pp} ., 8 \mathrm{vo}$, with 4 plates. (From the Proc. Amer. Acad. Sci., 1864, pp. 463-482.)-Mr. Lesley here describes a bed of lignite found recently in Southern Central Pennsylvania. He regards it as of the same age with the lignite of Brandon, Vermont, desaribed by Prof. Hitchcock, but not connected in any way with the iron ore (limonite) beds with which the latter associates them. ${ }^{1}$

Mr. Lesley enters at some length into the nature and origin of the ore-bed formation of the Atlantic border, and the position of the lignite, from which we cite the following:
"It consists everywhere of two parts, more or less easily distinguished ; the one stratified in the same sense as the Silurian limestones themselves; the other a surface-wash over the basset edges of the first. The date of the formation of this local surface-wash may be Tertiary, and perhaps Post-tertiary. The stratified portions must be, as to their stratification, of Lower Silurian age; while the metamorphism which they have undergone, in situ, productive of stratified clays and ores, may date from any time subsequent to the formation of a surface-topography approximately identical with that which now exists. The actual change of the original Lower Silurian calcoferriferous sandstones and slates, in situ, at their outcrops, into limonite clay beds, in ipso situ, stratified as before, but charged with

[^39]an additional percentage of the oxyds from a former higher surface now eroded, and with this extra charge of iron and manganese carried by percolation down to and crystallized against their foot rock,-this change may have required an immense time to perfect, and no doubt was going on, pari passu with the degradation of the surface by slow erosion, from higher to lower levels, until it stands at the level of the present day.
"The brown-hematite ore-deposits of Mont Alto follow the outcrop edges of the slates and sandy limestones which form the southeastern edge of the valley. The ore is in fact nothing but the residue of these beds after decomposition and dissolution, the honeycombed and altered edges of the Silurian slates and sand-limes themselves, after their line has been washed out of them, and their carbonated and sulphuretted iron has been hydrated and peroxydized. The muddy slates formed the present deposits of small ore with white and red clay. The sandy limestones furmed the present harder, siliceous, rock-ore belts. The genlogist can procure, in the banks, specimens of every stage of this interesting process, from the perfect limestones which refused to disintegrate, and lie iron-lime-sandstone with the disintegration and recrystallization begun, to the perfect ball ${ }^{\prime}$ and pot ore of radiated, acicular, crystallized brown-hematite. The great variety in the composition of the original rocks has been the cause of a great diversity in the ores taken from the different openings. But two principal distinctions may be particularly noticed; viz: that the ores which have resulted from the decomposition of the slates are more disposed to the redshort side, whereas the ores which have resulted from the decomposition of the limestones are more or less coldshort; prolably because of the sand in the limestones; it is, in fact, called by the New Y̌ork geologists the Calciferous sandrock. The slates, on the contrary, are apt to hold a small percentage of sulphur; or perhaps we should say, are less likely to permit the abundant drainage needful for carrying off the sulphur in the form of a salt. Sometimes in the same deposit there is a mixture of the two varieties, producing a neutral ore. But it is not often that such large exposures of both varieties occur in the same neighborhood, as is the case here.
"Taking into view all that we know of these deposits along the southeast side of the Great Valley from the Hudson river to Tennessee and Alabama, and adding what we know of similar deposits, produced in a similar way, out of the exposed outcrop edges of the same rocks in the limestone valleys further back toward the Allegheny Mountains (such as Kishicoquillis, Nittany, \&c.), and deposits, in the same geological positions in Lancaster and Chester counties, we can divide them with great certainty, as stated above, into two classes, the slate-crop banks, aud the sand-lime-crop banks, the former being always geologically underneath the latter."

Mr. Lesley also deseribes the positions of the lignite beds, and refers them to the Tertiary age, as done by Lesquereux (though without mentioning the paleontological evidence on this point afforded by the Mont Alto lignite). He then points out the fact that these beds of lignite and limonite indicate that, to a great extent, the surface-erosion of the Appalachian and Green Mountain regions antedates the Tertiary period of the lignite. He also refers for further evidence with regard to early erosion over these regions to the New Red Sandstone or Triassico.Jurassic of the Atantic slope, as follows:-
"The New Red is seen in the section dipping northward against or toward a country, the surface of which is three hundred feet lower than its own. There is no evidence of a wide extension of New Red over that lower surface in the New Red age. On the contrary, not a hillock or gravel patch of New Red is to be found throughout the whole Paleozoic country to the north or west of this, its present absurdly constructed overhanging and outdipping margin. How is this to be accounted for?
"There must have been some barrier to the New Red waters between the Schuylkill and the Susquehanna, to correspond with the barrier which we see everywhere else between the Hudson and the James. Otherwise the New Red waters would have overllowed, by at least three hundred feet, the Silurian valley in its rear, and penetrated to valleys still further back by means of the principal gaps in the Kittatinny mountains through which the Schuylkill, the Swatara, and the Susquehanna rivers flow. What was this barrier?
"I think none can be suggested but one composed of the originally much more elevated surface of the Silurian valley itself. Carry up the whole mean level of the Paleozoic area-the valley beds up to the present height of the mountains, and the mountain crests to a proportionately greater altitude, the gaps to correspond with both, and the anticlinal and synclinal structure to determine the face of the surface at any given stage of the process,-and we have the required barrier to the estuary of the New Red ; the explanation of its top Conglomerate; a good reason why there are no New Red traces back of the South mountains; and a closer date for the Lignite of Mont Alto."

Referring to a plate illustrating the paper, he says, it "is noticeable, 1. How vast an amount of Paleozoic rock-substance has been swept away; and, yet, that amount represents only the waste of the four lower Paleozoic formations; superposed upon these at a still older date, eight others, including the Coal-measures, must have formed their surfaces; supposing no cataclysm. 2. How fine a chance was given for collecting toward the present surface the ferruginous elements of the slowly decomposing and cavernous-becoming limestone layers; and 3. How the erosion must have acted, for some reason or other, more upon the Paleozoic surface outside, than upon the Paleozoic surface inside the limits of the New Red; the reason probably being, simply this : that the latter was under the New. Red waters, and was being covered up, while the other was being eroded; but the erosion had not yet brought the valley surface down to the New Red water-level, when the uplift of the New Red took place. After which, the two erosions went on with different velocities proportional to the different solubilities, \&c., of the Silurian limestone, and of the New Red sandstone, formations.

As for the lignite, therefore, it must have been subsequent to the erosion of the New Red, that is, certainly not older than the Cretaceous lignites of the United States; and when we consider the immense lapse of time needful for carrying the Silurian valley surface from a level with the tops of the New Red Hills, down to a level with their feet, we may well believe that the precise condition of the ore deposits as we see it, while it commenced before New Red times, was not perfected until the latest
Ax. Jour. Sci.-Stuond Series, Voz. XL, No. 118.-July, 1805.

Tertiary age, and, therefore, this last must be the age of the ligniteapart from all consideration of fossils.
3. Eruption of Eina.-A letter by Mr. Fouqué in "Les Mondes" of the 6th of April, contains the following: At half past 10, on the evening of the 21st of January, there was a severe earthquake, and immediately after, the eruption commenced. It broke out on the northeast side of the mountain at a point about 1700 meters above the sea-level and 500 meters from the foot of the old cone of Frumento. In two or thres days the lava had flowed on 6 kilometers with a breadth of 3 to 4 , and a variable thickness sometimes amounting to 10 or 20 meters. The craters are seven in number. Four kinds of fumaroles exist there, the dry, on the incandescent lava; the acid, where the temperature is above 400° C.; the alkaline, where the temperature is below this, but mostly above $100^{\circ} \mathrm{C}$.; and the carbonic, in an old crater near by, where there is the ordinary temperature. There was a remarkable absence of sulphur and all its compounds, its odor being not perceptible over the lavas, and paper containing acetate of lead not being blackened by the fumes. The muriate of ammonia was detected in the acill fumaroles, and even in the $d r y$, (although in these in but small quantity), as 'well as in the alkaline. The four lower craters detonated differently from the three others. The detonations of the latter were two or three per minute, and resembled thunder, those of the former were a continuous series, too rapid to be counted, comparable to the blows of a hammer on an anvil.-Les Mondes, April 6.
4. Volcano of Kilauea. As all information relating to Kilauea will be read with interest, we insert the following received from Mr. Coan.
"The submerging and uprising of the island in the boiling cauldron of the crater, is a rare and grand spectacle. The same phenomenon occurred in June last, with this difference, that the island disappeared entirely for several days, but was gradually restored by the spouting liquid lava.
"I was at Kilauea on the 9th and 10th inst. There was much action in the great cauldron "Halemaumau." The lavas were boiling with vehemence, as if preparing for action. Besides this raging lake, I saw seven other fires at different points in the crater. One lake was boiling most intensely, about a mile from the fountain-lake in a northwesterly direction. The natives told me that, a day or two previous to my arrival at Kilauea, a jagged cone, of the size of a church, and forming an elevated island near the center of the igneous lake, became so undermined by the intense boiling of the lavas along its apparent base, that it fell over, and was submerged in the fiery abyss; but that, after a little time, it rose again, like a whale from the deep, and shook cataracts of molten minerals from its burning brow. In visiting a Pulu station on the highlands, some fifteen miles from Kilauea, I passed many large pit and cone craters, most of them ancient and densely wooded, from 300 to 800 feet in height and depth. I spent a night near a beautiful pit-crater called Napau, nearly circular, about 300 feet deep, a mile, perhaps, in diameter, and with a bottom of sand, so smooth and hard that a regiment of cavalry might be reviewed there. One-eighth of a mile from this crater, fissures are opened in the earth, out of which scalding steam and smoke have issued from time immemorial, and affording heat enough to cook for an army."-Honolulu Commercial Advertiser, Dec. 10, 1864.
5. Addition to Prof. Shepard's Notes on the minerals of the Emery mine at Chester, Mass., (see p. 112); by the Author.-I have just found the diaspore at Chester, in broad, nearly transparent white laminæ, with a structure like that of kyanite, also of a most delicate violet color, deeper than that of Chemnitz.
White massive corundum, in veins half an inch thick, occurs traversing the massive emery. The latter mineral at Chester is exceedingly uniform in composition, and may be regarded as an aluminate of protoxyd of iron, Fexil.

A vein of Indianite, many inches thick, is found near the tunnel on South mountain, running for many rods through the chloritic rock on the east side of the emery-vein (exterior to its gneissoid wall). This chloritic seam is called by the workmen "the fringe-rock." Small particles of crystalline corundum are diffused through the Indianite.

Masonite (the variety near to ottrelite) is also abuudant at many places in the emery-vein on the North mountain. Brookite rarely attends the diaspore and corundophilite.
I would also add that emery occurs in fine grains widely diffused throughout the talcose rock which is the contiguous formation of the emery on its eastern side. Indeed I regard this as the parent rock of the emery, out of which it was deposited (when the strata were horizontal), just as the emery of the Grecian archipelago and Turkey was segregated in fine limestone.

Amherst, Mass., June 23, 1865.
6. Geological Map of Russia.-An excellent geological map of Russia containing the most recent discoveries up to the date of publication was prepared by Mr. H. Helmersen and issued in 1863. It presents by colors the distribution of the formations over European Russia and the Urals, and the adjoining countries to and beyond the Aral sea of the east, Constantinople on the south, and Stockholm and Cracow on the west. The lettering upon it is wholly in Russian; and as it may prove convenient to some persons ordering the map, we here give the English names of the formations corresponding to the several numbers: 1, Alluvium; 2 and 3, Pliocene, 2, newer Caspian, 3, ancient Caspian; 4, Miocene; 5, Eocene; 6, Cretaceous; 7, Jurassic ; 8, Triassic ; 9, Permian ; 10, Carboniferous; 11, Devonian; 12, Silurian; 13, Metamorphic schists; 14, Granite and gneiss; 15, Eruptive rocks. The lines, unbroken and dotted, stand for railroads; and the black dots for coal beds. The geology of the region between the Black Sea and Caspian is by the geologist, Abich, and has a separate numbering and coloring: a, Pliocene; b, Miocene; c, Eocene ; d, Cretaceous; e, Jurassic and Triassic ; f, Carboniferous limestone and Devonian; g, Metamorphic schists; h, Granite and Protogine; i, Eruptive rocks, not volcanic; k, Volcanic rocks; N, naphtha springs, solfataras, mud volcanoes. The map is accompanied by a pamphlet descriptive of the formations.
7. On the Changes rendered necessary in the Geological Map of South Africa, by recent Discoveries of Fossils; by Dr. R. N. Rubidae, (Proc. Geol. Soc.)-Dr. Rubidge first called attention to a former paper, in which he pointed out the occurrence of horizontal beds of sandstone resting on the upturned edges of gneiss, and continuous with inclined sandstone of like
kind, interstratified with gneiss. He therefore conjectured that the Clayslate and Bokkeveldt schist, which Bain considered distinct, belonged to one formation, that they are of the same age as the gneiss, and that the "Carboniferous rocks" of the Eastern province were not separable from the clay-slate, which Mr. Bain had called primitive clay-slate. It follows from this that if the clay-slate proved Devonian, as Mr. Rubidge believed it would, the horizontal quartzite must be much newer, and probably an outlying mass of the Dicynodon rocks. He explained these phenomena by supposing that rocks of widely different ages had been metamorphosed into masses having the same mineralogical characters. The discovery of certain fossils has lately verified the conjecture respecting the Devonian age of the clay-slates and Bokkeveldt rocks; and Dr. Rubidge therefore infers that the rest of the old rocks are of the same age. Finally, the discovery of a Calamite in the sandstone, not unlike some specimens belonging to the same genus found in the Dicynodon rocks, renders the probability of the truth of the second conjecture very great.Reader, May 20.
8. Anthrakerpeton, a new Carboniferous Reptile.-Prof. Owen has described a fossil reptile from the Coal-beds of Llantrissent in Glamorganshire, Wales. It comes from the lower part of the "Middle" if not the upper part of the "Lower" Coal-measures. The species is intermediate in size between the Baphetes and Dendrerpeton; the ribs are longer than in any known Labyrinthodont, and these and the limb bones indicate that the animal belonged to "that low air-breathing type which, with developmental condition of the bones like those in some fishes, and very common in Devonian, showed forms of the skeleton more like those in Saurian reptiles, than in the modern air-breathing Batrachians."Reader, Jan. 7.
9. Mineral wealth of Mexico.-Baron de Morner, a Swedish man of science, is reported to have found a bed of anthracite of excellent quality in the district of Guerrero, Mexico. Already a deposit of bitumen and of two beds of coal are under exploration in the district of Iturbide, besides a source of petroleum near Tenancingo, and a vein of cinnabar at Sultepec. Two Frenchmen, MM. Favre and Gabriel, are about to undertake the working of the iron ore of the district of Chalco, where railroads are being rapidly built.-Les Mondes, March 23.
10. Gneiss with the impression of an Equisetum.-The museum at Turin contains a fragment of gneiss from an erratic block, derived apparently from the Valteline, from the mass of crystalline rocks of that region which underlie the Infraliassic group of Sismonda. Mr. Sismonda regards the fossil as proof of the metamorphic character of the fundamental gneiss of the Alps, and as affording a fact bearing on the age of the vegetable impressions accompanying the anthracitiferous beds of the Western Alps.-Les Mondes, March 23, p. 532.
11. Kalicine.-H. St. Claire Deville thus names bicarbonate of potash, of the same composition with that of the arts, found native at Chypis in Valais. An analysis afforded carbonic acid $42 \cdot 2$, potash $46^{\circ} \cdot 6$, carbonate of lime 2.5 , carbonate of magnesia 1.34 , sand and organic matters $3 \cdot 60$, water $7 \cdot 76$, corresponding to the formula $\mathrm{KO}_{2} \mathrm{CO}^{2}+\mathrm{HO}$.
12. Geological Excursion.-Mr. Frank H. Brablet, a member of the Zoological and Paleontological Department of the Sheffield Scientific School, proposes to take charge of a few students, for the purpose of giving a practical introduction to geology, during a trip of about four weeks through the State of New York.

He will meet his class at Burlington, Vt., on Monday, July 31st, and commence work on the following morning at Port Kent on the opposite side of the lake.

The trip will include visits to some of the fine scenery for which New York is famous, as well as to characteristic and productive localities of nearly all the formations from the Potsdam sandstone to the Chemung group, for whose examination, within a small extent of country, the State affords the best opportunity in America, if not in the world.

For some years past Mr. Bradley has been engaged in the study of the New York rocks and fossils, and has made quite extensive collections therefrom. We recommend bim for the charge which he undertakes.

Mr. B. informs us that the expenses while with him need not exceed one hundred dollars besides his fee of thirty dollars.

Communications addressed to him at New Haven will be received as late as July 25 th.

III. BOTANY AND ZOOLOGY.

1. Thwaites, Enumeratio Plantarum Zeylanios; an Enumeration of Ceylon Plants, etc., is now completed with the publication of part 5. It forms an octavo volume of 483 pages, and is the only separate work of any consequence upon the botany of Ceylon since the publication of the "Flora Zeylanica" of Linnæus and the "Thesaurus Zeylanicus" of Burmann. In the preface, when referring to the changes which are occurring in the vegetation of the island, through man's direct or indirect agency, Mr. Thwaites records the following interesting fact. "The obtrusive character, too, of a plant brought to the island, about forty years ago, is also helping to alter the character of the vegetation up to an elevation of 3000 feet. The plant alluded to is the Lantana mixta, Linn, which appears to have found in Ceylon a soil and climate exactly suited to its growth; for it now covers thousands of acres with its dense masses of foliage, taking complete possession of land where cultivation has been neglected or abandoned, preventing the growth of any other plants, and even destroying small trees, the tops of which its subscandent stems are able to reach. The fruit of this plant is so acceptable to frugivorous birds of all kinds, that through their instrumentality it is spreading rapidly, to the complete exclusion, in spots where it becomes established, of the indigenous vegetation." Dr. Hooker has found time to render his invaluable aid in the identification of the species and synonymy, and in superintending the publication at London, Mr. Thwaites remaining at his post in Ceylon.
A. G.
2. Flora Capensis; by Drs. Harvey and Sonder.-The third volume of this standard work, comprising the Monopetalous Orders from Rubiacea to Campanulaceo inclusive, was issued early in the present year, the preface bearing date, Feb. 24. Nearly five-sixths of the 630 pages of
this volume, are devoted to the order Compositce, which is elaborated by Prof. Harvey. Aster is here pretty largely represented, the genus being, as might be expected, brought back almost to its original limits by the suppression of Felicia, Agathoea, Munychia, and Bellidiastrum, as well as Tripolium. (There ought now, therefore, to be no question about the admissibility of the Polynesian Agátea of the Violet Family, which has been thought to be in pronunciation too like Agatha'a.) The price of the volume has been raised from twelve to eighteen shillings, which is still very reasonable.
A. 6 .
3. Thesaurus Capensis, by Prof. Harvex, the excellent companion of the above Flora, has reached the two-hundredth plate, completing the second volume. The most interesting plant figured in the last fasciculus is Hydnora triceps, illustrated upon a double plate.
A. G.
4. Ammobroma Sonorce (literally, the Sand-food of Sonora) is the name of an extraordinary root-parasitic plant, of the region at the head of the Gulf of California, which Dr. Torrey has just described and figured in the 8th volume of the Annals of the Lyceum of Natural History, New York. It has been briefly noticed before (but never fully characterized) as a new genus, allied to the rare Mexican Corallophyllum of Kunth (or Lennoa, Lexarza), and still more to the Californian and hardly betterknown Pholisma of Nuttal. It hardly throws any new light upon the affinity of these strange plants, which, though justly thought to be rather Monotropaceous than Orobanchaceous, are still obscure. This plant, growing in a forlorn sandy desert, almost covered by the sand in which it lives, was found by its discoverer, the late Col. A. B. Gray, to form a considerable part of the sustenance of the Papigos Indians of the district, and is said to be very luscious when first gathered and cooked, resembling in taste the sweet potato, only far more delicate.
A. G.
5. Annales Botanices Systematica, tom. VI.-With the fourth volume, Dr. Walpers having deceased, the editorship of this work passed into the hands of Dr. Carl Müller of Berlin; and fascicle 7 of the sixth volume, just issued, concludes the enumeration of the Phanerogamous species published from 1851 to 1855 inclusive, and carries down to the letter C the alphabetical index of these three volumes. The remainder of the index will occupy fasc. 8 of this bulky volume, which began to be issued in 1861. The accumulation of species published within the last 10 years (since 1855) is perhaps equally large; and, if treated in the same way, their enumeration may be completed in the year 1875. It is to be regretted that the compacter plan, adopted in the earlier volumes of the series, was not adhered to.
A. G.
6. The Production of Organisms in closed vessels.-As appears from an abstract in the Reader of May 20, a paper by George Child, M.D., in continuation of a former communication, was read before the Royal Society, April 27. Dr. Child's experiments were similar to the earlier ones of Prof. Wyman, and reach the same results, viz. that Bacterians are produced "exactly under the circumstances in which M. Pasteur asserts that they do not exist." And he accounts for the diserepancy thus. "M. Pasteur, in his memoir, speaks of examining bis substances with a power of 350 diameters. Now my experience throughout has been, that it is impossible to recognize these minute objects, with any degree of cer-
tainty, even with double that magnifying power. When once their existence on a slide is shown with a power of 1500 to 1700 diameters, it is quite possible afterward to recognize the same object with a power of 750 ," \&c. He continues: "I can now have no doubt of the fact that 'bacterians' can be produced in hermetically sealed vessels, containing an infusion of organic matter, whether animal or vegetable, though supplied only with air passed through a red-hot tube, with all necessary precautions for ensuring the thorough heating of every portion of it, and though the infusion itself be thoroughly boiled. * * *"It seems clear that either (1) the germs of Bacterium are capable of resisting the boiling temperature in a fluid, or (2) that they are spontaneously generated, or (3) that they are not 'organisms' at all. I was myself somewhat inclined to the latter belief concerning them at one time; ; but some researches in which I am now engaged have gone far to convince me that they are really minute vegetable forms. The choice, therefore, seems to remain between the other two conclusions. Upon these I will not venture a positive opinion, but remark only, that if it be true that 'germs' can resist the boiling temperature in fluid, then both parties in the controversy are working upon a false principle, and neither M. Pouchet nor M. Pasteur is likely at present to solve the problem of spontaneous generation." The decided conclusion as to the organic character of these Bacteriums was reached through an examination of them by the $\frac{1}{50}$ object-glass recently constructed by Messrs. Powell and Lealand.
A. ©.
7. On the absorption and assimilation of carbonic acid by plants.Mr. Boussingatur. has recently made some experiments on the absorption and assimilation of carbonic acid by leaves exposed to sunlight. His results are thus summed up: 1. Leaves exposed to the sun in pure carbonic acid do not decompose this gas, or if they do, it is with excessive slowness. 2. Leaves exposed in a mixture of carbonic acid and atmospheric air rapidly decompose the former gas. Oxygen does not seem to interfere in the phenomenon. 3. Carbonic acid is rapidly decomposed by leaves when that gas is mixed with either hydrogen or nitrogen. The author has pointed out some analogies of these phenomena with the slow combustion of phosphorus under certain circumstances. Thus phosphorus placed in pure oxygen does not become luminous, and does not burn, or if it does, burns with excessive slowness. In a mixture of oxygen and atmospheric air, however, phosphorus burns rapidly; it also burns when placed in oxygen mixed with hydrogen, nitrogen, or carbonic acid. Phosphorus, which does not burn in pure oxygen at an ordinary pressure, becomes combustible when the gas is rarefied; and Mr. Boussingault found that, similarly, a leaf placed in rarefied pure carbonic acid decomposed the gas and evolved oxygen.-Reader, May 27.
8. Classification of Polyps; by A. E. Verrile.-The following subdivisions of the class of Polyps have been proposed by Prof. Verrill, in the Proceedings of the Essex Institute, vol. iv, p. 145.

Order I. Madreporaria.-Polyps simple or compound with embryonic or rudimentary basal or abactinal region, which has no special function unless for vegetative attachment while young. Actinal area well developed, form broadly expanded, having a tendency in the higher groups to become narrowed toward the mouth. Tentacles simple, coni-
cal. Dermal tissues, and usually the radiating lamellæ, depositing solid coral; the radiating plates being between the lamellæ, are, therefore, ambulacral, and appear to originate from the surfaces of the lamello and the connective tissues extending across the ambulacral chambers and filling them from below. Interambulacral spaces distinct.
Suborder I. Stauracea (Madreporaria rugosa ${ }^{1}$).-Coral simple, or compound by budding; chiefly epidermal and endothecal; septa apparently in multiples of four, sometimes wanting. Type embryonic, like a young Astrea or Fungia-
Families-Stauridæ, Cyathophyllidæ, Cyathaxonidx, Cystiphyllide.
Suborder II. Fungacea.-Polyps either simple or compound by marginal or disk budding, rarely by fissiparity. Tentacles numerous, in multiples of six, imperfectly dereloped, scattered on the actinal surface, usually short and lobe-like. Upper part of polyps scarcely exsert. Coral broad and low, growth mostly centrifugal, tissue chiefly septal; walls imperfectly developed, often perforate, subordinate, usually forming the basal attachment.
Families-Cyclolitidx, Lophoseridx, Fungidx, Merulinidæ.
Suborder III. Astrceacea.-Polyps mostly compound, either by fissiparity or various modes of budding. Tentacles usually well developed, long, subcylindrical, limited in number, in multiples of six encircling the disk. Coral mural, septal and endothecal; growth vertical and centrifugal, producing turbinated forms which are often elongated.

Families-Lithophyllidæ, Mæandrinidæ, Eusmilidæ, Caryophyllidæ, Stylinidæ, Astræinæ, Oculinidæ, Stylophoridæ.
Suborder IV. Madreporacea (Madreporaria perforata).-Tentacles in definite numbers, twelve or more, well developed, encircling the narrow disk, therefore nearer the mouth; polyps with the upper portion mueb exsert, flexile; growth chiefly vertical; coral mural and septal, porous. Polyps compound by budding, sometime simple.

Families-Eupsammidx, Gemmiporidx, Poritidx, Madreporidx.
Order II. Actinaria.-Polyps with well developed, often highly specialized, basal or abactinal region. Walls well developed, tentacles longer, more concentrated around the mouth, which is also, usually, if not always, furnished with special tentacular lobes or folds. Ambulacral spaces always open, destitute of connecting tissues and solid deposits.
Suborder I. Zoanthacea.-Polyps encrusting, adherent, budding from mural expansions; tentacles simple, short, at edge of disk.

Families-Zoanthidæ, Bergidæ.
Suborder II. Antipathacea.-Polyps connected by a coenenchyma, secreting solid sclerobase or coral axis. Tentacles few, six to twenty-four, simple, conical.
Families-Antipathidx, Gerardidæ.

[^40]Suborder III. Actinacea.-Polyps free, capable of locomotion, with a highly specialized, muscular base or abactinal area. Tentacles well organized, either simple or branched, varying from ten to many hundreds, often with accessory organs arising from the same spheromeres, such as inner tentacles, verrucæ, complicated or simple branchial lobes, cinclidee, eye-spherules, suckers, etc. Mouth with special lobes or folds. Most of the species are simple, a few are compound by fissiparity, many abnormally bud from the wall near the base, a few secrete from the base a horn-like deposit similar to the axis of Antipathes.

Families-Actinidæ, Thalassianthidx, Minyidx, Ilyanthidæ, Cerianthidæ.
Order III. Alcyonaria.- Polyps with well developed actinal, mural, and abactinal regions, compound by budding. Tentacles eight, pinnately lobed, long, encireling a narrow disk. No interambulacral spaces. Ambulacral ones open and wide.
Suborder I. Alcyonacea.-Polyps turbinate at base, budding in various ways, encrusting, adherent to foreign bodies by the cenenchyma.
Families-Alcyonidæ, Xenidæ, Cornularidæ, Tubiporidæ.
Suborder II. Gorgonacea.-Polyps cylindrical, short, connected by a ccenenchyma, secretiog a central supporting axis.
Families-Gorgonidæ, Plexauridæ, Primnoidæ, Gorginellidæ, Isidæ, Corallidæ, Briaride.

Suborder III. Pennatulacea.-Polyps forming free, moving colonies, the composite basal portion with locomotive functions and special cavities, with or without a solid free axis.
Families-Pennatulidæ, Pavonaridæ, Veretillidæ, Renillidæ.
9. Embryology of the Star Fish; by Alexander Agassiz. 70 pp. 4to, with 8 lithographic plates, from vol. v, of Prof. Agassiz's Contributions to the Natural History of the United States.-The microscopic researches here described, and very beautifully displayed on the eight plates, relate mainly to the Asteracantheon berylinus Ag., and A. pallidus. The author closes with the following important observations on the Radiate type, and its relation to the apparent bilaterality in the larval Echinoderin.
"From what has been said, it is evident that the plan of radiation un. derlies this apparent bilaterality of the Brachiolaria, and of the Pluteus. The throwing of the whole of the stomach and the alimentary canal on one side, the complicated system of arms arranged with perfect symmetry on each side of the axis, passing through the mouth and the anus, does not change, though it partially conceals, the radiate plan. We have Holothurians which always creep upon three of their ambulacra, where a dorsal and a ventral side, an anterior and a posterior region, are subordinate to the plan of radiation; and the same takes place to a less extent in Spatangoids. Among Polyps even, which are, as it were, the simplest type of radiate animals, an anterior and posterior region are strikingly shown in the case of Arachnactis. The additional spheromeres are all added at one extremity of the mouth-slit, and yet the Actinia is made up of radiating spheromeres. The earliest stages of the larva of Echinoderms, before the apppearance of the water-tubes, remind us forcibly of the young Actinia soon after it has escaped from the egg, or of the first stages of growth of a Scyphistoma, after it has attached itself to the ground, previous to the formation of tentacles. What constitutes the difference in the structural plan of these animals belonging to different classes, in their primary stages of growth ? They are all built according
AM. Jour. Sct.-Second Serige, Voim XI, No. 118.-Jtlt, 1865.
to one and the same idea, so carried out as to be eminently echinodermoid in one instance, acalephian in another, and polypoidal in a third. In young Echinoderms, as in young Ctenophoræ, we find nothing of the remarkable preponderance of certain parts which gives these young their bilateral appearance in more advanced conditions. Their radiate character is extremely prominent at first, but becomes gradually obscured and hidden under the guise of this bilaterality, which is, after all, due only to the excessive development of certain spheromeres as compared with the others
"The case of these larvæ is only an additional example of what we find so often in nature, that one plan of structure apparently prevails, while, in reality, it is only an external analogy, obtaining a great predominance in certain parts, but subservient to the primary plan, even though the latter be perceived only on closer examination. This view solves a question which has hitherto perplexed all investigators of this subject,-riz: how it was possible that a larva, which has always been considered as bilateral, should produce a radiate animal by a process of internal gemmation. It is, indeed, a bilateral larva, but built upon a radiate plan ; a larva recalling a lower class of this branch of the animal kingdom, an acalephian larva giving rise to an Echinoderm, which, from its very beginuing, is a radiate animal, having a!l its spheromeres developed at the same time, and equally. ${ }^{1}$
"These transformations are, however, peculiar to the class of Echinoderms ; they constitute neither a metamorphosis, nor a case of alternate generation. The egg becomes the embryo larva; nothing essential is lost during the process; no intermediate individual comes into the cycle. It is the yolk which becomes the larva, the latter being, in its turn, transformed into the young Echinoderm. This larva is, in short, an acalephian larva, reminding us somewhat of the twin individuals of free Hy droids, though adapted to the mode of development of the Echinoderms. But, in the latter, we have no intermediate condition corresponding to the Polyp-like Hydroid in Acalephs, from which the Meduse or reproductive individuals arise, and, in their turn, bring forth the Hydroid again, which completes the cycle by developing another set of Medusx.
"If the views here taken of the plan of developınent of Echinoderms be correct, they introduce a new set of facts respecting their affinities with the Polyps and Acalephs, which cannot fail to have an important bearing on the question of the separation of the Echinoderms as a distinct type from the two latter groups. The Eehinoderm plutean form, with its mouth, stomach, intestine, with the water-system originally forming a part of the digestive cavity, bears, as it seems to me, the same rlation to the Ctenophore which the Hydroid Polyps hold to the true Polyps. The Ctenophore may be considered, as it were, the prophetic type of the Ecbinoderms, as the Polyps are the prophetic type of Acalephs. We have in the Ctenophore a digestive cavity, from which branches the water-system, and that peculiar funnel, opening outward, through which the fecal matters of the Ctenophore are diseharged, reminding us at once of the almost identical arrangement of an Eclinoderm Plateus, in the relations of the intestine to the stomach. The plu-

[^41]tean forms certainly show that the plan, upon which the Echinoderms are built, does not differ from that upon which the Acalephs are built, and that we have between the Echinoderms and Acalephs the same connection, based upon the identity of plan which exists between the Acalephs and Polyps. We cannot, therefore, admit that the views so frequently urged, and so universally admitted, in support of the separation of the Acalephs and Polyps, as a distinct type (Colenterata), from the Echinoderms, have any real foundation in nature; and still less can we concur in them, when we remember that the main argument in their favor rests upon the assumed total want of connection between the ambulacral system and the digestive system. Now this connection has been shown, by Prof. Agassiz, to exist in the adult of many Echinoderms, while the facts above stated prove that it also exists in the early stages of the embryonic development, when, in fact, the water-system is formed from the digestive system. With this evidence falls the strongest argument for the validity of a classification by which the type of Radiates would be broken up, and the Polyps and Acalephs separated from the Echinoderms, as a distinct type, under the name of Coelenterata. We are, therefore, justified in affirming that the type of Radiates constitutes an independent type of the animal kinglom, containing three equivalent classes,-Echinoderms, Acalephs, and Polyps."

IV. ASTRONOMY.

1. Note on the inclination of the planetary orbits to the invariable plane; by Prof. G. Hisrichs.-On page 138 of the preceding volume appears an editorial footnote stating that the numbers given by us for the inclinations I of the planetary orbits toward the invariable plane "are not quite exact." As this remark might create doubt of the general closeness of the planetary orbits, the following additional developments seem necessary.

Let i be the inclination of the orbit, and i^{\prime} the inclination of the invariable plane toward the ecliptic. As the values of i themselves are subject to quite considerable changes, we deemed it unnecessary to calculate the exact values of I, and made use of the equation

$$
\mathrm{I}=i^{\prime}-i
$$

i. e., subtracting the smaller from the greater angle.

The remark of the editor has induced us to calculate the exact values of I in order to see how great an error is committed in negleeting the spherical excess Δ of the spherical triangle. From the fifth edition of Mädler's Astronomie Populaire (Berlin, 1861) we take the following elements:

These values give the following results (stated to the nearest minute):

	I	$i^{\prime}-i$	Δ	
Mercury,	$6^{\circ} 18^{\prime}$	$5^{\circ} 25^{\prime}$	53^{\prime}	
Venus,	2	11	1	49
Mars,	1	40		22
Jupiter,		18	16	$1^{\circ} 24$
Saturn,		55	64	2
Uranus,	1	2	49	1
Neptune,		45		12

We have also given the values according to the formula made use of in our article, page 138-and the difference of the two first values will give the spherical excess Δ neglected in that approximation.

It will be seen that the deviation only in the case of Mars exceeds one degree, and in the case of Mercury is nearly one degree; but these belong to the smaller flanets. Of the large planets there is only Neptune making a considerable deviation (33^{\prime}) from our former value; the very near coincidence between the orbit of Neptune and the invariable plane, pointed out by Mr. Trowbridge (vol. xxxviii, p. 355) does not now exist. If Neptune is not in its maximum of inclination, then this circumstance would make it highly probable that there wust be another planet beyond Neptune ($85, I$).

Thus it appears that our nambers for I given on page 139 , though approximations only, and therefore not quite exact, still are sufficiently near the truth to warrant the deductions then drawn therefrom, except in the case of Neptune, which planet at present deviates about 50 min utes from the invariable plane, and thus appears not to be the ultima thule of the planetary world. Iowa City, April, 1865.
2. New Comet.-A large comet was visible in the southern hemispliere, in the months of January and February. It was seen at Rio Janeiro on the 24th of January. On the 26th, its tail was 26° in length. The following elements were computed by Mr. Moesta from observations on Feb. 21st, 25th, and 29th. On the 20th, be observed a second very faint tail branching out to the north of the principal tail.

$$
\begin{array}{ll}
\text { Perihelion passage, 1865, Jan. } 14.3367, \\
\pi=33^{\circ} 33^{\prime} 79 & i=92^{\circ} 17^{\uparrow} 16 \\
\Omega=25546.27 & \log . q=8.4511
\end{array}
$$

: Obtained from the formule
where

$$
\begin{aligned}
& \sin \frac{I}{2}=\frac{\cos \frac{A+B}{2}}{\cos \theta}=\cos \frac{A-B}{2} \cos \phi \\
& \tan \theta=\frac{\sin \frac{c}{2}}{\cos \frac{A+B}{2}} \sqrt{\sin A \cdot \sin B} \\
& \sin \phi=\frac{\cos \frac{c}{2}}{\cos \frac{A-B}{2}} \sqrt{\sin A \cdot \sin B}
\end{aligned}
$$

and c the difference of the longitude of the nodes, and A and B the other two angles of the triangle, i and $180-i^{\prime}$, or $180-i$ and i^{\prime}.
3. Mr. Huggins on the Spectrum of the Nebula in Orion.-At the meeting of the Royal Ast. Soc., March 10th, 1865, Mr. Huggins remarked that "the recent examination of the Great Nebula in Orion shows that this large and wonderful object belongs to the class of gaseous bodies. The light from this nebula resolves itself under the refractive power of the prism into the same three bright lines. With a narrow slit they appear exceedingly thin and well defined. The intervals between them are dark, and in the light from no part of this nebula was any indication detected of a continuous spectrum, such as is characteristic of incandescent solid or liquid matter. Different portions of this great nebulous mass were brought successively upon the slit, but the results of minute examination showed that the whole nebula emits light which indicates a constitution identical throughout the body. The light from one part differs from that of another in intensity alone.

The four bright stars of the trapezium and other stars distributed over the nebula gave a continuous spectrum.

According to Lord Rosse and Prof. Bond, the brighter parts near the trapezium consist of clustering stars. If this be the true appearance of the nebula under great telescopic power, then these discrete points of light must indicate separate and probably denser portions of the gas, and that the whole nebula is to be regarded rather as a system of gaseous bodies than as an unbroken vaporous mass

Since the usually received opinion of the enormous distances of the nebulæ bas no longer any foundation to rest upon, in respect of the nebulæ which give a gaseous spectrum, it is much to be desired that proper motion should be sought for in such of them as are suitable for this purpose.
If the gaseous matter of these objects represented the 'nebulous fluid,' out of which, according to the hypothesis of Sir Wm. Herschel, stars are to be elaborated, we should expect a spectrum in which the groups of bright lines were as numerous as the dark lines due to absorption found in the spectra of the stars.
If the three bright lines be supposed to indicate matter in its most primary forms, still we should expect to find in some of the nebulæ, or in some parts of them, indications by a more complex spectrum, of an advance in the formation of the separate elementary bodies which exist in the Sun and in the stars.

A progressive formation of some kind is, however, suggested by the presence in many of the nebulæ of a nucleus, the spectrum of which indicates that it is not pure gas, but contains solid or liquid matter.
It may, therefore, be, that nebulæ which have little indication of resolvability, and yet give a continuous spectrum, such as the Great Nebula in Andromeda, are not clusters of suns, but gaseous nebulx which, by the gradual loss of heat, or the influence of other forces, have become crowded with more condensed and opaque portions.

So far as my observations extend at present, they suggest the opinion that the nebule which give a gaseous speetrum are systems possessing a structure, and a relation to the universe, altogether distinct from the great group of cosmical bodies to which our Sun and the fixed stars belong. ${ }^{*}$ -Ast. Soc. Notices.
4. On the Meteorite of Mamboum, Bengal; by Mr. HaidingerThis meteorite fell 130 miles northeast of Calcutta, on the 22 d of December, 1863 , at 9 A. M., during a calm. The detonations which accompanied the fall were heard to a distance of 30 miles; and some hours afterward a large fragment was collected at Corsipore, a second smaller at Pandra, and others, as large as a nut, near Govindpur. The paste or base of the stone is ash-gray and is distinctly brecciform in structure, without rounded granules. Monosulphuret of iron is abundant in it, thcugh only in minute particles; grains of metallic iron are less numerous. The specific gravity is $3 \cdot 424$. -Ber. Wien. Akad., Sept. 21, 1864.
5. New Asteroid.-Another small planet was diseovered April 26th by de Gasparis at Naples. It was equal in brightness to a star of the 10th magnitude.

V. MISCELLANEOUS SCIENTIFIC INTELLIGENCE.

1. Experiments on the production of cylinders of ice by pressure through orifices; by Mr. Fresca, (Proc. Acad. Sci., Paris, for Feb. 21).These experiments were made by acting on ice contained in a cylinder 0.16 meter (about 6 inches) in diameter, with the requisite pressure to drive it through a central orifice in its base 1.05 m . (nearly two inches) in diameter. These plates, prepared by Tyndall's method, in some cases colored at the joints and in others not, acted like plates of lead or of poreelain paste, as before explained by the author to the Academy. The surfaces of the planes of division or joints, originally flat, are transformed by the process, as with other subitances, into tubes concentric and perfectly distinct from one another, thus indicating the movement of each point of the mass in the course of the transformation. The cylinders of ice are longitudinally furrowed, and the furrows appeared to proceed from fractures produced at the moment when a portion of the cylindrical block leaves the orifice, and when, as a consequence, it ceases to be subjected to pressure at the outer extremity. The porcelain paste afforded the anther delicate furrows or fractures of a similar kind, and in some cases the material was divided into small separate lamellie. The evenly-bedded structure of the cylinder of ice shows that the origin of these fractures is subsequent to the first formation of the cylinder.

For a block of the dimensions empioyed in the experiments the pressure required for the flow of the ice is 10,000 kilograms, while for lead it is 50,000 kilograms. These pressures correspond, for the square centimeter, to 126 and 637 kilograms. This pressure of 126 kilograms corresponds to a column of water 1300 meters in height. It is evident that if the orifice were smaller in proportion to the diameter of the mass under pressure, the force requisite would be notably less.

Mr. Fresca observes that the circumstances attending the formation of these jets of ice appear to throw light on the controverted question as to the movement of glaciers. The relative displacement of the layers of ice in the process, the change of form in the faces originally fat, the curved form of the beds at the extremity of each partial tube, the large cavities formed toward these extremities, and even the fissures or fractures at the moment of escape from the pressure, are so many points of resemblance to the phenomena of glaciers. There is not the mass of
material constituting moraines, but the traces of coloring matter which are deposited in parallel threads, and which are reunited toward the axis, complete to a degree the analogy.

Tyndall had before shown that ice could be moulded to any shape by pressure in a mould. Mr. Fresca observes that his trials prove, in addition, that it may by pushed into a thread, in accordance with the geometrical law of this kind of How. The facts help to bring the explanations of Tyndall and Forbes into accord, since they indicate that the viscosity, more or less great, of the material does not necessarily play any important part in the phenomenon. They exhibit the material conditions of the flow : and the transparency of the jet, after its escape from the orifice, shows, besides, that, under a comparatively feeble pressure, ice may be changed in form without ceasing to be glassy in texture or aspect.-Les Mondes, Feb. 23.
2. Observations on Sepulture in the Age of Stone, betwoen Castries and Baillargues, France; by P. Gervais.-A natural excavation, several yards in length, has been discovered in the Commune of Baillargues, which had been used for the burial of a number of human bodies of the Age of Stone. The bones were those of adults, and several were of quite an advanced age, as shown by the teeth. One of them indicated a man of high stature; the femur was 0.465 meter long. A cranium presented to the Acadeny of Sciences by Mr. Gervais was of the type of the white race, it having a brachycephalus head without a trace of prognathism, and a well-developed forehead. It appeared to have belonged to a female, and not one of advanced years. Flint implements found with the remains are regarded as fixing the age to which the people here interred belong. There are also in the graves numerous disks of carbonate of lime having a hole at center, and some calcareous objects of other forms, a few fragments of coarse pottery, bits of charcoal, and bones of some modern species of animals, as of the fox, hare, sheep, vertebree of snakes, and femurs of frogs.

Mr. Gervais concludes from his observations, that, in the remote period referred to, the country of Castries and much of southern France were inhabited by the race here indicated.-Les Mondes, Feb. 23.
3. Lake-habitations.-Mr. Messikomer, of Zurich, has again succeeded in making some highly interesting discoveries and observations by his continued excavations in the large turf-bed near Robenhausen. It is true that these latest discoveries do not give the key to the chronological enigma of the Pale buildings and their inhabitants; but they spread a clearer light on the manner of living in that remote period, as well as its condition of civilization. Hitherto it was believel that only two of these old settlements existed on this curious spot, one above the other; these recent observations make it plain that there are three, one on the top of the other. The two oldest settlements have been destroyed by fire, and furnish a great number of antiquarian objects. The third settlement, however, the pales of which do not consist of round wood, but split oak, had not been destroyed by fire, but had been abandoned in the curse of time; it is poor in remnants of interest. All three settlements Which rust have existed for a great number of years, belong to the Stone period. Among the astonishing quantity of objects of industry recently
excavated by Mr. Messikomer, only tools of stone, bone and wood have been found, many for uses unknown, but not the slightest trace of bronze or iron. The distinct separation and length of duration of the pre-historical periods of the so-called Stone period and Bronze period have nowhere been more clearly demonstrated than in the Pale buildings of Switzerland, much clearer and more precise even than in those of Denmark and Mecklenberg. No settlements of the oldest men, among those known till now, can, in fact, be compared in size and preservation with the large lake-villages of the Stone period at Robenhausen, Wauwyl and Wangen, on Lake Constance-Athenceum, May 27.
4. On the Human Remains of the Trou du Frontal; by P. J. Van Beneden and Dr. E. Dupont.-Remains of fourteen individuals have been found at the cave, called (from the discovery of a cranium) Trou de Frontal. Of the two best crania, one is orthognathous, the other prognathous; and still the prognathous one has the largest cavity. The various other bones include fragments of crania and of nearly every other portion of the skeleton, part of them the remains of children, and others of youths and adults. All lie in complete disorder, as if they had been disturbed by some catastrophe subsequent to their first burial; and with them are bones of various mammals of kinds now living, besides different species of Helix, Cyclostoma and Unio, flint implements, ornaments, amulets, coarse pottery, a crystal of fluor spar, a bone needle, etc.
5. Instrument for measuring distances.-Dr. Emsmanv, in a paper in Poggendorff's Annalen, describes a new instrument for measuring distances, which differs from all previous arrangements by being independent of the measurement of angles, or of a base line. It consists simply in an application of the well-known principle that the image of an object is brought to a focus by a convex lens at a distance from the lens varying according to the remoteness of the object. The arrangement described by Dr. Emsmann consists of an object-glass of $30^{\prime \prime}$, and an eye-piece of $1^{\prime \prime}$ focal length, a screen of ground glass, upon which the image is reeeived, being placed behind the eye-piece. The instrument, it will be seen, resembles in principle a photographic camera; the length, however, is about $5 \frac{1}{2}$ feet. In order to keep the indications within certain limits, the screen is placed behind the eye-piece, and the distance between the lenses is so arranged that a variation in the distance of 25 paces, at all ranges, requires at least a movement of one line in the screen. Trustworthy readings may be obtained up to 2000 paces. Dr. Emsmann suggests that the instrument will be found useful in coast batteries, for measuring the distance of a vessel ont at sea. In siege operations, the time generally admits of the measurement of a base line, the distance of the enemy's works being calculated by trigonometry. Shonld there be no practical difficulties in the way, it might probably replace with advantage the stadiometer, which depends on the principle of similar triangles, supplied by the War-office to volunteer corps for use in judging distance drill.-Reader, May 13.
6. On a Journey from Chimborazo to Bogota across the Central Andes; by Mr. Robert Cross, (Proc. Royal Geogr. Soc., April 24.) -This was a narrative of a journey performed by the writer whilst employed by the India-office in collecting seeds of the Pitayo cinchona-tree for planting
in India. This valuable species of cinchona appeared to be now reduced to a few specimens growing near Popayan, from which the writer succeeded in obtaining a good supply of seeds. His journey from the Pitayo forests to the valley of the Magdelena was over the high and bleak plateau of Guanacas, where his mules had a narrow escape from perishing of cold, and where he saw the road strewed with skeletons of men and animals.
General Mosquera, Minister of the United States of Columbia to Great Britain, at the invitation of the President, addressed a few remarks to the meeting in English, in which he described the efforts which the government of his native country were making to open a road across the Cordillera. . . . This was one out of many enterprises which were now being pushed forward with a view to increase the commerce between New Granada and Great Britain in the abundant produce of that part of Tropical America.

Mr. Evan Hopkins, C.E., who had been employed by General Mosquera to survey various parts of New Granada, confirmed the statements of Mr. Oliphant with regard to the geography of the Isthmus. As to the vast region which Mr. Cross had given them an account of, the difficulties of traveling described by him were due to the want of proper precautions. He had himself crossed all the ranges of the Cordillera five times, withont suffering any great privation, and a more magnificent region for beanty and fertility of soil he had never seen.

Mr. Gerstenberg reviewed the capabilities of the various routes which had been proposed for a ship canal, and gave his reasons for preferring that which had been first suggested by Humboldt, namely, between the Gulf of St. Miguel and Caledonia Bay, which was the only line that presented the indispensable requirement of good harbors at each end.
Mr. Oliphant differed from Mr. Gerstenberg in supposing that a good harbor at each end was of more importance than a depression in the intervening ridge. Mr. Crawford and Dr. Hodgkin also took part in the discussion, and the President, in summing up, said the question of crossing the Isthmus of Panama had been productive, in years past, of frequent and lively discussions in the Society; but he agrees with Mr. Oliphant, that it would be a disgrace to British geographers if they did not complete the examination of this region.- Reader, May 6.
7. Walker Prizes, Boston Society of Natural History.-The following prizes were founded by the late Dr. William J. Walker, for the best memoirs, in the English language, on subjects proposed by a committee appointed by the Council of the Boston Society of Natural History. The first and second are to be awarded annually ; the third, once in five years, beginning with $18 \% 0$.
First-For the best memoir presented, a prize of sixty dollars may be awarded. If, however, the memoir be one of marked merit, the amount awarded may be increased to one handred dollars, at the discretion of the committee.

Second-For the next best memoir, a prize not exceeding fifty dollars may be awarded at the discretion of the committee.
Neither of the above prizes shall be awarded unless the memoirs prosented shall be deemed of adequate merit.

AM. Jour. Sci.-Secono Seriss, YoL XL, No. 118.-JuLY, 186s

Third--Grand Honorary Prize. The Council of the Society may award the sum of five hundred dollars for such scientific investigation or discovery in natural history as they may think deserving thereof; provided such investigation or discovery shall have first been made known aud published in the United States of America; and shall have been at the time of said award made known and published at least one year. If in consequence of the extraordinary merit of any such investigation or discovery, the Council of the Society should see fit, they may award therefor the sum of one thousand dollars.

The following suljects for prizes under the Walker fund have been announced by the Society.

Subject of the Annual Prize for 1865-6. "Adduce and discuss the evidences of the co-existence of man and extinct animals, with the vielw of determining the limits of his antiquity."

Subject for $1866-7$. "The fertilization of plants by the agency of insects, in reference both to cases where this agency is absolutely neeessary, and where it is only accessory;" the investigations to be in preference directed to indigenous plants.

Memoirs offered in competition for the above prizes must be forwarded on or before April first, prepaid and addressed "Boston Society of Natural History, for the Committee on the Walker Prizes, Boston, Mass."

Each memoir must be accompanied by a sealed envelope enclosing the author's name, and superscribed by a motto corresponding to one borne by the manascript.
Boston, May, 1865.
8. Tunnel of Mount Cenis.-Of the total length of the Mt. Cenis tunnel, 12,220 meters, 7,977 remain to be made. Having been begun in 1858, and with new methods and energy in 1863, 4423.4 meters were finished on the first of April, 1865; of which, 1646 meters were accomplished by the old methods of tunnelling and $277^{\circ} \cdot 4$ by the new mechanical methods since the commencement of 1863-802 meters in 1863, 1088 in 1864, and $337^{\circ} 4$ in the first three months of 1865 . The rate of progress in 1862 was 2.02 meters per day, in $1864,2 \cdot 92$ meters, and thus far in 1865, $3 \% 75$. At the last rate it will take five years and eight months to complete the tunnel.- Les Mondes, May 18.
9. Centernial Celebration of the Royal Saxon Mining Academy at Freiberg.-Baron von Beust and Professors Reich, Breithaupt, Cotta, Scheerer, and others have issued an announcement in the Berg-und Hüttenmännisches Zeitung, that the Centennial celebration of the Freiberg Mining Academy will take place on the 30th of July, 1866. It is expected that many of the former students of the Academy will be present at this festival; and it is especially requested that every one interested should do as much as possible to acquaint others with the appointed day, and, further, every one is solicited to bring his photograph, so that it may be placed in a book to be kept in the Mining-Academy as a souvenir of the occasion.
10. The Agassiz Expedition to South America.-The expedition of Prof. Agassiz arrived safely at Rio de Janeiro on the 22d of April. The Emperor sent a boat along side of the Colorado to take the party on shore, and in the evening had a long interview with Mr. Agassiz. The

Secretary of the Treasury of Brazil gave orders to have the baggage and instruments of the party passed unopened at the Custom House, and every courtesy was extended to the members of the expedition by the officials of the Brazilian government.-Boston Transcript, June 9.
11. Report on the mortality in Paris; by M. Deville.-As far as we can judge from historical documents, the annual mortality in Paris at the commencement of the last century was 1 in $28 ; 50$ years later, 1 in 30 ; in 1836,1 in 36 . The year 1840° was exceptional, and the ratio was 1 in 33 ; in 1841 it was again 1 in 36 . In 1846, 5 years later, the ratio was 1 in 37 ; in 1851, 1 in 38 ; in 1856,1 in 39 . These numbers apply to old Paris.
In 1860 , the time of the annexation, the population was increased by the accession of an area less favorable for health than the interior of Paris. Still, the proportion of deaths in 1861, out of $1,696,141$ inhabitants, was 1 in 39. In 1862 and 1863 the diminution in the ratio of deaths continued, it amounting in both years to 1 in 40 , the number of deaths being, in 1862, 42,113.
The Commission attribute the improvement of the public health to the great works carried forward in the capital-that is, the opening of avenues, and the improvensents in the supply of water, in drainage, in the supervision of the "Commission des logements insalubres," the organization of hospitals; and also to the general prosperity of the working classes, who take better care of themselves, dress more warmly, and eat more wholesome and abundant food.-Les Mondes, Feb. 28.
12. Dr. H. Falconer.- It has been determined to place a marble bust of Dr. Falconer in one of the London scientific Societies, and to establish a Falconer Scholarship, or Fellowship, in Natural Science in the University of Edinburgh. Upwards of $£ 1000$ have already been subscribed. Mackie's Repert., May 1 st.
13. Ink.-The Paris Société dencouragement pour l'Industrie Nationale has offered a prize of three thousand dollars for an ink that will not corrode steel pens.-Athen.
14. Production of the Sexes.-The views of Mr. Thury, published in volume xxxix of this Journal (p. 84) bave recently been controverted by Mr. Coste, in a memoir read on May 8th before the Academy of Sciences at Paris. The author bases his conclusions on an extensive series of experiments and observations.
15. British Association.-The thirty-fifth meeting of the British Association will be opened on Wednesday, the 6th of September, 1860. at Birmingham. Prof. John Phillips is President for the year, William Hopkins and Francis Galton, Vice Presidentz, George Griffith, Gemeral Secretary.
16. Academy of Sciences, Paris.-In May last, Otto Struve was elected a corresponding member of the Astronomical Section of the Academy, in the place of Carlini, and Plantamour of Geneva in the place of William Struve; and in the Botanical section, Alexander Braun was elected a corresponding member.
17. Voyage of the Novara. - The second part of volume II of the Zoology of the Voyage of the Novara, has been published by the Vienna Academy of Sciences. It treats of the Lepidoptera, and is the work of Messrs. Cajetan, and R. Felder.

OBITUARY.

Valenciennes.-Mr. Valenciennes, the distinguished zoologist, died at Paris on the 12th of April last. He was born in that city on the 9th of April, 1794. Mr. Decaisne announced his death to the Academy of Science in the following words: Mr. Valenciennes was the friend and fellow-worker of the most illustrious naturalist of the age, George Cuvier. He was for half a century the friend and confidant of Alexander von Humboldt. Such friendships will ever honor the memory of our regretted confrère.-Les Mondes, May 4.

Pierre Gratiolet, the eloquent professor of zoology of the Faculty of Sciences, Paris, distinguished also as a spiritualist writer, died suddenly on the 21st of February last.

Leon Dufour, one of the most prominent of French zoologists, and especially eminent in entomology, long an associate of Cuvier, Latreille, etc., died on the 18th of April, in his eighty-sixth year.

Admiral Firzroy, the able and learned commander of the Exploring Expedition of the Beagle, (that of which Darwin was the naturalist.) hydrographical surveyor in various regions, and author of extended meteorological researches, died early in May last, in his 60th year, having been born on the 5th of July, 1805.
A. Gressly, a prominent Swiss geologist, died recently at Soleure, in Switzerland.

Sir J. Richardson, the distinguished naturalist and Arctic voyager, died on the 5th of June last.

Sir Josepf Paxton, the architect of the Crystal Palace of 1851, edjtor of the "Magazine of Botany", between 1840 and 1852, and author of a Botanical Dictionary and other works, died on the 8th of June, at his residence, Rock Hill, Sydenham, in his sixty-first year.

Kepfrer, the meteorologist, and Director of the Central Observatory of Russia, at St. Petersburg, has recently died.

VI. MISCELLANEOUS BIBLIOGRAPHY.

1. A Treatise on Astronomy; by Elias Loomis, LL.D., Professor of Nat. Phil. and Astron. in Yale College. Harper \& Brothers, New York, 1865. 8 vo , pp. 338. -This treatise is especially designed as a collega text-book. This primary object has directed the selection of the topics, and the extent of the development of each. The articles and sections are also arranged to meet the wants of the class reom. The mathematical discussions imply a knowledge of the elements of mathematics including Spherical Trigonometry and Conic Sections. The subject is rendered more attractive to students by allotting more than usual space to various physical phenomena, as, the constitution of the sun, the tides, the constitution of the comets, \&c. At the end of the volume are fifteen tables, and eight plates. The tables give the elements of the planets, asteroids, satellites, periodical comets and binary stars, the heights and diameters of the lunar mountains, the parallaxes of fixed stars, de.

Prof. Loomis's Treatise on Practical Astronomy has been deservedly esteemed, and his experience of the peculiar wants of oollege.classes affords asurance that this treatise will be equally worthy of favor.
2. Entomological Society of Philadelphia.-The Entomological Society of Philadelphia during the three years past has issued three volumes, containing in all 1650 pages and 20 plates, many of the plates beautifully colored. Since the commencement of the present year two thick númbers of Proceedings have already appeared: No. 1, for January and February, containing 212 pages and one plate, No. 2, for March and April, containing 120 pages and one plate. These nearly complete the 4th volume of the publications of this Society.
These numbers contain the following memoirs:
Page 1, Hymenoptera of Cuba; E.T. Cresson. - p. 201, On certain Diurnal Lepidoptera of N. America; Wm. H. Edzords, (with a plate).-p. 2014, Variation of sexes in Argynnis Diana; H.W.Bates.-p. 207, On Synonomy of Parathyris Angelica; A. R. Grote-p. 208, On new species of Chrysopa; H. Shimpr.-Page 213, De:cription of three new Canadian Nocturnal Lepidoptera; C'. J.S. Bethune-p. 216, On some American Pierine ; T. Reakirt.-p. 222, On new species of Citheronia, and on Arisota rubicunda; A. R. Grote and C.S. Robinson-p. 294, New North American Limnobina; R. Osten Sacken.-p. 242, Catalogue of Hymenoptera from Culorado Territory, in the Suciety's collection; E. 7'. Cresson.-p. 313, New species of Cuban Lepidoptera; C. A. Blake.-p. 315, Descriptions of North American Lepidoptera, No. 6; A. R. Grote.

Along with the last number of the Proceedings we have received a copy of a Circular, signed by the Publication Committee, E. T. Cresson, J. Cassin and A. R. Grote, announcing that the Society had beeu greatly indebted for its means of publishing to the generosity of Dr. Thomas B. Wilson, who had given $\$ 5,000$ as a fund for this purpose, besides additional aid at various times, and $\$ 5,000$, also, for the general maintenance of the Society; and that, on account of Dr. Wilson's sudden death without having carried out his expressed intention to place the Society upon a permanent foundation with a large publication fund, it was now greatly crippled in its means. The circular states, that, "To insure the permanence of the Society, and the continuance of its publications, an income of $\$ 3,000$ is judged to be required, representing a funded capital of $\$ 50,000$," and that $\$ 40,000$ are therefore needed and asked for from the friends of science in the land. No scientific Society or Academy in the United States has been doing, of late, more, or better work for science than the Entomological Society; and the failure of its means, which has come upon it so suddenly, is a calamity to the country as well as to the general interests of science. This call merits a ready response. The Society, as it states, cannot offer any equivalent advantages for donations to the fund. They propose, however, to make those Who come to their aid at this juncture, and give at least \$100, Honorary Members; while those who give $\$ 500$ or more will be entitled also to the Publications of the Society during life. The public may aid the Society by subscriptions to its publications, which are furnished at the small subscription price of three dollars a volume.
3. Whitney's Report on the Geological Survey of California.-The publication of the text of the first volume of this Report, containing the Paleontology by F. B. Meek and W. M. Gabb, was noticed in the last volume of this Journal (p. 99). The engraving of the plates has since been completen, and they are now ready to be issued. They are thirtytwo in number, in large 8 o 0 , and are cromded with figures of California
fossils, from the Carboniferous, Triassic, Jurassic, Cretaceous, and Tertiary formations. They are engraved from drawings by Mr. Meek and Mr. Gabb-which is a sufficient pledge of accuracy. These handsome plates annexed to the text make one of the most elegant, as well as most valuable, volumes that has yet been published on any department of American geology. The plates of the Jurassic include figures of the species that were obtained from the metamorphic gold rocks of the Sierra Nevada.
4. A Preliminary Report on the Genlogy of New Brunswick, together quith a special Report on the "Quebec Group" in the Province; by Hexry Youle Mind, M.A., F.R.G.S., \&c. 294 pp. 8 vo . Fredericton, New Brunswick, 186́5.-This Report is made partly from the author's observations, and largely from other sources. It takes up in succession the geographical features of the Province; the general geological structure; the Granitic series of rocks; the Carboniferous series; the Devonian; the Upper and Middle Silurian; the Quebec Group; and the Drift, Terraces, Beaches and Walley-erosion. The Albertite question is discussed, and with the conclusion that it is an. "inspissated or altered petroleum" injected from below (from the Devonian) into fissures situated along anticlinal axes.
5. Comparative Geography, by Carl Rirter, late Professor of Geography in the University of Berlin. Translated for the use of Schools and Colleges, by Wm. L. Gage. 220 pp .12 mo . Philadelphia, 1865. J. B. Lippincott \& Co.-This work is a tramslation of one of the series of lectures by the great geographer Ritter, whose writings it is almost superfluous to commend. It is a condensed and philosophical review of the geographical features of our globe, presented without encumbering details, in a simple yet animated style; and is full of instruction both for the student and the general reader.
6. Annual Report of the American Institute of the City of New York, for the years 1863, '64. Albany, 1864.-Discussions, opinions and information on a great variety of topics, of practical interest, connected with agriculture and the useful arts, are presented in this volume, together with the address of Gen. Wm. H. Anthon and the anniversary address of C.P. Daly, LL.D.
7. Baird's Review of American Birds.-Sheets 10 to 20, covering pages 145 to 320 inclusive, of Bairl's "Review of American Birds," bave been issued. They treat of the Motacillidce, Sylvicolide, (the latter under the four subfamilies Sylvicolince, Geothlypince, Icteriance and Setophagina), and the Hirundinide.
8. Naturalist's Directory; by F. W. Putnam. Published by the Essex Institute.-Part 1. of the Naturalist's Directory, noticed in our last number, has been issued. It extends to 32 pages, 12 mo, and includes the names of the naturalists of North America and the West Indies.
9. Chambers's Eacyclopedia. -The seventh volume of this excellent Encyelopedia has been issued, carrying the work nearly through with the letter P.
10. Report of the Commissioner of Agriculture for the year 1862. 632 pp .8 vo , with many plates.- Among the many interesting papers in this volume, there is one on Petroleum, or Coal Oil, by J. P. Lesley; others on the Wheat Plant, Cotton, Tobacco culture, Imphee and Sorghum eulture, Sheep husbandry and breeding, Marbles of Rutland, Vt., etc.
11. Report on the Formation of the Canterbury Plains (New Zealand,) with a Geological Sketch-map and five Geological sections, by Julivs $H_{a a s t}$ Ph.S., F.G.S., etc., Provincial Geologist. 64 pp. small fol., with a colored map and sections.-Canterbury Province adjoins Banks's Peninsula, on the west side of the middle island of New Zealand. The memoir contains a description of the old glacial deposits, moraines, lacustrine beds, raised beaches, and alluvium of the Province.
12. American Juarnal of Conchology.-Part 3 of the first volume of this Quarterly, the number for July, contains papers by Messrs. Bland, Anthony, Gabb, Conrad, Tryon, Newcomb and Whitfield. The Paleontological are three on Eocene shells, two of them by T. A. Conrad, and one by R. P. Whitfield. The number is illustrated by seven beautiful plates, three of which are colored.
Chemical Teehnology, or Chemistry in its Applications to the Arts and Manufactures; by Thomas Riceabdsox, M.A., Ph.D., etc.
The Ihis, a Quarterly Journal of Ornithology, edited by Alfred Newton, M.A., F.L.S., F.Z.S. New Series, 1865.

The Fibre Plants of India, Africa, and our Colonies: A Treatise on Rheea, Plantain. Pine Apple, Jute, African and China Grass, and New Zealand Flax (Phormium tenaz). 1860. London : Macintosh.
Anmaux Fossiles et Geologie de l'Attique. The 11th part of this work, by Axmert Gaddry, has appeared.
Atlas Céleste, contenant plus de 100,000 étoiles et nébuleuses, par Cr. Dirx.This very complete Atlas consists of 26 maps. The projection employed corresponds to the development of a sphere of 65 centimeters in diameter.
On the Oil-property of the Philadelphia and California Petroleum Company, situated in Santa Barbara and Los Angeles Counties, California; by B. Silumax. ${ }^{36} \mathrm{pp} .8 \mathrm{vo}$. 1865 . - The analyses at page 341 of the preceding volume of this Journal, are contained in this Report.
The Geological and Natural History Repertory; an illustrated popular weekly magazine of Geology, Paleontology, Minerallogy, Natural History, Terrestrial and Cosmical Physics and Journal of Pre-historic Archeology and Ethnology; edited by S. J. Mascie, F.G.S., etc.-First number, 28 pp. 8 vo , of this weekly Journal was issued on May 1st., Price 2d. Kent \& Co.; Trübner \&Co.; Edw. Stanford.
Note sur les Tremblements de Terre en 1861, avec Suppléments pour les années antérieurs, par M. ALexis Perrex, 112 pp . 8 ro ; also the same for $1862,180 \mathrm{pp} .8 \mathrm{8vo}$; from the Memoirs of the Dijon Academy for 1863, and 1864. These Reports post up every thing published relating to earthquakes during the years mentioned.
Abbildungee von fossilen Pflanzen aus dem Keuper frauhens, von Dr. J. L. von Soboevleis, mit erlauterndem Texte von Dr. Avgust Schenck, Prof. zu Würzburg: mit siii Tafeln Abbildungen. Preis 6 Thlr. 20 Ngr. Subseriptions to this work are solicited by the publisher, C. W. Kreidel, Weisbaden.
Tannsactioss of tar Amer. Peill Soc., Philadelphia, Vol. Xifi, New Series, Part 1-p. 1, On California Mosses; L. Lesquereux.- - ${ }^{25}$, On the mathematical probability of accidental linguistic resemblances ; P. E. Chase.-p. 35, Comparative etymology of the Yoruba language ; P. E. Chase.-p. 57 , Thoughts on the influence of ether in the Solar System; A. Wileocks.--p. 105, New Mosses (A List of the Mosses in the United States, east of the Mississippi, with descriptions of two new species); $T . P$. James.-p. 117 , On the numerical relations of gravity and magnetism; P.E. Chase.
Prockedixgs Acad. Nat. Sci. Philadelpbia. No. b. Nov. and Dec. 1864.-p. 258, Synopsis of the E. American Sharks; T? Gill.-p. 265, Notes on the Coerebinee (Birds); J. Cassin.-p. 276, Partial Catalogue of the cold-blooded Vertebrates of Michigan ; E. D. Cope.-p. 285, Six new W. Asiatic Unionidx; I. Lea.-p. 286, Birds from S. America; J. Cassin - Reports of Secretary, Librarian, Curators, de. - According to these reports the Library has received 1201 works; the Museumbesides specimens in all departments of Zoology-the herbarium of Prof. Short of
Louisville, Ky, containing 6000 species of American jlants, and between 3000 and

4000 European species, 12 thick quarto volumes of Algæ from the late Samuel Ashmead, and 700 species of marine and freshwater Algæ, which had been contributed by Leo Lesquereux to the Central Sanitary Fair. Robert Bridges was electel in December, President for the ensuing year, Wm. S. Vaux and J. Cassin Vice Presidenta, T. Stewardson, M.D., Corresponding Secretary, B. H. Rand, M.D., Recordiag Secretary, I. D. Sergeint, Librarian.-1865. No. 1, January, February and March.-Page 2. Notes on some new and rapacious birds; J. Cassin.-p. 5, On a new Cormorant from the Farallone Is, Califurnia; J. G. Cooper.-p. 7, On extreme and exceptional varintions of Diatoms, in some White Mountain localities, etc.; F. W. Lewis.-p. 19. Synonymy of the species of Streptomatidæ, a family of fluviatile Mollusca, inhabiting North America, part 4; G. W. Tryon, Jr.-p. 37, Descriptions of new species of Birds of the Families Paridx, Vireonidx, Tyrannidm and Trochilidx, with a note on Myiarchus Panamensis; G. N. Lawrence.-p. 40, Resolutions on the death of Dr. T. B. Wilson.-p.41, Notice of some New Types of Organic Remains, from the Coal measures of Illinois; F.B. Meek and A. H. Worthen.

Proceedings of the Amer. Acad. of Arts and Scio, vol. vi.-P. 347, Synopsis of North American Gaurineæ; J.T. Rothrock.-p. 354, Tides in Lake Huron; J.D. Graham.-p. 356, On Kight Ascension of the Pole Star ; J. Winlock, U.S.N. -p. 360, On Jewish Calendars; C. Pickering.-p. 361, Researches on Volatile Hydrocarbons; C. M. Warren.-p. 363, Revision of the Doctrine of Conditional Sentences in Greek and Latin; Gooduin.

Proceedings of the Boston Soc. of Nat. Hist., vol. ix.-Page 319, Diatoms from Randolph. Mass. C. Stodder.-p.321, On Selandria Cerasi; A. Winchell.p. 328, Fertilization of Cypripedium spectabile and Platanthera psychodes; S.J. Smith.-p. 329, On two Albino girls; B. o. Jeffries.-p. 332, On Mode of birth in the Opossum ; J. G. Shute.--p. 3i33, Arctic plants on Mt. Monadnock, C. Pickering; On Amphioxus; A. S. Bickmore--p. 334, Development of Skates; J. Wuman-p. 335, Notice of Record Book of the Linnean Society; A. A. Gould.--p. 342, On Tuhularia; H. J. Clark, (see this Journal [2], xxxvii, 61).-p. 342, A supposed new species of Samia; S.I. Smith.-p. 345, Two Ichneumons parasitic on Samia Columbia; A. S. Packard, Jr.-p. 346, On Amphioxus, Chas. Pickering; Action of sun-light on window-glass; Thos. Gaffield.-p. 350 , protection against canker-worm; Ordway.-p.352, Skeleton of a Hottentot; J. Wyman.-p. 307, Ancient pottery from India; D. C. Scudder and W.B.Capron.-p.368, New variety of Parus; H. Bryant, M.D.-p. 369, Galeoscoptes Cabanis; H. Bryant.

Proceed. California Acad. Nat. Sci, Vol. III, Part 2, 1864.-p. 101, Descriptions of New California Plants-No. I; A. Gray.-p. 103, New species of Fishes, Sandwich Island-No. II; A. Garrett (of Honolulu). - p. 108, New California Fishes-Na. III, with cuts; J.G. Cooper-p. 115, Descriptions of nine species of Helix of California; W. Nerocomb-p. 120, New Virgularia of California; W. M. Gabb.-p. 120, Notice of plants found growing in hot springs in California; W. W. Brewer.-p. 121, New species of Pedicularia; W. Newcomb.-p. 123, On California Lepidoptera-No. IV;H. Behr.-p. 127, Earthquakes in California during 1863; J. B. Trask-p. 130, Earthquakes from 1800 to 1864 ; J. B. Trask.-p. 153, Cretaceous fossils from Sonora; W. M. Gabb.-p. 155, New shells from the coast of California-Part I; P. P. Carpenter.-p. 160, California Satyrides; H. Behr.-p. 166, Remains of Horse and Elephant in a deposit near San Francisco; W. P. Blake. -p. 167, Ammonites or Ceratites from Oregon Bar, Middle fork of the American river; W. P. Blake.-Brushite, a new mineral; G.E. Moore-p. 170, 172, Fossils from the auriferous slate of the Mariposa estate; W. P. Blake, and W. M. Gabb. -p.173, Fossils from the Quicksilver region, San Lais Obispo; W. M. Gabb.-p. 174, Crystallization of Brushite ; J. D. Dana-p. 175, New California marine shells ; P. P. Carpenter (of Warrington, England).

Proceedings of the Essex Institute.-Page 145, Classification of Polyps; A. ER. Verrill.-p.153, Habits and distribution of the Duck Hawk in the breeding seasons and description of the eggs; J. A. Allen.

Verhandlungen der Kaiserlichen Leop-Car. deutschen Akademie der Naturfor selser (or Acad. Cges. Leop. Car. Germ. Naturse Curiosmrum). Vol. xxxi. Dresden, 1864.-Contains a paper on the Meteorology and Climatology of Central Americe by Moritz Wagner (31 pp., 4to); also an elaborate memoir by Dr. A. Baur on the Synapta digitata (120 pp, , 4to) illustrated by several plates; besides other papert.

AMERICAN

JOURNAL OF SCIENCE AND ARTS.

[SECOND SERIES.]

Art. XV.-Friedrich Georg Wilhelm Struve.*

Friedrich Georg Wileelm Streve was born at Altona, in the Duchy of Holstein, April 15, 1793; his father, Jacob Struve, for forty years filled with great distinction the directorship of the High School in that city, and was widely known for his classical and mathematical acquirements. His mother was the daughter of Pastor Stinde, who went to Russia as chaplain to Peter III; it was this circumstance which subsequently led to the settlement of many of the Struve family in Russia; until then the Struves had from time immemorial lived as respectable yeomen in the Duchy of Holstein. Thus our old and honored associate was descended from the original stock of the Anglo-Saxon race; a descent which many of us remember distinctly expressed itself both in the personal appearance and in the moral qualities of the man. Struve was happily trained by his father into no precocity in his early childwood, but in due time, when removed to the High School, he made such advancement in his studies as at the age of fifteen to be qualified for entrance at the University. In those days of trouble the young student had but little prospect of continuing his studies undisturbed. A constant sense of the oppression of the foreigner and the dread of the French conscription decided his parents, in 1808, to send young Wilbelm to Russia, at that time probably the quietest country in the world, and where his elder brother Carl occupied the post of Classical Lecturer in the University of Dorpat. This university, so soon to be illuminated by the ex-

[^42]ample and fame of Wilhelm Struve, had been recently founded by Alexander I, immediately after his accession to the throne, and was intended by him not only to be the intellectual center of the German Provinces of Russia, but to serve as a civilizing link between Europe and Russia proper. Here Wilhelm Struve, in accordance with his father's wishes, applied himself exclusively to classical subjects, and it was in this branch of learning that the young student earned his first literary laurels, by an academical exercise "De systemate metrico apud Alexandrinos;" this essay was honored by a prize, and by being printed at the University expense. It was by this wise and fortunate arrangement of his studies that Wilbelm Struve acquired the power of fluently and accurately expressing himself in the Latin language, thereby enabling him, at a subsequent period, to communicate the results of his researches to men of science living in other parts of Europe, where Struve's native tongue, the German, was at that time but little understood. These early literary pursuits also contributed, in no slight degree, to secure that balance and breadth of mind for which our lamented associate was afterward so remarkable.

In 1811 Struve took his first university degree in Philology, and it was only after having thus fulfilled his father's desire that he passed to that branch of science which henceforth became the principal object of his life. No doubt, while he was a student at Dorpat, the able scientific lectures of the elder Parrot excited a warm interest in his mind; but it was rather an inner call than any external circumstance which led Struve at length to devote himself to astronomy. Parrot's influence was not confined to the mental stimulus thus afforded to his young philosophic pupil, but by the representations which he made to the University authorities relative to young Struve's promise of future eminence, and his present straightened pecuniary resources, he obtained for him the means of still longer prosecuting his studies at Dorpat. It was partly in this way that Struve from the early age of fifteen ceased to be a burden upon the scanty fortune of his father; but the boy's own exertions and self-denial contributed greatly to the same end. It was brought about in this way. Shortly after Wilhelm Struve had entered the University, he applied for and obtained the post of private tutor in the family of Mr. de Berg, a wealthy nobleman of Livland, and his first pupil there was the Count de Berg, the present Viceroy of Poland. By this arrangement the young student was necessarily debarred trom a regular attendance on the lectures of the place; but this untoward necessity served, as was natural with one of Struve's mind, only still further to quicken his zeal to make the best of such advantages as remained to him, and to animate bis self-reliance.

In 1811, while thus engaged, partly in attendance on the family of the De Bergs, and partly in the prosecution of his own studies at Dorpat, Struve passed on to the class of Astronomy. The Professor at that day was Huth, a man for whose worth and eminent attainments our old associate ever retained an affectionate and respectful memory. Huth's health was too infirm to permit him to assist his pupil to any great extent, and bence young Struve was, by a happy fatality, or in truer words by the discipline of Providence, once more thrown upon self-reliance and the resources of his own efforts. The Professor himself was scarcely ever able to visit the Observatory, but he permitted his pupil to make what use of it be could. This Observatory was at that time but scantily supplied with instruments, and even those for the most part were not in a condition for actual use. Among these instruments was a Transit by our countryman Dolland, and the excellence of the object-glass attracted the special notice of the embryo astronomer. The pillars of this instrument were, it is true, erected, but upon them there was no provision existing for the attachment of the Y's and the other subsidiary apparatus, while the body of the instrument itself had never been removed from the case in which it had been packed. For the mounting of this instrument young Struve could obtain no adequate assistance in the city of Dorpat, but was thrown entirely on the workmanship of his own hands, and the guidance of his own inexperienced judgment. Nevertheless, the work was done, and well done; and in after days Struve would often recur to the fortunate difficulties under which his earliest efforts were made. We must not forget that Struve at this time was only in his nineteenth year.

Early in the autumn of 1813 Struve took his degree of Doctor of Philosophy, and on that occasion wrote his first memoir on an astronomical subject, namely, De geographica Speculce Dorpatensis Positione. In this paper, among other matters, he gave the first determination of the longitude of that Observatory, deduced from occultations observed by himself during the preceding year. In November, 1813, a few weeks after this thesis, he was appointed extraordinary Professor of Mathematics and Astrononyy, and two years later, upon the death of Huth, he was advanced to the ordinary professorship. In this capacity his duty was not only to attend to the Observatory, but to lecture also on Astronomy and the higher branches of Mathernatics; each subject no doubt suffering from this combination of duties, notwithstanding the efforts of the Professor to prevent it. In 1822, however, the two offices were happily separated, and Struve was henceforth enabled to devote his zeal and his abilities exclusively to the proper work of an Observatory.

Having thus arrived at that point in our venerated associate's career when he was appointed the chief of an Observatory, soon to be rendered by his labors famous to all time, we may for a few moments not improperly revert to the circumstances which years before, indicated the bent of his mind, and, in a certain degree, shaped the after-course of his life. In August, 1811, young Wilhelm Struve, while yet a student, and with extremely slender means at his disposal, verified the orbital motion of the two components of Castor, predicted by the elder Herschel in his immortal memoir of 1803, and which by this time was completed to the extent of thirty degrees. This first success had a decided influence in directing Struve's mind to the abundant harvest which he foresaw might be reaped from a zealous devotion to Sidereal Astronomy. Nearly at the same time, while spending the summer at Sagnitz, in the house of his friend, Mr. de Berg, Struve's attention was drawn to Geodesy; and the early success which here again attended his first attempts, laid the foundation for that other gigantic work upon which, together with his labors in sidereal astronomy, rest the fame and the scientific services of this great observer. Although provided with the feeblest conceivable instrumental means, he made excursions in the neighborhood of his friend's house, in order to see if it were possible to make a triangulation of that part of Livland. While practising himself in the use of the sextant, for that purpose, a singular accident befell him, and for some time put a stop to his geodetical studies. The French army at this time was invading the Russian frontier, and against it a Russian corps had been despatched to Livland in order to prevent the French army from penetrating through the Baltic provinces to St. Petersburg. Some officers of this corps seeing young Struve engaged with an instrument and a note-book, mistook him for a French spy, and, notwithstanding his protestations, marched him off, for full a hundred miles, as a prisoner to head quarters, and there, not without some difficulty, he was liberated by the commander-in-chief, on the express understanding that as long as the war continued he would not again, by similar pursuits, expose himself to suspicion. Three years after this occurrence, Struve, at the invitation of the Economical Society of Livland, undertook to make a triangulation and map of the entire province; and this work be accomplished with great ability, although be had no instrumental means at his disposal beyond an excellent 10 -inch sextant, by Troughton. This work, thus commenced with a comparatively insufficient instrument, forms the starting-point and the nucleus of that noble survey of the Russian empire, which for nearly half a century occupied the thoughts and the abilities of our lamented asreciate.

From 1813 to 1839 Struve continued at his post at the Observatory of Dorpat. As we have already seen, the means at his disposal were wholly inadequate to the most modest requirements of an astronomer. It was not long, however, before the success of his labors attracted the attention of the Russian government, and through the benevolent intercession of Prince Lieven, then Chancellor of the University, and as an acknowledg. ment of the services of the professor; the Observatory was furnished with such instruments and pecuniary means as soon raised it to the rank of a first-rate establishment. Thus, in 1821, the Meridian Circle was obtained from Reichenbach and Ertel, and in 1824, Fraunhofer's famous 9 -inch Refractor was added, at once the masterpiece of that great artist, and the commencement of a new era in the history and employment of the telescope.

Struve at first worked alone in the Observatory thus munificently furnished ; occasionally, indeed, he was assisted by a few volunteers from among his pupils, and notably so by Knorre, who subsequently and for forty years, was the well-known director of the observatory of Nicolaiff; but it was not until the year 1826 that he obtained, in the person of M. Preuss, a permanent observer, who by applying himself with much ability to the meridian circle, enabled Struve to devote his attention to the observation of double stars with the great refractor.

In taking even a cursory survey of Struve's labors at Dorpat with this noble instrument, it becomes necessary to revert, in some degree, to the state of sidereal astronomy before he commenced his work. In 1803, Sir William Herschel had announced the binary nature of several of the double stars; nevertheless, partly from the extreme novelty of the views set forth by that great philosopber, partly from the deficiency of the optical means then existing, and partly from the great difficulty of manipulating the micrometrical measurements, the subject remained in abeyance and almost untouched during the succeeding ifteen or sixteen years. In 1816, Sir John Herschel did, however, commence at Slough a review of his father's double stars, but owing to some of the difficulties already alluded to, he made but inconsiderable progress. Some of these measurements so taken are recorded in the joint communications made by Sir John H_ el and his colleague, Sir James South, to the Royal Society in 1824: among others will be found a remarkable measurement of Castor, When the two component stars happened to be on the same parallel. We have already adverted to the then young Struve's measurement of the same remarkable star, and to the effect which it had on the direction of his energies: this, however, was but a single and isolated result, and it was not until some years later, namely, in 1819 , that the record of measured angles of position
and distance began to be at all consecutive at Dorpat, though differences of right ascension and declination had been pretty copiously observed. In 1820 appeared Struve's first Catalogue of 727 double stars, arranged in the order of their right ascension, together with their corresponding declinations. This Catalogue was expressly intended to facilitate the observation of these objects, either with meridian or with equatorially-mounted instruments, and effectually revived the subject as one of general astronomical interest.

Nevertheless, praiseworthy and valuable as were these new attempts, it was not until the erection of the great Fraunhofer Refractor in 1824, at Dorpat, that Mr. Struve became possessed of an instrument worthy of the subject, and competent, not only to afford facility and precision in respect of measurement, but to add largely to the list of known double stars.

The result of the first two years of his observations with this famous telescope was that most remarkable work, Catalogus novus generalis Stellarum duplicium et multiplicium, which appeared in 1827, and will for ever be considered as forming a memorable epoch in Sidereal Astronomy. Nor is this great work remarkable alone for its copious and valuable lists of 3112 double or multiple stars duly arranged in their order of right ascension, and 2343 of which had not been previously described by any astronomer, but still more so for a great physical fact which it announced for the first time. In this catalogue it is shown that the closer classes of double stars, namely, those whose mutual distance is less than $4^{\prime \prime}$ exceed out of all proportion, not only what might be expected from a calculation of chances on the hypothesis of casual or optical juxtaposition, but even in point of numerical majority, those of either of the other classes. The existence of such a fact affords, in the opinion of those competent to form it, a convincing proof of a real physical connexion, and (independently of any question as to orbital motion) places these juxtaposed objects before us, neither as casualties of situation as seen from the earth, nor as mere exceptions to a more general rule of isolation, nor as mere curiosities of the sidereal heavens, but as entering largely into the general plan and constitution of the universe. Later observations, carried on both by Mr. Struve himself and by others, with even larger instruments than the great Dorpat refractor, have confirmed this most notable result, and have shown that it is but an ordinary circumstance to find stars previously regarded as single, to be in reality composed of two very close individuals. It will enhance our respect for the memory of our lamented associate, and enable us to form some idea of the labor and devotion required for the formation of this catalogue, to remark that in the preface to the Petersburg Catalogue it is stated to have been the result of the
examination of 120,000 stars, and that it was one individual who executed this examination with his own eyes and hands.
The formation of this Catalogue was, after all, the commencement only of a work of far greater labor in this department of astronomy. Struve's next undertaking was the determination of the angles of position, distances, magnitudes, and colors of all the objects therein enumerated, together with their exact right ascension and declinations, each resulting from several nights' observation. The results of this immense undertaking he published in the year 1837 in a magnificent work entitled, Stellarum compositarum mensurce micrometricce, followed, in 1852, by another work, bearing the title, Stellarum fixarum, imprimis duplicium et multiplicium, Positiones medice, with their proper motions computed when practical from earlier observations.

Another branch of what, with some propriety, may be called the Physique du Ciel sidéral, to which Struve directed much of his attention, was the determination of the law of density in the distribution of the stars with respect to the plane of the Milky Way. His researches on this subject were not indeed published until after he had removed from Dorpat, as we shall speedily see, but it is here, perhaps, that we can with greatest convenience refer to the fact. The great work which contains the result of his labors, is entitled Etudes d'Astronomie Stellaire, published in the year 1847. By a series of calculations, founded on the number and distribution of stars of sufficient lustre to admit of being individually catalogued, as well as by the star-gauges of Sir W . Herschel subjected to a careful and systematic analysis, he has in this work clearly shown that in the northern hemisphere at least, (northern, that is, when referred to the bisection of the heavens by the Milky Way) the distribution of the stars exhibits a distinct and unequivocal relation to their angular distance from the plane of that sidereal ecliptic. Nor is this view wanting in confirmation. In the same year that Struve published his researches on this great problem, Sir John Herschel gave also the results of his own investigations of the southern hemisphere, and the numerical expression obtained by him for the gradation of stellar density is singularly coincident with that resulting from Struve's investigations of the northern heavens. As the two results were obtained from observations made with telescopes strictly comparable, and were each arrived at independently and without the knowledge of the other, it seems that this great physical generalization may be regarded as perfectly established.
Such are some of the great results which form the high reWards of Struve's loyalty to his duties at Dorpat. The year 1833 brought a great change in his life. In the autumn of that year the Emperor Nicholas resolved to erect a great central observatory for the empire of Russia; it is honorable to the

Czar's memory to record that the suggestion was wholly spontaneous, and we feel no surprise that our associate was a most influential member of the commission entrusted with the execution of the Emperor's noble design. The prosecution of this work occupied much of Struve's attention, and necessarily compelled frequent and long visits to the capital, until the spring of 1839, when the building having been completed, Struve took up his permanent residence at Pulkowa as director in chief of the Central Observatory of Russia.

The creation of an Observatory to be, from its commencement, established for well-defined and̆ specific purposes, distinctly set forth in a formal document; and without restriction in cost, to be furnished with instruments constructed by the ablest artists who were at the same time encouraged to new efforts, the observatory and its ample staff being, at the same time, munificently endowed with pecuniary means and all other requisite appliances, is a circumstance unique in the history of science. Nor could this magnificent plan have been successfully executed, had not the man been at hand qualified by nature and experience to organize and direct so difficult an undertaking. It is unnecessary here to describe at any length the Observatory of Pulkowa, but it would be wrong not to refer to the judicious plan of observation which Struve proposed to follow, so as best to realize the generous intentions of its imperial founder. Fully aware of the incomparable value of the Greenwich lunar and planetary observations, and of its traditions in other respects, Struve determined, from the first, to adopt a course wholly different from that followed at our National Observatory. Hence, observations of the moon and planets were to be made on exceptional occasions only, the main strength and efforts of the Observatory being directed to the astronomy and physics of the sidereal heavens. It was proposed, also, not to publish an annual volume of observations, but, after having organized systems of specific research, often of necessity extending through several years, to give the results to the world only when each project was completed, and then with the name of the particular observer attached. How well this plan has been executed the records and scientific memoirs which have proceeded from Pulkowa sufficiently attest. And, lastly, it will not be without its interest to record that, in 1844, when Struve published his elaborate description of Pulkowa, there were no less than 103 persons, including the children, domiciled within the precincts of the Observatory. This numerous family comprised seven astronomers, several savans connected with the geodesy of the empire, a secretary, an engineer-in-chief, a cabinet-maker, with ten artisans for the repair of the instruments and the furniture, and eight discharged non-commissioned officers for the service of the
place. Assuredly it was no ordinary man who could secure, as Struve secured, order and good-will in so considerable and multifarious an establishment. For the endowment of this noble institution the Emperor of Russia, with truly imperial generosity, assigned no less a sum than ten thousand pounds per annum. The servant was worthy of the master.

Meanwhile, and for nearly half a century, extending almost throughout our venerated associate's directorships both at Dorpat and at Pulkowa, run continuously the gigantic operations connected with the measurement of the Russian and Scandinavian Arc of Meridian, and the Trigonometrical Survey of the enormous Russian empire. The genius of Struve presided over this vast undertaking, ever devising, co-operating, and not seldom working with his own hands and eyes, and on more than one occasion amidst ice and snow. This are of meridian, extending through $25^{\circ} 20^{\prime}$, from Ismail at the mouths of the Danube to Fuglenæs on the Arctic Ocean, exceeds in magnitude even our own Indian are, from Cape Comorin to the Himalayas, the execution of which alone, and with no other work, has been sufficient to raise the fame and exhaust the labors of Lambton and Everest.

Some idea may be formed of the amount and variety of Struve's occupations at this time from the following quotation from his great work on the subject of this very arc. Speaking of that portion which runs through Livland, he says:-"Undoubtedly I could have completed this work long before, had it been the sole object of my scientific duties; but, in 1821, Reichenbach's meridian circle arrived at Dorpat, and at length, in 1824, I was put in possession of Fraunhofer's magnificent equatorial, ordered since 1820, and I thought that my first duties pointed to the immediate use of these exquisite instruments. Hence, I did not consider myself authorized to absent myself from Dorpat for more than a few weeks' work at a time in geodetical proceedings. And I think that I ought here to explain, that between 1821 and 1827 (which period embraces the fieldwork of the Baltic arc), I made, reduced, and published without any assistance, the meridian observations recorded in volumes III, IV, V, VI, of the Dorpat Annals; at the same time I also finished the revision of the survey of the heavens, which furnished the Catalogus novus Stellarum duplicium, published in 1827; and besides this I had to give an annual course of lectures on Astronomy to the University, and of Geodesy to the Imperial staff:"
Such labors, great as they were, are not now referred to as being by any means without their parallel among scientific men; on the contrary, they form the rule rather than the exception; but they are mentioned here because they may well serve to remind us, that such is the cost at which our knowledge is

[^43]advanced, and for whieh alone the world accords imperishable fame to her sons.

Struve visited England on four different occasions. The first time was in 1830, when it so happened, that a committee was sitting for the improvement of the Nautical Almanac; he was invited to assist in its deliberations, and by his ability and excellent temper contributed toward bringing its labors to a successful conclusion. In 1844 he came to England for the purpose of determining the difference of longitude between the Observatories of Pulkowa and Greenwich. A step had already been taken toward the completion of that important but difficult operation, by ascertaining, in 1843, the difference of longitude between Pulkowa and Altona. In those days,-it may seem strange indeed, that we naturally fall into such expressions while speaking of but twenty years ago, but the amazing advances, which, during that short interval, have been made in the application of science to art, justify the terms-in those days, the only known method existing for the exact determination of differences of longitude between two geographical positions, was by the repeated transmission of many chronometers from one place to the other. Hence, it was necessary for Struve to organize, and personally superintend, a series of chronometric expeditions, first between Pulkowa and Altona, and then between Altona and Greenwich. In the former expedition not less than sixty-eight chronometers were sixteen times carried across the Baltic; and in the latter, forty-two chronometers passed sixteen times over the German Ocean and the Thames. In the present day, owing to the combined labors of Oersted and Wheatstone, ${ }^{1}$ all this tedious and cumbersome operation is replaced by the mere automatic action of the clock itself, whereby a series of metallic contacts are made, conveying the precise time, to the small fraction of a second, through the electric wire to an observer waiting in quietness for the expected signals at some distant place. All honor be to Struve, and to others like him, who, toiling along rivers and seas, and without our wonderful appliances, by patient genius obtained results comparable in accuracy with our own. ${ }^{2}$ Nor may we here omit the mention of an incident which exhibits in a characteristic manner the true greatness of Struve's mind. After he had successfully completed the very troublesome operation before alluded to, and when it had become necessary to arrange and publish the result, for geographical and other purposes, the question arose, shall the astronomical prece-

[^44]dence attached to the first meridian of longitude be assigned to Pulkowa or to Greenwich? There could be no doubt that Struve's heart was in Russia, rather than in England, and we have already seen how in external magnificence Pulkowa utterly eclipsed the unpretending buildings at Greenwich; but Struve, like a true astronomer, remembered the long line of illustrious men who had toiled at Greenwich, the old traditions of Flamsteed, and Halley, and Bradley, and to Greenwich he assigned the astronomical precedence.

Struve was in this country again in 1847. This time, the main object of his visit was to carry baek with him to Russia one of the two standard bars used in the great Indian Survey, and without which it was impossible to utilize and connect the measurement of the Indian arc, with that of the still greater Russian and Scaadinavian are just completed. On this occasion, he joined the British Association, which that year fortunately assembled at Oxford, and it was thus that Struve either acquired or consolidated that strong personal regard which united him, in a peculiar degree, with the principal scientific men of England in almost every branch. Perhaps it may be allowable for the writer to record that his first acquaintance with this most amiable man was made at this period when, at the house of Sir John Herschel, and not long after the memorable discovery of Neptune, he, for a few days, was permitted to associate with a phalanx of scientific veterans rarely assembled in one spot,-Adams, Airy, Herschel, Leverrier, and Struve, forming the list.

Ten years later, viz. 1857, found Struve in England for the last time. He had never failed in public documents and in private communications to speak in affectionate terms of the ready aid and hospitality which he had received at the hands of the present Astronomer Royal, Mr. Airy. His headquarters were, therefore, again as of old, at Greenwich. But now, though in his sixty-fourth year, the indomitable energy and the genius of work in the man brought him thither on a project of still greater magnitude than the are of meridian which he had just completed. In early youth, while honorably supporting himself in Livland as tutor in the family of the De Bergs, he had cast a wistful eye over the level tracts which north and south, east and west, are a characteristic feature of European Russia. Our great countryman, Dr. Arnold, used to say, with but slight exaggeration, that there was scarcely a hill between Rugby and the Ural mountains to shelter him from the east wind. Arnold observed this with the eye of a geographer; Struve knew it, and utilized it as an astronomer. ${ }^{3}$ No sooner then was the Russian and Scandinarian

[^45]are from north to south completed, than Struve set to work to organize and arrange the measurement of an are of parallel from east to west, of still more gigantic dimensions. He proposed to extend it throughout the entire breath of Europe; from Orsk, at the foot of the Ural Mountains, to Valentia, at the western extremity of Ireland, ranging over perhaps a twelfth part of the equatorial circumference of the earth. The operations for measuring this are would necessarily lie in many lands; and, perhaps, this man of no jealousies was, if not the only man, at least the one best fitted to negotiate with the various governments, and men in high office, both in state and science, without whose concurrence and aid the execution of the vast project was impossible. The Emperor of the French and other state officials received Struve with especial distinction. It was to arrange for the prosecation of that portion of the arc of parallel which lies in England and Ireland, and also of that part which connects England with Belgium, that Struve now came to Greenwich. In this country he was warmly seconded by our own government, by Mr. Airy, Colonel Sir Henry James, Captain Clarke, and other savans connected with the geodesy of Great Britain. It is sometimes accorded by a divine providence, wiser than ourselves, that a man at the age of sixty-four may arrange and even commence so vast a plan, but it is not granted that he may complete it. So Struve labored, but it is for other men to enter into his labors. In the following year, 1858, came the first attack of a cruel malady, which might have warned him that his active labors were drawing to a close. When, however, he could no longer take the field and observe, we are informed on the best authority, that he would sit at his writing-table for fourteen or fifteen hours in the day, endeavoring to further with his pen that great undertaking which he could not assist with his hands.

Before concluding our estimaste of the permanent results of Struve's labors on the advancement of astronomy, it is necessary to observe that the data for our more accurate knowledge of the constants of precession, nutation, and aberration, as now generally adopted by astronomers, were furnished by observations made by himself or under his immediate direction, in the interval between 1822 and 1841. Again, in addition to his discovery of the existence of a law in the distribution of stars in space and in the proximities of multiple stars, of which we have already spoken, for Struve may properly be claimed what Sir John Herschel happily terms "the first impression that was made" " on the general problem of the distances of the fixed stars from the Sun. It was humiliating to the astronomer (nay, he had almost acquiesced in the belief that for wise purposes it was designedly so) to think that an innumerable multitude of bright

[^46]objects, which he could not do otherwise than regard as worlds, were within his sight, yet beyond the reach of his geometry to measure. Our associate, however, resolved to determine, if determined it could be, whether this limit had actually been set to the bounds of human knowledge, and in the years 1819-21 he succeeded, by sagacious and diligent observations of 27 circumpolar stars, in showing, beyond a doubt, that certain indications of parallax existed sufficient to encourage further efforts with more adequate instrumental means than he at that time possessed. The history of the definite settlement of the question of stellar parallax is not a little curious, and Struve's part in it is sufficiently conspicuous. Our countryman Henderson, in 1831-2, at the Cape of Good Hope, observed α Centauri with the mural circle, and on his return to England shortly afterward deduced a parallax of about $1^{\prime \prime}$ for that remarkable star. Struve at Dorpat, from micrometrical measurement made with Fraunhofer's instrument in the years 1835-8, obtained a parallax for α Lyree, amounting to $0^{\prime \prime} 261$. Nevertheless, astronomers, after their manner of most rigid and impartial scrutiny, decided that possibly the shadow of a doubt rested upon both these sets of observations, and resolved to wait for the results of fresh measurements. Meanwhile, Bessel a year after, and from observations made with the great Heliometer at Königsberg, deduced a parallax of $0^{\prime \prime} 348$ for 61 Cygni, such as to be wholly beyond the reach of cavil. Subsequently Peters confirmed Henderson's result of the existence of a parallax in α Centauri, and M. O. Struve vindicated the general truth of his father's deductions. Such, then, is the share which must be assigned to cur associate in the determination of this most interesting, but difficult cosmical question.

Nor must we pass over our late associate's Description de lobservatoire Central de Poulkova given to the world in 1847. It would be but an obvious and inadequate remark simply to say that this is the most sumptuous and complete work ever published on the description of an observatory, its instruments and its arrangements; and a monument to the enlightened generosity of the Russian government, who defrayed the cost of its publication. A perusal of it can scarcely fail to kindle the admiration of every one who is endued with a taste for practical astronomy. What is of far more importance, almost every page indicates the perfect mastery of the author over the instruments which he thus admirably describes and attests the scrupulous care with which he attended to the minutest circumstances which could in any way contribute to the accuracy of their construetion, or of the mode of handling them. Happily this most important work has on several occasions served as a guide for building and organizing other observatories on the continent of

Europe. But while we are bound, in the interests of scientific truth, to speak thus respectfully of this truly admirable work, and of the Observatory which it describes, it is impossible for us not to turn eur thoughts for a moment to our own National Observatory and to its present able Director; not indeed in the spirit of contrast or comparison, but solely in the spirit of duty. Since the establishment of Pulkowa, Greenwich also has been furnished with instruments, entirely new, wholly devised by the Astronomer Royal, and constructed entirely under his superintendence. These instruments differ greatly from those erected at Pulkowa, as might be expected from the difference of genius with which the two nations are inspired; but if the descriptions of these admirable instruments were collected from the several monographs in which they are dispersed, they would form a volume every way worthy of being a companion volume to Struve's grand description of the great Russian Observatory.

Nor are the names of our great artists, Dolland, Ramsden, Troughton, Simms, and Cooke, in any respect unworthy to be placed side by side with Fraunhofer, Ertel, Reichenbach, Repsold, Mertz, Canckoix, Secretan, and others. In the great Alhambra of Science there are niches for them all. In gladly awarding our meed of thankful acknowledgment to the memory of Struve, and to the astronomical mechanicians who so ably assisted him, we have felt it our duty to say a word of what is due to the genius of their fellow-laborers in England. In so doing we are here claiming no preëminence nor asserting any priority; invidious comparisons, if at all and anywhere out of place, would be preëminently so in a memorial notice of a man like Struve, for it was one of the characteristic features of that great man's life that, although often provoked, he was never known to contest a scientific priority; such contests, he said, were not only destructive of the peace of a philosopher's mind but highly prejudicial to the interests of science.

Strave was, as might be suggested by his labors, a man of uncommon physical strength, greatly corroborated, as he believed, by gymnastic exercises in youth: until the first attacks of his painful malady in 1858, of which we have already spoken, and which ultimately brought him to the grave, he used to say that he had never known what illness was. ${ }^{5}$ By the advice of his physicians he was at length induced to cease, at least temporarily, from his incessant work, and travel through Europe for the restoration of his health: that result was not to be; as in other eases, so in his, it was too late. In Struve's illness there occurred a phenomenon which, though at the time supposed to be

[^47]extremely singular, is not altogether uncommon. When he began to recover from exhaustion occasioned by the first attack of his malady, his memory, for all events of recent occurrence, wholly failed him; while, at the same time, it exhibited its usual, or even increased tenacity in things long since passed away. On such occasions he would seem to be living wholly in the scenes of the past, reciting passages in Greek, Latin, or Hebrew, and speaking in some of those many dialects in which he had learned to converse in his youth. In the midst, however, of this vivid resuscitation of the past, co-existing with the temporary oblivion of all recent associations, it is a touchingly suggestive circumstance to record that he never forgot the face of a friend.

At length, reluctant to continue as the nominal head of a great establishment, which he no longer felt himself able personally to direct, in December, 1861, he requested permission to resign his post. This permission was granted, accompanied, among other special marks of honor, with the grant of an hereditary estate by his sovereign; and thus the Observatory of Pulkowa passed to the directorship of his worthy son, Mr. Otto Struve. That the mantle of the father may descend upon the son is the undoubting hope and expectation of all who are interested in the science of astronomy.

On the 19th of August, 1864, a quarter of a century having now elapsed since the inauguration of the Observatory, a great gathering of astronomers from all parts of Europe assembled at Pulkowa, to pay their respeets, and, as it proved, their last respects, to the man whose character and talents had shed a lustre even on the noble science of their common pursuit. Among those present on this happy occasion was the President of our own Society; of the others many had been Struve's astronomical pupils in former days, but now they occupied high and responsible positions of their own; from the former we learn how the venerable old man, now in his 72nd year, shook off for a time the bodily feebleness to which his unceasing malady had reduced him, and assuming the animation of younger years, thanked those around him for the affection which had brought them together, and acknowledged the kindness and coöperation which, through a long life, he had met with in the prosecution of his labors. But what at Pulkowa, on this and on other occasions, struck our President the most, even among the many other remarkable features of that imperial establishment, was the oneness of purpose, mutual confidence, and friendliness of intercourse, which there seemed to have found an especial home. We could fondly believe that it was thus ordained for the old astronomer to die, like a patriarch, in the midst of his children, for within a few weeks of that memorable jubilee, on the 23 rd of November, 1864, Struve was called to his rest.

160 C. M. Wetherill-Experiments with Ammonium Amalgam.

Struve was twice married : his first wife was a German lady, Emilia Wall, by whom he had twelve children, of these eight survive; his second wife, now his widow, was the daughter of his old colleague, Bartels, at Dorpat; by her he had issue six children, and of these four are still living. It may be interesting here to state that, notwithstanding the multiplicity and engrossing character of Struve's occupations, he always found time personally, and with affectionate concern, to superintend the education of his children.

Such are the records of this great man's life, so far, at least, as they are suited to a memoir like the present. Whatever is mortal of Wilhelm Struve rests in the churchyard attached to the beloved institution which he so long adorned. His grave lies under the shadow of its domes, and was selected by himself: but it is not these domes alone which constitute his monument; the spirit of the man still breathes in the zeal, the labors, the unanimity, which survive the master, and reign within them. That spirit will be reproduced again and again in future ages when other men, animated by the story of his example, shall endeavor to follow his steps.
C. P.

Art. XVI.-Experiments with the Ammonium Amalgam; by Charles M. Wetherill, Ph.D., M.D.

The existence of the hypothetical radical NH_{4} depends less upon the characteristics of its so-called amalgam than upon the parallelism of its salts with those of the alkalies. If, from these analogies, we accept the metallic nature of ammonium, it will be difficult to avoid assigning a similar character to the radicals of all of the organic bases; and especially to those which, like the compound ammonias, have an alkaline reaction and possess physical and chemical properties so like ammonia.
If such be the inference, we must admit numerous compound metals, which exists only in certain states of combination of their elements. The assumption of the elementary nature of a metal is destroyed and the ideas of the alchemists are revived; for if NH_{4} be a metal and NH_{3} be not one, why may not other metals, esteemed elements, be also compounds.

In examining the so-called ammonium amalgam one is interested at the great resemblance which it bears to the amalgams proper in its physical properties. The mercury has lost its fluidity or mobility, and, at the same time, its relations of cohesion and adhesion are very sensibly altered. It no longer coheres powerfully; but adheres to, or wets, platinum, iron and other metals, like the potassium or sodium amalgam. When left to

C. M. Wetherill-Experiments with Ammonium Amalgam. 161

itself, the swollen mass shrinks, and gradually resolves itself into $\mathrm{NH}_{3}\left(\mathrm{NH}_{4} \mathrm{O}\right) \mathrm{H}$ and Hg , because (as it is usually explained) NH_{4} has a great tendency to fall apart into NH_{3} and H . This explanation might be satisfactory when applied to the difficulty of isolating NH_{4}, as from any of its salts; but is not so in the case before us.

If ammonium falls apart thus readily in the presence of mercury, why does it combine with it at all to be decomposed in the very act of union? If it be said that in $\mathrm{NH}_{4} \mathrm{Hg}_{\mathrm{g}}$ the NH_{4} has so great a capacity for oxydation that it at once decomposes water, with the formation of $\mathrm{NH}_{4} \mathrm{O}$ and H ; still why should NH_{4} unite with the mercury, which is not as near to it as, or at least no nearer than, the water? In reflecting upon the phenomenon, I conceived the idea that there is really no amalgam of ammonium formed; but, in the reaction, the sodium decomposes the water, evolving hydrogen, and forming caustic soda, which in its turn sets free ammonia from the chlorid, the mercury being also liberated. Thus $\mathrm{NH}_{4} \mathrm{Cl}+\mathrm{HO}+\mathrm{Hg} \mathrm{Na}=\mathrm{NH}_{4} \mathrm{O}+\mathrm{H}+$ $\mathrm{NaCl}+\mathrm{Hg}$. At the same time the molecules of the mass are altered in their capacity for cohesion by catalysis, polarity of atoms, or some unknown cause, so that the bubbles of gas are retained, and swelling takes place.

Without the assumption of an unknown cause, the swelling may be accounted for by admitting that the evolution of gas brings portions of the sodium amalgam out of contact with the solution, and the mass thus remains pasty enough to retain the gas bubbles of hydrogen and ammonia for a while. The swelling may subside by reason of the final oxydation of this residual sodium amalgarn.
By the kindness of Professor Henry, the opportunities of the laboratory of the Smithsonian Institution were afforded me in the winter of 1863-4, to perform the following experiments upon this subject.
The ammonium amalgams were obtained by the agency of the sodium amalgam, which was itself prepared by warming distilled mercury and projecting sodium therein. By varying the proportion of mercury, the sodium amalgam was obtained either quite fluid, pasty, in acicular crystals, or quite hard. The ammonium amalgam was prepared from all of these alloys; but When a hard amalgam was used in the experiment, the ammonium amalgam formed upon the surface of the lump and proceeded gradually to the inside, and the swelling was not so great at the close of the reaction. The more fluid the sodium amalgum was, the more readily did the swelling take place.
Ex. 1°. Sodium amalgam projected into dilate solutions of sulphuric or hydrochloric acids, or into an aqueous solution of potassa, decomposes water, but not violently. The mercury does

Aur. Jour. Sci.-SECJnd Series, VoL. XL, NO. 119.-SEPT., 1865.

162

 C. M. Wetherill-Experiments with Ammonium Amalgam.not swell, but this phenomenon takes place immediately if a little solution of sal-ammoniac be added. It is not, therefore, merely hydrogen, (itself a hypothetical metal), in the nascent state which occasions the swelling.

Ex. 2°. Sodium amalgam in a solution of ammonia decomposes water without swelling; but this phenomenon ensues immediately if a drop of sulphuric or hydrochloric acid be added. Hence, hydrogen in the nascent state and ammonia in the condition of stable equilibrium do not produce the swelling. To effect this the ammonia itself must also be nascent.

Ex. 3°. When the ammonium amalgam is made in a test tube containing a thermoneter, a rise of temperature of from 2° to $3^{\circ} \mathrm{C}$. is indicated during the swelling. The temperature falls at the completion of the swelling. If the turgidity subsides by reason of the great affinity of NH_{4} for the oxygen of the water, decomposing the latter with the evolution of hydrogen, an elevation of temperature ought to be maintained until the NH_{4} has become converted into $\mathrm{NH}_{4} \mathrm{O}$.

Ex. 4°. If a test tube be filled with a solution of sal-ammoniac, inverted in a capsule containing the same salt, and a piece of sodium amalgam be introduced under the test tube, the ammonium amalgam is at once generated, with the constant evolution of hydrogen gas; the porous amalgam floats up to the surface of the liquid, and, subsiding after a while, gradually returns to mercury. From the time that the swelling is at its maximum until the mercury is restored to its pristine condition, there is but trifling increase of the volume of the gas, and this increase appears to be due to the minute particles of sodium amalgam which have been brought out of contact with the sal-ammoniac by reason of the turgescence. None of the gas in the test tube is absorbable by water; it is all hydrogen, and the sal-ammoniac remaining reacts strongly alkaline. The same phenomenon takes place when the amalgam is formed in a solution of sal-ammoniac in a capsule under a layer of naphtha. The presence of air, therefore, has no part in the subsidence of the swelled mass.

Ex. 5°. When the amalgam, having again sunk to the bottom of the capsule in the last experiment, is pressed with the finger against the vessel, under the naphtha, it has at first a pasty or smeary nature ; but, apparently by the expression of hydrogen gas from its pores, it is very quickly restored to the ordinary condition of mercury.

Ex. 6°. When the ammonium amalgam is squeezed through a piece of muslin it is immediately, and without change of temperature, or other evidence of affinity, resolved into mercary.

Ex. 7°. If a drop of sal-ammoniac solution be placed upon a plate of glass, a lump of soft sodium amalgam be added, and another plate of glass be pressed upon the whole, the ammoni-
um amalgam formed cannot swell, but expands laterally, assuming a reticular appearance by reason of the many gas bubbles which in fact thus become perceptible.

If a lump of ammonium amalgam, already in the swollen condition, be pressed between two plates of glass, it is spread out into a thin perforated film resembling lace.

Ex. 8°. If a piece of spongy platinum be heated and stirred into smelted sodium amalgam, the latter fills the pores of the platinum sponge, and coats it uniformly. A piece of this compound in contact with a solution of sal-ammoniac, evolves hydrogen and ammonia, but does not swell; nor does a globule of liquid mercury, expressed from the mass, exhibit any of the characters of the ammonium amalgam.

Ex. 9°. A piece of ammonium amalgam was wiped gently with filter paper and placed in naphtha. After a little while, (to permit any adherent water to be decomposed), a test tube full of naphtha was inverted over it, the evolution of hydrogen gas continued as the amalgam shrank, and when, after the lapse of an hour, the mercury was restored to its usual condition, a bubble of gas, equal in volume to the globule of mercury, was collected.

Ex. 10°. If a drop of sodium amalgam be heated upon a glass plate, then touched with a drop of sal-ammoniac solution, it at once swells to the full size of an ammonium amalgam which would have required several minutes if the reaction had taken place in the cold.
Ex. 11 ${ }^{\circ}$. The sodium amalgam decomposes cold water with comparative slowness; in boiling water a rapid evolution of gas takes place, although some time is required to fully oxydize the sodium. Boiling solution of aqua ammonia acts like boiling water. In none of these cases does any swelling take place, but this phenomenon is manifested immediately if to the boiling aqua ammonia a few drops of carbonate of ammonia be added.
Ex. 12°. The ammonium amalgam is formed with apparently equal facility, employing the solutions of the following ammonia salts:-Chlorid, oxalate, sulphate, and bi-sulphate; the characteristics of the amalgam thus formed being alike. The reaction with bi-sulphate of ammonia is instructive, showing the formation of the amalgam in the presence of an acid which facilitates the decomposition of water by certain metals. If a piece of reddened litmus paper be saturated with solution of bisulphate of ammonia, and a piece of sodium amalgam be dropped thereupon, the formation of the ammonium amalgam takes place as usual, and the evolution of the ammonia neutralizes the acid, producing an alkaline reaction upon the paper under the mass.

164 C. M. Wetherill-Experiments with Ammonium Amalgam.

Ex. 13°. The ammonium amalgam cannot be formed with solution of nitrate of ammonia. With this reagent a very rapid evolution of gas takes place, and a globule of mercury remains. In this reaction there are no indications of hyponitrous or nitrous acids, and a drop of sulphid of ammonium added to the resulting liquid produces no coloration, except in a film upon the globule of reercury. If a drop of fluid sodium amalgam be projected into a drop of solution of sal-ammoniac upon a glass plate, the ammonium amalgam is formed rapidly; but a few drops of solution of nitrate of ammonia poured upon the swelled mass, reduce it instantly, and without the evolutions of nitrous fumes, to the condition of ordinary mercury.

Ex. 14°. By the kindness of M. Carey Lea, Esq., who furnished me with some of the salt, I have acted upon the sodium amalgam with solution of oxalate of methylamine. A slight turgescence is exhibited in this reaction, but not nearly to so great an extent as with oxalate of ammonia. The globule of methylamine amalgam pressed between glass plates manifests a reticulated appearance from gas bubbles, but to a less degree than in the case of ammonia salts. Hydrogen and methylamine are evolved.

Ex. 15°. With the battery.-The ammonium amalgam was formed by the battery, using different ammonia salts in contact with mereury at the negative pole.

The general characteristies of the amalgam thus obtained were the same as when sodium was employed.

With a Smee battery of six pairs, of which each zinc plate measured 3×5 inches, the amalgam was obtained in small quantities; but ten of Bunsen's elements were required to obtain sufficient to study its properties.

By the electrolysis of a solution of sal-ammoniac contained in a U tube, which was furnished with a porus diaphragm of filter paper, decomposition took place rapidly with either of the batteries; hydrogen and ammonia appearing at the negative pole, and nitrogen, chlorine, and hydroehloric acid at the positive pole. No formation of chlorid of nitrogen was detected in the reaction.

The amalgam did not form with mercury in the negative branch of the U , the decomposition then being the same as without the metal.

The eleetrolysis of carbonate of ammonia yielded similar results, carbonic acid being evolved.

With solution of nitrate of ammonia in a U tube, hydrogen and ammonia appeared at the negative pole, and nitric acid and oxygen at the positive electrode. A small quantity of the gases collected at the positive pole were absorbed by water. If a globule of mercury be placed in a cup-like depression in a

C. M. Wetherill-Experiments with Ammonium Amalgam. 165

moistened lump of sal-ammoniac or carbonate of ammonia and be connected with the negative pole, the circuit being completed through the salt, the ammonium amalgam is formed while the current is passing.

If a piece of tilter paper be placed upon a glass plate, and be moistened with a solution of carbonate of ammonia containing lumps of the salt, and if upon the paper a globule of mercury be deposited, the amalgam is beautifully manifested when the current of a ten cell Bansen battery is passing through the mercury and paper, the metal being in contact with the negative pole. The amalgam swells out in a dendritic form, tending toward the positive pole, and maintaining its condition while the. current lasts. Upon breaking the connection the swelled mass shrinks gradually. At all times, until restored to the condition of mercury, the amalgam exhibits numerous and minute gas bubbles when pressed between glass plates.
If, during the passage of the current, a glass plate be pressed upon the amalgam, it is flattened into a thin plate or film. By this means the swelling is prevented, and the ammonium amalgam is not formed. This result appears to be conclusive as to the non-existence of the ammonium amalgam, for, if it exist, it should be maintained in a film as well as in a globule as long as the current is passing.
The so-called ammonium amalgam could not be formed by the electrolysis of nitrate of ammonia, and a few drops of a solution of this salt causes the swelling to subside in ammonium amalgam already formed by the action of the battery upon salammoniac, or carbonate of ammonia, in contact with mercury.
If spongy platinum, imbued with mercury, be placed in contact with the negative pole of the battery, and the current be passed through either a solution of sal-ammoniac, or one of carbonate of ammonia to the positive pole, no swelling takes place, even though a large globule of mercury adhere to the sponge; but violent ebullition of gas is manifested.
This is a very instructive experiment. The sponge of platinum cannot act by reason of fine pores, for they are all filled with mercury. The prevention of the amalgam formation must lie in the nature of the platinum itself; it is a catalytic or contact action.

From these experiments it would seem that:-
1st, The so-called ammonium amalgam is not an alloy of mercury and ammonium ;

2d, The swelling of the mass in the phenomenon is due to the retention of gas bubbles; and,
$3 d$, The coherence of the gases and liquids concerned is changed from a normal condition, exhibiting phenomena which may be classed with those of catalysis.

Art. XVII.-Gravily and Magnetic Inclination; ${ }^{1}$ by Pliny Earle Chase, M.A., S.P.A.S.

A sonemhat critical survey of the anomalies presented by the magnetic inclination, to which I referred in a former article (Proc. Am. Phil. Soc., April 21, 1865), has given me renewed reasons for regretting the want of a complete record of the investigations on which Prof. Secchi based his conclusions, that all "the phenomena hitherto known of the diurnal magnetic variations may be explained by supposing that the sun acts upon the earth as a very powerful magnet at a great distance." ${ }^{3}$ As I know of no magnetic law which will account for those anomalies, I propose briedy to describe them, and to point out some relations between the gravitation currents and the $d i p$ of the needle, as a sequel to my papers on the influence of gravity upon the total magnetic force and the magnetic declination.

Gen. Sabine's discussions have shown some important points of difference between the magnetic disturbances at inter-tropical and extra-tropical stations, the Cape of Good Hope being mag. netically, though not geographically, inter-tropical. In the third volume of the Toronto Observations, and in Prof. Bache's discussions of the observations at Girard College, projections of the daily and semi-annual inclination-curves are given; ${ }^{3}$ and Plate V, of the second volume of the Hobarton Observations, contains a graphical representation of the diurnal variations of the inclination at the different observation hours in the four seasons. If we also project, from Gen. Sabine's tables of the mean results, the daily and semi-annual curves at St. Helena and Cape Colony, and compare the curves at the five stations, it will be found that,

1. The greatest daily disturbance of inclination occurs about noon.

[^48]2. At (magnetically) inter-tropical stations, the dip is diminished, but at extra-tropical stations it is increased in the middle of the day.
3. Increasing temperature and increasing solar altitude, augment the inclination disturbance. This is shown both by the diurnal and the semi-annual curves.
4. As a corollary of propositions 2 and 3, at St. Helena and Cape of Good Hope, the inclination-disturbance is opposed to, and subtracted from the normal dip; but at Philadelphia, Toronto, and Hobarton, the disturbance is added to the dip. Thus the inclination is

Reasoning either, a priori, or from Secchi's postulates, we might naturally infer that the ellipticity of the atmosphere would be increased by the direct action of the sun, and that, consequently, from the tendency of magnetic parallelism to the gravitation currents, the dip would be augmented at noon in all places between the magnetic equator and the magnetic poles.
Mr. William Ferrel, in his paper ${ }^{4}$ which furnished the first satisfactory explanation of the barometric depression at the equator and at the poles, shows that in consequence of the earth's motion fluids tend to assume a form similar to his Fig. 1 (Math. Monthly, 1,215), "the surface of the fluid being siightly depressed at the equator, having its maximum height about the parallel of 35°, and meeting the surface of the earth toward the poles." The direct action of the sun, in increasing the equatorial ellipticity of the air, may also increase the tendency to equatorial and polar depression, and the magnetic parallelism may, therefore, be manifested in the solar-diurnal inclination-disturbance precisely as it is manifested at St. Helena and Cape of Good Hope, by a diminution of dip between the parallels of 35°, and an increase in higher latitudes.

These coincidences may well suggest the need of more extensive observations in different parts of South America, Northern Africa, Southern Asia, the Pacific Ocean and the Frigid Zones, to furnish the data for determining to what extent mountain ranges, coast lines, land and water radiation, winds, and ocean currents modify the theoretical phenomena of dip and declination.

[^49]By projecting on isoclinal and isogonic charts ${ }^{5}$ the magnetic currents as indicated by the position of the needle in different portions of the globe, I have obtained the following results, which serve to show the character of some of these modifications:

I. Declination.

1. The currents manifest a tendency to follow the lines of most direct ocean communication between the warmest and the coldest portions of the globe, the general declination being westerly in the Atlantic, and easterly in the Pacific Ocean.
2. The lines of no variation are apparently determined in part by the land contours ${ }^{5}$ that divide the waters of the globe into two great bodies.
3. The currents are deflected by the southern pointed extremities of the several continents toward the east on the eastern shores, and toward the west on the western shores, of New Holland, Africa, and South America.
4. The magnetic currents, in the three respects above enumerated, exhibit a precise parallelism to the ocean tidal flow.
5. In the comparatively narrow belt of the Atlantic Ocean, the declination between the parallels of 35° reaches 30°; in the broad expanse of the Pacific, the maximum within the same limits of latitude is 15°.
6. Between the parallels of 70° and 80° the declination becomes very great, and the currents tend to a gyratory or cyclonic motion, which appears to be modified by glaciers or local poles of great cold.
7. The cyclonic tendency is most marked in the southern hemisphere, where the ocean waters experience the least interruption to their normal motions. Mr. Ferrel's computation gives " $28^{\circ} 30^{\prime}$ for the polar distance of the parallel where the surface of the fluid, or the stratum of equal pressure, meets the surface of the earth." It will be readily seen that at that distance the south pole is entirely surrounded by water, and it seems, therefore, highly probable, that if there were no land in the frigid zones, there would be no definite magnetic poles, but a simple polar belt toward which the magnetic currents would flow in parallel spirals, ${ }^{3}$ except when deflected by land radiation, or tidal or other gravitation currents.
[^50]
II. Dip.

8. The lines of equal dip are arranged in approximate parallels, around the two (principal) magnetic poles.
9. In consequence of this parallelism, they are convex toward the north in the Pacific Ocean, and toward the south in the Atlantic Ocean.
10. The magnetic parallels also approximate to the isothermal parallels, both in direction and in position, but with some important departures.
11. In South America, the magnetic equator is depressed nearly 30° south of the isothermal equator; it is, however, nearly equi-distant from the (principal) north and south magnetic poles.
12. The magnetic parallels near the magnetic poles are more convex than the isothermal lines, but they present some interesting instances of parallelism to the ocean currents, which are indisputably gravitation currents.
13. This parallelism is specially observable in the regions of the equatorial currents, the Gulf Stream, and the North Pacific and Japan currents.
14. If a series of waves were propagated through the air, from the magnetic poles to the equator, with slight deflections by the continental contours and ocean currents, they could be represented with great accuracy by the magnetic parallels.
All of the foregoing modifications, as well as the theoretical phenomena previously referred to, have their exact counterparts in the currents which tend to restore the gravitation equilibrium of the air and water. It may be unwise, ignorant as we are of the true nature of causal efficiency, to assert that one form of force is produced by another, but it is one of the most important duties of true philosophy, to observe sequences and correlations. It has long been known that magnetic action may be so directed as cither to assist or counteract the attractions of cobesion, chemical affinity, and gravitation; it has also been known that, under certain circumstances, disturbances of chemical or of cohesive attraction are accompanied by magnetical disturbances, ${ }^{\text {, }}$ but I have now shown for the first time, by independent examinations of the total force, declination, and dip, that disturbances of gravitation are similarly attended.

It would certainly be very satisfactory, if it were possible, to have some means of exhibiting, by simple laboratory experiments, the direct and mutual convertibility of gravitation and

[^51]magnetism, but I fear the attempt to reproduce, in any appreciable mechanical form, the magnificent and daily repeated operations in the laboratory of nature which I have feebly endeavored to interpret, must always be futile. In order to obtain even the small amount of disturbance (00134) which I have noted in the half-daily variation of atmospheric weight (Trans. A. P. S., xiii, 121,) it would be necessary to take observations at two stations, one of which should be $2 \cdot 655^{10}$ miles more distant from the earth's center than the other. If the differences of vapor, temperature, barometric pressure, force and direction of wind, atmospheric electricity, \&c., did not so complicate the problem as to discourage even the most sanguine experimenter from any attempt at solution, any result that could be obtained under such circumstances would give little general satisfaction.

It is possible, however, that the end, which we should vainly strive to reach directly, may be indirectly attained. Indeed, the various stages of an indirect road have long been known, but we have not been able to compare them by any common measure. The motion of gravity, by percussion or the obstruction of simple fall, bas been repeatedly converted into the motion of heat; and the motion of heat, by the thermo-electric pile, has been converted into the motion of magnetism. The experiments of Barlow, Coulomb, Kupffer, and Christie, ${ }^{11}$ ' on the influence of heat upon the magnet, furnish data that may lend some aid to any investigator who seeks to ascertain the precise value and modification of each force, in these successive conversions.

But I look most hopefully to researches that are based upon differences of specific gravity. Even the experiments of Barlow and others, to which I have just referred, as well as the electromagnetic currents which are generated by chemical solution, involve such differences; the thermal aerial currents which harmonize with and increase the effects of simple gravitation toward the sun, are caused solely by the greater centripetal tendency of the cold, dense air which has the greatest specific gravity; and the recent investigations in thermo-dynamics,
${ }^{10} \mathrm{R} \times\left(\sqrt{\mathrm{D}^{\prime}}-\sqrt{\mathrm{D}}\right)=3963 \times(\sqrt{1 \cdot 0134}-1)=2.655$. At Singapore the daily diso turbance of total force is only $\frac{1}{8}$ as great as it should be theoretically. I suspect that the discrepancy is owing mainly to the monsoons and other great temperature disturbances of the station, which shift the lines of force by a kind of conduction polarity.-(Faraday, Exp. Res., 3279). In other important respects there is a satisfactory correspondence between Singapore and St. Helena. E. g.

	Mean Fall.	Mean Tide. (Theoretical $\times \frac{3}{4}$) .		
		0 h	6 h .	12 h.
Thenretical,	8h. 29^{\prime}	$-.00031$	-.000173	+.00064
Observed,	8h. 23^{\prime}	-.00031	-. 000180	+.00064

[^52]together with the experiments of Fusinieri and Peltier, ${ }^{12}$ confirm the natural conviction that the imponderable agents can only be manifested through their influence on ponderable matter, and, therefore, under tendencies to equilibrium with the force of gravitation. I already find a curious approximate coincidence, to which I attach little importance so long as it is unsupported by corroborative evidence, but I refer to it as an indication of the very character that we might reasonably expect, and one that may possibly become valuable in the course of future research. The last edition of the Encyclopedia Britannica, Article "Heat," gives for the expansion and consequent diminution of specific gravity between 32° and 212° Fahr., of

Iron,
Air,
$\frac{1}{\frac{1}{1} \overline{8}}$
$\frac{3}{1}$

If we suppose their specific magnetisms to be inversely proportioned to the disturbance of their specific gravities, we have, assuming the specific magnetism of iron as the unit,

$$
\frac{3}{8}: \frac{1}{8} \frac{1}{17}: 1: \frac{1}{\frac{1}{8}} 7
$$

a value which is intermediate between those given by MM. Becquerel ($\frac{\left(\frac{1}{8} \frac{1}{8} \text {) }\right.}{}$) and Pluicker $\left(\frac{-1}{8} \frac{1}{8}\right.$), ${ }^{13}$ This result would be somewhat modified by an accurate determination of the ratios of the linear to the cubic expansions of iron in its several forms.

Faraday disclaims the assumption of any other than a conduction polarity of oxygen (2933, 2934), but that polarity is conveyed in lines strikingly analogous to the thermal gravitation currents (See Exp. Res., 2787, and III, Pl. IV, Fig. 6), which, in their turn, accurately represent the hypothetical indirect action of the sun on the needle, through the atmospheric affection of the lines of force (2936).
I know of no physicist who has given so lucid a theoretical explanation of the various magnetic perturbations, as the illustrious Fullerian Professor, and as his bypotheses appear to me still more satisfactory when viewed in connection with the gravitation disturbances, I will briefly refer to some of the more important points that have helped to confirm me in the various views that I have hitherto advanced. Such are, e. g., the evidences of the identity of helices and magnets (2239) ; the existence of magnetic repulsion without polarity (2274); the relative magnetic position of gases and vapors (2416) ; the relations of the magnecrystallic, cohesive, and magnetic forces (2479,2562 , 2578); the probable dependence of the magnetic motions of fluids upon their mass and density ($2768,2769,2781,2863$); the

[^53]magnetic influence of winds and varying atmospheric pressure (2952, 2954) ; ${ }^{24}$ the supposed velocity of magnetic transmission in space or $æ$ ther (2458); the daily bi-polar minima of cold (3006) ; the closed circuits and prominent characteristics of the magnetic lines of force ($3117,3278,3279,3284$); the tendency of all bodies to evolve electric currents, when moving in a magnetic field (3337); the relative diamagnetic and magnetic effects of heat and cold upon air and the diamagnetic gases, as well as upon iron, nickel, and cobalt (2861, and III, pp. 446, 460, 464, 472, 473, 489, 490).

It should not be forgotten that there is no such thing within the compass of our observation, as "potential" gravity, no instance of matter in absolute rest, and just beginning or tending to move under a gravitating pull. Every particle of the earth, independently of the action of heat, chemical affinity, and cohesion, is at every instant subjected to four principal and important impulses, two toward the centers of the sun and earth respectively, and two tangential to the earth's orbit, and to its circumference. Of the several motions, the orbital one is by far the most important. Next in point of velocity is the one tangential to the circumference,-in point of intensity, the one toward the center of the sun. Since the solar central and tangential motions are in equilibrio, it seems eminently proper that the others should be considered as disturbances, which tend, as I have elsewhere shown, to give a daily ellipticity to each section of air parallel to the equator. Not only are the barometric daily tides a necessary consequence of such ellipticity; owing to the difference of specific gravity, the cold air, in addition to the proper motion of convection, is alternately drawn toward and repelled from the earth's surface; and I am inclined to believe that many of the phenomena of the deposition of dew and the magnetic perturbations, which cannot be explained by other more important gravitation currents, may be thus accounted for.

[^54]Art. XVIII.-Waterglass; by John M. Ordway. Part V.

[Continued from vol. xxxy, p. 196.]

Its Reaction with Stannates.

The statement made in Part II, ${ }^{1}$ that stannate of soda produces no alteration in a solution of waterglass, is found, by more rigid experiments, to require some limitation. What is true of the stannate prepared, as it commonly is, with such an excess of alkali as is needed to make it dissolve perfectly and keep well, does not necessarily hold good with regard to the pure normal salt. In fact the behavior of neutral stannates with acid silicates, is peculiar, and worthy of something more than a passing notice. The conditions, character, and results of the mutual reaction, may be best shown by giving a condensed account of some few of the nany trials which I have made. But it will be proper in the first place to describe, somewhat in detail, the methods adopted for securing materials suitable for such experiments-methods which may lay some claim to novelty as well as convenience.

Stannate of Soda.-Time alters the crystallized salt, and dissolved stannate of soda having just one equivalent of alkali to one of acid, soon begins to change and deposit an insoluble metastannate, leaving an excess of soda in the liquid. Hence, whenever the really normal combination is wanted, it is best to make use of the freshly prepared crystals.

The commercial "preparing salt," when it is free from arsenic, may be advantageously used to produce the pure stannate.

1. A refined product, of English manufacture, was found to contain 47 p.c. $\mathrm{NaO} . \mathrm{SnO}_{2}, 20$ p.c. $\mathrm{NaO}, 11 \cdot 3$. p. c. $\mathrm{NaO} . \mathrm{SO}_{3}$, and 2.6 p. c. Na C1. Some of it was purified thus :

400 grams of the white "preparing salt" and 84 grams of acetate of baryta were dissolved together in 1600 cub. cent. of water; and, as the solution was too caustic for a paper filter, it was passed through thick cotton cloth, the first portions of the liquor being poured back till the filtrate came no longer turbid. The clear liquid treated with about its own bulk of alcohol of sp.gr. 0.850 , soon gave an abundant deposit of fine, indistinct crystals, which were gathered into a stout cotton cloth and submitted to very strong pressure. The damp product, weighing 181 grams, was dissolved in twice its weight of water, and the filtered solution was mixed with somewhat more than its own bulk of alcohol. The crystals of this second precipitation, after undergoing very hard pressure, were spread out on paper and left in a cold place over night, to exhale the alcohol. They now weighed 143 grams and contained 76 p.c. of $\mathrm{NaO}_{\mathrm{SnO}}^{2}$. They were froe from carbonate, hydrate, sulphate, and

[^55]chlorid of sodium, but made a slightly opaline solution with water, thus showing the presence of a trace of metastannate.

Crystals fresh from the press give a clear and complete solution; and as a trifling amount of adhering alcohol is seldom of any consequence, it is best to expose the pressed cake to the air as little as possible.

When the product is freed from mother liquor by absorption and careful drying it appears to have the composition NaO , $\mathrm{SnO}_{2}, 3 \mathrm{HO}$.

To get pure and clean crystals for an exact determination of the water a strong solution of the preparing salt was treated with acetate of baryta, and as much alcohol was added to the filtrate as it would bear without turning milky. In two days there gathered around the sides and bottom of the bottle a thin, hard coating of transparent crystals, which were detached and pressed in absorbent paper till they appeared dry, but not at all effloresced. The average of two analyses showed 55.695 p. c. of SnO_{2} and 22.921 p. c. of NaO . This would make $\dot{\mathrm{N}}_{3} \mathrm{Sn}_{\mathrm{H}} \mathrm{H}_{3.2}$.

But it is worthy of notice that when the precipitated crystals are rapidly dissolved in water, heat is produced instead of cold; and it might be inferred from this fact, that stannate of soda is capable of entering into intimate combination with more water than is contained in the tribydrate. Thus, by the solution of a quantity of the pressed crystals, still damp, in a little more than twice their weight of water the thermometer was raised $5^{\circ} \mathrm{C}$.

Stannate of Potash. -Stannate of Potash is more soluble in water than the soda salt, ${ }^{2}$ and cannot be, by any means, so neatly and easily precipitated in the solid state.

[^56]By using many successive portions of strong alcohol, we may withdraw the dissolving water and compel hasty and pretty complete crystallization; and as all the precipitates subside with great rapidity, the whole round of operations may be carried out in a few hours. But while stannate of soda can be readily procured coarse grained, white, and of normal composition, the precipitated potash salt is very fine, and besides obstinately retaining much of whatever organic coloring matter may have been present in the original solution, it is liable to come out at last with somewhat too much or too little alkali.
2. A crude stannate prepared by heating strongly a mixture of tin, caustic potash, and nitrate of potash, was dissolved in twice its weight of cold water. 400 c. c. of the clear, decanted liquor, were thoroughly agitated with 400 c. c. of alcohol of sp. gr. 0.840, and gave a dense liquid deposit measuring 275 c. c. This being in turn treated with 400 c . c. of alcohol, yielded 175 c. c. of still denser liquor. A third precipitation with 400 c c. c. of alcohol gave a deposit with some solid matter beginning to appear in it.

So far a weaker spirit had been used so as to allow the impurities to remain in solution while the stannate was thrown down.
400 c . c. of alcohol of sp. gr. 0.820 now changed the precipitate into a pasty mass, which became crumbly on being stirred up again with 400 c. c. of strong alcohol. The stannate was then gathered in stout canvass and subjected to great pressure. The resulting cake still contained about one-eleventh of an equivalent of alkali in excess, there being originally two equivalents of potash to one of stannic acid; it was therefore dissolved in a little more than its weight of water and submitted to another round of treatment with alcohol. The hard pressed final product contained 73 p . c. of dry stannate. Being spread out and exposed to the air for some hours, it lost all smell of spirit, and was then pure and almost exactly normal.

When greater nicety is required, such a product should be dissolved in a little less than its weight of water and recrystallized by spontaneous evaporation in vacuo.

A careful analysis was made of some pure, hard, colorless, transparent, oblique rhombic crystals produced by this last method and dried by pressure in absorbent paper. It showed

[^57]49.430 p. c. of stannic acid, and 30.704 p. c. of potash. If we call the equivalent weight of tin 59 , these proportions would make $\dot{\mathbb{K}} \mathrm{Sn}_{\mathrm{H}}^{3} \mathrm{H}_{3.3}$. The true formula must therefore be KO. Sn $\mathrm{O}_{2} .3 \mathrm{HO}$.

The specific gravity of these crystals was found to be $3 \cdot 197$.
Melastarnate of Potash.-Wheri a dilute acid is slowly, and with constant stirring, dropped into a cold solution of nornal stannate of potash, there is no permanent precipitation till more than three-fourths of the alkali is abstracted. The stannate thus robbed of its base, remains perfectly dissolved, but has acquired different properties. Alcohol now gives with it not a liquid or crystalline deposit, but a light flocculent precipitate which, when it is well drained and exposed to the air for a day or two, dries to heavy, transparent, gum-like lumps. There is thus opened up a neat way to procure, in a state of purity, metastannates containing various proportions of alkali.
3. A nine per cent solution of KOSnO_{2} was treated with enough five per cent nitric acid to take up two-fifths of the potash. When the liquor had recovered its clearness, somewhat more than twice its bulk of alcohol of sp. gr. 0.830 was stirred in. The precipitate, after being washed once with alcohol, was drained on a filter and left on absorbent paper till it became a transparent, exceedingly shrunken mass containing 79 p . c. of $\mathrm{K} \mathrm{Sn}_{4 \times 6}$. This easily dissolved in twice its weight of water.
4. In a similarly conducted experiment, the same quantity of stannate with twice as much acid as before, gave nearly twice as much metastannate containing 59 p. c. of $\dot{k} \mathrm{Sn}_{5 \cdot 6}$. This dissolved in four times its own weight of water to a faintly opaline liquid.
5. Some of the solution of 3 was diluted and cautiously treated with sufficient nitric acid to neutralize one-third of the remaining potash. The despoiled metastannate was then precipitated with alcohol. The final

It is well to dissolve the rough metastannate and reprecipitate, in order to get rid of the last traces of nitrate and obtain a substance which will give a clear and mobile solution. And the product of the second precipitation can be advantageously freed from the adhering liquor by pressing it very strongly in stout closely woven cotton cloth. Even the first precipitate may be pressed, but it is much softer and the pressure must be applied very gradually indeed; otherwise the pulp itself will pass through the pores of the cloth.

Waterglass with Stannates.-As in some preliminary experiments sulphates were not perceived to exert any influence on the reaction of stannates with silicates, sulphates were afterward purposely added, to serve as indicators of the amount of mother liquor retained by the precipitates. The liquid stannate of soda was made to contain about five per cent of sulphate of soda, and stannate of potash was dissolved in a weak solution
of potash sulphate. The waterglass was such as had been well purfied by precipitation with alcohol.

While treating this part of our subject we will take the formula adopted in planning the experiments, and consider silicic acid as SiO_{2}.
6. 80 g . of a solution containing 14 p . c. of $\mathrm{NaO} \mathrm{SnO}_{2}$, were mixed with 32 g . of a 29 p . c. solution of $\mathrm{NaO} .2 \mathrm{SiO}_{2}$, so as to have in the united liquors $\mathrm{Na}_{3} \mathrm{Sn}_{\mathrm{n}} \mathrm{Si}_{3}$.

There was no apparent change at first, but, in the course of two days, it became an opaque, consistent jelly from which no liquor could be decanted.
Such were also the products in most other cases; and at first these jellies proved rather intractable, for when they were subjected to quick pressure in common cotton cloth, such as had been used in former experiments, both liquor and coagulum passed through. Farther experience showed it best to let the mixtures stand several days to get fully gelatinized, and then proceed to press very gradually in thick, closely woven canvass. The cloth was folded over the drained precipitate and placed between tro bits of pine board. To insure moderation at first, the boards were put under a small hand screw which was very slowly turned till the greater part of the clear liquor was forced out and the substantial portion of the coagulum was reduced to small bulk. The boards with their contents were then transferred to a large press urged by the full strength of two men and theoretically capable of multiplying the power nearly 1200 times. The pressed products were bard and brittle, and could be rubbed in a mortar to a damp powder without caking much under the pestle. The powder was generally soluble in chlorhydric acid. On being ignited the cake contracted greatly and became opaque, but showed no sign of fusion.

To make an analysis a weighed portion of the powder was treated with chlorhydrie acid in excess and dried down at a moderate heat. The residue digested for twenty-four hours with chlorhydric acid and then well washed with water containing a little of the same acid, left the silica pure and in full quantity.

Another portion of the powder was treated with nitric acid in excess and dried down. By washing the dry mass with water and igniting and weighing the undissolved matter, the sum of the silica and oxyd of tin was ascertained; and a comparison of this with the former determination showed the per centage of oxyd alone. The solution being evaporated to dryness the resulting saline matter was fused and weighed. The amount of sulphate in the mixed salts was found by means of chlorid of barium ; and then the quantity of nitrate and the corresponding amount of alkali were easily calculated.

[^58]The composition of the mother liquor was ascertained by the same method. Then the percentage of sulphate in the pressed cake, divided by the percentage of sulphate in the mother liquor, showed the quantity of mother liquor retained in one part of the cake. And finally the net composition of the curd was found by deducting from the gross amounts of silica, stannic acid, and alkali in the pressed cake, the quantities of the same substances due to adhering mother liquor.

In the present instance the hard pressed curd weighing 24 grams, contained 40 p. c. of mother liquor, and 38.6 p. c. net of $\dot{N}_{3} \mathrm{Sn}_{\mathrm{S}} \mathrm{Si}_{5}$.
7. 75 g . of a 14 p . c . solution of Na Sn were mixed with 20 g . of a 20 p. c. solution of $\mathrm{N}^{\mathrm{N}} \mathrm{Si}_{3}$, so as to have a mixture of $\mathrm{Na}_{4} \mathrm{Sn}_{3} \mathrm{Si}_{3}$. In a few hours it became a firm opaque jelly. After standing six days it was pressed and left 24.3 g . of cake containing 34 p . c. of mother liquor and 38 p. c. net of $\dot{\mathrm{N}}_{\mathrm{a}_{5}} \mathrm{Sn}_{4} \mathrm{Si}_{8}$.

8, a. 60 g . of a 14 p . c. Na Sn solution were mixed with 40 g . of a 20 p. c. solution of $\mathrm{Na}_{2} \mathrm{Si}_{3}$; so that the quantities of $\mathrm{SnO} \mathrm{O}_{2}$ and SiO_{2} should be equal. It soon began to get opaline, and, in the course of two hours, made an opaque jelly, so stiff that it was not disturbed by inverting the dish. The hard pressed cake weighed 36.3 g . and contained $45 \mathrm{p} . \mathrm{c}$. of mother liquor and 36 p. c. of $\mathrm{Na}_{4}{ }_{4} \mathrm{Sn}_{3} \mathrm{Si}_{6}$.
$8, b, 240 \mathrm{~g}$. of a 35 s p. c. Na Sn solution were stirred into 200 g . of a 4 p. c. $\mathrm{Na}_{\mathrm{Si}}^{3}$. In the course of two hours it formed a thin opaque jelly. After two days this was thrown on a cloth and much clear mother liquor drained out without pressure. The remainder was very gradually squeezed and finally hard pressed, and gave a cake weighing 31 g ., which showed 17 p. c. of mother liquor and 36 p. c. of $\mathrm{Na}_{4}{ }_{4} \mathrm{Su}_{3} \mathrm{Si}_{8}$.

8, c. 480 g . of a 1.75 p . c. solution of Na Sn were mixed with 400 g . of a 2 p.c. $\mathrm{Na}_{\mathrm{S}} \mathrm{Si}_{3}$ solution. There was no change at first, but in the course of two days it formed a thin jelly. After standing six days it was drained, squeezed, and hard pressed, and the cake weighed 26.7 g . This product contained 21 p. c. of mother liquor and 36 p . c. of $\dot{\mathrm{N}}_{4} \mathrm{~S}_{\mathrm{S}_{4}} \mathrm{Sin}_{1}$ 。

These three trials show something of the influence of dilution, though in the case of c longer standing had also modified the composition of the coagulum by increasing the amount of stannic oxyd rendered insoluble.

9, a. A 120 g . mixture was compounded so as to contain 18 g . of $\mathrm{N}_{3} \mathrm{a}_{3}$ $\mathrm{Sn}_{2} \mathrm{Si}_{\mathrm{i}}$. There was no change at first, but in the course of two days it became a thin opaline jelly. After seven days being hard pressed it yielded a translucent cake weighing 8.6 g . and containing 37 p . c. net of $\mathrm{Na}_{\mathbf{9}} \mathrm{Kn}_{7} \mathrm{Si}_{13}$ 。
9, b. A similar mixture was made by adding a saturated solution of stannate to fused crystals of silicate and evaporating till it contained 40 p. c. of solid matter. It remained clear, and when exposed to severe cold showed no sign of crystallization.
10. A mixture was made containing somewhat over 16 p .c. of $\dot{N a}_{3} \hat{\mathrm{~S}} \mathrm{Si}_{3}$. There was no change for six weeks.

11, a. A mixture was made so as to contain about 16 p . c. of $\mathrm{Na}_{2} \mathrm{Sn} \mathrm{Si}$. There was no change for some days, but in the course of a month it gelatinized.

11，b ．A saturated solution of stannate was put with as much melted $\dot{N} a \mathrm{SiH}_{8}$ as would make $\dot{\mathrm{N}} \mathrm{a}_{3} \mathrm{Sn} \mathrm{Si}$ ，and the mixture was evaporated at a gentle heat till it contained 47.5 p．c．of solid matter．It remained clear and would not crystallize though set out in the open air during several of the coldest days of winter．The strong liquor bore boiling without apparent change，but when much diluted was coagulated by heat．

Stannate of Potash with Silicate of Potash．

12．A mixture made so as to contain 21 p．c．of $\dot{K}_{2} \mathrm{Sn}$ Si，underwent no visible change in a month．

A mixture containing 19 p．c．of $\dot{\mathrm{K}}_{3} \overline{\mathrm{~S}}_{\mathrm{n}} \mathrm{Si}_{2}$ also remained unchanged for a month．
$13, a .72 \mathrm{~g}$ ．of a 10 p ．c．solution of $\dot{\mathrm{K}}$ Sn were mixed with 60 g ．of 12 p．c．$\dot{\mathrm{K}} \overline{\mathrm{Si}}_{3}$ ，so as to bring together about equal weights of SnO_{2} and SiO_{2} ．There was no perceptible alteration for a day，but in three days it became a thin transparent jelly．After standing a week it was squeezed gradually and then hard pressed．The transparent product weighed 28 g ．and contained 39 p ．c．net of $\dot{\mathrm{K}}_{6} \mathrm{Sn}_{4} \mathrm{Si}_{13}$ ．

13． 5 ． 288 g ．of a $2.5 \mathrm{p} . \mathrm{c}$ ，$\dot{K} \dot{\mathrm{Sn}}$ solution were mixed with 240 g ．of 3 p．c．$\dot{K}_{3} \dot{S}_{3}$ ．It remained apparently unchanged for a week．In the course of the second week it became gelatinous，but no liquor could be pressed out．At the end of three weeks it had fully coagulated，and being now hard pressed it gave a translucent cake weighing 23 g ．This contained 17 p．c．of mother liquor and 40 p．c．of $\dot{\mathrm{K}}_{6} \mathrm{Sa}_{6} \mathrm{Si}_{14}{ }^{\circ}$
14.77 g ．of a solution containing $15 \mathrm{p} . \mathrm{c}$ ．of 立主，were mixed with 33 g ．of a 20 p．c．solution of $\dot{\mathrm{K}} \tilde{S i}_{3}$ ，so as to make in all $\dot{\mathrm{K}}_{3} \tilde{S}_{2} \mathrm{~S}_{3}$ ．It underwent no noticeable modification for some time，but in two days it formed a firm，slightly opaline jelly．After standing a week，it was hard pressed and yielded a mass weighing 28 g ．and containing 38 p ．c．net of $\dot{K}_{4} \mathrm{Sn}_{2} \mathrm{Si}_{7}$ 。

Metastannate of Potash with Potash Waterglass．

15． 20 g ．of a $10 \mathrm{p} . \mathrm{c}$ ． $\mathrm{K} \mathrm{Si}_{3}$ liquor were mixed with 20 g ．of a solu－ tion containing $10 \mathrm{p} . \mathrm{c}, \dot{\mathrm{K}} \mathrm{Sn}_{4 \cdot 4}$ ．There was no change for some time， but in the course of 17 days it thickened．The hard pressed solid part weighed 5.5 g ．

16． 10 g ．of a 30 p ．c．solution of $\mathrm{K}_{\mathrm{K}}^{\mathrm{Si}}{ }_{3}$ were stirred into 10 g ．of a 24 p．c．solution of $\mathrm{K}_{5} \mathrm{Sn}_{5 \times 3}$ ．It soon got a little thicker but did not gel－ atinize at all．
Weaker solutions of the same metastannate and silicate，were mixed with similar results．
$\frac{17}{\mathrm{~K}} \mathrm{~F} .10 \mathrm{~g}$ ．of a 10 p ．c． $\mathrm{K} \mathrm{Si}_{3}$ solution were put with 10 g ．of a $10 \mathrm{p} . \mathrm{c}$ ．亩 $\mathrm{Sa}_{7.5}$ ；no immediate change．In the course of 10 days it gelatinized， and when hard pressed it gave a cake weighing 4 g ．

18． 20 g ．of a 15 p ．c．solution of $\dot{\mathrm{K}} \mathrm{Si}_{3}$ were mixed with 20 g ．of 16 p．c．$\dot{K} \tilde{S n}_{10 \cdot 6}$ ．It continued unchanged a month，but at length gelatin－
A comparison of all the experiments from which this selection
has been made，brings to light nothing definite or uniform in
the products of the reaction of stannates with silicates. The strange looking quasi formulas here used to show their composition by equivalents instead of per centages-like the similar expressions employed for the precipitates described in Parts III and IV,-would be altogether preposterous, were they intended for anything more than compact and readily collatable expressions of the results of analyses. In vain do we search for any principle that will enable us to assign a rational constitution to substances which derive their unlimited variety of composi. tion from mere accidents of dilution, purity, temperature, and of time allowed for segregation. Many picked instances, like 7, $8 a$, and 9 , might countenance the supposition of a tendency to the formation of an exact silicate of $\operatorname{tin} \mathrm{SnO}_{2} 2 \mathrm{SiO}_{2}$, united with different proportions of alkali. But such hasty generaliza. tion is checked by an enlarged view and more particularly by the special test experiments, $8 a, b, c$. All that seems to be predicable of the reactions is that mixtures containing as many equivalents of alkali as the sum of the equivalents of SnO_{2} and SiO_{3}, are likely to undergo little or no change at the common temperature of the air; but when the mixture contains less alkali, gelatinization will occur in a few hours or days; and the curd will be greater in amount according as the strength of the liquors put together is greater, and as the total proportion of alkali is less.

The segregated matter retains the alkali with no little force, for when the air-dried precipitate is washed with water a part indeed of the alkali is removed, but the greater portion remains obstinately in combination.
19. Some of the cake of $13 a$, was reduced to powder and kept orer lumps of caustic soda eighteen days. The dry powder was well washed with cold water. The air-dried residue amounted to 42 p . c. of the quantity of fresh cake taken, and contained 78.6 p . c. of $4 \mathrm{KO} .4 \mathrm{SnO}^{2}$. $13 \mathrm{SiO}^{2}$. Only one-third of the potash had been washed out.

It is difficult to ascertain whether the fresh undried cake may underge dissociation in any greater degree; for if we attempt to wash it, though a part settles, the supernatant liquor remains milky a very long time, and the suspended matter cannot be separated by filtration, as it readily goes through the pores of the paper.

After seeing how a deficiency of alkali facilitates the coagulation of a mixture of stannate and silicate, we should bardly expect to find metastannates so slow in producing any effect on waterglass. But metastannates are evidently not mere polyacid stannates, and a higher degree of compatibility is the less surprising when we consider the many points of resemblance between metastannate of potash and waterglass itself. Both are uncrystallizable and dry to transparent gum-like masses, indefi-
nitely soluble in water. Both are precipitated by alcohol with partial decomposition, and indeed in both the acid and base seem to be in a state of association rather than of strict chemical combination. The following experiments, illustrating this point, may be compared with the similar trials of silicates mentioned in Part III:
20. 350 g . of a solution containing $6 \mathrm{p} . \mathrm{c}$. of $\mathrm{K} \mathrm{Sn}_{4.4}$, were mixed with 850 c. c. of alcohol of $\mathrm{sp} . \mathrm{gr} .0840$. After two washings with alcohol, the flocculent precipitate was collected in a cloth and hard pressed. The thin translucent, brittle cake, after twelve hours exposure to the air, weighed 24 g . and contained 82 p .c. of $\overline{\mathrm{K}} \tilde{S n}_{7 \cdot 4}$. It was dissolved in 9 parts of water and treated with alcohol as before. The second precipitate when pressed and aired contained 81 p .c.of $\mathcal{K}_{\mathrm{K}} \mathrm{Sn}_{8.50}$. The third precipitate contained 80 p .c. of $\dot{\mathrm{K}} \ddot{\mathrm{O}}_{9.3}$. The product of a fourth precipitation showed 81 p . c. of $\mathrm{K} \ddot{\mathrm{Sn}}_{9 \cdot 8^{\circ}}$. The fifth precipitate contained 82 p.c. of $\mathrm{K} \mathrm{Sn}_{10.5^{\circ}}$. And the sixth product was readily soluble in water and showed 72 p.c. of $\dot{K} \ddot{\mathrm{O}}_{11}{ }^{14}$.
21. 50 g . of pressed crystals of stannate of potash were dissolved in water, so as to make 600 c.c. 200 c.c. of 54 p. c. nitric acid were stirred in. and, when the liquor had recovered its transparency, 1700 c . c. of alcohol were added. After one washing with alcohol the pultaceous precipitate was very gradually squeezed and then hard pressed. After some hours exposure to the air, the cake weighed 27 g . and contained 79 p. c. of $\dot{\mathbf{K}} \ddot{\mathrm{S}}_{5 \cdot 2 \cdot 2}$. It was dissolved in 9 times its weight of water and treated with alcohol. The second floceulent deposit hard pressed and dried in the air, contained 80 p. c. of $\dot{K} \ddot{\mathrm{Sn}}_{6 \cdot 3}$. The precipitation was repeated many times, and finally the tenth product, weighing 5.5 g ., was not entirely soluble in water. The soluble part contained $\mathrm{K}_{\mathrm{K}}^{17 \cdot 4}{ }_{17}$, and the small insoluble residue had nearly the same composition.

Metastannate of potash is also thrown down as such by many potash salts; and here too, as with waterglass, the acetate and the chlorid prove most efficient.
22. 25 g . of a solution containing 21 p .c. of $\mathrm{K}_{\mathrm{K}}^{\mathrm{S}} \mathrm{n}_{4}$, were mixed with 25 g . of a $20 \mathrm{p} . \mathrm{c} . \mathrm{KCl}$ solution. The very bulky deposit after being squeezed and subjected to hard pressure, weighed 6.4 g . It contained 28 p. c. of mother liquor and 64 p. c. of $\frac{K}{K} \ddot{S}_{7 \cdot 7}$, and was readily soluble in water.
23. 40 g . of a 9 p.c. solution of 文 $\mathrm{Sn}_{7 \cdot 9}$ mixed with 40 g . of a 10 p. c. solution of acetate of potash gave a precipitate that compressed to 4 g . and contained 68 p .c. of $\dot{\mathrm{K}} \mathrm{Sn}_{8} \cdot 1$. This was wholly soluble in water.

Carbonate, sulphate, chromate, or nitrate of potash give a precipitate after a time when added in inconsiderable quantity to the metastannate; but neutral stannate, of whatever strength and in whatever quantity, has no effect upon a metastannate solation.

On account of the insolubility of metastannate of soda, soda salts soon disturb a solution of metastannate of potash. Thus a
liquid containing $10 \mathrm{p} . \mathrm{c}$. of $\dot{\mathrm{K}} \ddot{\mathrm{Sn}}_{5.6,}$, became opaque with its own weight of a 2 p. c.solution of Na $\overline{\mathrm{C}}$. A much less quantity of sulphate of soda sufficed to produce the same effect. A soda salt therefore affords a test of the presence of metastannate in a stannate of potash solution, but the liquors must not be too concentrated.

Fremy says that stannate of potash is precipitated from its solution by almost all soluble salts, and even by salts of potash, soda, and ammonia. He must have operated with liquors that had been kept too long and had thereby become contaminated with metastannate ; for my own experiments afford no confirmation of his statement as far as potash and soda salts are concerned. On the contrary I have not found these salts to have any effect at all on solutions of fresh and really normal stannates of potash and soda. Stannate of soda when mixed with a neutral salt, does indeed become turbid by standing some time, but so does the diluted stannate without any addition.

Indefiniteness of composition pertains to the metastannates in no less degree than to waterglass. Fremy once assigned the formula ${ }^{3} \mathrm{KO} .2 \mathrm{Sn}_{3} \mathrm{O}_{8}+5 \mathrm{HO}$, but afterward settled down on $\mathrm{KO} . \mathrm{Sn}_{5} \mathrm{O}_{10}+4 \mathrm{HO}$, and thus gives his reasons for the change:
"Je préparais autrefois les metastannates en faisant bouiller de l'acide metastannique avec des alcalis, et en précipitant ces dissolutions par l'alcool; j'ai reconnu recemment que pendant l'ebullition, une partie du metastannate se transforme en stannate; en traitant ensuite la liqueur par l'alcool, je précipitais un melange on peut-être une combinaison de stannate, et de metastannate, etc."
"C'est ainsi que j’avais été conduit á représenter l'acide metastannique par la formale $\mathrm{Sn}_{3} \mathrm{O}_{6}$. Mais je prepare actuellement des metastannates qui ne penvent contenir de traces de stannates; aussi leur analyse donne-t-elle toujours un equivalent d'acide metastannique représenté par la formule $\mathrm{Sn}_{5} \mathrm{O}_{10}$."

Fremy's later method of preparing a metastannate which should contain no stannate, was to dissolve metastannic acid in caustic potash and precipitate the combination by adding to the solution bits of solid caustic potash. The precipitate was dried by absorption on unglazed porcelain. But it can hardly be possible by mere absorption to get a soft, pulpy substance, entirely free from so thick and dense a mother-liquor as the caustic potash would make. Fremy made five analyses which came out very nearly alike, as might indeed well happen so long as the products analyzed were made in just one way and by one individual. But the tacit assumption that none of the 10.5 to 10.9 p. c. of potash found, was due to retained mother liquor, is manifestly gratuitous. Nor was there any good reason for suppos-

[^59]ing that cold caustic potash exerts no modifying action on metastannate; for time often brings about in part what heat effects rapidly and fully, and in fact I have seen an abundant precipitate, produced by moderately strong potash liquor, disappear in an hour or two with but a very slight elevation of temperature. Some idea of the difficulty of separating a mother liquor from a gum-like precipitate, may be gathered from the experiments on precipitated waterglass given in part IV. There we had a substance as capable as metastannate of potash of being reduced to a very compact form. There we had the advantage of a mother liquor much thinner and much more easily separable from the curd. There was also a powerful pressure effectually accomplishing in a few moments, and consequently without chance of modification by time, what the contractility of metastannate and the imbibing power of porcelain could do but slowly. Yet the precipitated silicates retained, on an average, about thirty per cent of mother liquor. Due allowance being made for the greater density of a stanniferous compound, it certainly would not be making a very high estimate to say that metastannate of potash thrown down by potash, after as complete a drainage as possible, must retain not less than ten per cent of strong caustic potash liquor or some three per cent of dry potash in excess. I see no chance of actually finding out how much of the potash is combined and bow much is free in such a case; for if we add any indicator, it would alter the conditions of the experiment.

Hence, Fremy's formula having no fixed basis must be looked upon as a rather uncertain approximation to the true composition of the metastannate made by his method.

According to Rose, ${ }^{5}$ Weber found solid metastannate of potash to consist of $\mathrm{KO} .7 \mathrm{SnO}_{3}+3 \mathrm{HO}$. But we are not told by what process it was made.

Berzelius says that one part of potash will dissolve sixteen parts of stannic acid, and these proportions would make about $\mathrm{KO} .10 \mathrm{SnO}_{2}$.

As to matastannates obtained by precipitation with alcohol or with neutral potash salts, we have found that by varying the conditions the composition of the products may be made to range from less than five up to more than seventeen equivalents of binoxyd of tin to one equivalent of potash. And Graham ${ }^{6}$ has shown that when the alkali is eliminated by neutralization and dialysis, metastannic acid is itself soluble in pure water. Hence there is probably no limit to the possible diminution of potash in the still soluble metastannate.
I have heretofore enunciated the general rule that soluble salts having as bases, ferric, chromic, stannic, or other oxyds contain-

[^60]ing more than one equivalent of oxygen to one of metal, may have a large part of the acid withdrawn and still remain dissolved. And now it is interesting to find that when binoxyd of tin is brought into solution by an alkali, a similar principle holds good, and the greater portion of the base may be removed without any immediate permanent precipitation of the acid. Metastannate of soda, however, is but temporarily soluble, and is thrown down from solutions of the neutral stannate by long standing or by boiling. It is also soon deposited from a solution in which the alkali of normal stannate has been partly taken up by a stronger acid. These precipitates are, by no means, of the same composition, though they often approach very closely to the proportions required for $\mathrm{NaO} .5 \mathrm{SnO}_{2}$.
24. Some purified stannate of soda that had been dried in the air and then kept in a well stopped bottle fur two years, on being treated with ten times its weight of cold water, left undissolved one tweuty-third of the tin, combined with soda enough to make $\mathrm{NaO} .3 . \mathrm{hnnO}_{2}$.
The clear liquor, by standing several weeks, let fall one-seventeenth of its tin as $\mathrm{NaO} \cdot{ }^{4} \cdot 7 \mathrm{SnO}_{2}$.
25. A ten per cent solution of normal stannate being kept 34 days, deposited one-twelfth of the oxyd of tin in combination with enough alkali to make $\mathrm{NaO} .5 \mathrm{SuO}_{2}$.
26. A ten per cent solution of $\mathrm{NaO} . \mathrm{SnO}_{2}$ was boiled a few moments and let fall one-sixteenth of its tin with some soda forming $\mathrm{NaO}^{2} .5 \mathrm{SnO}_{2}$.
27. A solution containing five per cent of pure stannate, by boiling deposited one-seventh of the tin as $\mathrm{NaO} \cdot 5 \cdot 7 \mathrm{SnO}_{2}$.
28. Boiling a two per cent solution of $\mathrm{NaO} \cdot \mathrm{SnO}_{2}$ cansed the precipitation of over one-third of the tin and enough soda to make $\mathrm{NaO} .7 \mathrm{SnO}_{2}$.
29. A one per cent solution of pure stannate of soda required long boiling to make a decided precipitate and the clear liquor filtered out of the bulky product very slowly. The well drained gelatinous residue was soluble in water and consisted of $\mathrm{NaO} .7 \cdot 5 \mathrm{SnO}_{2}$. It contained over onehalf of the tin.
30. A solution containing $1 \cdot 1$ p. c. of $\mathrm{NaO} . \mathrm{SnO}_{2}$ and 3 p.c. of NaCl , being boiled five minutes, gave a dense, opaque precipitate very easy to collect, drain and press. It contained one-fourth of the tin and consisted of $\mathrm{NaO} .6 .7 \mathrm{SnO}_{2}$.
The addition of chlorid of sodium and subsequent boiling canses a precipitation in a solution containing no more than 0.1 p . c. of normal stanuate of soda.
So far as is known at present, there is nothing to show that any one of the metastannates more than another is entitled to rank as a definite chemical compound. None crystallizes; none is a product invariably coming the same by several different ways of formation; none exhibits a plain analogy to any undoubted exact chenical combination; nor is there any point up to which the variation gradually decreases, and beyond which it gradually increases. There being then nothing certain on
which a formula may be based, it seems hardly right to take any one chance product, and, rejecting the odd parts of equivalents, to set down that product with its analysis so amended, as the true metastannate of potash or of soda. The composition of substances can not always be squared with exact atomic proportions, for there is a class of indefinites in which one of the constituents may admit of a large increase or diminution without apparent alteration in the cbaracter of the compound. As the world was very slow to comprehend Wenzel's proposition that bodies must unite in fixed and invariable proportions, so has it since been quite as slow to learn that there are cases in "Which this great principle does not hold good. Wenzel says: ${ }^{7}$ "Dass eine jede Verbindung der Körper, eine bestimmte und unveränderlich bleibende Abmessung haben muss, die ohne aüsserlich mitwürkende Ursachen weder grösser noch geringer werden kann, weil sonst auch nichts gewisses aus ihrer Vergleichung bestimmt werden könnte, ist schon an sich klar. Es folgt daher nothwendig, dass eine jede mögliche Verbindung zweyer Körper, mit jeder andern beständig in dem genauesten Verhaltnisse stehet, und dieses Verbältniss druicket den Grad der Verbindung aus." That the constitution of bodies is determinate and unalterable, is hardly self evident, and indeed it is a matter to be proved by the balance rather than by mere reasoning. It is true that the confirmatory instances have been found to be numberless. Still a great many do not necessarily make all, and a single negative example is sufficient to disprove absolute universality. Wenzel himself, while laying the sure foundations of chemical science, fell in with some of the indefinites and thus unwittingly furnished some negative instances. He proceeded to determine the equivalents by neutralizing the acids with different bases, and worked correctly so long as those bases were protoxyds. But such a method is as little applicable to alumina and similar peroxyds as it is to bone earth,-"Elfen beinerde,"-which he reckoned among the simple bases. So after attempting to saturate nitric acid with alumina, be concluded that" "Das Verhaltniss der Alaunerde zum stärksten Salpetersauern, ist also beynahe wie $349: 240$." Instead of forming the normal nitrate Wenzel in this case must have got the soluble basic $3 \mathrm{Al}_{9} \mathrm{O}_{3} .2 \mathrm{NO}_{5}$, and stopped at a supposed. but not real limit of solubility.

Cases of indefinite combination are not unlike those of solution in which such things as gum or albumen are concerned. These may unite with water in all proportions, while most crystallizable substances dissolve, at any given temperature, until the liquid contains a certain percentage of solid matter,- a percentage which is exactly definable for each particular salt. In

[^61]the phenomenon of fusion too, though almost all bodies liquefy at a temperature which is invariable and exact for each, yet there are a few substances that pass through an intermediate state of softening before fully melting. In fusion as well as in solution, abrupt transition from the solid to the fluid state is the general rule; and yet, as everybody allows, it is not the universal law. And why should we be over-reluctant to admit the possibility of some instances of chemical union in indefinite proportions?

Normal Silicate of Soda.-The only alkaline silicate certainly known to be crystallizable, contains two Berzelian equivalents of silicic acid, SiO_{3}, to three equivalents of soda. Respecting the amount of water in this salt, analysts do not agree; and as the several observers have examined crystals obtained by unlike methods, there may possibly be three or more bydrates producible under different conditions of temperature, concentration, and purity.

Fritzsche ${ }^{8}$ produced a salt in the form of square prisms, by dissolving in caustic soda lye a quantity of silica equal to that of the dry soda present, and allowing the solution to rest several days. The bruised crystals freed from mother liquor by pressure between folds of absorbent paper, gave him amounts of silica and chlorid of sodium corresponding to $\mathrm{NaO} . \mathrm{SiO}_{2} .9 \mathrm{HO}$. These crystals melted at about $40^{\circ} \mathrm{C}$. Kept over sulphuric acid they in time effloresced (verwittert) to the center.

Fritzsche says that he once chanced to obtain globular masses studded with minute erystals and having the composition NaO . $\mathrm{SiO}_{3} .6 \mathrm{HO}$; but he had never succeeded in determining the conditions of their formation.

Yorke ${ }^{10}$ fused 23 parts of sand with 54 parts of dry carbonate of soda, dissolved the resulting mass in water, and exposed the solution to slow evaporation in vacw, over sulphuric acid. The rough salt was recrystallized in vacuo, to get rid of the excess of carbonate, and the pure product was found to have the composition $\mathrm{NaO} . \mathrm{SiO}_{2} .7 \mathrm{HO}$. He also obtained crystals of the same composition from a solution of silica in caustic soda.

Yorke found these crystals to part with all their water, except a fraction of one per cent, by exposure to a heat of $149^{\circ} \mathrm{C}$.

Hausmann ${ }^{11}$ says that in the purification of rough soda, the mother liquor has often yielded him, in large quantity (manchmal centnerweise), rhombohedral crystals of silicate, permanent in the air, and having the the composition $\mathrm{NaO} . \mathrm{SiO}_{\mathrm{a}} .8 \mathrm{HO}$.

Ammon ${ }^{13}$ also obtained the octohydrate in the form of monoclinic crystals, by dissolving silica in soda lye. They fused at $45^{\circ} \mathrm{C}$.

[^62]I have found the same melting poist, and have made several analyses which invariably go to confirm the formula given by Hausmann and by Ammon. Thus in one case the pure, carefully dried crystals, by suitable treatment with nitric acid, gave 22.74 p . c. of SiO_{2}, and nitrate corresponding to 23.66 p . c. of NaO . Another portion of the same sample being heated with fused bichromate of potash, lost $54 \cdot 13$ p. c.

The percentages answering to $\mathrm{NaO} . \mathrm{SiO}_{2} .8 \mathrm{HO}$, would be 2255 of $\mathrm{SiO}_{3}, 23 \cdot 31$ of NaO , and 54.14 of HO .

The pure salt may be very easily made with the dense liquid which alcohol throws down from a cleansed solution of the commercial silicate, ${ }^{13} \dot{N a S i O}_{2 \cdot 25}$. When such a precipitate is stirred up with an equal weight of caustic soda liquor of sp. gr. 132 considerable heat is evolved, and if the mixture is set in a cold place, it begins to crystallize in a few hours. The first crop should be dissolved in a little water and recrystallized. We thus get a clear, hard salt permanent, except in presence of carbonic acid. And to avoid the action of this gas existing in the atmosphere, it is well to dry the broken up crystals in a closed space over lumps of caustic soda or lime, and keep them in a tightly stopped bottle. But as in cold weather both the formation of the rough salt and its recrystallization may be carried out in forty-eight hours or less, the absorption of carbonic acid by the dense solution, is too slight to affect the purity of the crystals deposited. Crystallization in vacuo is a needless refinement; and spontaneous evaporation is in any case unnecessary, for as long as the alkali is slightly in excess, a weak solution can just as well be rapidly concentrated by heat.

Ammon attempted in vain to crystallize the potash salt and to form a double silicate of potash and soda.

All my own efforts to produce crystals of potash silicate have thus far proved unavailing, though I have exposed very concentrated solutions, for many days, to the extreme cold of winter.
Berzelius fixed on SiO_{3} as the constitution of silicic acid, principally on account of an assumed analogy between feldspar and alum; and there would be some show of reason for such an assumption, if feldspars contained twenty-four equivalents of water and were the only known combinations of protosilicates with sesquisilicates. But the numerous well characterized siliceous minerals are an intractable set of compounds, whatever theory we adopt, and any formula for silica which gives conformity to one class, makes other species altogether anomalous. Why should we slight the plain guidance of the simple silicates and selecting feldspar,-a complex, anhydrous combina-tion,-presume on its resemblance to a double sulphate which

[^63]crystallizes only as a hydrate? Why should we pay so little regard to analogy as to write $\dot{\mathrm{Na}}_{3} \mathrm{Si}_{2} \mathrm{H}_{24}$ and $\dot{\mathrm{C}}_{3} \mathrm{Si}_{2}$ for substances as definite as crystallization can make them, when soda and lime are not known to form any other unquestionable basic salts? If we attribute to silica a composition similar to that of
 basic silicates $\mathrm{HI}_{2} \mathrm{Si}, \mathrm{Z}_{\mathrm{n}_{2}} \mathrm{Si}, \mathrm{M}_{\mathrm{n}_{2}} \mathrm{Si}$, and $\mathrm{Cu}_{2} \mathrm{Si}$, will be no longer unparalleled; and though some minerals will show a composition unlike that of artificial salts, most of the double silicates will have far less strange looking formulas.

In the gum-like compounds of acid and base, crystallization can take place only when the colloid constituent is reduced to the normal quantity. Thus the sesquinitrates of glucina, iron, and chrome may form crystals when there is a full amount of acid present; but an excess of base utterly prevents crystallization. We have seen also that the stannates can remain stannates only while there is no lack of alkali. Now if we add caustic soda to waterglass, the mixture becomes capable of affording crystals just so soon as the quantity of soda very slightly exceeds that of silicic acid, and no sooner. Fair analogical reasoning would lead to the belief that then, and not till then, had we come to the proportions of the normal salt.

Thermic Relations of Waterglass.-Another argument for the formula SiO_{2}, though not of itself a perfectly conclusive one, may be drawn from the behavior of waterglass when mixed with caustic alkali. Taking a ten per cent solution of soda, which is too weak to become sensibly warm by mere dilution, if we add half an equivalent to an equivalent of $\mathrm{NaO} 2 \mathrm{SiO}_{2}$, the temperature immediately rises. Another half equivalent of alkali causes the evolution of somewhat less heat than before. A farther addition of soda, is not, indeed, entirely without effect,-as Thomsen ${ }^{\text {i4 }}$ also observed with respect to silicic acid as well as phosphoric and boracic acids,-yet the elevation of temperature is now so very slight that we must consider the silicate as having already reached the composition of the normal salt. As NaOSiO_{3} shows a capability of evolving much heat with soda, it must be an acid salt, and that cannot be its true constitution. Trials of mixture were made with two thermometers graduated to fifths of a degree Fabreaheit.
31. 110 g . of a solution containing 47 p . c. of $\mathrm{NaO} \cdot 2 \cdot 37 \mathrm{SiO}_{2}$ at $64 \cdot 4^{\circ}$ F., were mixed with 212 g . of a 10 p. c. caustic soda liquor at $64 \cdot 2^{\circ}$, so as to make $\mathrm{NaO} . \mathrm{SiO}_{2}$. The thermometer was raised to $71^{-4^{\circ}}$, making a rise of $\begin{aligned} & \\ & 3^{\circ} \mathrm{F} \\ & \text {. }\end{aligned}$

32 a. 110 g . of 47 p. c. $\mathrm{NaO} .2 \cdot 4 \mathrm{SiO}_{2}$ at $61 \cdot 5^{\circ} \mathrm{F}$. were mixed with 90 g . of $10 \mathrm{p} . \mathrm{c} . \mathrm{NaO}$ at 617° to form $\mathrm{NaO}_{2} 1 \cdot 5 \mathrm{SiO}_{2}$ or $\mathrm{NaO} . \mathrm{SiO}_{3}$. The thermometer rose to $71 \cdot 4^{\circ}$, making an increase of $9 \cdot 8^{\circ} \mathrm{F}$.
b. The 200 g . of a at $65.2^{\circ} \mathrm{F}$. were mixed with 122 g . of $10 \mathrm{p} . \mathrm{c}$.

[^64]NaO at 64.9°, so as to produce $\mathrm{NaO} . \mathrm{Si}_{2}$. The thermometer then stood at 67.3°, making a rise of $2 \cdot 2^{\circ} \mathrm{F}$.
c. Some of the neutral silicate of b at $64 \cdot 6^{\circ} \mathrm{F}$. was mixed with half its weight of a 10 p. c. soda solution at 64.9°. It rose to $65^{\circ} 4^{\circ}$, making an elevation of $0.7{ }^{\circ} \mathrm{F}$.

Reckoning the increase in each case as affecting only the original 110 g . of silicate, the rise in 30 would be $21.37^{\circ} \mathrm{F}$. In $32 a$, it would be $1 \% 82^{\circ}$, and in b it would amount to 3.54°, or in buth together 21.36°.

In $32 c$ it would be only 1.05°.
This heating by no means arises from simple condensation, for dilution of the same waterglass with mere water, causes even more contraction. Thus:

33 a. A narrow necked 100 c. c. bottle containing 50.616 g. of 47 p. c. $\mathrm{NaO} .2 \cdot 4 \mathrm{SiO}_{2}$ of $\mathrm{sp} . g r .1 \cdot 558$, was cautiously filled up with water. It was then closed and well agitated and there was a striking decrease of volume. Water was added once or twice with farther agitation till it stood at the right level at the normal temperature. 68.88 g . of water had been put in, and the sp.gr. was now $1 \cdot 474$. Calculation shows that instead of 100 c. c., it should have measured 101.36 c.c. So the contraction amounted to $1.34 \mathrm{p} . \mathrm{c}$.
b. 110 g . of the $47 \mathrm{p} . \mathrm{c}$. waterglass were mixed with 90 g . of caustic soda liquor of sp. gr. $1 \cdot 164$. The sp. gr. was now $1 \cdot 363$, and therefore the contraction amounted to $0.8 \mathrm{p} . \mathrm{c}$.
c. The liquor of being farther diluted with 125.2 g . of caustic soda liquor, the whole bulk was diminished 0.5 p . c.

The total contraction in both mixings amounted to 0.95 p . c. of what the aggregate volume should have been.

Though condensation results from the dilution of waterglass with water, it is a remarkable fact, and, as far as I can learn, one that has hitherto remained unnoticed, that there is at the same time a positive reduction of temperature.
34. 110 g . of 47 p . c. of $\mathrm{NaO} .2 \cdot 4 \mathrm{SiO}_{2}$ at $63 \cdot 6^{\circ} \mathrm{F}$., were mixed with 90 g . of water at 63.4°. The temperature fell to $61 \cdot 9^{\circ}$, making a fall of $1.6^{\circ} \mathrm{F}$.

35 a. 100 g . of 47 p. c. $\mathrm{NaO} \cdot 2 \cdot 4 \mathrm{SiO}_{2}$ at $66 \cdot 2^{\circ}$ F. were mixed with 50 g . of water at 66°. It got down to $60^{\circ} 1^{\circ}$, making a fall of $1^{\circ} \mathrm{F}$.
b. These 150 g . cooled to $60^{\circ} 1^{\circ}$ were mixed with 50 g , of water at 60°. The thermometer then stood at 59.2°, making a fall of $0.87^{\circ} \mathrm{F}$.
c. The 200 g . of b at 61.3° were mixed with 50 g . of water at $61 \cdot 4^{\circ}$. It fell to 60.85 making a fall of $0.45^{\circ} \mathrm{F}$.

Bringing all to the same standard by reckoning the reduction of temperature as concentrated in 100 g ., the fall in a would be 1.5°; in b, $1 \cdot 74^{\circ}$; in $c, 1 \cdot 12^{\circ}$; and in 34 it would be $2 \cdot 9^{\circ} \mathrm{F}$.

It needs a more extensive examination than has yet been made, to show whether this unaccountable behavior is peculiar to waterglass. Metastannate of potash is neither heated nor cooled by dilution. Nor is the treatment of the metastannate with caustic potash liquor attended with any more elevation of temperature than might be due to the precipitation which results.

This latter fact, as well as the slight solubility of metastannate in caustic potash, shows that metastannate of potash is very slow to combine with more alkali. Still farther illustrations of this point will be given when we come to treat of the silicates of lime. The so-called metastannate is therefore rightly named, and is uot an acid salt nor an unsaturated stannate. And, by contrast, the great avidity with which waterglass unites with more base, goes to prove that the silica in it is not a metacid, but is of the same kind as that in the normal, crystallized silicate of soda.
Manchester, N. H., April 29.

ART. XIX.-Speculations upon a possiolle method of determining the distance of certain variably colored Stars; by Joseph Wharton.

Arago conceived the idea of testing the correctness of the corpuscular or emission theory of light by subjecting two rays of different velocities to the same refracting influence; for, as that theory explained refraction to be due to retardation of velocity caused by the molecular attraction of the refracting medium, rays entering the medium at different velocities should be differently refracted. To get rays of different velocities, he took light from a star toward which the Earth in its orbit was moving, and from another star which the Earth was moving away from. Supposing the ray to strike the Earth from the first of these stars at the real velocity of light plus the velocity of the Earth, and that from the other at the real velocity of light minus that of the Earth, Arago had two rays entering his refractor at velocities differing by about $\overline{\bar{\sigma} \bar{\sigma} \bar{\circ} \overline{0}}$. Arago found no difference in the refraction of his two rays, and his conclusion thence derived that the corpuscular theory of light is untenable, has been generally accepted; this experiment having in fact been frequently quoted as one of the props of the adverse, or undulatory, theory.

It seems, however, rather surprising that any great weight should be attached to an apparent disproval, by a single test, of one merely imaginary function of corpuscular light, especially as the test itself is utterly fallacious; for who shall say that retardation by attraction is the only possible means by which emitted light could be refracted? and how can we know that the two stars selected by Arago had either no proper motion of their own, or nene of a sort to affect his result?

Perhaps the only cases in which we can be sure of receiving star-light of absolutely different velocities are those of such binary stars the plane of whose orbit is not at right angles with the line from thence to the Earth. When that line lies in the
plane of such an orbit, and the two stars are situated at right angles to that line, it is clear that the velocity of the rays reaching us from one star exceeds that of the rays from the other by double the speed of those stars in their orbit. That light reaches us at various velocities from all the various stars is of course as certain as that they have proper motions, or that our solar system is moving through space; but the difficulties in the way of gaining any accurate comparison of those velocities are very great.

In reflecting upon the undulatory theory of light I have been quite unable to conceive how the luminiferous æther could "tremble laterally" as the phrase is, causing vibrations transverse to the line of propagation, without a direct relation existing between those lateral vibrations and the forward impulses by which the phenomena of light are translated. The æther being continuous and material and elastic, being in a word capable of sustaining a vibration, a vibratory impulse in it at right angles to the course of a ray of light seems fairly comparable to a lateral displacement of a point in a rope, or to the merely vertical vibration in a water wave not of translation, or to the vibration of air by a sound, all of which vibrations produce (we may almost say are) longitudinal undulations.

But if the lateral vibrations of the æther produce the onward propagation of the ray, then the number of lateral impulses in a second equals the number of forward impulses arriving in a second at a relatively stationary point, and as it is established that the number of lateral impulses varies according to the color of the light, so the number of forward impulses striking a relatively stationary point-say a retina-must vary with the color of the light; and if the source of light, instead of being at a constant distance, should rapidly approach the retina, the latter must receive a greater number of impulses per second, and its impression of color therefore must be correspondingly modified. If the retina and the source of light rapidly separate from each other, the number of impulses striking the retina must on the other hand be diminished, producing the corresponding change in the perceived color.

Now, if we imagine a star emitting white light to approach us in an orbital movement at a sufficient rate of speed, its light should appear to us reddish, changing at the perigee into white, changing again into blueish as the star departs, and again into white at the apogee. There are, however, variable stars whose colors undergo exactly those changes, viz: passing from one color to its complimentary, and back again, with periods of white light intervening. The binary stars, whose colors are frequently complimentary to each other, should, under the proper circumstances, exhibit the same circuit of change, but I am not pre-
pared to say that they do so in any cose: it is in fact asserted that the larger star is usually red and the smaller one blue.

Supposing this train of thought to be sound, and that by extremely careful observation a difference could be detected in the position of a variably colored star when it appears red, from its position when blue we should then be upon the track to calculate its distance. We should need to know the differing rates of light impulses required to produce the observed colors, the time occupied by the star in passing from one extremity of its course to the other, and the angular distance between those extreme positions. Let us assume that such a variably colored star has been found, which has a measurable change of position in one line, in other words the plane of whose orbit coincides with our line of vision, and let us assume that its extreme colors indicate a difference in the rate of arrival of light impulses (or in other words a difference in the velocity of the light arriving from that star at the two periods), equal to $2 v$, then the actual speed of the star in its orbit $=v$ and as the orbital period of the star has been found $=t$, it follows that $\frac{v \times t}{3 \cdot 1416}$ is the real length of that diameter which is the measured angular distance between the two extreme positions of the star. Knowing the angle, and the length of the base which subtends it, we have the distance of the star.

If a pair of binary stars could be found whose colors alternate, and which alternately eclipse each other, the matter would be simplified by so much as accurate measurement of the angle of parallax would be facilitated.

Should it be objected that no such binary stars have been observed, and that no change of position has been noticed in any single stars of variable color, I can only reply that possibly it may be worth while to direct attention to those points.

Should it be said that this hypothesis of the cause of variable color in stars would oblige us to believe that rays of different colors are propagated at different velocities, and that this whole suggestion is valueless until those velocities have been determined by direct experiment, I answer that very probably rays of different colors have different velocities, and that to determine them would be a most important achievement.

To conclude, I offer the analogy of the changing tone of a locomotive whistle as you rush past it on another train. Here, as you approach the sound, its impulses reach you more frequently than if its souree, and you, were at rest. At the instant of passing, you receive the normal number of impulses, and after passing the impulses reach you less frequently. The shrill shriek, the real tone, and the low roar in this case are facts which I suppose to be parallel to the red, the white, and the blue light of a star moving swiftly, first toward, and then from us.

Art. XX.-Contributions to the Chemistry of Natural Waters; by T. Sterry Hunt: of the Geological Survey of Canada.

III.

Chemical and Geological Considerations.

Contents or Sections.-52, salts of alkaline metals, proportion and sources of potash; 53, potash in a borax lake, in the primitive sea; 54, salts of lime and magnesia, relations of chlorids and carbonates; 55 , solubility of earthy carbonates; 56, super-saturated solutions of carbonates of lime and magnesia; 57, salts of barium and strontium, solution of their sulphates; 58, iron, manganese, alumina and phosphates; 59, bromids and indids ; the small portion of bromine and the excess of iodine in saline springs as compared with the modern ocean; 60 , probable relation of iodids to sediments: 61, sulphates, their elimination from waters; 62, water holding a soluble sulphuret; 63, borates, their detection and determination; 64, analysis of a borax water from California; 65, carbonates, their amounts in the Caledonia waters; 66 , intervention of neutral carbonate of soda; 67, deficiency of carbonic acid in waters; 68, reactions of various waters; 69 , silica, its source and its proportion ; 70, its condition; formation of silicates ; 71, organic matters;72, geological position of the waters here described: 73, succession of Paleozoic strata; lithological relations of successive formations ; 74, Quebec group, its waters; 75, sources of various classes of waters; 76, their relation to the furmations; r7, association of unlike waters, changes in constitution; 78, temperature of springs, thermal waters; 79, geological interest of the above analyses; possible results of the evaporation of these springs; 80 , relations of mineral springs to folding and to metamorphism of strata; 81 , on the supposed origin of the primeval ocean and the earliest sediments; 82 , on the theory of metalliferous deposits.
§52. Salls of the Alkaline Metals.-These salts abound in most saline waters, and except in the few cases in which sulphate of magnesia prevails, form a large part of the soluble matters present. The salts of sodium are by far the most abundant, and the proportion of potassium salt is generally small. The chlorid of potassium in modern sea-water constitutes three or four hundredths of the alkaline chlorids, while in the brines from old rocks, and in saline waters of the first two classes alike from Germany, England, the United States, and Canada, its proportion is much less, sometimes amounting to traces only. In the waters of classes III and IV, where alkaline carbonates appear, and even predominate, the proportion of potassium salt becomes greater. Thus of the waters of the latter class (§ 45), the alkalies of the Nicolet spring calculated as chlorids contain 189 per cent of chlorid of potassium, and those of the JacquesCartier 295; while for the St. Ours spring the chlorid of potassium is equal to not less than $25^{\circ} 0$ per cent. There does not however appear to be any relation between the proportion of alkaline carbonate and that of potassium, since the salts from the waters first named are more alkaline than those of St. Ours; while those of the alkaline water of Joly contain less than one per cent of potassic chlorid.

[^65]The amount of this salt obtained from the water of the Ottawa River is worthy of notice, being equal to not less than 32.0 per cent of the alkaline chlorids, while in the waters of the St. Lawrence it amounts to 160 per cent. ${ }^{1}$ A large proportion of potassium relatively to the sodium has already been observed in the case of many ordinary river and spring waters, and this is readily explained when we consider the extent to which potash is set free by the decomposition of both vegetal and mineral matters at the earth's surface. The process by which this base is eliminated in filtering through soils has already been explained in $\S 5$. The occasional presence of considerable amounts of potash in sulphated mineral waters (Lersch, Hydro-chemie, p. 346) is explained by the power of solutions of gypsum to set free this alkali from soils (7), and also probably in some cases by the dissolution of double potassic salts like poly halite. Strata holding glauconite, which occurs alike in Paleozoic and more recent formations, ${ }^{2}$ may also be conceived to yield potash salts to infiltrating waters.
$\S 53$. It will be seen that the waters above noticed, in which the proportion of the potash to the soda is large, are but feebly saline, so that the real amount of potassium is in no case great. I have, however, recently examined the water of a borax lake from California, which contains in 1000 parts $17 \cdot 250$ of solid matters, of which 1.818 is carbonate of potash, the remainder being soda-salts, carbonate, borate, chlorid, and a little silicate, with no sulphate ($\S 64$). This amount, if represented as chlorid of potassium, is equal to 1.963 , or 11.46 per cent of the alkalies calculated as chlorids. The amount of potassium salt in this water is consequently about forty times greater than in that of St. Ours.

The fact of special importance as regards the alkaline metals in the waters whose analyses we have given in this paper is the very small amount of potassium in the strongly saline muriated waters of the first three classes, which we conceive to be more or less directly derived from the waters of the ancient ocean. To this primeval sea, almost destitute of potassium, the process of mineral decay has been for ages adding potash salts, and despite the partial elimination of these by vegetation (§5), and by the formation of glauconite, we find a notable proportion of potash in the waters of the modern ocean.

In the analyses of the saline waters here given lithia was

[^66]sought for in a few instances, and was detected in the waters of Varennes. Most of these analyses were made before the discovery of the new metals cresium and rubidium.
54. Salts of Calcium and Magnesium.-We have to consider under this head the relations both of the chlorids and the carbonates of these bases. The bitter saline waters of the first class, although containing large quantities of chlorids of calcium and magnesium, are, as we have seen, generally destitute of earthy carbonates. These latter, however, are found in small quantities in the alkaline waters of the fourth class, and in somewhat larger amounts in those intermediate waters which form classes II and III, and are apparently formed by admixtures of the two classes previously mentioned. Besides the carbonates of lime and magnesia which the waters of the fourth class hold in solution, the carbonate of soda which they contain gives rise, by its reaction with the chlorids of calcium and magnesium, to additional quantities of the carbonates of these bases. In the waters of Kingston (36), a large amount of chlorid of calcium is associated with earthy carbonates, and these waters thus offer a passage from the first to the second class.

In most of the waters of the second class, as will be seen from the table $\S 42$, there appears but a small amount of chlorid of calcium; and even this depends upon the manner in which the analysis has been conducted. We may suppose in the recent water such a partition of bases between the chlorine and the carbonic acid that chlorid of calcium, chlorid of magnesium, bicarbonate of lime and bicarbonate of magnesia co-exist. When such a solution is submitted to evaporation at ordinary temperatures, provided there is present a sufficient amount of chlorid of calcium, carbonate of lime alone is deposited, and chlorid of magnesium remains in solution.
In case the chlorid of calcium is insufficient, the lime is still first deposited as carbonate, and the more soluble magnesian carbonate is precipitated by further evaporation. When bowever such a water is boiled, a reverse process takes place; the carbonate of lime slowly decomposes the magnesian chlorid, and carbonate of magnesia is deposited, while chlorid of calcium remains in solution. Hence if the amount of chlorid of magnesium be great enough, and the ebullition sufficiently prolonged, the precipitate will at length contain only carbonate of magnesia; while an equivalent of chlorid of calcium, now found in the solution, represents the carbonate of lime which the analysis of the precipitate at an earlier stage of the ebullition would have furnished.
As an example of this may be cited the analysis of the water of Ste. Genevieve ($\S 42$, No. 8), where the precipitate after ${ }^{2}$ few minutes' boiling contained carbonates of lime and magnesia
in the proportion $12: 750$. When however another portion was boiled down to one-sixth, the precipitate was found to be pure carbonate of magnesia. Again, the Plantagenet water gives, by ebullition, the results set forth in $\S 42$, No. 1 ; showing chiefly carbonate of magnesia, together with a portion of chlorid of calcium. When however this water is left to spontaneous evaporation, the whole of the lime separates as carbonate, and the liquid remains for a time charged with carbonate of magnesia, probably as sesqui-carbonate. This solution is, however, after a time spontaneously decomposed even in closed vessels, with deposition of a portion of crystalline hydrated carbonate of magnesia ; another portion remains in solution, together with chlorid of magnesium, but is precipitated by ebullition. (This Journal [2], xxvii, 173.)
§ 55 . Bicarbonate of magnesia and chlorid of calcium, when brought together in solution, undergo mutual decomposition with separation of carbonate of lime if the solutions are not too dilute. At the ordinary temperature and pressure, water saturated with carbonic acid will not hold in more than about one gram of carbonate of lime to the liter ($1: 1009$) , equal to only 0.88 grams of carbonate of magnesia. (The solubility of carbonate of lime in pure water is well known to be much less, and is, according to Bineau, equal to $1: 30,000$ or $1: 50,000$.) We should not therefore expect to find that water holding chlorid of calcium in solution would yield, by boiling, more than the latter amount of magnesian carbonate; so much might evidently be formed by the action of dissolved carbonate of lime which the water might hold as bicarbonate. I have elsewhere described a series of experiments on the solubility of bicarbonate of lime both in pure water and in saline solutions, and have shown that the presence of salts of soda, lime and magnesia does not increase the amount of bicarbonate of lime which water is capable of holding permanently in solution. In view of these facts it seems at first sight difficult to explain how a mineral water like that of Kingston ($\S 36^{\circ}$, No. 7), holding a large quantity of chlorid of calcium, could yield, as appears from Dr. Williamson's analysis, 1.287 grams of carbonate of magnesia, equal to $1 \cdot 462$ of carbonate of lime to the liter. Recent experiments have however shown me that supersaturated solutions of a certain stability may be obtained, in which comparatively large quantities of neutral carbonates of lime and magnesia exist in the presence of sulphates and occasion a description of the details of these investigations, I shall briefly state the results obtained.
§ 56. In a memoir on the salts of lime and magnesia published in 1859 (in this Journal [2], xxviii, 171), it was shown that by the addition of bicarbonate of soda to a solution holding chlorids of
sodium, calcium and magnesium, with or without sulphate of soda, and saturated with carbonic acid, it was possible to obtain transparent solutions holding from $3^{\prime} 40$ to $4 \cdot 16$ grams of carbonate of lime to the liter; of which however the greater part was deposited after twenty-four hours; when the solutions were found to contain somewhat less than 10 gram in the form of bicarbonate. Boutron and Boudet had previously shown that by saturating lime water with carbonic acid, solutions were obtained holding in a liter 2.3 grams of carbonate of lime; of which one half was soon deposited, even when the solution was kept under a pressure of several atmospheres. It would thus seem that saline liquids favor this ternporary solubility of the carbonate of lime.

In all of the above experiments an excess of carbonic acid was present, but this I have since found is not essential, since super-saturated solutions may be obtained holding as much as 1.2 grams of carbonate of lime, together with sulphate of mag. nesium and chlorid of calcium, in a liter of water, without any excess of carbonic acid. The power of alkaline chlorids and of chlorid of calcium to prevent the precipitation of chlorid of calcium by carbonate of soda has already been observed by Storer, (Dictionary of Solubilities, p. 110). I have found that the precipitate produced by the admixture of solutions of these two salts is readily dissolved, when recent, by a solution of chlorid of calcium, or of sulphate of magnesia; and thus liquids may be prepared holding at the same time from 1.0 to 1.2 grams of neutral carbonate of lime and 1.0 of neutral carbonate of magnesia in presence of sulphate of magnesia. These solutions of carbonate of lime, which are strongly alkaline, may be kept for twelve hours or more without perceptible change at ordinary temperatures, but after a time deposit crystals of hydrated carbonate of lime. The addition of alcohol immediately throws down the whole of the carbonate of lime in an amorphous condition.
The carbonate of magnesia is still more soluble than the carbonate of lime under similar conditions, and it is possible to obtain 5.0 grams of neutral carbonate of magnesia dissolved in a liter of water holding seven per cent of hydrated sulphate of magnesia, without any carbonic acid. These solutions, which are strongly alkaline to test papers, yield a precipitate by heat, which re-dissolves on cooling.
It is evident that the mingliug of saline and alkaline waters may give rise to solutions like those just described, and thus explain apparent anomalies in composition like that of the Kingston water. See also in this connection the observations of Bineau, and my own on the properties of solutions of sesquicarbonate of magnesia. (This Journal [2], xxvii, 173.)
§57. Salts of Barium and Strontium.-As will be seen from the preceding tables, the salts of these two bases are found in
very many of the saline and alkaline waters of Canada. Their carbonates probably sustain to the magnesian chlorid a similar relation with that of calcium, and bence these bases appear in some of the analyses partly as carbonates, and partly as chlorids of barium and strontium. The precipitate formed in the concentrated and acidulated water by dilute sulphuric acid was, whenever submitted to analysis, found to contain both barium and strontium. For the separation of these the mixed sulphates were first converted into chlorids; the barium was then thrown down as silico-fluorid, and the strontium subsequently precipitated by a solution of gypsum.

The insolubility of its sulphate must have excluded baryta from the waters of the primeval sea, and when set free, as we may suppose by the decomposition of its silicated compounds existing in the primitive crust, ($\$ 81$) its soluble bicarbonate carried down to the sea would there be precipitated by the sulphates present. A similar process must still go on with all the dissolved barytic salts which find their way to the ocean.

The sulphate of baryta thus accumulated in sedimentary strata, may be partially decomposed by infiltrating solutions of alkaline carbonates, and thus be rendered capable of being subsequently dissolved as carbonate; but the most probable mode of its solution, is, we conceive, through its previous reduction by organic matters to the form of a soluble sulphuret (§ 10), ready to be converted into carbonate or chlorid of barium. In this way we may explain the frequent occurrence of baryta salts in the saline waters of the first three classes, and the consequent absence of sulphates, which will be further considered in $\S 61$. From the similarity of its chemical reactions, the preceding remarks apply to strontia as well as baryta.
§58. Iron, Manganese, Alumina, and Phosphates.-None of the waters of the four classes here described contain any notable quantity of iron, yet this element is never wanting in those waters which contain earthy carbonates. Whenever a portion of one of these waters, or, better, the earthy precipitate separated from it by boiling, is evaporated to dryness with an excess of hydrochloric acid, the residue, treated with acidulated water, yields a portion of silica, and the solution will then be found to yield with ammonia a precipitate. This, which is partially soluble in caustic alkalies, is often colorless, and will be found to consist of alumina aud peroxyd of iron, with phosphoric acid and a trace of manganese, which latter metal is seldom or never absent. The small quantity of alumina which these waters contain appears not to be derived from suspended argillaceous matters, but to be held in a state of solution.

The phosphates are generally present only in very small quantities in these waters, for the reason pointed out in \&5. The
largest amount which I have met with was in an alkaline water from Fitzroy (84, No. 4) ; where it was equal to 0124 of tribasic phosphate of soda in 1000 parts of water.
859. Bromids and Iodids.-The chlorids in these ancient mineral waters are always accompanied by bromids and iodids; but the proportion of the bromids to the chlorids appears to be much less than in the waters of the modern seas. According to Usiglio, 100 parts of the salts from the Mediterranean contain 148 of bromid of sodium; while ten analyses by von Bibra of the waters of different oceans, give from 086^{\prime} to 146 , affording for 100 parts of salts a mean of $1 \cdot 16$ of bromid of sodium, equal to $1.0 \pm$ parts of bromid of magnesium. The waters of Whitby and Hallowell, on the contrary, which are the richest in bromids of those described in this paper, contain only 0.54 and 0.69 parts of bromid of sodium in 100 parts of solid matters; while few of the saline springs of the second class contain more than one-balf of this proportion, and some of them very much less.

With regard to the iodids in many of these waters, however, the case is very different. The waters of the modern ocean, as is well known, contain but traces of iodine, and in some strongly saline springs of the first class, like that of Whitby, it is only in the alcoholic extract of the salts from this water that iodine can be detected. The Hallowell water (38, No. 3), which closely resembles this in its general composition, and in the proportion of bromids, is bowever so rich in iodine that its presence can readily be discovered without previous evaporation. It is sufficient to add to the recent water acidulated by hydrochloric acid a little solution of starch and a few drops of nitrite of potash to produce an intense blue color. The iodid of sodium in the first-named water was found equal to 0.0017 parts of the solid matters, and that of the second to 0.019 , or nearly twelve times as much. The unconcentrated saline waters of Ste. Genevieve, of the second class also give a strong reaction for iodine; and when acidulated with hydrochloric acid, without previous evaporation, yield with a salt of palladium an insoluble precipitate of iodid of palladium after a few hours. The salts from these two springs of Ste. Genevieve, though poorer in bromids, are much richer in iodids than the waters of Hallowell; the spring No. 8, containing in 100 parts of salt no less than 0.138 of iodine; so that there appears to be no constant proportion between the chlorids, bromids, and iodids of these saline waters.
860. The relations of bromids and iodids to argillaceous sediments have yet to be determined. It would appear from the facts just cited that bromine has in the course of ages been slowly eliminated from insoluble combinations, and like potassium, has accumulated in the waters of the ocean; while the
facts in the history of iodine seem to point to a process the reverse of this; in other words to a gradual elimination of iodine from the sea-waters, and its fixation in the earth's crust. The observations of numerous chemists unite to show the frequent occurence of small portions of iodine in some unknown combination, in sedimentary rocks of various kinds; from which we may conjecture that it was in former times abstracted from the sea, either directly or through the intervention of organic bodies (as in the case of potash, which is separated and fixed by means of algæ, §5). Experiments after the manner of those of Way and Voelcker may throw light upon this interesting question. We are aware that insoluble combinations of soluble chlorids with silicates of alumina are found urider certain conditions, as appears in the generation of sodalite, eudialyte, and the chloriferous micas, and it is not improbable that the soluble iodids may give rise to similar compounds. By such a process might be explained the rarity of this element in modern seas, while the occasional re-solution of the iodine from these insoluble compounds by infiltrating waters, would help to explain the variable and often large proportions in which this element is met with in some of the waters noticed above.
81. Sulphates.--In the preceding sections we have already discussed the principal facts in the history of those neutral waters in which sulphates predominate, or prevail to the exclusion of chlorids ($\S 00,51)$. The history and the probable origin of those curious springs which contain free sulphuric acid has also been considered ($31,48,49$) ; and it now remains to notice the relation of sulphates to the muriated waters. The first fact that excites our attention is that of the total absence of sulphates from numerous springs of the first, second and third classes; as shown in the preceding analyses, and also in the observations of Lenny and others on the saline waters over a great area in Western Pennsylvania (\$40).

The elimination of sulphate in the form of gypsum from evaporating waters containing an excess of chlorid of calcium has already been discussed in 37; but the bitterns resulting from such a process still retain small portions of sulphates, while it is to be remarked that the saline waters under consileration contain no traces of sulphates, and in many instances hold portions of baryta and strontia, bases incompatible with the presence of sulphates. The modes in which this complete elimination of sulphates may be effected are two in number. The first has already been suggested in $\S 10$, and depends upon the deoxydizing power of organic matters, which reduces the sulphates to sulphurets. These in their turn may be converted into carbonates, the sulphur being separated either as sulphuretted hydrogen (giving rise by oxydation to free sulphur), or as insoluble

T. S. Hunt on the Chemistry of Natural Wuters.

metallic sulphurets. This reducing action not only decomposes the soluble sulphates of soda, lime and magnesia, but also, as has been pointed out in $\S 57$, may extend to sulphate of baryta, and thus sulphuret or carbonate of baryta be formed. It is the action of these soluble baryta salts which constitutes the second mode of desulphatizing waters; and this, if we may judge from the frequence with which baryta salts occur in the saline waters in question, appears to have been the most general process.
It is a fact worthy of notice that a saline spring at Sabrevois, near Lake Champlain, which holds both baryta and strontia in solution, is at the same time slightly impregnated with sulphuretted hydrogen. Another saline and sulphurous spring, which rises within ten feet of this, contains, bowever, a portion of sulphates. (Geology of Canada, page 542.)
§62. I am indebted to Prof. Croft of Toronto, for some notes of a recent examination by himself of a saline of the first class, which contains at the same time a soluble sulphuret. This water, from a boring sunk to a depth of several hundred feet through the Devonian limestone at Chatham, Canada West, had a specific gravity of $1039 \cdot 3$, and yielded for a thousand parts about 51 of solid matters. It contained large portions of chlorid of calcium and magnesium, with very little sulphate, traces of carbonate, and no free carbonic acid. The water, which gave an alkaline reaction with turmeric, was greenish in color, very sulphurous to the taste, and yielded a purple color with nitro prussid of sodium, and a black precipitate of sulphuret with a solution of sulphate of iron. A current of carbonic acid rendered the recent water opalescent, and by exposure to the air it deposited sulphur. A quantitative analysis of this water is to be desired.
\& 63. Borates.-The reddening of the yellow color of turmeric paper in presence of free hydrochloric acid, affords, with certain precautions, the ordinary means for detecting small portions of boric acid. Most of the waters of the third and fourth classes, and some of those of the second, have been tested in this way, and have never failed, when reduced to a small volume, and acidulated with hydrochloric acid, to give this reaction; which was, however, most marked with the waters of the fourth class. The determination of the amount of boric acid in saline waters presents no small difficulty. In the case of the alkaline water of Joly ($\$ 45$, No. 3) the following process was, however, attempted. The salts left by its evaporation were treated with carbonate of ammonia to separate a portion of silica, and then with recently precipitated carbonate of silver, by which the alkaline chlorids were converted into carbonates. The solution now retained in some undetermined form a portion of silver, which was separated by fusing the evaporated saline residue in a silver crucible. By a second evaporation and fusion there

[^67]
202

 T. S. Hunt on the Chemistry of Natural Waters.was obtained a mixture of soda and potash, combined only with carbonic, sulphuric and boric acids. By directly determining the other ingredients the boric acid was estimated from the loss, and was found equal to 0.028 parts in 1000 of water, which contained 0.752 of solid matters. The conversion into carbonate of the sulphates in the mixed salts, by the aid of bicarbonate of baryta, would simplify this process. In $\S 35$ it has been explained that the amount of carbonate of soda in the waters of the third and fourth classes was generally calculated from the excess of the alkaline bases, and controlled by the amount of carbonate of baryta precipitated from chlorid of barium by the alkaline salt. It was found, however, that this last method always presented a certain deficit, due to the borate of soda, whose quantity in many of the waters, is too large to be disregarded. The precipitate of carbonate of baryta contained a portion of sparingly soluble borate of baryta, which was not completely removed by long and continued washing.
864 . I have recently had an opportunity of examining the water of a borax lake from California, which contains, beside borate and carbonate of soda, a portion of chlorid, and a little silicate, traces only of phosphate, and no sulphate. It held in solution very small quantities of earthy carbonate, and was remarkable for a large proportion of potash, already referred to in §53. The evaporated and fused saline residue was treated by the ordinary methods for the determination of the chlorine, carbonic acid and silica; while the bases were obtained in the form of sulphates by the aid of sulphuric and hydrofluoric acids, and afterwards separated as chlorids by the aid of chlorid of platinum. From the data thus obtained the following ingredients were found by calculation for 1,000 parts of the water:

The potasium as above determined, equals $11 \cdot 46$ per cent of the bases weighed as chlorids; another trial gave $11 \cdot 41$. Although for convenience we have represented the potassium as carbonate, it will be seen that the amount of chlorine is snch that it might, for the greater part, have been represented as chlorid of potassium, with an equivalent portion additional of carbonate of soda.
$\S 65$. Carbonates.-In describing in $\S 43$ the alkaline-saline waters of Caledonia it has been shown that these contained a quantity of carbonic acid insufficient to form bicarbonates with the carbonated bases present. It was partly with this fact in view 'that after an interval of more than seventeen years I un-
dertook the new analyses of these waters which in $\S 43$ are given side by side with the earlier results. In these recent analyses, as there remarked, a slight excess of carbonic acid was met with. In the interval the springs had undergone a change in composition. And while the third one still retained in a slight degree its alkaline character, the other two had become waters of the second class, holding, instead of carbonate and sulphate of soda, chlorid of magnesium and baryta salts. The ainount of carbonic acid had, however, undergone but little change; and, as will be seen by comparing the figures below with those in the table in $\S 47$, the slight diminution in the first and third corresponds very closely with the falling off in the amount of solid matters between 1847 and 1865; while, on the contrary, the augmentation in the amount of carbonic acid in the second is accompanied with a corresponding inerease in the amount of fixed matters present.

Carbonic acid in one liter of the Caledonian waters.

While the amounts of fixed matters and of carbonic acid in the several waters have undergone but little change, we find, however, that there has been a great diminution in the proportion of carbonated bases. Thus in the Gas spring in 1817 the carbonic acid required for the neutral carbonates found in the analysis was 356 , while for the same water in 1865 only 278 of carbonic acid was required. In the Sulphur spring, in like manner, the neutral carbonates required $\cdot 449,{ }^{2}$ or more than threefourths of the carbonic acid present; while the falling off of the amount of carbonates in 1865 is such that only 191 of carbonic acid, or just about one-third of the carbonic acid present, is required for the neutral carbonate. Nor is this change due entirely to a less amount of carbonate of soda; the carbonates of lime and magnesia in 1847 required 246 , and in 1865 only 153 of carbonic acid. The changed conditions which we here meet with may be explained by supposing that the carbonated bases are due to the mingling in different proportions of neutral carbonate of soda (generated by the reaction indicated in § 13,) with an earthy saline water holding a constant amount of free carbonic acid; which, in some cases, is more than is required to form bicarbonates, but in others, as we have seen above, shows a deficiency.
§66. If we admit, as I have already assumed, that the waters of the second and third classes have been generated by the mingling of solutions of carbonate of soda with waters of the

[^68]first class, it can readily be shown that these solutions contained chiefly or exclusively the neutral carbonate. If we add a solution of bicarbonate of soda to earthy saline waters of the first class it is easy to obtain solutions holding twenty grams or more of bicarbonate of magnesia to the liter; while in none of the natural waters of the second class do our analyses show the existence of much over one gram to the liter. Again, if we suppose any considerable amount of chlorid of calcium to be decomposed by bicarbonate of soda, separation of the lime in the form of neutral carbonate, and the liberation of the second equivalent of carbonic acid, would yield waters bolding an excess of carbonic acid above that required to form the bicarbonates of the solution. From the absence of such an excess, as appears in the case of the waters of Caledonia, Varennes, St. Leon and Caxton, and from the small amount of bicarbonate of magnesia in these waters, it may be concluded that the alkaline salt whose addition has changed their character was the neutral carbonate of soda.
§67. Examples are not wanting of waters in which, as in those of Caledonia in 1847, the carbonic acid is insufficient to form bicarbonates, or even neutral carbonates, with the bases uncombined with sulphuric acid or chlorine. Thus, according to Pagenstecher and Mïller, the spring and well-waters of Berne do not contain sufficient carbonic acid for the lime present, a part of which they suppose to be held in solution as a silicate. See Bischof, Chem. Geology, i, 5 ; who remarks that Löwig seems to have observed the same fact in the thermal spring of Pfäffers. For further examples of this kind see Lersch, HydroChemie, page 333. The carbonic acid in the water of Töplitz is according to him, not sufficient to form bicarbonates unless the silica present be supposed to be combined with a portion of bases; while in the alkaline thermal spring of Bertrich, according to the analysis of Mohr, a similar deficiency of earbonic acid exists; leading to the conclusion that a part of the earthy bases present is in combination with silica and organic matters. The existence of solutions holding comparatively a large amount of neutral carbonates of lime and magnesia, as described in $\$ 56$, is not without interest in this consection; since it at once affords an explanation of the nature and origin of all such alkaline waters, and waters defcient in carbonic acid, as contain earthy sulphates and chlorids.
868. It was found that the waters of Chambly in 1864, and of the Sulphur spring of Caledonia in 1865, gave with limewater a precipitate which was soluble in an excess of these mineral waters, but to a much less extent than in the acidulous saline water from the High-Rock springs of Saratoga. The latter, which contains bicarbonate of soda, and is highly charged with carbonie acid, turns to a wine-red the blue color of litmus
tincture, which is not changed by the Chambly or the Caledonia water. The Saratoga water, after some time, gives a feeble alkaline reaction with dahlia paper; this is more distinctly but slowly changed by the Caledonia water, and aimost immediately turned to green by that of Chambly. This latter water readily browns yellow turmeric paper, which is scarcely affected by the water of Caledonia.
§69. Silica.-The silica which exists in solution in cold saline springs is generally very small in amount, as might be expected from the insolubility of earthy silicates, which is such that superficial drainage waters in filtering through the soil lose the silica which they held in solution (85). We have further shown that, as a result of this tendency to the furmation of insoluble silicates, the silicate of soda liberated in the sediments by the decomposition of feldspar, generally appears at the surface as carbonate of soda, having been decomposed by earthy carbonates (§ 13).

In two cases, however, considerable quantities of silica are found dissolved in natural waters. The first is met with where the rapid solvent and decomposing action of heated waters is exerted upon alkaliferous siliceous minerals ($\$ 14$), as seen in springs like the Geysers.' The second case is that of those rivers and streams which drain surfaces covered with decaying vegetation and decomposing silicates, from both of which they derive dissolved silica. Such waters contain but small amounts of solid matters, but the proportion of silica is relatively considerable, amounting, as we have seen in the water of the Ottawa River, (which contains in 10,000 parts, 0.6116 of solid matters), to 0 2060, or thirty-two per cent; while in the St. Lawrence, (which contains for the same amount of water, $1 \cdot 6056$,) the silica equals 3700 , or twenty-four per cent of the solid ingredients. The analysis by H. Deville of the river-waters of France show, in like manner, large amounts of silica, which seem to have been hitherto overlooked in the analyses of most chemists. (Ann. de Chim. et de Phys., [3] xxiii, 32.

It will be seen by a reference to the tables of analyses given in the second part of this paper, that in the waters of the second class the amount of silica is equal to from 0.15 to 0.60 parts for 100.00 solid matter. In the alkaline waters of the third and fourth classes its proportion is greater, and up to a certain point appears to increase with that of the carbonate of soda. In the following table the proportions of carbonate of soda and silica for 100.0 parts of solid matters are given for certain springs, whose analyses will be found in tables III and IV:

	$1 \mathrm{III} .$	$\frac{\mathrm{III} .}{5 .}$	$\stackrel{\mathrm{III} .}{\mathrm{g}}$	$\begin{gathered} \mathrm{III} \\ 6 . \end{gathered}$	III	$8 .$	$\begin{gathered} \mathrm{HII} . \\ \mathrm{g} . \end{gathered}$	$\begin{gathered} 111 \\ 7 . \end{gathered}$	IV. $1 .$	IV. $3 .$	Iv.	Iv.
Carb, of moda	- 6	1.6	$2 \cdot 4$	3.4	7.0	80	$9 \cdot 2$	21.0	25.0	30.0	56.0	$\begin{array}{r} 677 \\ 820 \end{array}$
Siliea	4	4	$\cdot 0$	-	16	15	17	$2 \cdot 8$	8.0	\$2		

The amount of silica which these waters contain does not in any case exceed one or two ten-thousandths, and it is well known that water at the ordinary temperature may dissolve very much more than this amount of silica, even in the presence of alkaline chlorids and of bicarbonates.
§ 70. Inasmuch as carbonic acid, according to Bischof (Chem. Geol. i, 2), decomposes not only the silicates of soda, but those of lime and magnesia, when they are in solution, it might be supposed that the silica in the above waters exists either in a free state or as a soluble silicate with a great excess of acid. The latter view, especially in the case of magnesia, is rendered probable by numerous experiments which I shall describe in another paper, and which form a part of the series already mentioned in \&14. From these it appears that free soluble silica, when mingled with a solution of bicarbonate of magnesia, or with the neutral carbonate dissolved in sulphate of magnesia in the manner described in $\$ 56$, whether separating immediately or by a slower process of gelatinization, always carries down with it, in combination, a few hundredths of magnesia.

In these experiments, besides the carbonate of magnesia, sulphate or chlorid of magnesium was present; but the silicated natural waters now under discussion are alkaline from the presence of carbonate of soda, and whatever partition of bases between carbonic and silicic acids may exist in the recent waters, we may suppose that when they are boiled a silicate of soda is formed, with the expulsion of carbonie acid. The silicate thus produced reacts on the earthy bases present, with the production of silicates of lime and magnesia, which are in part precipitated with the earthy carbonates. Berzelius and Kersten long since observed the separation of such silicates during the evaporation of the waters of Carlsbad and of Marienbad (Bischof. i, 5); while a silicate of lime is said to be deposited from the waters of Wiesbaden. But the silicates thus formed are but partially precipita-ted-a portion remaining in solution till a late period of the evaporation. Dr. J. Lawrence Smith long since remarked the existence of a dissolved silicate of lime, apparently combined with soda, in the concentrated alkaline waters of Broosa in Asia Minor, (this Journal [2], xii, 377).

Many facts in accordance with the above were observed in the analyses of the waters described in this paper. Thus the water of Beloeil, whieh held in 1000 parts 114 of silica, when evaporated to one-tenth, deposited with the carbonates 050 of silica, and the hydrochloric solution of the precipitate became gelatinous during evaporation. The solution still retained in solution, besides a portion of lime, 064 of silica, which was completely separated when the alkaline liquid was evaporated to dryness in contact with the earthy carbonates previously precipitated.

When however these were removed by filtration it was found that during the evaporation to dryness a reaction took place by which the precipitated silicate of lime was partially decomposed, the separated silica being redissolved by the alkaline carbonate. In the case of the Chambly water of 1852, which contained in 1000 parts 073 of silica, 042 parts still remained in solution in the water evaporated to one twentieth ; and in that of the Ottawa River when reduced to one fortieth there still remained in solution from $10 \cdot 000$ parts of water, $\cdot 075$ of silica and 028 of lime. Similar results were observed with the alkaline saline waters of Varennes and Fitzroy, and all of these yielded, by further evaporation, precipitates containing silica and lime, and in one instance magnesia.

It is not however from alkaline waters like these, but from neutral sea-water that the silicates of magnesia (and of lime), which abound in stratified rocks, have been for the most part formed. See further on this point, \& 41.
§ 71. Organic Matters.-In $\S 44$ we have described some of the reactions of the organic matter found in the Chambly water, and it is to be remarked that small portions of a similar substance were found in all alkaline waters of the third and fourth classes and caused them to become brownish when evaporated to a small volume. This it has been already suggested may have a superficial origin, the organic matters carried down by surface waters being kept in solution by the alkaline salts; it is not, however, impossible that this same menstruum may remove the organic matters which abound in the pyroschists and other materials of organic origin in the ancient rocks. Thus, for example, the coprolites of the Lower Silurian limestones contain so much animal matters as to evolve an odor like burning horn when exposed to heat. (Geology of Canada, 462.)

The Ottawa water ((45) when boiled to one-tenth deposits a precipitate in small bright brown iridescent scales. This was found to contain silica, carbonate of lime and a small portion of an organic substance ${ }^{\text {a }}$, chich was dissolved in a dilute potash ley. The brown solution thus obtained was not disturbed by acetic acid and acetate of copper, but by the subsequent addition of carbonate of ammonia yielded a white precipitate. The concentrated water retained a large proportion of organic matter, and When reduced to a small bulk, was dark brown, alkaline to turmeric paper, and continued by evaporation to deposit opaque films of silicate of lime. The finally dried residue was dark brown in color, and carbonized by heat, burning like tinder, and diffusing an agreeable odor. The residue of 10.000 parts dried at $300^{\circ} \mathrm{F}$., weighed $\cdot 6974$, and lost by gentle ignition $\cdot 1635$, con $*$ sisting partly of organic matter.

No chemical examination was made of this matter held in solution by the concentrated water. From the late researches of Peligot, however, it appears that the organic matter precipitated by nitrate of lead from the water of the Seine has nearly the composition of the apocrenic acid of Berzelius. It gave on analy. sis carbon $53 \cdot 1$, hydrogen $2 \cdot 7$, nitrogen $2 \cdot 4$, oxygen $41 \cdot 8$, and is evidently related to the soluble form of vegetable humus. (Comptes Rendus, April 25th, 1864). When exposed to heat this substance evolved ammonia, with the odor of burning wool, while the organic matter from the Ottawa water, on the contrary, gave an odor like burning turf.

geological position of the preceding waters.

§72. The great Paleozoic area of the St. Lawrence basin is divided into two basins by an axis extending from Deschambault, not far above Quebec on the St. Lawrence, in a southwest direction to Lake Champlain. The eastern part of the western basin is more or less affected by undulations subordinate to the great fault that brings up the Quebec group ayainst the Hudson River formation, and also by other undulations of minor importance. It is in this disturbed region that by far the greater number of the mineral springs already described occur; and although it is often difficult to establish the presence, or to trace the extent of faults in the strata, on account of the alluvial deposits which generally cover the Paleozoic strata of the region, it is apparent that in a great number of cases the mineral springs occur along the lines of disturbance, and it is probable that a constant relation of this kind exists. As the eastern limit of the western basin is approached, the mineral springs become more numerous, but this boundary once passed, a region is soon reached where the rocks become profoundly altered, and furnish no more mineral waters. The great western portion of the occidental basin, which is less disturbed than its eastern part, presents but few mineral springs; yet the wells of strongly saline water which have been obtained by borings at Kingston, Hallowell, St. Catherines, Chatham and elsewhere, show that the undisturbed rocky strata are charged with saline matters. For a better understanding of the relations of these waters a list of the Paleozoic formations in which the springs occur is here given, and numbered in ascending order.

[^69]§ 73. Of the above series the Trenton group includes the Birdseye and Black River limestone, as well as the Trenton limestone of the New York geologists, and is non-magnesian, enclosing beds of chert, silicified fossils and petroleum; in all of which characters it resembles the Corniferous limestone above. In like manner, the Potsdam is represented by the Hudson River and Medina formations, while the gypsiferous dolomite of the so-called Calciferous sandrock corresponds to the great mass of dolomite which constitutes Nos. 10, 11, and 12, and includes the gypsum and the salt-bearing strata of the Onondaga formation. These repetitions of similar strata, marking successive recurrences of similar geological and geographical conditions, which form great cycles in the history of the continent, bave been already considered in a paper by me on Bitumens, etc., in this Journal, [2], xxxv, 166 .
\& 74. In the eastern basin, which includes not only southeastern Canada, but the whole of New England, the strata are in an altered and crystalline condition, if we except a narrow belt along the northwest border of the basin. These unaltered strata present a great series of shales, conglomerates, and limestones, pure and magnesian, succeeded by 2000 feet or more of sandstone with shales; the whole forming what the Canadian Geological Survey has named the Quebec group, whose aggregate thickness in the vicinity of Quebec is about 7000 feet. The geological horizon of this group of strata corresponds to that of the Chazy, the Calciferous, and perhaps of the Potsdam. It was in great part a deep-sea deposit, of which the fornations just named are but incomplete and littoral representatives. Of the waters described in this paper none are from this eastern basin, although the unaltered portions of it present several mineral springs, some of which are described in the Geology of Canada. Of these the salines of Cacouna, Green Island, Riviére Ouelle and Ste. Anne, are bitter waters belonging to the first class; while a sulphurous spring at the latter place, and another at Quebee are alkaline waters of the fourth class.
$\S 75$. Of the waters of the western basin, which alone are noticed in this paper, many have been qualitatively analyzed which are not here described. Including two from Vermont, tiventy-one alkaline waters of the third and fourth classes have been examined. Of these, as already stated, the waters of Caledonia rise from the Trenton group, and that of Fitzroy from the Chazy or Calciferous, while two others at Ste. Martine and Rawdon, appear to have their source in the Potsdam. All the other waters of these two classes issue from the Hudson-River shales, with the exception of those of Varennes and Jacques Cartier, Which seem to rise from the Utica formation.

Am. Jour. Sci.-Second Series, Vol. XL, N9. 119.-SkPt., 1865.

Of the waters of the second class, of which about thirty have been examined from the western basin, some five or six issue from the shale formations Nos. 5 and B, but all the others are from the underlying limestones. The bitter salines of the first class flow from the limestones of the Trenton group, with the exception of that of Ancaster, which is from a well sunk in the Niagara formation, and that of St. Catherines, from a boring carried through the Medina down into the Hudson River shales. The source of both of these is probably, like that of the other very similar waters, the Lower Silurian limestones.
§76. From this distribution of the waters of the first four classes it would appear that the source of the neutral salts, which consist of alkaline and earthy chlorids, is in the limestoues and other strata from the Potsdam to the Trenton inclusive, while the alkaline carbonates are derived from the argillaceous sediments which make up the Utica and Hudson River formation. These sediments are never deficient in alkaline silicates, whose slow decomposition yields to infiltrating waters ($\S 13$), the alkaline carbonates which characterize the mineral springs of the furth class. These mingling in various proportions with the brines which rise from the limestones beneath, produce the waters of the second and third classes in the manner already explained. The appearance of several springs of the third class, as those of Caledonia and Fitzroy, from the Lower Silurian limestones is not surprising, when it is considered that the Chazy formation in the Ottawa valley includes a considerable thickness of shales, sandstones and argillaceous limestones, approaching in composition to the sediments of the Hudson River formation.
§77. As an evidence that the different classes of waters have their origin in different strata may be cited the fact that springs very unlike in composition are often found in close proximity, and apparently rising from a common fissure or dislocation. Thus in the seigniories of Nicolet and Labaie du Febvre, I have examined six springs, all of which rise through the Utica formation along a line, in a distance of about eight miles. Of these springs two belong to the second, two to the third, and two to the fourth class; these last being probably derived entirely from the shales, while the others have their source in the underlying limestones, and are more or less modified in their ascent. Again, at Sabrevois, within a few feet, are two springs of the second class, of which one contains salts of baryta and strontia, and the other soluble sulphates. In like manner at Ste. Anne, in the Quebec group, a spring of the second class and one of the fourth are found not far apart. The springs of Caledonia offer another and not less remarkable example. In 18 ± 7 there were to be seen, not far from a spring of the second elass, three others of the third class very near together, one of them sulphurous, but
all sulphated, and differing in the proportions of carbonate of soda present. In 1865, while one of these still retained its character of a sulphurous sulphated water of the third class, the others were changed to waters of the second class, and held salts of baryta in solution. These relations which we have already pointed out ($\$ 47$) not only show waters holding incompatible salts issuing from different strata along the same fissure, but mingling in such varying proportions as to produce from time to time changes in the constitution of the resulting springs.
§ 78. The temperature of none of the springs which we have here described exceeds 53°, which has been observed for two springs at Chambly, about twelve miles from Montreal. Inasmuch as the mean temperature of this city, as dedaced from the observations of twenty-seven years, is $44^{\circ} \cdot 67$, the Chambly waters are to be regarded as slightly thermal. No other springs in Canada are known to present so high temperature unless possibly the acid waters of the fifth class, for which we have pointed out the importance of further observations, (88). The St. Léon spring was found to be 46°, and that of Caxton, $49^{\circ} \mathrm{F}$.
8 79. The extended series of analyses which we have given in the preceding pages presents many points of interest. Nowhere else, it is believed, has such a complete systematic examination of the waters of a region, and of a great geological series been made. Additional importance is given to these results by the fact that the waters are all derived from Paleozoic strata, and we are thus enabled to compare these saline materials of an ancient period with those which issue from, and in many cases owe their saline inspregnation to, strata of comparatively modern origin. Comparisons of this kind, such as I have already instituted between brines of different geological epochs in $\S 39$, possess great geological interest.

It is a consideration not without interest, that the valley of the St. Lawrence under different meteorological conditions might become a region abounding with saline lakes, affording sea-salt, natron and borax, the results of the evaporation of the numerous saline and alkaline springs which have just been described.
$\S 80$ A few considerations are here suggested by the fact already naentioned of the apparent absence of mineral springs from the altered Paleozoic strata of the Quebec group. Metamorphism and disturbance or displacement of strata are generally concomitants, not, as I conceive, because the process of alteration is in any way connected with the disturbance of the rocks, but because a great accumulation of superincumbent strata, a necessary preliminary of metamorphism, is the efficient cause of the folding of the deeply buried and subsiding rocks, in a way which I have already elsewhere pointed out. ${ }^{2}$ The subsequent

[^70]continental uplifting of the altered, plicated, and more or less fissured strata, and their irregular erosion, give rise to the broken surfaces of metamorphic regions, and at the same time permit the saline solutions impregnating the strata to flow out; while solid soluble salts, unless enclosed by impermeable strata, are removed by lixiviation. Hence we shall rarely find muriated waters issuing from crystalline and disturbed strata. Those saline products which result from the decomposition of feldspathic minerals, and the separation of alkaline carbonates; or from the decomposition by these or other agents of the gypsum which is often present in metamorphic strata, may, however, readily give rise to waters of the fourth and sixth classes; so that we are not suprised to find alkaline and sulphated waters issuing from crystalline strata.
§81. I have in a previous section (§57) alluded to the condition of the primeval ocean, and in this connection it may be well to refer to a hypothesis which I some years since advanced, relative to the origin of its salts and the primeval sediments. Starting from the notion "of a cooling globe, such as the igneous theory supposes our earth to have been at an early period, and considering only the crust with which geology makes us acquainted, and the liquid and gaseons elements which now surround it, I have endeavored to show that we may attain to some notion of the chemical conditions of the cooling mass by conceiving these materials to again re-act upon each other under the influence of an intense beat. The quartz, which is present in so large a proportion in many rocks, would decompose the carbonates and sulphates, and, aided by the presence of water, the chlurids both of the rocky strata and of the sea; while the organic matters and the fussil carbon would be burned by the atrnospheric oxygen. From these re-actions would result a fused mass of silicates of alumiua, alkalies, lime, magnesia, ironoxyd, etc.; while all the carbon, sulphur and chlorine in the form of acid gases, mixed with watery vapor, nitrogen, and a probable excess of oxygen would form an exceedingly dense atmosphere. When the cooling permitted condensation, an acid rain would fall upon the heated surface of the earth, decomposing the silicates, and giving rise to chlorids and sulphates of the various bases, while the separated silica might take the form of crystalline quartz. In the next stage of the process, the portions of the primitive erust not cevered by the ocean would undergo a decomposition under the influence of a hot moist atmosphere charged with carbonic acid, and the feldspathic silicates become converted into clay, with separation of the alkali. This, absorbing earbonic aeid from the atmosphere, would find its way to the sea, where, having first precipitated from its highly heated waters various metallic bases then held in solution, it would de-
compose the chlorid of calcium, giving rise to chlorid of sodium on the one hand, and to carbonate of lime on the other. In this way we obtain a notion of the processes by which from a primitive fused mass may be generated the siliceous, calcareous and argillaceous rocks which make up the greater part of the earth's crust; and we also understand the source of the salts of the ocean." ${ }^{3}$
82. A further development of this view would lead us too far for the scope of this paper. It will however be seen that the first precipitates from the ocean would contain most of the metals, and that in the subsequent re-solution and deposition of these precipitates is to be found an explanation of the origin of metalliferous deposits, and of their distribution in various formations; either as integral parts of the strata, or as deposits in veins, the former channels of mineral springs. In an essay on American Geology, published in this Journal in 1861, [2], xxxi, 400, I have already sketched the outlines of what I conceive to be the true theory of metalliferous deposits, a subject to which it is proposed soon to return.

Muntreal, July 4, 1865.

Art. XXI.-A new Metenrite from Newton courty, Arkansas, contuining on its surface Carbonate of Lime; by J. Lawrence Smith, Prof. Chem. Med. Dep. University of Louisville.

The first notice of the meteorite of Newton county was made in 1860 by Prof. Cox, who was engaged in the geological survey of Arkansas. The original has not been obtained; the only fragment of it, being in the hands of Judge Green, was given to Prof. Cox, who has kindly presented it to me. The weight of the fragment is twenty-two and a half ounces, and was evidently broken off from one coruer of the mass, as it presents three of the original surfaces.
This meteorite is of the mixed variety, and cannot be classed with either the metallic or the stony meteorites; it is one of the most interesting that has been discovered in the United States, differing from any other yet found in these regions.
The stony matter is very distinctly crystallized, and some of the minerals can be easily detached and examined separately. The rnetallic portion constitutes somewhat over one-half of the mass, and owing to the diffusion of the stony matter has a coarsely reticulated structure.

When broken under the hammer, and the iron separated by

[^71]the magnet, it is obtained in coarse grains varying from 3 to 4 grains down to very small fragments. The exterior is of a rusty color, roughened by projection of nickeliferous iron, and over several parts of the surface there is a white incrustation.

Specific gravity taken on different pieces varies from 45 to 61 . By mechanical means and the aid of the magnet the following minerals were separated.

Nickeliferous iron,
Chrome iron, Sulphuret of iron,

Hornblende,
Olivine,
Carbonate of Lime.

Nickeliferous Iron.-I may as well mention the manner in which I separate the iron from the stony matter of meteorites. In most instances it is necessary to sacrifice a fair portion of the specimen. The mass is crushed in a steel mortar; the mag. net is then able to take out the iron from the mass of stony matter, especiaily if the crushing operation is repeated two or three times. The iron is then introduced into an iron, or, better still, a silver capsule or crucible, and a strong solution of potash added, heat is applied until all the water is driven off, and the residue is heated to redness; on cooling, water is applied and the excess of potash washed out, as well as some silicate of potash that is formed. After thoroughly washing the particles of iron, they are moistened with a little alcohol and dried on blotting paper with a gentle heat; and by holding a magnet a little distance from them, the particles of iron will adhere to the magnet almost perfeetly free from earthy matter.

The iron, if of a coarse reticulated structure, as the one in question, may require to be crushed in the steel mortar after treatment by potash, to detach particles of silicate, remaining in scall crevices, and in this variety I sometimes repeat the treatment by potash. In this way, the foreign matter associated with the iron can be reduced to one-half per cent. Of course this process sacrifices more or less of the iron, especially if the iron be in very stnall particles; but this sacrifice is of secondary importance compared with the necessity of having the metallic matter in a pure state. Thus purified the iron was found to be composed of

Iron,
Nickel,,
Cobalt,

$\left.\begin{array}{l}\text { Coper, } \\
\text { Phosphorus, }\end{array}\right\}$ too small to be estimated.

In the analysis, after separating the iron by the acetate of soda, the nickel and cobalt were separated by nitrite of potash, which method I have used frequently, and with the best results. Liebig's method for accomplishing the same end has been much
improved by the modification lately devised by Prof. Gibbs, of dissolving the oxyd of mercury in the cyanid of mercury, (this Journal, Jan., 1865) ; but having every arrangement necessary for executing successfully the method by the nitrite of potash, I have not yet tried Prof. Gibbs's modification, but shall do so shortly.

Chrome Iron. - This is found in small quantity in minute particles, some of them showing distinct faces of crystals, but I failed to find any complete octahedron; the quantity was too small for analysis but was readily recognized by the blowpipe.

Sulphuret of Iron.-This also is discernible only in minute quantity, and could not be collected for analysis. I would remark, with reference to the sulphuret of iron found in meteorites, that it cannot be classed with the terrestial magnetic pyrites, whose formula is considered $\mathrm{Fe}_{7} \mathrm{~S}_{8}$ having always tound the sulphur too small for this formula: in which conclusion I believe that I am sustained by Rammelsberg and others. My results point to the formula FeS, and if the compositions of these two kinds of pyrites are correctly made out, then the meteoric variety has no terrestrial representative.

Hormblende.-This mineral is easily separated, and is of a greenish gray color more or less soiled by iron; with some care it can be detached unmixed with other constituents; it has a very distinct cleavage in one direction and an imperfect one in another; on analysis it gave,
Silica,
Alumina,
Protoxyd of iron,
Protoxyd of manganese,
Magnesia,
Alkalies-(potash, soda, lithia),

The oxygen relations of the silica and protoxyds furnish the formula $\hat{\mathrm{R}}_{4} \mathrm{Si}_{3}$-the formula of bornblende. In structure and composition it is not unlike some varieties of anthophyllite.

Olivine.-This mineral is diffused through the mass. Some of the smaller pieces are almost colorless; others again are more or less yellow, being stained with oxyd of iron; some of the fragments are iridescent like varieties of oligoclase, which I at first look it to be. Sufficient of it was detached in a pure state for analysis, and was found to be composed as follows:

There was a minute quantity of manganese estimated with the oxyd of iron and magnesia. 'This analysis overruns the 100.

This is accounted for in part by the quantity used for analysis not being more than 0.160 grams. The oxygen ratio of the silica and prutoxyds show the composition $\dot{R}_{3}{ }^{3 i}$, which is that of oilvine.

Curbomate of Lime.-The observation of this constituent in a meteorite is something entirely new, yet it is found on the exterior surface of the meteorite in question, in various places. There is no doubt in my mind, however, that this ingredient was not a part of the mass when it fell, but that it has been exposed to certain conditions since its fall by which carbonate of lime has been incrusted on its surface.

It is much to be regretted that the entire original mass is not accessinle to furnish facilities for determining whether it is an incrustation, or not, and if the former, whether the incrustation was formed prior or subsequent to its fall.

In relation to the presence of carbonates in meteorites, we have the first and only announcement, up to the present time, in connection with the meteorites which fell at Orgueil in 1863 ; Messrs. Des Cloizeaux, Pisani, Daubrée and Cloez discovered minute rhornbohedral crystals of double carbonates of magnesia and iron.

The above statements exhaust about all that I have to say at the present time on the meteorite under investigation. There may be one or two other minerals in its composition, but I could not separate them in a manner to pronounce as to whether they were different from those already described or not.

ART. XXII.-Researches on the Volatile Hydrocarbons; by C. M. Warren.*
II-On the Infleence of $\mathrm{C}_{2} \mathrm{H}_{2}$ cton the Bohling points in Homologous Series of Hydrocarbons, and in some Series of their Derivatives; with eritical obeervations on Methods of taking Builing-ponts.
Ir is well known that we are indebted to H. Kopp ${ }^{1}$ for the discovery of certain definite relations existing between the chemical constitution and some of the physical properties of bomologous liquid bodies. Of these, one of the most important is that of a uniform difference between the boiling-points of the contiguous members of an homologous series, corresponding to the uniform difference in their elementary constitution. Kupp has shown by numerous examples, that, as a general rule, in those series which are cbaracterized by a common elementary difference of $\mathrm{C}_{3} \mathrm{H}_{3}$ between the members, in the order of the

[^72]series, the corresponding difference of boiling-point is about 19° C.; hence, that the difference between the boiling points of any two members of such a series is $x .19^{\circ}$ for a difference of $x \mathrm{C}_{2} \mathrm{H}_{2}$ in the elementary formulæ. In the earlier observations on this subject, this relation between the boiling-points and formulæ was found so nearly constant in the different series examined, that any deviations from this apparent general law were referred, not unreasonably, to assumed inaccuracies in the determination of the boiling-points of the bodies compared. But the more recent and extended generalizations of Kopp ${ }^{2}$ bave led him to point out several exceptional series, in which the boiling-point difference is greater, and others in which it is less, than 19° for an elementary difference of $\mathrm{C}_{2} \mathrm{H}_{3}$. That there are such exceptional series is confirmed in a very decisive manner by my own observations, as I shall proceed to show. My determinations make the boiling-point differences in some cases so much larger than those of other observers as to leave no room for doubt on this point; especially if the comparative value of these determinations be duly estimated with reference to the more reliable character to which the preparations are entitled, on account of the more efficient means which I have employed for separating the liquids. Since Kopp first called the attention of chemists to this subject, different theories have from time to time been advanced by Schröder, Löwig, Gerhardt, and others, and supported by laborious research and observation. It will be interesting to examine some of these theories in the light of the new facts which I am about to present. Schröder, ${ }^{3}$ not satisfied with Kopp's explanation of the discrepancies between the ubserved and theoretical boiling-points, on the ground of errors of determination of the former, argues that the influence of $\mathrm{C}_{2} \mathrm{H}_{2}$ on boiling-points is variable in different series according to the peculiar nature of the $\mathrm{C}_{3} \mathrm{H}_{2}$ in each case. He regards organic compounds for the most part made up of radicals, which he calls "components," of which he makes seven. Three of these are composed of carbon and hydrogen, viz:-

Formyl $=\left(\mathrm{C}_{4} \mathrm{H}_{2}\right)$-" $\left(\mathrm{C}_{4} \mathrm{H}_{4}\right)$ "-which is supposed to raise the boiling-point of a substance $52^{\circ} \mathrm{O}$.
Methylen $=\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)^{\mathrm{m}}$-" $\left(\mathrm{C}_{3} \mathrm{H}_{4}\right)^{\mathrm{m}}$ "-which is supposed to raise the boiling point of a body 21°.

Elayl $=\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)^{\mathrm{e}}$-" $\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)^{\text {e" }}$-which is supposed to raise the boiling-point 17°. Subsequently (Pogg. Ann., Ixiv, 101) the latter number was changed by Schröder to 16°.
A fourth component was made up of a double atom of hydrogen, $\left(\mathrm{H}_{2}\right)-$ " $\left(\mathrm{H}_{4}\right)$ "-which was supposed to lower the boiling.

[^73]point 3°; but this also was afterwards changed to 10° (Pogg. Ann., lxiv, 372). (The other three components, having no direct bearing on the hydrocarbons, are omitted.) By means of these components Schröder (Pogg. Ann., lxii, 188) proposed to calculate the boiling-points of different substances in the following manner. Having estimated the sum of the influence of the different components of a body, the number 70 was in all cases to be deducted. Subsequently Schröder ${ }^{4}$ was led to substitute, in these calculations, the influence of the separate elements for that of the components. Each double atom of carbon $\left(\mathrm{C}_{2}\right)$ was estimated to raise the boiling-point of a compound 31°; and each double atom of hydrogen $\left(\mathrm{H}_{2}\right)$ to lower it 10°. As in the former case, the number 70 was to be deducted from the sum of the influences of the different elements contained in the compound, to give the true boiling-point. Example: calculation of the boilingpoint of benzole, $\mathrm{C}_{12} \mathrm{H}_{8} ; \mathrm{C}_{13}=6 \mathrm{C}_{2} ; 31 \times 6^{\circ}=186^{\circ} ; \mathrm{H}_{6}=3 \mathrm{H}_{2} ;$ $-10^{\circ} \times 3=-30^{\circ} ; 186^{\circ}-30^{\circ}-70^{\circ}=86^{\circ}=$ the calculated boiling. point of benzole by this method; which agrees exactly with the latest determination at the date of Schröder's memoir.
Löwig ${ }^{5}$ estimates the influence of the elementary atoms on the boiling-point differently from Schröder; and obtains numbers such that, to find the boiling-point of a compound it is only required to add together the numbers corresponding to the elementary atoms which it contains, without deducting from this sum a constant number, as by Schröder's method. According to Löwig's theory, one atom of carbon (C) raises the boiling-point $38^{\circ} 4$, and one atom of hydrogen (H) lowers it $29^{\circ} \cdot 2$; these numbers being for carbon nearly two and one-half times, and for hydrogen nearly three times as great, as those of Schröder.

Gerhardt," in a special paper "On the Boiling-point of the Hydrocarbons," observes that "The boiling-point of the hydrocarbons appears to obey a very simple law, according to which it is raised or depressed a certain number of degrees, corresponding to the number of equivalents of carbon or hydrogen contained in its equivalent." ${ }^{7}$ From a comparison of the boiling. points and formule of several well-known hydrocarbons, the determinations of which were repeated with special care for this purpose, Gerhardt finds that the addition of C_{3} to the molecule of an hydrocarbon raises its boiling-point $35^{\frac{2}{\circ}} \cdot 5$, and that the addition of H_{3} lowers it 15°. The boiling-point of a body is calculated from these numbers by comparing its formula with oil of turpentine, $\mathrm{C}_{20} \mathrm{H}_{16}$, as a standard, the boiling-point of which is

[^74]taken at $160^{\circ} \mathrm{C}$. Example: cumole (from cuminic acid) bas the formula $\mathrm{C}_{18} \mathrm{H}_{12}$; hence it contains C_{2} less than oil of turpentine ; therefore $35^{\circ} .5$ must be deducted from 160° (the boiling-point of oil of turpentine, which leaves $124^{\circ} 5$; but as the cumole contains $2 \mathrm{H}_{2}$ less than oil of turpentine, $15^{\circ} \times 2=30^{\circ}$ is to be added to the above remainder; thus $124^{\circ} \cdot 5+30^{\circ}=154^{\circ} 5$, the calculated boiling-point of cumole. Gerhardt's direct determination was 153°, which very nearly coincides with his theory.

It would be foreign from my purpose on the present occasion to consider these different hypotheses, or even the empirical law of Kopp, beyond their special relation to the boiling-points of the hydrocarbons, and such other series, derivatives from the hydrocarbons, as have been made the subjects of my own experiments. Anything more than this would be merely speculative. The want of more accurate determinations of boiling points as essential to safe and reliable deductions and generalizations on this question, has frequently been observed. The need of this will be made strikingly apparent by comparison of my results with those of previous observers. Indeed, if my determinations may be taken as a criterion,-which, considering the nature of the materials operated upon, might not be quite fair,-the inaccuracies of the boiling-points which have hitherto been published are probably so numerous, and in many cases so considerable, as to make it appear almost useless to attempt further generalizations upon those unreliable data. It may be hoped, however, that the superior means which my process furnishes for separating mixtures of liquids, will lead to the accumulation of reliable facts of sufficient number and variety for a profitable review of this question in its different bearings, which, from its importance, it elearly merits.

The frequent inaccuracy of the determinations of boiling-points, upon which Kopp has justly laid so much stress, may, I think, be more reasonably attributed, at least in a majority of cases, to a want of purity in the substances themselves, rather than to a neglect of the precautions and corrections which he recommends to be observed in such determinations; although errors as great as those mentioned by Kopp ${ }^{8}$ may doubtless occur, and in the particular instances which he had in mind may have occurred from the cause which he assigned for them. It should be borne in mind, however, that these errors, in the case of an impure substance, may be compensating errors; or, on the other hand, they may go to increase that which would arise from impurity.
That the conditions under which my results have been obtained may be clearly understood, and hence the value of these resolts fairly estimated, in comparison with those of others, I shall endeavor, as I proceed with these researches, to specify, in

[^75]sufficient detail, the processes which I have employed. Having, in the memoir previously referred to, described the process by which the hydrocarbons were separated, the special object of this paper only requires, in this regard, that I should add a description of the method employed in determining the boiling-points of these bodies, which has already been partially given in the foregoing memoir, when treating of the boiling-point of benzole.

Of the Method of determining Boiling-points.-I use for this purpose a small tubulated glass retort, and usually operate on about 150 c . c. of the liquid. The thermometer extends into the liquid, even nearly to the bottom of the retort, taking care that the bulb shall not come in contact with the glass, but remain free in the liquid. To prevent abnormal elevation of temperature from adhesion to the glass,-which I have observed in some instances, when operating on impure hydrocarbons, to amount to several degrees,-I introduce pieces of sodium, instead of platinum, as it seems to serve at least as well for this purpose, and at the same time tends to preserve the purity of the material. Sodiam has also this advantage over platinum for hydrocarbons, viz: that it does not lose its virtue by use, so long as any of it remains; platinum, on the contrary, being liable, especially if the liquid is not quite pure, to become after a while slightly coated, and its efficiency thus impaired.'

Except for low temperatures, the retort rests on a piece of wire gauze laid over the ring of an iron lampstand, and is heated with a small gas flame. When operating on liquids of low boiling-point, I have observed the liability of the thermometer to be considerably affected by the ascending current of hot air striking the sides of the retort above the level of the liquid, thus causing an elevation of several degrees of temperature. To prevent this, I proceed as follows. For low temperatures, and yet above the common temperature, I place upon the gauze on which the retort is to stand, a screen of felt or thick woolen paper, which has beea provided with a hole in the center about two inches in diameter. This screen extends several inches from the sides of the retort, and has been found effectual for the purpose.

For temperatures below the common temperature, the retort is set in a water-bath containing ice-water, the temperature of the bath being gradually raised by means of a small gas flame.

As is custonary, in order to ascertain the temperature by which to calculate the correction for the upper column of mer-

[^76]cury, a thermometer is attached, by means of elastic bands, to the side of the thermometer in the retort; the bulb being placed, during ebullition, midway between the center of the cork and the upper extremity of the mercurial column. And, as usual, a paper screen, closely fitting the thermometer, is placed across at the top of the cork to shield the upper column of mercury from the direct influence of the ascending heat.
I have observed that it often requires considerable time-variable according to its length and the thickness of the glass spin-dle-for that part of the thermometer above the retort to acquire the highest temperature which the boiling liquid can communicate to it. During this time the thermometer evidently is not in a fit state for an observation. While this gradual change in the condition of the thermometer is taking place, it is desirable, for obvious reasons, that no vapors should escape from the retort. I therefore proceed as follows. The retort, the neck of which has previously been wrapped with a wet cloth, is placed in such a position that the neck shall slightly incline towards the body of the retort. If necessary, some pieces of ice, which will adhere firmly to the cloth, may be laid along the neck to insure complete condensation of the vapors during ebullition. While the retort is in this position, ebullition is continued for considerable time, until it ceases to have any effect on the height of the mercury in the thermometer. The lamp being now removed for the moment, the neck of the retort is turned down, and quickly connected with a Liebig condenser. The lamp being now replaced, the distillation is commenced. So soon as the mercury in the thermometer shall have become constant, which will now occupy but a few seconds, the temperatures by the retort thermometer and the side thermometer are carefully noted, and also the time at which these observations are made. During the distillation, which is continued nearly to dryness, the readings of the thermometers and of the watch are noted at regular intervals, or so often as any appreciable variation of the retort thermometer shall have taken place. The average of the several observations, or of those corresponding to the longer intervals of time, applying the corrections for atmospheric pressure and for the upper colamn of mercury, according to Kopp, ${ }^{10}$ is taken for the true boiling-point. I have generally obtained the hydrocarbons so pure that the whole quantity operated upon would distil within the range of 1° of temperature, and not unfrequently within $0^{\circ} 5$. In a few cases, however, when the quantity of material at command would not permit of the attainment of so high a degree of purity, the distillation would range over two or three degrees; in such cases I have generally taken the average of the temperatures corresponding to the longest interval of time, as probably

[^77]representing more nearly the true boiling-point of the body. In stating my results, however, I shall give the limits of temperature within which the distillation was effected. The thermometers employed in the determinations were the best that I could obtain from Fastré of Paris; for the temperatures below 100° the instrument used was calibrated, and the scale divided into fifths of a degree. The determinations above 100° were all made with one thermometer.

The method just described differs in some respects from that of Kopp. He objects to the practice of taking boiling-points with the thermoneter bulb immersed in the liquid, ${ }^{11}$ on the ground that the thermometer in this condition hardly ever indicates a constant temperature, the end of the mercurial column being in a state of motion. He states that a boiling-point taken in this manner may lie several degrees above that found with the thermometer bulb in the vapor. As bearing on this point, I propose, a little farther on, to give the results of a few experiments and observations, which, with others of similar character, have induced me to depart from the now more common custom of taking boiling-points with the thermometer bulb in the vapor.

Under normal conditions, the temperature of the boiling liquid and that of the vapor evolved should be the same. The only disturbing influence which appears to have been specially dwelt upon as likely to alter these conditions in the taking of boiling-points, is the liability of some liquids to adhere to the surface of the glass in such a manner as to produce abnormal elevation of temperature, generally attended with irregular ebullition, and consequent fluctuation of the thermometer. To remedy this it is usual to introduce pieces of platinum; iron filings, coal, etc., have also been employed. As above remarked, pieces of coke-or, when admissible, sodium-are found to be more surely effectual with hydrocarbons than platinum. Indeed, during more than three years of experience and careful observation upon a large number of hydrocarbons, I have not yet met with a single instance in which irregular ebullition and its consequent disturbing influence upon the boiling-point might not be completely prevented by these means. Although I cannot, of course, go so far as to say that equally satisfactory results would be obtained with other liquids by the use of coke, it is nevertheless my belief that in a majority of instances such would be the case.

I have dwelt upon this point for the reason that the objections 11 Lüsst man die Kugel des Thermometers in die siedende Flüssigkeit tauchen,
so zeigt fast nie das Instrument eine constante Temperatur, sondern das Ende des
Queeksilberfadens ist in stetter hüpfender oder zittender Bewegung; der auf diese
Art gefundene Siedepunkt kann nur mehrere Grade höher liegen, als der, welchier
gefunden wird, wenn sich die Kugel des Thermometers in dem Dampf der sieden-
den Flussigkeit befindet."
to the custom of taking boiling-points with the bulb in the vapor, appear to be even greater than those which Kopp has raised against the opposite course of placing the bulb in the liquid, as I shall proceed to show. It therefore becomes a matter of some importance that the objections to one or the other custom should be removed; and I think it will be found easier to overcome the objections to placing the bulb in the liquid, as I have done in the case of many hydrocarbons, even if coke shall not be found equally efficient with most other liquids.

My experience has shown that, when irregular ebullition is effectually prevented, the temperature of the vapor from a boiling liquid is more liable to lead to an erroneous determination of the boiling-point, than the temperature of the liquid itself. The reasons for this are, first, that the vapor is liable to become superheated by the hot air from the flame coming in contact with the sides of the retort above the surface of the liquid; second, that, with the bulb in the vapor, the thermometer is more liable to sudden depression from currents of cool air passing over the retort. If the bulb be in the vapor, the occurrence of either of these disturbing influences would then affect the principal mass of the mercury in the thermometer; while, on the contrary, if the bulb were in the liquid, only the small quantity of mercury in the stem of the thermometer would be subjected to these influences; the liquid then serving as a regulator, and reducing the error from these sources to a minimum. Fluctuations from currents of cold air are comparatively slight, and more easily prevented than those from overheating the vapor. The latter is the more likely to occur the lower the boiling-point of the liquid, or when the quantity of liquid in the retort is small. I have, however, observed from this cause an elevation of $3^{\circ}-4^{\circ}$ in distilling a body boiling as high as $98^{\circ} \mathrm{C}$., without an unnecessarily large flame. But the liquid in this instance was pretty low in the retort.

In the case of liquids boiling below the common temperature, it seems indispensable that the bulb of the thermometer should be placed in the liquid. As evidence of this I will here state the results of observations made while occupied in fractioning some exceedingly volatile products from American petroleum.
Experiment 1.-The liquid operated upon boiled at so low a temperature that the distillation was effected by the heat of the surrounding atmosphere. The distillation was conducted in a flask, and the bulb of the themometer placed in the vapor. The llask was attached to my condensing apparatus, including the "refrigerator, B, fig. 2." ${ }^{12}$ The temperature of the condensing-

[^78]worm contained in the "elevated bath, aa, fig. 2," ${ }^{13}$ and also that of the "first receiver, k, fig. $2, "{ }^{12}$ was $11^{\circ} 5$. The temperature of the "cold bath, $i i^{\prime}$, fig. $2, "{ }^{12}$ was 11°. The condenser in "the refrigeratur, b," and the "second receiver," were cooled in a mixture of ice and salt. With the liquid boiling steadily from several points on the bottom of the flask, and the condensed product from the distillation running well from the refrigerator into the "second receiver," not a drop was condensed in any of the apparatus intervening between the flask and the "second receiver," although this part of the apparatus was cooled, as already stated, to about 11°. The temperature of the vapor in the flask at this time was $18^{\circ} \cdot 5$, or only $2^{\circ} 5$ below the temperature of the laboratory. These observations show that the liquid was boiling at a temperature considerably below that indicated by the thermometer in the vapor. Additional evidence of this was furnished by the fact that, during the distillation, the exterior of the flask, from the bottom to about one quarter of an inch above the surface of the liquid, was thickly covered with water condensed from the atmosphere, resembling heavy dew; while above, the sides of the flask were perfectly dry. It was these observations which first directed my attention to the fact that the temperature of the vapor could not in all cases be depended upon for the true boiling-point of a liquid, and naturally led me to make other experiments with special reference to this question.

Experiment 2.-The conditions of this experiment were somewhat different from those of the first. The liquid operated upon was the extremely volatile product collected in the "second receiver" of Experiment 1. The flask employed was smaller, and provided with two thermometers; the bulb of one of these was placed in the liquid, and that of the other in the vapor. The flask stood in a water-bath containing ice-water; this bath was also provided with a thermometer. The temperature of the icewater bath was very gradually raised by means of a small flame from a Bunsen's burner. Temperature of the laboratory, $20^{\circ} \mathrm{C}$. Observations during the distillation:-

can Academy, 1864, "On Procose of Fractional Condensation," Memoirs of the American Academy, 1864, and this Journal, loc. cit.

C. M. Warren on the Volatile Hydrocarbons.

10 minutes later. 4. $\left\{\begin{array}{cc}\text { Temperature of the water-bath, } \\ \text { " } & \text { " } \\ \text { " } & \text { boiling liquid, }\end{array} \quad-\quad 20^{\circ}\right.$

20 minutes later.

Experiment 3.-The subject of this experiment was a liquid which I had separated from the most volatile product of the redistillation, on a manufacturing scale, of the crude benzole obtained in the distillation of coal-tar. The apparatus employed was essentially the same as that used in Experiment 1, with the addition of the extra thermometers, as in Experiment 2. The condensing-worm in the "elevated bath," and that in the "cold bath," and also the "first receiver," were all cooled in pounded ice. The condenser in the "refrigerator," and also the "second receiver," were both cooled in a mixture of ice and salt. The retort, which stood in a small copper bath containing pounded ice, was charged with about 250 c. c. of the liquid, which had been previously cooled in a mixture of ice and salt. Temperature of the laboratory, $16^{\circ} \mathrm{C}$. Observations during the distilla-tion:-

$$
\text { 1. }\left\{\begin{array}{cccc}
\text { Temperature of the retort-bath, } & - & -0^{\circ} \\
\text { " } & \text { " boiling liquid, } & - & 0^{\circ} \cdot 6 \\
" & \text { " vapor, } & - & -13^{\circ} .5
\end{array}\right.
$$

45 minutes later. ${ }^{18}$ 2. $\left\{\begin{array}{ccccc}\text { Temperature of the retort-bath, } & & - & 0^{\circ} \\ " & \text { " } & \text { boiling liquid, } & & 1^{\circ} 3 \\ " & " & \text { vapor, } & & - \\ \hline & & 12^{\circ .2}\end{array}\right.$
15 minutes later. 3. $\left\{\begin{array}{cccc}\text { Temperature of the retort-bath, } & & - & 6^{\circ} \\ " & \text { " } & \text { boiling liquid, } & - \\ \text { " } & \text { " } & 1^{\circ} .8 \\ & \text { vapor, } & - & -12^{\circ} .6\end{array}\right.$
s0 minutes later. 4. $\left\{\begin{array}{cccc}\text { Temperature of the retort-bath, } & & -11^{\circ} \\ " & \text { " } & \text { boiling liquid, } & \\ \text { " } & \text { " } & 3^{\circ} .8 \\ \text { vapor, } & & - & -12^{\circ .4}\end{array}\right.$
30 minutes later. 5. $\left\{\begin{array}{cccc}\text { Temperature of the retort-bath, } & & -14^{\circ .5} \\ \text { " } & \text { " } & \text { boiling liquid, } & - \\ " & \text { " } & 7^{\circ} .3 \\ & \text { vapor, } & & - \\ \hline & 13^{\circ} .8\end{array}\right.$
The apparent inconsistency that the temperature of the boiling liquid should be above that of the heating medium,-viz: an ice-bath-which continued during the first forty-five minutes of the experiment, is to be explained by the fact that there was a long column of mercury, above the surface of the liquid, which was subjected to the heating influence of the vapor. I would further remark that the gradual elevation of the boiling-point, as indica-

[^79]ted by the thermometer in the liquid, is also only apparent, and is due to the gradual uncovering of the bulb as the liquid was distilled off. At the close of the experiment only about onefifth of the bulb, which unfortunately was a long one, was under the surface of the liquid. That this is the true explanation is evinced by the fact that during the experiment not a drop of liquid was observed to fall back into the retort from the "elevated condenser," although this was a tube ten feet in length, and cooled to the temperature of 0°.

I will now proceed to give my determinations of the boiling. points of various hydrocarbons, and of some of their derivatives, and then pass directly to consider the bearing of these results on the question concerning the increment of boiling-point for the addition of $\mathrm{C}_{2} \mathrm{H}_{3}$ in homologous series. ${ }^{14}$ The data for these considerations may be more conveniently arranged in tabular form, exhibiting at once, in serial order, the formule, boiling-points, elementary difference, and the corresponding difference of boiling-point.

1. Of the Hydrocarbons obtained from Pennsylvania Petroleum.

Fornula	Boiling-point.	${ }_{\text {Elementary }}^{\substack{\text { Elemer }}}$	Difference of boiling-point found.	Range of Temperature within which the sub- stance would all distil.
$\mathrm{C}_{8} \mathrm{H}_{10}$	${ }_{0}^{\circ} \cdot 0$ (?)			。
$\mathrm{C}_{10} \mathrm{H}_{12}$	$30 \cdot 2$	$\mathrm{C}_{2} \mathrm{H}_{2}$	$30 \cdot 2$	1.5
$\mathrm{C}_{12} \mathrm{H}_{14}^{12}$	61.3	$\mathrm{C}_{2} \mathrm{H}_{2}$	$31 \cdot 1$	0.8
$\mathrm{C}_{14} \mathrm{H}_{18}$	$90 \cdot 4$	$\mathrm{C}_{2} \mathrm{H}_{2}$	$29 \cdot 1$	1.0
$\mathrm{C}_{16} \mathrm{H}_{18}^{18}$	119.5	$\mathrm{C}_{2} \mathrm{H}_{2}^{2}$	$29 \cdot 1$	1.0
$\mathrm{C}_{18} \mathrm{H}_{20}$	$150-8$	$\mathrm{C}_{2} \mathrm{H}_{2}$	$31 \cdot 3$	0.8

[^80]2D series. ${ }^{16}$

Formula, (?)	Boiling-point.	Elementary differeace.	Difference of boiling-point fornd.	Range of teazerature within which the substance would all distid.
$\mathrm{C}_{8} \mathrm{H}_{10}$	8-9		${ }^{\circ}$	\bigcirc
$\mathrm{C}_{10} \mathrm{H}_{12}^{10}$	37.0	$\mathrm{C}_{2} \mathrm{H}_{2}$	29.0	0.4
$\mathrm{C}_{12} \mathrm{H}_{14}$	68.5	$\mathrm{C}_{2} \mathrm{H}_{2}$	31.5	0.6
${ }^{\mathrm{C}} 14 \mathrm{H}_{16}$	$98 \cdot 1$	$\mathrm{C}_{2} \mathrm{H}_{2}$	29.6	$1 \cdot 2$
$\mathrm{C}_{16}^{1} \mathrm{H}_{18}$	127.6	$\mathrm{C}_{2}^{2} \mathrm{H}_{2}$	29.5	1.5

Average increment of boiling-point for the addition of $\mathrm{C}_{2} \mathrm{H}_{2}=29^{\circ} \cdot 9$.
3D aemirs. (Not completed.)

Foruula.	Boiling.point.	Elementary difference	$\begin{aligned} & \text { Difterence of } \\ & \text { boiling-point } \\ & \text { fond. } \end{aligned}$	Kange ol tennperature within which the substance would all distil
$\mathrm{C}_{20} \mathrm{H}_{2}$	174.9		-	1.7
$\mathrm{C}_{22} \mathrm{H}_{22}$	195.8	$\mathrm{C}_{2} \mathrm{H}_{2}$	20.9	$1 \cdot 5$
$\mathrm{C}_{24} \mathrm{H}_{24}$	216.2	$\mathrm{C}_{2} \mathrm{H}_{2}$	$20 \cdot 3$	$2 \cdot 2$
$41 \cdot 2 \div 2=20^{\circ} 6$.				
Average increment of boiling.point for the addition of $\mathrm{C}_{2} \mathrm{H}_{2}=20^{\circ} \cdot 6$.				

this is considered in connection with the fact, so far as my experience goes, that the quantities of material in one series are generally about equal to those in the other.
That no erroneous conception may be formed as to the degree of purity of the substances treated of in this and the following tables, from a mere inspection of the ranges of temperature here given; and in order that the almost absolute constancy of the boiling-points, in most cases, may not be overlooked, I would refer to the preceding menoir for further details concerning the boiling. points of such of these bodies as are therein treated of. For example, it will be tound under the head of "Determination of boiling-point" of benzole, that in the distillation it required 50 miuntes for the temperature to rise $0^{\circ} .2$; while in one of the following tables it will be seen that the range of temperature within which the benzole distilled to dryness was found to be $0 . \%$. Likewise, by reference to the "Determination of boilingpoint" of toluole it will be observed that it was found to boil absolutely constant 48 minutes; while the range of temperature given in the table referred to is $0^{0} \%$. In such cases as these, the slight rise of temperature which takes place just before going to dryness, is doubtless to be attributed to superheating of the vapor, in consequence of there being so smail a quantity of liquid in the retort. Similar instances of absolute constancy of boiling-point to those just cited, might be given from anong the products in either series from petroleum and Albert coal; which the ranges of temperature given in these tables do nut indicate.
${ }^{18}$ I am somewhat in doubt whether the bodies composing this series and the second series from Albert conl have the formula $\mathrm{CnH}_{\mathrm{n}+2}$ as here represented, there being some indication that they contain less of hydrugen. For the purpose for which they are now presented, it is inmaterial which formula is employed, as the common elementary difference and the boiling-point differences would remain the same; the solution of this question is therefore deferred for a subsequent memoir.
2. Of the Hydrocarbons obtained from Albert coal.

1st series. (Not completed.)

Formula.	Boiling-point.	Elementary difterence.	Difference of boiling-point found.	Range of temperatitre within which the sub stance would all dist
$\mathrm{C}_{10} \mathrm{H}_{12}$	-		-	$\square \square$
$\mathrm{C}_{12}^{10} \mathrm{H}_{14}^{12}$	59.9	$\mathrm{C}_{2} \mathrm{H}_{2}$		1.5
$\mathrm{C}_{14} \mathrm{H}_{16}$	$90 \cdot 6$	$\mathrm{C}_{2} \mathrm{H}_{2}$	$30 \cdot 7$	$0 \cdot 5$
$\mathrm{C}_{16} \mathrm{H}_{18}$	119.7	$\mathrm{C}_{2} \mathrm{H}_{2}$	$29 \cdot 1$	$0 \cdot 5$
$59 \cdot 8 \div 2=29^{\circ} \cdot 9$ The average boiling-point difference, in this series, for the addition of $\mathrm{C}_{2} \mathrm{H}_{2}$, is, therefore, $29^{\circ} \cdot 9$.				

2D skeies. (Not completed.) ${ }^{17}$

Formula. (3)	Boiling-point.	Elementary difference.	Difference of boiling-point found.	Range of temperature within which the substance would all distil.
$\mathrm{C}_{10} \mathrm{H}_{12}$	0		-	-
$\mathrm{C}_{12}^{12} \mathrm{H}_{14}^{12}$	$68 \cdot 0$	$\mathrm{C}_{2} \mathrm{H}$		$1 \cdot 0$
$\mathrm{C}_{14} \mathrm{H}_{16}$	$98 \cdot 5$	$\mathrm{C}_{2}^{2} \mathrm{H}_{2}$	$30 \cdot 5$	0.6
$\mathrm{C}_{16} \mathrm{H}_{18}$	$125 \cdot 1$	$\mathrm{C}_{2} \mathrm{H}_{2}$	$26 \cdot 6$	
	$\begin{aligned} \text { Average boiling-point difference } & =28^{\circ} \cdot 6 .\end{aligned}$			

3. Of Hydrocarbons obtained from Coal-tar Naphtha.

Name of substance.	Formula.	Boiling-point	Elementary difference:	Differcnce of boiling-point found.	Range of temperature within whicla the substance would all distil.
Benzole,	$\mathrm{C}_{12} \mathrm{H}_{6}$	$80^{\circ} \cdot 0$		- -	0.8
Toluole,	$\mathrm{C}_{14} \mathrm{H}_{8}$	$110 \cdot 3$	$\mathrm{C}_{2} \mathrm{H}$	$30 \cdot 3$	0.7
Xylole,	$\mathrm{C}_{16} \mathrm{H}_{10}$	$139 \cdot 8$	$\mathrm{C}_{2}^{2} \mathrm{H}_{2}$	29.5	0.4
isocumole,	$\mathrm{C}_{18} \mathrm{H}_{12}$	$169 \cdot 9$	$\mathrm{C}_{2}^{2} \mathrm{H}_{2}$	$30 \cdot 1$	$1 \cdot 0$
Average increment of boiling-point for the addition of $\mathrm{C}_{2} \mathrm{H}_{2}=89 \cdot 9$ $\div 3=29^{\circ} 97$.					

4. Of Cumole from Cuminic Acid, and Cymole from Oil of Cumin.

Name of substance.	Formula.	Boiling-point	Elementary difference.	Difference of boiling-point formit.	Range of temperature within which the substance would all distil.
Cumole,	$\mathrm{C}_{18} \mathrm{H}_{12}$	151.1		0	0.6 36
Oymole,	$\mathrm{C}_{20} \mathrm{H}_{14}$	179.6	$\mathrm{C}_{2} \mathrm{H}_{2}$	28.5	1×2

With only a single exception, the results presented in the above tables point clearly to 30° as the common increment for the addition of $\mathrm{C}_{3} \mathrm{H}_{2}$ in homologous series of hydrocarbons.

[^81]Indeed, leaving out of the calculation the third series from petroleum (having the general formula $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{\mathrm{n}}$), -which must remain anomalous,-and also the products from oil of cumin, the average of all the other boiling point differences is $29^{\circ} 75$. The few individual variations from the number 30°, rarely exceeding a single degree, may reasonably be attributed to errors of the thermometer (especially in case of temperatures above 100°), or in some instances to a want of purity of one of the compared substances; which latter cause I doubt not is the case with the body from petroleum boiling at 37°, as upon this body I had bestowed less labor in fractioning than upon most of the others, on account of the extreme volatility and consequent loss of the substance, by which the quantity had become so much reduced that I could ill afford further loss. In the case, also, of cymole from oil of cumin, and cumole from cuminic acid, in which the boiling-point difference varies only $1^{\circ} 5$ from the common difference of 30°, the want of perfect agreement may be fairly accounted for by the fact that the quantity of cumole at command was too small to admit of continuing the process of fractioning far enough to obtain perfect constancy of boiling-point. In consequence, also, of the quantity being so small, the determination of the boiling-point of cumole is less reliable, as this had to be conducted in a test-tube. It came into full ebullition at $148^{\circ} 4$, the temperature rising gradually to $151^{\circ} 6$ (observed temperatures), at which latter temperature it had distilled nearly to dryness. The distillation occupied thirteen minutes in passing over the range of three degrees. The average of the extremes, with the usual corrections for pressure, \&c., was taken for the boilingpoint. Abel, ${ }^{18}$ who probably operated on a larger quantity, found the boiling-point of cumole to be 148°. It does not appear that he applied the corrections for pressure and the upper column of mercury. I do not doubt that the true boiling.point of this body will be found to be 150°, which would establish the difference of 30° between it and cymole.
I would here remark that this difference of 30° for the addition of $\mathrm{C}_{2} \mathrm{H}_{2}$ was first observed while engaged in fractioning Pennsylvania petroleum, and the oil from Albert coal,-substances the most difficult to separate, on account of the presence in each of two parallel series of constituents, whose boiling-points lie so near together.

As no one had preceded me in the investigation of these substances, my mind was as far as possible unbiased as to the boil-ing-points of the constituents of these mixtures. I was, however, aware of the beautiful relation between elementary constitution and boiling-point which Kopp had discovered, and familiar with the fact that the more recent investigations had shown the boil-

[^82]ing-point difference among homologous hydrocarbons to be about $22^{\circ} \%$. If there was any one thing which more than another tended to bias me, it was the recent work of Church ${ }^{10}$ on the boiling-points in the benzole series, in which he made the boiling. point difference invariably 22° and a fraction, a number varying but 3° from the theory of Kopp. Soon after the publication of Church's results, however, Kopp ${ }^{20}$ accepted the number $22^{\circ} .5$ as about the boiling-point difference in this series, therefore regarding it as one of the exceptional series in which the boiling-point difference is greater than 19°. The work of Church had certainly the appearance of having been performed with great care, conducting to a beautiful harmony of results. My confidence in his determination of boiling-points was increased not a little by his alleged discovery in coal-naphtha of xylole, boiling at $126^{\circ} 2$, indicating a more thorough analysis of this naphtha than those which had been previously published. This body, the supposed middle member of the benzole series, had up to that time been regarded as wanting in coal-tar naphtha, although all of the other members, above and below it, were found to be present,an anomaly not easily reconciled with any plausible theory in regard to the formation of these bodies. In view of these circumstances, therefore, I was naturally led, from analogy, to anticipate that the boiling-point difference among the hydrocarbons from petroleum and Albert coal would not vary much from 20°. Not being able, however, to reconcile with previous facts and theories on this subject the indications which were being gradually unfolded by my seemingly unerring process of separation, I was compelled to lay aside all bias, and to regard these indications as pointing unmistakably to a much greater difference of boiling-point for the addition of $\mathrm{C}_{2} \mathrm{H}_{3}$ than had previously been supposed to exist in this class of substances.

Having finally established beyond question the common difference of 30° for the addition of $\mathrm{C}_{2} \mathrm{H}_{2}$ among the hydrocarbons from Albert coal and petroleum (the third series from petroleum, with the difference of 20°, had not then been reached), I began to surmise that this difference might be found to be common among all other series of hydrocarbons. In this connection my mind naturally reverted to the earlier determinations of the boiling-points of the members of the benzole series, some of which, especially those of benzole and toluole, which had been more studied than the others, indicated strongly that 30° might prove to be the true difference for the addition of $\mathrm{C}_{2} \mathrm{H}_{2}$ in this series. My confidence in Church's determinations thus began to diminish, and finally, I undertook to make a thorough analysis of coal-tar naphtha, the results of which are given in table 3.

[^83]As there shown, the boiling point difference in the benzole series is also 30°, and the number of its members is reduced to four, in place of five, as alleged by Church.

This difference of 30°, thus shown to be so common with the hydrocarbons, is so much larger than the difference of 19° which Kopp had found so frequent in other classes of substances, that the discrepancy cannot be regarded otherwise than as conclusive evidence, if such were wanting, that all liquid bodies do not obey the same law in this regard, but that there are unquestionably those series in which the boiling-point difference for the elementary difference of $\mathrm{C}_{3} \mathrm{H}_{3}$ may be greater than 19°, of which Kopp has already furnished some examples.
That the difference may also be less than 19° in some series receives confirmation from the facts presented in the following tables.
6. Of the Nitro-compounds derived from the Hydrocarbons of the Benzole Series.

Name of substance.	Formula.	Boiling-point.	Elementary difference.	Difference of boiling-point.
Nitro-benzole,	$\mathrm{C}_{22} \mathrm{H}_{5} \mathrm{NO}_{4}$	$21^{\circ} 1$		$1{ }^{\circ} \cdot 8$
Nitro-toluole,	$\mathrm{C}_{14}^{12} \mathrm{H}_{7} \mathrm{NO}_{4}^{4}$	$225 \cdot 9\}$		13.4
Nitro-xylole,	$\mathrm{C}_{16}^{14} \mathrm{H}_{9} \mathrm{NO}_{4}$	239.3\}	$\mathrm{C}_{2} \mathrm{H}_{2}$	

7. Of the Alkaloids derived from the Hydrocarbons of the Benzole Series.

Name of substance.	Formula.	Boiling-point.	Elementary difference.	Difference of boiling-point.
Aniline,	$\mathrm{C}_{12} \mathrm{H}_{7} \mathrm{~N}$	184.6)		${ }^{\circ}$
Toluidine,	$\mathrm{C}_{14}^{12} \mathrm{H}_{9}^{7} \mathrm{~N}$	$201 \cdot 7$		
Xylidine,	$\mathrm{C}_{16}^{14} \mathrm{H}_{11}{ }^{\mathrm{N}}$	216\%)*	$\mathrm{C}_{2} \mathrm{H}_{2}$	

In regard to the results presented in the last two tables, it may be remarked, first, that of the difference shown in the table of nitro-compounds, viz: an average of $13^{\circ} \cdot 6$, the discrepancy between this and the number 19°, being $5^{\circ} 6$, is so large as to leave no room for reasonable doubt that this is one of those exceptional series in which the boiling-point difference is less than 19° for the elementary difference of $\mathrm{C}_{2} \mathrm{H}_{3}$. As this series does not appear to have been examined by Kopp, I have taken care to make as accurate a determination of the difference as circumstances would allow. The boiling-points were corrected as usual for pressure and the upper mercurial column. The boiling-
points which have already been published of these bodies, so far as I have noticed, appear to have been given in the observed, i. e. uncorrected temperatures. The quantities of nitro benzole and nitro-toluole which I operated upon were sufficiently large, and of a high degree of purity, presenting perfectly constant boiling-points. The quantity of nitro-xylole, however, was not so large as would have been desirable. Although the boilingpoint of this body is doubtless very nearly correct, those of nitrobenzole and nitro-toluole are more to be relied upon; and omitting the fraction, the number 14° may, I think, be safely taken as the true boiling-point difference in this series. Secondly, that the less striking difference presented in the series of alkaloids, being only 2° under the number 19°, cannot reasonably justify the assumption that this small discrepancy of 2° is attributable to impurity of the substances, or to inaccuracy in the determination of the boiling-points, when it is considered that great care was taken to obtain a high degree of purity and accuracy, and when it is considered also that previous observers have made this discrepancy larger than mine. It was on account of the fact that so small a discrepancy would naturally raise a doubt as to the reliability of the determinations, and for the reason that Kopp ${ }^{21}$ has considered this series of alkaluids as agreeing tolerably well with his general law, that special care was taken on my part to arrive at a correct result. I am confdent, therefore, that the boiling-point difference here will not be found to vary more than a fraction from 17°. Of the absolute accuracy of the boiling-points themselves I do not speak so confidently, since these depend so much on the accuracy of the thermometer at these high temperatures; but the correction of any errors which may have arisen from this source would not be likely to alter the relation, and the difference between the boiling-points would still remain about the same. This remark applies with equal force as to the reliability of the other boilingpoints presented in this paper, especially of those of high temperatures.

It remains now to consider the foregoing facts with reference to the other theories mentioned.

[To be concluded.]

[^84]
Art. XXIII.-Barometer ; by James Lewis.

In the present condition of meteorological science, there is a growing demand for facilities of observation that invites the aid of mechanical appliances which have for their purpose to make automatic records of phenomena practically free from sensible errors. The remarks about to be made are suggested by experiments and calculations that have been made preliminary to the construction of a compensated, self-registering barometer. The form of instrument to which they relate is an improvement upon the apparatus called the "Syphon Barometer." In the course of the experiments referred to, a syphon of steel was made, the dimensions of which are approximately as follows, viz: vacuum chamber-length $=4.5$ inches $;$ diameter $=0.41$ inch. Section of tube connecting the vacuum chamber with the base of the sy. phon - length $=28.75$ inches; diameter $=0.3$ inch. A capillary passage through the base connects these parts with the short arm of the syphon. Before filling the tube with mercury, a piston with a porous packing was introduced into the detached and inverted long arm of the syphon, the open end of the tube being embraced by a suitable funnel to prevent loss of mercury. Mercury was then filtered into the tube, above the packing of the piston, until the whole tube was filled, the funnel around its open end embracing an excess. The piston was then made to wipe the walls of the vacuum chamber, and was afterward withdrawn from the tube by a pumping process-wiping and pumping successive portions of the tube repeatedly, the mercury filtering through the porous packing of the piston into a vacuum. Tests for vacuum expanded any remaining bubbles of air, and the pumping process again repeated reduced the tube and its contained mercury to a condition indicative of a perfect vacuum which has maintained its integrity through a period of over six months under circumstances well calculated to test it. The process of boiling, usually deemed essential, was omitted. The operations of this syphon indicate that the diameters of the sbort arm and vacuum chambers are nearly large enough to remedy the resistance of capilarity and adhesion to the free movement of the mercury. The syphon is supported by an adjusting screw beneath its base. In the short arm of the syphon, and in contact with its contained mercury, is an iron float, the diameter of which where it touches the mercury, is about 0.25 inch. The contact is perfected by amalgamation. The float is suspended by a slender thread of untwisted silk, which passes around a Wheel $\frac{3}{8}$ inch in diameter, the axis of which is about 0.02 inch in diameter, and rests on four friction wheels. One end of the axis of the wheel carries an index which points to divisions on AM. JOUR. SCI.-SECOND SERIES, VoL XL, NO. 119.-SEPT., 1860.
a dial graduated to hundredths of an inch; the spaces between the divisions are sufficiently wide to be readily divided into tenths (= thousandths of an inch) by an experienced eye. Behind the index, and attached to the same axis, is a very light skeleton wheel three inches in diameter, the periphery of which is grooved for the reception of a very fine silk cord which supports a light metallic frame carrying a registering point, the movements of which are restricted to a vertical path by means of a very slender guide-wire. The metallic frame and registering-point are rather more than counter-poised by the weight of the float that communicates with the mercury. The amount of friction involved in these parts is slight and does appreciably interfere with the movements of the mercury. The pully which is embraced in this arrangement, and which transmits the movements of the mercury to the registering point, multiplies precisely eight times; but as only one half of the barometical fluctuation is manifested in the short arm of the syphon, the scale of record requires four standard inches for the measurement of a barometrical inch.

The registering apparatus embraces a number of cylinders (the axes of which are parallel with the vertical path of the registering point) for the purpose of moving a fillet of paper six inches wide, so as to receive impressions from the registering point; also, a registering hammer with a radius of $\frac{3}{4} \mathrm{inch}$, consisting of a bar of metal six inches long, revolving about an axis parallel with itself and the axis of the cylinders, so as to impinge on the registering point at any part of its traverse across the fillet of paper. It would be better were these parts designed to embrace eight instead of six* inches movement of the registering point. The registering apparatus is operated by clock work which imparts motion at stated intervals, as one hour, a half or a quarter, as may be determined by shifting the position of a lever arranged for that parpose. The announcement may be new that a syphon barometer contains within itself the elements by means of which it may be successfully compensated for temperature.

Compensation, outside of, and separate from the tube itself, is objectionable for two reasons: first, the error of temperature varies with the height of the barometrical column, and also with the quantity of mercury in the syphon-these two conditions determine another condition which establishes compensation at one point of elevation of the barometrical column, above or below which the error of temperature is variable, plus or minus; second, any system of compensation outside of the syphon, will necessarily involve mechanical complexities liable to disturbance by slight causes.

These additions will of course involve additional items of cost, which, if bestowed upon the compensation of the tube itself, would permanently obviate all difficulties.

The question of compensation will now be examined, requiring only the comprehension and aid of the artisan that it may be wrought into a practical solution, at once available for the purposes of the meteorologist.

Proceeding upon the assumption that the maximum elevation of the mercury in the barometer is below the limit of 32 inches, let there be supposed a syphon of iron or steel free from flaws, the long arm of which has an elevation of 32 inches, the short arm an elevation of 6 or more inches, their diameters being any convenient unit and equal. ${ }^{1}$. The communication between the two arms of the syphon may be a small orifice (say 0.03 inch in diameter) through the base, large enough to permit free passage for the mercury, and small enough to admit of handling the syphon in the necessary manipulations of erection without endangering loss of its contents by a sudden movement. The contents of the passage through the base may be disregarded in the calculations on which the compensation depends. Now, regard the long arm and the passage through the base of the syphon as having been filled with mercury at the temperature of $32^{\circ} \mathrm{F}$.
The elements which enter into the compensation of the syphon require to be considered, viz: a unit of volume of mercury at $32^{\circ} \mathrm{F}$., becomes at $212^{\circ}, 1.018018$ (Guyot's Tables) $=\mathrm{A}$; a linear unit of iron at 32°, becomes at $212^{\circ}, 1.00125343 .63$ (Hassler) $=$ B.

The theoretical elevation of a barometrical column of 32 inches by a change of temperature from 32° to $212^{\circ} \mathrm{F}$., will be 32 A . The excess over its former elevation may be expressed by the terms $32(\mathrm{~A}-1)$. In the syphon, the iron tube expands by the rate B in each of its three cubic dimensions, two of which (involved in the square of the diameter) tend to diminish the elevation of the mercury by enlarging its sectional area, so that the elevation of the column might be expressed by $32 \frac{\mathrm{~A}}{\mathrm{~B}^{2}}$, referring to a tube closed at its base and open at top; the excess over its original elevation may be expressed by the terms $32\left(\frac{\mathrm{~A}}{\mathrm{~B}^{2}}-1\right)$. This last expression is less than the unit of excess of elevation due to temperature $=32(\mathrm{~A}-1)$ which it is necessary should be attained in the long arm of the syphon, to establish compensation, (presuming that it is attainable as a theoretical consideration). The decimal proportion of the actual excess of elevation of the mercury in the tubes to the required excess of
elevation may be obtained from the expression $\frac{32\left(\frac{\mathrm{~A}}{\mathrm{~B}^{2}}-1\right)}{32(\mathrm{~A}-1}$. In

[^85]the general application of this expression to the computation of the compensation of the syphon, the expression is $\frac{32\left(\frac{B^{2}}{A}-1\right)}{H(A-1)}$, in which H is made successively equal to $32,31,30,29, \& c$. , as far as it may be necessary to proceed. The difference in value of the numerator and denominator of this fraction, represents the error of temperature for 212°. Regarding the expression $32\left(\frac{\mathrm{~A}}{\mathrm{~B}^{2}-1}\right)$
$\overline{\mathrm{H}}\left(\overline{\mathrm{A}}-\frac{1}{2)}\right.$ as being but a fractional portion of the required unit of excess of elevation for temperature, it will be understood that the volume of neercury which it represents may have its altitude increased by diminishing its sectional area. Thus, if the expression be regarded as a unit of elevation but a fraction of sectional area, the square root of the expression becomes a diameter. This process modifies the form of the upper end of the long arm of the syphon, converting it to a truncated chamber of the form of a solid of revolution, the smaller end at top. The lines of vertical section of this solid are curves, the asymptote of which is the axis of the tube. The diameter of the conical chamber, beginning at top and measuring at intervals of half an inch, are in the following values, which relate to the original unit of diameter:

$0 \cdot 0$ inch	diameter, 0.926029
0.5	" 0.941456
1.0 "	$0 \cdot 957017$
1.5 "	0.973379
$2 \cdot 0$	0.990609
$2 \cdot 5$ "	1008785
$30 \times$	1.028002
8.5	1-048859
40 *	1069975
4.6	1-092992

The eurve which defines the outlines of the chamber is so slight a departure from a right line ($0: 004433$ in the limits of the available part of the cavity) that it may be regarded as a straight line in the calculations which define the proper length of the solid of revolution without involving sensible errors in the compensation. The solid of revolution becomes then a cone. This cone should embrace the same cubic space as an equal length of the original tube, and it must therefore have the same mean sectional area; make $x=$ base of eone, $d=$ truncated top (diameters), the value of x may be found from $\frac{x^{2}+d x+d^{2}}{3}=1$. $x=1.071618$. This value occurs between the diameters 1.069975 and 1.092982 , and its lacation is determined by the proportion
of its difference from the first of these two stated diameters, to their own difference. The length of the cone by this process is 4.035700 inches, a very small fraction too sbort (when the curvature is considered) for perfect compensation; but the resulting errors are inappreciable.
In the proposed compensated syphon, the interior capacity and mercurial contents are intended to be the same as if the tube were of uniform diameter. The object sought is to secure in the long arm of the syphon the theoretically required elevation due to temperature, so that no errors of temperature will be differentiated betrreen the two arms of the syphon. The conical chamber will accomplish this object by imparting the required elevation at the expense of diameter. But this modification of the upper end of the long arm changes its relation to the previously cylindrical short arm of the syphon, and requires that the short arm should be an inverted fac simile of the conical chamber, so that under the influence of barometrical changes, a given portion of the column of mercury transferred from the contents of one arm to the contents of the other shall not undergo any change of vertical dimensions. In effect, the full cubic contents of the conical vacuum chamber will occupy the same conical space (at the temperature 32°) at all elevations of the barometrical column, the vacancy in the vacuum chamber being equalled by the space occupied by mercury in the short arm of the syphon.

The tendency of the surface of the mercury to assume a spherical form with increased elevation may require a trifling adjustment. Another adjustment may also be necessary on account of the tendency of the mercury to seek that position in a conical space whicb least diminishes its sphericity.
At the temperature $32^{\circ} \mathrm{F}$. the lower limit of utility of the syphon will be reached with a barometrical pressure of 23.929 inches, the upper limit being 32 inches. The point at which the tube would be self-compensating, if cylindrical, corresponds to the pressure $27 \cdot 483489$ inches at 32°. Above that point the error has the same sign as in the ordinary barometer; below that point the sign of the error is inverted.

The point of self-compensation for a cylindrical tube corresponds to the section of mean diameter, or rather, diameter of mean sectional area of the conical chambers.
The following table exbibits the temperature errors of a cylindrical syphon of 32 inches range, for 212°.

23 inches,	Error, 0.081	28 inches,	Error,	0.099		
24	$"$	$" 0.063$	29	$"$	"	0.027
25	$"$	6	0.045	30	$"$	$"$
26	$"$	0.027	31	6	0.045	
27	$"$	6	0.009	32	$*$	$*$

Mohawt, N. Y.

Art. XXIV.-On a new Illuminator for Opaque objects under high powers of the Microscope; by H. L. Smith, of Kenyon College.

In attempting to study the structure of the diatomaceous frustule, I found it impossible to view it with high powers as an opaque object, by any means hitherto devised. In a valuable paper on the scales of the Podura, (Mic. Jour., N. S., vol. ii, p. 86), Mr. Richard Beck has stated that there is no difficulty in viewing them as an opaque object with the $\frac{1}{8}$ th in. objective and condensers rightly placed. Any illumination of Diatoms thus obtained is almost useless, from the great obliquity of the light, and with powers higher than the $\frac{1}{8}$ th in, is quite impossible.

Mr. Ross's ingenious arrangement, suggested by Mr. Brooke, of a plain reflector, flush with the front surface of the objective, and receiving light from a truncated ellipsoidal reflector below, is so exceedingly difficult to use, and only with a special mounting of the object, that it has never been generally adopted. Mr. Wenham's method is entirely inapplicable to Diatoms, inasmuch as it depends upon the total reflection of the light from the under surface of the glass cover of a mounted object, and in such case the Diatoms, from their transparency, and the near coincidence of refractive index of silex with that of the mounting fluid, throw back but a feeble light and are nearly invisible. The use of the well known collimating eye-piece suggested to me the idea of making the objective its own condenser, and upon communicating this idea to Mr. Wales, already well known for the excellence of his objectives, he at once sent me a trial instrument. This first illuminator proved so far successful that I was induced to persevere, and with his assistance an "Illuminator" has been constructed which gives entire satisfaction, and answers admirably with all objectives from a $\frac{4}{10}$ th to a $\frac{1}{5} \frac{1}{5}$ th.

It must be borne in mind that there are certain difficulties to be overcome in this mode of illumination, the chief of which is the reflection of the light from the posterior surface of the back combination of the objective. All the difficulties are now surmounted, and there is no trouble in viewing Diatoms, or other objects, mounted dry, and uncovered, with the higliest powers of the microscope, and with abundant illumination; and this without any trouble in mounting the object on little dises or pins, but using the ordinary 3 in. by 1 in . slide.

As I do not here intend describing the instrument in detail, I will only say that it consists essentially of a rectangular brass box, having the "Society screw" at the top, to attach it to any microscope tube, and at the bottom, to receive any objective; and so constructed that it can be placed in any position with regard to the light. A brass draw, moved by screw and milled

H. L. Smith on a new Illuminator for Opaque objects. 239

head, slides into the box, and carries a reflector of silver, also movable on its own axis by means of small milled heads; the forward edge of the reflector is curved, and it is concave, having a focus of about six inches. By means of the screw, the curved edge of this reflector can, when adjusted at an angle near 45°, be pushed more or less over the opening at the back of the objective. Opposite to the reflector, and attached to one side of the box, is a revolving circle of diaphragms, of great use in regulating the light, so as to exclude all fog or glare; the apertures vary from $\frac{3}{2} \overline{3}$ the to $\frac{1}{2} \frac{1}{6}$ th of an inch.

I had supposed that the idea of making the objective its own illuminator was original, until very recently, when I found that Dr. Riddell had proposed to place Shadbolt's annular ring behind one of the lenses of the objective, and to reflect light, received up by the side of the lens, back down through it. ${ }^{\text {d }}$ I need not say that this method is entirely impracticable; it would require a very peculiar mounting of the objective, and also of the object, to allow the rays to pass up into the ring in order to be again transmitted down through the objective. Moreover, parallel rays would scarcely answer, as the working distance of the objective is not exactly the distance at which it would condense parallel rays reflected through it. This, however, might be remedied. It is hardly desirable to receive the illumination from all sides. A unilateral light reveals the structure much more clearly. I attempted, at first, to employ as the reflector, a dise of the thin glass, or two or three of them, used as covers of microscopic objects. A very good illumination, without sensible interference with definition, when the glasses are clean and well selected, may thus be obtained; and the reflection, from the posterior surface of the objective lens, may be entirely removed by a Nich. ol's prism over the eye-piece; but by an illumination produced in this way the field has a peculiar flatness, no shadows are perceived; there is the same difference that one experiences in viewing the mountains and cavities in the moon when she is in quadrature and when she is fully illuminated. Indeed, I have found that nothing can compare with the unilateral illumination from the silver reflector rightly managed. A fixed reflector attached to the objective, has, I believe, been recently proposed by one of the New York opticians as an improvement; but it is very obvious this is far inferior to the adjustable one, which not only answers for different objectives, but, from the very fact of being movable, enables the light to be condensed in the most perfect manner just where it is wanted, and, with the slightest touch, removes all fog and glare. I think it will sufficiently appear that the method I have proposed and carried into effect, is in reality novel, and no modification of Dr. Riddell's, as has been

[^86]stated. It would be strange if the idea of a reflector behind the objective had not occurred to this ingenious and veteran microscopist; but if so he seems never to bave carried it out in practice. In the annual address of the President of the Microscopical Society of Lomdon, Feb. 11, 1857, four years after he proposed the annular ring, we find the following: "This is a problem," the illumination of opaque objects under the highest powers of the microscope, "the solution of which has been attempted by numerous adepts in manipulation with only very partial success." He then speaks of Mr. Wenham's method as by far the best. If then, Dr. Riddell, or any one else, had previously succeeded in accomplishing so desirable an object, why has it been kept secret? It is not the one who may have had vague ideas as to the possibility of accomplishing certain results who is to be considered as the real benefactor; rather he who puts it in tangible shape before the world, and, surmounting the difficulties of practice, makes the idea a reality. I make these latter remarks because I have heard, with some surprise, that it has been stated, by an optician of deserved celebrity, in a meeting of the Microscopical Society of New York, that the "Illuminator," as constructed by Mr. Wales, is only a poor modification of Dr. Riddell's method.

As the "Illuminator" is already in the hands of many, I append a few simple directions as to its use. The objective must be adjusted for an uncovered object, though I find few are rightly marked. An ordinary paper-covered slide, with bits of gold leaf on it, answers admirably as an object to adjust the light. The Illuminator being screwed on to the tube, and the circle of diaphragms placed facing the light, (I find the ordinary coal-oil lamp with flat flame to answer admirably, the flat side being toward the reflector), turn the reflector at an angle of about 45°, and allow the light to enter the largest aperture of the diaphragm. By means of the screw, push the reflector forward nearly as far as it will go. Turn the reflector on the axis of the tube, and on its own axis, until the light, which may be placed 10 or 12 inches to the left of the microscope, and directly opposite the circle of diaphragms, is reflected down on the paper-covered slide, the tube of the microscope being racked up to about the position it will occupy when the objective is screwed on and in focus. The light thus reflected down, should appear just at the curved edge of the reflector, in the axis of the tube, when looking through the tube, the eye-piece being removed. "Now screw on the objective, and before replacing the eve-piece bring it into focus. The field will appear brilliantly illuminated, as in using a lens with a lieberkuhn; if not, a slight movement of the reflector, or diaphragm, or light, will quickly accomplish. this. Put in the eye-piece and adjust for focus; if the field is

H. L. Smith on a new Growing Slide for the Microscope. 241

not clearly illuminated, say with $\frac{1}{5}$ in. objective, a little fingering of the reflector, or diaphragm, will suffice to effect this. The screw which moves the draw and reflector may now be withdrawn, uncovering all but about a quarter or one half of one side of the posterior lens of the objective; and, if care has been taken to properly adjust the diaphragm and reflector, a most brilliantly illuminated field, free from all fog and glare, will reveal objects with a beauty and clearness inconceivable by those who have never used high powers of the microscope upon opaque objects. The most common objects appear with new and hitherto unsuspected beauty, brilliant not only with their own proper colors, but reflecting iridescent tints from the thin membranes.

The diatoms are especially beautiful, and no one can view, without a sense of profound reverence and unspeakable emotion, the elegant structure of Arachnoidiscus and Heliopelta; of Surirella or Pinnularia.
In thus accomplishing the illumination of opaque objects under the highest powers of the microscope, a powerful aid to investigation is furnished, which, I doubt not, will be rightly appreciated.

An inexperienced microscopist may find some difficulty at first, but a few trials will ensure success, and when properly used, there is no want of light with the $\frac{1}{12}$ th or $\frac{1}{16}$ th even with the B or C eye-piece.

> Art. XXV.-On a new Growing Slide for the Microscope; by H. L. Smith, Kenyon College.

IN studying the growth and conjugation of the Diatomacer, I have felt the want of some means of keeping them alive for a long time under the microscope; and have devised for this purpose, the slide to be described, which appears fully to meet all requisitions; and, as it can be readily made by any tolerably expert microscopist, it will, I am certain, be considered a valuable addition to microscopical apparatus.
The whole slide, as I have constructed it, is a trifle more than $\frac{1}{8}$ th of an inch in thickness. It consists of two rectangular glass plates 3×2 in., and about $\frac{1}{25} \mathrm{in}$. thick, separated by thin strips of glass of the same thickness, cemented to the interior opposed faces, as shown in the figure.
This closed cell, ultimately destined to be filled with water, is not of such thickness as to prevent the use of the achromatic condenser, a very important requisite. The glass I use is such

[^87]as is employed for the small cheap looking glasses, and easily obtained.

The upper plate has a small hole, a, drilled through it. This is effected by means of the ordinary writing diamond, and the sharp edge of a broken steel brooch or small rat-tail file. A hole can be drilled through glass of this thickness in a few minutes. One corner of the upper glass is removed,
 as at b, and a small strip of glass cemented at c serves to prevent the thin glass cover placed over the object from sliding. Another strip of glass is cemented on the lower side of the cell at d, but not extending as far as the removed part at b. The object of this is to prevent the water in the cell from being removed by capillary attraction, in case the slide in the neighborhood of b should be a little wetted, This strip is not, however, absolutely necessary.

To use the slide, fill the space between the two plates with clean water, introduced at b, by means of a pipette, and also place a drop on a to remove the air. The object being put on the top of the slide and wetted is now to be covered with a large square of thin glass, e, at the same time covering the hole a. The slide can now be placed upright, or in any position no water can escape. It is, in fact, only a new application of the old principle of the bird-fountain. As the water evaporates from under the cover more is supplied through the hole a, and from time to time an air bubble enters at b; thus, a constant circulation is maintained. A cell of the size named will need replenishing only about once in three days, and this is readily effected without disturbing the object. I have been enabled to make observations by means of this slide, which it would have been wery difficult, if not impossible, to have made without it.

I had intended to have reserved the description of this and some other microscopic apparatus until I had completed my investigations upon the growth of the Diatoms, in order to publish all together; but new and unexpected developments will so delay this publication, that I have deemed it best to describe the slide at once, that others might have the benefit of it as well as myself.

Note.-I consider it an act of justice to a young artist, to mention the very remarkable performance of a ${ }_{1}^{4}$ th objective lately received from Mr. Wales. ${ }^{1}$ This objective is furnished with two backs, one for direct, the other for oblique light. This mode of correction, which arose from some correspondence between Mr.

[^88]Wales and myself, appears to be more effective than that of a double front, as adopted by Mr. Tolles. The glass in question has a mean aperture of 115° with the direct light back, and of 120° with the oblique. The definition with the former, upon Diatoms and Confervæ, is truly magnificent; and upon the prepared Diatoms it is far superior to a fine Smith \& Beck $\frac{1}{5}$ th, not only with direct, but with oblique light. With the oblique back the definition is equally fine when using direct light, but the objective being now a little under-corrected it is not as pleasant. With oblique light, however, especially very oblique light, it is amazingly sharp and clear and most beautifully corrected. Thus, I have no difficulty in resolving with it the Hyalodiscus Californicus, of Bailey, or Grammatophora subtilissima, of Greenport, as well as the delicate Cuban Amphipleura, now well known to many American microscopists, through specimens distributed by Mr. W. Sullivant and myself, and which I have never been able to resolve with any English objective under an $\frac{1}{8}$ th. The working distance of this objective is more than $\frac{1}{\frac{1}{5}}$ th of an inch!
The resolutions above named were effected by the concave mirror of the microscope-stand, and not by any special contrivances for oblique illumination. It is, however, for their beautiful performance with direct light, I most value Mr. Wales's objectives. I have a $\frac{1}{5}$ th, which, on Podura, excels anything I have yet seen of like power in exquisite definition. Both this and the ${ }_{i}^{4}{ }^{4}$ th objective bear the highest eye-pieces without loss of definition or want of light. I need hardly say that a $\frac{4}{10}$ th which thus defines and resolves objects, considered as fair tests for an $\frac{1}{8}$ th but a year or two ago, is a wonderful specimen of optical skill.

Art. XXVI.—On the Projection of the Spectra of the Metals; by Prof. Joslah P. Cooke, Jr.

Spectrum analysis has become, in all its bearings, a subjeet of so much importance both in chemistry and physics, that a simple and efficient method of exbibiting the phenomena to an audience is an important need to all teachers of physical science. Having tried several plans without obtaining the definiteness or brilliancy required, I finally devised the following, which has been completely successful. By placing my lantern at the distance of from 50 to 60 feet from the curtain, I obtain a spectrum from 20 to 25 feet in length and about 18 inches in breadth, with all the brilliancy that can be desired and without any dif. fused light, which greatly impairs the beauty and distinctness of
the phenomena as they have been hitherto exhibited. My apparatus may be best described under three heads: First, the əlectric regulator; secondly, the lantern with the adjustable slit and lenses; and, lastly, the prisms for dispersing the light.

The light is obtained by means of a powerful galvanic battery. I have found that fifty Bunsen cells of medium size (about 7 inches high) were quite sufficient. The metal whose spectrum is required, is volatilized in the voltaic are and almost.

any of the numerous electric regulators may be used for the experiment. I used for a long time a Deleuil regulator, and in fig. I a section is shown of this regulator in connection with the
rest of the apparatus. I now use, however, a regulator better adapted to the purpose, made by J. Duboseq, of Paris. The negative pole, which is the lowest, is formed of a small cylinder of hard coke, having a small cavity at the top to receive the metal. The positive pole is formed of a coke pencil such as is used in most electric lamps. The poles are so arranged that they can be raised or lowered at will, and the milled heads, which regulate the motion, are placed for convenience at the base of the instrument. The coke cylinder forming the negative pole is fastened to the rim of a circular brass disk, which also supports four other similar cylinders. So that, by turning the disk, one after the other may be brought under the positive pole, and different metals volatilized in the voltaic are without further adjustment.

The electric regulator is placed within a dark lantern, as shown in fig. 1, resting on a movable platform, which can be moved backward or forward by the screw B. The lantern is made of wood like a square box, see figs. 1, 2 and 3 , with doors on two opposite sides as large as the box will permit. The upper part of each door is made of wood and hung on hinges in the usual way; but from this is suspended a thick cloth curtain, which, while covering the lower part of the doorway, enables the experimenter to adjust the poles without opening the lantern. The wooden doors, moreover, are glazed with very deeply colored glass in double plates of blue over red through which the experimenter can see the carbon poles when ignited by the galvanic current.

The electric regulator is placed in the lantern so that the carbon poles shall be directly behind and within half an inch of an adjustable slit, which should be about half an inch high and $\frac{1}{16}$ th to $\frac{1}{8}$ th of an inch wide. This slit forms a part of a brass cap which slides on one end of a brass tube, while into the other end is screwed a camera tube such as is used by photographers for taking portraits. The lenses of the combination which I use are three inches in diameter, and the focal length is about $5 \frac{1}{2}$ inches. This size cannot be advantageously exceeded, but the shorter the focal length of the combination the better. The slit is placed at the focus of the combination, and the position of the lenses with reference to the slit is adjusted by means of the rack and pinion usually attached to camera tubes. The brass tube with the slit and lenses just described is fastened to a thin board, which slips into a movable wooden frame on the front of the lantern, (see fig. 2), a portion of the tube with the slit projecting into the box, as shown in fig. 1. The object of the morable frame is to adjust rapidly the position of the slit with reference to the voltaic arc, so as to keep the slit constantly in front of the luminous flame, which, as is well known, shifts its
position from one side to the other of the carbon poles in a most irregular manner. The means of adjustment just referred to are shown in fig. 2.

The frame F is connected by iron bars with a pivot which turns in the wooden block G. Moreover, to the top of the frame there is attached a flat iron bar, which ends in the handle D, a stout steel spring attached to the front of the box serving to keep the bar in place although permitting a slight lateral motion. By moving then the handle D the slit with the lenses may be moved to one side or the other, as the position of the flame may require. Finally, the bar G slides between two grooved wooden bars, and may be moved by the screw E. Thus the frame may be raised or lowered, and the slit kept constantly midway between the carbon poles.

It remains now to describe the prisms, by which the light is dispersed. I use for the purpose two large sulphid of carbon prisms having a refractory angle of 60°. They were made from a large and thick glass tube three inches in diameter, with faces of ordinary plate glass cemented to the cells with a mixture of glue and molasses. They are securely fastened in a wooden box, which is made of such a shape that when the light passes at the angle of least deviation the rays will enter the box perpendicular to one side, and will leave it perpendicular to another. The box is closed except at the two ends, in which circular apertures are made three inches in diameter, and these can be closed with covers when the prisms are not in use. A section of the box and prisms is shown at C, fig. 1. It is here drawn on the same plane as the section of the lantern, but when in use it is at right angles to this plane.

Having a knowledge of the various parts of the apparatus, the method of using it can be readily understood. The lantern having been placed on an elevating stand with a revolving table ${ }^{1}$ at a distance of 50 or 60 feet from a curtain or white wall, the prism box is placed at one side on a similar table, and adjusted so that, while the axis of one of the circular openings is perpendicular, or nearly so, to the screen, the axis of the other opening will coincide with the axis of the lenses when the lantern is turned on the revolving table through the required angle; see fig. 1. The lantern being now directed to the screen, the electric regulator having been adjnsted so that the point of contact of the carbon poles is in the axis of the lenses and about two inches behind the slit, and the galvanic circuit having been closed so as to produce the electric light, the focal distance of the lenses is so adjusted as to form a distinct image of the slit on the screen. We then turn the lantern on the re-

[^89]volving table so that the light shall pass through the prism, and we have at once the projection of the spectrum in all its beauty over 20 feet in length and 18 inches or more in breadth. To produce now the spectrum of a metal we first separate the poles, and then bring them, by the aid of the screw B, within half an inch of the slit. Having now placed a small piece of the metal selected for the experiment in the cavity of the cokecylinder, we again bring the poles in contact and slowly separate them as the heat increases, until the light emitted by the ignited carbon is wholly intercepted by the edges of the slit and the lenses are illuminated only by the ignited vapor between the poles. We then have the spectrum of the metal, which continues in perfect purity so long as the space between the poles remains filled with the metallic vapor. When, however, the supply diminishes, either in consequence of the consumption of the metal, or on account of the failing strength of the battery, the bright bands, which distinguish the elements of the air, will appear at the same time with those of the metal. The metals which I have found best adapted to these experiments, are copper, zinc, brass (which gives the bands of copper and zinc together), mercury, thalium, sodium, lithium, potassium, cadmium, antimony, lead, gold and silver; and of these the first seven give the most characteristic and brilliant results. I use them all in the metallic state with the exception of lithium, which I use as carbonate, moistening the salt before placing it on the pole. It is important to have a separate coke cylinder for each metal, as otherwise, unless the cavity is most carefully cleaned out between the experiments-and for this there generally is no timethe spectra will be confused by the reappearance of the bands of the metals previously used.

These experiments can be varied by projecting on the screen the image of the carbon poles with the stream of glowing vapor between them, and thus showing the color of the light before it is decomposed; and for this purpose it is only necessary to direct the lenses to the screen, and, having removed the brass cap, which carries the slit, to re-adjust the focal distance of the lenses.

The reversal of the sodium band can also be readily shown. For this purpose we arrange the apparatus so as to produce a continuous spectrum, as first described. We then interpose between the poles and the slit the flame of a Bunsen lamp, and in this flame we insert a small spoon containing metallic sodium. A dark line soon appears crossing the yellow portion of the spectrum in the position of the sodium band. It is convenient to have a small shelf in the box, to support the lamp, so bung on hinges that it will drop out of the way when its support is removed.

248 J. L. Smith on the use of Bisulphate of Soda in analysis.

Again, the formation of dark lines crossing the spectrum, similar in appearance to the solar lines, can be shown by interposing between the lenses and the prism a vessel with parallel glass sides containing hyponitric acid or iodine vapor. Such a vessel is easily made from a piece of glass tubing-three inches in diameter and four inches long-by cementing plates of glass to the open ends and drilling a hole through the sides, into which a glass stopper may be fitted.

Finally the appiratus may be with a little additional expense so coustructed that it can also be used for projectıng photographic transparencies after the principle of the magic lantern. Sinall photographs on glass may thus be used in place of diagrams and the great geological features of our globe, the glaciers for example, may in this way be brought before the eyes of an audience with almost all the vividness of the reality. The same metbod of illustration will be found of great value in teaching other sciences. For instance, the best way of giving an idea of the dark lines of the solar spectrum is to take a photograph of the more refrangible portion and project the image on the wall. Such photographic transparencies are easily made; but as few teachers have the means or time for such work, it would be well if some professional photographer would turn his attention to this department of his art. If the instrument here described is to be used as a magic lantern it is necessary to have, besides the regulator above described, a second adapted for giving continuous light. We have used for some time the regulator now made by J. Duboseq of Paris, after the plan of Foucault, and we find that it works very well.

Most of the apparatus here described is so simple that it can be made by any good mechanic and for this reason we have entered into more detail than would otherwise be necessary. The lenses and other accessories must of course be purchased. The apparatus cau also be ordered from E. S. Ritchie \& Co. of Boston.

Cambridge, August 8th, 1865.

Art. XXVII.-On the use of the Bisulphate of Soda as a substitute for the Bisulphate of Potash in the decomposition of minerals, especially the Aluminous minerals; by J. Lawreice Sirth, Professor of Chem., University of Louisville.

Iv referring to the more recent works on analytical chemistry, I perceive that the bisulphate of potash is still used to the almost utter exclusion of bisulphate of soda in rendering certain minerals soluble; and it is still recommended as the proper

J. L. Smith on the use of Bisulphate of Soda in analysis. 249

agent to fuse with aluminous minerals, as corundum, emery, \&c.

This subject occupied my attention to a considerable extent when engaged in the preparation of two memoirs on the geology and mineralogy of emery presented to the French Academy of Science in $1850,{ }^{1}$ as well as in some investigations I am now making on the emery from Chester, Mass. In the above researches I had a large number of corundums and emeries to analyze. The powdered minerals were fused with the bisulphate of potash in the usual way, and I found no difficulty in decomposing the minerals; but unfortunately during the operation a double salt of potash and alumina is formed which is almost insoluble in water, or in the acids; and it is only by a solution of potash that it is first decomposed and afterward redissolved. There are many disadvantages and delays attendant upon this method, which experience soon exhibits-as the constant deposition of alum if the solution is not kept quite dilute. I therefore experimented with the bisulphate of soda, knowing that the double salt of cilumina and soda was quite soluble, and my results were everything that could be desired; for while the soda salt gives a decomposition at least as complete as the potash salt, the melted mass is very soluble in water, and in the future operations of the analyses there is no embarrassment from a deposit of alum. The manner of employing the bisulphate of soda in the analysis of emery will be referred to in a future article on the emery of Chester, Mass.
Preparation of the Bisulphate of Soda.-The ordinary commercial article is not sufficiently pure for use, and I prepare it from pure carbonate of soda or sulphate of soda that has been purified by recrystallization. In either instance pure sulphuric acid is added in excess to the salt in a large platinum capsule, and beated over a flame until the melted mass, when taken up on the end of a glass rod, solidifies quite firmly. The mass is then allowed to cool; moving it over the sides of the capsule will facilitate this operation. When cool it is readily detached from the capsule, is then broken up and put into a glass stoppered bottle. So far as my experience has yet gone, in almost every instance where we have been in the habit of using bisulphate of potash, the bisulphate of soda can be substituted.

[^90]Ax. Jour. Sci.-Segond Series, Vol. XL, No. 119.-Skpt., 1865.

Art. XXVIII.-Altitudes of Shooting Stars observed on the night of Nov. 13-14th, 1863, at Washington, Haverford College, Germantown, Philadelphia, and other places. Computed by H. A. Newton.

A brief notice of observations made upon shooting stars on the night of Nov. 13-14th, 1863, was given in this Journal, [2] xxxvii, 141-145. A collation of the data thus accumulated shows that seventy-eight meteors were observed at two or more places so that we can compute with more or less accuracy their paths. The following table gives the altitudes above the earth's surface in statute miles (one mile $=1609$ meters) of the meteors at their first appearance, and at their disappearance. In the second column is the hour of the day, and in the fifth column are numbers designed to express the measure of confidence which I have in the determinations of the altitudes of the middle points of the paths. These numbers range from 1 to 10, and depend upon the probable accuracy of the observations and the positions of the paths with respect to the observers.

More than half of these altitudes were computed from observations made by the assistants in the United States Naval Observatory at Washington, and by a party under the charge of Prof. Gummere at Haverford College near Philadelphia. Frequent use has been made, however, of observations at Washing. ton by the party from the Coast Survey Office under charge of Mr . Schott, of those at Germantown by Mr. Marsh, at Philadelphia by Mr. Vail, at West Town, Pa., by Mr. Hoopes, and elsewhere by other persons. The Connecticut Academy of Arts and Sciences, at whose instance the observations were made, intend to publish them in detail. It bas been thought best however to publish this table in advance in order that the information which it contains may be in the possession of those who desire to observe the meteors on the return of the anniversary, the morning of Nov. 14th prox. There were on that morning in 1863 more shooting stars than usual, and there was a decided radiation from the sickle in Leo. We have some reason to expect a still greater increase this year.
For several numbers of the table the altitudes are not given. The observations were not in those cases entirely reliable, and only the altitudes of the middle points of the visible paths were computed. They were as follows:

No. 10	mid. alt.	143 miles,	w't 3	No. 37		50 miles,	w't 1
" 13	"	113 "	${ }_{4} 1$	- 51	${ }_{\text {a }}$ mid.	${ }_{37}{ }^{\text {a }}$	
14 19	"	69	"	" 58	"	54 "	" 6
30	"	\%2	$\left.\begin{array}{ll} 4 & 3 \\ & 3 \end{array} \right\rvert\,$	" 61	"	135 "	" 2

Table of altitudes (in statute miles) of shooting stars observed at Washington, Haverford, de., on the night of Nov. 13-14th, 1863.

No.	Hour.	1stalt.	2 dalt	Weight	No.	Heur.	1st alt.	2 d alt.	Weight.
1	9.2	57	49	8	40	14.0	61	43	8
2	9.4	65	30	5	41	14.2	91	60	8
3	$10 \cdot 8$	86	36	2	42	14.3	94	64	
4	120	93	46	5	43	14.4	37	20	2
5	120	79	63	3	44	14.4	208	126	2
6	12\%	87	\% 9	7	45	14.5	114	80	7
7	12.2	121	97	5	46	$14 \cdot 5$	98	45	6
8	12.3	86	78	3	47	14.5	118	67	9
9	12.5	104	62	9	48	14.6	200	180	1
10	12.5			3	49	14.8	57	28	7
11	12-5	145	110	4	50	14.8	156	90	6
12	$12 \cdot 6$	35	20	6	51	14.9			
13	12.7			1	52	14.4	49	37	3
14	12.7				53	14.9	184	115	2
15	12.8	109	82	7	54	15.0	141	93	4
16	129	151	113	4	55	$15 \cdot 1$	112	72	10
17	12.9	102	70	5	56	$15 \cdot 1$	90	48	3
18	13.0	83	88	8	57	$15 \cdot 1$	50	23	3
19	13.0			3	58	$15 \cdot 1$			6
20	13.0	51	40	7	59	$15 \cdot 2$	105	49	6
21	13.0	118	83	4	60	18.2	71	47	10
22	13.0	98	60	4	61	$15 \cdot 2$			2
23	13.1	142	110	7	62	$15 \cdot 3$	79	41	5
24	18.2	121	53	7	63	$15 \cdot 3$	188	110	3
25	$13 \cdot 4$	96	58	2	64	18.3	82	55	4
26	18.5	90	72	9	65	$15 \cdot 3$	112	82	6
27	$1 \% 5$	94	66	7	66	154	94	39	7
28	13.5	102	62	6	67	$15 \cdot 4$	99	69	10
29	$13 \cdot 6$	136	80	5	68	15.5	101	50	10
30	13.6			3	69	15.5	90	66	8
31	$13 \cdot 6$	75	43	-	70	1555	79	51	8
32	$18 \cdot 7$	59	45	9	71	16.7	92	52	8
33	13.8	83	47	9	72	15.8	174	68	4
34	13.8	90	62	4	78	15.8	106	61	4
35	13.8	104	64	4	74	16.0	104	66	a
36	18.8	68	52	8	75	16.0	106	50	${ }_{8}^{9}$
37	18.9			1	76	${ }^{16+1}$	180	72	8
38	13.9	92	45	10	71	18.2 16.4	79 80	${ }_{4}^{66}$	7
s9	$14 \cdot 0$	72	50	12	78	$18 \cdot 4$	80	42	8

If the several altitudes in the third column of the table be multiplied by the corresponding weights, and the sum of the products be divided by the sum of the multipliers, we have the mean altitude of the shooting stars at first appearance, that is, 96.2 miles, or 154.9 kilometers. In like manner we find for the mean altitude at extinction 60.8 miles, or 97.8 kilometers. The mean therefore for the middle points is 78.5 miles, or 126.4 kilometers. The nine special cases give about the same result.

If the altitudes be taken in seven groups, the several means for the middle points will be $81 \cdot 1,82 \cdot 4,73 \cdot 4,74 \cdot 9,809,78 \cdot 0$, and $79 \cdot 2$ miles. These numbers indicate that there is no essential difference of altitude for different hours of the night.

The altitudes given in the table are represented to the eye in the first division of the diagram on p. 253 , by a method first employed, I believe, by Mr. A. S. Herschel. The distances of the two extremities of each line from the base line, A B, represent respectively the altitudes above the earth's surface of the corresponding shooting star at its appearance and disappearance. The length of the line represents therefore the amount of descent, not the length of the path. The dotted lines stand for those meteors of which the heights of only the middle points are computed. At the end of this division of the diagram is a heavy line that represents the mean of all the paths as computed above.

In the second division of the diagram is given in like manner a representation of the paths of 39 meteors observed at New Haven, Hartford, Williamstown, Wolcottville, Albany, \&c., on the night of Aug. 10-11th, 1863, (this Journal, [2] xxxvi, 303). The last heavy mark represents the mean. The mean of the first altitudes is 69.9 miles, or 112.4 kil., and that of the last altitudes is 56.0 miles, or 90.1 kil., that of the middle point 629 miles. The computations of the observations made at that time are incomplete. The results thus far obtained, and here represented, agree well with previous determinations. Thus the mean altitude of the middle points of meteor paths deduced from the table in this Journal [2], xxxviii, 136, is found to be not quite 60 miles, (this Journal [2], Xxxix, 194). Mr. A. S. Herschel from the same table, and from observations since published, finds a mean altitude for appearance 73 miles, for disappearance 52 miles, (Ast. Soc. Notices, March 10th, 1865). The large majority of the paths from which these results are obtained belong to August meteors.

It appears, then, that the region in which the November meteors appear and disappear, is 15 or 20 miles higher than the corresponding region for the August meteors. If the decrease of density of the atmosphere at this elevation follows the same law as near the earth's surface, the air in the latter region is forty or fifty times as dense as in the former.

The most plausible explanation of this remarkable fact is, that the two groups of bodies differ in their chemical and mechanical constitution; the November group being more inflammable than that of August.

It is altogether unlikely that any of the meteors became visible at a greater altitude than 125 or 150 miles. The facility for error in observing is very considerable. It seems impossible however to explain in this way the large difference between the means of the computed altitudes of the two groups.

Altitudes of shooling stars, Nov. 13-14th, 1863.
Alt. of shooting slars, Aug. 10-11th, 1868.

Art. XXIX.-Remarks on Gravitation, and its relation to a supposed Universal Force; by Henry F. Walling.

The determination of the co-relation between gravity and the other known physical forces has been the object of numerous delicate experiments and investigations by many eminent phys. icists, but this object has not yet been attained. There is besides an apparent conflict between the law of conservation of forces and the inherent attraction theory of gravitation.

It has occurred to me that the latter difficulty may be overcome by the simple supposition of a primary universal force, with which the co-relation of the other forees may hereafter be established.

This universal force may be supposed to fill all space, either associated with the universal ether, or independent, and to be exerted along every possible line in both of its directions, forming rays of force passing through every point in all directions. Inert or gross matter will be acted upon by it, and the composition of all the rays of force which act upon a given body will impart motion to it in the direction of the resultant force, passing through its center of gravity.

Let us now suppose a single atom of matter to exist in space. We shall readily pereeive that there will be no resultant force siuce the atom is acted upon in every direction alike, each impinging ray being counteracted by its opposite ray, producing an equilibrium, in which we may suppose the force of each impinging ray to be decombined or developed from the atom by its counteracting ray so that the general store of force remains unchanged.

But let there be two atoms at a given distance from each other, as A and B in the figure, which we will suppose to be inforces in opposite directions as represented by the arrows. It will be seen that each atom intercepts the ray which passes through it before reaching the other, and thus a portion of the counteracting power of the ray is removed, so that an equivalent resultant force acts upon each atom in the direction of the other. This action continues during each successive instant producing uniformly accelerated motions of both atoms toward each other.

Let us suppose one of the atoms A to be doubled in quantity of inertia, B remaining as before; then the gravitating force of each toward the other will be doubled, for A having twice the combining capacity it had before, and being otherwise under
similar conditions, will absorb twice as much force, and B having a double amount of counteracting force removed, will also combine with twice as much force as before, during each successive instant of time, so that B will pass over twice the distance that A does in the same time, each having a uniformly accelerated motion toward the other.

We may consider the entire amount of force traversing any given line to be infinite, and it follows that the successive abstractions of definite amounts from it will not appreciably diminish its proportions to finite quantities. Any number of atoms, therefore, possessing equal quantities of inertia, placed along a given line, and having equal amounts of counteracting force removed, will virtually combine with equal amounts of force from the same ray in equal times.

It evidently follows that any two bodies of matter placed at a given distance from each other, and acted upon by a given number of parallel force rays in the two opposite directions, will, during each successive moment, acquire equal amounts of force impelling them toward each other, proportional to the products of the units of inertia of the two bodies, the square of the velocity of each at any given instant being proportional to the mass of the other.

The proportion of the inverse squares of the distances readily follows, when we consider the relations of one body to each of the several atoms of the other. The rays which act upon the body in the direction of the atom, form a pencil centering at the atom and the counteracting rays form another equal pencil from the same center in the opposite direction. The aggregate quantity of power produced by each pencil at different distances will be proportional to the area of a figure which the rays passing through a given section of the body, cutting its center of gravity, will project upon a plane at a fixed distance from the atom, and parallel to the given section. This may be seen by inspecting the figures, in which A represents the atom, B the

body, $\mathrm{C} D$ the given section of B , and EF the parallel plane, at a fixed distance from A. The area of the projected figure upon E F will of course be in inverse proportion to the square of the distance A B, and since the same proportion holds between either body and each several atom of the other, it holds good between the two bodies referred to their centers of gravity.

A growing dislike to the doctrine of inherent attraction, has existed since the days of Newton, who shared the feeling as may be seen in the following quotation made by Faraday in
connection with some recent remarks of his own, showing the want of harmony between this doctrine and the conservation theory.
"That gravity should be innate, inherent, and essential to matter, so that one body may act upon another at a distance, through a vacuum, without the mediation of anything else, by and through which their action and force may be conveyed from one to another, is to me so great an absurdity that I believe no man who has in philosophical matters a competent faculty of thinking, can ever fall into it. Gravity must be caused by an agent, acting constantly according to certain laws; but whether this agent be material or immaterial I have left to the consideration of my reader."

The idea of an inherent power of matter enabling it to pull distant and disconnected matter toward it, seems somewhat analogous to the old idea of an inherent suction power in the piston of a pump, by which it was supposed to raise the water below it.

The apparent annibilation of power in the equilibrium of forces in a statical condition, and the deficiency in the total power of a resultant force, made up of forces in different directions compounded, may be accounted for by supposing the eliminated forces to be mutually decombined from the body acted upon, and added to the general store of universal force. This takes place during each successive instant of the time in which the opposing forces continue to act. When an entire or partial removal of a given number of counteracting or modifying forces takes place, a force which would exactly counteract the resultant of the removed forces is converted from "potential" into "actual energy," and produces corresponding motion. The changes in the velocity and consequent power of motion of the heavenly bodies are therefore due to the variable amounts of force alternately drawn from, and restored to, the great reservoir of universal force.

The constant mutual transmission of the radiant forces, including light, radiant heat, \&c., which apparently takes place from the surface of all bodies, across vacant spaces, or through transparent or diathermanous mediums, can perhaps be explained by supposing the universal force rays to be modified by the molecular actions going on within the bodies, which produce vibrations of such a nature, that at the surface of the bodies small amounts of counteracting force are alternately added to, and then partially withdrawn from, the universal force rays, in minutely brief periods of time, endowing the developed or decombined rays with the power of impressing vibrations upon the surface atoms of any matter which they may encounter, by determining the resultant force which will take effect upon them. These vibrations are equal in duration and intensity to those by which they are generated, though perhaps opposite in direction,
and result in an augmentation of the centrifugal or expansive motions of the atoms, which is communicable from atom to atom and convertible into "modes of motion." The differences in the constituent parts of rays of light and heat, developed by decomposition, polarization, \&c., and due to differences in the duration, direction, \&c., of the generating vibrations, are thus transmitted and reproduced with rigorous integrity, being equal in duration, direction and intensity to the generating vibrations, and in quantity or aggregate effect, inversely proportional to the squares of the distances.

SCIENTIFIC INTELLIGENCE.

I. CHEMISTRY AND PHYSICS.

1. On a new and very powerful thermo-electric battery.-In a communication to the Vienna Academy dated the 16th of March of the present year, S. Marcus has described a new thermo-electric battery which possesses extraordinary interest both in a theoretical and practical point of view. The properties of the new battery are as follows:
(1.) The electro-motive force of one of the new elements is equal to $\frac{1}{25}$ of that of a Bunsen's element of zinc and carbon, and its internal resistance is equal to 0.4 of a meter of normal wire.
(2.) Six such elements are sufficient to decompose acidulated water.
(3.) A battery of 125 elements evolved in one minute 25 cubic centimeters of mixed oxygen and bydrogen, although the decomposition took place under disadvantageous circumstances, as the internal resistance of the battery was much greater than that of the voltameter in the circuit.
(4.) A platinum wire of $\frac{1}{2}$ millimeter in thickness introduced into the circuit melted.
(5.) Thirty elements develop in an electro-magnet a lifting power of 150 pounds.
(6.) The current is generated by warming only one of the contactsides of the elements and cooling the other by means of water of the ordinary temperature.
As positive metal in these batteries, Marcus employs an alloy of 10 parts of copper, 6 of zine and 6 of nickel. The addition of one part of cobalt increases the electro-motive force. For the negative metal he uses an alloy of 12 parts of antimony, 5 of zinc and 1 of bismuth. The electromotive force of the alloy is increased by repeated fusion. In place of these alloys a particular kind of German silver, known as Alpacca, may be used with the same negative metal; or, as the positive metal, an alloy of 65 parts of copper and 31 of zine, and, as the negative metal, an alloy of 12 parts of antimony and 5 parts of zine. The bars are not soldered but screwed together. The mechanical arrangement is such that only the positive metal is directly heated, the negative metal being warmed by conduction; the former melts at about $1200^{\circ} \mathrm{C}$, the latter at about $600^{\circ} \mathrm{C}$.
Am. Jour Sci.-Second Series, VoL. XL, No. 112.-Sept., 1865.

An interesting fact in relation to the transformation of heat into electrieity in the thermo-electric battery, is that the water which serves to cool one of the contact sides of each element, becomes very slowly warmer so long as the circuit remains closed, but is heated pretty rapidly when the circuit is open. The alloys employed in this battery fulfill several conditions essential to the production of powerful electrical currents by heat. These conditions are, that the metals employed should be as far as possible from each other in the thermo-electric series; that they shonld permit great differences of temperature so as to avoid the necessity of using ice; that they should not be expensive, and that the insulating material should resist a high temperature and possess sufficient solidity and elasticity. The thermo-electric battery in question was constructed with reference to the use of a gas flame. The single element consists of bars of unequal dimensions, the positive bar being $7^{\prime \prime}$ long, $7^{\prime \prime \prime}$ broad, and $\frac{1}{2}{ }^{\prime \prime \prime}$ thick; the negative $6^{\prime \prime}$ long, $7^{\prime \prime \prime}$ broad, and $6^{\prime \prime \prime}$ thick. Marcus puts together 32 elements in such a manner that all the positive bars are on oue side and all the negative bars upon the other and have thus the form of a grating. The battery consists of two such gratings which are screwed together in the form of a roof and strengthened by an iron bar, mica being used as the insulator. The under sides of the elements are cooled by a vessel of water. The whole battery has a length of two feet, with a breadth of six inches and a height of six inches. Marcus has constructed a furnace which is calculated for a battery of 768 elements, which would correspond to a Bunsen's battery of 30 pairs and consume 240 lbs of coal per day. The Vienna Academy, recognizing the importance of the discovery, has voted to the inventor the sum of 2500 gulden -the invention to be public property.-Pogg. Ann., cxxiv, 629, April, 1865. w. \boldsymbol{q}.
[Note,-The importance of Marcus's invention in a technical point of view can hardly be overestimated, since it promises to furnish the cheapest method of obtaining an intense light for light houses and public buildings, and even bolds out a prospect, perhaps not remote, of applications in domestic economy.

It must be remembered that the step taken by Marcus is, after all, a first step in the right direction. Bunsen, E. Becquerel, and Stefan, have shewn that there are thermo-electric combinations of much higher electromotive force than those employed by Marcus, although the internal resistance is too great to permit of their use in construeting large batteries. If the progress of science should make us acquainted with metallic alloys. which, when combined and arranged as thermo-electric elements, develop electro-motive forces as high as $\frac{1}{10}$ th of that of a Bunsen cell, the thermoelectric battery will again become a new instrument. In this consection we suggest that the thermo-electric relations of the highly crystalline alloy of iron, manganese and carbon, known as "spiegeleisen," (that from the Franklinite of New Jersey for example,) deserve a careful study. The possession of a galvanic battery in which coal is consumed in place of zinc and acids, ean hardly fail to revive an interest in electro-magnetic motive engines, like that of Page, even if only for eases in which comparatively little power is required, since our best steam engines do not yield 10 per cent of the worl which the consumption of the coal is capable of doing.-w. e.]

Chemistry and Physics.

2. On some thermo-electric elements of great electro-motive power.Stefan has examined a variety of mineral substances with relation to their thermo-electric power at high temperatures. The mineral to be examined was placed upon one end of a strip of copper while the end of a copper wire rested upon the mineral, the whole being pressed together to insure contact. The wire and copper strip were connected with a galvanometer of great resistance and the copper strip was then heated by a spirit-lamp. In examining the mutual relations of the minerals a copper strip was placed between them, wires attached to the free ends of the fragments of mineral and the whole pressed together by a wooden press. The free end of the copper strip was then heated and the heat conducted to the minerals. In the following enumeration of the elements employed the positive element is always placed first, and the number appented sigrifies how many of the elements give an electro-motive force equal to that of Daniell's cell.
(1.) Foliated copper pyrites-copper; 26.
(2.) Compact " " ; 9 .
(3.) Pyrolusite-copper ; 13.
(4.) Compact copper pyrites-foliated copper pyrites; 14.
(5.) Copper-crystallized cobalt pyrites; 26.
(6.) Grantlar cobalt pyrites-copper: 78.
(7.) Copper-iron pyrites; 15%.
(8.) Compact copper pyrites-iron pyrites; 6.
(9.) Foliated copper pyrites- " $\quad 9 \cdot 8$.
(10.) Copper-erubescite; 14.
(11.) Fine bleischreif-copper; $9 \cdot 8$.
(12.) Coarse " -copper; 9.
(13.) Galena in large crystals-copper; $9 \cdot 8$.
(14.) Bleischweif-erubescite; $5 \cdot 5$.

The great influence of structure upon the therme-electric relations is seen in Nos. 1, 2 and 4, and still more in 5 and 6. A mass of cubical crystals of galena was at some points negative, at others positive, to copper. The element No. 14 has the greatest electromotive force yet observed in thermo-electric series; but the substances employed are all bad conductors. The author considers-and we think very justly-the above results as of great importance for the physics of the earth, and proposes to continue the subject. In a note to Stefan's paper, Poggendorff calls attention to an observation of Marbach made in 1857, according to which crystals of iron pyrites $\left(\mathrm{Fe}_{2}\right)$ and of cobaltine $\left(\mathrm{CoS}_{2}+\right.$ $\mathrm{Co} \mathrm{As}_{2}$) which cannot be distinguished either in crystalline form or in composition are divided, so far as their thermo-electric relations are concerned, into two groups. Calling the two forms of the minerals α and β, Marbach gives the following series, reckoning from negative to positive: Iron prites α, cobaltine α, bismuth, german silver, platinum, lead, copper, lrass, silver, calmium, iron, antimony, cobaltine β, iron pyrites β.Pagg. Ann., exxiv, 632.
3. On the wave length of the hlue iridium line.-J. Míller has determined the ware length of the blue line characteristic of the new metal indium, and finds as a mean of two determinations $\lambda=0.000455^{\mathrm{mm}}$. Pogg. Ann., exxiv, 637.
4. On the absorption spectrum of Didymium, Erbium and Terbium. -Delafontane, who maintains the existence of erbium and terbium as distinct elements, has compared the absorption spectria of these two metals with that of didymium, the spectrum of which was first studied by Gladstone. The absorption bands in the spectra of erbium and terbium were first observed by Bahr. The didymium spectrum has been also studied by Rood and by Erdmann, both of whom detected several dark bands not noticed by Gladstone. Erbium gives usually five lines or bands, and eight when in the form of a thick syrup. Era remains after all the other lines have vanished. Terbium is characterized by three bands of metal, of which only two are very distinct. The third, or Tr^{c}, is difficult to recognize, and perhaps does not belong to the metal at all. Upon a scale on which $\mathrm{Na}=27, \mathrm{Li}^{\mathrm{a}}=10$ and $\mathrm{T} \mid=43$, the author found

$\mathrm{D}_{\mathrm{i}}^{\mathrm{h}}=9$	$\mathrm{Tr}^{\mathrm{a}}=30-32$	$\mathrm{Er}^{\mathrm{f}}=9$
$\mathrm{i}=19$	$\mathrm{~b}=48-50$	$\mathrm{~d}=14$
$\mathrm{a}=28-32$	$\mathrm{c}=85-89$	$\mathrm{~g}=16$
$\mathrm{~b}=48-50$		$\mathrm{~h}=42$
$\mathrm{~d}=54-55$		$\mathrm{e}=44$
$\mathrm{e}=66-67$		$\mathrm{a}=48-50$
$\mathrm{~g}=70$	$\mathrm{~b}=65$	
$\mathrm{f}=73-75$		$\mathrm{c}=85-90$
$\mathrm{c}=85-91$		

From this it appears that two of the bands are common to all three elements, ($\mathrm{Di}^{\mathrm{b}}, \mathrm{Tr}^{\mathrm{b}}, \mathrm{Er}^{\mathrm{a}}$ and $\mathrm{Di}^{\mathrm{c}}, \mathrm{Tr}^{\mathrm{c}}, \mathrm{Er}^{\mathrm{c}}$), and also that Er^{f} coinc:des with Dih.-Pogg. Ann., cxxiv, 635.
W. G.
5. Polisimmetria dei Cristalli; Relazioni tra la geminazione dei Cristalli ed il loro ingrandimento; par Arcangelo Scacciol. 120, $28 \mathrm{pp}$. . to, with 4 plates. Napoli, 1864.-By polysymmetry Professor Scacchi understands the quality pertaining to most substances of presenting distinct but closely related crystalline forms differing more or less in physical qualities Dimorphism differs from polysymmetry in that the forms of a dimorphous substance are widely diverse, and fail of the close analogy which exists between Scacchi's polysymmetric forms. A hexagonally crystallized species, for example, as sulphate of potash, may, when formed, under some circumstances, have one lateral axis elongated, and a small variation of angles in the transverse zone, so as to become in fact trimetric though in planes and habit like a distorted hexagonal crystal; and this variation of form will appear also in the optical characters. Such variations bave often been lorked upon ase mere distortions. But Scacchi shows that they are of frequent occurrence, and occur according to a distinet method and law; and he gives the name polysymmetry to the property. It was formerly supposed that the distinction of system of crystallization between species was a fundamental one, but this has for some years been admitted to be incorrect. Scacchi's observations illustrate this point most strikingly; since it is only by a sinall variation, and one which actually occurs in the same compound, that a hexagonal prism passes to a trimetric, or a monometric to a dimetric, or an orthometric to a clinometric. The acid paratartrate of soda is one example Scacchi mentions of a substance crystallizing under two types, one of
them trimetric and the other triclinic. Orthoclase and albite constitute, as he observes, another example. Yet it is one which brings dimorphism and Scacchi's polysymmetry into close relation. Professor Scacehi presents a large number of facts illustrating his views, and discusses also the origin of the phenomena observed. In his second memoir, Professor Scacchi gives an account of some important observations bearing on the origin of twin crystals.
6. Memoire sur l'Emploi du Microscope polarisant, et sur l'étude des propriétés optiques biréfringentes propres à déterminer le système cristallin dans les Cristaux naturels ou artificiels; par M. Des Cloizeacx. 60 pp. 8vo, with two plates. 1864. Paris. (Dunod, éditeur; Quai des Augustins, 49). -No one has labored more effectually in optical mineralogy than Mr. Des Cloizeaus. The science bears evidence throughout of progress due to his investigations. For such optical researches a polarizing microscope is very often essential, owing to the smallness of the crystals, or of the fragments of crystals, which may require study. In the memoir above mentioned Mr. Des Cloizeaux describes the mieroscope which he has found most satisfactory for his purposes, and gives the method of using it for the various kinds of observations. The author promised in the first volume of his mineralogy (published in 1862) that this memoir should appear as an Appendix to the second; but the uncertainty with regard to the publication of the latter has led to his issuing it separately.
T. Zirconium.-Zirconium has been the subject of researches by Mr. Troost, which were recently presented to the Academy of Sciences at Paris. The results go to show that zirconium acts the same part in the Carbon series of elements that antimony does in the Nitrogen; and that this element constitutes the passage between silicium and aluminium, thus sustaining the view of St. Claire Deville who places in a common group, carbon, boron, silicium, zirconium and aluminium. Crystals of zirconium are monoclinic rhombic prisms of 93°, inclined 103° to the basal plane. -Les Mondes, July 20.

II. MINERALOGY AND GEOLOGY.

1. On the Sand hills of Cape Henry in Virginia; by B. Henry LaTrobe, Esq. (Transactions Am. Ph. Eociety, vol. iv. p. 439, and Bruce's Mineralogical Journal, No. iv, 1814).'-From the falls of the great rivers of Virginia over the out-runnings of the granite strata, the general level of the land gradually approactes the level of the ocean. At the falls it is elevated from 150 to 200 feet above the tide; on the sea-shore at Cape Henry, the original coast rises not more than 15 feet above bighwater mark.
That the whole of this extensive country, from the falls to the coast, is factitious, and of Neptunian origin, appears far from leing hypothetical; and the fossil teeth and bones, which accompany this memoir, and which with many hundred more, were dug out of a well at Richmond from the depth of 71 feet, prove that the deposition of the super-strata

[^91]is not of a date sufficiently removed to have destroyed the soft and almost cartilaginous part of the joints, or to have injured the enamel of the teeth. The Neptunian theory of geogeny, has now very generally taken place of the old volcanie system, and, as far as conjecture and hypothesis can forward science, it is certainly more generally applicable. But along the coast of Virginia, ${ }^{2}$ a process is going forward, the result of which will be exactly similar, and in which water has no immediate share.

The slore, and the bed of the Atlantic near the shore, consist of a fine sand. The daily action of the flood tide carries a certain quantity of this sand above high water mark, which being dried by the sun and air, is carried further inland by the winds. The most violent winds on this coast blow from the points between the northwest and the east; and besides, a gentle easterly breeze prevails the whole summer, during some part of almost every day. This easterly wind, which is in fact a trade wind, is felt as high as Williamsburg. It is said to be felt, at this day, higher intand than formerly, and to be annually extending its intluence; and it will no doubt, when the woods shall be more cleared away, blow health and coolness over a portion of lower Virginia, which is now considered as extremely unhealthy.

These easterly winds blowing during the driest and hottest season of the year, carry forward the greatest quantity of sand, and have amassed hills, which now extend about a mile from the beach. The natural level of the land, elevated little more than 10 feet above high-water mark, has a very gentle declivity to the east. It is now a s wamp ${ }^{3}$ of about five miles square (25 square miles). The soil below the surface is a white loamy sand, and if the water falling upon, or rising in it, had a free discharge to the ocean, it would probably be perfectly dry; this, however, the eand hills prevent, and the water is discharged into the sea to the sonthward, and into the month of the Chesapeake to the north ward, by small creeks, which find vent from the westerly extremities of the swamp. Lynnhaven creek is the most considerable of these drains. The swamp, or as the neighboring inhabitants call it, the Desert, is overgrown with aquatic trees and shrubs; the gum, (L. styraciftua) the cypress (Cup. disticha) the maple (Acer rubrum) the tree improperly called the sycamore (Platanus ocidentalis) the Magnolia glauca, the wax myrtle (Myrica cerijera) and the reed, (A, tecta) are the principal. of these many thousands are already buried in the sand, which overtops their summits, and threatens the whole forest with ruin. Their destruction is slow, but inevitable. Upon the extreme edge of the sand hills toward the swamp, the wind, opposed by the tops of the trees, forms an eddy; the sand carried along with it is precipitated, and runs down the bank into the swamp. Its slope is very accurately in an angle of 45°. By gradual accumulation, the hill elimbs up their trunks,

[^92]they wither slowly, and before they are entirely baried, they die. Most of them lose all their branches, and nothing but the trunk remains to be covered with sand, but some of the cypress retain life to the last."

The Desert abounds in deer, bears, racoons, and opossums. Its skirts are more thickly peopled than the sterility of the soil would give reason to suppose; but the inexhaustible abundance of fish and oysters in the creeks, and the game, render it easy to support a family.
The lighthouse, ${ }^{\text {b }}$ which was built about sixteen years ago, is an octangular truncated pyramid of eight sides, rising 90 feet to the light, and sunk 18 feet below the basement course. Within a few yards of the lighthouse is the keeper's dwelling, a wooden building of two stories. Both are surrounded br a platform of plank; and, without any such design in the architect, this platform has preserved both these buildings from being buried in the sand.

When the lighthouse was built, it was placed upon the highest sand hill at the Cape. Its distance from the beach may be six or seven hundred yards, and the elevation of its base above high water not less than 90 feet. At that time there was from the foot of the building, the most expanded view of the ocean, the Desert, the Chesapeake and its eastern shore. At present, a mound of sand surrounds them, which overtops the keeper's dwelling, and has buried his kitchen to the eaves. The platform, which was laid upon the former level of the sand, is an accurate standard from whence to ascertain its accumulation. The winds, meeting in their course the elevated tower of the light, form a perpetual whirl around it, which licks up the sand from the smooth surface of the timber, and heaps it around in the form of a basin. Where the platform ceases, the sand accumulates. The sandy rim, while it protects the keeper from the storms, renders his habitation one of the dreariest abodes imaginable. This rim is sometimes higher, at others lower, according to the direction and strength of the wind. Sinee the establishment of the light, the hills have risen about 20 feet in height (measuring from the platform) and have proceeded into the Desert about 350 yards, from a spot pointed out to me by the keeper. I stepped the distance as well as I could, while at every step I sunk up to my ancles into the sand. The height of the hill at the swamp, is between 70 and 80 feet perpendicularly. It is higher nearer the sea, the inner edge being rounded off, and 1 think at its highest point, it cannot be less than 100 feet above highwater mark. If the hills advance at an equal ratio for 20 or 30 years more, they will swallow up the whole swamp, and render the coast a desert indeed, for not a blade of grass finds nutriment upon the sand.
Should this event take place, and some future philosopher attend the digging of a well in the high sandy country, on the coast of Virginia, his curiosity would be excited by fossil wood, 100 feet below the surface.

[^93]He would there discover a bed of vegetable and animal exuvix, and going home, he might erect upon very plausible ground, a very goodlooking hypothesis of a deluge, sweeping the whole upper country of its sand, and depositing it along the line of its contlict with the waves of the ocean.
2. Volcanic Eruptions in Northern California and Oregon.-Within the last few years there have been frequent reports of volcanic activity in or near the extinct volcanoes of Northern California, Oregon, and northward from that chain of high peaks. Thus, Mt. St. Helens in 1851, Lassen's Peak in 1856, Mt. Hood in 1864, are most familiar, the activity being shown by vast quantities of stean emitted. Various similar reports occur at times in the newspapers of the Pacific coast. The Oregonian of last April contains the following: "Mt. Baker, it is said, is rapidly sinking in. It is asserted that the mountain has fallen 1000 or 1500 feet, and that its summit, which was formerly a sharp point, is now much flattened. This peak has been for some time in a state of active eruption. Dense clouds of smoke have of late issued from it." Correspondents of the California papers speak of the same phenomenon, one of whom asserts that the emission of steam is immense, and that 1,200 feet of the summit has fallen in. We have no other data.
w. н. в.
3. Notice of Pot-holes near Poultney, Vermont; by John A. Nich-ous.-About two and a half miles south of this place, on the road to Granville, N. Y., the U. S. Slate Co. has just opened a new quarry. Slate quarries abound in the neighborhood, some of which have been worked for years; but in this new quarry seven pot-holes have already been found, and nothing of the kind has ever been found in any other quarry. The largest complete hole is elliptical in shape, its longest diameter being 11 ft .6 in., its shortest $10 \mathrm{ft}$. ; its depth is not known, as the earth and stones which filled it are not yet dug out. A smaller hole, which has been emptied, is 9 ft . deep and 5 ft . in diameter. Its sides are smoothly polished and it contained boulders, the largest weighing one and a half tons, the smallest not larger than a hen's egg, most of them beautifully rounded and polished. The slate is quarried in the hills bounding a valley through which runs a brook in a general southerly direction, emptying into a little stream called Granville river. The valley varies in width from a quarter to half a mile, and is quite flat; and the bounding hills rise from it rather abruptly to the height of 50 to 100 ft . The Rutland and Washington railroad, running north and south, passes through the valley. The U. S. Slate Co.'s quarry is on the western side of the valley, where the chain of hills suddenly makes a small sweep westward, giving the appearance of a small semi-circular bay, having a diameter of about 250 ft . This brings the quarry on the side of a bluff. The tops of the pot-holes are respectively 30,25 and 10 ft . above the bed of the brook and about 800 ft . from it. There are no traces visible of the bed of the stream in which the pot-holes were made. The strata have a dip westwardly of about 30°. Poultney river, which forms part of the boundary line between New York and Vermont, turns abruptly near the point where it meets the valley of the brook, and flowing northward empties into Lake Champlain. The quarry is two and a half miles from the nearest point of Poultney river. The side of
the largest pot-hole has, in some places, a coating of carbonate of lime one-tenth of an inch thick, laid very evenly over the slate, and large lumps of limestone of the nature of stalactites have been found in the same hole.
I went over the ground in company with Mr. A. E. Knapp, one of the principal owners of the quarry, who furnished most of the measurements mentioned above.
Poultney, Vt, July, 1865.
4. Observations on the Eocene Lignite Formation of the United Stotes; by T. A. Conrad. Older Eocene or London Clay. Lignite Epoch.-Some years ago I visited a marl deposit near Long Branch, Monmouth Co., N.J., in which casts of a few shells presented an Eocene character. Observing in Vanuxem's cabinet a specimen of what is now known to be Aturia aiczac, I described it in the Journal of the Academy of Natural Sciences, vol. i, 2 d series, p. 129, and referred the marl, principally on account of the presence of this shell, to the Eocene era. I also described an imperfect cast of the same species as Nautilus angustatus, in Dana's Report of the Geology of the Exploring Expedition, which was found at Astoria in Oregon, in company with many shells which I mistook for Miocene forms; but a more extended aequaintance with Eocene types shows their oldur tertiary relations, and their matrix to be synchronous with the London Clay, of Sheppey, Highgate and Bracklesham. Professor Cook has lately sent me a box of specimens of similar age from Shark River, Monmonth Co., New Jersey, collected by Dr. Kneiskern. In company with Aturia ziczac, there are imperfect specimens of Nautilus Lamarckii Deshayes, another older Eocene form of the Paris Basin and of Belgium. Fruits also occur in this bed, referrible to the genera Nipadites and Mimosites, showing the tropical or semitropical climate of the era, and giving evidence of the intimate relations of the deposit to the Brandon and Mississippi Lignite strata. Indeed it seems clear that this Shark River marl was the bed of the oldest Eocene ocean, and that the flora of the Brandon and Southern Tertiary epoch flourished at the same time. The local, circumscribed character of the Brandon Lignite is attributed by Prof. Lesley, to its having filled a deep depression, thus escaping the denuding forces which swept all traces of it away over a wide region that it once covered. The locality at Mont Alto, near Chambersburg, described by Prof. Lesley, is doubtless a locally preserved fragment of a vast formation once deposited over the Appalachian slope to the very base of the mountain range, and occupying a Iarge space in South Carolina, Georgia, Alabama and Mississippi, and in fact, extending to the Pacific as far north as Vancouver's Island. Dana's map of the Cretaceous epoch gives a general view of the Cnited States at this time, supposing what was then ocean had become land and fresh water.
It is probable that the estuary deposits of Upper Missoufi are the base of the older Eocene, and the fresh-water shells are the earliest tertiary types of this continent. The species of Vivipara resemble the Eocene forms of the Paris basin. According to Meek and Hayden these beds are more than 2000 feet thick.

Vanuxem was the first geologist who stated that a lignite bed is situated in Sonth Carolina between the Cretaceous and Eocene strata, and Tuomey has since described several localities in that State and ont in Clark Co., Alabama, represented by No. 6 of his Bashia Creek section; and No. 2 of the section represents the Marlborough and Bubrstone group, or second stage of the Eocene. In general, some doubt rests upon the identity of species by Tuomer, but the following list of sheils contained in No. 2 is copied, with emendations, from his Report: Ostrea Carolinensis Con., Venericardia planicosta, Protocardia Virginiana? Con., Volutilithes Tuomeyi Con. This bed represents the dark-colored loose sand of Piscataway, over which, and next in succession, lies the Marlborough rock, which corresponds to the "great Carolinian bed" of Ruffin, and the "calcareous strata of the Charleston basin" of Tromey. The sand bed and condition of its fossils, as well as the similarity of some of its species, reminds us of the Bracklesham Bay locality in England, and the superimposed rock of the Bognor beds.

Although the Aturia ziczac is the only fossil of Oregon known to be identical with the New Jersey Eocene, the vast distance between the localities will account for the variation; for the Continent was then as wide as from the Appalachian to the Rocky mountains, and seems to have been intersected by many rivers and fresh-water lakes, which have left an abundance of shells and mammalian remains entombed in the strata deposited by their waters. The Brandon fruits described by Hitchewek are all different from those of Shark River, but the conditions under which they flourished may account for this variation. They probably grew on high land, at some distance from the coast, whilst the station of the others was on low land along the shore, where Palms and Acacias scattered their fruit within reach of currents which swept them into the sea.

At present the marine beds of this era are found to lie close to the Atlantic, and in Oregon they skirt the shore; but estuary deposits were observed by Meek and Hayden in Upper Missouri. The Shark River marl is an indurated elay, with disseminated grains of green sand, which are often smooth and shining, and the shells are all in the form of casts, which are more or less distorted. Portions of this clay are indurated, making it as difficult to break as the hardest limestone. Its thickness is yet unknown. The Aturia of this locality is diseoid, which is the result of pressure, whilst the Oregon forms are broader, and ode specimen approximates to the normal form of the European shell.

Professor Harper describes a deposit on Chickasawhay river, Mississippi, which also is of similar geological age. "The Nipadites and Cycadites mixed with coniferous trees, and even oaks." "Stumps are seen rooted in the ground, as smooth and even as if not cut with an axe, but sawed with a sharp saw." "A little higher up, on the Chickasawhay river, occurs the most southern outcrop of the large Eocene marl stratum. Above the marl lies a stratum of hard limestone, which contains abundance of an Ostrea of large size." In this description I recognize the strata on Savannah river, where the lignite is overlaid by the "great Carolinian limestone" group, and succeeded by the Ostrea Georgianu, which is found as far west as Cape St. Lucas in Lower California.
The lignite bed underlies the bluff at Vicksburg, where we find-1. lignite; 2. ferruginous rock, with Ostrea Georgiana Conrad; 3.St.Stephen's
limestone, or Orbitolite limestone, eighty feet; 4. Vickskurg group, with a new species of Orbitolite, $-N$. supera Conrad.

This formation appears at Cape Sable, near Annapolis, where, at about the water level, "under a stratum of sand, and resting upon an impermeable crust of ferruginous sandstone, lies imbedded in a layer of almost pure alumine, a forest of pine trees, thrown down by same ancient convulsion. The crust which forms the base of this aluminous layer is a littie below the level of low tides and is of considerable hardness. The inbedded pines are converted into lignites more or less impregnated with sulphuret of iron. The central parts are generally transformed into pure metallic sulphuret, sometimes exhibiting in the hollow parts octabedral crystals of a yellowish metallic lustre and great hardness. The more remote the ligneous layers from the center, the less they are saturated with sulphuret of iron. The external rays, as well as the cortical layers, are generally pure lignite, some compact and black, others retaining the color and friability of retten wood. In some instances their texture seems to have suffered but little alteration: the central system, concentric rays, the bark and knots being perfectly discernible; even fruits are oceasionally found in a pretty good state of preservation as to form."'
The lignite is correctly placed in Morton's diagram as overlying the secondary marls. In Morton's paper the first published notice of the formation appeared, drawn up from the notes of Lardner Vanuxem, who was familiar with the strata in South Carolina. Deshayes states that he has found no species of organic remains common to Cretaceous and Eocene strata in Europe or Asia, and I have no doubt that the destruction of life was total over the whole surface of the globe at the close of the Cretaceous era. Deshayes, indeed, affirms that life has been five times destroyed and renewed in the past history of the earth. When we find evidence of surprising changes of level in the Eocene period, the limited nature of a mixed fauna is remarkable, for we would expect to find it much more extensive at the base of the Eocene. The bed of the Atlantic along the coast of the United States, from Cape May to the Gulf of Mexico, contains a mixture of recent and Miocene shells, which, if elevated above the sea level would present a group of shells consisting of recent and extinct species, so like in preservation that the fossil could not be distinguished from the recent forms, except by one conversant with all the Miocene shells.
Deshayes affirms of the Maestricht beds, "that there has been an accidental mixture of Cretaceous and Eocene; a degradation of a stratum of fossiliferous marl diluted in the bed of the tertiary sea at the time of the first deposit. The bed of the ocean, under our own eyes, shows an accidental mixture of this nature."
The Wilmington rock proves conclusively that this was the case in North Carolina. Eocene and Cretaceous fossils are there mingled in a breecia. When I first saw this rock in 1832, no fracture or excavation revealed its true character; but the external resemblanee to the Timber Creek limestone of New Jersey, with its corallines, was striking. The mixture of Secondary and Tertiary species in this breccia, shows that a disturbance occurred in the bed of the Eocene ocean, which evidently

[^94]from Tuomey's account, extended into South Carolina. No one, I suppose, will tell us that the Venericardia planicosta existed in the Cretaceous period, yet countless thousands may be observed at the base of the Eocene. It is true that in Europe a series of strata, termed Upper and Lower "Landenien" and "Heersien," are said to intervene between the chalk and Eocene; but one of the characteristic fossils of the Upper Landenien occurs in the Shark river beds,--the Cyprina Morrisii of Sowerby. It is therefore probable that the former system is merely an extension of the London clay. Certainly, in the United States, there is no such system as the "Heersien," whilst Lyell found, in the Belgium Lower "Landenien" grey marl, a perfect specimen of the Terebratulina gracilis, a well known chalk fossil,-together with Ostrea (Exogyra) lateralis Nyst. Lyell remarks, that the Lower "Landenien," at Folx les Caves, rests on the Maestricht chalk.

There is an extensive bed of lignite in Eurepe of Eocene age, which Deshayes says forms a well determined horizon with the long series of "sables inférieures." "Above the lignite appears a bed of fresh-water and marine shells, the horizon of which I believe to be the same as that of the lignite formation of the United States. They reveal a singular state of the globe at the commencement of the Tertiary period, presenting a vast level region covered by a dense forest, in which palms and oaks grew side by side, interspersed with lakes and rivers, and long shallow bays of salt water penetrating to the interior of the continents. This state of the globe was exhibited in Europe and America at the same time, and the land was little elevated above the sea level, except that in America the Appalachian and Rocky mountain ranges stood out from the vast plain.

The Shark River fossils are few in number of species, and generally imperfect casts with small chalky portions of the shell occasionally remaining. A few of the bivalves have connected valves. About twentyfive species of shells and plants have been collected, of which I think sis shells.are identical with species of the London Clay and one of the Plastic Clay, Cyprina Morrisii.-Proc. Acad. Nat. Sci., 1865, 70.
5. On the Fossil Insects from Illinois, the Miamia and Hemeristia, described in vol. xxxvii, of this Journal, at page 34; by Samiel H. Scudder. (From a letter to Professor DANA.) -In my study of the specimens of fossil insects from Illinois, allowed me through your kindness, I have observed new facts of interest, and arrived at same conelusions different from yours, which I take this opportunity to communicate to you.

The part in the Miamia which I believe represents the head is an obscurely defined portion in front which you regarded as the anterior femur and which I at first supposed it, until my attention was directed to the diminutive size of the prothorax (only half the width of the rest of the thorax); for a raptatorial, or any disproportionally large, fore-femur would require a prothorax of at least the size of the mesothorax or metathorax, bearing, as they do in this case, wings of such a feeble type. The right posterior border of the head is not represented in the drawing given, and is quite indistinet, but forms a regular outline of exact symmetry with the apposite. The middle and hind femora and tibix are quite distinct, but unfortunately we cannot see the basal terminations of
the femora, and do not know how far they may be removed from their natural connection with the body; and since the tarsi are wanting we are unable to tell whether the tibio are docked, or whether we actually view the extremity, although the latter is probably the case.

The head appears to have an ovoidal outline, and on either side there are depressions-that on the left very distinct-which are apparently the positions of the elongate prominent eyes; and there are also faint indications of antenna taking their rise at the usual point.

In the Hemeristia, with the exception of a fragment of a femur quite like that of Miamia, of which no representation is attempted to be given in your cut, we have only a portion of the four wings preserved. That we have more than a single wing is evident from the symmetry of the two sides of the fragments, and the regular intersection of the nervures from either side. In point of fact, we have in this case four completely overlapping wings in an attitude of repose, so perfectly transparent, and provided with such strong nervures and cross-veins, that those of each wing are visible in some portion of the fragment, forming thus a very confusing and almost inextricable mass of veins crossing and connected with one another in a most perplexing manner; moreover, the principal portions of the apex of the wings are broken off, the basal portions undistinguishable, and no portion of any one of the wings present in place except a very short piece of the anterior border of one, which fortunately is at the most important curve; neither have we, apart from the direction and position of the nervures themselves, any means of determining whether the upper or under surface of the insect is presented to us, the abdomen being absent, or at least invisible. It is nevertheless possible to decide that the upper surface of the insect is uppermost; that the right anterier wing overlaps the left anterior wing; and to reconstruct the entire anterior wing with but little doubt attaching to its exact form and the direction of the nervures, and to point out the principal and most characteristic differences between the neuration of the anterior and posterior wing.
The details I have presented in full in a paper read before the Boston Soeiety of Natural History which will soon be published in their Memoirs.
From the facts which I have observed, I am enabled to determine with considerable precision the relation of these insects to the Neuroptera.
In the paper referred to I have discussed this question fully, and I will here give but a brief statement of my results. I am satisfied that the direction, mode of branching, and the amount and position of the space occupied by the principal nervures of the wings form most satisfactory bases for the distinction of families in this group of Neuroptera, characters upon which no systematist appears hitherto to have relied, and to which none have invited any attention, except it be Burmeister, whose treatment of it appears to have been partial, not altogether accurate, and exhibits a tendency to exaggerate the value of unimportant characters to the exclusion of those of more weighty significance. Heer, however, in his work on the fossil insects of Eningen \&c., has distinguished the Termitina by characters of this sort in a proper manner, and it is to be regretted that he should not have extended his studies to other families.
From the wing-characteristics welearn that the Miamia and the Hem-
eristia belong to distinct families, and that neither of them can be referred to any family of known living tpyes, although resembling in certain features sometimes one, sometimes another, of these families; and it is most interesting, in this connection, to find that the families, from which these peculiarities are borrowed, belong, some to the Neuroptera proper, and some to the so-called Pseudoneuroptera (classed by some authors with the Orthoptera), so that the fossil forms unquestionably represent a synthetic Neuropterous type, uniting in one and the same group features of wing-structure found existing by themselves only in Neuropterous groups widely separated. We are strongly fortified in this view by the other portions of the insect in the Miamia. In the abdomen, mesothorax and metathorax, we are strongly reminded of Corydalis, one of the Sialina, a Neuropterous family; while in the head and prothorax, together with the flattened legs, we have features which are quite characteristeric of the Perlina, a member of the Pseudoneuroptera; their combination, however, we find only in the family to which the Miamia belongs. So far as the small fragments of femora and tibix in the Hemeristia tell us anything, they indicate a close affinity with the Miamia, so close indeed, that it appears highly probable that in characters apart from those drawn from the structure of the wing we shall find, as in Miamia, a relationship with the Neuropterous and Pseudoneuropterous types.

For these two synthetie families, I would propose the names of Paleopterina and Hemeristina.
In the Palcoopterina we have a body rather broad and depressed, the head horizontal, the legs compressed, not long, the wings large, very regularly rounded, the two pairs equal, extending beyond the abdomen, and when at rest overlapping one another horizontally above it in a loose manner. In the wings the first nervure is continuous as in all other families except Odonata; the second impinges upon the third in the outer half of the wing; the third branches in the middle third of the wing at a very slight angle, the lower branch rebranching; the fourth, running in close contiguity to the previous one, branches near the division of the third; these four nervures occupy the anterior half of the wing; the fifth forks near but below the branching of the previous ones, its upper fork continually reforking, the branches so formed sometimes connected by distant eross-veins with one another, or with the lower branch of the fourth nervure ; the sixth occupies about as much space as the fifth and is made up of a number of branches which fork near the base and fill the space with approximate nervules running parallel to the lower branch of the fifth. The wings are feeble and the nervares delicate, as in Ephemerina.

In the Hemeristina the first, second and third nervures run nearly parallel to one another throughout their course; the third sends out a branch at the extremity of the basal third of the wing at a considerable angle, which soon curves upward and runs nearly parallel to the main stem, sending out from its lower side several branches; these three nearly oecupy the anterior half of the wing; the fourth, after running in contiguity with the third, diverges widely from it and forks below the branching of the third; the fifth, running parallel to the previons, forks very nar-
rowly near the base, the upper fork again forking in a similar manner, and the lower emitting branches from its under side; the sixth is probably nearly as in the Palæopterina, though but little remains of it. The wings overlap one another very completely, are twice as broad in the middle as at the base, strong, the nervures prominent, and connected throughout by frequent and strong, generally straight, cross-veins. The legs are broad and compressed.

The characters here given are sufficient to distinguish these families from any others now known among the Neuroptera.

In concluding I take pleasure in apprising you that in the still older forms of insects that have been discovered by Mr. C. F. Hartt in the Devonian strata of New Brunswick are represented other hitherto unknown families of Neuroptera, some of which exhibit, in even more striking a manner than your specimens, combinations of structure borrowed from families of the two great sections. One is a gigantic member of the family Ephemerina; while the most interesting of all is a wing which appears to blend the peculiar structure of the stridulating apparatus of the male in some Orthoptera, with the general mode of neuration of the wings holding in the Neuroptera, carrying the synthesis one step farther back.
Boston Society of Natural History, Jan. 30, 1865.
6. Paleontology of the Upper Missouri. A Report upon collections made principally by the Expeditions under the command of Lieut. G. K. Warren, U. S. Top. Engrs. in 1855 and 1856 . Invertebrates, by F. B. Meek and F. V. Hayden, M.D.; Part I, 136 pp. 4to, with five plates; 1865. (Smithsonian Contributions to Knowledge; accepted for publication May, 1864.) - To Messrs. Meek and Hayden we are indebted for a large part of all our accurate knowledge of the geology and paleontology of the eastern slope of the Rocky Mountains. Both have explored portions of the region, but Hayden much the most extensively; while the determination of the fossils collected and the working up of the paleontology is mainly the labor of Mr. Meek. The volume on the paleontology, just issued under the auspices of the Smithsonian Institution, takes up the fossils of, (1) the Potsdam or Primordial period, (2) the Carboniferous, (3) the Permian, and (4) the Jurassic. A second part of larger size, will contain the Cretaceous fossils, and a third the Tertiary. The work is not a mere description of fossils with figures; but besides full deseriptions, it contains a therough discussion of the zoological characters and affinities of the species, their synonymy, and their stratigraphical and geographical relations. The synonymy has become greatly confused, and particularly so for this western region, through the hasty work of explorers; and it is of great importance to the science that the subject should have been so thoroughly followed out through all its intricacies. The plates are handsomely lithographed from the careful drawings of Mr. Meek. The country owes much to the Smithsonian Institution for the publieation of works illustrating American history; and those relating to its ancient progress through the geological ages are not the least valuable among them.
7. Archeopteryx.-On one of the two slabs from Solenhofen containing remains of the Archropteryx, there is "a crescent shaped protuberance" which is pronounced by Mr. Evans, in an article in the Natural

History Review for June, to have been due to the remains of the Crani$u m$ of the Archæopteryx, and even the form of the brain cavity and position of the brain-both ornithic in character, are supposed to be made out. There is also on the principal slab a small V-shaped object, the longer limb of which is $1 \frac{1}{2}$ inches long, made partly of mineralized bone and partly of the same bones that occur on the counterpart slab. Along side of it there are impressions of four teeth. These teeth may be the teeth of the Archæopteryx, if not of some other animal whose remains lie buried in the same rock. H. von Mayer has examined the teeth and observes that he has not before seen teeth of the same kind in the lithographic stone; and that they are most like the teeth of his family of Acrosaurus.
8. Documents sur les tremblements de terre et les phenomènes volcaniques lans l'Archipel des Kouriles et au Kamtschatka; par M. Alexis Perrex. 166 pp., large 8vo. (Eyom the publications of La Soc. Imp. d'Agriculture, d'Hist. Nat. et des Arts utiles de Lyon, July 17, 1863). - Prof. Perrey gives in this memoir a very full review of all that is known with respect to the voleanos and earthquakes of the Kurile Islands and Kamtschatka. He quotes at length from a memoir by K. von Dittmar, in Petermann's Geogr. Mittheilungen, 1860, on the latter region, giving descriptions of 12 active and 22 extinct volcanos in eastern Kamtschatka and 5 extinct in western, besides many hot springs. Dittmar states, in conclusion, that volcanic activity commences to the north near the parallel of 62°, but is apparent there only in hot springs. The first volcanos occur between the parallels of 58° and 57°, and these are extinct. 57° is the beginning of the long line of volcanos (the "Aléoutes") which continues to the southern extremity of the peninsula, and extends on, in the Kuriles, even to Japan. The active vents are most thickly grouped between 54° and 55°, and the hot springs about the 53 d parallel. The solfataras and the deposits of sulphur occur along the whole volcanic line from 62° to southern Kantschatka, being situated in the old craters or near hot springs. On the western side of the peninsula there are only a few volcanos, and these are extinct. Prof. Perrey cites from other memoirs numerous details of interest connected with the eruptions of the volcanos, and the earthquakes of the peninsula.
9. Extraits de Geologie, pour les années, 1862-1863; par M. Delesse, Ingenieur en chef des Mines. 150 pp. 8vo., Paris. (From the Annales des Mines, vol. vi, 1864).-In this review of progress in geological science, which has been continued now for some years by Mr. Velesse, the author does not attempt to include paleontology and stratigraphical geology; but, being prepared for the Annales des Mines, the Government Mining Journal of France, it enters fully into the subjects of lithology-that is, the nature and composition of rocks and rock materials, mineral waters, alluvium, meteorites, ete., dwelling at length on metalliferous rocks and the various mining regions recently developed and their metallic veins; and also dynamical geology, including whatever relates to the alteration and decomposition of rocks or their ores or other mineral constituents, to metamorphism, and to the origin of rocks and the earth's general features. This Annual Report will be found of great interest to both the theoretical and mining geologist.
10. Earthquake in the Mississippi Valley.-On the 17th of last August, at 9 o'clock A. m., an earthquake was felt in the Mississippi valley, at Holly Springs, Oxford, and Grenada in Mississippi, Memphis and Lagrange in Tennessee, St. Louis in Missouri, and Cairo in Illinois. How far beyond these limits it extended we have not yet learned. At Memphis the shock lasted about ten seconds, and was severe enough to tumble down chimnies, upset loose articles, and cause the people to run out of their houses. It is reported to have been most severe at Holly Springs, Mississippi, and Lagrange, Tennessee.
11. Geological Survey of Nevada.-Mr. R. H. Sthetch, of Virginia City, we are informed, has been appointed State Geologist of Nevada, in conformity with the provisions of the Act passed last winter by the Legislature of this new State.

III. BOTANY AND ZOOLOGY.

1. The Tennessee Yellow-Wood (Cladrastis lutea).--One of the very handsomest of our ornamental trees has this summer flowered finely in the sonth of England, as we learn from the Gardener's Chronicle,-the tree "completely covered with long drooping branches of pure white flowers, many of them nearly eighteen incles in length and from ten to twelve inches wide at the shoulders. The foliage, being of a lively green, contrasted favorably with the pure white blossoms. It is also nicely scented." An unusually warm summer has for once brought this tree well into blossom in England. Even here it blossoms copiously only every other year; this year it did so to perfection, owing to the heat and dryness of last season and the very favorable spring of the present year. The fine large tree in the Cambridge Botanic Garden was, as it were, veiled with white, and many of the graceful pendent clusters were fully two feet in length.
A. σ.
2. Welwitschia mirabilis, Hоок., fil. - Some account of this very strange vegetable, and of the interesting memoir, in the Linncean Transactions, in which Dr. Hooker made it known to the botanical world, was given in our vol. xxxvi, for Nov. 1863. Through the great kindness of Dr. Hooker, the Herbarium of Harvard University has recently received a fine old trunk of this tree,--if we may so call a woody plant which, though perhaps a century old, is only a foot or two in height, and as broad as it is high, and never had any other foliage than the primary pair of leaves, the cotyledons,-accompanied by the cones (for it is a sort of coniferous tree), both dry and in alcohol.
A. G.
3. On the Movements and Habits of Climbing Plants; by Charles Darwis.-This is a long paper read before the Linnean Society in February last, and published in its Journal, where it fills 120 pages of the double number, 33 and 34 , issued in June. The investigations which it records were made, we believe, during a period when the author's ordinary scientific labors were interrupted by illness,-as was no less the case with respect to his former papers on Dimorphous and Trimorphous Flowers and his volume on the Fertilization of Orchids by the aid of Insects. Of these works and of the present,--side-issues as they are,-it may fairly be said, that they show a genius for biological investigation, and

Abl Jour Scl.-Second Series, Yol. XL, No. 119.-Sept., 1865.
a power of turning common materials and ordinary observations to high scientific account, which, if equalled, have not been surpassed since the days of Hunter and Charles Bell. This will be the opinion equally, we suppose, of those who favor and of those who dislike Mr. Darwin's theory of the gradual transformation of specific forms through natural selection, upon which, indeed, all these collateral researches have a bearing, direct or incidental. In the present case the bearing is obvious. The gradual acquisition by certain plants of advantageous peculiarities is inferred from the gradation of forms and functions. Properties and powers which are latent or feebly developed in mest plants are taken advantage of by some, made specially useful, and enhanced from generation to generation. Tendril-bearing plants,--the most specialized in structure and the most exquisitely adapted to the end in view,-are supposed to have been derived from leaf-climbers, and these in turn from simple twiners.

The author states that he was led to this subject by a brief note, communicated to the American Acadeny in the summer of 1858, (and reprinted in this Journal,) in which the writer of the present notice recorded his observation of the coiling of certain tendrils by a visible movement promptly following an extraneous irritation. Mr. Darwin's observations were more than half completed before he became aware that the spontaneous revolution of the stems and of some tendrils of climbing plants bad been observed and recorded almost 40 years ago, and nearly at the same time, by Palm and by von Mohl, and had been the subject of two memoirs by Dutrochet, published more than twenty years ago. But the mode in which the free and growing end of a stem sweeps around seems not to have been previously well made out, having been more or less confounded with the torsion of the axis which many twining stoms, such as the Hop and the Morning Glory, are apt to undergo. It is plain to see, however, that many stems which revolve do not twist at all; and those that do never could twist on their axis at every revolution without speedy destruction,-indeed usually do not twist until they have ceased revolving. Every one must have noticed that the growing extremity of a Hop, Convolvulus, or other twiner, when unsupported, hangs over or stretches ont horizontally to one side. But it is not so well known that this outstretched portion, while at the proper age, is continually sweeping round, in circles widening as it grows, and always in the same direction, in search of some object round which to twine. The Hop revolves with the sun; the Convelvalus, Bean (Phaseolus) \&e., against the sun, that is, in the same directions that they twine. Two or three internodes are usually revolving at the same time. Mr. Darwin observed thirty-seven revolutions in one internode of a Hop,-the first revolution made in about 24 hours, the second in 9 hours, the third and the following ones up to the eighth in a little over 3 hours each. "The shoot had now grown $3 \frac{1}{2}$ inches in length, and carried at its extremity a young internode an inch in length, which showed slight changes in its curvature. The next or ninth revolution was effected in 2 hours and 30 minntes. From this time forward the revolutions were easily observed. The thirtysixth revolution was performed at the usual rate; so was the last or thirty-seventh, but it was not quite completed; for the internode abruptly
became upright, and, after moving to the center became motionless. I tied a weight to its upper end, so as slightly to bow il, and thus to detect any movement; but there was none. Some time before the last revolution the lower part of the internode had ceased to move. It moved during five days; but the more rapid movement after the third revolution lasted during three days and twenty hours. The regular revolutions from the 9 th to the 36 th inclusive, were performed at the average rate of 2 h .31 m . The weather was cold, and this affected the temperature of the room, especially during the night, and consequently retarded a little the rate of movement. After the seventeenth revolution the internode had grown from $1 \frac{3}{4}$ to 6 inches in length, and carried an internode $\frac{17}{8}$ inch long, which was just perceptibly moving; and this carried a very minute ultimate internode. After the 21 st revolution the penultimate internode was $2 \frac{1}{2}$ inches long, and probally revolved in a period of about three hours. At the 27 th revolution our lower internode was $8 \frac{3}{8}$, the penultimate $3 \frac{1}{2}$, and the nltimate $2 \frac{1}{2}$ inches in length; and the inclination of the whole shoot was such that a circle 19 inches in diameter was swept by it. When the movement ceasel the lower internode was 9 and the penultimate 6 inches in length; so that, from the 27 th to the 37 th revolutions inclusive, three internodes were at the same time revolving." - (pp. 3, 4.)

The shoots of many climbers sweep their circles more rapidly than the Hop,-the common Pole Bean (Phaseolus vulgaris) in rather less than two hours, Convolvuluses of various species in the same time or rather less; while more woody stems naturally move more slowly, some requiring from 24 to 50 hours for each revolution. But the thickness or texture of the shoot does not govern the rate, many slender shoots moving slower than some stout ones, and some lignescent quicker than other purely herbaceous ones. The movement appears to be accelerated, up to a certain point, by raising the temperature, or rather is retarded by lowering it; but while the conditions are nearly the same, the rate is often remarkably uniform. The quickest rate of revolution of a proper stem olserved by Mr. Darwin was that of a Scyphranthus, in 77 minutes. When the light comes from one side, the semicircle towards the light is usually described in less time, often in less than half the time, of that from the light. The tendency of young stems to turn toward the light is here active as usual, but is overcome by a superior force. The end of the shoot describes circles or broad ellipses, or else, from insufficient power or mechanical disadvantages, narrow ellipses, semicireles, or irregular figures. A horizontal shoot of considerable length will thus be found, not unfrequently, to sway from side to side in a semicircular course, while the extreme internodes are inaking complete revolutions.
A striking illustration of the amount of space that may be swept over is afforded by a case in which Mr. Darwin allowed the top of a Ceropegia togrow out almost horizontally to the length of 31 inches,-three long internodes terminated by two short ones. The whole revolved at rates between $5 \frac{1}{4}$ and $6 \frac{3}{4}$ hours for each revolution, the tip sweeping a circle of above five feet in diameter and 16 feet in eireumference, travelling therefore at the rate of at least 32 inches per hour. "It was an interesting apeetacle to watch the long shoot sweeping, night and day, this grand circle, in search of some object around which to twine."

As to the nature of this revolving movement, Mr. Darwin clearly shows that it is not a torsion of the axis, but a successive bending [similar to that by which ordinary stems bend toward the light], the direction of which is constantly and uniformly changing. "If a colored streak be painted (this was done with a large number of twining plants) along, we will say, the convex line of surface, this colored streak will, after a time depending on the rate of revolution, be found to lie along one side of the bow, then along the concave side, then on the opposite side, and, lastly, again on the opposite convex surface. This clearly proves that the internodes, during the revolving movement, become bowed in every direction. The movement, is, in fact, a continuous self-bowing of the whole shoot, successively directed to all points of the compass." It is an automatic movement, of the same character as those which these and other parts of plants effect in changing position or direction, sometimes slowly and sometimes with a visille motion. The movement may be likened in one case to that of the hour-hand or the minute-hand of a elock, in the other to the second-hand, but in both is as truly a vital movement as is the contraction of an iuvoluntary muscle. It must be effected-as Mr. Darwin recognizes-either by the contraction of the cells on the concave side, or by the turgescence and elongation of those on the convex side of the internode, or by both,-probably the former, as various facts go to show; but questions of that kind are not investigated in the present essay.

No differences in this regard are observable in the behavior of exogenous or endogenous stems, or even of those of climbing Ferns. Lygodium scandens, according to Darwin, revolves like other twiners; it completes its revolutions in six hours, or on a very hot day in five (moving against the sun, which is much the commoner ease) ; this is about the average rate of Phænogamous twiners, like which it comports itself in all respects. Our own Lo palmatum, we find, revolves in the same way, in about four hours, the temperature being 75° Fabr.

The power of sevolving depends, of course, upon the general health and vigor of the plant, and upon the age of the shoot, is retarded by lowering the temperature, is interrupted by any considerable disturbance, such as exposure to eold or to much jarring; carrying the plant from one place to another, or cutting off a shoot and placing it in water, stops the movement for a time, just as it does the more vivid automatic movement of Desmodium gyrans. But each internode is so independent that cutting off an upper one does not affect the revolutions of the one beneath. Twining stems are far from being insensible to the action of light (as Mohl supposed), the half-revolution towards the light being not uncommonly twice faster than that from it; but as the rate of revolution by day and by night is nearly the same, the one half of the circuit is accelerated just as much as the other is retarded. This influence of the light is quite remarkable when we consider the slenderness of mest revolving internodes, the small surfaces they expose, and that their leavee are little developed.
The design, as we must term it, of this revolving of the end of twining stems is obvious, aud usually effectual. Such stems, even when no supporting object is within their reach, will reach each other, and by twin-
ing together make a mutual support, from which, as they lengthen, they may reach yet farther. The connection of the revolving with twining is obvious, though the latier is not a necessary consequence; for many stems revolve which do not twine, but ceiinb in some other way.
"When at last the [revolving] shoot meets with a support, the motion at the poiut of contact is necessarily arrested, but the tree projecting part goes on revolving. Almost immediately another and upper point of the shoot is brought into contact with the support and is arrested; and so onward to the extremity of the shoot; and thus it winds round 1ts support. When the shoot follows the sun in its revolving course, it winds itself round the support from right to left, the support being supposed to stand in front of the beholder; when the shoot revolves in an opposite direction, the line of winding is reversed. As each internode loses from age its power of revolving, it loses is power of spirally twining round a support. If a man swings a rope round his head, an! the end hits a stick, it will coil round the stick according to the direction of the swinging rope; so it is with twining plants, the continued contraction or turgescence of the cells along the free part of the shoot replacing the momentum of each atom of the free end of the rope.
"All the authors, except von Mohl, who have discussed the spiral twining of plants maintain that such plants have a natural tendency to grow spirally. Mohl believes (S. 112) that twining stems have a dull kind of irritability, so that they bend toward any object which they touch. Even before reading Mohl's interesting treatise, this view seemed to meso probable that I tested it in every way that I could, but always with negative results. I rubbed many shoots much harder than is necessary to excite movement in any tendril or in any footstalk of a leaf-climber, but without result. I then tied a very light forked twig to a shoot of a Hop, a Ceropegia, Sphcrostema, and Adhatoda, so that the forl pressed on one side alone of the shoot and revolved with it; I purposely selected some very slow revolvers, as it seemed most likely that these would profit from possessing irritability; but in no case was any effect produced. Moreover, when a shoot winds round a support, the movement is always slower, as we shall immediately see, than whilst it revolves freely and touches nothing. Hence I conclude that twining stems are not irritable; and indeed it is not probable that it should be so, as nature always economizes her means, and irritability would be superfluous. Nevertheless I do not wish to assert that they are never irritable; for the growing axis of the leaf-elimbing, but not spirally twining, Lophospermum scandens is, as we shall hereafter see, certainly irritable; but this case gives me confidence that ordinary twiners do not possess this quality, for directly after putting a stick to the Lophospermum, I saw that it behaved differently from any true twiner or any other leaf-climber.
"The belief that twiners have a natural tendency to grow spirally probably arose from their assuming this form when wound round a support, and from the extremity, even whilst remaining free, sometimes assuming this same form. The free internodes of vigorously growing plants, when they cease to revolve, become straight, aud show no tendency to be spiral; but when any shoot has nearly ceased to grow, or When the plant is unhealthy, the extremity does occasionally become spi-
ral. I have seen this in a remarkable degree with the ends of the shoots of the Stauntoria and of the allied Akebia, which became closely wound up spirally, just like a tendril, especially after the small, ill-formed leaves had perished. The explanation of this fact is, I believe, that the lower parts of such terminal internodes very gradually and successively lose their power of movement, whilst the portions just above move onward, and in their turn become motionless; and this ends in forming an irregular spire.
"When a revolving shoot strikes a stick, it winds round it rather more slowly than it revolves. For instance, a shoot of the Ceropegia took 9 h . 30 m . to make one complete spire round a stick, whilst it revolved in 6 h.; Aristolochia gigas revolved in about 5 h., but took 9 h .15 m . to complete its spire. This, I presume, is due to the continued disturbance of the moving force by its arrestment at each successive point; we shall hereafter see that even shaking a plant retards the revolving movement. The terminal internodes of a long, much-inclined, revolving shoot of the Ceropegia, after they had wound round a stick, always slipped up it, so as to render the spire more open than it was at first; and this was evidently due to the force which caused the revolutions being now almost freed from the constraint of gravity, and allowed to act freely. With the Wisteria, on the other hand, a long, horizontal shoot wound itself at first, in a very close spire, which remained unchanged; but subsequently, as the shoot grew, it made a much more open spire. With all the many plants which were allowed freely to ascend a support, the terminal internodes made at first a close spire; and this, during windy weather, well served to keep the shoots in contact with their support; but as the penultimate internodes grew in length, they pushed themselves up for a considerable space (ascertained by colored marks on the shoot and on the support) round the stick, and the spire became more open.
"If a stick which has arrested a revolving shoot, but has not as yet been wound round, be suddenly taken away, the shoot generally springs forward, showing that it has continued to press against the stiel. If the stick, shortly after having been wound round, be withdrawn, the shoot retains for a time its spiral form, then straightens itself, and again commences to revolve. The long, much-inclined shoot of the Ceropegia previously alluded to offered some curious peculiarities. The lower and older internodes, whieh continued to revolve, had become so stiff that they were incapable, on repeated trials, of twining round a thin stick, showing that the power of movement was retained after flexibility had been lost. I then moved the stick to a greater distance, so that it was struck by a point $2 \frac{1}{2}$ inches from the extremity of the penultimate internode; and it was then neatly wound round by this part and by the ultimate internode. After leaving the spirally wound shoot for eleven hours, I quietly withdrew the stick, and in the course of the day the curled part straightened itself and re-commeneed revolving; but the lower and not curled portion of the penultimate internode did not move, a sort of hinge separating the moving and the motionless part of the same internode. After a few days, however, I found that the lower part of this internode had likewise recovered its revolving power. These several facts
show, that, in the arrested portion of a revolving shoot, the power of movement is not immediately lost, and that when temporarily lost it can be recovered. When a shoot has remained for a considerable time wound round its support, it permanently retains its spiral form even when the support is removed.
"When a stick was placed so as to arrest the lower and rigid internodes of the Ceropegia at the distance at first of 15 and then of 21 inches from the center of revolution, the shoot slowly and gradually slid up the stick, so as to become more and more highly inclined; and then, atter an interval sufficient to have allowed of a semirevolution, it suddenly bounded from the stick and fell over to the opposite side, to its ordinary slight inclination. It now recommenced revolving in its usual course, so that after a semi-revolution it again came into contact with the stick, again slid up it, and again bounded from it. This movement of the shoot had a very odd appearance, as if it were disgusted with its failure but resolved to try again. We shall, I think, understand this movement by considering the former illustration of the sapling, in which the contracting surface was supposed to creep from the southern, by the eastern, to the northern, and thence back again by the western side to the southern face, suceessively bowing the sapling in all directions. Now with the Ceropegia, the stick being placed a very little to the east of due south of the plant, the eastern contraction could produce no effect beyond pressing the rigid internode against the stick; but as soon as the contraction on the northern face began, it would slowly drag the shoot up the stick; and then, as sonn as the western contraction had well begun, the shoot would be drawn from the stick, and its weight, coinciding with the northwestern contraction, would cause it suddenly to fall to the opposite side with its proper slightly inclined positions; and the ordinary revolving movement would go on. I have described this case because it first made me understand the order in which the contracting or turgescent cells of revolving shoots must act.
"The view just given further explains, as I believe, a fact observed by von Mohl (S. 135), namely, that a revolving shoot, though it will twine round an object as thin as a thread, cannot do so round a thick support. I placed some long revolving shoots of a Wisteria close to a post between 5 and 6 inches in diameter, but they could not, though aided by me in many ways, wind round it. This apparently is owing to the flexure of the shoot, when winding round an object sn gently curved as this post, not being sufficient to hold the shoot to its place when the contracting force creeps round to the opposite surface of the shoot; so that it is at each revolution withdrawn from its support."-(pp. 9-13, passim.)
The successive shifting of the contracting side of the shoot, which explains the revolution or bowing in turn in every direction, no less explains the twining round a proper support, leaving however some idiosyncrases unexplained. Some tendrils and some petioles of leaf-climbing plants equally possess this revolving power; but their usefulness depends mainly upon additional and more special endowments,-mainly upon the power of directly responding by curvature to the contact, more or less prolonged, of an extraneous body.

Of Leaf-elimbers, no instance is more familiar than that of Clematis or Virgin's Bower. Little more was known of them than that they climbed by curling their petioles (common or partial) around neighboring objects. Mr. Darwin made observations upon eight species of Clematis, seven of Tropcoolum, the common species of Maurandia, Lophospermum, Fumaria, \&c., as also upon Gloriosa and Flagellaria, which climb by a tendril-like production of the tip of the leaf. From the summary it appears that plants which belong to eight families are known to have clasping petioles, and those of four families climb by the tips of their leaves. In almost all of them the young internodes revolve, in some of them as extensively as in twining plants,-the movement being plainly serviceable in bringing the petioles or the tips of the leaves into contact with surrounding objects. Those whose shoots revolve most freely are also capable of twining spirally around a support; but when the stem twines (as in Clematis Sieboldii and calycina, but not in C. Viticella), it has the peculiarity of winding first in one direction for two or three turns, and then in the opposite direction. The petioles are principally efficient in these plants, and that by means of an endowment which is not shown to belong to twining stems, with one or two exceptions. That is, the petioles or their divisions are sensitive to the contact of an extraneous body, contracting on the side touched so as to curve or coil around it. That the footstalk is directly sensitive to the touch, just as tendrils are, Mr. Warwin proved by lightly rubbing them with a twig for a few times, when in the course of some hours it bends to the rubbed side, afterwards becoming straight again; or by leaving the body in contact it is permanently clasped by the footstalk. So sensitive are some footstalks that "a loop of thread weighing a quarter of a grain caused them to bend; a loop weighing one-eighth of a grain sometimes acted, and sometimes not." In one instance, in Clematis Flammula, even the sixteenth part of a grain caused a petiole to bend through nearly 90 degrees. With rare exceptions only the young petioles are sensitive. Take the cultivated Clematis Viticella for an illustration of the mode in which the leaves do the work of eltmbing.
"The leaves are of large size. There are three pairs of lateral leaflets and a terminal one, all borne by rather long petioles. The main petiole bends a little, angularly, downwards at each point where a pair of leaflets arises, and the petiole of the terminal leaflet is bent downward at right angles; hence the whele petiole, with its reetangularly bent extremity, aets as a hook. This, with the lateral petioles directed a little upward, forms an excellent grappling apparatus by which the leaves readily become entangled with surrounding objects. If they catch nothing, the whole petiole ultimately grows straight. Both the medial and lateral petioles are sensitive; and the three branches, into which the basi-lateral petioles are generally subdivided, likewise are sensitive. The basal portion of the main petiole, between the stem and the first pair of leaflets, is less sensitive than the remainder, but it will clasp a stick when in contact. On the other hand, the inferior surface of the rectangularly bent terminal portion (carrying the terminal leafet), which forms the inner side of the end of the hook, is the most sensitive part; and this portion is manifestly best adapted to cateh distant supports. To show the differ-
ence in sensibility, I gently placed loops of string of the same weight (in one instance weighing 82 of a grain) on the several lateral and on the terminal sub-petioles; in a few hours the latter were bent, but after 24 h . no effect was produced on any of the lateral petioles. Again, a terminal sub-petiole placed in contact with a thin stick became sensibly curved in 45 m ., and in 1 h .10 m . had moved through ninety degrees, whereas a lateral petiole did not become sensibly curved until 3 h .30 m . had elapsed. In this latter case, and in all other such cases, if the sticks be taken away, the petioles continue to move during many hours afterward; so they do after a slight rubbing; but ultimately, if the flexure has not been very great or long-continued, they become, after about a day's interval, straight again."-(p. 31.)
In numerous cases, notably in Solanum jasminoides, the petiole when clasped increases very greatly in thickness and rigidity, undergoing a change in its woody structure by which the fibro-vascular bundles, originally semilunar in cross-section, develop into a closed ring, like that of an exogenous stern.
Lophospermum scandens of the gardens climbs, like its allies Maurandia and Rhodochiton, by clasping petioles; but in this plant, alone, the young internodes are also sensitive to the touch.
"When a petiole clasps a stick, it draws the base of the internode against it; and then the internode itself bends toward the stick, which is thus caught between the stem and the petiole as by a pair of pincers. The internode straightens itself again, excepting the part in contact with the stick. Young internodes alone are sensitive, and these are sensitive on all sides along their whole length. I made fifteen trials by lightly rubbing two or three times with a thin twig several internodes; and in about 2 h ., but in one case in 3 h ., all became bent: they became straight again in about 4 h ., subsequently. An internode, which was rubbed as much as six or seven times with a twig, became just perceptibly curved in 1 h .15 m ., and subsequently in 3 h . the currature increased much; the internode became straight again in the course of the night. I rubbed some internodes one day on one side, and the next day on the opposite side or at right angles; and the curvature was always toward the rubbed side."
Here, then, is one case in which the sensibility of a stem is manifest, and is turned to useful account. The peduncles of the allied Maurandia semperflorens are also sensitive and flexuous, although Mr. Darwin insists that they are useless for climbing. That some stems should be sensitive might have been expected; for tendrils of axial nature (e. qr. of Passiflora gracilis) are not less sensitive than those of foliar nature, as of Leguminosce, Cucurbitacece and Cobea. And if twining stems in general are not endowed with "a dull kind of irritability," as Mohl conjectured, it may well be because the equally wonderful automatic revolving movement leaves no need for it. In general, the most striking cases of automatic movement belong to leaves or their homologues.
The distinction can be only somewhat arbitrarily drawn between Leaf-climbers,-especially those with small or undeveloped leaffets, or where the tip of the leaf forms a hook or tendril-like projection,-and Tendrilclimbers. The tendril, however, whether answering to leaf or stem, is
Am. Jour. Scl.-Second Serirs, Vol. IL, No. 119.-SEPT., 1865.
the more specialized organ, adapted only for climbing, and endowed in different plants with very various and some highly remarkable powers. To this subject Mr. Darwin has devoted more than half of his essay. An analysis of it must be deferred, for want of space.

Near the close of the essay, under Hook-climbers, Mr. Darwin remarks that:-
"Even some of the climbing Roses will ascend the walls of a tall house, if covered with a trellis; how this is effected I know not; for the young shoots of one such Rose, when placed in a pot in a window, bent irregularly toward the light during the day and from it during the night, like any other plant; so that it is not easy to understand how the shoots can get under a trellis close to a wall."

Now we have had occasion to observe that the strong summer-shoots of Michigan Rose (Rosa setigera Mx., R. rubifolia R. Br.), trained on a latticed wall, are strongly disposed to push into dark crevices and away from the light; they would, many of them, pretty surely place themselves under the trellis, and the lateral shoots of the next spring would emerge as they seek the light. We suspect this is also true of the Sweet Brier.
4. Gradation from "Individual Peculiarities" to Species in Insects.The following are the concluding paragraphs of a paper by Dr. B. D. Walsh "On Phytophagic Varieties and Phytophagic Species." The name phytophagic is given to those otherwise identical insects which differ, as varieties or species, according to the species of plant they feed upon. "When certain unimportant characters in the insect are correlated with the food-plant, while at the same time there is no sufficient reason to doubt that the two varieties freely intercross," the forms are called phytophagic varieties. When, from the lack of intermediate forms, intercrosing may be inferred not to take place, they are called phytophagic species. Dr. Walsh sums up his conclusions thus:
"From the facts referred to above and those recorded by me elsewhere, we may construct the following almost unbroken series, from the first dawnings of the Phytophagic Variety to the full development of the Phytophagic Species.

1st. Difference of food, even when the food-plant belongs to widely distinct botanical families, is accompanied by no difference whatever, either in the larva, pupa or imago state.-Attacus Cecropia Lin., Dryocampa imperialis Drury, Lachnus Caryce Harris, (Proc. Ent. Soc. Phil. I, p. 303), and hundreds of other species.

2nd. Difference of food is accompanied by a marked difference in the color of the silk-producing secretions.-Bombyx Mori Lin., the common silkworm.

3rd. Difference of food is accompanied by a tendency toward the obliteration of the normal dark markings in the imago.-Haltica alternata Illig.

4th. Difference of food is accompanied by marked, but not perfectly constant, colorational differences in the larva, but none whatever in the ठ 0 imago.-Datana Ministra Drury.
5th. Difference of food is accompanied by a marked and perfectly constant differenee in the size of the imago. -Chrysomela scalaris Lec.

6th. Difference of food is accompanied by a marked difference in the chemical properties of gall-producing secretions, the external characters of the $\delta^{t} \$$ imago remaining identical.-Cynips q. spongifica O. S. and C.q. inanis O.S.

7th. Difference of food is accompanied by a slight, but constant change in the coloration of the abdomen of the $\bar{\delta}$ imago, and by a very slight change in the chemical properties of the gall-producing secretions, the galls of the two insects, though typically somewhat distinct, being connected by intermediate grades in the case of the latter.-Cynips q. punctata Bassett and C.q. Podagrae Walsh.

8th. Difference of food is accompanied by one marked and perfectly constant colorational difference, and others which are not perfectly constant, in the larva, but none whatever in the \& $\%$ imago.-Halesidota tessellaris Sm. Abb. and H. Antiphola Walsh.

9 th . Difference of food is accompanied by several slight but constant structural differences in the δ imago, but none whatever in the $\%$ im-ago.-Clytus Robinice Forst. and Cl. pictus Drury.
10th. Difference of food is accompanied by a slight but constant structural difference in both δ and q imago.-1. Tingis Tilice n. sp. and T. amorphce n. sp. 2. (Doubtful.) Diapheromera fernorata Say and D. $V_{\text {elii n. sp. }}$
11th. (Doubtful.) Difference of food is accompanied by very strong structural and colorational differences in the larva and in all probability by a constant structural difference of generic value in the q imago, the δ imagos being to all external appearances identical, and the two insects belonging to different genera--Sphingicampa distigma of \circ Walsh and Dryocampa bicolor \& Harris.

12th. Difference of food is accompanied by marked and constant differences, either colorational, or structural, or both, in the larva, pupa and imago states.-Halesidota tessellaris Sm. Abb. and H. Caryce Harris, and hundreds of species belonging to the same genus and commonly considered as distinct species.
The constitution of the human mind is such, that the same evidence carries with it very different degrees of weight, when presented to different intellects. Others will no doubt draw different conclusions from the facts catalogued above; but for my own part, as on the most careful consideration I am unable to draw any definite line in the above series, and to say with certainty that here end the Varieties and here begin the Species, I am therefore irresistibly led to believe, that the former gradually strengthen and become developed into the latter, and that the difference between them is merely one of mode and degree."
5. Illustrated Catalogue of the Museum of Comparative Zoology at Harvard College. No. 1, Ophiuride and Astrophytida; by Theonore Liman. 200 pp .. large 8vo, with two colored plates. Cambridge, 1865. -The Museum of Comparative Zoology, under the directorship of Professor Agassiz, at Cambridge, has already become a vast collection in some departments of zoology, and is on the rapid increase. The idea of connecting with a catalogue of the Museum the publication of occasional memoirs upon the species here gathered, has for some time been in contemplation, and the first number has just been issued with the abova
title. The style of publication selected for the series is all, as regards paper, type and arrangement, that the eye could desire, and this first memoir, by Mr. Lyman, makes a most excellent beginning of the series. The Ophiuridx and related Asterioids have been for some years his special department of study. The memoir contains detailed descriptions of the species from the shores of North and South America and Greenland, that are now in the Museum and also in the collections of the Smithsonian Institution, including in all 105 species, of which 26 are new; and it is illustrated by two beautiful colored plates, on which seven of the species are represented. It contains also an extended bibliography, and a table of the known species of Ophiuridæ and Astrophytidæ.

IV. ASTRONOMY AND METEOROLOGY.

1. Shooting Stars seen at Hinsdale, Mass., in August, 1865.-The following observations were made on the days specified below, the writer's station being at Hinsdale, Mass., about W. long. 73°, N. lat, $42 \frac{1}{2}^{\circ}$. During all the observations the atmosphere was pure and unclouded, but the moonlight interfered with all but the brighter paths. The area of observation was centered considerably north of Perseus, but reached generally to Auriga. It was not, however, more than four-fifths of the field ordinarily due to a single observer.

Aug. 9th. -From $2^{\mathrm{h}} 20^{\mathrm{m}}$ to $3^{\mathrm{h}} 45^{\mathrm{m}}$ A. m., an interval of $1^{\mathrm{h}} 25^{\mathrm{m}}$, ten meteors were seen, of which nine were closely conformable to a radiant centering in A. R. 47°, N. P. D. 33°.

Aug. 10th.-Between $2^{\mathrm{h}} 25^{\mathrm{m}}$ A. M. and $3^{\mathrm{h}} 50^{\mathrm{m}}$, an interval of $1^{\mathrm{h}} 25^{\mathrm{m}}$, nineteen meteors were seen, of which all were conformable to a radiant centering in A.R. 42°, N.P.D. 34°; but elongated some 4°, either way, across the meridians.

Aug. 11th and 12th.-The sky was wholly obscured by clouds.
Aug. 13th.-Between $10^{\mathrm{h}} 45^{\mathrm{m}}$ P. M., and $0^{\mathrm{h}} 45^{\mathrm{m}}$ of Aug. 13th, an interval of 2^{h}, sixteen meteors were seen, of which twelve were conformable closely to a radiant point in A. R. 52°, N. P. D. 32°. Two-thirds of the whole number were seen in the first three quarters of an hour.

Aug. 14th.-Between $0^{\mathrm{b}} 10^{\mathrm{m}}$ A.m. to $1^{\mathrm{h}} 35^{\mathrm{m}}$, an interval of $1^{\mathrm{h}} 25^{\mathrm{m}}$, twenty meteors were seen, generally slow in angular velocity and wholly destitute of a regimen to their lines of direction, except that three of the earliest and one of the latest conformed to an area of several degrees around A. R. 68° N. P. D. 18°. Three of the flights were very long but unstable in motion-say 30° of arc traversed in $2 \frac{1}{2}$ to 3 seconds of time.

It seems to be clear from the foregoing that the proper August meteors in this instance, appeared as early, at least, as the first morning hours of the 9th, and were not discernable later, at least, than 11 p. M. of Aug. 12 th . In other words, the duration of the phenomenon did not exceed four cars, and probably did not quite cover that duration.

Notwithstanding the impracticability of observing on the important mornings of the 11 th and 12 th, a shifting of the radiants, as above specified, was unmistakable.
2. Shooting Stary seen at New Haven in August, 1865.-On the night of Aug. 9-10th I saw, during half an hour, ending about $2{ }^{4}$ A. M., ten shooting stars, about twe-thirds of them moving from Perseus. The
cky was clear, but the bright moon, then two days past the quarter, very greatly interfered with observation.

The next night was the one on which the greatest display was looked for. A numerous party was ready to watch, but could do nothing because of the clouds.

On the night of the 11-12th, during one hour ending about midnight, I saw fourteen. The sky was again clear, but the moon interfered. Not more than half radiated from Perseus. But for the light of the moon the number visible on this night, as well as on the night of Aug. 9-10th, would have been no doubt twice as many, probably three times as many, as were actually visible.

On the night of Aug. 15-16th, C. Tomlinson, M.D., Messrs. A. Van Name, J. Avery, G. L. Woodhull, and A. W. Gates, Col. B. S. Pardee and myself, watched from the roof of the New Haven House, during three hours, from five minutes past eleven till five minutes past three oclock. All but myself were constantly watching the sky, and saw during the first hour 55 meteors, during the second hour 56 , and during the third hour 61 . About half of my time was occupied in keeping the record, Of twenty-five seen by me six were not seen by others, so that we saw in all 178 meteors, or about one each minute. Besides these, however, there were at least seventeen instances in which some one of the party thought he saw a shooting star, but was not confident of it. The moon rose at $12^{\text {b }} 40^{\mathrm{m}}$, and from that time the number seen was apparently diminished a little by its light. A fog which was rising toward the end of the watch also interfered. Shortly after two o'clock the fog closed entirely over us.
The special object of the watch was to determine what proportion of the meteors visible at one place would be seen by one observer; in other words, by what factor the number seen during any time by one person should be multiplied to obtain the whole number visible at the place, The conclusion, as derived from this night's work, is that this factor is at least $4^{\circ} 5$, and cannot safely be assumed as greater than 5 . The detail of the observations, and the discussion, will be given hereafter.
During the night there was a slight aurora, and just before the moon rose there was a bright auroral cloud, or compact cluster of short streamers in the northeast. It was probably illumined by the moon, as sug. gested below by Prof. Twining.
3. Auroral Phenomena of August 3, 1865.-On the night of August 2d-3d, there was witnessed at New Haven a display of the Aurora Borealis, of great brilliancy notwithstanding the light of the moon-then nearly full. An intelligent witness states that, just before 11 o'clock P. M. on the $2 d$, he saw a nebulous column or streamer of white luminosity, ascending from far down in the east-of-south high up toward a point north of the zenith,-and simultaneously with it a similar column in the northwest rising toward the same high altitude. The columas were but a degree or two broad, and did not, while this witness saw them, unite to form a complete arch. When he ceased looking-at about a quarter past 11 o'clock-they were undiminished in extent and brightness. They were said, by others who witnessed the same, to have faded not long after.

When the writer first observed them, at about $1^{\mathrm{h}} 45^{\mathrm{m}} \mathrm{A} . \mathrm{M}$. on the 3 d , the auroral lights were spread in a continuous and luminous sheet over more than half the sky through west, north and east,-and southward on the meridian to about N. P. D. 70°. This luminous sheet was composed of streamers in irreguiar groups, not so dense in nebulosity, nor so great in linear extent, as the writer has often witnessed ; but unusually abundant, and forming a very stable corona at A.R. 341° N.P.D. $64 \frac{1}{3}^{\circ}$,this being a little east of the meridian and, as usual, at the magnetic pole or near it. The entire assemblage of streamers down to within say 18° of the horizon was pervaded by a rush upward of auroral waves in a constant and quite regular succession. Two to four of these waves might be seen following one another, but with interrupted courses, up toward the corona. Their brightness at the corona was not less than in any other part, and I estimated their medium angular motion at about 90° in a second. The streamers were moving from west to east-contrary to the usual direction of this movement, and it constitutes the second instance only in which the writer remembers to have witneseed such an anomaly. This movement, as naturally suggested by the phenomenon itself when first noticed many years ago, is a result of the relative direction of electrical currents along the streamers and the like currents of the earth and atmosphere. At $2^{\mathrm{h}} 30^{\mathrm{ma}}$ a cluster 23° high in the N.E. by E., was observed to have about 2° a minute of this lateral movement. It was more or less rapid in other parts, in obedience to the laws of perspective.

At $2^{\mathrm{h}} 40^{\mathrm{m}}$ A. . . . the phenomena had faded, and clouds in extended masses obscured the view. These increased until toward the first appearance of twilight; but through the rifts and clear spaces in the N . and N.N.W. the bright banks of auroral vapor were still seen at a low altitude. Also along the eastern sky there was left a clear belt from the horizon upward in which clusters of short streamers were visible, and, rarely, a faint auroral wave.

It had occurred during one of those grand auroral developments which the writer witnessed between 1838 and 1848 from his place of residence at Middlebury, Vermont, that, in one instance, at a very early morning hour, he was viewing an assemblage of enormous streamers which arose from the north, when he noticed that an upper segment of each streamer became of a rosy hue, very vivid, and extending down to about the same altitude in all. This he suspected to be the effect of sunlight striking the tops of those streamers at a height of several hundred miles-as it must have been at that hour-above the earth's surface. But, in the great number and variety of appearances which solicited notice, he omitted to make such memoranda of time, altitude, and positions, as would have enabled him afterwards to test the plausibility of this explanation. Therefore the phenomenon has rested without particular notice; but on the morning of the $3 d$ inst. it received a remarkable reiteration, and the writer now ventures to commend this particular of observation to others who may have opportunity to make it, whether by sunlight or moonlight. It not only offers a method of determining approximate heights, but it may also determine, in certain respects, the physical properties of the material in the Northern Lights which possesses luminosity. At $3^{\mathrm{b}} 30^{\mathrm{m}}$ aud onward there was, in the vieinity of Orion and above it, a limited and
solitary but distinct cluster of short and yellowish white streamers, in about 5° S. of E., and 15° high. This was earnestly attended to, and, at $3^{\mathrm{h}} 40^{\mathrm{m}}$-as noticed by feeling the minute hand of the watch-its upper part began to be intensified in color with a speedy progress downward and northward which disclosed an increased extension in those directions, and north of the cluster a considerable extent of fainter streamers. The yellow had now become not merely intensified suddenly in hue but changed in quality, or imagined to be so. What I would specially notice is that the color of the faint streamers, although now as bright as the aforementioned cluster had been at first, appeared not of the same nebulous yellow but glistening in effect, although far less brilliant than the cluster had itself become. Soon the latter turned to a clear but dilute red, like the same commonly witnessed in auroras, but which appeared now, for the first time, in this. This rosy color propagated itself, as the glistening yellow had done before, and soon characterized the whole, and so continued until the twilight overpowered it.
The observations of time, altitude and azimuth in this instance are not clear enough for exactness, but they give-after allowing for atmospheric refraction-about fifty miles for the average height of the cluster above deseribed.

This of the $2 d-3 d$ inst, was, by reason of its extent, duration and completeness, one of the class of grand auroras-although far less brilliant and variegated than several which have been seen at this place since 1830. In but one instance however-and that one but poorly devel-oped-did it embrace any of those fau-like curtains or assemblages of streamers which sweep down to a definite altitude, for the time, and having a termination so abrupt and so correspondent in all that the suspicion tnay be allowed (and the suggestion of it pardoned) that this abrupt development takes place at the definite upper boundary of the atmosphere proper-at the transition, or rebroussement, which it would seem must there exist, from a lower to the secondary atmosphere, or, if that supposition is preferred, to the simply ethereal spaces. ${ }^{1}$ A. C. T.
New Haven, Conn., August 8th.
4. Comparative intensity of the light reflected from the Moon and Venus; by Mr. Chacornac.-On the 20th of June last, at 3^{b} A. s., the Moon and Venus were in conjunction in the latitude of Lyons, France, so that both bodies could be seen in the same field of vision, and use was made of the opportunity to compare the light received from them. The surfaces taken for comparison were those affording rays at the same angle of incidence; and on the Moon, the region was that lying between the craters Rocca and Eirchstadt, over the very brilliant surface which lies to the southeast of Grimaldi. It was found that the light from this brightest part of the Moon was only a tenth of that reflected by the surface of Venus.-Comptes Rend., Iviii ; Les Mondes, July 20.

V. MISCELLANEOUS SCIENTIFIC INTELLIGENCE.

1. Magnesium.-Magnesium light contains an extraordinary proportion of ultra-violet or chemical rays, this part of the spectrum between the extreme violet and the extreme red being six times as large as asual,
${ }^{\text {s }}$ As suggested in this Journal, xxvii, 19.
and it is particularly efficient for producing fluorescent and photographic effects. Very remarkable fluorescence may be obtained by exposing to the light a paste made of powdered platino-cyanid of barium and gum arabic.-Les Mondes, June 22.
2. The Rumford Premium.-The American Academy of Arts and Sciences, at its annual meeting on the 23d of May last, voted: "That the Rumford Premium [a Gold Medal] be awarded to Professor Daniel Treadwell, for improvements in the management of heat, embodied in his investigations and inventions relating to the construction of cannon of large calibre, and of great strength and endurance."
3. The Prince Atbert Medal.-This gold medlal, founded by the Society of Arts in honor of the memory of its late President, his Royal Highness Prince Albert, has been given this year to the French Emperor, Napoleon, for his encouragement of the arts, manufactures and commerce, his patronage of the fine arts, etc.
4. Exploration of the Urals.-Von Helmersen, of St. Petersburg, has been commissioned by the Russian Government to explore the central parts of the Urals, with special reference to the discovery of coal, which some geologists of distinction have thought to exist there.
5. Mineral Waters.-Scouteten, in a paper read before the Academy of Sciences at Paris in July, endeavors to demonstrate that the medicinal value of mineral waters is due mainly to their electrical condition.
6. Association for the Advancement of Science in France.-This association beld an extraordinary session at Marseilles, in May, commencing on Friday the 26th, on the occasion of the inauguration of the Observatory there, at which Le Verrier was present.-Les Mondes, June 22.
7. A Central Meteorological Bureau in Prussia was instituted on the 1st of May. It will be connected with the principal ports of Prussia, and will make regular announcements of all meteorological phenomena, storms, etc., to the bureau. The atmospheric bulletins of the principal cities of Europe, containing especially whatever relates to the progress of storms, will be placarded in the principal seaports.
8. Goeppert on the Diamond.-Goeppert has published his essay on the organic nature of the diamond. He shows that it cannot be of igneous origin; for it turns black when highly heated. Moreover it contains sometimes, besides other crystals, germs of Fungi, and fibres of vegetable structures higher in organization.

OBITUARY.

Sllbermann, Curator of the Museum of the Conservatoire des Arts et Metier, died in July, at Paris, in his fifty-ninth year.

Dr. Samuel P. Woodward, F.G.S., a member of the Council of the Geological Society, died at Herne Bay, on the 11th of July, at the age of forty-three. Dr. Woodward was assistant in the department of geology and mineralogy in the British Museum. He is the author of various scientific papers, and between the years 1851 and 1856 , published his excellent work "A Manual of Recent and Fossil Shells."
Sir Jous William Lubbock, Bart, died in Kent in June last, in his sixty-third year. He was one of the Vice Presidents of the Royal Society.

Sir Wiliak J. Hooker, the eminent botanist, died in August.

VI. MISCELLANEOUS BIBLIOGRAPHY.

1. A treatise on the Assaying of Lead, Copper, Silver, Gold and Mercury from the German of Bodemann and Kerl, translated by W. A. Goodyear, Ph.B. 12 mo, pp. 214, with plates; published for the Bergelius Trust Association, by John Wiley \& Son. New York, 1865.Bodemann's Anleitung aur Berg- und Hütten-männischen Probierkunst, the 2 nd edition edited by Bruno Kerl, is well known as a work on assaying, which for accuracy of statement and fullness of detail is unsurpassed it not unequaled. The present translation of a most important part of this book is a very welcome addition to the literature of assaying in the English language. Assayers, who have heretofore been confined to the ragaries of Mitchell, as well as of most other English and American works on this subject, will take great satisfaction in studying the clear exposition of the theory of the processes, and the careful directions for the practical operations in assaying given in this book. Mr. Goodyear has endeavored to adhere strictly to the text in making his translation, and we think in some instances he has sacrificed clearness, and even accuracy, in too closely holding to the German idiom; but, notwithstanding, the translator deserves the thanks of chemists and assayers for this contribution to Laboratory literature. The book is published by the Berzelius Trust Association, a society of students connected with the Sheffield Scientific School of Yale College.
2. The Declaration of Students of the Natural and Physical Sciences. 30 pp ., 8vo.-This pamphlet, issued recently in England, contains a declaration of regret that science is sometimes misused for throwing doubts upon the "truth and authenticity of the Holy Scriptures," followed by more than seven hundred signatures. Its object is excellent, and it is gratifying to find the names of such men as Sir David Brewster, Sir John Richardson and J. H. Balfour in the long catalogue. Yet the pamphlet is not satisfactory, because we are sure that there are large numbers of men of science in Great Britain, equally confident of the truth of the Bible, whose names are not included. They have objected to giving their names, as English journals have intimated, because there was something of reproach implied against others, who, they knew, whatever their views respecting the Bible, were honest searchers for truth; and because also, as they thought, this division of men of science into seemingly hostile ranks was calculated to operate against that independence in investigation which is essential to real progress in science.

For ourselves we regard such efforts to sustain the Bible unnecessary. They ray give courage to some wavering minds. But, on the other hand, they exhibit a fear of men which is unbecoming, and which, at the same time, is injurious to the cause they would sustain. We would rather speed on investigators of nature, in their various lines of research, feeling confideut that whatever error be now mingled with the truth will thereby be the sooner eliminated; and that when thus eliminated, Nature and the Bible will manifest all the more convincingly their oneness of authorship.
3. Smithsonian Report for 1869.-This volume contains, in addition to the Report on the operations, expenditures and condition of the Smith-
AM. Joth. Sci.-Stoond Shares, Fol. XL, No. 119.-SePT., 1865.
sonian Institution for 1863, and the Report of the Assistant Secretary on the Museum, the following important papers:-

Lectures on the Principles of Linguistic Science, by Prof. W. D. Whitney.

Memoir of C. F. Beautemps-Beaupré, by M. Elie de Beaumont.
Origin and History of the Royal Soeiety of London, prepared by C. A. Alexander.

Modern Theory of Chemical Types, by Dr. Charles M. Wetherill.
Researches on the Phenomena which Accompany the Propagation of Electricity in Highly Rarefied Elastic Fluids, by Prof. A. de la Rive.

Report on the Proceedings of the Society of Physies and Natural History of Geneva, from July, 1862, to June 1863, by Prof. Mareet.

Experimental and Theoretical Researches on the Figures of Equilibrium of a Liquid Mass withdrawn from the Action of Gravity, de., by Prof. J. Plateaut (89 wood-cuts).

History of Discovery Relative to Magnetism.
Recent Researches Relative to the Nebulæ, by Prof. Gautier.
Figure of the Earth, by Sr. Miguel Merino.
Aeronautic Voyages performed with a view to the advancement of Science, by Francis Arago,

Account of Balloon Ascensions, by James Gtashier.
Account of the Aboriginal Inhabitants of the Californian Peninsula, by Baegert, translated by Prof. C. Rau.

Ethnology.-Account of Kjoekken-Mœedding in Nova Scotia, by J. M. Jones, of Halifax; Abstract of the Fifth Report of Dr. Keller on Lacustrian Settlements, by A. Morlot; Agricultural Implements of the North American Stone Period, by Charles Rau, (2 wood-cuts); Account of Ancient Fort and Burial Ground in Tompkins county, New York, by David Trowbridge; Account of Ancient Town in Minnesota, by O. H. Kelley; Account of Ancient Relics found in Missouri, by J. W. Foster ; Account of a Mound in Exat Tennessee, by A. F. Danilsen.

Purple and Azure Dyeing, Ancient and Modern, translated from Aus der Natur.

Method of Preserving Lepidoptera, by Titian R. Peale, (4 wood-cuts), Account of a Remarkable Accumulation of Bats, by M. Figanierre è Morago, Portuguese Minister to the United States.

Tables of Weights and Measures.
4. Quartz Operators' Hand-Book. Whereer \& Randall, San Francisco, 1865. 16 mo . pp. 130. -This little manual is intended to give an outline of the various mechanical and chemical methods in use for treatment of gold and silver ores, especially those adopted in California and Nevada. In the space of forty small pages the authors treat of the blowpipe, chemical tests, the dry and humid assay, wasting, treatment of gold quartz by pan process, extraction of gold by chlorination (Plattner's method), extraction of gold by the Freiberg process, the platinum process-cupellation, Augnstin process and Ziervogel's process, besides the patio, Patera, Veatch's and the pan processes for silver ores. This extreme brevity renders the first portion of the book of little value to any class of readers. The mechanical rules and formulx, which fill much the larger part of the Hand Book, will be found
sseful to all mill men and others concerned in the management of mining machinery. Mr. Wheeler is well known in California as a successful millwright and the inventor of the "Pan," or grinder, which bears his name, so generally used in gold and silver reduction works. Mr. Randall has modified this invention by moulding its grinding surfaces in the form of the tractory conoid. His mathematical discussion of the tractory and differently formed grinding surfaces given to plates in pans of various names, is original and ingenious. The prastical result claimed by the author for his own system is expressed in the following recapitulation:-
Tractory conoidal plates of uniform hardness $=1 /$ \% 78.
Conical plates of uniform hardness $=1 \cdot 1042$.
Plain circular plates of uniform hardness $=987$ \%.
Randall's patent grinding plates $=1 \cdot 1752$.
5. The Scientific Reeieaw and Journal of the Inventor's Institute, No. 5, July 1, 1865; 16. pp. sm. fol. Cassell, Pelter \& Galpin, Ludgate Hill, London. Price 6d, stamped 7d.-A paper devoted mainly to practical science, but containing occasional articles on general principles in chemistry, pluysics and art.
6. Gesser, Coal Dils, (Bailliere, 1865).-This is a new edition of a work noticed in a previous number of this Journal, and contains many interesting details respecting the remarkable development of the Petroleum industry in the United States.
7. Tours of a Chess Knight, by S. S. Haldeman; Philadelphia, E. I. Butler \& Coo, $1864,16 \mathrm{mo}, 90 \mathrm{pp}, 114$ figures; also Bibliography of the Chess Thight's Tour, (same author and publishers), 42 pp .-This little book treats of a problem, not so much of Chess as of the Geometry of position. The Chess Knight is required, without or with other conditions, to pass over the sixty-four squares of the chess board in succession. Euler thought the problem worthy of an Academic memoir of 27 quarto pages, and De Jeanisch, in his Traité des Applications de l' Analyse Mathematique an Jeu des Échecs (2 vols. 8 vo .) has devoted to it all of the second volume and part of the first. The bibliography which forms the second part of the present work has over sixty references.

Essay on the Trees and Shrubs of the Ancients, being the substance of four leetures delivered before the University of Oxford, intended to be supplementary to those on Roman Husbandry; by C. Davbeny, M. D, F. R.S., Prof. Bot. etc., Oxford. London. (J. H. \& J. Parker.)
The Natural History of the Precious Stones and of the Precious Metals, by C. W. King, M.A., author of "Antique Gems," etc. 186 . London. (Bell \& Daldy.) - Saturn and its System, containing Discussions of the Motions (real and apparent) and telescopic appearance of the planet Satura, its Satellites and Ringz, etc., etc.; by Richard A. Proctor, B.A. Illustrated by 14 engravings on steel and copper. London. (Longman's.)

Pre-historic Times, as illustrated by Ancient Remains, and the Manners and Customs of Modern Savages: by Jon Lubsocm, F.R.S.S. London. (Williams \& Norgate.) Lake-babitations and pre historic Remains in the Turbaries and Marl beds of Northern and Central Italy; by Babrolomeo Gassaldr. Translated from the Italian, and edited by C. H. Chambers. London. 1865. (Longman \& Co.)
Ice-Caves of France and Switzerland, a narrative of Subterranean Exploration; by Rev. G. F. Browye. London. 1865. (Longman de Co.)
The Anthropological Treatises of J. F. Blumenbach, with Memoirs of him by Marx \& Flovrens, and ap account of his Anthropological Museum by Prof K^{2}
$W_{\text {AeNER }}$; and the Inaugural Dissertation of John Hunter, M.D, on the Varietiee of

Man. Translated and edited by Thomas Bendyshe, M.A. London. 1865. (Published for the Anthropological Society by Longman \& Co.)

Catalogus systematicus Dipterorum Europæ; von Dr. J. Schiner. Published in a small edition by the zoologisch-botanischen Gesellschaft of Vienna. Price 1 fl .20 kr . Also, by the same Society, Nouveau Systeme des Blattaires, by Charles Brunner, with 13 copper plates, will soon be published.

L'Etudiant micrographe: Traité théorique et pratique du Microscope et des préparations; par Arthur Chevalier. With 200 figures in the text, and plates of 300 Infusoria. 2nd ed., containing applications on the study of normal and pathological histology, by G. Pouchet ; on microscopic botany, by VanHeurk ; on Diatoms, by A. de Brebissos. Paris. 1865. (Adrien Delahaye.)

Les metaux précieux considérés au point de vue economique, par M. Roswag; 400 pp , with 28 figures in the text and 16 colored plates. Paris. (Eugéne Lacrois). Dedicated to Quintino Sella, Mining Engineer and Minister of Finances in Italy.

Guide pratique d'Entomologie Agricole; par M. H. Gomin. Paris. (Eugene Lacroix.)

Verhandlungen der k. k. zonlogischen-botanischen Gesellschaft in Wien. The 14th volume of this publication of the Zoologico-botanical Society of Vienna was issued in 1864. It contains mumerous zoological and botanical papers, and 20 copper plates, mostly colored, and covers 920 pp .8 Fo . Among the longer papers are a systematized list of the species of Lepidoptera, including all described species, by C. \& R. Feldea; a review of the names of fossils and living species of the genus Paludina Lam., by Georg Ratrer von Frauenfeld; a synonymic sydopsis of the Phryganide by H. Hayen ; Batrachological contributions by Dr. Franz Steindacener. There are also various miscellaneous zoological papers by Dr. Fbauenfeld; one on the Cecidomyia destruetor (wheat insect) of Say, by Prof. Haberlanat; ; a new system of the Diptera, by Dr. J. R. Schemer ; and many others of interest, botanical as well as zoological.

Anxals of the Lyceum Nat. Hist. of New Yobg. Vol. Vili. Nos. 2, 3. 1864. -p. 4, Descriptions of New Species of Birds of the Families Tanagridx, Cuculidx and Trochilidæ with a Note on Panterpe insignis; G.N. Lawrence--p. 46, Summary of a Meteorological Register for the year 1863 kept in the City of New York; Prof. O. W. Morris-p. 50, On Ammobroma, a New Genus of Plants, allied to Corallophyllum and Pholisma; J. Torrey.-p. 57, Notes on Species of the Family Corbiculadæ with Figures; T. Prime.-p. 92, Catalogue of Birds collected at the Island of Sombrero, W. I., with observations by A. A. Julien; G. N. Lawrence.

Procerdinges of tere Amer. Phil. Sac., Vol. X, Ho. T3.-Page 18, Radical significance of Numerals; P. E.Chase-p. 24, Heights of Auroras; B. V. Marsh.-p. 29, New Gold Crushing Machinery; R. Briggs.-p. 30, On some Indian Hieroglyphics ${ }_{W}$ at Safe Harbor; S. C. Porter:-p. 32, Relative Levels of Coal and Oil Regions; P. W. Sheafer.-p. 33, Petroleum of Kentucky, and Records of Borings in Pennsylvania; J. P. Lesley.-p. 69, A short Vocabulary of Well-established Copto.Egyptian Words for Consenient Use; P.E.Chase-p. 97 , Relations of the Magnetic Dechination to Gravity; P. E. Ohase.-p. 108, Effects of the late Tornado; J. C. Cresson-p. I09, Vanango County Oil Region; R. Brigys.-p. 110 , Popular fallacies respecting Petroleum ; J. P. Lesley.-p. II1, Relations of Gravity to the Vertical Inflection of the Magnetic Needle; P. E. Chase-p. 121, Obituary Notice of Dr. Franklin Bache; Geo. B. Wood, M.D.-p. 137, On the Mythical Compounds of Bar; J. P. Letley.
Procempines of the Entomolog. Soc. Pbiladelphia, Vol. IV, No. 3, (concluding part of the volume)--p. 331, Contributions to the Natural History of the Cynipidæ of the United States, and of their Galls; R. O. Sacken.-p. 381, Descriptions of several new species of North American Coleoptera; J. H. B. Bland.-p. 385 , Descriptions of some new species of Mutilla from Califarnia; E. T. Cresson.-p. 3913 Notes on Papilio asterias and Saturnia Promethea hermaphroditez; W. H. Ed-zeards-p. 391, Corspiled descriptions of North American Staphylinidx; ; J. H. B. Bland-p. 421, Catalogue of Hymenoptera in the Collection of the Entomological Society of Philadelphia, from Colorado Territory (continuation); E. T. Cresson, P. 489, Lepidopterwlogical Notea and Descriptions, No. 1 ; A. R. Grote \& C. S. Robinson.

A MERICAN

JOURNAL OF SCIENCE AND ARTS.

[SECONDSERIES.]

Art. XXX.-On the Origin of Prairies; by James D. Dava.
In the articles on the Origin of Prairies recently communicated to this Journal by Prof. Winchell and Mr. Lesquereux, ${ }^{\text { }}$ presenting independent theories, the view that this origin is in

Abstract

${ }^{1}$ See for Prof. Winchell's paper, xxxviii, p. 332, and for Mr. Lesquereux's, xxxix, 317, and xl, 23. Prof. Winchell supposes that the soil of the prairies is of lacustrine origin, produced during an epoch of a vast inland fresh-water sea following the glacial epoch; and that in the silt or "slime" of such a sea all pre-existing seed would disappear, so that the vegetation that would spring up over the recovered land would be only that which seeds transported from distant regions would afford, and that this "was more likely to be herbaceous than arboreal."

Mr. Lesquereux holds that the prairie land was recovered from the borders of lakes, rivers, and seas, (fresh or salt), by a process like that exemplified now on the borders of Lake Michigau and the Mississippi, Minnesota and other rivers, in which the region becomes, to a great extent, first a flat of shallow waters, and then a marsh or bog, and that such soil, or mould, owing to the nature of the moss, Cunfervas, Characees, etc., which grow in stagnaut waters and contribute to it, becomes next, as a matter of course, covered with sedges and grass. This resulting mould, he observes on p. 318, partakes " as much of the nature of peat as of that of true hamus;" it is "impregnated with a large proportion of ulmic acid, produced by the slow decomposition, mostly under water, of aquatic plants;" and "the acid of this soil, by its particularly antiseptic properties, promotes the growth of a group of plants mostly herbaceeus," while the want of a free access of oxygen is unfavorable to trees. He adds, "of all the trees, the tamarac is the only species which, in our northern climate, can grow on a peaty ground." This explanation is stated to cover almost all cases of natural prairies,-those "between the base of the Rocky Mountains and the Mississippi," the "Platas of the Paraguay and Madeyra," the "Pampas of Brazil." "the desert plains of the western salt lakes;" while in "the natural meadows of Holland," "the plains on the shores of the North Sea and the Balic," "the vast steppes of the Caspian," etc, etc., there ure "the same appearances, and the same results of a general identieal action, modified only by local and mustly climatic circumstances."

Am. Jour. Sct.-Second Series, Vol. XL, No. 120.-Nov., 1860.
any way due to the dryness of the climate is unnoticed except with the endeavor to set it aside.

The writer, in his Manual of Geology, makes, on the contrary, the degree of moisture the most influential of all causes that tend to determine either the presence of forests or absence of prairies. This idea, although not claimed as original with him, ${ }^{2}$ is the result in his mind of original observations made in various parts of the world; and he proposes briefly to state some of the facts in its favor which he has noticed.

On arriving, in 1839, off the north side of the island of Tahiti, one of the first of the Pacific islands visited by the Exploring Expedition under Capt. Wilkes, it was a matter of much surprise that the land, so famed for its tropical fertility and beauty, was bare of trees over the lower ten or fifteen hundred feet of its slopes, the forest trees being confined-the valleys exceptedto regions above this limit. The explanation was at once sug-gested-that the bare backs forming the sloping surface that lay between the valleys were too dry for trees, in contrast with the region higher up, which was one of very frequent clouds, mists and rains. The existence of forests in the valleys stretching down below the limit accorded with the explanation; for there the declivities were dripping with moisture coming out from between the nearly horizontal layers of the rocks, besides being the courses of many streamlets from the moister region above, and the route of all its rills. Observations afterwards made on the ascent of one of the lofty summits of the island, and on other excursions, confirmed this inference. Over the bare slopes there were no marshy areas; and there was positive proof in the structure of the island, the dip of the rocks beneath being always seaward, and in the nature of the surface, that there never had been such areas; while on the upper slopes, where moisture was abundant, and the ground often boggy, trees were of luxuriant growth.

Similar facts were observed on other Pacific Islands. One of them, Upolu, of the Navigator group, "was covered throughout with forests; or rather it was one dense forest from the extreme east to the west end, and from the water's edge to the very summit of the most rugged peaks. The natives had spread their cocoanut groves and bread fruit trees along the shores, but in many places the line of forests remained yet unbroken. Shrubbery and sugar cane covered some parts of the lower declivities, but there was nowhere a spot of pasture land." Parallel with this condition "the island is in general well-watered.

[^95]There is scarcely a day without low and heavy clouds about the summits of the mountains. Many streams of moderate size flow down both sides of the island to the sea, and numerous fountains gush out along the shores. ${ }^{3}$

Again at the Feejee Islands "luxuriant forests cover the elevated parts of the ridges where the frequent rains and more frequent mists and clouds afford them the necessary moisture," while lower down, "the slopes, especially to leeward, are covered with grass;" "the forest vegetation descends lower on the eastern declivities because they are well supplied with moisture from the trade winds-the rain of the southeastern side of Viti Lebu at least trebling that of the opposite side." ${ }^{\prime \prime}$

The rocks at the Navigators and the Feejees are of volcanic or igneous origin, like those of Tahiti, and similar to the latter in composition and structure.
On the western coast of America the distribution of trees was found to sustain the same view, as the writer has already explained in this Journal. ${ }^{\text {b }}$ Oregon, along the sea-border, over a breadth of 15 to 25 miles, is mostly covered with forests made up of large evergreens, some of the trees being 300 feet in height and 50 in girt; and the heavy sea-mists extend inland for about the same distance, covering the land the greater part of the time, even through the period of the summer droughts. And on the ascent of the Columbia, there is usually in summer a sudden transition from the mist region to that of clear brazen skies. Residing, in July 1841, at Astoria, within 20 miles of the mouth of the river, for three weeks we had hardly one day clear throughout; and for the following month, at Fort Vancouver, 100 miles from its mouth, we hardly saw a cloud the whole time, and the lofty peaks of St. Helen's and Hood were generally without a cloud to their very top, indicating the dry. ness of the climate over this interior region.

Beyond the forest border of Oregon, to the eastward, the plains and rolling hills, as those of the Willammet region, are bare of trees, excepting a sparse scattering of oaks, and lines of trees on the borders of the rivers, and along the slope between the upper and lower alluvial flat or terrace. But the higher hills, above one or two thousand feet in elevation, are largely forest-covered; for these, owing to their height and coolness, condense some of the moisture remaining in the sea-winds, and have, compared with the plains below, a moist soil, and the moisture which falls naturally descends along the surface. Farther east, beyond the Cascade Range of mountains, the dryness of the climate is more extreme, and the forests fail altogether

[^96]except on the high mountains; and at a point on the Columbia river, about 250 miles from its mouth, there is the "last tree" on its banks--the region beyond being seemingly too dry even for the growth of the usual river-bank line of cottonwood.

Thus the fact of a connection between the prevalence of moisture and forests, or of dryness and prairies, seemed to the writer most evident; and it appeared to be a causal connection.

To the southward, in the Sacramento region, and along the coast, a similar system of facts was, later, observed. The dryness of the climate, as is well known, increases southward; the average annual amount of rain along the cinast of Oregon is 50 to 60 inches; at San Francisco, California, according to Gibbons, but 22 inches; and farther soutio on the coast, at the beginning of the California peninsula, but 10) inches. So the forest region of the sea-border narrows sonthward, failing on the lower lands, before reaching San Francisco, and only to be found on the higher hills and monntains where cold" and elevation secure moisture from the passing wirds; and in the peninsula of Lower California, the mountains even are bare.

In the latitude of San Francisco, and farther south, the Sierra Nevadia is generally bare below a line three to four thousand feet above the sea, except in the valleys; above this line there are nearly unbroken forests; and it is stated that 50 to 75 per cent more of rain falls on these mountains than on the Sacramento prairic plains at their western foot. The eastern slope of the Sierra is much drier than the western; and although forests extend nearly to the same line, they are less dense and consist. of smaller trees.

The forests, as has been said, reach far down many of the valleys; for the stratifieation of the rocks leads often to an oozing out of subterraneal waters; and sometimes these forests stretch out over the phinns below, or form isolated patches in them. The Sacramento plains, which are a score or more of miles in width, are ordinarily eovered with grass in scattered tufts, like those of the Willammet, and have in some parts similar "oak-openings." But in one spot, near Eather River, we observed ahead, with some surprise, a thickly-phanted grove of oaks. The surprise was removed, on reaching the spot, by finding that the soil below was for some reason quite moist; sufficient to make the grass of the region green, although over the rest of the plain it was then (in Xovember) as dry, and to all appearances as dead, as hay. As the moisture gradually diminished around the borders of the area, the trees were correspondingly more and more widely spaced, and the grass shaded off into the prevailing hay-color.

Other personal observations made abroail might here be mentioned. But we may pass to some well known facts nearer
home which equally sustain the view that forests belong to moist climates, and prairies to those that are comaratively dry.

As America is the moist continent, and correspondingly the forest continent of the glove, as styled by Guyot, so North America itself graduates from forest to prairie land, or the reverse, in parallelisn with the variations in moistuie. In the United States forests originally prevailed with almost urbboken continuity over the parts which reccive the greatest amount of rain with the least amount of evaporation, and prairies or semideserts where the amount is small. Over the eastern portion of the continent, from the Gulf states to Labrador, including the most of New England and New York, the Atlantic states, and all of Tenuessee and Kentucky, the annual fall of rain is 40 to 45 inches or more; while in Michigan, the state which has afforded many of the facts appealed to by both Professor Winchell and Mr. Lesquereux, it is only 30 inches; ${ }^{\circ}$ in a large part of Ohio, Indiana andllinois, and in New Iork toward the St. Lawrence, it is 33 to 40 ; and beyond the Mississippi west of Kansas and Iowa, it is 25 to $1 \overline{5}$, and even 10 inches. Parallel with the increase of dryness, as all know, there is an increase in the dominance of prairie land; and the prairies, where the dryness is most extreme, graduate into semi-deserts. Such facts seem surely to prove that natural prairies have some kind of relation to dryness of climate, and that moisture has as much to do with the prevalence of forests.

Over the moister region of New York, and much of New - England and other portions of the country, it is common to find not only the hills and upper alluvial plains (or upper terraces of the valleys) covered with forests, where they are still in a state of nature, but even the lower flats bordering the rivers. The writer spent his early life at Ltica, N. Y., in the Mohawk valley; and facts sustaining this remark are well exhibited all along that region. Forests still cover some parts of the lower flats, although they have been mostly cat away for purposes of cultivation; and they continue north and south over the upper terraces and on over the high hills. The writer was through the valley the past summer, and observed forest patches on the lower flats (or, where the forests are gone, the old stumps,) at several places between Etica and Merkimer, over the Herkimer Hats, between Herkimer and Little Falls, between Little Falls and Johnsville, amd also cast of Johnsville. These forest patches have generally been left where they vecm because these places were too moist or swampy for cultivation, or required more draining than the value of the land seemed to warrant.
West of Utica, near Oriskany, there are large bogs which are so wet the year around that they are hardly penetrable unless

[^97]when frozen over in winter; and still they are covered with forests.

The soil of these lower flats is often the finest of silt, such as naturally belongs to bogs and lakes; and varies from this on one side to peat, and on the other to sandy loam; and that of the upper terraces and hills varies from sandy loam to gravel and the coarsest and hardest of drift-material. Yet all these different kinds of soil are covered alike with forests. There are small lakes or ponds with their borders of rushes and sedge, swamps, peat bogs, and river bottoms, like those described by Mr. Lesquerenx ; but none of the swamps, peat bogs and river bottoms, with small exceptions, have become, or show a tendency to become prairies by natural change, however acid or unfavorable for trees the soil may be. The passage is in general from swamp to forest instead of from swamp to prairie.

Dr. Asa Gray, in a recent letter to the writer dated Sauquoit, N. Y., which is in the vicinity of the Mohawk Valley, observes that in the transformation of the bogs of that region (which in part have rush-bordered lakes at centre) to forest land, the tree that in his observation comes farthest out into the bog is uniformly the Larch, young trees growing on very shaky treacherous bog; but that, according to J. A. Paine, Jr., an able botanist of Jtica, in the North Woods Black Spruce extends out as far as the larch. The next tree to the larch, and not far behind it, is the Arbor-vitoe, (Thuja occidentalis) ; the next Black Ash; the next Red Maple, (Acer rubrum); then, as it grows drier, Birch; then Elm, (Ulmus Americana). Alder, which runs out on the bog almost as far as the larch, is not here counted, it being regarded as a shrub. The "Cedar" (Arborvitæ) swamps, which are the remnants of the very extensive ones of Parishhill and Sangerfield, and from which the cedar has been cut out, and which are gradually drying, are already becoming filled with black ash, with a sprinkling of red maple, and especially of elm.

The great lake regions of Maine afford facta of similar import. I cite the following from observations made the last summer, at the suggestion of the writer, by Prof. A. E. Verrill, of Norway in Maine, (now of Yale College), and communicated by him (from Westport, N. Y., on Lake Champlain,) for this article:

[^98]change which can occur independent of climate in the vegetation of the lake margins, swamps, and meadows, botu recent and ancient.
Near Norway I found a lake, one part of which has been gradually changing to a bog, and presenting all gradations from the open lake to a comparatively dry swamp. Approaching the bog, the water becomes shoal and the bottom is composed of black, soft vegetable mud of great depth, the surface of the mud supporting a ariety of aquatic plants in patches. In still shoaler water clumps of sedges and rushes appear colleeting around old stumps, driftwood, \&c., and at the same point there are spots where various Erieaceous shrubs (such as Andromeda polifolia, Kalmia glauca, Cassandra calyculata, Ledum palustre, \&e.), with the Alder (Alnus incana) begin to form dense patches of shrubbery bogland. Back of this these patches begin to blend, and other speries are added to the shrubs, while the drift logs, \&e., give support to an abundance of sphagoum and herbaceous plants, and now trees of Arbor-vitæ and Swamp-ash begin to find support, first taking root apparently on the old logs overgrown with vegetation and covered with mould, but the roots extend downward into the soft mud and water. Both these trees will grow where their roots, and even the bases of their trunks, are continually bathed in water. Farther back in the swamp these two trees become larger and more dense, and are mixed with fir, alder, larch, and an occasional white-pine and hemlock; the latter, however, only becomes common upon the drier borders of the swamp. The red maple also often grows in these swamps, in the firmer spots. Many otber shrubs also occur, such as Rhodora Canadensis, Kalmia angustifolia, Vaccinum (several species), Myrica Gale, \&c. The entire assemblage constitutes a dense forest with thick underbrush. Some of the Arbor-vitæ grow to a diameter of three feet, and the Ash to 15 or 18 inches, in the wettest parts.

The final condition of this kind of swamp may be seen in another place a few miles distant, where an extensive meadow has been formed by clearing a portion of such a swamp in a farther advanced stage, and partially draining it. This has been cleared about fifty years. It was formerly covered by a forest similar to that described, and some portions still remain in the original condition. Other parts that have been neglected have grown up to thickets of alder, white birch, American aspen, and other trees. The grassy portion covers 300 acres, or more, and in many parts is still quite wet and soft. The soil is composed of peat and muck which in many places has been penetrated to the depth of 6 or 8 feet, and is doubtless deeper in some parts. On some patches of low clayey soil, originally islands or low points of land, there are dense thickets of larch.
In the same region there is another extensive meadow surrounded by high, well defined banks of drift material, often terraced, and forming apparently the bottom of an ancient lake at the close of the Drift period The lower parts of this basin are occupied by extensive swamps, similar to those already described, while other parts, composed of sandy soil and somewhat higher, were originally covered with a heavy forest of Pine. There is no evidence that grass ever grew upon any part of it until cleared by man.

I have observed some cases where lands have been flowed by means of dams at the outlets of lakes. In these cases, those trees, even of swamp-
ash and arbor-vitæ, which have their trunks submerged to the depth of two or three feet are invariably killed after some time.

I have met with but two cases of lakes recently drained. In one of these, a heary crop of grass was produced the first year, chiefly of "bluejoint," if I remember rightly, but in subsequent years the lake bottom grew up with great rapidity to a thicket of alder, willow, poplar, \&c.

In the cther case, coarse grass, sedges and other herbaceous plants prevailed for a year or two but very soon gave place to a rank growth of varions forest trees, including alder, white birch, willow, poplar, red maple, \&c.-the alder and willow growing wost rapidly. I have no reason for supposing that the trees did not vegetate the first year; they became conspicuous as they grew higher than the grass and other herbaceous plants.

All of the phenomena observed in Maine also appear in this region.
On the coast of Labrador, and especially at Anticosti, very extensive peat-bogs oceur under similar circumstances. On the southeastern side of Anticosti there is a bog bordering the coast for 70 or 80 miles, and often 7 or 8 miles wide, composed of peat of considerable thickness where exposed by the encroachment of the sea. In the midst of ethese bogs there are often small lakes or pools of stagnant water. The surface of the bogs or heaths is covered thickly by sphagrum and by a rariety of Ericaceous shrubs. Vaccinum, (several species), Kalmia, Rhodora, Ledum, Rubus, Chamæmorus, \&c., abound. Occasionally in the shallow pools and in wet depressions there are patches of sedges and coarse grasses; but dense clumps of alder, larch and other trees occur scattered over the surface, while immediately about the shores of the lakes there are usually dense thickets of these trees mingled with some spruce and white-birch (canoe birch). The last two trees form the chief part of the forests away from the bogs. In no case have I observed patches of grassy land occurring naturally of any considerable extent away from the immediate sea-shore. But the coast of Anticosti is everywhere fringed by a belt of coarse grass, (Elymus mollis, \&c.,) mingled with various flowering plants. This belt sometimes widens into large patches at the mouths of streams.

The smaller low islands that are occasionally swept by the spray, usually support a dense growth of the same grasses and herbs, but the higher islands, as well as those of larger size, are covered by thickets of spruce, fir, larch and birch.

From these facts you can draw whatever conclusion you may think justifiable; but I think it evident that in our climate trees will invariably vegetate in the wettest soil and even displace grass where it has already become established."

The facts described by Prof. Verrill are so full and explicit in favor of the possibility of lakes, peat-lands and swamps, passing at times directly to forest land, that it is unnecessary to cite additional observations.
In this connection it is important to note some of the conditions essential to the self-propagation of trees. We mention a few well-known facts:
a. Elms, maples, and other shade trees drop their fruit profusely over a grass-covered lawn, and yet none take root. The grass prevents the seeds for the most part from reaching the soil; or if washed into it by rains, the pre-occupation by the grass hinders their development.
b. But along the sides of an earth-made path, and in shaded places, as near a fence or hedge, a crop of young plants will often spring up.
c. These young plants, as the writer has observed about his own grounds, die off during an ordinary summer's drought. Only those which spring up where the earth is kept moist by the shade and the position is one favorable for perpetuated moisture, and those which fall into the open and enriched soil of a garden, will stand the usual summer's drought and live.
d. The simple fact is that the roots of most trees are slender and rather sparing! y branched, and the leaves also are few; and unless they have a chance to strike deep before a drought, down to depths where there is permanent moisture, and take considerable expansion at such depths, they are cut off by the dry season. Even if a peculiarly wet summer favors the seedlings so that they get a year's start, the drought of the following year is almost sure to cut them down.

In view of the facts we believe we are safe in deducing the following conclusions:

1. A prevalence of moisture is connected directly with a prevalence of forests. -This is exbibited in the distribution of forests over the surface of the continent; on mountains; down the valleys of mountains, where outcropping layers bring moisture to the surface; along the slopes dividing the alluvial terraces of many prairie regions, where moisture oozes out for the same reason-the stratification of the alluvium; over many prairie plains when they are unusually moist; and along the banks of rivers, which feel even the narrow fogs that may overlie the stream.

To avoid misapprehension of this statement it should be considered that this moist condition is not proportioned necessarily to the annual fall of rain and snow. For the mists which prevail throughout the year along some sea-coasts, and in some mountainous regions, may not drop half the amount of moisture in a year that descends through rain and snow in other regions, and still be vastly more favorable for forests. The mist keeps the ground always moist. The rains, on the contrary, may descend plentifully during half the year and give a large number of inches of fall, and yet be followed by a season of drought unfavorable to forests. Moreover, a large part of the waters of rivers flow off in the streams to distant regions; while the more

gently distilling mists keep the ground thoroughly wet, and lose much less by running off. Hence, the regions of the greatest fall of moisture on a rain-chart do not necessarily correspond with those of the greatest extent of forests. The area of even "45 inches" over the United States is not necessarily, therefore, an area throughout of forests.

Again, the effects of the falls of moisture in the shape of rain mists, \&c. depend much on the heat of the region, because of the consequent difference in evaporation. With a cool climate, like that of the coast of Oregon, there is comparatively little evaporation; and the moisture lies long in the soil. But the same moisture, from the same kind of mists, on a coast like that of Peru should produce much less effect. Forty inches of rain in a year about a mountainous region, or in a cool climate, would have far greater effect toward keeping the soil moist than in those low lands which lie in the same latitudes in the Mississippi valley. It has been stated that the amount of rain-fall in the Sierra Nevada is 50 to 75 p. c. more than in the Sacramento and Joachim plain on the east; but the effect of this moisture on vegetation is vastly greater than this on account of the cooler climate of the heights.
2. In a moist region soils of all kinds not under water may become forest-covered, from the finest silt to the coarsest and loosest gravel, from the sourest marsh mud and drying peat swamp to the most fertile alluvium.-This is shown through eastern North America, and has been illustrated by reference to facts in the States of New York and Maine.

Yet, where there is only a moderate supply of moisture, the different kinds of soil will manifest their differences in unlike productiveness in trees. The loose gravel is quick to feel droughts; the clayey soil much less so; the best vegetable mould still less so. The fact that trees will not grow over soils permanently submerged does not require us to admit that when the same region has become comparatively dry the soil is still unfit for trees. When, on the first recovery of the land, grass takes possession of the surface, forests, in moist regions, may soon spread and dispossess it.
3. Grass-regions may encroach on forest-regions, or the reverse, according to the dryness or moistness of the country. -Where the ground is permanently moist, the meadow seldom makes progress against the trees. Thus the line of forest which covers the slope lying between two terraces, so striking a feature in some prairie regions, holds its place notwithstanding the grass of the prairie plain above, and of that below it.

But if the old forest covers dry soil, the grass, or its precursors in other plants, may gradually make an undergrowth among the nearer trees, and thus commence encroachment. Droughts
do not destroy the grass, while they do the seedlings of the trees; and when, under such conditions, the old trees die, they die without successors. The encroachment is the slow work of centuries, because the standing trees are not injured by such an undergrowth. They live out their life-time, if left to nature, and only when they die does the meadow-surface complete itself.

The forest, as has been explained, cannot ordinarily encroach on the prairie. But if a prairie, through any change of circumstances, becomes permanently wet, so decidedly so as to weaken the grass, but not a region of permanent water, then the forest has its chance for encroachment.
4. If moistness, then, is especictly farorable to the growth of forests, a change in the moistness of a region occasioned by geological events would be attended by a change in the adaptedness to such growth.-The Champlain epoch of the Post-tertiary, when portions of the continent over the higher latitudes were much depressed, (in many parts 300 to 400 feet), and the more southern much less so, and when the great upper terrace flats of our lakes and rivers, often many miles in width, were made, was a time of warmer climate over the continents than the present, as the distribution of the terrestrial animal life of the era proves. ${ }^{\text {b }}$
It was, also, as the same terraces and the raised beaches prove, an era of wider expanse of lakes and rivers over the land. It was, therefore, in all probability, an era of moister climate over these regions than now. This being so, it was an era eminently favorable for the growth and extension of forests, when trees would have taken possession of the dry land not under water; that is, wherever it was not too dry, as even then was probably true of the far west. Now, after this Champlain epoch of depression, an elevation of the land began, bringing the continent up toward its present level, causing a change of climate to one of greater coolness and dryness, drainit.g extensive regions that had been under water, and drying moist areas. Consequently, there would have been, from the beginning of this cliange, a tendency to a narrowing of the forest regions; and, with such a tendency, an actual narrowing would, in one region or another, have begun.

As the various parts of the continent would bave differed hygrometrically during the Champlain epoch in the same way as now, the great dense forests of the continent, on this side of the Rocky Mountains, would have then, as now, covered the eastern portions, and the great treeless regions would have been beyond the Mississippi. Any subsequent extension of the prairies that accompanied the approach to the present era and condition would, therefore, have been from the west toward the east. The prairies would have gradually stretched their bare surfaces

- See the author's Mannal of Geology, pages 547 to 56%.
along the rivers, and made their winding way eastward among forest-clad hills, wherever the dryness of the soil most favored them. There would thus have been a slow yielding of the soil to plants that could hold their places in spite of droughts.

At the same time the new-made lands about drying bogs, lake shores, etc. would have taken their vegetation from the adjoining regions; the kind being determined by the dryness or moistness of the region through the year; by the nature of the vegetation that was most accessible with its seeds; by the character of the soil; or, if either the dryness of the climate, or its moistness, were great, very largely by this one element alone, the dryness determining the absence of trees in spite of all other conditions, and the moistness their presence. Accordingly, there are interminable forests in Eastern America, interminable prairies on the slopes of the Rocky Mountains, and in the region between an intermingling of forests and prairies.
The species of the Post-tertiary trees, as may be concluded from the observations on buried fragments, were probably identical for the most part, if not wholly, with those now existing, (as is true also of the species of invertebrate animal life). Our forests of modern trees date, beyond reasonable doubt, from this remote Post-tertiary era. Their distribution began then, and in accordance with the favoring conditions of the soil and climate. At the present time, we have the distribution of that era as it has become after being modified by the effects of subsequent changes of level and of climate.

But the modifications from these causes are, even now, far from being completed. As is well known, there are extensive forest regions where the soil and climate are so dry that if the trees were cut away they would not be able to re-establish themselves. A conformity between the distribution of trees and the climate is, consequently, only partially accomplished. Any cause that destroys the trees of a region, be it tempest, fire, or other agency, helps on this progress.

The prairies of the Willammet, and in part those of the Sacramento, and also many east of the Rocky Mountains, have now their "oak-openings," or surfaces scattered over with oaks, 15 to 20 or so, to an acre. But these trees may once have been in thick groves, as they are now clustered near Feather River, in the Sacramento region. (p.296.)

A continent, or a large portion of it, cannot pass from a condition of greater to one of less moisture without ultimately exhibiting it in the distribution of its forests and prairies.

It is, therefore, no objection to the theory here propounded, that forests, when cut down, do not, if left to nature, always resume their places, but give way to meadows. The times since the original planting are changed, and meadows are on the increase from natural causes, as well as through the agency of man.

ART, XXXI.-On the Construction of a Spectroscope with a number of prisms, by which the angle of minimum deviation for any ray may be accurately measured and its positio in the solur spectrum determined; by Josiah P. Cooke, Jr.

Iv an extract from a letter of the author published in this Journal, vol. xixvi, p. 266, a method of adjusting the prisms of a compound spectroscope was described, by which the adjustment for any portion of the spectrum could be obtained with great rapidity and accuracy. A further study of the sub. ject has shown that the method of adjustment then only briefly described admits of the highest precision, and may be applied to the exact measurement of the angle of minimum deviation of the spectrum rays. It has been thus possible to apply the great dispersive power of the large Cambridge spectroscope in determining the relative position of the various spectrum lines, and to secure all the accuracy of which angular measurements are capable. The value of such measurements is obvious, and with the hope that this method will prove to be an assistance to investigators we propose to give in this paper a description of our instrument and of the manner of using it.
The general construction of the instrument is shown in fig. 1.

The two telescopes are constructed in the usual way. The telescope A, which we shall call the collimator, has an adjustable slit placed exactly at the focus of the object glass. The small tube which carries the slit slides into the body of the telescope, but a rack and pinion motion would be preferable, so that when the focus is changed the slit will necessarily remain vertical. The rays of light diverging from the slit and rendered parallel by the object glass of the collimator next pass through
a series of prisms adjusted around a conical wheel, which will be soon described, and are then received by the telescope B. The spectrum, which is formed at the focus of the object glass of this telescopen examined with eye-pieces of different mag. nifying powers in the usual way. The object glasses of the telescopes are $2 \frac{1}{4}$ inches in diameter and have a focal length of $15 \frac{1}{3}$ inches. They rest in Y's and are provided with spirit levels and adjusting screws. The frames which hold the telescopes are supported on pivots turning in sockets at the ends of two arms connected with the body of the instrument and may be clamped in any position. The arm which carries the collimator is permanently attached to the main iron plate, but the arm, which carries the observing telescope may be moved around the plate.

The details of the construction are shown in fig. 2, which is a section made through one of the legs of the tripod and the movable arm, the telescope with its frame and pivot having first been removed from the socket. (This figure as well as fig. 4 were drawn to the scale of one inch to a foot). The parts are as follows: H is an iron tripod with leveling screws; G is a hollow mahogany column with a conical cav-
 ity at the top; F is an iron cone which rests in the conical carity, supporting the whole body of the instrument and connected by a long iron rod with a clamping screw beneath the tripod. By means of this arrangement the instrument may be turned as a whole in the horizontal plane and the collimator directed to the source of light. Above the iron cone and fastened to it securely is the main circular plate of the instrument, which is 18 inches in diameter and $\frac{1}{3}$ an inch in thickness. Near the outer edge of this plate is inserted a band of silver, which is graduated to $10^{\prime \prime}$ of arc. On the under part of the plate there is a neck and at the center of the upper surface a socket, which are accurately centered with each other and with the graduated limb. Around the neck at E moves an iron collar, to which is attached the arm bearing the observing telescope. This moves, thereforp
concentric with the graduated limb and bears a vernier by which the angular motion may be determined, reading to $10^{\prime \prime}$. In the socket of the first plate rests the pivot of a second plate, C, which turns on the first and supports the prisms with the adjusting wheel A. The diameter of the upper plate is an inch less than that of the lower plate, so as to expose the graduated arc near the outer edge of the latter, and its upper surface is as flat and even as possible. Rising from the center of the upper plate there is a tall screw pivot of iron, B, on which turns a conical wheel, made also of iron. By this motion the wheel may be either raised or lowered. This wheel is an essential portion of the instrument, and we will next consider the theory of its use.
In the ordinary method of measuring the angle of minimum deviation with a Babinet's goniometer the prism is placed on a revolving plate at the center of the graduated circle, and so adjusted that the edge of the refracting angle shall be perpendicular to the plane of the circle, and its bisectrix parallel with a diameter of the circle. The axis of the collimator and observing telescopes, moreover, being parallel with a diameter of the circle, it is evident that, when the prism and telescope are turned into the position of minimum deviation, the vertex of the angle of minimum deviation will coincide with the center of the circle, and hence the arc intercepted between two radii of the circle parallel to the axes of the two telescopes will be the measure of the angle required. This angle is practically measured by first bringing into line of collimation the observing telescope and collimator, so that the image of the slit at the end of the collimator coincides with the vertical wire in the eye-piece of the telescope. The position of the vernier on the graduated are is now noted. Then, having adjusted the prism, both the prism and the telescope are turned to the position of minimum deviation, and a coincidence established between the vertical wire and one of the lines of the spectrum. The vernier is now again read and the difference between the two readings is the angle of minimum deviation for the ray corresponding to that line.

It will be obvious however from fig. 3 , that it is not necessary for the accuracy of this measure either that the prism should be placed at the center of the circle, or that the axes of the telescope should be parallel to one of its radii. If only the bisectrix of the refracting angle passes through the center of the circle, the prism

may be placed on the outer rim of the plate, and if only the radial arm, which carries the observing telescope, moves concentric with the graduated are, the axis of the telescopes themselves may make any angle with the radius whatever. Let $O p$ and $\mathrm{O} q$ be two radii of the graduated circle. Let $\mathrm{A} p$ and $\mathrm{B} q$ represent the axes of the two telescopes in collimation and making any undetermined angles with the two radii. Place now a prism at m and turn the radial arm $O q$ into the position $\mathrm{O} q^{\prime}$, but without changing the inclination of the axis of the telescope to the arm, and let $\mathrm{B} m \mathrm{~B}^{\prime}$ be the angle of minimum deviation. Since now the two iangles $q s m$ and q^{\prime} so are similar, it is evident that the angle $\mathrm{B} m \mathrm{~B}^{\prime}$ is equal to the angle $q \circ q^{\prime}$, and is therefore measured by the are intercepted between the radii $O q$ and $O q^{\prime}$.

In order now to apply this principle in the spectroscope the glass prisms were mounted permanently in brass frames. The frames rest on three brass pins which were adjusted by filing until the refracting edge of the prism was perpendicular to the iron place C fig. 2. Two brass pins were also attached to the back of each prism and the lengths of these so adjusted that, when the prisms are pushed against the conical wheel, the bisectrix of the refracting angle should coincide with a radius of the wheel. The last adjustment was made with the aid of a guage cut from a sheet of tinned iron fitting at the same time the periphery of the wheel and the face of the prism, which was applied alternately on either side. The angle of minimum deviation of the ray D was then measured for each prism in the following way:-

The prism having been placed on the plate with the pinsapplied to the periphery of the wheel, the collimator was turned on its pivot, and at the same time the plate C turned on its center, until on applying the eye at the open slit and looking through the object-glass towards the prism, the further back edge of the prism, seen through the glass of the prism, appeared to coincide with the nearer back edge seen directly. When this is the case, it is evident that the rays of light which reach the eye from the further back edge of the prism must pass through the glass parallel to the back edge of the prism, or, what amounts to the same thing, perpendicular to the bisectrix of the refracting angle, and when the light passes in this way the prism is at the angle of minimum deviation. When the prism was thus placed the collimator was turned slightly on its pivot until the axis of the telescope prolonged passed through the center of the prism-face, and was then securely clamped in this position. This adjustment may be made with sufficient accuracy by the unassisted eye. The prism having now been turned one side, the arm of the observing telescope was turned on its center, and at the same time the telescope turned on its pivot until it came into exact collimation with
the collimator. In order to facilitate this adjustment the telescopes are provided with caps which cover the object-glasses of the telescopes with the exception of a narrow vertical slit at the center. The pivot of the observing telescope was next clamped and the caps having been removed the image of the slit seen through the observing telescope was brought into exact coincidence with the vertical wire and the position of the vernier noted. The prism was now brought back to its place by turning the upper plate of the instrument, and the observing telescope also turned until the position of minimum deviation for the ray D was attained and this well known double line brought to coincide with the vertical wire. The limb was then again read, and the difference of the two readings gave the angle of minimum deviation for the prism.
In order to show that this method of measurement is perfectly accurate, we give below the angles of minimum deviation of the nine prisms of the Cambridge spectroscope measured as just described, and in a parallel column the same angles measured in the old way with the prisms at the center of the plate. It will be seen that the differences are insignificant and within the limits of error of observation :

	Measured at eenter of plate.	Mensured on edge of plate. No. 1,	
No. 2,	$29^{\circ} 31^{\prime} 10^{\prime \prime}$	$29^{\circ} 31^{\prime} 10^{\prime \prime}$	
No. 3,	$29^{\circ} 29^{\prime} 10^{\prime \prime}$	$29^{\circ} 29^{\prime} 10^{\prime \prime}$	
No. 4,	$29^{\circ} 28^{\prime} 10^{\prime \prime}$	$29^{\circ} 28^{\prime} 10^{\prime \prime}$	
No. 5,	$29^{\circ} 37^{\prime} 0^{\prime \prime}$	$29^{\circ} 36^{\prime} 44^{\prime \prime \prime}$	$-20^{\prime \prime}$
Nu. 6,	$29^{\circ} 28^{\prime} 30^{\prime \prime}$	$29^{\circ} 28^{\prime} 40^{\prime \prime}$	$+10^{\prime \prime}$
No. 7,	$29^{\circ} 36^{\prime} 30^{\prime \prime}$	$29^{\circ} 36^{\prime} 10^{\prime \prime}$	$-20^{\prime \prime}$
No. 8,	$29^{\circ} 28^{\prime} 10^{\prime \prime}$	$29^{\circ} 28^{\prime} 10^{\prime \prime}$	$+10^{\prime \prime}$
No. 9,	$29^{\circ} 29^{\prime} 30^{\prime \prime}$	$29^{\circ} 29^{\prime} 40^{\prime \prime}$	+10
	$29^{\circ} 28^{\prime} 40^{\prime \prime}$	$29^{\circ} 29^{\prime} 40^{\prime \prime}$	-
	$267^{\circ} 37^{\prime} 50^{\prime \prime}$	$267^{\circ} 37^{\prime} 30^{\prime \prime}$	$-20^{\prime \prime}$

Although the adjustments required may appear complicated, they can be made in far less time than it has taken to describe the method.

It is a well known fact that when a beam of homogeneous light passes through a prism at the angle of minimum deviation the incident and emerging pencils make the same angle with the faces of the prism, at which they respectfully enter and leave the glass. Mence a second prism like the first stands in the same relation to the emerging beam in which the first stands to the incident beam. If then, after the first prism has been adjusted at the angle of mininum deviation a second prism be applied against the wheel at the side of the first, by moving the prism slightly to one side or the other, it will be easy to find a position, in which this prism also is at the angle of minimum devia-
Au. Jour. Sct-Second Seribs, Vol. XL, No. 120.-Nov., 1865.
tion, moving of course the prism on the plate without disturbing the position of the plate itself. In like manner other prisms may be added until the required number is obtained. (In the Cambridge spectroscope there are nine glass prisms of 45°, as shown in fig. 4.) This adjustment has only to be made, however, once for all, since when the prisms are adjusted they are fastened to a very thin, flexible brass ribbon, which, passing through a box at the back of tach prism, is there secured by clamping screws. The ends of this ribbon, moreover, are attached to a small brass drum, which, being wound up by an ordinary clock spring, draws the chain of prisms tightly around the conical wheel, and keeps them always in place. By tracing the path of a ray of homogeneous light through a series of similar prisms, as is shown in fig. 4, it will be found that the path of the ray within the prisms is always tangent to the same circle, provided that it passes through all under the conditions of least deviation. Assuming, then, that the distances between the prisms are invariable, as they must be when the prisms are fastened to a brass ribbon as just described, it will be evilent from a moment's reflection that the greater the refrangibility of the given ray the less must be the diameter of the circle, around which the prisms should be arranged in order that the ray may pass under the required conditions, and, knowing the dimeusions of the prisms as well as the index of refraction and dispersive power of the glass, it is easy to calculate ap. proximatively what the diameter should be in a given case. The dimensions of the conical wheel A , fig. 2 , were thus deter-mined-the largest diameter, $9 \frac{1}{2}$ inches, corresponding to the extreme red, and the smallest diameter, $8 \frac{1}{2}$ inches corresponding to the extreme violet rays of the solar spectrum. In order to facilitate the adjustment a series of lines were engraved encir-
cling the wheel at equal distances from each other and numbered from 1 to 12 .

Having described the construction of the instrument it will now be easy to understand the method of using it. Let us suppose that the object is to measure the angle of minimum deviat tion of the blue ray of the strontium spectrum. By examining any chart of the spectra of the chemical elements it will be found that this line is situated roughly at somewhat less than two thirds of the distance from A to II. If, then, we turn the conical wheel until the pins of the prisms all rest against the line marked 7, we sball have approximatively the true position. We then adjust the collimator with reference to the first prism exactly as before described for a single prism. 'l'urning then the upper plate so as to remove the prisms out of range, we bring the observing telescope into collimation with the collimator, as also before descrined, when on reading off the limb we have the starting point for our measure. We next turn the plate and move the telescope until the spectrum appears in the field, and carefully bring the blue line to coincide with the vertical wire at the position of minimum deviation. We now raise or lower the conical wheel and notice if in this way the angular deviation is diminished, and leave the wheel in the position where the ninimum is reached. It now only remains to again read the limb when the difference of the two readings subtracted from 360° will give the angular deviation required.

When near the position of minimum deviation a large motion of the conical wheel produces only a slight metion of the image, so that after a table has been made giving the position of the wheel for a few of the marked lines of the spectrum it is always possible to bring the wheel at starting to the desired point. Moreover, the fact that when near the position of minimum devistion the position of the image is affected so slightly by a small change in the position of the prisms, renders it possible to make all the adjustments required with exceeding rapidity and accuracy.
In order to test the accuracy of our method we have made several determinations of the minimum deviation of the line D, and although between each determination the whole apparatus Was completely dismounted, the value obtained was in ail cases $267^{\circ} 37^{\prime} 50^{\prime \prime} .^{\text {a }}$. It will be remembered that the sum of the angles measured on each prism separately at the center of the plate, as given on page 309, is precisely the same $\left(267^{\circ} 37^{\prime} 50^{\prime \prime}\right)$ and the sum of those measured on the edge of the plate ($267^{\circ} 37^{\prime} 30^{\prime \prime}$) only differs from this by $20^{\prime \prime}$.

When it is not important to use absolutely the whole aperture of the prisms it is not necessary to change the pmsition of the collimator in passing from one part of the spectrum to an-

[^99]other. If we adjust the collimator as above described, when the prisms rest against the midule circle on the wheel, the whole spectrum can be passed under review with great rapidity without any further change of the collimator, and each point seen under the condition of minimum deviation. When, however, on account of the feebleness of the light it is important to use the whole aperture of the prisms, a slight gain can be obtained by readjusting the collimator at the extreme points of the spectrum. In making the measurements described in this paper, an important advantage is gained in keeping the position of the collimator fixed; for if its position is changed, the point to which the angular measurements are referred is changed also, and must be determined anew. If however the arms, to which the telescopes are attached, are so arranged with a sliding motion that both the collimator and the observing telescope may be moved parallel to themselves without altering their relative angular position, the whole aperture of the prisms may at any time be used, and nevertheless all the measurements referred to the same point on the graduated limb.

Besides the set of glass prisms the Cambridge spectroscope is also provided with a set of sulphid of carbon prisms, which have been previously described in this Journal. They are mounted on a separate plate with a separate wheel of the proper dimensions and are arranged in all respects like the glass prisms above described. The plates are provided with handles so that one battery of prisms may be quickly lifted off from the instrument and the other put in its place. But although the liquid prisms are valuable on account of their great dispersive power in bringing out faint lines, especially in the more luminous por: tions of the spectrum, yet their use is very restricted. One difficulty arises from the immensely rapid change of the index of refraction of sulphid of carbon with the slightest change of temperature. We have noticed within half an hour on a summer's day a change of 8^{\prime} in the angle of minimum deviation of a single sulphid of carbon prism of 45°, although the temperature of the room had only in the ineantime changed eight tentbs of a Centigrade degree. The temperature of the prism undoubtedly changed much nore than this; but when we remember that the variation thus produced would amount to over one degree for the nine prisins, it will be seen that they must be useless for any purposes of direct measurement. Again, sulphid of carbon is far less transparent than glass to the more refrangible rays of the spectrum, and lastly, a slight change of temperature in the observing chamber produces at once currents in the liquid, which are fatal to good definition. Nevertheless under the best conditions, we have found that sulphid of carbon prisms define as well or even better than glass. The instrument
described in this paper, with the exception of the glass prisms, was made by Messrs. Clark \& Sons of Cambridgeport, and we would here especially express our indehtedness to Mr. George Clark for his great ingenuity in planning and executing the inechanical details. We reserve for another article an account of the results of our measurements.

Art. XXXII.-Experiments in Mechanical Polarity; by Pliny Earle Chase, M.A., S.P.A.S. ${ }^{1}$

I have already pablished three simple experiments in mechanical polarization (Proc. Amer. Philos. Soc., ix, 359), and I have endeavored in various ways to show that terrestrial magnetism is probably owing to an analogous polarization of aerial and aetherial currents. Finding that my hypothesis was sustained by some remarkable numerical coincidences, as well as by various points of correspondence between the assumell influence of gravitation-currents and the observed daily variations of declination and inclination, I sought for some practical demonstration of the truth of $m y$ inferences. I therefore endeavored to imitate the movements of the atmosphere by mechanical coutrivances, and the results, which are in most respects such as I anticipated, and which are all susceptible of an easy explanation, are embodied in the following additional experiments.
4. By the use of fans, bellows and blowers of various kinds, either alone or in conjunction with directing discs, currents may be produced that will deflect the needle in any desired direction, in accordance with simple and evident mechanical laws.
5. I have tried iron, copper, wood, zinc, and pasteboard, and find, as I anticipated, that the material employed for producing or directing the artificial currents has no effect upon their mere mechanical action, but I have found the results most satisfactory when, in order to avoid the complication of induced magnetism or electricity, I employed non-conductors, such as wood and pasteboard. Upon subsequently repeating the experiments with different metals, the effects of the induced currents have been plainly shown.
6. Increasing the number of directing discs (provided they are all parallel), often modifies the intensity of current-influence, but does not appear otherwise to affect the result.
The most striking developments that I have yet hit upon, were obtained by the aid of a Gaussian modification of Faraday's apparatus for showing the electric currents developed in moving metallic bodies by terrestrial magnetism. It consists of a heavy

[^100]copper ring (a), fixed to horizontal supports (b) (c), on which it can be rapilly rotated by a wheel (d) and pinion (e), the supports being relieved by friction-wheels (f). The outer diameter of the ring is 6 inches at each edye, and $6_{\frac{3}{16}}$ inches in the middle; the inner diameter 5 inches; the thickness $1 \frac{1}{2}$ inches. The axle ophosite to the gearing (g), is hollow, to allow the insertion of at bruss rod (h), which supports a compass (i) horizontally in the interior of the ring. The compass is not shielded by a glass, and it is therefore easily affected by aerial currents. If the ring is made to revolve around the compass needle, the N. pole of the needle is deflected in a direction opposite, to the motion of the top of the ring.

For my special purpose, I replacul this copper ring by a wooden one of the same dimensions, and prepared a number of dises (k) (b), in the form of semicircles and circular segments, fitted so that they could be fixed, in different vertical positions, in the compass bux, above the needle. Causing the wheel to rotate, with the axis variously placed, I tried the following ex-periments:-
A. Single disc, or multiple and parallel discs. a. Axis in magnetic meridian.
7. When the dise was in the meridian, the currents produced a slight tendency in the needle ${ }^{2}$ to move in the same direction as the upper part of the ring.
8. When the dise was in the equator, the slight tendency was opposite to that in Exp. 7, and the same as if it had been produced by induced electricity in the ring.
9. When the dise was inclined to the meridian, there was a marked polarity, perpendicular to the disc.
b. Axis in magnetic equator.
10. The disc being placed in the meridian, there was no disturbing carrent.
11. Placing the disc equatorially, the needle was still undisturbed.
12. But when the disc was inclined to the meridian, the cur-rent-polarity was parallel to the dise.
c. Axis 45^{σ} from magnetic meridian.
13. In nearly all positions of the disc, there appears to be a disposition in the needle to move from the axis of the ring. But when the dise is in or very near the meridian, there is a slight tendency towards the axis.
In order to imitate more closely the earth's principal thermal radiation-planes, which are all theoretically parallel with the

[^101]thermal meridians and meet at the thermal pole, I constructed a compound dise (m), of two circular segments, inclined to each other it an angle of about 30°, with which I tried the following experiments:-
B. Spherical-angular dise.
a. Axis in magnetic meridian.
14. If the disc is so placed, with its opening towards the south, that its angle is bisected by the meridian, the currentpolarity carries the reedle in the same direction as the motion of the top of the ring.
15. If the opening of the dise is turned to the north, the apparatus remaining in other respects as in the last experiment, the current-polarity is reversed (as in Exp. 8).
16. Placing the disc equatorially, I am unable to discover any current-polarity.
17. Inelining the dise towards N.W. and S.E., the needle moves towards the east, whether the opening of the dise is towards the north or towards the south.
18. If the inclination is towards N.E. and S.W., the motion of the needle is westerly.
Experiments 14 to 18 are perhaps the most interesting and important of the entire series. Exp. 14 represents the direction of the gravitation currents that tend to restore the equilibrium which is continually disturbed by the thermal radiation of the northern hemisphere, while Exp. 15 represents the like direction in the southern hemisphere, and all the experiments demonstrate that ir the daily magnetic fluctuations, the motion of that end of the needle which is nearest to the equator shouthl follow, precisely as observation shows that it does follow, the direction of the sun's meridional influence.
b. Axis in maynetic equator.
19. When the dise is in the meridian, the current-polarity and the magnetic polarity coincide.
20. If the dise is in the equator, with the opening to the east, when the top of the ring moves towards the north the needle declines to the east.
21. But when the motion of the ring is towards the soutb, the current polarity is reversed, and the needle declines to the west.
22. The reversal of the disc, placing the opening to the west, likewise reverses the polarity, the declination being east when the ring moves south, and west when the ring moves north.
23. The dise being inclined to N.W. and S.E., the needle declines towards the west (the action in Exp. 17 being reversed).
24. Changing the inclination of the disc to N.E. and S.W., the declination changes to east (reverse of Exp. 18).
From Exp. 19 to 24 we may infer that in consequence of the action of the trade winds, combined with the greater radiation of the
northern hemisphere, there should be a constant eastward tendency of the magnetic declination, such as is indicated by the secular variation of the needle.
c. Axis 45° from magnetic meridian.
25. When the dise is in or near the meridian, there is a slight tendency in the cxtremity of the needle which is under the opening of the dise, to follow the direction of the top of the ring. In all other positions the needle declines from the axis.
d. Axis variously inclined.
26. If the inclination of the axis to the meridian is less, or greater, than 45°, the results approximate respectively to those obtained when the axis is in the meridian, and when it is in the equator.

Art. XXXIII.-Nitrates of Iron; by John M. Ordway.
Or the scattered accounts to be met with respecting the action of nitric acid on iron, few or none are worthy of entire confidence, because all are defective in the statement of conditions; and failing to make due reservations, they commonly set forth partial facts for general truths. In this way Thenard long ago fell short of correctness in each and every assertion when he said," "On ne peut obtenir que du nitrate de fer vert et du nitrate de fer rouge; et encore le premier ne se forme-t-il qu'en prenant de l'acide à 5°, et le second, qu'en employant de l'acide au plus à 12° à 15°. Sí l'acide étoit plus concentree, une portion de l'oxide rouge se precipiteroit, et l'on n'en retrouveroit plus en dissolution que trés peu s'll avoit 36° à 40° " And some later observers have been little more successful in generalizing from insufficient data. It is singular that chemical writers in speaking of the varied reactions have hardly alluded to any other cause of the great diversities observed except difference in the strength of the acid used. Davy does indeed go so far as to make a rather indefinite mention of temperature, and describes the phenomena thus: "When very dilute nitric acid, that is, such as of specific gravity $1 \cdot 16$, ${ }^{3}$ is made to oxydate iron without the assistance of heat, the solution gives out no gas for some time, and becomes dark olive-brown." "When very dilute nitric acids are made to act upon iron, by the assistance of heat, nitrous oxyd is produced in considerable quantity mingled with

[^102]nitrous gas and nitrogen." "In the beginning of a dissolution the nitrous gas generally predominates, in the middle nitrous oxyd, and at the end nitrogen."

It should be remembered that the terms iron and nitric acid are too generic to allow qualifiers and definers to be altogether dispensed with. It must also be borne in mind that a finely divided metal does not always behave exactly like compact lumps of the same; and that heating or cooling a few degrees sometimes suffices to change the order of affinities of substances in mutual contact. Λ sound philosophy would therefore at the outset suggest the inquiry whether the action of nitric acid on iron is not a function of several variables, such as the quality, the quantity, and the strength of the acid; the form, the kiud, the state, and the amount of iron, and the quantity put in at a time; the initial temperature, and the range of temperature allowed during the action, pressure, light, rest or agitation, and the access or exclusion of air.

Having only the data afforded by a few hundred experiments, I cannot presume to enter into a systematic and thorough discussion of all possible causes of variation; but the narration of some of the principal trials will serve to show that most of these supposed influences are really operative.

Wrought iron turnings and weak acid were found sometimes to give off hydrogen copiously and produce a green protonitrate, while in other instances nitric oxyd was evolved and a red pernitrate was formed.
For some comparable trials, turnings were secured clean and all alike by catching them as they fell from the lathe in turning a shaft of common rolled iron. The acid used was a nearly colorless commercial nitric acid about free from chlorine and sulphuric acid. The following are the final approximating terms of convergent series of experiments made by varying the temperatures, all other things being equal:

1, N.-At $45^{\circ} \mathrm{C} ., 100 \mathrm{~g}$. of nitric acid of sp. gr. $1 \cdot 03$, with 5 g . of iron added all at once, gave off hydrogen continuously. The temperature during the action rose to 49°.
n.- At $46^{\circ} \mathrm{C}$., the same materials gave bydrogen for a few moments and then, changing, extricated nitric oxyd to the end. The temperature rose to 50°.
$2, N$.-At $35^{\circ} \mathrm{C} ., 100 \mathrm{~g}$. of nitric acid of sp. gr. 1.04 , and 5 g . of iron yielded hydrogen only and made a protonitrate. The beat rose to $45 \frac{1}{2}^{\circ}$.
n.- At $36^{\circ} \mathrm{C}$, the same quantities of the same materials gave nitric oxyd and produced a dark red solution.
$3, N .-A t 31^{\circ} \mathrm{C}$., 100 g . of acid of sp. gr. 1.05 and 6 g . of iron gave off hydrogen only. The thermometer inserted rose to $4 \mathrm{~T}_{2}^{\circ}$.
n.-At $32^{\circ} \mathrm{C}$., 100 g . of acid 1.05 and 6 g . of turnings evolved nitric oxyd and heated to $47^{\circ} \mathrm{C}$.
$4, N$.-At $16^{\circ} \mathrm{C}$, 50 g. of acid of sp.gr. 1.06 with 3 g . of iron evolved hydrogen throughout the action, though the temperature rose to 27°.
Ami. Jour. Scl-Second Series, Yol. XL, No. 120.-Nov., 18ks.
n.-At $17^{\circ} \mathrm{C}$., 50 g . of acid and 3 g . of turnings gave off hydrogen for a moment, then stopped entirely, and then went on and evolved nitric oxyd to the end.
$5, N$.-Taking another kind of iron turnings, at $29^{\circ} \mathrm{U} .60 \mathrm{~g}$. of nitrie acid of $\mathrm{sp} . \mathrm{gr} .1 .04$ and 3 g . of iron gave hydrogen and a protonitrate.
n.-At $30^{\circ} \mathrm{C}$., the same quantities of the same materials gave hydrogen for a while, and then changing evolved nitric oxyd and made a pernitrate.

It is worthy of notice in these cases that the final action is determined by the initial temperature, and not by that which may be reached during the operation. We see too that when the temperature alone is varied, the dividing limit between entirely different reactions is pretty sharply defined; but with unlike qualities of iron, the limit is by no means the same for the same strength of acid. Indeed, in trying some sorts of the metal, there has been no production of hydrogen observed under any circumstances. And it may be that the failure of others to notice such a phenomenon is owing mainly to their chancing to operate with iron of the purer kinds. Priestley ${ }^{5}$ reports having once obtained "explosive air" by warming iron with nitrate of iron; and this solitary instance appears to be the only one on record.

The essential peculiarity of hydrogen evolving iron remained a mystery till I noticed that the gas blackened particles of rust floating in the water over which it was caught. The gas was found to be capable of discoloring paper moistened with a lead solution. So a small fractional per-centage of sulphur is the chief, if not the only, constituent of iron which suffices to make the acid depart from its more usual modes of operation; and probably it is the proportion of sulphur which determines for acid of a given strength the dividing limit of termperature between hydrogen and nitric oxyd production. I have seen a temporary evolution of hydrogen even with an acid of sp . gr. 1.08, and it is possible that a still stronger acid might operate in the same way on some irons, at a very low temperature.

The following trials show differences caused by what is conveniently designated as "mass;" but how far "mass" depends on mere weight and how far on the extent of surface exposed to action has not been ascertained.

6, a.-At $35^{\circ} \mathrm{C}$., 100 parts of nitric acid of sp . gr. $1 \cdot 04$, with 5 parts of wrought iron turnings, gave off hydrogen only:
b.-At $35^{\circ} \mathrm{C}$., 100 parts of nitric acid of sp.gr. 1.04 , with two parts of iron turnings, gave hydrogen at first and then evolved nitric oxyd and made a red solution.
${ }^{7}$, at-At $23^{\circ} \mathrm{C}$., 100 parts of nitric acid of sp.gr. 1.04 , with 28 parts of cast iron, gave hydrogen only and made a protonitrate.

[^103]b.-At $23^{\circ} \mathrm{C}$., 100 parts of nitric acid of sp.gr. $1 \cdot 04$, with 4 parts of the same cast iron, evolved nitric oxyd and yielded a pernitrate.
$8, u_{0}-100$ parts of nitric acid of sp. gr. $1 \cdot 05$, with 50 parts of cast iron, emitted hydrogen only.
b.- 100 parts of nitric acid of sp . gr. 1.05 , with ten parts of the same iron, extricated hydrogen at first and then evolved nitric oxyd and produced a pernitrate.

Minate proportions of sulphur or phosphorus are known to have a wonderful effect on the physical properties of iron, and now the hydrogen production shows that one substance at least possesses a not less remarkable power of altering the normal chemical reactions; for when we take the purest iron to be had, such for instance as that used for fine wire, the alternative of nitric oxyd evolution is silent solution. When no gas is set free the product may be either protonitrate, or pernitrate, or an uncertain mixture of the two; and after long continued action, protoxyd of iron or peroxyd may be precipitated. Oftentimes, when air is freely admitted there is not only no loss but an actual gain in weight. In such cases probably nitric oxyd in fact forms slowly, but rising no farther than the surface of the liquid it is regenerated and fixed by atmospheric oxygen. There is always a production of nitrate of ammonia, but I have invariably found the quantity much too small to account for all the oxydation that takes place.

For trials of the purer irons, coarse wire was taken, of such size that one meter weighed 15.6 g . A fine wire was used weighing 0.54 g . per meter, and therefore for the same weight presenting $5 \frac{1}{3}$ times as much surface as the course.

9 , a.-At $0^{\circ} \mathrm{C}, 100 \mathrm{~g}$. of nitric acid, of sp. gr. $1 \cdot 05$, with 5.2 g . of coarse wire, gave off very little gas and made a protonitrate containing 0.26 p.c. of ammonia.
b.-At $22^{\circ} \mathrm{C}$, 105 g . of nitric acid of sp. gr. 105 , with 5.2 g . of coarse wire, gave off nitric oxyd, and made a solution of basic pernitrate whith contained 0.12 p . c. of ammonia.
10.-At $0^{\circ} \mathrm{C} ., 54 \mathrm{~g}$. of perfectly pure nitric acid of sp. ap. 1.05 with 6 g . of fine wire, $10=\mathrm{t} 0.080 \mathrm{~g}$. and made a protontrate ant sure gren oxyd. The product contained 0.2 p . c. of ammonia.
11.-At $9^{\circ} \mathrm{C} ., 68 \mathrm{~g}$. of nitric acid of $\mathrm{sp} . \mathrm{gr} .1 .06$ and 35 g . of fine wire lost only 0.090 g . Somewhat more than half of the iron dissolved was in the state of protonitrate. There were in the prothet $0.09 \mathrm{p} . \mathrm{c}$. of ammonia.
12.-At $0^{\circ} \mathrm{C}, 97 \mathrm{~g}$, of nitric acid of sp.gr. $1 \cdot 10$ and 10 g . of fine wire lost 0.72 g . The product contained $0.26 \mathrm{p} . \mathrm{c}$. of anmonia and 0.7 p.e. of iron, of which about two-thirds were in the form of protonitrate.

Thus, by operating on the parer sorts of iron at low temperatures, we may get an unmixed protonitrate, with acid of as high a specific gravity as 1.05 . And acid of much greater strength gives some protonitrate, if the action is retarded by cold.

13 . - 71 g . of nitric acid of sp. gr. $1 \cdot 25$ being cooled in snow, 10 g . of the fine wire were gradually added. 8 g . of the iron were dissolved and the loss was only 123 g . Were the metal in this case oxydized by the mere decomposition of the acid, 4 g . of nitric oxyd should have been given off. The solution did iudeed contain some ammonia, but its amount was too trifling to account for any considerable part of the oxydation.

The nitric oxyd, therefore, instead of passing off as fast as it was liberated, must have been in part oxydized by the superincumbent air and absorbel back into the liquor. The following instance gives a more forcible illustration of this matter:
14.-7 g . of fine wire were gradually dropped into 97 g . of nitric acid of sp. gr. 1.20. The iron was all taken up leaving only some black skeletons of the fibers. There was no loss, but a gain of 0.26 g . The pro-
duct contained 0.13 duct contained 0.13 p . c. of ammonia and a trace of protonitrate.

As the iron in this experiment was all used up, it is plain that the production of ammonia and a protosalt was not owing to the after reastion of the partly made pernitrate on an excess of the metal. And it seems likely that the formation of protonitrate, pernitrate, nitrate of ammonia, and nitric oxyd, and the absorption of oxygen from the air were going on simultaneously, and during the whole time.

It is not certainly known whether, in the direct action of nitric acid on iron, the generation of ammonia and the formation of protonitrate have any necessary connection. I have never detected protonitrate in the product unless ammonia was also present; but ammonia is sometimes found when the iron is all in the state of pernitrate. Yet in the latter case a protosalt may have been formed in some stage of the operation and subsequently oxydized as the action went on. No doubt there is often a partial rearrangement of the elements; for a perfectly clear solution decanted from the undissolved iron, will sometimes in the course of a few days, deposit a considerable quantity of rust and give off some nitric oxyd.

The inquiry naturally suggesta itself whether in case of silent solution there may not be a nitrite formed,- 2 Fe and 3 NO giving $\mathrm{Fe}_{2} \mathrm{O}_{3} 3 \mathrm{NO}_{4}$: Were it so the product would slowly decolorize permanganic acid; but the amount of permanganate bleached by any of the products has never much exceeded what was due to the quantity of protonitrate present. I have not, indeed, found any good reason for believing that there is any such thing as a sesquinitrite of iron.

When we bring together iron and nitric acid of as high a specific gravity as 1.3 the phenomena of passivity sometimes manifests itself; and the induction of such a state depends not merely on the strength of the acid, but has some relation to its quality and temperature, and to the kind and condition of the
iron. In speculations respecting the cause of passivity, it has not unfrequently been taken for granted that this singular change is wrought in iron only by the very strongest acid. Thus in a brochure ${ }^{6}$ setting forth a new theory of the constitution of acids, Peretti gives the following unsound instance in support of his views, and goes on to argue that inactivity is owing to the lack of a certain hypothetical deutoxyd of hydro-gen:-"Il ferro che è attaccato si fortemente da questo acido, preparato con il commune metodo $\mathrm{AzO}_{2}+2 \mathrm{HO}_{2}$, cessa di esserlo posto a contatto con l'acido azotico fumante $\mathrm{AzO}_{4}+\mathrm{HO}_{2}$ cioè a dire con questo acido privato de un equivalente di acqua," etc. But the fact that an acid of as low a specific gravity as 1.20 may refuse to act on certain kinds of iron is far from lending any support to this and some other theories that have been proposed. The strongest acid has apparently no more effect on iron than so much water would have; but with acid moderately strong there is often a momentary action, and then the metal brightens and undergoes no further change. Initial temperature bas much to do with determining the continuance or termination of the active state; and yet for any particular acid or iron it is not easy to state the exact degree beyond which quiescence is no longer possible; for in a still liquid, an incipient action may, by reason of local heating, get such a start that it will go on to the end, while a thorough and constant stirring would so distribute the small amount of heat evolved on first contact as to cause a speedy cessation of chemical change. But when passivity has once supervened, it requires very strong heating of the acid to make it attack the iron again. The following trials show that in treating of passivity we should take into account not only the strength of the acid but also its quality and temperature, the degree of agitation, and the kind and condition of the iron:
15.-Some nearly pure commercial nitric acid of sp.gr. 1.36 being heated to $34^{\circ} \mathrm{C}$. and briskly stirred, a bit of bright iron wire was dropped in. The action continued till the metal was all gone.
In another experiment with the acid at $33^{\circ} \mathrm{C}$, the action quickly ceased.
16. -Nitric acid of sp. gr. $1^{3} 38$ warmed to $31^{\circ} \mathrm{C}$., soon rendered iron wire passive.
Some of the same acid at $32^{\circ} \mathrm{C}$., kept on acting till the iron was used up.
17, a.-A nearly pure and colorless acid of sp.gr. $1 \cdot 39$ warmed to 30° C., rendered iron wire passive ; but when such acid was heated to $31^{\circ} \mathrm{C}$., before adding the iron, the action kept on.
b. -Some crude red acid of sp. gr. 1.39 warmed to $41 \cdot 5^{\circ} \mathrm{C}$. exercised but a momentary action on wire; and when the acid and iron were heated together after the contact, the wire did not recover its active condition till the temperature was carried up to $88^{\circ} \mathrm{C}$.

- Dell'Azione chimica dell'Acqua sopra i Sali e sopra gli Acidí. Roma, 1861.

This acid heated to $42^{\circ} \mathrm{C}$. rapidiy dissolved iron wire.
18 , a.-A pale commercial acid of sp. gr. $1 \cdot 40$, warmed to $33^{\circ} \mathrm{C}$., refused to dissolve iron wire.

With such acid at $34^{\circ} \mathrm{C}$., the action kept on.
b. -Some pure acid redistilled with bichromate of potash, having the sp.gr. $1 \cdot 40$, and being warmed to $36^{\circ} \mathrm{C}$., quickly induced passivity in iron wire.

With some of the same acid at $37^{\circ} \mathrm{C}$., the action did not cease till the iron was all gone.
c.-Pure red acid of sp. gr. $1 \cdot 40$ warmed to $58^{\circ} \mathrm{C}$., rendered wire passive.

Such acid at 59°, C. continued to act.
d.-Some commercial red acid of sp. gr. $1 \cdot 40$ warmed to $65^{\circ} \mathrm{C}$., had but a momentary effect on iron wire.

The same acid at $66^{\circ} \mathrm{C}$., kept on acting.
19.-A pale acid of sp. gr. $1 \cdot 41$ heated to $41^{\circ} \mathrm{C}$., rapidly dissolved iron dropped in during slight agitation; but with the initial temperature $40^{\circ} \mathrm{C}$., the wire became passive.

When this same acid was briskly shaken at the time of contact, 49° C. was the limit of passivity.
20. a.-Pale acid of sp. gr. $1 \cdot 42$, at $55^{\circ} \mathrm{C}$., rendered iron wire passive; at $56^{\circ} \mathrm{C}$. the action kept on.
b. -Common red nitric acid of sp.gr. 1442 , even when warmed to 82° C., induced passivity in iron ; but with the same acid at 83°, the action continued.
21. -Steel wire scoured bright became passive when it was agitated with pure colorless nitric acid of sp. gr. $1 \cdot 30$, heated to $50^{\circ} \mathrm{C}$.; but when the acid had first been warmed to 51° there was a continued action.

Other acil of sp . gr. $1 \cdot 30$ with other sorts of steel, gave the same limit of passivity.
22. a.-Pare nitric acid of sp. gr. 1.34 heated to $71^{\circ} \mathrm{C}$., soon ceased to act on steel wire; when such acid was first heated to 72° it did not induce passivity.
b. -The same acid even at $100^{\circ} \mathrm{C}$., had no action on the same steel wire freshly annealed and scoured bright.

For trials of rough and less compact steel, two very long turnings were breken up, anif furnished bits enough for a large number of experiments with metal of one and the same quality.
23.-On this steel nitric acid of sp. gr. 1.26 acted rapidly and continuonsly, even when it had been previously conled to $0^{\circ} \mathrm{C}$.

Nitric acid of sp.gr. $1-27$ and at $40^{\circ} \mathrm{C}$. soon ceased to act on a bit of steel added during brisk agitation; with the acid first heated to 40.5° the action continued.

And with acids of sp. gr. 1.28, 1.29, 1.32, 1.33 and 1.34, the limit of passivity was between 35° and $40^{\circ} \mathrm{C}$.

With aeid of sp. gr. $1 \cdot 345$ and at $52.8^{\circ} \mathrm{C}$, the steel became passive; with the same acid first heated to 53.3°, the action went on.

Acid of sp. gr. $1 \cdot 348$ even at $76 . \%^{\circ} \mathrm{C}$. rendered the steel passive; when this acid was first heated to 79.5° the action would not stop.
24.-The steel turninga were also tried with common red nitric acid.

Such acid of sp.gr. $1 \cdot 34$, at $65^{\circ} \mathrm{C}$., rendered the steel passive; with the initial temperature $65 \cdot 6^{\circ}$ it continued to aet.
Acid of sp.gr. $1 \cdot 335$, at $58.3^{\circ} \mathrm{C}$., soon ceased to act; with such acid at $58 \cdot 9^{\circ}$ the action went on to the end.
With acid of sp.gr. $1 \cdot 33$, at $49 \cdot 4^{\circ} \mathrm{C}$., the action was momentary; with this acid first heated to 0° there was no stoppage.
With acid of sp. gr. $1 \cdot 327$ the limit of passivity lay between $47 \cdot 2^{\circ}$ and $47 \cdot 8^{\circ} \mathrm{C}$.
Acid of sp. gr. 1.32 at 32.2° induced passivity; with the same acid at 32.8° the action continued.

With cast iron the limit of passivity cannot be so precisely defined. Acid of moderate strength often continues to dissolve the iron very slowly and silently after the first momentary, violent action is over. It having been found by many trials that passivity may occur in cast iron even with acid of as low sp. gr. as $1 \cdot 20$, the following definite experiments were made:
25.-Took in each case a tared lump of iron weighing between 2.8 and $3 \cdot 3$ grams, and some acid at $25^{\circ} \cdot 5^{\circ} \mathrm{C}$. At the end of four hours the bits of iron were cleared of the loosened carbon, washed, dried and weighed.

With acid of sp.gr. 1.20 the iron had lost 0.218 g .

$"$	$"$.	1.19	$"$	$"$	0.290
$"$	$"$	1.18	$"$	$"$	0.386
$"$	$"$	1.17	$"$	$"$	1.497
$"$	$"$	1.16	$"$	$"$	1.529
$"$	$"$	1.15	$"$	$"$	1.512
$"$	$"$	1.14	$"$	$"$	1.454

With the 1.20 acid the apparent action lasted but five minutes, and in the next two cases the evolution of gas continued somewhat longer. In the remaining instances the action lasted throughout.
26.-Of another specimen of iron, pieces weighing between 6 and 7 grams were tried, each with 20 c . c. of acid at $28^{\circ} \mathrm{C}$. At the end of 13 hours the products were gelatinous, basic pernitrates, turbid looking, but quite soluble in water.

With acid of sp.gr. $1 \cdot 18$ the iron had lost 2.264 g .

$"$	$"$	$1 \cdot 175$	$"$	$"$	2.295
$"$	$"$	$1 \cdot 17$	$"$	$"$	2.266
$"$	$"$	1.16	4	$"$	2.246
$"$	$"$	1.15	4	4	2.141

27.-Another sample of cast iron in pieces weighing between $2 \cdot 7$ and 3 grams was tried in each instance with 20 c.e. of acid at $23^{\circ} \mathrm{C}$. At the end of nine hours the iron in acid of sp . gr. $1 \cdot 20$ had lost 0.285 g .

"	"	1195	"	$0 \cdot 296$
"	"	1-19	"	0.279
"	*	1.185	"	0.315
،	${ }^{6}$	$1 \cdot 18$	"	0.375
*	"	$1 \cdot 175$	"	$0 \cdot 407$
"	"	117	"	$0 \cdot 414$
"	"	$1 \cdot 165$	"	0.708
"	"	$1 \cdot 16$	"	$1 \cdot 692$
"	"	1-155	"	1.856
"	"	$1 \cdot 15$	*	$1 \cdot 830$

In the first instance the action was apparently over in six minutes. In the next five cases all was quiet at the end of about twenty minutes. In the last three there was no stoppage.

The phenomenon of passivity,-which had been observed by Wenzel ${ }^{7}$ as long ago as 1782, and has been the subject of more speculation than experiment,-is explained by some as owing to the formation of a coating of insoluble oxyd. But we have no reason to suppose that an uncombined oxyd can possibly be formed in the presence of a great excess of strong acid. In fact after contact with the acid the surface of the iron often remains as bright as ever, and a crust so thin as to be transparent must be too thin to be impermeable.

Others make the more plausible assertion that the metal immediately becomes covered with a layer of nitrate insoluble in nitric acid. Thus Heldt says:"- "Die Haut von saltpetersauren Eisenoxyd durch welche das blanke Metall mit seinem Glasz hindurch schimmert, ist unter einer guten Lupe deutlich zu erkennen." I have never been able to detect any such film with a magnifier, and my experiments with heated nitric acid go to show that in many cases an adhering coat of nitrate cannot exist; for though the crystallized salt is not soluble in cold strong acid, it dissolves readily enough even in monohydrated acid with the aid of a moderate heat. When iron has become passive while cold, the acid ought not to require heating beyond 50° to make the action recommence. But we have seen that even boiling sometimes fails to remove passivity.

When the iron is temporarily attacked, an incrustation of oxyd, or of nitrate, could only by degrees acquire sufficient thickness to resist the acid; and hence the theory of a protective film would require the gradual cessation of activity; but in fact the cessation is usually sudden and abrupt.

Reason seems to be on the side of those who refer passivity to a molecular change in the iron, which may be induced by a momentary electric action set up on the first contact of the acid with the metal. And such an alteration in the electric or chemical relations of iron is no more wonderful than the modification of the mechanical properties of steel by tempering, or the induction of permanent magnetism in steel.

The following summary shows the results to be obtained by bringing together iron and nitric acid under various conditions.
1.-There may be either no perceptible action or only a momentary one, the iron quickly becoming passive.

Passivity supervenes most readily with a red acid and with carburetted iron. And steel has its liability to become inert enhanced by annealing.

[^104]2.-There may be silent action with the production of protonitrate, or of pernitrate, or of both together.
3.-There may be a more or less rapid evolution of gas, mostly nitric oxyd,-and the formation of an acid, normal, basic, or rusty pernitrate, or of a mixture of protonitrate and pernitrate.
4.-Hydrogen may be given off continuously, while a protonitrate is formed.
5. - Hydrogen may be evolved rapidly at first and then more and more slowly till there comes a pause; after which the reaction changes and nitric oxyd is liberated abundantly, a pernitrate being the final product.
6.-A very small portion of the acid may be decomposed so as to generate nitrate of ammonia; and this can take place while nitric oxyd, or hydrogen, or no gas at all is given off.
7.-During a moderate action there may be an absorption of oxygen from the air, and consequently a greater amount of oxydation will ensue than can be accounted for by the gases extricated and the nitrate of ammonia formed.
Pernitrate solutions made with weak acid and excess of iron are generally so basic as to become turbid when they are treated with a solution of any sulphate. The precipitate, which is probably the tribasic persulphate of iron, is producible whenever the nitrate solution contains less than two equivalents of acid to one of ferric oxyd.

The proneness of nitric acid to dissolve an excess of iron, renders it hardly possible to make directly a solution that shall contain an exact normal nitrate; for even if we try to use the precise quantities of material which theory would indicate, the reaction is not simple enough to allow us to predict just how much acid will be consumed in efferting the oxydation. Yet the procuring of a normal nitrate, which has been spoken of by some writers as very difficult, is far from being a hard matter. We have only to resort to the process by which most other erystallizable salts are insured free from excess of acid or base. The nitrate readily crystallizes out of an acid or normal solution, and of all the ferric salts it is the easiest to obtain in crystals and in a state of purity. In concentrating a solution, care should be taken to apply but a moderate heat: and, before setting it aside to crystallize, enough strong nitric acid should be added to make the liquid seen in a thin stratum appear of a pale yellow color instead of a deep red.

Solid Nitrate of Iron.-There are two definitely crystallized sesquinitrates of iron, differing much in form and composition. The cubic nitrate noticed by Schönbein ${ }^{3}$ in 1836 and analyzed by Hausmann ${ }^{20}$ in 1854, is a tetrahydrate, $\mathrm{Fe}_{3} \mathrm{O}_{3} 3 \mathrm{NO}_{5} 12 \mathrm{HO}$,

[^105]-and, as will be shown presently, is produced only under circumstances of peculiar constraint. The more commonly occurring salt, which forms when there is no deficiency of water, is the oblique rhombic sexhydrate, $-\mathrm{Fe}_{2} \mathrm{O}_{3} 3 \mathrm{NO}_{5} 18 \mathrm{HO}$,-described in this Journal in 1850. ${ }^{11}$ At that time I was not aware that any previous analysis had been recorded; but in a little work published in 1834, entitled "Manuel du Fabricant d'Indiennes, par L. J. S. Thillaye," is to be found the following pass-age:-"Si l'on veut obtenir des cristaux de pernitrate, on fait dissoudre lentement le fer dans l'acide nitrique à 34°, en plaçant le vase dans un lieu frais. Lorsque la dissolution est à peu près complète, il se forme des cristaux qui affectent la forme de prismes droites à quatre pans et à bases carrées, quelquefois ils ont six pans. * * * * Le pernitrate cristallise est formé de Acide Nitrique 41,968, Peroxide de fer 20,725, Eau 37,307." This composition corresponds nearly to $\mathrm{Fe}_{2} \mathrm{O}_{3} .3 \mathrm{NO}_{5} .16 \mathrm{HO}$, and the specimen analyzed must have been a mixture of the two sorts. Having observed scores of crops of crystals formed under very diverse circumstances, and having invariably found the sexhydrated salt to belong to the monoclinic system, I think it would not be too much to say that those who speak of square prisms, either have had the cubic nitrate or a mixture to deal with, or have used Vauquelin's eyes instead of their own. "An observation which Citizen Vauquelin has communicated "is thus given in Fourcroy's Chemistry:-"Concentrated nitric acid poured on an oxide of iron arising from the decomposition of water, had been left in contact with it several months.
Citizen Vauquelin was much astonished on stirring the liquor, Which was of a brown color, to see in it several large crystals, the least of which weighed upwards of four grammes. Their form was that of a square prism terminated by a bevel." As Vauquelin used concentrated acid, he might possibly have had the cubic crystals; but the cubic nitrate is not often modified, and the last clause, respecting termination "by a bevel," suggests a query whether the dimetric form was not predicated from a hasty glance rather than from measurement or from careful inspection. And there is the more room for a doubt because in "Citizen" Vauquelin's time the science of crystallography lacked much of the simplicity and precision which it has subsequently attained. In all likelihood it was the oblique nitrate which was first observed by Vauquelin; and I may, perhaps, rightfully claim to have been the first to determine its true char-

[^106]acter and composition, and its close correspondence to the nitrates of alumina and chromium.

Hausmann obtained the cubic nitrate by evaporating a solution, at a very moderate heat, to the consistency of syrup, and then adding to it half its volume of nitric acid. By analysis, the crystals pressed in absorbent paper, gave him per-centages corresponding to $\mathrm{Fe}_{2} \mathrm{O}_{3}, 3 \frac{2}{3} \mathrm{NO}_{5}+13 \mathrm{HO}$, equal to $\mathrm{Fe}_{2} \mathrm{O}_{3}$, $3 \mathrm{NO}_{5}, 12 \mathrm{HO}+\frac{2}{9}\left(\mathrm{NO}_{5} 4 \frac{3}{3}\right)$.

Wildenstein ${ }^{12}$ found several pounds of cubic crystals deposited from a quantity of very strong commercial nitrate that had stood a year and a half. They had almost exactly the composition $\mathrm{Fe}_{2} \mathrm{O}_{3}, 3 \mathrm{NO}_{5}, 12 \mathrm{HO}$. These accidentally formed crystals appear to have come from a somewhat basic liquor deficient in water; and that the segregation had taken place under very unfavorable circumstances, is shown by the fact that only "10 Pfund" crystallized out of " $2 \frac{1}{2}$ Centner" of the solution.

Hausmann's crystals were produced in a very concentrated liquor containing a large excess of acid,-a condition much better suited to giving a large crop. A lack of water is, no doubt, the essential requisite for the production of cubic nitrate; for I find, by many experiments, that unmixed cubic crystals can be made at pleasure by so adjusting the solution to be crystallized, that the attraction of the tetrahydrated nitrate for water, shall be rather more than counteracted by the attraction of an excess of nitric acid for water;-that is, so that the liquid shall consist of tetrahydrated ferric nitrate dissolved in trihydrated nitric acid. Almost the whole of the nitrate then erystallizes out, because at low temperatures it is but slightly soluble in acid of such strength. A solution containing more water than will make up $\mathrm{Fe}_{2} \mathrm{O}_{3}, 3 \mathrm{NO}_{5}, 12 \mathrm{HO}+n\left(\mathrm{NO}_{5}, 3 \mathrm{HO}\right)$ may afford a few of the rhombic sexhydrate crystals mixed with the cubic; and one containing less water will hardly give any solid nitrate at all. When there is water enough present to make up $\mathrm{Fe}_{3} \mathrm{O}_{3}, 3 \mathrm{NO}_{5} 18 \mathrm{HO}+n\left(\mathrm{NO}_{5}, 4 \mathrm{HO}\right)$, the crystals will be all oblique rhombic.
The conditions of formation of the solid nitrates are someWhat similar to those for the production of the two hydrated chlorids. When a solution is not basic and contains between six and twelve equivalents of water to one of perchlorid of iron, it first deposits the deutohydrate, $\mathrm{Fe}_{2} \mathrm{Cl}_{3} 6 \mathrm{HO}$, in transparent crystals, and theu goes on to form the light yellow, opaque, indistinet tetrahydrate, $\mathrm{Fe}_{2} \mathrm{Cl}_{3} 12 \mathrm{HO}$. Unless the liquid lacks water, no transparent crystals can make their appearance.

For making cubic nitrate, the oblique crystals afford a definite material that admits of appreciable treatment. We may take a weighed quantity of these crystals in a tared dish, and evaporate by a gentle heat about fourteen per cent of their weight, or six
equivalents of water; then add trihydrated nitric acid enough to double the bulk of the liquid, and set the whole aside to crystallize. A still easier method is to melt one equivalent of the common nitrate and add a little over two equivalents of monohydrated nitric acid. Atmosplieric moisture must be carefully excluded during the cooling and the subsequent repose.

The following experiment was made with a view of finding out whether there is any crystallizable nitrate of iron containing still less water than the cubic salt:
28.-100 g. of $\mathrm{Fe}_{2} \mathrm{O}_{3}, 3 \mathrm{NO}_{5}, 18 \mathrm{HO}$, were gently heated till 27 p . c. were evaporated, one-half of the water and one-eighth of the acid being expelled. 42 g . of monohydrated nitric acid were added and the dish suitably covered was set out in an open shed for several dars in the coldest weather of winter. No crystals formed except a slight fringe around the edge, where a little moisture had probably been absorbed from the air.

Afterwards the whole was heated and 33 g . of oblique rhombic crystals were dissolved in it. On standing in a cold place a full crop of the cubic salt was soon deposited.

So then the drying power of nitric acid does not enable us to get a nitrate containing less water than the tetrahydrate, but, when pushed too far altogether prevents crystallization. Yet Scheurer-Kestner ${ }^{13}$ speaks of a salt of the very remarkable and irregular composition $\mathrm{Fe}_{2} \mathrm{O}_{3}, 3 \mathrm{NO}_{5}, 2 \mathrm{HO}$. To obtain this, he evaporated a solution of nitrate, at a moderate heat, till it became very dense and a part was decomposed. The liquid portion on cooling produced a mass of confused crystals of the almost anhydrous salt. The mother liquor by long standing gave crystals of the cubic nitrate.
M. Scheurer-Kestner erroneously cites me as having mentioned in this Journal, vol. xxvii, p. 197, such a salt as $\mathrm{Fe}_{2} \mathrm{O}_{3}, 3 \mathrm{NO}_{5}$, 6 HO . He probably maant to refer to p. 17 of that volume, where I have taken the liberty of showing the generic agreement of the sesquinitrates with the sexhydrated protonitrates, by writing the ferric salt $\mathrm{Fe}_{\mathrm{e}}+3 \mathrm{~N}_{5}$; and he must have been led astray by a misapprehension of the Berzelian method of notation. A dihydrated nitrate would be too singular to be accepted without a full characterization; and I should be very far from calling on the world to believe in a $\mathrm{Y}_{3} \$_{3} \mathrm{H}_{6}$ on the strength of a mere formula. At ties time of writing the article on nitrates, I had not met with Hausmann's account of the cubic salt, and therefore was not aware of the peculiarity of nitrate of iron in ranking among the tetrahydrates as well as in the more extensive cliss of sexhydrates. Other salts of the tetrahydrate class may exist as anhydrous nitrates, and it is a question whether Scheurer-Kestner's more recently discovered salt, $\mathrm{F}_{\mathrm{e}} \mathbb{N}_{3} \dot{H}_{2}$, is not

[^107]in reality the anhydrous pernitrate of iron with a slight admixture of the cubic nitrate. For he did not obtain it in well defined crystals and therefore could not be sure of its singleness; and moreover there is no analogy in favor of the formula which his analysis assigns to it. It is very remarkable that the tetrahydrate is more fusible than the oblique rhombic salt which contains nine par cent more water. The sexhydrate melts at $47^{\circ} \mathrm{C}$., and Hausmann found the cubic nitrate to liquefy at $35^{\circ} \mathrm{C}$.; but his product contained a little free acid and it is probable that the pure tetrahydrate melts at a point between 35° and 40°.
If six equivalents of water are added to the melted cubic nitrate, heat is evolved, and, after a while, the whole becomes solid.
The unaccountable anomaly of greater fusibility with a less percentage of water is not peculiar to the nitrates of iron, but is shown also by the perchlorids. For I find the transparent dihydrate, $\mathrm{Fe}_{2} \mathrm{Cl}_{3} 6 \mathrm{HO}$, to melt at $31^{\circ} \mathrm{C}$., while the opaque tetrahydrate, $\mathrm{Fe}_{3} \mathrm{Cl}_{3}^{3} 12 \mathrm{HO}$, fuses at $355^{\circ} \mathrm{C}$. And if a mixture of the two chlorids is slowly heated, the transparent crystals liquefy first. The addition of six equivalents of water to the melted dihvdrate is attended with the production of heat.
The plan of using fuming nitric acid to contend with a bydrated nitrate for the possession of water, of course admits of more extended application. With nitrate of alumina indeed it does not work well, on account of the high melting point of that salt and its very slight solubility in even boiling acid. Nitrate of chromium is more tractable, and a mixture of monohydrated acid with the melted crystals, on standing, lets fall nearly all the nitrate as a confused crystalline mass probably containing less than twelve equivalents of water, and baving little resemblance to the cubic nitrate of iron. In a single instance I have seen in the mass one or two crystals apparently cubic, but they were too minute and scanty to allow any special examination. Nitrate of glucina has never been obtained except as a trihydrate, as mentioned in a former paper. Since the date of that publication I have succeeded in getting more distinctly formed crystals which appeared to the eye dimet:ic, being indeed very short square octahedra. It remains then still uncertain whether the other sesquinitrates can form salts corresponding to the cubic nitrate of iron.

With the help of strong nitric acid, the nitrates of manganese and zinc may be crystallized with less than six equivalents of water, but these products have not yet been fully examined.
Protonitrate of iron is a salt of such a nature that we can never expect to get it in the solid state except as a sexhydrate.

Protonitrate of Iron.-The most convenient way of procuring
ferrous nitrate, is to dissolve the protosulphid of iron in nitric acid of less sp. gr. than 112 , no considerable elevation of temperature being allowed. Though protonitrate crystals are very unstable, a moderately strong solution may be evaporated without much risk by a heat not exceeding $60^{\circ} \mathrm{C}$. As the strength increases, however, the temperature must be lowered, especially if there is an excess of acid. By thus proceeding with greater caution as the liquid becomes more concentrated, we may get it strong enough to crystallize when exposed to the cold of winter.

The following experiments show the difference between weak and strong, acid and neutral solutions, in respect to their endurance of heat:

29, a. - A solution made directly with sulphid of iron and nitric acid of sp. gr. $1 \cdot 08$, contained 29 p.c. of $\mathrm{FeO}, \mathrm{NO}_{5}, 6 \mathrm{HO}$, and 0.6 p.c. of free acid. Some of it heated slowly remained clear and unchanged while the temperature rose to $83^{\circ} \mathrm{C}$. At 90° it underwent a rapid transformation and became rusty.
b. - Some of the solution mixed with about its own weight of water, continued unaltered till it was heated to $100^{\circ} \mathrm{C}$. It required some five minutes boiling to effect a complete rearrangement of its elements.
c.- Some of the solution on being merely mixel with one-sixth of its weight of pure nitric acid of sp.gr. 1•42, at once gave off gas and made a clear, dark red liquid.
d.-Some of the solution was mixed with nearly its own weight of nitric acid of sp.gr. $1 \cdot 10$ and heated slowly. At $66^{\circ} \mathrm{C}$., it started and quickly ehanged to pernitrate.
e-A mixture of 28 g . of the solution with 11 g . of pure nitric acid $1 \cdot 10$, began to alter at $72^{\circ} \mathrm{C}$.
30. A solution of the crystals, saturated at $15^{\circ} \mathrm{C}$. and containing 71 p. c. of $\mathrm{FeO}, \mathrm{NO}_{5}, 6 \mathrm{HO}$, was heated in a water-bath. It began to give off gas at $85^{\circ} \mathrm{C}$. At 88° the rearrangement went on violently and was soon finished.

The crystals themselves while still wet, may be kept in the cold without alteration; but when they are quite free from mother-liquor, they are apt to start suddenly, even at the common temperature of the air, and undergo a rapid transformation, a dark red, clear, basic pernitrate being produced. The composition of the pasty mass, in one instance, was found to be about $\mathbb{F}_{\mathrm{e}} \mathbb{N}_{1 \cdot a}$; in another it was $\mathfrak{F}_{\mathrm{E}} \mathbb{N}_{1 \cdot 7}$. These products are apparently soluble in water; but the liquor is slightly opaline when looked at, though it is clear when seen by transmitted light. The crystals themselves therefore change to a substance almost perfectly soluble in water, while solutions of the crystals, by spontaneous decomposition, become rusty, a portion of the peroxyd assuming the inert, insoluble state.

The foregoing experiments show that neutral solutions, even when very strong, will bear a pretty high temperature. Weak solutions may be brought for a moment to the boiling point without immediate injury. But acid solutions undergo a change
much more readily, and the greater the quantity of acid the less stable are they.

Crystals of protonitrate of iron, well drained and dried at a very low temperature, were found to yield by ignition 27.565 p.c. of ferric oxyd. The formula must therefore be $\mathrm{FeO}, \mathrm{NO}_{5}, 6 \mathrm{HO}$, which would correspond to 27.778 p . c. of peroxyd.

A solution saturated at $0^{\circ} \mathrm{C}$., yielded a quantity of peroxyd equivalent to 663 p . c. of the crystals. So at 0° the salt is soluble in half its weight of water.

A solution saturated at $15^{\circ} \mathrm{C}$., contained 71 p . c. of crystals. Its sp.gr. was $1 \cdot 48$.

A solution saturated at $25^{\circ} \mathrm{C}$., contained 75 p . c. of crystals. Its sp. gr. was 1.50 . At $25^{\circ} \mathrm{C}$., then the crystals are soluble in one-third their weight of water.

The slight difference in strength between cold and warm solutions, as well as the instability of the solid salt, shows the inexpediciency of attempting to do anything with it except in the coldest weather.

Art. XXXIV.-Some Indications of a Northward Transportation of Drift Materials in the Lower Peninsula of Michigan; by Professor Alexander Winchell.

Throughout the northern part of Lenawee and Hillsdale counties, the southern and eastern parts of Jackson, and the southern and western parts of Washtenaw county, are found numerous tabular, detached masses of limestone, sometimes cropping out on a hill side, like a ledge in place, and sometimes imbedded two or three feet in the sand and gravel at the summit. The position of these masses is generally nearly horizontal, though for the greater part slightly tilted in one direction or another. They sometimes present an extent of six, eight, or twelve feet square; and in occasional instances even more, so as to offer every appearance of an outcropping formation. In some cases many hundred bushels of lime have been burned from them before exhaustion. Underneath them we find the semistratified drift materials so characteristic of the general surface of the peninsula. At the bottom of the drift, which in some places is not over ten or twenty feet deep, we find the rocks of the Huron, or more frequently the Marshall group, in place. Many patches, nevertheless, occur as far north as the outcrops of the Carboniferous limestone, and create great confusion in tracing the latter formation unless the fossils are strictly attended to. Smaller fragments of the same limestone are still more abundant throughout the same limits; and, by their disintegration,
have imparted a highly calcareous element to the soil, even along the arenaceous belts. The percolation of meteoric waters, in turn, has given rise, in great abundance, to calcareous springs, and deposits of marl, tufa and travertin.

In the southwestern part of the peninsula, in the counties of Berrien, Van Buren and Ottawa, similar phenomena are again observed. The calcareous element of the soil is even more abundant; and large patches of sand have become firmly cemented, so as to present the consistency and appearance of ledges of sandstone. It really requires an extended series of observations to convince one's self that the region does not furnish considerable outcrops of a sandstone formation-especially as numerous blocks of undoubted Marshall sandstone occur upon the surface.

Some examples of these phenomena may be more definitely cited. On the S.W. $\frac{1}{4}$ S.E. $\frac{1}{4}$ sec. 13, W ondstock, Lenawee County, (221), ${ }^{\text {a }}$ in the side of "Prospect Hill," limestone occurs in tabular masses six by twenty feet, and seven feet thick. An old lime-kiln stands near. Similar limestone occurs on the S.E. $\frac{1}{4}$ S.W. $\frac{1}{4}$ sec. 12, Woodstock (223) and S.W. $\frac{1}{4}$ S.E. $\frac{1}{4}$ sec. 1. From the latter locality several hundred bushels of lime have been burned. On sec. 3 of the same township, the Marshall sandstone is reached at the depth of 4 to 12 feet from the surface. On sec. 4 the sandstone is known to be over 75 feet thick; so that there can be no mistake in assuming it to be in place. On the N.E. $\frac{1}{4}$ N.W. $\frac{1}{4}$ sec. 6, Woodstock (230), is a large tabular mass 10 feet long and known to be over 6 feet broad. The dip is toward the east.

On the N.W. $\frac{1}{2}$ N.W. $\frac{1}{4}$, sec. 32 , Columbia, Jackson county, (233) is a mass of limestone. Sixty rods north of here the sandrock is known to be within 20 feet of the surface, and has been penetrated 44 feet. On sec. 30 it has been penetrated 60 feet. On the N.W. $\frac{1}{4}$ N.W. $\frac{1}{4}$ sec. 26 , Liberty, Jackson county, (235), masses of limestone are so abundant that a kiln has been constructed and several hundred bushels of lime manufactured. At the time of my visit, about 35 cords of wood were piled by the kiln, indicating considerable confidence in the resources of the quarry. Fragments of Marshall sandstone, with its fossils, are abundant, mingled with the fragments of limestone. Similar masses of limestone may be seen again on N.W. $\frac{1}{4}$ N.E. $\frac{1}{4}$ sec. 26 , Hanover, (239), and on the S.W. $\frac{1}{4}$ N.E. $\frac{1}{4}$ same section, (240). Several wagon loads of fragments have been removed from the subsoil over the principal mass at the latter place. On the S.E. $\frac{1}{4}$ S.E. $\frac{1}{4}$, same section, a common well reached the Marshall sandstone at the depth of 35 feet, and was excavated 40 feet in the rock. The hills on N.E. $\frac{1}{4}$ N.E. $\frac{1}{4}$ sec. 33, same township,

[^108](243), are filled with fragments of limestone, while the Marshall sandstone is struck at the depth of 50 feet on sec. 35 , and at 30 feet on sec. 27. Farther north, on secs. 10 and 11, Leoni, (92 and 206), similar fragments again occur. Also on sec. 25, Grass Lake, (208). At a place one mile northeast of Franciscoville, (209), 20,000 bushels of lime have been manufactured in ten or twelve years.

In the adjoining parts of Washtenaw county, several kilns proclaim the presence of extensive nests of limestone. Even within the corporate limits of the city of Ann Arbor an extensive deposit has been quarried; and just beyond the limits, on the east, are the ruins of a limekiln which, many years ago, exhausted still another deposit.

Similar masses of limestone occur in Hillsdale county, one half mile southwest of Jonesville, (270); on S.W. $\frac{1}{4}$ N.W. $\frac{1}{4}$ sec. 21, Allen, (274); N.E. $\frac{1}{4}$ N.W. $\frac{1}{4}$ sec. 21, Adams, (289) ; S.E. $\frac{1}{4}$ N.E. $\frac{1}{4}$ sec. 22, Adams, (291) ; N.E. $\frac{1}{4}$ N.E. $\frac{1}{4}$ sec. 24, Adams, (292); S.W. $\frac{1}{4}$ N.W. $\frac{1}{4}$ sec. 19, Woodbridge, (296), and in many other localities.

In the southwestern part of the state, on the S.E. $\frac{1}{4}$ N.W. $\frac{1}{4}$ sec. 11, Hartford, Van Buren county, (415), limestone is found within two feet of the surface over the space of three or four square rods. One hundred rods north of here the wells are from 40 to 100 feet deep, without reaching any native rockthough thick beds of cemented sand and gravel are frequently encountered.

On the S.W. $\frac{1}{4}$ sec. 17, T. 7 N.R. 13 W , Ottawa county, (438) is the last occurrence that will be cited. Several slabs 3 or 4 feet long have been removed, and others remain, over an area of at least a square rod.

It is quite evident that such masses of stratified limestone have not been rolled to the same extent as the quartzose and gneissoid boulders which constitute the most striking feature of the "northern drift" of the same regions. By some agency these tables have been lifted gently from their original sites and carefully deposited where we find them. Paying no regard to their included fossil remains, it might be imagined that they constitute the ruins of the Carboniferous limestone formation, whose place is between these fragments and the centre of the peninsula. This formation gently rises toward the periphery of the peninsula, and at certain distances from its present outcrops would intersect the highest diluvial hills in the places occupied by the fragments which I have described; and which, for this reason, might be imagined as marking the outermost limits of a once continuous formation of Carboniferous limestone. The abundant fossil remains contained in these fragments, however,
AM. Jour Scl-Sxcond Series, You. XL, No. 120.-Nov. 1865.
not to speak of their lithological characters, convince us that the rock belongs to a much earlier epoch.

In short, no doubt could be entertained by one who has examined the subject, that these fragments appertain to the age of the Corniferous limestone. The rock, in structure, is irregular, often brecciated, with streaks and nests of bituminous and argillaceous matter. At other times it is compact and massive. Not unfrequently it presents the peculiar structure known as "ignilites." All these characters belong to the Corniferous limestone as exposed along the western shore of Lake Erie, and at numerous points throughout the county of Monroe.

Turning to the more reliable evidence of the fossil remains, it may be stated that the fullowing are examples of the more frequent identifications:

At 92, Heliophyllum Canadense Billings, Clisioplythum Oneidaënse Bill., Acermalaria Davidsoni E. \& H., Conocardium trigonale Hall, Proetus crassimarginatus Hall, Amplexus and Favosites.

At 18\%, Lucina proavia Goldf., Conocardium trigonale, Dentalizin and Fenestella.

At 208, Lucina proavia and three species of Bryozoa.
At 230, Strophomena rhomboidalis Wahl, Chonetes glabra Hall, Spirifera gregaria Clapp, Atrypa reticularis Dal.

At 233, Chonetes hemispherica Hall, Atrypa reticularis, Cyrtodonta (Vanuxemia) Tompkinsi Bill, Pleurotomaria rotunda, Hall. At 270, Chonetes lineala Hall, Atrypa reticularis.
At 289, Chonetes lineata, C. glabra Hall, Atrypa reticularis, Leiorhynchus multicosto Hall, Rhynchonella Thalia Bill., Lucina proavia, Proelus crassinarginatas Hall, Platyceras and Proelus sp.? At 291, Cyathophylluin Zenkeri Bill, Chonetes lineata, C. glabra, Orthis Vanuxemi Hall, Strophomena hemispherica, S. rhomboidalis, Spirifera varicosa Hall, S. gregaria, Atrypa reticularis, Charionella scitula Bill., Rhynchonella Thalia, Lucina proavia, Conocardium trigonale, Proetus crassimarginatus, Fenestella, Producta (two species), Streplorhynchus, Athyris, Platyceras.

At 292, Orthis Vanuxemi, O. propinqua Hall. Bill.

At 298, Strophamena hemispherica.
The following are the more common Corniferous fossils occurring in the Drift at Ann Arbor:

Favosites Gothlandica Goldf., F. cervicormis De Blainv., F. turbinata Bill., F. polymorpha Goldf., F. (Emmonsia) hemispherica Y. \& S. sp., Fistutipora Cunadensis Bill., Michelinia convexa D'Orb., M. favosoidea Bill., Alveolites labiosa Bill., A. Rrmeri² Bill., Syringopora perelegans Bill., S'. Hisingeri Bill., S. Maclurei Bill., S. robilis Bill, Stromatopora concentrica Lonsd., Cyathophyllum Zenkeri Bill., Zaphirentis prolifica Bill., Clisiophyllum Orieidaënse Bill.,

Heliophoplum Eriense Bill., H. exiguum Bill., Cystiphyllum Americanum E. \& H., Blothrophyllum decoricatum Bill., Diphyphyllum Archiaci ${ }^{2}$ Bill., Phillipsastrea Verneuili E. \& H., P. gigas Owen, sp., Acervularia Davidsoni E. \& H., Tentaculites scalaris Schlot., Chonetes glabra Hall, C. hemispherica Hall, Strophomena hemispherica H., S. perplana Con., S. incequiradiata H., S'。 demissa Con., Orthis propinqua H., O. Eryna H., Amboccelia umbonata Con. sp., Spirifera gregaria Clapp, S. varicosa H., S'. acuminata Con. sp., Leiorhynchus multicosta ${ }^{2}$ Hall, Nucleospira concinna Hall, Charionelhe scitula Hall, sp., Atrypa reticularis Dal., A. impressu H., A. aspera? Hall, Meristella unisulcata Con., sp., M. nasuta Con., sp., Leptocelia concava H, Pentamerus aratus Con., sp., Aitricklandia elongaia Vanux., sp, Centromella glansfoypa Hall, sp., Rhynchonella Thalio Bill., Lucina proavia Goldf., Conocardium trigonale Hall, sp., Platyceras Thetis H., P. crassum H., P. dumosum Con., Platyostoma strophius H., Murchisona Leda H., Proetus crassimarginatus H., and more than two dozen species which seem to be undescribed.

If no reasonable doubt exists that these detached masses belong to the Corniferous limestone, the next question which presents itself relates to the region whence they have been derived. In view of the facts cited, it is evidently absurd to assume that no transportation has taken place; for these masses of Corniferous limestone are found resting over the fimilton group, the Marshall group and the Carboniferous limestone-and, I am pretty well convinced, even in some cases, as far north as the Coal measures. There are insuperable objections to assuming that they have been transported with the great mass of drift materials from the northern outerops of the rocks of this age at Mackinac and the surrounding region. First, the transporting ageney has not moved masses of other kinds of rocks which attain to anything like the same dimensions. Secondly, That agency, if we may judge from the condition of the siliceous, trappean and gneissoid boulders of admitted northern origin, would have ground to powder so fragile and friable a rock as these limestones; or at least would have broken them into small fragments, and deposited them in a worn and rounded condition. Thirdly, If the Corniferous limestone could have been transported in such masses from its northern outerops to southern Michigan, much more would the harder and more massive Niagara limestone of the same regions have been similarly

[^109]
A. Winchell on Drift Materials in Michigan.

transported. The same may be said of the Trenton limestone. We find, however, that fragments of these limestones are of rare occurrence; and the fossils of Silurian age scarcely sustain to those of the Corniferous limestone the ratio of one to one hundred, in the drift deposits of the southern portion of the state. Even the Carboniferous limestone, whose outcrop extends through Kent, Eaton, Jackson and Oakland counties, is scarcely represented among the drift materials of the region in question. It is apparent that we must look in another direction for the origin of these lost rocks.

The nearest outcrop of the Corniferous limestone is in northern Indiana and Ohio, and the southeastern corner of Michigans. Every fossil cited above is found in place in some part of that region. The formation dips under the peninsula of Michigan; and, throughout the area occupied by the lost masses in question, it lies from one hundred to twelve hundred feet beneath the surface-the depth of course increasing toward the center of the Carboniferous area. The circumstances suggest the exertion of some powerful agency acting northward with tremendous energy, but with a gentle and equable movement. It would seem as if the summit of the low anticlinal in the Corniferous limestone to the southeast of Michigan had been immersed in a shallow sea or lake, the freezing of which had incorporated the upper layers of the rock in an immense thickness of ice, which, by a rise in the water, had floated of as enormous ice-floes, bearing their cargoes of limestone northward till deeper and milder water loosened their icy hold, or they became stranded on the bosses which mark the belt of the Marshall sandstone. From the position of these masses in the "Modified Drift," as well as from the direction and gentleness of the movement, it would seem impossible that the events should have been contemporaneous with the actions which characterized the great glacial epoch.

Additional facts exist which seem to lead the mind further toward a belief in a northward acting post-glacial agency. The fossils of the Hamilton group, whose outcrop is along a belt lying somewhat farther north than the Corniferous limestone, are seattered through the soil of the region lying still farther north, in a degree of abundance which bears about the same ratio to that of the Corniferous fossils as the attenuated Hamilton rocks bear to the Corniferous. Indeed it may be said that Spirifera mucronata is the most abundant single species in our drift; as it was certainly the most abundant species that lived in these parts of the Lower Devonian sea. Other common species of the Hamilton group are Ambocolica umbonata Hall, Cyrtia Hamilton-

[^110]ensis Hall, Spirifera Marcyi Hall, Spirigera concentrica Brown, sp., Platyceras attenuatum Hall, Dalmania Boothi Green, sp., and many others. These species exist in an admirable state of preservation, quite incompatible with the theory of their transportation from the far north; and they occur across a belt of the state reaching at least thirty miles north of the outcrop of the Hamilton rocks.

Again, above the identifiable Hamilton rocks, we find, in this state, a great thickness of argillaceous and bituminous shales, destitute of fossils, but freighted with Kidney iron ore. Nodules of this ore are strewn, not only over the region of the outcrop of these "Huron" shales, but throughout Washtenaw and other counties lying over the upper Devonian and lower Carboniferous strata-to say nothing of the occurrence of such nodules within the limits of the Coal measures, where, by some geologists, they might preferably be referred to the indigenous strata.
Still again, the well marked fossiliferous beds of the Marshall sandstone, lying next above the Huron shales, and outcropping along a belt still farther north, is represented by a series of enormous fragments resting over the non-fossiliferous upper portions and the Carboniferous limestone. The lower, or fossiliferous portions of this formation do not outcrop farther north than Moscow, in Hillsdale county, while fragments of it have been transported in great abundance into the southern townsbips of Jackson county. The most notable example occurs in a deep railroad cat three miles north of Napoleon, where the abundant fossiliferous fragments led me for some time to suppose the actual outcrop must be in the immediate vicinity; although I had found the non-fossiliferous Napoleon sandstone intervening between the locality and the most northern known outcrop of the fossiliferous beds at Moscow. I collected here a large proportion of the common fossils of the Marshall group such as Rhynchonella Sageriana, Chonetes pulchella, Myalina Michiganensis, Cardiomorpha modiolaris, Tellinomya Hubbardi, T. Stella, Pterinea crenistriata, Cardium Napoleonense, Solen scalpriformis, Bellerophon galericulatus, Orthoceras Indianense, Goniatites Marshallensis, and numerous other species. The fossiliferous layers of the Marshall sandstone are decidedly friable-insomuch that it is in little request for building purposes-and it would seem absurd to suppose that these large fragments had been moved two hundred miles from the northern outcrop of the formation, when a transfer of ten or fifteen miles from the southern outcrop would bring them to the position which they occupy. We should expect, also, if derived from the north, that some contrast in the organic facies, due to local, if not to climatic causes, would present itself; but on the contrary, we find the fauna of
the fragments strictly identical with that of the nearest indigenous rocks of the same age.

The facts above cited recall some observations made several years since in Alabama, and which led at that time to impres. sious similar to those just set forth. My observations were made especially upon the neighborhood of the junction of the "Rotten Limestone" of the Lipper Cretaceous, with the argilla. ceous and arenaceous strata of the Lower Cretaceous. The "Red Loam" of the central belt of the state, which I have evidences to prove to be but the Rotten Limestone altered in situ, or with slight transportation, has in, many cases along the junction of the upper and lower strata, been moved northward over the clayey and sandy region appertaining to the lower Cretaceous; where, by its admixture with diluvial sand and pebbles, it is proved to be an exotic formation.

I forbear to express any belief in reference to the former existence of a transporting agency acting from the south to the north, over all or any portion of the interior of the continent; but such facts as I have cited cannot fail to call to mind the sug. gestions made some years since by President W. Hopkins, touching the course the Gulf Stream would necessarily pursue, in case of the subsidence of the North American Continent. The facts are of sufficient importance to merit investigation; and it is to be hoped that other observers will inform us whether they are exceptional phenomeria, or correspond, in connection with others, to some ancient, glacial or hydrographical area.

Univeraity of Michigan, August 4, 1865.

Art. XXXV.-On the Crystallization of Sulphur and upon the Reaction between Sulphid of HyArogen, Ammonia and Alcohol; by Charles M. Wetherill, Ph.D. M.D.
SUlphUR, in three of its four allotropic conditions, has been well studied, notwithstanding the difficulties which the rapid passage of ($\gamma \mathrm{S}$) through $(\beta \mathrm{S})$ to ($\alpha \mathrm{S}$) presents to experiments upon the first two modifications.

The most reliable specific gravities which have been assigned to the different forms of sulphur are the following:

Marchand \& Scheerer. Deville
Rhombic octohedral ($\propto \mathrm{S}$)
Oblique prismatic ($\beta \mathrm{S}$)

2.045	2.07
1982	1.96
1.957	1.91

[^111]Regnault found the specific heat of $(\alpha S)=0.20259$, and Marchand and Scheerer that of $(\beta S)=0.20684$. During the passage of ($\gamma \mathrm{S}$) to ($x \mathrm{~S}$), a considerable am ount of heat is evolved.

Hence in the red amorphous variety, the molecules are more widely separated, and are in a condition of unstable equilibrium. In satisfying their tendency to approach each other, they assume (by the fusion method) the betu form of prisms of the monoclinic system; but they soon pass into the condition of rest as rhombic octohedra (α S $)$, of the trimetric system. This transformation takes place, as is well known in the solid prism, which is, without change of form, converted into numerous smaller crystals of ($\mu \mathrm{S}$).

According to Frankenheim, "gamma" sulphur, like other socalled amorphous bodies, possesses the property of crystallization; but the manifestation of the phenomenon is prevented by the admixture of alpha and beta sulphur. Heat is the agent by which the (k) form is converted into the (β) and (γ) modifications, and has always been supposed to play an important part in the erystallization of this element. The ordinary or alpha sulphur, when crystallized from its solvents, sulphid of carbon, or oil of turpentine, reappears as octohedral alpha sulphur.
Frankenheim, however, observed that when the body is precipitated from its solutions at a temperature approaching its point of fusion, it assumes the prismatic form of beta sulphur.

Mitscherlich has shown that crystals of ($\beta \mathrm{S}$) are transformed immediately into ($\alpha \mathrm{S}$), when dipped into a solution of sulphur in sulphid of carbon.

According to Pasteur, both forms of the element may crystallize from the above solvent.
M. E. Royer determined the crystallization from a turpentine solution, either in a or β crystals, according to the temperature. Thus, when fifteen grams of sulphur were heated with two hundred and fifty grams of oil of turpentine, the solution boiled at $158^{\circ} \mathrm{C}$. Upon pouring one-half of the liquid into a glass yessel, so that a rapid cuoling was effected, prisms were deposited; while the remainder cooled slowly, yielded octohedrons, and not a single prism.
Such experiments would appear to present an analogous condition to the prismatic crystallization by fusion, and subsequent change to the alpha form by rest. By the elevated temperature the molecules of sulphur are separated, and assume the relative positions required for ($\beta \mathrm{S}$) ; while, during the slow refrigeration, they have time to arrange themselves into the rhombic octohedral form, in which they are in stable equilibrium.

Each of the allotropic conditions bas probably a corresponding vapor density and its own chemical affinities.

The only known vapor density is that of $(\gamma \mathrm{S})$; the others not having been determined from their transformation to this modification by the heat required for the experiment.

Upon the assumption that sulphid of hydrogen has an atomic constitution analogous to that of water, the specific gravity of the vapor of the sulphur in the compound is (by calculation) 221126 ; but Dumas and Mitscherlich determined the density of the vapor of sulphur ($\gamma \mathrm{S}$) itself to be three times this number, or 663378 . It has hence been inferred that the hydrogen sulphid is not constituted like water; but is composed of one volume of hydrogen to one-sixth of a volume of sulphur.

If, however, we were acquainted with the true vapor density of (α S), it may be presumed that a calculation involving this element would establish an analogous constitution for sulphid of hydrogen and water, two bodies resembling each other so much in their chemical behavior.

Otto supposes that sulphur occurs in HS and in most of its combination as (α S), and that perhaps in the persulphids of potassium \&ce, and in the sulphur acids which contain two, three, and four atoms of that element, it exists in the condition of β or γ sulphur.

When sulphur is dissolved in the fat oils at a moderate temperature, a large portion of the element separates on cooling as a yellow powder (α S); but if the temperature be elevated, as in the preparation of balsarnum sulphuris, the sulphur remains in solution, probably as ($\gamma \mathrm{S}$), and a tenacious gelatinous mass is the result of the reaction (Otto).

This chemist infers that since the vapor density of (γS) is thrice that of (α S), the specific gravity of the vapor of $(\beta \mathrm{S})$ is probably double that of ($\alpha \mathrm{S}$). If this assumption be correct we have in sulphur an allotropism like the the polymerism of compound bodies.

From these considerations, the question of the crystal form of sulphur in the act of separation from any of its compounds becomes one of great interest.

One of these instances, the subject of this article, has been presented accidentally to my notice.

An experiment was instituted to ascertain whether the presence of copper in alkaline solution (ammonia oxyd of copper) would determine a decomposition of glucose different from that effected by the alkali alone. The ammonia copper was added to a boiling solution of glucose until the blue color of the former was no longer disclarged. Upon cooling, alcohol was added and then sulphid of hydrogen was passed through the liquid to separate the copper. On the next morning the filtrate contained a quantity of beautiful prismatic crystals of sulphur, of which some exceeded an inch in length. When spread upon filter paper to dry they became opaque, and broke up readily into granules.

To ascertain whether the products of decomposition of the
glucose effected the crystallization, a liter of 94 p.c. alcohol was, on July 4, 1864, saturated first with ammonia, then with sulphid of hydrogen, and was placed in a loosely stoppered bottle upon a shelf in the laboratory of the Smitbsonian Institution, where it remained undisturbed until May 26, 1865.

At this time the sides of the bottle were coated with white, slightly nacreous crystals, which were more numerous upon the part of the bottle most exposed to the light. The formation of these crystals commenced upon the day after the saturation with the hydrogen sulphid. The solution was of brownish deep red color. The crystals measured $\frac{1}{8}$ th of an inch in diameter, and, under the microscope, had the appearance of scales or plates, with rounded, ill-defined contour. A few appeared to be hexagonal and a very few were of spear shape. They were all completely soluble in water, more slowly so in alcohol, yielding a solution of faint acid reaction. They lost ammonia upon being heated with caustic potassa. Their solution treated with sulphuric acid evolved sulphurous acid and deposited sulphur. Heated upon platina foil they evaporated without previous fusion. Their taste was sharp and biting. Heated in a tube they yielded a deliquescent sublimate which contained sulphur. Their solution did not blacken acetate of lead, but gave a white precipitate with this reagent. With nitrate of baryta a white precipitate, insoluble in hydrochloric acid, fell after a short time. With nitrate of silver a precipitate was obtained which passed gradually from white through yellow and brown to black. It follows from these reactions that the crystals are hyposulphite of ammonia. Rammelsberg gives for the constitution of this salt the formula $3\left(\mathrm{NH}_{4} \mathrm{O}, \mathrm{S}_{2} \mathrm{O}_{2}\right)+\mathrm{HO}$.
If the experiments had rested at this point, the erroneous inference would have been drawn from them that the presence of organic matter (from the gluense,) occasioned the prismatic crystallization of sulphur; but the solution in the last example was filtered to remove the crystals; and the clear liquid was returned to the bottle. The crystals were washed upon the filter with a little alcohol, which was suffered to drop into the bottle and formed a stratum of a few lines in depth upon the surface of the dark colored solution.
On the next day a beautiful crystallization of sulphur in prisms was observed, and its advance was watched for several days. The crystals formed upon the sides of the vessel at the surface of the liquid, extended inwards, and developed themselves downward. In proportion as they grew, the liquid exchanged its dark red for a light amber color until the whole of the solution had acquired that tinge, the advance being from the surface, downward. The prisms were very slender, and terminated in planes oblique to the axis of the crystal. Not a single

Am. Jour. Sct. - Srcond Smbies, Vol. XI, No. 120.-Nov., 1865.
octahedron was detected. By their insolubility in water, and by heating upon platina foil they were proved beyond a doubt to be sulphur. Some of the crystals measured over two inches in length; they were at first transparent, and of a canary yellow color.

On the second day after their appearance they had lost their transparency, and the microscope showed them to be full of fissures. Very minate crystals were formed upon the prisms and upon the sides of the bottle. Those occupying the latter position were magnified with a high power, and appeared to be bushes or star-shaped groups of prismatic crystals, radiating from a central globular and minute molecule. On the third day the latter crystals had become sufficiently developed to show that they were not prisms but rhombic octahedra, and that the crystals strung along the primary prisms like beads, were also rhombic octahedra. These crystals were all truncated as to their apices by planes perpendicular to the principal axes. The similar faces (O) of the lines of octahedra situated along the primary prisms were contained in parallel planes. These octahedra did not appear to have resulted from a breaking up of the primary prisms; but to be deposited upon the latter. I inferred that the prisms were at first (3 S), in which a change to multitudes of octahedral crystals of ($\alpha \mathrm{S}$), contained within the prism, was effected; and that the contact of this group of (ω S) crystals with the sulphur separating gradually from its solution determined the crystallization, in the neighborhood of the altered prisms, according to the alpha modification. It was remarkable that while this octahedral crystallization was going on, transparent prismatic crystals were forming in osher parts of the solution, and I supposed at first that the prisms might belong to the trimetric system; but long observation of them assured me that they were monoclinic.

On June 4th the separation of the sulphur was complete from the liquid, which was of amber color. At this time other crystals in the form of transparent scales were forming. These were ascertained, by the taste and action of reagents, to be hyposulphite of ammonia. There was nothing new in the crystallization of the sulphur except the very instructive fact that where a prism had fallen from the side of the vessel to the bottom, the sulphur bad crystallized in beautiful, well defined rhombic octahedra, with perfect apices, and which were as clear and colorless as rock crystal. They were arranged in rows, thus indicating the former positions of the prisms upon the bottle.

All of these crystals were first treated with water to dissolve the hyposulphite of ammonia. When this was performed under the microscope, the transparent scales were seen to disappear, and there remained octahedrons and prisms, some of which lad imperfect octahedral crystals deposited upon them. The prisms appeared granular and were of canary color; the octahedrons
were almost white. When heated, and observed thus with the microscope, the crystals became of deep yellow color, and by elevating the temperature fused, yielding all of the characters of sulphur. It would seem to result from these experiments that sulphur exists in combination with hydrogen, (or perhaps with ammonium), in the B allotropic condition. We may readily conceive a change in the sulphur after it has been separated from the β to the α modification; but we cannot so readily imagine that it should leave its alpha form to assume the more unstable beta condition.

We have also liere an example of the crystallization of ($\beta \mathrm{S}$) without heat. Since the original prisms of beta sulphur are canary colored, and not of brownish tinge, it would seem that the prisms obtained by fusion owe their brown tint to p sulphur. The hypothesis may be ventured that the color of ($\alpha \mathrm{S}$) is white or very pale yellow, that of ($\beta \mathrm{S}$) yellow, that of ($\gamma \mathrm{S}$) redish brown and that of ($\$ \mathrm{~S}$) nearly black.

In the reaction between sulphid of hydrogen in the alcoholic solution of ammonium, sulphid of ammonium, distinguished by its odor, is at first formed; the smell is gradually exchanged for a strong and persistent one of sulphid of ethyl until at least no ammonium sulphid can be, by the proper reagents, detected in the liquid. The sulphur is then contained in the clear solution partly as hyposulphite and in part as free sulphur dissol ved, or in sorne manner kept from separating by the byposulphite. ${ }^{i}$ It is to this dissolved sulphur that the liquid owes its dark tinge, which depth of color came on gradually as the sulpbid of ammonium was oxydized. When the solution lost a portion of its hyposnlphite by crystallization, the free sulphur separated and the liquid lost its dark color. Then another portion of hyposulphite of ammonia appeared in crystals.

As the experiment has been set aside for further examination by slow crystallization, I am unable at present to say whether any sulphite of ammonia has been formed. The odor of free ammonia is very powerful, and the liquid contains sulphite of ethyl. A drop evaporated in the air upon a glass slide exhibits microscopic oil globules, having a strong smell of the sulphid of ethyl. The same globules may be absorbed by agitating the liquid with ether, precipitating by water, and suffering the ethereal solution to evaporate spontaneously in a watch glass.

The liquid also contains hyposulphite of ammonia in solution, and there are no crystals in it at present.

The following formula may illustrate its reaction :

$$
3 \mathrm{NH}_{4} \mathrm{~S}+5 \mathrm{O}=\mathrm{NH}_{4} \mathrm{O}_{1} \mathrm{~s}_{2} \mathrm{O}_{2}+2 \mathrm{NH}_{4} \mathrm{O}+\mathrm{s}
$$

and for the sulphid of ethyl, perhaps,

$$
\mathrm{NH}_{4} \mathrm{~S}+\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{O}, \mathrm{HO}=\mathrm{NH}_{4} \mathrm{O}, \mathrm{HO}+\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{~S}
$$

${ }^{1}$ Are ${ }_{\gamma} \mathrm{S}$ or $\mathrm{B} S$ solable in the hyposulphite?

I cannot say whether mercaptan was formed; the odor appeared to be different from that of this alcohol, and there was no action by the solution on oxyd of mercury. I have regarded the formation of the ethyl sulphid as without influence upon the peculiar crystallization of sulphur here described. It may however be otherwise, for MM. Dietzenbacher and Moutier (C. R., lx, 353) have recently discovered that naphthaline, camphor, creosote, oil of turpentine, carbon, \&c., modify the condition of sulphur rendering it soft and plastic, as well as partially insoluble in sulphid of carbon.

Art. XXXVI.-On the History of Eozoün Canadense.

WITH A PLATE.
Is volume xxxvii of this Journal, at p. 272, will be found a note to one of the Editors from Sir W. E. Logan, dated Feb. 17, 1864, announcing the discovery in the Laurentian limestones of Canada of organic remains, which, after a careful microscopic examination had been pronounced by Dr. Dawson, to belong to a gigantic Rhizopod. On page 431 of the same volume is a further note by Dr. T. Sterry Hunt, dated April 2, 1864, in which he states that in these organic remains the calcareous skeleton remains unchanged, while the sarcode is replaced by certain silicates, pyroxene, serpentine, and a mineral allied to chlorite in composition; the minute tubuli of the fossil being injected by these silicates in a manner analogous to that presented by the tertiary and modern Rhizopods, which are filled with glauconite.

These were the first announcements of this remarkable discovery, which has since been zealously followed up. Specimens of this fossil, which Dr. Dawson has named Eozoön Canadense, have been submitted to Dr. W. B. Carpenter of London, who is well known to be the great authority on Rhizopods, and the result of his examinations has been to confirm completely the determinations of Dr. Dawson, and to add to the description by the latter some further structural details, which the more perfect specimens examined by Dr. Carpenter enabled hirn to detect.

The results of the various investigations of the Eozoön are found in four papers pablished in the Journal of the Geological Society of London, for February, 1865. The first of these by Sir W. E. Logan describes the general geological relations of the Laurentian rocks, and is accompanied by two sections which we reproduce below.

He also relates the history of the first discovery of the fossil, specimens of which were exhibited by him to the American Association, at Springfield in August, 1859-and were then re-
garded by him and by Prof. James Hall as organic, although the microscope had as yet failed to detect the beautiful structure since found in such perfection in the specimens from other localities.

Sir William Logan moreover recalls the fact that Dr. Hunt had already from the presence of iron-ore beds, graphite, and metallic sulphurets, argued for the existence of life during the formation of the Laurentian rocks. See on this point a paper read in Jan. 1859 before the Geol. Society of London, and published in the Journal of that society, of which a review will be found in this Journal, [2], xxx, 134. This view is further developed in Dr. Hunt's paper on American Geology in this Journal, [2], xxxi, 396, where he concludes on chemical grounds to "the existence of an abundant vegetation during the Laurentian period."

The second paper is by Dr. Dawson, and gives his zoological description of Eozoön and its affnities, with a lithographed plate. The third is an extended note by Dr. Carpenter, in which he fully confirms the sagacious determination of Dr. Dawson as to the rhizopod characters and foraminiferal affinities of Eozoön, and is illustrated with a wood-cut and ten lithographed plates. In the fourth place we have a paper on the mineralogy of Eozoön by Dr. T. Sterry Hunt.

These four papers are reprinted in the Canadian Naturalist for April, 1865, with a single lithographed plate containing selections from the three just mentioned, and with the addition of a nature-printed section of Eozoön, both of which we place before our readers, together with extracts of the papers.

The Eozoön has also been carefully studied by Prof. T. Rupert Jones, who in the Popular Science Review for April, 1865, has given an excellent paper on the geological and zoological relations of the new fossil, together with a colored plate. In addition to this the Intellectual Observer for May, 1865, contains an essay of twenty-four pages on the same subject by Dr. Carpenter, with two excellent plates. As a further contribution to the literature of Eozoön we may mention that the pages of the London Reader for June, contain a correspondence between Dr. Carpenter and Messrs. King \& Rowney, of Galway, who venture to question the opinion of Messrs. Dawson, Carpenter and Rupert Jones as to the organic nature of Eozoön. This correspondence is chiefly interesting as giving from Dr. Carpenter the authorized announcement by Milne-Edwards, that he, after a careful study, fally concurs in the views of the latter named observers as to the structure and affinities of Eozoön.
We now proceed to notice Sir William Logan's description of the Laurentian rocks, the general facts in whose history are briefly given in a paper by Dr. T. Sterry Hunt in this Journal, [2], xxxvi, 222.
"The oldest known rocks of North America are those which compose the Laurentide Mountains in Canada and the Adirondacks in the state of New York. By the investigations of the Geological Survey of Canada, they have been shown to be a great series of strata, which, though profoundly altered, consist chiefly of quartzose, aluminous, and calcareous rocks, like the sedimentary deposits of less ancient times. This great mass of crystalline rocks is divided into two groups, and it appears that the Upper Laurentian or Labrador series rests uncontormably upon the Lower Laurentian series. The united thickness of the two groups in Canada cannot be less than 30,000 feet, and probably much exceeds it. The Laurentian of the west of Scotland, also according to Sir Roderick Muruhison, attains a great thickness." In that region the Labrador series had not until recently been certainly recognized, although from the descriptions of Mceulloch, and from an examination of the specimens colleeted by him, and now in the Museum of the Geological Society in London, Dr. Hunt in 1863, had expressed the opinion that the rocks of skye belong to this series. (See as above, page 226.) Prof Haughton of Dablin bas since visited the islands of Iona and Skye, and coufirmed the observations of Dr. Hunt. (Geol. Magazine, Feb. 1865 , page 73.)

The labradorite and hypersthene rocks from that island are identical with those of the Labrador series in Canada and New York, and unlike those of any formation at any other known horizon. This resemblance did not escape the notice of Enmons, who, in his description of the Adirondack Mountains, referred these rocks to the hypersthene-rock of McCulloch, although these observers, on the opposite sides of the Atlantic, looked upon them as unstratified.

Sir William then proceeds to notice the ancient gneiss which in Bavaria and Bohemia underlies the primordial zone, with a great intervening mass of clay slates. This old gneiss, which is estimated by Guimbel and Crejci to have a thickness of 90,000 feet, may, as Sir William suggests, include both the Upper and Lower Laurentian, and perhaps the Huronian, which is believed to be more recent than the Labrador series, although the two groups have never yet been found in contact. He then proceeds to remark:
"The united thickness of these three great series may possibly far surpass that of all the succeeding rocks from the base of the Palæozoic series to the present time. We are thus carried back to a period so far remote, that the appearance of the socalled Primordial fauna may by some be considered a comparatively modern event. We however find that even during the Laurentian period, the same chemical and mechanical processes which have ever since been at work disintegrating and recon-
structing the earth's crust were in operation as now. In the conglomerates of the Huronian series there are enclosed boulders derived from the Laurentian, which seem to show that the parent rock was altered to its present crystalline condition before the deposit of the newer formation; while interstratified with the Laurentian limestones there are beds of conglomerate, the pebbles of which are themselves rolled fragments of an older laminated sand-rock, and the formation of these beds leads us still further into the past."
"In both the Upper and Lower Lauren. tian series there are several zones of limestone, each of sufficient volume to constitute an independent formation. Of these calcareous masses it has been ascertained that three, at least, belong to the Lower Laurentian. But as we do not as yet know with certainty either the base or the summit of this series, these three may be conformably followed by many more. Although the Lower and Upper Laurentian rocks spread over more than 200,000 square miles in Canada, only about 1500 square miles have yet been fully and comectedly examined in any one district; and it is still impossible to say whether the numerous exposures of Laurentian limestone met with in other parts of the provisce are equivalent to any of the three zones, or whether they overlie or underlie them all."

In this connection are given the two following sections, which serve to show the structure of the Lower Laurentian rocks, and their relation to the overlying Labrador and Lower Silurian series.
The Eozoön Canadense occurs at Grenville, and in the Petite Nation seigniory at the two points indicated in the first section, and in both places in the third or uppermost band of the Lower Laurentian limestone. The same fossil has also been obtained to the south of the Ottawa, in Bur-
 gess, and farther west at the Grand Calumet on the Ottawa, in both instances in a limestone band whose pre-
cise place in the series has not been determined, nor is it known whether the fossil extends to the two lower conformable limestone bands, or to the calcareous zones in the unconformable Upper Laurentian series.
"The Grenville zone of limestone is in some places about 1500 feet thick, and it appears to be divided for considerable distances into two or three parts by very thick bands of gneiss. One of these bands occupies a position toward the lower part of the limestone, and may have a volume of between 100 and 200 feet. It is at the base of this limestone formation that the fossil occurs. This part of the zone is largely composed of great and small irregular masses of white crystalline pyroxene, some of them twenty yards in

Fig. 2.-Section across Trembling
 Mountain (21 miles).

b. Upper Laurentian. , e^{\prime}. Second limestone.
c. Fourth gneiss.

d^{\prime}.Third limestone.	f^{\prime}. First limestone.

d. Third gneiss. $\quad ; f$. First gneiss. length by four or five wide. They appear to be confusedly placed one above another, with many ragged interstices, and smoothly-worn, rounded, large and small pits and sub-cylindrical cavities, some of them pretty deep. The pyroxene, though it appears compact, presents a multitude of small spaces filled with carbonate of lime, and many of these show minute structure sinilar to that of the fossil. These masses of pyroxene may characterize a thickness of about 200 feet, and the interspaces among them are filled with a mixture of serpentine and carbonate of lime. In general a sheet of pure dark green serpentine invests each mass of pyroxene; the thickness of the serpentine, varying from the sixteenth of an inch to several inches, rarely exceeding half a foot. This is followed in different spots by parallel waving, irregularly alternating plates of carbonate of lime and serpentine, which become gradually finer as they recede from the pyroxene, and occasionally occupy a total thickness of five or six inches. These portions constitute the unbroken fossil, which may sometimes spread over an area of about a square foot, or perhaps more. Other parts, immediately on the outside of the sheet of serpentine, are occupied with about the same thickness of what appear to be the ruins of the fossil, broken up into a more or less granular mixture of calcspar and serpentine, the former still showing minute structure; and on the outside of the whole a similar mixture appears to have been swept b_{j} currents and eddies into rudely parallel and curving layers; the mixture becoming gradually more calcareous as it recedes from the pyroxene. Sometimes beds of
limestone of several feet in thickness, with the green serpentine more or less aggregated into layers, and studded with isolated lumps of pyroxene, are irregularly interstratified in the mass of rock; and less frequently there are met with lenticular patches of sandstone or granular quartzite, of a foot in thickness and several yards in diameter, holding in abundance smail disseminated leaves of graphite."
"The general character of the mass produces the impression that it is a great Foraminifcral reef, in which the pyroxenic masses represent a more ancient portion, which having died, and having become much broken up, and worn into cavities and deep recesses, afforded a seat for a new growth of Foraminifera, represented by the calcareo-serpentinous part. This in its turn became broken up, leaving in some places uninjured portions of the general form. The main difference between this Foraminiferal reef and more recent coral-reefs seems to be that, while with the latter are usually associated marine shells and other organic remains, in the more ancient ones the only remains yet found are those of the animal which built the reef."
The structure and appearance of the unbroken fossil will be understood from the following nature-printed section, the preparation of which is thus described by Dr. Hunt.
"The replacing mineral in this specimen being serpentine, the calcareous septa were dissolved from the pol ished surface by the action of an acid, and the fine material replacing the tubuli having been removed by the aid of a brush, a wax mould of the etched surface furnished the electrotype cast from which the above figure is printed. The lights thus represent the calcareousskeleton, and the shaded portion a thick mass of serpentine, which is distinguishable from a contiguous thin stratum of the same min-

3. Nature-printed section of a specimen of Eozoon Canadense from Petite Nation Seigniory. eral, that seems to form
the base of the Eozoön. The gradual passage from the wile chambers and thick septa to the narrower and thinner ones, and finally to the irregularly aggregated mode of grow th, designated by Dr. Carpenter as acervuline, is well seen. The white patch's in the upper portion of the figure do not arise from any impurfection in the electrotype, but represent the irregular growth of this part of the calcareous skeleton."

Slices of the fossils having been prepared for microscopic examination, and submitted to Dr. Dawson, were at once recog. nized by him as presenting the characters of Foraminiferal shells. After a careful examination of a large number of specimens he named and described the fossil as follows.
"Eozoön Canadense; gen. et. spec. nov.
General form.-Massive, in large sessile patches or irregular cylinders, growing at the surface by the addition of successive laminæ.

Internal structure.-Chambers large, flattened, irregular, with numerous rounded extensions, and separated by walls of variable thickness, which are penetrated by septal orifices irregularly disposed. Thicker parts of the walls with bundles of fine branching tubuli."

The grounds on which he inferred its foraminiferal character are thas stated by Dr. Dawson:
"1. The serpentine and pyroxene which fill the cavities of the calcareous matter have no appearance of concretionary structure. On the contrary, their aspect is that of matter introduced by infiltration, or as sediment, and filling spaces previously existing. In other words, the calcareous matter has not been moulded on the forms of the serpentine and augite, but these have filled spaces or chambers in a hard calcareous mass. This conclusion is further confirmed by the fact, to be refered to in the sequel, that the serpentine includes multitudes of minute foreign bodies, while the calcareous matter is uniform and homogeneous. It is also to be observed that small veins of carbonate of lime occasionally traverse the specimens, and in their entire absence of structures other than crystalline, present a striking contrast to the supposed fossils."
" 2 . Though the calcareous laminæ have in places a crystalline cleavage, their forms and structures have no relation to this. Their cells and canals are rounded, and have smooth walls, which are occasionally lined with films apparently of carbonaceous matter. Above all, the minute tubuli are different from anything likely to occur in merely crystalline calcspar. While in such rocks little importance might be attached to external forms simulating the appearances of corals, sponges, or other organisms, these delicate internal structures have a much higher claim to attention. Nor is there any improbability in the pres-
ervation of such minute parts in rocks so highly crystalline, since it is a circumstance of frequent occurrence in the microscopic examination of fossils that the finest structures are visible in specimens in which the general form and the arrangement of parts have been entirely obliterated. It is also to be observed that the structure of the calcareous laminæ is the same, whether the intervening spaces are filled with serpentine or with pyroxene."
"3. The structures above described are not merely definite and uniform, but they are of a kind proper to animal organisms, and more especially to one particular type of animal life, as likely as any other to occur under such circumstances; I refer to that of the Rhizopods of the order Foraminifera. The most important point of difference is in the great size and compact habit of growth of the specimens in question; but there seems no good reason to maintain that Foraminifera must necessarily be of small size, more especially since forms of considerable mag. nitude referred to this type are known in the Lower Silurian. Prof. Hall has described specimens of Receptaculites twelve inches in diameter; and the fossils from the Potsdam formation of Labrador, referred by Mr. Billings to the genus Archooocyathus, are examples of Protozoa with calcareous skeletons scarcely inferior in their massive style of growth to the forms now under consideration."
"These reasons are, I think, sufficient to justify me in regarding these remarkable structures as truly organic, and in searching for their nearest allies among the Foraminifera."
"Supposing then that the spaces between the calcareous laminx, as well as the canals and tubuli traversing their substance, were once filled with the sarcode-body of a Rhizopod, comparisons with modern forms at once suggest themselves."
"From the polished specimens in the Museum of the Canadian Geological Survey, it appears certain that these bodies were sessile by a broad base, and grew by the addition of successive layers of chambers, separated by calcareous laminæ, but communicating with each other by cannals or septal orifices sparsely and irregularly distributed. Small specimens have thus much the aspect of the modern genera Carpenteria and Polytrema. Like the first of these genera, there would also seem to have been a tendency to leave in the midst of the structure a large central canal, or deep funnel-shaped or cylindrical opening, for communication with the sea-water. Where the laminæ coalesce, and the structure becomes more vesicular, it assumes the 'acervuline' character seen in such modern forms as Nubecularia."
"Still the magnitude of these fossils is enormous when compared with the species of the genera above named; and from the specimens in the larger slabs from Grenville, in the Museum of
the Canadian Survey, it would seem that these organisms grew in groups, which ultimately coalesced, and formed large masses penetrated by deep irregular canals; and that they continued to grow at the surface, while the lower parts became dead, and were filled up with infiltrated matter or sediment. In short, we have to imagine an organism having the habit of growth of Carpenteria, but attaining to an enormous size, and by the aggregation of individuals assuming the aspect of a coral reef."
"The complicated systems of tubuli in the the Laurentian fossil indicate however a more complex structure than that of any of the forms mentioned above. I have carefully compared these with the similar structures in the 'supplementary skeleton' (or the shell-substance that carries the vascular system) of Calcarina and other forms, and can detect no difference except in the somewhat coarser texture of the tubuli in the Laurentian specimens. It accords well with the great dimensions of these, that they should thus thicken their walls with an extensive deposit of tubulated calcareous matter; and from the frequency of the bundles of tubuli, as well as from the thickness of the partitions, I have no doubt that all the successive walls, as they were formed, were thickened in this manner, just as in so many of the higher genera of more modern Foraminifera."

Dr. Dawson further ascertained that certain parts of the fossil present that irregular mode of growth which Dr. Carpenter has designated as acervuline, and moreover that considerable masses of Laurentian limestones are made up of fragments of the fossils. He further points out the presence in these limestones of other fragments, which are probably organic, and which may indicate the existence of other animal remains. Films of carbonaceous matter in some of these limestones also exhibit under the microscope forms which indicate that they may be the remains of plants. He further adds, that "although the abundance and wide distribution of Eozoön, and the important part it seems to have acted in the accumulation of limestone, indicate that it was one of the most prevalent forms of animal existence in the seas of the Laurentian period, the non-existence of other organic beings is not implied. On the contrary, independently of the indications afforded by the limestones themselves, it is evident that in order to the existence and growth of these large Rhizopods, the waters must have swarmed with more minute animal or vegetable organisms on which they could subsist. On the other hand, though this is a less certain inference, the dense calcareous skeleton of Eozoön may indicate that it also was liable to the attacks of animal enemies. It is also possible that the growth of Eozoön, or the deposition of the serpentine and pyroxene in which its remains have been preserved, or both, may have been connected with certain oceanic depths and conditions, and that
we have as yet revealed to us the life of only certain stations in the Laurentian seas."

Subsequent to the above examination and description by Dr. Dawson, specimens of the new fossil from Grenville, and also more perfect ones from a similar and newly discovered locality in the Petite Nation Seigniory were taken to London by Sir William Logan and submitted to Dr. Carpenter, who fully contirmed the above results, and made out some additional structure. More especially he observed in specimens from the new locality, the preservation of the fine tubulation of the original cell-wall, which had not before been clearly made out. The additional points are thus stated by Dr. Carpenter:
"Although Dr. Dawson has noticed that some parts of the sections which he examined present the fine tubulation characteristic of the shells of the Nummuline Foraminifera, he does not seem to have recognized the fact, which the sections placed in my hands have enabled me most satisfactorily to determine,that the proper walls of the chambers everywhere present the fine tubulation of the Nummuline shell (plate, figs. 3, 6); a point of the highest importance in the determination of the affinities of Eozoön. This tubulation, although not seen with the clearness with which it is to be discerned in recent examples of the Nummuline type, is here far better displayed than it is in the majority of fossil Nummulites, in which the tubuli have been filled up by the infiltration of calcareous matter, rendering the shell-substance nearly homogeneous. In Eozoön these tubuli have been filled up by the infiltration of a mineral different from that of which the shell is composed, and therefore not coalescing with it; and the tubular structure is consequently much more satisfactorily distinguishable. In decalcified specimens, the free margins of the casts of the chambers are often seen to be bordered with a delicate white glistening fringe; and when this fringe is examined with a sufficient magnifying power, it is seen to be made up of a multitude of extremely delicate aciculi, standing side by side like the fibres of asbestos. These, it is obvious, are the internal casts of the fine tubuli which perforated the proper wall of the chambers, passing directly from its inner to its outer surface; and their presence in this situation affords the most satisfactory confirmation of the evidence of that tubulation afforded by thin sections of the shell-wall."
"The successive layers, each having its own proper wall, are often superposed one upon another without the intervention of any supplemental or intermediate skeleton such as presents itself in all the more massive forms of the Nummuline series; but a deposit of this form of shell-substance, readily distinguishable by its homogeneousness from the finely tubular shell immediately investing the segments of the sarcode-body, is the source of the
great thickening which the calcareous zones often present in vertical sections of Eozooin. The presence of this intermediate skeleton has been correctly indicated by Dr. Dawson; but he does not seem to have clearly differentiated it from the proper wall of the chambers. All the tubuli which he has described belong to that canal-system which, as I have shown, is limited in its distribution to the intermediate skeleton, and is expressly destined to supply a channel for its nutrition and augmentation. Of this canal-system, which presents most remarkable varieties in dimensions and distribution, we learn more from the casts presented by decalcified specimens, than from sections, which only exhibit such parts of it as their plane may happen to traverse."
"It does not appear to me that the 'canal-system' takes its origin directly from the cavity of the chambers. On the contrary, I believe that, as in Calcarina (which Dr. Dawson has correctly referred to as presenting the nearest parallel to it among recent Foraminifer(t), they originate in lacunar spaces on the outside of the proper walls of the chambers, into which the tubuli of those walls open externally; and that the extensions of the sarcodebody which occupied them were formed by the coalescence of the pseudopodia issuing from those tubuli."

We have here a diagram by Dr. Carpenter which he has given in his paper in the Quarterly Geological Journal; and from his subsequent B memoir in the Intellectual Observer extract the following remarks: It will be understood that not only the chamber, but the canals and minute tabuli in the fossil are injected with serpentine, which, when the calcareons skeleton is removed by an acid, remains, and Dr. Carpenter especially notices "the marvellous completeness with which the minutest extensions of the sarcode-body of the animal are represented in decalcified specimens by these serpentine models; even

4. Diagram illustrating the structure of Eozoön.
$A^{1}, A^{1} \cdot A^{1}$. Three chambers of one layer, communicating with each other directly at a, and by three passages through a shelly partitiou at b.
A^{3}, A^{2}, A^{2}. Three chambers of a more superficial layer.
B, B, B. Proper wall of the chambers, composed of finely tubuiar slell-substance.
C, C, C. Intermediate or supplemental skeleton, traversed by D, a stolon of communication between two chambers of different layers, and by E, E, a canal system originating in the lacunar space F.
the most delicate pseudopodial threads, consisting of the softest and most transitory form of living substance which were put forth through pores in the shell-wall less than one ten-thousandth of an inch in diameter, being thus perpetuated to all time." "The proper walls of the chambers are everywhere formed of a pellucid vitreous shell-substance minutely perforated with tubuli, so as exactly to correspond with those of Aummulites, Operculina, etc." The serpentine casts of these tubuli are frequently detached by the disengagement of the gas while the skeleton is being removed by an acid, but they often remain behind, standing side by side like the filaments which form the pile of velvet, their lower ends resting on the subjacent segment, while their upper extremities present a uniform surface. These casts of tubuli are distinguished from the adjacent serpentine, which is pale-green by their whiteness, yet the two are found by Dr. Hunt to be identical in composition, and thus, as he, and Dr. Carpenter after him, remarks, their whiteness is due to their fine division; many groups and bunches of this white substance being found by Dr. Carpenter to be aggregations of the elementary forms of sarcodic prolongation, which he has described in detail.
With regard to the intermediate or supplemental skeleton, which resembles closely that existing in Calcarina as described by Dr. Carpenter in his admirable Introduction to the Study of the Foraminifera, it is an exogenous deposit on the outer surface of the proper walls of the chamber, where it seems to be produced by the sarcodic layer which is formed by the coalescence of the pseudopodia after they have issued from the tubuli, and is traversed by a more or less minutely distributed canal-system, occupied during life by prolongations of that sarcodic layer. In those portions of the fossil where the chambers, instead of being regularly arranged in floors, are piled up in the acervuline manner, there is little or no trace of this intermediate skeleton, but in these irregularly aggregated chambers the structure of their proper walls is still well scen, both in transparent sections and in decalcified specimens.
In the solid masses of limestone which are made up of fragments of Eozoön, Dr. Carpenter could find no trace of the intermediate skeleton, though these specimens afford the most perfect examples of the Nummuline tubulation. He hence concludes that "the breaking up of the surface of the original Eozoön must have taken place before the proper walls of its highest tiers of chambers had been strengthened by exogenous deposit."

Space will not permit us to follow Dr. Carpenter in his comparison of Eozoön with other Foraminifera. He remarks, however, the resemblance in its mode of growth with the discoidal modern Cycloclypeus from the coast of Borneo, which attains a diameter of more than two inches and is made up of many
thousand segments, while in Globigerina the continuous increase of the individual body by segments soon ceases and new individuals are formed by the separation of the segments.

Reverting to Dr. Dawson's remark as to the important part played by the Eozoön in the Laurentian seas, Dr. Carpenter observes the significance of the fact that this lowest type of animal life known to the physiologist (the Rhizopod) should have attained such a great development and apparently culminated in the very earliest known period in the history of the life of our globe.

The serpentine marbles of Tyree and of Skye, whose probable Laurentian age had been pointed out by Dr. Hunt in the paper already cited, offer, according to Dr. Carpenter, "a structure clearly identical with that of the Canadian Eozoön." A like structure has been discovered by Mr. Sandford in the serpentine marble of Connemara, known as Irish green marble. "I have," says Dr. Carpenter, "examined decalcified specimens of several portions of this rock, and have not the smallest hesitation in identifying them with the acervuline portion of the Eozoïn Canadense, although I have met with nothing corresponding to the iamellated structure of other portions of the Eozoön. Moreover in place of the continuous asbestiform layer covering the segments, long straight bundles of filaments radiate from them." The age of the Connemara rock is by no means certain. Sir Roderick Murchison was at first disposed to regard it as Laurentian, but has since expressed the opinion that it is of Silurian age.

In this connection we call the attention of American geologists and microscopists to the crystalline limestones of the Highlands of New York, which are doubtless of Laurentian age, ${ }^{\text {b }}$ and also to the figure and description, given by Dr. Emmons on page 60 of his Geology of the 2nd district of New York, of a banded arrangement in rounded or oval masses of serpentine and carbonate of lime, much resembling in external form the Eozoön of Canada. The specimen figured by him is from Warrensburg, Warren County, New York.

The mode in which the Eozoön has been preserved by the injection of serpentine has already been noticed, but is further described in Dr. Hunt's paper, from which we make the following extracts :
"The details of structure have been preserved by the introduction of certain mineral silicates, which have not only filled up the chambers, cells, and canals left vacant by the disappearance of the animal matter, but have in very many cases been injected into the tubuli, filling even their smallest ramifications. These silicates have thus taken the place of the original sarcode,

[^112]while the calcareous septa remain. It will then be understood that when the replacement of the Eozoön by silicates is spoken of, this is to be understood of the soft parts only ; since the calcareous skeleton is preserved in most cases without any alteration. The vacant spaces left by the decay of the sarcode may be supposed to have been filled by a process of infiltration, in which the silicates were deposited from solution in water, like the silica which fills up the pores of wood in the process of silicification. The replacing silicates, so far as yet observed, are a white pyroxene, a pale-green serpentine, and a dark-green alumino-magnesian mineral, which is allied in composition to chlorite and to pyrosclerite, and which I have referred to loganite. The calcareous septa in the last case are found to be dolomitic, but in the other instances are nearly pure carbonate of lime. The relations of the carbonate and the silicates are well seen in thin sections under the microscope, especially by polarized light. The calcite, dolomite, and pyroxene exhibit their crystalline structure to the unaided eye; and the serpentine and loganite are also seen to be crystalline when examined with the microscope. When portions of the fossil are submitted to the action of an acid, the carbonate of lime is dissolved, and a coherent mass of serpentine is obtained, which is a perfect cast of the soft parts of the Eozoön. The form of the sarcode which filled the chambers and cells is beautifully shown, as well as the connecting canals and the groups of tubuli; these latter are seen in great perfection upon surfaces from which the carbonate of lime has been partially dissolved. Their preservation is generally most complete when the replacing mineral is serpentine, although very perfect specimens are sometimes found in pyroxene. The crystallization of the latter mineral appears, however, in most cases to have disturbed the calcareous septa."
"Serpentine and pyroxene are generally associated in these specimens, as if their deposition had marked different stages of a continuous process. At the Calumet, one specimen of the fossil exhibits the whole of the sarcode replaced by serpentine; while, in another one from the same locality, a layer of pale green translucent serpentine occurs in immediate contact with the white pyroxene. The calcareous septa in this specimen are very thin, and are transverse to the plane of contact of the two minerals; yet they are seen to traverse both the pyroxene and the serpentine without any interruption or change. Some sections exhibit these two minerals filling adjacent cells, or even portions of the same cell, a clear line of division being visible between them. In the specimens from Grenville, on the other hand, it would seem as if the development of the Eozoön (considerable masses of which were replaced by pyroxene) had been interrupted, and that a second growth of the amimal, which was
AM. Jour. SCI.-SECOND SERIEs, VoI, XI, No. 120.-Nov., 1865.
replaced by serpentine, had taken place upon the older masses, filling up their interstices."

The paper of Dr. Hunt contains numerous analyses of the various minerals noticed above. We extract his account of the loganite, which replaces the Eozoön from Burgess. The calcareous septa in these specimens are represented by a "somewhat ferriferous dolomite, the analysis of which was made upon portions mechanically separated from the enclosed silicate; it yielded carbonate of magnesia 40.7 , carbonate of lime, with a little peroxyd of iron, $59 \cdot 0=99 \%$. The septa of the specimen from this locality are in some parts more than 3.0 millimeters in thickness, and exhibit the chambers, cells and septal orifices; but no tubuli are seen. The replacing material has the hardness of serpentine, for which it was at first mistaken. Its color is blackish-green, but olive-green in thin sections, when it is seen by transmitted light to be crystalline in texture. Its fracture is granular, and its lustre feebly shining. It is decomposed by heated sulphuric acid, and was thus analyzed, yielding the result I. The centesimal composition of the suluble portion is given under II.

	I.	II.	III.
Silica.	$33 \cdot 75$	$35 \cdot 14$	36.50
Alumina	$9 \cdot 74$	$10 \cdot 15$	$10 \cdot 80$
Magnesia	$30 \cdot 24$	31.47	28.20
Protoxyd of iron	$8 \cdot 19$	$8 \cdot 60$	9.54
Water.	14.08	14.64	14.62
Insoluble sand.	2.50		
	98.51	$100 \cdot 00$	$99 \cdot 66$

"The silicate which here takes the place of the pyroxene and serpentine observed in the other specimens of Eozoön is one of frequent occurrence in the Laurentian limestones, and appears to constitute a distinct species, which I long since described under the name of loganite, and which occurs at the Calumet in dark brown prismatic crystals. I have since observed a similar mineral in two other localities besides the one here noticed. The result III, which is placed by the side of the analysis of the Burgess fossil, was obtained with a greenish-grey sparry prismatic variety from North Elmsley, having a hardness of $3 \cdot 0$, and a specific gravity of 2.539 . These hydrous alumino-magnesian silicates, which I have included under the name of loganite, ${ }^{1}$ are related to chlorite and to pyrosclerite in composition; but these last are distinguished from it by their eminently foliated micaceous structure."
"When examined under the microscope, the loganite which replaces the Eozoön of Bargess, shows traces of cleavage-lines,

[^113]which indicate a crystalline structure. The grains of insoluble matter found in the analysis, chiefly of quartz sand, are distinctly seen as foreign bodies imbedded in the mass, which is moreover marked by lines apparently due to cracks formed by a shriuking of the silicate, and subsequently filled by a further infiltration of the same material. This arrangement resembles on a minute scale that of septaria. Similar appearances are also observed in the serpentine which replaces the Eozoön of Grenville, and also in a massive serpentine from Burgess, resembling this, and enclosing fragments of the fossil. In both of these specimens also grains of mechanical impurities are detected by the microscope; they are, however, rarer than in the loganite of Burgess."
"From the above facts it may be concluded that the various silicates which now constitute pyroxene, serpentine, and loganite were directly deposited in waters in the midst of which the Eozoön was still growing, or had only recently perished; and that these silicates penetrated, enclosed, and preserved the calcareous structure precisely as carbonate of lime might have done. The association of the silicates with the Eozoön is only accidental; and large quantities of them, deposited at the same time, include no organic remains. Thus, for example, there are found associated with the Eozoön limestones of Grenville, massive layers and concretions of pure serpentine; and a serpentine from Burgess has already been mentioned as containing only small broken fragments of the fossil. In like manner large masses of white pyroxene, often surrounded by serpentine, both of which are destitute of traces of organic structure, are found in the limestone at the Calumet. In some cases, however, the crystallization of the pyroxene has given rise to considerable cleavage-planes, and has thus obliterated the organic structure from masses which, judging from portions visible here and there, appear to have been at one time penetrated by the calcareous plates of Eozoön. Small irregular veins of crystalline calcite, and of serpentine, are found to traverse such pyroxene masses in the Eozoön-limestone of Grenville."
Veins of tibrous serpentine (chrysotile) in like manner intersect the serpentine of this region, and are sometimes found cutting across the masses of Eozoön. It is stated in a note to this portion of the paper that, "Recent examinations have shown that some of these masses encrusted with Eozoön replaced by serpentine, consist of crystalline pyrallolite (rensselaerite); which seems, like the other silicates, to have replaced the organic matter of the Rhizopod."
"These observations bring the formation of siliceous minerals face to face with life, and show that their generation was not incompatible with the contemporaneous existence and the preserv-
ation of organic forms. They confirm, moreover, the view which I some years since put forward, that these silicated minerals have been formed, not by subsequent metamorphism in deeply buried sediments, but by reactions going on at the earth's surface. ${ }^{2}$ In support of this view, I have elsewhere referred to the deposition of silicates of lime, magnesia, and iron from natural waters, to the great beds of sepiolite in the unaltered tertiary strata of Europe; to the contemporaneous formation of neolite (an alumina-magnesian silicate related to loganite and chlorite in composition); and to glauconite, which occurs not only in secondary, tertiary, and recent deposits, but also, as I have shown, in Lower Silurian strata. ${ }^{3}$ This hydrous silicate of protoxyd of iron and potash, which sometimes includes a considerable proportion of alumina in its composition, has been observed by Ehrenberg, Mantell, and Bailey associated with organic forms in a manner which seems identical with that in which pyroxene, serpentine, and loganite occur with the Eozoön in the Laurentian limestones. According to the first of these observers, the grains of green-sand or glauconite from the tertiary limestone of Alabama are casts of the interior of Polythalamia; the glauconite having filled them by 'a species of natural injection, which is often so perfect that not only the large and coarse cells, but also the very finest canals of the cell-walls, and all their connecting tubes, are thus petrified and separately exhibited.' Bailey confirmed these observations, and extended them. He found in various cretaceous and tertiary limestones of the Enited States, casts, in glauconite, not only of Foraminifera, but of spines of Echinus, and of the cavities of corals. Besides, there were numerous red, green, and white casts of minute anastomosing tubuli, which, according to Bailey, resemble the casts of the boles made by burrowing sponges (Cliona) and worms. These forms are seen after the dissolving of the carbonate of lime by a dilute acid. He found moreover, similar casts of Foraminifera, of minute mollusks, and of branching tubuli, in mud obtained from soundings in the Gulf-stream, and concluded that the deposition of glauconite is still going on in the depths of the sea. ${ }^{\text {a }}$ Pourtales has followed up these investigations on the recent formation of glauconite in the Gulf-stream waters. He has observed its deposition also in the cavities of Millepores, and in the canals in the shells of Baianus. According to him, the glauconite grains formed in Foraminifera lose after a time their calcareous envelopes, and finally become 'conglomerated into small black pebbles,' sections of which still

[^114]show under a microscope the characteristic spiral arrangement of the cells. ${ }^{5}$
"It appears probable from these observations that glauconite is formed by chemical reactions in the ooze at the bottom of the sea, where dissolved silica comes in contact with iron-oxyd rendered soluble by organic matter; the resulting silicate deposits itself in cavities of shells and other vacant spaces. A process analogous to this in its results, has filled the chambers and canals of the Laurentian Foraminifera with other silicates; from the comparative rarity of mechanical impurities in these silicates, however, it would appear that they were deposited in clear water. Alumina and oxyd of iron enter into the composition of loganite as well as of glauconite; but in the other replacing minerals, pyroxene and serpentine, we have only silicates of lime and magnesia, which were probably formed by the direct action of alkaline silicates, either dissolved in surface-waters, or in those of submarine springs, upon the calcareoas and magnesian salts of the sea water."

In the second part of Dr. Hunt's paper on Natural Waters, published in this Journal for July, there will be found in $\S 41$ some observations bearing on the formation of the silicates of lime and magnesia. The chemical and mineralogical relations of the Eozoön, or rather of its replacing silicates, are by no means the least important points in the history of this remarkable fossil.

Explanation of the Plate illustrating the Structure and Affinities of Eozoön Canadense.

Of the figures here given, $1,3,6 a, 6 b$, and 7 , are selected from two plates given by Dr. Carpenter to illustrate his paper; while 2, 4, and 5, are from the plates accompanying Dr. Dawson's description, and are from drawings by Mr. Horace H. Smith, the artist of the Canadian Geological Survey.

The figures, with the exception of 7 , are from transparent sections of specimens in which the original shell was well preserved, and its minutest cavities infiltrated with serpentine. Figure 7 is from a specimen from which the calcareous skeleton was removed by an acid, and represents the internal casts of the tubes, as seen by reflected light.

Fig. 1. Vertical section of regularly stratified portion of Eozoön showing the ordinarily continuous connection of the chambers of each stratum; magnified 10 dianneters.
2. Horizontal section of Eozoön from Grenville, magnified 25 diameters; a, systems of tubuli; b, secondary chanmer.
3. Portions of two chambers of different layers, showing at a, a, the proper wells of their chambers; at b, b, the intermediate

- Report of United Statea Coast Survey, 1858, p. 248.
skeleton; and at c, c, a stoloniferous passage; magnified 25 diameters.
Fig. 4. One of the systems of tubuli cut transversely; magnified 100 diameters.

5. Part of a system of tubuli cut transversely; magnified 200 diameters.
6. Portions of the proper wall of the chanbers, showing its Nummuline tubulation, as seen at a in longitudinal, and at b in transverse section; magnified 100 diameters.
7. Cast of the interior of canal-system; an entire group magnified 10 diameters.

Art. XXXVII.-Notices of Earthquakes.

I. Notices of the Earthquake of August 17th, in the Mississippi Valley; received from Dr. A. Wishizents, of St. Louis.

1. Note by Dr. Wislizenus.- In the city of St. Louis the motion was felt by many persons in two distinct shocks, but lasting, in my estimate, not longer than about twenty seconds. Some observed its direction as going from north to south.
2. Notice from the Missouri Remublican, of wh. Ioutis, Aug. 18, 1865. - The shock of an earthquake was sensibly felt in this city yesterday morning at 25 minutes to 90^{\prime} clock. The motion was an oscillating one, the earth seeming to swing gently, like the pendulum of a clock. It lasted nearly a minute and a half-the intermediate motions being slighter than was perceived at the beginning and end of the shock. During its duration, chamber furniture, gas fixtures, ete., could be seen to rock, and a cracking sound proceeded from the walls of the houses, as if their steadiness was seriously disturbed.

Cairo, Ill., Aug. 17.-A severe shock of an earthquake was felt here at $8^{\mathrm{h}} 4 \overline{5}^{\mathrm{m}}$ this morning, causing people to rush out of their houses in the greatest consternation.

Jackson, Mississippi, Aug. 17.-The effect of the earthquake was seriously felt about 9 o'clock this morning at Memphis, Lagrange, Holly Springs, Oxford, and Grenada. At Memphis the shock was severe enough to cause people to run out of houses.
3. Extracts from a letter to Dr. A. Wislizenus by Mr. Joun T. Scort, Attorney at Law at New Madrid, Mo., dated Sept. 6, 1865.--On the morning of the 17th of August, about half-past 8 o'elock, I was going to my office, and having to proceed through a park, and being about the middle of it, and in the best possible position for hearing and observation, I heard, as I thought for the moment, heavy rolling thunder. This astonished
me, for it was almost entirely clear, no clouds whatever visible that in the least indicated thunder, rain, or change of weather. I was at this time going in a southeasterly direction, and the thunder, as for the moment I had taken it to be, seemerl to be exactly in the opposite direction from that in which I was then going. Astounded as L was, I stopped, and, turning to ascertain from whence this noise proceeded, the earth began to vibrate to and fro from northwest to southeast, and continued for several times, the first vibration being the greatest (apparently not less than three or four inches), and gradually diminishing. On turning fully around, the noise which I had taken for thunder, but which, in fact, was the noise accompanying the earthquake, seemed to be about in a northwesterly direction from here; and had it been thunder, I should have thought it not over twelve or fifteen miles distant. It seemed to roll or pass off in a northeasterly direction, or at right angles to the vibrations of the earth. The noise and vibrations lasted about a minute.

In the town, the druggists' jars, bottles, \&c., were all rocked to the very edge of the shelves, and some of them off. Chimneys were considerably damaged ; dishes, cups, saucers, glasses, \&c. suffered much. The cattle and dogs all rau in confusion and seemed much alarmed, and utterly at a loss to know where or in what direction to go.

I was talking to a ferryman here a few days since about the earthquake, and he told me that he was at the time crossing the Mississippi river in a skiff, and that the water rolled as if a steamboat had just passed. He said he was much frightened until he heard the noise and thought what it was. The fact is, however-and such was the case at the time referred to-that the noise generally precedes the shaking or vibration from one to three seconds. In this case I think it was about two seconds.
I would mention one fact, notorious here, that the earthquakes are much more severe in the swamp or low and inundated lands, than in the high and dry lands. Hence it is that those living west of here, in what is called Little River Swamps, and follow hunting for an occupation, often experience earthquakes when we feel none at all. The earthquake of the 17 th , of which I am speaking, was much more severe there than here or in high and dry lands.

Another remarkable fact about the earthquakes here, is, that while sometimes the earth quakes or trembles, as it were, at other times it seems to roll in waves, like the ocean, and at others, as in the one I am more particularly speaking of at presents, it vibrates, apparently, in a horizontal direction. They most generally come from the west or northwest, sometimes from the southwest. The character of the noise, or roaring, as it is generally called, is also variable.

May I not now suggest a plan by which valuable information, relative to the time, center, and progressive movement of these convulsions, might be obtained? Suppose there should be a correspondent at the county seat of every county in the vicinity of the region of earthquakes, whose duty it should be to note all the facts of each convulsion, its direction, its duration, \&c., and forward the same to some scientific gentleman for comparison and analysis. Could not something be obtained by this means?

I am told that the most graphic description of the earthquakes of 1811 and 1812 is to be found in the works of Lorenzo Dow. This description is from the pen, and in a letter of Mrs. Elizabeth Bryan to that reverend gentleman, Mr. Dow. The old lady was residing here at the time, and is still here, in her 88th year. Perhaps you might glean something from that letter.

I would further remark that I did not conclude the above last evening, and just as I was writing the line above my signature, at a quarter past 8 o'elock this murning, the 7th, we had another shock, shaking houses, \&c. considerably. It was not accompanied with much noise-came from a westerly direction, and lasted about half a minute.

II. Notices, received from Dr. C. F. Winslow, of Boston.

1. Letter to Dr. Winslow, from Mr. G. Pendleton, dated Rochester, Sept. 10, 1865.-In accordance with my promise I herewith send you the facts about the earthquakes I have experienced during my voyages in the Pacific ocean.
(1.) Earthquake off Kamtschatka in 1845. -The first case was as follows:-On board the ship Charles Phelps, at sea, September 22nd, 1845, Cape Kamtschatla bearing N.W., distance 15 to 20 miles; the weather clear, widd light and baffling from the westward. At about 8 A. m. we felt a heavy shock of an earthquake, cansing the ship to tremble about as she would if going in stays in a strong wind; and the noise on board was much like the rolling of a heavy cask fore and aft the deck. It lasted about 15 to 20 seconds, and then passed off, and left all quiet.
(2.) Earthquake at Guam, one of the Ladrones, in 1849.-The next earthquake I find noticed as follows, in my journal:Ship Mary \& Susan, of Stonington, at Ulmata Bay, Island of Guam, January 24th, 1849 . At 230 P. M. experienced the shock of an earthquake which was far beyond anything I have ever known before. It lasted for about one minute, and was followed by seven other shocks during the night, the last being at daylight of the 25th. The last seven shocks were much lighter than the first. At the time of the first shock, and during the night, the atmosphere was a little hazy, and had a very strong sulphurous smell. The earliest intimation we had of the first
great shock was an exceedingly great agitation of the water and the land. The convulsion on the land was so great that all of the brick and stone buildings on the Island were more or less injured, and some were reduced to a mass of ruins; and a man could not keep on his feet without holding on to something. I had a boat on shore at the time, and the inflood of the water was so great that it took her into the tops of the trees near the ocean, and swept water casks and such things a fourth of a mile or more into the country. And when the water receded, it left them with hundreds of fish high and dy, and the land at the watering place sank about twelve feet. When the water receded it took my ship back with such foree that it parted my chain and I lost an anchor: she had run over it when the water flowed in and then went back with great force.

I would say that at the time of the first shock, and through the night, the wind was very light from the nortbeast. Several ships lying at Apra (the capitol of the Island) lost anchors by being covered up at the bottom of the harbor, and they had to part or cut their chains. I think there were six lost. The motion of the water on the Island was east and west.
2. Notes from the Journal of Dr. C. F. Winslow.-(1.) Earthquake at Lima, March, 1865.-T. J. Pope, Esq., Secretary of Legation to the Embassy of Peru at Lima, informs me that on the 1st of March 1865, at $6 \frac{1}{2}$ A. M., he was then on board the U. S. Ship Lancastre (acting as secretary to the Admiral), and his attention was called by the orderly to the strange agitation of the water in the bay. He states that the surface of the bay for a long distance around the ship was in a state of agitation and ferment, and that the water with wind was thrown up in jets from 12 to 15 inches. The odor of the sulphuretted or carburetted hydrogen was borrid, and the white paint of the ship was blackened. This occurred about the time (just before, in February,) when a great wave suddenly rushed into Callao bay and swept the bathing house away, and several persons drowned. There were several shocks of earthquakes about this time. But Mr. Pope felt no shock on the 1st of March, at the time of the phenomenon he speaks of.
Lima, A pril $20,1965$.
(2.) Earthquake off Paita, May, 1865.-At $\frac{1}{4}$ past 1 P. s.., a strong tarthquake was felt here which agitated the people very much. It lasted 20 seconds. This is experienced by me and is the strongest I have felt in Paita. Movement great from N.E.
Paita, May 15, 1865.
(3.) Earthquake at Amotapa in Aug. 185̄8. - In 18558, August 28 , at 6.6 A. M., I felt a very severe earthquake at Amotapa Made a crack in the river Chira, so that sulphurous fumes and
Am. Jour. Sci,-Second Seriss, Vol. XL, No. 120.-Nov., 1865.
petroleum came to the surface. This was felt very far into the interior and was supposed to originate in the neighborhood of Longai. Mr. Woodhouse and Mr. Dewal both tell me of this earthquake, being then residents of this place or Paita. The earth trembled slightly very often for the next 24 hours.
Amotap̀a, May 27, 186 万̄.
(4.) List of Earthquakes, copied at Lima, from books given me by Mr. Wm. Sterling, of Amotapa, May 28, 1865‥-Earthquake in Lima, 1860, Apr. 21, 1.35 A. M.; pretty strong. At 12 o'clock, midnight, of 21 st, a slight shock. 22 nd, $1 \cdot 40$ P. M., a very heavy shock; walls thrown down and others cracked; some churches injured.-23d, 1 A. 3., a light shock; at 6.40 A. M. same day, another very severe shock; at $11 \cdot 30$ A. M. same day, another severe shock accompanied with a loud rumbling noise; 5.45 P. M., another light shock.-23d, at 12, midnight, and on 24 th at 12.30 A. m., and at 2 A. M., light shocks- -26 th, 6 A. M., a loud rumbling with slight shaking. May 1st, 7 A. M., shock pretty hard. 20th, at $11.30 \mathrm{~A} . \mathrm{M}$, shock pretty hard.
(5.) Letler of June 8, from Hon. C. Robinson, U. S. Minister to Peru.-In 1865, on May 29, at $7 \cdot 16$ A. . . ., an earthquake was felt at Lima which was very violent and lasted 56 seconds. It was very alarming, but did no serions damage. The air was damp and heavy and misty. Temp. 64° Fah. Cool for Lima.

III. Miscellaneous Notices.

(1.) Earthquake in California.-At $12^{\mathrm{h}} 45^{\mathrm{m}}$ October 8th, an earthquake of great violence occurred at San Francisco. Chimneys were tumbled down, the walls of many buildings badly cracked, bells of steeples made to ring, and fissures two or three inches wide were opened in the lower part of the city. There were two violent shocks within half a minute. The accounts from Sacramento, Stockton and San José represent the earthquake as the severest ever felt in those cities. It was not perceived at Marysville or Placerville; but Santa Cruz was severely shaken and some buildings much darnaged

The tide at San Francisco rose very high at the time of the shock and fell very low immediately afterward. Ten or eleven distinct shocks were felt after the first shaking, up to $5 \mathrm{~A} . \mathrm{M}$. of the 9 th.
(2.) Earthquake at Buffalo. - The announcement of an earthquake at Buffalo in the last volume of this Journal (xxxix, 372), taken from a Buffalo paper, is an error.

[^115]Art. XXXVIII.-On Metabrushite, Zeugite, Ornithite and other minerals of the Key of Sombrero, W. I.;' by Alexis A. Julien, Assistant in School of Mines, Columbia College.

Sombrero, a remnant of a coral Island, lying in lat. $18^{\circ} 36^{\prime} \mathrm{N}$. and long. $63^{\circ} 27^{\prime} \mathrm{W}$., varies in height from fifteen to forty feet, and comprises an area of about ninety-five acres. The quality and continued yield of the deposit of rock guano, which is disseminated in veins through the beds of limestone, have rendered its name familiar. During a residence of between three and four years (1860-1864), the following minerals have been observed by me, an unusual number for a formation of so recent geological origin and limited extent.

Calcite, and its phosphatic pseudomorphs.
Common salt, in cubes and in curved crystals.
Brushite, in massive specimens.
Metabrushite, and its pseudomorph, zeugite.
Ornithite, and its pseudomorphs.

1. Calcite.-This mineral, in its variety of massive, laminated, and stalactitic forms, is very abundantly dispersed throughout the fissures of the limestone, and small crystals though less common are not rare. All these display the ordinary cbaracteristics of the mineral and possess no features worthy of notice.

However, a remarkable pseudomorphous process, consisting in the substitution of phosphoric for carbonic acid in the calcareous material of the Key, has taken place on a very extensive seale at various periods in its geological history. This has been effected by solutions of certain salts, from the superficial guano deposit, brought down by the rains into the joints of the limestone, and has given rise to various white, yellowish, and brownish materials. These are especially rich in the bone-phosphate of lime ($3 \mathrm{CaO}, \mathrm{PO}_{5}$), containing about 85 per cent of that salt, also about 5 per cent each of phosphate of magnesia and carbouate of lime, with small percentages or traces of organic matter, sulphate of lime, oxyd of iron, alumina, and their phosphates, and fluorine. The masses of calcite in the vicinity of the guanoveins have participated in the same changes and thus interesting pseudomorphs have been produced, not only of the massive and stalactitic forms but of the crystals. Of the latter three varieties may be mentioned:
(1.) Those which consist simply of an ordinary crystal of calcite, overlaid with a brownish film of the phosphatic material.

[^116](2.) Hollow crusts, formed by the removal from the former of their cores of carbonate of lime.
(3.) Solid crystals, wholly consisting of the phosphatic material.
2. Common Sult.-The numerous pools of sea-water along the edge of the cliff, which are fed by the spray from the surf in high winds and heavy ground swells, sometimes evaporate considerably or wholly during the droughts of the winter season and the long calms of the summer. Thus, as in the large salt-ponds of neighboring islands, their bottoms are left sparkling with the ordinary cubical crystals of common salt.

But again, in September, 1863, a quarry in the northern part of the Key was partially filled by the overflow of a heavy groundswell, and in this way masses of a porous variety of rock-glano were saturated with sea-water. The waters soon subsided through the bottom of the quarry and a peculiar efflorescence of sait afterwards appeared, near the sea level. It occurred over the surfaces of these masses on the sides of the quarry, in cavities shielded from the sun and rain, but otherwise freely exposed to the atmosphere. This crust consisted of slender crystals, usually one-eighth of an inch in length, white, translucent, and so much curved as to take, in some cases, one and a half turns, or to return to and become re embedded in the matrix. In this last characteristic and in their fibrous structure they strongly resemble, especially under the microscope, the similar forms of gypsum, etc. Fracture uneven. A tendency is shown, (by the splitting of their terminations, the separation of narrow off-shoots from their sides, etc.), to a disintegration into the slender fibers of which each crystal seems to be an aggregation. There is also a transverse plane of cleavage, marked by the numerous lines of cross-fracture. In the thicker crystals the breadth is, in most cases, nearly uniform throughout their length; but in others it often decreases from one end to the other. The outer termination is usually rounded and sometimes a slender crystal ends in a sphere of greater diameter. The transverse section of every crystal is apparently almost circular, though irregular. The following are the results of an analysis:

These results are equivalent to water 55 , guano 1.53 , sulphate of lime 75 , chlorid of aluminum 35 , chlorid of calcium $\cdot 30$, chlorid of magnesium 11 , chlorid of potassium '20, and chlorid of sodium $95 \cdot 46=99 \cdot 25$.
The crystals were found to be very deliquescent in an atmosphere saturated with moisture, absorbing more than their weight of water after a few days exposure. A sketch of a crystal mag. nified about fifteen diameters is given in fig. 1.
3. Brushite-A few small specimens of massive brushite, crystalline in structure and having a botryoidal surface, were found in one locality as crusts adhering to guano. Drusy cavities occur in this material, but no crystals like those from Aves Island, described by by Mr. G. E. Moore, ${ }^{1}$ have yet been found. The following are the characters of this massive brushite : Hardness $=2$ 76. Specific gravity $=2 \cdot 953-2.999$, by two determinations of the coarsely powdered mineral in alcohol and in pure benzole, at $60^{\circ} \mathrm{F}$. Luster vitreous, inclining to resinous; shining. Color white, but with a superficial yellowish tinge, (lighter than that of Moore's crystals). Streak and powder white. Translucent ; in thin laminæ transparent. Fracture uneven. Brittle.

Gently heated in a closed tube before the blowpipe, it at once gives off water, darkens with a slight empyreumatic odor, and again whitens by ignition. The water, condensed above, is decidedly acid, and gives the reactions for phosphoric acid. In the platinum forceps and on charcoal, it glows with a greenish light at a high temperature and fuses with a little intumesence to a button which is crystalline on cooling. At the same time it imparts a slight greenish tinge to the OFI , especially if previously moistened with sulphuric acid. With borax and with microcosmic salt it fuses easily, with a little effervescence, to a bead which is clear and colorless, both hot and cold; when nearly saturated, the bead is clear and slightly yellowish while hot, transparent and colorless when cold, and becomes milkwhite and opaque by flaming; with a still larger excess it is slightly yellowish and transparent while hot, and becomes white and opaque on cooling. With carbonate of soda on charcoal it fuses readily to a clear and colorless glass. It dissolves easily (even after ignition) in nitric and hydrochloric acids, but very slowly in acetic and tartaric. When boiled with water in a testtube the water gives a strong acid reaction with litmus; most
${ }^{3}$ This Jour, [2], Ixxix, 43.
probably from the well-known decomposition of the salt, by hot water, into bone-phosphate and super-phosphate $(\mathrm{CaO}, 2 \mathrm{HO}$, PO_{5}) of lime.

Two determinations were made of the amount of water in the air-dried material, the assay being successively heated in each case in an air-bath, at various temperatures from 100° to $245^{\circ} \mathrm{C}$., and then ignited at a red-heat. The results were as follows:

A tendency is thus exhibited to the expulsion of the four equivalents of water of crystallization (in the formula below) between $126^{\circ}-240^{\circ} \mathrm{C}$., the basic equivalent being retained until the temperature becomes much higher, or reaches ignition. The following is an analysis made with one gram of material:

These figures correspond to the following composition:
Moisture, - - - $1 \cdot 229$
Organic matter, - 346
Sulphate of lime $\left(\mathrm{CaO}, \mathrm{SO}_{3}+2 \mathrm{HO}\right)$ - $\quad 1 \cdot 675$
Alumina and sesquioxyd of iron, - . . . 329
Silica, phosphate of magnesia, and fluorid of calcium, traces.

The method, employed in this and all but one of the subsequent analyses, was as follows, the precipitates and filtrates
being treated in the usual way. The lime was first precipitated with sulphuric acid and alcohol. To the filtrate, evaporated to small bulk, citrate and aqua ammonia were added in excess, by which all the magnesia and a part of the phosphoric acid were thrown down as ammonio-phosphate. In the filtrate the remainder of the phosphoric acid was precipitated with the usual sulphate of magnesia solution. The filtrate was evaporated to a simall bulk, digested in a flask with nitric acid until the complete expulsion of all chlorine, evaporated to dryness in a platinum dish, and calcined to perfect whiteness. The residue (excess of magnesia from the reagent) was redissolved in hydrochloric acid, the alumina and the oxyd of iron precipitated with aqua and carbonate of ammonia, and, after weigbing, the iron redissolved and determined volumetrically, if desired. In the filtrate the alkalies if present were separated from the excess of magnesia.

In another portion of material, the water was determined as already explained, the ignited residue dissolved in nitric acid, and the chlorine and sulpburic acid successively estimated by additions of nitrate of silver and of nitrate of baryta.
4. Metabrushite- -This new mineral has been observed to occur only with the guano as a matrix, and in two localities in the northern part of the Key; in one, studding the sides of a cavity and attached in microscopic crystals to many small rootlets within it; and in the other, as a single large group, weighing about ten grammes, some of the crystals being nearly an inch in length and half an inch in breadth. The crystals are usually short, thick, and tabular, with most of their faces uneven and lusterless, unlike the prisms of brushite. 'The planes of cleavage are the same as in that mineral and in selenite, but are more imperfect. No massive specimens have yet been discovered. Its characters are as follows:
$\mathrm{H} .=2.75$. Sp. gr. (with large crystals and distilled water at $60^{\circ} \mathrm{F}$.) $=2 \cdot 288,2 \cdot 256$, and $2.36^{\circ} 2$. Luster vitreous, inclining to pearly, splendent on cleavage faces parallel to the clino-diagonal section ; somewhat resinous on surfaces of irregular fracture. Color yellowish-white, sometimes with a slight reddish tint by transmitted light. Streak and powder white. Transparent ; in some crystals, however, the surface is covered with a translucent film, by which their transparency is disguised and to which their reddish tinge is probably due. Fracture uneven. Brittle. It presents the same characteristics before the blowpipe and when treated with acids as massive brushite, except that it is apparently a little more slowly soluble in the mineral acids. It also exhibits strong double refraction.

In one assay the total loss of water by ignition was at once determined, and in three others, as in brushite, the loss at suc-
cessive temperatures from 110° to $400^{\circ} \mathrm{C}$. was carefully ascertained.

Moisture,Water,Water and org, matter,	Temp. of expulsion.	I	11.		III.		IV.	
	$100^{\circ} \mathrm{C}$.			1.620		1515		$1.38{ }^{0}$
	$126^{\circ}-240^{\circ} \mathrm{C}$.		17.983		$17 \cdot 419$		$17 \cdot 191$	
	Ignition.	21-865	4293		4600		5.461	
Combined water,				22.276		22.019		$22 \cdot 652$
Total,		21.865	,	23-896		23.534		24.053

A tendency was noticed to the expulsion of one of the constitutional equivalents of water (in the formula below) at about $126^{\circ} \mathrm{C}$., of the remaining two at $175^{\circ}-180^{\circ} \mathrm{C}$., a fraction of a per cent of water at $235^{\circ}-239^{\circ} \mathrm{C}$., and the basic equivalent on ignition; but the figures were somewhat variable. The quantity of material in my hands being small, the following analyses were made from an amount altogether a little less than two grams, according to the method already explained.

There was no trace of chlorine present, and no examination was made for fluorine. The results may be grouped as follows:

Phosphate of magnesia, ($3 \mathrm{Mg} \mathrm{O}, \mathrm{PO}_{5}$), 1147
Alumina, oxyd iron, and phosphoric acid, $1 \cdot 049=4.472$ impurities.

2 CaO,				-					-		32.95
H0, -					-					-	$5 \cdot 27$
PO_{5}	-			-					-		41.84
3 aq .			-								15.83

$$
100 \cdot 38
$$

While, therefore, brushite corresponds to the salt of Bödeker, ${ }^{2}$ which contains four equivalents of water of crystallization and which was found by Ples ${ }^{3}$ in almost pure acicular crystals in the central tissue of Tectonia grandis, we have in metabrushite the allied salt of Ræwsky" and Berzelius, the analysis (1) and theoretical composition (2) of which, by Berzelius, are as follows:

[^117]

Its relation to brushite and succession in amount of water have therefore been designated in the prefix of its name ($\mu \varepsilon \tau \alpha$, after). In many of its characteristics it bears a strong resemblance to gypsum, a mineral which, it may be sated, does not occur upon the Key. I am indebted to Prof. J. D. Dana for the following results of his crystallographic examination of metabrushite and its pseudomorphs.
"System monoclinic. Occurring planes the prismatic $i-i$ (orthodiagonal) and $i \cdot i$ (clinodiagonal) with a hemidome which may be lettered $-1-i$, as shown in the annexed sectional figure, (fig. 2,) $i \cdot i$ on $-1-i=41^{\circ} 30^{\prime}-42^{\circ} 30^{\prime}$, as measured with the common goniometer, but varying in some cases between 38° and 46°. Large crystals, which vary from a fourth of an inch to an inch in length, often nearly half as broad as long, with commonly only $i \cdot i$ smooth, $-1-i$ being crossed verti- ii cally by a few deep furrows and ridges, and rounding either side into $i \grave{\imath}$, which is also uneven from a series of furrows parallel to those of $-1-1$, (see fig. 3). Cleavage clinodiagonal, easy and pearly. The crystals differ in the occurring planes from those of brushite, although like them in being of the monoclinic system, and in having a pearly clinodiagonal cleavage. They approximate moreover in the

Fig. 2.
 angle $i-i:-1-i$; for calculation gives for this angle in brushite (in which the plane $-1-i$ does not occur) $41^{\circ} 44^{\prime}$. The discovery of other crystals at Sombrero with additional planes, and those that are better for measurement, is necessary to settle positively the question of identity."

Pseudomorphis.-Pseudomorphous crystals (hollow crusts or shells) in considerable abundance have been found in certain localities in the course of quarrying. Of these at least the two following varieties may be unhesitatingly referred to metabrushite, possessing the same form and the peculiar furrowed planes.
A. Zeugite $-H=3 \cdot 25$. Sp. gr. $=2 \cdot 971$. Color white, and with light slades of yellow and brown. Trarslucent. The crust in these crystals usually very thin, brittle, and fragile. The exterior surface is tolerably smooth (on the oxthodiagonal plane,) though without lustre; but the interior, on being broken open, is extremely rag-
 ged and irregular. Both surfaces are often, but not always, completely covered with glittering points, which beneath the microscope are revealed to be tiny rhombs of calcite.
Ay. Jour. Nci.-Secono Series, Yoe. XL, No. 119.-Serf., 1885.

This rare variety of the pseudomorphs was found associated in the same cavity with the large group of crystals of metabrushite before mentioned in stellated, radiating, and irregular groups and drusy crusts, adbering to guano and also to the sides of cavities in the limestone. A few are also attached to the large group itself, showing the commencement of the pseudomorphous process. Two analyses of this material follow, of which I is the mean of two almost complete analyses of the same specimen, in which the phosphoric acid was determined by means of oxyd of mercury.

	1.	11.	Nea
Moisture,	-08		
Water and organic matter,	$2 \cdot 99$	\% 2.97	. 02
Sulphuric acid, -	-39	trace.	$\cdot 19$
Carbonic acid,	trace.	48	24
Phosphorie aeid,	47.07	46.03	46.55
Maguesia,	3.25	$3 \cdot 92$	3.59
Lime, -	$44 \cdot 18$	44.24	44-21
Alumina and sesquioxyd of iron,	'54	-78	-66
Fluorine, -	trace.	trace.	trace.
Chlorid of sodium,	undt.	1.08	1.08
	98.50	$99 \cdot 50$	99.54

In grouping together these results we must of course, in the first place give to the percentages of sulphuric and carbonic acids their equivalents of lime, and to that of magnesia sufficient phosphoric acid to form the salt, $3 \mathrm{MgO}, \mathrm{PO}_{5}$. There only re-main-

If we calculate to the lime its proportion of phosphoric acid to form the bone phosphate, $3 \mathrm{Ca}, \mathrm{PO}_{5}$, five per cent of plosphoric acid will still remain uncombined, except with the trifling quantity of alumina and oxyd of iron. From these considerations, necessary to elucidate the proper method of combining the results, (a question almosi always a matter of great doubt and uncertainty,) the following arrangement seems the most probable:
Water and organic matter,
Sulphate of lime,
Carbonate of lime,
Phosphate of lime $\left(8 \mathrm{CaO}, 3 \mathrm{PO}_{5}\right)$,
Fluorid of calcium,
Phopphate of magnesia,,
Phosphates of alumina and iron,
Chlorid of eodium, -

This is therefore a new but accidental product, and although it is amorphous and there is no apparent relation between the constituents, (the phosphate of magnesia, alumina, etc., probably occurring in variable proportions, here as elsewhere,) nevertheless it differs somewhat in appearance from every other phosphatic material upon the Key, and is the only substance, I believe, in which this phosphate of lime, $8 \mathrm{CaO}, 3 \mathrm{PO}_{5}$, occurs in nature. This salt is the one whose occurrence in bones, as reported by Berzelius, as well as certain methods for its manufacture, were ascertained by Raewsky to be incorrect; but no evidence has been offered against its identity (with the addition, perhaps of some proportion of water) with the precipitate formed ${ }^{5}$ by pouring chlorid of calcium, drop by drop, into a solution of phosphate of ammonia, containing an excess of ammonia, until half the phosphoric acid is thrown down. In the following table its composition, together with that of the bone phosphate of lime, are put side by side for the sake of comparison:

8 CaO , -	- 225.04	51.248	$3 \mathrm{CaO},-$	$84 \cdot 39$	$54 \cdot 183$
$3 \mathrm{PO}_{5}$	214.08	48.752	PO_{5},	71:36	45.817
	$439 \cdot 12$	100°		15575	100.

In this case the salt has probably been formed by the union of an equivalent of the neutral phosphate of lime of the original crystals of metabrushite with two of the bone phosphate of lime of the pseudomorphous solution, and the old theory of its composition is thus confirmed, (rejecting the water:)

$$
2 \mathrm{CaO}, \mathrm{PO}_{5}+2\left(3 \mathrm{CaO}, \mathrm{PO}_{5}\right)=8 \mathrm{CaO}, 3 \mathrm{PO}_{5} .
$$

To express, therefore, the junction in this mineral of metabrushite and ornithite, (soon to be described,) it may be called Zeugite (\ddagger eurimp, yoked or joined together,) and the other phosphates, etc., present, may be considered, as usual, impurities.

In the platinum forceps, before the blowpipe, it darkens with an empyreumatic odor, whitens, glows with a greenish light (though not so strongly as in the case of brushite and metabrushite,) but does not fuse, even upon thin edges. In a closed tube it darkens, with the odor, whitens, and gives off a very little hygroscopic water. With borax, microcosmic salt, and carbonate of soda, it acts like ornithite. When boiled in a testtube with water, the latter becomes alkaline.

In cavities of the limestone in another locality of the Key, a variety of these pseudomorphs has been found in which the hemidome, $-1-i$, is invariably covered with many small erystals. In the same cavities also oceur large hollow hemispherical and botryoidal crusts. These are probably pseudomorphous crystals

[^118]of metabrushite, with the angles rounded off by a concretionary tendency in the pseudomorphous process, or they may be pseudomorphs of massive specimens of the mineral. Their material resembles that just described, in color, ete., (except that it is not drusy with calcite,) and it has probably the same composition.
B. Color straw yellow, buff, to dark shades of brown. Sub-translucent-opaque. Brittle. Crusts rather thicker than those of A, without the glittering surfaces. Found in isolated crystals, irregular groups, and drusy films, in cavities and fissures of the limestone, and in radiating groups upon stalactitic deposits of phosphate of lime. From their color and furrowed sides they often resemble little chips of wood.
C. Sp. gr. $=2 \cdot 988-3.030$. Color straw yellow, buff, and shades of brown. Opaque. Brittle. Narrow blades, sometimes an inch and a quarter in length. In radiating or irregular groups. Crust thick; sometimes so much so that the erystals are nearly or quite solid. Occurs in limestone cavities. The following are a complete and a partial analysis of different specimens, the latter having been spoiled by an accident:

In grouping these results by the method employed in the case of A, if we calculate the remainder of the lime as bone-phosphate, 3 per cent of phosphoric acid will remain uncombined except with alumina and iron. It seems more judicious, therefore, to sappose the existence of a mixtare of the two phosphates of lime in tris case, and arrange the analysis, for example, as follows: Water and organic matter, 3.90 ; sulphate of lime, $\cdot 39$; earbonate of lime, 3.95 ; phosphate of lime $\left(8 \mathrm{CaO}, 3 \mathrm{PO}_{5}\right)_{2}$ 35.28 ; bone phosphate of lime, $\left(3 \mathrm{CaO}, \mathrm{PO}_{5},\right) 52 \cdot 49$; phosphate of magnesia, 1.22 ; phosphates of alumina and iron, $2 \cdot 36$; fluorid of calcium, trace $;=99.59$. As the narrowness of the pseudomorphs of this variety is unusual among at least the known crystals of metabrushite, they may possibly be pseudomorphs of prisms of brushite, if such ever existed on the Key. In my first published statement of the discovery of metabrushite, I errone-

[^119]ously attributed to its composition the results of a qualitative examination of the foregoing pseudomorphous material. No analysis has been made of the material of variety B, but it is probable that in both B and C the material always consists of zengite, with bone phospbate of lime (as well as the phosphates of magnesia, etc.,) as an impurity, in proportions increasing until perhaps the amount of $8 \mathrm{CaO}, 3 \mathrm{PO}_{5}$ becomes too small to be distinguished.
5. Ornithite.-In the empty casts of Madrepores and other cavities of the coral limestone, in two localities of the southern part of the Key, another new mineral occurs.

System monoclinic. Small crystals, not over a fourth of an inch in length, usually very narrow, with the planes even and not polished, and $-1-i$ very slightly convex, resembling somewhat a common form of gypsum. Clinodiagonal cleavage perfect; so that this, unlike the other minerals, is easily sectile into very thin scales; two other planes, as in gypsum.

The broader crystals are arranged in radiating groups, while most of the narrower are isolated and strewn irregularly over the surfaces of the cavities. No massive specimens of the mineral have yet been found.

Hardness $=2.5 ;$ (just scratches mica when rubbed upon it). Lustre pearly on clino-diagonal surfaces. Color white. Streak and powder white. Translucent. Flexible.

When heated before the blowpipe in a closed tube, it darkens with a feeble empyreumatic odor, loses water, and again on ignition becomes white, opaque, and lusterless. It is probable that the water condensed abore is neutral to the test-papers. In the platinum forceps and on charcoal, the mineral undergoes the same changes and does not fuse. ${ }^{7}$ 'When previously moistened with sulphuric acid, the greenish tinge of phosphoric acid is imparted to the flame. With borax and with microcosmic salt it dissolves readily, and apparently with greater effervescence than in the case of massive brushite or metabrushite, to a bead which is clear and colorless both hot and cold; when nearly saturated, the bead is yellowish while hot, clear and colorless when cold, and becomes white and opaque by flaming: with a still greater excess, the bead is transparent and yellowish while hot, and becomes white and opaque on cooling. Readily soluble in nitric and chlorhydric acids. In thin scales it exhibits a feeble display of colors under the polarizing microseope.

The amount of this mincralin my possession being very small, only about one-tenth of a gran of pure crystals could be used for analysis, and it was first carefully dried at $100^{\circ} \mathrm{C}$., with but

[^120]trifling loss. With this two water determinations were first made, from $\cdot 048$ and .058 grame respectively of unbroken crystals, as follows:

	Temperature of expulsion	1	I.	Mean.
Water,	$250{ }^{\circ} \mathrm{C}$.	3.918		
	strong ign.	$5 \cdot 154$	9.827	
Total,		$9 \cdot 072$	$9 \cdot 827$	9•449

A tendency is thus shown to the expulsion of one equivalent (in the formula obtained below) below $250^{\circ} \mathrm{C}$., and the reteation of the other until ignition. The ignited residues were combined and analyzed in the usual manner, with the following results:

Water and trace of organic matter,	$9 \cdot 449$	Oxygen ratios		
Phosphoric acid, - -	40.139	82.5	$2 \cdot 67$	5
Magnesia,	trace.			
Line, -	45.768	13.2	1.54	3
Alumina and sesquioxyd of iron,	4.623			

No attempt was made to test for sulphuric acid and fluorine, traces of which may occur. These results correspond to the formula $3 \mathrm{CaO}, \mathrm{PO}_{5}+2 \mathrm{aq}$., so that this mineral is identical in composition with the gelatinous precipitate produced when the bone-phosphate of lime is thrown down from solution. The foregoing figures may be arranged as follows:

I do not think that I can do better than to dedicate this species to my old comrades, the sea-birds of Sombrero, (ögvos; a bird,) to whom we are mainly indebted for the contribution of the guano-deposit to American agriculture, and for the formation of this interesting companion to apatite. Its physical characteristics, even more than those of metabrushite, correspond remarkably with those of gypsum, to which species it is also allied in its formula and mode of crystallization.

Psendomarphs.-a. White and yellowish white crystals, with glittering surfaces and a material somewhat similar in appearance to the A of metabrushite; the crystals differ usually in their greater slenderness. These occur in cavities of the limestone, intermixed with the crystals of ornithite.
b. Hemispherical stellated groups. Color white. Opaque. Friable.

No analysis has been made of the material but I suppose it to be identical with that of the original crystals, minus the water. They occur intermixed with the original crystals; and also as solitary white groups, dotting over in marked contrast the dark brown phosphatic lining of cavities in the limestone.

In conclusion it may be observed that specimens of all these phosphatic minerals are exceedingly rare, few having been found since my departure from Sombrero (in the spring of 1864). Good specimens of the pseudomorphs are also uncommon, though imperfect or drusy erystals have occasionally been found in tolerable abundance on the opening of some new vein. It is a universal rule, when the original or the pseudomorphous crystals occur in cavities of the limestone, that they are never in direct contact with the matrix, a film or thin layer of a common brownish material, rich in bone-phosphate of lime, always intervening. As to my theory in regard to the origin and history of these minerals and of their pseudomorphs, I must refer to the coming publication of my general observations on Sombrero.

It is sufficient here to state that they have undoubtedly been deposited from the salts of the superficial guano-deposit brought down in solution by carbonated rain-waters into the joints of the limestone.

School of Mines, Columbia College, New York June, 186 .

Art. XXXIX.-On Two Varieties of Sponge-Spicules;' by Alexis A. Julien.

Iv clearing the white coral-sand out of a crevice of the rock near the east cliff of the Key of Sombrero, W. I., a loose mass of snow-white acicular fibres was found, associated with fragments of coral, shells, etc., at the height of thirty-six feet above the sea, and imbedded in the sand at a depth of about three feet from the surface. Among these fibers the two following varieties were distinguished, the former composing the bulk of the mass:
A. Acicular, tubular, and gently-curving spicules (fig. 1, a), tapering from the middle toward each end, at first very gradually, and then rather suddenly at a short distance from the end, to a rounded point.

[^121]The curvature of the ordinary spicules is in general very slight, and they are sometimes nearly straight. Among them, however, other forms occur (fig. 1, b) whose length is about the $\operatorname{mox}^{\frac{1}{0} \sigma} \sigma$ of an inch, and whose curvature amount to that of a semicircle. These I take to be rudimentary spicules and suppose that they may lose their curvature in their enlargement.

Fig. 1, magnified 14 diameters; fig. 2, 250 diameters; fig. 3,727 diameters.
The sudden contraction near each end of a spicule occasions an irregular slope (fig. 2, a) or perhaps more frequently a series of from two to nine steps (fig. $2, b$) consisting of a succession of curved planes. This slope is usually from $\frac{10}{10 \% \pi}$ to $\frac{14}{106 \sigma}$ of an inch in length, and it not only varies greatly in length and form in different specimens, but sometimes at the ends of the same spicule.

The transverse sections of the spicules are generally circular, though sometimes somewhat elliptical, and the outer surface appears perfectly smooth. When the spicules are examined under a high power, a series of very fine parallel lines can be distinguished on either side of the central tube (fig. 2, b). In the transverse sections also (fig. 3), a series of very numerous but usually very faint concentric rings is often revealed, of which from three to five, adjacent to the center, are often most strongly marked and sometimes can alone be distinguished. We may therefore conclude that each spicule is constructed of a great number of enveloping sheaths. (They are much too remote in the figure.)

The section of the tube is generally circular, but sometimes triangular, elliptical, or oval. Its diameter diminishes, like that of the spicule, near each end, but the tube evidently extends through to the outer surface, since when an unbroken spicule is immersed in water the liquid enters the capillary tube by the orifice at each end. When magnified, a portion of a spicule bears a strong resemblance to a thermometer tube. The dimensions are:-

	Variation.	Mean.	
Length, - -	$\frac{1}{20 \pi}$ - $\frac{1}{5}$ inch	+inch	40
Diameter at middle, - -	6 $6 \frac{1}{666}-\frac{1}{4} \frac{1}{0} 0$ inch	${ }^{7} \frac{1}{7}{ }^{\frac{1}{5}}$ inch	58
Ratio of middle diam to - ${ }^{2}$		бणठす inch	15
Ratio of middle diam. to length, Ratio of middle to end diameter	$\frac{1}{25}-\frac{1}{160}$	${ }^{\frac{1}{8} 8}$	8
Diameter of central tube, - -	nch	,	13
Ratio of bore to diameter, - ${ }^{2}$	-	$\frac{1}{9}$	45

The range in the variations of the measurements and of the ratios is consequently very considerable, and the same conclusion is impressed by a simple examination of a few spicules under a microscope, without measurement. Some of the longest spicules are the narrowest, and the thickness of the walls of the tube seems to bear no fixed relation to any other dimension.

A portion of the mass was carefully cleansed, by digestion with acidulated and with pure water, from the intermixed impurities, particles of sand, etc., and on analysis yielded the following results:

Water,	-	-	-	-	-	7.902
Silica,	-	-	-	-	-	89.84
Alumina,	-	-	-	-	-	-29
Protoxyd of iron,	-	-	-	-	.09	
Lime,	-	-	-	-	-	66
Magnesia,	-	-	-	-	-	-22
Potassa,	-	-	-	-	-	-63
						99.63

Hardness $=3$. Specific gravity $=2 \cdot 071$. Color white. Luster pearly. Powder white. Transparent. Elastic. Easily ground to a very fine powder. Fracture conchoidal. Transverse planes of fracture very distinct ; so that on coarsely pulverizing the spicula, very thin and beautiful transverse sections may be readily obtained among the fragments. The material does not possess double refraction.

In the platinum forceps or on charcoal, before the blowpipe, the spicules decrepitate slightly, whiten, lose their luster, and curl together into a coherent mass. When this mass is examined beneath a microscope, the ends of the spicules are found to be fused and in many cases blown into thin bulbs, or a series of bulbs occurs along their stems. This has evidently been effected by the fusion of their ends and the expansion of the air in the tubes. In a closed tube the spicules whiten, curl, and rield water. Unaffected by the acids, bot or cold, but readily soluble in a solution of caustic potassa.
B. Acicular, tubular, and gently-curving spicules, tapering gradually from the middle toward either extremity. Only about
Am. Jour. Scl.-Second Series, Yol. XL, No. 120.-Nov., 188\%
a dozen specimens have been observed, all of which were fragments like that sketched in fig. 4. These fragmentary spicules differ from those of A in their minute size and in being marked by a series of from nine to sixteen nodes, each consisting of from four to eight sharp spines encircling the spicule. From their general correspondence to the spicules of A, in their curving and tapering outline and tubular character, as well as from an analogy (stated below) in regard to the number of the spines upon the nodes, I have ventured in fig. 4 to reproduce in lighter lines the lost portion of the spicule.
4.

The surfaces between the nodes are more or less concave, and the intervals, though nearly equal in the same spicule, vary from the $\bar{\sigma} \frac{1}{2} \frac{1}{5} \overline{0}$ to the ${ }_{\overline{2} \frac{1}{5} \frac{1}{6} \overline{0}}$ of an inch, averaging the ${ }_{\overline{3} \frac{1}{8} \overline{5} \overline{0}}$: but this variation seems to be partly oceasioned by the contraction of the intervals between a few of the central nodes, and in the larger specimens the length of the intervals (as well as the distance of the extreme node from the end of the spicule,) is quite regularly the $\frac{135 \sigma}{13}$ of an inch.

In the smaller spicules the nodes are crowded nearer together, are apparently composed of minute rounded projections, and resemble rings or raised fillets; but in the larger the spines are distinct.

These spines are acute and conical, like the extremities of the spicule. Their length varies slightly and irregularly among the nodes but never exceeds the ${ }_{\overline{1} \frac{1}{2} \frac{1}{\sigma} \bar{\sigma}}$ of an inch.

The number of spines on each node diminishes from the fractured end towards the apex of the spicule, but in a progression which varies in different specimens. In the largest spicule found (fig. 4) the grouping of the spines seems to be as follows from one extremity of the perfect spicule to the other, supplying from analogy those upon the unseen side and upon the lost half of the spicule:

Groups.	3 nodes (terminal),	Spines	on	each node	4	total	12
	8 nodes,		"	"	6	"	48
	3 nodes (central),	"	"	"	8	"	24
	8 nodes,	"	4	"	6	"	48
	3 nodes (terminal),	"	"	"	4	"	12
Total,	25 nodes,						

In the same way, another specimen had two central nodes of 8 spines each, five nodes on either side of 6 spines, and three terminal nodes of 4 spines: 100 spines in all. Again, in other
specimens, no 8 -spined nodes seem to be present, but my o kser vations have been too few to determine the extent of the variation.
The central tube appears to pass uninterruptedly through the nodes, to diminish in breadth towards the extremity of the spicule, and to present an open orifice there, into which the water enters when the spicule is immersed. The dimensions of these spicules are as follows:

	ariation	an.	$\begin{gathered} \text { No. of } \\ \text { Measure } \\ \text { ments. } \end{gathered}$
Length, - - -	${ }^{\frac{1}{2} 5}-\frac{1}{2 \frac{1}{2} T}$ inch	$\frac{1}{357}$ inch	9
Diameter at middle, -		5555 inch	9
" "end, - . -			1
" of central tube, - -			3 3

The chemical and physical characteristics of this variety are apparently identical with those of the former.

Both these varieties are related to the spicules of sponges, in their general characteristics; and I learn from Prof. A. E. Verrill that a sponge secreting such spicules exists in the West Indies. They may come from species of Hyalonema, which, according to published descriptions, are Gorgonioid corals having an axis of parallel siliceous fibers; but Mr. Verrill states that the species of Hyalonema are probably sponges. However this may be, there is a decided parallel arrangement in certain portions of the original mass, and even a firm cohesion of little bundles of the parallel fibers, which may imply that they were not disseminated through their organic matrix in the irregular manner usual to the spicules of a sponge, but occurred in a coherent mass of parallel fibers.
Although the mass of spicules is so light as almost to float, nevertheless it rapidly falls to pieces when placed in water. It is probable therefore that it has not been thrown up by the sea in its present form but is the residue from the decomposition of a sponge in the sand. Many sponges have been frequently thrown up by heavy ground swells at the locality in which the mass was found. The negroes state that similar white masses have been observed on the beach of the island of St. Martin.
School of Mines, Columbia College, New York. June, 1865.

Art. XXXIX.-Researches on the Volatile Hydrocarbons; by C. M. Warren.*

Of the Calculated Boiling-points of Hydrocarbons by Schröder's Theort.

The subjoined tables exhibit the theoretical boiling-points of the above mentioned hydrocarbons, ${ }^{1}$ as calculated according to Schröder's last theory, in comparison with the boiling-points actually found. By this theory, as already stated, each double atom of carbon $\left(\mathrm{C}_{2}\right)$ contained in a boty is supposed to influence the boiling-point by 30°, and each double atom of hydrogen $\left(\mathrm{IH}_{2}\right)$ to influence the same- 10°; from the sum of these influences the number 70° is in all cases to be deducted, in order to find the boiling-point.

1. Mydrocarbons from Pennsyluania Petroleum.

1 st Series.

Formula.	Determined Boilingrpoint.	$\begin{aligned} & \text { Caleubated boiling } \\ & \text { poine oy Schro } \\ & \text { dir's theory } \end{aligned}$	Difference between Calculatedand Dete minpd boilling point
		-	\square
$\mathrm{C}_{8} \mathrm{H}_{10}$	0.0 (?)	0	
$\mathrm{C}_{10} \mathrm{H}_{12}$	302	20	$10 \cdot 2$
$\mathrm{C}_{12} \mathrm{H}_{14}$	$61 \cdot 3$	40	21.3
$\mathrm{C}_{14} \mathrm{H}_{16}$	$90 \cdot 4$	60	30.4
$\mathrm{C}_{10} \mathrm{H}_{18}$	1195	80	39.5
$\mathrm{C}_{18} \mathrm{H}_{20}$	1518	100	50.8

2d Searifs. ${ }^{2}$

Formula (s)	Detprmined Bualing-point.	$\begin{aligned} & \text { Cidcilited boiling } \\ & \text { point by sohro- } \\ & \text { ders theory } \end{aligned}$	Difference betweer Culculated and Deter mined boiling-puint.
$\mathrm{C}_{8} \mathrm{H}_{10}$	8-9	$\stackrel{\circ}{\circ}$	8-9
$\mathrm{C}_{10} \mathrm{H}_{12}$	37.0	20	17.0
$\mathrm{C}_{12} \mathrm{H}_{14}$	68.5	40	28.5
$\mathrm{C}_{14} \mathrm{H}_{16}$	98.1	60	$38^{1} 1$
$\mathrm{C}_{16} \mathrm{H}_{88}$	127.6	80	$4 \% \cdot 6$

3D Series. (Not completed.)

Formula.	Fotermimed Boiling-point.	Calculated Boiling point by sichroder's theory.	Difference between Calculated and Deter mined boiling-point.
	-	\bigcirc	-
$\mathrm{C}_{20} \mathrm{H}_{20}$	174.9	130	$44 \cdot 9$
$\mathrm{C}_{22} \mathrm{H}_{22}$	1958	150	$45 \cdot 8$
$\mathrm{C}_{24} \mathrm{H}_{24}$	216.2	170	$46 \cdot 2$

[^122]2. Hydrocarbons from Coal-tar Naphtha.

Name of substance	Formula.	Determined boiling point.	Calculated boilingpoint by schroder's theory.	Difference between Calculated and deter mined boiling.point
Benzole,	$\mathrm{C}_{12} \mathrm{H}_{6}$	$80^{\circ} 0$	80	$\stackrel{\circ}{0}$
Toluole,	$\mathrm{C}_{14}^{12} \mathrm{H}_{8}^{6}$	$110 \cdot 3$	100	$10 \cdot 3$
Xylole,	$\mathrm{C}_{16}^{14} \mathrm{H}_{10}$	$139 \cdot 8$	120	$19 \cdot 8$
Isocumole,	$\mathrm{C}_{18} \mathrm{H}_{12}$	169.9	140	$29 \cdot 8$

3. The Homologous Hydrocarbons from Oil of Cumin and Cuminic Acid.

Name of substance.	Formula.	Determined boiling-point	Calculated boiling- point by schroders theory.	Difference between calculated and deter uined builing-point
Cumol		${ }^{7} 51.1$	140	$11 \cdot 1$
Cymole,	$\mathrm{C}_{20}^{18} \mathrm{H}_{14}^{12}$	179.6	160	$19 \cdot 6$

It appears, therefore, that the theory of Schröder finds no support from any one of the different series of hydrocarbons presented in these tables. The discrepancy between the observed and calculated boiling-points, as shown, varies from about 10° to $50^{\circ} \mathrm{C}$. This discrepancy is found to increase pretty uniformly by about 10° as we rise from one member to the next higher in the ascending series. In the series of the formula $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{\mathrm{n}}$, however, the discrepancy is nearly a constant one, viz. about 46°. I would not overlook the fact, that the calculated boiling-point of benzole is absolutely identical with that found by experiment; nor the remarkable coincidence, that the agreement is almost perfect between the probable boiling-point, and that obtained by calculation, for the body of the probable formula $\mathrm{C}_{8} \mathrm{H}_{1}$ o in the 1st Series from petroleum. It is obvious, however, that these are merely accidental circumstances, to which no importance can attach.
Of tale Calculated Boiling-points of Hydrocarbons by Löwig's Theory, viz. that One Aton of Carbor (C) raises the Boilingpoint 38.4, and One Atom of Hydrogen (H) lowers tr 29.2.

Hydrocarbons from Pennsylvania Petroleum.
1st Seates.

Formula.	Determined boiling point.	Calculated boilingpoint by Lowig's theory.	Difference between calculated and deter mined boilingepoint
		15%	\bigcirc
$\mathrm{C}_{\mathrm{C}} \mathrm{H}_{\text {ra }}$	3002()	33.6	$3 \cdot 4$
$\mathrm{C}_{10} \mathrm{H}^{12}$	61.3	520	$9 \cdot 3$
$\mathrm{C}^{12} \mathrm{H}^{14}$	$90 \cdot 4$	70.4	20.6
$\mathrm{C}_{14}^{14} \mathrm{H}_{18}$	119.5	88.8	$30 \cdot 7$
$\mathrm{C}_{18}^{16} \mathrm{H}_{20}$	$150 \cdot 8$	$107 \cdot 2$	$43 \cdot 6$

20 Series. ${ }^{3}$

Formula. (3)	Determined boiling-point	Calculated boiling point by lewig's theory.	Difference between calculated and mined boiling point.
$\mathrm{C}_{8} \mathrm{H}_{10}$	$8{ }^{\circ} 9$	15°	6.7
$\mathrm{C}_{10} \mathrm{H}_{12}$	$37 \cdot 0$	33.6	$3 \cdot 4$
$\mathrm{C}_{12} \mathrm{H}_{14}$	$68 \cdot 5$	$52 \cdot 0$	16.5
$\mathrm{C}_{14} \mathrm{H}_{16}$	$98 \cdot 1$	$70 \cdot 4$	27.7
$\mathrm{C}_{16} \mathrm{H}_{18}$	$127 \cdot 6$	$88^{\circ} 8$	$38 \cdot 8$

30 Series. (Not yet completed.)

Formula.	Determined boiling-point	Calculated hoiling. point by Læwig's theory.	Difference between calculated and deter- mined hoiling-point.
$\mathrm{C}_{20} \mathrm{H}_{20}$	174.9	- $184{ }^{\circ} 0$	10.9
$\mathrm{C}_{22} \mathrm{H}_{22}$	195.8	$202 \cdot 4$	$6 \cdot 6$
$\mathrm{C}_{24}^{22} \mathrm{H}_{24}$	216.2	$220 \cdot 8$	46

A cursory examination of the last three tables will suffice to show that, so far as regards the hydrocarbons of the formule $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{\mathrm{a}}$ and $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{\mathrm{n}+2}$, the theory of Löwig also has no foundation in fact. That his theory did not hold good with the hydrocarbons of the formula $\mathrm{C}_{\mathrm{n}} \Pi_{\mathrm{n}-6}$ was observed by Löwig himself, who found that it wonld place the boiling-point of benzole at $285^{\circ} 6$, i. e. 205° above its astual boiling-point.

Of the Calculated Boiling-points of Hydrocarbons by Gerhardt's $^{\text {fit }}$ Theory.

We come finally to test the law of Gerhardt, above mentioned. Inasmuch as this law was especially designed to apply exclusively to the hydrocarbons,-upon the observed boiling-points of some of which it was indeed founded,-we should naturally expect to find this more in accordance with facts than either the hypothesis of Schröder or that of Löwig, both of which claimed to be of more general application, and were framed more especially with reference to other classes of substances. The facts presented in the following tables will show, however, that this is

1. Hydrocarbons from Pennsylvania Petroleum.

1st Sehies.

Formula.	Determined boiling point.	Calculated boiling point by Gerhardles theory.	Difference between calculated and dete mined boiling point
C. $\mathrm{H}^{\text {a }}$		${ }^{\circ} \mathrm{O}$	-
$\mathrm{C}_{10} \mathrm{H}_{12}$	$30 \cdot 2$	$12 \cdot 5$	17.5
$\mathrm{C}_{12} \mathrm{H}_{14}$	$61 \cdot 3$	33.0	$28 \cdot 3$
$\mathrm{C}_{14} \mathrm{H}_{16}$	90.4	53.5	36.9
$\mathrm{C}_{16} \mathrm{H}_{18}$	119.5	74.0	45.5
$\mathrm{C}_{18} \mathrm{H}_{20}$	$150 \cdot 8$	94.5	$56 \cdot 3$

${ }^{2}$ See foot-note on page 227 .
far from being the case; and that the theory of Gerhardt, as well as those of Schröder and Löwig, so far as these relate to the hydrocarbons, was by no means legitimately drawn from nature, but is altogether artificial.

2d Series. ${ }^{4}$

Formula (${ }^{\text {a }}$)	Netermined boiling-point.	Calculated boilingpoint by Gerhardt's theory	Differance between calculated and deter mined boiling-point
$\mathrm{C}_{9} \mathrm{H}_{10}$	8-9	\bigcirc	16.5
$\mathrm{C}_{10}{ }_{10} \mathrm{H}^{10}$	37.0	12.5	24.5
$\mathrm{C}_{12}^{10} \mathrm{H}_{14}^{12}$	$68 \cdot 5$	$33 \cdot 0$	$35 \cdot 5$
$\mathrm{C}_{14}^{12} \mathrm{H}_{16}^{14}$	$98 \cdot 1$	53.5	$44 \cdot 6$
$\mathrm{C}_{16} \mathrm{H}_{18}$	127.6	74.0	53.6

3d Seriz.

Formula	Seternined $\begin{gathered}\text { beiling point. }\end{gathered}$	$\begin{aligned} & \text { Calculated boiling. } \\ & \text { point Gy Gerranderis } \\ & \text { theory. } \end{aligned}$	Difference brtween calculated and deter wined builing-poin?
	174.9	1360	44.9
$\mathrm{C}_{22}^{20} \mathrm{H}_{22}$	195.8	150.5	45.3
$\mathrm{C}_{24}^{24} \mathrm{H}_{24}$	216.2	171.0	$45 \cdot 2$

2. Hydrocarbors from Coal-tar Naphtha.

Name of substance.	Formula.	Determiued boiling-point	Calculated boiling. point b Gerhardts theory theory.	Difference between choserved and calcn- lated boilinq-point
Benzole,		80.0	93.0	180
Toluole,	$\mathrm{C}^{12} \mathrm{H}^{6}$	110*3	113.5	$3 \cdot 5$
Xylole,	$\mathrm{C}_{16}^{24} \mathrm{H}^{8}$	139.8	134.0	6.0
Inoeumole,	$\mathrm{C}_{19}^{16} \mathrm{H}_{12}$	169.9	155.5	15.5

3. Hydrocaroons from Oil of Cumin and Cuminic Acid.

Name of Sabstance.	Formula	Determined boiling-point.	Culculated boil ing poini by Ge hurde's theory.	Diference between lated boilimepain -poin
		151.1	154.5	$+{ }^{\circ} \cdot{ }^{\circ}$
Cymole,	$\mathrm{C}_{20}^{\mathrm{C}_{2} \mathrm{H}_{14} \mathrm{H}^{12}}$	179.6	1550	-4.6
Cumooil	$\mathrm{C}_{30}^{20} \mathrm{H}_{16}$	$155 \cdot 4$	160.0	+4.6

The chief conclusions deduced from the foregoing facts and considerations may be briefly summed up as follows:

1. That the boiling point difference for the addition of $\mathrm{C}_{2} \mathrm{H}_{2}$ in homologous series of hydrocarbons is generally $30^{\circ} \mathrm{C}$., which is'a much larger difference than has been commonly supposed.
2. That of the five series of hydrocarbons examined, only one series was found exceptional to the rule just stated, and this presented the boiling-point difference of about 20°, which is but
little larger than the number 19°, which Kopp found so common with other classes of substances.
3. That certain series of derivatives from the benzole series of hydrocarbons present bciling point differences corresponding to the elementary difference of $\mathrm{C}_{2} \mathrm{H}_{2}$, considerably smaller than the number 19° of Kopp.
4. That the formulx of Schröder, Löwig, and Gerhardt, for the calculation of boiling-points, so far as these may be supposed to relate to the hydrocarbons, are incorrect and purely artificial.
5. That the custom of taking boiling-points with the bulb of the thermometer in the vapor is more liable to lead to an erroneous determination, at least in certain cases, than if the bulb be placed in the liquid.

SCIENTIFIC INTELLIGENCE.

1. Iron regions of Arizona; by W. P. Blake (from a letter to J. D. Dana, dated San Francisco, Cal., Aug. 31, 1865). - Your note in the Journal (xxxix, 358,) upon the probable Azoic age of the iron ores of Mexico, described by Mr. Manross, induces me to send you a notice of the great abundance of specular iron ore in the upper part of Arizona, near Williams fork of the Colorado, observed by the in 1863. The ore is chiefly the micaceous variety, and occurs in thick beds and in thin sheets in a ferruginous limestone or dolomite, evidently metamorphic, and tilted at a high angle. The whole forms a belt of peculiar appearance, which may be traced by the eye for miles across the country in a direction a few degrees south of west, so as to pass over the Colorado, and into the limits of California. It is interstratified with chloritic and talcose slates, gneiss and granite, and the series has yielded both copper ores and gold. The iron ore is found in large boulders or blocks in most of the ravines; and as it resists decomposition by the weather better than the limestone, it stands out upon its surface in rough sharp ridges. Numerous specimens of similar ore were collected in the ranges north, and on the Cerbat and Aquarius mountains, by Lt. Whipple's party in 1863 , of which Mr. Marcou was the geologist. It would thus appear that the ferruginous formation extends over a considerable area north and south, and it may possibly be connected with the Mexican series, and be presilurian. The antiquity of the Aztec and the Aquarius ranges and the metamorphic region about them, as compared with the Sierra Nevada and the Rocky mountains, was commented on by me in vol. iii, p. $\overline{0} 9$ of the Pacific R. R. Reports. At Williams fork a heary white sand-rock and a conglomerate, of ancient appearance, overlie the granitic and metamorphic series unconformably. [If the above iron-bearing rodek are true pre-silurian, they afford, we believe, the first example yet published of such rocks being auriferous. The beds of iron ore to be of value as evidence of age should be of extraordinary thickness.-J. D. D.]
2. On an oil-well boring at Chicago; by Gro. A. Shufeldt, Jr. (From a letter to Prof ERNI, dated Chicago, Sept. 16, 1865, and communicated
for this Journal.) - I have recently bored a well at Chicago 711 feet in depth. The surface rock is the Upper Silurian ; for the first forty feet it is porous and much decomposed; and it is so filled with petroleum that when exposed to the sun the oil oozes out, and the rock will burn almost like coal. From this rock, when the well was forty fect deep, I pumped 100 gallons of oil, but the fountains or sources of the oil were evidently much deeper, as the drill proved. The next stratum, 200 feet thick, is what we call here Joliet marble, from the name of the place where it outcrops; it is a yeliowish-white stone and very compact, and affords no signs of oil. Next below, for 200 feet, there are bands of grey limestone with oil in the seams; then a band of shale, 156 feet thick, saturated with petroleum. This shale I understand separates the Upper and Lower Silurian, and where it (the shale) rests upon the underlying rock, oil was found in considerable quantities. Beneath this shale we entered the first band of sandstone rock of a redlish color, abounding in oil, and having a thickness of 71 feet.
At a depth of 711 feet we penetrated a stream of water which stopped further progress. This water is perfectly limpid, and is free from all traces of sulphur or other disagreeable minerals, and flows 500,000 gallons of water per day through a $3 \frac{1}{2}$ inch orifice. Its head is 120 feet above Lake Michigan.
3. On the Drift in Brazil, and on decomposed rocks under the Drift; from reeent observations by Prof. Agassiz. Communicated for this Journal by Alexander Agassiz.-At Tijuca, a cluster of hills about 1,800 feet high, and about seven or eight miles from Rio, there is a drift hill with innumerable erratic boulders as characteristic as any ever seen in New England. Prof. A. had before seen unmistakable traces of drift in the Province of Rio and in Minas Geraes; but there was everywhere connected with the drift itself such an amount of decomposed rocks of various kinds, that it would have been difficult to satisfy any one not familiar with drift that there is here an equivalent of the northern drift. There is found at Tijuca the most palpable superposition of drift and of decumposed rocks, with a distinct line of demarcation between the two.

This locality afforted an opportunity of contrasting the decomposed rocks, which form a characteristic feature of the whole country, with the superincumbent drift, so as to be able hereafter to distinguish both, whether found in contact or separately. These decomposed rocks are quite a new feature in the structure of the surface of the country. Granite, gneiss, mica slate, clay slate, in fact all the various kinils of rocks usually found in old metamorphic formations are reduced to the condition of a soft paste, exhibiting all the minelalogical elements of the rucks as they may have been before they were decomposed, but now completely disintegrated, and resting side by side as if they had been a cumulated artificiaily. Through this loose mass there were here and there larger or smaller veins of quartz roek, or of granite or other rocks, equally disintegrated ; but they retain the arrangement of their materials showing them to be disintegrated veins in large disintegrated masses of rocks. The whole passes unmistakably to rocks of the same kind in which the decomposition or disintegration is only partial, or no trace of it is visible, and the whole mass extibits then the appearance of a set of ordinary
Am. Jour. Sci.-Sgcond Series, Vol. XE, No. 120.-Nov., 1865.
metamorphic rocks. It tis plain that such masses forming everywhere the surface of the country must be a great obstacle to the study of erratic phenomena, and it is not wonderful that those who seem familiar with the country shoudd entertain the idea that the surface rocks are everywhere decomposed, and that there is no erratic formation or drift here. But upon close examination it is easy to see that, while the decomposed rocks consist of the small particles of the primitive rocks, which they represent, with their veins and all other characieristic features, there is not a trace of larger or staller boulders in them; while the superincumbent drift consisting of similar parts does not show the slightest sign of the indistinct stratification characteristic of the decomposed metamorphic rocks below it, nor any of the decomposed veins, but is full of various kinds of boulders of different dimensions. The boulders have not yet been trated to their origin; the majority consist of a kind of greenstone, composed of nearly equal amounts of a greenish black hormblende and feldspar. This greenstone is said by mining engineers to be found in the Entre Rios on the Parahyba, where iron mines are worked in a rock like these boulders. Thus far evidence has been furnished of the action of glaciers only in the extensive accumulations of drift similar in its charicteristics to northern drift, but no trace has been found of glacial action, properly speaking, such as polished surfaces, scratches and furrows.

The decomposition of the sufface rocks to the extent to which it takes place here is very remarkable, and points to a geological agency thus far not fully discussed in our geological theories. It is obvious that the warm rains failing upon the heated soil must have a very powerful action in accelerating the decomposition of rocks; it is like torrents of hot water falling for ages in succession upon hot stones, and instead of wondering at the amount of decomposed rocks, we should rather wonder that there are any rocks left in their primitive condition.
4. Mining Statistics of Great Britain for 1864.-

Produce of mines.

The gross value of the above mineral products was $39,979,8371$. There were $2,351,342$ tons of coal taken to London in 1864 and $1,786,713$ tons in 1863. Eight and a half millions of tons of coal were exported in 1864, and nearly half a million of tons of iron.-Athen., Aug. 19.
5. Cretaceous Reptiles of the United States, by Joserf Lemr, M.D. 136 pp . 4to, with 20 plates. From the Smithsonian Contributions to Knowledge, vol. xiv, 1865.-Dr. Leidy has here described in detail and figured with great beauty and perfection, the Saurian remains of the American Cretaceous. The species included are the following Thoracosaurus:
Bottosaurus Harlini, undetermined species of Crocodiles, Hyposaurus Rogersii, Discosaurus vetustus, Cimoliosaurus magnus, Piratosaurus plicatus, Mosasaurus, Macrosaurus levis, Polygonodon vetus, Hadrosaurus Foulkii, undetermined reptiles allied to Hadrosaurus, Astrodon Johnstoni, Tomodon horrificus, Pliogonodon priscus, Chelonia, Chelone sopita, Chelone ornata, Emys firmus, Emys beatus, Emys pravus, Platemys sulcatus, Bothremys Cookii, Trionyx priscus.
6. Note on the Discovery of Rhizopods in the Azoic; by James D. $D_{A N A}$.-It may be thought that the recent discorery of the Eozoön in the Laurentian of Canada is at variance with the writer's Manual of Geology, in which the Laurentian is styled Azoic. But in truth the book and facts are in more perfect harmony for the discovery made since its publication. The author suggests on page 147 that Rhizopods may have existed in the Azoic along with lime-secreting marine vegetation, as the sources of the material of the Azoic limestone strata; and on page 596, after alluding to marine locomotive (animal-like) Protophytes with other Alge as probably commencing in the Azoic, and as the first of eomprehensive types, it is added:
"The Protozoans (Rhizopods, etc.) may have been the associated species of the superior group, as remarked on page 147. The two are alike in extreme simplicity of organization. In Algæ the Radiate type of structure, characteristic of the typical plant, is not brought out; and in Protozoans neither of the four great Animal types appears,-the Radiate, Molluscan, Articulate, or Vertebrate. If, therefore, these simple species existed in the Azoic era, they were systemless life, and only foreshadowed the great systems of life which were afterwards displayed according to their respective types in the true Zoic ages."
The reader will apprehend the full bearing of this senteuce if he will re-peruse the chapter on the Progress of Life from which it is taken.
7. Report on the Mines of Nero Mexico; by Prof. R. E. Owen, Geologist, and E. T. Cox, Geologist and Chemist. 60 pp. $8 v o$. Washington, 1865. -This pamphlet gives a brief notice of the general geology of the region examined. It mentions a five-foot bed of bituminous coal of $\mathrm{Cre}-$ taceous age in the Raton Mountain close to the stage road; and two miles N.E. of Santa Fe, a thin bed of coal with coal-plants and other fossils (Productus Cora, P. semireticulatus, \&e.) of the Carboniferous formation. At the Organ Mts., in the southern part of the territory, the Carboniferous limestone is converted into crystalline marble; and at the Hannover copper mines, it is partiy fussiliferous, and partly so crystallized as to resemble the adjoiwing granite rock. In the same region there is a bed of magnetic iron ore, "forming a belt tis to 100 feet wide," and near the junction with the stratified rocks there is an iron breceis. The carboniferous limestone, with P. Cora, was found in the Jemez valley and Cañon of San Diego. Near the Placer Mtn., a bed of true anthra-
cite, nearly 5 feet thick, exists, due to a porphyritic dike intersecting the Carboniferous formation which is much tilted. The authors state that this metamorphism and disturbance must have taken place after the Carboniferous age.
8. Defense des Colonies: III, Etude Générale sur nos Etages G-H, avec application spéciale aux environs de Hlubocep, pres Prague; by Joachim Barrande. 368 pp . 8vo., with a ehart and a sheet of profiles. 1865. Prague and Paris.-Barrande has discussed in this work the subject of "Colonies" as connected with the distribution of Paleoznic fossils, in a way to command attention and excite an interest in his views. The volume is also very valuable for the review it gives of the paleontology of Bohemia. No justice to the work can be done in a brief notice-which is all that our space in this number will allow; and we commend the volume cutire to all interested in geological science.
9. Supplement to the Ichnology of New England.-A Report to the Government of Massachusetts in 1863. By Eoward Hitchcock, D.D., LL.D., late Professor of Geology in Amherst College. 96 pp. 4to, with 20 plates. Boston, 1865.-.This Report, the last work of the late Professor Hitcheock, contains descriptions and illustrations of new species of tracks, among which are some strange forms, well termed enigmatical. A number of the plates are fine photograpls, a style of illustration especially important for the minute tracks, like those of insects, and excellent for all. The bones of the right foot of the Saurian remains found near the water-shops of the Armory at Springfield, and partiy described and commented upon by Professor J. Wyman at p. 187 of the Ichnology, are figured on one of the plates of this Supplement. The opinion of Professor Owen of London is given that they belonged to a Saurian with an unusually thin and compact wall of bone in the limb bones, which, however, might have been occupied by unossified cartiage, as in the young crocodile and turtle; if they were filled with oil or light marrow, it would indicate a relation to Pterodactyles or Birds. The species is named Megadactylus polyzelus.
10. New Dinosaurian from the Wealden Formation, Isle of Wight.A new Dinosaurian, for which Prof. Owen has proposed the name Polyacanthus (from nodus many and $\alpha x \alpha \nu \theta \sigma$ spine). has theen found by Rev. W. Fox. The animal was over 6 feet long from the shoulder to the rump, had a massive tail 5 feet long, legs about 4 feet long, and a broad short foot. It had a bony armor thade of plates from $\frac{1}{2}$ in. to 4 in. broad, and $\frac{1}{2}$ in. thick, excepting along the back, over which there was a great bony shield; and along the sides of the body and tail there were spine-like bones, some of which are 15 in. long and weigh 7 pounds.-Athencoum, Aug. 5.
11. Seaside Studies in Natural History; by Elizabeth C. Agassiz and Alexander Aqassiz. Marine Animals of Massachusetts Bay. Radiatra. 156 pp. 8vo. Boston, 1865 . (Tieknor \& Fields.)-The tendency of summer travel to the seashore is creating a demand for popular works on the life of the waters. The "Seaside Studies" will be welcomed as a beautiful and attractive begianing in this department of literature. We say beginning, because it takes up but a single branchthat of the Radiates, and is confined mainly to the species of Massachu-
setts Bay. The work is exact in its science as well as popular in style, and is in fact a contribution to science which the must learned may read with profit. The text is main'y from the graceful pen of Mrs. Agassiz, and the work is dedicated to her husband, Prof. L. Agassiz. The illustrations are numerous and excellent, and the printing and paper all that could be desired.
12. Entomological Society of Philadelphia.-The publication committee of this Society propose to publish, and issue gratuitously, an occasional bulletin, under the title of "The Practical Entomologist," in which papers on the insects injurious and beneficial to vegetation will be given for the benefit of the American farming interest. They express in their circular (dated September, 1865,) the hope that the information imparted through this medium will be of use to the agriculturists of the country, by leading them to study critically the Entomological fama which surrounds them, and to derive, from their knowledge thus acquired, the power to increase the production of their crops and develop the interest which they represent. It is a siugular fact that some of our commonest and most injurious insects are least kuown. Our Cotton, Hop, and various other crups suffer at times immensely from insects whose habits we little understand. The Society aims by its publication to bring out the true history of each and all of our noxious insects; and it is believed that, this attained, simple remedies will suggest themselves, which in certain cases may be merely burning the stubble and vigorous fall ploughing.
They ask, in order that their plan may be carried out, that those having infurmation will send it by letter to the Secretary of the institution, at No. 518 South Thirteenth Street, Philadelplia, along with alcoholic phials containing specimens of the noxious insects of the region. They also desire papers from scientific observers for the "Practical Entornologist," as only the active coöperation of all interested parties will insure success in an undertaking which is a labor of public benefit, without moneyed recompense.
13. A classification of Mollusca based on the Principle of Cephalization; by Edward S. Morse. 20 pp. 8 vo . From the Proceedings of the Essex Institute.-A very valuable original paper, based on researches in Molluscan development and bearing on the general subject of zoological classifieation. We may cite from the paper in a future number.
14. Natural History: A Monual of Zoology for Schools, Colleges, and the General Reader; by Sanbors Texnex, A. M., author of "Geology," Prof. Nat. Hist. in Vassar Female College. 540 pp. 12mo; illustrated with 500 wood cuts. New York. 1865. (C. Scribner.)-The American studeut in zonlogy will fiud Prof. Tenney's Manual a very convenicnt and useful work. It goes over the aninial kingdoun, commencing with the highest class, that of Manmals, and illustrates the various sublivisions with deseriptions and figures, meutioning and figuring particularly North American species. Exch of the prominent gooups is thus presented to the eye by means of excellent wood-cuts of animals accesible to the American sturlent, and with a large number of them considering the size of the work. The Manual is well calculated to make the study of zoology popular and easy. It fails of any introductory chapters on the structure of animalis.
15. On a solar halo, seen at Crawfordsville, Ind., (lat. $40^{\circ} 03^{\prime}$); by Prof. J. L. Camprell. (In a letter to the Editors, dated Wabash College, Crawfordsville, May 27, 1865.)-Herewith I submit a report of the remarkable appearances in the atmosphere on May $26 \mathrm{th}, 1865$.

The morning was hazy and cool-the thermometer at 5 ranging about 48° to 50°.

About nine o'clock a series of halos or rings began to form about the sun, and continued to increase in brilliancy until near noonthen slowly disappeared during the afternoon-traces being visible at six o'clock in the afternoon. The accompanying diagram is a correct representation of the phenomenon as it appeared at twelve o'clock, noon.

The most brilliant ring was described about the sun as a center with an angular radius (SE) of twenty-two degrees by careful measurement.

The bands were white, yellow, red and green. The white was exceedingly brilliant. The yellow

S (Sun), Primary center; A, Secondary center; B and C . Tertiary centers; Radius, $\mathrm{SE}=22^{\circ}=\mathrm{AD}, \quad \mathrm{SM}=44^{\circ} ; \mathbf{M D}$, Grand axis $=89^{\circ}$; Barometer 29.72 in . ; Thermometer $70^{\circ} \mathrm{F}$. and red were also very bright.

The breadth of this series of bands forming the primary ring was about one and a half degrees.

The are MLG described about the sun as a center with a radius of forty-four degrees presented less brilliant, but well defined colors in the reversed order,--the white band being on the outer circumference, and the green within,-with another inner band of violet.

At A on the circumference of the primary circle, the center of the second circle was located. The radius of this circle was the same as that of the primary-its circumference passing directly through the sun.

The ring was chiefly white light, of less brilliancy than the primary, Jet very sharply marked throughout its entire circumference.

From D the ares DF and DG branched off symmetricall! with reference to the axis MSD, indicating the centers of curvature at B and C, the intersections of the secondary circle with the primary.

These arcs were of white, well defined, mellow light.
The long continued and well defived manifestation of the phenomenon enabled us to take all our observations very carefully, and to repeat them for further accuracy.

The geometrical relations of the centers of these curves are curious and interesting, and the record of these positions may be of some value in connection with future observations of the same character.

In explanation of these appearances there are some difficulties not hitherto presented in discussing halos. For the present the record of the facts only is made.
16. British Association at Birmingham.-The meeting of the British Association opened at Birmingham on the 6th of September, Professor Phillips being the President. The number of members at the meeting during the week following was about 1,400 , and besides these there were present 508 ladies and 23 foreigners. The funds received amounted to $2227 l$.; and nearly this amount was set apart for various scientific investigations in astronomy, physics, zoölogy, geology, de., including 35l. for oyster culture. The number of papers read was two hundred and sixty. We have no space in this number for a notice of the Proceedings. The next meeting will be held at Nottingham.
17. Systema Natura of Linnceus-By letter from Prof. A. E. Nordenskïold of Stockholm we learn that the Academy of Sciences of Sweden is about to have printed a new photo-lithographic edition of the first edition of Limmens's Systema Naturæ; and he adds, that "To enable us to judge how many copies may be sold it would be of some iuterest to have an idea of the probable extent of its sale in the United States." This first edition of Linnaus consists of only 13 to 14 leaves in folio and still contains the rudiments of all his great productions. ${ }^{1}$
18. New Planet.-Planet No. (ه4) was discovered on Aug. 25, by Dr. Luther, of the Otservatoray at Bilk, near Düsseldorf. On the day of discovery at 10 h .46 m .28 s ., Bilk mean time, its A. R. was $323^{\circ} 3 \imath^{\prime} 49^{\circ} 1^{\prime \prime}$, and its declination N. $14^{\circ} 20^{\prime} 47^{\circ} 1^{\prime \prime}$. It has been named Clio.
19. Italian Society of Natural Sciences.-An extraordinary meeting of this Society was held at Spezzia on the 17 th of September.
20. Prof. Berthelot.-A chair of Organic Chemistry has been founded at the College of France, and Prof. Berthelot appointed to fill the place.Reader, Sept. 2.
21. Statue of Arago.-An inatguration of the statue of Arago, erected at his birthplace, Estagel, in the Basses Pyrenees, took place on the 31st of August. His son, dissatisfied that he had not received a special invitation, and because there was no commemoration of his father's political services, declined to be present.-Reader, Sept. 9.
21. Chambers's Encyclopedia.-Parts 94, 95, 96, 97 of this valaable Encyclopedia, extending to RID., have been issued by the American publishers, J. P. Lippincott \& Co.
obitulary.
Admiral William Henry Smith.-Admiral Smith died at his residence near Aylesbury, Sept. 9th, at the age of 77. He had acted as President of the Astronomical Society, and of the Geographical Society, Vice President of the Royal Society, and Director of the Society of Antiquarians. He retired in 1825 from naval life, and published in 1844 the "Cycle of Celestial Objects," including the "Bedford Catalogue," an excellent hand book of practical Astronomy, a result of a series of astronomical observations in his Observatory at Bedford. He also published many works or memoirs on Geographical and other subjects.-From a notice in Reader, Sept. 16.
Hrah Cumming, died in London, on the 10th of August last, at the age of 74 . He commenced his journeyings in behalf of natural his-

[^123]tory, especially conchology, in 1826, when he built a yacht for the purpose, and undertook a ciuise of more than a year's length among the islands of the South Pacific. Returning to Valparaiso, he prepared for explorations along the western coast of southern South America, where he continued for two years collecting in all departments of zoology. In 1835 he started on a new expedition of four years to the Philippine Islands, and made there vast collections in botany and zoology. During the twenty-five years since his return from the East Indies, he was occupied mainly with the arrangement and extension of his collections. He had long been sulject to chronic bronchitis and an astbmatic affection, and these were finally the occasion of his death.-From a notice in Athen., Aug. 19.

Johann Franz Encke.-Encke, the Director of the Berlin Observatory, died at Spandau, on the 26th of August, 1865. He was born on the 23d of September, 1791, at Hamburg, where his father was a clergyman.

William Rowan Hameton.-Sir Wm. Rowan Hamilton, Astronemer Royal for Ireland, died on the 2nd of September, at the age of sixty. He became known as a mathematician of extraordinary genius when he was about twenty years old.

His papers on systems of rays, on the methocis of dynamics, on algebra looked at as the science of pure time, on discontinuous functions, on equations of the fifth degree, and his new algebra, the Quaternions, cannot be popularized. But there is one little result of which an idea can be given, one of the ea:liest of Hamilton's discoveries, and one which alone would carry down his name to posterity. Hamilton found, from optical theory alone, by reasoning on the properties of light, that under certain circumstances a ray, instead of being refracted as a ray, should, if the theory were true, split into a cone of rays. This conical refraction, on being looked for under the proper circumstances by Prof. Lloyd, was actually found to exist. No such phenomenon had ever been even imagined; and it may be justly said that no more remarkable triumph of theoretical prediction had then occurred in the history of seience. If we must add to it, as a match, the prediction of Neptune by Leverrier and Adams, each of these brilliant feats does honor to the other. Sir W. R. Hamilton was a man of very wide pursuits, and very varied talents; be was a scholar, a metaphysician, and a poet. He was beloved for the kindness of his heart, and respected for the integrity of his character.From a notice in Athen, Sept. 9.

Johy T. Plemmer, M.D.-Dr. Plummer died on the 10th of April, at his residence in Richmond, Indiana, aged 58 years. He was a graduate of the Medical Sehool of Yale College in 1828. While not making chemistry and natural seience his special study, he made collections and observations in different departments, and formerly contributed short papers to the pages of this Journal, and to those of the Journal of Pharmacy. He was a member of the Society of Friends (Quakers), and one of the best of men. He was averse to all public show, and quiet and unobtrusive to an extreme. He has left numerous manuseripts, the larger part of which relate to the Society of Friends, of which he was one of the most influential members.

PLATES.

I.-Stereoscopic drawing by hand, Rood, p. 74.-Discussion of Declinometer Observations at Girard College, $1840-45$, Bache, 11 diagrams on 2 shcets, pp. 98, 198.-Map of Appalachian mountain system, Geyor, p. 180.Aurora, as an eleetric discharge, Marsh, 2 plates, p. 311.
II.-Table of Comparative Sections of U. S. Coal Measures, Lesquereix, p. 119.
IV.-Vertebre of Eosaurus Acadianus, Marsh, 7 figures on 2 plates, p. 16.-Discussion of Declinometer observations, Girard Coll., 1840-45, Bache, 11 diagrams on 4 sheets, pp. 264, 375, 383.
V.-Iso-magnetic lines of Pennsylvania, for 1842, Bache, p. 359.
VII.-Configuration of Planetary and Lunar systems in Times, Hinbichs, p. 44.

XL_-Eozoön Canadense, p. 361.

APPENDIX.

New Planet.-Prof. Watson, of Ann Arbor, Mich., announces the discovery by him of another planet, on the 9 th of October. In a second letter to the editors, dated Oct. 16th, he adds: "I have just received a letter from Prof. Ferguson, from which it appears that the planet discovered by me on the 9 th inst. was discovered by Dr. Peters at Hamilton College on the 20th of September. I did not know of this prior discorery until to-day. It seems that Dr. Peters communicated his discovery to the Observatory at Washington, but so far as I know no further announcement was made.
"From a little examination which I have made I feel pretty sure that this planet is identical with Sappho O, discovered by Pogson at Madras on May 2d, 1864, but subsequently lost. The circumstances of the motion of the new planet, as far as I have observed it, agree precisely with the hypothesis of identity with Sappho, according to Pogson's observations from May 3d to May 12th, 1864 ."

On Prairies.—On the subject of Prairies, some excellent observations are made by H. Engelmann, in volume xxxvi of this Journal, in an article, commencing on p. 384, on the causes producing the different charaeters of vegetation known as Prairies, Flats and Barrens in Southern Illinois.-J. D. D.

Meteorites.-In a pamphlet on Meteorites (Aërolites) by R. P. Greg of Manchester, England, the author presents the following System of Arrangement:

Crass I. AERROLITES.

Order A. Sp. gr. mostly between $1 \cdot 7-3 \cdot 2$, containing little or no metallic iron.

Group b. Howarditic ; ash-gray, fine-grained matrix, somewhat resembling trachyte, and containing imbedded crystals of olivine, anorthite, or augite; outside crust highly resinous and pitch-black.
Group c. Feldspathic ; containing, or consisting of, a mixture of anorthite and augite; crust pitch-black and highly resinous. "Eukrite" of Rose.
Group d. Crystalline; peridotic, shalkitic, chladnitic ; (magnesiasilicates).
Group e. Vesicular.

Order B. Sp. gr. mostly between 3.25 and 3.9 .
Group a. Variolitic ; after the manner of the mineral called Variolite.
Group b. Sommitic ; consisting of finely mixed crystalline minerals; something after the nature of the ejected masses of Mt. Somma, Vesuvius.

Group c. Tufaceous; mixed; spherules numerous. \}"Porphyritic" c_{1}; composite, crude, \&e. $\}$ of Shepard.
c_{2}; brecciated, marbled, \&e.
Group d. Psammitic; arenaceons, like sandstone, granular; color yellowish or brownish white; particles chiefly olivinoid; metallic particles freely and visibly interspersed, occasionally with the addition of magnetite and graphite, or veined and stained with rust; Bachmut may be taken as the type. Polished surfaces show more or less of spherules.
d_{1}; ditto, very fine-grained texture.
$d_{2} ;$ ditto, grayish; texture more compact or tough;
New Concord and Lixna may be taken as types.
Group e. Chondritic ; structure coarse-grained, grayish.
e_{1}; oolitic or pisiform.
$e_{2} ;$ containing small angular crystalline fragments.
Group f. Blanskitic; after the manner of the Blansko meteorite; color grayish blue, occasionally running into c or d_{2}; probably contains more Labradorite or augite than d or d_{2}. Texture rather uniform.

Group h. Erxlebenetic ; texture fine-grained, tough, and gritty; highly peridotic and metaliferous, with a slight bronze-like luster; this represents quite a peculiar group, of which the Erxleben meteorite may be taken as the type.

Class II. SIDEROLITES.

Order C. Sp. gr. 4.0-7.0 meteoric iron, containing, or mixed with, stony matter and silicates.
Group a. Pallasites; olivine, coarsely crystalline. a_{1}; ditto, finely crystalline.
Group b. Partially or irregularly mixed with silicates.
Group c. Containing aërolithic fragments, imbelded in iron showing Widdmannstättian figures.

Class III. meteorio irons, on AERROSIDERITES. ${ }^{1}$
Order D. Sp. gr, between $7 \cdot 0$ and 8.0 .
Group a. Agrammic; without line-markings, not lettered when etched with acid.

$$
a_{1} \text {; nacreous, pearly lustered. }
$$

a_{2}; spotted, or dotted.
Group b. Microgrammic; minutely marked.
Group c. Eugrammic; distinetly marked; lines parallel to the sides of the octohedron.
Group d. Spora-grammic ; scattered lines, finely marked.
d_{1}; ditto, coarsely marked.
Group e. Nephelic; convoluted, or clouded markings.
Group f. Undetermined; markings doubtful, or altered by artificial heat.

[^124]Erratex.-P. s06, this vol, 1. 5 from foot, for $10^{\prime \prime}$ read 10°.

American Joumal of Science, $2^{\text {nd }}$ Series, Vol. XL.

EOZOON CANADENSE, Dawson

[^0]: Am. Jour. Sci-Segond Series, Vol. XL, No. 118.-July, 1865.

[^1]: ${ }^{1}$ It is the opinion of geologists that the larger part of the erosion excavating the ralleys of the continents took place after the Tertiary period. It was probably during this same time that the deep-lying auriferous gravel was produced from the degradation of the metamorphic schists and quartz veins of the Sierras by the joint action of water and of glaciers.

[^2]: * Report on the Middle Yuba Canal and Eureka Lake Canal, Nevada Co., California. By Geonge Black, Civil Engineer. San Francisco. 1864. pp. 32.

[^3]: ${ }^{3}$ Mercantile Gazette for January 12, 1865.

[^4]: * The miner's inch of water, in California is that quantity of water which will pass through an opening of one square inch area under a mean pressure or head of six inches. In practice the water from the canal is conducted into a measuring box (see the accompanying map for a figure of this box) twelve or fourteen feet square, in the sides of which openings are made two inches in height, and extending across three of the sides. These openings are closed by slide valves when not in use. The sectional area through which the water flows determines of course the volume by measurement. Thus twenty inches in length of slit by two inches in depth, under a head of six inches, is called forty inches miner's measurement. A cubic foot $(=7 \cdot 49 \mathrm{U}$. S. gallons) equals 38 miner's inches. The water discharged by one miner's inch in 24 hours is equal to 2,274 cubic feet, or for one working day of ten hours, 1,098 cubic feet. The average consumption of water on each miaing claim in active work is equal to three hundred miner's inches. This quantity of water flowing ten hours is equal to 329,400 cubic feet or $2,470,500$ United States gallons, a greater quantity than is required for the supply of the city of San Francisco with a population of over one hundred thousand people.-Black.

[^5]: ${ }^{2}$ Chips of the ice left in the hole were melted, and thermometer case nome. what moistened.
 Gardiner, Maine, March 2, 1865.

[^6]: ${ }^{1}$ This Journal, [2], xxxviii, 332.
 "Prof. Whitney in Geol. Report of Iowa, p. 19; for this and some of the following measurements. Those for Ohio are taken from official surveys for canals.

[^7]: - Dana: Manual of Geology, p. 54%.
 - The Terrace epoch. Dana, ibid., p. 554.
 ${ }^{5}$ This Journal, [2], Exxviii, 333.
 - This Journal, ibid, p. 348.

[^8]: ? Alph. De Candolle Geogr. Bot., p. 616. "Hooker's Bot. Mag, t. 2754.

 - Annales des Sciences Nat., V, 373.

[^9]: ${ }^{20}$ Alph. de Candolle Geogr. Bot., p. 541.

[^10]: m This Journal, L c., p. 33t.
 ${ }^{23}$ O. Heer: Flora Tert Helvet, iif, 117.

[^11]: ${ }^{14}$ This Journal, [2], xxvii, 364. Specimens of these fossil plants were sent to Prof. Heer, who denied the identity of some of them with species of aur time, and doubted that of others.

[^12]: ${ }_{26}$ According to Prof. Winchell's opinion. This Journal, [2], xxxviii, 344.
 ${ }^{26}$ De Candolle Physiol. Veget, p. 1210.

[^13]: ${ }^{17}$ Fire extends sometimes its ravages beyond the natural limits of the prairien and destroys the forests of the borders, where the trees are not only scattered but of feeble growth. It is only on this intermediate ground that the contest of progression and receding of the forest is in constant activity.

[^14]: ${ }^{1}$ It is the intention of the writer, when more at leisure, to prepare drawinge and fuller descriptions of these fossilt, as well as of the others now lost, should they be recovered, for publication in a work Dr. Hays has in progress on the reauls of his expedition.

[^15]: ${ }^{1}$ The atomic weights used in this paper are $\mathrm{H}=1, \mathrm{O}=16, \mathrm{C}=12, \mathrm{Si}=28$.

[^16]: 2 The best and most economical method of obtaining an anhydrous alcoinol is, after previous rectification over quick lime, to distil it with a quantity of sodium sufficient to destroy the small amount of water still retained by it. The excess of sodium employed forms an alcoholate of sodium, which is not decomposed at the point of ebullition of the alcohol.

[^17]: ${ }^{2}$ Of the thirty-seven analyses of waters here given, ten have already appeared in this Journal, [2], viii, ix, xi; but for the purposes of comparison it is thought well to reproduce them in the present connection. Of the others the greater part have appeared in the Geology of Canada, but several are now for the first time in print.

[^18]: ${ }^{2}$ See farther on this point, Bischof, Chem. Geology, i, 418.

[^19]: ${ }^{3}$ Goessmann. Report on the brines of Onondaga: Syracuse, 1862 and 1864. Also Report on the Onondaga Salt Co.: Syracuse, 1862.
 *Winchell: this Journal, [2], xxxiv, 311.
 ${ }^{5}$ Cited by Bischof, Lehrbuch ii. 1671. The resalts of the analyses by Mr. Northcote of the brines of Droitwich and Stoke in the same region (L. E. \& D. Philos, Mag. [4], ix, 32,) as calculated by him, show no earthy chlorids whatever, and no carbonate of lime, but carbonates of soda and magnesia, and sulphates of soda and lime. He regarded the whole of the lime present in the water as being in the form of sulphate. If, however, we replace, in calculating these analyses, the carbonate of soda and sulphate of lime by sulphate of soda and carbonate of lime, we shall have, for the contents of these brines, chlorid of sodium, with notable quantities of sulphate of soda, some sulphate of lime, and carbonates both of lime and magnesia; a composition which is more in accordance with the admitted laws of chemical combinations. From these results it would appear that the earthy chlorids, which according to Nichol are present in the rock-salt of this formation, are decomposed by sulphates in the waters which, by dissolving the salt, give rise to the brines.

 It is to be regretted that in many water analyses by chemists of note the resulta are so calculated as to represent the co-existence of incompatible salts. Of the association of carbonates of soda and magnesia with sulphate of lime, as in the analyais just noted, it might be said that I have shown that it may occur in the presunce

[^20]: Am. Jour. Sci.-Second Series, Vol. XL, No. 118.-July, 1865.

[^21]: ${ }^{2}$ By the positive metal is here meant that which imparts, at the heated junction, positive electricity to the other metal. This is often termed the negative metal, Ita polarization is positive, but its electrical state is negative (p. 245).

[^22]: ${ }^{3}$ The individual molecular currents lying in a transverse section of the magnet, are here supposed to be replaced by two linear currents transverse to the magnet, one in the upper and the other in the lower surface.

[^23]: Am. Jour. Sci.-Sgoond Series, Vol XL, No. 118-Jult, 186\%.

[^24]: Am. Jour. Scr.-Second Series, Vol. XL, No. 118.-July, 1865.

[^25]: ${ }^{2}$ From the Proceedings of the Amer. Philosoph. Soc., April 21, 1865.

[^26]: ${ }_{3}^{2}$ In the northern zones. ${ }^{2}$ Over the whole earth.
 ${ }^{3}$ The bracketed references are to the numbered quotations from the Girard College discussions.

[^27]: ${ }^{1}$ From the Memoirs of the American Academy, (N. S.) ix, 135.
 Am. Jour. Sct.-Sicond Serime, Vol. XL, No. 118.-July, 1865.

[^28]: ${ }_{3}^{2}$ Philosophical Transactions of the Royal Society, 1825, cxv, 465.
 ${ }^{3}$ Annalea der Chemie und Pharmacie, 1845, Iv, 200.

 * Quarterly Journal of the Chemical Society, 1849, i, 244.

[^29]: : Journal für praktische Chemie, 1854, 1xi, 74.
 " Ich kann den Angaben von Mansfield über das letztere nur das hinzufügen, das seine Nitroproducte denen des Benzols, etc. ganz ähnlich sind, daher es jedenfalls dar Reihe $\mathrm{C}_{n} \mathrm{H}_{\mathrm{n}-6}$ angehört und vielleicht die Formel $\mathrm{C}_{10} \mathrm{H}_{4}$ besitat.

 On a future occasion I shall show that Ritthausen was in error in placing thin body in the benzole series, and indeed in considering it as a hydrocarbon at all. He was evidently deceived by operating on a mixture containing benzole. Furthermore, as Mansfield suggented might be possible, that part of the naphtha more vola-

[^30]: - See a following Memoir on this subject.
 ${ }^{10}$ Philowophical Magazine, 1857, [4], siii, 415.

[^31]: Of some of the Properties of the Bodies obtained by Fractioning.-

 1. Benzole.-Specific gravity, 0.8957 at 0°, and 0.882 at $15^{\circ} \cdot 5 .{ }^{12}$
[^32]: ${ }^{11}$ Menoirs of the American Academy, 1864, and last volume of this Journal.
 ${ }^{13}$ It would appear that the specific gravities of liquids are usually determined at the temperature of the air. The result of this is that the determinations made by different observers are not comparable with one another. That these specific gravities are not uniformly taken at 0° C. -the temperature which, on account of AM. Jour. Sct,-Smcond Sertes, VoL. XL, No. 118.-July, 186 .

[^33]: ${ }^{14}$ Poggendorf''s Annalen, 1847, 1xxii, 38.
 ${ }^{25}$ Proceedings of the American Academy, 1864, p. 251, and this Jour., $x \times x i x, 326$.
 ${ }^{18}$ Philosophical Magazine, 1855, [4], ix, 256.

[^34]: ${ }^{17}$ As this memoir is passing through the press, the receipt of my journals for September calls attention to late publications of Hugo Müller, Béchamp, and Naquet concerning this hydrocarbon. Müller concludes that it is xylole, a result which agrees with my own. (Annalen der Chemie und Pharmacie, 1864, cxxxi, 321.) Béchamp, on the contrary, erroneously regards it as being a new hydrocarbon, not belonging to the benzole series. (Bulletin de la Société Chimique, Paris, 1864, 204.) Naquet also calls it a new hydrocarbon, and gives it the formula $\mathrm{C}_{18} \mathrm{H}_{12}$. (Ibid. p. 205.)

[^35]: 2t Annalea de Chimie et de Physique, 1845 , [8], iv, 87.
 Annalen der Chemie und Pharmacie, 1847, lxiv, 812.

[^36]: ${ }^{24}$ "La formation du cumène s'explique aisément. En effet, l’acide cuminique etant représenté par $\mathrm{C}_{40} \mathrm{H}_{24} \mathrm{O}_{4}$ on voit que $\mathrm{C}_{4} \mathrm{O}_{4}$, c'est-a dire 2 equivalents d'acide carbonique sont retenus par la baryte, tandis que $\mathrm{C}_{36} \mathrm{H}_{24}$ sont dégagés." -Annales de Chimie et de Physique, $1841,[3], i, 89$.
 ${ }^{28}$ "En dirigeant la chaleur convenablement et en n'employant, pas plus de 6 gr . d'acide cuminique à la fois, on n'obtient jamais d'autres produits que ceux que nous venons de nommer."
 ${ }^{28}$ Annales de Chimie et de Physique, 1845, [3], xiv, 107.
 Am. Jour. Sct.-Second Series, Vol. XL, No. 118.-July, 1865.

[^37]: This is the mineral which Dr. Jackson, in his account of the emery locality,
 calls chloritoid.

[^38]: ${ }^{1}$ The exact date of the publication of this memoir is unknown to us, since it bears only the date of the preparation of the first part, (Oct. 1859), which was not actually published for some time after; while we did not receive the last part, nor can we learn that it reached athers, until about the middle of February, 1861.

[^39]: I These limonite beds were long since shown by Percival to be, in part at least, contrary to the views of Prof. Hitchcock, altered beds of pyritiferous, micaceous and argillaceous schist in place. (See his Report (1842), p. 132, and also this Jour$\mathrm{nal}_{,}[2], \mathrm{ii}, 268,1846$.)

[^40]: ${ }^{\text {I }}$ This group is placed here with considerable hesitation, and principally on ac count of the close resemblance in structure to the young of the succeeding and higher groups, when they first begin to form a coral, which then consists of a ring of epitheca or epidermal deposit with a few, imperfect, rugose septa radiating from the center. If the number four be a constant feature of the arrangement of their septa. it is possible that they may be entitled to rank as a separate order of Polyps. To this opinion Prof. J. D. Dana inclines. Prof. Agassiz unites the group with Hydroid Acalephs, on account of their resemblance, in some features, to the Tabulata. It seems to me, however, that the absence of transverse plates in Cyathaxonide and Cystiphyllide and the perfection of the vertical septa in Stauridoe, Cyathaxonide and some of the Cyathophyllidee, together with their general structure, shows them to be more closely allied to the Fungacea and Astreaceea, of which they may be considered embryonic types, while at the same time the group is a synthetic one, having analogies with nearly all the higher groups of Polyps, and also, in some respects, with Hydroids.

[^41]: ${ }^{1}$ For a closer comparison of young Ctenophorse and Echinoderm Larra, see the Illustrated Catalogue of the Museum of Comparative Zoology, No. II, now in prest

[^42]: * From Monthly Notices of the Royal Astronomical Society, Feb. 10, 186.

 Am. Jour. Sci.-SEcond Stries, Vol. XL, No. 119.-SEPT., 1865.

[^43]: Axt Joug Sex.—SEcond Series, Volo XL, N9. 119.-SEETT, 1805.

[^44]: ${ }^{1}$ Some American names are here omitted.-EDns. J. Sor.
 ${ }^{2}$ In 1844 the Astronomer Royal determined the longitude of Valentia, in the west of Ireland, to be $41 \mathrm{~m} .98 \cdot 67 \mathrm{~W}$., by means of ten transits of thirty pocket chronometers to and fro. In 1862 the longitude of the same place was re-determined by galvanic signals given by the clock itself, and the final result was 41 m .9 g 81 W.!-Mem. R.Ast. Soc, vol. xxxii.

[^45]: ${ }^{3}$ Struve remarks that, along the arc between the mouths of the Danube and the Aretic Sea, there is no hill 1200 feet high. Over a great portion of it the country is so level and wooded that it was often necessary to erect lofty scaffolds in ordar to see the necessary signals.

[^46]: ${ }^{4}$ Address of Sir John Herschel to the Royal Astronomical Society, 1841.

[^47]: ${ }^{5}$ This is not quite strictly correct. Struve used to say, with an easy pleasantry, that Fraunhofer's noble instrument was rightly named the Great Refractor, for he and his friend Schumacher had each broken a leg while using it.

[^48]: ${ }^{1}$ From the Proceedings of the American Philosophical Society, May 19, 1865.
 ${ }^{2}$ Phil. Mag. [4], ix, 452. Faraday (Exp. Res, iii, 493), states "t that the celebrated Prof. Gazzaniga, starting froun his numerous experiments, which demonstrate the infuence of magnetism upon the same aerial fluids, in a manner, therefore, different from that of Bancalari, was induced to consider the sun, and all the other celestial bodies, as so many enormous magnets, by which he established that attraction is merely one effect of the magnetism of the great celestial masses placed at an enormous distance,-an idea which reappeared in 1846 in Prussia, and in 1847 in France."

 While admitting the intimate relationship of magnetism and gravity, I must dissent from the learned Professor's inference. For the evidence appears irresistible, that the earth's magnetism is directly dependent on the terrestrial gravitation of the thermally disturbed aerial currents, and that it is only slightly affected by the perturbations of solar and lunar gravitation, so that if we regard the relationship as a causal one, magnetisn, rather than attraction, should be considered as the effect. (See Gauss, "General Theory of Terrestial Magnetism," S30, 40; Taylor's Scientific Memoirs, ii, 232).
 ${ }^{3}$ By the kindness of Prof. Henry, I have been permitted to refer to the proofsheets of the Fourth Section of Prof. Bache's Discussions.

[^49]: " "The motions of fluids and solids relative to the earth's surface." See Nashvile Journal of Medicine and Surgery for 1856, and Mathematical Monthly for 1850, i, 140 , sqq.

[^50]: "The charts that I used, were the polyconic projection of the "Lines of equal magnetic variation for the year 1858," which was constructed from Evans's Engtish Admiralty Chart, for the United States Coast Survey Repors of 1859, and No. 1 and 2 of the "Admiralty Manual for accertaining and applying the deviations of the compass caused by the iron in a ship." 2d Edition, 1863.

 - The influence of coast lines in producing a tendency to equality of declination in beautifully shown in the United States Coast Survey Chart of "Limes of equal magnetic declination on the Gulf of Mexico for the epoch 1860.0."

 7 Loc. citat.
 8 This inference accords with Barlow's conclusion that every place has its particular polarixing axis.

[^51]: - "A few years ago magnetism was to us an occult power, affecting only a few bodies; now it is found to influence all bodies, and to possess the most intimate relations with electricity, heat, chemical action, light, crystallization, and through it, with the forces concerued in cohesion; and we may, in the present state of things, well feel urged to continue our labors, encouraged by the hope of bringing it into a bond of union with gravity itself."-Favaday: Exp. Rex., 2614.
 Av. Jour. Sci.-Second Series, VoL. XL, No. 119.-Sept. 1885.

[^52]: (See "Numerical Relations of Gravity and Magnetism," Sections V, IX, and Faraday's Experimental Researches, III, 321-2).
 ${ }^{12}$ See Enc. Britann., 8th ed, xiv, 35-39.

[^53]: ${ }_{13}$ Taylor's Scientific Memoirs, ini, 394.
 Prof. Frazer has Lindly referred me to the cöpfficients of dilatation for iron, in the "Artizan", of Dec. 1, 1860, and to the experiments of Regnault on the dilatation of air (See Jour. of F. Inst. [3], Xv,281). According to these data, the theoretical

[^54]: ${ }^{24}$ Humboldt speaks of the accumulation of electricity in the lower equinoctial regions, "at the maximum of heat, and when the barometric tides are near their minimum."-Taylor's Scient. Mem, iii, 398.

[^55]: :This Journal, [2], xxxii, 339.

[^56]: 2 Storer, in his Dictionary of Solubilities, under the heads "Stannate of Potash" and "Stannate of Soda," has collected nearly all that is known respecting these salts. We are there told that, according to Fremy, stannate of soda is much more soluble in cold than in warm water. To test this matter, and to reduce indefinite terms to exact numbers, I have made the following experiments:
 I. A saturated solution was prepared by frequently agitating water with an excess of the fine, freehly prepared crystals, in a flask surrounded with snow. It was filtered in a funnel also kept at $0^{\circ} \mathrm{C}$. The clear liquor warmed to $155^{\circ} \mathrm{C}$. had the sp. gr. 1-472. It contained $32.1 \mathrm{p} . \mathrm{c}$. of dry stannate.
 II. A saturated solution made in a room kept at $10^{\circ} \mathrm{C}$. had the ep. gr. $1-448$, and contained 31 p. c. of the dry salt, or 39 p. c. of $\overline{\mathrm{N} a \mathrm{Sn} \mathrm{H}_{3} \text {. }}$
 III. A saturated solution was made in a flask kept in water at $20^{\circ} \mathrm{C}$. Cooled to $15.5^{\circ} \mathrm{C}$. it had the sp. gr. $1 \cdot 438$. It contained $30^{\circ} \mathrm{B}$ p. c. of Na So. So 100 parts of water dissolve 67.4 parts of the crystals, $\mathrm{NaSnH} \mathrm{H}_{3}$, at $0^{\circ} \mathrm{C}$.; and at $20^{\circ} \mathrm{C}$. only .61.3 parts, or nine-tenths as much.

 Stannate of potash shows no such anomaly, but its solubility is somewhat increased by heat.
 IV. At $10^{\circ} \mathrm{C}$ a saturated solution was made with erystals of $\mathrm{k} \mathrm{Sn}_{\mathrm{n}} \mathrm{H}_{3}$ formed by spontaneous evaporation in vacwo. It had the sp. gr. 1618 and contained 42.3 p. c. of $\dot{\mathrm{K}} \mathrm{Si}$.
 V. A saturated solution made at $20^{\circ} \mathrm{C}$. had the sp. gr. $1 \cdot 627$ and contained 43 p. c. of dry atannate of potash.

[^57]: VI. A saturated solution made at about $45^{\circ} \mathrm{C}$. had the sp. gr. 1.658 and contained 44 p .c. of K K B .
 Therefore, at $20^{\circ} \mathrm{C}$., 100 parts of water take up 110.5 parts of $\mathrm{K} \mathrm{Sn}_{\mathrm{n}} \mathrm{H}_{3}$, or nearly twice as much as of stannate of soda crystals.
 When there is present an excess either of alkali or of stannic oxyd, a saturated solution contains less of the net normal stannate.
 VII. A solution of $\mathbb{K} \mathrm{Sn}_{0.9}$ saturated at $0^{\circ} \mathrm{C}$. had the sp. gr. $1 \cdot 64$ and contained 40.4 p.c. of $\dot{\text { í Sn. }}$
 VIII. A solution of $\dot{\mathbf{K}} \mathrm{Sn}_{1 \cdot 2}$ saturated at $0^{\circ} \mathrm{C}$. had the ap. gr. $1^{\circ} 74$ and contained 41.5 p. c. 交 Sn and $5 \cdot 3 \mathrm{p}$. c. of $\mathrm{Sn} \mathrm{O}_{2}$ in excess.

 Or speaking with special reference to the oxyd of tin, we may aay that its solurbility increases as the amount of alkali present is diminished.

[^58]: Am Jour scl-Second Srries, Voin XL, No. 119.-Sept., 1883

[^59]: ${ }^{3}$: Annales de Ch, et de Phys. [3], xii, 476.
 ! Id, xxiii, 395.

[^60]: © Poggendorff's Ann. lyxv, 15.

 - Repertoire de Chimie, Sept., 1864, p. 184.

[^61]: \% Lehre von der Verwandschaft der Körper. Dresden, 1782. p. 4.
 ${ }^{8}$ Idem, p. 118.
 An. Jour. SCI.-Sivcond SERIEf, Vor. XI, No. 119-SEPT., 1865.

[^62]: ${ }^{9}$ Pogg. Ann, xliii, 135.
 ${ }^{21}$ Eidmann's Journal, xii, 294.
 ${ }^{10}$ Phil. Trans, 1857, p. 533.
 12 Will and Kopp's Jahrestericht, 1862 p. 138.

[^63]: ${ }^{18}$ See Part III, this Journal, xxxiii, p. 34. In the 18 th line from the bottom of that page, it should read, "add to the filtrate two parts of alcohol," instead of "twenty parta"

[^64]: ${ }^{4}$ Pogg. Annalen, $\mathbf{x c i}, 90_{z} 91$.

[^65]: AK. Jour. Sci.-SEcond Series, Yol. XL, No. 119.-Sept., 1886.

[^66]: ${ }^{1}$ T. S. Hunt, (L., E. and D. Phil. Mag, [1], xiii, 239); and Geology of Canada, page 565.
 ${ }^{2}$ For a notice. with analyses by the author, of a green hydrated silicate of alumina, iron and potash, allied to glauconite, from the Paleozoic rocks of Canada and of the Mississippi valley, see the Geology of Canada, pages 487, 488; where also will be found an analysis by the author of the glauconite from the Cretaceous formation of New Jersey. See also this Juurnal, [2], xxxiii, 27%.

[^67]: du. Joer. Sci.-Sucond Series, Vol. XL, No. 119--Sept., 1865.

[^68]: ${ }^{5}$ By wistake this is printed 342 in 843.

[^69]: 15. Hamiltox,--shales.
 16. Cormperous, -limestone.
 17. Medins,-sandstone.
 18. Ohiseany, -sandstone.
 19. Onondaga or Gppsiferous,-dolomite.
 20. Guslpe--dolomite.
 21. Nugara,-dolomite.
 22. Hudsen River,-shales.
 23. Utra, -shales.
 24. Taenton,-limestone.
 25. Cuinron,-limestone aud shale.
 26. Calcuferous,-dolomite.
 27. Potsdam,-sandstone.
[^70]: ${ }^{2}$ This Journal, [2] xxxi, 412.

[^71]: ${ }^{3}$ Canadian Journal, May, 1859, 201, and this Journal, [2] xxv, 102, also Comptes Rendus, June 9th, 1862, and Can. Nataralist, vii, 202.

[^72]: * Continued from page 108.
 ${ }^{5}$ Ann. der Chemie und Pharmacie, 1842, xli, 79, 169; 1845, 17, 177, etc

[^73]: ${ }^{2}$ Annalen der Chemie und Pharmacie, 1855, xcvi, 2.

 * Poggendorff's Annalen, 1844, 1xii, 184, 387.

 Ax. Jour. Sci.-Second Smaies, Vol. XL, No. 119.-Sept., 1865.

[^74]: - Pogg. Annalen, 1845. Ixiv, 367; 1846, Ixvii, 45. Idem., 1845, Ixiv, 250.
 - "Annales de Chimie et de Physique, 1945, [3], xiv, 107.
 loi fort simple, d'après laquello it stition dea hydrogènes carbonés est soumis à une degrés suivant le laquelle il s"élèverait culs'abaisserait d'un certain nombre de dans leur equivalent."

[^75]: " Bestimmung des Siedepunkts." Poggendorff's Annalen, 1847, Ixxii, 38.

[^76]: ${ }^{2}$ For common use in fractioning, when not desirable to use sodium, I bave fond pieces of coke to be more effectual and rouch more durable than platinum. Not the boiliso-point be feund equally preferable to platinum for general use in taking that nothing could operate better than cole could not be employed. It is certain derived from benzole and its better than coke for the nitro-compounds and alkaloids -

[^77]: ${ }^{2}$ Poggendorff's Analen, 1847, 1xxii, 38.

[^78]: ${ }^{18}$ See Memoir "On Process of Fractional Condensation," Memoirs of the Amarir can Academy, 1864, and this Juurnal, last vol, p. 397.

[^79]: ${ }^{12}$ From this point the temperature of the retort-bath was gradually raised by reans of a small gas-flame.

 AML Joum Sct-SECOND SERIES, VoL XL, NO. 112.-SEPT., 180\%

[^80]: ${ }^{14}$ In considering this question I shall include the boiling-points of the substances which I have separated from Pennsylvania petroleum, and the oil distilled from Albert coal; reserving for a subsequent memoir all other facts which have been derived from the study of these bodies.
 ${ }^{10}$ The ranges of temperature given in this and in the corresponding columns of the following tables, are for the purpose of showing the impossibility of there haring been any essential error in the determinations of the boiling points; as is evinced by the fact, in each case, that the whole product was found to distil without residue within such narrow limits. With so small a range of temperature, it is evident that it would make no practical difference whether either extreme or the mean of the observations be taken for the boiling point.

 The fact that these substances distill without residue within so short a range of temperature, is also of much value as proof of the existence of the two parallel series in petroleum and in coal-oil, with boiling points so near together [as shown by comparison of the boiling points of the first with the second series from petroleum; and also of the two corresponding series from Albert coal-oil]; especially if

[^81]: ${ }^{17}$ See footnote an preceding page.

[^82]: ${ }^{28}$ Annalen der Chemie und Pharnacie, 18 1 亿, 1xiii, 308.

[^83]: ${ }^{29}$ Philosophical Magazine, 1855, [4], ix, 256.

 * Annaleu der Chemie und Pharmacie, 1855, xcvi, 29.

[^84]: *) Annalea der Chemie und Pharmacie, 1855, xcri, 24.

[^85]: ${ }^{1}$ The minimum diameter should not be less than balf an inch; the maximum diameter, on the other hand, need not exceed one inch. A compromise between coo and efficiency may suggest something between these extremes.

[^86]: ${ }^{1}$ See this Journal, [2], IT, 69.

[^87]: Ax. Jocr. Scl.-Siecowd Sebilis, Voln XL, No. 119.-Sipt, 1865.

[^88]: ${ }^{3}$ The addrese is W. Wales \& Co, Fort Lee, Bergen Co., New Jersey.

[^89]: ${ }^{1}$ The stands used by photographers are well adapted for the purpose.

[^90]: ${ }^{1}$ See this Journal, vol. x, 1850, and rol. xi, 1851.

[^91]: ${ }^{1}$ We reproduce this article, originally published fifty years since, because of its interest as affording data for estimating the changes in progress along portions of the Atlantic coast. We learn from Mr. J.E. Hilgard, of the Coast Survey, that the position of the lighthouse remains the same as when the observations were made.-Ene

[^92]: " I spealr only of the coast of Virginia at Cape Henry; for although I have the best reason to believe that the same natural process has produced all the wand banks, islands, and sand hills from the Delaware to Florida: I have only examined that part of the coast, which is the subject of the present memoir.
 ${ }^{3}$ By a swamp I exchusively mean a piece of ground, the surface of which is Swamp, much of which is a bog or morass. Into the latter, a pole of any manageable length may be forced with great ease.

[^93]: -That the swamp with its trees extended to the sea coast, perhaps within a century, is very evident from this circumstance: between the summit of the sand hilis and the sea shore, and more especially on the Chesapeake side, the undecayed, though mostly dead bodies of trees still appear in great numbers."Being on the windward side of the sand hills, they bave not been more than half buried. At the lighthouse there are noue of the trees, but to the westward and sonthward are many.
 ${ }^{5}$ It is a good solid building of Rappahannoc froestone.

[^94]: ${ }^{1}$ Durand, Journ. Philad. College of Pharmacy, v, 12, 1834.

[^95]: 2 Among authors who have advocated this view, Professor Guyot may bere be mentioned; and since the preparation of this paper, the writer has learned that this eminent physical geographer has in hand a memoir on the connection between the distribution of forests over the world and that of moisture and the causes of the Iatter.

[^96]: ${ }^{3}$ Exploring Expedition Geological Report by the Author. (4to. 1849), p. 314.
 ${ }^{4}$ Same Report, pp. 339, 340.

 - For details see same Report, and also this Journal, [2], vii, 387-s94, 1849.

[^97]: ${ }^{\text {© }}$ See Blodget's Rain Chart, Armay Meteorological Register. 4to, 1855.

[^98]: "The points which I had in view in my observations were the following: Ist, the suceession of vegetation as a lake changes to a swamp, and then to dry land; 2nd, when swamps become permanently flooded what changes occur in the regetation; 3d, when lakes or swamps are drained what effects are produced; 4th, whether natural meadows are ever produced in our climate, and under what circumstances will grass or trees flourish best.

 There are in Maine abundant opportunities for stadying almost every

[^99]: ${ }^{1}$ Ae the mean of the two lines,

[^100]: ${ }^{2}$ From the Proceedings of the American Philosophical Society, July 21, 1865.

[^101]: * In speaking of the neade's tendency, I always refer to the motion of the N. pole.

[^102]: - Annales de Climie, Ivi, 75. ${ }^{2}$ Collected Works of Sir H. Dary, iii, 112. "very dilute" and be a miaprint, for an acid of that strength can hardly be called tures,-acts rapidly fact nitric acid of sp . gr. 1.16,-except at very low tempera-
 - Collected Works, iii, 130 . any kind, and evolves gas abundantly.

[^103]: *Esperiments and Observations on Different Kinda of Air; London, 1779, iii, 134.

[^104]: ; Lehre von Verwandschaft der Körper, p. 108; note.
 *Erdmannis Jour. f. Pr. Chem. xe, 267.

[^105]: ${ }^{3}$ Pogg. Ann, xxxix, 141.
 ${ }^{10}$ Annalen der Ch. and Ph ., lexxix, 109.
 AM. Joun. Scl-Second Seriss, Vour XI, No. 120.-Nov, 1885:

[^106]: ${ }^{11}$ The editor of the Chemical Garette,-xii, 211,-speaking of Hausmann's nitrate says:-"Ordway gave the formula $\mathrm{Fe}_{2} \mathrm{O}_{3} 3 \mathrm{NO}_{5} 18 \mathrm{HO}$ for it." He should have observed that I gave no formula for the still undiscovered cubic salt, but described crystals the inclination of whose upright prismatic faces differed 11° from a right angle.

[^107]: ${ }^{23}$ Bulletin Soe Chimique de Paris, March, 1862, p. 36.

[^108]: ${ }^{1}$ These number denignate the localities.

[^109]: These species of the Hamilton group are here inchnded, hecnise occurring in the same fragments with admitted Cumiferous (and Schoharie grit) speriea. The Lower Helderberg Leptacclia concava is inciuded for the same reasisn. In none of the cases just referred to, however, do we experience any difficulty in discovering light constant peculiarities in the Corniferous *pecies. The richess of the exotic Drift fauma of this locality, in the number and state of preservation of ita remains, fur exceeda any that has been signalized by the geologists of the Otd World.

[^110]: * It probably underlies the drift materials of the southwestern angle of the state and the adjacent parts of Indiana, but no actual outcrops are known to exist

[^111]: * Quar. Jour. Geol. Soc, viii, 56. Reprinted, Am. Jour. Sci. and Arte, [2], xr, 72.

[^112]: ${ }^{1}$ See this Journal, [2], zxix, 97 .

[^113]: ${ }^{2}$ For a description of this and cimilar silicates, see Geology of Canada, p. 491.

[^114]: ${ }^{2}$ This Journal, [2], xxix, 281 ; xxxii, 286. Geology of Canada, p. 577.
 *This Journal, (2], xxxiii, 277. Geology of Canada, p. 487.
 *Thie Journal, [2], xii, 280 .

[^115]: ${ }^{1}$ In Tacna, Sept, 19, 1860.

[^116]: ${ }^{1}$ I take this opportunity to acknowledge my indebtedness to Prof. C. F. Chandler of the School of Mines, Columbia College, for the use of his private laboratory, (in which uearly the whole of this investigation has been made), and for his general assistance and advice; to Profs. O. N. Rood and C. A. Joy of the School of Mines, for the use of instruments and books; and to Prof.J. D. Dana of New Haven, for his crystallographic examinations,-A. A. I.

[^117]: ${ }^{2}$ Ann. Pharm, Ixix, 206.

 * Pharm. Centralbl. $848,285$.
 * Rép. Chim. Appliq., xi, 324.

[^118]: * Berxelius, Traite de Chem. it, 386 .

[^119]: - This Jour., [2], xxxvi, 424.

[^120]: ${ }^{7}$ On account of the small size of the fragments and their mobility before the blowpipe flame, I was unable to determine the effect of a long continued ignition; but at the end of a minute's ignition no trace of fusion could be perceived.

[^121]: ${ }^{1}$ My grateful acknowledgemente are due to Prof. O. N. Rood of the School of Mines, Columbia Cotlege, for the use of his mieroscope and for general assistance and advice, and to Prof. C. F. Chandler of the School of Mines, for the facilities of Lis laboratory:-A. A.'N:

[^122]: * Concluded from p. 232.
 ${ }^{3}$ Tu avoid useless repetition, the hydrocarbons from Albert coal oil will be omitted in this series of tables, they being considered identical with the corresponding bodies from petrolearo.
 ${ }^{2}$ See foot-note on page 22?.

[^123]: ${ }^{5}$ If persons desiring the book will so write the Editors of this Journal they will communicate the result to the Swedish Academy.

[^124]: ${ }^{2}{ }^{2}$ Freqrequenently containing imbedded portions of pyrites, magnetite, graphite, and

